
Andrei Ciortea
Mehdi Dastani
Jieting Luo (Eds.)

 123

LN
AI

 1
43

78

11th International Workshop, EMAS 2023
London, UK, May 29–30, 2023
Revised Selected Papers

Engineering
Multi-Agent Systems

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14378
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Andrei Ciortea · Mehdi Dastani · Jieting Luo
Editors

Engineering
Multi-Agent Systems
11th International Workshop, EMAS 2023
London, UK, May 29–30, 2023
Revised Selected Papers

Editors
Andrei Ciortea
University of St.Gallen
St. Gallen, Switzerland

Jieting Luo
Zhejiang University
Hangzhou, China

Mehdi Dastani
Utrecht University
Utrecht, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-48538-1 ISBN 978-3-031-48539-8 (eBook)
https://doi.org/10.1007/978-3-031-48539-8

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-0721-4135
https://orcid.org/0000-0003-1919-9737
https://orcid.org/0000-0002-4641-4087
https://doi.org/10.1007/978-3-031-48539-8

Preface

The International Workshop on Engineering Multi-Agent Systems (EMAS) was formed
in 2013 as a merger of three long-running workshops: Agent-Oriented Software Engi-
neering (AOSE), ProgrammingMulti-Agent Systems (ProMAS), and Declarative Agent
Languages and Technologies (DALT). This merger established EMAS as a reference
venue for work that is broadly concerned with the engineering of agents and multi-agent
systems.

The three parent events have a long history of association with the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). Since its
inception, EMAS has been co-located with AAMAS as well. EMAS 2013 took place
in St. Paul (with post-proceedings published as Springer LNCS/LNAI volume 8245),
EMAS 2014 in Paris (LNCS/LNAI 8758, and a special issue in the International Journal
of Agent-Oriented Software Engineering, IJAOSEVol. 5 No. 2/3, 2016), EMAS 2015 in
Istanbul (LNCS/LNAI 9318, and a special issue in IJAOSE Vol. 6 No. 2, 2018), EMAS
2016 in Singapore (LNCS/LNAI 10093, and a special issue in IJAOSE Vol. 6 No. 3/4,
2018), EMAS 2017 in São Paulo (LNCS/LNAI 10738), EMAS 2018 in Stockholm
(LNAI 11375, and a report in Software Engineering Notes), EMAS 2019 in Montreal
(LNAI 12058), EMAS 2020 in Auckland (LNAI 12589), EMAS 2021 in London (LNAI
13190), and EMAS 2022 in Auckland (a special issue is to appear in AMAI). From 2020
to 2022, because of the COVID-19 pandemic, AAMAS and its co-located workshops
(incl. EMAS) were organized as online events in a fully virtual format.

EMAS 2023 aimed to build on this tradition by bringing together researchers and
practitioners interested in the theory and practice of engineering autonomous agents
and multi-agent systems. The overall goal of the workshop was to facilitate the cross-
fertilization of ideas and experiences in the various fields to:

– advance our knowledge and the state of the art of the theory andpractice of engineering
intelligent agents and multi-agent systems;

– demonstrate how MAS methodologies, architectures, languages, and development
tools can be used in the engineering of deployed large-scale, open, and data-driven
MAS;

– define new directions for engineering MAS by drawing on results and recommenda-
tions from related research areas; and

– encourage Ph.D. and Master’s students to become involved in and contribute to the
area.

EMAS 2023 was the first edition since 2019 to be held in person and was organized
as a 1.5-day workshop1. We received 25 submissions, each of which was reviewed
(single-blind) by three reviewers. In total, 18 papers were accepted for presentation at
the workshop (11 regular papers, 5 short papers, and 2 demonstration papers)—and

1 The complete workshop programme is available online: https://emas.in.tu-clausthal.de/2023/
program.html, accessed: 13.09.2023.

https://emas.in.tu-clausthal.de/2023/program.html

vi Preface

were invited after the workshop for submission to the post-proceedings. In addition
to these 18 papers, the workshop programme featured two invited talks, “Learnable
and Interactive Autonomous Agents through Reinforcement Learning” by ShihanWang
(Utrecht University) and “A New Solid Web for Agents that Rock” by Pierre-Antoine
Champing (W3C). On the second day, our invited speakers were joined by Terry Payne
(University of Liverpool), Ganesh Ramanathan (Siemens), Alessandro Ricci (University
of Bologna), and Munindar P. Singh (North Carolina State University) in an engaging
panel discussion on “Learning Agents, the Web, and Industrial Applications”.

Last but not least, a novelty of the workshop programme for EMAS 2023 was the
organization of an informal and interactive session for demonstrators at the end of the
first day. This session was meant to encourage discussions and creative thinking—and
was organized in one of the coffee break areas with the support of the AAMAS 2023
local organizers. A total of 9 demonstrators were registered and presented in this session.

We would like to thank: the authors and all participants to the open demonstration
session for their valuable contributions to the workshop programme; the members of the
Program Committee for their work in ensuring a high-quality reviewing process, and the
members of the Steering Committee for their guidance; Pierre-Antoine Champin and
Shihan Wang for their insightful keynotes; our invited panelists Terry Payne, Ganesh
Ramanathan, Alessandro Ricci, and Munindar P. Singh for creating a vibrant discussion
at the workshop; the AAMAS 2023 Local Arrangement Team and especially Enrico
Gerding for their support in organizing the open demonstration session; TU Clausthal
and especially Tobias Ahlbrecht for their support in hosting the workshop website.

We look forward to the next edition of the EMAS workshop!

September 2023 Andrei Ciortea
Mehdi Dastani

Jieting Luo

Organization

Program Committee Chairs

Andrei Ciortea University of St.Gallen, Switzerland
Mehdi Dastani Utrecht University, The Netherlands
Jieting Luo Zhejiang University, China

Program Committee

Natasha Alechina Utrecht University, The Netherlands
Matteo Baldoni Università di Torino, Italy
Luciano Baresi Politecnico di Milano, Italy
Cristina Baroglio Università di Torino, Italy
Olivier Boissier MINES Saint-Étienne, France
Daniela Briola University of Milano-Bicocca, Italy
Rafael C. Cardoso University of Aberdeen, UK
Moharram Challenger University of Antwerp, Belgium
Amit Chopra Lancaster University, UK
Andrei Ciortea University of St.Gallen, Switzerland
Rem Collier University College Dublin, Ireland
Stefania Costantini Università degli Studi dell’Aquila, Italy
Fabiano Dalpiaz Utrecht University, The Netherlands
Mehdi Dastani Utrecht University, The Netherlands
Maiquel de Brito Federal University of Santa Catarina, Brazil
Davide Dell’Anna Delft University of Technology, The Netherlands
Louise Dennis University of Manchester, UK
Angelo Ferrando Università di Genova, Italy
Lars-Ake Fredlund Universidad Politécnica de Madrid, Spain
Stéphane Galland UBFC – UTBM, France
Jorge Gomez-Sanz Universidad Complutense de Madrid, Spain
Zahia Guessoum Sorbonne Université and Université de Reims

Champagne-Ardenne, France
James Harland RMIT University, Australia
Vincent Hilaire UTBM/IRTES-SET, France
Koen Hindriks Vrije Universiteit Amsterdam, The Netherlands
Tom Holvoet Katholieke Universiteit Leuven, Belgium
Jomi Fred Hübner Federal University of Santa Catarina, Brazil

viii Organization

Joao Leite Universidade NOVA de Lisboa, Portugal
Yves Lespérance York University, Canada
Jieting Luo Zhejiang University, China
Viviana Mascardi Università di Genova, Italy
Simon Mayer University of St.Gallen, Switzerland
John-Jules Meyer Utrecht University, The Netherlands
Roberto Micalizio Università di Torino, Italy
Luis Gustavo Nardin Mines Saint-Étienne, France
Enrico Pontelli New Mexico State University, USA
Wishnu Prasetya Utrecht University, The Netherlands
Alessandro Ricci Università di Bologna, Italy
Luca Sabatucci ICAR-CNR, Italy
Valeria Seidita Università degli Studi di Palermo, Italy
Jaime Sichman University of São Paulo, Brazil
Tran Cao Son New Mexico State University, USA
Jørgen Villadsen Technical University of Denmark, Denmark
Danny Weyns Katholieke Universiteit Leuven, Belgium
Michael Winikoff Victoria University of Wellington, New Zealand
Vahid Yazdanpanah University of Southampton, UK
Neil Yorke-Smith Delft University of Technology, The Netherlands
Rym Zalila-Wenkstern University of Texas at Dallas, USA
Yingqian Zhang Eindhoven University of Technology,

The Netherlands

Steering Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Rafael Bordini PUCRS, Brazil
Mehdi Dastani Utrecht University, The Netherlands
Jürgen Dix Technische Universität Clausthal, Germany
Amal El Fallah Seghrouchni Sorbonne Université, France
Brian Logan Utrecht University, The Netherlands
Jörg P. Müller Technische Universität Clausthal, Germany
Alessandro Ricci Università di Bologna, Italy
Danny Weyns Katholieke Universiteit Leuven, Belgium
Michael Winikoff Victoria University of Wellington, New Zealand
Rym Zalila-Wenkstern University of Texas at Dallas, USA

Contents

Agent-Oriented Software Engineering

Towards Forward Responsibility in BDI Agents . 3
Rafael C. Cardoso, Angelo Ferrando, Joe Collenette, Louise A. Dennis,
and Michael Fisher

Imperative and Event-Driven Programming of Interoperable Software
Agents . 23

Giuseppe Petrosino, Stefania Monica, and Federico Bergenti

vGOAL: A GOAL-Based Specification Language for Safe Autonomous
Decision-Making . 41

Yi Yang and Tom Holvoet

Agents and Microservices

Protocol-Based Engineering of Microservices . 61
Aditya K. Khadse, Samuel H. Christie V, Munindar P. Singh,
and Amit K. Chopra

Exploiting Service-Discovery and OpenAPI in Multi-agent MicroServices
(MAMS) Applications . 78

Eoin O’Neill and Rem W. Collier

Using Multi-Agent MicroServices (MAMS) for Agent-Based Modelling 85
Martynas Jagutis, Sean Russell, and Rem W. Collier

Strategy, Reasoning, and Planning

Dynamics of Causal Dependencies in Multi-agent Settings 95
Maksim Gladyshev, Natasha Alechina, Mehdi Dastani,
and Dragan Doder

Multi-armed Bandit Based Tariff Generation Strategy for Multi-agent
Smart Grid Systems . 113

Sanjay Chandlekar, Easwar Subramanian, and Sujit Gujar

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 130
Poom Pianpak, Jiaoyang Li, and Tran Cao Son

x Contents

Engineering Domains and Applications

A Multi-agent Approach for Decentralized Voltage Regulation in Micro
Grids by Considering Distributed Generators . 151

Fenghui Ren and Jun Yan

Synthesizing Multi-agent System Organization from Engineering
Descriptions . 167

Ganesh Ramanathan

Towards Developing Digital Twin Enabled Multi-Agent Systems 178
Stefano Mariani, Marco Picone, and Alessandro Ricci

Agents in Hypermedia Environments

Towards Context-Based Authorizations for Interactions
in Hypermedia-Driven Agent Environments - The CASHMERE
Framework . 191

Alexandru Sorici and Adina Magda Florea

Towards Framing the Agents & Artifacts Conceptual Model
at the Knowledge Level: First Ideas and Experiments . 208

Samuele Burattini, Andrei Ciortea,Meshua Galassi, and Alessandro Ricci

Pody: A Solid-Based Approach to Embody Agents in Web-Based
Multi-Agent-Systems . 220

Antoine Zimmermann, Andrei Ciortea, Catherine Faron, Eoin O’Neill,
and María Poveda-Villalón

Frameworks, Tooling, and DevOps

Fantastic MASs and Where to Find Them: First Results and Lesson Learned . . . 233
Daniela Briola, Angelo Ferrando, and Viviana Mascardi

The Entity-Operation Model for Practical Multi-entity Deployment 253
Andrei Olaru, Gabriel Nicolae, and Adina Magda Florea

Remote Deployment of a JADE Agent in Docker . 271
Dennis Maecker, Henning Gösling, and Oliver Thomas

Author Index . 279

Agent-Oriented Software Engineering

Towards Forward Responsibility in BDI
Agents

Rafael C. Cardoso1(B) , Angelo Ferrando2 , Joe Collenette3,
Louise A. Dennis3 , and Michael Fisher3

1 University of Aberdeen, Aberdeen, UK
rafael.cardoso@abdn.ac.uk

2 University of Genova, Genova, Italy
angelo.ferrando@unige.it

3 The University of Manchester, Manchester, UK
{joe.collenette,louise.dennis,michael.fisher}@manchester.ac.uk

Abstract. In this paper, we discuss forward responsibilities in Belief-
Desire-Intention agents, that is, responsibilities that can drive future
decision-making. We focus on individual rather than global notions
of responsibility. Our contributions include: (a) extended operational
semantics for responsibility-aware rational agents; (b) hierarchical
responsibilities for improving intention selection based on the priorities
(i.e., hierarchical level) of a responsibility; and (c) shared responsibilities
which allow agents with the same responsibility to update their priority
levels (and consequently commit or not to the responsibility) depending
on the lack (or surplus) of agents that are currently engaged with it.

Keywords: forward-looking responsibility · task responsibility · BDI
agents

1 Introduction

A recent “Blue Sky Ideas” paper [27] discussed existing research and new research
opportunities in the application of responsibility for trustworthy autonomous
systems. They describe many research themes and challenges, but of particular
interest to us is the challenge of using responsibility “to ensure system reliability
and fault tolerance in the technical software development context”.

We refer to rational agents as cognitive programmable entities that perform
autonomous decision making by reasoning about events, capabilities, and knowl-
edge of the world. Recent literature reviews on agent-oriented programming have
highlighted the need for safer and more reliable agents [6,9,17].

In this paper we focus on forward-looking (as opposed to backward-looking)
responsibilities [19]. In the context of rational agents, the former uses respon-
sibilities to aid in the process of task selection, while the latter is related to
the notions of accountability, liability, and blameworthiness. Many concepts of
responsibility exist, see [27] for a more comprehensive discussion.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-48539-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_1&domain=pdf
http://orcid.org/0000-0001-6666-6954
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0000-0003-1426-1896
http://orcid.org/0000-0002-0875-3862
https://doi.org/10.1007/978-3-031-48539-8_1

4 R. C. Cardoso et al.

We illustrate these different concepts of responsibility in Fig. 1. Besides the
dimension regarding its meaning, when considering responsibility-aware agents
we also have to consider if the view of responsibility that was chosen is cen-
tralised or decentralised. A centralised view of responsibility in autonomous
agents occurs when the information about responsibilities (either backward or
forward-looking) is stored in a shared environment (e.g., organisation, electronic
institution), which makes it easier for any agent to access the responsibilities of
other agents. On the other hand, a decentralised view usually requires commu-
nication between agents in order to obtain access to other agents responsibilities
(e.g., stigmergic behaviour). Whereas previous literature about responsibility in
agent systems have often focussed on organisations or some other centralised
model of responsibilities [2,3,25,26], in this paper we focus on forward-looking
responsibilities where our agents reason about their own individual responsibil-
ities and have an individual (decentralised) view of responsibilities. We achieve
this by extending well know formal theories for agent computational models.

Organisational View
(top-down;
centralised)

Agent View
(bottom-up;

decentralised)

Forward-looking
(task selection; etc)

Backward-looking
(accountability; etc) Responsibility

Fig. 1. Different dimensions when considering responsibility for rational agents. Direc-
tions of arrows and axes have no additional semantic meaning, an axis simply represents
a different dimension.

Formal agent theories, such as those based on the Belief-Desire-Intention
(BDI) model [8], do not include the notion of responsibility. Models where
responsibilities (and the similar concept of agent roles) have been described
predominantly take a centralised/organisational view. We propose extending
agent models and theories with forward-looking, decentralised responsibility
and instantiate this by considering their computation in the reasoning cycle of
agents. As previously mentioned, we are interested in improving the reliability
of rational agents through reasoning of responsibilities. In particular, we extend
the standard syntax and operational semantics of rational agents to support
responsibility-aware agents. We focus on two concepts to improve the reliability
and flexibility of the agents: hierarchy of responsibilities and shared responsi-
bilities. The hierarchy is formed by attaching priorities (the hierarchical level)

Towards Forward Responsibility in BDI Agents 5

to the responsibilities which guides the agents during their intention selection;
this also improves flexibility since it provides agents with a new way of select-
ing their intentions to be executed based on the priorities of the responsibilities
that they are committed to performing. Agents that have shared responsibilities
need to be aware of the status of these responsibilities in order to take over from
other agents that can no longer perform them (this is achieved by manipulating
the associated priorities), and thus, effectively improving the reliability of the
system.

Our concept of forward-looking responsibilities is distinctively different from
concepts of beliefs and organisational roles, and as such it would not be possible
to flatten our representation to either of these concepts without losing some of
our contributions and still maintain the original identity of beliefs and organi-
sational roles. Most notably, one of these contributions is the direct impact that
responsibilities (in particular their hierarchy) causes in the reasoning cycle by
guiding the intention selection of rational agents.

The paper is structured as follows. Section 2 discusses the differences between
our work and existing approaches for responsibility-aware agents. In Sect. 3 we
present some of the basic operational semantics for rational agents and extend it
to allow for responsibility-aware agents. Sections 3.1 and 3.2 contain extensions
of the theory to include the concepts of hierarchy of responsibilities and shared
responsibilities (respectively). In Sect. 4 we discuss how our approach can be
applied in practice. Future work and concluding remarks bring the paper to a
close in Sect. 5.

2 Related Work

The work in [26] presents a strategic reasoning approach for tackling backward-
looking responsibility in rational agents. They specify the system as a Con-
current Epistemic Game Structure (CEGS), and apply formal verification of
strategic properties (Alternating-time Temporal Logic in particular) to conclude
the responsibility of the agents w.r.t. the occurrence of some bad event (e.g.,
applied to an example where some agents want to poison a certain agent, and
when the agent dies, they want to know who was responsible for it, and in
which amount). In further extension of their work a task coordination frame-
work is proposed, TasCore [25], which is a dynamic task coordination method
for multi-agent strategic reasoning. There are two main parts of TasCore: task
allocation and a retrospective mechanism for ascribing responsibilities to agents.
The latter is based on their previous work of assigning degrees of responsibilities
based on past history, which in this case relates to the tasks that have been allo-
cated and how they have been fulfilled. Both works are based on the notion of
backward-looking responsibilities. This paper explores forward-looking responsi-
bilities, where agents adopt responsibilities and tasks are then attributed to the
agent.

A series of research papers have tackled the notion of accountability in multi-
agent organisations as a means to improve robustness of the system [1–3]. In these

6 R. C. Cardoso et al.

papers, the definition of responsibility is closely related to that of roles in multi-
agent organisations. That is, a responsibility is a collection of tasks that should
be performed within a society of agents. Agents are assumed to be autonomous,
and therefore must explicitly commit to responsibilities that they want oversee.
Accountability is represented through accountability agreements between a pair
of agents, where one agent can ask for an account about a particular task to the
other agent. Robustness is obtained by connecting failed accounts to recovery
strategies, which in turn can trigger treatment tasks that eventually lead to
new commits to responsibilities. The main difference between their work and
ours is that they take an organisational view of responsibilities rather than our
individual agent view.

Another approach to accountability was suggested for sociotechnical systems
where a metamodel exploits accountability requirements based on the legal con-
cepts of commitments, authorisation, and prohibition [10]. The authors sug-
gest that their approach can be operationalised using a normative language to
express the accountability requirements. As we previously discussed, account-
ability falls within the sphere of backward-looking responsibilities, and as such,
do not directly relate to the concept of forward-looking responsibilities that we
explore in our paper.

Other works that are tangential to ours include: the missions in the organisa-
tional layer of the JaCaMo multi-agent programming framework [5] that resem-
ble our notion of forward-looking responsibility in that they also serve as triggers
for adding a collection of goals, but provide no means of automatically reason-
ing about them, and their use requires a centralised organisation; maintenance
goals [15] seek to maintain a particular state of the world, which share some
similarities with our work, but in our case we are more interested in the over-
all behaviour of the agent and its impact in intention selection; and a set of
requirements for accountability in autonomous agents [12] with a strong focus
on organisational norms. However, none of the above consider the concept of
forward-looking responsibility reasoning in rational agents with an individual
agent view.

3 Responsibility-Aware Agents

We formalise responsibility by extending the syntax and operational semantics
of BDI agent languages such as AgentSpeak(L) [21], AgentSpeak− [13], and
Jason [7]. Note that we do not present the complete syntax or formal semantics
for these languages, we simply report the necessary rules and extensions for
obtaining responsibility-aware agents. Further considerations may be necessary
when trying to implement it in these (and other) agent languages. Nonetheless,
the observations about the implementation details that we provide in Sect. 4 may
be of some help.

We focus on BDI because it is the most traditional implementation of ratio-
nal agents with a rich selection of programming languages (Jason, JaCaMo [4],
ASTRA [11], CAN [24], Gwendolen [14], etc.) and has been shown in recent sur-
veys [6,9,17] to have many open research problems that still need to be solved.

Towards Forward Responsibility in BDI Agents 7

The BDI model of agency [8,20] revolves around three main attitudes: beliefs
is the knowledge that the agent has about the world; desires are goals that the
agent wants to achieve; and intentions are the means of achieving the goals that
the agent has committed to. BDI agents have a reasoning cycle that follows the
‘sense-plan-act’ methodology. The sense phase consists of receiving perceptions
from the environment and messages from other agents. The plan phase starts
with the generation of events, which can come from the addition/deletion of
beliefs or goals. These events trigger the plan selection mechanism, which con-
sults the plan library for relevant and applicable plans and then selects one to
be added to the intention stack. The act phase removes and executes the top
intention in the selected intention stack.

We add the notion of task responsibility (henceforth referred to simply as
responsibility) in the reasoning cycle of the agent. Informally, responsibility is
a task containing a collection of goals that relate to an overarching topic (e.g.,
responsibility for safety). When an agent adopts a responsibility, an event is
generated that triggers the associated plan to start pursuing the goals that it is
now responsible for achieving. An overview of the resulting reasoning cycle for
responsibility-aware agents is shown in Fig. 2.

E
nv

iro
nm

en
t

trigger

Events

perceptions/
messages

Beliefs Plan
Library

actions
Intention Stacks

create/select

relevant/
applicable

Plan
Selection

grouped as
Goals

generate

ge
ne

ra
te

generate

Agent

gu
id

e

Responsibilities

Fig. 2. Responsibility-aware BDI agent reasoning cycle.

We show the syntax for rational agents with responsibilities in Fig. 3. The
differences from the traditional syntax found in most BDI-based agent languages
are the addition of a responsibility base along with the notion of responsibilities
and the respective triggering events from adopting/dropping responsibilities, as
well as adding support for updating the responsibility base inside the body of a
plan. Note that the dynamic creation of responsibilities is not supported in this
paper, the update simply refers to adopting or dropping a responsibility. We also
support expressing responsibilities in the context of a plan, even thought this

8 R. C. Cardoso et al.

is not used directly in our theory, it can be useful in practice when building an
agent program.

agent : := bb rb p l
bb : := b e l i e f 1 . . . b e l i e f n (n ≥ 0)
rb : := resp 1 . . . re spn h (n ≥ 0)
p l : := plan1 . . . plann (n ≥ 1)
b e l i e f : := at
g : := at
at : := P(t1 , . . . , tn) (n ≥ 0)
resp : := P([g1 , . . . , gn] , na , r e c) (n ≥ 1)
h : := h i e ra r chy ([h l 1 . . . hln]) (n ≥ 1)
h l : := [Presp1 . . . Prespn] (n ≥ 1)
plan : := te : context body
te : := +!g +b e l i e f b e l i e f

+/resp /resp
context : := ct1
ct1 : := b e l i e f ¬ b e l i e f r e sp

¬ re sp ct1∧ct1
body : := bd1 ,
bd1 : := +!g ac t i on bbupdate

rbupdate bd1 ; bd1
ac t i on : := A(t1 , . . . , tn) (n ≥ 0)
bbupdate : := +b e l i e f b e l i e f
rbupdate : := +/resp /resp

Fig. 3. Syntax for responsibility-aware rational agents. bb is belief base. rb is responsi-
bility base. pl is plan library. g is goal. at is an atomic formulae with P as a predicate
name and (t1, . . . , tn) as first-order logic terms. resp is responsibility with na as the
current number of “active” agents committed to this responsibility and rec as the rec-
ommended number of agents. h is the hierarchy of responsibilities, it uses the reserved
word (and terminal symbol) hierarchy as the predicate name. hl is a hierarchical level
containing a partial order of responsibilities in that level. te is triggering event. ct1 and
bd1 are context and body (resp.) to support chaining. A in action is a predicate name
for the action. +/resp and −/resp have the extra forward slash symbol to differentiate
it from belief operations.

The main purpose of adding a recommended number of agents for a responsi-
bility is to facilitate the reasoning around shared responsibilities (this is further
explored in Sect. 3.2). Nevertheless, we note that the relevance of such feature
may be subject to domain specific information, where some domains may not
require a lower bound in the number of agents. This will be explored in future
work when we deal with more complex and diverse examples.

The responsibility base is there to provide a clear separation from the belief
base. Each agent has its own individual responsibility base. An agent is capable
of handling any responsibility in its base, but it does not initially commit to any
of them by default. Adopting and dropping responsibilities have to be manually

Towards Forward Responsibility in BDI Agents 9

inserted in the agent program, since the best moments at which to do this will
require domain specific information. A responsibility that is dropped remains in
the responsibility base because the agent can decide that it needs to adopt it
again in the future.

A key difference between responsibility and belief bases is that responsibilities
can only be defined at design time. Nevertheless, the following changes can occur
to them at runtime: an agent can decide to adopt or drop a responsibility, thus
altering the number of agents currently committed to it (i.e., active agents); and
the priority that the agent has for a responsibility can be changed depending
on specific circumstances at runtime related to shared responsibilities. Priorities
and how they are used to guide intention selection are presented in Sect. 3.1.
Shared responsibilities and how they can alter the priority that an agent has for
a responsibility through agent communication are covered in Sect. 3.2.

To illustrate a typical responsibility, let us consider an example where a
domestic robot is embedded with a rational agent that performs the high-level
decision making. This agent has the following responsibility in its responsibility
base:

cleaning([clean(bathroom), clean(bedroom)], 0, 1)

where the responsibility name is cleaning, the associated goals are to clean the
bathroom and the bedroom, the current number of active agents committed to this
responsibility is 0, and the recommended number is 1. Because we only have one
responsibility in this example we omit the hierarchy (this is discussed in Sect. 3.1).

Each responsibility also has a corresponding plan that triggers once the agent
has decided to adopt the responsibility. For the previous example we would have
the following plan:

+/c l e a n i n g : { � }
← +! c l e a n (bathroom) ,

+! c l e a n (bedroom) ,
−/c l e a n i n g .

The context of the plan is always true and the body of the plan contains the goals
associated with the responsibility. Note that the body of plans usually follow a
sequential composition, which means that the order in which the goals appear
here is the order that they will be attempted to be achieved. At the end of the
plan the cleaning responsibility is dropped.

The syntax from Fig. 3 does not cover plan selection or the way that intention
stacks work since these are not elements that can be expressed by the user of the
language. Instead, these elements are controlled internally by rules and functions
in the language. Next, we describe the standard operational semantics for these
rules, since they are required to introduce our new extensions for adopting and
dropping a responsibility, as well as to better understand where the contributions
that are presented later on fit in the reasoning cycle of the agent. Due to space
constraints we omit the cases for most of the rules where we would need an

10 R. C. Cardoso et al.

additional rule for when there are no elements to consume/handle, in which case
the reasoning cycle would simply skip to another phase of the reasoning cycle.
For example, rules that deal with empty elements in plan selection would skip
to the intention selection phase. To improve readability we also omit the use of
unifiers.

The inference rules that define the operational semantics represent transi-
tions between agent configurations in the reasoning cycle of an agent. An agent
configuration is denoted as:

Conf = 〈agent, C,M, T, rule〉
where agent is the agent program composed of a belief base, a responsibility
base, and a plan library; C is an agent’s current circumstance represented by
the tuple 〈I, E,A〉, respectively the set of intention stacks (sometimes referred
to as intended means), set of events, and set of actions; M represents the asyn-
chronous communication between agents as a tuple 〈In,Out〉, respectively the
mail box and outgoing messages to be sent; T is an auxiliary structure that
stores relevant temporary information that can be useful within a cycle, it is a
tuple 〈Rel,App, ev, ie, si, res, pl〉 with Rel the set of relevant plans, App the set
of applicable plans, ev, ie, si, res, and p a particular event, intention associated
with event, intention selected for execution, responsibility, and plan (respec-
tively); and rule is the current step in the agent’s reasoning cycle, representing
which inference rule will be used in that step. To refer to sub-elements of an
element in a tuple, such as the set of intentions in a circumstance we use CI ,
similarly, CE for set of events CA for set of actions, and so on.

Plan selection is often separated into four phases: (1) selection of an event;
(2) obtaining relevant plans; (3) obtaining applicable plans; and (4) selection of
a plan.

Selection of an Event. We need to select an event from the events that are
currently active. The following inference rule is used for selecting an event1:

(SelEv)
SelectEvent(CE) = te

〈agent, C,M, T, SelEv〉 → 〈agent, C ′,M, T ′, RelP l〉

where C ′
E = CE\{te}

T ′
ev = te

T ′
ie = GetIntention(te)

This rule says that the SelectedEvent function uses the event set in the cir-
cumstance CE to select a triggering event te. Usually implementations of this
function will simply select an event following the ordering method first in, first
out. The rule updates the event set in the circumstance by removing the selected
event from it, as well as assigning the event to the respective auxiliary struc-
ture to be used in further rules. The get intention function returns the intention
1 In subsequent inference rules we assume that elements of the state remain unchanged

unless explicitly stated in the rule.

Towards Forward Responsibility in BDI Agents 11

associated with the selected event if that event was generated from previous
executions of other plans (i.e., internal event), or � if it was generated from a
perception (i.e., external event).

Obtaining Relevant Plans. It is necessary to obtain the relevant plans that match
the selected event, which can be obtained with the rule:

(RelPl)
RelevantP lans(Te) �= ∅

〈agent, C,M, T,RelP l〉 → 〈agent, C,M, T ′, AppP l〉

where T ′
Rel = RelevantP lans(Te)

The relevant plans function is straightforward since we simply have to match the
previously selected event with the triggering event of plans in the plan library.

Obtaining Applicable Plans. To obtain the applicable plans we need to compare
the set of relevant plans to the belief base:

(AppPl)
ApplicableP lans(agentbb, TRel) �= ∅

〈agent, C,M, T,AppP l〉 → 〈agent, C,M, T ′, SelP l〉

where T ′
App = ApplicableP lans(agentbb, TRel)

The applicable plans function will iterate over each relevant plan while checking
the context of the plan against the belief base. If the result of this check is true,
then the plan is applicable.

Selection of a Plan. A plan is selected for execution from the applicable plans:

(SelPl)
SelectApplicable(T ′

App) = plan

〈agent, C,M, T, SelP l〉 → 〈agent, C,M, T ′, UpdtSt〉

where T ′
pl = plan

The function for selecting an applicable plan usually picks the first in a top to
bottom order from where they appear in the plan library.

Once a plan is selected, then a new intention stack for the instance of that
plan is created if the intention associated with the triggering event is external:

(CrtSt)
Tie = � ∧ Tpl = plan

〈agent, C,M, T,CrtSt〉 → 〈agent, C ′,M, T, SelInt〉

where C ′
I = CI ∪ {plan}

Otherwise, with an internal event we use rule UpdtSt to update an existing stack
of intentions:

(UpdtSt)
Tie = intention ∧ Tpl = plan

〈agent, C,M, T, UpdtSt〉 → 〈agent, C ′,M, T, SelInt〉

12 R. C. Cardoso et al.

where C ′
I = (CI\{intention}) ∪ {intention[plan]}

In this case, we update the intention by adding the selected plan at the bottom
of the associated intention stack (represented by intention[plan]).

Plans can be instantiated into separate intention stacks, i.e., at any moment
we can have more than one intention stack. Therefore, it is necessary to have a
way to select the next intention stack to be executed:

(SelInt)
CI �= ∅ ∧ SelectIntention(CI) = i

〈agent, C,M, T, SelInt〉 → 〈agent, C,M, T ′, ExecInt〉

where T ′
si = i

The implementation of the select intention function usually attempts to select
an intention stack based on fairness to avoid starvation. For now we assume a
similar behaviour, but in Sect. 3.1 we discuss a different implementation that
will instead prioritise intention stacks related to responsibilities based on the
existing partial order in the hierarchy.

In practice, an intention stack is composed of the bodies of selected plans (or
subplans), and as such can include the following (see body in the syntax from
Fig. 3 for a complete list): an action, a belief update, a new goal, etc. Each of them
will have their own individual rules that are activated when ExecInt is called. For
the sake of brevity we only show the new operational semantics inference rules
for executing intentions that are related to updating the responsibility base (i.e.,
adopting or dropping a responsibility), the remaining rules are all unchanged
and thus similar to past work [7,13,21,23].

If the head (topmost) intention in the selected intention stack is the adoption
of a responsibility, then the following rule applies:

(AResp)
Tsi = i[head ← +/resp; body]

〈agent, C,M, T,AResp〉 → 〈agent′, C ′,M, T ′, ClrInt〉

where agent′rb = (agentrb\resp) ∪ UpdateAdopt(resp)
C ′

E = CE ∪ {+/resp}
C ′

I = CI\{Tsi}
T ′
res = resp

The function to update a responsibility after it has been adopted is used to
update the number of agents currently committed to it (it simply performs
arithmetic addition by increasing it by 1). Note that in practice this would require
some form of communication for these numbers to be useful, but for now let us
assume that this is being done inside UpdateAdopt function (communication is
added to the semantics later in Sect. 3.2. More importantly, the set of events is
updated to include a new event about this responsibility, which will eventually
trigger (when the event is selected) the corresponding plan containing the list
of goals related to it. Lastly, the selected intention is removed from the set of
intentions (C ′

I = CI\{Tsi}).

Towards Forward Responsibility in BDI Agents 13

Otherwise, if the head is the dropping of a responsibility:

(DResp)
Tsi = i[head ← −/resp; body]

〈agent, C,M, T,DResp〉 → 〈agent′, C ′,M, T ′,DInt〉

where agent′rb = (agentrb\resp) ∪ UpdateDrop(resp)
C ′

E = CE ∪ {−/resp}
C ′

I = CI\{Tsi}
T ′
res = resp

In this case, the function to update a responsibility decreases the number of
agents currently committed to it by 1 (i.e., it performs arithmetic subtraction),
similar to the AResp rule, communication is added to the semantics later in
Sect. 3.2. The selected intention that was just processed is removed from the set
of intentions. Additionally, this rule leads to the rules for dropping an intention
about a responsibility. Rule DInt1 is used when the drop is invoked from the
body of the responsibility plan:

(DInt1)
Tres ⊆ Tpl

〈agent, C,M, T,DInt1〉 → 〈agent, C,M, T,ClrInt〉
This means that the responsibility is dropped because it came to a natural

conclusion and there are no additional operations to make.
Rule DInt2 deals with the opposite condition:

(DInt2)
Tres � Tpl

〈agent, C,M, T,DInt2〉 → 〈agent′, C ′,M, T ′, ClrInt〉

where C ′
I = CI\DropIntention(Tres)

This means that the responsibility is dropped from a plan outside the origi-
nal plan, which means that the agent has autonomously decided to stop being
responsible for it (e.g., something has failed, or another responsibility with a
higher priority that conflicts with this one has been adopted). The drop inten-
tion function drops the intention associated with the responsibility by performing
some parsing over the responsibility information stored in the auxiliary structure
Tres, which in this case will drop the corresponding plan along with its subplans
(plans for the goals listed within the responsibility).

Rules AResp, DInt1, and DInt2 lead to the ClrInt rule, which we omit
because it simply removes empty stacks of intentions and then proceeds to the
beginning of a new cycle.

3.1 Priorities and Hierarchy of Responsibilities

Each agent has it own individual responsibility base which includes not only the
responsibilities that the agent can adopt but also a hierarchy that determines
the priority of a responsibility in relation to others by categorising them into

14 R. C. Cardoso et al.

different hierarchical levels. Responsibilities and the hierarchy are defined at
design time and our theory does not (yet) provide support for them to be changed
dynamically at execution time. The only exceptions are when the current number
of agents committed to a responsibility changes (as shown in the rules AResp and
DResp with the UpdateAdopt and UpdateDrop functions), and when an agent
tries to adopt a shared responsibility which can cause the hierarchy to change
(this defined later in Sect. 3.2).

Recall function SelectIntention(CI) from rule SelInt ; we now provide a
pseudo-code implementation for it in Algorithm 1 where an intention stack is
selected based on the priority defined by the hierarchical levels in the agent’s
hierarchy.

Algorithm 1: Selects an intention stack given a set of intentions stacks as
input (CI).
1 Function SelectIntention(CI)
2 i ← ∅;
3 if CI �= ∅ then
4 RespStacks ← GetRespStacks(CI);
5 hlevel ← 0;
6 while there exists {stack} ∈ RespStacks do
7 slevel ← GetHLevel(stack);
8 if slevel > hlevel then
9 hlevel ← slevel;

10 i ← stack;

11 RespStacks ← RespStacks \ {stack};

12 if i = ∅ then
13 i ← SelectIntentionFairness(CI);

14 return i

First, we initiate the return variable with null. Next, we check if the set of
intention stacks is not empty, i.e., there is at least one active intention stack.
If that is the case, then we use the function GetRespStacks(CI) from line 4
to get all intention stacks that contain a responsibility (we then call these the
responsibility stacks). Because each responsibility has a corresponding plan, then
whenever that plan is selected a new intention stack is created, and any subplans
(e.g., from the associated goals) originated from it are attached to the same stack.
We initiate the variable that holds the most prioritised hierarchical level (hlevel)
with 0. Hierarchical levels are implicit within the hierarchy, and as such can be
extracted with an appropriate function. The last hierarchical level starts at 1,
and increases by 1 as it goes up the levels of the hierarchy.

The while loop (lines 6–11) iterates over each element in the set of responsi-
bility stacks. In this loop we first get the hierarchical level of the responsibility
attached to the stack (stored in variable slevel), and then check if that value

Towards Forward Responsibility in BDI Agents 15

is greater than our currently most prioritised hierarchical level. If it is then we
update the related variables accordingly. Note that we do not test if the level
is equal, since there is no priority between responsibilities within the same hier-
archical level. Thus, it will simply pick the stack with the responsibility that it
processed first. At the end of the loop we remove the stack that was processed
from the set of responsibility stacks.

It is possible for the set of intention stacks to not be empty while the set of
responsibility stacks is. In this case, the if condition on lines 12–13 is triggered,
which calls an intention stack selection function based on fairness. Our view of
responsibilities in this work is that they should be intentionally prioritised over
intentions belonging to other plans. This may lead to starvation of plans, espe-
cially any plans not related to a responsibility (such as plans for belief updates
that come from the environment or other agents). An efficient implementation
of our function requires to incorporate some level of fairness to attempt to avoid
starvation while still preserving priority of hierarchical levels of responsibilities
as much as possible. Fairness and starvation of threads/processes/resources are
extensively researched topics in Software Engineering, and as such we do not
tackle these concepts here.

To illustrate the use of the hierarchy of responsibilities, let us expand the
previous example of a domestic robot by adding a few extra responsibilities and
building a hierarchy:

c l e a n i n g ([c l e a n (bathroom) , c l e a n (bedroom)] , 0 , 1)
s a f e t y ([l o c k s (f r o n t d o o r) , s e a r c h (t r i p h a z a r d s)] , 0 , 2)
cook ing ([cook (b r e a k f a s t) , ma k e l i s t (g r o c e r y)] , 0 , 1)

h i e r a r c h y ([[s a f e t y] , [c l e a n i n g , cook ing]])

Note that the responsibility base above is of a single agent, other agents in
the system may have different configurations in their responsibility bases. In
this extended example, we now have three responsibilities: cleaning, safety, and
cooking. Safety is recommended to have up to two agents being responsible for
it, while the others remain at only one. We provide a visual representation of
the hierarchy for this example in Fig. 4.

safety

cleaning cooking

2

1

Fig. 4. Visual representation of a hierarchy.

The hierarchy has two levels, the bottom starts at 1 and contains the cleaning
and cooking responsibilities (recall that responsibilities within the same hierar-
chical level have no relation of priority between each other), then the level above

16 R. C. Cardoso et al.

is 2 and contains safety. Effectively this means that safety has priority over (i.e.,
its hierarchical level is greater than) both cleaning and cooking. Note that the
hierarchical levels do not need to be represented as numbers, for example we
could also use “Low Importance”, “Medium Importance”, “High Importance” by
limiting the hierarchy to three levels (there is always one special level called
“idle” which we present in the next section). In this visual representation and
in our algorithm we used N

∗ to represent each level with larger numbers being
higher up in the hierarchy. This is an implementation abstraction, and the infor-
mation can be easily extracted from the hierarchy definition and transformed as
preferred (some necessary small updates would need to be made to Algorithm 1
if not using numerical values).

3.2 Improving Reliability with Shared Responsibilities

An individual view of responsibilities requires some form of communication
between the agents in order to keep track of shared responsibilities. Shared
responsibilities are responsibilities that appear in more than one agent’s respon-
sibility base. Our mechanism to improve reliability in shared responsibilities is
based around the recommended number of agents to commit to a responsibil-
ity. Once that number is met, then any agents that try to commit to it will
become “backup” agents in the sense that they alter their responsibility hierar-
chy to place this responsibility in a special hierarchical level which we call “idle”.
If at any point this situation reverses (i.e., the number of agents committed to
a responsibility drops below the recommended) then the backup agent has to
revert the position of the responsibility in its hierarchy back to the original one.

An extensive discussion on the formal semantics of speech-act communication
in BDI agent languages is available in [23]. In their semantics, messages were
defined as a tuple 〈mid, id, ilf, cnt〉 where mid is a unique message id, id is
the sender (when the message is being received MIn) or the receiver (when the
message is being sent MOut), ilf is the illocutionary force, and cnt is the content
of the message. To simplify notation and since we are not changing the semantics
of communication, here instead we use a simple speech-act tell(adopt(resp)) or
tell(drop(resp)) for sending information about a responsibility that the sender
has in its own responsibility base to all other agents (i.e., a broadcast). Note
that tell would be mapped into ilf and adopt(resp) or drop(resp) into cnt in the
original semantics.

We need to update some of the rules from previous sections to now account
for communication and the reliability mechanism for shared responsibilities. In
particular, the AResp rule presented previously has to be split into two. First,
is the standard case of when the recommended number has not been achieved
yet:

(AResp1)
Tsi = i[head ← +/resp; body] ∧ respna < resprec

〈agent, C,M, T,AResp1〉 → 〈agent′, C ′,M ′, T ′, ClrInt〉

Towards Forward Responsibility in BDI Agents 17

where agent′rb = (agentrb\resp) ∪ UpdateAdopt(resp)
C ′

E = CE ∪ {+/resp}
C ′

I = CI\{Tsi}
T ′
res = resp

M ′
Out = MOut ∪ tell(adopt(resp))

Here we simply add an extra condition to our premise in the original rule to check
that the number of agents committed to the responsibility (respna) is less than
the number of agents recommended (resprec). Additionally, since we are now
also concerned about updating other agents’ information about the number of
agents committed to a responsibility we add the performative tell(adopt(resp))
to the outgoing messages of the agent. Upon receiving such a message, if the
agent has the responsibility mentioned in the message, then the agent calls the
UpdateAdopt(resp) function to update the number of agents that are committed
to it.

Otherwise, if the recommended number of agents has already been met then
this agent becomes a “backup” agent:

(AResp2)
Tsi = i[head ← +/resp; body] ∧ respna ≥ resprec

〈agent, C,M, T,AResp2〉 → 〈agent′, C ′,M, T ′, ClrInt〉

where C ′
E = CE ∪ {+/resp}

C ′
I = CI\{Tsi}

T ′
res = resp

agent′rb[hierarchy] = UpdtH(agentrb[hierarchy], resp)

Apart from the addition of the extra condition in the premise, this rule also
modifies the agent’s hierarchy. Because the agent has adopted the responsibility
in a “backup” capacity, it calls the function UpdtH(agentrb[hierarchy], resp) which
changes the hierarchical level of (resp) to idle. Note here that because this is a
backup agent, we no longer update the number of active agents nor do we use
the communication performative that are present in the previous rule. These
two things are only done when the agent changes from backup to active, which
is explained later on.

Similarly, we also have to update DResp, but in this case we only need one
rule so we simply overwrite the previous one:

(DResp)
Tsi = i[head ← −/resp; body]

〈agent, C,M, T,DResp〉 → 〈agent′, C ′,M ′, T ′,DInt〉

where agent′rb = (agentrb\resp) ∪ UpdateDrop(resp)
C ′

E = CE ∪ {−/resp}
C ′

I = CI\{Tsi}
T ′
res = resp

M ′
Out = MOut ∪ tell(drop(resp))

The only difference here is the addition of the communication performative tell
which will broadcast the message that an agent has dropped a responsibility, and

18 R. C. Cardoso et al.

therefore any agent that has the same responsibility will use this as a triggering
event to call the UpdateDrop(resp) function, which works the same as before and
simply decreases the number of agents currently committed to a responsibility.

Due to space constraints, we do not show the rules for processing the agent’s
outgoing messages or for processing incoming messages in the mail box, and
instead refer to the work in [23] for a complete list. A couple of straightforward
extensions are required in particular for processing incoming messages about
responsibilities:

tell(adopt(resp)) message

– call function UpdateAdopt(resp) to increase by 1 the number of agents com-
mitted to the responsibility (only if present in the responsibility base).

tell(drop(resp)) message

– call function UpdateDrop(resp) to decrease by 1 the number of agents com-
mitted to the responsibility (only if present in the responsibility base);

– if the result of the UpdateDrop(resp) function causes the number of com-
mitments to drop below the recommended number, then call the function
RestoreH(agentrb[hierarchy], resp) to restore the responsibility to its previ-
ous hierarchical level (only if it had been changed to idle in the first place);

– call function UpdateAdopt(resp) to reflect that the backup agent has now
become active; and

– send the broadcast tell(adopt(resp)) so that other agents update their infor-
mation accordingly.

We also need to add support for discarding intention stacks for idle responsibili-
ties in Algorithm 1. This is straightforward as we can simply extend the function
GetRespStacks(CI) to return only non-idle responsibility stacks.

Note that we do not explicitly deal with coordination of shared responsibili-
ties. By default, multiple agents adopting the same responsibility will perform all
the goals associated with that responsibility. In practice, this could be solved in
various different ways, such as through communication, organisations, argumen-
tation, task allocation, etc. In this paper we are concerned with providing the
basis for reasoning in responsibility-aware agents, which allow for these exten-
sions to be developed in future work.

Furthermore, we define how the agent can drop a responsibility and what
happens when it is dropped, and not the specification of when the agent should
drop the responsibility (apart of course from when it believes its responsibility
has come to a natural end) or why (e.g., non-conformance due to time-sensitive
deadline or failure). Deciding when to drop a responsibility, and the reason-
ing behind the decision, is specific to the domain the agent is implemented in.
Therefore being out of scope of this paper.

4 Towards Implementation

The agent languages that are based on AgentSpeak(L) are natural candidates for
incorporating our extensions, especially those that have not extensively modified

Towards Forward Responsibility in BDI Agents 19

the original AgentSpeak(L) semantics. Two options that fit well in this category
are Jason [7] and Gwendolen [14]. Other languages may be viable alternatives,
but may also require additional implementation considerations. We limit this
discussion to be about the most difficult challenges in implementation.

Note that a pure implementation approach without any changes to the oper-
ational semantics of AgentSpeak could achieve similar results by compiling the
notion of responsibilities into other BDI concepts (such as beliefs and goals).
However, it would be increasingly difficult to extend such an approach with
additional responsibility-related concepts if reasoning about responsibilities is
not part of the reasoning cycle of the agent.

To implement our selection intention stack function from Algorithm 1 is
relatively straightforward. In the Jason language this can be altered in the
TransitionSystem class which represents most of the agent’s reasoning cycle;
in particular function selectIntention (part of the Agent class) which is called
from the applySelInt method. Similarly, in the Gwendolen language this could
be done in the selectIntention from the AILAgent class by extending the
SelectIntentionHeuristic interface. The most challenging part is trying to
incorporate some level of fairness in order to prioritise the hierarchy of respon-
sibilities while still avoiding starvation of intention stacks. There are different
ways of tackling this scheduling problem, and one option would be to look at
this as a multi-resource allocation problem (e.g., the work in [16]) where differ-
ent types of stacks (intended means created from responsibilities, environment
reaction, proactive goals, etc.) can be seen as different types of resources.

Another important aspect is the communication between agents that is
required for keeping the agents’ responsibility bases up to date. This is par-
ticularly important if in the application domain the number of recommended
agents for a responsibility is strict (i.e., it has maximum limit). A direct imple-
mentation of our approach requires some level of centralisation about updates to
agents responsibility bases or a period of negotiation/argumentation to ensure
that the information is consistent across all agents. This is especially important
when backup agents receive a message about a responsibility being dropped,
since otherwise without some synchronous behaviour it can be possible that
multiple backup agents will become active at the same time (same time here
refers to the period of time before these agents receive a message from each
other updating the number of active agents). Again there are many ways to
solve this which depends on the constraints of the application domain, but for
example one possibility is to add a centralised shared list of active agents for
each responsibility as well as a backup list, and then consume from the backup
list in FIFO order.

5 Conclusion

In this paper we have extended the traditional operational semantics of rational
agents to include an individual agent view of forward-looking responsibilities.
This improves the reliability of responsibility-aware agents on two fronts: (i)

20 R. C. Cardoso et al.

introducing a hierarchy of responsibilities allows us to reason about the partial
order relation by extending the intention stack selection function to prioritise
more important responsibilities, which leads to improving the reliability of the
system; and (ii) adding the notion of shared responsibilities which is realised
through agent communication and it is used to coordinate agents so that if an
active agent drops a responsibility and as a result the number of recommended
agents is not met, then one of the backup agents will become active.

There are many different ways of extending our approach in future work.
In this paper we focussed on a rather explicit definition of how rational agents
reason about responsibilities, but much freedom is left to the user of the lan-
guage (e.g., when to adopt a responsibility); it could be interesting to investigate
reasoning about responsibility at a more meta level in regards to how responsibil-
ities relate to each other, such as conflicts; perhaps exploring recent advances in
argumentation for agents [18,22]. Such feature would also better justify adding
support for the dynamic creation/deletion of responsibilities at runtime, which
we did not consider for this paper. An efficient implementation in existing agent-
based programming languages would also serve to better demonstrate the use-
fulness of our approach in practice.

References

1. Baldoni, M., Baroglio, C., Micalizio, R.: Fragility and robustness in multiagent
systems. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.) EMAS 2020. LNCS
(LNAI), vol. 12589, pp. 61–77. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-66534-0_4

2. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Implementing business pro-
cesses in JaCaMo+ by exploiting accountability and responsibility. In: Proceedings
of the 18th International Conference on Autonomous Agents and MultiAgent Sys-
tems, pp. 2330–2332. AAMAS 2019, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2019). https://dl.acm.org/doi/10.
5555/3306127.3332102

3. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Robustness based on account-
ability in multiagent organizations. In: Proceedings of the 20th International Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 142–150. AAMAS
2021, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2021). https://dl.acm.org/doi/10.5555/3463952.3463975

4. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-Agent Oriented Program-
ming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robotics and
Autonomous Agents Series. MIT Press, Cambridge (2020)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

6. Bordini, R.H., El Fallah Seghrouchni, A., Hindriks, K., Logan, B., Ricci, A.: Agent
programming in the cognitive era. Auton. Agent. Multi-Agent Syst. 34(2), 1–31
(2020). https://doi.org/10.1007/s10458-020-09453-y

7. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. Wiley, Hoboken (2007)

https://doi.org/10.1007/978-3-030-66534-0_4
https://doi.org/10.1007/978-3-030-66534-0_4
https://dl.acm.org/doi/10.5555/3306127.3332102
https://dl.acm.org/doi/10.5555/3306127.3332102
https://dl.acm.org/doi/10.5555/3463952.3463975
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1007/s10458-020-09453-y

Towards Forward Responsibility in BDI Agents 21

8. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

9. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021). https://doi.org/10.3390/computers10020016

10. Chopra, A.K., Singh, M.P.: Accountability as a foundation for requirements in
sociotechnical systems. IEEE Internet Comput. 25(6), 33–41 (2021). https://doi.
org/10.1109/MIC.2021.3106835

11. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with agents-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8_22

12. Cranefield, S., Oren, N., Vasconcelos, W.W.: Accountability for practical reasoning
agents. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 33–48. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_3

13. Dennis, L., Fisher, M., Hepple, A.: Language constructs for multi-agent program-
ming. In: Sadri, F., Satoh, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp.
137–156. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88833-
8_8

14. Dennis, L.A.: Gwendolen semantics: 2017. Technical report ULCS-17-001, Univer-
sity of Liverpool, Department of Computer Science (2017)

15. Duff, S., Thangarajah, J., Harland, J.: Maintenance goals in intelligent agents.
Comput. Intell. 30(1), 71–114 (2014). https://doi.org/10.1111/coin.12000

16. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: fairness-
efficiency tradeoffs in a unifying framework. In: 2012 Proceedings IEEE INFO-
COM, pp. 1206–1214. IEEE (2012). https://doi.org/10.1109/INFCOM.2012.
6195481

17. Logan, B.: An agent programming manifesto. Int. J. Agent-Oriented Softw. Eng.
6(2), 187–210 (2018). https://doi.org/10.1504/IJAOSE.2018.094374

18. de Oliveira Gabriel, V., Panisson, A.R., Bordini, R.H., Adamatti, D.F., Billa, C.Z.:
Reasoning in BDI agents using Toulmin’s argumentation model. Theoret. Comput.
Sci. 805, 76–91 (2020). https://doi.org/10.1016/j.tcs.2019.10.026

19. van de Poel, I.: The relation between forward-looking and backward-looking
responsibility. In: Vincent, N., van de Poel, I., van den Hoven, J. (eds.) Moral
Responsibility. Library of Ethics and Applied Philosophy, vol. 27, pp. 37–52.
Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1878-4_3

20. Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. In: Proceedings 1st
International Conference Multi-Agent Systems (ICMAS), pp. 312–319. AAAI, San
Francisco, USA (1995)

21. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

22. Shams, Z., Vos, M.D., Oren, N., Padget, J.: Argumentation-based reasoning about
plans, maintenance goals, and norms. ACM Trans. Auton. Adapt. Syst. 14(3),
1–39 (2020). https://doi.org/10.1145/3364220

23. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
J. Artif. Int. Res. 29(1), 221–267 (2007)

24. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural
goals in intelligent agent systems. In: Proceedings of the Eights International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 470–481.
KR 2002, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)

https://doi.org/10.3390/computers10020016
https://doi.org/10.1109/MIC.2021.3106835
https://doi.org/10.1109/MIC.2021.3106835
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-030-17294-7_3
https://doi.org/10.1007/978-3-540-88833-8_8
https://doi.org/10.1007/978-3-540-88833-8_8
https://doi.org/10.1111/coin.12000
https://doi.org/10.1109/INFCOM.2012.6195481
https://doi.org/10.1109/INFCOM.2012.6195481
https://doi.org/10.1504/IJAOSE.2018.094374
https://doi.org/10.1016/j.tcs.2019.10.026
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1145/3364220

22 R. C. Cardoso et al.

25. Yazdanpanah, V., Dastani, M., Fatima, S., Jennings, N.R., Yazan, D.M., Zijm,
H.: Multiagent task coordination as task allocation plus task responsibility. In:
Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds.) EUMAS/AT -2020. LNCS
(LNAI), vol. 12520, pp. 571–588. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-66412-1_37

26. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic
responsibility under imperfect information. In: Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pp. 592–600.
AAMAS ’19, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2019). https://dl.acm.org/doi/10.5555/3306127.3331745

27. Yazdanpanah, V., Gerding, E.H., Stein, S., Dastani, M., Jonker, C.M., Norman,
T.J.: Responsibility research for trustworthy autonomous systems. In: AAMAS
2021: 20th International Conference on Autonomous Agents and Multiagent Sys-
tems, Virtual Event, United Kingdom, May 3–7, 2021, pp. 57–62. ACM, Richland,
SC (2021). https://dl.acm.org/doi/10.5555/3463952.3463964

https://doi.org/10.1007/978-3-030-66412-1_37
https://doi.org/10.1007/978-3-030-66412-1_37
https://dl.acm.org/doi/10.5555/3306127.3331745
https://dl.acm.org/doi/10.5555/3463952.3463964

Imperative and Event-Driven
Programming of Interoperable Software

Agents

Giuseppe Petrosino1, Stefania Monica1, and Federico Bergenti2(B)

1 Dipartimento di Scienze e Metodi dell’Ingegneria Università degli Studi di Modena
e Reggio Emilia, Reggio Emilia, Italy

{giuseppe.petrosino,stefania.monica}@unimore.it
2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche Università degli Studi

di Parma, Parma, Italy
federico.bergenti@unipr.it

Abstract. Jadescript is a recent agent-oriented programming language
conceived to support the effective development of agents and multi-agent
systems based on JADE. Jadescript is designed to ease the development
of agents by means of a tailored syntax matched with a programmer-
friendly development environment. This paper presents a brief overview
of Jadescript by describing its main features and abstractions and by
comparing them with the corresponding features and abstractions advo-
cated by other agent-oriented programming languages. Moreover, to
show the applicability of Jadescript to the construction of interesting
multi-agent systems, this paper concisely summarizes a case study in
which Jadescript is used to implement agents that participate in English
auctions. Finally, this paper is concluded with a brief overview of planned
future developments of the language.

Keywords: Agent-oriented software engineering · Agent-oriented
programming · JADE · Jadescript

1 Introduction

Over the past two decades [7], numerous researchers and practitioners have effec-
tively used JADE (Java Agent DEvelopment framework) [2] for their projects.
By taking the role of the reference implementation of FIPA (Foundation for Intel-
ligent Physical Agents) [35] specifications, JADE has significantly contributed
to shape the ideas, the methodologies, and the tools of AOSE (Agent-Oriented
Software Engineering) [9]. In particular, JADE helped promote a peculiar view
of agents that focuses on the features of agents that are considered as useful
for software development. Essentially, in this view, agents are software compo-
nents [4] that engage in complex interactions [24] by exchanging messages in
possibly heterogeneous [1,15] and challenging [8,12,16,21,23] environments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 23–40, 2023.
https://doi.org/10.1007/978-3-031-48539-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-48539-8_2

24 G. Petrosino et al.

Recent trends in software engineering, exemplified by DSLs (Domain-Specific
Languages) [22], suggested that the adoption of the peculiar view of agents that
JADE advocates would greatly benefit from programming languages specifically
designed to easily employ the features and the abstractions that JADE already
provides in terms of a Java framework. This idea motivated the introduction of
JADEL [5,11], a programming language based on Xtend [17], which is a dialect
of Java designed to support the construction of DSLs. Although JADEL was
intended to simplify the development of agents and MAS (Multi-Agent Systems),
informal experiments on its use suggested that it exhibits inherent problems
that severely limit its applicability. For example, programmers who were new to
JADEL often preferred to directly use JADE in Java because they disconsidered
Xtend as Java plus irrelevant syntactic sugar. Therefore, the main advantage of
using JADEL, which is the possibility of easily adopting the abstractions that
JADE provides, was not effectively perceived during the informal experiments.

Jadescript [7,13] is a fresh start toward the objectives that motivated JADEL.
Jadescript is a programming language that was designed from scratch around
the view of agents and MASs promoted by JADE, and it ultimately encompasses
the following objectives. First, Jadescript aims at providing a clear and simple
way to implement agents and related abstractions, such as ontologies [41] and
behaviours [14]. Actually, the source code of a Jadescript agent bears a resem-
blance to the pseudocode found in textbooks on agents and MASs (e.g., [40,42]).
Therefore, Jadescript inevitably shares several similarities with popular script-
ing languages, e.g., Python and JavaScript, hence its name. Second, Jadescript
is intended to help programmers adopt best development practices. For exam-
ple, agents should not use busy-waiting to detect events, and Jadescript natively
provides cyclic behaviours [27] to allow agents to suspend when no events can be
processed by available event handlers [13]. Third, Jadescript is meant to enhance
the overall quality of produced software, and therefore it offers a specific type
system designed to natively support the features and the abstractions that char-
acterize JADE. Actually, the Jadescript type system [30] aims at providing very
high-level abstractions for effective agent programming and at promoting the
development of robust and maintainable MASs. Finally, Jadescript is intended
to support mainstream development, and therefore it comes with a comprehen-
sive set of programmer-friendly development tools. In particular, a dedicated
plugin for Eclipse is proposed as the official tool to effectively use Jadescript in
production environments. The Jadescript plugin [29] for Eclipse provides an inte-
grated compiler and a set of support tools that include, e.g., dedicated graphical
interfaces to manage project files and launch agents and platforms. Actually,
the Jadescript plugin is designed to enhance the overall development experience
of Jadescript programmers by offering a streamlined and programmer-friendly
toolset to help them effectively create and manage complex projects that use
Jadescript in some, or even all, parts.

This paper is organized as follows. Section 2 briefly introduces Jadescript by
describing its main features and abstractions. Section 3 presents a practical use
of Jadescript in a classic scenario in which agents participate in English auctions.

Imperative and Event-Driven Programming of Interoperable Software Agents 25

Section 4 succinctly compares the features and the abstractions that Jadescript
provides with related aspects of other programming languages. Finally, Sect. 5
concludes this paper by outlining some directions for future developments.

2 A Short Introduction to Jadescript

The major agent-oriented abstractions advocated by Jadescript are: agents,
(agent) behaviours, and (communication) ontologies. The programmers that
use JADE are well-acquainted with these names, and the abstractions that
Jadescript provides purposely share similarities with their JADE counterparts.
Note that, despite being designed for the implementation of MASs based on
JADE, and despite being compiled to Java, Jadescript is not an object-oriented
programming language. It does not provide ways to declare classes of objects, to
construct objects, to invoke the methods of an object, or to access the state of
an object. Actually, needed abstract data types can be defined in Jadescript by
means of ontology concepts together with procedures and functions. Jadescript
provides procedures and functions to define portions of reusable code with an
associated visibility, which can be public or private. Functions are used to imple-
ment operations that compute a value while procedures are limited to the exe-
cution of commands. These and other features of the language are designed to
direct programmers to reason about agents, their tasks, and their interactions,
rather than concentrating on lower level aspects of the computation, like the
organization of data in memory or the management of computational resources.

Agents represent the most relevant abstraction that Jadescript provides,
and Jadescript agents inherit several characteristics from JADE agents. Since
multiple agents in a MAS can share the same source code, a Jadescript agent
declaration actually defines a family of agents [5] whose members have similar
behaviours and share the structure of their internal states. The structure of the
internal states of the agents in a given family is defined by a set of property
declarations. Actually, a property is a named and statically typed part of the
internal state of an agent, and it is always private to ensure that agents cannot
directly access the internal states of other agents.

Jadescript supports the definition of behaviours to model the conducts of
agents in terms of stateful and concurrent tasks. The behaviours that are active
in an agent concurrently contribute to implement the conduct of the agent, and
therefore they share the internal state of the agent. However, no race conditions
on the internal state of the agent can occur because active behaviours in the same
agent are executed one at a time using an internal non-preemptive scheduling
mechanism. Similarly to agents, behaviour declarations can include property,
function, and procedure declarations. Note that a behaviour can be bound to an
agent family to limit its usage only to the agents of the specified family. This
possibility has the advantage of making the private properties, functions, and
procedures of an agent in the family freely accessible from the behaviour.

Currently, Jadescript behaviours are split in two categories: one-shot
behaviours and cyclic behaviours. A one-shot behaviour is automatically deac-
tivated at the end of its executions. Therefore, it is executed only once after

26 G. Petrosino et al.

its activations, and it represents a good way to implement atomic actions, e.g.,
the broadcasting of a start message to all agents in the MAS. Instead, a cyclic
behaviour is normally kept in the pool of active behaviours after its execution,
and it is repeatedly executed until explicitly deactivated. Therefore, it can be
used to implement repetitive actions, e.g., continuously waiting for a start mes-
sage. Note that behaviours can be explicitly activated by means of the activate
statement, and they can be deactivated using the deactivate statement. The
activation of behaviours can be delayed [33] to occur at a specific time or after a
specified delay. Moreover, cyclic behaviours can be scheduled to be executed peri-
odically [33]. All these scheduling capabilities are essential to let agents organize
their tasks in time, e.g., to implement active monitoring tasks.

Jadescript promotes event-driven programming because agents are expected
to timely react to internal and external events. The reactions to these events are
implemented in Jadescript using event handlers, which can be defined in agents
and in behaviours. Internal events are related to the changes in the internal
states of agents and behaviours. For example, an on destroy handler of an
agent is executed by the agent right before the agent is removed from the agent
container in which it is executing. Conversely, an on create handler of an agent
is executed by the agent as soon as the agent becomes alive in order to initialize
the internal state of the agent and to activate the needed behaviours. Note that
on create handlers can have a set of named parameters. These parameters are
transparently bound to the arguments provided to the agent at construction
either via the command line, when the agent is created using the command line,
or via external Java code, when the agent is created using the Jadescript-Java
interoperability framework [32]. Moreover, note that mentioned event handlers
are also available for behaviours. Actually, a behaviour can have event handlers
to react to its creation, destruction, activation, deactivation, and to its selection
for execution by an agent. Finally, note that other events and associated event
handlers are available for agents and behaviours to handle exceptional situations
and behaviour failures [31].

Currently, external events are events associated with the reception of mes-
sages. A message is characterized by a sender agent and a nonempty set of
receiver agents, and all these agents are uniquely identified by means of their
AIDs (Agent IDentifiers) [3], which are texts with a specific structure directly
inspired by JADE AIDs. A message is also characterized by a performative [3]
and a content, which is constructed by means of the ontology used for the
message. Jadescript advocates an approach to communication based on asyn-
chronous message passing, and the exchange of messages is implemented in
Jadescript using asynchronous send message statements and message handlers.
Message handlers support pattern matching [28], which allows programmers to
easily express the structure of the messages that a message handler can manage.
The use of pattern matching allows unifying the parts of the received message
with the free variables declared in the header of the message handler, thus pro-
viding a concise and effective way to deconstruct the received message while
making the relevant parts of the message explicit and readily usable.

Imperative and Event-Driven Programming of Interoperable Software Agents 27

It is common opinion that the construction of MASs can benefit from the
adoption of ontologies to formalize the target application domain and to ensure
that agents have a common understanding of the messages that mention the
elements of the domain. Ontologies are provided in Jadescript as one of the
main abstractions of the language, and they play a central role not only in sup-
porting communication but also in structuring the data that agents manipulate.
Actually, ontologies can be associated with agents to allow agents to create and
manipulate the concepts, actions, (atomic) propositions, and predicates defined
in the ontology. In addition, all agents associated with the same ontology can
freely exchange messages whose contents are defined using the elements of the
ontology, sharing their definitions, and consequently, their meanings.

Concepts and actions are elements of ontologies used to manipulate domain-
specific structured data and agent actions, respectively. They are characterized
by properties, and Jadescript provides for inheritance of both concepts and
actions to allow defining hierarchies of data types. Predicates and propositions
are other elements of ontologies, and they are used to express facts. A predicate
is associated with a lists of named and typed arguments while a proposition is
not structured. Note that predicates and propositions share the Proposition
supertype, even if programmers cannot use inheritance on these types. Finally,
note that predicates and propositions are used in logical expressions, and they
are also used to denote the reasons for behavior failures and exceptional situa-
tions [31].

3 English Auctions in Jadescript

This section provides a description of how Jadescript can be used to implement
a MAS in which agents participate in English auctions. This example is used
to show several characteristics of the language and only a few marginal details
of the reported source codes were intentionally omitted. Note that this example
relaxes several assumptions of ordinary toy problems, and it can be considered as
genuinely more complex than the didactic examples that previous papers include
to present and discuss specific features of the language.

3.1 The Scenario

In the considered scenario, an agent designated as auctioneer is first created.
The auctioneer knows the item it is prompted to sell, which is normally a paint-
ing, and it also knows the opening bid for the item and the reserve price. Once
created, the auctioneer waits for participants to register to the auction. When
at least two participants have registered, the auction starts and the auctioneer
issues an initial call for bids to all registered participants. The initial call for bids
includes the description of the item together with the necessary details needed
to submit valid bids, namely the opening bid, the minimum increment on bids,
and the deadline for submitting bids. Note that the auctioneer considers a bid
as valid only if it is submitted before the deadline and if it is higher or equal to

28 G. Petrosino et al.

the standing bid plus the minimum increment publicized in the last call for bids.
After each successful reception of a valid bid, the auctioneer issues a new call
for bids to all registered participants. The new call for bids includes the current
standing bid, the updated deadline, and the name of the participant who sub-
mitted the standing bid. The auctioneer continues to send updated calls for bids
until the deadline has passed and no pending bids are left. When this occurs, if
the standing bid is lower than the reserve price, then the auctioneer concludes
the auction without selling the item. Otherwise, the auctioneer informs all regis-
tered participants that the item is assigned to the participant that submitted the
current standing bid. Note that, during the auction, participants can freely join
and leave the auction. The auctioneer replies to late registrations with the latest
call for bids to allow new participants to make their bids before the deadline.

3.2 The Ontology

The EnglishAuction ontology shown in Fig. 1 is used to describe the content
of each message exchanged in the MAS. The first two elements of the ontology,
namely the Participating and the Leaving propositions, are used by partici-
pants to join and leave the auction, respectively.

The Item concept is included in the ontology to describe an item being traded
in an auction. For the sake of simplicity, generic items are described using only
their names. However, the scenario assumes that the auctioneer sells paintings,
and therefore the Painting concept is included in the ontology as a specialization
of the Item concept. The Painting concept includes the title and the author
properties, and when a new description of a painting is created, its name is
constructed from to the title and the author of the painting.

The SubmitBid action is included in the ontology to be used as content for the
calls for bids sent by the auctioneer to the participants. The SubmitBid action
has several properties that specify the details of valid bids. The first property
is item, and it is the item being traded. The second property is currentBid,
which is either the opening bid or the standing bid. The third property is
bidMinimumIncrement, which is the specified minimum increment. The fourth
property is deadline, and it indicates the time at which the auctioneer will stop
accepting new bids. Finally, the fifth property is currentlyWinning, which is
the name of the participant that submitted the standing bid. If this value is the
empty string, then no valid bids have been submitted yet.

The Buy action is included in the ontology to denote the act of buying the
specified item, while the Priced predicate is used to associate an item with a
price. The Buy and the Priced elements are both used as content of messages
sent by participants to submit new bids, while the BidRejected predicate is
used by the auctioneer to refuse a bid indicating the reason that caused the bid
to be rejected. This reason is described using one of the following predicates
of the ontology. The BidTooLow predicate indicates that the submitted bid was
too low, and it includes a property that specifies the minimum value for a valid
bid. The InvalidBid predicate is used to generically reject a bid by providing
a textual explanation of what went wrong during the submission of the bid.

Imperative and Event-Driven Programming of Interoperable Software Agents 29

1 ontology EnglishAuction
2 proposition Participating
3 proposition Leaving
4 concept Item(name as text)
5 concept Painting(author as text , title as text)
6 extends Item with name = title+" by "+author
7 action SubmitBid(item as Item , currentBid as integer ,
8 bidMinimumIncrement as integer ,
9 deadline as timestamp , currentlyWinning as text)

10 action Buy(item as Item)
11 predicate Priced(item as Item , price as integer)
12 predicate BidRejected(reason as Proposition)
13 predicate BidTooLow(minimumBid as integer)
14 predicate InvalidBid(otherReason as text)
15 predicate ItemSold(item as Item , buyer as aid ,
16 finalPrice as integer)
17 predicate ItemNotSold(item as Item)

Fig. 1. The Jadescript implementation of the English auction ontology.

Finally, two predicates of the ontology are used by the auctioneer to inform
registered participants of the outcome of the auction. The ItemNotSold predicate
includes a property to specify the item the auctioneer failed to sell. The ItemSold
predicate includes two properties, namely buyer, which contains the AID of the
winning participant, and price, which contains the price of the winning bid.

3.3 The Auctioneer

The Jadescript source code for the auctioneer is shown in Fig. 2. The properties
defined in the declaration of the auctioneer constitute the internal state of the
auctioneer, which equals the state of the auction for the sake of simplicity. These
properties can be subdivided in three groups. The first group contains the pre-
defined parameters of the auctioneer. In particular, the minimumParticipants
property specifies the minimum number of participants required for an auction
to start. The auctioneer waits until the number of participants that registered
to the action reaches the specified minimum number. The amount of time that
the auctioneer waits for new bids after sending a call for bids is denoted by the
waitingForBidsTime property. The startBid property specifies the opening
bid, and the bidMinimumIncrement property denotes the minimum required
increment between two subsequent bids. The reserve property denotes the
reserve price. Finally, the last property of this group is the item property, which
denotes the item being traded.

The second group of properties that constitute the internal state of the auc-
tioneer is used to track the dynamic state of the current auction. The currentBid
property denotes the standing bid, and it is initialized with the mentioned
startBid property. The candidateBuyer property is used to store the identity

30 G. Petrosino et al.

1 agent Auctioneer uses ontology EnglishAuction
2 property minimumParticipants = 2
3 property waitingForBidsTime = "PT30S" as duration

4 property startBid = 80
5 property reserve = 120
6 property bidMinimumIncrement = 2
7 property item = Painting("Leonardo", "Mona Lisa")
8

9 property currentBid = startBid
10 property candidateBuyer as aid

11 property thereIsCandidate = false

12 property participants as set of aid

13

14 property doAuction = DoAuction
15 property endAuction = EndAuction
16

17 on create do

18 log "Agent "+name of agent+" created."
19 activate AwaitParticipants

Fig. 2. The Jadescript implementation of the auctioneer.

of the participant that submitted the standing bid when at least one valid bid
has been received, which is an event that is denoted by the thereIsCandidate
property. Finally, the participants property is a set of AIDs used to store the
identities of all registered participants. This set is updated dynamically by the
auctioneer every time a participant registers or deregisters.

The last group of properties that constitute the internal state of the auction-
eer contains two properties that refer to behaviours. The first property refers to a
DoAuction behaviour, and the auctioneer uses this behaviour to run the auction.
The second property refers to an EndAuction behaviour, and the auctioneer uses
this behaviour to finalize the auction by informing all registered participants of
the outcome of the auction. Note that these two properties refer to behaviours
that are explicitly activated and deactivated when needed.

The agent declaration shown in Fig. 2 is concluded with an on create han-
dler. As soon as the auctioneer starts, it writes a message to its log, and then
it activates an AwaitParticipants behaviour, whose source code is shown in
Fig. 3. The activated AwaitParticipants behaviour performs the task of wait-
ing for a sufficient number of participants to register to the auction. This
behaviour is designed to be used exclusively by the auctioneer, and therefore
its declaration uses the for agent clause in its header. This tight link between
the AwaitParticipants behaviour and the auctioneer has two relevant conse-
quences. First, the behaviour can refer to the properties of the agent, which are
always private. In particular, the minimumParticipants and the participants
properties are used by the behaviour. Second, the behaviour is transparently

Imperative and Event-Driven Programming of Interoperable Software Agents 31

associated with the ontologies used by the agent. In this case, this is used to
access to the Participating and the Leaving propositions.

1 cyclic behaviour AwaitParticipants for agent Auctioneer
2 on message inform Participating do

3 add sender of message to participants
4 if size of participants >= minimumParticipants do

5 log "Starting auction."
6 log "Selling: "+item+"."
7 activate doAuction
8 deactivate this

9

10 on message inform Leaving do

11 remove sender from participants
12

13 on activate do

14 do log "Waiting for participants."

Fig. 3. The Jadescript implementation of the behaviour used to wait for participants.

The AwaitParticipant behaviour created by the auctioneer to manage the
start of the auction uses the two message handlers shown in Fig. 3. The first
handler processes inform messages that contain a Participating proposition.
These messages are sent by agents interested in participating in the auction, and
therefore their AIDs are added to the set of participants. If, after this addition,
the number of registered participants reaches the specified minimum number of
participants, then the auctioneer changes its behaviour by deactivating its cur-
rent behaviour and by activating the doAuction behaviour. The second handler
shown in Fig. 3 processes inform messages that contain a Leaving proposition.
These messages are sent by participants that want to leave the auction, and
therefore their AIDs are removed from the set of participants. Finally, note that
the AwaitParticipant behaviour created by the auctioneer writes a message to
its log when activated.

The task of running an auction is implemented by the auctioneer using
a DoAuction behaviour, whose declaration is shown in Fig. 4. This behaviour
assumes that a sufficient number of participants is registered to the auction. As
soon as the behaviour is activated, the actioneer executes the callForBids pro-
cedure. This procedure sends a call for proposals to all registered participants.
This call for proposals contains a SubmitBid action that details the information
needed by participants to submit valid bids. After sending the call for proposals,
the DoAuction behaviour performs a delayed activation of the behaviour used
to terminate the auction, which is referenced by the endAuction property. The
time at which this behaviour will be activated is stored in the nextTimeout
property, which is computed as now + waitingForBidsTime. Note that each call

32 G. Petrosino et al.

1 cyclic behaviour DoAuction for agent Auctioneer
2 property nextTimeout as timestamp

3

4 on activate do

5 do callForBids
6

7 procedure callForBids do

8 nextTimeout = now + waitingForBidsTime
9 do sendCFPMessage with bidders = participants

10 activate endAuction at nextTimeout
11

12 procedure sendCFPMessage with bidders as set of aid do

13 currentlyWinning = ""
14 if thereIsCandidate do

15 currentlyWinning = name of candidateBuyer
16 send message cfp SubmitBid(item , currentBid ,
17 bidMinimumIncrement , nextTimeout ,
18 currentlyWinning) to bidders
19

20 on message inform Participating do

21 add sender of message to participants
22 do sendCFPMessage with bidders = { sender }
23

24 on message inform Leaving do

25 remove sender of message from participants
26 if size of participants < 2 do

27 activate endAuction
28

29 on message propose (Buy(proposedItem),
30 Priced(proposedItem , proposedPrice)) do

31 minBid = currentBid + bidMinimumIncrement
32 if proposedPrice < minBid do

33 send message reject_proposal (Buy(proposedItem),
34 Priced(proposedItem , proposedPrice),
35 BidRejected(BidTooLow(minBid)))
36 to sender of message

37 else do

38 send message accept_proposal (
39 Buy(proposedItem),
40 Priced(proposedItem , proposedPrice)
41) to sender of message

42 currentBid = proposedPrice
43 thereIsCandidate = true

44 candidateBuyer = sender of message

45 do callForBids

Fig. 4. The Jadescript implementation of the behaviour used to run auctions.

Imperative and Event-Driven Programming of Interoperable Software Agents 33

to the callForBids procedure resets this delayed activation, thus postponing
the activation of the behaviour used to terminate the auction.

The behaviour used by the auctioneer to run auctions also handles the recep-
tion of inform messages that mention either the Participating or the Leaving
propositions in order to dynamically manage the set of registered participants.
In particular, when an inform message from an agent who wants to join the
auction arrives, the auctioneer adds the agent to the set of participants, and it
replies to the agent with a call for proposals. This call for proposals is populated
with the needed information for the new participant to place valid bids before
the deadline. Similarly, when an inform message from a participant that wants
to leave the auction arrives, the auctioneer removes the AID of the sender from
the set of participants. Note that if the number of registered participants is less
than two, the auctioneer immediately terminates the auction.

Finally, note that the DoAuction behaviour used by the auctioneer to run
the auction provides a message handler for proposals, as shown in the bottom of
Fig. 4. In order for this handler to be executed, the content of the message must
match against the pattern composed of a pair of types (Buy, Priced). If the
received message successfully matches against this pattern, the message handler
is executed and it can access the proposedItem and the proposedPrice vari-
ables. The values of these variables are transparently extracted from the content
of the message during the matching against the specified pattern. Therefore,
these values can be freely used to verify the validity of the received proposal.
First, the auctioneer ensures that the bid is valid by checking that the proposed
price is sufficiently high. In particular, the proposed price must be higher than
or equal to currentBid + bidMinimumIncrement. If the proposed price is not
sufficiently high, the bid is rejected with an appropriate reason for the rejec-
tion. Otherwise, the auctioneer accepts the bid, and the state of the auction is
updated to take into account the new standing bid. In particular, a new itera-
tion of the auction is immediately started by calling the callForBids procedure.
Note that if no valid bids are submitted by the deadline, the delayed activation
of the behaviour used to terminate the auction ensures that the auction is still
terminated.

The source code of the behaviour used to terminate an auction is shown
in Fig. 5. The auctioneer uses a delayed activation of this behaviour to ensure
that the auction terminates at the appropriate deadline. When activated, this
behaviour first deactivates the behaviour used to run the auction, which is ref-
erenced by the doAuction property, in order to prevent it from accepting bids
submitted after the deadline. Then, it checks the final state of the auction to
compute its outcome. If there is no valid standing bid higher than the reserve
price, the auction is concluded with no transactions. In this case, the auctioneer
informs all participants that the item was not sold. On the contrary, if a valid
standing bid is available, the auctioneer notifies all participants of the successful
outcome, and it indicates the identity of the winner of the auction. Finally, note
that some corner cases were intentionally omitted for the sake of simplicity. For

34 G. Petrosino et al.

example, the auctioneer does not treat sufficiently well the case of a participant
that leaves the auction while it is the current winner.

1 one shot behaviour EndAuction for agent Auctioneer
2 on activate do

3 deactivate doAuction
4 if not thereIsCandidate or currentBid < reserve do

5 log "No valid bid submitted. Not selling the item."
6 send message inform ItemNotSold(item)
7 to participants
8 else do

9 log "Selling item "+item+" to "+candidateBuyer+"."
10 send message inform ItemSold(item , candidateBuyer ,
11 currentBid) to participants

Fig. 5. The Jadescript implementation of the behaviour used to terminate auctions.

3.4 The Participants

Together with the auctioneer, the MAS comprises a set of participants. Even if
the Jadescript source code of participants, in the Bidder agent declaration, is
not shown for space constraints, participants are very simple and they can be
easily described. First, participants use the EnglishAuction ontology to share
the definition of concepts, actions, predicates, and propositions with the auc-
tioneer. Then, each participant has a budget property that stores the amount of
money available for the auction. Once created, participants immediately activate
a ParticipateToAuction behaviour to enter the auction and try to win it. The
implemented strategy adopted by participants to try to win the auction is very
simple: a participant always proposes the minimum price sufficient to make the
proposal valid, and it stops bidding only if it does not have enough money to
make a valid proposal.

The source code of the ParticipateToAuction behaviour used by partici-
pants to participate to the auction is shown in Fig. 6. This behaviour is defined
by several event handlers. Upon activation and deactivation of this behaviour,
the participant informs the auctioneer about its interest to participate to the
auction. When a call for proposals arrives, the corresponding message handler
deconstructs it and uses its parts to compute the decision on what to do. In
particular, if the participant is not the one that submitted the current stand-
ing bid, and if the participant has enough money and time to propose a higher
bid, then the participant proposes a higher bid by sending the corresponding
message to the auctioneer. The proposal is then either accepted or rejected by
the auctioneer. These two events are handled in the participant by the two mes-
sage handlers that match against accept proposals and reject messages. Note

Imperative and Event-Driven Programming of Interoperable Software Agents 35

that the behaviour also handles the final outcome of the auction, providing a
message handler for each one of the possible messages sent by the auctioneer to
inform participants of the termination of the auction.

1 cyclic behaviour ParticipateToAuction for agent Bidder
2 on activate do

3 send message inform Participating to aid("Auctioneer")
4

5 on deactivate do

6 send message inform Leaving to aid("Auctioneer")
7

8 on message cfp (SubmitBid(item , currentBid ,
9 bidMinimumIncrement , deadline , currentWinner), _) do

10 bid = currentBid + bidMinimumIncrement
11 if currentWinner != name of agent

12 and now < deadline and bid <= budget do

13 log "Submitting bid: "+bid+"."
14 activate SendPropose(item , bid)
15 else if bid > budget do

16 log "Not enough money , giving up."
17

18 on message accept_proposal do

19 log "My bid has been accepted."
20

21 on message reject_proposal (_, _, reason) do

22 log "My bid was rejected , reason: "+reason
23

24 on message inform ItemSold(item , aid of agent , bid) do

25 log "I bought "+item+" for "+bid+"!"
26

27 on message inform ItemSold(item , other , bid) do

28 log other+" bought "+item+" for "+bid+"."
29

30 on message inform ItemNotSold(item) do

31 log "Item not sold: "+item+"."

Fig. 6. The Jadescript implementation of the behaviour used by participants.

4 Related Work

Several AOP (Agent-Oriented Programming) languages have been developed in
the last few decades to provide effective tools to support a novel programming
paradigm [39] suitable to develop agents and MASs. Besides languages mostly
intended for theoretical purposes, like AGENT0 [38] and AgentSpeak(L) [36],
notable examples of AOP languages intended for practical applications are Jason,

36 G. Petrosino et al.

ASTRA, and SARL. In the remaining of this section, the main features and
abstractions of these three languages are outlined and compared with the related
features and abstractions that Jadescript advocates.

AgentSpeak(L) [36] is a well-known AOP language that was formalized to
provide an operational proof-theoretic semantics to reason on BDI (Belief-
Desire-Intention) agents. In AgentSpeak(L), agent programs are expressed as
logic programs, and they are composed of beliefs, goals, and plans. Jason [18],
which is one of the most popular implementations of AgentSpeak(L), has gained
significant popularity in recent years. Jason extends AgentSpeak(L) with sev-
eral features, like a specific support for interoperability with Java. The tight
link between Jason and Java is so relevant that Jason agents are expected to be
situated in environments implemented in Java, and several parts of the Jason
interpreter can be customized by extending the core Java classes of the inter-
preter. ASTRA [19,20] is another implementation of AgentSpeak(L), and it also
provides specific extensions. ASTRA extends AgentSpeak(L) by introducing sev-
eral features inspired by the literature on agents and MAS, e.g., a support for
teleo-reactive [26] functions with encapsulated rules.

Jadescript and the mentioned implementations of AgentSpeak(L) are all AOP
languages intended for practical uses. However, Jadescript has some significant
differences with respect to AgentSpeak(L) and its derivates, one of the most
significant of which is in the approach to programming agents. AgentSpeak(L)
is a language that uses the BDI model to program agents, while Jadescript,
on the other hand, is both an imperative and an event-driven programming
language. Actually, while the focus in AgentSpeak(L) is on describing the men-
tal attitudes of the agents, the focus in Jadescript is on specifying the tasks
performed by the agents and on structuring the interactions among agents in
the MAS. Another key difference between Jadescript and the languages that
derive from AgentSpeak(L) is in the syntax and the semantics of the language.
AgentSpeak(L) is based on logic programming, and it uses a syntax that is simi-
lar to Prolog. Jadescript, on the other hand, has a syntax that is closer to modern
scripting languages like Python and JavaScript. Therefore, Jadescript is more
accessible to mainstream programmers, who are not supposed to be familiar
with logic programming and with the declarative paradigm. Finally, it is worth
noting that Jadescript is specifically designed to use JADE, whereas the men-
tioned practical implementations of AgentSpeak(L) can be used with a variety
of agent platforms. Therefore, Jadescript is a better choice for developers who
are already familiar with JADE, also because its main features and abstractions
are inspired by the corresponding features and abstractions provided by JADE.

Differently from AgentSpeak(L) and its implementation, SARL [37] is an
AOP language that can be considered as imperative and event-driven. SARL
is equipped with a syntax that is easy to understand for users of mainstream
programming languages. One of its most noteworthy features is its support for
holonic agents, which are agents composed of other agents. Moreover, SARL
is designed to not be tied to any particular platform, although it is frequently
used with Janus [37]. SARL has several similarities with JADEL, which is the

Imperative and Event-Driven Programming of Interoperable Software Agents 37

predecessor of Jadescript. For example, SARL and JADEL have similar syntaxes
to define agents, and they use similar linguistic constructs to handle events.
Moreover, both SARL and JADEL include specific extensions of Xtend for the
imperative parts of the source codes of agents. Despite these similarities, SARL
and JADEL were developed independently and have distinct purposes.

The main difference between SARL and Jadescript is that SARL explic-
itly supports object-oriented programming, while Jadescript is a pure AOP lan-
guage. Actually, SARL supports the definition of classes and the manipulation
of objects alongside the declaration of agents and of their tasks. On the other
hand, Jadescript purposely excludes the concepts of object-oriented program-
ming from the language to offer agent-oriented abstractions as valid alternatives
to promote reusability and composability [10].

5 Conclusion

Jadescript is a promising tool to develop real-world MASs that target mission-
critical applications and services (e.g., [6,25]). Its unique combination of simplic-
ity and conciseness makes it a valuable addition to the toolkit of the program-
mers of agents and MASs. However, Jadescript is still in its early stages, with
early versions of the compiler and associated tools having only recently been
made available (github.com/aiagents/jadescript). Therefore, Jadescript presents
significant opportunities for further developments.

One promising direction for extending Jadescript is to incorporate IPs (Inter-
action Protocols) [34] as a primary abstraction of the language. IPs are intended
to precisely specify the possible patterns of the interactions among agents, and
therefore their support in Jadescript requires linguistic constructs to allow speci-
fying new IPs and to allow agents to enact IPs on the basis of these specifications.
Actually, by defining the role of an agent within an IP, the designer of the agent
is guided to design the behaviours of the agent taking into account the expected
interactions of the agent in the scope of the IP. This approach to the design of
agents and behaviours has the beneficial effect of improving the clarity and the
modularity of the design, and it also eases the identification of reusable agents
and behaviours for common communication patterns.

Finally, another possible development of Jadescript is about providing effec-
tive language-level features to enable the use of epistemic and intentional propo-
sitions in the agents. This extension is expected to provide Jadescript with a
more expressive way to describe the decision making processes and cognitive
abilities of the agents, thus ultimately improving the robustness, the maintain-
ability, and the reusability of agents and MASs.

Acknowledgements. This work was partially supported by the Italian Ministry of
University and Research under the PRIN 2020 grant 2020TL3X8X for the project Type-
ful Language Adaptation for Dynamic, Interacting and Evolving Systems (T-LADIES).

https://github.com/aiagents/jadescript

38 G. Petrosino et al.

References

1. Adorni, G., Bergenti, F., Poggi, A., Rimassa, G.: Enabling FIPA agents on small
devices. In: Klusch, M., Zambonelli, F. (eds.) CIA 2001. LNCS (LNAI), vol. 2182,
pp. 248–257. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44799-
7_28

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade — a java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming. MSASSO, vol. 15, pp. 125–147. Springer, Boston, MA
(2005). https://doi.org/10.1007/0-387-26350-0_5

3. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. In: Wiley Series in Agent Technology. Wiley, Hoboken (2007)

4. Bergenti, F.: A discussion of two major benefits of using agents in software devel-
opment. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39173-8_1

5. Bergenti, F.: An introduction to the JADEL programming language. In: Proceed-
ings of the 26th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2014), pp. 974–978. IEEE (2014)

6. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231–246. Elsevier (2015)

7. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based
software development with JADE. Auton. Agent. Multi-Agent Syst. 34(2), 1–19
(2020). https://doi.org/10.1007/s10458-020-09460-z

8. Bergenti, F., Franchi, E., Poggi, A.: Agent-based social networks for enterprise col-
laboration. In: Proceedings of the 20th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2011), pp.
25–28. IEEE (2011)

9. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems. Springer, New York (2004). https://doi.org/10.
1007/b116049

10. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems.
In: Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.) Methodologies and Software
Engineering for Agent Systems. Multiagent Systems, Artificial Societies, and Sim-
ulated Organizations, vol. 11, pp. 19–31. Springer, Boston (2004). https://doi.org/
10.1007/1-4020-8058-1_3

11. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven devel-
opment for JADE with the JADEL programming language. Comput. Lang. Syst.
Struct. 50, 142–158 (2017)

12. Bergenti, F., Monica, S.: Location-aware social gaming with AMUSE. In:
Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI),
vol. 9662, pp. 36–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39324-7_4

13. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Proceedings of the 8th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2018) at ACM SIGPLAN Conference Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH 2018). ACM (2018)

https://doi.org/10.1007/3-540-44799-7_28
https://doi.org/10.1007/3-540-44799-7_28
https://doi.org/10.1007/0-387-26350-0_5
https://doi.org/10.1007/3-540-39173-8_1
https://doi.org/10.1007/3-540-39173-8_1
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1007/b116049
https://doi.org/10.1007/b116049
https://doi.org/10.1007/1-4020-8058-1_3
https://doi.org/10.1007/1-4020-8058-1_3
https://doi.org/10.1007/978-3-319-39324-7_4
https://doi.org/10.1007/978-3-319-39324-7_4

Imperative and Event-Driven Programming of Interoperable Software Agents 39

14. Bergenti, F., Petrosino, G.: Overview of a scripting language for JADE-based multi-
agent systems. In: Proceedings of the 19th Workshop “From Objects to Agents”
(WOA 2018). CEUR Workshop Proceedings, vol. 2215, pp. 57–62. RWTH Aachen
(2018)

15. Bergenti, F., Poggi, A.: Ubiquitous information agents. Int. J. Coop. Inf. Syst.
11(3–4), 231–244 (2002)

16. Bergenti, F., Poggi, A.: Developing smart emergency applications with multi-agent
systems. Int. J. E-Health Med. Commun. 1(4), 1–13 (2010)

17. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, Birmingham (2013)

18. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. In: Wiley Series in Agent Technology. Wiley, Hoboken
(2007)

19. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with
AgentSpeak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.)
PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25524-8_22

20. Dhaon, A., Collier, R.: Multiple inheritance in AgentSpeak(L)-style programming
languages. In: Proceedings of the 4th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control (AGERE 2014)
at ACM SIGPLAN Conference Systems, Programming, Languages and Applica-
tions: Software for Humanity (SPLASH 2014), pp. 109–120. ACM (2014)

21. Federico, B., Agostino, P.: Agent-based approach to manage negotiation protocols
in flexible CSCW systems. In: Proceedings of the 4th International Conference on
Autonomous Agents (AGENTS 2000), pp. 267–268. ACM (2000)

22. Fowler, M., Parsons, R.: Domain Specific Languages. In: Addison-Wesley Signa-
ture. Addison-Wesley, Boston (2010)

23. Iotti, E., Petrosino, G., Monica, S., Bergenti, F.: Exploratory experiments on pro-
gramming autonomous robots in Jadescript. In: Proceedings of the 1st Workshop on
Agents and Robots for Reliable Engineered Autonomy (AREA 2020) at the Euro-
pean Conference on Artificial Intelligence (ECAI 2020). Electronic Proceedings in
Theoretical Computer Science, vol. 319. Open Publishing Association (2020)

24. Iotti, E., Petrosino, G., Monica, S., Bergenti, F.: Two agent-oriented programming
approaches checked against a coordination problem. In: Dong, Y., Herrera-Viedma,
E., Matsui, K., Omatsu, S., González Briones, A., Rodríguez González, S. (eds.)
DCAI 2020. AISC, vol. 1237, pp. 60–70. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-53036-5_7

25. Monica, S., Bergenti, F.: A comparison of accurate indoor localization of static
targets via WiFi and UWB ranging. In: Trends in Practical Applications of Scal-
able Multi-Agent Systems, the PAAMS Collection. AISC, vol. 473, pp. 111–123.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40159-1_9

26. Nilsson, N.J.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1,
139–158 (1993)

27. Petrosino, G., Bergenti, F.: An introduction to the major features of a scripting
language for JADE agents. In: Ghidini, C., Magnini, B., Passerini, A., Traverso,
P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 3–14. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03840-3_1

28. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching
in the Jadescript programming language. In: Proceedings of the 20th Workshop
“From Objects to Agents” (WOA 2019). CEUR Workshop Proceedings, vol. 2404,
pp. 113–118. RWTH Aachen (2019)

https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-030-53036-5_7
https://doi.org/10.1007/978-3-030-53036-5_7
https://doi.org/10.1007/978-3-319-40159-1_9
https://doi.org/10.1007/978-3-030-03840-3_1

40 G. Petrosino et al.

29. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: Prototypes of productivity tools
for the Jadescript programming language. In: Proceedings of the 22nd Workshop
“From Objects to Agents’ (WOA 2021). CEUR Workshop Proceedings, vol. 2963,
pp. 14–28. RWTH Aachen (2021)

30. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: A description of the Jadescript
type system. In: DAI 2021. LNCS (LNAI), vol. 13170, pp. 206–220. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94662-3_13

31. Petrosino, G., Monica, S., Bergenti, F.: Robust software agents with the Jadescript
programming language. In: Proceedings of the 23rd Workshop “From Objects to
Agents” (WOA 2022). CEUR Workshop Proceedings, vol. 3261, pp. 194–208.
RWTH Aachen (2022)

32. Petrosino, G., Monica, S., Bergenti, F.: Cross-paradigm interoperability between
Jadescript and Java. In: Proceedings of the 15th International Conference on Agents
and Artificial Intelligence (ICAART 2023), vol. 1, pp. 165–172. Science and Tech-
nology Publications (2023)

33. Petrosino, G., Monica, S., Bergenti, F.: Delayed and periodic execution of tasks
in the Jadescript programming language. In: Omatu, S., Mehmood, R., Sitek, P.,
Cicerone, S., Rodríguez, S. (eds.) DCAI 2022. LNCS, vol. 583, pp. 50–59. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-20859-1_6

34. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Trans.
Auton. Adapt. Syst. 2(4), 15-es (2007)

35. Poslad, S., Charlton, P.: Standardizing agent interoperability: The FIPA approach.
In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001. LNCS
(LNAI), vol. 2086, pp. 98–117. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-47745-4_5

36. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

37. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented pro-
gramming language. In: Proceedings of the IEEE/WIC/ACM International Joint
Conferences of Web Intelligence (WI 2014) and Intelligent Agent Technologies (IAT
2014), vol. 3, pp. 103–110. IEEE (2014)

38. Shoham, Y.: AGENT0: a simple agent language and its interpreter. In: Proceedings
of the 9th National Conference on Artificial Intelligence (AAAI 1991), vol. 91, pp.
704–709 (1991)

39. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
40. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008)

41. Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A.: An ontology support for semantic
aware agents. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.)
AOIS -2005. LNCS (LNAI), vol. 3529, pp. 140–153. Springer, Heidelberg (2006).
https://doi.org/10.1007/11916291_10

42. Yokoo, M.: Distributed Constraint Satisfaction: Foundations of Cooperation in
Multi-agent Systems. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-
642-59546-2

https://doi.org/10.1007/978-3-030-94662-3_13
https://doi.org/10.1007/978-3-031-20859-1_6
https://doi.org/10.1007/3-540-47745-4_5
https://doi.org/10.1007/3-540-47745-4_5
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/11916291_10
https://doi.org/10.1007/978-3-642-59546-2
https://doi.org/10.1007/978-3-642-59546-2

vGOAL: A GOAL-Based Specification
Language for Safe Autonomous

Decision-Making

Yi Yang(B) and Tom Holvoet

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{yi.yang,tom.holvoet}@kuleuven.be

Abstract. Formal verification is a reliable approach to addressing safety
concerns in autonomous applications. We have designed vGOAL based
on the internal logic of the GOAL agent programming language, which
serves as the formal specification language of our innovative formal
approach to safe autonomous decision-making. A detailed description
of vGOAL is necessary to present and justify our approach to safe
autonomous decision-making, yet it is currently missing. Therefore, this
paper aims to provide a comprehensive description of vGOAL, including
its formal syntax, its operational semantics, a real-world robotic appli-
cation, and a comparison with several comparable agent programming
languages, namely, GOAL, Gwendolen, and AgentSpeak (Jason).

Keywords: Formal Specification · Autonomous Decision-Making ·
Safety Assurance · vGOAL

1 Introduction

The applications of autonomous systems have seen a remarkable increase in
recent years. These systems are capable of operating without human interven-
tion to achieve complex goals. As autonomous applications become increasingly
common in industries like manufacturing and transportation, it is crucial to
ensure their safety.

Safe autonomous decision-making is one of the key challenges in developing
autonomous robotic applications. Agent programming languages (APLs), includ-
ing AgentSpeak [2], Jason [3], Gwendolen [8], and GOAL [10], have been exten-
sively researched for programming autonomous agents for decades, indicating
two facts: (1) A multi-agent system can properly model agent-based autonomous
systems; (2) APLs are well-suited for tackling the challenge of the decision-
making of agent-based autonomous systems. Despite the potential benefits of
APLs in the development of autonomous robotic applications, their research has
not been widely used in the field. Integration with the Robot Operating System
(ROS) may expand their applications to robotics, as ROS has become the de

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 41–58, 2023.
https://doi.org/10.1007/978-3-031-48539-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_3&domain=pdf
http://orcid.org/0000-0001-9565-1559
http://orcid.org/0000-0003-1304-3467
https://doi.org/10.1007/978-3-031-48539-8_3

42 Y. Yang and T. Holvoet

facto standard for developing robotic applications. If an APL has built-in sup-
port for ROS, it would be advantageous to integrate it with ROS-based robotic
applications.

The Belief-Desire-Intention (BDI) model is a popular reasoning mechanism
utilized in various APLs including Jason and Gwendolen [4]. GOAL shares many
features with BDI APLs, such as beliefs and goals, but it is primarily a rule-
based APL that differs in its approach to action selection [4]. Specifically, while
BDI APLs select actions from a plan library, GOAL derives actions based on
its rules to fulfill goals, making it highly suitable for specifying autonomous
decision-making.

To facilitate safe decision-making of agent-based autonomous systems, we
have developed vGOAL, which is a GOAL-based specification language that
focuses exclusively on the internal logic reasoning mechanism of GOAL, moti-
vated by three primary considerations. First, the decision-making mechanism of
GOAL is highly suitable for autonomous decision-making, but many of its specifi-
cations are irrelevant to this domain, such as environment specifications. Second,
the intrinsic logic-based nature of GOAL makes it highly suitable for formal ver-
ification, which is ideal for providing safety assurance for autonomous decision-
making. Third, GOAL cannot directly access ROS, which limits its applicabil-
ity in robotic applications. Therefore, vGOAL can be highly valuable for safe
autonomous decision-making used in robotic applications, as it can leverage the
strengths of GOAL, ROS, and formal verification.

On the basis of vGOAL, we have developed a three-stage formal approach
to safe autonomous decision-making: formal specification using vGOAL, safe
decision generation using the vGOAL interpreter, and the verification of vGOAL
using an automated translator for vGOAL and a PCTL model checker (Storm [6]
or PRISM [15]). Additionally, we have integrated the vGOAL interpreter into
ROS via rosbridge to facilitate implementation and execution. We validated
our approach in a real-world autonomous logistic system consisting of three
autonomous mobile robots. There are three demonstration videos accessible for
viewing at [18].

In [19], we established the preliminary groundwork for the formal specifica-
tion and verification of vGOAL by outlining how to verify a GOAL program
with specific restrictions, including a stratified program, a single agent, and a
single goal. Building on this initial work, we described the rationale and imple-
mentation of the three-stage formal approach in [20]. [17] presents a high-level
overview of the three-stage formal approach. However, a detailed description of
vGOAL is crucial to thoroughly describing our approach to safe autonomous
decision-making, similar to the descriptions of Gwendolen in [7] and in [8], and
of GOAL in [10]. Therefore, the purpose of this paper is to provide a detailed
explanation of vGOAL.

The paper is structured as follows. In Sect. 2, we present the formal syntax of
vGOAL. In Sect. 3, we present the operational semantics of vGOAL. In Sect. 4,
we demonstrate how to use vGOAL with a validated real-world autonomous
logistic system. In Sect. 5, we will discuss the essential features of vGOAL and
provide a comparative analysis with other APLs, namely GOAL, Gwendolen,
and AgentSpeak (Jason). In Sect. 6, we draw conclusions on vGOAL.

vGOAL: A GOAL-based Specification Language 43

2 Formal Syntax

In this section, we introduce the formal syntax of vGOAL. Initially, we introduce
the core elements of vGOAL, highlighting its fundamental basis in first-order
logic. Next, we delve into the predefined functions and the rule construction
within vGOAL, elucidating its constraints within the first-order logic framework.
Finally, we present the high-level components of vGOAL specifications.

The first part of the vGOAL syntax, which includes elements like terms and
predicates, conforms to the conventions established in first-order logic. Neverthe-
less, in contrast to first-order logic, the specification allows for the optional indi-
cation of the domains associated with universally quantified variables. Minimal
model generation is required for the generation of autonomous decision-making,
hence necessitating the inclusion of domain specifications for universally quan-
tified variables.

word ::= char |num

constant ::= word constant∗

variable ::= char word∗

constant list ::= constant constant∗

predicate name ::= char word∗

ground atoms ::= predicate name ’(’ constant list’)’
term ::= constant | variable

term list ::= term | term ’,’ term list

p ::= predicate name (term list)
neg p ::= ¬p

Uni Q ::= ∀ variable | ∀ variable ∈ D | Uni Q∗

Ex Q ::= ∃ variable | Ex Q∗

The second part of the vGOAL syntax involves some keywords, predefined
functions, and the way of constructing rules.

R represents a group of agents, with its domain consisting of three distinct
elements: all, allother, and id. Specifically, all and allother are keywords in
vGOAL, denoting all agents and all agents within the multi-agent system exclud-
ing the individual responsible for transmitting messages, respectively; and id
designates a particular agent.

For describing communication among agents, vGOAL offers six predefined
functions: send:, send!, send?, sent:, sent!, and sent?. Like in GOAL, Message
specifications in vGOAL differentiate among three types: indicative messages,
indicated by the functions send:(R, p) and sent:(R, p); declarative messages,
defined as send!(R, p) and sent!(R, p); and interrogative messages, represented as
send?(R, p) and sent?(R, p). A sent message is represented as msgs and encom-
passes three distinct elements within its domain: send:(R, p), send!(R, p), and
send?(R, p). Conversely, a received message is symbolized as msgr and com-
prises three distinct elements within its domain: sent:(R, p), sent!(R, p), and

44 Y. Yang and T. Holvoet

sent?(R, p). Moreover, in a msgs, R represents the recipients of the message,
whereas in a msgr, it signifies the sender.

Similarly to GOAL, vGOAL incorporates an event processing component
responsible for handling communication messages and effecting changes in goals
and beliefs. To facilitate these modifications, vGOAL provides four predefined
functions: insert, delete, adopt, and drop. response signifies the outcome of event
processing, which may encompass the generation of sent messages, the alteration
of beliefs and goals, or both.

The minimal model serves as the foundation for establishing the semantics of
vGOAL. Constructing the minimal model involves employing qrulei(1 ≤ i ≤ 6),
which enforces three constraints on first-order logic: the quantification for each
variable, a finite domain for each variable, and the absence of negative recursion.
Furthermore, qrule7 is used to define the effects of actions, and it is not used to
deduce the subsequent safe autonomous decision.

id ::= constant

R ::= all|allother|id
msgs ::= send:(R, p)|send!(R, p)|send?(R, p)
msgr ::= sent:(R, p)|sent!(R, p)|sent?(R, p)
update ::= insert(b)|delete(b)|adopt(g)|drop(g)
response ::= msgs|update

b ::= ground atoms

g ::= ground atoms

hs ::= True|p ∧ hs|neg p ∧ hs

lh ::= a-goal(p) ∧ hs

rule1 ::= hs → p

qrule1 ::= Uni Q Ex Q rule1

rule2 ::= lh → p

qrule2 ::= Uni Q Ex Q rule2

rule3 ::= hs → msgs

qrule3 ::= Uni Q Ex Q rule3

rule4 ::= msgr ∧ hs → response

qrule4 ::= Uni Q Ex Q rule4

rule5 ::= lh → response

qrule5 ::= Uni Q Ex Q rule5

rule6 ::= hs → response

qrule6 ::= Uni Q Ex Q rule6

rule7 ::= hs → hs

qrule7 ::= Uni Q Ex Q rule7

vGOAL: A GOAL-based Specification Language 45

The final part of the vGOAL syntax involves the high-level components of the
vGOAL specification. The specification includes agent specifications and system
specifications.

MAS denotes all agents’ specifications involved in the multi-agent system.
An agent specification consists of five essential components: a unique identifier:
id, beliefs: B, goals: goals, sent messages: MS , and received messages: MR. The
beliefs of an agent B consist of Bsensor and Bprior. Bsensor denotes the real-time
beliefs obtained from sensors. Bprior denotes the prior beliefs that are essential
for agents but cannot be received from sensors. An agent can have multiple goals,
denoted by goals. Each goal (G) consists of goal bases.

System specifications in vGOAL involve six rule sets, each with a unique
designation: K represents the knowledge base, C denotes enabled constraints, A
refers to action generation, S pertains to sent message generation, P concerns
event processing, and E describes action effects. Moreover, a-goal is a predefined
function to evaluate if its argument is included in the first goal base.

Agent ::= (id,B, goals,MS ,MR)
MAS ::= Agent∗

D ::= constant list

Bsensor ::= b∗

Bprior ::= b∗

B ::= Bsensor Bprior

G ::= g∗

goals ::= G∗

MS ::= msg∗
s

MR ::= msg∗
r

K ::= qrule∗
1 ground atom∗

C ::= qrule∗
2

A ::= qrule∗
1

S ::= qrule∗
3

P ::= qrule∗
4 qrule∗

5 qrule∗
6

E ::= qrule∗
7

Remark: Belief Base and Current Beliefs

In vGOAL, the belief base contains information that cannot be inferred by logical
deduction. More specifically, an agent’s current beliefs are obtained by combining
its belief base with its knowledge base. As a result, the belief base represents a
subset of an agent’s current beliefs.

46 Y. Yang and T. Holvoet

3 Operational Semantics

This section presents the operational semantics of vGOAL. Initially, we estab-
lish the semantics for high-level components in vGOAL. Subsequently, we explain
how vGOAL generates autonomous decisions through its reasoning cycle. The
operational semantics of vGOAL encompasses function updates and the gen-
eration of minimal models for first-order theories constrained by the vGOAL
syntax.

We use I to define the interpretations of high-level components in vGOAL.
The principles to interpreters vGOAL specifications are as follows.

– If Spec ::= Agent, I(Spec) = id : (I(B), I(goals), I(MS), I(MR)).
– If Spec ::= e∗, I(Spec) =

⋃
I(e).

– If Spec ::= e1...en, I(Spec) =
n⋃
I(ei).

– If Spec ::= goals, and goals ::= GG∗|Empty, I(Spec) = I(G) or I(Spec) = ∅.
– If e ::= ground atom, I(e) = True.
– The interpretation of logical operators, such as ∧, ¬, and →, adheres to the

standard conventions of first-order logic.

Following the above interpretation principles, each high-level component of
vGOAL specifications, including B, G, goals, MS , MR, K, C, A, S, P , and E,
is converted to a first-order theory constrained by vGOAL syntax.

We use I(Agent) and I(MAS) as the foundation for constructing vGOAL’s
substate and state, respectively. A substate represents an agent’s state, while
the state captures the autonomous system’s state. A substate includes a unique
identifier, beliefs, and goals, while the full information of the substate adds sent
and received messages. We formally define a vGOAL state and its corresponding
information as follows:

substate :: = id : (I(B), I(goals)),
sub info :: = id : (I(B), I(goals), I(MS), I(MR)),

state :: = state ∪ {substate}|∅,
state info :: = state info ∪ {sub info}|∅.

The core component of the reasoning cycle is the generation of the minimal
model of a first-order theory. Given a first-order theory T , the minimal model
M of T satisfies the following conditions:

– ∀φ ∈ T , M |= φ,
– ∀M ′ ⊂ M , ∃φ ∈ T , M � φ.

The first condition states M satisfies all the sentences in T . The second condition
states that there is no proper substructure M ′ of M that also satisfies all the
sentences in T . We denote the minimal model of T as MinModel(T).

vGOAL: A GOAL-based Specification Language 47

3.1 Stage 1: Substate Property Generation

For one agent, each substate can only differ from either its belief base, its goal
base, or both. Consequently, we define the substate property as the combination
of the current beliefs and the desired goals of the agent. The current beliefs and
the desired beliefs are defined as follows:

CB :: = I(B) ∪ I(K),
DB :: = I(goals)

CB is a first-order theory that derives current beliefs from its belief base
B and knowledge base K, while DB denotes the desired beliefs. Following the
fourth principle to interpreter vGOAL specifications, the interpretation of goals
is either the first goal base of the agent or empty. Substate properties involve
both CB and DB through a predefined function F . F transforms the agent’s
desired beliefs into a new form that reflects those desired beliefs. Its formal
definition is as follows:

F (G) ::=

{ n⋃
a-goal(gi) if G ::= g1...gn and n > 0,

∅ otherwise.

The substate properties are formally defined as follows:

subP ::= MinModel(CB ∪ F (DB)).

3.2 Stage 2: Enabled Constraint Generation

The constraints that constrain an agent to generate feasible actions or sent
messages are referred to as enabled constraints. Constrained by the current
and desired beliefs, an agent generates decisions. The generated constraints are
defined as follows:

EC :: = subP ∪ I(C),
GC :: = MinModel(EC)\subP.

3.3 Stage 3: Enabled Action Generation

An action can be triggered only when a related enabled constraint and its pre-
conditions are satisfied by the current beliefs. The generated actions are defined
as follows:

EA :: = subP ∪ GC ∪ I(A),
GA :: = MinModel(EA)\MinModel(subP ∪ GC).

48 Y. Yang and T. Holvoet

3.4 Stage 4: Enabled Sent Message Generation

During a reasoning cycle, if the decision-making module fails to generate a fea-
sible action, it will attempt to generate enabled sent messages for exchanging
information with other agents. A message can be sent only when the related
enabled constraint is satisfied. The enabled sent messages are defined as follows:

ES :: = subP ∪ GC ∪ I(S),
GS :: = MinModel(ES)\MinModel(subP ∪ GC).

sub info of the agent will be changed if GS is not an empty set. MS will be
assigned with GS, which is defined as follows:

MS ::= GS.

3.5 Stage 5: Event Processing

In each reasoning cycle, each agent processes events including adopting sub-
goals to achieve the desired state, revising current beliefs, and responding to the
received messages from the last reasoning cycle. The state of the multi-agent
system may change as a result of the event processing altering the state of an
agent. In the reasoning cycle, the received messages of an agent are denoted with
MR. The enabled event processing is defined as follows:

EP :: = subP ∪ MR ∪ I(P),
PR :: = MinModel(EP)\MinModel(subP ∪ I(P)).

If MR is not an empty set, the sub info of the agent will be altered. This
modification occurs because MR undergoes reinitialization, resetting it to an
empty set after event processing, which is formally defined as follows:

MR ::= ∅.

3.6 Stage 6: Communication

During each reasoning cycle, agents exchange information on the basis of the
information of sub info. To define the effects of communication of the sub info
of each agent, we utilize the following functions.

We utilize three functions to convert sent messages into their corresponding
received messages. First, inst(msgs) instantiates the receivers of a sent mes-
sage. Secondly, Inst(S,MS) instantiates all messages sent by an agent, using
inst(msgs) as the basis. Third, MP (S,msgs) converts a sent message to its
corresponding received message.

vGOAL: A GOAL-based Specification Language 49

inst(msgs) :: =

⎧
⎪⎪⎨

⎪⎪⎩

r⋃
I(msgs)[R �→ r], if R = all, and r ∈ ⋃

id
r⋃
I(msgs)[R �→ r], if R = allother and r ∈ ⋃

id\S,

I(msgs), if R = id,

Inst(S,MS) :: =

{
∅, if I(MS) = ∅,

inst(msgs
⋃

Inst(S,MS)\I(msgs)), otherwise

MP (S,msgs) :: =

⎧
⎪⎨

⎪⎩

I(sent(S, p)), if msgs = send(r, p),
I(sent!(S, p)), if msgs = send!(r, p),
I(sent?(S, p)), if msgs = send?(r, p).

Next, we use three functions to update the subinfo of one agent. First,
P1(sub info, S,msgs) defines how an agent updates its sub info for a single
sent message. Second, P2(sub info, S,M) defines how an agent updates its
sub info for a set of sent messages, using P1(sub info, S,msgs) as the basis.
Third, P3(sub info) describes the initialization of MS of an agent.

P1(sub info, S,msgs) :: =

{
sub info[MR �→ MR

⋃
MP (S,msgs)], if id=r

sub info, otherwise,

P2(sub info, S,MS) :: =

{
sub info, if I(MS) = ∅ or id �= r

P2(P1(sub info, S,msgs), S,MS\msgs), otherwise,

P3(sub info) :: = sub info[MS �→ ∅)].

We define the state info as a collective set of the sub info of each agent
within the multi-agent system, denoting as (sub info)×n. Moreover, we use (id :
MS)×n to denote the sent messages of each agent within the system during the
current reasoning cycle. After the reasoning cycle of each agent, the update of
state info is formally defined as follows:

sub info
(id:MS)×n−−−−−−−→ (P3((P2(sub info, id,MS))×n))×n.

3.7 State Update

For a multi-agent system, agents participate in a modular reasoning cycle and
communicate with other agents during the final stage of the cycle. The state of
the multi-agent system is updated once all agents have completed their current
reasoning cycle. The substate of a multi-agent system, i.e., the state of an agent,
can only be modified by generated actions, GA, and the processed results of the
event processing, PR.

An agent changes its current belief base based on the rules of action effects
and the enabled actions. The action effects will change the state of the agent,
subsequently changing the state of the multi-agent system.

50 Y. Yang and T. Holvoet

First, we define how an action changes the current belief base of the agent.
The rules on action effects E are defined by qrule7, which is in the form hs1 →
hs2. Both hs1 and hs2 follow the construction rule of hs in syntax, and I(hs) :
:= I(

∧
m Bm ∧ ∧

n ¬Bn). We define a function U to describe the belief updates
incurred by actions as follows:

U(B,GA,E) :: =

{
I(B) ∪ ⋃m

I({Bm})\ ⋃n
I({Bn)}, ifI(B) ∪ GA I(hs1),

I(B) ,otherwise.

In each reasoning cycle, the agent can only generate either an enabled action
or send messages, but it can handle all received messages. We define a function
T to update substate based on action effects during each reasoning cycle, and T
will not modify the substate if there is no enabled action effect.

For the generated action effect, the substate is updated as follows:

T (substate,GA) :: =

{
id : (U(B,GA,E), I(goals)), if GA �= ∅,

id : (I(B), I(goals)), if GE = ∅,

substate :: = T (substate,GA).

A processed result of event processing can modify beliefs, goals, or both.
Additionally, an instance of a response can take the form of either msgs
or update. It is worth noting that only an instance of update will mod-
ify the substate, which includes insert(B, b), delete(B, b), adopt(goals, g), and
drop(goals, g).

For a processed result, the substate is updated as follows:

I(insert(B, b)) :: = I(B) ∪ b,

I(delete(B, b)) :: = I(B)\b,

I(adopt(goals, g)) :: = I(goals) ∪ g,

I(drop(goals, g)) :: = I(goals)\g,

H(S, r) :: =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

id : (I(insert(B, b)), I(goals)) if r = insert(b),
id : (I(delete(B, b)), I(goals)) if r = delete(b),
id : (I(B), I(adopt(goals, g))) if r = adopt(g),
id : (I(B), I(drop(goals, g))) if r = drop(g),
id : (I(B), I(goals)) , otherwise.

For the processed results of the event processing, PR, we define the function
F to update the substate as follows:

F (S, PR) =

{
F ((H(S, r), PR\r) if PR\r �= ∅,

S otherwise.

Assuming a multi-agent system containing n agents (n ≥ 1), the state is
represented as (substate)×n. In each reasoning cycle, the substate can only be

vGOAL: A GOAL-based Specification Language 51

changed by the effects of enabled actions and the processed results of event
processing. The effects of enabled actions corresponds to an action (Act), and
the processed results of event processing involve the received messages of the
current reasoning cycle (MR). We use the (id : (Act,MR))×n to represent a
transition that may change the substate, subsequently changing the state. The
operational semantics of a vGOAL specification is defined as follows:

(substate)×n
(id:(Act,MR))×n−−−−−−−−−−−→ (F (T (substate,Act), PR)×n,

where Act represents the generated action, and PR denotes the processed results
of the event processing, involving processing the received messages MR. Although
GE and PR can both be empty for an agent, if any agent has a goal, at least
one agent will have non-empty GE or PR. In our setting, if an agent fails to
generate any decisions based on its current beliefs, it should send messages to
other agents to obtain more information to accomplish its goal.

Moreover, if any substate is updated, each sub info within the multi-agent
system will be automatically adjusted, namely, the belief base and goal base will
be modified to align with the substate.

4 Case Study

Using a real-world autonomous logistic system, we have validated our formal
approach to safe autonomous decision-making. Accordingly, we use the system
to explain how to use vGOAL.

Fig. 1. Layout of the Robot Environment

The autonomous system is composed of three autonomous mobile robots,
situated in the environment depicted in Fig. 1. The case study aims to perform
a collaborative transportation task. Non-red areas are considered safe places,
denoting from P1 to P8, while red areas are considered unsafe, denoting by P9.
P2 is the destination of the delivery task; P3 and P4 are the pick-up station; P5 is
a waiting point for the charging station; P6, P7, and P8 are the charging stations;

52 Y. Yang and T. Holvoet

and P1 is the other places except the aforementioned areas. The nine areas can
be classified into four categories. Category I only contains P1. The location of
Category I is a safe place, but agents do not need permission to access it, and it
has no dock. Category II includes P2, P3, P4, P6, P7, and P8. The locations of
Category II are safe places, and agents need permission to access them. There
is a dock for each location. Category III includes P5. The location of Category
III is a safe place, and agents need permission to access it, but it has no dock.
Category IV only includes P9. The location of Category IV is an unsafe place,
and agents need to avoid moving there.

We demonstrate each key aspect of the vGOAL specifications using a subset
of the specifications that specify the case study. For a comprehensive version of
the formal specification for the case study, we refer readers to [18].

First of all, we have to determine how to specify agents within the multi-agent
system. We need to define four agents in the case study: three for the real-world
agents, designated as A1, A2, and A3, and one for a dummy agent, denoted as
C. In our approach, we utilize a dummy agent to manage competing requests
for critical resources, such as permissions for locations. The specification of the
multi-agent system is specified as follows:

Agents = [A1 ,A2 ,A3 ,C] ,

where A1, A2, A3, and C are an instance of the agent class defined in the vGOAL
interpreter.

To facilitate real-time autonomous decision-making, an agent will take both
the real-time beliefs abstracted from sensor information and the prior beliefs as
the complete belief base to make decisions. As it is common that not all required
information can be sensed in practical scenarios, we need prior beliefs to specify
the necessary but unperceived information, and it is shared by all agents within
the system. The belief base of A3 and the prior beliefs of the system are specified
as follows:

b e l i e f b a s e 3 =[] ,
p r i o r b e l i e f s =[”on (1 , 3)” , ” on (2 , 4)” , ” on (3 , 3)” , ” on (4 , 3) ”] .

Furthermore, the vGOAL interpreter receives real-time beliefs abstracted
from sensor information on location, docking, and battery level. The initial com-
plete belief base of A3 consists of the prior beliefs and the initial real-time beliefs,
which is listed as follows:

b e l i e f b a s e 3 =[”on (1 , 3)” , ” on (2 , 4)” , ” on (3 , 3)” , ” on (4 , 3)” ,
” at (8)” , ” bat t e ry (2)” ,” docked (8)” ,” a s s i gned (8) ”] .

An agent can have no goals, one goal, or multiple goals. Agent A3 has two
goals, which are specified as follows:

goa l ba s e3 = [’ d e l i v e r e d (2 , 3) ’] ,
goa l ba s e4 = [” d e l i v e r e d (2 , 4) ”] ,
goa l s3 = [goa l base3 , goa l ba s e4] .

vGOAL: A GOAL-based Specification Language 53

Dummy agents are used to manage critical resources. Their specifications are
similar to those of real-world agents, including belief bases and goals. However,
while real-world agents rely on sensor information to update their belief bases,
dummy agents’ belief bases are not affected by sensor information. Furthermore,
dummy agents have no goals to pursue. The case study only requires one dummy
agent, denoted as C, whose belief base and goals are listed as follows:

dummy agents=[”C”]
b e l i e f b a s e 4 = [” i d l e (2)” , ” i d l e (3)” , ” i d l e (4)” , ” i d l e (5)” ,

” r e s e rved (A1 , 6) ” , ” r e s e rved (A2 , 7) ” , ” r e s e rved (A3 , 8) ”]
goa l s4 = []

The vGOAL interpreter provides a class for agents, whose attributes involve
a unique identifier, a belief base, goals, sent messages, and received messages.
The sent messages and received messages are empty by default. Therefore, users
only need to specify an agent with the other three values. The specifications of
Agent A3 and the dummy agent are specified as follows:

A3 = Agent (”A3” , b e l i e f b a s e 3 , goa l s3)
C = Agent (”C” , b e l i e f b a s e 4 , goa l s4)

A knowledge base is a collection of facts and rules that the decision-making
module uses to reason about the world. In vGOAL, a knowledge base can contain
either a first-order implication without negative recursion or a ground atom. Two
representative rules in the knowledge base are specified as follows:

” f o r a l l w. on (w, 4) imp l i e s a v a i l a b l e (w)” ,
” equal (charging , charg ing) ” .

vGOAL utilizes a set of rules, referred to as the constraints of action gener-
ation, to ensure that the generated decisions are moving towards a goal. These
constraints are either related to the generation of actions or the generation of
messages to acquire more information about the environment. Two representa-
tive constraints are specified as follows:

” f o r a l l w, y in D2 . a−goa l ho ld ing (w) and docked (p) and not
ho ld ing (y) and docked (4) and av a i l a b l e (w) imp l i e s A(w)” ,
” f o r a l l p ,w in D2 . a−goa l at (p) and not ho ld ing (w) and

not equal (p , 2) imp l i e s S(p) ” .

The first constraint pertains to the action generation, and the second con-
straint pertains to the generation of sent messages. As mentioned in Sect. 2, users
only need to specify the domain of variables that only occur on the left side of
the implication due to the implementation of the interpreter.

In vGOAL, feasible actions are derived using a set of rules called the enabled-
ness of actions, which requires including a generated constraint and may impose
restrictions on the current belief base. Two of the enabledness of action genera-
tion are specified as follows:

” f o r a l l w. A(w) imp l i e s pickup (w)”
” f o r a l l p . e x i s t s y . C(p) and at (y) and equal (y , 1) and

not equal (p , 5) imp l i e s move1 (y , p) ” .

54 Y. Yang and T. Holvoet

The first rule only involves a generated constraint, whereas the second rule
involves both a generated constraint and current beliefs.

In vGOAL, sent messages are derived using a set of rules, which only includes
a generated constraint and may impose restrictions on the current belief base.
One rule for the generation of sent messages is specified as follows:

” f o r a l l p . S (p) imp l i e s send ! (C) i d l e (p) ” .

vGOAL includes rules related to event processing, which encompasses
responding to received messages and adopting subgoals of the first goal base
on the basis of current beliefs. Five rules for event processing are specified as
follows:

” f a t a l imp l i e s drop a l l ” ,
” f o r a l l z . e x i s t s x , y . s ent ! (x) at (y) and re s e rved (x , z)

and not equal (z , y) imp l i e s i n s e r t i d l e (z)” ,
” f o r a l l x . e x i s t s y . s ent ! (x) i d l e (y) and re s e rved (x , y)

imp l i e s send : (x) a s s i gned (y)” ,
” e x i s t s x , y . s ent ! (x) i d l e (y) and re s e rved (z , y) and

equal (x , z) imp l i e s d e l e t e i d l e (y)” ,
” e x i s t s x ,w, p . a−goa l on (w, 2) and on (w, p) and at (x)

imp l i e s adopt at (p) ” .

The first rule states that all goals should be dropped if a fatal error occurs.
The next three rules illustrate three distinct approaches to responding to a
received message, including belief insertion, message sending, and belief dele-
tion. The last rule specified how to adopt a subgoal toward the desired goal.

vGOAL employs action effects to determine how to modify the current belief
base. These effects can either involve belief insertion or deletion. As a result,
the associated rule may involve negative recursion, a property not shared by
rules in other components. An example rule for the generation of action effects
is provided below:

”pickup ” : ” f o r a l l w, p , y in D2 . pickup (w) and not ho ld ing (y)
and on (w, p) imp l i e s ho ld ing (w) and not on (w, p)”

Moreover, the real-time information can include error messages, necessitat-
ing error handling. We emphasize that our framework can conveniently handle
errors. In another word, users can simply specify how to handle errors in the
specifications without changing any implementation of the framework. In the
case study, we identify four types of errors: E1, dock errors; E2, pick up errors;
E3, drop off errors; and E4, charge errors. In our setting, the non-fatal errors
are E1, E2, and E3, and the fatal errors are E4, which is specified in the knowl-
edge base as follows:

”E1 imp l i e s non fa ta l ” ,
”E2 imp l i e s non fa ta l ” ,
”E3 imp l i e s non fa ta l ” ,
”E4 imp l i e s f a t a l ” ,

vGOAL: A GOAL-based Specification Language 55

If an agent encounters a fatal error, it should send a message to the dummy
agent to report its current location. If an agent encounters a nonfatal error,
we need a dummy rule to avoid any meaningful constraints. Therefore, two
constraints on error handling are specified as follows:

” f o r a l l p . at (p) and f a t a l imp l i e s M(p)” ,
” non fa ta l imp l i e s Dummy” ,

If an agent encounters a fatal error, the agent will be considered broken and
will drop all goals and beliefs. If an agent encounters a non-fatal error, it will
drop the focused goals and adopt new goals. After inserting new goals, it will
delete corresponding nonfatal errors to enter the next reasoning cycle. The rules
on error handling are specified in the event processing as follows:

” f a t a l imp l i e s drop a l l ” ,
” f a t a l imp l i e s d e l e t e a l l ” ,
” non fa ta l and not goa l change imp l i e s drop a l l ” ,
” non fa ta l and not goa l change imp l i e s adopt l o ca t ed (charg ing)” ,
” non fa ta l and not goa l change imp l i e s adopt at (5)” ,
” non fa ta l and not goa l change imp l i e s i n s e r t goa l change ” ,
” non fa ta l and E1 imp l i e s d e l e t e E1” ,
” non fa ta l and E2 imp l i e s d e l e t e E2” ,
” non fa ta l and E3 imp l i e s d e l e t e E3” ,

5 Discussion

The motivation of vGOAL is the generation of verifiably safe decision-making for
autonomous systems. Consequently, it is pertinent to conduct a comparison with
the APLs capable of generating verified decisions. In this section, we discuss the
key aspects of vGOAL, along with a comparison with GOAL, Gwendolen, and
AgentSpeak (Jason).

vGOAL stands out from GOAL, Gwendolen, and AgentSpeak (Jason) in gen-
erating safe decisions without the need for additional computation. As discussed
in Sect. 3.1, the first stage of each reasoning cycle involves generating the sub-
state property, which links each state to a state property. Hence, we can prove
that a state satisfies its safety properties by showing that all safety properties
are contained within the state properties without additional computation. How-
ever, GOAL and AgentSpeak necessitate formal specifications of the original
programming language and verification tools [1,13], while Gwendolen relies on
the Agent Java PathFinder (AJPF) for model checking, thereby encountering
efficiency problems [9].

Durative action modeling and error handling are crucial and challenging
issues in autonomous decision-making. Notably, we address the challenge of
error detection in a different way than GOAL, Gwendolen, and Jason. Specif-
ically, vGOAL logically handles errors by separating error detection from the
decision-making module and allowing users to specify how to handle errors in
the specifications without modifying the implementation of the framework. In
contrast, error handling is hard-coded into the implementation of Gwendolen

56 Y. Yang and T. Holvoet

and Jason, requiring users to modify the implementation to specify how to han-
dle action failures [2,16]. While GOAL does not have a specific error-handling
mechanism, it can recognize action failure by comparing received perceptions
with desired effects. In practice, the method involves comparing the received
perceptions with the desired effects [12,14], which can be laborious to identify
all potential situations of action failure.

Despite being based on speech-act theory, the communications of all four
languages have different performatives. vGOAL and GOAL employ the least
performatives, namely indicative, declarative, and interrogative, which do not
directly alter current goals [11]. In contrast, Gwendolen utilizes performatives
such as tell, perform, and achieve, which directly affect intentions [7]. Jason
employs more performatives, compared with vGOAL, GOAL, and Gwendolen [2].
In summary, vGOAL and GOAL use a simpler communication mechanism than
Gwendolen and Jason, employing mailbox semantics without direct modification
of goals. Notably, in vGOAL, the communication component is encoded in a first-
order logical manner to allow automated minimal model generation.

The implementation of the interpreter for vGOAL is in Python, which differs
from the implementation of the interpreters for GOAL, Gwendolen, and AgentS-
peak in Java. vGOAL has the advantage that only it can be readily encoded in a
decision-making node in ROS, compared with GOAL, Gwendolen, and AgentS-
peak. vGOAL has already been integrated with ROS using rosbridge, as well
as Gwendolen and AgentSpeak [5]. Additionally, there is currently no known
research that connects GOAL with ROS.

6 Conclusion

To achieve verifiably safe autonomous decision-making, we have developed an
innovative formal approach based on vGOAL. In this paper, we aim to give a
comprehensive introduction to vGOAL, as it is pivotal in presenting and jus-
tifying our formal approach to safe autonomous decision-making. Initially, we
presented its formal syntax and operational semantics, providing a solid founda-
tion for formal verification. To demonstrate the applicability of the language, we
described a real-world autonomous logistic system that has been validated using
vGOAL and its interpreter. Finally, we compared the key aspects of vGOAL
with comparable APLs to demonstrate its advantages. In the future, we aim
to enrich the case studies of vGOAL with numerous complicated real-world
autonomous systems. Moreover, we intend to conduct an empirical analysis to
compare vGOAL with GOAL, Gwendolen, and AgentSpeak (Jason). We believe
vGOAL can be highly valuable for developing safe autonomous robotic applica-
tions.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven. We thank Jens Vankeirsbilck for providing Fig. 1.

vGOAL: A GOAL-based Specification Language 57

References

1. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agents-
peak. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 409–416 (2003)

2. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006). https://doi.org/10.1007/11750734 9

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Hoboken (2007)

4. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

5. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for program-
ming verifiable autonomous agents in ROS. In: Bassiliades, N., Chalkiadakis, G.,
de Jonge, D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 191–205.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66412-1 13

6. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

7. Dennis, L.A.: Gwendolen semantics: 2017 (2017)
8. Dennis, L.A., Farwer, B.: Gwendolen: a BDI language for verifiable agents. In: Pro-

ceedings of the AISB 2008 Symposium on Logic and the Simulation of Interaction
and Reasoning, Society for the Study of Artificial Intelligence and Simulation of
Behaviour, pp. 16–23. Citeseer (2008)

9. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

10. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3 4

11. Hindriks, K.V.: Programming cognitive agents in GOAL. Vrije Universiteit Ams-
terdam (2021)

12. Hindriks, K.V., Dix, J.: GOAL: a multi-agent programming language applied to
an exploration game. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software
Engineering, pp. 235–258. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54432-3 12

13. Jensen, A.B., Hindriks, K.V., Villadsen, J.: On using theorem proving for cogni-
tive agent-oriented programming. In: 13th International Conference on Agents and
Artificial Intelligence, pp. 446–453. Science and Technology Publishing (2021)

14. Jensen, A.B., Villadsen, J.: GOAL-DTU: development of distributed intelligence
for the multi-agent programming contest. In: Ahlbrecht, T., Dix, J., Fiekas, N.,
Krausburg, T. (eds.) MAPC 2019. LNCS (LNAI), vol. 12381, pp. 79–105. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59299-8 4

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

16. Stringer, P., Cardoso, R.C., Dixon, C., Dennis, L.A.: Implementing durative actions
with failure detection in Gwendolen. In: Alechina, N., Baldoni, M., Logan, B. (eds.)
EMAS 2021. LNCS, vol. 13190, pp. 332–351. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-97457-2 19

https://doi.org/10.1007/11750734_9
https://doi.org/10.1007/978-3-030-66412-1_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-3-642-54432-3_12
https://doi.org/10.1007/978-3-642-54432-3_12
https://doi.org/10.1007/978-3-030-59299-8_4
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-030-97457-2_19
https://doi.org/10.1007/978-3-030-97457-2_19

58 Y. Yang and T. Holvoet

17. Yang, Y.: Verifiably safe decision-making for autonomous systems. In: Proceed-
ings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, pp. 2973–2975 (2023)

18. Yang, Y.: vGOAL (2023). https://kuleuven-my.sharepoint.com/:f:/g/personal/yi
yang kuleuven be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA i1b7ovskqw?
e=k6FINj

19. Yang, Y., Holvoet, T.: Generating safe autonomous decision-making in ROS. In:
Fourth Workshop on Formal Methods for Autonomous Systems, vol. 371, pp. 184–
192. Open Publishing Association (9 2022)

20. Yang, Y., Holvoet, T.: Making model checking feasible for GOAL. In: 10th Inter-
national Workshop on Engineering Multi-Agent Systems (2022)

https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj
https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj
https://kuleuven-my.sharepoint.com/:f:/g/personal/yi_yang_kuleuven_be/EjUTI-DUvkdBlBKoNWxcVgIB8GMfhyAZHSA_i1b7ovskqw?e=k6FINj

Agents and Microservices

Protocol-Based Engineering
of Microservices

Aditya K. Khadse1, Samuel H. Christie V2, Munindar P. Singh1,
and Amit K. Chopra3(B)

1 North Carolina State University, Raleigh, USA
{akkhadse,mpsingh}@ncsu.edu

2 Cambridge, UK
shcv@sdf.org

3 Lancaster University, Lancaster, UK
amit.chopra@lancaster.ac.uk

Abstract. The microservices pattern is increasingly used in industry
to realize applications in a decentralized manner, often with the help
of novel programming models such as Microsoft-originated Dapr . Mul-
tiagent systems have typically been conceptualized as being decentral-
ized. This naturally brings us to the question: Can multiagent software
abstractions benefit the enterprise of realizing applications via microser-
vices?

To answer this question, in this paper, we show how interaction proto-
cols, a fundamental multiagent abstraction, can be applied toward real-
izing an application as a set of microservices. Specifically, we take a
third-party application that exemplifies Dapr’s programming model and
reengineer it based on protocols. We evaluate the differences between
our protocol-based implementation of the application and the Dapr-
based implementation and find that our protocol-based implementa-
tion provides an improved developer experience in terms of cleaner,
better-structured code. We conclude that (1) protocols represent a
highly promising abstraction suited to the modeling and engineering
of microservices-based applications and (2) Dapr augmented with a
protocol-based programming model would be highly beneficial to the
microservices enterprise.

Keywords: Decentralized systems · coordination · asynchronous
messaging · multiagent systems · information protocols · programming
models

1 Introduction

With the recent upsurge of cloud providers and affordable deployment solu-
tions [20], large-scale software is increasingly written using microservices [29].
Microservices are motivated by loose coupling afforded by a decentralized appli-
cation architecture. The microservices that constitute an application can be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 61–77, 2023.
https://doi.org/10.1007/978-3-031-48539-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-48539-8_4

62 A. K. Khadse et al.

independently developed and maintained, possibly using heterogeneous tech-
nologies. Further, each microservice can be deployed in its own container and
scaled independently in the cloud. By contrast, the components in a monolithic
application [21] are tightly coupled.

A challenge with any decentralized architecture is coordination between its
components. With products increasingly adopting the microservices architecture,
programming models that facilitate microservices-based application development
have emerged. Dapr [14] is a leading programming model, originally conceived
within Microsoft, but now an open-source project. To support coordination, Dapr
provides the abstractions of state stores, pub-sub brokers, and so on. Dapr is used
across different industries by companies such as Alibaba Cloud [1] and Bosch [19].
Alibaba Cloud notes that adopting Dapr helped them integrate microservices
written in different languages quickly. Bosch particularly mentions how it was
easy to move to event-driven microservices while using Dapr.

The field of multiagent systems (MAS) has traditionally been concerned with
decentralized architectures, and the connection between services and multiagent
systems has been identified multiple times over the years [2,22,23,26]. Particu-
larly interesting are works on engineering MAS based on protocols [15–17].

Recent developments in engineering MAS have focused on the idea of infor-
mation protocols [24,33]. An information protocol models a decentralized MAS
by specifying declarative information constraints on message occurrence. Infor-
mation protocols are enacted by decentralized agents via Local State Trans-
fer (LoST) [25]. Programming models based on information protocols includes
Deserv [9], Bungie [8], Mandrake [10], and Kiko [11]. Kiko, in particular, repre-
sents a conceptual leap because it enables viewing and implementing an agent
as a decision maker, its communications being its decisions.

In this paper, we model an existing Dapr application via information pro-
tocols and implement it using Kiko to highlight the benefits of a multiagent
approach to microservices development. In particular, the benefits include bet-
ter system modeling via protocols and attendant benefits such as verification;
better structured and more correct code; fully decentralized implementations;
and more loosely-coupled components.

2 Background

We now introduce information protocols, Kiko, and Dapr.

2.1 Information Protocols

Information protocols are declarative specifications of interaction between
agents. A protocol specifies the roles (played by agents); a set of public param-
eters; optionally, a set of private parameters; and a set of messages. Each mes-
sage specifies the sender, receiver, and its parameters. Adornments such as �in�,
�out�, �nil� on parameters provide causal structure to the protocol. Key param-
eters identify enactments. Together, they constrain when messages may be sent.

Protocol-Based Engineering of Microservices 63

The adornment �out� for a parameter means in any enactment, the sender of
the message can generate a binding (supply a value) for the parameter if it does
already know it; �in� means that the parameter binding must already be known
to the sender from some message in the enactment that it has already observed;
�nil� means that the sender must neither already know nor generate a binding
for the parameter. Each tuple of bindings for the public parameters corresponds
to a complete enactment of the protocol. Thus, one can think of a protocol as
notionally computing tuples of bindings via messaging between the roles.

Listing 1 is an example of an information protocol between a buyer, a seller,
and a shipper for the purchase of an item.

Listing 1. The Purchase protocol [24].

Purchase {

roles Buyer , Seller , Shipper

parameters out ID key , out item , out price , out outcome

private address , resp , shipped

Buyer -> Seller: rfq[out ID, out item]

Seller -> Buyer: quote[in ID, in item , out price]

Buyer -> Seller: accept[in ID , in item , in price , out

address , out resp]

Buyer -> Seller: reject[in ID , in item , in price , out

outcome , out resp]

Seller -> Shipper: ship[in ID , in item , in address , out

shipped]

Shipper -> Buyer: deliver[in ID, in item , in address , out

outcome]

}

Let’s unpack how the protocol works. The name of the protocol is Purchase
and Buyer and Seller are its roles. The parameters line specifies the tuple
computed by a complete enactment of Purchase; parameterID is annotated key,
meaning that it identifies tuples and the other parameters in the tuple are item,
price, and outcome. These parameters are public and may be used toward compo-
sition with other protocols. A protocol may also have private parameters; here,
address, resp, and shipped.

Every message has a sender, a receiver, a name, and a schema. The sequence
in which these messages are written is unimportant. Causality is explicitly spec-
ified via parameter adornments. Specifically, to send a message instance of a
particular schema, the bindings of its �in� parameters must already be known;
the bindings of its �out� parameters must be generated in sending the instance
and become known thereafter; and the bindings of its �nil� parameters must
neither be known nor generated in the sending the instance. This means that in
Purchase, Buyer can send an rfq at any point since all its parameter are adorned
with �out�. Once a Seller has received an rfq, it can send the corresponding quote
since it knows the ID and item and it can generate price. And so on.

64 A. K. Khadse et al.

Messages can be made mutually exclusive (thus supporting choice within
protocols) by adorning the same parameter as �out� in the messages. In the
listing, the messages accept and reject both have resp adorned with �out�. If
buyer sends accept, it would have generated a binding for resp, which would
mean that the sending of or reject would be disabled hence; and vice versa.

If reject is sent, the parameter address is never bound, and in effect, the
messages ship and deliver will never be enabled. The enactment will be deemed
as completed as all the needed parameters would be bound.

2.2 Kiko

Kiko is an information protocol-based programming model for agents. In other
words, Kiko provides programming abstractions for implementing agents based
on protocols.

Kiko takes to heart the idea that in a multiagent system, an agent’s commu-
nications to others represent its decisions (it is in this sense that in multiagent
systems, you have decentralized decision making). An agent is envisaged as run-
ning a loop in which upon the occurrence of certain events, it executes some
business logic that may result in the making of new decisions, that is, the send-
ing of messages to others.

Fig. 1. The Kiko agent architecture [11].

To write an agent (Fig. 1), an agent’s programmer configures the agent with
the multiagent systems it is playing roles in (based on protocols). In particular,
it is configured with the identities of the other agents also playing roles in those

Protocol-Based Engineering of Microservices 65

multiagent systems and how to reach them over the network. Listing 2 shows
an example of how configuration can be set up for MAS based on the protocol
in Listing 1. We define one multiagent system named SysName0 with one agent
for each role in the protocol. Bob is a buyer, Sally is a seller and Sheldon is
a shipper.

Listing 2. A configuration of a multiagent systems using Kiko.

systems = {

"SysName0 ": {

"protocol ": Purchase ,

"roles ": {

Buyer: "Bob",

Seller: "Sally",

Shipper: "Sheldon"

}

}

}

agents = {

"Bob": [("192.168.0.1" , 1111)],

"Sally ": [("192.168.0.2" , 1111)],

"Sheldon ": [("192.168.0.3" , 1111)]

}

Kiko’s main abstraction is that of a decision maker. The programmer also
writes a set of decision makers. A decision maker is a procedure written by the
agent programmer that captures business logic. It is invoked upon the occurrence
of a specified trigger event; it is supplied with the enabled (possible) decisions
given the agent’s communication history; and its body contains the logic to make
some decisions (possibly none) from among the possible decisions. The possible
decisions are known as forms and are supplied by the agent’s protocol adapter,
which keeps track of protocol enactments based on the messages the agent has
observed. The name ’form’ captures the idea that enabled decisions have their
�in� parameters already filled in but the �out� parameters are yet to be bound,
which is the job of the logic in the body. The fleshed-out forms are the message
instances and are emitted on the wire by the adapter when the procedure returns.
Message receptions are performed by the adapter transparently from the business
logic. Kiko empowers programmers by enabling them to focus on business logic.

Listing 3 shows a decision maker for Buyer Bob. Its trigger is InitEvent,
which represents the start of the agent. Thus, when the agent starts, this decision
maker will be invoked by the adapter. The decision rfq is accessible as a form
via the enabled argument. Bob is interested in a watch and so bind item in rfq
to watch. The corresponding message instance is sent by the adapter to Sally
(based on configuration) when the procedure returns.

66 A. K. Khadse et al.

Listing 3. Bob sending the RFQ message to Sally.

@adapter.decision(event=InitEvent)

def start(enabled):

ID = str(uuid.uuid4 ())

item = "watch"

for m in enabled.messages(RFQ):

m.bind(ID=ID, item=item)

Let’s say that Sally has replied with a quote message providing the value of
price. Now, Bob has to decide whether to accept or reject the quote. Listing 4
explains how an agent makes a decision.

Listing 4. Bob deciding whether to accept or reject a quote.

@adapter.decision

def decide(enabled):

for m in enabled.messages(Buy):

if m["price "] < 20:

m.bind(address ="1600 Pennsylvania Avenue NW",

resp=True)

else:

reject = next(enabled.messages(Reject ,

ID=m["ID"]))

reject.bind(outcome=True , resp=True)

The developer is in control of what is to be done at each junction of making a
decision. Kiko provides this control through the use of sets of enabled messages.
If an agent attempts to send both accept and reject, the messages would fail
emission as the instances being sent are inconsistent with each other.

Because of our foundation in protocols (and roles), each agent may be imple-
mented by a different programmer, thus highlighting Kiko’s support for loose
coupling. The steps below summarize the steps an agent programmer follows.

1. Define the configuration of the desired multiagent system (in Python).
2. Create an instance of an Adapter for each role using the class provided by

Kiko (in Python).
3. Specify decision makers based on the information protocol using the previ-

ously written instance of an adapter (in Python). This specification of the
decision makers ends up as an agent.

4. Start the agent (in Python).

The following details the services and API of the protocol adapter, a generic
component of the programming model.

1. The protocol adapter is initiated within every agent, with the current agent’s
name, the configuration of the systems as well as the configuration of the
other agents.

2. Depending on the protocol and the currently available information, certain
decision makers are invoked by the protocol adapter. The protocol adapter
provides forms, which are message instances with unbound parameters the
decision maker can fill out.

Protocol-Based Engineering of Microservices 67

3. These filled-out message instances are processed by the protocol adapter as
attempts. The protocol adapter then checks the attempts for inconsistencies.
In case of no inconsistencies, the message instances are successfully emitted;
otherwise, they are dropped.

4. The protocol adapter relies on the communication service for transporting
messages between agents. The default communication service is UDP, which
is sufficient for enacting the information protocols. The adapter receives mes-
sages from other agents.

2.3 Dapr

Dapr is an event-driven runtime that promises resilient, stateless, and stateful
microservices that interoperate. Dapr provides building blocks called compo-
nents. Some popular types of components are:

– State Store: These components can be used as a database that is accessible
to any Dapr application.

– PubSub Brokers: These components provide a system that supports the pub-
lishing of messages to a topic. Applications can then subscribe to these topics
and receive published messages.

– Bindings & Triggers: These components enable Dapr applications to commu-
nicate to external services without integration of respective SDKs.

Dapr also provides a new type of component called Pluggable components.
These components are not bundled as part of the Dapr runtime and run inde-
pendently of it. The primary advantage of using a pluggable component is that
it can be written in any language that supports gRPC.

3 Traffic Control Application

Traffic Control [32] is a sample application that emulates a traffic control system
using Dapr. Figure 2 describes the application using a UML sequence diagram.
It is inspired by the speeding-camera setup present on some Dutch highways.
An entry camera is installed at the start of a highway and an exit camera is
installed at a certain distance from the entry camera to capture vehicle license
information. If a vehicle is going faster than the speed limit, the driver of the
vehicle can be fined.

The time difference between an entry camera capturing a vehicle and an exit
camera capturing the same vehicle will calculate the speed of the vehicle. Based
on the speed of the vehicle, there is a decision to be made about whether the
driver should be fined for driving over the speed limit.

3.1 Using Dapr

To develop this system in Dapr, four applications were created:

– Camera Simulation: A .NET Core console application that simulates passing
cars.

68 A. K. Khadse et al.

Fig. 2. A UML sequence diagram for the traffic control sample application.

– Traffic Control Service: A ASP.NET Core WebAPI application that defines
two endpoints /entrycam and /exitcam

– Fine Collection Service: Another ASP.NET Core WebAPI application with
only one endpoint /collectfine for collecting fines,

– Vehicle Registration Service: An ASP.NET Core WebAPI application with
only one endpoint /vehicleinfo/{license-number}, which links a vehicle
to its owner.

A rundown of how this system operates follows:

1. Camera Simulation generates a random license number and sends a Vehi-
cleRegistered message (which contains the license number, the lane number,
and the timestamp) to the /entrycam endpoint of Traffic Control Service.

2. The Traffic Control Service then stores the details in a database.
3. After a random interval of time, the Camera Simulation sends another Vehi-

cleRegistered message, but this time to the /exitcam endpoint of Traffic
Control Service.

Protocol-Based Engineering of Microservices 69

4. The Traffic Control Service then fetches the previously stored details and
calculates the average speed of the vehicle.

5. If the average speed of the vehicle is greater than the speed limit, the
Traffic Control Service sends the details of the incident to the endpoint
/collectfine Fine Collection Service, where the fine is calculated.

6. The Fine Collection Service retrieves the email of the vehicle’s owner
by sending the details of the vehicle to the endpoint /vehicleinfo/
{license-number} of the Vehicle Registration Service and sends the fine
to the owner via email.

To enable the developer to focus on the business logic, Dapr provides com-
ponents that are generic such as a database for storing the vehicle’s information,
providing an endpoint that can connect to an SMTP server that sends an email,
and an asynchronous messaging queue that exchanges messages between the
services.

Listing 5 shows how the /exitcam endpoint of the Traffic Control application
deals with sending the fine. In particular, the endpoint is responsible for sending
a NotFound() in case a vehicle that is not in the vehicleStateRepository is
detected by the exit camera.

Listing 5. The traffic control application’s /exitcam endpoint.

1 [HttpPost (" exitcam ")]

2 public async Task < ActionResult >

VehicleExitAsync(VehicleRegistered msg , [FromServices]

DaprClient daprClient) {

3 try {

4 // get vehicle state

5 var state = await _vehicleStateRepository

6 .GetVehicleStateAsync(msg.LicenseNumber);

7 if (state ==

8 default (VehicleState)) {

9 return NotFound ();

10 }

11
12 // update state

13 var exitState = state.Value with {

14 ExitTimestamp = msg.Timestamp

15 };

16 await _vehicleStateRepository

17 .SaveVehicleStateAsync (exitState);

18
19 // handle possible speeding violation

20 int violation = _speedingViolationCalculator

21 .DetermineSpeedingViolationInKmh (

22 exitState.EntryTimestamp ,

23 exitState.ExitTimestamp .Value

24);

25
26 if (violation > 0) {

70 A. K. Khadse et al.

27 var speedingViolation = new SpeedingViolation {

28 VehicleId = msg.LicenseNumber ,

29 RoadId = _roadId ,

30 ViolationInKmh = violation ,

31 Timestamp = msg.Timestamp

32 };

33
34 // publish speedingviolation (Dapr pubsub)

35 await daprClient.PublishEventAsync (" pubsub",

"speedingviolations ", speedingViolation);

36 }

37
38 return Ok();

39 } catch (Exception ex) {

40 return StatusCode (500);

41 }

42 }

3.2 Using Kiko

To implement the Traffic Control system in Kiko, we initially need to create
a protocol that can accommodate all of our requirements. Listing 6 shows an
example of a protocol that would enable us to fulfill the requirements and is
supported by the tooling.

Listing 6. The TrafficControl protocol.

TrafficControl {

roles EntryCam , ExitCam , FineCollector , VehicleMngr

parameters out regID key , out entryTS , out exitTS , out

email

private amount , avgSpeed , query

EntryCam -> ExitCam: Entered[out regID , out entryTS]

ExitCam -> FineCollector: Fine[in regID , in entryTS ,

out exitTS , out avgSpeed]

FineCollector -> VehicleMngr: Query[in regID , in

entryTS , in avgSpeed , out query]

VehicleMngr -> FineCollector: Result[in regID , in

entryTS , out email]

}

Let’s unpack how this protocol works. The roles involved would be
EntryCam, ExitCam, FineCollector, VehicleMngr. The parameters
necessary for the completion of an enactment are regID which stands for reg-
istration ID, entryTS which stands for entry timestamp, exitTS which stands for
exit timestamp, and outcome. Private parameters that may or may not be bound
are amount, avgSpeed which stands for average speed, and query.

The first message that will be sent out is Entered. This denotes the
EntryCam alerting the ExitCam that a vehicle has entered the highway. The

Protocol-Based Engineering of Microservices 71

next message that will be sent out is Fine. This is where the decision maker
defined by the developer will come into play. Listing 7 shows one such imple-
mentation of the decision maker. The code is written in Python by the developer
and uses the Kiko library [7]. Constants in uppercase are part of the configura-
tion. Currently, the entry camera is simulated by a trigger event that is invoked
at random times. The exit cam is simulated by adding a random amount of time
to a known entry timestamp. This could easily be replaced with a blocking call
to the method that would wait to observe a vehicle and continue in case the
vehicle matches the registration. An observation that could be made is that it is
unnecessary to explicitly store the exit timestamp as every observation is stored
in the local store.

Listing 7. A decision maker for the exit camera.

@adapter.decision(event=VehicleExit)

async def check_vehicle_speed (enabled , event):

for m in enabled:

if m.schema is Fine and m[" regID "] == event.regID:

avgSpeed = DISTANCE / (event.ts - m[" entryTS "])

if avgSpeed > SPEED_LIMIT:

m.bind(exitTS=event.ts, avgSpeed=avgSpeed)

return m

We create a single decision maker for deciding whether Fine message should
be sent next. If the Fine Collector receives the message Fine, it then retrieves the
details of the owner of the vehicle from the Vehicle Manager and sends the email
detailing the fine. The code for this implementation can be found on https://
gitlab.com/masr/kiko-traffic-control. Figure 3 shows the UML sequence diagram
for our implementation using Kiko.

Internal computations are omitted from the UML diagram. For example, the
average speed is calculated by Exit Cam, hence a message like Exit is not explicit
in the protocol.

4 Evaluation

We evaluate the implementation based on the differences in the Kiko and Dapr
implementations of the scenario.

4.1 Protocol Specifications

Protocols are at the heart of both implementations. The Kiko implementation
relies on the formal specification of the protocol. The protocol can be verified
statically for properties such as safety and liveness. Further, an adapter takes
the protocol as input (serving as a runtime) and enables implementing the agent
based on the protocol. In the Dapr-based implementation, the protocol is spec-
ified only informally using UML interaction diagrams. They afford neither veri-
fication nor a protocol-based programming model.

https://gitlab.com/masr/kiko-traffic-control
https://gitlab.com/masr/kiko-traffic-control

72 A. K. Khadse et al.

Fig. 3. A UML sequence diagram for our traffic control sample application written
using Kiko.

4.2 Typing and Structuring of Agent Implementations

In Kiko, the information protocol already captures crucial domain aspects related
to the interaction, such as the entry and exit identifiers, registration identifiers,
and so on. These domain-related aspects are not modeled or are captured only
in low-level data structures in the Dapr implementation (line 6 in Listing 5).
Kiko can enforce integrity checking based on identifiers that are annotated as
key. In Dapr, the agent developer has to write such integrity-checking code.

Kiko shines in structuring the agent implementation and focusing the devel-
oper on writing the business logic, with fewer possibilities for errors in decision
making. Its notion of forms is particularly helpful as it provides decisions (mes-
sages) that have known information already filled in and points the develop-
ers to writing code that generates the missing information. By contrast, Dapr
developers must construct entire messages by hand (line 27 in Listing 5), which
introduces possibilities for errors.

The Dapr implementation contains code for getting and updating the state
(Lines 5–17) that doesn’t appear in the Kiko implementation because the adapter
automatically maintains the state. Further, the Dapr implementation contains
code for the ‘error’ of exit being recorded but there is no record of entry (Lines
7–9). Such error handling doesn’t appear in the Kiko decision maker in Listing 7:
if the exit camera doesn’t hasn’t received the message denoting entry, then the
corresponding Fine form will not appear in the set of forms supplied by the
adapter. Whether exits correlate with entries is something worth keeping track
of as missing entries or exits may indicate problems with the cameras; however,
such code need not have to be in the exit camera.

Protocol-Based Engineering of Microservices 73

Dapr’s implementation relies on the developers being responsible for integrat-
ing the endpoints. It is possible that an external agent tries to send an invalid
request to an endpoint. Kiko’s implementation on the other hand only relies on
agents conforming to the protocol. Even if an external agent attempts to
push a message to the agent, if the history does not match with the message, it
will be ignored by Kiko.

4.3 Decentralization and Loose Coupling

Although microservices aspire to decentralization, the Dapr implementation
actually relies on a shared state between the entry and exit camera endpoints.
Specifically, the entry camera endpoint stores information about the entry in a
shared store which is then retrieved by the exit camera endpoint to update it
with the exit information and to calculate the average speed (Lines 3–15). By
contrast, there is no shared state between Kiko agents. The only way for Kiko
agents to share information is to transfer their local state via messaging.

Being able to independently implement and maintain endpoints is evidence of
loose coupling. Since the Dapr implementation is not based on a high-level system
model (the information protocol) and to interoperate the endpoint developers
would have to share code, loose coupling is better supported by Kiko than by
Dapr.

For asynchronous communication between microservices, the Dapr imple-
mentation relies on publish-subscribe communication via message queues. The
Kiko implementation by contrast uses UDP (a lossy, unordered communica-
tion service) as the underlying communication service highlighting the fact that
ordered message delivery is unnecessary. Other information protocol-based works
[10] have shown how agents can deal with message loss.

5 Discussion

Based on this evaluation, we can conclude that the Kiko implementation provides
a better developer experience and is better suited to decentralization and loose
coupling.

Since the Kiko implementation of the traffic control application does not rely
on message ordering for processing, it is possible that the exit camera agent
records VehicleExit occurs prior to the reception of the Entered message. In
this case, as the Fine message would not be enabled and therefore there is no
possibility of a fine being issued. This may not be the desired effect but can be
remedied by writing a decision maker that iterates over enabled messages on the
reception of the Entered message.

Using the microservice architecture also requires a fair amount of knowledge
dealing with deploying different services. A dedicated DevOps team was found
to be necessary for software that followed microservice architecture [28]. With
only about 10% of respondents claiming to be a DevOps specialist in the 2022
Developer Survey [27] by Stack Overflow, developers end up being the ones

74 A. K. Khadse et al.

deploying the applications. Using Dapr, this job becomes easier to deal with
when using applications written in different languages.

We posit that the conceptual integration between MAS and web architec-
ture would facilitate the construction of multiagent systems that are widely
distributed and inherit architectural properties such as scalability and evolvabil-
ity [13]. The integration of Kiko with Dapr would enable the users to build a
MAS that has the benefits of microservice architecture such as scalability but
also the benefits of observability and secret management. Further, this concep-
tual integration can also lead to the resulting system being close to a Hypermedia
MAS [12].

Multiagent systems need to provide an account of what happened during an
abnormal situation [4,6]. Kiko would provide the protocol as a blueprint while
Dapr would provide robust tooling for the observation of intercommunication of
the microservices.

Microservices of the future should look at a move towards asynchronous com-
munication [18] and this idea is supported in information protocols through their
causal nature and their ability to operate on lossy, unordered protocols such as
UDP. A not surprising lesson learned in an exploratory study of promises and
challenges in microservices [31] was that changes that break the API should
be discouraged. The use of information protocols enables the developers to ver-
sion interactions between the microservices. Since the protocol file defines all
valid interactions between microservices, it also defines implemented interac-
tions between microservices of a release ready for the production environment.
Timeouts within a microservice system is a problem that is remedied by using a
circuit breaker [30] but has the tradeoff of requiring an update on all microser-
vices. With the use of information protocols, we move away from synchronous
communication and remove the need for timeouts and consequently circuit break-
ers.

5.1 Future Work

To fully obtain the benefits of Kiko under Dapr, the ideal solution would be
to build a Pub/Sub–based pluggable component in Python, that uses Kiko to
work on the messages. The queues that would be created as part of the Pub/Sub
communication between applications, must have their messages assessed through
Kiko. This way we would emulate Kiko’s protocol adapter within this pluggable
component and send forms to be filled out as attempts by the applications. Since
Kiko can act as a verification agent, it would enable runtime verification of the
developed MAS similar to existing solutions for other MASs [5]. Verification at
design time [3] would also be possible as endpoints within Dapr applications are
registered and known to Dapr prior to any communication between applications.

Currently, Kiko can invoke methods on the reception of a particular message
or event or the enablement of a particular message. We cannot invoke a method
only if multiple events are received or multiple messages are received. A future
iteration could support how decision makers may be invoked when a specified
set of events (i.e., messages) are received.

Protocol-Based Engineering of Microservices 75

In cases where enactments are not fulfilled, the messages stay in the local
store forever. These dangling enactments would eventually prevent storing new
enactments. An automated job that gets rid of these enactments can be added
to be run after a fixed time interval. As all enactments are linked via the key
parameters, it is easy to identify what messages must be discarded.

Acknowledgments. We thank the EMAS 2023 reviewers and audience for their help-
ful comments. We acknowledge support from the UK EPSRC (grant EP/N027965/1)
and the US NSF (grant IIS-1908374).

References

1. Ao, S.: How Alibaba is using Dapr. https://blog.dapr.io/posts/2021/03/19/how-
alibaba-is-using-dapr/. Accessed 19 Feb 2023

2. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Proceedings of the 8th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pp. 843–850. IFAAMAS, Budapest (2009).
https://doi.org/10.5555/1558109.1558129

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 339–351. Springer, Heidelberg (2006).
https://doi.org/10.1007/11948148 28

4. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Accountability in multi-agent
organizations: from conceptual design to agent programming. J. Auton. Agents
Multi-Agent Syst. (JAAMAS) 37(1), 7 (2023). https://doi.org/10.1007/s10458-
022-09590-6

5. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. Studies in Computational Intel-
ligence, pp. 81–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
10422-5 10

6. Chopra, A.K., Singh, M.P.: Accountability as a foundation for requirements in
sociotechnical systems. IEEE Internet Comput. (IC) 25(6), 33–41 (2021). https://
doi.org/10.1109/MIC.2021.3106835

7. Christie, S.: Kiko. https://gitlab.com/masr/bspl/-/tree/kiko/. Accessed 15 Feb
2023

8. Christie, S.H.V., Chopra, A.K., Singh, M.P.: Bungie: improving fault tolerance via
extensible application-level protocols. IEEE Comput. 54(5), 44–53 (2021). https://
doi.org/10.1109/MC.2021.3052147

9. Christie, S.H.V., Chopra, A.K., Singh, M.P.: Deserv: decentralized serverless com-
puting. In: Proceedings of the 19th IEEE International Conference on Web Services
(ICWS), pp. 51–60. IEEE Computer Society, Virtual (2021). https://doi.org/10.
1109/ICWS53863.2021.00020

10. Christie, S.H.V., Chopra, A.K., Singh, M.P.: Mandrake: multiagent systems as a
basis for programming fault-tolerant decentralized applications. J. Auton. Agents
Multi-Agent Syst. (JAAMAS) 36(1), 16:1–16:30 (2022). https://doi.org/10.1007/
s10458-021-09540-8

https://blog.dapr.io/posts/2021/03/19/how-alibaba-is-using-dapr/
https://blog.dapr.io/posts/2021/03/19/how-alibaba-is-using-dapr/
https://doi.org/10.5555/1558109.1558129
https://doi.org/10.1007/11948148_28
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/s10458-022-09590-6
https://doi.org/10.1007/978-3-319-10422-5_10
https://doi.org/10.1007/978-3-319-10422-5_10
https://doi.org/10.1109/MIC.2021.3106835
https://doi.org/10.1109/MIC.2021.3106835
https://gitlab.com/masr/bspl/-/tree/kiko/
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/ICWS53863.2021.00020
https://doi.org/10.1109/ICWS53863.2021.00020
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8

76 A. K. Khadse et al.

11. Christie, S.H.V., Singh, M.P., Chopra, A.K.: Kiko: programming agents to enact
interaction protocols. In: Proceedings of the 22nd International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1–10. IFAAMAS,
London (2023)

12. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS. LNCS, pp.
285–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7 15

13. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1659–1663. AAMAS 2019, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2019)

14. Dapr: Dapr - Distributed Application Runtime (2019). https://dapr.io/. Accessed
14 Feb 2023

15. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Trans. Software Eng. 31(12), 1015–1027
(2005). https://doi.org/10.1109/TSE.2005.140

16. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: OWL-P: a methodology for
business process development. In: Kolp, M., Bresciani, P., Henderson-Sellers, B.,
Winikoff, M. (eds.) AOIS -2005. LNCS (LNAI), vol. 3529, pp. 79–94. Springer,
Heidelberg (2006). https://doi.org/10.1007/11916291 6

17. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactabil-
ity of agent interaction protocols: towards a unified approach. In: Dennis, L.A.,
Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS (LNAI), vol. 12058, pp.
43–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51417-4 3

18. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018). https://
doi.org/10.1109/MS.2018.2141039

19. Microsoft: Bosch builds smart homes using Dapr and Azure. https://customers.
microsoft.com/en-us/story/1435725395247777374-bosch-builds-smart-homes-
using-dapr-azure. Accessed 19 Feb 2023

20. PwC: Cloud business survey. https://www.pwc.com/us/en/tech-effect/cloud/
cloud-business-survey.html. Accessed 14 Feb 2023

21. Richardson, C.: Monolithic architecture pattern. https://microservices.io/
patterns/monolithic.html. Accessed 8 Feb 2023

22. Singh, M.P.: Synthesizing distributed constrained events from transactional work-
flow specifications. In: Proceedings of the 12th International Conference on Data
Engineering (ICDE), pp. 616–623. IEEE, New Orleans (1996). https://doi.org/10.
1109/ICDE.1996.492212

23. Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: Proceedings of the 2nd International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 907–914. ACM
Press, Melbourne (2003). https://doi.org/10.1145/860575.860721

24. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
blindingly simple protocol language. In: Proceedings of the 10th International Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 491–498.
IFAAMAS, Taipei (2011). https://doi.org/10.5555/2031678.2031687

25. Singh, M.P.: LoST: local state transfer–an architectural style for the distributed
enactment of business protocols. In: Proceedings of the 9th IEEE International
Conference on Web Services (ICWS), pp. 57–64. IEEE Computer Society, Wash-
ington, DC (2011). https://doi.org/10.1109/ICWS.2011.48

https://doi.org/10.1007/978-3-030-25693-7_15
https://dapr.io/
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1007/11916291_6
https://doi.org/10.1007/978-3-030-51417-4_3
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://customers.microsoft.com/en-us/story/1435725395247777374-bosch-builds-smart-homes-using-dapr-azure
https://customers.microsoft.com/en-us/story/1435725395247777374-bosch-builds-smart-homes-using-dapr-azure
https://customers.microsoft.com/en-us/story/1435725395247777374-bosch-builds-smart-homes-using-dapr-azure
https://www.pwc.com/us/en/tech-effect/cloud/cloud-business-survey.html
https://www.pwc.com/us/en/tech-effect/cloud/cloud-business-survey.html
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/monolithic.html
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1145/860575.860721
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.1109/ICWS.2011.48

Protocol-Based Engineering of Microservices 77

26. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented archi-
tecture. IEEE Comput. 42(11), 72–79 (2009). https://doi.org/10.1109/MC.2009.
347

27. Stack Overflow: Stack Overflow 2022 Developer Survey. https://survey.
stackoverflow.co/2022/. Accessed 14 Feb 2023

28. Taibi, D., Lenarduzzi, V., Pahl, C.: Continuous architecting with microservices
and DevOps: a systematic mapping study. In: Muñoz, V.M., Ferguson, D., Helfert,
M., Pahl, C. (eds.) CLOSER 2018. CCIS, vol. 1073, pp. 126–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29193-8 7

29. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015). https://doi.org/10.
1109/MS.2015.11

30. Tighilt, R., et al.: On the study of microservices antipatterns: a catalog proposal.
In: Proceedings of the European Conference on Pattern Languages of Programs
2020. EuroPLoP 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3424771.3424812

31. Wang, Y., Kadiyala, H., Rubin, J.: Promises and challenges of microservices: an
exploratory study. Empir. Softw. Eng. 26(4), 1–44 (2021). https://doi.org/10.
1007/s10664-020-09910-y

32. van Wijk, E., Molenkamp, S., Hompus, M., Kordowski, A.: Dapr traffic control
sample. https://github.com/EdwinVW/dapr-traffic-control. Accessed 15 Feb 2023

33. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation.
Auton. Agent. Multi-Agent Syst. 32(1), 59–133 (2017). https://doi.org/10.1007/
s10458-017-9373-9

https://doi.org/10.1109/MC.2009.347
https://doi.org/10.1109/MC.2009.347
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://doi.org/10.1007/978-3-030-29193-8_7
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1007/s10664-020-09910-y
https://doi.org/10.1007/s10664-020-09910-y
https://github.com/EdwinVW/dapr-traffic-control
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/10.1007/s10458-017-9373-9

Exploiting Service-Discovery
and OpenAPI in Multi-Agent

MicroServices (MAMS) Applications

Eoin O’Neill(B) and Rem W. Collier

University College Dublin, Dublin 4, Ireland

eoin.o-neill.3@ucdconnect.ie, rem.collier@ucd.ie

Abstract. One of the key benefits of the MAMS [13,14,19] architec-
ture is to allow agents to make use of the software engineering commu-
nity’s industry standard technology while being deployed in a microser-
vices architecture. This paper is going to showcase a tool that allows
MAMS agents to utilise an industry standard discovery tool to interact
with a microservice based on the OpenAPI Specification document that
describes the service. This interaction will be based on the “shape” of
the service which is identified by the accepted HTTP verbs at the var-
ious endpoints. This tool also identifies the pitfalls associated with the
current industry standard with regard to service descriptions and how
they could be improved through the introduction of Linked Data and
use of specifications such as Hydra and Hypermedia Controls Ontology
(HCTL) to make a push from machine-readable towards machine-
understandable.

Keywords: Multi-Agent MicroServices (MAMS) · OpenAPI · Hydra ·
Hypermedia Controls · Signifiers · ThingDescriptions

1 Introduction

One of the key concepts in a microservice (MS) architecture, is the notion
of bounded context. This states that each MS, following the Domain Driven
Design [5,7] principle, is to provide a singular ‘business’ functionality. With the
shift in software engineering from monolithic software structures towards service-
oriented architectures, the integration of microservices is a key issue. The stan-
dard specification for describing an API is currently the OpenAPI specification
(OAS)1. These descriptions, although defined as being “machine-readable” are
available in formats that provide no context. The documents themselves are
geared towards the consumer having a level of tacit knowledge with regards to
integrating the services and the protocols and domain knowledge associated with
doing so. The main goal of this research is to allow agents to situate themselves
in a microservices ecosystem, and through the use of a service-discovery tool,
1 OpenAPI Specification.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 78–84, 2023.
https://doi.org/10.1007/978-3-031-48539-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_5&domain=pdf
https://swagger.io/specification/
https://doi.org/10.1007/978-3-031-48539-8_5

Exploiting Service-Discovery and OpenAPI 79

each service can make itself known on the network, describe itself to possible con-
sumers of the service and provide a description so that any and all consumers
can learn how to interact with this service solely based on it’s description.

We have built a tool that allows agents deployed in a MS context to consume
the OAS document of a service registered with an industry standard service-
discovery tool in order to facilitate interaction between software agents and a
service in a more generalised form in order to conform to the loose-coupling
principle of a microservice architecture. Through the use of this tool, we can see
that from an agent perspective, this standard is not fit for purpose as it does
not provide enough context with regards to the interaction which led to the
implementation of vocabularies such as Hydra [11] and Hypermedia Controls
Ontology (HCTL)2. The paper is laid out as follows, Sect. 2 will discuss the
related work in this area and why this work is relevant. Section 3 will discuss the
implementation of our tool, followed by our conclusion.

2 Related Work

Roy Fielding stated in [2] “RESTful applications are, at all times, encour-
aged to use human-meaningful, hierarchical identifiers, in order to maximise
the serendipitous use of the information beyond what is anticipated by the origi-
nal application.” If we provide semantically enriched, “machine-understandable”
descriptions of services and imbue agents with the ability to integrate them
how they deem fit, then we can also’maximise the serendipitous use of’ the
applications themselves. We present work that has been done on extending ser-
vice descriptions in order to facilitate interaction and ease of integration. The
research presented by Yang et al. in [20] presents a tool called D2Spec that
iterates through a Web API specification and determines the number of charac-
teristics that the specification includes. These characteristics include the Base
IRI of the Application, the HTTP methods used within the application and also
generates path templates to be utilised. Guo et al. [8] have established a ser-
vice called APIphany which tries to achieve type directed program synthesis by
semantically describing the types required and returned by APIs. They manage
to achieve this by means of two methods; firstly, they create witnesses from the
OAS document of the API and run a test suite in a sandbox environment and
secondly, they observe live API traffic. From here, they rank the APIs suitability
to that of the user’s needs.

In [3], Ciortea et al. present research that proposes agents creating a mashup
of services and devices as a result of their goal-driven behaviour. Agents are
initialised with pre-compiled mashups and cooperate at runtime in order to
achieve their goals. This work showcases a similar goal of enabling agents with
enough information at runtime to achieve their goals, but in an IoT context.
The research presented in [16] presents a system that parses an OAS document,
generates an OWL-S ontology for each service that is present in the OAS docu-
ment. This research shows the necessity for such translations and the need for a
2 https://www.w3.org/2019/wot/hypermedia.

https://www.w3.org/2019/wot/hypermedia

80 E. O’Neill and R. W. Collier

parallel standard to exist in order to establish machine-understandability. Fur-
thermore, the work presented in [12] showcases a system that consumes OAS
documents, stores them in a relational database and uses RDRML in order to
convert the relational database entries into RDF format in order to be stored in
a knowledge graph. The work detailed in [9] shows an attempt to bridge the gap
between Linked Data and REST-based architectures, using the OAS document
as the medium. Furthermore, Espinoza et al. [4] have implemented a system that
translates from the Web Ontology Language (OWL) into OAS document (OAS
document) documents in order to facilitate ease of use between web developers
and users of the semantic web. These works show the level of importance being
placed on introducing Linked Data concepts to API descriptions.

As mentioned by Bogner et. al in their paper entitled “Industry practices
and challenges for the evolvability assurance of microservices”, one of the biggest
challenges with regards to building Microservices architectures and assuring their
sustainability is Microservices Integration, according to industry practitioners.
This is where we see an opportunity for agents that are able to consume service
description documents, such as the OAS document, and interact with resources
in an ad-hoc manner to act as a bridge between services in order to enhance
loose-coupling and evolvability of individual services.

3 Demonstrating the Approach

In order to allow an agent to reason about a given service, it is essential that
it first be able to develop a logical depiction of that service. The shape of a
resource is created based on the IRI of each of the APIs endpoints and the
HTTP verbs accepted at each of these endpoints, as described in the associated
OAS document. The ‘‘paths’’ section of the OAS document provides this
information, an example of which is displayed below:

{"paths":
{"/game":
{"get":
{"tags":["Gameplay"],
"summary":"Get the current number which
represents the state of the game.",
"description":"Returns a number to
the user to guess higher or lower than.",
"operationId":"getGameplayUsingGET",
"responses":
{ "200":

{"description":"OK","content":
{"application/json":
{"schema":
{"$ref":"#/components/schemas/Status"}}}},

"401":{"description":"Unauthorized"},

Exploiting Service-Discovery and OpenAPI 81

"403":{"description":"Forbidden"},
"404":{"description":"Not Found"}}}}

}
}

The logical model is generated by parsing the associated OAS document for
each application, should it be present. It takes the form of a series of beliefs
based on the following formats:

hasGET(<string>, <string>);
hasPOST(<string>, <string>);
hasPUT(<string>, <string>);
hasPATCH(<string>, <string>);
hasDELETE(<string>, <string>);
hasNoOpenAPIDescription(<string>);
hasOpenAPIDescription(<string>);

The last two belief formats are used to clarify whether or not the service
has an OAS document. If it has one, then the hasXXX(...) beliefs are used to
describe the service’s endpoints. For these beliefs, the first ’string’ parameter is
the service’s unique identifier and the second ’string’ parameter is composed of
the base IRI of the application, followed by the endpoint which is being described.
This allows the agent to believe that the endpoint identified by a given IRI will
accept a GET request.

In the context of the Web of Things, the ’shape’ of a resource is described
by the ThingDescription (TD) [1], which has attributes such as ’readProperty’
and ’writeProperty’, and is utilized widely in the Web of Things as an enabler of
interoperability [10]. An OAS document can also be seen as being quite similar
to the Web of Things TD. Tzavaras et. al, in [17] showcase a comparison of both
OpenAPI and ThingDescriptions based on their capacity to describe Things,
stating that there is a great deal of crossover between the two. Both OAS and TD
give high-level static descriptions of the underlying APIs, where as Signifiers, as
defined in [18] as first class abstractions in a hypermedia environment provide a
more suitable solution for providing hypermedia descriptions as they can provide
contextual hypermedia based on the state of the resource (see the HATEOAS
principle as defined in [6]), but also the capabilities of the agent in question.
This work was a move towards internalising work similar to Signifiers within the
agent based on OAS documents in a Microservices environment in an attempt
to bridge the gap between the current industry standard and the hypermedia
rich environment we are striving for.

3.1 Experimental Setup

As a means of evaluating this approach, we propose a game of High/Low. This
game will operate with the agent requesting a number and guessing whether
the next number will be higher or lower than the received number. In order to

82 E. O’Neill and R. W. Collier

achieve this we needed to not only facilitate interaction between software agents
and microservices, but we also wanted to conform to the current standards of
software engineering, as well as utilising components designed for and used by the
microservices community. The goal of this experiment is to get an autonomous
agent to participate in a game of high-low by identifying the correct microservice
and interacting with that resource based on its shape that is identified by parsing
the OAS documents of each service.

We created three applications and registered them with a service-discovery
tool as Application 1, Application 2 and Application 3. The purpose of this
naming convention is to enforce the anonymity of the service that we are try-
ing to allow the agent to discover and utilize. A layout of the system can be
found in Fig. 1. One of these applications is an implementation of a very sim-
ple, REST compliant, game of High/Low. By utilising CArtAgO [15] Artifacts
to implement this tool, it remains agent programming language agnostic. This
system is composed of three different agents, the Main Agent queries the service-
discovery instance and creates an Application Agent that is instantiated with
the IRI of each application registered. Once the Application Agent been created,
this agent will then visit the base IRI of the application, at the /api-docs end-
point to view the OAS document. Once the Application Agent has determined
that the application has an OAS document, it begins to create a logical depic-
tion of the resource it has been tasked with identifying. Should this application
match the shape of the application it will create High/Low Agent to interact
with the resource. The High/Low Agent has a logical depiction of how to play
the High/Low game based on the “shape” of the service. Figure 1 describes the

Fig. 1. System Layout

Exploiting Service-Discovery and OpenAPI 83

layout of the system. The code is available at the Git repo https://gitlab.com/
eoin.o-neill.3/longlivedwebopenapi with instructions on how to run it.

4 Conclusion

In conclusion, by building this tool we have identified some of the pitfalls that
exist with the current standard of service descriptions when exposing them to
Web-enabled intelligent software agents and the tacit knowledge that is required
when integrating microservices with one another. Section 2 has identified the
integration issues that face the software engineering community when building
systems of decoupled services that are required to interact in an ad-hoc manner.
In order to facilitate agents being able to have a profound impact, the incor-
poration of Linked Data within service descriptions to define domain specific
knowledge, while also providing explicit interaction definitions using vocabular-
ies such as Hydra and Hypermedia Controls Ontology (HCTL), is paramount.

The work being done on signifiers as a first class abstraction [18] shows a
path forward with regards to implementing these types of systems by provid-
ing enough context for agents at runtime to determine how to utilise a service
and what the request and response requirements are in order to become the
integrating bodies of these environments. As microservices architectures grow
and systems begin to be made up of loosely-coupled, independently evolving
services, the need for continuous, contextual integration that aligns with higher
level goals provides an opportunity for hypermedia enabled agents to play a sig-
nificant role. The goal of this research in the future is to implement this tool in
a scenario where services are being developed and managed independent of each
other with hypermedia representations providing enough contextual information
for autonomous agents to act as the integrating intermediaries, a context such
as large scale, smart agriculture, smart building or smart city scenario which
provides enough variability and change to effectively test this tool at scale.

References

1. Web of things (wot) thing description. https://www.w3.org/TR/wot-thing-
description/

2. Yahoo | mail, weather, search, politics, news, finance, sports & videos. http://
groups.yahoo.com/group/rest-discuss/message/3232

3. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Responsive decentralized
composition of service mashups for the internet of things. In: Proceedings of the
6th International Conference on the Internet of Things, pp. 53–61 (2016)

4. Espinoza-Arias, P., Garijo, D., Corcho, O.: Mapping the web ontology language
to the OpenApi specification. In: Grossmann, G., Ram, S. (eds.) ER 2020. LNCS,
vol. 12584, pp. 117–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-65847-2 11

5. Evans, E., Evans, E.J.: Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley Professional, Boston (2004)

https://gitlab.com/eoin.o-neill.3/longlivedwebopenapi
https://gitlab.com/eoin.o-neill.3/longlivedwebopenapi
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
http://groups.yahoo.com/group/rest-discuss/message/3232
http://groups.yahoo.com/group/rest-discuss/message/3232
https://doi.org/10.1007/978-3-030-65847-2_11
https://doi.org/10.1007/978-3-030-65847-2_11

84 E. O’Neill and R. W. Collier

6. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation (2000). http://www.ics.uci.edu/
∼fielding/pubs/dissertation/top.htm

7. Fowler, M.: Domain driven design (2020). https://www.martinfowler.com/bliki/
DomainDrivenDesign.html

8. Guo, Z., Cao, D., Tjong, D., Yang, J., Schlesinger, C., Polikarpova, N.: Type-
directed program synthesis for restful APIs. arXiv preprint arXiv:2203.16697
(2022)

9. Idehen, K.U.: Swagger, the API economy, rest, linked data, and a seman-
tic web (2018). https://medium.com/openlink-software-blog/swagger-the-api-
economy-rest-linked-data-and-a-semantic-web-9d6839dae65a. Accessed 07 Apr
2022

10. Kaebisch, S., Anicic, D.: Thing description as enabler of semantic interoperabil-
ity on the web of things. In: Proceedings of the IoT Semantic Interoperability
Workshop, pp. 1–3 (2016)

11. Lanthaler, M., Gütl, C.: Hydra: a vocabulary for hypermedia-driven web APIs.
LDOW 996, 35–38 (2013)

12. Muhamad, W., Bandung, Y., et al.: Transforming OpenAPI specification 3.0 doc-
uments into RDF-based semantic web services. J. Big Data 9(1), 1–24 (2022)

13. O’Neill, E., Lillis, D., O’Hare, G.M.P., Collier, R.W.: Delivering multi-agent
MicroServices using CArtAgO. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.)
EMAS 2020. LNCS (LNAI), vol. 12589, pp. 1–20. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-66534-0 1

14. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources
for multi-agent microservices using the CArtAGo framework. In: Proceedings of
the 18th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, Auckland, NZ, 2020. International Foundation for Autonomous Agents
and MultiAgent Systems (IFAAMAS) (2020)

15. Ricci, A., Viroli, M., Omicini, A.: CArtA gO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71103-2 4

16. Silva, S.: REST service discovery based on ontology model. Ph.D. thesis (2021)
17. Tzavaras, A., Mainas, N., Petrakis, E.G.: OpenAPI framework for the web of

things. Internet Things 21, 100675 (2023)
18. Vachtsevanou, D., Ciortea, A., Mayer, S., Lemée, J.: Signifiers as a first-class

abstraction in hypermedia multi-agent systems. arXiv preprint arXiv:2302.06970
(2023)

19. W Collier, R., O’Neill, E., Lillis, D., O’Hare, G.: MAMS: multi-agent microservices.
In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 655–662.
ACM (2019)

20. Yang, J., Wittern, E., Ying, A.T., Dolby, J., Tan, L.: Towards extracting web
API specifications from documentation. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pp. 454–464. IEEE (2018)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.martinfowler.com/bliki/DomainDrivenDesign.html
https://www.martinfowler.com/bliki/DomainDrivenDesign.html
http://arxiv.org/abs/2203.16697
https://medium.com/openlink-software-blog/swagger-the-api-economy-rest-linked-data-and-a-semantic-web-9d6839dae65a
https://medium.com/openlink-software-blog/swagger-the-api-economy-rest-linked-data-and-a-semantic-web-9d6839dae65a
https://doi.org/10.1007/978-3-030-66534-0_1
https://doi.org/10.1007/978-3-030-66534-0_1
https://doi.org/10.1007/978-3-540-71103-2_4
http://arxiv.org/abs/2302.06970

Using Multi-Agent MicroServices
(MAMS) for Agent-Based Modelling

Martynas Jagutis, Sean Russell , and Rem W. Collier(B)

School of Computer Science, University College Dublin, Dublin, Ireland
{sean.russell,rem.collier}@ucd.ie

Abstract. This paper demonstrates the application of the Multi-Agent
MicroServices (MAMS) architectural style to Agent Based Modelling
(ABM) through a prototype traffic simulator in which agents model a
population of individuals who travel from home to work and vice versa
by car. The simulation environment is modelled as a set of linked web
resources that are deployed across a number of microservices. The agents,
deployed in a separate set of microservices, connect to and interact with
their environment using the REpresentational State Transfer (REST).
The approach aims to take advantage of various benefits of microser-
vices, such as loose coupling (between the agents and the environments),
elasticity (the ability to add and remove environment resources at run-
time) and polyglot computing (the ability to use different languages and
frameworks for different parts of the application). Finally, the linking of
the environment resources leads to the emergence of a simulation wide
knowledge graph that can be used by suitably designed agents to sup-
plement their local context with global knowledge of the environment.

Keywords: Multi-Agent Systems · Microservices · Traffic Simulation

1 Introduction

Multi-Agent MicroServices (MAMS) [4] encompasses both an architectural style
and a prototype framework. This architectural style focuses on deploying Multi-
Agent Systems (MAS) within the Microservices architecture, while the frame-
work enables the implementation of MAMS-based applications using the ASTRA
programming language [6,7].

Within the MAMS architectural style, a unique type of agent, called a MAMS
Agent, is introduced. These agents possess a body comprising a set of web
resources and are hosted on Agent-Oriented MicroServices (AOMS). Interac-
tions between Plain-Old MicroServices (POMS) and MAMS agents occur via
these resources using the REpresentational State Transfer (REST) approach.
Likewise, it is expected that MAMS agents will interact with POMS in a similar
manner. Importantly, the MAMS architectural style does not make any assump-
tions about the internal implementation of the agents themselves.

The prototype framework [13,14] combines ASTRA with a suite of CArtAgO
artifacts [15] to facilitate its implementation. This integration allows Multi-
Agent Systems (MAS) to be deployed as black boxes, built from AOMS, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 85–92, 2023.
https://doi.org/10.1007/978-3-031-48539-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_6&domain=pdf
http://orcid.org/0000-0003-1992-8303
http://orcid.org/0000-0003-0319-0797
https://doi.org/10.1007/978-3-031-48539-8_6

86 M. Jagutis et al.

can seamlessly integrate within larger software architectures without necessi-
tating an understanding of the underlying agent technologies. Various problem
domains have already benefited from this approach, including decision support
tools [3], building management [12], and digital twins for smart agriculture [10].
The source code for the framework and a number of example applications can
be found on Gitlab at the following url: https://gitlab.com/mams-ucd/

This paper illustrates the use of MAMS and microservices in the domain
of Agent Based Modelling (ABM) [1]. The basic idea is that a simulated envi-
ronment of an ABM system could be decomposed into a set of web resources.
Each of these resources becomes a kind of “micro-environment” that agents can
inhabit and interact with. The decomposition of the environment is not con-
strained by the proposed approach. For example, a road network in a city could
be decomposed into a number of connected districts, or with a finer granularity
individual street and junction resources.

The resources can be created and accessed through standardised interfaces
provided by a specially designed environment interface. Each resource has a
unique URL through which it can be communicated with. As such, inter-resource
relationships are modelled based on the URL associated with each resource. The
interactions between resources and agents are facilitated in the same way. This
requires a second set of microservices, used to implement the agents, that perform
the reasoning required for the ABM and interact with the system by leveraging
the MAMS architectural style.

2 Overview of Prototype

The prototype developed is a very simple traffic simulation scenario in which
agents model a population of individuals who travel from home to work and vice
versa by car. The environment for this scenario is decomposed into three sub-
environment microservices. Within these three services, four types of resource
are implemented: home resources, work resources and the street and junction
resources that model the road network. The road network resources design is
based on best practices drawn from established traffic simulators such as MAT-
Sim [17] and SUMO [11].

Figure 1 illustrates the set of microservices that were created to implement
the simulation. They have been built using a combination of Java and Spring
Boot1. The figure includes the three sub-environment microservices described
above. The Road Network service is the most complex of the three and is
underpinned by a Neo4J database2 which maintains a graph of the road network.
The transport network is represented as a collection of cells that the vehicles
can inhabit and move between, an approach called Cellular Automata [16]. This
limits the level of detail that can be modelled, but simplifies the process of
calculating the movement of vehicles.

1 http://spring.io.
2 http://neo4j.com.

https://gitlab.com/mams-ucd/
http://spring.io
http://neo4j.com

Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling 87

The Home and Work services provide a minimal model that includes access
to the current time and a single activity (e.g. Watch TV or Work). These ser-
vices are included as a way of showing multiple sub-simulations integrating and
working together rather than to provide and real need for reasoning or actions
on the part of the agents.

A Clock Service provides a discrete time model for the overall simulation.
The Traffic Lights Service implements an algorithm to control traffic lights
within the Road Network service. The Management Service supports the
configuration and execution of a simulation run, this includes initialising services
in the correct sequence and distributing URLs to the services to enable commu-
nication. Finally, the Driver Service implements the agent part of the system
which is described next.

Fig. 1. Overview of Simulation Architecture

2.1 Expected Agent Behaviour

This prototype is our first attempt to implement an ABM using MAMS. As a
result, the implemented behaviour of the agent is somewhat limited. Specifically,
agents are initially created and linked to home sub-environments. While in this
sub-environment, they watch TV or sit idle until it is time to go to work. At this
point, the agents transition from the home sub-environment to a linked junction
sub environment within the road network. The agents then use a built in route
planner to identify their route to work. The route planner is implemented using a

88 M. Jagutis et al.

shortest path algorithm provided by Neo4J. The agents then drive to work view
the road network, transitioning between junction and street sub0-environment
resources as is necessary. Upon reaching the junction that is linked to their place
of work, the agent again transitions from that junction to the associated work
environment where it stays until it is time to return home. Once it returns home,
the same behaviour is repeated.

2.2 Integrating Agents with the Environment

Based on the MAMS architectural style, agents connect to the simulation by
registering with an environment microservice based on the resource they wish to
interact with. The microservice can reject the request, but if accepted, it creates
an environment body resource that represents the agent in the environment3.

At the beginning of each discrete step in the simulation, the environment
state is passed to the agent using a HTTP PUT Request that updates the state
of a state resource that has been created by the MAMS agent. The URL of
this resource is specified as a webhook in the representation of the agent body
that was POSTed to the environment resource. Upon receiving an updated state,
each agent reasons about what to do next and, if necessary, submits an action to
the environment body of the agent using a HTTP PUT Request. Within the
simulated environment, the most recent action of the agent is taken to persist
(if it is still applicable within the current context). That is, the agent need only
submit a new action if it decides to change the action to be performed. Section 3
illustrates an alternative approach to the implementation of a driver agent using
the ASTRA programming language.

The details of how the agent reasoning is implemented is intentionally vague
here because it is specific to the agent framework (if any) used to implement
the agents. For example, the prototype includes a Java Driver implementation
that is also built using Spring Boot. In this implementation, the reasoning of the
agent is represented by a Java method that is invoked as a consequence of the
reception of the updated state. The algorithm used selects the next action to be
performed based on the current state and, if required, submits a PUT request
containing the next action.

The environment microservice(s) tracks which resource an agent is associated
with. When an agent moves to another resource, for example by moving between
districts or from a junction to a street (depending on the granularity of the sub-
environments), the microservice registers the change. If the agent moves to a
resource that is located on a different microservice, its body is transferred to
the new microservice via a HTTP POST Request. Further details can be found
in [9]. The source code is available on Gitlab4.

3 This is not the same as the MAMS agent body described in Sect. 1.
4 https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator.

https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator

Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling 89

agent extends
module

i n f e r e n c e

i n f e r e n c e

ru l e

r u l e

r u l e

i f

r u l e

r u l e

Fig. 2. ASTRA-MAMS Implementation

3 Using MAMS to Implement Agent Behaviours

A simplified version of the driver agent implementation that is has been
built using the prototype MAMS framework is shown in Fig. 2. The asso-
ciated resource is specified as part of the !main() rule. This rule registers
the agent to the underlying MAMS framework via the MAMSAgent::!init()
goal; creates a body via the MAMSAgent::!created(‘‘base’’) goal that is
exposed via the /{agent-name} URL; and finally creates a state resource
that is exposed via the /{agent-name}/notifications URL. This resource
is defined as a passive resource whose state is defined by the field specified in
the EnvironmentState Java class. As described in [13], a passive resource is a
resource that can be updated by external services without oversight from the
agent. The agent detects changes to its resources via custom events that are
handled by the PassiveMAMSAgent code and transformed into goals, such as the
!updatedObject() goal.

The driver reasoning behaviour is defined over a set of plan rules that begins
with the handling of the !updatedObject(...) goal in the second rule. This

90 M. Jagutis et al.

goal is adopted by the agent upon receipt the PUT request from the environment
microservice containing the updated environment state. The argument of this
goal is a Java object representation of the environment state that was used above
to create the notifications resource. The plan part of the plan rule defines two
sub-goals !decide(...) and !act(...) which must be achieved in sequence.
The last two plan rules in the program highlight two possible sub-plans for
achieving the !decide(...) goal. The agent will choose only one of these options
based on the current state of the environment. For example, the last rule requires
that the agents’ vehicle be stopped. This is expressed by the isStopped(...)
belief which is evaluated based on the second of the inference rules at the top of
the code snippet (denoted by the inference keyword).

The ObjectAccess module provides a generic mechanism for the agent to
query the internal state of Java objects. In ASTRA, modules provide a stan-
dardised extension mechanism for agents. In effect, they are Java classes whose
methods are annotated as actions, sensors, formulae, terms, or events [6]. An
annotated method can be referenced directly in the ASTRA code based on the
annotation used. For example, a formula annotated method can be used as an
atomic formula, while an action annotated method can be used as a step in
a plan body. The code in Fig. 2 uses one formula annotated method from the
ObjectAccess module: isFalse(...) which returns true if the value of the spec-
ified field is false (and false otherwise). It also uses two term annotated methods
from this module: getInt(...), which returns the value of a field of the object
as an integer; and valueAsString(...) which returns the value of a field of the
object as a string. All of these methods use Java’s Reflection API. In the first
inference rule, the isFalse(....) formula is used to check whether or not the
atIntersection field of the EnvironmentState object is true or false and the
getInt(...) term is used to retrieve the value of the vehicleSpeed field. The
!act(..) goal sends the getInt(...) term using the low level !put(...) goal
provided by the MAMS. This low level goal constructs a HTTP PUT Request
that is sent to the webhook field of the environment state. This field contains
the URL required to set the next action of the agent.

4 Conclusions

This low level goal constructs a HTTP PUT Request that is sent to the webhook
field of the environment state. This field contains the URL required to set the
next action of the agent. This paper presents an early prototype that demon-
strates what we believe to be an novel approach to Agent Based Modelling
(ABM) that combines the use of microservices and the MAMS architectural
style. The motivation for this is to take advantage of various benefits offered by
microservices, such as loose coupling (between the agents and the environments),
elasticity (the ability to add and remove environment resources at run-time) and
polyglot computing (the ability to use different languages and frameworks for
different parts of the application).

The prototype presented is a traffic simulation that decomposes the environ-
ment into four types of web resource that are hosted across three microservices.

Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling 91

Each resource acts as a “micro-environment”. Agents interact with a resource
by registering a “body” with the corresponding microservice, indicating which
resource they wish to be associated with. Hypermedia links are used to relate
resources to one another, for example, a junction resource in the road network
can be linked to a home or work resource. A key part of the approach is the
design of mechanisms to allow agents to transition between different parts of the
environment which is achieved by transferring their “body” between the source
and target environment resources either internally or via a HTTP POST request.

While reflecting on a number of shortcomings of this prototype [9], another
idea emerged; that the linked representations of the environment resources can
be used as a building block to implement a distributed knowledge graph [8] of
the simulation. Such a knowledge graph could be used by the simulation agents
to better understand and explore the environment. For example, in the current
prototype, route finding is implemented using a shortest path algorithm provided
by Neo4J. In a knowledge graph centric environment, the agent could perform
route finding by simply exploring the knowledge graph following the URLs con-
necting streets to junctions and vice versa. An example of such an approach can
be found in [2] where agents are implemented that use Reinforcement Learning
to explore a semantically defined maze environment.

Knowledge graphs can not only enable discovery of the structure of the envi-
ronment, but also can be used to provide additional knowledge necessary for the
agents to operate effectively in the environment. For example, a more complex
work environment could include descriptions of the main tasks associated with
each role. This offers the potential for an agent with no prior knowledge of that
particular workplace learning how to perform a given job. Here we use the term
“learn” in its most general sense which can be realised through some form of plan
sharing, the application of reinforcement learning from first principles or even
some form of transfer learning. Details of this proposed approach can be found
in [5].

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev.
24, 13–33 (2017)

2. Beaumont, K., O’Neill, E., Bermeo, N., Collier, R.: Collaborative route finding in
semantic mazes. In: Proceedings of the All the Agents Challenge (ATAC 2021)
(2021)

3. Carneiro, J., Andrade, R., Alves, P., Conceição, L., Novais, P., Marreiros, G.: A
consensus-based group decision support system using a multi-agent microservices
approach. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2098–2100 (2020)

4. Collier, R., O’Neill, E., Lillis, D., O’Hare, G.: MAMS: multi-agent microservices.
In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 655–662.
ACM (2019)

92 M. Jagutis et al.

5. Collier, R., Russell, S., Ghanadbashi, S., Golpayegani, F.: Towards the use of hyper-
media mas and microservices for web scale agent-based simulation. SN Comput.
Sci. 3(6), 510 (2022)

6. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with agents-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8_22

7. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak (L)-style program-
ming languages. In: Proceedings of the 4th International Workshop on Program-
ming based on Actors Agents & Decentralized Control, pp. 109–120 (2014)

8. Hogan, A., et al.: Knowledge Graphs. No. 22 in Synthesis Lectures on
Data, Semantics, and Knowledge, Springer (2021). https://doi.org/10.2200/
S01125ED1V01Y202109DSK022. https://kgbook.org/

9. Jagutis, M., Russell, S., Collier, R.: Simulating traffic with agents, microservices
& REST. In: Braubach, L., Jander, K., Bădică, C. (eds.) IDC 2022. Studies in
Computational Intelligence, vol. 1089, pp. 89–99. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-29104-3_10

10. Kalyani, Y., Collier, R.: Towards a new architecture: Multi-agent based cloud-fog-
edge computing and digital twin for smart agriculture. In: Braubach, L., Jander, K.,
Bădică, C. (eds.) IDC 2022. Studies in Computational Intelligence, vol. 1089, pp.
111–117. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29104-3_12

11. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 2575–2582.
IEEE (2018)

12. O’Neill, E., Beaumont, K., Bermeo, N.V., Collier, R.: Building management using
the semantic web and hypermedia agents (2021)

13. O’Neill, E., Lillis, D., O’Hare, G.M.P., Collier, R.W.: Delivering multi-agent
microservices using CArtAgO. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.)
EMAS 2020. LNCS (LNAI), vol. 12589, pp. 1–20. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-66534-0_1

14. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources
for multi-agent microservices using the cartago framework. In: Proceedings of the
18th International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems, Auckland, NZ, 2020. International Foundation for Autonomous Agents and
MultiAgent Systems (IFAAMAS) (2020)

15. Ricci, A., Viroli, M., Omicini, A.: CArtA gO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71103-2_4

16. Shang, X.C., Li, X.G., Xie, D.F., Jia, B., Jiang, R., Liu, F.: A data-driven two-lane
traffic flow model based on cellular automata. Phys. A 588, 126531 (2022)

17. Axhausen, K.W., Horni, A., Nagel, K.: The Multi-Agent Transport Simulation
MATSim. Ubiquity Press, London (2016)

https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://kgbook.org/
https://doi.org/10.1007/978-3-031-29104-3_10
https://doi.org/10.1007/978-3-031-29104-3_10
https://doi.org/10.1007/978-3-031-29104-3_12
https://doi.org/10.1007/978-3-030-66534-0_1
https://doi.org/10.1007/978-3-030-66534-0_1
https://doi.org/10.1007/978-3-540-71103-2_4

Strategy, Reasoning, and Planning

Dynamics of Causal Dependencies
in Multi-agent Settings

Maksim Gladyshev(B) , Natasha Alechina , Mehdi Dastani ,
and Dragan Doder

Utrecht University, Utrecht, The Netherlands
{m.gladyshev,n.a.alechina,m.m.dastani,d.doder}@uu.nl

Abstract. In this paper we discuss how causal models can be used
for modeling multi-agent interaction in complex organizational settings,
where agents’ decisions may depend on other agents’ decisions as well as
the environment. We demonstrate how to reason about the dynamics of
such models using concurrent game structures where agents can change
the organisational setting and thereby their decision dependencies. In
such concurrent game structure, agents can choose to modify their reac-
tions on other agents’ decisions and on the environment by intervening
on their part of a causal model. We propose a generalized notion of inter-
ventions in causal models that allow us to model and reason about the
dynamics of agents’ dependencies in a multi-agent system. Finally, we
discuss how to model uncertainty and reason about agents’ responsibility
concerning their dependencies and thereby their choices.

Keywords: Causal models · Interventions · Multi-agent systems

1 Introduction

The complex interactions between agents in multi-agent systems can be
described in terms of organizational structures that determine the dependen-
cies between agents’ decisions [1,6,9,15]. Such dependencies can be described
in a causal manner, allowing us to reason about the cause of agents’ decisions
and explain what causes a given agent’s decision in terms of the organizational
structure and the decisions of other agents on which it depends. For example, in
an organisational setting such as banking system, the decision of a loan officer to
accept or reject a mortgage application may depend on the decision of her man-
ager. It is also clear that in multi-agent systems the agents interact not only with
each other, but also with their shared environment, which is also governed by
causal relations. In our simple example, accepting a mortgage application may
cause a new contract to be added to the administration database, which in turn
may cause a notification to be sent to the mortgage applicant. In general, agents’
decisions may have a causal effect on each others decisions’ and their shared envi-
ronment, which in turn may have causal effect on the agents’ decisions. In order
to study such causal interactions between agents and/or the environment, we
use causal models developed in the theory of actual causality [13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 95–112, 2023.
https://doi.org/10.1007/978-3-031-48539-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_7&domain=pdf
http://orcid.org/0000-0002-6657-4870
http://orcid.org/0000-0003-3306-9891
http://orcid.org/0000-0002-4641-4087
http://orcid.org/0000-0003-0067-3654
https://doi.org/10.1007/978-3-031-48539-8_7

96 M. Gladyshev et al.

There exist two different types of causality. The first one is so-called type
causality, and is critical in machine learning and for prediction purposes. This
kind of causality concerns general statements such as ‘smoking causes lung can-
cer’, and can be used to predict, e.g., the probability that someone who smokes
gets lung cancer. The second one is termed actual causality, and is essential in
tracing and explaining the cause of a specific outcome, which in turn is essential
for assigning responsibility for the outcome to a specific component of an AI
system. The theory of actual causality was developed in [11–14,21].

We assume that the decision-making mechanism of each agent is specified
as a part of a causal model, more specifically, as a function that determines the
agent’s decision based on the current context, the decisions of the agents that she
depends on, and the state of the environment. Simply speaking, given an actual
context (e.g., a mortgage application is submitted), the decisions of all agents
can be determined through the causal model (e.g., the decision of a loan officer is
determined by the submitted mortgage application, its decision-making function
that specifies an accept/reject decision based on the decisions of her managers,
and perhaps the previous mortgage applications of the same applicant stored
in the administration database). In this paper, we investigate how agents can
change the causal dependency of their decisions, and thereby the structure of
their organization. This allows us to reason about causal structures of organisa-
tions and their dynamics. So, the proposed causal modelling approach allows us
to reason about causal dependencies between agents and possible interventions
of agents to modify their dependencies.

From a technical perspective, we employ MAS models to represent and rea-
son about different causal settings. In such causal settings, the agents’ behaviour
(decisions) is determined by the structure of a causal model and an assignment of
exogenous variables called context. At the same time, each agent has a choice to
modify her part of the model, which results in an updated causal model. In a new
causal setting for updated model and fixed context, the decisions of agents may
be different, as well as the state of the environment. We consider the set of all
causal settings to be a set of states in a Concurrent Game Structure (CGS). The
updates (called interventions) generate the set of possible actions (choices) for
the agents. Then the transitions between states of such CGS can be interpreted
as strategic abilities of the agents to enforce the corresponding dependency over
their decisions and the environment. In this sense, our approach goes along with
other works on CGS semantics for different logics. In particular, CGS semantics
for logics of “sees to it that” (STIT) was proposed in [3]. Although STIT-style
approach and causal reasoning use different formalisms, both [3] and our work
aim to study the connection between the original logics with existing logics for
MAS, such as coalition logic, alternating-time temporal logic and strategy logic.
Our work is also close to [16], where the framework for reasoning about agents’
knowledge about actual causes is proposed. The main difference with our app-
roach is that [16] uses different formalization, namely situation calculus (SC),
while we stick to original Structural Equations Models (SEM) approach and
straightforwardly unfold such SEM into CGS. Our approach allows us to employ

Dynamics of Causal Dependencies in Multi-agent Settings 97

well-known MAS machinery for reasoning about transformations of causal mod-
els interpreted as the choices of multi-agent organizational structures.

The remainder of this paper is structured as follows. In Sect. 2 we introduce
formal definitions related to causal models. In Sect. 3 we discuss Concurrent
Game Structures and demonstrate how to represent possible interventions in a
causal model in terms of CGS models. In Sect. 4 we propose the generalized
notion of interventions for causal models that allow us to reason about more
complicated behavior of the agents. Finally, in Sect. 5 we discuss how to model
uncertainty in our settings, then we define the notion of strategic responsibility
and demonstrate that the proposed generalized interventions can be more suit-
able for reasoning about agents’ responsibility. For simplicity, in this definition
we consider only one-step interactions and leave ATL-style machinery for future
work.

2 Preliminaries: Causal Models

We start with the general definition of a causal model as used in [13,14,21].

Definition 1 (Causal Model). A signature is a tuple S=(U ,V,R), where U is
a finite set of exogenous variables, V is a finite set of endogenous variables, and
R associates with every variable Y ∈U ∪V a finite nonempty set R(Y) of possible
values for Y , also called range of Y . A causal model over a signature S is a tuple
M= (S,F), where F associates with every endogenous variable X ∈V a function
FX such that FX maps ×Z∈(U∪V−{X})R(Z) to R(X). That is, FX describes how
the value of the endogenous variable X is determined by the values of all other
variables in U ∪ V. The values of exogenous variables U are determined outside
of the model and usually referred to as a context �u.

To illustrate this definition, consider Example 1, originating in [17] and exten-
sively analysed in the theory of actual causality [13].

Example 1 (Rock-throwing). Suzy and Billy both pick up rocks and throw them
at a bottle (encoded as ST = 1 and BT = 1 respectively). Suzy’s rock gets there
first, shattering the bottle. We denote the fact that Suzy’s rock hits the bottle
as SH = 1. Similarly, BH = 0 denotes the fact that Billy’s rock does not hit the
bottle. Finally, BS = 1 means’the bottle shatters’. We also know that because
both throws are perfectly accurate, Billy’s would have shattered the bottle had
it not been preempted by Suzy’s throw.1

1 Although we use this example due to its simplicity and its extensive analysis in
the literature, we can also use new interpretation of this example to illustrate the
dependencies of agents’ decisions in multi-agent organisations. Let Suzy and Billy
be two loan officers working in a bank, who decide to accept or reject a mortgage
application. Then ST =1 (and BT =1) can indicate that Suzy (and Billy respectively)
rejects an application. Then SH = 1 (and BH = 1) mean that Suzy’s (and Billy’s)
rejection is registered in the administration database. We also assume that Suzy has
a priority, so Billy’s rejection is registered (BH = 1) only if Suzy’s is not (SH = 0).
Then, the mortgage is rejected (BS = 1) if SH = 1 or BH = 1.

98 M. Gladyshev et al.

So, our endogenous variables V are {ST,BT, SH,BH,BS}. Our exogenous
variables U = {UST , UBT } determine the values of ST and BT variables respec-
tively. For all Y ∈ (U ∪ V), R(Y) = {0, 1}. F in this example can be defined as
follows. Let �z be an assignment of all variables (U ∪ V)\{X} for correspond-
ing FX .

FSH(�z) =

{
1 if (ST = 1) ∈ �z,

0 if (ST = 0) ∈ �z;
FBH(�z) =

{
1 if (ST = 0, BT = 1) ∈ �z,

0 otherwise;

FBS(�z) =

{
1 if (SH = 1) ∈ �z or (BH = 1) ∈ �z,

0 otherwise;

Intuitively, FX describes some structural equation that specifies how the
value of the endogenous variable X is determined by (and depends on) the
values of all other variables in (U ∪ V) − {X}. For example, in a causal model
with three variables X,Y and Z, the function FX(Y,Z) = Y + Z defines the
structural equation X=Y +Z, while FY (X,Z)=Z defines the structural equation
Y = Z, etc. The later equation demonstrates that Y does not depend on X. For
example, given three variables X, Y and Z, the structural equation for X can be
defined as X = Y + Z, X = max(Y, Z), X = Y, or any other complex functional
specifications. The later equation demonstrates that X does not depend on Z.
Additionally, these equations can be written with an ‘iff’ notation, for example
X=1 iff min(Y, Z)=0, and X=0 iff min(Y, Z)≠0. For the case of binary variables it
is often more convenient to define structural equations using boolean connectives,
e.g. X = ¬(Y ∨X). So, by structural equation for any endogenous variable X we
understand the way of specifying how the value of X is determined by the values
of other variables2.

Causal models can be represented as a dependency graph. The nodes of
such graph represent variables U ∪ V (we usually omit exogenous variables from
the figures), and edges represent the dependencies between the variables. The
dependency graph for Example 1 is presented in Fig. 1.

Fig. 1. A dependency graph for the Rock-throwing example.

Now, we need to discuss some restrictions on F and highlight the difference
between recursive and non-recursive models. Following [13], we say that variable
Y is independent of X in (M, �u) if, for all settings �z of the endogenous variables
other than X and Y , and all values x and x′ of X, FY (x, �z, �u) = FY (x′, �z, �u). A
2 The detailed overview can be found in [13].

Dynamics of Causal Dependencies in Multi-agent Settings 99

model M is then considered as recursive if, for each context �u, there is a partial
order ⪯�u of the endogenous variables such that unless X ⪯�u Y , Y is independent
of X in (M, �u). It guarantees that no cycles can occur in the dependency graph
of such model, and then structural equations F have a unique solution for any
�u [13]. Let Sol(�u) denote a set of all (X = x), where X ∈ V, x ∈R(X), such that
X has a value x in the unique solution of equations in M for a context �u.

Causal models allow us to reason not only about an actual context, but also
about counterfactual scenarios. These counterfactual scenarios can be described
by interventions of the form [�Y ← �y](Z = z), where �Y ← �y abbreviates (Y1 ←

y1, . . . , Yk ← Yk) for Y1, . . . , Yk ∈ V. We read these formulas as “if �Y were set to
�y, then Z would have a value z”. The intervention �Y ← �y in a model M results
in an updated model M�Y←�y

= (S,F �Y←�y).

Definition 2 (Updated Model). Given a model M=(S,F) and intervention
�Y ← �y, an updated model M�Y←�y

= (S,F �Y←�y) is such that for all (Y = y) ∈ �Y ← �y

and for any assignment �Z = �z of all variables other than Y,F �Y←�y
Y (�z) = y. So,

F �Y←�y
Y is a constant function returning y for any input and all F �Y←�y

X for X /∈ �Y
remain unchanged.

Next we can define the basic causal language L(C)3 [13].

Definition 3 (L(C) Syntax). Given a signature S=(U ,V,R), a primitive event
is a formula of the form X = x, for X ∈ V and x ∈R(X). A causal formula (over
S) is one of the form [Y1← y1, . . . , Yk← yk]ϕ, where ϕ is a Boolean combination
of primitive events, {Y1, . . . , Yk} ⊆ V, yi ∈R(Yi).

Language L(C(S)) for S = (U ,V,R) consists of all Boolean combinations of
causal formulas, where the variables in the formulas are taken from V and the
sets of possible values of these variables are determined by R.

Causal formulas from L(C) can be evaluated on a causal settings (M, �u) as
follows:

Definition 4 (Semantics). Given a causal settings (M, �u), and L(C) formula
ϕ we define ⊧HP relation inductively as follows:
(M, �u) ⊧HP (X = x) iff (X = x) ∈ Sol(�u),
(M, �u) ⊧HP ¬ϕ iff (M, �u) ⊭HP ϕ,
(M, �u) ⊧HP (ϕ ∧ ψ) iff (M, �u) ⊧HP ϕ and (M, �u) ⊧HP ψ,
(M, �u) ⊧HP [�Y ← �y]ϕ iff (M�Y←�y, �u) ⊧HP ϕ.

As you can see, the nesting of [�Y ← �y] operators is not allowed in L(C). But
if we interpret it as an update operator as Definition 2 suggests, then we can
define the result of multiple updates [�X ← �x][�Y ← �y] as a model (M �X←�x)�Y←�y

updated twice. So, we could reason about the series of model transformations
by consecutive interventions [�X←�x] . . . [�Y ←�y] (of some agents) on the variables
V ′
⊆V. For example (M, �u)⊧HP [�X ← �x][�Y ← �y]ϕ iff (M �X←�x, �u)⊧HP [�Y ← �y]ϕ iff

(M �X←�x)�Y←�y, �u) ⊧HP ϕ.
3 Please note that for notational convenience we use L(C) instead of L(C(S)).

100 M. Gladyshev et al.

3 Concurrent Game Structures

We use Concurrent Game Structures semantics for reasoning about causal mod-
els’ transformations, through which agents’ decision-making dependencies (and
thereby organisational structure) may change, and strategic abilities of the
agents controlling such transformations. In order to do this, we need to dis-
tinguish agents from environment in causal models. As we have seen in Example
1, in causal models variables V can represent both facts about the agents and the
environment. So, in our example, ST and BT can be seen as agents’ variables
for Suzy and Billy respectively, while SH,BH and BS express some facts about
the environment. In these models decisions of agents (understood as the values
of agents’ variables Va) determine the values of (some) environmental variables
(Ve). But the decisions of these agents can also depend on environmental vari-
ables and the decisions of other agents. So, it would be interesting to study what
agents can enforce by the right choice of the interventions on their variables. At
the same time we do not want to consider how environmental variables could be
modified, since we treat the causal dependencies of environmental variables as
fixed.

In order to study these series of causal models’ transformations, first of all we
want to generate a Concurrent Game Structure (CGS) for a given causal model.
Concurrent Game Structures are usually defined as follows.

Definition 5 (CGS, pointed). A concurrent game structure (CGS) is a tuple
Γ = (AG, Q,Π, π,Act, d, o), comprising a nonempty finite set of all agents AG =

{1, . . . , k}, a nonempty finite set of states Q, a nonempty finite set of atomic
propositions Π and their valuation π ∶Q −→ P(Π), and a nonempty finite set of
(atomic) actions Act. Function d ∶AG×Q −→ P(Act)\{∅} defines nonempty sets
of actions available to agents at each state, and o is a (deterministic) transition
function that assigns the outcome state q′

= o(q, (α1, . . . , αk)) to a state q and a
tuple of actions (α1, . . . , αk) with αi ∈d(i, q) and 1≤ i≤k, that can be executed by
AG in q. A pointed CGS is given by (Γ, q), where Γ is a CGS and q is a state
in it.

Let q′ be a successor of q if there exists a complete action profile α, such that
q′
= o(q, α). Given a CGS Γ , a play λ in Γ is an infinite sequence λ = q0, q1, . . .

of states in Q such that, for all i ≥ 0, the state qi+1 is a successor of the state
qi. For a play λ and positions i, j ≥ 0, we use λ[i], λ[j, i] and λ[j,∞) to denote
the i’th state of λ, the finite segment qj , qj+1, . . . , qi, and the suffix qj , qj+1, . . .
of λ, respectively. A positional (memoryless) strategy for an agent a ∈ AG or
a-strategy, is a function stra ∶Q −→ d(a,Q). Positional strategy of a coalition G
is a tuple strG of positional strategies, one for each player in G.

We assume V = Va ∪ Ve, where Va is the set of agent variables and Ve is the
disjoint set of environment variables. Now we demonstrate how to generate a
CSG ΓM for a casual model M. A causal model M = (S,F), given a context �u,
is translated to a CGS ΓM = (AG, Q,Π, π,Act, d, o), as follows

Dynamics of Causal Dependencies in Multi-agent Settings 101

– AG = Va;4

– Q = {M �X←�x | �X ⊆ Va & �x ∈ ×R(�X)};
– Π = {Y = y | Y ∈ V & y ∈R(Y)};
– π is defined as (Y = y) ∈ π(M′) iff (M′, �u) ⊧HP (Y = y) for any M′

∈Q;
– Act = {X ← x | X ∈ Va & x ∈R(X)} ∪ {⊺X | X ∈ Va}, where ⊺X denotes ‘no

intervention on X’;
– d ∶ Va × Q −→ R(Act) is defined as d(X,M′) ⊆ {X ← x | x ∈ R(X)} for any

X ∈ Va and M′
∈Q;

– o ∶ Q × (ActX1 × · · · × ActXk
) −→ Q for ActXi

= {Xi ← x | x ∈ R(Xi)} and
{X1, . . . , Xk} = Va is such that for any M1,M2 ∈ Q, M2 ∈ o(M1, Act �X) iff
MAct �X

1 =M2.

So, our states Q are all possible results of [�X←�x] updates of M where �X⊆Va.
In other words any M′

∈ Q is a result of replacing some FX ’s with constant
functions.5 The set of atomic propositions Π consists of all pairs (Y = y). The
valuation function π agrees with ⊧HP relation. Every agent i in any state has a
set of available actions [Xi ← x] for x ∈R(Xi) together with an ‘empty’ action
⊺Xi

meaning ‘do nothing’. So, every agent i may choose to replace her FXi
with

a constant function FXi
= x for any x ∈R(Xi) or not to change FXi

. The choice
(ActX1 × · · · × ActXk

) of all agents in any state q ∈ Q determines its (unique)
successor state q′ according to o. It guarantees that M2 is a successor of M1 by
a complete action profile (�XAG←�x) in the proposed semantics if and only if M2

is the result of M �XAG←�x
1 update.

Consider how to obtain a CGS for the causal model from Example 1. Our
agents Suzy (s) and Billy (b) control variables ST and BT respectively. So,
Va = {ST,BT}. Each agent has 3 options: to replace his/her function Fi with
a constant function returning 1, to replace his/her function Fi with a constant
function returning 0 or not to modify Fi. So, initial state has 9 possible tran-
sitions. For example if both agent decide not to change their functions, then
o(M, (⊺ST ,⊺BT)) =M, i.e. the agents will stay in the initial state. For other 8
action profiles there is a special state reachable from M in our CGS. This CGS
is illustrated in Fig. 2.

Here each state is reachable from the initial one, but interestingly, not any
state is reachable from the second one. Other simple properties of this CGS are

– MBT←0 is not reachable from MST←0 in Fig. 2. Because in MST←0 function
FBT is not modified: it returns 0 if UBT=0 and 1 otherwise. While in MBT←0,
FBT←0

BT is a constant function, which cannot be restored to its initial config-
uration FBT by any available action for agent b in MBT←0.

4 Here we assume for simplicity that each agent in AG controls only one variable in Va,
so |AG| = |Va|. But without loss of generality one can assume that Va is partitioned
into disjoint subsets controlled by agents in AG. In this case |AG| ≤ |Va|.

5 We note that such an intervention (updates) make the agents in �X independent of
other agents as their decision-making functional specifications are now reduced to
a constant function. Later in Sect. 4 we will introduce more general interventions
(updates) that can create arbitrary dependencies between agents.

102 M. Gladyshev et al.

Fig. 2. CGS for the Rock-throwing example. Note that reflexive transitions are omitted
from the picture and every transition must be marked with a single or multiple action
profiles, which does not fit in the picture.

– There is no requirement that any action profile leads to a different state.
Thus, both action profiles (BT ← 0,⊺ST) and (⊺BT ,⊺ST) in MBT←0 results
in a reflexive transition to the same state. But, for example, (BT←1,⊺ST) will
result in the transition to MBT←1 and (⊺BT , ST ←0) results in the transition
to MBT←0,ST←0.

– Different states of such CGS may agree on the valuation on all variables.
For example, given a context �u, (M, �u) and (MST←1,BT←1, �u) agree on all
(Y = y). But we still treat them as separate states, since these models have
different F ’s.

Now we can extend L(C) and allow the nesting of [�Y ← �y] operators.

Definition 6 (L(Ce) syntax).

ϕ ∶∶= (X = x) | ¬ϕ | ϕ ∧ ϕ | [�Y ← �y]ϕ,

where X ranges over V, �Y over 2V , x over R(X) and each y in �y over R(Y).
We use standard abbreviations for ⊺,�,∨ and →.

So, now we assume that agents may perform series of updates [�X ←
�x], . . . , [�Y ← �y] in the extended language L(Ce(S)). L(Ce(S)) formulas can be
evaluated by ⊧HP satisfiability relation defined in the same way as in Defini-
tion 4.

Proposition 1. Any [�X←�x] . . . [�Y ←�y]ϕ ∈L(Ce(S)) is equivalent to some [�X ′
←

�x′, . . . , �Y ′
←

�y′]ϕ ∈ L(C(S)).

Proof. [�X←�x] . . . [�Y ←�y] generates a model M �X←�x...
�Y←�y

updated multiple times.
Our goal is to prove that there exists a model M �W←�w, such that �W is a set of
variables that occur in �X, . . . , �Y and �w are the values that occur in �x, . . . , �y,

such that M �W←�w
=M �X←�x...

�Y←�y

.
So, let �W be a set of all variables that occur in �X, . . . , �Y . Let �Z denote a

vector (�X = �x, . . . , �Y = �y). To determine that value of every Wi ∈
�W we need to

Dynamics of Causal Dependencies in Multi-agent Settings 103

find the right-most Wi =wi in �Z. So, there is k ≤ |�Z|, such that �Z[k] = (Wi =wi)
(here �Z[k] denotes the k’s element of �Z of the form X = x) and for any n > k

and any w′
∈ R(Wi) it holds that �Z[n] ≠ (Wi = w′). By doing this we enforce

that in our model M �W←�w all functions FX ∈
�W are set to constant functions

in the exactly same way as they are set in M �X←�x...
�Y←�y

. It guarantees that
(M, �u) ⊧HP [�X ← �x] . . . [�Y ← �y]ϕ iff (M, �u) ⊧HP [�W ← �w]ϕ.

But since it is also clear that every ϕ ∈ L(C) is a L(Ce) formula, L(C) and
L(Ce) are equally expressive. The same result can be seen on CGS’s also. For
any CGS ΓM obtained from M, it holds that if some state q′

∈ ΓM is reachable
from initial state q0, then it is reachable in 1 step.

4 Arbitrary Updates

In this section we demonstrate how the proposed framework can be generalized
to allow creating arbitrary dependencies between agents. This is done by allowing
interventions that change the functional specifications FX to an arbitrary F ′

X

for any agent X. It is clear that interventions [�X ← �x] are not the only possible
operations modifying F . In other words, there are more ways to update F instead
of replacing some FX ’s with a constant functions. For example, we can allow
agents to modify the value of FX(�z) on a specific input �z. We denote it as
X(�z) ← x, where X ∈ V, x ∈R(X) and �z is the assignment of all variables in V
except X.

To illustrate it, assume that in the Rock-throwing example we allow Suzy to
make an additional action (act∗): to update FST in such a way that Fact∗

ST (�z)= 1
on all inputs �z containing (UST = 1). Now we can generate a new CGS Γ ′ which
contains more possible transitions. The updated CGS is presented in Fig. 3.

Fig. 3. Extended CGS Γ ′ for the Rock-throwing example. Dashed blue arrows indicate
new transitions. (Color figure online)

We see that after intervention ST ← 0 Suzy can always ‘return’ FST to the
initial behavior by act∗. So, the blue transitions are the new options. Now, from
MST←0 Billy and Suzy can return to M if their action profile is (act∗,⊺BT).

104 M. Gladyshev et al.

Note also that no new states were generated in the extended example. Because
additional action act∗1 for Suzy cannot produce new configuration of FST which is
different from FST ,FST←1

ST or FST←0
ST . But assume that we add another possible

action act∗2 which can be expressed as ST (UST =1)←0, meaning that Fact∗2
ST (�z)=0

if (UST = 1) ∈ �z. How should we generate a CGS Γ ′ now? In this case there will
be a possible Suzy’s strategy to make ST ← 1 intervention first and then act∗2.
Then, whatever Billy does, ST = 1 if UST = 0 and ST = 0 if UST = 1. But such
model cannot be reached by any strategy if only possible actions for Suzy are
interventions ST ← 1 and ST ← 0. To better illustrate the problem, consider
another example.

Example 2. Suppose that there are two agents a1 and a2 who can give an order
to the third agent a3. There are three alternative decisions a1 and a2 may choose:
order ‘1’, order ‘−1’ and not to give an order ‘0’. The only environmental variable
P determines the priority of a1’s or a2’s order. Finally, a3 must choose one of
three possible actions: 1, −1 or 0 (to ‘wait’).

More formally, our variables are Va = {a1, a2, a3},Ve = {P}. Their ranges are
R(a1) = R(a2) = R(a3) = {−1, 0, 1},R(P) = {1, 2}. The values of a1, a2 and P
depend on the context �u, while a3 depends on all of them. The values for a3 are
determined as follows Fa3(�z) = 1 if ((P = 1) ∈�z and (a1 = 1) ∈�z) or ((P = 2) ∈�z and
(a2 = 1) ∈ �z), Fa3(�z) = 0 if ((P = 1) ∈ �z and (a1 = 0) ∈ �z) or ((P = 2) and (a2 = 0)),
Fa3(�z) = −1 if ((P = 1) ∈ �z and (a1 = −1) ∈ �z) or ((P = 2) ∈ �z and (a2 = −1) ∈ �z). So,
agent a3 checks who has a priority and follows the order (Fig. 4).

Fig. 4. Dependency graph for Example 2.

Assume that in our context �u, a1’s order has a priority over a2’s according
to FP , so a3 follows the a1’s order. Decisions of a1 and a2 are determined by the
context, but each of them can enforce a desirable order by intervention on their
variables. So, each of the agents can modify her response to the environment by
updating Fai

(in our case by making it a constant function). Agent a3 depends
on all other variables a1, a2 and P . But standard interventions [X ← x] does
not allow a3 to adjust its behavior while staying dependent on a1’s or a2’s
orders. For example, assume that a3 no longer trusts a1 and decides to ignore
him completely and always follow the a2’s order. This situation is clearly not
expressible by standard interventions. But if we extend possible actions of a3

with any combination of a3(�z)← x, where x ∈R(a3) and �z is the assignment of
all variables expect a3, then we can encode much more complex behavior. In
particular, let trusta2 be an action encoded as⋃
�z,s.t.(a2=1)∈�z

(a3(�z)← 1) ∪
⋃

�z′,s.t.(a2=0)∈�z′

(a3(�z′)← 0) ∪
⋃

�z′′,s.t.(a2=−1)∈ �z′′

(a3(�z′′)← −1)

Dynamics of Causal Dependencies in Multi-agent Settings 105

This action allows a3 to modify Fa3 and obtain F trusta2
a3 . According to this

function, agent a3 always follows the order of a2 and ignores a1. We can also
imagine that order 1 is very risky for a3 and in case this agent receives this
order from the prioritized agent, he wants to check if second agent also gives
this order independently of P ’s value. This behavior can also be encoded with
basic general interventions of the form X(�z)← x. Let a3’s action doublecheck be
defined as follows⋃

�z′,s.t.(P=1,a1=1,a2≠1)∈�z′

(a3(�z′)← 0) ∪
⋃

�z′′,s.t.(P=2,a2=1,a1≠1)∈ �z′′

(a3(�z′′)← 0)

In this settings, if a3 receives an order 1 from the prioritized agent, but
the order of second agent is not 1, then a3 decides to wait (a3 = 0) accord-
ing to Fdoublecheck

a3
. So, this action will result in one of the updated models

{M′
1, . . . ,M′

l}, depending on the actions of other agents. But we know that
for any such model M′

i it holds that (M′
i, �u) ⊧ ((a1 ≠ 1) ∨ (a2 ≠ 1))→ (a3 ≠ 1).

We can formalize these generalized interventions as follows.

Definition 7 (Generally updated model). For any X ∈Va, any assignment
�z of all variables other than X and any x ∈ R(X), let X(�z) ← x be a general-
ized intervention that results in the update FX(�z)←x

X of function FX , such that

FX(�z)←x
X (z′) =

{
x if �z′

= �z,

FX(�z′) otherwise;

Let �X(�z)←�x denote X1(�z)←x1, . . . , Xk(�z′)←xk, where same variable from Va

can occur multiple times in X1, . . . , Xk. For any general intervention �X(�z)← �x,
an updated model is a pair M �X(�z)←�x

= (S,F �X(�z)←�x).

The intervention [X←x] can be encoded as a set of generalized interventions:
X ← x ≡ ∪�zX(�z)← x. Since X ← x replaces the value of FX for each input �z.

Now we can extend our generalized syntax L(Cg) with a new operator:

Definition 8 (L(Cg) syntax).

ϕ ∶∶= (X = x) | ¬ϕ | ϕ ∧ ϕ | [�Y (�z)← �y]ϕ,

Note that since any variable Y may occur multiple times in [�Y (�z) ← �y], every
agent i ∈ AG can modify Fi in an arbitrary way in L(Cg). The satisfiability
relation ⊧g is identical to Definition 4 in all items other than [�Y (�z) ← �y]ϕ, for
which it is defined as

(M, �u) ⊧g [�Y (�z)← �y]ϕ iff (M�Y (�z)←�y, �u) ⊧ ϕ.

Now we can generate a CGS for the extended set of operations on models.
Note that the set {X(�z) ← x | X ∈ Va & �z ∈ ×Z∈(U∪V)\{X}R(Z) & x ∈ R(X)}
will generate a larger set of actions Act∗ for Γ ∗. The set of states Q∗ in Γ ∗

will also contain more elements, because now we have more choices to construct

106 M. Gladyshev et al.

updated causal model M �X(�z)←�x for any �X(�z) ← �x. In fact, we need to be sure

that we will generate every M �X(�z)←�x...
�Y (�z′)←�y

. This is possible because there are
only finitely many such models: there only finitely many possible functions FX

mapping ×Z∈(U∪V−{X})R(Z) to R(X). So, we want the set of states Q∗ ∈ Γ ∗

to contain a model M′ for any possible updated functions F ′
X1

, . . . ,F ′
Xk

for

Va = {X1, . . . , Xk}. But as we show in Proposition 2, the set of all M �X(�z)←�x’s is

equal to the set of all M �X(�z)←�x...
�Y (�z′)←�y

’s. Next, Π∗, π∗ and d∗ are defined as
before. We say that o(M′, �X(�z)← �x) =M′′ iff M′′

= (M′) �X(�z)←�x. Thus, given a
causal model M= (S,F) and a context �u we can generate a general CGS Γ ∗M as
follows

– AG = Va;
– Q∗ = {M �X(�z)←�x | �X ⊆ Va & �x ∈ ×R(�X) & �z ∈ ×Y ∈U∪VR(Y)};
– Π∗ = {Y = y | Y ∈ V & y ∈R(Y)};
– π∗ is defined as (Y = y) ∈ π(M′) iff (M′, �u) ⊧′ (Y = y) for any M′

∈Q;
– Act∗={X(�z)←x | X ∈Va & �z ∈×Z∈(U∪V)\{X}R(Z) & x∈R(X)}∪{⊺X | X ∈Va},

where ⊺X denotes ‘no intervention on X’;
– d∗(X,M′) ⊆ {X(�z)← x | x ∈R(X), �z ∈ ×Z∈(U∪V)\{X}R(Z)} for any X ∈Va and

M′
∈Q;

– o∗(M′, �X(�z)← �x) =M′′ iff M′′
=M′ �X(�z)←�x for any M′,M′′

∈Q∗;

This general CGS differs from our previous construction, because the set of
general interventions X(�z)←x generates a different set of actions Act∗ and a set
of possible states Q∗ comparing to standard interventions X ← x. Now we can
establish the result similar to Proposition 1.

Proposition 2. For any L(Cg) formula of the form [�X(�z)← �x] . . . [�Y (�z′)← �y]ϕ
there exists an equivalent formula of the form [X ′(�zi)← x′, . . . , Y ′(�zj)← y′]ϕ.

Proof. Let �Z be a vector (�X(�z)← �x, . . . , �Y (�z′)← �y). So, each element of �Z is a
basic intervention of the form Y (�z) ← y. We denote k’s element of �Z as �Z[k].
Let W be a set of all pairs (Y, �z) for which Y (�z) ← y occurs in �Z. So, there is
k ≤ |�Z|, such that �Z[k]= (Y (�z)←y) and for any n > k and any y′

≠y it holds that
�Z[n] ≠ (Y (�z)← y′). Let �w be vector of such values for all elements of �W . Then,

the resulting models M(�X(�z)←�x...�Y (�z′)←�y

and M �W←�w are equivalent. So, it holds

that (M(�X(�z)←�x...�Y (�z′)←�y

, �u) ⊧g ϕ iff (M �W←�w, �u) ⊧g ϕ.

This proposition in particularly implies, that for any two states q, q′
∈Q∗, if

q′ is reachable from q by some series of updates [�X(�z)← �x]...[�Y (�z)← �y], then q′

is reachable from q′ in one step by some update [X ′(�z)← x, . . . , Y ′(�z)← y′].
There are of course different ways to introduce additional restrictions on

the set of available actions d∗. And there may be different motivation for these
restrictions. Firstly, it seems reasonable to require that if some variable X ∈ Va

is independent of some other variable Y ∈ V in the initial model, then it must

Dynamics of Causal Dependencies in Multi-agent Settings 107

remain so for any updated model. Note that the contrary does not hold: if X
depends on Y it may become independent of it even after standard intervention
X ← x since FX←x

X becomes a constant function. But this restriction does not
look universal: it is easy to imagine that in some situations agent may decide
to take into account some information he previously ignored. Secondly, it seems
important to allow agents to rewrite the changes in their Fi’s back. Formally,
assume that in some state q, the i’s function is defined as F1

i and i has a strategy
stri, such that for any λ ∈ plays(q, stri) it holds that in all states q′

= λ[1] i’s
function is defined as F2

i . Then, agent must have a strategy str∗i , such that for
any λ∈plays(q′, str∗i) it holds that the Fi in λ[1] is defined as F1

i . So, i can return
Fi to its initial configuration after any change. This restriction sounds reasonable
for multi-agent systems, yet it does not generally hold if the possible actions for
agents are standard interventions [�XAG ← �x] described in Sect. 3. Finally, some
actions (updates) can turn a recursive model into a non-recursive one. So, the
choice of adequate restrictions remains an important issue.

Even though we introduced L(Ce) and L(Cg) to reason about sequences of
updates performed by agents as their strategies, essentially we worked with one-
shot games, because everything was reachable in one step in the corresponding
CGS as shown in Propositions 1 and 2. But this may not be the case depending
on the additional restrictions on the set of available actions (interventions) d∈Γ .
But these restrictions go beyond the scope of this paper.

5 Uncertainty and Responsibility

Reasoning about strategic abilities often includes reasoning about agents’ uncer-
tainty [8]. For example, an agent may be unaware of other agents’ choices or
about some fact of the world.

Note that previously we generated a CGS for a fixed context �u. But now
we assume that the actual context may be unknown to the agent. So, we want
to model uncertainty over the pairs (M, �u), which is a standard assumption for
modelling uncertainty in causal models [5,10]. Basically, we want to generate a
state for any possible pair (M∗, �u′). Formally, given a causal model M we want
to generate a CGS Γ(M,�u) for every context �u. Then, let Γ be a disjoint union
of all Γ(M,�u). In other words, QΓ

= {(M �X(�z)←�x, �u) | �X ⊆ Va & �x ∈ ×R(�X) & �z ∈
×Y ∈U∪VR(Y) & �u ∈ ×U∈UR(U)}.

We say that an Epistemic CGS (ECGS) Γ = (AG, Q, {∼i}i∈AG,Π, π,Act, d, o)
is a CGS extended with an epistemic relations ∼i ⊆Q ×Q for each i ∈ AG, such
that all ∼i’s are equivalence relations. To obtain ECGS Γ ∗, we need to extend
Γ with these epistemic relations ∼i. We assume that they are already given.

To illustrate the role of knowledge and uncertainty, return to Example 2
again. We want to model a situation when a3 observes only his own actions and
does not know what actions other agents make. Assume also that a3 does not
know the context �u, i.e. the assignment of exogenous variables U which determine
the values of a1, a2, P . Figure 5 represents this epistemic state for a3.

108 M. Gladyshev et al.

Fig. 5. Epistemic scenario with a3’s uncertainty for Example 2. Note that only two
contexts �u1, �u2 are included in the picture, but in general case there can be any possible
context �u′. The labels on the transitions demonstrates a3’s action, while other agents’
decisions are omitted.

Here a3 can choose three available actions: not to modify Fa3 (denoted as
⊺), to follow a2’s decision (trusta2) or to double-check order ‘1’ (doublecheck). If
a3 decides not to modify Fa3 , then he knows that he is in one of the states
form (M, �u1), (M1, �u1), . . . (Mi, �u1) or (M, �u2), (M1, �u2), . . . (Mi, �u2). So, in
this epistemic state the agent does not know what the actual context is as well
as what the decisions of a1 and a2 are, i.e. how they react to the context �u. But
a3 still knows that (P =1∧a1 =0)→(a3 =0), (P =2∧a2 =1)→(a3 =1), etc. In other
words, even though a3 does not know what configuration of the environment is
(will be) and how other agents (will) react on it, he still knows his own response
to any possible situation (because the choice is up to him).

Syntactically, we can extend any of the previously mentioned languages with
knowledge operators Ki, where the formula Kiϕ reads as ‘agent i knows ϕ’. The
standard semantics of this operator is defined as

(Γ, q) ⊧Kiϕ iff ∀q′
∈Q, q ∼i q′ ⇒ (Γ, q′) ⊧ ϕ

Being able to model agents’ strategic abilities and uncertainty, we can define
such notions as strategic responsibility (or blameworthiness) in the proposed
framework.

5.1 Expressing Strategic Responsibility

There are a number of approaches dealing with notions of responsibility and
blameworthiness proposed in a literature on causal models [2,5,10,13] as well
as for CGS semantics [4,19,22]. The various definitions differ in details, but the
main idea is that the group of agents G is responsible for some outcome ϕ if G
could prevent ϕ independently of their epistemic state. For blameworthiness it
is usually required that G had a knowledge how to (and hence could) prevent ϕ.
Though this distinction is useful in many settings, in this section we discuss the
notion of strategic responsibility, which takes into account both strategic ability
and epistemic state.

Dynamics of Causal Dependencies in Multi-agent Settings 109

Another important criteria for the definition of responsibility is a minimality
condition. We want to claim that the group G is responsible for ϕ only if G is the
minimal coalition that could prevent ϕ. Without this condition, responsibility
would always be distributed to super-groups, so the grand coalition AG would
be responsible for ϕ whenever a sub-group G ⊂ AG is. Note that there can be
multiple minimal coalitions responsible for the same ϕ.

Finally, some approaches (e.g. [2,5,10,13]) deal with a notion of a degree of
responsibility (or blameworthiness). In these settings, if the group G is respon-
sible (blameworthy) for some outcome ϕ, then this responsibility (blameworthi-
ness) can be shared and distributed over individual members of G. In this paper
we do not discuss the degree of responsibility and assume that the group respon-
sibility is not distributed to the individual members of the group. But, of course,
additional procedure for such distribution of responsibility can be defined as an
extension. So, in our framework it is the case that if a group G is responsible
for ϕ, then for all i ∈ G it holds that i is not responsible for ϕ. If it does not
hold and some i ∈ G is responsible for ϕ, then G does not satisfy the minimal-
ity condition, which contradicts our initial assumption. This property may look
counterintuitive, but it guarantees that agents are not considered responsible for
ϕ until they have no strategic power to prevent it (given their uncertainty).

Before we provide a formal definition, we need to introduce the notion of a
uniform strategy. Formally, a strategy stra for agent a ∈ AG is called uniform
if for any states q, q′

∈ Q, such that q ∼a q′, it holds that stra(q) = stra(q′). A
coalition strategy strG is uniform if it is uniform for every a ∈ G. As we said
before any q ∈Q is reachable from q0 in one step. So, it is sufficient to check the
strategic ability of agents in the initial state q0. Let ϕ be a Boolean combination
of basic formulas of the form Y = y for Y ∈ V, y ∈R(Y).

Definition 9 (Strategic Responsibility). A group G is strategically respon-
sible for ϕ in (Γ, q) if the following three conditions hold:

1. Γ, q ⊧ ϕ;
2. There is a uniform strategy strG for G, such that for all q′, s.t. q0 ∼G q′ and

for all λ ∈ plays(q′, strG) it holds that Γ, λ[1] ⊧ ¬ϕ;
3. No proper subset of G satisfies (2),

Using this definition we can better illustrate the role of general interventions
proposed in Sect. 4.

Example 3. Imagine a simple model with two agents i and j. Let j depend on
i’s decision, so Fj(�z) = x iff (i = x) ∈ �z. Variable O (outcome) depends on both
i and j as follows: O = 1 if i ≠ j and O = 0 otherwise. All variables are binary:
R(i) = R(j) = R(O) = {0, 1}. Assume also that j is uncertain about the actual
context as well as about i’s actions.

Clearly, agent i cannot prevent O = 0 in this settings, so, i is not responsible
for O=0. But for agent j the situation is more complicated. If the set of available
actions for j is defined by the interventions [�X ← �x] from L(C) language, then j

110 M. Gladyshev et al.

Fig. 6. Dependency graph for Example 3.

has an option to guess i’s decision and make an intervention j←x, where x=Fi(�u).
But until we assume that j is unaware of i’s decision and/or the context �u, then
Definition 9 does not identify j being responsible for O = 0. According to our
definition the group {i, j} is the minimal coalition that can prevent O = 0 given
the uncertainty (by choosing either (i←1, j←0) or (i←0, j←1)). But if we allow
the generalized interventions [�X(�z)← �x] from L(Cg) to form the set of available
actions Act, then {i, j} is no longer the minimal coalition that can enforce O=1.
Now agent j has available action

noti ∶ =
⋃

(i=0)∈�z

(j(�z)← 1) ∪
⋃

(i=1)∈�z

(j(�z)← 0)

Now j can enforce the fact that his decision is opposed to that of i in any context.
Thus, action noti for j can prevent O = 0 in his epistemic state and hence j is
strategically responsible according to Definition 9. So, the distinction between
standard �X← �x and proposed �X(�z)← �x interventions is important for reasoning
about responsibility (Fig. 6).

6 Discussion

In this paper we demonstrate how causal models can be used for modeling multi-
agent interaction in organizational structures, where decisions of agents may
depend on other agents as well as the environment. Such causal models provide
us a tool for specification of the behaviour of the agents and the changes of the
environment. Moreover, these models contain additional counterfactual informa-
tion. So, they describe the behaviour of agents and the environment not only for
the actual context, but also for any counterfactual scenario. Then we demon-
strate how to reason about updates (interventions) of such models in terms of
concurrent game structures. In such CGS, agents can choose to modify their
reaction on the environment and other agents’ decisions by updating their part
of a causal model. Then we discuss how the notion of intervention on a causal
model can be generalized for reasoning about more complex behavior. Finally,
we demonstrate how strategic responsibility can be defined in our settings. We
believe that the proposed framework can be useful for reasoning about multi-
agent systems.

However, there are still many open questions left for future work. Firstly,
as we mentioned before, different restrictions of the set of available actions for
agents require closer study. The choice of these restrictions affects the strategic
power of the agents and thus determines what these agents can achieve, which

Dynamics of Causal Dependencies in Multi-agent Settings 111

may obviously affect responsibility statements. Secondly, we represent the trans-
formations of a causal model in terms of standardly defined CGS, which allows us
to deploy a well-known machinery developed in the field of multi-agent systems
for reasoning about such structures. The obvious examples of such machinery
are widely used logics dealing with strategic power, such as Coalition logic CL
[20], Alternating-time temporal logic ATL [7] and Strategy logic SL [18].

References

1. Ahmady, G.A., Mehrpour, M., Nikooravesh, A.: Organizational structure. Proce-
dia. Soc. Behav. Sci. 230, 455–462 (2016)

2. Alechina, N., Halpern, J.Y., Logan, B.: Causality, responsibility and blame in team
plans. In: Das, S., Durfee, E., Larson, K., Winikoff, M. (eds.) Proceedings of the
16th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2017 (2017)

3. Boudou, J., Lorini, E.: Concurrent game structures for temporal STIT logic. In:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, pp. 381–389. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2018)

4. Bulling, N., Dastani, M.: Coalitional responsibility in strategic settings. In: Leite,
J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA 2013. LNCS
(LNAI), vol. 8143, pp. 172–189. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40624-9 11

5. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Intell. Res. 22, 93–115 (2004)

6. Dastani, M., van der Torre, L.W.N., Yorke-Smith, N.: Commitments and inter-
action norms in organisations. Auton. Agents Multi Agent Syst. 31(2), 207–249
(2017). https://doi.org/10.1007/s10458-015-9321-5

7. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems. Cambridge University Press, Cambridge (2016)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24620-6 15

10. Friedenberg, M., Halpern, J.Y.: Blameworthiness in multi-agent settings. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 525–532
(2019)

11. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI
2015), pp. 3022–3033 (2015)

12. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337
(2000)

13. Halpern, J.Y.: Actual Causality. The MIT Press, Cambridge (2016)
14. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.

Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)
15. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-

sations with organisational artifacts and agents. Auton. Agents Multi Agent Syst.
20, 369–400 (2010). https://doi.org/10.1007/s10458-009-9084-y

https://doi.org/10.1007/978-3-642-40624-9_11
https://doi.org/10.1007/978-3-642-40624-9_11
https://doi.org/10.1007/s10458-015-9321-5
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/s10458-009-9084-y

112 M. Gladyshev et al.

16. Khan, S.M., Lespérance, Y.: Knowing why - on the dynamics of knowledge about
actual causes in the situation calculus. In: Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2021, pp.
701–709. International Foundation for Autonomous Agents and Multiagent Sys-
tems, Richland (2021)

17. Lewis, D.: Causation as influence. J. Philos. 97(4), 182–197 (2000)
18. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies:

on the model-checking problem. ACM Trans. Comput. Log. 15(4), 1–47 (2014)
19. Naumov, P., Tao, J.: An epistemic logic of blameworthiness. Artif. Intell. 283,

103269 (2020)
20. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1),

149–166 (2002)
21. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University

Press, Cambridge (2000)
22. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic

responsibility under imperfect information. In: Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019,
pp. 592–600. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2019)

Multi-armed Bandit Based Tariff
Generation Strategy for Multi-agent

Smart Grid Systems

Sanjay Chandlekar1(B) , Easwar Subramanian2 , and Sujit Gujar1

1 International Institute of Information Technology (IIIT) Hyderabad, Hyderabad,
India

sanjay.chandlekar@research.iiit.ac.in, sujit.gujar@iiit.ac.in
2 TCS Innovation Labs, Hyderabad, India

easwar.subramanian@tcs.com

Abstract. The emergence of smart grid technology has opened the door
for wide-scale automation in decision-making. A distribution company,
an integral part of a smart grid system, has to procure electricity from
the wholesale market and then sell it to customers in the retail market by
publishing attractive tariff contracts. It can deploy autonomous agents to
make decisions on its behalf. In this work, we describe the tariff contracts
generation strategy of one such autonomous agent, which is based on
a Contextual Multi-armed Bandit (ConMAB) based learning technique
to generate tariff contracts for various types of customers in the retail
market of smart grids. We particularly utilize the Exponential-weight
algorithm for Exploration and Exploitation (EXP-3) for ConMAB-based
learning. We call our proposed strategy GenerateTariffs-EXP3. Our
previous work shows that maintaining an appropriate market share in
the retail market yields high net revenue. Thus, we first present a game-
theoretic analysis that determines an optimal level of market share. Then
we train our proposed strategy to achieve and maintain the suggested
level of market share by adapting to the market situation and revising
the tariff contracts periodically. We validate our proposed strategy in
PowerTAC, a close-to real-world smart grid simulator, and showcase that
it is able to maintain the suggested market share.

Keywords: Contextual Multi-armed Bandit (ConMAB) · EXP3 ·
Smart Grids · Tariff Generation in Multi-agent Environment ·
PowerTAC

1 Introduction

Recent years have seen rapid growth in smart grid technology. Some developed
nations have already adopted smart grid technology to replace the conventional
grid system. Fundamentally, just like a conventional grid, a smart grid is also
an electricity network that supplies electricity to customers; however smart grid
enables two-way digital communication where customers can also communicate
with electricity providers. It also allows for monitoring, analysis, control and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 113–129, 2023.
https://doi.org/10.1007/978-3-031-48539-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_8&domain=pdf
http://orcid.org/0000-0003-2761-4283
http://orcid.org/0000-0002-9120-6164
http://orcid.org/0000-0003-4634-7862
https://doi.org/10.1007/978-3-031-48539-8_8

114 S. Chandlekar et al.

communication between participants to improve the efficiency, transparency, and
reliability of the system [14].

The smart grid system comprises the wholesale and retail markets, trans-
mission lines, and distribution company (DC) as the prominent players. The
DCs play a significant role in smart grid operations and are responsible for the
efficient functioning of the system. The major tasks of DC are to buy electric-
ity from the wholesale market, sell electricity to retail customers by generating
lucrative yet profitable tariff contracts, and manage the supply-demand balance
in the smart grid system. The transmission lines are responsible for electricity
transmission from GenCos to retail customers.

The retail market of a smart grid, which is the focus of this work, incorpo-
rates various types of customers like households, office spaces, villages, producers
(customers having solar panels or wind turbines), electric vehicles, battery stor-
age, and a few others. Some of these customers have the capability to change
their electricity usage pattern based on the signals from the DC, commonly in
the form of tariff contracts. To cater to the variety of customers, tariff contracts
too can be of multiple types. For example, (i) Fixed Price Tariff (FPT) having
the same rate values for all hours in a day/week, (ii) Time of Use (ToU) tariff
having different rate values for different hours in a day/week, (iii) Tier tariffs
having different rate values corresponding to different usage slots, (iv) variable
tariffs where rate values can change dynamically, or (v) combination of any of
the above tariff types. DCs decide the appropriate tariff types and tariff rate
values for the customers in its portfolio.

The smart grid system is quite complex in nature, and it is practically impos-
sible to test or validate the new strategies on the real-world smart grid sys-
tem. Thus, in order to aid in smart grid research, Power Trading Agent Com-
petition (PowerTAC) designed a close-to-real-world smart grid simulator [4].
PowerTAC simulates all the crucial elements of a smart grid system mentioned
above. In PowerTAC, DC are commonly known as electricity broker or broker
or agent. PowerTAC embodies a variety of customer models to represent the
wide variety of customers as seen in the real world. It supports all kinds of tar-
iff contracts mentioned earlier. Furthermore, PowerTAC introduces a balancing
market that handles the real-time balancing of supply and demand. It penalizes
agents in case of an imbalance in their portfolio.

The smart grid technology enables the use of adaptive autonomous agents to
make crucial decisions on behalf of DC, and a simulator like PowerTAC helps
analyze the effectiveness of such agents. To this end, PowerTAC organizes an
annual tournament where participating teams design an autonomous agent that
acts as DC and makes all the decisions in the simulated smart grid environment.
The agents are required to design suitable strategies for the wholesale, retail
and balancing markets. In this work, we specifically focus on the tariff contract
generation problem in the retail market of the smart grid. To generate a new
tariff contract, an agent needs to decide the tariff contract type and the tariff
contract’s rate values. The tariff contracts are public information; any agent and
a customer in the simulation can see all the active tariffs in the retail market.

MAB-Based Tariff Generation Strategy for Smart Grids 115

Thus, if an agent does not adapt to the changing market situation and does not
update its tariff contracts periodically, any opponent agent can offer better tariff
contracts and take away all the customers. Thus, it is paramount to update tariff
contracts periodically, which can be done using either heuristic-based approaches
or learning-based approaches.

In the PowerTAC literature, authors have proposed gradient-based MDP-
based strategies [2], optimization strategies [15], and genetic algorithm-based
approaches [16] to publish tariff contracts in the retail market. The experimen-
tal evidence suggests that the seemingly optimal class of strategies of capturing
all the market share may suffer from high grid balancing penalties as all the cus-
tomers are subscribed to one agent, and that agent alone has to bear the total
penalty for the grid imbalance. To remedy this, agent TUC_TAC proposed a
strategy aimed at acquiring only half the retail market share [10]. However, all
the above strategies except TUC_TAC sought to maximize the revenue/profit
without explicitly controlling the agent’s market share. Furthermore, the major-
ity of the above retail strategies, including TUC_TAC, have been generic and
are not effectively specialized for different player configurations and therefore
fail to maintain performance across different player configurations.

To overcome the above problems, we, team VidyutVanika, designed an
autonomous agent that emerged as the champion of the PowerTAC tournament
in the year 2021 and 2022 [1]. The tariff strategy of our agent is inspired by the
game theory literature that decides the optimal market share for various player
configurations and uses heuristic-based techniques to achieve and maintain that
market share during the simulation. In this work, we replace our heuristics-based
strategy with a learning-based strategy to achieve similar performance. For that,
we design a tariff strategy that learns to achieve and maintain the optimal market
share. We model this problem by utilizing techniques derived from Contextual
Multi-armed Bandit (ConMAB) and solve using the Exponential-weight algo-
rithm for Exploration and Exploitation (EXP-3). Our novelty lies in the formu-
lation of the learning framework; as opposed to previous strategies that aim to
maximize profit, we aim to maintain the optimal market share via a learning-
based strategy which in turn reduces other costs and makes our agent profitable.
We use ConMAB as its problem setting resembles the tariff generation problem
in hand, where given a context, an agent has to pick an appropriate tariff (an
optimal arm of ConMAB) that enables it to maintain the appropriate market
share and, in turn, delivers higher returns. In summary, our contributions are as
follows:

– We present game theoretical analysis to determine an optimal market share
for various player configurations by modeling the PowerTAC games as two-
player zero-sum games and calculate their mixed strategy Nash equilibrium.

– We propose a novel Contextual Multi-armed Bandit-based tariff contract gen-
eration strategy GenerateTariffs-EXP3, that learns to achieve and main-
tain the market share suggested by game theoretical analysis.

– We showcase the policies learned by the proposed strategy and its efficacy in
maintaining the suggested market share during the PowerTAC games.

116 S. Chandlekar et al.

2 Related Work

Many approaches in the literature have been suggested to tackle the tariff gen-
eration problem, and a few have been implemented in PowerTAC as well. In the
retail market of smart grids, techniques such as demand response, peak demand
pricing, and learning-based approaches have been proposed to design compet-
itive tariffs. Many multi-armed bandit-based strategies have been proposed to
publish tariffs in the smart grid domain. Most of this work focuses on demand
response in a smart grid where customers are incentivized via tariffs to curtail
their usages in response to electricity supplier’s signals [3,5–7,9,13].

In the past PowerTAC tournaments, Markov Decision Process (MDP) based
strategies were most popular in the retail market. The past brokers like COLD
Energy and VidyutVanika18, as well as Reddy & Veloso, modeled the decision
process in the retail market as an MDP to generate tariff contracts [2,11,12]. In
fact, both COLD Energy and VidyutVanika18’s tariff strategies were motivated
by Reddy & Veloso. In these approaches, the state space is constituted by market
parameters such as market rationality, agent’s portfolio status etc. and action
space was designed with actions to increase or decrease the rate value of tariffs
by a certain amount. The reward function was profit in the market. TacTex’13
employed a gradient-based optimization method for tariff generation, and Agen-
tUDE17 utilized a genetic algorithm-based tariff strategy [15,16]. However, all
the above strategies incur high grid imbalance costs as they do not focus on
the market share of customers in their portfolio. Agent TUC_TAC proposed a
strategy to acquire only half the retail market share [10] for each type of game
configuration. Motivated by TUC_TAC’s idea, we designed a heuristic-based
tariff strategy backed by game theoretical analysis to determine the optimal
market for various game configurations [1]. Furthermore, instead of focusing
on revenue/profit, we aimed to maintain the appropriate market share, which
helped us earn high returns. However, none of the previous works present an
equilibrium-based strategy that can be learned online in the retail market. The
novelty of this work lies in designing a game-theory-inspired ConMAB-based
retail strategy that learns to achieve and maintain equilibrium market share in
the retail market.

3 PowerTAC Simulator: An Overview

PowerTAC is a simulation platform that mimics essential components of a smart-
grid ecosystem comprising retail, wholesale, balancing markets, and distribution
companies (DCs). The wholesale market consists of GenCo, which sells electric-
ity via auctions; the balancing market manages the real-time balance of supply
and demand. The retail market consists of state-of-the-art customer models that
simulate real-world smart grid users, including consumers, producers, and stor-
age users such as households, offices, villages, hospitals, and renewable energy
producers. Storage customers use electric vehicles or batteries to store electricity
and supply it to the grid on demand. PowerTAC allows deploying an autonomous

MAB-Based Tariff Generation Strategy for Smart Grids 117

Fig. 1. System Architecture of VidyutVanika

agent to automate a DC’s operations in retail, wholesale, and balancing mar-
kets to earn profits. PowerTAC also organizes an annual tournament in which
numerous teams deploy autonomous brokers to compete in all three markets.
The tournament consists of multiple games organized between agents in differ-
ent player configurations and varying weather conditions, with each game lasting
around 60 simulation days. During the game, an agent aims to develop a sub-
scriber base in the retail market by offering competitive tariffs, such as FPT,
tiered, variable or ToU, to sell energy bought in the wholesale market. Agents
can also manage grid imbalances through subscriptions to storage customers.
Agents update their tariffs periodically based on other available tariffs in the
market, market and weather conditions, and customers’ responses to previous
tariffs. In the simulation environment, agents are provided with information
that helps them make decisions. All agents in the retail market can see new and
revoked tariffs and weather information. The final cash position of all brokers
across games is aggregated to determine the tournament winner. A comprehen-
sive simulator description is available in the 2020 PowerTAC specifications by
Ketter et al. [4].

4 VidyutVanika (VV): Retail Module

In this section, we show the generic system architecture of our agent Vidyut-
Vanika, which emerged as the champion in the last two editions of the PowerTAC
tournaments, namely PowerTAC’21 and PowerTAC’22. As shown in Fig. 1,
VidyutVanika incorporates a wholesale module and a retail (tariff) module. It
also has various repositories to store the important information received from the
server. These repositories contain information about the weather, wholesale mar-
ket procurement cost, all available tariffs in the market and customers’ electricity
usage patterns. In the current work, we only focus on the retail module; thus, we
take our wholesale module as a black box that places bids in the wholesale mar-
ket auction and procures the required energy. We replaced the heuristic-based

118 S. Chandlekar et al.

Algorithm 1. TariffDesigner(avgPrice, powerType)
1: pattern ← DefineWeeklyTariffPattern().
2: s[] ← DefineSurplusMultipliers(pattern)
3: find normRate :

∑168
i=1 si∗normRate

168
= avgPrice

4: rate[i] ← si ∗ normRate, for i ∈ {1, 2, ..., 168}
5: ToUTariff ← CreateTariff(rate, powerType)
6: return ToUTariff

retail strategy used in the PowerTAC’21 and PowerTAC’22 tournaments with
proposed ConMAB-based retail strategy, GenerateTariffs-EXP3.

As shown in the figure, the retail module consists of two submodules, namely,
GenerateTariffs-EXP3 Tariff Enhancer (TE) and Tariff Designer (TD). The
TE submodule comprises the proposed ConMAB-based tariff contract generation
strategy, which is solved using the EXP-3 algorithm. This submodule observes
the optimal market share for the ongoing game’s player configuration by con-
tacting the game theory module, then based on the ConMAB-based learning
till that point, it picks the suitable action to enhance the current tariff. This
TE sub-module calculates mean tariff rates that would maintain the appropri-
ate market share. The TD sub-module designs weekly ToU tariffs by taking the
mean rates suggested by TE as input. Below, we describe the details of the TD
sub-module, while the details of the TE sub-module are deferred to the following
sections.

Tariff Designer (TD): Algorithm 1 outlines TD, which is responsible for
designing a weekly ToU tariff based on the average input price (avgPrice)
received from TE. TD first generates a binary weekly tariff pattern using the
DefineWeeklyTariffPattern() method, which identifies peak and non-peak hours
by analyzing historical net market demand values retrieved from past PowerTAC
tournaments. Peak hours are determined to be times of high demand, such as
morning and evening hours. TD then uses the DefineSurplusMultipliers() method
to set surplus multipliers si for each of the 168 hours in a week. These multipliers
are greater than 1 for peak hours and 1 for non-peak hours. si depends on the
peak magnitude observed from market demand data for peak hours. Thereafter,
we calculate the normRate, which, after getting multiplied with si values of the
week, results in avgPrice on an average. These normRate values with surplus si
values are the rate values of the newly generated ToU tariff.

5 Game Theory to Determine Optimal Market-Share

This section presents the game-theoretical analysis to decide an optimal market
share for various player configurations of PowerTAC games, which is then used in
the TE submodule to design suitable ToU tariffs. We show the analysis for three
different player configurations of PowerTAC games, namely, 2-Player, 3-Player,
and 5-Player games. We construct a utility matrix for each player configuration

MAB-Based Tariff Generation Strategy for Smart Grids 119

by modeling the PowerTAC games as two-player zero-sum games, solving which
results in an equilibrium market share. To assist the reader, we introduce a few
definitions before proceeding further.

The below analysis is first presented in our previous work [1], where we
presented the analysis briefly. Here, we include more details and present the
complete analysis for all three player configurations under consideration, along
with respective utility matrices. Furthermore, we utilized the below analysis
to design a heuristics-based tariff strategy for our broker VidyutVanika during
the PowerTAC’21 and PowerTAC’22 tournaments. The tariff strategy aimed to
maintain the market share suggested by the game theory analysis using intel-
ligent heuristics. In this work, too, we aim to maintain the suggested market
share, albeit by following a more methodological way, that is, by incorporating
the game theoretical analysis in the tariff strategy and framing the tariff con-
tracts generation problem as a learning problem; and learning to improve tariffs
online by looking at the market situation with the help of ConMAB-based tech-
niques. A detailed description of the tariff strategy framework is included in
Sect. 6.

Definition 1 (Mixed Strategy). For player i, its mixed strategy σi is a prob-
ability distribution over the strategy set Si, i.e., σi(si), si ∈ Si indicates the
probability with which player i plays si.

Definition 2 (Mixed Strategy Nash Equilibrium (MSNE)). Given a N
player game Γ = <N, (Si), (ui)>, a mixed strategy profile (σ∗

1 , ..., σ
∗
n) is called

a mixed strategy Nash equilibrium if, ∀i ∈ N, ui(σ∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i),∀σi ∈

Δ(Si). σ∗
−i denotes mixed strategies of all players except i.

The utility of the row player is defined in Eq. 1, which is the difference
between the average final cash positions of the row and column players. This
way of modeling the utility matrix helps us to maximize the difference between
VidyutVanika’s average cash position and the opponent’s average cash position,
thereby helping VidyutVanika generate higher profits than opponents. As we
formulate this as a zero-sum game, the column player gets negative of the utility
calculated in Eq. 1.

u1(si, s−i) =
1
T

T∑

i=1

xi − 1
n

n∑

k=1

(
1
T

T∑

i=1

yik) (1)

In Eq. 1, xi denotes the final cash balance of VidyutVanika in the game i,
while yik denotes the final cash balance of opponent agent k in the game i and
n denotes the number of opponent agents in the game. For our analysis, the
average values are taken over T = 5 games.

In our modeling, we select VidyutVanika as the row player, and a sub-
set of opponents, depending on the player configuration, act as a sole col-
umn player. The row player’s (VidyutVanika’s) strategy set is given by S1 =
{0%, 15%, 30%, 45%, 60%, 75%, 100%}, where each element in the set S1 specifies
the target market share that VidyutVanika has to maintain during the simulated

120 S. Chandlekar et al.

Fig. 2. 3-Player Games Analysis (Utility Values in Millions) (Color figure online)

games. We have five agents from past PowerTAC tournaments to act as oppo-
nents in our analysis, namely, TUC_TAC (TT) [10], VidyutVanika18 (V V 18) [2],
VidyutVanika20 (V V 20), CrocodileAgent (C) and AgentUDE (A) [16]. The col-
umn player strategy set S2 depends on the player configuration. For example, in
a 2-Player game configuration, we need only one opponent against VidyutVanika;
thus, S2 = {TT , V V 18, V V 20, C, A}. Similarly, in a 3-Player game configura-
tion, we need two opponents against VidyutVanika, which is to be selected from
the available set of five agents; thus, total 5c2 elements is the set S2 as shown
in Fig. 2.

(a) 5-Player Games Analysis (b) 2-Player Games Analysis

Fig. 3. Games Analysis (Utility Values in Millions) (Color figure online)

Equilibrium Calculation: Figures 3b, 2 and 3a show the utility matrices for
2-Player, 3-Player, and 5-Player configurations, respectively. Each cell describes
the utility value, a cash difference in millions calculated by playing a set of T
games. The same process is repeated for all the combinations of VidyutVanika’s
strategies (S1) and opponents’ strategies (S2) to create the full utility matrix.
Thereafter, we use Gambit [8] to solve the game and output the Nash Equi-
librium. We found that each of the above three player configurations exhibits
Mixed Strategy Nash Equilibrium (MSNE).

– For 2-Player Configurations: Based on Fig. 3b, the utility matrix leads to
Pure Strategy Nash Equilibrium of 60% market shares.

– For 3-Player Configurations: Based on Fig. 2, the utility matrix leads to
MSNE of randomizing between 45% and 60% market shares with probabilities
0.8 and 0.2, respectively, which results in equilibrium market share of 48%
(0.8 ∗ 45 + 0.2 ∗ 60).

– For 5-Player Configurations: Based on Fig. 3a, the utilitys matrix leads to
MSNE of randomizing between 30% and 45% market shares with probabilities
0.43 and 0.57, respectively, which translates to equilibrium market share of
38.55% (0.43 ∗ 30 + 0.57 ∗ 45).

MAB-Based Tariff Generation Strategy for Smart Grids 121

The same results can be seen visually as well; the green-shaded regions in
the figures show the strategies having the higher utilities u1(σ∗

1 , σ
∗
−1) than the

remaining strategies u1(σ1, σ
∗
−1) for row-player VidyutVanika, which leads to

above-calculated MSNEs.

Adopting Equilibrium in PowerTAC Games: The above analysis suggests
how we should randomize to achieve equilibrium market share. However, due to
the stochasticity of the PowerTAC simulation and customer models, it is not
easy to maintain one particular market share across different games. Hence, we
aim to maintain market share within specific bounds ([middle, high]). Thus,
in our experiments, we treat the above-calculated equilibrium market shares as
the higher bounds (high) on the desired market share. We further define the
middle bounds (middle), which is 0.7 ∗ high. We aim to maintain the market
share between middle and high, and thus, to train GenerateTariffs-EXP3,
we give 0.85 ∗ high ((1 + 0.7)/2 = 0.85) as the target optimal market share. So,
for 2-Player, 3-Player, and 5-Player configurations, target optimal market shares
for GenerateTariffs-EXP3 are 51%, 40.8%, and 32.3%, respectively.

6 Tariff Strategy: A Contextual MAB Approach

In the previous section, we showcase how we determine the optimal market
for various player configurations. Based on our previous work, we also stated
that maintaining a market share close to the optimal market share is sufficient
to achieve effective profits in the market. Motivated by this, in this section,
we showcase the formulation of the proposed GenerateTariffs-EXP3. The
proposed strategy is modeled as a Markov Decision Process (MDP) consisting
of a tuple <S,A, P,R>. S represents the state space of the MDP, A denotes the
action space and R denotes the rewards of the MDP. P represents the transition
probabilities of the MDP, that is, the probability with which MDP transitions
to the next state by taking action in the current state. However, the model
does not know the transition probabilities. To learn the optimal action in each
state (called a policy) in the absence of transition probabilities, we use ConMAB
techniques along with the EXP-3 algorithm. Below we describe how the MDP is
formulated and optimal policies are learned.

6.1 State Space

Here, we define the state space of the GenerateTariffs-EXP3 We construct
state space depending on the difference between the current market share (CMS)
of the GenerateTariffs-EXP3 and the optimal market share (OMS) sug-
gested by the game theory module in Sect. 5. Let us denote the difference between
both the market shares by Δ, so

Δ = (OMS − CMS).

We categorize Δ into seven buckets, as shown below.

122 S. Chandlekar et al.

– State 0: |Δ| ≤ OMS ∗ 0.1
– State 1: Δ > OMS ∗ 0.1 and Δ ≤ OMS ∗ 0.4
– State 2: Δ > OMS ∗ 0.4 and Δ ≤ OMS ∗ 0.7
– State 3: Δ > OMS ∗ 0.7
– State 4: −Δ > OMS ∗ 0.1 and −Δ ≤ OMS ∗ 0.4
– State 5: −Δ > OMS ∗ 0.4 and −Δ ≤ OMS ∗ 0.7
– State 6: −Δ > OMS ∗ 0.7

The above state space is designed in such a way that it gives the reflec-
tion of the GenerateTariffs-EXP3’s current situation in the tariff market.
These numbers that get multiplied with OMS are chosen heuristically based on
rigorous experimental analysis. For example, suppose the OMS for a game con-
figuration is 50%, then the State 0 occurs when the broker’s CMS is within ±5%
difference of the OMS (i.e., between 45% to 55%). Similarly, State 1 happens
when the broker’s CMS is lower than the OMS, and the difference between
OMS and CMS (OMS − CMS) is more than 5%, but less than 20% (between
30% to 45%). The states 1, 2 and 3 represent the situation when the broker’s
CMS is lower than the OMS. Replicating the similar logic for the other side as
well, states 4, 5, and 6 represent the situation when the broker’s CMS is higher
than the OMS. The State 4 results in when the difference between CMS and
OMS (−OMS + CMS) is more than 5%, but less than 20% (between 55% to
70%). The above seven states cover all possible differences between the broker’s
CMS and the OMS.

6.2 Action Space

The action space of the GenerateTariffs-EXP3 generates a new tariff con-
tract in the tariff market. As discussed in Sect. 3, a broker needs to come up
with rate values to design a new tariff contract. GenerateTariffs-EXP3’s
action space modifies the currently active tariff or suggests keeping the sane
tariff active. Below is the action space,

– Action 0: step = 0.0 [Maintain]
– Action 1: step = −0.02 [Lower1]
– Action 2: step = −0.04 [Lower2]
– Action 3: step = 0.02 [Higher1]
– Action 4: step = 0.04 [Higher2]

As shown in the action space, GenerateTariffs-EXP3 can choose one
of the five actions at any instance. The action selection problem is modeled
as a MAB problem, which is solved using EXP-3 algorithm in Sect. 6.4. At
any instance, GenerateTariffs-EXP3 can choose to maintain or modify the
current tariff. If it chooses to modify the current tariff, it can either decrease
the rate value of the currently active tariff or increase the rate value. The above
action space provides two options for both scenarios; Lower1 or Lower2 to
decrease the rate value and Higher1 or Higher2 to increase the rate value.

MAB-Based Tariff Generation Strategy for Smart Grids 123

After selecting an action, we decide the rate value of the new tariff by adding
the step value of the selected action to the currently active tariff’s average rate
value. The step sizes are chosen based on the PowerTAC customers’ reactions
to tariffs. Thus generated new rate value is given to the TD sub-module that
designs and publishes the new ToU tariff in the market. Note that, in PowerTAC
sign convention, consumption tariffs are negatively valued as customers need to
pay that amount; thus, actions such as Lower1 and Lower2 would make tariffs
more negative (less attractive for customers), and actions such as Higher1 and
Higher2 would make tariff less negative (more attractive for customers).

6.3 Reward

The reward function is defined in line with the state space, as shown below.

– reward = 1.00, if |Δ| ≤ 5%
– reward = 0.50, if |Δ| ≤ 20%
– reward = 0.25, if |Δ| ≤ 35%
– reward = 0.00, otherwise

The above reward function awards the GenerateTariffs-EXP3 based on
its ability to achieve market share close to the OMS. It gets the highest reward
of 1 when the absolute difference between the broker’s CMS and the OMS is
less than 5%. Similarly, it gets a slightly worse reward when the difference is
more than 5% (but less than 20%). The worst case happens when the market
share achieved by GenerateTariffs-EXP3 is far away from the OMS (the
difference is more than 35%); in that case, GenerateTariffs-EXP3 receives
a zero reward. The numbers 5%, 20% and 35% are translated from the state
space, that multiplies OMS with 10%, 40% and 70% to wrap OMS from both
the sides (less than OMS and greater than OMS). While giving rewards, we
are considering the difference between CMS and OMS from any one side, thus,
the state space numbers are divided by 2 to get the reward function.

6.4 EXP-3 Algorithm

The above contextual MAB-based tariff generation problem is solved using the
Exponential-weight algorithm for Exploration and Exploitation (EXP-3 algo-
rithm). Generally, EXP-3 is used for non-contextual MAB problems but can also
be extended for contextual MAB problems. For each state in the state space,
It maintains a list of weights for each action in the action space. Using these
weights, it stochastically decides which action to take next, and based on the
reward received, it increases or decreases the relevant weights. Thus generated
table resembles with Q-Table in Reinforcement Learning (RL). In RL Q-Table,
the values of the state-action pairs denote how good it is to take that action in
the given state in the long run, whereas, in ConMAB, the state-action pairs have
the same interpretation albeit for an immediate future. Due to the similarity,

124 S. Chandlekar et al.

Algorithm 2. Contextual EXP-3(state s)
1: Initialize/Load table[|S|][|A|]
2: prob(s, i, t) = (1 − γ) table(s,i,t)

∑|A|
a=1 table(s,a,t)

+ γ
|A| , ∀i ∈ {1, 2, ..., |A|}

3: Sample next action act stochastically from [prob(s, 1, t), prob(s, 2, t), ..., prob
(s, |A|, t)]

4: Observe reward r(s, act, t) for taking action act in state s at t
5: Update the reward:

r̂(s, a, t) = r(s, a, t)/prob(s, a, t), if a = actt

r̂(s, a, t) = 0, otherwise
6: table(s, i, t + 1) = table(s, i, t) ∗ eγ∗r̂(s,i,t)/|A|, ∀i ∈ {1, 2, ..., |A|}

we call the table generated by ConMAB as Q-Table. We introduce an egalitari-
anism factor γ ∈ [0, 1], tuning the desire to randomly pick an action. That is, if
γ = 1, the weights do not affect the choices at any step. Algorithm 2 shows the
modified EXP-3 algorithm for contextual MAB:

Algorithm 2 takes the current state s as the input. If the table is empty (at
the start of the training), then initialize it with suitable values; otherwise, load
the previously created table into memory. As described earlier, the dimensions
of this table are |S| ∗ |A| (the size of state space S * the size of action space
A). In the next step, we weigh the actions based on the corresponding values
stored in the table. The probability of selecting an action i in state s at time
t (prob(s, i, t)) is directly proportional to the corresponding state-action pair at
time (table(s, i, t)). Here, an egalitarianism factor γ ∈ [0, 1] also plays a role
in action selection; γ = 0 would calculate probabilities purely based on table
values, while γ = 1 would assign the same probability to each of the actions.
After calculating the probabilities for each action i in state s, in step 3, the
algorithm stochastically picks one action based on the calculated probabilities.
In step 4, the algorithm observes the reward r(s, a, t) for taking action a in
state s at time t. After that, in step 5, the algorithm updates the reward based
on whether the action was selected or not; the new reward function r̂(s, a, t)
is inversely proportional to the probability prob(s, a, t). If the action was not
selected, then the r̂(s, a, t) is set to zero, as expected. Finally, in step 6, the
algorithm updates the table; only the state-action pair that got selected at time
t gets updated, while other values in table remain unchanged. These updates are
exponential in nature and proportional to the new reward r̂(s, a, t).

The EXP-3 algorithm deals with the explore-exploit dilemma by stochasti-
cally selecting an action based on the calculated probabilities in step 3. This step
ensures picking the best-known action till now with higher probability while also
occasionally selecting ’not so good’ actions. After selecting any action and get-
ting the corresponding reward in that state, it weighs the reward with respect to
the probability. A reward for low-probability actions gets enhanced even further,
allowing the algorithm to revisit those actions. Thus, the EXP-3 algorithm visits
all the state-action pairs a sufficient number of times. In the next section, we
show how GenerateTariffs-EXP3 learns the policies to maintain the optimal
market shares in each player configuration.

MAB-Based Tariff Generation Strategy for Smart Grids 125

7 PowerTAC: Experiments and Results

In this section, we describe how the strategy described in Sect. 6 is deployed
to the PowerTAC games. We further demonstrate how the learning process for
EXP-3 is carried out in PowerTAC environment. We start by detailing the exper-
imental setup, followed by the results and discussions.

7.1 Experimental Set-Up

Q-Table Training: As the broker needs to adapt to various player configu-
rations in PowerTAC, we deploy separate tariff MDP and EXP-3 algorithms
in each configuration. In this experiment, we train three different models for
three-player configurations, namely, 2-Player, 3-Player, and 5-Player. We chose
these three configurations as the last PowerTAC tournament (PowerTAC22) had
the same configurations. In each player configuration, we played 50 PowerTAC
games, where each game simulates the smart grid operations for two months. At
the start of the training, we initialize the Q-Table with appropriate values and
publish an initial tariff in the market. We keep the same tariff active for a day (24
hours) and then update the tariff at the start of the next day. While updating
the tariff, we note the CMS and decide the reward to update the Q-Table as
shown in Algorithm 2. This constitutes one epoch of training. After that, based
on the CMS, we calculate the current state and choose an action following the
EXP-3 algorithm, and publish a new ToU tariff in the market by using the TD
sub-module. We continue this process and record the Q-Table after every check-
point (typically after every 100 epoch) as well as at the end of the game. While
starting a new game, we read and update the previously stored Q-Table while
training. We train GenerateTariffs-EXP3 for around 3000 epochs for each
configuration and store the final Q-Tables.

Performance Testing: We conduct performance testing to verify whether
GenerateTariffs-EXP3 is able to maintain the desired market share during
the games after getting trained. As mentioned previously, we store intermediate
Q-Tables after every checkpoint and test the effectiveness of GenerateTariffs-
EXP3 at various stages of the training. For this, we take Q-Tables from seven
different checkpoints, play 10 games with each Q-Table, and record the average
market shares during the games. At the end of 10 games, we record the average
and standard deviation of market shares after 10 games; we do this for all seven
Q-Tables. In this paper, we present the performance testing for the 3-Player
configuration. The following section showcases the results of this experiment.

7.2 Results and Discussion

In this section, we present the results of the Q-Table training for the above-
mentioned 2-Player, 3-Player, and 5-Player configurations. Furthermore, we also
show the efficacy of the GenerateTariffs-EXP3 in maintaining the suggested
market share during the games.

126 S. Chandlekar et al.

Q-Table Training: Figure 4, 5, and 6 are the final Q-Tables after training
GenerateTariffs-EXP3 for 50 games (around 3000 epochs) for each player
configuration. In Q-Tables, the higher the value (green-shaded region) for any
state-action pair, the higher the probability of that action getting selected in the
given state.

First, focus on the 2-Player Q-Table in Fig. 4. GenerateTariffs-EXP3
learns to maintain the currently active tariff if the current state is State 0, which
is the best thing to do as the market share is already in the desired range. In
State 1 as well, it chooses to continue with the current tariff. When the CMS is
lower than OMS in State 2 and 3, it learns to select Higher2 action to make tariff
cheaper and very much attractive for customers to increase the CMS and go
closer to OMS (Higher2 would add a high positive step value in the negatively
valued tariff, which makes tariff cheaper from customers’ perspective). The same
explanation is valid for the other side of the state space when the CMS is higher
than OMS. It chooses to Maintain in State 4 and go for Lower2 for remaining
states State 5 and 6 in order to make tariff less attractive for customers and
decrease the CMS and reach closer to OMS.

Fig. 4. Q-Table for 2-Player Configuration [After 50 Games] (Color figure online)

The other two player configurations too converge to similar Q-Tables; how-
ever, the values are very different from each other. For example, in State 2,
3-Player Q-Table would select the Higher2 with high probability, while 5-Player
Q-Table would pick Higher1 or Higher2 with almost equal probability. In sum-
mary, GenerateTariffs-EXP3 learns to decide the suitable action in each
state for all three player configurations, which empirically looks like the correct
action to pick given the state. To prove that the above Q-Tables actually learn
the best actions in each state to achieve the goal of maintaining the desired
market, we carried out a performance testing for the 3-Player configuration and
report the results below.

MAB-Based Tariff Generation Strategy for Smart Grids 127

Fig. 5. Q-Table for 3-Player Configuration [After 50 Games] (Color figure online)

Fig. 6. Q-Table for 5-Player Configuration [After 50 Games] (Color figure online)

Fig. 7. Market Share Maintained by GenerateTariffs-EXP3 w.r.t Number of
Epochs of Training for 3-Player Configuration (Color figure online)

Performance Testing: Figure 7 shows the market share maintained by Q-
Tables stored at various checkpoints (at the 0th epoch, 500th epoch etc.) for a
3-Player configuration. The light blue color strip in the graph shows the desired
market share range for the 3-Player configuration. As seen from the graph, for

128 S. Chandlekar et al.

the 0th epoch Q-Table which has an equal probability for each section getting
selected, the market share maintained by GenerateTariffs-EXP3 is very far
from the desired range. After 500 and 1000 epochs, too, it is not able to main-
tain market share in the desired range. However, after getting trained for 1500
epochs, it reaches closer to the desired range. After that, for the higher number
of epochs, it maintains the market share within the desired range. The variance
(shown as the bars around the dot) is also low after 2500 epochs of training. A
similar result is achieved for the 2-Player and 5-Player configurations as well.
This shows the efficacy of GenerateTariffs-EXP3 that learns to update tar-
iffs online and maintains the desired market share during the games.

8 Conclusion

Using the Contextual Multi-armed Bandit-based technique, we described the
design of an adaptive tariff contract generation strategy, GenerateTariffs-
EXP3, to sell electricity in the retail market. In particular, we demonstrated
how tariff contracts could be adapted in real-time based on the market situation
using the EXP-3 algorithm that efficiently managed the explore-exploit dilemma
and visited all the states a sufficient number of times. In our strategy, we first
determined the optimal market share and trained GenerateTariffs-EXP3
to achieve and maintain that market share during the game. We showcased
that after training for an adequate number of games, GenerateTariffs-EXP3
learns the optimal action for a given state and learns to maintain the appropriate
market share during the PowerTAC games.

References

1. Chandlekar, S., Pedasingu, B.S., Subramanian, E., Bhat, S., Paruchuri, P., Gujar,
S.: VidyutVanika21: an autonomous intelligent broker for smart-grids. In: Proceed-
ings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-2022, pp. 158–164. International Joint Conferences on Artificial Intelligence
Organization (2022). https://doi.org/10.24963/ijcai.2022/23

2. Ghosh, S., Subramanian, E., Bhat, S.P., Gujar, S., Paruchuri, P.: VidyutVanika:
a reinforcement learning based broker agent for a power trading competition. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 914–921
(2019). https://doi.org/10.1609/aaai.v33i01.3301914

3. Jain, S., Narayanaswamy, B., Narahari, Y.: A multiarmed bandit incentive mecha-
nism for crowdsourcing demand response in smart grids. In: AAAI Conference on
Artificial Intelligence, Canada (2014)

4. Ketter, W., Collins, J., de Weerdt, M.: The 2020 power trading agent competition.
ERIM report series reference no. 2020-002 (2020). https://doi.org/10.2139/ssrn.
3564107

5. Li, Y., Hu, Q., Li, N.: Learning and selecting the right customers for reliability: a
multi-armed bandit approach. In: 2018 IEEE Conference on Decision and Control
(CDC), pp. 4869–4874 (2018). https://doi.org/10.1109/CDC.2018.8619481

https://doi.org/10.24963/ijcai.2022/23
https://doi.org/10.1609/aaai.v33i01.3301914
https://doi.org/10.2139/ssrn.3564107
https://doi.org/10.2139/ssrn.3564107
https://doi.org/10.1109/CDC.2018.8619481

MAB-Based Tariff Generation Strategy for Smart Grids 129

6. Ma, H., Parkes, D.C., Robu, V.: Generalizing demand response through reward bid-
ding. In: Proceedings of the 16th Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS 2017, Brazil, pp. 60–68. (2017). http://dl.acm.org/citation.
cfm?id=3091125.3091140

7. Ma, H., Robu, V., Li, N.L., Parkes, D.C.: Incentivizing reliability in demand-side
response. In: The Proceedings of the 25th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2016), pp. 352–358 (2016). http://www.ijcai.org/Abstract/
16/057

8. McKelveya, R.D., McLennan, A.M., Turocy, T.L.: Gambit: software tools for game
theory, version 16.0.1 (2014). http://www.gambit-project.org. Accessed 27 Dec
2021

9. Methenitis, G., Kaisers, M., La Poutré, H.: Forecast-based mechanisms for demand
response. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1600–1608 (2019)

10. Orfanoudakis, S., Kontos, S., Akasiadis, C., Chalkiadakis, G.: Aiming for half gets
you to the top: winning PowerTAC 2020. In: Rosenfeld, A., Talmon, N. (eds.)
EUMAS 2021. LNCS (LNAI), vol. 12802, pp. 144–159. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-82254-5_9

11. Reddy, P.P., Veloso, M.M.: Strategy learning for autonomous agents in smart grid
markets. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1446–1451. AAAI Press (2011)

12. Serrano Cuevas, J., Rodriguez-Gonzalez, A.Y., Munoz de Cote, E.: Fixed-price
tariff generation using reinforcement learning. In: Fujita, K., et al. (eds.) Modern
Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp.
121–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_8

13. Shweta, J., Sujit, G.: A multiarmed bandit based incentive mechanism for a subset
selection of customers for demand response in smart grids. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 2046–2053 (2020)

14. Techopedia.com: Smart Grid (2021). https://www.techopedia.com/definition/692/
smart-grid. Accessed 19 Jan 2023

15. Urieli, D., Stone, P.: Autonomous electricity trading using time-of-use tariffs in a
competitive market. In: Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence (AAAI-2016). Association for the Advancement of Artificial Intel-
ligence (2016)

16. Özdemir, S., Unland, R.: AgentUDE17: a genetic algorithm to optimize the param-
eters of an electricity tariff in a smart grid environment. In: Demazeau, Y., An,
B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol.
10978, pp. 224–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94580-4_18

http://dl.acm.org/citation.cfm?id=3091125.3091140
http://dl.acm.org/citation.cfm?id=3091125.3091140
http://www.ijcai.org/Abstract/16/057
http://www.ijcai.org/Abstract/16/057
http://www.gambit-project.org
https://doi.org/10.1007/978-3-030-82254-5_9
https://doi.org/10.1007/978-3-319-51563-2_8
https://www.techopedia.com/definition/692/smart-grid
https://www.techopedia.com/definition/692/smart-grid
https://doi.org/10.1007/978-3-319-94580-4_18
https://doi.org/10.1007/978-3-319-94580-4_18

Load Balancing in Distributed
Multi-Agent Path Finder (DMAPF)

Poom Pianpak1(B), Jiaoyang Li2, and Tran Cao Son1

1 New Mexico State University, Las Cruces, NM, USA
{ppianpak,stran}@nmsu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
jiaoyangli@cmu.edu

Abstract. The Multi-Agent Path Finding (MAPF) is a problem of find-
ing a plan for agents to reach their desired locations without collisions.
Distributed Multi-Agent Path Finder (DMAPF) solves the MAPF prob-
lem by decomposing a given MAPF problem instance into smaller sub-
problems and solve them in parallel. DMAPF works in rounds. Between
two consecutive rounds, agents may migrate between two adjacent sub-
problems following their abstract plans, which are pre-computed, until
all of them reach the areas that contain their desired locations. Previous
works on DMAPF compute an abstract plan for each agent without the
knowledge of other agents’ abstract plans, resulting in high congestion
in some areas, especially those that act as corridors. The congestion neg-
atively impacts the runtime of DMAPF and prevents it from being able
to solve dense MAPF problems.

In this paper, we (i) investigate the use of Uniform-Cost Search to
mitigate the congestion. Additionally, we explore the use of several other
techniques including (ii) using timeout estimation to preemptively stop
solving and relax a subproblem when it is likely to get stuck; (iii) allow-
ing a solving process to manage multiple subproblems – aimed to increase
concurrency; and (iv) integrating with MAPF solvers from the Conflict-
Based Search family. Experimental results show that our new system is
several times faster than the previous ones; can solve larger and denser
problems that were unsolvable before; and has better runtime than PBS
and EECBS, which are state-of-the-art centralized suboptimal MAPF
solvers, in problems with a large number of agents.

Keywords: Multi-Agent Path Finding (MAPF) · Distributed
Multi-Agent Path Finder (DMAPF) · Load Balancing · Distributed
Computing

1 Introduction

Multi-Agent Path Finding (MAPF) is a problem of finding collision-free paths
for agents to move to their desired locations. It has important applications in

Tran Cao Son was partially supported by NSF awards #1757207, #1914635, and
#1812628.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 130–147, 2023.
https://doi.org/10.1007/978-3-031-48539-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-48539-8_9

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 131

automated warehouse [8,13], traffic management [7], and video games [15], etc.
The problem is known to be NP-hard to solve optimally [31]; therefore, a sacrifice
on solution quality is usually made to make MAPF solvers practical.

Two main approaches for solving the MAPF problem are (i) search-based [5]
and (ii) compilation-based [28]. Search-based MAPF solvers focus on develop-
ing search algorithms for MAPF problems. Prominent search-based algorithms
include conflict-based search [24], where conflicts between single-agent plans are
detected by a high-level search on a constraint tree and resolved by a low-level
search; and prioritized planning [14,26], where agents with lower priority need
to avoid conflicts with agents with higher priority. Compilation-based MAPF
solvers translate the MAPF problem into another well-established formulation
such as Answer Set Programming (ASP) [17,18], Boolean Satisfiability (SAT) [2],
and Constraint Satisfaction (CSP) [4], for which efficient solvers exist.

Distributed Multi-Agent Path Finder (DMAPF) [20–22] is our framework
that solves the MAPF problem by applying the divide-and-conquer idea. It
decomposes a given MAPF problem instance into smaller subproblems; assigns
the subproblems to solving processes – which can run on a single or multiple
machines; then uses an existing MAPF solver, in any approach mentioned, to
solve the smaller MAPF problem instances. The partial solutions from every
solving process are combined at the end to provide a solution to the original
problem.

In this paper, we introduce several mechanisms to scale up DMAPF and
improve its efficiency. More specifically,

1. Improved Abstract Planning – We investigate the use of Uniform-Cost Search
to make abstract plans in an attempt to mitigate congestion at a high level.
An abstract plan of an agent is a sequence of subproblems that the agent
needs to traverse to reach the area that contains its desired location. This
enables DMAPF to take on denser maps as it decreases the chance of being
in a situation where no agent is able to progress to the next subproblem in its
abstract plan because the next subproblem of every agent is overcrowded. It
also reduces the runtime because the MAPF problem instances to solve tend
to be less dense. See Subsect. 3.1 for details.

2. Timeout Mechanism – We introduce a timeout estimation mechanism to allow
DMAPF to preempt its underlying MAPF solver from solving subproblem
instances that are likely to take a prohibitively long time to solve. Any sub-
problem instance that is stopped will be relaxed by having some of its agents’
targets temporarily removed. Then, it will be solved again until either a plan
is found or it cannot be relaxed further. This helps to prevent DMAPF from
getting stuck on subproblem instances that would be unsolvable without the
relaxation, thus, improving the success rate. In many cases, it also improves
the overall runtime as it tends to be faster to avoid solving difficult subprob-
lem instances. See Subsect. 3.2 for details.

3. Multiple Subproblems Assignment – We extend our previous work on
DMAPF in [21] by allowing each solving process to manage multiple sub-
problems instead of one. This enables DMAPF to handle MAPF problem

132 P. Pianpak et al.

instances of any size as it would not be restricted by the number of subprob-
lems, which corresponds one-to-one to the number of solving processes in the
old design. This improvement has a significant impact on the applicability of
DMAPF, but is purely engineering. It involved heavy re-organization of the
code base; therefore, we omit the details here. Instead, its implications can
be seen from the experimental results in Subsect. 4.1.

4. Integration with CBS-based MAPF Solvers – In addition to ASP, we explore
the use of CBSH2-RTC [11], EECBS [12], and PBS [14], as an underly-
ing MAPF solver for DMAPF. The requirements for integrating a MAPF
solver with DMAPF and modifications to the CBS-based MAPF solvers are
explained in Subsect. 3.3.

2 Background

2.1 Multi-agent Path Finding

The MAPF problem can be defined as P = (G,A, I, T), where G = (V,E) is a
graph such that V is a set of vertices corresponding to locations in the graph;
E ⊆ V ×V denotes pairs of locations where agents can traverse in some direction;
A is a set of agents; and I, T ⊆ A × V denote start and goal locations of the
agents, respectively. An agent at location v1 can either move from v1 to v2 in
one time step if (v1, v2) ∈ E or stay at v1. The most common restrictions are
that (i) each location can be occupied by at most one agent at a time; and (ii)
two agents cannot swap locations in a single time step. Violating any of these
restrictions is said to cause a conflict. A solution to a MAPF problem instance is
a set of movement plans (i.e., a sequence of vertices) for every agent that allows
them to go to their goal locations without causing the conflict. The quality of
a solution is usually measured in terms of (i) makespan – the longest length of
the movement plans in the solution; and (ii) sum-of-cost – the sum of lengths
of the movement plans in the solution.

There are several variants of the MAPF problem [27]. DMAPF follows the
mentioned restrictions and assumes that every agent has unique start and goal
locations; and they need to stay at their goals at the end of the solution.

2.2 Distributed Multi-Agent Path Finder

Distributed Multi-Agent Path Finder (DMAPF) applies the divide-and-conquer
idea to solve the MAPF problem. Given a MAPF problem instance P , DMAPF
partitions P into a set of smaller subproblems S = {S1, . . . , Sn}. A subproblem
Si is defined as ((Vi, Ei), Ai, Ii, Ti) where Vi ⊆ V , Ei ⊆ E, Ai ⊆ A, Ii ⊆ I, and
Ti ⊆ T . Pairs of locations in Ei are only between vertices in Vi; agents in Ai

are only those that have their start location in Vi; and start and goal locations
respectively in Ii and Ti are only for agents in Ai. In our previous works, each
solving process is only assigned one different subproblem in S. In this work,
we extend the system to allow assigning multiple subproblems to each solving
process, provided that every subproblem is only assigned to one solving process.

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 133

Solving processes work together in parallel. Every solving process has full
knowledge of adjacency between all the subproblems. Subproblems S1 and S2 are
adjacent and are called neighbors iff there exists vertices v1 ∈ S1 and v2 ∈ S2 such
that v1 and v2 are adjacent (i.e., (v1, v2) ∈ E). In addition, each solving process
knows every vertex in its assigned subproblems that is adjacent to a neighboring
subproblem. DMAPF allows subproblems to contain sets of disconnected vertices
called areas and operates on them, but for simplicity, we will use the term
subproblem throughout the paper unless a clear distinction is required.

Every solving process starts by creating an abstract plan for each agent
residing in any of its assigned subproblems. Figure 1 shows an example of a
MAPF problem instance decomposed into 4 subproblems: S1, S2, S3, and S4.
Suppose that subproblem S1 is assigned to a solving process s, then s has the
responsibility to create abstract plans for agents a1 and a2 to reach subproblem
S4 that contains their goal locations g1 and g2, respectively. Possible abstract
plans for agents a1 and a2 are 〈S1, S2, S4〉, and 〈S1, S3, S4〉.

Fig. 1. An example of how a MAPF problem instance is decomposed into 4 subprob-
lems: S1, S2, S3, and S4. Start and goal locations of agents are denoted by small squares
and circles with corresponding numbers, respectively.

After an abstract plan has been created for each agent, solving processes work
together round-by-round, following the protocol described in [20,21]. Let a set N
contains pairs of solving processes that have adjacent subproblems (i.e., they are
called neighbors). The protocol consists of 3 phases: (i) negotiation – every pair
in N decides which agents to migrate (i.e., progress to the next subproblem in the
abstract plan) and to which border locations. Priority is given to agents with the
longest remaining steps in the abstract plan and border locations are chosen such
that the aggregate distance between agents and their assigned border locations
is minimized; (ii) rejection – every pair in N detects which previously-agreed
migrations will result in collision and rejects them. This ensures a collision-free
migration agreement across all subproblems; and (iii) confirmation – every pair
in N confirms agents that can successfully move to their assigned border loca-
tions. The agreed adjacent border locations, which are in their next subproblems,

134 P. Pianpak et al.

will be used as their start locations in the next round. The protocol allows solv-
ing processes to either solve or relax (see Subsect. 3.2) their own subproblem
instances in parallel between the rejection and the confirmation phases.

The algorithm terminates when either (i) a plan is found where at the end
every agent stays at its goal location – the solution is then reported; or (ii) there
is a subproblem instance that cannot be solved nor relaxed further – the system
then reports that it cannot find a solution.

2.3 The CBS Family

CBSH2-RTC [11] is a state-of-the-art version of Conflict-Based Search
(CBS) [24]. CBS is an optimal search-based MAPF solver where a path for each
agent is individually planned from its start to goal location using a space-time
A* search [26] at a low level. Conflicts between agent plans are detected in a
high-level search on a constraint tree. They are resolved in a low-level search by
making new plans for a subset of conflicting agents that avoid the imposed con-
straints. CBSH2-RTC introduces several improvements that make CBS smarter
in determining which conflict to resolve first, and how, using various heuris-
tics. CBSH2-RTC is well known for its performance compared to other optimal
MAPF solvers.

EECBS [12] improves on the idea of ECBS [1], which is a bounded-suboptimal
variant of CBS, by replacing focal search that acts as a high-level search in ECBS
with Explicit Estimation Search [29]. It uses online learning to guide the search
and employs various techniques that have been used to improve CBS. It has
recently been improved by replacing the space-time A* that is used as a low-
level search in ECBS with SIPPS [10], allowing EECBS to be even more efficient.

PBS [14] is a suboptimal MAPF solver that uses the idea of prioritized plan-
ning [26] where agents are given different priorities and those with lower priority
need to avoid higher-priority agents. Instead of planning based on some fixed
priority ordering, PBS is able to (lazily) explore all total priority orderings. PBS
is not complete, but very efficient, and able to find solutions for many MAPF
instances where standard prioritized MAPF algorithms cannot.

3 Methodology

3.1 Abstract Planning Methods

In addition to the ASP encoding used for creating abstract plans in our previous
works, we introduce 4 new abstract planning methods to DMAPF using (i)
Breadth-First Search (BFS); (ii) Random Search (RAND); (iii) Uniform-Cost
Search (UCS); and (iv) Centralized Uniform-Cost Search (UCSC).

Let F be a frontier containing sequences of areas that have not yet been
explored. To find an abstract plan for an agent a, an initial plan containing only
the area where agent a starts from is added to F . Then, one of the plans in F is
removed and checked whether the last area in the plan contains the goal location

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 135

of agent a. If not, new plans are created and added to F by extending the plan
with every one of the adjacent areas that have not been explored. This process
repeats until either an abstract plan is found or F is exhausted.

In BFS, F acts as a queue, so plans are selected in the order when they were
added to F , resulting in the shortest abstract plan. RAND only differs from BFS
in that F acts as a set instead of a queue, so a plan is randomly selected in each
iteration, resulting in an abstract plan that may not be the shortest.

In UCS and UCSC, F acts as a priority queue where the ordering (lowest-
first) is based on the congestion within each area in a plan. We define congestion
within an area a at an abstract step t as n/v, where n is the number of agents in
a at abstract step t; and v is the number of vertices in a. The overall congestion
is tracked using a congestion matrix which contains congestion within every
area at every abstract step. In UCS, every solving process makes an abstract
plan for each agent in its assigned subproblems and uses the plan to update its
congestion matrix locally in each iteration. In UCSC, only one solving process
is designated to make an abstract plan for each agent in the original problem
P and use the plan to update a single congestion matrix in each iteration. At
the end, the plans are distributed to each responsible solving process. Resulting
abstract plans from UCSC create less overall congestion than UCS since only a
single congestion matrix is consulted and updated.

An example of how a congestion matrix is updated in each iteration by
UCSC is shown in Fig. 2 where it takes the problem from Fig. 1 and sequen-
tially updates it with abstract plans of agents a1, a2, a3, and a4, which are
〈S1, S2, S4〉, 〈S1, S3, S4〉, 〈S3〉, and 〈S4, S2〉, respectively.

Fig. 2. An illustration on how a congestion matrix is updated over time by UCSC. (a)
initial. (b) with 〈S1, S2, S4〉. (c) with 〈S1, S3, S4〉. (d) with 〈S3〉. (e) with 〈S4, S2〉.
Updated values are highlighted in red. (Color figure online)

3.2 Timeout Mechanism

For a MAPF subproblem instance Si to be processed, there must exist some
agent with a target, either its original goal or an assigned border location in Si.
If there is some agent with an assigned border location in Si, then the other
agents without an assigned border location will be considered as having no goal

136 P. Pianpak et al.

Algorithm 1. Solving a MAPF problem instance with timeout
Input: Si – MAPF subproblem instance; n – #agents in Si

Parameter: ta – Approximate timeout per agent
f – Timeout penalty factor; ε – Timeout tolerance factor
Output: sol – Solution of Si

1: while true do
2: if Si is solved within n · ta · ε then
3: if Some agent in Si has a goal or border location assigned then
4: ta ← ts/n where ts is the time used to solve Si

5: else
6: ta ← f · ta
7: return sol
8: else
9: Stop solving Si

10: if Some agent in Si has a border location assigned then
11: Remove an assigned border location from one agent in Si

12: else
13: terminate

(in the current round) to create the least constraint for the agents with assigned
border locations to reach their targets.

Algorithm 1 shows the timeout estimation mechanism added to the subprob-
lem solving procedure. Line 2 tries to solve Si within the time limit of n · ta · ε,
where n, ta, and ε are the number of agents, an approximate timeout per agent,
and a timeout tolerance factor, respectively. The value of ε is a multiplicative
constant that accommodates errors from the approximation. If Si is solved where
some agent has a target, then ta is re-estimated to the time used to solve Si per
agent (Line 4). However, if Si is solved but there is no agent with a target, it
means that Si is has been relaxed too much. It then will be tried to solve again
in the next round with a higher timeout limit of f · ta where f is another mul-
tiplicative constant greater than 1 (Line 6). If Si cannot be solved within the
time limit, then the MAPF solver is stopped (Line 9) and Si is checked whether
it is relaxable (Line 10). Si can be relaxed if it has some agent that needs to
migrate and is assigned with a border location. Line 11 relaxes Si by removing
an assigned border location from one of the migrating agents. The heuristic is to
select an agent with the least number of steps left in its abstract plan. Otherwise,
DMAPF terminates at Line 13 and reports that it cannot find a solution.

3.3 Integration with CBS-Based MAPF Solvers

To integrate a MAPF solver with DMAPF, it needs to satisfy the requirements
that: (i) agents without a goal location are allowed in the problem; and (ii)
agents need to be able to avoid being in a set of certain vertices VP at the end
of the plan unless they need to go to a location in VP . The second condition
accommodates the design of DMAPF that improves its success rate by making
sure there are unoccupied vertices for migrating agents to move in.

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 137

CBSH2-RTC, EECBS, PBS all use an A*-style algorithm (i.e., space-time
A* [26], SIPP [19], or SIPPS [10]) to plan paths for individual agents. We modify
the heuristic function and the goal test function for agents without goals as
follows. For the heuristic function, the h-value of a node at a vertex that is in
the prohibited set VP is 1, and the h-value of a node at a vertex that is not in
VP is 0. For the goal test function, we claim a node at vertex v at time step t
as a goal node iff vertex v is not in VP and there are no vertex constraints that
prohibit this agent from being at vertex v at any time step after t.

In addition, CBSH2-RTC and EECBS use some speedup techniques that rely
on the assumption that the agents have unique goal locations. We therefore turn
off those techniques when the involved agents do not have goals. Specifically, they
both build MDDs [25], i.e., a direct acyclic graph that consists of all shortest
paths from the start vertex to the goal vertex of an agent, for individual agents,
which are used for finding cardinal conflicts [3] and rectangle conflicts [11]. We
do not build MDDs for agents without goals. Thus, if such agents are involved in
a conflict, we classify this conflict as semi-cardinal or non-cardinal (depending
on how the MDD of the other agents involved in the conflict looks like), and do
not perform rectangle reasoning for it. Moreover, target reasoning [11] happens
when an agent runs into another agent that has already reached its goal location
and sat there, so we perform target reasoning only if the second agent has been
assigned a goal vertex.

4 Experiments

We conduct experiments in Subsects. 4.1–4.4 sequentially to determine the best
parameters for DMAPF. Subsection 4.1 determines the optimal number of solv-
ing processes to be executed in parallel. Subsection 4.2 determines the opti-
mal size of subproblems that gives the best tradeoff between performance and
success rate. Subsection 4.3 determines the optimal sensitivity of timeout that
allows DMAPF to appropriately stop its underlying MAPF solver. Subsection 4.4
determines the abstract planning method that computes abstract plans with the
least overall congestion. Finally, Subsect. 4.5 uses the best parameters obtained
from the previous subsections to compare variations of DMAPF with CBSH2-
RTC [11], EECBS [12], and PBS [14].

The experiments are performed on a Dell Precision 3630 Tower with an
Intel Core i9-9900K @3.60GHz and 64 GB of RAM. The software used includes
Ubuntu 20.04.5 LTS, ROS Noetic Ninjemys [23], and Clingo 5.6.2 [6]. We use
maps and random scenarios from the MAPF benchmark1 [27]. Each scenario has
at most 1000 agent and each agent has unique start and goal locations. We use
the following maps in our experiments: den312d, random-64-64-20, maze-128-
128-2, lak303d, and warehouse-20-40-10-2-2, which will be referred to as den,
rand, maze, lak, and ware, respectively. Unless stated otherwise, we use 20 solv-
ing processes, subproblems that contain roughly 40 vertices, timeout penalty fac-

1 https://movingai.com/benchmarks/mapf/index.html.

https://movingai.com/benchmarks/mapf/index.html

138 P. Pianpak et al.

tor (f) of 2, timeout tolerance factor (ε) of 10, centralized Uniform-Cost-Search
to make abstract plans, and ASP as an underlying MAPF solver in DMAPF.

We use our problem divider [21] to decompose a MAPF problem into |S|
subproblems of roughly the same size. The divider applies the balanced k-means
algorithm [16] where |S| vertices are first randomly selected as centroids; then,
nearby vertices (calculated by real distance) are grouped to form clusters (i.e.,
subproblems) around the centroids while keeping the numbers of vertices in each
cluster roughly the same. The centroids are re-initialized to the center of their
clusters and the process repeats until there is no change to the centroids.

For the reproducibility of our results, the experiments in the following sub-
sections also state seed values used by the problem divider. Because the perfor-
mance of DMAPF greatly depends on how the input map is decomposed, the
seed values used to decompose the maps in Subsects. 4.2–4.5 are chosen from
101 to 110 for the one that gives the best runtime in the first scenario. Then,
the maps decomposed with the chosen seed values will be used throughout the
whole experiments. The reported values come from an average of running each
random scenario from 1–10 once in the same (decomposed) map, under the time
limit of 5min, for the total of 10 times.

4.1 The Numbers of Solving Processes

Table 1 attempts to determine the optimal number of solving processes by com-
paring runtimes of DMAPF when using 4, 8, 12, . . . , 32 solving processes on
the lak map with 200, 400 and 600 agents from the first random scenario. The
map is decomposed into 240 subproblems using the seed value of 2. Each solving
process is randomly assigned a set of subproblems. When p = 20, for example,
each solving process needs to manage 240/20 = 12 subproblems. Every reported
runtime is an average from solving the scenario 10 times.

Table 1. Comparing runtimes of DMAPF when using p solving processes on the lak
map with n agents.

n Runtime (s)
p = 4 p = 8 p = 12 p = 16 p = 20 p = 24 p = 28 p = 32

200 32.1 25.1 21.8 20.0 19.4 18.9 20.5 19.6
400 97.0 75.1 63.1 66.2 52.8 56.2 53.8 63.5
600 214.2 158.7 129.3 127.5 110.7 113.3 116.0 120.0

On our machine that is equipped with a CPU that has 8 cores and 16 hard-
ware threads, the results suggest that using 20–24 solving processes, or 125%–
150% of the number of hardware threads provides the best runtime. Using too
few solving processes underutilizes the computational resources and using too
many solving processes introduces too much competition for the resources, which
are both detrimental to the performance.

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 139

4.2 The Size of Subproblems

Table 2. Comparing runtimes, makespan, sum-of-cost, and success rates of DMAPF
on the rand map, decomposed into subproblems that contain roughly v vertices, with
1000 agents.

v Runtime (s) Makespan SoC (×1k) Success Rate

30 39.9 864 558.4 0.4
40 46.6 906 598.5 1.0
50 88.2 1041 627.9 0.8
60 80.0 1107 676.6 1.0
70 86.8 1070 633.6 1.0

Table 2 attempts to determine the optimal size of subproblems by comparing
runtimes, makespan, sum-of-cost, and success rate of DMAPF on the rand map
that has been decomposed into subproblems of different sizes: 30, 40, 50, 60, and
70 vertices, using the seed values of 107, 105, 101, 109, and 105, respectively.
DMAPF with ASP as an underlying MAPF solver is optimized for makespan;
therefore, makespan is a better indicator of solution quality than sum-of-cost.

The results show that, with small subproblems, DMAPF tends to run faster
and give better solution quality, but have a lower success rate. DMAPF runs
faster in small subproblems because ASP, which its runtime is known to be very
sensitive to the number of vertices, is less affected by the sizes of the subprob-
lems since they are small. It also gives better solution quality because as the
subproblems become more fine-grained, it results in less agents waiting to move
between consecutive rounds. However, the success rate is now lower because there
is more chance that some subproblem instance becomes unsolvable as the ratio
b/v, where b is the number of border vertices (i.e., vertices that are adjacent to
vertices in another subproblem) and v is the number of vertices in the subprob-
lem, increases. In DMAPF, agents follow their abstract plans to move into the
next subproblems between two consecutive rounds. The greater the ratio b/v is,
the more agents can enter (or leave) subproblems while the subproblems may
contain only a few vertices, making it difficult (or impossible) to find a move-
ment plan. Our results are consistent with the original work on DMAPF [22]
that suggests that the size of subproblems around 40–60 vertices provide the
best performance and solution quality.

4.3 Timeout Sensitivity

Table 3 attempts to determine the optimal value of the timeout tolerance factor
ε by comparing runtimes, makespan, sum-of-cost, and the number of times that
DMAPF preemptively stops its underlying MAPF solver because it exceeds the
estimated timeout limit, under different values of ε. The greater the value of ε is,
the longer DMAPF allows each subproblem instance to be solved. We decompose
the rand map using the seed value of 105 for this experiment.

140 P. Pianpak et al.

Table 3. Comparing runtimes, makespan, sum-of-cost, and the number of times
DMAPF stops its an underlying MAPF solver under different timeout tolerance factors
ε, on the rand map with 1000 agents.

ε Runtime (s) Makespan SoC (×1k) #Stops

4 51.9 906 611.9 25
6 49.2 906 600.1 13
8 48.6 903 607.3 7
10 46.6 906 598.5 3
12 46.3 906 603.2 1
14 49.1 908 606.8 2

The results show that setting the value of ε too small (i.e., ε < 10 in Table 3)
causes DMAPF to be too sensitive and stops its MAPF solver too early, resulted
in worse performance. However, when the value of ε is too big such as when
ε = 14, DMAPF waits too long to stop its MAPF solver from solving problem
instances that are likely to be too difficult, which also resulted in worse per-
formance. The number of times that DMAPF stops its MAPF solver increases
when the value of ε increases from 12 to 14. This shows that in practice there is
a chance, especially in dense maps, that DMAPF will have to face a few difficult
subproblem instances. Without the timeout mechanism (i.e., ε = +∞) like in our
previous works, DMAPF would likely get stuck or take a very long time to solve
those subproblem instances. In these situations, it would be more efficient to
stop the MAPF solver early, relax the subproblem instance, and retry, which the
timeout mechanism allows DMAPF to do. The results also suggest the optimal
value of ε to be around 10–12, and there is no significant deviation of solution
qualities between the different values of ε overall.

4.4 Congestion

Figure 3 compares congestion resulting from abstract plans created by different
methods: ASP, BFS, RAND, UCS, and UCSC, on the rand map with 600, 800,
and 1000 agents. The map is decomposed using the seed value of 105. The
charts depict the trend of the congestion (min and max) in each abstract step.
We are mainly concerned with the max congestion as that is usually when some
subproblem instance becomes too difficult or unsolvable. The max congestion is
the highest congestion across all areas at particular abstract steps. The opposite
is true for the min congestion.

In Fig. 3, both ASP and BFS produce the shortest abstract plans among
all the plans from all the methods; however, their plans also create the highest
congestion. In the case of 800 and 1000 agents, their plans result in the value
of congestion greater than 1 at abstract step 3. This means that if every agent
is able to follow its abstract plan until abstract step 2, there must be at least

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 141

(a) ASP (b) BFS

(c) RAND (d) UCS

(e) UCSC

Fig. 3. Comparing the trend of congestion from abstract plans created by using Answer
Set Programming (ASP), Breadth-First Search (BFS), Random Search (RAND),
Uniform-Cost Search (UCS), and Centralized Uniform-Cost Search (UCSC). Each chart
depicts the min and max congestion from a particular method on the rand map with
600, 800, and 1000 agents.

one area at abstract step 3 where the number of agents who want to be there is
greater than the number of vertices in the area!

Abstract plans from both RAND and UCS show significantly lower conges-
tion compared to those from ASP and BFS; however, the length of abstract
plans from RAND is quite random (but would still be less than the total num-
ber of areas) as it selects nodes to expand randomly; and the plans from UCS,
which uses the knowledge of congestion, are only slightly better than the plans
from RAND. This is because the knowledge is incomplete when abstract plans

142 P. Pianpak et al.

are made independently by different solving processes. It results in solving pro-
cesses unknowingly create abstract plans that still have high congestion collec-
tively. Instead of having solving processes independently create abstract plans
for agents within their responsible subproblems, UCSC uses the same technique
as UCS, but designates one of the solving processes to create abstract plans
for all agents in the problem. This results in a collection of abstract plans with
significantly lower congestion among all the other methods.

Table 4 shows that runtime and solution quality of DMAPF significantly
improve when UCSC is used to make abstract plans. It also shows a close inverse
relationship between congestion and runtime in DMAPF, following the trend
in Fig. 3. The runtimes spent on abstract planning are also shown to confirm
that UCSC does not incur a significant overhead. In fact, the ASP encoding
used in the previous works is even slower than UCSC. According to the success
rates, our previous works which do not have the congestion avoidance mecha-
nism would only be able to solve about 60% of the problem instances with 800
agents and unable solve any problem instance with 1000 agents. The congestion
avoidance mechanism allows DMAPF to perform at least 3 times faster, reduce
the makespan by almost half, and be able to solve all the problem instances.

Table 4. Comparing runtimes used in abstract planning, the total runtimes, makespan,
sum-of-cost, and success rates of DMAPF on the rand map with n agents using different
abstract planning methods: ASP, BFS, RAND, UCS, and UCSC.

n Method Runtime (s) Makespan SoC (×1k) Success Rate
Abs. Total

600 ASP 0.3 48.4 914 247.3 1.0
BFS 0.0 110.2 1185 265.6 0.8
RAND 0.0 19.8 673 236.8 1.0
UCS 0.0 28.2 779 258.4 1.0
UCSC 0.0 16.1 564 207.2 1.0

800 ASP 0.4 106.6 1241 511.7 0.6
BFS 0.0 162.1 1367 525.3 0.1
RAND 0.0 74.2 893 424.8 0.8
UCS 0.0 56.1 934 451.0 0.4
UCSC 0.0 26.1 757 379.1 1.0

1000 ASP 0.5 - - - 0.0
BFS 0.0 - - - 0.0
RAND 0.0 204.6 1058 703.9 0.1
UCS 0.0 103.8 1109 740.2 0.1
UCSC 0.0 46.6 906 598.5 1.0

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 143

4.5 Comparison Between MAPF Solvers

Table 5. Comparing runtimes, makespan, sum-of-cost, and success rate between
MAPF solvers: (i) DMAPF w/ASP (DMAPF-A), (ii) DMAPF w/CBSH2-RTC
(DMAPF-C), (iii) DMAPF w/EECBS (DMAPF-E), (iv) DMAPF w/PBS (DMAPF-
P), (v) EECBS, and (vi) PBS, on the den, random, maze, lak, and ware maps, with
different number of agents shown under the names of the maps. The number of vertices
in each map is shown in the parentheses on the right hand side of its name.

Solver — Runtime (seconds) —
den (2445) rand (3270) maze (10858) lak (14784) ware (38756)
200 300 400 600 800 1000 100 200 300 200 400 600 600 800 1000

DMAPF-A 6.9 18.4 39.3 16.1 26.0 46.6 20.7 40.7 - 15.6 37.9 75.9 32.5 42.4 52.3
DMAPF-C - - - - - - 8.5 - - 35.7 - - 14.2 19.8 35.2
DMAPF-E 170.6 - - - - - 9.8 - - 10.7 - - 14.8 20.4 62.9
DMAPF-P 3.1 - - - - - 8.1 - - 7.5 44.2 - 13.1 17.0 20.8
EECBS 0.4 1.4 6.4 2.5 21.4 141.7 2.6 135.8 279.6 1.2 6.5 42.6 5.8 13.1 22.0
PBS 15.1 217.5 - - - - 50.5 - - 17.2 266.9 - 9.4 26.1 57.2

— Makespan —
DMAPF-A 475 722 980 564 757 906 3075 3704 - 1014 1794 2774 748 774 795
DMAPF-C - - - - - - 3091 - - 1017 - - 753 781 804
DMAPF-E 643 - - - - - 3072 - - 1033 - - 780 828 893
DMAPF-P 477 - - - - - 3069 - - 1016 1690 - 761 779 803
EECBS 180 288 377 145 218 302 1474 1571 1702 483 511 583 451 455 457
PBS 132 158 - - - - 1475 - - 482 479 - 451 455 457

— Sum-of-Cost (×1000) —
DMAPF-A 51.8 117.3 248.9 207.2 379.1 598.5 181.4 511.8 - 112.9 362.2 794.9 233.1 331.3 448.3
DMAPF-C - - - - - - 187.2 - - 110.7 - - 230.7 335.8 443.2
DMAPF-E 56.4 - - - - - 175.4 - - 110.4 - - 236.7 356.6 498.8
DMAPF-P 54.1 - - - - - 176.2 - - 111.8 358.7 - 231.8 334.8 449.1
EECBS 13.8 28.0 46.9 34.8 60.6 101.6 56.1 119.7 191.4 38.2 78.6 131.1 109.6 146.4 181.1
PBS 11.6 19.1 - - - - 56.4 - - 37.9 74.1 - 109.5 146.2 180.9

—Success Rate—
DMAPF-A 1.0 1.0 0.7 1.0 1.0 1.0 1.0 0.8 0.0 1.0 1.0 0.6 1.0 1.0 1.0
DMAPF-C 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.7
DMAPF-E 0.4 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 1.0 0.0 0.0 1.0 0.9 0.6
DMAPF-P 0.6 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 1.0 0.4 0.0 0.6 0.5 0.3
EECBS 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.9 0.1 1.0 1.0 1.0 1.0 1.0 1.0
PBS 1.0 0.8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.3 0.0 1.0 1.0 1.0

Table 5 compares runtimes, solution quality (indicated by makespan and sum-
of-cost), and success rate of DMAPF that has been integrated with 4 different
MAPF solvers : (i) ASP; (ii) CBSH2-RTC2; (iii) EECBS3; (iv) PBS4, denoted as
DMAPF-A, DMAPF-C, DMAPF-E, and DMAPF-P, respectively; and EECBS
and PBS, representing state-of-the-art bounded-suboptimal and optimal MAPF
solvers, respectively. We enable SIPPS in EECBS and PBS (including the ones
2 https://github.com/Jiaoyang-Li/CBSH2-RTC.
3 https://github.com/Jiaoyang-Li/EECBS.
4 https://github.com/Jiaoyang-Li/PBS.

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/Jiaoyang-Li/EECBS
https://github.com/Jiaoyang-Li/PBS

144 P. Pianpak et al.

integrated with DMAPF) and set the suboptimality factor of EECBS to 5 to
ensure it gives the best runtime without caring for optimality guarantee [10].
We also compared with CBSH2-RTC, but it was not able to solve any problem
instance, so we omit the results from the table. The maps: den, rand, maze, lak,
and ware are used in the comparison and have been decomposed using the seed
values of 107, 105, 110, 102, and 108, respectively.

In terms of runtime, EECBS typically outperforms the other solvers, but its
speed deteriorates much quicker than DMAPF as the number of agents increases.
This is shown when DMAPF-A is able to outperform EECBS in the random
map with 1000 agents and in the maze map with 200 agents. DMAPF-P also
outperforms EECBS in the warehouse map with 1000 agents.

In terms of solution quality, DMAPF returns solutions with makespan and
sum-of-cost about 2–6 times higher than those returned by EECBS and PBS.
However, they are comparable in the number of movements agents need to make
to reach the goals – the results are omitted due to space limitation. This suggests
that agents planned by DMAPF spend about the same number of movements
as those planned by EECBS and PBS, but they waste a lot of time in waiting
to move from one subproblem to the next between subsequent rounds.

DMAPF-C, DMAPF-E, and DMAPF-P are about twice as fast as DMAPF-
A in sparse maps (i.e., maps where the number of agents is low compared to the
number of vertices) such as in the warehouse map. However, they are only able to
solve a few problem instances in dense maps, especially after the original map has
been decomposed into smaller subproblems which introduces more conflicts. On
the other hand, DMAPF-A is less affected by the number of conflicts, allowing
it to solve significantly more problems instances.

The issue that hinders DMAPF-A is not the conflicts, but rather about how
the problem is decomposed. Figure 4 shows subproblem instances that can easily
prevent DMAPF from finding the solutions. Figure 4a typically happens in maps
with narrow corridors such as the maze map – agent a1 needs to go to location
g1 but is blocked by agent a2 that does not need to go anywhere. Figure 4b
depicts a similar problem, but it is caused by a mixture of congestion and bad
problem decomposition, so an improvement in either area should help to prevent
this scenario.

Fig. 4. Issues from bad problem decomposition. Start and goal locations of agents are
denoted by small squares and circles with corresponding numbers, respectively.

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 145

5 Related Work

There are very few works on MAPF that share the idea of spatially decompos-
ing the problem. To our knowledge, other works with a similar idea includes (i)
Spatially Distributed Multiagent Planner (SDP) [30] separates a given MAPF
problem into low-contention and high-contention areas. Special searching rules
are enforced in high-contention areas to speed up the search and agents are not
allowed to have a goal location in those areas; (ii) Hierarchical Multi-Agent Path
Planner (HMAPP) [32] shares a very similar approach with DMAPF. The main
difference is that it limits the direction of border vertices between adjacent sub-
problems, whereas DMAPF does not; and (iii) the shard system [9] designates
special areas, connecting subproblems, to be used as buffers to improve the solu-
tion quality. In the current implementation, agents are not allowed to have a
goal location in the buffer areas.

The only recent related works are HMAPP and the shard system. Their
source codes are not readily available, so in our experiment we decided to com-
pare DMAPF with EECBS and PBS instead. This design choice serves two
purposes: (i) our results can be indirectly compared with the two systems –
HMAPP has been compared with ECBS [1], the baseline of EECBS, and the
shard system has been compared with EECBS; and (ii) it shows the behavior
of DMAPF when EECBS and PBS are used as its underlying MAPF solver
compared to their standalone versions.

6 Summary

We introduce several techniques to improve DMAPF, including (i) allowing each
solving process to manage multiple subproblems; (ii) timeout estimation mech-
anism; (iii) congestion avoidance in abstract plans; and (iv) integration with
other MAPF solvers. Allowing each solving process to manage multiple sub-
problems enables DMAPF to work with maps of any size – not limited by the
number of subproblems like in our previous works. The combination of time-
out estimation mechanism and congestion avoidance in abstract plans enables
DMAPF to solve dense maps more efficiently and also increases the success rate.
The integration with MAPF solvers from the CBS family provides an insight on
the kinds of MAPF solvers that will be suitable with DMAPF for different sit-
uations. Even though the improvements we introduce are simple, they improve
DMAPF significantly (as shown in Table 4) and can serve as a baseline for future
improvements.

From the experiments, we found that the performance of DMAPF is very
sensitive to how the problem is decomposed. Having a tool [21] that automat-
ically decomposes a given MAPF problem is convenient, but it still does not
guarantee good results. We believe that, with future improvement on problem
decomposition technique and solution quality, DMAPF can be applied in real-
world large-scale MAPF problems since its strength lies in scalability. Of course,
environments in the real-world can be unpredictable; however, having a high-
level plan for agents to coordinate is necessary.

146 P. Pianpak et al.

References

1. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In: Seventh
Annual Symposium on Combinatorial Search (2014)

2. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press, Amsterdam (2009)

3. Boyarski, E., et al.: Icbs: improved conflict-based search algorithm for multi-agent
pathfinding. In: Twenty-Fourth International Joint Conference on Artificial Intel-
ligence (2015)

4. Dechter, R., Cohen, D., et al.: Constraint Processing. Morgan Kaufmann, Mas-
sachusetts (2003)

5. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding
problem: summary and challenges. In: International Symposium on Combinatorial
Search, vol. 8 (2017)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Technical Communications of the 32nd
International Conference on Logic Programming (ICLP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

7. Ho, F., et al.: Decentralized multi-agent path finding for UAV traffic management.
IEEE Trans. Intell. Transp. Syst. (2020)

8. Hönig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Persistent and robust
execution of MAPF schedules in warehouses. IEEE Rob. Autom. Lett. 4(2), 1125–
1131 (2019)

9. Leet, C., Li, J., Koenig, S.: Shard systems: scalable, robust and persistent multi-
agent path finding with performance guarantees. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 9386–9395 (2022)

10. Li, J., Chen, Z., Harabor, D., Stuckey, P.J., Koenig, S.: MAPF-LNS2: fast repairing
for multi-agent path finding via large neighborhood search. In: Proceedings of the
AAAI Conference on Artificial Intelligence (2022)

11. Li, J., Harabor, D., Stuckey, P.J., Ma, H., Gange, G., Koenig, S.: Pairwise symme-
try reasoning for multi-agent path finding search. Artif. Intell. 301, 103574 (2021)

12. Li, J., Ruml, W., Koenig, S.: EECBS: a bounded-suboptimal search for multi-agent
path finding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 12353–12362 (2021). https://doi.org/10.1609/aaai.v35i14.17466

13. Li, J., Tinka, A., Kiesel, S., Durham, J.W., Kumar, T.S., Koenig, S.: Lifelong
multi-agent path finding in large-scale warehouses. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 11272–11281 (2021)

14. Ma, H., Harabor, D., Stuckey, P.J., Li, J., Koenig, S.: Searching with consistent
prioritization for multi-agent path finding. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 7643–7650 (2019). https://doi.org/10.1609/
aaai.v33i01.33017643

15. Ma, H., Yang, J., Cohen, L., Kumar, T.S., Koenig, S.: Feasibility study: moving
non-homogeneous teams in congested video game environments. In: Thirteenth
Artificial Intelligence and Interactive Digital Entertainment Conference (2017)

16. Malinen, M.I., Fränti, P.: Balanced K -means for clustering. In: Fränti, P., Brown,
G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp.
32–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_4

17. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)

https://doi.org/10.1609/aaai.v35i14.17466
https://doi.org/10.1609/aaai.v33i01.33017643
https://doi.org/10.1609/aaai.v33i01.33017643
https://doi.org/10.1007/978-3-662-44415-3_4

Load Balancing in Distributed Multi-Agent Path Finder (DMAPF) 147

The Logic Programming Paradigm, pp. 375–398. Springer, Cham (1999). https://
doi.org/10.1007/978-3-642-60085-2_17

18. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3), 241–273 (1999)

19. Phillips, M., Likhachev, M.: Sipp: safe interval path planning for dynamic environ-
ments. In: 2011 IEEE International Conference on Robotics and Automation, pp.
5628–5635. IEEE (2011)

20. Pianpak, P., Son, T.C.: DMAPF: a decentralized and distributed solver for multi-
agent path finding problem with obstacles. Electr. Proc. Theor. Comput. Sci.
(EPTCS) 345, 99–112 (2021). https://doi.org/10.4204/eptcs.345.24

21. Pianpak, P., Son, T.C.: Improving problem decomposition and regulation in dis-
tributed multi-agent path finder (DMAPF). In: PRIMA 2022: Principles and Prac-
tice of Multi-Agent Systems, pp. 156–172 (2023). https://doi.org/10.1007/978-3-
031-21203-1_10

22. Pianpak, P., Son, T.C., Toups, Z.O., Yeoh, W.: A distributed solver for multi-
agent path finding problems. In: Proceedings of the First International Conference
on Distributed Artificial Intelligence (DAI), pp. 1–7 (2019). https://doi.org/10.
1145/3356464.3357702

23. Quigley, M., et al.: Ros: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

24. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

25. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search
for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

26. Silver, D.: Cooperative pathfinding. In: Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 1, pp. 117–122
(2005)

27. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Symposium on Combinatorial Search (SoCS), pp. 151–158 (2019)

28. Surynek, P.: Compilation-based solvers for multi-agent path finding: a survey, dis-
cussion, and future opportunities. arXiv preprint arXiv:2104.11809 (2021)

29. Thayer, J.T., Ruml, W.: Bounded suboptimal search: a direct approach using inad-
missible estimates. In: Twenty-Second International Joint Conference on Artificial
Intelligence (2011)

30. Wilt, C., Botea, A.: Spatially distributed multiagent path planning. In: Proceedings
of the International Conference on Automated Planning and Scheduling, vol. 24,
pp. 332–340 (2014)

31. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path
planning on graphs. In: Twenty-Seventh AAAI Conference on Artificial Intelligence
(2013)

32. Zhang, H., et al.: A hierarchical approach to multi-agent path finding. In: Proceed-
ings of the International Symposium on Combinatorial Search, vol. 12, pp. 209–211
(2021)

https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.4204/eptcs.345.24
https://doi.org/10.1007/978-3-031-21203-1_10
https://doi.org/10.1007/978-3-031-21203-1_10
https://doi.org/10.1145/3356464.3357702
https://doi.org/10.1145/3356464.3357702
http://arxiv.org/abs/2104.11809

Engineering Domains and Applications

A Multi-agent Approach
for Decentralized Voltage Regulation

in Micro Grids by Considering
Distributed Generators

Fenghui Ren(B) and Jun Yan

School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

{fren,jyan}@uow.edu.au

Abstract. Distributed generators (DGs) are considered as significant
components to modern micro grids because they can provide instant
and renewable electric power to consumers without using transmission
networks. However, the use of DGs may affect the use of voltage regu-
lators in a micro grid because the DGs are usually privately owned and
cannot be centrally managed. In this paper, an innovative multi-agent
approach is proposed to perform automatic and decentralized control of
distributed electric components in micro grids for the voltage regulation
purpose. Autonomous software agents are employed to make local opti-
mal decisions on voltage regulation by considering multiple objectives
and local information; and agent-based communication and collaboration
are employed toward a global voltage regulation through dynamic task
allocation. The proposed approach contains three layers for representing
the physical micro grid, the multi-agent system and the human-computer
interface, and is implemented by using three Java-based packages, i.e.
InterPSS, JADE and JUNG respectively.

Keywords: Distributed generators · voltage regulation · micro grid ·
multiagent system

1 Introduction

Maintaining consistent and stable voltage levels in a micro grid (MG) is very
important because under-voltage can cause overheating of induction motors, and
over-voltage can cause equipment damage Farag et al. (2012); Ufa et al. (2022).
Voltage regulation is a procedure to keep voltages within normal limits, which is
usually ±5% of the rated voltage Trip et al. (2018). Usually, through collecting
sensor readings from predefined measurement points, a Load Tap Changer (LTC)
or a Voltage Regulator (VR) can estimate the status of a grid, and perform
corresponding operations to regulate voltages Deshmukh et al. (2012); Li et al.
(2010). However, such regulation mechanisms are no longer suitable after the
connection of distributed generators (DGs) to the grid.

In recent years, DGs emerge as alternative power resources and are considered
as one of the most significant technologies in power grid systems Basak et al.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 151–166, 2023.
https://doi.org/10.1007/978-3-031-48539-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_10&domain=pdf
http://orcid.org/0000-0001-6159-7873
http://orcid.org/0000-0002-6474-1049
https://doi.org/10.1007/978-3-031-48539-8_10

152 F. Ren and J. Yan

(2012) León et al. (2022); Ufa et al. (2022). In general, by comparison with
conventional bulk generations, DGs are smaller scale and located closer to loads.
However, the usage of DGs bring both benefits and trouble to existing MGs.
On one hand, DGs can supply power to consumers in a MG without needing
a transmission network, so as to significantly decrease power loss, voltage drop
and cost Basak et al. (2012). Some DGs use renewable energy and contribute to
the carbon emission deduction as well. On the other hand, most DGs can only
provide intermittent power to a MG due to the intermittent nature of energy
resources such as wind and sun Ramchurn et al. (2011); Wang et al. (2022).
Also, most DGs are privately owned and a utility can not centrally control all
DGs in a MG. Therefore, with an increasing level of DGs penetrations, a MG
may behave quite differently from conventional operations. For example, a DG
located in downstream will mislead the reading of a LTC or VR because of
the LTC and the VR does not know of the existence of the DG, then the LTC
or VR will definitely perform incorrect operations Basak et al. (2012); Farag
et al. (2012) and the voltage level of the MG will be impacted. Also, because
the power output from a DG using renewable energy to a MG can suddenly
have a significant change due to weather or the DG owners’ reasons, the voltage
level on a DG and its affected area may also change a lot in a short time.
However, because LTC or VR can not provide fast enough voltage regulation,
DGs may not able to ride through emergency conditions due to voltage drops
and automatically be disconnected from the MG Wang et al. (2022). Due to the
sudden loss of a DG’s power, consequential voltage instability may result more
disconnects of other DGs, and such a chain reaction may eventually catastrophic
power outage in a MG Wang et al. (2022).

Several approaches were proposed to address the above challenge in recent
years. In Shaheen and El-Sehiemy (2020), an enhanced grey wolf algorithm
(EGWA) is proposed to solve the optimal allocation of capacitor banks, the
distributed generations, and the voltage regulators, which can increase the effi-
ciency to detect and resume the issues caused by the voltage drop. However,
as the DGs may change the behaviour of a MG, the predefined optimal allo-
cation may not work effectively after the connection/disconnection of DGs. In
Deshmukh et al. (2012), voltage regulation problem was formulated as an opti-
mization problem on reactive power dispatching by considering DGs, and was
solved through a large amount of calculation. Although technologies, such as
distributed computing Yu et al. (2012), adaptive computing Li et al. (2010) and
fuzzy control Spatti et al. (2010) were employed to increase the efficiency of volt-
age regulation, the lack of interactions between electrical components still limits
dispatching efficiency by considering the dynamics of a MG and the uncertain-
ties of DGs. In Wang et al. (2019), a two-layer co-planning method was used
to optimize the placement of DG and battery energy storage towards the volt-
age regulation. However, the construction and running costs of battery energy
storage are too high which stops to apply the solutions in the real-world MGs.
In Farag et al. (2012), a Multi-Agent System (MAS) for voltage regulation and
reactive power dispatching are introduced. However, the MAS employed a cen-
tral controller to manage the regulation by using global information. There-

A Multi-agent Approach for Decentralized Voltage Regulation 153

fore, such centralized mechanisms can not handle the voltage regulation in a
MG when private DGs are connected Rogers et al. (2012). Even through some
decentralized MASs were also proposed to overcome such a limitation Fakham
et al. (2011), practical issues such as how to minimize the regulation cost and
time, how to effectively organise regulation through communication, and how to
properly design and implement such as MAS were not properly discussed. The
network self-organization approach was also combined with the MAS to handle
the distributed voltage regulation issue for a large distribution network Al Faiya
et al. (2021), issues such as asynchronous agent communication and incidences
handling are still not resolved properly. The multi-agent reinforcement learning
approaches Wang et al. (2020; 2021) were also proposed to perform the active
voltage control to relieve power congestion and improve voltage quality. However,
issues such as lack of training data and the uncertainties of real-world scenarios
limit the usage of the solutions in real-world applications.

Theoretically, voltage levels are impacted by power delivered through it. If
power injected to a MG can be quickly modified, then voltages will be adjusted
in a short period accordingly. Conventional bulk generations are impractical due
to their large scales, but such a problem does not exist for DGs. Therefore,
adjusting DGs power outputs is considered as a matter for a fast voltage reg-
ulation. Furthermore, in order to perform more efficient regulation, DGs need
to collaborate with other devices. Because of private ownership of DGs, the
conventional centralised-based approaches can not efficiently coordinate all the
electrical devices due to their limitations of flexibility, communication, cooper-
ation, and decision making Razavi et al. (2019). Therefore, in this paper, an
innovative decentralised coordinated voltage regulation approach is proposed by
considering the connection of DGs in a MG. Autonomous agents are proposed to
automatically and adaptive control all electrical devices in a MG, and each agent
can make local optimal regulation through using local information and devices.
Furthermore, the proposed coordination approach will enable the dynamic col-
laboration of agents in voltage regulation, which will approximate the voltage
regulation of the whole MG to its optimization. Multiple objectives and con-
straints such as regulation time and cost are considered. A detail introduction
of the MAS design and implementation is also given in this paper.

The organization of this paper is as follows. Section 2 introduces the principle
and the objectives of voltage regulation by considering DGs, and Sect. 3 intro-
duces our multi-agent approach to this decentralized voltage regulation. Section 4
demonstrates the performance of the proposed approach through a case study.
Finally, the conclusion and future work are given in Sect. 5.

2 Voltage Regulation Considering DGs

2.1 Principle

Traditionally, all DGs are required to work in a power factor control model Wang
et al. (2020), where the power factor (PF = P/Q) indicates the ratio between
active power output (P) and reactive power output (Q).

154 F. Ren and J. Yan

Fig. 1. Vector diagram of a DG’s voltage.

As shown in Fig. 1, when DGs work in a power factor control model, a con-
stant PF is maintained. However, if a DG’s voltage approaches statutory limits,
i.e. Vmin or Vmax, the DG can deactivate the power factor control model and
regulate its voltage through adjusting its power output. Basically, in order to
keep P at a requested level, a DG will increase Q when its voltage drops to
the lower threshold V PFC

min , so as to increase its voltage. On the other hand, if
its voltage reaches its upper threshold V PFC

max , the DG will decrease Q, which
leads to a decrement of its voltage. Therefore, based on the Jacobian matrix of
the Newton power flow Yu et al. (2012), the linear relationship between a DG’s
changes on its power output and voltage is displayed in Formula (4):

ΔV = ΛV Q · ΔQ + ΛV P · ΔP. (1)

where ΔP and ΔQ are a DG’s changes on active and reactive power, ΔV is DG’s
corresponding voltage change, and ΛV P and ΛV Q are the correlations between
changes of voltage, active and reactive power, respectively.

The correlation between changes of P and Q is shown as the Jacobian matrix
of the Newton power flow in Formula (2) Yu et al. (2012).

(
Δθ
ΔV

)
=

(
ΛθP ΛθQ

ΛV P λV Q

)(
ΔP
ΔQ

)
(2)

with

Λ =
(

ΛθP ΛθQ

ΛV P λV Q

)
, (3)

where ΔP and ΔQ are a DG’s changes on active and reactive power, Δθ and
ΔV are the DG’s corresponding changes on PF (PF = th(θ)) and voltage,
respectively. Then a linear relationship between a DG’s changes on its power
output and voltage is displayed in Formula (4):

ΔV = ΛV Q · ΔQ + ΛV P · ΔP. (4)

Usually, in order to minimize impacts to a MG, active power output will not
be changed, i.e. ΔP = 0, and a DG will only adjust its reactive power output
during a voltage regulation.

A Multi-agent Approach for Decentralized Voltage Regulation 155

2.2 Objectives and Constraints

In this paper, three objectives for a voltage regulation are set by considering DGs,
which are the time objective, the cost objective, and the population objective.

Time Objective: In order to get a fast regulation on voltage to protect DGs in
emergency situations, total time spent on the regulation should be minimized,
i.e.

min
∑

i

t(Δvi), (5)

where t(Δvi) is the time spent on regulating i’s voltage, and Δvi is the minimum
voltage change for node i getting back to normal.

Cost Objective: A MG may connect multiple DGs, and costs of the DGs
on voltage regulations will also be different by considering their motor types,
resources and locations. We also want to minimize the total cost, i.e.

min
∑

i

ΔQi · ci, (6)

where ci is DG i’s cost of adjusting a unit reactive power, and ΔQi is the amount
of reactive power modified.

Population Objective: In case multiple voltage fluctuations occur, voltage
regulations should recover problem nodes as much as possible to their normal
limits, i.e.

max
i

{0.85 (p.u.) ≤ vi ≤ 1.05 (p.u.)}, (7)

where vi is the voltage of the ith problem node.
The fulfillment of the objectives should not lead to violation of operating

other components; hence, several constraints are reinforced.

Current Limit: For each electrical component i, current through it should be
not greater than its limit, i.e.

∀i, |Ii| ≤ |Imax
i |. (8)

where Ii is current on component i, and Imax
i is component i’s limit on current.

Voltage Limit: The voltage regulation should not cause any new voltage fluc-
tuation to other components, i.e.

∀i, 0.95 (p.u.) ≤ vi ≤ 1.05 (p.u.). (9)

Reactive Power Output Limit: An DG’s reactive power output should not
exceed its surplus capability, i.e.

∀i, |Qi| ≤ |Qmax
i |. (10)

where Qi is DG i’s reactive power output, and Qmax
i is DG i’s limit on reactive

power output.

156 F. Ren and J. Yan

Fig. 2. A three-layer view of the proposed approach.

3 A Multi-agent Based Voltage Regulation

3.1 Principle

In order to fulfill the above objectives by considering all requested constraints, a
multi-agent approach is introduced in this section. As shown in Fig. 2, the pro-
posed approach contains three layers, i.e. a power system layer, a multi-agent
layer and a interface layer. First, the power system layer locates in the bottom
and presents a MG. In this paper, we consider five key electrical components for
voltage regulation purposes, i.e. substation (controlling LTC), feeder (controlling
VR), busbar, load and DG. Second, the multi-agent layer locates in the middle
and presents a MAS to dominate communications, decision-makings, and collab-
orations between the electrical components. Five types of agents are proposed
in this layer to control the five identified electrical components correspondingly,
i.e. substation agent, feeder agent, bus agent, load agent and DG agent. Third,
the interface layer locates on the top and visualizes the whole system.

By comparison with conventional centralized voltage regulations, the pro-
posed approach has the following advantages. (i) A decentralized management is
employed by the proposed MAS, which means that there is no central controller,
and agents work automatically based on information they receive from corre-
sponding electrical components and neighboring agents. No agent will preset the
global information. (ii) Agents are represented as nodes in a peer-to-peer net-
work, and can communicate with their neighboring agents. Non-adjacent agents
can communicate and share information through in-between agents. And (iii)
there is no dependency relationship between agents, and the MAS size is scal-
able. Agents act as a “plug and operate” component. In the following subsec-
tions, characteristics of proposed agents will be introduced firstly, then three

A Multi-agent Approach for Decentralized Voltage Regulation 157

mechanisms will be introduced to dynamically control the agents in distributed
voltage regulation. Finally, implementation of the proposed MAS will be also
briefly introduced.

3.2 Agent Design

We propose five agents as follows. Characteristics of the proposed five agents are
introduced below.

Substation Agent (SA): A SA represents a secondary substation, and mon-
itors current, voltage and power output of the substation. During a normal
operation, the SA continuously exchanges information with neighboring agents,
and operates a LTC under requests to perform a conventional voltage regulation.
The response time and cost of a SA are two crucial factors for its neighboring
agents to decide whether the SA should be requested to involve in a regulation
process.

Feeder Agent (FA): A FA represents a physical feeder which delivers power to
downstream components, and monitors current and voltage drop on the feeder
through communicating with upstream and downstream agents. A FA checks
cables transmission abilities to decide whether required power can be delivered.
In case a FA is requested to join in a voltage regulation process, it will operate
corresponding VRs to fulfill the request. Usually, a FA can provide a faster
regulation than a SA, but a slower regulation than a GA. A FA’s regulation cost
is impacted by the distance between its VRs and problem nodes.

Bus Agent (BA): A BA represents a physical bus-bar that conducts power
between electrical components. A BA records information on connected electrical
components, such as current and voltage. During a voltage regulation, a BA can
make its local decisions on a local regulation plan in order to reach its local
objectives. Usually, once a BA receives a regulation request from a neighboring
agent, the BA will firstly search for a local solution by using only local resources.
If the local resources cannot fulfil the regulation request, the BA and then will
request help from its upstream agents. For a secondary BA, it will contact a SA
to perform conventional regulation through operating a LTC.

Generator Agent (GA): A GA represents a DG. During normal operations,
a GA monitors current, voltage and power output of a DG, and maintains the
DG’s power factor. During a voltage regulation process, a GA deactivates the
DG’s power factor control model and provides voltage supports to a MG through
adjusting the DG’s reactive power output. Also, a GA should ensure that the
DG’s reactive power output does not exceed its limit. Usually, a DG is ranked
by considering its response time, cost and effect on a voltage regulation, and
a GA also makes individual decisions on how to respond to neighboring agents
regulation requests by considering the DG’s capacity.

Load Agent (LA): A LA represents a load in a MG. A LA monitors current
and voltage level of the load, and reports to its upstream BA once a voltage

158 F. Ren and J. Yan

fluctuation is detected. Each LA is assigned a priority to indicate the significance
of the load. Usually, a LA with a high priority is handled earlier than a LA with
a low priority during voltage regulation. Once a regulation plan is determined,
a LA will confirm with its upstream agent for execution.

3.3 Mechanism Design

In order to efficiently manage electrical components to perform distributed volt-
age regulations by considering the existence of DGs, three novel mechanisms are
proposed to control agents and to regulate voltage during three typical opera-
tions on electrical components, i.e. the connection, the disconnection, and the
voltage fluctuation. All mechanisms employ decentralized designs, and are inde-
pendent on a MG or agent types.

Connection Mechanism. When a new electrical component i needs to be con-
nected to a MG, a corresponding agent ai will be firstly generated to represent
the new component. Let ai be represented by a seven-tuple ai = <AIDi, I

max
i ,

Tmax
i , Qmax

i , V t
i , Ct

i , P
t
i > (where AIDi is ai’s ID, Imax

i , Tmax
i , Qmax

i , V t
i , Ct

i , P
t
i

indicates ai’s max current, max regulation time, max reactive power, volt-
age, regulation cost and priority, respectively), and the nine-tuple ni,j =
<AIDj , I

max
i,j , Qmax

i,j , Tmax
i,j , It

i,j , Qt
i,j , C

t
i,j , Λt

i,j , P
t
i > be ai’s record on its neigh-

boring agent aj . Then the connection process is as follows:

Step 1: ai is created to represent the electrical component i, and is initialized
according to component i’s features.
Step 2: ai sends a connection request with information <AIDi, I

max
i , Qmax

i ,
Tmax

i , Ct
i , P

t
i > to aj , and waits for aj ’s response. If component i cannot pro-

vide reactive power, then Qmax
i = 0, Tmax

i = + inf, and Ct
i = + inf.

Step 3: aj receives ai’s connection request. If the connection is not allowed,
aj denies the request, and the procedure goes to Step (v). Otherwise, the
procedure goes to Step (iv).
Step 4: Firstly, aj creates a new neighboring agent record according to infor-
mation sent by ai, i.e. nj,i = <AIDi, min(Imax

i , Imax
j), Qmax

i , Tmax
i , 0, 0,

(Ct
i + Lj,i), 0, P t

i > (where Lj,i indicates a cost of power loss on a cable
between components i and j), and adds nj,i to its neighboring agents set,
i.e., Nj ← {nj,i}∩Nj. Secondly, aj informs other existing neighboring agents
about its update on reactive power supply, cost and priority by sending
(Qmax

i , Tmax
i , (Ct

i + Lj,i), P t
i). Thirdly, aj ’s neighboring agents update their

records on aj , i.e., Qmax
k,j ← (Qmax

k,j + Qmax
i), Tmax

k,j ← min(Tmax
k,j , Tmax

i),
Ct

k,j ← min(Ct
k,j , (Ct

i + Lj,i + Lk,j)), and P t
k,j ← max(P t

k,j , P
t
i). Lastly, aj ’s

neighboring agents inform their updates to their neighboring agents, and con-
currently, aj replies ai with an agreement.
Step 5: If ai receives an agreement from aj , ai creates a new neighboring
agent record according to information sent by aj , i.e. ni,j = <AIDj ,min
(Imax

i , Imax
j),

∑
k Qmax

j,k , min(mink{Tmax
j,k }, Tmax

j), 0, 0, (min(mink{Ct
j,k}, Ct

j)

A Multi-agent Approach for Decentralized Voltage Regulation 159

+Li,j), 0,max(maxk{P t
j,k}, P t

j)>, and adds ni,j to its neighboring agents set,
i.e. Ni ← {ni,j} ∩ Ni. After that, ai connects to the MG. Otherwise, if a
disagreement is received, the procedure is terminated.

Disconnection Mechanism. An existing electrical component may also need
to be disconnected from a MG. Suppose that agent ai wants to disconnect from
a MG, and agent aj is its upstream component, then the disconnection process
is given as follows:

Step 1: ai sends a disconnection request to aj , and waits for aj ’s response.
Step 2: aj receives the request, and then activates the voltage regulation
mechanism to re-dispatch reactive power without considering ai. If aj fails
to re-allocate reactive power, then the disconnection is not allowed and the
procedure goes to Step 4. Otherwise, the procedure goes to Step 3.
Step 3: Firstly, aj deletes the record of ai from its neighboring agents set, i.e.
Nj ← Nj/nj,i. Secondly, aj informs other existing neighboring agents about
its update on reactive power supply, cost and priority by sending (Qmax

i ,
min(mink{Tmax

j,k }, Tmax
j), min(mink{Ct

j,k}, Ct
j), max(maxk {P t

j,k}, P t
j))

(where k ∈ Nj, k �= i). Thirdly, aj ’s neighboring agents update their records
on aj , i.e., Qmax

k,j ← (Qmax
k,j − Qmax

i), Tmax
k,j ← min (mink{Tmax

j,k }, Tmax
j),

Ct
k,j ← min(mink{Ct

j,k}, Ct
j), and P t

k,j ← max(maxk{P t
j,k}, P t

j). Lastly, aj ’s
neighboring agents inform their updates to their neighboring agents, and con-
currently, aj replies ai with an agreement on disconnection.
Step 4: If ai receives an agreement from aj , ai will delete the record of aj

from its neighboring agents set, i.e. Ni ← Ni/ni,j , and then ai disconnects
from components j. Otherwise, ai should keep the connection with aj , and
seeks for another disconnection from the MG in future.

Distributed Voltage Regulation Mechanism. If any voltage fluctuation
happens on any electrical component, this mechanism will be activated auto-
matically to regulate voltages by considering all the objectives and constraints
mentioned in Subsect. 3.1. Basically, a decentralized design is employed in this
mechanism. Agents make local reasoning and decision making on their regula-
tion plans based on their local information, which includes the calculation of
regulation solutions, reactive power resource selections, and reactive power dis-
patching. A recursive strategy is employed during the regulation when multiple
agents are involved. The regulation process is introduced as follows.

Step 1: Let ak be the agent which firstly notices a voltage fluctuation, i.e.
its voltage is beyond its limit ±5% (p.u.), and V t

k be the voltage value. Then
ak firstly calculates the difference between its existing voltage and its target
voltage using Formula (11). In this paper, the target voltage is set to 0.85
(p.u.) for any existing voltage lower than 0.85 (p.u.), and is set to 1.05 (p.u.)
for any existing voltage higher than 1.05 (p.u.).

ΔV t
k =

{
0.85 − V t

k , if V t
k < 0.85,

1.05 − V t
k , if V t

k > 1.05.
(11)

160 F. Ren and J. Yan

Step 2: In order to choose a right adjustment for a voltage regulation, ak

makes a combined consideration on different factors, i.e. regulation speed,
cost and effectiveness. Let ai be ak’s ith neighboring agent, and ak firstly
evaluates ai by using Formula (12).

E(ak, ai) =
1/Tmax

k,i∑
j 1/Tmax

k,j

· W s
k +

1/Ct
k,i∑

j 1/Ct
k,j

· W c
k +

Λt
k,i∑

j Λt
k,j

· W e
k , (12)

where W s
k , W c

k , and W e
k are ak’s preferences on the speed, cost and effective-

ness of the regulation respectively, and W s
k + W c

k + W e
k = 1.

Then, ak ranks all neighboring agents as Nr
k, i.e. ∀ai, aj ∈ Nr

k, ai ≥ aj ⇒
E(ak, ai) ≥ E(ak, aj). Let ai be a next agent in Nr

k, then ak calculates
a voltage change that ai should provide by considering a line’s loss as
ΔV t

k,i = ΔV t
k + Lk,i. Also, ak calculates a possible change on ai’s reactive

power output in order to cover ΔV t
k,i according to Formula (4) under an

assumption that ΔP = 0, i.e. ΔQt
k,i = ΔV t

k,i/Λt
k,i. If ak believes that ai

can afford such a modification, i.e. ΔQt
k,i + Qt

k,i ≤ Qmax
k,i , ak will send the

voltage change request reqt
k,i = ΔV t

k,i to ai. Otherwise, the voltage change
request will be updated by considering ai’s maximum reactive power output
as reqt

k,i = ΔV u,t
k,i = Λt

k,i · (Qmax
k,i − Qt

k,i), and leave the remaining voltage
change, i.e. ΔV r,t

k,i = ΔV t
k,i − ΔV u,t

k,i , to a next neighboring agent in Nr
k.

Step 3: Once ai receives ak’s regulation request, the request will be inserted
into ai’s request queue, i.e. reqi, by considering ak’s priority and time when
the request was received. Let reqt

k,i and reqt
j,i be two requests in reqi, then

reqt
k,i is in front of reqt

j,i iff R(i, reqt
k,i) > R(i, reqj,i), where R(i, reqk,i) is

defined in Formula (13).

R(i, reqk,i) =
1/(tk − t1)∑
k 1/(tk − t1)

· W t
i +

P t
i,k∑

k P t
i,k

· W p
i , (13)

where tk is time when the request reqt
k,i was received, and P t

i,k is ai’s record on
ak’s priority. W t and W p are ai’s weighting on time and priority, respectively.
Each time when ak receives a new request, queue reqi will be updated.
Let us assume that ai already completes all requests in front of reqt

k,i, and
starts to process request reqt

k,i. If ai represents an electrical component which
can adjust reactive power directly (i.e. a DG, a feeder or a substation), then
ai can make a decision on the request reqt

k,i without contacting other agents.
In order to do that, ai firstly calculates its remaining supply ability to ak as
Qr,t

i,k = Qmax
i − ∑

k Qt
i,k, and replies to ak to indicate the actual amount that

ai can supply, i.e. rspi,k = min(Qr,t
i,k, |reqt

k,i|). However, if ai cannot adjust
reactive power directly, ai needs to contact its neighboring agents for ak’s
request. To do that, ai needs to employ voltage regulation mechanism again
by seeking reqt

k,i change on its voltage. Obviously, such a recursive procedure
will be repeated until an electrical component, which can adjust reactive
power directly, is reached.

A Multi-agent Approach for Decentralized Voltage Regulation 161

Step 4: Suppose that ai receives a response from a neighboring agent aj ,
i.e. rspt

j,i. If ai’s request can be fully satisfied by aj , i.e. rspt
j,i = reqt

i,j , then
ai will respond rspt

i,k ← rept
j,i to ak directly. Otherwise, ai will seek for the

remaining voltage ΔV r,t
i,m ← (ΔV t

k,i − rspt
j,i · Λt

i,j) from its next neighboring
agent by sending a request reqt

i,m = ΔV r,t
i,m/Λt

i,m. Such a procedure will be
repeated until ai’s request is fully satisfied by its neighboring agents or no
more neighboring agent can be contacted. Finally, ai responds to ak by comb-
ing all the responses from neighboring agents, i.e. rspt

i,k =
∑

j rspt
j,i. Then

ai is ready for executing operations and waits for ak’s confirmation. How-
ever, if ai receives a cancellation request from ak before operations can be
executed, ai will cancel the regulation and forward the cancellation to related
neighboring agents.
Step 5: Once ak receives ai’s response, ak will reply to ai with a confirmation
for executing. If ak’s request can be fully satisfied by ai, i.e. rspt

i,k = reqt
k,i,

then the regulation is complete. Otherwise, ak will seek for the remaining
voltage change ΔV r,t

k,m ← (ΔV t
k,i − rspt

i,k · Λt
k,i) from its next neighboring

agent by sending a request reqt
k,m = ΔV r,t

k,m/Λt
k,m. Then the steps (ii)–(iv)

will be repeated until ak’s original request is fully satisfied by its neighboring
agents cumulatively. Because conventional LTC and VR are involved in the
procedure and represented by SAs or FAs, we assume that ai’s original request
on voltage change can be satisfied eventually.
Step 6: ai receives ak’s confirmation, and forwards the confirmation to
related neighboring agents. The agents, which receive the confirmation, start
to adjust their reactive power as promised.

3.4 System Development

As shown in Fig. 2, our MAS solution contains three layers and we employ
three well-known Java-based packages, i.e. InterPSS (Internet technology based
Power System Simulator), JADE (Java Agent Development Framework), and
JUNG (Java Universal Network/Graph Framework), for the development of each
layer, respectively. InterPSS is an open-source Java-based development project
to enhance power system design, analysis, diagnosis and operation Zhou et al.
(2019). We employ InterPSS for the development of the power system layer.
JADE is a free agent development framework, and the communication among
agents in JADE is carried out according to FIPA-specified Agent Communication
Language (ACL) KS (2019). We employ JADE on top of InterPSS to develop
the middle layer to monitor and control electrical components. JUNG (Java
Universal Network/Graph Framework) is a free software library that provides
a common and extendable language for modeling, analysis, and visualization of
data that can be represented as a graph or network Team (2016). We employ
JUNG on the top of InterPSS and JADE to visualize the whole system.

4 Simulation

In this section, we demonstrate the performance of the proposed MAS through a
case study. In Fig. 3, a MG is firstly output by using InterPSS. The MG contains

162 F. Ren and J. Yan

Fig. 3. An InterPSS output showing a power micro grid.

one substation, two feeders, five buses, six loads, and one generator. The limits
of reactive power flow for the substation, buses and feeders are set to 500 MVar.
The maximum reactive power supply for the substation is set to 300 MVar, and
the MG is also connected to a 100 MVar DG. It is also assumed that the DG’s
response time on a voltage regulation is much shorter than a LTC or VR, and
we set those two response times to 0.1 p.u./s and 0.02 p.u./s, respectively. The
cost of voltage regulations is depended on the type of control devices, and the
distance between a problem node and a control device.

We set the cost for adjusting 1 MVar as $20 through a LTC and VR, and
as $10 through a DG. The delivery of 1 MVar through 1 km is assumed to be
$1, and the distance between any two electrical components is assumed to be
1 km. In Fig. 4, the multi-agent simulation of the MG using JADE and JUNG
is illustrated. The graph illustrates reactive power dispatching in the MG at a
certain moment. Information about reactive power such as direction, amount
and price are displayed in the simulation.

Fig. 4. A multi-agent simulation of a micro grid.

A Multi-agent Approach for Decentralized Voltage Regulation 163

In order to show continuous adjustments on reactive power, Agent BA1 ’s
historical records on reactive power adjusting through neighboring agents are
displayed in Fig. 5. The negative power indicates the power input from the upper-
stream Agent SA1, and the positive power values indicate the power outputs to
the downstream Agents LA1, FA1, and FA2. All agents will apply the mech-
anisms introduced in Sect. 3.3 to automatically balance the power inputs and
outputs dynamically by considering the three objectives. Through the commu-
nication and collaboration of all agents, the voltage level of the MG can be
regulated automatically through adjusting the reactive power of each associated
agent accordingly. Due to the page limit, the historical records of other agents
are not presented in this paper.

Fig. 5. The historical records of BA1.

In order to test the proposed mechanisms, another generator, i.e. DG2 (rated
at 50 MVar), is proposed to connect the MG through BA5. In Fig. 6, communica-
tions between agents during DG2’s connection, and a voltage regulation through
GA2 are displayed. Explanations are given below.

(Messages 1–2): GA2 sends a request to BA5 for connection, and BA5 agrees
with the connection. (Messages 3–16): BA5 informs its updates (i.e., limit,
cost and sensitivity) to its neighboring agents, i.e. FA2 and LA6. Then FA2 fur-
ther informs its neighboring agents, i.e. BA1 and BA4, about its update. Such
a procedure is executed by other agents recursively, and eventually all agents
receive update notices from their neighboring agents. (Messages 17–20): LA5
sends a voltage regulation request to BA4, and BA4 forwards such a request to
FA2. Because BA5 already informed FA2 that a faster, cheaper, and more effi-
cient voltage regulation service can be provide after GA2 ’s connection, through
comparison with the voltage regulation service provided by BA1 (i.e. provided
by SA1 through adjusting LTC actually), FA2 decides to contact BA5 firstly,
and then BA5 forwards the request to GA2. (Messages 21–24): GA2 agrees

164 F. Ren and J. Yan

Fig. 6. Communications between agents during component connection and voltage
regulation

with BA5 ’s request to provide a voltage regulation through adjusting its reactive
power output. GA2 replies an agreement to BA5 ’s request, and waits for BA5 ’s
confirmation for executing. Then BA5 forwards the agreement to FA2. Eventu-
ally, the agreement is received by the original requester, i.e. LA5. All involved
agents, i.e. GA2, BA5, FA2, and BA4, are waiting for LA5 ’s confirmation for
executing. (Messages 25–28): LA5 confirms with BA4 that it is ready for
the execution, and such a confirmation is eventually forwarded to GA2 through
BA4, FA2 and BA5. Then GA2 adjusts its reactive power output, and LA5 ’s
voltage is regulated.

The above case study shows that the proposed MAS solution can effectively
manage a MG with DGs in a simulation environment, and perform distributed
voltage regulations by using of local information and agent communication. The
proposed agents can make decentralized decisions to control corresponding elec-
trical components and perform self-adaptive voltage regulation services. The
procedures, i.e. selecting reactive power resources by considering their limits,
costs and sensitivities, planing reactive power dispatching by considering the
dynamics of neighboring agents, and executing of voltage regulation plans, show
the good performance of the proposed agents.

5 Conclusion and Future Work

The DG is considered to be a significant technologies in power grids, and pro-
vides supplemental electric energy to modern MGs without using transmission
networks. However, the uncertainty and dynamics of DGs can make conven-
tional voltage regulations become deactivated. In this paper, a decentralized
multi-agent approach for dynamic and distributed voltage regulation by consid-
ering the DGs was proposed. The proposed approach not only provides suffi-

A Multi-agent Approach for Decentralized Voltage Regulation 165

cient autonomy for an individual agent to make local optimal decisions on local
voltage regulation by using local information, but also supports dynamic agent
collaborations for searching a global voltage regulation solution by using agent
communication, dynamic task allocation and team forming. Multiple objectives
and constraints are considered by the proposed agents during their distributed
voltage regulations, and agents can dynamically adjust their regulation plans
according to environmental changes. Development of the proposed approach by
using InterPSS, JADE and JUNG was introduced, and the good performance
of the proposed approach on voltage regulation in a simulated MG was also
demonstrated.

Future work of this research will focus on comprehensive systemic testing
and evaluation through using large scale MGs and numerous DGs with different
energy resources and supply capabilities.

References

Al Faiya, B., et al.: A self-organizing multi-agent system for distributed voltage regu-
lation. IEEE Trans. Smart Grid 12(5), 4102–4112 (2021)

Basak, P., Chowdhury, S., Halder nee Dey, S., Chowdhury, S.P.: A literature review on
integration of distributed energy resources in the perspective of control, protection
and stability of microgrid. Renew. Sustain. Energy Rev. 16(8), 5545–5556 (2012)

Deshmukh, S., Natarajan, B., Pahwa, A.: Voltage/VAR control in distribution networks
via reactive power injection through distributed generators. IEEE Trans. Smart Grid
3(3), 1226–1234 (2012)

Fakham, H., Colas, F., Guillaud, X.: Real-time simulation of multi-agent system for
decentralized voltage regulation in distribution network. In: IEEE Power and Energy
Society General Meeting, pp. 1–7 (2011)

Farag, H.E.Z., El-Saadany, E.F., Seethapathy, R.: A two ways communication-based
distributed control for voltage regulation in smart distribution feeders. IEEE Trans.
Smart Grid 3(1), 271–281 (2012)

Gayathri Devi, K.S.: Hybrid genetic algorithm and particle swarm optimization algo-
rithm for optimal power flow in power system. J. Comput. Mech. Power Syst. Control
2, 31–37 (2019)

León, L.F., Martinez, M., Ontiveros, L.J., Mercado, P.E.: Devices and control strate-
gies for voltage regulation under influence of photovoltaic distributed generation. A
review. IEEE Latin Am. Trans. 20(5), 731–745 (2022)

Li, H., Li, F., Xu, Y., Rizy, D.T., Kueck, J.D.: Adaptive voltage control with dis-
tributed energy resources: algorithm, theoretical analysis, simulation, and field test
verification. IEEE Trans. Power Systems 25(3), 1638–1647 (2010)

Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic
control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4),
35 (2011)

Razavi, S.-E., et al.: Impact of distributed generation on protection and voltage regu-
lation of distribution systems: a review. Renew. Sustain. Energy Rev. 105, 157–167
(2019)

Rogers, A., Ramchurn, S.D., Jennings, N.R.: Delivering the smart grid: challenges for
autonomous agents and multi-agent systems research. In: Proceedings of the 26th
AAAI Conference on Artificial Intelligence, pp. 2166–2172 (2012)

166 F. Ren and J. Yan

Shaheen, A.M., El-Sehiemy, R.A.: Optimal coordinated allocation of distributed gen-
eration units/capacitor banks/voltage regulators by EGWA. IEEE Syst. J. 15(1),
257–264 (2020)

Spatti, D.H., da Silva, I.N., Usida, W.F., Flauzino, R.A.: Real-time voltage regulation
in power distribution system using fuzzy control. IEEE Trans. Power Deliv. 25(2),
1112–1123 (2010)

JUNG Development Team. Java universal network/graph framework (2016)
Trip, S., Cucuzzella, M., Cheng, X., Scherpen, J.: Distributed averaging control for

voltage regulation and current sharing in DC microgrids. IEEE Control Syst. Lett.
3(1), 174–179 (2018)

Ufa, R.A., Malkova, Y.Y., Rudnik, V.E., Andreev, M.V., Borisov, V.A.: A review on
distributed generation impacts on electric power system. Int. J. Hydrogen Energy
47(47), 20347–20361 (2022)

Wang, L., Yan, R., Saha, T.K.: Voltage regulation challenges with unbalanced PV
integration in low voltage distribution systems and the corresponding solution. Appl.
Energy 256, 113927 (2019)

Wang, S., et al.: A data-driven multi-agent autonomous voltage control framework
using deep reinforcement learning. IEEE Trans. Power Syst. 35(6), 4644–4654 (2020)

Wang, J., Xu, W., Gu, Y., Song, W., Green, T.C.: Multi-agent reinforcement learning
for active voltage control on power distribution networks. In: Advances in Neural
Information Processing Systems, vol. 34, pp. 3271–3284 (2021)

Wang, R., Ma, D., Li, M.-J., Sun, Q., Zhang, H., Wang, P.: Accurate current sharing
and voltage regulation in hybrid wind/solar systems: an adaptive dynamic program-
ming approach. IEEE Trans. Consum. Electron. 68(3), 261–272 (2022)

Yu, L., Czarkowski, D., de León, F.: Optimal distributed voltage regulation for sec-
ondary networks with DGs. IEEE Trans. Smart Grid 3(2), 959–967 (2012)

Zhou, M., Yan, J., Feng, D.: Digital twin framework and its application to power grid
online analysis. CSEE J. Power Energy Syst. 5(3), 391–398 (2019)

Synthesizing Multi-agent System
Organization from Engineering

Descriptions

Ganesh Ramanathan1,2(B)

1 Siemens AG, Zürich, Switzerland
ganesh.ramanathan@siemens.com

2 University of St. Gallen, St. Gallen, Switzerland

Abstract. Automation of electro-mechanical systems, such as the ones
deployed in a building or a factory, is engineered based on the design-time
knowledge of requirements, system configuration, physical processes, and
control and coordination strategies. However, any change in these aspects
during the system’s operation requires manually adapting the affected
automation programs. Multi-agent systems (MAS) offer the potential
to tackle dynamic changes in the system by letting the software agents
autonomously reason about the means of achieving their goals at run-
time while collaborating socially and being aware of the environment in
which they operate. Nevertheless, designing a MAS-based solution for
engineering applications is challenging because decomposing engineer-
ing system descriptions into MAS abstractions is a manual process and
requires knowledge of the design and programming paradigm. This paper
shows that the MAS organization dimension, which serves as the top-
down specification of agent behavior, can be automatically decomposed
from engineering system descriptions. The system descriptions, which
are fragmented, are interlinked using an integration ontology developed
for the purpose. Evaluation of the approach in a real-life deployment of a
building automation system showed reduced engineering effort to deploy
the MAS, and the resulting runtime was adaptive to changes.

Keywords: Multi-agent Systems · Automation Systems · Engineering

1 Introduction

Electro-mechanical systems, such as the ones in a building or a factory, are
complex compositions of subsystems and components that carry out the desired
transformation of states of substances through physical processes such as ther-
mal, electrical, or chemical reactions. Since such processes invariably involve
some form of controlled energy or mass transfer (e.g., exchange of thermal energy
from hot water to air when it comes to heating), automation systems regulate the
physical processes and establish the coordinated operation of the interdependent
subsystems.

System Descriptions (SDs) is a broad term used in factory, process, and
building automation (BA) to describe knowledge that is contained in engineering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 167–177, 2023.
https://doi.org/10.1007/978-3-031-48539-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_11&domain=pdf
http://orcid.org/0000-0002-6509-8120
https://doi.org/10.1007/978-3-031-48539-8_11

168 G. Ramanathan

artifacts, such as the documentation of the requirements, the description of the
subsystems and their physical processes, and the regulations and norms that
govern their operation. Automation system implementation is generally based
on the SDs available at design time. Consequently, they face the challenge that
changes in requirements, system capabilities, or regulations and norms during
the lifetime of the system require manual (and, often costly) re-engineering of
the control and coordination programs [29,38].

To support use cases such as automated fault detection [27], SDs are becom-
ing increasingly available in machine-readable and machine-understandable
forms [25,28,29,31]. Though such machine-understandable SDs could also help
us tackle the challenge of adaptivity, it is yet to be seen in the practice in
the automation industry because it also requires an architectural paradigm that
supports knowledge-driven run time behavior. Current approaches in automation
only address methods to use system knowledge to design procedures for control
and coordination as purely reactive programs.

Rational agents in Multi-agent systems (MAS) are conceptually grounded to
use system knowledge at run time to proactively deliberate about local behavior
and social collaboration in their pursuit of fulfilling the requirements. The benefit
of using MAS to tackle dynamic environments has been demonstrated in domains
such as collaborative robotics [6], power engineering [19], and in some particular
cases, in factory automation [8], and BA [40].

Although the architectural properties of MAS are well suited to building
adaptive systems, the widespread adoption of MAS in engineering applications
is yet to be seen [7,13,17,23,24]. In my study on the feasibility of implementing
a MAS-based building automation system, the primary challenge lies in deriving
the design from SDs in an automated manner. Automated design is vital because
relying on a developer to manually carry out the design and maintain it dur-
ing the system’s lifetime is cumbersome (and costly) for real-life applications.
Also, a MAS developer cannot be expected to possess the domain expertise of
an automation engineer to understand the SDs (and vice-versa, an automation
engineer is not likely to be well-versed in the principles of MAS design).

The challenge of automatically synthesizing MAS design from SDs raises the
question of the relevant design abstractions. In my approach, I show that the
dimension of MAS design that most naturally captures automation system design
is the notion of the agent organization. The organization is a top-down design
specification that mandates the agents to jointly consider (in a global manner)
the structural contexts in which they operate (i.e., the parts of the system and
the physical processes involved) and thereby adopt appropriate local control and
coordination functions.

Though there are existing approaches to express individual aspects of the
SDs in a machine-understandable form, an integrated view with semantic rela-
tionships between the aspects is missing. Such a cohesive SD is essential for the
automated synthesis of MAS organization specifications. For this purpose, I have
developed an integrating ontology that links concepts in the existing engineering
ontologies, allowing us to express a unified SD.

Synthesizing Multi-agent System Organization 169

Therefore, the twofold contributions of this paper are to show that MAS
organization specification is an essential top-down design abstraction that is
valid for automation systems, and its automated synthesis can be enabled by
integrating the hitherto fragmented SDs.

I tested my approach on a real-life setup of automation for heating, ventila-
tion, and lighting systems in a room. This scenario is representative of a complex
composition of engineering subsystems and their interdependencies. The evalua-
tion demonstrated that the organization specification, which could be automat-
ically synthesized from the unified SD, was adequate for the automation agents
to know about their local control goals and global coordination tasks. Changes
in the SD were reflected in the organization specification, causing the agents to
adapt their behavior.

2 Related Work

2.1 MAS Organization and Its Relevance to Engineering Systems

MAS-based solutions for large systems require social organization to direct the
local autonomy of the agents towards global goals [16]. Organization specification
in the form of structures, roles, and functions also reflects the top-down system
design [10]. Organization as means of orchestrated autonomy led to research on
conceptual models of MAS organization along with its formalization (see [9],
and [1] for details). The model of an organization depends on the desired run-
time characteristics and formation methods. Horling and Lesser have described
paradigms such as hierarchies, holarchies, teams, etc. [14] and their relevance
to different systems. In this regard, most automation systems can be viewed as
hierarchies of software agents based on a physical decomposition [33] of the sys-
tem. Other paradigms like holarchies, coalitions, teams and markets are also seen
in applications like distributed sensing [35]. A model of the organization with
hierarchies of groups with one or more functional roles [11] matches well with
the design approach in the automation system. MOISE+ [15] goes beyond the
focus on structures by adding the abstractions of functional schemes and norms
that bind roles to the goals. As we shall see later, the abstraction of functional
schemes in MOISE+ supports the modeling of automation strategies, which is
also a hierarchical composition of functions.

My investigation of design methodologies in engineering domains showed
that top-down physical decomposition involving structural abstractions (sys-
tems, subsystems, aggregates, and components) and its co-relation to functional
abstractions (composition of process functions) is well known and is practiced
in process engineering [21].

Similarly, a study of design practices prevalent in automation engineering [20,
26] revealed that the deployment and behavior of the automation programs are
decided based on the structure of the electro-mechanical systems and the process
functions which they expected to fulfill. Figure 1 summarizes the parts of the SD
and the role they play in the design of the automation system. Juxtaposed to
top-down approaches, automation in domains like power engineering [19] (e.g.,

170 G. Ramanathan

Fig. 1. Aspects of the SDs which are used for automation engineering.

smart grids) and collaborative robotics (e.g., autonomous ground vehicles) deal
with an environment that cannot be determined or designed upfront [6]. In such
cases, the autonomous agents primarily rely on self-organization while using pre-
defined rules regarding forming groups and adopting roles [18,30]. While agent-
centric architecture can cater to highly dynamic environments, industrial systems
lay greater emphasis on having a clear definition and an understanding of the
responsibilities of the agents for the sake of operational overview, explainability,
and establishing rules for conflict avoidance – and this is the principal argument
for an organization-centered design.

2.2 The Challenge of Synthesising MAS Organisation

Though there is a conceptual match between the engineering design of systems
and the model of MAS organization, to the best of my knowledge, an automated
synthesis of MAS organization specification from SDs is yet to be explored.
Bastos and Castro have hinted at the possibility [3], and Freitas [12] has shown
the potential of using ontology-based design.

The key aspects in SDs that are essential for decomposing the organization
specification of a MAS are the description of the requirements, system design,
model of the physical processes, and automation strategies. Engineering ontolo-
gies based on Semantic Web technologies have enabled machine-understandable
descriptions of these aspects. Methods such as goal-oriented requirements engi-
neering [37], which advocate the formulation of requirements in such a manner
that software programs can use them to reason about the goals [4] are being
used in practice [34]. Similarly methods to express machine-understandable sys-
tem design [5] (for e.g., BRICK [2]), physical processes (for e.g., OntoCape [22]),
and automation functions [32] are also available being put to use.

However, understanding the construction and functioning of a system, which
is the basis for automation system design, requires an integrated view of the SDs.
A major shortcoming in the current state of machine-understandable SDs is that
the concepts in the individual descriptions are not interlinked. For example,
a method to co-relate requirements, elements in the system design, physical
processes, and automation functions is missing.

Synthesizing Multi-agent System Organization 171

Therefore, to address the challenge of automated synthesis of organization
specification of MAS, we need to identify the relevant entities and relationships
in the SDs and enable its expression by integrating the fragmented knowledge.

3 Approach

3.1 Finding Organization Abstractions in System Descriptions

Amongst the abstractions in the MAS organization specification, the hierarchical
group structure can be obtained rather directly from the hierarchies of subsys-
tems and their technical equipment. In the next step, we need to define roles and
assign them to groups in the structural hierarchy. For example, given that the
heating system in a room needs to be automated, the question that comes up
when deciding the deployment of agent(s) is what (in broad sense) is expected
of the agent(s)? However, the notion of a role is not directly expressed in SDs,
and the closest that appears as a role is the abstract conception of tasks that
an automation program needs to carry out. For example, if the program for the
heating system automation needs to measure air temperature and modulate a
heating valve based on some control logic, we can envision its automation role as
being the temperature controller. To understand how such automation roles are
determined during the design of the (traditional) automation systems, consider
the following deliberations that occur:

1. Co-relation of requirements to states in the physical processes.
2. Identifying the system parts which play a role in the physical process and the

available means of sensing and actuation.
3. Programming (or choosing) an appropriate control strategy for automating

the physical process using the identified system parts.
4. Identifying inter-dependent system parts and determining the coordination

strategy.

Therefore, if requirements can be linked to respective subsystems and states
of the physical processes, we first can infer the physical effect that the automation
agent needs to achieve using the designated system components. For example,
in the case of a heating system, the requirement of maintaining thermal comfort
in the room is expected to be achieved through controlling the heat-exchange
process conducted by the radiator. This indicates the automation role the agent
plays (i.e., temperature controller using a radiator that conducts heat exchange).

Similarly, dependencies between the system parts, or dependencies between
physical processes, should result in the linking of the respective automation roles.
For example, if the room’s heating system depends on the central boiler’s func-
tioning, then roles in the respective groups should also be linked. The semantics
of the relationship between the roles captures the coordination foreseen in the
system design.

Once we have the definition of a role (in terms of what it is meant to achieve),
we need to describe how this role can be fulfilled. In other words, the control
and coordination tasks that must be carried out by an agent adopting the role.

172 G. Ramanathan

Fig. 2. The integration of engineering ontologies is achieved by establishing relation-
ships (shown as bold red lines) between the aspects (Color figure online)

Regarding agents adopting roles, there are two agentification scenarios to
consider. The automation system could contain idle agents that are looking to
adopt roles, or a management program recognizes unfulfilled roles and deploys
agents to take up those roles. In either case, the implication of adopting a role,
i.e., the control and coordination tasks, must be considered to verify whether an
agent can execute those functions. For example, a control function may require
access to sensors, actuators, or specific computational resources.

In domains such as BA and factory automation, SDs include descriptions of
automation applications (for e.g., see [39]). At an abstract level, an automation
application represents a collection of control and coordination strategies suit-
able for a subsystem-process combination. At design-time, a role is linked to the
automation application, and at run time the agents need to adopt concrete con-
trol and coordination strategies depending upon the state of the system and the
processes. Therefore, the abstract application can have one or more functional
schemes containing the control and control strategies that an agent can follow.
Since MOISE+ supports this concept by decomposing goals and plans, I have
used it to model the automation applications.

3.2 Integrating the System Descriptions

Having identified the entities and relationships that need to be visible (and
linked) in the SDs, the challenge was then to bridge the concepts in the existing
engineering ontologies such that the structural and functional abstractions of
the organization can be synthesized from it. The existing ontologies are based
on Resource Description Framework (RDF), which is a W3C standard as a
part of the Semantic Web Technologies for expressing knowledge as interlinked
resources. The ontologies use the Ontology Web Language (OWL), which is
grounded in Description Logics, to model concepts as classes and relationships
formally. I developed a bridging or integrating ontology1 which allows linking of
requirement goals to system components and process goals. System components
that need to be automated are linked to abstract automation application, which

1 Can be accessed here: https://github.com/codepasta/autonomous-buildings.git.

https://github.com/codepasta/autonomous-buildings.git

Synthesizing Multi-agent System Organization 173

Fig. 3. The scenario for room automation (left) showing the subsystems, the process
relationships (in dotted lines), and the roles designed for the automation devices. On
the right we see how automation roles are recognized and correlated to functions.

captures the high-level intent of the required automation. A high-level overview
of the required integration of the concepts is shown in Fig. 2.

3.3 Automated Synthesis of Organisation Specification

The concepts and relationships in an unified SD2 facilitate the automated syn-
thesis of the organization specification. The SD and the ontologies are stored in
a Knowledge Graph (KG), which can be queried using SPARQL3 statements.
The automated synthesis of the specification as MOISE+ model (serialized as
XML) is done by a software program that interfaces with the KG. Obtaining the
structural abstraction is relatively straightforward as it queries for the subsystem
hierarchy and the inter-subsystem relationships, if any.

On the other hand, roles need to be identified based on the kind of physical
process, the desired goal state, and the subsystem that can be used for the
purpose. For example, the process HeatExchange conducted by a Radiator to
maintain Temperature is construed as a role definition. For each such role, we
need to tell (the role-playing agent) what functions are expected to be carried
out – in other words, the norms that required to be respected. It is important to
note that such functions are seen from system-level perspective, and not meant
to tell exactly what the agent program should be doing. For example, in the role
of a TemperatureController, the agent is expected to execute a suitable control
logic for maintaining temperature (about which it autonomously deliberates)
while coordinating with the central energy supplier (which it is constrained to
do).

Roles are linked to each other if either the system components or the process
functions are interdependent. If the semantics of the link requires the agents
to communicate, then the link is annotated with reference to a coordination
strategy (in form of a protocol) which the agents need to use to interact with
each other.
2 System Description as a singular is used here to emphasise that it now appears as

cohesive knowledge.
3 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/TR/rdf-sparql-query/

174 G. Ramanathan

The organization specification synthesized as MOISE+ XML is then made
available to the MAS runtime was implemented using the JaCaMo framework.

4 Evaluation Setup

A BA engineering tool from Siemens AG was used to engineer the automation
of an office room containing subsystems for heating, ventilation, air-conditioning
(HVAC), and lighting. The automation system was required to maintain tem-
perature, humidity, air quality, and light level in an energy-efficient manner. The
engineering tool exports the KG containing the SD, which is then stored in a
graph database.

The JaCaMo framework was used to implement the MAS. The agents, each
dedicated for the individual subsystems, were deployed in three automation hard-
ware nodes on the network. A bootstrapping code accesses the knowledge graph
containing the SD to create the organization specification as MOISE XML, along
with the organizational entities representing the groups (i.e., the subsystems)
and corresponding automation roles. Figure 3 shows a simplified representation
of the room’s heating system for which the role of the temperature controller has
been inferred. Similarly, roles for the ventilation controller, boiler controller, and
lighting controller are created and assigned to the respective subsystem groups.
On initialization, the BDI agents in the controllers accessed the organization def-
inition and evaluated their ability to play one or more automation roles. After
adopting a role, they initialized the required control program, and if the role was
linked to another role, then a suitable coordination program was also initialized.

5 Results and Discussions

A manual verification of the organization specification by an automation engineer
confirmed that it contained the required subsystems and that the automation
roles assigned to them were correct. Similarly, the choice of control and coordi-
nation programs made by the agents at runtime was confirmed to be correct. In
addition, functional tests of the system functions confirmed that the specified
requirements were met. Changes in the SD resulted in an update of the orga-
nization specification and the agents adapting their plans - this was tested for
some sample cases involving changes in requirements and system components.

Though the current state of my evaluation shows encouraging results about
the possibility of synthesizing organization specification from SD in the case
of BA, this needs to be validated against design descriptions in more diverse
domains. Similarly, aspects such as defining the semantic relationships between
the roles (to recognize coordination), modeling regulations and norms and ensur-
ing their compliance at runtime, and agents discovering features in the sys-
tem [36] that may not be explicitly captured in the system design are planned
to be researched in future steps.

Synthesizing Multi-agent System Organization 175

Acknowledgements. I am grateful to Simon Mayer, Andrei Ciortea, and Danai
Vachtsevanou, for the many discussions and inputs which has helped shape my app-
roach to the problem. I also thank my employers Siemens AG, Smart Infrastructure
Division, who have actively supported my research and provided the opportunity to
conduct evaluations in real-life setups.

References

1. Abbas, H.A., Shaheen, S.I., Amin, M.H.: Organization of multi-agent systems: an
overview. J. Intell. Inform. Syst. 4(3) (2015)

2. Balaji, B., et al.: Brick: towards a unified metadata schema for buildings. In: Pro-
ceedings of the 3rd ACM International Conference on Systems for Energy-Efficient
Built Environments, pp. 41–50 (2016)

3. Bastos, L.R., Castro, J.F.: From requirements to multi-agent architecture using
organisational concepts. In: Proceedings of the Fourth International Workshop on
Software Engineering for Large-Scale Multi-agent Systems, pp. 1–7 (2005)

4. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Require-
ments reflection: requirements as runtime entities. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, vol. 2, pp. 199–
202 (2010)

5. Butzin, B., Golatowski, F., Timmermann, D.: A survey on information modeling
and ontologies in building automation. In: 43rd Annual Conference of the IEEE
Industrial Electronics Society, pp. 8615–8621. IEEE (2017)

6. Cena, C.G., Cardenas, P.F., Pazmino, R.S., Puglisi, L., Santonja, R.A.: A coopera-
tive multi-agent robotics system: design and modelling. Expert Syst. Appl. 40(12),
4737–4748 (2013)

7. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (2019)

8. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing manufacturing lines on the
fly with multi-agent systems for the web of things. In: Proceedings of the 17th
International Conference on Autonomous Agents and Multiagent Systems, pp. 813–
822 (2018)

9. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access
6, 28573–28593 (2018)

10. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24620-6 15

11. Ferber, J., Michel, F., Baez, J.: AGRE: integrating environments with organi-
zations. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004.
LNCS (LNAI), vol. 3374, pp. 48–56. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-32259-7 2

12. Freitas, A., Bordini, R.H., Vieira, R.: Designing multi-agent systems from ontology
models. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI),
vol. 11375, pp. 76–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25693-7 5

13. Hendler, J.: Where are all the intelligent agents? IEEE Intell. Syst. 22(03), 2–3
(2007)

https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-540-32259-7_2
https://doi.org/10.1007/978-3-540-32259-7_2
https://doi.org/10.1007/978-3-030-25693-7_5
https://doi.org/10.1007/978-3-030-25693-7_5

176 G. Ramanathan

14. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (2004)

15. Hübner, J.F., Sichman, J.S., Boissier, O.: MOISE+ towards a structural, func-
tional, and deontic model for mas organization. In: Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems: Part
1, pp. 501–502 (2002)

16. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000)

17. Mascardi, V., Weyns, D., Ricci, A., Earle, C.B., Casals, A., Challenger, M., Chopra,
A., Ciortea, A., Dennis, L.A., Dı́az, Á.F., et al.: Engineering multi-agent systems:
state of affairs and the road ahead. ACM SIGSOFT Softw. Eng. Notes 44(1), 18–28
(2019)

18. Mathieu, P., Routier, J.C., Secq, Y.: Dynamic organization of multi-agent systems.
In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 1, pp. 451–452 (2002)

19. McArthur, S.D., et al.: Multi-agent systems for power engineering applications-
part I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst.
22(4), 1743–1752 (2007)

20. Mitzutani, I., Ramanathan, G., Mayer, S.: Semantic data integration with DevOps
to support engineering process of intelligent building automation systems. In: Pro-
ceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, pp. 294–297 (2021)

21. Moran, S.: An Applied Guide to Process and Plant Design. Elsevier, Amsterdam
(2019)

22. Morbach, J., Wiesner, A., Marquardt, W.: OntoCape-a (re) usable ontology for
computer-aided process engineering. Comput. Chem. Eng. 33(10), 1546–1556
(2009)

23. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technolo-
gies: a survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engi-
neering, pp. 27–53. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54432-3 3

24. Pechoucek, M., et al.: Agents in industry: the best from the AAMAS 2005 industry
track. IEEE Intell. Syst. 21(2), 86–95 (2006)

25. Ploennigs, J., Hensel, B., Dibowski, H., Kabitzsch, K.: BASont-a modular, adaptive
building automation system ontology. In: IECON 2012–38th Annual Conference on
IEEE Industrial Electronics Society, pp. 4827–4833. IEEE (2012)

26. Ramanathan, G., Husmann, M.: Semantic description of equipment and its controls
in building automation systems. In: Groth, P., et al. (eds.) ESWC 2022. LNCS,
vol. 13384, pp. 307–310. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-11609-4 47

27. Ramanathan, G., Husmann, M., Niedermeier, C., Vicari, N., Garcia, K., Mayer,
S.: Assisting automated fault detection and diagnostics in building automation
through semantic description of functions and process data. In: Proceedings of
the 8th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, pp. 228–229 (2021)

28. Runde, S., Dibowski, H., Fay, A., Kabitzsch, K.: Integrated automated design
approach for building automation systems. In: IEEE International Conference on
Emerging Technologies and Factory Automation, pp. 1488–1495 (2008)

29. Runde, S., Heidemann, A., Fay, A., Schmidt, P.: Engineering of building automa-
tion systems-state-of-the-art, deficits, approaches. In: IEEE 15th Conference on
Emerging Technologies & Factory Automation (ETFA 2010), pp. 1–8. IEEE (2010)

https://doi.org/10.1007/978-3-642-54432-3_3
https://doi.org/10.1007/978-3-642-54432-3_3
https://doi.org/10.1007/978-3-031-11609-4_47
https://doi.org/10.1007/978-3-031-11609-4_47

Synthesizing Multi-agent System Organization 177

30. Ruta, M., Scioscia, F., Loseto, G., Di Sciascio, E.: Semantic-based resource discov-
ery and orchestration in home and building automation: a multi-agent approach.
IEEE Trans. Industr. Inf. 10(1), 730–741 (2013)

31. Schneider, F., Berenbach, B.: A literature survey on international standards for
systems requirements engineering. Procedia Comput. Sci. 16, 796–805 (2013)

32. Schneider, G.F., Pauwels, P., Steiger, S.: Ontology-based modeling of control logic
in building automation systems. IEEE Trans. Industr. Inf. 13(6), 3350–3360 (2017)

33. Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems
in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431
(2006)

34. Siegemund, K., Thomas, E.J., Zhao, Y., Pan, J., Assmann, U.: Towards ontology-
driven requirements engineering. In: Workshop Semantic Web Enabled Software
Engineering at 10th International Semantic Web Conference (ISWC) (2011)

35. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 16, 151–185 (2008)

36. Vachtsevanou, D., Ciortea, A., Mayer, S., Lemée, J.: Signifiers as a first-class
abstraction in hypermedia multi-agent systems (2023). https://doi.org/10.48550/
ARXIV.2302.06970, https://arxiv.org/abs/2302.06970

37. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings fifth IEEE International Symposium on Requirements Engineering,
pp. 249–262. IEEE (2001)

38. Vogel-Heuser, B., et al.: Challenges for software engineering in automation. J.
Softw. Eng. Appl. (2014)

39. Wetter, M., Grahovac, M., Hu, J.: Control description language. In: Proceedings
of the American Modelica Conference 2018, pp. 17–26. Linköping University Elec-
tronic Press (2019)

40. Zia, T., Lang, R., Boley, H., Bruckner, D., Zucker, G.: An autonomous adaptive
multiagent model for building automation. IFAC Proc. Vol. 42(3), 250–254 (2009)

https://doi.org/10.48550/ARXIV.2302.06970
https://doi.org/10.48550/ARXIV.2302.06970
https://arxiv.org/abs/2302.06970

Towards Developing Digital Twin
Enabled Multi-Agent Systems

Stefano Mariani1(B) , Marco Picone1 , and Alessandro Ricci2

1 Department of Sciences and Methods of Engineering, University of Modena
and Reggio Emilia, Reggio Emilia, Italy

{stefano.mariani,marco.picone}@unimore.it
2 Department of Computer Science and Engineering, University of Bologna,

Cesena, Italy
a.ricci@unibo.it

Abstract. The Multi-Agent Systems (MASs) literature provides
abstractions, techniques, and development platforms to design and imple-
ment the virtual environment within which agents operate. However,
coupling such an environment with a physical counterpart is still cumber-
some, as existing approaches deal with the issue in an ad-hoc way, with-
out general purpose abstractions and methods. Recently, a new paradigm
could complement the agent-oriented one to deal with digitalisation of
physical environments in a more principled and interoperable way: the
Digital Twin (DT). In this paper, we propose a first principled integra-
tion between MAS and DTs for MAS environment engineering.

Keywords: Digital Twin · Multi-agent System · WDLT · JaCaMo

1 Introduction

Multi-Agent Systems (MAS) are the premiere source of abstractions and meth-
ods (and programming and execution platforms as well) to model and engineer
complex systems [7]. Examples include Cyber-Physical Systems (CPS) [5], e.g.
the monitoring and control software of a manufacturing factory, where agents
collect measurements from machinery and equipment (i.e. their digital repre-
sentations) to support human supervision and decision making; Web of Things
deployments [2], e.g. the software controlling energy consumption of smart appli-
ances in a smart building like an hotel, where different agents are in charge of
negotiating the best settings to find the optimal trade-off against competing
interests (e.g. management’s cost saving policies and guests’ comfort).

The MAS literature provides plenty of agent models and development (and
execution) platforms, ranging from simple reactive agents mostly used for simu-
lation [15,25], to pro-active cognitive agent architectures meant to autonomously
carry out sophisticated reasoning [8,21]. There are also models and methods to
engineer the environment that agents must interact with to carry out their duties,

Work partially supported by Italian PRIN “Fluidware” (N. 2017KRC7KT).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 178–187, 2023.
https://doi.org/10.1007/978-3-031-48539-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_12&domain=pdf
http://orcid.org/0000-0001-8921-8150
http://orcid.org/0000-0001-8902-6909
http://orcid.org/0000-0002-9222-5092
https://doi.org/10.1007/978-3-031-48539-8_12

Towards Developing Digital Twin Enabled Multi-Agent Systems 179

such as the A&A meta-model [17] providing artefacts as the first-class abstrac-
tion meant to digitally represent both physical resources and legacy software
(e.g. databases or external services). However, the nuts and bolts of connecting
a digital representation to its physical counterpart (e.g. an individual sensor,
a manufacturing equipment, or even a whole production line), and the imple-
mentation of the process that keeps the two aligned at all times are not well
engineered. Indeed, often the focus is on the interface between the agent and
the artefact (or whatever other abstraction is provided), not between the arte-
fact and the physical thing. This forces programmers to “re-invent the wheel”
for every new development, or hides potentially reusable designs in each team
or organisation own implementations, leading to fragmentation.

A solution could come from Digital Twins (DTs) [14], that is, digital repre-
sentations of an (physical) entity of interest (e.g. object, location, person, pro-
cess) continuously reflecting its state and behaviour in a software object, meant
to provide services to other software entities (e.g. business applications) [22].
Amongst the many applications of the concept [27], that of exposing a uniform
and interoperable digital layer to applications and services, tightly coupled with
the physical world but hiding to such applications the heterogeneity and com-
plexity of managing resources and processes, is relevant for MAS engineering.

Accordingly, in this paper we propose DTs as a complement to existing mod-
els and methods for MAS environment engineering, with the goals of (i) achiev-
ing a principled way to couple digital representations of entities to their physical
counterparts, and (ii) decouple MAS environment engineering methods from the
intricacies and peculiarities of accessing to and interacting with physical devices.
We argue, in fact, that it is conceptually wrong, and technically inconvenient,
to model a DT, or a CPS component, as an agent. For the former, modelling
DTs as agents would clash with the definitions we adopt (see Sect. 3.1); for the
latter, DTs are better candidates to model them. MAS designers would gain tan-
gible benefits in terms of (i) separation of concerns, as they can engineer their
solution in terms of MAS abstractions without “polluting” them with devices or
protocol-specific technicalities, and (ii) independent evolution, as once the DTs
interface to the MAS is established, developers of the MAS functionalities and
those managing the physical layer can evolve their implementations separately.

2 State of the Art

The vision we aim to realise with this paper is aligned with the view fostered
in [12], where agents and DTs are seen as complementary abstractions whose
principled integration can bring benefits to two tasks, mostly: (i) engineering
the MAS environment, and (ii) orchestrating and coordinating (e.g. dynamically
compose) agents and DTs’ offered services. In particular, we exploit the kind
of separation of concerns therein defined, where DTs are meant to operate (i.e.
perceive, act) within the boundaries set by the local context of their associated
physical twin, whereas agents are meant to pursue the application goals in the
global context of all the resources and services available to the whole MAS.
Figure 1 in Sect. 3 depicts our envisioned architecture aligned with this view.

180 S. Mariani et al.

There are a few works in the literature about exploiting agents and DTs
synergistically in the perspective described above, that is, where DTs take care
of interacting with the environment on behalf of agents, and agents use and
orchestrate DTs for achieving their goals. For instance, in [3] DTs model environ-
ment resources so as to support the agents’ decision making, while agents gather
knowledge from multiple DTs to achieve their goals. In [16] a specific instance of
the concept of DT, called “Asset Administration Shell” (AAS), enables agents’
operations on a physical production system, by mediating access to all the dif-
ferent physical devices. In [10] DTs are used in a manufacturing CPS to better
manage communication of data from the physical devices to the MAS moni-
toring and controlling the system, for instance by performing protocol trans-
lation, buffering, etc. Even if restricted to communication issues, DTs actually
encapsulate the resources in the MAS environment (the manufacturing CPS).
Finally, in [28] a distributed simulation platform is shaped around DTs: each
DT simulates a specific asset or set of assets, and agents orchestrate such DTs
to dynamically compose them in a single coherent simulation. In a sense, also
here DTs encapsulate a portion of the environment, although in this case such
environment is purely simulated.

However, in all the aforementioned works, either agents directly interact with
DTs [10,16,28], or the concept of DT is directly implemented with the abstrac-
tions (and techniques) made available by the MAS—in the case of [3], as a
CArtAgO artefact [24]. In next section, we propose an integration architecture
complementing, not replacing, MAS environment abstractions with DTs.

Besides these research works, there are others that do not explicitly men-
tion DTs but nevertheless aim at controlling CPSs with a MAS, while pursuing
a kind of separation of concerns similar to ours. For instance, authors of [26]
recognise that the agent is responsible for the high-level control functions, while
the physical asset’s “controller” ensures the execution of the agent’s high-level
decision. Furthermore, they advocate the added value brought by the concept of
AAS [16] as a way to provide a standardized description of the asset information.
In turn, this helps creating the agent’s local knowledge in a standard way and
thus ensures interoperability. However, such AAS is mostly a data repository,
and the physical controller is not further abstracted away. In [4], resource access
is identified as a common functionality provided by MAS when applied to CPS.
In fact, the RAMI reference architecture adopted in the paper deploys agents
mostly everywhere, there included the “asset” level. In this paper, we advocate
that (and motivate why) DTs should be adopted instead. In [19] there is only
Java as the abstraction layer towards the physical system. In [9] “agentification”
is heavily used, that is, wrapping of services and resources within an agent, and
no further abstraction is provided at the border with the physical layer.

Finally, Multi-Agent Robot Systems (MARS) could be considered as a spe-
cial case of CPSs, hence efforts to integrate MAS control in multi-robot systems
should be taken into account. In MARS architectures, intelligence, proactivity,
and social aspects are usually located within agents at the application layer,
whereas handling of all the hardware robotic devices and providing functional-
ity for robotics algorithms is responsibility of the lower layers. However, in [6],

Towards Developing Digital Twin Enabled Multi-Agent Systems 181

authors argue for a different separation of concerns, where agents are also used
in lower layers as they provide better abstractions for the intelligence required to
perform some functional tasks. At the same time, yet, they recognise that there
are still components for which the agent abstraction is “just too much”, but fail
to provide an alternative abstraction besides Robot Operating Systems (ROS)
nodes. In this paper, we argue and motivate why DTs could be better candidates
for this. In [13] a MARS architecture is proposed where cognitive and operative
layers implement separation of concerns between agents and robotic hardware,
but where between the agent runtime (JADE) and ROS there is pure Java, and
no further abstraction layer. The same happens in [11].

3 Integration Architecture

First, we propose a conceptual architecture not tied to any particular implemen-
tation platform, but only to a MAS meta-model (i.e. A&A [17]), in Sect. 3.1.
Then, we follow-up with a technical instantiation of such a conceptual architec-
ture with specific technologies (i.e. JaCaMo [1] and the WLDT library [20]), in
Sect. 3.2. The former shows how the different abstractions provided by DTs and
MAS fit together in a coherent paradigm for MAS environment engineering—
and, engineering of any CPS. The latter clarifies how such a conceptual frame-
work can be realised with current technologies. JaCaMo is a cognitive MAS
development and execution framework, relying on the Belief-Desire-Intention
(BD) architecture for agent inner reasoning. WLDT is a Java framework provid-
ing highly modular and re-usable code to create and maintain DTs of physical
world entities (https://github.com/wldt).

3.1 Conceptual

Our conceptual integration architecture is depicted in Fig. 1. The definition of
terms “agent” and “artefact” that we adopt in this paper is taken from the A&A
meta-model [17]. The definition of DT is mostly taken from [14], that tries to
sort out the many different definitions already existing for DTs in a coherent one.
However, we also adopt the systemic view fostered in [22] about the modelling
of an ecosystem of DTs semantically interlinked.

The lowest layer is the physical world, where all the objects, resources,
devices, people, processes, and every other entity of interest in a given CPS,
that is not conceptually suitable to be modeled as an agent, resides. This is a
highly heterogeneous world, where virtually every entity has its own access pro-
tocol, measurable properties, functionalities, behaviours, etc. With the purpose
of making such substrate more homogeneous (e.g. in terms of network access
protocols) a DT layer is placed on top, shielding applications from the technical
intricacies of the CPS. DTs are, in fact, perfectly suited to encapsulate physical
resources and make them accessible to applications. This two layers compose
the CPS layer, as the part of the system strictly intertwined with the physical
world.

https://github.com/wldt

182 S. Mariani et al.

Fig. 1. Conceptual integration architecture. DTs complement artefacts in mediating
agents’ access to physical resources, by shielding artefacts (and agents in turn) from the
heterogeneity of communication protocols, data exchange formats, etc., while providing
additional services (e.g. fault tolerance, simulation, prediction, etc.).

Above them, the MAS layer begins, composed by two sub-layers. The lower
one, closer to DTs, is the MAS environment layer, where everything that is
not an agent is represented. In this paper, non-agent entities are represented
as artefacts according to the A&A meta-model [17], that is the most principled
solution to date [23]. An artefact represents any environmental resource (physical
or virtual, such as a database or external service) in terms of admissible actions
and available perceptions, perfectly matching most of agent models from reactive
to cognitive ones—where an agent is usually defined as an autonomous entity
situated in an environment that it can perceive through sensors and act upon
through actuators [25]. However, any other environment engineering abstraction
would be fine to adopt, as long as it brings the level of abstraction and the
programming paradigm closer to the agent-oriented one.

Now, it should be already clear why we crossed the line between CPS and
MAS here, at the frontier between DTs and artefacts: the former still promote a
development paradigm centred around the physical twin properties and functions
– closer to devices –, whereas the latter abstracts them away into perceptions
and actions—closer to the agents. In other words, here is where most of the
separation of concerns happen.

The highest layer of our conceptual architecture is thus the agents one, where
multiple agents cooperate towards the system goals. Such agents actually form
a (more or less structured) society, that is, a population of agents with roles and
missions to accomplish, competing or collaborating within the rules (or “laws”)
set by the system designer or enforced by some institutional entity that oversees
the society as a whole. For instance, in a MAS deployed to control automation of

Towards Developing Digital Twin Enabled Multi-Agent Systems 183

a manufacturing factory, multiple agents can be deployed with different respon-
sibilities, but is likely that they need to interact in a well structured way to
achieve complex system goals (e.g. automate assembly, pick up, and packaging
of a product). Structuring the inter-dependencies between these responsibilities
can be done via the abstraction of a society, where each agent has a certain
role (e.g. the assembler, the collector) and commits to meet others’ expectations
regarding a specific task or deliverable (e.g. assemble the product correctly, pick
up the right parts). Here, agents exploit artefacts as extensions or augmentations
of their innate capabilities, or as the mediators of interaction with the resources
in their environment—while still reasoning in terms of actions and perceptions.
At this level, agents may be completely unaware that artefacts are actually
encapsulating DTs, in the same way as DTs may be unaware that their services
are being exposed as actions and perceptions to agents. This is the whole point
of the principle of separation of concerns and independent evolution brought
forward in this paper: they don’t need to, and probably don’t want to. Agents
(as well as their developers) want to think in terms of actions and perceptions
on artefacts, whereas DTs (and their developers) need to deal with the physical
world technicalities, and do not want to be casted into any specific development
framework or mindset dictated by higher layers of the architecture.

However, at the interface between artefacts and DTs, there needs to be a
way to “connect” an artefact to a DT and viceversa, while still maintaining
loose coupling. How this can be achieved in practice is detailed in next section.

3.2 Technical

Figure 2 depicts the technical integration architecture we propose in this paper,
as a practical design of the conceptual one described in previous section. As
such, it is a zoom-in of the frontier between the MAS environment layer and
the DTs layer of Fig. 1. The main components of the integration layer are: the
DTDescriptor and WLDTDiscoveryService, that are included in the WLDT
library; the DTWorkspace and DTDiscoveryArtefact, that are newly introduced
as part of our technical integration design.

The DTDescriptor is a complete description of a given DT provided by the
WLDT library: (i) the list of properties available for inspection (name-datatype
pairs), (ii) the list of actions than can be requested to the DT (name, input
and output parameters as name-datatype pairs), (iii) the list of behaviours that
the DT can carry out (name, input parameters, stop condition), (iv) the list
of relationships the DT has with other DTs (kind, target DT unique identi-
fier), (v) as well as all the metadata needed to interact with the DT—such
as an address where to push actions and pull data, the supported protocol(s)
(e.g. websocket vs. plain REST CRUD operations), the supported representation
format(s) (e.g. JSON, YAML), and any other information needed by external
components to directly interact with the DT. Such a descriptor is published by
the WLDTDiscoveryService to a well known address as soon as a DT is created
and bound to its physical twin by the WLDT platform. External components
can query it for a list of available DTs, and get the descriptor of any of them.

184 S. Mariani et al.

Fig. 2. Technical integration architecture. The DTDiscoveryArtefact (i) reads the
DTDescriptors advertised by the WLDT platform on known endpoints, (ii) dynami-
cally instantiates the corresponding CArtAgO artefacts by mapping entities in descrip-
tors to CArtAgO artefacts’ observable properties and operations, and (iii) sets up a
persistent bi-directional connection to keep synchronised the artefact and the DT.

Thanks to this service, and to JaCaMo artefacts programmatic APIs, our
DTDiscoveryArtefact can automatically create the artefacts corresponding to
the available DTs by simply retrieving their descriptors and mapping elements
therein to the appropriate CArtAgO abstraction: DT properties to artefacts
observable properties, DT actions to artefacts operations, DT behaviours to both
(each behaviour is an operation with additional life-cycle related observable prop-
erties), and DT relationships to links with other artefacts [18]. Metadata regard-
ing the interaction protocol(s) are used to dynamically create a dedicated bi-
directional communication “channel” between the artefact and the correspond-
ing DT (e.g. a websocket or a sequence of REST request-response calls), so that
the DTDiscoveryArtefact won’t be a bottleneck by having to handle (collect
and forward) all the interactions between all the DTs and all the artefacts. Such a
link is meant to improve the scaling capabilities by decentralising the execution
of communication actions, without imposing a tight coupling between compo-
nents. First, such a coupling only happens at run-time and fully automatically,
without requiring design-time knowledge. Second, whenever such a bi-directional
link fails (e.g. due to disconnections, components crashing, etc.), both the arte-
fact and the DT may fall back to the mediation of the DTDiscoveryArtefact
for the time needed to recover (e.g. restoring the communication link, replacing
the faulty DT, etc.).

Towards Developing Digital Twin Enabled Multi-Agent Systems 185

Each artefact dynamically created by the DTDiscoveryArtefact is added
to the ad-hoc JaCaMo workspace DTWorkspace so that any agent in the MAS
can discover and exploit them. The focal point of the whole integration just
described is the DTDiscoveryArtefact, as it is the component that synergis-
tically exploits existing JaCaMo and WLDT services (e.g. dynamic artefacts
creation, in-workspace discovery, DT descriptors and their publication) to make
totally transparent to the MAS developers the existence and utilisation of DTs.
In fact, MAS developers need only to (i) configure the DTDiscoveryArtefact
we designed with the well known address of WLDTDiscoveryService, and (ii)
start the automatic “creation & mapping” process described above, by launch-
ing the dedicated operation provided by this library artefact. If the DTs layer
is already up & running, the MAS environment will be automatically shaped
accordingly. Moreover, as the DTDiscoveryArtefact is subscribed to changes
in the WLDTDiscoveryService, newly created DTs will be promptly discovered
and mapped to JaCaMo at run-time. Even agents with no prior knowledge (e.g.
because some DTs are later added to the CPS) can discover what the envi-
ronment has to offer by exploiting Jason reasoning capabilities and CArtAgO
inspection services (e.g. get a list of available artefacts, get observable properties
of an artefact, get its operations, etc.).

This openness and dynamism gives benefits in terms of separation of con-
cerns and independent evolution, as MAS developers and DTs engineers can
deal with their own part of the system using their preferred abstractions: MAS
designers can think at the application as agents cooperating towards a given goal
while interacting with available artefacts – regardless of how artefacts interact
with physical entities –, whereas CPS engineers model physical resources and
devices as DTs, and make their services (e.g. observing properties and request-
ing operations) available in a standard way (e.g. with web ready protocols and
data formats).

4 Conclusion

In this paper, we outlined an integration architecture between MASs and DTs,
to improve the way environment engineering is carried out in agent-oriented
development practice, by exploiting the notion of DTs and their natural coupling
with physical entities. In particular, we described such integration from both the
conceptual and technical design perspective, relying on the A&A meta-model for
the former, and on JaCaMo and WLDT development platforms for the latter.

With our proposal, greater separation of concerns both at run-time (between
software components) and during design (between developers) is enabled, and
system engineers can develop their own part of the system, the MAS and the
CPS, independently. Implementation of the proposed design is already ongoing,
as both JaCaMo and WLDT already offer most of the needed mechanisms. The
DTDiscoveryArtefact will be release as a sort of “library artefact” ready to be
used in any JaCaMo deployment.

186 S. Mariani et al.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

2. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS
(LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25693-7 15

3. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents
and digital twins in healthcare. J. Med. Syst. 44(9), 161 (2020). https://doi.org/
10.1007/s10916-020-01623-5

4. Cruz Salazar, L.A., Ryashentseva, D., Lüder, A., Vogel-Heuser, B.: Cyber-physical
production systems architecture based on multi-agent’s design pattern–comparison
of selected approaches mapping four agent patterns. Int. J. Adv. Manuf. Technol.
105(9), 4005–4034 (2019). https://doi.org/10.1007/s00170-019-03800-4

5. Gorodetsky, V.I., Kozhevnikov, S.S., Novichkov, D., Skobelev, P.O.: The frame-
work for designing autonomous cyber-physical multi-agent systems for adaptive
resource management. In: Mař́ık, V., et al. (eds.) HoloMAS 2019. LNCS (LNAI),
vol. 11710, pp. 52–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
27878-6 5

6. Iñigo-Blasco, P., Dı́az-del-Ŕıo, F., Romero-Ternero, M.C., Cagigas-Muñiz, D., Diaz,
S.V.: Robotics software frameworks for multi-agent robotic systems development.
Robot. Auton. Syst. 60(6), 803–821 (2012). https://doi.org/10.1016/j.robot.2012.
02.004

7. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001). https://doi.org/10.1145/367211.367250

8. Laird, J.E.: The SOAR cognitive architecture (2012)
9. Latsou, C., Farsi, M., Erkoyuncu, J.A.: Digital twin-enabled automated anomaly

detection and bottleneck identification in complex manufacturing systems using
a multi-agent approach. J. Manuf. Syst. 67, 242–264 (2023). https://doi.org/10.
1016/j.jmsy.2023.02.008, https://www.sciencedirect.com/science/article/pii/S027
8612523000328

10. Latsou, C., Farsi, M., Erkoyuncu, J.A., Morris, G.: Digital twin integration in
multi-agent cyber physical manufacturing systems, vol. 54, pp. 811–816 (2021).
https://doi.org/10.1016/j.ifacol.2021.08.096

11. Liu, Z., Mao, X., Yang, S.: AutoRobot: a multi-agent software framework for
autonomous robots. IEICE Trans. Inf. Syst. 101-D(7), 1880–1893 (2018). https://
doi.org/10.1587/transinf.2017EDP7382

12. Mariani, S., Picone, M., Ricci, A.: About digital twins, agents, and multiagent
systems: a cross-fertilisation journey. In: Melo, F.S., Fang, F. (eds.) Autonomous
Agents and Multiagent Systems. Best and Visionary Papers. AAMAS 2022. LNCS,
vol. 13441, pp. 114–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-20179-0 8

13. Martin, J., Casquero, O., Fortes, B., Marcos, M.: A generic multi-layer architecture
based on ROS-JADE integration for autonomous transport vehicles. Sensors 19(1),
69 (2019). https://doi.org/10.3390/s19010069

14. Minerva, R., Crespi, N.: Digital twins: properties, software frameworks, and appli-
cation scenarios. IT Prof. 23(1), 51–55 (2021). https://doi.org/10.1109/MITP.
2020.2982896

https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/s10916-020-01623-5
https://doi.org/10.1007/s10916-020-01623-5
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.1007/978-3-030-27878-6_5
https://doi.org/10.1007/978-3-030-27878-6_5
https://doi.org/10.1016/j.robot.2012.02.004
https://doi.org/10.1016/j.robot.2012.02.004
https://doi.org/10.1145/367211.367250
https://doi.org/10.1016/j.jmsy.2023.02.008
https://doi.org/10.1016/j.jmsy.2023.02.008
https://www.sciencedirect.com/science/article/pii/S0278612523000328
https://www.sciencedirect.com/science/article/pii/S0278612523000328
https://doi.org/10.1016/j.ifacol.2021.08.096
https://doi.org/10.1587/transinf.2017EDP7382
https://doi.org/10.1587/transinf.2017EDP7382
https://doi.org/10.1007/978-3-031-20179-0_8
https://doi.org/10.1007/978-3-031-20179-0_8
https://doi.org/10.3390/s19010069
https://doi.org/10.1109/MITP.2020.2982896
https://doi.org/10.1109/MITP.2020.2982896

Towards Developing Digital Twin Enabled Multi-Agent Systems 187

15. North, M.J., et al.: Complex adaptive systems modeling with Repast Simphony.
Complex Adapt. Syst. Model. 1, 3 (2013). https://doi.org/10.1186/2194-3206-1-3

16. Ocker, F., Urban, C., Vogel-Heuser, B., Diedrich, C.: Leveraging the asset admin-
istration shell for agent-based production systems, vol. 54, pp. 837–844 (2021).
https://doi.org/10.1016/j.ifacol.2021.08.186

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi Agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x

18. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767954 15

19. Pedersen, S., Foss, B., Schjølberg, I., Tjønn̊as, J.: MAS for manufacturing control:
a layered case study. In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff,
M. (eds.) International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2012, Valencia, Spain, 4–8 June 2012 (3 Volumes), pp. 1169–1170.
IFAAMAS (2012). http://dl.acm.org/citation.cfm?id=2343903

20. Picone, M., Mamei, M., Zambonelli, F.: WLDT: a general purpose library to build
IoT digital twins. SoftwareX 13, 100661 (2021). https://doi.org/10.1016/j.softx.
2021.100661

21. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) Proceedings of the First International Conference on Multiagent
Systems, 12–14 June 1995, San Francisco, California, USA, pp. 312–319. The MIT
Press (1995)

22. Ricci, A., Croatti, A., Mariani, S., Montagna, S., Picone, M.: Web of digital twins.
ACM Trans. Internet Technol. 22(4) (2022). https://doi.org/10.1145/3507909

23. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for MAS coor-
dination. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39173-8 8

24. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

25. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach: The Intelli-
gent Agent Book. Prentice Hall series in artificial intelligence, Prentice Hall, Hobo-
ken (1995). https://www.worldcat.org/oclc/31288015

26. Sakurada, L., Leitão, P., de la Prieta, F.: Engineering a multi-agent systems app-
roach for realizing collaborative asset administration shells. In: IEEE International
Conference on Industrial Technology, ICIT 2022, Shanghai, China, 22–25 August
2022, pp. 1–6. IEEE (2022). https://doi.org/10.1109/ICIT48603.2022.10002770

27. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art.
IEEE Trans. Ind. Inform. 15(4), 2405–2415 (2019). https://doi.org/10.1109/TII.
2018.2873186

28. Zekri, S., Jabeur, N., Gharrad, H.: Smart water management using intelligent
digital twins. Comput. Inform. 41(1), 135–153 (2022). https://doi.org/10.31577/
cai 2022 1 135

https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1016/j.ifacol.2021.08.186
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/11767954_15
https://doi.org/10.1007/11767954_15
http://dl.acm.org/citation.cfm?id=2343903
https://doi.org/10.1016/j.softx.2021.100661
https://doi.org/10.1016/j.softx.2021.100661
https://doi.org/10.1145/3507909
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8
https://www.worldcat.org/oclc/31288015
https://doi.org/10.1109/ICIT48603.2022.10002770
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.31577/cai_2022_1_135
https://doi.org/10.31577/cai_2022_1_135

Agents in Hypermedia Environments

Towards Context-Based Authorizations
for Interactions in Hypermedia-Driven

Agent Environments - The CASHMERE
Framework

Alexandru Sorici(B) and Adina Magda Florea

National University of Science and Technology POLITEHNICA Bucharest, Splaiul
Independentei 313, Bucharest, Romania

{alexandru.sorici,adina.florea}@upb.ro

Abstract. Agent-oriented software engineering has recently seen a sus-
tained effort towards the definition of a new class of Multi-Agent System
design, called Hypermedia MAS, which promotes an alignment between
MAS engineering and the Web architecture to enable development of
large, open, dynamic and long-lived interaction systems. A major chal-
lenge in these envisioned MAS environments is enabling agents to dis-
cover the resources whose affordances they require. Hypermedia MAS
design principles push for discovery and use of resources by exploiting
the link structure of web resources, but little focus has been placed thus
far in ensuring authorized access to the resources of a large MAS environ-
ment. To address this, we propose a framework for context-based autho-
rizations for access and discovery of resources in a Hypermedia MAS,
inspired by work on Attributed-Based Access Control and RDF Stream
Reasoning. We detail the design of the framework functionality and the
proposed integration with current Hypermedia MAS platforms, high-
lighting advantages, challenges and current limitations of the approach.

Keywords: Hypermedia MAS · Web-of-Things · Context · RDF
Stream Processing · Context-Based Access Control

1 Introduction

In recent years agent-oriented software engineering has seen a sustained contri-
bution effort towards a vision that enables the deployment of world-wide hybrid
communities of people and artificial agents, making use of the Web. A new class
of multi-agent system (MAS) design is being defined, referred to as Hyperme-
dia MAS [12], which posits that MAS engineering should be aligned with the
web architecture so as to enable large, open, dynamic and long-lived interaction
systems. The cornerstone of the approach is the use of semantic hypermedia to
enable the interaction among heterogeneous entities in MAS, such as software
agents, sensors, devices, services and people.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 191–207, 2023.
https://doi.org/10.1007/978-3-031-48539-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_13&domain=pdf
http://orcid.org/0000-0002-6850-0912
http://orcid.org/0000-0001-7249-1871
https://doi.org/10.1007/978-3-031-48539-8_13

192 A. Sorici and A. M. Florea

One leading engineering model within Hypermedia MAS [14] proposes an
alignment between the Agent & Artifacts MAS development meta-model [26]
and the Web-of-Things (WoT) W3C Thing Description (TD) specification [7].
The Agents & Artifacts model introduces an explicit dimension for program-
ming of the environment of a MAS, which happens in terms of Artifacts and
their deployment into various Workspaces. Artifacts encapsulate the functional-
ity of digital services, sensors or actuators and expose their working in terms
of observable properties and events, as well as actions that can be invoked on
them. On the other hand, the W3C WoT TD specification describes a formal
information model and a common representation for the Web-of-Things, where
Things (e.g. web-enabled services, devices, sensors) are characterized by their
property, event and action affordances which clients can use by means of REST-
ful interactions following the HATEOAS principles (Hypermedia As The Engine
Of Application State). It is easy to see the similarity of the A&A and TD models
which is why Hypermedia MAS platforms such as Yggdrasil [14] build on their
integration, creating MAS environments which have an explicit web-resource
based representation of the artifacts they contain.

A major challenge in developing application over large, open and dynamic
hypermedia MAS environments is enabling agents to discover the resources
whose affordances they require. While the design principles of Hypermedia MAS
promote discovery by navigating the link structure constructed between WoT
Things, there currently is no indication on how to search and use Web Things
in an authorized manner, which would respect the access policies that hetero-
geneous designers wish to set in place for the Things they deploy in a large
hypermedia MAS environment. Furthermore, there is no indication of a process
by which authorization would be granted or revoked, which is suited to a large,
open and dynamic environment.

Running Scenario. To give an example of the mentioned challenges, we intro-
duce a simple scenario that is a straightforward adaptation from the use case
introduced in [14] where a digital assistant (modeled as a BDI agent) has to
notify a person every time a relevant event occurs. The BDI agent is situatated
in a hypermedia environment and is able to discover an artifact controlling a
smart light bulb. The agent uses the light bulb to implement a blinking pattern
that visually notifies the user of new events. Changing the color of the light helps
distinguish between positive and negative notifications. Our adaptation of this
scenario relies on adding more details to the situation, which quickly give rise
to the need for authorized access. The visual notification service is desired by a
university which implements a hypermedia MAS environment at the level of the
whole campus. The university encourages each lab to be individually responsible
for the smart devices it installs in their room, as long as they are made available
in the hypermedia environment. However, the university considers that discov-
ery of the artifacts wrapping over any smart device is only allowed for employed
personnel who are physically present in the rooms where the devices reside, to
prevent BDI agents of university visitors from interacting with the devices, as
well as any kind of remote control.

Context-Based Authorization in Hypermedia Agent Environments 193

Context. The running scenario defines a situation where the context of a user
(e.g. employment status, physical location) has to directly inform the interac-
tions that the BDI agent of the user can execute in the hypermedia MAS envi-
ronment. We interpret the notion of context information according to a general,
application-specific definition given in the framework of Ambient Intelligence
(AmI): “Context is any information that can be used to characterize the sit-
uation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and applications themselves” [18].

We also argue that the operational perspective [32] of logically partition-
ing context information along dimensions of engagement (e.g. individual, space,
time, activity, relational) can be usefully exploited to inform a mechanism for
context-based authorization of interactions within a hypermedia MAS. This view
is further strengthened by the AmI perspective that specific enough shared con-
text between two entities acts as a permission and even obligation for information
exchange between the entities [22].

In light of the above, our contributions in this work are:

– Describe the need for and the design of a framework for Context-Aware Search
and Discovery in Hypermedia MAS Environments (CASHMERE). The center
focus of the approach is providing a method for context-based authorization.

– Present a development and integration road map, detailing how the CASH-
MERE framework can be integrated into the working of a Hypermedia MAS
Environment. We present advantages, challenges and limitations of the envi-
sioned approach.

The remainder of the article is structured as follows. Section 2 provides
background on the Hypermedia MAS environments, frameworks to establish
authorization policies in dynamic systems, as well as the use of RDF stream-
ing technologies to implement context-based policy rules. Section 3 details the
core functionality of the CASHMERE framework explaining the means for con-
text representation and shared context identification. The design of the integra-
tion between CASHMERE and a Hypermedia MAS environment is presented in
Sect. 4, while the challenges and current limitations of the approach are discussed
in Sect. 5. We conclude the paper with the outline of upcoming development work
in Sect. 6.

2 Background

We start by analysing the motivation behind and technologies that support our
proposed framework. We submit that: (i) current principles underlying design
of Hypermedia MAS Environments are incomplete with respect to authorized
access to the resources they enable exploring, (ii) authorization in large scale,
dynamic MAS environments must employ an equally dynamic access control
mechanism, (iii) events and actions, collectively called context information, which
are shared by agents and resources in an environment can count-as justification

194 A. Sorici and A. M. Florea

for authorizing agent access to a resource, and (iv) modeling the events and
actions as RDF information streams is a natural and flexible means to reason
about the conditions that count-as sharing context.

2.1 Hypermedia Driven Agent Environments

Ciortea et al. introduce three main principles for the design of Hypermedia
Multi-Agent Systems [14]. The first principle promotes a uniform representa-
tion (e.g. in the form of an RDF graph) of resources and the relations between
them in a hypermedia environment. One intended consequence of the uniform
representation of relations between entities (e.g. agents, tools, organizations) is
the improved ability to crawl and discover entities of interest. However, the text
in [14] does not make clear how interest is defined and no distinction is made
between discoverability (e.g. through a search engine) and then use of a resource
by invoking the affordances it provides.

Crawling entities based on their uniform representation to build a directory
of resources is seen as an effective means to exploit the distributed nature of
hypermedia, while also enabling agents to go beyond locality. The latter con-
cept seems to be interpreted as a limitation of FIPA-based MAS to only gain
access to resources and service that are advertised by the agents themselves in a
local network. However, another interpretation of locality, not addressed in [14],
relates again to the interest of the interaction, to the conditions under which a
resource or service is accessed. From this perspective of context management, it
is desirable to keep information consumption and interactions localized, mean-
ing that both provider and consumer of the affordances exposed by a resource
engage with each other under an authorization granted by the existence of a
common context (e.g. related to a shared space, a joint activity, a membership
in an organizational structure).

Principles 2 and 3 from [14] advocate for the use of a single-entry point into an
Hypermedia MAS environment, as well as the observability of resources. Taken
together, these guidelines affirm that any resource in a Hypermedia MAS that
is of potential interest to agents should make itself actively observable through
its explicit representation and notification of changes to its state or affordances.
Furthermore, once an entry-point in the resource representation of a MAS envi-
ronment has been gained, link relations between entities in the environment
should enable the exploration of other resources in the environment. These prin-
ciples are required to design evolvable and long-lived hypermedia MAS, but
they are also in need of additional considerations with respect to the deploy-
ment of hypermedia MAS. Uniform representation and observability can enable
a machine readable description of security schemes (e.g. token based, OAuth2
based - see also Security Schema of WoT Thing Description [7]), but it does not
define the conditions under which such a secured access to changes in states and
affordances of a resource are obtained.

We claim that observability should be amended to consider a common context
driven authorization mechanism that can narrow down what different resource

Context-Based Authorization in Hypermedia Agent Environments 195

developers consider should be of interest to different agents in the hypermedia
MAS.

2.2 Dynamic Access Control

The WoT Thing Description [7] specification provides a vocabulary to set
schemes in place (e.g. API key, Bearer, OAuth2) which secure the access to
a resource. However, with the exception of OAuth2, no other modeled security
scheme defines authorizations for the different resource affordances. Further-
more, even in the case of OAuth2, there is no model of a mechanism by which
to decide which authorizations to include within the OAuth2 token depending
on the situation (e.g. the capabilities and intention of the agent, the state of the
environment).

The idea of an authorized exploration and use of resources in a hyperme-
dia MAS is partially acknowledged in [15], where the challenges to autonomy
in the WoT list the notion of regulation as a first-class abstraction, citing com-
mon practices of ensuring fair resource access, such as the Robots Exclusion
Protocol, rate limiting or licensing policies. The authors bring forth normative
MAS research [9,20,23] to mention that regulative norms and prescriptions can
be used to specify and enforce how agents can interact with each other and
their environment, enforced either through social means or a top-down author-
ity manner. However, no concrete mechanism of integrating an authorization
method into the workings of existing hypermedia MAS platforms (e.g. Yggdrasil
[14]) is advanced.

The core of the dynamic access control problem in the context of hypermedia
MAS poses the following question: how can resources signify to an agent the set
of conditions and the process of reasoning about them which determines the
granting or revocation of a permission to exploit an affordance of the resource?
CASHMERE starts from the premise that application specific agent and envi-
ronment context can count as the catalyst by which normative dimensions such
as permission/prohibition are expressed and implemented at the level of a hyper-
media MAS. This view is further supported by work in the domain of Access
Control for the Internet-of-Things. The survey of Qiu et al. [24] highlights that
in dynamic and open computing environments traditional access control mod-
els such as Role-Based Access Control (RBAC) are not adapted to fit appli-
cation dynamics. For such cases an alternative model is gaining popularity12,
namely Attribute-Based Access Control (ABAC) [13] which proposes that sub-
ject requests to perform operations on a resource are granted or denied based on
attributes of the subjects, resources or the environment and policies that relate
to these attributes [27]. Extensions of the ABAC model which use an ontology
to define roles and attributes and SWRL rules to infer additional attributes have

1 NextLabs ABAC solution for business-critical data control: https://www.nextlabs.
com/products/technology/abac/.

2 Styra - authorization as a service at scale: https://www.styra.com/blog/dynamic-
authorization-with-policy-based-access-management/.

https://www.nextlabs.com/products/technology/abac/
https://www.nextlabs.com/products/technology/abac/
https://www.styra.com/blog/dynamic-authorization-with-policy-based-access-management/
https://www.styra.com/blog/dynamic-authorization-with-policy-based-access-management/

196 A. Sorici and A. M. Florea

also been proposed [19]. These include other external context sources for a richer
attribute space and cases of multiple agents interacting with the same resource
have been proposed.

The thought and motivation behind the CASHMERE proposal for context-
based authorization is also founded on work in situated artificial institutions [16]
which defines a framework for expressing and reasoning about count-as situa-
tions with respect to norms in agent organizations. Specifically, the SAI frame-
work is concerned with relating normative regulation to some interpretation of
the environment that counts as the constitution of role assuming, obligations,
permissions or prohibitions.

While SAI is explicit in formalizing constitutive specifications in terms of
rules for agent-, environment/event- and state-status functions, the CASHMERE
framework is more pragmatic in its use of the count-as principle. In a manner
to be detailed in Sect. 3.1, CASHMERE proposes a rule-based mechanism to
identify the agent and thing related context information and the conditions under
which these count-as a shared context. The shared context acts as a constitutive
function that creates a permission of interaction between agents and the resource
affordances they seek to use.

2.3 Modeling Context Information with CONSERT

CASHMERE proposes having an explicit model of context (agent abilities, envi-
ronment state, organizational situation) and its dynamics (how context changes
in time) as the underpinning for the mechanism by which authorized discovery of
resources is implemented. To accomplish this, a model for context representation
is required.

Context information representation relies on the CONSERT meta-model [29]
which introduces the work horse representations of ContextAssertions and Con-
textAnnotations. ContextAssertions use the predicate in a subject-predicate-
object triple as the main model entity. A statement such as locatedAt(agent_alex,
lab308) is modeled as a binary ContextAssertion, whereby the central element is
the fact of being LocatedAt and the subject and object entities are agent_alex and
lab308. This form of reification has the advantage that it can naturally support
the addition of supplementary information (ContextAnnotations) such as times-
tamp of assertion, temporal validity or provenance of the information. Contex-
tAssertions are also characterized by a mode of acquisition which defines an oper-
ational attribute signaling how dynamic the assertion is. The CONSERT Model
distinguishes between static (assertions which hold true indefinitely - e.g. the spa-
tial containment of a room in a building), profiled (ContextAssertion who have
a long-term, but still limited temporal validity - e.g. the employment status of a
researcher), sensed (event-like ContextAssertions, who are assumed to change fre-
quently in a system - e.g. the physical location of a person in a building) and derived
(produced by some inference method whose input consists of other ContextAsser-
tions) acquisition modes.

The ability to model annotations and to distinguish between sources/flows
of context information is beneficial because it provides a clearer way to identify

Context-Based Authorization in Hypermedia Agent Environments 197

different sources of context, as well as to reason over its validity in time in a
environment that captures dynamic events and actions of agents (see example
in Listing 1.1 and Sect. 3.2.

2.4 RDF Stream Reasoning

The context-aware ABAC model introduced in [19] makes use of ontologies to
express attributes and SWRL rules to define policies that implement access
control. However, many WoT application scenarios involve conditions that are
dynamic in nature (e.g. relate to mobility of agents, are tied to a cycle of activity)
which require an interpretation of context information as it changes in time. As
detailed further in Sect. 3, CASHMERE expresses rules to identify conditions for
shared context using RDF Stream Processing [17] techniques (RSP). RDF Stream
Processing has emerged in recent years as a collection of approaches (e.g. C-
SPARQL [10], CQELS [21]) involving extensions to RDF representation and the
SPARQL query language which are meant to address the continuous processing
requirement of semantic data streams. This collection has been later unified
under a single query model, RSP-QL [17], which can be interpreted in a prototype
engine (Yasper [31]) and for which an API specification (RSP4J [30]) has been
defined, that enables the construction of RDF Stream generators, consumers, as
well as custom operators and interpretation engines.

RSP-QL defines the semantics of interpreting time-varying RDF graphs,
it describes means to define the duration and trigger conditions for evalua-
tion windows and it defines the functionality of relational-to-relational (equiv-
alent to SPARQL 1.1 operational semantics), relational-to-stream (from solu-
tion mappings to RDF streams), stream-to-relational (from a stream to a single
graph coalesced from the union of all RDF graphs within ane evaluation win-
dow) and stream-to-stream operators. The latter operators distinguish between
modes of operation that allow for (i) generating a stream of solution mappings
(RSTREAM) and (ii) determining which solution mappings have been newly
added (ISTREAM) or removed (DSTREAM) with respect to those obtained
from the previous evaluation window.

Since hypermedia MAS environments promote the explicit semantic repre-
sentation of entities as web resources using RDF, the use of RSP within CASH-
MERE to reason about the attributes and context of the MAS environment and
its actors is an obvious advantage. A further benefit is the ability to factor in rea-
soning over the temporal dimension of the context streams and extract streams
of authorization grants and revocations, as will be detailed in Sect. 3.2.

3 Shared Context Identification

The core of the CASHMERE vision lies in the idea that the context of the inter-
action between agents and the resources in their environment is a conditioning
space which can be expressed in sufficiently rich detail that it can leveraged to

198 A. Sorici and A. M. Florea

grant authorization for discovery and use of artifact affordances in a hypermedia-
driven agent environment. The extremes of this context-based access range from
having no condition whatsoever on the interaction (i.e. public access) to requir-
ing a role that is specifically conditioned to be played by a single entity. For
anything in between, it becomes highly relevant to design a method that is both
flexible and comprehensive enough to include static and dynamic environment
and agent-generated events into conditions that count as context shared by an
agent and a resource. The shared context then warrants the authorization of the
interaction.

In what follows, we describe our means of identifying shared context in terms
of (i) how we can partition context information into domains of interest and (ii)
how we express rules that determine whether two entities share the same context
domain.

3.1 ContextDomains: Partitioning Context Information

The CONSERT context management deployment specifications [28] introduce
two concepts that enable a system to logically partition the context information
that it has to provision to consumers. ContextDimensions are ContextAssertions
(from among the ones that a system handles) that define a privileged direction
(e.g. spatial, activity related, relational) of context provisioning. Along each Con-
textDimension a set of ContextDomain (potentially hierarchically aranged) can
be defined. In our running example an obvious spatial ContextDimension is given
by the locatedAt(Agent, UniversitySpace) ContextAssertion, which gives rise to
ContextDomains that refer to indoor locations of the university (such as lab308).
Because indoor locations have a natural spatial inclusion relation (which can be
captured by a static ContextAssertion, such as containedIn(UniversitySpace,
UniversitySpace), a hierarchy of ContextDomains becomes possible.

We can now posit that resources (e.g. devices, services) and consumers who
are part of the information provisioning setup of the same ContextDomain (e.g.
agents and devices in lab308) are inherently sharing context. Therefore, our
method of shared context identification can resolve to verifying if two entities
are members of the same ContextDomain. The next section defines the reasoning
mechanism which interprets the conditions under which ContextDomain mem-
bership is granted or revoked.

3.2 Stream Processing for Shared Context Identification

In Sect. 2.4 we discussed RSP as an approach suited to implement the rules by
which one or more entities are considered to share a context. The main advantage
of this approach lies in the ability to process streams of RDF information which
can encompass the ContextAssertions that are considered sufficient to denote
membership in the same ContextDomain.

In the simplest case, the sufficiency criterion can limit itself to the obser-
vance of a sensed ContextAssertion that defines the ContextDimension and the
instance of the ContextDomain which partition the context information. In our

Context-Based Authorization in Hypermedia Agent Environments 199

running example, the sensed ContextAssertion locatedAt(agent_alex, lab308)
could count as sufficient to establish agent_alex as a member of the ContextDo-
main associated with Lab 308. However, in some cases (like in our running
scenario) it is desirable to have conditions of ContextDomain membership which
are more restrictive, considering that shared context is used to authorize access
to artifacts whose affordances are ascribed to the same ContextDomain. In our
example, the ability to discover the existence of the smart light bulb from Lab
308 and to control it is limited to agents that represent people who are employees
of the university and are physically present in the room.

1 PREFIX consert: <http :// pervasive.semanticweb.org/ont /2017/07/ consert/core/>
2 PREFIX ann: <http :// pervasive.semanticweb.org/ont /2017/07/ consert/annotation/>
3 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
4 PREFIX vcard: <http ://www.w3.org /2006/ vcard/ns#>
5 PREFIX precis: <http :// aimas.cs.pub.ro/consert/ontologies/precis#>
6
7 REGISTER STREAM <SharedLab308Context > AS
8 CONSTRUCT ISTREAM {
9 precis:lab308group vcard:member ?agent .

10 }
11 FROM NAMED :staticAssertions
12 FROM NAMED :profiledAssertions
13 FROM NAMED WINDOW :pLoc [RANGE PT10S STEP PT10S] ON STREAM :PersonLocated
14 WHERE
15 {
16 GRAPH :staticAssertions { ?agent rdf:type foaf:Person . }
17 GRAPH :profiledAssertions {
18 ?worksAssertion a precis:WorksAt ;
19 consert:assertionSubject ?agent ;
20 consert:assertionObject precis:upb ;
21 ann:hasAnnotation ?validAnn .
22 ?validAnn a ann:TemporalValidityAnnotation ;
23 ann:startTime ?employmentStart ;
24 ann:endTime ?employmentEnd .
25 }
26 WINDOW :pLoc {
27 ?persLocAssertion a precis:LocatedAt;
28 consert:assertionSubject ?agent ;
29 consert:assertionObject precis:lab308 .
30 }
31 BIND (xsd:dateTime(NOW()) AS ?date)
32 FILTER (?date > ?employmentStart && ?date < ?employmentEnd)
33 }

Listing 1.1. Demonstrator scenario shared context identification query

Listing 1.1 shows the SPARQL CONSTRUCT query that acts as a typical
rule by which membership in a ContextDomain is determined. In line 9, the
rule conditions already assume the existence of resource (precis:lab308group)
denoting a ContextDomain Group modeled as an instance of vcard3 organization
to adhere to Web Access Control specifications [6] (see also Sect. 4). The CON-
STRUCT statement is accompanied by an ISTREAM keyword (an example of
a stream-to-stream operator) which signifies that the result of the query is an
RDF Stream itself which will trigger with a new event only when the query pro-
duces a different output compared to previous time instances (cf. [17] for more
detail on RDF stream operators). The body of the query distinguishes three
3 https://www.w3.org/TR/vcard-rdf/.

https://www.w3.org/TR/vcard-rdf/

200 A. Sorici and A. M. Florea

context information input sources (different SPARQL graphs), depending on the
mode of acquisition: static assertions (which identify the agent - line 16), pro-
filed assertions (the employment status of the agent - lines 17–25) and a named
window defining the stream of sensed PersonLocated ContextAssertion instances
(lines 26–30). RDF stream windows are defined using range (window duration)
and step (the temporal slide from one window content evaluation timestamp to
the next) parameters (line 13). The value of these parameters is dependent on
the application use case and is required to be set in tune with the frequency
of PersonLocated instances that arrive on the stream. Notice that, since the
precis:WorksAt ContextAssertion instance is a profiled one, it is interrogated
for its TemporalValidityAnnotation (lines 22–24), which is then used to check
validity of the employment status (line 32).

In Listing 1.1 we see an example of the ISTREAM stream-to-stream operator,
which streams new events only if they differ from the previous window eval-
uation. In a HyperAgent environment deployment, the ContextDomainGroup
Artifact that manages the ContextDomain membership would also have a query
registered that has an equivalent body, but a DSTREAM operator in the CON-
STRUCT head. The DStream operator triggers with the events that existed in
the previous window evaluation, but not the current one. This effectively enables
a ContextDomainGroup Artifact to manage both new memberships (ISTREAM),
as well as expiring ones (DSTREAM).

4 Integration in Hypermedia-Driven Agent Environments

As mentioned in Sect. 2.1, we consider hypermedia-driven agent environments (of
which Yggdrasil [14] is an exponent) as a main type of platform benefiting from
the CASHMERE framework. The general overview of the information and inter-
action flow that realizes the integration of CASHMERE into a hypermedia MAS
platform is presented in Fig. 1. Steps (1) and (2) summarize the functionality
described in Sect. 3. Steps (3) and (4) highlight the fact that the context-aware

Fig. 1. General overview of the information and interaction flow that integrates the
CASHMERE context-aware access functionality into a hypermedia-driven multi-agent
platform.

Context-Based Authorization in Hypermedia Agent Environments 201

Fig. 2. Diagram showing the integration of ContextDomain Group Artifacts into a
typical Agents and Artifacts hypermedia environment deployment

authorization functionality can be exploited at different levels within a Hyper-
media MAS - from adapting the interaction with each individual Thing Artifact
to enhancing the functionality of a semantic hypermedia search engine.

Step (3) is further detailed integration-wise in the block diagram of Fig. 2,
which is designed as a reinterpretation of the conceptual overview of hyper-
media MAS environments presented in works such as [11,14,25]. The diagram
shows the envisioned composition of an Agents & Artifacts Container. Notice the
addition of the artifacts managing ContextDomain Groups, which expose observ-
able properties that signal the membership in the same ContextDomain. Things,
Workspaces, ResourceDirectories, Organization Artifacts and Semantic Hyper-
media Search Engines can subscribe to such observations and justify authorizing
the access of an agent to all their affordances based on sharing the same context.
This means that the effects of context-aware authorized access can reflect at
several levels of granularity. For example, Thing and Workspace artifacts may
refuse a focus request from agents that do not share any context. A Hyperme-
dia Search Engine can omit sending notifications (e.g. through WebSub) about
answers to queries of agents who do not share the same ContextDomain as the
Things that are a response to their queries.

202 A. Sorici and A. M. Florea

Notice that the ContextDomains form a separate logical partitioning than
that of Workspaces or Organizations existing in the MAS Hypermedia Environ-
ment. Thing Artifacts from several Workspaces can be part of the same Con-
textDomain. This decouples the design of the deployment (Workspaces) means
from the design and implementation of the conditions for access to functional-
ity, which do not have to be programmed in from the start and thus have the
capability to evolve.

To transform the identified shared ContextDomain membership into an
actionable authorization mechanism the CASHMERE framework makes use of
the Web Access Control (WAC) specifications [6] that are part of SOLID [5].
The first requirement in WAC is that all entities for whom an authorization
is to be defined have to be identifiable by a WebID [8]. At the current stage,
the shared context identification mechanism in CASHMERE only requires a URI
that uniquely identifies a an entity (agent, artifact). However, reliance on WebID
ensures that the shared context based authorization process can be doubled in
security by means of authenticating agents based on public keys stored in the
FOAF [3] profile reference by the WebID.

WAC further specifies that each web resource requiring an authorized access
must advertise the Access Control List (ACL) resource that contains the autho-
rizations to the protected resource. It must do so by responding to a HTTP
request including a Link header with the rel value of acl. An ACL resource
can expose an RDF document which lists instances of acl:Authorization (see
the ACL Ontology [2]). An acl:Authorization will specify: (i) the resource for
which it provides an authorization (acl:accessTo), (ii) the access mode (e.g.
acl:Read, acl:Write, acl:Control) and (iii) whom the authorization applies to
(e.g. acl:agent, acl:agentClass, acl:agentGroup). The acl:agentGroup mode of
identifying authorization subject is particularly suitable for the CASHMERE
setup, because it allows identifying an instance of a vcard:Group which can con-
tain individual FOAF profiles as members. This maps directly to the ContextDo-
main membership CONSTRUCT outputs that have been presented in Sect. 3.2.

An ACL resource representation also includes an acl:default predicate which
specifies the container resource in a hierarchy of containment, whose Authoriza-
tion can be applied by default when no custom Authorization is defined for an
individual protected resource. In a Hypermedia MAS as defined in [14,25], the
Workspace hierarchy governing the deployment of Thing Artifacts can be used to
manage an Authorization hierarchy. In our running scenario, the Authorization
resource which enables access to smart light in Lab 308 to university employees
physically present in the room can be attached to the Workspace containing the
smart light Thing (and, possibly, other Things) instead of the Thing itself.

Figure 3 summarizes the way in which the representation and functionality of
entities in a Hypermedia MAS environment have to be complemented to make
use of the WAC-based authorized access proposed in CASHMERE. Each artifact
that implements the functionality of a Thing or Workspace is additionally tasked
with exposing a representation for the ACL resource that contains the autho-
rizations defined for the artifact, which include access permissions granted by
the observed memberships in different ContextDomain Groups (Lab308 in our

Context-Based Authorization in Hypermedia Agent Environments 203

Fig. 3. Summarized view of WAC usage based on shared ContextDomain for typical
artifact instances - Thing, Workspace, Semantic Search Engine - encountered in a
Hypermedia MAS Environment.

running example). The artifacts that want to enable context-aware authorized
access need to also implement the authorization match procedure as indicated by
WAC specifications [6], which involves running a SPARQL ASK query over the
RDF graphs containing acl:Authorization instances. In particular, for checking
memberships produced by the ContextDomain membership streaming procedure
detailed in Sect. 3.2, artifacts have two options: (i) use a federated SPARQL query
for the group membership verification, running it against the RDF graph stored
by the ContextDomainGroup artifact, (ii) use the stream output of the Con-
textDomainGroup artifact to keep local caches of ContextDomain memberships
and run the query against the latter. Notice that Workspace hierarchy can be
exploited to address default authorizations, where the root most ACL resource
is defined at the level of the Hypermedia MAS environment itself.

Semantic Search Engines service, like the one introduced in [11], are meant to
enable discovery of Thing Artifacts by type or functionality descriptions. When
observing ContextDomain memberships, the functionality of the search engines
can be adapted such that the result bindings that are answers to subscribed
queries are filtered to contain only Artifact instances that share the same context
as the agent making the subscription.

5 Discussion

The described functioning of CASHMERE and its integration into a Hypermedia
MAS environment has certain advantages, but it is not without its challenges
and limitations, which we discuss in the following.

204 A. Sorici and A. M. Florea

Advantages. Authorized access to a resource based on membership in a Con-
textDomain is a conceptually simple, but effective mechanism for dynamic access
control, precisely because shared context in WoT applications is commonly
decided based on privileged dimensions of differentiation (e.g. a spatial location
ContextDimension in our running example). Applications have the flexibility to
determine what information from the agent, environment and state discourse
space best qualifies as distinguishing context and, thus, constitute the objects of
those ContextAssertions as ContextDomains. For each established ContextDo-
main, the RSP-based rules can further constrain or loosen the conditions under
which membership in the ContextDomain is granted. Also noteworthy is the
ability to pre-seed the artifact workspaces with default access control policies,
which can be based on classical role-based conditions, and leave only the dynamic
aspects of an application domain to be managed under the ContextDomain mem-
bership premise. The SOLID specification for default policy hierarchies and pol-
icy resolution ensures that the authorization procedure remains consistent.

From a technical perspective, the proposed working of CASHMERE is a
convenient implementation fit to existing hypermedia MAS platforms, such as
Yggdrasil. The RSP4J API enables extending artifact functionality to operate
as both generators (to feed the context information streams) and consumers (to
make use of the stream of ContextDomain membership granting or revocations)
of RDF streams.

Challenges. For the development roadmap, several design and implementation
challenges stand before. An initial observation to be made is that we made no
assumption about the sources of the context information streams. In particular,
we currently place no restriction on whether the source of context information
is found only within the artifacts deployed in a hypermedia MAS environment,
or whether they can also be external to the environment (but capture infor-
mation about events in the environment). For within environment sources, the
main technical challenge lies in developing the interface through which existing
artifacts can turn their observable properties and events into RDF streams. For
external sources, either direct usage of the RDF4J API or platforms such as
OntopStream [4] (which performs streaming semantical data access from hetero-
geneous sources such as Kafka, Kinesis or JDBC databases), could be used.

An additional implementation challenge relates to the artifact functionality
extensions required to evaluate access policies, as well as to perform policy con-
flict resolution. To address these, the CASHMERE framework proposes following
the SOLID Access Control Policies specifications [1].

A design issue currently still under investigation is how different entities of a
hypermedia MAS environment react upon authorization revocations. Should an
access denial imply that the artifact be not discoverable (in a manner similar to
the no-crawl policies used for websites), or should the artifact remain observable
(and describable) in the workspace, but unfocusable by an agent? The former
option is simpler to manage and safer conceptually. However, it contradicts the
Observability principle mentioned in [14] and could burden development of use
cases where agents wish to use planning methods to compose a future func-
tionality, even though the current context denies them access to the artifacts

Context-Based Authorization in Hypermedia Agent Environments 205

required in the plan result. The latter option implies that artifact affordances
remain discoverable at all time but that their use is conditioned by shared con-
text. In this case, a method for explaining denied use is required, such that
any planning methods can understand what context the agent needs to be a
part of to gain access to the artifact functionality. The reified form of Contex-
tAssertions and parsable SPARQL syntax of membership rules already makes it
feasible to identify the list of conditions and find references to agents (using the
assertionSubject predicate) that are bound by them. However, further research
is required to develop an appropriate method to offer easily consumable access
approval or denial explanations to agents.

Limitations. One point that is relevant in MAS interactions, but currently
not addressed by CASHMERE is making the distinction between an agent and
a client (e.g. another artifact) acting on behalf of the agent. ContextDomain
membership is determined with respect to the agent requesting access and the
artifacts which it can potentially use. Potential support in this issue is switch-
ing from use of the SOLID ACL [2] ontology to the more comprehensive ACP
ontology [1] which makes the distinction clear, but the underlying issue of hav-
ing a means to determine whether an agent intention is behind a linked artifact
operation invocation remains an open problem, requiring artifacts to explicitly
advertise the issuer of their original operation invocation.

On the technical side, the CASHMERE framework currently makes no indi-
cation on the way in which to perform periodic evaluation of the RSP queries
for ContextDomain verification. The default is to use the step parameter indica-
tions for window definitions. However, depending on the application, an evalua-
tion triggered by the arrival of a new ContextAssertion might be more compu-
tationally appropriate than periodic re-evaluations. Instrumenting application
specific guidelines and configuration options for membership rule trigger condi-
tions remains an aspect of future work.

6 Conclusion

In this paper we presented the current state of design principles for hyperme-
dia multi-agent system platforms which give rise to current instances, such as
Yggdrasil. We highlighted that, while these principles encourage development of
large-scale and long-lived agent interaction spaces, they do not cover the relevant
aspect of managing an authorized access to the resources exposed in hypermedia
environments. Building on work and ideas from domains such as Context Man-
agement in Ambient Intelligence (Sects. 2.3 and 3.1), Dynamic Access Control
and Situated Artificial Institutions (Sect. 2.2), as well as RDF Stream Processing
(Sects. 2.4 and 3.2) we presented the CASHMERE framework, whose purpose
it is to provide a solution for authorized resource access in a hypermedia MAS
environments based on the premise of shared context. We further presented the
design of the integration of CASHMERE into existing hypermedia MAS solu-
tions which adopt the Agents & Artifacts paradigm as their core abstraction
(Sect. 4).

206 A. Sorici and A. M. Florea

In future work we plan to first focus on the development roadmap of the
CASHMERE functionality laid out in Sect. 3 by leveraging the RSP4J API [30]
and the Yasper [31] engine to build an artifact implementing shared ContextDo-
main identification rules. A subsequent development effort targets implementa-
tion of the SOLID ACP policy evaluation functionality, which must be avail-
able at the level of several key components of a hypermedia MAS environment
(e.g. individual artifact, workspace and semantic search engine). In longer term
research we plan to provide point wise guidelines and solutions to the identified
challenges and limitations of the CASHMERE framework.

Acknowledgement. This work has been supported by funding under grant agreement
PN-III-P1-1.1-PD-2021-0756 from the Romanian National Research, Development and
Innovation Plan.

References

1. Access control policy specification. https://solid.github.io/authorization-panel/
acp-specification. Accessed 15 Feb 2023

2. Acl ontology. http://www.w3.org/ns/auth/acl. Accessed 15 Feb 2023
3. Foaf vocabulary specification. http://xmlns.com/foaf/0.1/. Accessed 15 Feb 2023
4. Ontopstream development repository: streaming semantical data access of rela-

tional data streams. https://github.com/chimera-suite/OntopStream. Accessed 17
Feb 2023

5. Solid project. https://solidproject.org/. Accessed 15 Feb 2023
6. Web access control specification. https://solid.github.io/web-access-control-spec.

Accessed 15 Feb 2023
7. Web of things (wot) thing description 1.1, w3c candidate recommendation. https://

www.w3.org/TR/wot-thing-description/. Accessed 15 Feb 2023
8. Webid specifications. https://www.w3.org/2005/Incubator/webid/spec/. Accessed

15 Feb 2023
9. Balke, T., et al.: Norms in mas: definitions and related concepts. In: Dagstuhl

Follow-Ups, vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)
10. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a

continuous query language for RDF data streams. Int. J. Semant. Comput. 4(01),
3–25 (2010)

11. Bienz, S., Ciortea, A., Mayer, S., Gandon, F., Corby, O.: Escaping the streetlight
effect: semantic hypermedia search enhances autonomous behavior in the web of
things. In: Proceedings of the 9th International Conference on the Internet of
Things, pp. 1–8 (2019)

12. Boissier, O., Ciortea, A., Harth, A., Ricci, A.: Autonomous agents on the web. In:
Dagstuhl-Seminar 21072: Autonomous Agents on the Web, p. 100p (2021)

13. Bonatti, P.A., Samarati, P.: A uniform framework for regulating service access and
information release on the web. J. Comput. Secur. 10(3), 241–271 (2002)

14. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS
(LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25693-7_15

15. Ciortea, A., Mayer, S., Boissier, O., Gandon, F.: Exploiting interaction affordances:
on engineering autonomous systems for the web of things (2019)

https://solid.github.io/authorization-panel/acp-specification
https://solid.github.io/authorization-panel/acp-specification
http://www.w3.org/ns/auth/acl
http://xmlns.com/foaf/0.1/
https://github.com/chimera-suite/OntopStream
https://solidproject.org/
https://solid.github.io/web-access-control-spec
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/2005/Incubator/webid/spec/
https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/978-3-030-25693-7_15

Context-Based Authorization in Hypermedia Agent Environments 207

16. De Brito, M., Hübner, J.F., Boissier, O.: Situated artificial institutions: stability,
consistency, and flexibility in the regulation of agent societies. Auton. Agents Multi-
Agent Syst. 32, 219–251 (2018)

17. Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: a
unifying query model to explain heterogeneity of RDF stream processing systems.
Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(4), 17–44 (2014)

18. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5, 4–7 (2001)
19. Dong, Y., Wan, K., Huang, X., Yue, Y.: Contexts-states-aware access control for

internet of things. In: 2018 IEEE 22nd International Conference on Computer
Supported Cooperative Work in Design ((CSCWD)), pp. 666–671. IEEE (2018)

20. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents: giving the organisational power
back to the agents. Auton. Agents Multi-Agent Syst. 20, 369–400 (2010)

21. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24

22. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: A context-aware multi-agent
system as a middleware for ambient intelligence. Mob. Netw. Appl. 18(3), 429–443
(2013)

23. Ossowski, S.: Agreement Technologies, vol. 8. Springer Science & Business Media,
Dordrecht (2012). https://doi.org/10.1007/978-94-007-5583-3

24. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B.: A survey on access control in
the age of internet of things. IEEE Internet Things J. 7(6), 4682–4696 (2020)

25. Ricci, A., Ciortea, A., Mayer, S., Boissier, O., Bordini, R.H., Hübner, J.F.: Engi-
neering scalable distributed environments and organizations for mas. In: Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 2019, Canadá (2019)

26. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agents Multi-Agent Syst. 23, 158–192 (2011)

27. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Comput. Surv. (CSUR) 49(4), 1–45 (2017)

28. Sorici, A., Picard, G., Boissier, O., Florea, A.: Multi-agent based flexible deploy-
ment of context management in ambient intelligence applications. In: Demazeau,
Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) PAAMS 2015. LNCS
(LNAI), vol. 9086, pp. 225–239. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18944-4_19

29. Sorici, A., Picard, G., Boissier, O., Zimmermann, A., Florea, A.: CONSERT: apply-
ing semantic web technologies to context modeling in ambient intelligence. Comput.
Electr. Eng. 44, 280–306 (2015)

30. Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E.: RSP4J: an API for RDF
stream processing. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp.
565–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_34

31. Tommasini, R., Della Valle, E.: Yasper 1.0: towards an RSP-QL engine. In: ISWC
(Posters, Demos & Industry Tracks) (2017)

32. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context.
In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CON-
TEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74255-5_42

https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-94-007-5583-3
https://doi.org/10.1007/978-3-319-18944-4_19
https://doi.org/10.1007/978-3-319-18944-4_19
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-540-74255-5_42

Towards Framing the Agents & Artifacts
Conceptual Model at the Knowledge
Level: First Ideas and Experiments

Samuele Burattini1(B), Andrei Ciortea2, Meshua Galassi1,
and Alessandro Ricci1

1 Dipartimento di Informatica - Scienza e Ingegneria, Alma Mater Studiorum,
Università di Bologna, Cesena Campus, Bologna, Italy

{samuele.burattini,a.ricci}@unibo.it, meshua.galassi@studio.unibo.it
2 School of Computer Science, University of St.Gallen, St. Gallen, Switzerland

andrei.ciortea@unisg.ch

Abstract. In this contribution, we propose an extension of the Knowl-
edge Level as introduced by Newell in the A.I. context and refined by Jen-
nings in agent-based software engineering to include also the agent envi-
ronment as a first-class analysis/design dimension. We revisit and refine
the Agents & Artifacts (A&A) conceptual model to be at the Knowledge
Level by explicitly introducing a semantic layer based on Knowledge
Graphs, and we discuss the benefits with some practical examples.

Keywords: Knowledge Level · Agent-Oriented Software Engineering ·
Agents & Artifacts · Knowledge Graphs · Semantic Web · CArtAgO

1 Introduction

Four decades ago, Allen Newell introduced the knowledge level analysis to
characterise intelligent agents as knowledge-based systems, abstracting from
application-specific details and implementations [14,16]. According to this char-
acterisation, a computational system can be viewed across multiple levels of
abstraction — a hierarchy of computer system descriptions1. The Knowledge
Level is just another level within that same hierarchy: a way to describe the
behaviour of (intelligent) systems with wide-ranging capabilities, where capabil-
ity is defined in terms of having “knowledge” and behaving in light of it. The key
feature of the Knowledge Level from a software engineering viewpoint is that it
abstracts completely from the internal processing and the internal representa-
tion: all that is left is the content of the representation and the goals towards
which that content will be used.

The concept has become a keystone in agent-oriented software engineer-
ing [10], along with the very similar characterisation introduced, in the same
period, by Dennett with the intentional stance [6] — effectively setting the level

1 Appendix A reports the levels as depicted by Newell in [15].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 208–219, 2023.
https://doi.org/10.1007/978-3-031-48539-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-48539-8_14

Towards A&A at the Knowledge Level 209

of abstraction that we expect when modelling and designing a software compo-
nent as an intelligent agent. Two decades ago, the concept was further extended
by Jennings in the context of agent-oriented software engineering to also include
the social/organisational dimensions [10]2.

After two decades, we further extend this important conceptual framework
with a missing element that proved to be, both in the case of humans and
in Agent-Oriented Software Engineering (AOSE), an important dimension for
analysing and designing systems: the agent environment. This extension aims
at providing a uniform level of abstraction to describe both the goal-oriented
behaviour of software agents and the environment they can exploit to achieve
such goals by discovering, manipulating and creating resources and services.

Accordingly, the first contribution of this paper is about framing and dis-
cussing the role of the agent/MAS environment as a first-class design abstraction
at the Knowledge Level. To achieve that, we look at ways in which knowledge
about the real world is currently being represented and shared in other kinds of
systems, following the evolution of the digital transformation of different domains
using the Semantic Web — for instance, in the Web of Things3. In Sect. 2, we
discuss this point, using the Agents & Artifacts (A&A) conceptual modelling [17],
which was implicitly conceived to be at the Knowledge Level.

The A&A meta-model was conceived informally, without identifying a clear
connection at the knowledge level with domains. Accordingly, as a second core
contribution of this paper, in Sect. 3 we discuss a refinement and extension of
the A&A meta-model to be fully effective for supporting the Knowledge Level,
and in Sect. 4 we briefly describe a first extension of the CArtAgO framework [19]
implementing it. We conclude the paper with a brief road-map for future work
in Sect. 5.

2 Enriching the Knowledge Level with Artifact-Based
Environments

As remarked in AOSE literature [21–23], the environment can be used as a first-
class abstraction when designing and programming agent-based systems. In par-
ticular, it can be used for encapsulating and providing functionalities to agents at
different levels [22]: a basic level, to enable direct access to the deployment con-
text; an abstraction level, providing agents with an abstraction level that shields
low-level details of the deployment context — as well as other resources in the
system; an interaction-mediation level, providing agents an interaction-mediation
level to support mediated interaction in the environment; a reflective level, pro-
viding a reflective interface to the functionality supported by the environment,
enabling agents to modify the functional behavior of the environment [18].

2 Appendix B reports a description of the knowledge level and the social level as
depicted by Jennings in [10].

3 See the W3C Web of Things: https://www.w3.org/TR/wot-architecture/.

https://www.w3.org/TR/wot-architecture/

210 S. Burattini et al.

At the Knowledge Level, this accounts for enriching Newell’s and Jennings’s
conceptual framework to include the environment at the same level of abstrac-
tion with agents and agent organisations, modelling the open of resources and
tools as first-class artifacts — as introduced by A&A [17] — that agents and
organisations may build, use, and share in order to accomplish their individual
and social goals. The concept of artifact and the overall A&A conceptual model
were mainly inspired by Activity Theory [18,20] and Distributed Cognition [9],
which are prominent conceptual frameworks and theories that investigated the
role the environment for supporting human activities at large (cognition, rea-
soning, learning, etc.).

From an engineering point of view, artifacts model those parts of the system
that are not effectively described as goal-oriented knowledge-based systems, act-
ing to attain goals, but more as function-oriented or service-oriented components
used by the goal-oriented ones. Like artifacts designed for humans, a key feature
of artifacts designed for agents is given by the affordances that they provide to
enable their (effective) use by agents, defining the underlying interaction model
at the proper level of abstraction. In the A&A model, these affordances are based
on observable properties, operations (actions, from the agents’ viewpoint), and
observable events [19]. Another concept is the artifact manual, i.e. a document
describing what are the functionalities of an artifact and how to interact with it.

Nevertheless, in order to be exploited by intelligent agents at the Knowledge
Level, artifacts should be designed and conceived at the same level. In the next
section, as a core contribution of this paper, we discuss how the A&A conceptual
model can be further refined and extended for this purpose.

3 Artifact-Based Environments at the Knowledge Level

Using A&A at the Knowledge Level means that the artifact-based environment is
meant to be used by intelligent agents to perceive and act upon domain entities
— possibly representing assets in the real world — as well as to create and
exploit resources and tools that are instrumental for attaining their goals. For
this purpose, we envision a further refinement or characterisation of the A&A
model in which:

– Artifacts should be semantically ground to domain entities at the Knowledge
Level : their affordances and their manuals should be described at that same
level of abstraction;

– Relationships among entities at the domain level should be explicitly repre-
sented and reified at the artifact level so that agents can reason about them;

– Workspaces – another main concept in A&A - can be used to define boundaries
for agent activities, i.e. contexts where one or multiple agents can create and
share one or multiple artifacts, as well as logical contexts that share the same
domain vocabulary to describe the entities within them.

To support this refinement, we introduce an explicit semantic layer for A&A,
not bound to any specific domain but expressive enough to support the design of

Towards A&A at the Knowledge Level 211

falsedetected

openstate

offostate

turnOn

turnOff

turnOn

turnOffff

pres-detectorp
light

lock

…

lock

…

room-4022

pres-detect-55

light-18

room-4022

pres-detect-55

pr
es

-d
ete

cto
r

light-18
light

state
off

turnOn

turnOff

false
detected

sta
te

open

lock

Fig. 1. Smart room scenario. On the left: the three artifacts, representing a room, a
presence sensor, and a light. On the right: the corresponding Knowledge Graph.

artifact-based environments eventually involving multiple domains and ontolo-
gies. The semantic layer is based on the concept of knowledge graph [8]. A Knowl-
edge Graph (KG) is “a graph of data intended to accumulate and convey knowl-
edge of the real world, whose nodes represent entities of interest and whose edges
represent relationships between these entities” [8]. An artifact-based environment
can then be mapped into a KG where each artifact has a corresponding node in
the graph — representing an entity of interest at the domain level. Following the
A&A meta-model, artifacts feature observable properties, actions, and observ-
able events. These are represented in the KG by (dynamic) data properties of
the corresponding entity, i.e. as a relationship between the entity and a typed
value. To capture relations among entities (edges between nodes) we extend the
artifact meta-model with the concept of (observable) relationship.

As an example, let’s consider a toy smart room scenario in an Internet of
Things (IoT) context (see Fig. 1). The scenario includes a room, a presence detec-
tor, and a light as domain entities. The figure shows the three artifacts modelling
this environment (on the left), and the corresponding KG (on the right). Let’s
consider a very simple intelligent agent, situated in this environment, designed
to accomplish an energy-saving goal by turning off the light when no one is in
the room, and turning it on if someone enters (and the light is off). In order to
accomplish its goal — defined at the Knowledge Level — the agent can exploit
the artifact-based environment, whose semantics are defined by the correspond-
ing KG. In particular, the agent may continuously observe the presence detector
and turn on/off the light by acting on the lamp. For this purpose, the agent
may start observing the presence detector by doing a focus on the correspond-
ing artifact. In A&A, by issuing a focus on some artifact Ar, an agent starts
perceiving the observable state of Ar and the observable events generated by Ar,
including those related to changes about observable properties. Then, as soon
as it perceives that someone has been detected, e.g. by perceiving an observable
event generated by the artifact representing the presence detector, the agent
may turn on the light by acting on the corresponding artifact — if the light was
not already on (this state can be perceived by the agent by observing the lamp
as well).

212 S. Burattini et al.

The semantic extension based on KG allows to substantially empower the
expressiveness of the basic capabilities provided by artifact-based environments.

3.1 Querying and Observing at the Knowledge Level

In A&A, an agent has a primitive action read-obs-property(Ar,P) to retrieve the
current value of an observable property P of an artifact Ar. By mapping an
artifact-based environment into a KG view it is possible to make more expressive
queries, involving graphs of entities (artifacts).

In this paper, we consider RDF4 as a standardised data model for repre-
senting KGs. A KG can be represented as an RDF graph, that is a set of
triples (subject, predicate, object) where each triple represents a prop-
erty or relationship of the subject entity. For instance, in our case, the subject
could be an artifact identified by a uniform identifier (e.g., a URI5 or an IRI6).
The predicate could describe a data property – as triples where the identifier
of the property is used as predicate – or a relationship to another artifact – as
triples where the identifier of the relationship is used as predicate and the object
is the identifier of another artifact. Given an RDF representation of a KG, the
graph can then be queried using SPARQL7.

Accordingly, any artifact-based environment extended at the Knowledge
Level can then be described in RDF and queried by agents using SPARQL.
For example, in the toy scenario suppose that the room may have multiple lights
referred to by the light relationship. An agent can query the environment to find
out which lights in the room are on:

SELECT ?light
WHERE { "room-4022" :light ?light .

?light :state "on" .}

Besides querying, continuous observation can also be empowered. In particu-
lar, we can introduce and exploit a variant focus-all of the focus primitive action
so that by issuing a focus-all on an artifact Ar, an agent may perceive the observ-
able state and future observable events not only of the specific artifact but of all
artifacts linked to that artifact, according to the relationships in place. In the toy
scenario, for instance, a focus-all on room-4022 would imply to start observing
the room, as well as the presence detector and the light.

3.2 Semantic-Driven Creation of Artifacts in Workspaces

Framing an artifact-based environment at the Knowledge Level implies that the
dynamic construction and extension of the environment should be characterised
at that level as well. In particular, the dynamic creation of an artifact, possibly
4 https://www.w3.org/TR/rdf11-concepts/.
5 https://www.rfc-editor.org/rfc/rfc3986.
6 https://www.rfc-editor.org/rfc/rfc3987.
7 https://www.w3.org/TR/sparql11-query/.

https://www.w3.org/TR/rdf11-concepts/
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3987
https://www.w3.org/TR/sparql11-query/

Towards A&A at the Knowledge Level 213

linked to or linked by some other artifacts, should be a possibility provided by
the environment — grounded at the domain/semantic level.

For instance, extending the smart room example introduced above, a personal
assistant agent could detect that its user has entered a room. Accordingly, it
might want to make some data about the user available to other agents (e.g.
a room manager agent) by creating a UserProfile artifact in the smart room
workspace, linked by the room artifact by means of a user relationship, to expose
data about his desired light level.

In basic A&A, a primitive action make-artifact is provided for instantiating a
new artifact by specifying the template and construction parameters [19]. The
action corresponds to an operation provided by a pre-defined workspace artifact
available in each workspace, providing basic capabilities to work inside that
workspace (to create and dispose of artifacts, to focus on artifacts, etc.).

Raising A&A at the Knowledge Level implies to revise this mechanism in
order to allow for driving and constraining artifact creation at the domain/se-
mantic level. Accordingly, each workspace, as a context of semantically-driven
agents’ activities, may be initially configured — at workspace creation time —
with an artifact representing from the agent point of view the single entry point
of the context, providing the initial set of actions to extend/develop it, accord-
ing to the possibility defined for that context at the semantic level. In the smart
room scenario, the SmartRoom artifact would function as an entry point, pro-
viding a notifyNewUser operation, creating a new UserProfile artifact and the
relationship user linking to it.

4 Bringing CArtAgO at the Knowledge Level

To start exploring in practice the vision brought by this paper, we developed
a semantic layer on top of the existing CArtAgO framework, which is the main
reference implementation for the A&A meta-model and part of the JaCaMo [1]
platform. For this first integration, we focused on generating a semantic descrip-
tion of the artifacts so that agents could exploit the resulting Knowledge Graph
to query the environment. We considered examples with just one workspace with
a centralised KG associated to it to start with.

The KG is empty at the beginning of the application. When instantiat-
ing new artifacts, they automatically add their own semantic description and
generate an ontology based on the artifact class implementation. The imple-
mentation uses Apache Jena8 framework and RDF triplestore wrapped in
a SemanticEnvironment interface. The class SemanticArtifact extends the
CArtAgO Artifact base class, adding to the base behaviour the automatic inser-
tion and update of RDF triples to the KG when needed (e.g. when initialising
the artifact, when updating observable properties, etc.).

Listing 1.1 shows how an artifact can be defined with the new API. The
lightswitch artifact has a pressed observable property and a controls relation-
ship with the light artifact it is controlling.
8 https://jena.apache.org/.

https://jena.apache.org/

214 S. Burattini et al.

1 public class LightSwitchArtifact extends SemanticArtifact {
2

3 void init(boolean isPressed , String idConnection){
4 super.init(this , this.getId ().getName ());
5 defineObsProperty("pressed", "boolean", isPressed);
6 defineRelationship("controls", idConnection);
7 }
8 @OPERATION void press () { setPress(true); }
9 @OPERATION void release (){ setPress(false); }

10

11 private void setPress(boolean p){
12 updateValue(pressProperty , this.press);
13 }
14 }

Listing 1.1. An example of how to use the SemanticArtifact API to define an artifact.

The corresponding Knowledge Graph will have the definition of the ontology,
and of the instances of the artifacts in the environment. In Listing 1.2, an RDF
serialisation of the knowledge graph with the instances of two artifacts is shown
using Turtle syntax.

1 @prefix : <http :// example.org/> .
2 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
3

4 :lamp_0 a owl:NamedIndividual , :Lamp ;
5 :stateOn false .
6

7 :lightSwitch_0 a owl:NamedIndividual , :LightSwitch ;
8 :controls :lamp_0 ;
9 :pressed false .

Listing 1.2. Knowledge Graph serialisation with a Lamp and a LightSwitch

Agents can then query the generated Knowledge Graph containing all the
data about the environment exploiting the semantic layer to discover information
about the available artifacts. (Listing 1.3).

1 +! findSwitch
2 <- query("SELECT ?l WHERE {?l rdf:type :Lamp}", R1);
3 getValue(0, "l", R1 , LampId);
4 .concat("SELECT ?d WHERE { ?d :controls :",LampId ,".}",Q)

;
5 query(Q, R2);
6 getValue(0, "d", R2 , SwitchId);
7 .println(SwitchId , " controls ", LampId).

Listing 1.3. A Jason agent plan performing SPARQL queries on the environment to
find a Lamp and then the Switch connected to it.

Towards A&A at the Knowledge Level 215

5 The Road Ahead

In this paper we started crunching a vision extending A&A at the Knowledge
Level, doing some first experiments using CArtAgO. The idea has been strongly
influenced by existing work in literature about Hypermedia MAS [4,5], in which
A&A and artifact-based environments have been taken as a conceptual model
to characterise agents situated on the Web, in a wide perspective including also
Semantic Web and Web of Things. Besides Hypermedia MAS, related works
include the wide literature in MAS and AOSE about integrating ontologies and
Semantic Web technologies in agent/MAS languages and platforms [3,7,11–13].

This vision introduces challenges and open issues at different levels, to be
tackled in future research efforts. In the following, we discuss three main ones:

Querying and observing graphs of artifacts: A main issue is about the atomicity
and consistency of SPARQL queries involving dynamic graphs of artifacts,
possibly evolving concurrently. Artifacts in an artifact-based environment
may evolve concurrently, for instance, by means of actions performed by dif-
ferent agents. That is: each artifact is guaranteed to evolve atomically, but
different artifacts may evolve concurrently. The question then is: what kind
of consistency can an agent have by performing a SPARQL query over an
evolving graph? In our first exploration, a simple solution is adopted based
on workspaces, functioning as a context delimiting consistency. SPARQL
queries are guaranteed to be atomic for the graph of artifacts that belong
to the same workspace. Nevertheless, in the model proposed in this paper,
artifacts in one workspace can link via relationships to artifacts in other
workspaces — in a pure Linked Data spirit. This implies handling queries
across workspaces.

Working with ontologies: An artifact-based environment at the Knowledge Level
could concern entities belonging to different domains, possibly described
at the semantic level using different ontologies. For this purpose, the
Semantic Web provides a full stack of technologies in addition to RDF,
such as RDF Schema (RDFS), the Web Ontology Language (OWL), or
the Shapes Constraint Language (SHACL). A main exploration concerns
then how to enrich the support for the Knowledge Level as introduced
in this paper by considering the full spectrum of Semantic Web technolo-
gies. The abundant literature about integrating ontologies in agent/MAS
design and programming (e.g. [3,7,11–13]) will be an important reference
here.

Multi-agent Oriented Programming at the Knowledge Level: In platforms like
JaCaMo [1,2], the agent, environment, and organisation dimensions are inte-
grated into a coherent and synergistic model. A main issue then is to pre-
serve a coherent view about the Knowledge Level across the different dimen-
sions. In particular, in JaCaMo the A&A conceptual model – implemented
by CArtAgO – is integrated with the BDI model/architecture adopted for
designing and programming agents in Jason. Accordingly, the A&A/CArtAgO
extension is going to impact the way in which the knowledge about the envi-

216 S. Burattini et al.

ronment is represented on the agent side, in terms of beliefs about arti-
facts’ observable state and events, as well as the actions that can be per-
formed on artifacts. Existing work around AgentSpeak-DL [13] –s integrat-
ing Description Logics for knowledge representation in AgentSpeak(L) —
and JASDL [11] — combining BDI and Jason with Semantic Web Tech-
nologies – will be an important reference to consider for tackling this
point.

A The Hierarchy of Computer Systems

(See Fig.2).

Knowledge-level systems

Medium: Knowledge
Laws: Principle of Rationality

Program-level systems

Medium: Data structures, programs
Laws: Sequential interpretation of programs

Register-transfer system

Medium: Bit vectors
Laws: Parallel logic

Logic circuits

Medium: Bits
Laws: Boolean algebra

Electric circuits

Medium: Voltage/current
Laws: Ohm's law, Kirchhoff's law

Electronic devices

Medium: Electrons
Laws: Electron physics

Fig. 2. The hierarchy of computer systems, as reported in [15] (pag. 47)

Towards A&A at the Knowledge Level 217

B Knowledge Level and Social Level

(See Table 1).

Table 1. Summary of the knowledge and social levels as reported in [10]

Dimension Description Knowledge level Social level

System Entity to be
described

(asocial) Agent Agent
organisation

Components The system’s
primitive elements

Goals, Actions Agents,
Interaction
channels,
Dependencies,
Organisational
relationships

Compositional law How the
components are
assembled

Various Roles,
Organisation’s
rules

Behaviour law How the system’s
behaviour depends
upon its
composition and
components

Principle of rationality Principle of
organisational
rationality

Medium The elements to be
processed to obtain
the desired
behaviour

Knowledge Organisation and
social
obligations,
Means of
influencing
others, Means of
changing
organisational
structures

References

1. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-agent Oriented Program-
ming: Programming Multi-agent Systems Using JaCaMo. Intelligent Robotics
and Autonomous Agents series, MIT Press (2020). https://books.google.it/books?
id=GM_tDwAAQBAJ

2. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

3. Chella, A., Lanza, F., Seidita, V.: Representing and developing knowledge using
Jason, Cartago and owl. In: Workshop From Objects to Agents (2018)

https://books.google.it/books?id=GM_tDwAAQBAJ
https://books.google.it/books?id=GM_tDwAAQBAJ

218 S. Burattini et al.

4. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS
(LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25693-7_15

5. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (2019)

6. Dennett, D.C.: The Intentional Stance. MIT press, Cambridge (1987)
7. Freitas, A., Schmidt, D., Panisson, A.R., Meneguzzi, F., Vieira, R., Bordini, R.H.:

Knowledge-level integration for JaCaMo. In: Fifth International Workshop on Col-
laborative Agents - Research & Development, CARE for Intelligent Mobile Services
(CARE) (2014)

8. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37
(2021)

9. Hutchins, E.: Distributed cognition. Int. Encycl. Soc. Behav. Sci. Elsev. Sci. 138,
1–10 (2000)

10. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000). https://doi.org/10.1016/S0004-3702(99)00107-1

11. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach combin-
ing agent and semantic web technologies. In: Baldoni, M., Son, T.C., van Riems-
dijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93920-7_7

12. Mascardi, V., Ancona, D., Barbieri, M., Bordini, R.H., Ricci, A.: Cool-AgentSpeak:
Endowing AgentSpeak-DL agents with plan exchange and ontology services. Web
Intell. Agent Syst. Int. J. 12(1), 83–107 (2014)

13. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-
ming with underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini,
A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer,
Heidelberg (2006). https://doi.org/10.1007/11691792_10

14. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982). https://doi.
org/10.1016/0004-3702(82)90012-1

15. Newell, A.: Unified Theories of Cognition. Harvard University Press, USA (1990)
16. Newell, A.: Reflections on the knowledge level. Artif. Intell. 59(1–2), 31–38 (1993)
17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent

systems. Auton. Agents Multi-agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x

18. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for MAS coor-
dination. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39173-8_8

19. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent sys-
tems: an artifact-based perspective. Auton. Agents Multi-agent Syst. 23(2), 158–
192 (2011). https://doi.org/10.1007/s10458-010-9140-7

20. Vygotsky, L.S., Cole, M.: Mind in Society: Development of Higher Psychological
Processes. Harvard University Press, Cambridge (1978)

21. Weyns, D., Michel, F.: Agent environments for multi-agent systems – a research
roadmap. In: Weyns, D., Michel, F. (eds.) E4MAS 2014. LNCS (LNAI), vol. 9068,
pp. 3–21. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23850-0_1

https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1007/978-3-540-93920-7_7
https://doi.org/10.1007/11691792_10
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/978-3-319-23850-0_1

Towards A&A at the Knowledge Level 219

22. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agents Multi-agent Syst. 14(1), 5–30 (2007). https://doi.
org/10.1007/s10458-006-0012-0

23. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environ-
ments for multiagent systems state-of-the-art and research challenges. In: Weyns,
D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol.
3374, pp. 1–47. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
32259-7_1

https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/978-3-540-32259-7_1
https://doi.org/10.1007/978-3-540-32259-7_1

Pody: A Solid-Based Approach
to Embody Agents in Web-Based

Multi-Agent-Systems

Antoine Zimmermann1, Andrei Ciortea2,3(B), Catherine Faron3, Eoin O’Neill4,
and Maŕıa Poveda-Villalón5

1 Mines Saint-Étienne, Univ. Clermont Auvergne, INP Clermont Auvergne, CNRS,
UMR 6158 LIMOS, Saint-Étienne, France

antoine.zimmermann@emse.fr
2 University of St. Gallen, St. Gallen, Switzerland

andrei.ciortea@unisg.ch
3 Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France

faron@i3s.unice.fr
4 University College Dublin, Dublin, Ireland

eoin.o-neill.3@ucdconnect.ie
5 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain

mpoveda@fi.upm.es

Abstract. In this paper we discuss the problem of situatedness for
agents perceiving and acting on the Web (namely, “Web agents”).
Assuming Web agents are embodied on the World Wide Web, then we
must define what is a Web agent’s body. We first provide an abstract
definition of a Web agent’s body in terms of what it should comprise.
Then we propose a concrete definition of it relying on Solid, a recent
Web technology for Social Linked Data: we implement a Web agent’s
body as a data pod. Consequently, we coin the term pody to refer to the
Web entity that embodies an agent on the Web with Solid. This paper
summarises the findings of a working group from the Dagstuhl Seminar
23081: Agents on the Web (February 19–24, 2023).

Keywords: MAS · Semantic Web · Solid · Embodiment · Situatedness

1 Introduction

Situatedness and embodiment are key notions in research on intelligent agents.
The dominant view is that intelligent, rational behaviour is closely related to the
environment an agent occupies and is not disembodied [17]. This view emerged
in the late’80 s in close relationship with research on intelligent robots [11], which
are naturally situated and embodied in a physical environment. The complexity
of virtual environments, such as the Web, now rivals that of physical environ-
ments. Furthermore, with the recent standardisation of the Web of Things at
the W3C and the IETF, the Web now extends to the physical world – and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 220–229, 2023.
https://doi.org/10.1007/978-3-031-48539-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-48539-8_15

Pody: A Solid-Based Approach to Embody Agents in Web-Based MAS 221

thus becomes a uniform hypermedia fabric that interconnects virtual and phys-
ical environments. This evolution unlocks new practical use cases for intelligent
agents on the Web, that need to be situated and embodied in their environment.
This vision that can be traced back to the early days of the Web1.

In this paper, we discuss how Web agents can be embodied into the Web, both
at an abstract level and concretely using Web standards and technologies. In a
nutshell, we envision a Web agent’s body as a collection of Web resources and
Web interfaces that are attached to the identity of the agent. The Web agent’s
body allows the agent to participate in collective work as part of a multi-agent
system (MAS) on the Web: to perceive and actuate Web resources (including
Web-enabled devices), to be discovered and perceived by other agents, to par-
ticipate in organisations, to communicate with other agents, etc. We illustrate
this vision through a concrete example of Web agents embodiement using Solid
pods, the core concept and technology from Sir Tim Berners-Lee’s project for
Social Linked Data – an initiative to preserve the decentralised nature of the
Web and to radically decentralise personal data. In particular, this enables to
seamlessly address MAS use cases where a strong emphasis on ownership of the
agents’ personal data and resources is needed.

The paper is organized as follows: We first present in Sect. 2 the context in
which our proposal arose. Then we present in Sect. 3 our vision of how agents
should be situated and embodied on the Web, independently of the technologies
used. Finally we show in Sect. 4 how this can be implemented using Solid. In the
end, we discuss in Sect. 5 what other abstractions would be needed to articulate
podies with other essential dimensions of Web-based MAS and we conclude in
Sect. 6.

2 Background

In this section, we first discuss the notions of situatedness and embodiment in
Artificial Intelligence – and, in particular, in MAS engineering (Sect. 2.1). Then
we provide an overview of the main Semantic Web concepts, principles, and
technologies on which the implementation of our proposal is relying (Sect. 2.2).
Finally, we present Solid, the key technology at the center of our proposal
(Sect. 2.3).

2.1 Situatedness and Embodiment in Multi-Agent Systems

In the mid-80 s, a new view emerged in the research field of intelligent agents:
an agent is considered situated in its environment, in the sense that it is directly
connected to its problem domain through sensors and actuators, and it can effect
changes in this domain through actuators [11]. This view contrasted prior views
in AI research, in which an agent would typically amount to a program to which

1 See the keynote of Sir Tim Berners-Lee at the First International Conference on the
World Wide Web (WWW’94): https://videos.cern.ch/record/2671957.

https://videos.cern.ch/record/2671957

222 A. Zimmermann et al.

a formal specification of a problem is provided as input – and then the program
returns a result.

The notion of situatedness originated from research on mobile robots, with
Brooks being one of its main originators [4]. It is now generally accepted for any
system that needs to autonomously fulfill its design objectives in a dynamic,
unpredictable environment – be it physical or virtual [11]. Most definitions of
what is an intelligent or autonomous agent are centered around this notion of
situatedness (e.g., see [6] for a detailed discussion of various definitions).

Another notion closely related to situatedness is the embodiment of an agent.
In [3], Brooks defined this notion to articulate that robots have bodies and
“their actions are part of a dynamic with the world” (e.g., their actions have
immediate feedback on their own perception). Close to situatedness, this notion
of embodiment originally applied to mobile robots can be extended to agents in
virtual environments.

Most notably, in the Agents&Artifacts (A&A) metamodel [13] for MAS engi-
neering, agents are situated in workspaces where they are embodied through body
artifacts. A body artifact holds an agent’s context within a workspace: it allows
the agent to perceive and act within the workspace, and it allows other agents
situated in the same workspace to perceive and interact with the agent. An agent
holds a body artifact in each workspace it is a part of. From an engineering view-
point, this separation of concerns between an agent’s mind and its body artifact
allows heterogeneous agents (e.g., using different architectures or frameworks)
to be reified within the same workspace in a uniform way.

2.2 A Web for Machines

In 2001, the Semantic Web was defined as an extension of the Web relying on
new models and technologies to provide structure and meaning to the content
available on the Web [2]. The Semantic Web relies on the Resource Descrip-
tion Framework (RDF), a graph model to structure data by expressing relations
between entities, and on RDF Schema and the Ontology Web Language to rep-
resent the ontologies used in RDF graphs, thus providing semantics to them.

Early research on the Semantic Web was mostly focused on ontology engi-
neering and knowledge representation, but in 2006 Tim Berners-Lee introduced
the Linked Data principles [1], that are summarised as follows: 1) use URIs
to name things; 2) use HTTP URIs so that things’ names can be looked up;
3) describe things using standards (RDF) so useful information is provided for
URIs; and 4) include links to other URIs in things descriptions.

Ontologies and linked data together provide the means by which an agent
can reliably interpret resources described on the Web, whether they are digital
resources or real-world resources. Additionally, with links, a Web resource leads
to other resources, and so forth, so as to make agents aware of the environment
that the Web constitutes. Some standardised ontologies also define, in their
specification, conformance obligations that say how to operate with resources
described using them. For instance, the W3C Thing Description standard [9]
provides both an ontology to describe possible interactions with things on the
Web, and the way those descriptions can be leveraged to operate these things.

Pody: A Solid-Based Approach to Embody Agents in Web-Based MAS 223

2.3 Solid: Social Linked Data

Solid is a project launched by Tim Berners-Lee in reaction to the growing cen-
tralisation of Web platforms that collect more and more personal data. Instead,
Solid aims at decentralising personal data management in such a way that Web
users regain ownership and control over their data. At the core of Solid technolo-
gies, there is the Solid pod (personal online data store) that hosts the user’s data
and is implemented as a Linked Data Platform [16] with access control on top
of it. Pods are mostly used to provide data to online applications, such as social
platforms, that are granted access by the pod’s owner. This way, not only the
data are externalised from Web platforms, but also the same identity, described
inside the pod, can be reused across multiple applications.

Identity is managed using a customised protocol based on WebID [14] that
allows one to retrieve credentials from a URI that not only identifies the user (as
an account login) but also dereferences to the owner’s data pod, thus enabling
applications to get appropriate data from the user.

Solid pods can host any kind of data but are designed in particular to eas-
ily manage RDF datasets with fine-grained read/write operations. Overall, the
Solid Protocol [5] specifies authentication, storage, access control, and interac-
tions that must be implemented by Solid pods and Solid platforms in order to
interoperate with each others and with applications that builds on them.

3 Embodiment and Situatedness of Agents on the Web

The situatedness of an agent, as introduced in Sect. 2.1, refers to the relation-
ship that exists between the agent and its environment. In order for an agent to
be situated in its environment, it must have the ability to perceive and act on it.
In the case of a Web agent addressed in this paper, the environment comprises
the Web, and the interactions are the basic interaction protocols defined for the
Web. The minimum requirement for a Web agent is the ability to interact with
hypermedia resources on the Web.

The embodiment of an agent on the Web requires a representation of the
agent to exist within the Web. We define the embodiment of a Web agent as
the composite set of resources it exposes within a Web-based hypermedia envi-
ronment, including any (semantic) descriptions of such resources. A defining
characteristic of an agent’s embodiment in the Web is that the set of resources
constituting an agent’s Web body is innately tied to the agent’s identity: the
agent may be acting through its Web body, and other agents observing the body
would assume that the entity controlling and acting through the body is indeed
the reified agent. An agent could have multiple Web bodies, each representing the
agent’s context in a specific hypermedia environment. This paper posits that the
minimum requirement for an “embodied Web agent” is a hypermedia resource
that provides the semantically defined abstraction of an Agent Description,
which may link to any Web bodies the agent might have. This is the top-level
abstraction that describes the agent’s resources on the Web—and the entry point
into what we are considering to be the embodiment of the agent.

224 A. Zimmermann et al.

In order to facilitate interactions within a Web-based MAS, additional
abstractions may be defined to provide the necessary contextual information,
such as: Communication Interfaces, Preferences, Goals, or Beliefs —
which are important abstractions for supporting collaboration and coordination
in MAS (e.g., see [12,15]. Such abstractions may be shared based on condi-
tional access. The Communication Interface abstraction is the element of
the agent’s embodiment that facilitates interaction between agents and allows
for an agent to become an entity directly accessible within the Web. The Pref-
erences abstraction provides information such as an agent’s preferred methods
of interaction, but it is not limited to that. It can also be a domain-specific
abstraction that defines the agent’s preferred environmental state or any other
preference with regard to the agent’s embodiment in a particular environment.

If an agent has an explicit internal representation of its goals, the Goals
abstraction would allow the agent to expose a set of goals. The agent may not
necessarily be actively pursuing these goals but by merely exposing a set of
goals publicly as a resource, the agent can have an effect on other agents within
the system. This can result in benevolence between agents or agents acting in
the disinterest of other agents within the system, depending on the context
and implementation. Similar to the Goals abstraction, if an agent represents
its knowledge of the world in terms of beliefs (e.g., as it is the case for BDI
agents [7]), the Beliefs abstraction exposes a set of beliefs as Web resources, so
that other agents can query the supposed beliefs of the agent. Additionally, the
publicly available beliefs of the agent may or may not be beliefs that the agent
maintains, but can be an attempt to influence the environment state through
the actions of other agents that inhabit it.

4 Podies: Solid Pods Implementing Web Agents’ Bodies

In this section, we show how Solid pods can be used to implement the abstrac-
tions introduced in Sect. 3. The Solid protocol states that “an agent is a person,
social entity, or software identified by a URI; e.g., a WebID denotes an agent”.
We then assume that such a URI would dereference to an entry point for the data
pod of the agent, where an Agent Description would be provided as an RDF
graph, in addition to the mandatory credentials for authenticating the agent. We
call the Solid pod implementing an agent’s Web body a pody. Listing 1.1 shows
an example Agent Description for a self-driving bus agent’s pody. It identifies
the self-driving bus as an instance of the foaf:Agent2, class from the Friend-of-
a-Friend (FOAF) vocabulary (part of the Solid protocol) and it provides basic
information about the agent (e.g., a name, a relevant image) and links to other
resources that are part of the agent’s Web body, namely: a Communication
Interface in the form of a mailbox that can be used to contact the agent, and
the agent’s Preferences.

2 See term definition: http://xmlns.com/foaf/0.1/#term Agent.

http://xmlns.com/foaf/0.1/#term_Agent

Pody: A Solid-Based Approach to Embody Agents in Web-Based MAS 225

Listing 1.1. Example self-driving bus agent’s pody: RDF representation of its Agent
Description (in Turtle).
1 @pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .

2 @pref ix pody : <http :// someuri . ext /pody/> .

3 @pref ix s o l i d : <http ://www.w3 . org /ns/ s o l i d / terms#> .

4

5 <#agent−desc> a f o a f : PersonalProf i leDocument ;

6 f o a f : primaryTopic <#webagent> .

7

8 <#webagent> a f o a f : Agent ;

9 f o a f : name ” Se l f−dr i v ing Bus 101” ;

10 # Link to a communication i n t e r f a c e (e . g . , mailbox , news feed , e t c .)

11 pody : contact <mbox> ;

12 # Link to p r e f e r en c e s (entry point to d i f f e r e n t kinds o f p r e f e r en c e s)

13 pody : p r e f e r en c e s <pref> ;

14 # Links to the OpenID Provider that w i l l v a l i d a t e the authent i ca t i on

15 # (part o f the So l i d p ro toco l)

16 s o l i d : o i d c I s s u e r <https :// o idc . example> ;

17 # Links to a r e l evan t image o f the bus

18 f o a f : img <images/ p i c tu r e . jpg> .

Listing 1.2 shows a sample description of the bus agent’s mailbox. In this
example, the mailbox is, in fact, a Web service that can be used to contact the
bus agent – and the service is described by a W3C WoT Thing Description. The
mailbox’s Thing Description allows other agents to use the service based on an
abstract semantic model of the mailbox (rather than having to hardcode the
specific interface of the mailbox). Other similar approaches, such as Hydra [10],
could be used to describe the interface of the mailbox.

Listing 1.2. WoT description of the self-driving bus agent’s mailbox (in Turtle).
1 @pref ix td : <https ://www.w3 . org /2019/wot/ td#> .
2 @pref ix h c t l : <https ://www.w3 . org /2019/wot/hypermedia#> .
3 @pref ix pody : <http :// someuri . ext /pody/> .
4 @pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
5

6 <mbox> a td : Thing ;
7 td : hasAct ionAffordance [
8 a pody : SendDirectMessage ;
9 td : name ”send−mail ” ;

10 td : hasForm [
11 hc t l : hasTarget ” https : // domain . ext /mbox/ inbox ”ˆˆ xsd : anyURI
12]
13] .

Listing 1.3 shows a sample representation of the bus agent’s Preferences.
In this example, the preferences expose a basic access control policy using the
Web Access Control3 vocabulary (part of the Solid protocol). Other preferences
could express, for instance, a prioritization of the Communication Interfaces
exposed by the agent – similar to the preferred ordering of contact addresses in
a FIPA Agent Identifier as defined by the FIPA Agent Management Ontology4.

3 https://solidproject.org/TR/wac.
4 See the FIPA Agent Management Specification for details: http://fipa.org/specs/

fipa00023/SC00023K.html.

https://solidproject.org/TR/wac
http://fipa.org/specs/fipa00023/SC00023K.html
http://fipa.org/specs/fipa00023/SC00023K.html

226 A. Zimmermann et al.

Listing 1.3. RDF description of the self-driving bus agent’s preferences (in Turtle).
1 @pref ix a c l : <http ://www.w3 . org /ns/auth/ a c l#> .
2

3 <pre f> a c l : a cce s sCont ro l [
4 a c l : accessTo <mbox> ;
5 a c l : agent <http :// example . edu/p/A l i c e#Msc>,
6 . <http :// example . com/people /Mary/ card#me> ;
7 a c l : mode a c l : Read
8] .

Fig. 1. Example bus agent embodied on the Web, its Solid pod implemented using
Semantic Web models. The bus agent publishes on the Web its up-to-date position
stored in its pody.

In addition to the resources described so far, the embodiment of the bus
agent could include additional resources. A more elaborate illustration of this
use case is shown in Fig. 1. The bus agent could use its Solid pod, for instance, to
publish an up-to-date schedule or its current position. Because such information
is published under the bus agent’s pody, other agents would assume that it
is indeed the bus agent communication through its pody — similar to how a
Twitter user would communicate updates via their Twitter account.

5 Discussion

Our proposal gives uniformity to how agents are embodied on the Web. The
notion of pody makes use of technologies that are mostly based on standards,
as well as work that is under active development by public organisations and
companies. The use of Linked Data enforces uniform identification (with URIs),
a common data model (with RDF), and a way of serendipitously exploring data,
especially for what concerns agents, their means of communication, and their
specificities.

Pody: A Solid-Based Approach to Embody Agents in Web-Based MAS 227

With agents embodied in the Web through podies, we can envision how they
can be situated and related to other dimensions of a multi-agent system. Other
abstractions would have to be introduced to describe the Web counterpart of a
physical location. We can assume that agents will cooperate on the Web within
abstract areas that delimit the scope of their interaction and offer the required
resources to address specific missions, goals, and endeavours. For instance, agents
may collaborate in Github projects, with a repository acting as a workspace
where they are situated. These “abstract areas” or workspaces can themselves
be described in podies that would also offer interaction facilities, links to the
agents situated in them, ways of taking roles, etc.

Additionally, agents cooperating in complex organisations, possibly with a
mix of human beings, software agents, or robots, should be able to obtain organ-
isational information, such as norms, regulation, and so forth, in a form that is
easily machine-processable. Interestingly, existing Web ontologies already cover
parts of these abstractions, and research communities are actively working on
providing shared vocabularies that enable to precisely to describe these things.

6 Conclusion

Web agents can be embodied via a Solid pod that: 1) provides a recognisable
identity to the agents acting/interacting on and via the Web; 2) provides a
“shape” to the agent in the form of an agent description, materialised as an RDF
graph; 3) provides an interface through which other agents can communicate
with the embodied agent; 4) may optionally provide supporting features such as
preferences, claimed goals and beliefs, all possibly represented using standards.

This paper posits a shape, and an implementation method, that may be used
to represent the intelligent agents that inhabit the Web, the same intelligent
agents that Hendler was querying the existence of in [8]. We see this as a step
in the direction of allowing agent technologies to be utilized in a Web context
consuming semantically enriched data and interacting in an ad-hoc fashion with
heterogeneous, semantically described Web services in order to provide services
and pursue and achieve goals of their own. By defining a standard abstract
“shape” for a Web agent, using Web standard technologies, we introduce the
possibility of cross-organisational interaction and collaboration.

The contribution of this paper is a vision that still requires a realisation
in an actual MAS. We argue that this vision already shows the benefits for
engineering Web-based MAS. Future work will determine, by experimentation,
the feasability, usability, ease of development, scalability, and perhaps limitations
for Web-based Multi-Agent Systems engineering.

Acknowledgement. We thank Alessandro Ricci and Jomi Hübner for our fruit-
ful discussions during the Dagstuhl Seminar 23081 that led to the ideas presented
in this paper. Antoine Zimmermann and Andrei Ciortea had funding related to
project HyperAgents from grants ANR-19-CE23-0030-01 and SNSF No. 189474.
Maŕıa Poveda-Villalón received funding from the Spanish project KnowledgeSpaces
(PID2020-118274RB-I00).

228 A. Zimmermann et al.

References

1. Berners-Lee, T.: Linked data. Published online by the author as a Web design issue
(2006). http://www.w3.org/DesignIssues/LinkedData.html

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001). https://www.scientificamerican.com/article/the-semantic-web/

3. Brooks, R.A.: Intelligence without reason. In: Mylopoulos, J., Reiter, R. (eds.)
Proceedings of the 12th International Joint Conference on Artificial Intelligence.
Sydney, Australia, 24–30 August 1991, pp. 569–595. Morgan Kaufmann (1991).
http://ijcai.org/Proceedings/91-1/Papers/089.pdf

4. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986). https://doi.org/10.1109/JRA.1986.1087032

5. Capadisli, S., Berners-Lee, T., Verborgh, R., Kjernsmo, K.: Solid protocol. W3c
solid community group working draft, World Wide Web Consortium (2021).
https://solidproject.org/TR/2021/protocol-20211217

6. Franklin, S., Graesser, A.: Is it an agent, or just a program?: a taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL
1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0013570

7. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Forbus, K.D.,
Shrobe, H.E. (eds.) Proceedings of the 6th National Conference on Artificial Intel-
ligence. Seattle, WA, USA, July 1987, pp. 677–682. Morgan Kaufmann (1987).
http://www.aaai.org/Library/AAAI/1987/aaai87-121.php

8. Hendler, J.: Where are all the intelligent agents? IEEE Intell. Syst. 22(03), 2–3
(2007). https://doi.org/10.1109/MIS.2007.62

9. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description. W3C Recommendation, World Wide Web
Consortium (2020). http://www.w3.org/TR/2020/REC-wot-thing-description-
20200409/

10. Lanthaler, M., Gütl, C.: Hydra: a vocabulary for hypermedia-driven web APIs. In:
Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) Proceedings
of the WWW2013 Workshop on Linked Data on the Web, Rio de Janeiro, Brazil,
May 14 2013. CEUR Workshop Proceedings, vol. 996. Sun SITE Central Europe
(CEUR) (2013). http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf

11. Maes, P.: Modeling adaptive autonomous agents. Artif. Life 1(1 2), 135–162 (1993).
https://doi.org/10.1162/artl.1993.1.1 2.135

12. Nwana, H.S., Lee, L., Jennings, N.R.: Co-ordination in multi-agent systems. In:
Nwana, H.S., Azarmi, N. (eds.) Software Agents and Soft Computing Towards
Enhancing Machine Intelligence. LNCS, vol. 1198, pp. 42–58. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-62560-7 37

13. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agent. Multi-agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x

14. Sambra, A., Corlosquet, S.: WebID 1.0 - Web Identity and Discovery. W3C IG Edi-
tor’s draft, World Wide Web Consortium (2015). https://dvcs.w3.org/hg/WebID/
raw-file/tip/spec/identity-respec.html

15. Sichman, J.S.A., Conte, R., Castelfranchi, C., Demazeau, Y.: A social reasoning
mechanism based on dependence networks. In: Proceedings of the 11th European
Conference on Artificial Intelligence, pp. 188–192. ECAI 1994, Wiley, USA (1994)

http://www.w3.org/DesignIssues/LinkedData.html
https://www.scientificamerican.com/article/the-semantic-web/
http://ijcai.org/Proceedings/91-1/Papers/089.pdf
https://doi.org/10.1109/JRA.1986.1087032
https://solidproject.org/TR/2021/protocol-20211217
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/BFb0013570
http://www.aaai.org/Library/AAAI/1987/aaai87-121.php
https://doi.org/10.1109/MIS.2007.62
http://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
http://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-03.pdf
https://doi.org/10.1162/artl.1993.1.1_2.135
https://doi.org/10.1007/3-540-62560-7_37
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html

Pody: A Solid-Based Approach to Embody Agents in Web-Based MAS 229

16. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C recommenda-
tion, world wide web consortium (2015). http://www.w3.org/TR/2015/REC-ldp-
20150226/

17. Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence, pp. 27–72. The MIT
Press (2000). http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?
collid=books pres 0&id=4791&fn=9780262731317 sch 0001.pdf

http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/2015/REC-ldp-20150226/
http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&id=4791&fn=9780262731317_sch_0001.pdf
http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&id=4791&fn=9780262731317_sch_0001.pdf

Frameworks, Tooling, and DevOps

Fantastic MASs and Where to Find
Them: First Results and Lesson Learned

Daniela Briola1 , Angelo Ferrando2(B) , and Viviana Mascardi2

1 University of Milano-Bicocca, Milan, Italy
daniela.briola@unimib.it

2 University of Genova, Genova, Italy
{angelo.ferrando,viviana.mascardi}@unige.it

Abstract. Nowadays, the Multiagent Systems research community is
facing new challenges related to engineering the overall process of soft-
ware development, tailoring it to the specific needs of the community,
and integrating SE techniques into many studies in the MAS area. More
and more frequently, researchers need already developed MASs for val-
idating their new proposals. Often, they spend time in looking for the
code of existing tools to compare with the state of the art. Unfortunately,
accessing this kind of resources, which are the starting point for many SE
activities, is not always easy. In this paper, we present the first outcome
of the initiative “Fantastic MAS and where to find them”, launched in
June 2022, where we asked the agent community to contribute in the cre-
ation of a repository to facilitate the sharing of the already existing tools
(agent development frameworks, libraries, add ons of already existing
platforms) and MASs with their code. The “Fantastic MAS” goals are
to i) improve the sharing and reusing of research results ii) support the
SE activities in our research community, iii) help making a step towards
the Open Science movement, which has been already widely adopted in
other research communities. Besides providing an overview of the sub-
missions we got, we discuss the open problems that emerged in these
eight months of the initiative, so that to stimulate the discussion in the
community.

Keywords: Agent-Oriented Software Engineering · Multiagent
systems · Agent development framework

1 Introduction

In the last years, the research community related to agents and Multiagent Sys-
tems (MASs) opened more and more to software engineering problems related
to all the aspects of designing and implementing MASs [39]. This is mandatory
to face the growing complexity of this variegate research field: indeed, testing
approaches and tools, formal methods, simulators of MASs, and design method-
ologies are emerging in our community, in response to the need of researchers
and in line with the advances in the Software Engineering (SE) research area.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 233–252, 2023.
https://doi.org/10.1007/978-3-031-48539-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_16&domain=pdf
http://orcid.org/0000-0003-1994-8929
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0000-0002-2261-9926
https://doi.org/10.1007/978-3-031-48539-8_16

234 D. Briola et al.

As a community, we are consequently facing the problems associated with this
transformation toward a more “software engineering approach”, which provides
great benefits but also requires a change in the way the research results are pre-
sented and shared. The Software Engineering community has adopted from way
back a systematic approach regarding how research results should be presented,
above all in the top level scientific venues, which follows a sort of standard and a
common list of requirements to assure the quality of the published products and
to enhance their sharing and reusability. The underlying idea is that the value of
a research result relies not only in the new proposal presented in the paper itself,
but in the associated produced tool, exploited data, and whatever was used for
achieving the results presented in the paper. So, the research result has a double
value, the state of the art contribution and the availability of associated data
and software to be reused by the community. This approach is in line with the
view proposed by the Open Science movement1, which is getting more and more
attention by all the academic world. Considering the top rated SE conferences
(ICSE2, ESEC/FSE3, ICST4), their call for papers clearly mention the “Open
Science Policy”, stating that:

“the steering principle is that all research results should be accessible to the
public and, if possible, empirical studies should be reproducible. In particular,
we actively support the adoption of open data and open source principles and
encourage all contributing authors to disclose (anonymised and curated) data to
increase reproducibility and replicability. Note that sharing research data is not
mandatory for submission or acceptance. However, sharing is expected to be the
default, and non-sharing needs to be justified. We recognise that reproducibility
or replicability is not a goal in qualitative research and that, similar to industrial
studies, qualitative studies often face challenges in sharing research data”.

And also “submissions must supply all information that is needed to replicate
the results, and therefore are expected to include or point to a replication package
with the necessary software, data, and instructions. Reviewers may consult these
packages to resolve open issues. There can be good reasons for the absence of
a replication package, such as confidential code and/or data, the research being
mostly qualitative, or the paper being fully self-contained. If a paper does not
come with a replication package, authors should comment on its absence in the
submission data”.

This strong commitment toward the sharing of software and data (the lack of
this information seriously undermines the acceptance of a paper in those venues),
even if complex to be accomplished, plays an important role in the improvement
and simplification of the research activities, in particular:

– Results replicability: the presented results can be checked by the community,
so that they are more reliable.

1 https://www.unesco.org/en/open-science.
2 http://www.icse-conferences.org/.
3 https://www.esec-fse.org/upcoming events.
4 https://icst2022.vrain.upv.es/series/icst.

https://www.unesco.org/en/open-science
http://www.icse-conferences.org/
https://www.esec-fse.org/upcoming_events
https://icst2022.vrain.upv.es/series/icst

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 235

– Comparability: when a new technique is presented, it can be compared in
a simpler way with the previous ones, since it can be tested on the same
dataset/testbed the previous ones were tested on.

– Testbed availability: years after years, repository with applications, libraries,
source code are created and maintained, so that they can be directly exploited
to verify and validate new tools and techniques.

– Dissemination inside the community: the availability of the code of a tool,
possibly with test suites and data for testing, makes those research results
more known, cited and reused inside the community

On the contrary, the aforementioned points are painful for our community,
even if we are moving toward them too (e.g., in the AAMAS 2023 call for paper,
a reference can be found to this aspect: “We highly encourage authors to make
their source code (if any) publicly available after their papers are accepted. The
link should be in their paper and will also be publicised on the AAMAS website”).
Nonetheless, it is really difficult to find the code (open source or compiled)
of proposed frameworks/tools and of “real MASs” to be used to validate new
runtime techniques, or to be used as testbed for new testing approaches, or to
be analysed in their structure for reverse engineering activities. For example, a
simple research on Gitlab through its topics shows that few projects exist under
“Multiagent”, but also if searching in general on the web, finding MASs that are
more than a toy example, or some academic project, well documented, reusable,
is quite impossible. So, we often rely on “toy examples” or “MASs developed by
the same research group”, that is, internal resources, to substantiate our claims.
This makes the validation and verification of new tools and techniques weaker:
from a SE point of view, this is a clear threat to validity. Also, when searching
the state of the art for similar approaches or tools, to perform a comparison, it is
often difficult to find an artefact to be used. While we can find works to compare
with, rarely a thorough and real comparison can be performed that goes beyond
reading the paper. This, sometimes, is determined by the fact that the code used
in existing papers is not available to the community. While these aspects do not
decrease the intrinsic quality of the research, they limit its visibility and make
it less shareable, both inside and outside the community.

To help solving these problems, and to support the sharing of the results
of the community, we promoted the “Fantastic MASs and where to find them”
initiative, aimed at:

– Promoting the visibility of the results of the research, to facilitate the study
of the state of the art, by offering a repository of works, organised in macro
areas.

– Promoting the creation of a repository of MASs, to be used as third party
testbed and so simplifying the validation and verification of new tools and
approaches.

– Promoting the reproducibility of the results, and the sharing of the code of
tools, algorithms and so on, so that to simplify the comparison with previous
works.

236 D. Briola et al.

– Supporting the Software Engineering activities for the community, sharing
information regarding bugs, test suites and so on associated with already
existing MASs and tools.

To create this repository, we decided not to perform a standard Systematic
Literature Review (SLR), mainly due to two reasons:

– Some of the information of our interest are not available in papers (e.g., bugs,
previous versions, and so on).

– We focus on artefacts to be shared inside the community – not mere theoreti-
cal approaches –, with a format that can be reused by others; such information
is often missing in papers, or even not published.

So, the idea was to perform a sort of crowdsourcing of information; thus, bottom
up (rather than top down, as in a SLR). Our goal is to help the community
grow and share existent agent-based technology. This is advantageous both for
those contributing to the repository who will have the opportunity to increase
the visibility of their work, and for its end users who will find existent works
in a simpler way. This initiative may be seen as orthogonal to other top down
reviews, like for example [43] that surveyed the literature to evaluate the practical
application impact of Multiagent Systems and Technologies (MAS&T), or for
example to the platform AI4europe5.

The paper is organised as follow: Sect. 2 describes the process we followed
to set up the call of the initiative, Sect. 3 reports the submissions we collected
till the 20th of February 2023, Sect. 4 presents some considerations and lesson
learned, and Sect. 5 concludes.

2 Selection Process

Before reporting the results and discussing them, we linger on the process we
followed to set up the repository. Specifically, the main categories we used to
classify the contributions, and which kind of questions we asked, and to whom.

The aim of the repository is dual:

1. To offer a collection of MASs to be used as testbed for Verification and Vali-
dation (V&V) activities.

2. To offer an overview of available MAS development frameworks, libraries and
tools available to the community, to support the study of the state of the
art and at the same time offering a simple way to retrieve the code/source
code of the identified artefacts, so that to be able to concretely use them for
extension, adoption or comparison.

So, the foreseen contributions cover a large variety of types, and some classi-
fication was needed both to collect them, and to organise them in the repository.
We decided to distinguish three main types of contributions: i) MASs ii) Frame-
works and iii) Extensions. Contributions that are labelled as “Framework” are
5 https://www.ai4europe.eu/.

https://www.ai4europe.eu/

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 237

completely new agent development frameworks to create MASs (something with
the same aim of Jade, Jason and so on), while contributions labelled as “Exten-
sions” are libraries/add-ons for already existing frameworks that improve the
latter’s capabilities, without turning it into a completely new framework. From
this viewpoint, the add-ons that can be found on the Jade webpage6 are, in our
classification, “Extensions”, while JACK [34] is a new “Framework”.

The collected entries have been further divided into 3 different categories,
that are (citing the labels offered in the submission form):

– “Agent-based simulation (you developed a MAS, or a framework/library/
add-on to simulate physical and natural phenomena)”: these entries pertain to
the Multiagent Based Simulations (MABS) area, so MASs where many agents
have been used to Simulate a specific situation (like systems frequently
developed for example in Netlogo), or frameworks and extensions offering
support in this area.

– “Agent-oriented software engineering (you developed a MAS that is the “real”
system, for example for implementing decision support systems/ solving
industrial problems/implementing smart systems, or a framework/library/
add-on to develop such real MASs)”: the MASs in this category are Systems
exploiting the MAS paradigm to solve a specific task (often developed
for example in Jade or JaCaMo), or frameworks and extensions offering some
SE related activity in this area.

– “Other”: other entries that do not specifically fall in the two previous cate-
gories (and in this case, we let the submitter to insert a description).

The category is chosen by the author creating the entry, as all the other infor-
mation. However, after the first round of call, we realised that some submissions
were borderline between the two macro categories or have been labelled with
“Other”, so we plan to add a further category (as reported below, it could be
“V&V tools for MASs”) and to explain better how to classify, with respect to
the adopted classification, a product to be inserted in the repository.

In the following, we only report the most relevant questions asked to the sub-
mitters: for a complete understanding, readers can refer to the website containing
the results of our call7, and the form to submit a new contribution.

For each entry – which can be a MAS, a framework, or an extension – we
asked where to find its repository and whether previous repositories exist: the
second question is important to better track the history of the entry. Other than
that, we also asked for main publications (whether available) where the entry
had been firstly introduced.

Then, we asked for additional details on its development: for instance, if any
software engineering approach was followed.

Last, but not least, we asked about its being tested. This aspect is impor-
tant to understand the maturity of the entry. Specifically, we were interested in
knowing whether some specific approach had been followed to test the entry, if

6 https://jade.tilab.com/download/add-ons/.
7 https://mas-unige.github.io/fantastic mass/.

https://jade.tilab.com/download/add-ons/
https://mas-unige.github.io/fantastic_mass/

238 D. Briola et al.

the test suites were available too, and if a bug/issue tracker/list was available
too (and where to find them).

Moreover, only for MASs and extensions, we asked additional questions about
its corresponding framework, such as where the extended framework can be
found, which version has been considered, and so on.

The second aspect of interest in the selection process is to whom we asked
the questions. To be as fair as possible, and at the same time, as general as
possible, we submitted a call on the most influential mailing lists in the agent
community (e.g., agents@cs.umbc.edu, and so on).

The outcome of our call for frameworks, MASs, and extensions is a publicly
available repository: https://mas-unige.github.io/fantastic mass/. The reposi-
tory contains relevant information such as: links to the resources, links to scien-
tific articles, and general information about the development of the resource.

3 Results

In this section, we report the results of our call. In detail, we received 33 sub-
missions, classified as follows:

– 4 implementations (MASs),
– 21 frameworks,
– 8 existing framework extensions.

3.1 MASs

Here, we report the MASs that have been gathered in our call. In total, 4 MASs
have been reported; the first two are in the AOSE area, while the others are in
the MABS area.

AdaptSchedule [27] is a MAS designed to assist adolescents, particularly ado-
lescents with disabilities, transition towards independent management of their
own schedules. It allows them to set up a daily schedule with all activities that
must be performed and any constraints between those activities.

MAPS-HOLO [19] proposes a Holonic Multiagent System (HMAS) to assign
and manage parking spaces in a smart parking system called Holonic Multia-
gent Parking System (MAPS-HOLO) developed through the JaCaMo Frame-
work described in Sect. 3.2. Besides assigning parking space, the system will be
able to handle run-time agents failures in different levels: driver agent, sector
agent, and manager agent failure.

Deep Q-Learning agents for traffic signal control [57] presents a Reinforce-
ment Learning approach to traffic lights control, coupled with a microscopic
agent-based simulator (Simulation of Urban MObility - SUMO) providing a
synthetic but realistic environment in which the exploration of the outcome
of potential regulation actions can be carried out.

The Affective Agents [6,31] project aims at modeling interactions between
people considering their affective state (representing their attitude towards other

https://lists.cs.umbc.edu/mailman/listinfo/agents/
https://mas-unige.github.io/fantastic_mass/

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 239

people wearing or not a mask, if they are indoor or outdoor, considering their
age and gender and their mood expressed as a mix of fear of the contagious
of covid19 and “internal and external social distance”). The combination of
these parameters makes the subject to adopt a different “hall space” (that is,
the distance from another person that a subject consider safe for him). The
data guiding these simulations implemented in Netlogo (3 different models are
currently offered) have been collected in the field thanks to two experiments with
human subjects.

3.2 Frameworks

We report all the frameworks that have been collected in our call. We split them
into four categories: the classification we use in the sequel is not the same we used
to guide the selection process. Specifically, in the selection process, we asked the
community to classify each entry w.r.t. three possible keywords: “Agent-Oriented
Software Engineering”, “Agent-Based Simulation”, and “Other”. However, when
reporting the obtained results, another keyword emerged, that is “Verification
of MAS”. Thus, in the following, we reported the collected frameworks also in
terms of this additional label.

Amongst the gathered frameworks, 14 works are in the agent-based software
engineering area, 3 are in the verification area, 2 in the agent-based modeling and
simulation area, and 2 in another area. Furthermore, considering the supported
agent architectures [17], we may find 6 contributions adopting the BDI one, while
the others do not follow any specific agent architecture.

Both well-established and newly born frameworks have been reported. Some
of them are based upon implemented Domain Specific Languages, DSL.

Agent-Oriented Software Engineering. AgentScript Cross-Compiler
(ASC2) [47] is a MAS framework mainly for agents created with the AgentScript
agent programming language8. The language of ASC2 is based on Jason [15]. The
novelty of this framework is in relying on the Actor model, instantiating each
intentional agent as an autonomous micro-system run by actors. ASC2 works
as a cross-compiler that translates the high level language of AgentScript into
lower level executable languages, such as Scala. Possible interactions between
the agent-based programming framework ASC2 and various testing approaches
(unit/agent testing, integration/system testing, continuous integration) have
been extensively evaluated in [46].

ASTRA [21,26] stands for AgentSpeak(TR) Agents and is an Agent-Oriented
Programming Language combining AgentSpeak(L) [50] and Teleo Reactive pro-
gramming [44]. ASTRA is designed to be easy to learn and familiar to developers
who are experienced in using mainstream Object-Oriented Programming Lan-
guages.

8 https://github.com/mostafamohajeri/scriptcc-translator.

https://github.com/mostafamohajeri/scriptcc-translator

240 D. Briola et al.

DALI [22] is a meta interpreter built on top of Sicstus Prolog9. DALI is an
Active Logic Programming language, designed for executable specification of log-
ical agents, without committing to any specific agent architecture. DALI allows
the programmer to define one or more agents, interacting among themselves,
with an external environment, or with a user.

JaCaMo [13,14] is composed of three technologies, Jason, CArtAgO [51], and
Moise [35], each representing a different abstraction level. Jason is used for pro-
gramming the agent level, CArtAgO is responsible for the environment level, and
Moise for the organisation level. JaCaMo integrates these three technologies by
defining a semantic link among concepts in different levels of abstraction (agent,
environment, and organisation). The end result is the JaCaMo MAS develop-
ment platform. It provides high-level first-class support for developing agents,
environments, and organisations, allowing the development of more complex
MASs.

Jade [8,9] is an open source platform for the development of agent based
applications. Besides the agent abstraction, it also provides: task execution and
composition model, peer-to-peer agent communication based on asynchronous
message passing, and a yellow page service that supports the publish and sub-
scribe discovery mechanism. JADE-based systems can be distributed across
machines with different operational systems, and has been used by many lan-
guages (e.g., Jason and JaCaMo) as a distribution infrastructure.

Jadescript [10,11] is a recent AOP language designed to develop Jade agents.
It provides a set of agent-oriented linguistic constructs and related abstractions,
namely agents, (agent) behaviours, and (communication) ontologies. Agents
written in Jadescript are executed in JADE platforms, and they interact via
asynchronous messaging. Therefore, Jadescript adopts an event-driven program-
ming style.

Python Agent DEvelopment (PADE) framework [41] is an open source plat-
form implemented in Python language and conceived for the implementation of
MASs on power systems. PADE is compliant with specifications of the Founda-
tion for Intelligent Physical Agents (FIPA) and eases the development of solu-
tions to power systems based on MAS.

Another framework similar to PADE is Python Intelligent Agent Framework
(PIAF)10, which has not been already published.

BSPL [52,55] stands for the Blindingly Simple Protocol Language and is
an information-based protocol language. In BSPL, it is possible to describe the
communication protocols as well as the corresponding agents’ enactment of the
latter.

Deserv [53,56] is a protocol-based programming model for decentralized
applications that is suited to the cloud. Specifically, Deserv demonstrates how to
leverage function-as-a-service (FaaS), a popular serverless programming model,
to implement agents.

9 https://sicstus.sics.se/.
10 https://gitlab.com/ornythorinque/piaf.

https://sicstus.sics.se/
https://gitlab.com/ornythorinque/piaf

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 241

Hercule [54] an approach for declaratively specifying blockchain applica-
tions in a manner that reflects business contracts. Hercule represents a con-
tract via regulatory norms that capture the involved parties’ expectations of one
another. It computes the states of norms (hence, of contracts) from events in the
blockchain.

JS-son [36] is a lean JavaScript library prototype for implementing reasoning-
loop agents. The library focuses on core agent programming concepts and refrains
from imposing further restrictions on the programming approach.

SMASTA+ [7] is a Scala implementation of the Extended Multi-agents Sit-
uated Task Allocation.

StreamB [29] is a Domain Specific Language (DSL) for processing data
streams in abstract environments. With StreamB it is possible to guide the
translation from low-level information (e.g. sensors) to high-level concepts (e.g.
beliefs). Thanks to its declarative nature, StreamB is much more intuitive and
helps the user to create abstract environments, by reducing the amount of actual
code to be produced; since the mapping process is automatically synthesised by
StreamB. In more detail, StreamB is built upon the notion of Stream Process-
ing, and allows the user for a flexible yet straightforward way to map low-level
environment data, to high-level agent beliefs.

Verification of MAS. EVE (Equilibrium Verification Environment) [32,33]
is a formal verification tool for the automated analysis of temporal equilib-
rium properties of concurrent and multiagent systems represented as multi-
player games. Systems are modeled using the Simple Reactive Module Language
(SRML) as a collection of independent system components (players/agents in a
game), which are assumed to have goals expressed using Linear Temporal Logic
(LTL) formulae. In particular, EVE checks for the existence of Nash equilib-
ria in such systems and can be used to do rational synthesis and verification
automatically.

The MCAPL [23,24] (Model-checking Agent Programming Languages)
framework is a suite of tools for building interpreters for agent programming
languages and verifying the correctness of programs running in these interpreters
using the model checking technique. It consists of the Agent Infrastructure Layer
(AIL) toolkit for building interpreters for rational agent programming languages
(BDI languages) and the Agent JavaPathFinder (AJPF) model checker [25].

STV [37,38] is a collection of algorithms for verifying Alternating-time Tem-
poral Logic (ATL) properties on models with perfect (resp. imperfect) informa-
tion, and exploiting imperfect recall strategies.

Agent-Based Simulation. CellNet Network [45] is an open-source Java-based
software developed as a research resource to study MAS, evolutionary game
theory and cellular automata simulations. CellNet works in two modes: (i) using
a graphical user interface (GUI) for doing micro-simulations or (ii) using a batch
mode for doing macro-simulations.

242 D. Briola et al.

Swarm-Like Protocol in Python (SLAPP) [12,40] comes from Swarm [42].
SLAPP is only one of the possible flavors of Swarm; it is a simplified flavor,
because it is written in Python.

Others. MatchU [30] is a web-based platform that offers an interactive frame-
work to find how to form mutually-beneficial relationships, decide how to dis-
tribute resources, or resolve conflicts through a suite of matching algorithms
rooted in economics and artificial intelligence.

MAPF11 is a collection of techniques and tools to perform Multi-Agent Path
Finding (MAPF). Such repository has been submitted to our call, but no specific
framework has been pointed out. Thus, the analysis we perform on the other tools
cannot be performed on this repository as well. Nonetheless, even though in the
following we do not analyse MAPF with the rest of the tools, we recognise its
importance and legitimacy in being listed with the other MAS frameworks in
our repository.

3.3 Extensions

Here, we report the frameworks’ extensions that have been gathered in our call.
In total, 8 different extensions have been reported. Of these, 4 are extensions
of JaCaMo, 1 is an extension of Cartago, 1 is an extension for Jade, 1 is an
extension of SUMO, and 1 is an extension of MCAPL. Since both JaCaMo and
MCAPL are based on the BDI architecture, 4 out of 5 extensions can be classified
as BDI projects.

2COMM [4] is an extension of the JaCaMo framework for defining social
relationships, represented as social commitments, among parties, conceived as
autonomous agents.

JaCaMo+Accountability [5] proposes an extension of JaCaMo with the
notion of accountability, grounded on responsibility, that supports the devel-
opment of robust distributed systems.

JaCaMo+Exceptions [3] is an extension of Moise, the organizational model
and infrastructure adopted in JaCaMo, that explicitly encompasses the notion
of exception as a first-class element in the design of a multiagent organization.

Multi-Agent MicroServices (MAMS) [20] is an architectural style for integrat-
ing MASs into Microservices architectures. It extends Cartago and achieves this
by modeling agents as entities that have hypermedia bodies that are exposed as
REST APIs. This provides a standard REST API that plain-old microservices
can exploit.

ROS-A [18] an interface for integrating BDI-based agents into robotic systems
developed using ROS [49]. The authors use the Gwendolen language to program
the BDI agents and to make use of the AJPF model checker in order to verify
properties related to the decision-making in the agent programs.

11 http://mapf.info.

http://mapf.info

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 243

SUMO-RL [1] provides a simple interface to instantiate Reinforcement Learn-
ing environments with SUMO12 for Traffic Signal Control. SUMO-RL provides
a simple interface to instantiate Reinforcement Learning environments with
SUMO for Traffic Signal Control. Goals of this repository: (i) provide a simple
interface to work with Reinforcement Learning for Traffic Signal Control using
SUMO (ii); support Multiagent RL; (iii) compatibility with gym.Env and pop-
ular RL libraries such as stable-baselines3 and RLlib; (iv) easy customisation:
state and reward definitions are easily modifiable.

LEARN [16] is an extension of the standard JADE platform, enhancing it
with peer-to-peer (p2p) capabilities. The general idea of LEARN is offer a set of
specific agents (JADE agents to be created on a standard JADE platform) able
to create a logic p2p layer over a set of JADE platforms, so that to make them
able to dynamically discover other platforms without knowing their IP (so in a
real p2p fashion) and then invoking services over the p2p layer.

RV4JaCa [28] is an extension of JaCaMo which allows performing runtime
verification of agents’ messages. It represents the agent-based istantiation of
RML (Runtime Monitoring Language) [2], a simple but powerful Domain Specific
Language (DSL) for runtime verification.

4 Discussion and Lessons Learned

In this section, we analyse and discuss the results obtained in our call, focusing
on the aspects strictly related to the software engineering area: since the collected
MASs are few (which is already a reason for reflection), we limit this analysis to
the framework and extension entries. With this analysis we pay attention not on
the functionalities of the proposed frameworks and extensions (we will refer to
them with the term “tool” in the remaining of the section), but on the aspects
concerning their re-usability as subjects for future research.

Table 1 reports the results of our analysis for 27 out of 29 collected tools. In
detail, each tool is analysed w.r.t. six different features:

– Previous Versions: This feature concerns the presence of previous versions
and/or commits on the tool’s repository. This aspect is important to better
understand and study the tool’s evolution, like for example when searching
for architectural smells, as done in [48].

– Documentation: This feature is about the availability of some form of docu-
mentation supporting the tool. This is of paramount importance to increase
the tool’s usability. Furthermore, a good documentation can be exploited for
example for automatic oracles extraction, or reverse engineering tasks.

– Issue and Bug tracker : This feature concerns the presence in the tool’s reposi-
tory of well-documented issues and bugs, possibly with information regarding
if, and how, they were fixed. This kind of information is used in SE to validate,
for example, tools for automatic bugs identification.

12 https://github.com/eclipse/sumo.

https://github.com/eclipse/sumo

244 D. Briola et al.

Table 1. Summary of the submissions (Frameworks and Extensions), excluding MAPF
and MatchU, that cannot be compared based on these features.

Subject Ref. Versioning Document. Issue-tracker Tested Test Suites Linked Source

ASC2 [47] ✓ ✓ ✗ ✓ (✓) ✓ ✓

ASTRA [21,26] ✓ ✓ ✓ ✓ ✓ ✓ ✓

BSPL [52,55] ✓ ✓ ✗ ✓ ✓ ✓ ✓

CellNet [45] ✓ ✓ ✗ ✓ ✗ ✓ ✓

DALI [22] ✓ ✓ ✓ ✓ (✓) ✓ ✓

Deserv [53,56] ✓ ✓ ✗ ✓ (✓) ✓ ✓

EVE [32,33] ✓ ✓ ✗ ✓ ✗ ✓ ✓

Hercule [54] ✓ ✓ ✗ ✓ ✓ ✓ ✓

JaCaMo [13,14] ✓ ✓ ✓ ✓ ✗ ✓ ✓

Jade [8,9] ✓ ✓ (✓) (✓) ✓ ✓ ✓

Jadescript [10,11] ✓ ✓ ✓ ✓ ✓ ✗ ✓

JS-son [36] ✓ ✓ (✓) ✓ ✓ ✓ ✓

MCAPL [23,24] ✓ ✓ ✗ ✓ ✓ ✓ ✓

PADE [41] ✓ ✓ ✗ ✗ ✗ ✓ ✓

Piaf ✓ ✓ ✓ ✓ ✓ ✗ ✓

SLAPP [12,40] ✓ ✓ ✓ ✓ ✗ ✓ ✓

SMASTA+ [7] ✓ ✓ ✗ ✓ ✗ ✓ ✓

StreamB [29] ✓ ✓ ✗ ✓ ✗ ✓ ✓

STV [37,38] ✓ ✓ ✗ ✓ ✗ ✗ ✓

2COMM [4] ✓ ✗ ✗ ✓ ✗ ✓ ✓

JaCaMo+Acc [5] ✓ ✓ ✗ ✓ ✗ ✗ ✓

JaCaMo+Exc [3] ✓ ✓ ✗ ✓ ✗ ✓ ✓

LEARN [16] ✗ ✓ ✗ ✓ ✗ ✗ ✓

MAMS [20] ✓ ✓ ✓ ✓ ✗ ✗ ✓

ROS-A [18] ✓ ✓ ✗ ✓ ✗ ✓ ✓

RV4JaCa [28] ✓ ✓ ✗ ✓ ✗ ✓ ✓

SUMO-RL [1] ✓ ✓ ✓ ✓ ✓ ✗ ✓

Total: 27 26 ✓ 0(✓) 1 ✗ 26 ✓ 0(✓) 1 ✗ 8 ✓ 2(✓) 17 ✗ 25 ✓ 1(✓) 1 ✗ 8 ✓ 3(✓) 16 ✗ 20 ✓ 0(✓) 7 ✗ 27 ✓ 0(✓) 0 ✗

– Tested : This feature denotes whether the tool has been tested by the devel-
opers. This step may consist in systematic, or manual, tests. Note that, as
clarified in the next point, being tested does not imply the tests are available
to the community (through a test suite).

– Test Suites: This feature is about the availability of tests, or at least informa-
tion regarding inputs and expected outputs, so that tests can be re-created.
Test suites that can be downloaded along with the tool can be used, for exam-
ple, for regression testing, or to validate tools for automatic test generation.

– Original Link : In this column we report if a link to the code (source or
compiled, stored on a public repository on online so that it is downloadable)
was already present in the principal papers (as indicated by the author who
created the entry in our repository) or not.

– Source Code: All the entries collected on our repository link to a downloadable
version of the tool, but the availability of the source code is optional. The
source code of the tool, with an open licence to reuse it, makes it simply to
be reused by other researchers both for extending, both for other activities,
like for example static analysis

For each feature, we report ✓ (resp., ✗) when a tool offers (resp., does not
offer) such a feature. Moreover, in case the feature is partially supported, the
symbol (✓) is used. For instance, considering the documentation feature, the

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 245

symbol (✓) is reported if the tool offers some documentation, but, the latter
is minimal. The last row of the table reports the count of ✓, (✓) and ✗, so
that the reader can simply have an overview of the results. Please note that 1)
Table 1 is a screenshot of the state of the shared repositories at the end of June
2023 (so, information may become out of date if they are updated), and 2) that
the information reported is both coming from the data directly inserted by the
submitters and from a check done by the authors for what regards above all the
Test Suites: anyway, we contacted again who participated to check this table
before publishing it. It is important to clarify that the authors did not tried to
install the tools, they only read the documentation and had a look inside the
repositories, to better understand for example if a form of test suites existed or
not, so that to provide in Table 1 an homogeneous analysis of the collected data.

Also note that, in Table 1, MatchU [30] is not reported since it is a web
service: none of the previously listed features is offered. For a different reason,
as mentioned previously, also MAPF is not reported in Table 1; indeed, MAPF
is not a framework, but a collection of frameworks. Thus, a comparison w.r.t.
the features of interest would have been unnatural.

Considering the column Source, clearly there is a general positive propensity
to share the source code, which makes these tools usable for further exten-
sions or analysis. Anyway, as shown in column Linked, the source code was not
always originally shared with the paper presenting the work (even in important
venues like AAMAS or international journals), but was made public in a second
moment13. This shows that the sharing of the tool itself with the paper is not
yet so widely adopted by the community. Nevertheless, the shared software is
usually well documented.

An interesting result from the analysis is that quite all the shared tools (all
but one) present a form of versioning, that allow users to access previous versions
and commits: this may be of interest for those working with software evolution.

A clear problematic aspect is the one related to the management of bugs and
issues, and the usage and sharing of test suites: only eleven tools reported some
information related to the availability of a test suite or something similar, and
only ten tools (interestingly, not all the same reporting information regarding
test suites) refer to a bug/issue tracker (or something related to this aspect).
This is anyway not surprising: the management of bugs and issues is a complex
task, usually requesting the support of specific tools, some dedicated resource
(tester) or at least time. If the project is not yet very large, does not have a
large community interested in it and supporting it, or is primarily academic, the
burden requested for managing such aspects may be not manageable. Unfortu-
nately, not having a list of known bugs/issues, associated with a specific version
of a tool, makes the SE operations like automatic test generation or self healing
hard to be performed (in the sense that, if we miss the bugs history it is impos-
sible to verify if the new technique is able to identify known bugs, which would
be the ground truth), or not really effective.

13 To answer the call for creating the “Fantastic MASs” repository, or simply in a
different moment from the publication.

246 D. Briola et al.

Furthermore, the reality gap between frameworks, and their possible real-
world uses, can also be observed in the answers we obtained. Specifically, for each
framework, we asked about existing real-world uses. By doing so, we observed
that the majority of frameworks do not have (to the best of their creators’ knowl-
edge) any real-world application; indeed, the majority of the collected frame-
works are mainly used in academia. Nonetheless, some frameworks reported
existing real-world applications, such as Jade, ASC2 [47], that has been used by
the TNO Netherlands Asser Institute14, or DALI [22], that has been used by a
company15.

Last but not least, we only received 4 submissions (on a total of 33) regarding
real MASs, which were unexpectedly few with respect to our expectations: surely
it could be only a case, and maybe considering a longer time to collect submis-
sions this proportion could change, or we could have not be effective in reaching
all the community, but the initial feeling is that the community prefers sharing
frameworks and extensions instead of MASs. This could be due to the fact that
often a MAS itself (or a system) is seen not as a research result, but more as a
way to exemplify some new tool/approach etc. Even if this thought may have
some true aspects (considering the academic area and our community, where an
important focus is given to new languages, models, architectures and so on, so,
some more theoretic results), this mindset leads to not giving sometime the cor-
rect importance to the produced software itself (and this is related to the often
missing link to the code too, discussed previously). Another motivation could
be related to the “foreseen time to live” of a MAS: if a framework/extension
could be ideally born after many months/years of research and would remain
the subject of future research, so involving many people in a long lifespan, the
development of a MAS may be a work that is self contained (it is developed when
it is needed, to solve a specific problem, and then it is done), and its developers
may also be no longer available in future time. For this reason, sharing it (and
consequently maintaining it a little) may be itself a demanding task, not per-
ceived providing a valuable “return of investment”. Anyway, we hope that this
initiative supports a change in the mindset, since as said in the introduction,
the unavailability of real MASs prevent from performing unbiased activities of
V&V.

5 Conclusions and Future Work

In this paper, we reported the results obtained by asking the agent community
about existing frameworks for developing MASs, their extensions (libraries, add
ons and similar), and MASs, with the aim of creating a public repository of
them to be shared, similarly to some initiatives from the Software Engineer-
ing community (for example the “Self-Adaptive Systems Artifacts and Model
Problems” repository16): the overall aim of our initiative is to promote the shar-
14 https://www.asser.nl.
15 SPEE Srl (https://www.spee.it).
16 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/.

https://www.asser.nl
https://www.spee.it
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 247

ing of research results and to support the SE activities needing MAS models,
frameworks and extensions to be performed. We presented our selection pro-
cess, and we briefly summarised each collected work till now. The outcome of
this work is a publicly available repository, where all the collected works can
be easily accessed. Other than serving as a common place for retrieving agent-
based frameworks, their extensions, and MAS models, the repository serves as
a milestone to keep track of relevant engineering information. This last aspect
is going to be important to maintain a historical memory on agent technologies,
and their engineering.

Future work includes maintaining and improving the “Fantastic MASs”
repository: for example, as emerged by the analysis of the submissions, it could
be better to add a new category regarding V&V. During the discussion at
EMAS2317, where these first results were presented, some other interesting sug-
gestions to improve the collected data were: 1) to collect scenarios as well, so
that to provide common complex scenarios to be implemented to show (and com-
pare) different approaches/languages/tools, 2) to let the submitters classify their
MAS models for example as “Little/Medium/Large”, 3) to promote the shar-
ing of open source code following some already existing guidelines (an example
may be https://opensource.guide/). All these suggestions are interesting and
could help in improving the collected data, and we will carefully evaluate how
to integrate them, if possible, in our web form and website.

Also, we plan to add an interface for querying and ordering the results, to
facilitate the usage of the repository.

Moreover, to keep track of new developments, and existing ones that did not
yet participate in our call, we are going to let researchers propose new entries in
the repository, keeping the form to submit new entries always available on the
website of the repository. We also hope that sharing these first results with the
community will help in getting new submissions. This will allow the repository
to remain updated, and to properly resemble the current agent-based technology
ecosystem.

As a final activity, the already mentioned European AI-on-demand (AIOD)
platform, https://www.ai4europe.eu/, seeks to bring together the AI community
and act as facilitator of knowledge transfer from research to multiple business
domains. Making the results of the “Fantastic MAS” initiative available on that
platform, or just linked from there, would make them more visible and more
useful, also outside the Engineering MAS community.

Acknowledgements. We thank Olivier Boissier, Rafael Heitor Bordini, Jomi Fred
Hübner, and Giuseppe Vizzari for the precious feedback they provided while designing
the “Fantastic MAS” submission form, and all the contributors.

17 https://emas.in.tu-clausthal.de/2023/.

https://opensource.guide/
https://www.ai4europe.eu/
https://emas.in.tu-clausthal.de/2023/

248 D. Briola et al.

References

1. Alegre, L.N.: SUMO-RL (2019). https://github.com/LucasAlegre/sumo-rl
2. Ancona, D., Franceschini, L., Ferrando, A., Mascardi, V.: RML: theory and practice

of a domain specific language for runtime verification. Sci. Comput. Program. 205,
102610 (2021). https://doi.org/10.1016/j.scico.2021.102610

3. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Distributing
responsibilities for exception handling in JaCaMo. In: Dignum, F., Lomuscio,
A., Endriss, U., Nowé, A. (eds.) AAMAS ’21: 20th International Conference on
Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, 3–7
May 2021, pp. 1752–1754. ACM (2021). https://doi.org/10.5555/3463952.3464226,
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf

4. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Commitment-based agent
interaction in JaCaMo+. Fundam. Inform. 159(1-2), 1–33 (2018). https://doi.org/
10.3233/FI-2018-1656

5. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Robustness based on account-
ability in multiagent organizations. In: Dignum, F., Lomuscio, A., Endriss, U.,
Nowé, A. (eds.) AAMAS ’21: 20th International Conference on Autonomous Agents
and Multiagent Systems, Virtual Event, United Kingdom, 3–7 May 2021, pp.
142–150. ACM (2021). https://doi.org/10.5555/3463952.3463975, https://www.
ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf

6. Bandini, S., Briola, D., Dennunzio, A., Gasparini, F., Giltri, M., Vizzari, G.: Inte-
grating the implications of distance-based affective states in cellular automata
pedestrian simulation. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Had-
dad, M. (eds.) Cellular Automata. ACRI 2022. LNCS, vol. 13402, pp. 259–270.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14926-9 23

7. Beauprez, E., Caron, A., Morge, M., Routier, J.: A multi-agent negotiation strat-
egy for reducing the flowtime. In: Rocha, A.P., Steels, L., van den Herik, H.J. (eds.)
Proceedings of the 13th International Conference on Agents and Artificial Intel-
ligence, ICAART 2021, vol. 1, Online Streaming, 4–6 February 2021, pp. 58–68.
SCITEPRESS (2021). https://doi.org/10.5220/0010226000580068

8. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: a software framework for
developing multi-agent applications. lessons learned. Inf. Softw. Technol. 50(1–2),
10–21 (2008). https://doi.org/10.1016/j.infsof.2007.10.008

9. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Softw. Pract. Exp. 31(2), 103–128 (2001).
https://doi.org/10.1002/1097-024X(200102)31:2〈103::AID-SPE358〉3.0.CO;2-O

10. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-
based software development with JADE. Auton. Agents Multi Agent Syst. 34(2),
36 (2020). https://doi.org/10.1007/s10458-020-09460-z

11. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Koster, J.D., Bergenti, F., Franco, J. (eds.) Proceedings
of the 8th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE!@SPLASH 2018, Boston, MA,
USA, 5 November 2018, pp. 62–71. ACM (2018). https://doi.org/10.1145/3281366.
3281367

12. Boero, R., Morini, M., Sonnessa, M., Terna, P., Terna, P.: Introducing the swarm-
like agent protocol in python (SLAPP). Agent-based Model. Econ. Theor. Appl.
31–54 (2015). https://doi.org/10.1057/9781137339812 3

https://github.com/LucasAlegre/sumo-rl
https://doi.org/10.1016/j.scico.2021.102610
https://doi.org/10.5555/3463952.3464226
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf
https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.3233/FI-2018-1656
https://doi.org/10.5555/3463952.3463975
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf
https://doi.org/10.1007/978-3-031-14926-9_23
https://doi.org/10.5220/0010226000580068
https://doi.org/10.1016/j.infsof.2007.10.008
https://doi.org/10.1002/1097-024X(200102)31:2<103::AID-SPE358>3.0.CO;2-O
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1145/3281366.3281367
https://doi.org/10.1145/3281366.3281367
https://doi.org/10.1057/9781137339812_3

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 249

13. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-Agent Oriented Program-
ming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robotics and
Autonomous Agents series, MIT Press, Cambridge (2020). https://books.google.
com.br/books?id=GM tDwAAQBAJ

14. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

15. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Hoboken (2007)

16. Briola, D., Micucci, D., Mariani, L.: A platform for P2P agent-based collaborative
applications. Softw. Pract. Exp. 49(3), 549–558 (2019). https://doi.org/10.1002/
spe.2657

17. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Comput. 10(2), 16 (2021). https://doi.org/10.3390/computers10020016

18. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for program-
ming verifiable autonomous agents in ROS. In: Bassiliades, N., Chalkiadakis, G.,
de Jonge, D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 191–205.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66412-1 13

19. de Castro, L., Borges, A.P., Alves, G.V., Grossa, C.P.: Developing a smart parking
solution based on a holonic multiagent system using JaCaMo framework. In: Pro-
ceedings of the 12th Workshop-School on Agents, Environments, and Applications,
Fortaleza-CE, Brazil (2018)

20. Collier, R.W., O’Neill, E., Lillis, D., O’Hare, G.M.P.: MAMS: multi-agent microser-
vices*. In: Amer-Yahia, S., et al. (eds.) Companion of The 2019 World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, 13–17 May 2019, pp. 655–662.
ACM (2019). https://doi.org/10.1145/3308560.3316509

21. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with AgentS-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8 22

22. Costantini, S., Tocchio, A., Verticchio, A.: Communication and trust in the DALI
logic programming agent-oriented language. Intelligenza Artificiale 2(1), 39–46
(2005)

23. Dennis, L.A.: The MCAPL framework including the agent infrastructure layer an
agent java pathfinder. J. Open Source Softw. 3(24), 617 (2018). https://doi.org/
10.21105/joss.00617

24. Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Practical verification
of decision-making in agent-based autonomous systems. Autom. Softw. Eng. 23(3),
305–359 (2016). https://doi.org/10.1007/s10515-014-0168-9

25. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012). https://doi.org/
10.1007/s10515-011-0088-x

26. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak(l)-style programming
languages. In: Boix, E.G., Haller, P., Ricci, A., Varela, C.A. (eds.) Proceedings
of the 4th International Workshop on Programming based on Actors Agents &
Decentralized Control, AGERE! 2014, Portland, OR, USA, 20 October 2014, pp.
109–120. ACM (2014). https://doi.org/10.1145/2687357.2687362

27. Durfee, E.H., Garrett, L.H., Johnson, A.: Promoting independence with a schedule
management assistant that anticipates disruptions. J. Heal. Inform. Res. 4(1), 19–
49 (2020). https://doi.org/10.1007/s41666-019-00060-5

https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://books.google.com.br/books?id=GM_tDwAAQBAJ
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1002/spe.2657
https://doi.org/10.1002/spe.2657
https://doi.org/10.3390/computers10020016
https://doi.org/10.1007/978-3-030-66412-1_13
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.21105/joss.00617
https://doi.org/10.21105/joss.00617
https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1145/2687357.2687362
https://doi.org/10.1007/s41666-019-00060-5

250 D. Briola et al.

28. Engelmann, D.C., Ferrando, A., Panisson, A.R., Ancona, D., Bordini, R.H., Mas-
cardi, V.: RV4JaCa - runtime verification for multi-agent systems. In: Cardoso,
R.C., Ferrando, A., Papacchini, F., Askarpour, M., Dennis, L.A. (eds.) Proceedings
of the Second Workshop on Agents and Robots for reliable Engineered Autonomy,
AREA@IJCAI-ECAI 2022, Vienna, Austria, 24th July 2022. EPTCS, vol. 362, pp.
23–36 (2022). https://doi.org/10.4204/EPTCS.362.5

29. Ferrando, A., Papacchini, F.: StreamB: a declarative language for automatically
processing data streams in abstract environments for agent platforms. In: Alechina,
N., Baldoni, M., Logan, B. (eds.) Engineering Multi-Agent Systems. EMAS 2021.
LNCS, vol. 13190, pp. 114–136. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-97457-2 7

30. Ferris, J., Hosseini, H.: MatchU: an interactive matching platform. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, 7–12 February 2020, pp. 13606–13607. AAAI Press (2020).
https://ojs.aaai.org/index.php/AAAI/article/view/7090

31. Giltri, M., Bandini, S., Gasparini, F., Briola, D.: Furthering an agent-based mod-
eling approach introducing affective states based on real data. In: Bazzan, A.L.C.,
Dusparic, I., Lujak, M., Vizzari, G. (eds.) Twelfth International Workshop on
Agents in Traffic and Transportation Co-located with the the 31st International
Joint Conference on Artificial Intelligence and the 25th European Conference on
Artificial Intelligence (IJCAI-ECAI 2022), Vienna, Austria, 25 July 2022. CEUR
Workshop Proceedings, vol. 3173, pp. 124–136. CEUR-WS.org (2022). http://ceur-
ws.org/Vol-3173/9.pdf

32. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: a tool for temporal
equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 551–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 35

33. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.J.: Automated temporal equi-
librium analysis: Verification and synthesis of multi-player games. Artif. Intell.
287, 103353 (2020). https://doi.org/10.1016/j.artint.2020.103353

34. Howden, N., Rönnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents - sum-
mary of an agent infrastructure. In: Proceedings of the 5th ACM International
Conference on Autonomous Agents (2001)

35. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the moise+ model: programming issues at the system and agent levels. Int.
J. Agent Oriented Softw. Eng. 1(3/4), 370–395 (2007). https://doi.org/10.1504/
IJAOSE.2007.016266

36. Kampik, T., Nieves, J.C.: JS-son - a lean, extensible JavaScript agent programming
library. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS
(LNAI), vol. 12058, pp. 215–234. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51417-4 11

37. Kurpiewski, D., Mikulski, L., Jamroga, W.: STV+AGR: towards verification of
strategic ability using assume-guarantee reasoning. In: Aydogan, R., Criado, N.,
Lang, J., Sanchez-Anguix, V., Serramia, M. (eds.) PRIMA 2022: Principles and
Practice of Multi-Agent Systems. PRIMA 2022. LNCS, vol. 13753, pp. 691–696.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21203-1 47

38. Kurpiewski, D., Pazderski, W., Jamroga, W., Kim, Y.: STV+reductions: towards
practical verification of strategic ability using model reductions. In: Dignum, F.,

https://doi.org/10.4204/EPTCS.362.5
https://doi.org/10.1007/978-3-030-97457-2_7
https://doi.org/10.1007/978-3-030-97457-2_7
https://ojs.aaai.org/index.php/AAAI/article/view/7090
http://ceur-ws.org/Vol-3173/9.pdf
http://ceur-ws.org/Vol-3173/9.pdf
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1016/j.artint.2020.103353
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1007/978-3-030-51417-4_11
https://doi.org/10.1007/978-3-030-51417-4_11
https://doi.org/10.1007/978-3-031-21203-1_47

Fantastic MASs and Where to Find Them: First Results and Lesson Learned 251

Lomuscio, A., Endriss, U., Nowé, A. (eds.) AAMAS ’21: 20th International Con-
ference on Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, 3–7 May 2021, pp. 1770–1772. ACM (2021). https://doi.org/10.5555/
3463952.3464232, https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1770.
pdf

39. Mascardi, V., Weyns, D., Ricci, A.: Engineering multi-agent systems: state of
affairs and the road ahead. ACM SIGSOFT Softw. Eng. Notes 44(1), 18–28 (2019).
https://doi.org/10.1145/3310013.3310035

40. Mazzoli, M., Morini, M., Terna, P.: Rethinking Macroeconomics with Endogenous
Market Structure. Cambridge University Press, Cambridge (2019)

41. Melo, L.S., Sampaio, R.F., Leão, R.P.S., Barroso, G.C., Bezerra, J.R.: Python-
based multi-agent platform for application on power grids. Int. Trans. Electr.
Energy Syst. 29(6), e12012 (2019)

42. Minar, N., Burkhart, R., Langton, C., Askenazi, M., et al.: The swarm simulation
system: a toolkit for building multi-agent simulations. Santa Fe Institute Working
Paper (1996)

43. Müller, J.P., Fischer, K.: Application Impact of Multi-agent Systems and Tech-
nologies: A Survey, pp. 27–53. Springer, Berlin, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54432-3 3

44. Nilsson, N.J.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1,
139–158 (1994). https://doi.org/10.1613/jair.30

45. Ombuki, B.M., Burguillo, J.C.: Self-organizing coalitions for managing complexity.
Genet. Program. Evolvable Mach. 21(1–2), 263–264 (2020). https://doi.org/10.
1007/s10710-019-09372-2

46. Parizi, M.M., Sileno, G., van Engers, T.M.: Seamless integration and testing for
MAS engineering. In: Alechina, N., Baldoni, M., Logan, B. (eds.) Engineering
Multi-Agent Systems. EMAS 2021. LNCS, vol. 13190, pp. 254–272. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-97457-2 15

47. Parizi, M.M., Sileno, G., van Engers, T.M., Klous, S.: Run, agent, run! Architecture
and benchmarking of actor-based agents. In: Castegren, E., Koster, J.D., Schmidt,
T.C. (eds.) AGERE 2020: Proceedings of the 10th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
Virtual Event, USA, 17 November 2020, pp. 11–20. ACM (2020). https://doi.org/
10.1145/3427760.3428339

48. Pigazzini, I., Briola, D., Fontana, F.A.: Architectural technical debt of multi-agent
systems development platforms. In: Calegari, R., Ciatto, G., Denti, E., Omicini,
A., Sartor, G. (eds.) Proceedings of the 22nd Workshop From Objects to Agents,
Bologna, Italy, 1–3 September 2021. CEUR Workshop Proceedings, vol. 2963, pp.
1–13. CEUR-WS.org (2021). http://ceur-ws.org/Vol-2963/paper13.pdf

49. Quigley, M., et al.: ROS: an open-source robot operating system. In: Workshop on
Open Source Software at the International Conference on Robotics and Automa-
tion. IEEE, Japan (2009)

50. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

51. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

https://doi.org/10.5555/3463952.3464232
https://doi.org/10.5555/3463952.3464232
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1770.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1770.pdf
https://doi.org/10.1145/3310013.3310035
https://doi.org/10.1007/978-3-642-54432-3_3
https://doi.org/10.1007/978-3-642-54432-3_3
https://doi.org/10.1613/jair.30
https://doi.org/10.1007/s10710-019-09372-2
https://doi.org/10.1007/s10710-019-09372-2
https://doi.org/10.1007/978-3-030-97457-2_15
https://doi.org/10.1145/3427760.3428339
https://doi.org/10.1145/3427760.3428339
http://ceur-ws.org/Vol-2963/paper13.pdf
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8

252 D. Briola et al.

52. Christie V, S.H., Chopra, A.K., Singh, M.P.: Bungie: improving fault tolerance via
extensible application-level protocols. Computer 54(5), 44–53 (2021). https://doi.
org/10.1109/MC.2021.3052147

53. Christie V, S.H., Chopra, A.K., Singh, M.P.: Deserv: decentralized serverless com-
puting. In: Chang, C.K., et al. (eds.) 2021 IEEE International Conference on Web
Services, ICWS 2021, Chicago, IL, USA, 5–10 September 2021, pp. 51–60. IEEE
(2021). https://doi.org/10.1109/ICWS53863.2021.00020

54. Christie V, S.H., Chopra, A.K., Singh, M.P.: Hercule: representing and reason-
ing about norms as a foundation for declarative contracts over blockchain. IEEE
Internet Comput. 25(4), 67–75 (2021). https://doi.org/10.1109/MIC.2021.3080982

55. Christie V, S.H., Chopra, A.K., Singh, M.P.: Mandrake: multiagent systems as
a basis for programming fault-tolerant decentralized applications. Auton. Agents
Multi Agent Syst. 36(1), 16 (2022). https://doi.org/10.1007/s10458-021-09540-8

56. Christie V, S.H., Smirnova, D., Chopra, A.K., Singh, M.P.: Protocols over things:
a decentralized programming model for the internet of things. Computer 53(12),
60–68 (2020). https://doi.org/10.1109/MC.2020.3023887

57. Vidali, A., Crociani, L., Vizzari, G., Bandini, S.: A deep reinforcement learn-
ing approach to adaptive traffic lights management. In: Bergenti, F., Monica, S.
(eds.) Proceedings of the 20th Workshop From Objects to Agents, Parma, Italy,
26th–28th June 2019. CEUR Workshop Proceedings, vol. 2404, pp. 42–50. CEUR-
WS.org (2019). http://ceur-ws.org/Vol-2404/paper07.pdf

https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/ICWS53863.2021.00020
https://doi.org/10.1109/MIC.2021.3080982
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/MC.2020.3023887
http://ceur-ws.org/Vol-2404/paper07.pdf

The Entity-Operation Model for Practical
Multi-entity Deployment

Andrei Olaru(B) , Gabriel Nicolae, and Adina Magda Florea

Department of Computer Science and Engineering, University Politehnica of
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania

{andrei.olaru,adina.florea}@upb.ro, gabriel.nicolae2907@stud.acs.upb.ro

Abstract. In the world of multi-agent system (MAS) frameworks, devel-
opers are many times forced into a fixed and reduced array of abstrac-
tions, with limited options in expressive modeling of all the components
of a MAS. For instance, in JADE, the most popular agent framework,
developers are limited to using agents as sole abstraction for all elements
of the MAS. These limitations hinder interoperability, the deployment of
open, heterogeneous systems, and the use of agents in complex scenarios
involving a great variety of elements such as physical devices, context
managers, services, and communication infrastructures.

We introduce the entity-operation model for multi-agent systems, as
an approach to integrate all elements in the MAS deployment as first-
class entities in the MAS model, to support heterogeneity and flexibility
in the implementation, and to achieve context-aware access control to
the functionalities offered by entities.

We present a formalization of the model, together with mechanisms
for authorizing operations and for routing operation calls in the MAS.
We discuss the entity-operation model in relation to other existing MAS
frameworks, and we give insight into implementation challenges which
arose when integrating the model with the Flash-mas framework.

Keywords: Multi-agent systems · Multi-agent frameworks ·
Communication infrastructure interoperability

1 Introduction

Agents and multi-agent systems (MAS) are used in a great variety of domains,
including cloud computing, networks security and routing, social networks, robo-
tics, the Internet of Things (IoT), Ambient Assisted Living (AAL), smart cities,
smart grids, and complex systems modeling and simulation [1,6,8].

This work was supported by a grant of the Ministry of Research, Innovation and
Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1422, within
PNCDI III. This work has been partially funded by UEFISCDI project Cornet (1/2018,
PN-III-P3-3.6-H2020-2016-0120).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 253–270, 2023.
https://doi.org/10.1007/978-3-031-48539-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_17&domain=pdf
http://orcid.org/0000-0002-2718-9195
http://orcid.org/0000-0001-7249-1871
https://doi.org/10.1007/978-3-031-48539-8_17

254 A. Olaru et al.

Fig. 1. A view on the layers existing in a MAS framework. Agent-oriented abstractions
are entities accessible by the developer, such as agents, artifacts, and nodes.

A MAS framework is meant to save the developer from the task of implement-
ing several functionalities such as inter-agent communication, resource discovery,
agent mobility, internal agent event processing and internal agent organization,
as well as deployment, control and monitoring of agents.

There are several frameworks which facilitate the design, modeling, and simu-
lation or deployment of MAS [6,19]. Among them there are Jade, SPADE, JIAC,
JACK, JaCaMo, PLACE, FLAME, MASON, Repast, of which some allow the
deployment on distributed networks of devices, whereas others (such as the last
three) are Agent-Based Modeling Simulation (ABMS) platforms, which enable
high-performance simulation of large numbers of agents on a single machine or
on a computing cluster. Some frameworks, such as SARL and MET4FoF [9,23],
support both high-performance local simulation and distributed deployment.

A MAS framework normally offers to the developer an API that allows the
creation and management of various agent-oriented abstractions (such as nodes,
agents, artifacts), the definition of various aspects of the environment (such as
a physical space, tools agents can use, services available), as well as the inter-
action between all those elements. For instance, Jade [3] offers agents as sole
abstraction for the persistent components in a MAS agentification, with contain-
ers available as references to the nodes in the deployment. JaCaMo implements
the Agent & Artifacts (A&A) model and offers artifacts as abstractions for any
aspect of the environment [22]. ABMS frameworks generally split the modeling
between event-driven agents and a space-based environment model.

In terms of the infrastructure for communication and services, it is fixed in
most frameworks, some, such as SARL and JaCaMo, offering the choice between
local and network-distributed message or event routing. Figure 1 shows a per-
spective on the layers of a MAS framework: the MAS application is built on
top of agent-oriented abstractions offered by the framework, and potentially
an agent-oriented programming language (e.g., Jason or SARL); the framework
deals with the management of entities and with the interaction between entities.

This approach has some important limitations. First, any new type of entity
that the developer may need to model must be built on top of the abstractions

The Entity-Operation Model 255

offered by the framework, adding complexity and leading to two levels of mod-
eling: the agent-oriented model of the framework and the agent-oriented model
of the application. For instance, if the developer of a distributed AOP applica-
tion implemented in Jade wishes to model artifacts, artifacts would have to be
implemented as agents, leading to having “agent” agents and “artifact” agents.
The alternatives are either to use JaCaMo, forcing the developer to use Jason
for agents, or to interoperate CArtAgO with Jade, which brings a different
framework into the mix. Similarly, in JaCaMo, organizations are managed via
artifacts, such that an organization is not a first-class entity in itself. Other enti-
ties may be needed, such as context managers – entities managing an activity or
a smart space – which need to perform some proactive actions, such as sending
notifications or checking for overlaps, but do not have mental states, making
them different from both agents and artifacts.

The second limitation relates to communication infrastructures in distributed
network deployments, which are also related to discovery of resources. Most
frameworks have the communication infrastructure fixed, and it is impractical to
change it. In a complex distributed deployment, using different communication
infrastructures in different parts of the system brings challenges in modeling
and forces the developer into creating multiple models for multiple frameworks,
incurring overhead in interoperating them.

In this paper we introduce a model for the entity management and interac-
tion routing layer of a multi-agent system framework, which relies on a uniform
representation of entities and their operations. We call it the entity-operation
model. In this model, any persistent component in the multi-agent system is
modeled, at the most basic level, as an entity, and any of its functionality is
accessible, at the most basic level, as an operation, which can have arguments
and restrictions. The entity-operation model lives below the abstractions which
are offered to the developer, as a uniform technical foundation, but it is accessi-
ble if desired. The model only specifies how entities can be accessed from outside,
leaving total freedom for their internal implementation.

This way, the model of the MAS can contain, as first-class entities, not only
agents, artifacts, or organizations, but also communication infrastructures, direc-
tory services, context managers, entities at the sub-agent level (components of
agents, such as behaviors), and any other type of entity the developer may need.
All of these would be accessible to other entities by means of a uniform underly-
ing interface, while allowing each type of entity its own set of specific operations.
By using a uniform approach to model any entity, a deployed system can wel-
come, at runtime, new entities of new types.

Abstractions that make up existing agent-oriented models can be imple-
mented directly on top of the entity-operation model, which is very thin. For
instance, instead of implementing organizations via artifacts (as in JaCaMo), an
organization can be implemented directly as an entity in its own right, poten-
tially distributed over several nodes. A developer using an agent framework can
use “traditional” entity types and interactions (e.g., agents, artifacts, etc) with-
out needing to know about entities and operations, but also has the possibility

256 A. Olaru et al.

to create new types of entities, to access other entities via operation calls, and
to use the full capabilities of any of the entities in the framework. The entity-
operation model is interoperable with other agent-oriented models but supports
a flexible approach to the underlying model of individual entities.

A natural addition to the entity-operation model was a means to control
the access to operations. We have created a context-based access model, where
access is authorized to entities having specific relations to other, known, entities.

We have successfully implemented the entity-operation model in Flash-mas1
[17], reusing existing blocks and models and implementing a scenario demon-
strating how the entity-operation model can be used for context-based access to
elements in a smart environment.

We have devised an ambient intelligence scenario which we will use through-
out the paper, in which a person interacts with entities in a smart building:
Andreea is a master student at the Department of Computer Science and Engi-
neering, also working as a teaching assistant for undergraduate students. It’s the
middle of January and Andreea is going to teach an Operating Systems lecture
on a Monday morning in the new smart building in the campus. To reduce the
energy bill, the heating is turned off over the weekend and it must be started by
an authorized person when needed. Andreea lives quite far from the university,
and it takes her about an hour to get there. Before leaving her home, she uses the
mobile app to check the temperature of the classroom and she remotely turns
on the heating. When she arrives in the building, she uses her smartphone to
unlock the door to the lecture room and to turn on the lights. As master student,
Andreea has a cloud computing class in another room in the same building later
on. She has a desk in Room 308 so she prints some notes using the printer there
and then goes to her class. This time as a student, she won’t be able to perform
the same actions as before – she can temporarily receive control of the projector
in the room, but she will not be able to unlock the room.

A second use-case that we address is a platform in which agents are able
to exchange pre-trained machine learning (ML) models, evaluate or train them
further, and exchange information about their experiences. In this scenario, ML
models and their descriptions are first-class abstractions, and act as sub-agent
entities that agents can use in their activity and that agents can send or receive.
They have a reactive aspect – answering to queries – but also a pro-active (but
not autonomous) aspect, as they can report on the status of their training process
or report problems with their functionality.

The paper is organized as follows. In the next section we discuss existing
frameworks and models for distributed multi-agent systems. After the presen-
tation of the model in Sect. 3 and implementation challenges in Sect. 4, we dis-
cuss the advantages and appropriateness of using the entity-operation model for
multi-agent frameworks in Sect. 5. The last section draws the conclusions.

1 The Fast and Lightweight Multi-Agent Shell. The source code is available at https://
github.com/andreiolaru-ro/FLASH-MAS.

https://github.com/andreiolaru-ro/FLASH-MAS
https://github.com/andreiolaru-ro/FLASH-MAS

The Entity-Operation Model 257

2 Related Work

Pal et al. [19] survey the current state of framework development, detailing both
the application domains of frameworks and their implementation language, as
well as their development status and distribution license. An important distinc-
tion is between open-source and commercial platforms. A related work lists only
16 projects as in-development general-purpose platforms, combining platforms
for distributed deployment, platforms for ABM simulation, and AOP languages.
Kravari and Bassiliades [14] survey the development status, license, adherence
to standards, ease of deployment, and security for several agent frameworks,
concluding that Jade remains the most popular framework. They observe that
when choosing a framework for deploying MAS, developers and researchers must
select and be limited by application domain, programming language, and learn-
ability. This is why our intention is to develop a more general, easy to use MAS
framework.

Agent-based simulation tools are surveyed by Abar [1], Rousset [24] and
Lorig [15]. The most popular and giving a high level of performance are the
Repast suite and D-MASON. Jade is shown to have very little applicability for
ABMS, because of the lack of support for synchronization and for HPC-specific
communication. More flexibility in the interaction model could have made Jade
a valid option for AMBS.

Cardoso and Ferrando [6] provide a fresh systematic literature review on AOP
languages, which are many times related to their respective frameworks. Most
languages are based on AgentSpeak [20] (ASTRA, Jason and related languages)
or on Jade.

Jade [3] is, by far, the most popular framework for distributed deployment of
multi-agent systems. It offers communication, directory and discovery services,
agent migration, and a specific, behavior-based structure for agents. In terms of
communication, it relies on TCP/IP by default, but other communication meth-
ods are available at deployment time, with agent code changes necessary [7].
Jade offers no abstraction other than the agents (potentially offering services),
with the framework also abstracted as standard agent instances. Nodes, commu-
nication services, and directory services are accessed in different manners – nodes
via direct methods, communication via methods in the agent, and directory ser-
vices via FIPA-ACL messages with specific content [10]. Many other frameworks
are based on or inspired by Jade and strive to be FIPA-compliant. Jadex [5]
adds support for BDI agent modeling. SPADE [13] is developed in Python and
uses XMPP/Jabber as a communication method, featuring a GUI for monitoring
agents, giving the advantage of easier interoperation with ML libraries. PADE
[16,26] is also implemented in Python and uses Twisted for communication,
hence supporting multiple protocols. JACOSO is a Jade-based implementation
of the ACOSO Methodology for the development of IoT systems [11]. Apart from
Smart Objects, which it agentifies as Jade agents, it builds additional abstrac-
tions for other elements in IoT scenarios, such as tasks (as sub-agent entities),
events, and a variety of managers and adapters whose properties do not fit in

258 A. Olaru et al.

Fig. 2. A view on the object-oriented class hierarchy in a scenario using the entity-
operation model. There are several layers of abstraction, with the most abstract at the
bottom. See also Sect. 3.2. Dotted borders are used for application-specific models and
entities defined by the MAS developer.

the agent model, showing the need to integrate new abstractions in the agent
framework without the need to create additional layers.

JaCaMo [4] is another popular MAS framework, which combines the Jason
AOP language, based on AgentSpeak and Prolog, with the CArtAgO implemen-
tation of the Agents & Artifacts (A&A) model for the environment, and with
the MOISE implementation for roles and organizations. JaCaMo rests on strong
theoretical foundations and can be deployed both locally and in Jade-based
distributed setups. The distinction made between agents and artifacts is very
strong, and their development paths diverge from modeling phase. Workspaces
exist as virtual entities spanning multiple nodes, but do not have an embodi-
ment with its own code. No new abstractions can be created in JaCaMo, without
basing them on existing entities. Initial steps have been taken towards making
JaCaMo BDI compatible with ABM simulation, via JaCaMo-SIM [21].

Janus [12] is a language-independent platform but targeted mainly at exe-
cuting the SARL [23] AOP language. It supports event-driven interaction, and
in deployments over a local computer network (via the Janusnode variant) it
broadcasts these events to all agents. While combining the A&A approach with
the distributed approach, it is not adequate for message-based applications, nor
does it offer services such as directory or service discovery.

Met4FoF [9] is a recent, in-development Python MAS framework oriented
towards streaming data from sensors. It offers specialized modules for stream
management, buffering, and redundancy. It offers only agents as abstractions for
persistent entities, with additional data- and stream-related abstractions.

3 The Entity-Operation Model

When implementing complex scenarios using an agent-based approach, a ques-
tion that is raised frequently is “what should this be modeled as? ”. This is some-
what related to the question that arises in an open system when a new entity

The Entity-Operation Model 259

is introduced and the other entities in the system ask questions like “what is
this? how should I interact with this? ”. When using a MAS framework, the set
of possible entity types is fixed to what the framework offers. New entity types
will have to be implemented via existing entity types.

A framework using the entity-operation model does not restrict the developer
in this way and allows the deployment of any type of entity as a first-class entity.
The framework itself is very thin – it only specifies an interaction model, with
all the rest being modules that can have various implementations.

Entities. The model that we propose posits that all persistent elements in a
MAS are represented as entities. The central principle is that entities are per-
sistent. Secondly, entities need, in general, to be accessible; as such, they expose
operations, which other entities may call ; not every operation is available to any
entity, as we will detail further on. Third, entities are autonomous, in that they
can decide how they react to operation calls. All entities should have a unique
identifier. In a complex deployment, although mechanisms for name shortening
and caching can be used, any entity should be uniquely identified by its URI.

Entities may be local to (running inside) a physical node, or may be dis-
tributed across multiple nodes. Distributed entities must have a local embodi-
ment on each node where they are present. For instance, in Jade, containers
are the embodiment of the Jade platform.

Our goal is to use this model to describe all elements in a running, deployed
MAS. That means that, beside agents and components representing aspects of
the environment, elements such as nodes and communication infrastructures
should also be implemented as entities; similarly, any interaction between enti-
ties, be it an interaction between two agents, but also an interaction between an
agent and a node, or an agent and an organization, should be performed via oper-
ations. Communication infrastructures are also accessed via operations, allowing
for more uniformity and for flexibility in the implementation of communication
mechanisms.

We do not model in any way the inside of entities. We look for interoperability
and mutual understanding, but an entity may work in various manners on the
inside. Of course, one has the possibility to model the inside of an entity using
other entities, as for instance some agents in Flash-mas are composed of shards,
which are also modeled as entities. Flash-mas offers an implementation for
composite agents, whose behavior is modeled by the shards that are added to
the agent [17].

Using entities does not mean we forfeit existing models based on agents or
on agents and artifacts. Rather, we offer a uniform underlying model (or meta-
model) that underpins the actual model used by the application. This brings
unity to the technical implementation of the entities and the opportunity to
easily switch between different approaches to modeling.

In our scenario, we model as user’s agent as an agent entity, the smart lock,
the smart light, the heating appliance, and the temperature sensor as artifacts,
and the entities managing the room and the two teaching activities as context
managers – non-autonomous agents with a more complex behavior.

260 A. Olaru et al.

Fig. 3. A perspective on the relations in the running scenario, at the moment when
Andreea teaches the undergraduate class on operating systems.

Operations. The model that we propose posits that any interaction between
two entities is performed via operations, with one entity calling an operation
of the other entity. Moreover, any interaction between a core element of the
framework and an entity should be performed via an operation of the entity.

Entities are expected to have a list operation, which returns a description
of all the operations available to any other entity. While this can, in the future,
be used to semantically search for an appropriate operation, it can currently be
used to duck type an entity, based on its available operations.

In keeping with the concepts in the A&A and web services models, operations
can also have return values, which are returned to the initiator of the operation
call.

In our scenario, the user’s agent can query the temperature sensor to find
the temperature in the room, can instruct the smart lock to unlock the room,
and can connect to a wireless projector. All of these, of course, if the user is
authorized to perform the operations. For instance, the print operation of the
printer in Room 308 may be available to people who are physically in the room,
or are in general residing in that room.

Relations. Access to operations can be restricted by using relations. Relations
link entities in a similar manner to semantic triples in RDF2. Relations can
express, for instance, that a certain device is in a particular room, or that a user
has a role in a particular activity, or that a service runs on a particular node.
Once initiated, relations must be accepted by entities at both ends, and can be
canceled by any of the two entities.

Relations can be used to restrict which entities are allowed to call a given
operation. For instance, a door for a room in a smart building can only be
unlocked by the personal agent of a user who is teaching the lecture taking place
in that room in that given interval.

In our example, relations describe the placement of devices, the location
of the user, and the role of the user in the current context. See Fig. 3 for a
2 Semantic triple https://en.wikipedia.org/wiki/Semantic_triple.

https://en.wikipedia.org/wiki/Semantic_triple

The Entity-Operation Model 261

perspective on the relations in the scenario, at the moment when Andreea teaches
the undergraduate class.

Context Tokens. An entity calling an operation which has restrictions must
prove that it indeed has the required relations to other entities. As such, we
introduce the idea of context tokens – tokens which are a proof of context. Each
token is a document containing the statement of a relationship, the timestamp
of the document, and an expiration time. To ensure authenticity, tokens can be
required by the callee to be cryptographically signed by an authorized entity
involved in the relationship.

An entity will receive context tokens periodically from other entities, proving
their relationship. As a caller of an operation, it will send, in the operation call,
all relevant tokens, proving that it is indeed authorized to call the operation. The
tokens must still be valid for successful authorization. The expiration period of
context tokens is related to the nature of the relation and is proportional to
the time a relation is expected to last. The quality of being employed by an
organization can be re-certified (by the emission of a context token) once every
month, whereas the property of being in a given room should be recertified
once every minute. It is the entity managing a given context that decides the
expiration period of context tokens.

For instance, in our scenario, there is a printer in Room 308. When a user
with a device enters the room, a relation is created by the local access point
between the user’s agent/device and the entity managing the room. While the
user remains in the room, the user’s agent receives, periodically, a context token
proving the relation. When the user wishes to call the print operation, the
user’s agent will know that the operation is restricted to users in the room, so
the operation call that is sent will also contain the most recent context token
proving that the user is in the room; the token is signed by the room manager.
The printer already has the public key of the room manager, since one of the
restrictions on one of the operations of the printer involves the room manager.
It can check the context token and approve the operation.

In the example with Andreea unlocking the door as a teacher, the smart
lock entity lists an operation unlock, with the restriction that the caller must
have the role current_teacher in the current room and at the current time. In
a different exchange, the entity managing the lecture informs the room who will
be teacher in the current time slot. The entity managing the room creates a
current_teacher relation with the agent of the user, periodically sending to the
user a context token proving the relation. When calling the unlock operation,
this context token will be included, and it will be verified by the smart lock.

3.1 Formalization Sketch

From an omniscient point of view, we define a fully modeled multi-entity system,
using the entity-operation model, as a tuple 〈EE ,RR〉, where EE is the set of
entities and RR is the set of relations. We have:

EE = {E | E = 〈IDE , OperationsE〉}

262 A. Olaru et al.

RR = {〈from, relation, to〉},with from, to ∈ EE

An operation O ∈ OperationsE , with E ∈ EE , is defined as:

O = 〈NameO,DescriptionO, ArgumentsO, ResultO, RestrictionsO〉
The tuple contains the name of the operation, its description, the descrip-

tion of the arguments, return value, and restrictions on the entities which may
call it. The description of the operation can have any form, but a semantic
description is more suitable. The description of the arguments is of the form
ArgumentsO = {〈Name,Description〉}. In the simplest implementation of the
model, the Description can be as simple as the type of the argument, and the
description of the result the type of the returned value.

The restrictions on an operation are defined as a logical operation on rela-
tions. Take, for example, the printer located in Room 308 in our running sce-
nario. It has one operation (print), which should be available to any entity E
in the same room (E ≺located Room308 , and to anyone who is a resident in that
room (E ≺resides Room308). So, for an entity E to be allowed to call the print
operation, it should be true that E ≺located Room308 ∨ E ≺resides Room308 .

The restrictions can be formalized as a disjunctive normal form on positive
literals, each literal representing a relation, but replacing the formula E ≺〈〉 E1
with the pair (≺〈〉, E1). That is, for an operation O:

RestrictionsO ⊆ {Conjunction | Conjunction ⊆ R × EE},with

R = {relation | 〈∗, relation, ∗〉 ∈ RR} − the set of all relation names

As such, the print operation has a restriction that looks like: {{(≺located,
Room308}, {(≺resides,Room308)}}

Of course, no single entity in a distributed system has an omniscient view on
all other entities (or else it would be a bottleneck and a single point of failure),
so, in practice, the system is formed of the set of entities EE , each entity keeping
track of its relation to other entities:

∀E ∈ EE . E = 〈IDE , OperationsE , OutgoingE , IncomingE〉,with

OutgoingE = {(relation,Eto) | 〈E, relation,Eto〉 ∈ RR}
IncomingE = {(relation,Efrom) | 〈Efrom, relation,E〉 ∈ RR}

An operation call is an object containing the caller, the callee, the name of
the operation, the arguments for the operation, relevant information about the
relations of the caller, and whether a return value should be sent back to the
caller (if the operation supports it):

call = 〈ESource, EDestination, NameOp, {Arguments}, {Tokens}, send -result〉
where ESource, EDestination ∈ EE , NameOp is an identifier for the operation,
Arguments are the argument values for the operation, send -result is a boolean
value, and Tokens are the context tokens.

The Entity-Operation Model 263

3.2 Predefined Entities and Relations

As stated in the Introduction, a developer does not need to create new types of
entities or to call operations directly. A layer of predefined entities may prove suf-
ficient for many MAS applications (see also Fig. 2). This has several advantages:
(1) a framework based on the entity-operation model can be used exactly like a
“normal”, existing framework; (2) given enough predefined entities, a framework
based on the entity-operation model can be used like any of the standard frame-
works; and (3) is needed, the developer can still define new types of entities or
new implementations of existing entities. Entities in existing MAS models can
be represented in the entity-operation model as follows.

An agent has a receive operation, which allows it to receive messages from
any other entity. The implementation of agents can define a send method which
constructs an operation call directed at another agent. In the A&A model, the
implementation can also contain methods for accessing artifacts and operations
to allow notifications from artifacts. As there are many approaches to what an
agent is, multiple “agent” entity types can be defined depending on the appli-
cation, each with its own set of operations, defining what an agent is in that
approach.

An artifact works just as in the A&A meta-model, exposing operations to
any entity in the appropriate workspace. Workspaces are distributed entities,
and entities are bound to workspaces by means of dedicated relations.

A pylon that is the embodiment of a communication infrastructure, can
receive route operation calls from any entity, and it can attempt to route the
operation call to its target entity, which may be on a different machine.

A pylon that offers directory and discovery services presents the register
and search operations.

A node offers a load&start operation to any entity which executes on the
node or which has authority over the node. Nodes supporting migration offer a
receive_agent operation which enables agents to migrate to that node.

Sub-agent entities, for instance shards in Flash-mas [17], must have a fast
two-way means of interaction with their container agent. As such, a shard must
offer a signal_agent_event operation to receive events from the agent, and an
agent supporting shards must offer a post_event operation to receive events
from its shards. The same mechanisms can be used to build holonic systems. In
a model similar to Jade, behaviors could also be modeled as sub-agent entities.

Machine learning models (pre-trained) can be represented as entities having
a get_result operation. As sub-agent entities, they can be sent from one agent
to another, they can be cloned, or they can migrate with an agent from one
node to another, using the same migration mechanism as agents. They can have
a pro-active aspect which allows them to notify other entities about the status
of the training process.

Entities are expected to have a list operation, which returns the names and
descriptions of operations available to other entities.

Any entity should offer a set of operations which allows it to interact easily
with the framework, while also abiding to the model. These operations – start,

264 A. Olaru et al.

Fig. 4. The path taken by an operation call between entities situated on different nodes.

stop, and isRunning, should only be available to entities authorized to control
that entity (e.g., the node on which the entity is executing, or the owner of the
entity).

4 Implementation Challenges and Results

We have implemented the entity-operation model in Flash-mas, a Java-based
framework which offers tools for the deployment of complex, distributed multi-
agent scenarios, in which the implementation of any entity is customizable. We
have re-written the core code of Flash-mas so that all entities use the entity-
operation model. As such, some challenges arose, and we will present in this
section how we solved them.

To abide to the entity-operation model, any object which represents an entity
must implement the EntityAPI interface, which specifies a minimal number of
methods:

– connectTools gives the entity a reference to the EntityTools instance which
will connect it to the framework. Using the EntityTools instance, the entity
can register (or obtain) and ID with the framework.

– getID returns the ID of the entity.
– handleIncomingOperationCall is called whenever an operation call is sent to

the entity. The method is called by the EntityTools instance associated with
the entity, which has previously checked if the operation is correctly accessed.

– handleRelationChange is called by the EntityTools instance whenever a rela-
tion involving this entity is created or destroyed.

While representing all persistent things in a MAS as entities, and since entities
can be implemented in any way by the developer, there is a need for something
to bind the entities together, help manage them, and ensure that operation
calls reach their intended destination. Hence, on any JVM where Flash-mas is
running there is a singleton object called FMAS, representing the framework. To
ensure correct encapsulation and to restrict access to powerful FMAS functionality
we take example from the internal implementation of Jade and create, for each
entity integrated into the system, an instance of the EntityTools class, which
helps entities interface with the framework. The EntityTools instance manages

The Entity-Operation Model 265

the list of the entity’s operations, the access to those operations, and the relations
incoming to or outgoing from the entity.

Entities interact via operation calls. There are, however, other types of inter-
actions, which are not direct interactions between entities, and cannot be rep-
resented as operation calls. These are: the return value sent as a result of an
operation call; the initiation or removal of a relation between two entities; and
the acceptance or rejection of a new relation between entities. All these interac-
tions have a destination and a source or a return path, so we can model them
collectively as a concept that we call wave.

Waves must be routed so that they reach their destination, sometimes across
the local network or the Internet. In keeping with the flexibility offered by
Flash-mas, there is no restriction on the communication method used, as long
as the communication infrastructure can deliver a wave to the node where a
destination entity is located. In line with the principles of the entity-operation
model, interaction infrastructures are embodied by pylons, which are also enti-
ties. Routing waves between pylons on the same node is handled by an entity
which is directly linked to the FMAS instance, called the Local Router.

To route a wave, the Local Router uses the following algorithm:

– if the destination is registered with the local FMAS instance, the wave is routed
directly to its destination (via the EntityTools instance associated with the
destination);

– otherwise, the list of local entities which offer the route operation is used to
look for an appropriate router;

– the wave is sent via the first of these entities that executes the route operation
successfully.

A detailed view of this process is shown in Fig. 4. While the wave passes through
several entities, the only decision points are in the Local Router instances, the
rest being only method calls. The advantage of this process is, however, that
routing waves can be done using no matter which communication infrastruc-
ture. Currently, Flash-mas has implementation for communication via Web-
Socket, RESTful web services, distributed region-based mesh, and ROS. Hav-
ing an implementation for entities which is agnostic to the communication
mechanism opens the path towards using the same codebase for performing
high-performance simulations and deploying entities in a distributed setup. In
Flash-mas we have already performed experiments with using MPI-based com-
munication.

In Flash-mas we have strived not only to have the ability to select the
communication infrastructure at deployment, and make agent (and, in general,
entity) code agnostic of the mechanism used for communication, but also to be
able to support the deployment and interoperation of multiple communication
infrastructures in the same system. This is also possible in the entity-operation
model. Following the principles in previous work [18,25], bridge entities can
offer the route operation, the same as pylons of communication infrastructures.
A bridge will register in two (or more) communication infrastructures and will

266 A. Olaru et al.

act in each one as a sink for the other(s), ensuring waves can travel between any
two nodes in a transparent manner for the other entities.

Some MAS frameworks, including Jade, support mobile agents, which can
migrate from one node to another. This poses a particularly difficult challenge
to the framework, as the agent needs to interrupt its activity, get serialized,
transferred to another node, deserialized, and resume execution. In Flash-mas,
entity mobility needs support from both inside and outside the entity. The entity
must ensure that it suspends its activity correctly, and serialization is also done
inside the entity. Once serialized, the entity sends the package as the argument
of an operation call to the destination node, which, if it supports migration,
deserializes the entity and registers it with the local FMAS instance, leaving to the
entity to resume its activity in the correct manner.

It is arguable that, when using cryptographically signed context tokens,
checking the tokens can incur a significant performance penalty. We have devel-
oped, however, a mechanism to avoid this penalty for the cases where perfor-
mance is essential. First, many scenarios do not require at all that access to
the most used operations is controlled, for instance in a scenario using agents
which exchange messages. Secondly, the most important performance penalty is
brought when operation calls are routed inside the same node. This is particu-
larly of issue in the case of sub-agent entities (shards in Flash-mas) to which
only their container agent has access, but which are expected to exchange calls
with their agent frequently. Let us take the example of a shard which should
post an event to its agent. The shard calls the agent’s operation and attaches
a context token proving that the shard belongs, indeed, to that agent; but the
context token has been generated by the agent, on the same node. This means
that the local FMAS instance can check the token only by hashing it and compar-
ing the result against a list of active tokens and their hashes, without needed
to verify the signature. Full verification is still needed, however, when calls are
exchanged between different network nodes.

We have validated the viability of the entity-operation model by implement-
ing the scenario presented in the Introduction. Our goal was to verify that we
can use the entity-operation model to implement all the described processes and
to perform functional testing of the context-based access model. This stage of
validation was successful.

In the implementation of the scenario, we have created agents for Andreea
and other students, context managers for the two lectures, for the smart building,
and for the three rooms, and artifacts for the various devices – smart lock, heater,
lights, and printer. Relations have been created, especially the ones representing
the role of Andreea as a teacher for one course and as a student for the other
course. When, in simulated time, Andreea’s lecture as a teacher approached,
a relation was created by the course manager between Andreea and the room
manager. She was now authorized to control some of the devices in the room.
When a relation was created between Andreea and the smart building, the unlock
operation of the smart lock became available to her. After the lecture, her relation
with the room was removed, so the operations became unavailable again.

The Entity-Operation Model 267

The implementation shows that, indeed, a variety of entities can be imple-
mented using the proposed model, more properly than just implementing them
all as “agents”. It showed that the context-based access model can be used to
limit the availability of operations.

5 Discussion

The idea of having objects distributed across the network, offering operations
that can be called, is not new. However, our model is directed specifically
towards autonomous entities. Compared, for instance, to Java RMI, the entity-
operation model, and the various implementations for actual communication
between nodes, increases flexibility as it avoids reliance on a single interaction
mechanism.

Having entities and operations is similar, and can be replicated by, hav-
ing agents which send messages from one to another. It offers, however, a lot
more expressivity in modeling the entities in the system, reserving the agent
abstraction for truly pro-active, autonomous entities, without abusing them to
implement any of the persistent entities in a deployment.

Especially when using web service communication, a deployment using the
entity-operation model can be likened to a set of web-services offering various
operations. Our approach, however, allows various interaction methods, some of
which can be more lightweight than deploying a web server on every node.

Essentially, what we strive to offer with the entity-operation model is choice
and expression power. A MAS developer should not be forced into making the
choice of implementing an entity as a framework-offered abstraction that is not
appropriate for that entity, and this choice should not lead to a development
path that is so far from the other types of abstractions that it is difficult to
return to the decision point. The developer should be able to choose from a wide
array of available abstractions and, when needed, to be able to create their own
first-class abstractions, and then use that set of abstractions for the entities in
the applications. Let us take a few examples.

A context manager handles the interactions between other entities and a
smart space or a smart activity [2]. For instance, a context manager keeps track
of the entities which are a part of that context, e.g., which are physically in that
space, or are part of that activity. In our scenario, the context manager of the
room keeps track of the users in the room, or users authorized to control the room
devices; the context manager of the course (as an activity) sends updates to the
entities involved in the activity. A context manager is not a proper agent, in terms
of an entity which has goals, and which achieves goals by executing actions in a
plan; it rather manages aspects of the environment. However, it cannot easily be
implemented as an artifact (in the sense of the A&A model) because an artifact
cannot create relations between it and agents proactively, because agents need
to first focus on the artifact. When the teacher (or some faculty staff) adds
students to a course, some agent would have to send a message to the students’
agents, and then the agents would have to focus on the context manager. In the

268 A. Olaru et al.

entity-operation model, a context manager entity is able to create relations to
agents (that they can approve or not), even if it is not modeled as an agent.

A broadcast group (similar to a mailing list) relays messages sent by one of
its members to all the other members in the group. Again, a broadcast group
would not be properly modeled as an agent. However, it cannot be modeled as
an A&A artifact either – artifacts can notify agents only of observable properties
or via signals. For a broadcast group, members of the group would not receive
the messages in the group as signals, not as messages, needing a different pro-
cessing path inside the agent. In the entity-operation model, a broadcast group
is implemented as an entity which agents can join and then it can simply call
the receive operation of agents each time it needs to broadcast a message.

While the initial question of “What should this be modeled as?” remains,
using the entity-operation model as a uniform underlying model reduces some
of the stress associated with having to decide on the type of abstraction from
the start, makes changing the type of abstraction later on easier, and helps
interoperation with new types of entities as they are added to the system.

6 Conclusions and Future Work

We introduce the entity-operation model as a practical approach to the uniform
implementation of the various abstractions offered by a MAS framework. The
model has been created with the desire to both offer to the MAS developer
an array of available abstractions, but also to allow the developer to change
previous choices regarding the modeling of the scenario, and to create new types
of abstractions, if one needs it. The model is enriched with a context-based access
model for operations.

Using the entity-operation model brings a series of advantages, like the possi-
bility to interact with all types of abstractions in a MAS and to model explicitly
the communications and services infrastructures. Another advantage is the abil-
ity to create sub-agent or supra-agent entities, such as shards and organizations,
respectively, or to create holonic structures.

A current development direction is to fully integrate machine learning models
as sub-agent entities, while interoperating, using the principles of the entity-
operation model, with ML frameworks written in Python. In terms of model
development, we must make decisions on whether waves are a technical element
or are fundamental to the model.

The next steps in this research are to build entity implementations that use
the entity-operation model and are compatible with Jade, JaCaMo, and other
popular MAS frameworks. Our short-term goals are to be able to run Jade
agent code on other communication infrastructures, to use various agent imple-
mentations with the Jade communication infrastructures, to support Jason as
an AOP language, and to interoperate with CArtAgO and MOISE. A further
goal is to have a common approach when deploying a MAS as an ABMS and
when deploying it as distributed over a network, easing the transition from sim-
ulation to real-life deployment while preserving the implementation of entities.

The Entity-Operation Model 269

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev.
24, 13–33 (2017)

2. Baljak, V., et al.: S-CLAIM: an agent-based programming language for Am
I, a smart-room case study. In: Proceedings of ANT 2012, The 3rd Inter-
national Conference on Ambient Systems, Networks and Technologies, 27–29
August, Niagara Falls, Ontario, Canada. Procedia Computer Science, vol. 10, pp.
30–37. Elsevier (2012). https://doi.org/10.1016/j.procs.2012.06.008, http://www.
sciencedirect.com/science/article/pii/S1877050912003651

3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent frame-
work. In: Proceedings of PAAM, vol. 99, pp. 97–108. Citeseer (1999)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

5. Braubach, L., Pokahr, A.: Jadex active components framework-BDI agents for
disaster rescue coordination. Softw. Agents Agent Syst. Appl. 32, 57–84 (2012)

6. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

7. Curry, E., Chambers, D., Lyons, G.: A JMS message transport protocol for the jade
platform. In: IEEE/WIC International Conference on Intelligent Agent Technology,
2003. IAT 2003, pp. 596–600. IEEE (2003)

8. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access
6, 28573–28593 (2018)

9. Dorst, T., Eichstädt, S., Schneider, T., Schütze, A.: Propagation of uncertainty
for an adaptive linear approximation algorithm. SMSI 2020-System of Units and
Metrological Infrastructure, pp. 366–367 (2020)

10. FIPA: FIPA ACL message structure specification, December 2002. http://www.
fipa.org/specs/fipa00061/SC00061G.html

11. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented coopera-
tive smart objects: from IoT system design to implementation. IEEE Trans. Syst.
Man Cybern. Syst. 99, 1–18 (2017)

12. Galland, S., Rodriguez, S., Gaud, N.: Run-time environment for the SARL agent-
programming language: the example of the Janus platform. Futur. Gener. Comput.
Syst. 107, 1105–1115 (2020)

13. Gregori, M.E., Cámara, J.P., Bada, G.A.: A jabber-based multi-agent system plat-
form. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1282–1284 (2006)

14. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

15. Lorig, F., Dammenhayn, N., Müller, D.-J., Timm, I.J.: Measuring and compar-
ing scalability of agent-based simulation frameworks. In: Müller, J.P., Ketter,
W., Kaminka, G., Wagner, G., Bulling, N. (eds.) MATES 2015. LNCS (LNAI),
vol. 9433, pp. 42–60. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27343-3_3

16. Melo, L.S., Sampaio, R.F., Leão, R.P.S., Barroso, G.C., Bezerra, J.R.: Python-
based multi-agent platform for application on power grids. Int. Trans. Electr.
Energy Syst. 29(6), e12012 (2019)

17. Olaru, A., Sorici, A., Florea, A.M.: A flexible and lightweight agent deployment
architecture. In: 2019 22nd International Conference on Control Systems and

https://doi.org/10.1016/j.procs.2012.06.008
http://www.sciencedirect.com/science/article/pii/S1877050912003651
http://www.sciencedirect.com/science/article/pii/S1877050912003651
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
https://doi.org/10.1007/978-3-319-27343-3_3
https://doi.org/10.1007/978-3-319-27343-3_3

270 A. Olaru et al.

Computer Science (CSCS), Bucharest, Romania, 28–30 May 2019, pp. 251–258.
IEEE (2019). https://doi.org/10.1109/CSCS.2019.00048, https://ieeexplore.ieee.
org/abstract/document/8744845/

18. Olaru, A., Florea, A.M.: A framework for integrating heterogeneous agent com-
munication platforms. In: Proceedings of ACSys 2015, the 12th Workshop on
Agents for Complex Systems, in conjunction with SYNASC 2015, the 17th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 21–24 September, pp. 399–406. IEEE Xplore (2015). https://
doi.org/10.1109/SYNASC.2015.66

19. Pal, C.V., Leon, F., Paprzycki, M., Ganzha, M.: A review of platforms for the
development of agent systems. arXiv preprint arXiv:2007.08961 (2020)

20. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

21. Ricci, A., Croatti, A., Bordini, R., Hübner, J., Boissier, O.: Exploiting simulation
for MAS programming and engineering-the JaCaMo-sim platform. In: 8th Inter-
national Workshop on Engineering Multi-Agent Systems (EMAS 2020) (2020)

22. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for
engineering working environments in MAS. In: Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems, p. 150. ACM
(2007)

23. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented pro-
gramming language. In: 2014 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 103–
110. IEEE (2014)

24. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and dis-
tributed multi-agent systems for high performance computing simulations. Com-
put. Sci. Rev. 22, 27–46 (2016)

25. Suguri, H., Kodama, E., Miyazaki, M., Kaji, I.: Assuring interoperability between
heterogeneous multi-agent systems with a gateway agent. In: 7th IEEE Interna-
tional Symposium on High Assurance Systems Engineering, 2002. Proceedings, pp.
167–170. IEEE (2002)

26. Tom, R.J., Sankaranarayanan, S., Rodrigues, J.J.: Agent negotiation in an IoT-Fog
based power distribution system for demand reduction. Sustain. Energy Technol.
Assess. 38, 100653 (2020)

https://doi.org/10.1109/CSCS.2019.00048
https://ieeexplore.ieee.org/abstract/document/8744845/
https://ieeexplore.ieee.org/abstract/document/8744845/
https://doi.org/10.1109/SYNASC.2015.66
https://doi.org/10.1109/SYNASC.2015.66
http://arxiv.org/abs/2007.08961
https://doi.org/10.1007/BFb0031845

Remote Deployment of a JADE Agent
in Docker

Dennis Maecker(B) , Henning Gösling , and Oliver Thomas

German Research Center for Artificial Intelligence (DFKI), Osnabrück, Germany
{dennis.maecker,henning.goesling,oliver.thomas}@dfki.de

Abstract. This work presents a technical introduction into the imple-
mentation process of a containerized multi-agent system. More specif-
ically, the JADE framework is used as a middleware for the develop-
ment of software agents. With the goal of achieving high modularity
and enhancing usability, the system will be containerized in Docker. To
model an application-oriented scenario, the containerized agent-system
is deployed on a headless remote server. The goal of this paper is to
provide a comprehensive solution to help overcome the technical diffi-
culties encountered in accessing the graphical user interface of agents
from an end device. A procedural guide to the implementation process is
provided, including the preparation of the JADE-based multi-agent sys-
tem, creation of Docker containers, and deployment of the containerized
multi-agent system on a remote server.

Keywords: Multi-agent system · JADE · Docker · Containerization

1 Introduction

Recently, the novel concept of a Smart Managed Freight Fleet was introduced
[5], focusing in particular on multi-agent systems applied to supply chains in
the transport market. Representing a promising framework for multi-agent sys-
tems, the Java Agent Development Framework (JADE) [3,4], already applied in
real-world telecommunication applications [8], was chosen as a candidate for the
implementation process. As a Java-based middleware, JADE is used to incor-
porate functionalities of multi-agent systems and follows the standards of the
Foundation for Intelligent Physical Agents (FIPA). In the scenario of a large-scale
freight-fleet management system, it is crucial to ensure not only the interoper-
ability of the agents, but also compatibility with different platforms, for instance
remote servers or fleet assets (e.g., delivery robots), and facilitate the software
deployment. For this objective, the container virtualization technology of Docker
[1] was chosen. This enables the deployment of self-contained software containers
without the need for any configurations on the remote server. In the progress of
adapting the multi-agent system for the use in Docker containers, several tech-
nical issues emerged. So far, deploying JADE agents in Docker containers was
only sparsely investigated or documented at the time of writing. Thus, this paper
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 271–277, 2023.
https://doi.org/10.1007/978-3-031-48539-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48539-8_18&domain=pdf
http://orcid.org/0009-0005-8932-0477
http://orcid.org/0000-0003-4522-0464
https://doi.org/10.1007/978-3-031-48539-8_18

272 D. Maecker et al.

documents the basic procedure in order to make a multi-agent system (MAS)
available through Docker containers on an arbitrary machine. Furthermore, the
deployment of containerized agents on a remote server is explained, with a focus
on the accessibility of the graphical interface by local machines.

2 Pre-requirements

2.1 Implementation of a JADE-Based Multi-agent System

A JADE-based multi-agent platform typically consists of one main container
and additional agent containers, each including an arbitrary number of agents.
Agent containers can register at the main container, which acts as an adminis-
tration instance of the multi-agent platform. In the implementation process, a
universal Container class was set up. By passing arguments (MainContainer
or Agent) to the execution call of this class, it can be determined whether the
instance acts as a JADE main container or an agent container. For a main con-
tainer, the IP address of the hosting machine is required as an argument, while an
agent container necessitates the agent’s name and an existing main container’s IP
address. In the latter case, the Container class then initializes a predefined agent
instance within the agent container. As the implementation of the MAS in Java
depends on auxiliary libraries (e.g., the JADE framework) it is crucial to ensure
dependency resolution with the aim of a portable software. This can be achieved
by packing the compiled Java classes in a Java archive (i.e., a .jar file). A
META-INF folder with the meta-information file MANIFEST.MF must be generated,
as depicted in Fig. 2a. This file specifies the project’s main class, Container.
The packing process of the Java archive file can be undertaken in various ways,
depending on the development environment that is being used. After the cre-
ation, the .jar file can be executed for testing purposes in the console by the fol-
lowing command (assuming a locally installed Java environment) considering the
local IP of the host machine: java -jar SmartTransport.jar MainContainer
192.168.0.125. Conversely, the command java -jar SmartTransport.jar
Agent agent1 192.168.0.125 ensures that the instance of the Container class
acts as an agent container by passing the argument Agent, instantiating an agent
with name agent1 and connecting to the main container with the corresponding
IP address given in the argument.

2.2 Setting Up an X Server

As the common interface of a Docker container is console-based, this section
addresses the necessary steps for accessing the graphical interface of Docker
containers on the host machine. This can be achieved by setting up an X server on
the host machine, which manages the graphical output of the Docker container.
Depending on the operating system, several solutions are possible, such as X.Org
for Linux, VcXsrv1 for Windows, or XQuartz2, based on X.Org components, for
1 Available at: https://sourceforge.net/projects/vcxsrv/.
2 Available at: https://www.xquartz.org/index.html.

https://sourceforge.net/projects/vcxsrv/
https://www.xquartz.org/index.html

Remote Deployment of a JADE Agent in Docker 273

MacOS. In either case, after the X server is started, the Docker container merely
needs the local IP address of the host machine as an environment variable in
order to forward the graphical interface to the X server. This is explained in
further detail in the next chapter. Moreover, it is important to allow access to
the X server on the host machine. In the case of VcXsrv, this can be accomplished
in the program’s settings. Considering the X.Org server on Linux, it is sufficient
to enter the following command in the console: xhost +. It is important to note,
that this procedure opens the X server for all participants in the network. In
high security environments, this approach is not recommended.

3 Agents on a Remote Server

The containerization of the agent system is split into two parts. First, a base
image is set up in a Dockerfile. In a separate docker-compose.yml file, the
establishment of the Docker-related network setup takes place. Also, two con-
tainers will be specified, one which runs a JADE main container and one running
a JADE agent container. As the host of the Docker containers (i.e., the headless
remote server) has no support for graphical output by itself, it has to be ensured
that the graphical user interface can be accessed from an end device through a
Secure Shell (SSH) connection to the server.

3.1 Accessing the User Interface of Remotely Deployed Agents

First, the remote server is accessed by an SSH connection. It is possible to
run graphical applications on the remote server and have the graphical output
displayed on the local machine utilizing the X server running on the local system.
This can be achieved by passing an -X argument to the call of the SSH connection
as follows: ssh -X user@remote-server. Alternatively, when using SSH-clients
such as PuTTY, it is possible to configure the forwarding task to the X server in
the application settings [7]. However, passing the graphical output of an agent
application inside a Docker container through the remote server to the end device
requires a more elaborate solution. The most promising approach for forwarding
the user interface of the containers to the end device will be further described and
can be summarized by the installation of a Virtual Network Computing (VNC)
server in the Docker container. When connecting to the remote server via SSH
it is possible to connect to the Docker container using a VNC client installed
on the server. The graphical output of the VNC client is then tunneled via the
SSH connection and displayed on the local end device. This concept is depicted
in Fig. 1. The substantial advantage of this approach is that the application
continues its operation even under interruptions of either the SSH or the VNC
connection. Additionally, as the graphical output is tunneled through the SSH
connection to the end device, there is no need for additional ports being accessed
on the remote server, hence contributing to the data security of the system.

274 D. Maecker et al.

Fig. 1. Data flow of the graphical information (solid lines) as well as data exchange in
between the agent applications (dashed line).

3.2 Setting up the Docker Container

The Dockerfile for the Docker image used in this part is shown in Fig. 2b.
The base image used for this system is an openjdk:18-jdk-slim image (line
1) that is a minimal, Debian-based environment containing a pre-installed Java
distribution. Subsequently, in line 2 the .jar Java archive for the Java agent
application is copied to the home directory of the Docker image. As stated before,
the .jar file can be started with different arguments, thus launching either a
JADE main container or a JADE agent container. Hence, the Docker image
which is created here can be used for both types of JADE containers.

In line 3, the installation of basic packages related to the connection to
the X server along with a VNC server (x11vnc) and a minimal desktop envi-
ronment (openbox, tint2, xterm, lxterminal) takes place. Lines 4-6 set
up the desktop environment. This process is inspired by the descriptions in
a publicly available repository [6]. The last command in line 7 refers to the
docker-entrypoint.sh script that is executed when the container is launched.
The content of this docker-entrypoint.sh file is shown in Fig. 2c and is respon-
sible for the initialization of the desktop environment and the window manager.
Finally, the Docker image can be built using the following command: docker
build -t dfki/agents. By using the argument -t, a tag name for the Docker
image, here dfki/agents, can be set, which is then further used as a base image
in the docker-compose.yml file in Fig. 2d.

3.3 Integration in a docker-compose.yml File

The docker-compose.yml file describes the setup of a main container and an
additional agent container, both based on the JADE framework. In lines 2-9
of the file, a network gateway is defined. Thus, it is possible for each Docker
container to possess its own IP address within this separate network. This ensures
portability of the Docker system, as the IP addresses do not have to be adapted to
the address of the respective host machine. Beginning in line 11, the configuration
of the Docker container running the JADE main container is specified. Lines 12
states the base image as the one described by the Dockerfile in Fig. 2b. In line

Remote Deployment of a JADE Agent in Docker 275

Fig. 2. Contents of relevant files used in this work.

15, the IP address of this container is set. Following, lines 16-19 define the ports
of the Docker container which are mapped to the ports of the host machine. In
addition to the ports relevant for the JADE communication (7778 and 1099),
port 5900 is opened to allow a VNC connection by the remote server, i.e., the
host of the Docker container. The display environment variable in line 22 is set
to :99, ensuring that the graphical output is sent to the VNC server. The part
after line 23 represents the setup of a second Docker container, dedicated to a
JADE agent container. The configuration procedure is analogous to that of the
first container. However, the setting of the IP address in line 27 and the port
mapping in lines 28-31 differ. The ports need to be altered for this container
as the initial ports on the host machine are already used by the first container.
If more containers for other agents are intended to be launched than there are
specified here, the respective ports have to be altered accordingly (e.g., 1101,
7780, 5902). The file can be built using the following command on the remote

276 D. Maecker et al.

host: docker-compose up. After this, the two docker containers are running on
the remote host.

3.4 Launching the JADE Agent System

The previous section described how to start the two Docker containers contain-
ing the SmartTransport.jar that can launch either a JADE main container
or an agent container. However, at the time of writing this paper, no solution
has been found yet to run the agent application automatically when the Docker
containers are starting. Rather, it is necessary to connect to the running Docker
containers via a VNC client and to manually start the agent application. After
setting up the SSH connection and enabling graphical forwarding to the local
X server, the VNC client (e.g., vncviewer) can be launched on the remote host,
displaying the VNC software user interface on the end device (see data flow in
Fig. 1). In the user interface of the VNC client, the IP and the port of the respec-
tive Docker container can be entered, in this case either 192.168.56.10:5900
or 192.158.55.11:5901. In the following, the Docker container with the IP
192.168.56.10 is used to launch a JADE main container, while the other Docker
container with the IP 192.158.55.11 is dedicated to the JADE agent container.
A successful connection will exhibit the respective Docker container’s desktop
environment within the VNC client’s interface. In the environment of the Docker
container, it is possible to launch a terminal instance (here lxterminal, see
installation setup in Fig. 2b). A JADE main container can be started by enter-
ing the following command: java -jar SmartTransport.jar MainContainer
192.168.56.10. When the main container is started, the graphical user interface
of the JADE framework can be accessed in the interface of the VNC client. Sub-
sequently, a VNC connection to the second Docker container can be established
from the remote server. In a terminal instance, a predefined agent named agent1
can be started in a JADE agent container by following command: java -jar
SmartTransport.jar Agent agent1 192.168.56.10. As described before, by
passing the IP address of the JADE main container as an argument to the call of
the JADE agent container, it is possible that the JADE agent container connects
to the JADE main container. Hence, an arbitrary number of agents can connect
to the JADE main container to form a MAS. The agent applications stay active,
regardless of whether the VNC connection to the Docker containers or the SSH
connection to the remote server is active.

4 Conclusion and Further Work

In this paper, we have presented an introduction to how to combine the well-
known JADE middleware for MAS with Docker focusing on the deployment
on a remote server. To the best of the authors’ knowledge, a comprehensive
introduction to this topic, as presented here, has not yet been published. Future
developments in this regard can be identified for instance by configuring the
JADE message protocol (MTP) to utilize HTTP [2]. Hence, JADE platforms

Remote Deployment of a JADE Agent in Docker 277

distributed over several networks can be connected by using JADE’s feature of
remote platform connectivity or by implementing REST interfaces.

References

1. Anderson, C.: Docker [software engineering]. IEEE Softw. 32(3), 102-c3 (2015)
2. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Mungenast, R.: JADE admin-

istrator’s guide. TILab (2003)
3. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA-Compliant Agent Frame-

work, pp. 97–108. The Practical Application Company Ltd. (1999)
4. Greenwood, D., Bellifemine, F.L., Caire, G.: Developing Multi-agent Systems with

JADE. Wiley, Hoboken (2007)
5. Heinbach, C., Gösling, H., Meier, P., Thomas, O.: Smart managed freight

fleet: ein automatisiertes und vernetztes flottenmanagement in einem föderierten
datenökosystem. HMD Praxis der Wirtschaftsinformatik (2022)

6. murer: Virtual X and VNC server docker image with openbox (2020). https://
github.com/murer/docker-xvfb-x11vnc-openbox

7. Tatham, S.: PuTTY user manual (2022). https://upload.wikimedia.org/wikipedia/
commons/b/b7/PuTTY_User_Manual.pdf

8. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mobile
applications on ANDROID with JADE. In: The Second International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies. IEEE (2008)

https://github.com/murer/docker-xvfb-x11vnc-openbox
https://github.com/murer/docker-xvfb-x11vnc-openbox
https://upload.wikimedia.org/wikipedia/commons/b/b7/PuTTY_User_Manual.pdf
https://upload.wikimedia.org/wikipedia/commons/b/b7/PuTTY_User_Manual.pdf

Author Index

A
Alechina, Natasha 95

B
Bergenti, Federico 23
Briola, Daniela 233
Burattini, Samuele 208

C
Cardoso, Rafael C. 3
Chandlekar, Sanjay 113
Chopra, Amit K. 61
Christie V, Samuel H. 61
Ciortea, Andrei 208, 220
Collenette, Joe 3
Collier, Rem W. 78, 85

D
Dastani, Mehdi 95
Dennis, Louise A. 3
Doder, Dragan 95

F
Faron, Catherine 220
Ferrando, Angelo 3, 233
Fisher, Michael 3
Florea, Adina Magda 191, 253

G
Galassi, Meshua 208
Gladyshev, Maksim 95
Gösling, Henning 271
Gujar, Sujit 113

H
Holvoet, Tom 41

J
Jagutis, Martynas 85

K
Khadse, Aditya K. 61

L
Li, Jiaoyang 130

M
Maecker, Dennis 271
Mariani, Stefano 178
Mascardi, Viviana 233
Monica, Stefania 23

N
Nicolae, Gabriel 253

O
O’Neill, Eoin 78, 220
Olaru, Andrei 253

P
Petrosino, Giuseppe 23
Pianpak, Poom 130
Picone, Marco 178
Poveda-Villalón, María 220

R
Ramanathan, Ganesh 167
Ren, Fenghui 151
Ricci, Alessandro 178, 208
Russell, Sean 85

S
Singh, Munindar P. 61
Son, Tran Cao 130

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Ciortea et al. (Eds.): EMAS 2023, LNAI 14378, pp. 279–280, 2023.
https://doi.org/10.1007/978-3-031-48539-8

https://doi.org/10.1007/978-3-031-48539-8

280 Author Index

Sorici, Alexandru 191
Subramanian, Easwar 113

T
Thomas, Oliver 271

Y
Yan, Jun 151
Yang, Yi 41

Z
Zimmermann, Antoine 220

	 Preface
	 Organization
	 Contents
	Agent-Oriented Software Engineering
	Towards Forward Responsibility in BDI Agents
	1 Introduction
	2 Related Work
	3 Responsibility-Aware Agents
	3.1 Priorities and Hierarchy of Responsibilities
	3.2 Improving Reliability with Shared Responsibilities

	4 Towards Implementation
	5 Conclusion
	References

	Imperative and Event-Driven Programming of Interoperable Software Agents
	1 Introduction
	2 A Short Introduction to Jadescript
	3 English Auctions in Jadescript
	3.1 The Scenario
	3.2 The Ontology
	3.3 The Auctioneer
	3.4 The Participants

	4 Related Work
	5 Conclusion
	References

	vGOAL: A GOAL-Based Specification Language for Safe Autonomous Decision-Making
	1 Introduction
	2 Formal Syntax
	3 Operational Semantics
	3.1 Stage 1: Substate Property Generation
	3.2 Stage 2: Enabled Constraint Generation
	3.3 Stage 3: Enabled Action Generation
	3.4 Stage 4: Enabled Sent Message Generation
	3.5 Stage 5: Event Processing
	3.6 Stage 6: Communication
	3.7 State Update

	4 Case Study
	5 Discussion
	6 Conclusion
	References

	Agents and Microservices
	Protocol-Based Engineering of Microservices
	1 Introduction
	2 Background
	2.1 Information Protocols
	2.2 Kiko
	2.3 Dapr

	3 Traffic Control Application
	3.1 Using Dapr
	3.2 Using Kiko

	4 Evaluation
	4.1 Protocol Specifications
	4.2 Typing and Structuring of Agent Implementations
	4.3 Decentralization and Loose Coupling

	5 Discussion
	5.1 Future Work

	References

	Exploiting Service-Discovery and OpenAPI in Multi-Agent MicroServices (MAMS) Applications
	1 Introduction
	2 Related Work
	3 Demonstrating the Approach
	3.1 Experimental Setup

	4 Conclusion
	References

	Using Multi-Agent MicroServices (MAMS) for Agent-Based Modelling
	1 Introduction
	2 Overview of Prototype
	2.1 Expected Agent Behaviour
	2.2 Integrating Agents with the Environment

	3 Using MAMS to Implement Agent Behaviours
	4 Conclusions
	References

	Strategy, Reasoning, and Planning
	Dynamics of Causal Dependencies in Multi-agent Settings
	1 Introduction
	2 Preliminaries: Causal Models
	3 Concurrent Game Structures
	4 Arbitrary Updates
	5 Uncertainty and Responsibility
	5.1 Expressing Strategic Responsibility

	6 Discussion
	References

	Multi-armed Bandit Based Tariff Generation Strategy for Multi-agent Smart Grid Systems
	1 Introduction
	2 Related Work
	3 PowerTAC Simulator: An Overview
	4 VidyutVanika (VV): Retail Module
	5 Game Theory to Determine Optimal Market-Share
	6 Tariff Strategy: A Contextual MAB Approach
	6.1 State Space
	6.2 Action Space
	6.3 Reward
	6.4 EXP-3 Algorithm

	7 PowerTAC: Experiments and Results
	7.1 Experimental Set-Up
	7.2 Results and Discussion

	8 Conclusion
	References

	Load Balancing in Distributed Multi-Agent Path Finder (DMAPF)
	1 Introduction
	2 Background
	2.1 Multi-agent Path Finding
	2.2 Distributed Multi-Agent Path Finder
	2.3 The CBS Family

	3 Methodology
	3.1 Abstract Planning Methods
	3.2 Timeout Mechanism
	3.3 Integration with CBS-Based MAPF Solvers

	4 Experiments
	4.1 The Numbers of Solving Processes
	4.2 The Size of Subproblems
	4.3 Timeout Sensitivity
	4.4 Congestion
	4.5 Comparison Between MAPF Solvers

	5 Related Work
	6 Summary
	References

	Engineering Domains and Applications
	A Multi-agent Approach for Decentralized Voltage Regulation in Micro Grids by Considering Distributed Generators
	1 Introduction
	2 Voltage Regulation Considering DGs
	2.1 Principle
	2.2 Objectives and Constraints

	3 A Multi-agent Based Voltage Regulation
	3.1 Principle
	3.2 Agent Design
	3.3 Mechanism Design
	3.4 System Development

	4 Simulation
	5 Conclusion and Future Work
	References

	Synthesizing Multi-agent System Organization from Engineering Descriptions
	1 Introduction
	2 Related Work
	2.1 MAS Organization and Its Relevance to Engineering Systems
	2.2 The Challenge of Synthesising MAS Organisation

	3 Approach
	3.1 Finding Organization Abstractions in System Descriptions
	3.2 Integrating the System Descriptions
	3.3 Automated Synthesis of Organisation Specification

	4 Evaluation Setup
	5 Results and Discussions
	References

	Towards Developing Digital Twin Enabled Multi-Agent Systems
	1 Introduction
	2 State of the Art
	3 Integration Architecture
	3.1 Conceptual
	3.2 Technical

	4 Conclusion
	References

	Agents in Hypermedia Environments
	Towards Context-Based Authorizations for Interactions in Hypermedia-Driven Agent Environments - The CASHMERE Framework
	1 Introduction
	2 Background
	2.1 Hypermedia Driven Agent Environments
	2.2 Dynamic Access Control
	2.3 Modeling Context Information with CONSERT
	2.4 RDF Stream Reasoning

	3 Shared Context Identification
	3.1 ContextDomains: Partitioning Context Information
	3.2 Stream Processing for Shared Context Identification

	4 Integration in Hypermedia-Driven Agent Environments
	5 Discussion
	6 Conclusion
	References

	Towards Framing the Agents & Artifacts Conceptual Model at the Knowledge Level: First Ideas and Experiments
	1 Introduction
	2 Enriching the Knowledge Level with Artifact-Based Environments
	3 Artifact-Based Environments at the Knowledge Level
	3.1 Querying and Observing at the Knowledge Level
	3.2 Semantic-Driven Creation of Artifacts in Workspaces

	4 Bringing CArtAgO at the Knowledge Level
	5 The Road Ahead
	A The Hierarchy of Computer Systems
	B Knowledge Level and Social Level
	References

	Pody: A Solid-Based Approach to Embody Agents in Web-Based Multi-Agent-Systems
	1 Introduction
	2 Background
	2.1 Situatedness and Embodiment in Multi-Agent Systems
	2.2 A Web for Machines
	2.3 Solid: Social Linked Data

	3 Embodiment and Situatedness of Agents on the Web
	4 Podies: Solid Pods Implementing Web Agents' Bodies
	5 Discussion
	6 Conclusion
	References

	Frameworks, Tooling, and DevOps
	Fantastic MASs and Where to Find Them: First Results and Lesson Learned
	1 Introduction
	2 Selection Process
	3 Results
	3.1 MASs
	3.2 Frameworks
	3.3 Extensions

	4 Discussion and Lessons Learned
	5 Conclusions and Future Work
	References

	The Entity-Operation Model for Practical Multi-entity Deployment
	1 Introduction
	2 Related Work
	3 The Entity-Operation Model
	3.1 Formalization Sketch
	3.2 Predefined Entities and Relations

	4 Implementation Challenges and Results
	5 Discussion
	6 Conclusions and Future Work
	References

	Remote Deployment of a JADE Agent in Docker
	1 Introduction
	2 Pre-requirements
	2.1 Implementation of a JADE-Based Multi-agent System
	2.2 Setting Up an X Server

	3 Agents on a Remote Server
	3.1 Accessing the User Interface of Remotely Deployed Agents
	3.2 Setting up the Docker Container
	3.3 Integration in a docker-compose.yml File
	3.4 Launching the JADE Agent System

	4 Conclusion and Further Work
	References

	Author Index

