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Abstract. Robotic process automation (RPA) automates tasks tradi-
tionally performed by employees, reducing repetitive and error-prone
work. While RPA bot models are based on graphical notations, data,
a key component of RPA, is often not explicitly represented, making it
difficult to understand how data contributes to the automation. This
paper explores the role of data in RPA, extends the ontology of RPA
operations by data aspects, and proposes a visualization of data in RPA
bot models, promoting the design of more comprehensible RPA bot ser-
vices and enabling different bot analysis techniques.
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1 Introduction

Modeling processes to enable their automation, including the orchestration of
services, has been a strong motivation for business process management (BPM)
for decades. With robotic process automation (RPA), a new technology emerged
that does not require changes to the existing IT systems, as it operates primarily
on the user interface level [1] to automate legacy systems, for example. Further-
more, RPA features various capabilities beyond simulating mouse clicks and
key presses, like accessing databases or connecting to modern cloud services by
using APIs [4], thus bridging the gap between legacy systems and modern ser-
vices. Tasks automated with RPA are usually of a structured nature and centered
around digital data [9], and common use cases include extracting or transferring
data between applications [5].

Targeting business users, RPA workflows can typically be defined in a graphi-
cal manner by composing predefined building blocks [4,11], such as for clicking a
button. However, the configuration of inputs, outputs, and parameters of build-
ing blocks is mainly done in a form-like manner. Consequently, data is typically
not represented graphically, which is especially problematic as the role of data in
the RPA bot and its data-flow cannot be conceived easily. To determine which
parts of the bot are dependent from a data-perspective, the configuration of each
building block needs to be reviewed individually.

In this paper, we conceptualize the role of data in RPA by refining the ontol-
ogy of RPA operations [11] (Sect. 3), and suggest an approach for visualizing data
and its flow in RPA bot models (Sect. 4). Furthermore, we highlight practical
implications in Sect. 5, such as data-flow analysis to prevent run-time errors.
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2 Preliminaries and Motivating Example

The lack of RPA standards leads to varied terminology and modeling inter-
faces across vendors [2,11]. To address this, the ontology of RPA operations
(ORPAO) was introduced in [11], featuring the various types of RPA operations
(the building blocks), software applications and services that can be automated,
and relevant data file types. Figure 1 shows some of the main concepts of the
ORPAO, including the taxonomy of RPA operations with its three main classes,
where AutomationOperations, for example, represent operations that actually
interfere with the system and applications outside the bot.

As shown in Fig. 1, the ontology already includes a rudimentary conceptu-
alization of data based on CSO:Data, originating from the upper Core Software
Ontology (CSO) by Oberle et al. [6]. For the ORPAO, CSO:Data was extended
by File, comprising a taxonomy of different file types [11]. Furthermore, the
CSO:accesses relation was refined to hold between RPAOperation and CSO:Data
and specialized by the subtypes reads, writes, and transforms [11].

The CSO further includes a notion of inputs and outputs, which was reused
in [11] to define that the reads relation defines the input and writes the output
of an operation: According to the CSO, CSO:Input and CSO:Output are roles
played by certain CSO:Data [6]. The relations CSO:inputFor and CSO:outputFor
connect CSO:Inputs and CSO:Outputs to operations, and reads, writes, and
transforms were introduced as “shortcut” for this construct [11].

In [12], the ontology was extended by information regarding the control flow
by mapping operations to the meta-meta-model for process model languages
by Heidari et al. [3]. This mapping enables the vendor-independent modeling
of RPA bots based on the concepts in the ORPAO in any common process
modeling language, such as BPMN. At the same time, these conceptual models
can be translated into RPA bot models of specific vendors and vice versa [12].

The ORPAO recognizes the importance of data in RPA by a separate class
of operations, the DataOperations with its subclasses [11]. DataExtractionOp-
erations access external data resources to retrieve data and cache it internally,
for example, ReadCell operations that extract a value of spreadsheets for future
use. DataInputOperations can write content to external data resources based

Fig. 1. Excerpt of important elements in the ontology of RPA operations, based on [11]
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Fig. 2. Exemplary RPA bot model

on internally available data, like WriteCell operations write a value to a spread-
sheet. DataTransformationOperations read the contents of an external data
resource, apply a specific transformation to the data, and immediately write the
result back to the data resource, like SortTable. DataFileOperations modify
the properties of the data “container”, such as creating, moving, or deleting a
file.

Consequently, we need to differentiate two types of data in RPA: External
data resources, such as files, exist independently of the RPA bot itself and are not
bound to RPA in any way. Internal data is only available within the scope of the
RPA bot and thus lost when it terminates. It can be a dynamic value determined
at run-time of the bot, i.e., a variable, or a hard-coded value specified in advance.

Although data plays a critical role in RPA, this aspect is typically not
expressed visually, but hidden in the configurations of the operations. Figure 2
shows a sample model of an RPA bot. This small example illustrates the need to
visualize data and its flow through the process: What URL is the bot visiting?
Which Excel file is being manipulated? Is there a relationship between the value
extracted from the web page and the value inserted into the spreadsheet cell?

This problem multiplies as bots become more complex and handle multiple
data sources. Data dependencies between operations are not visible, but can only
be uncovered incrementally by examining the configuration of each operation.

The example exhibits another peculiarity of data access in RPA: The “Get
Text From Element” and “Set Cell Value” operations are each preceded by oper-
ations that provide the appropriate data context for the operations to work in.
These preparatory operations determine the data on which the operations will
be performed, i.e., their input is not configured but determined by the context.

3 Conceptualizing Data in RPA Bots

To capture the dualism of data in RPA, the ontology of RPA operations and its
data relationships are refined and extended in the following.

Foremost, DataResource is introduced as an intermediate class between
CSO:Data and File, and TransientData as its sibling, representing internal
data. The more abstract DataResource class is intended to reflect that there are
more data sources than Files, like Databases or WebResources. DataResources
exist independently of RPA bots and can also be accessed by other services or
users. TransientData, on the other hand, only exists within the scope of the
bot instance and will be discarded when the bot instance terminates. It can be
further divided into SimpleTransientData, which represents data of primitive
types like strings, and ComplexTransientData, such as TabularData.
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The ORPAO already introduced the relations reads, writes, and
transforms as specializations of the generic CSO:accesses, connecting
RPAOperations and CSO:Data (cf. Sect. 2). With the newly introduced classes of
DataResources and TransientData, we can refine them to now hold between
AutomationOperations and DataResources. This complies with the definition
of AutomationOperations being the class of operations that can access data
outside the bot [11]. At the same time, focusing solely on read and write access
does not encompass the full spectrum of data access that services can typi-
cally perform, such as create, read, update, and delete (CRUD), and that can
also be implemented with RPA. Therefore, we first introduce two new relations,
creates and deletes, to be able to express that an operation creates or destroys
a DataResource.

Also, the different types of access to DataResources need to be extended
and detailed further. First, there are operations that can directly modify Data-
Resources in a persistent way, like AppendToFile. However, many operations,
such as those related to office or the browser, do not directly operate on the
data but on a working copy of it. For example, ExcelWriteCell requires that
an Excel workbook has been opened before to which it can write content, as
pointed out in Sect. 2. At the same time, only after an explicit save operation
(SaveWorkbook) has been performed, the change is persisted. Consequently, we
can observe additional subtypes of access related to these working copies:

provisions(New) describes that an operation provides a working copy
of the related (newly created) DataResource for the subsequent opera-
tions, e.g., OpenNewExcelWorkbook provisionsNew ExcelWorkbook. persists
describes that an operation saves the changes made to the provisioned
DataResource, like SaveWorkbook persists ExcelWorkbook. Finally, closes
describes that an operation destroys a working copy, such as CloseWorkbook
closes ExcelWorkbook.

Furthermore, we can specialize the relations reads and writes: Operations
that can access the resource directly without any preceding data provision-
ing are related to DataResources by directlyReadsFrom or directlyWrites-
To. For example, AppendToFile directlyWritesTo TextFile. In contrast, the
relations implicitlyReadsFrom and implicitlyWritesTo indicate that data
provisioning is required and thus that the data access is not performed directly
on the original resource. For example, ExcelWriteCell implicitlyWritesTo
ExcelWorkbook. Such implicit changes will be lost if not followed by a persists
operation.

As described in Sect. 2, the access relations in the ORPAO were already
associated with the notion of inputs and outputs using roles. We retain this
definition for the newly introduced specialized relations that reflect direct and
implicit access. Thus, given an operation and its relation to a DataResource, we
can deduce which data plays the role of an input for the operation and which
data is considered an output of the operation.
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Fig. 3. Updated abstract of important elements in the ORPAO (cf. Figure 1), including
the new main data classes and relations (depicted in black)

Next, the relations to TransientData are investigated. Similar to the read
and write relations, we introduce requires and yields to express that certain
TransientData plays the input/output role for a given RPAOperation.1

While *ReadsFrom/*WritesTo and requires/yields all represent the same
idea of inputs and outputs, there are important differences. The former
denote access of AutomationOperations to external data, i.e., they affect the
state of the computer outside the RPA bot. The latter represent the use of
bot-internal data, i.e., TransientData, by any RPAOperation. For example,
InternalOperations like MatchRegularExpression operate on internal data
and ControlFlowOperations may use them for decision-making.

The updated overview of the main concepts is shown in Fig. 3. The dif-
ferent relations between AutomationOperations and DataResources are sub-
sumed under a generic relation operatesOn, which replaces the previously used
CSO:accesses, since it now encompasses more concepts than just read and write.

Overall, using the new relations, we can express at a conceptual level what
type of access an AutomationOperation performs on which DataResources,
and if and how an RPAOperation works with TransientData, i.e., bot-internal
data. For example, ExcelReadCell implicitlyReadsFrom ExcelWorkbook
and yields StringTransientData. Consequently, it requires data in form of
an Excel workbook as input, and produces data in form of a string to be used
internally. As it performs an implicit access, it can be inferred that the oper-
ation reads the data from a working copy of the workbook which needs to be
provisioned before.

4 Visualizing Data in RPA Bot Models

To be able to model RPA bots based on the ontology of RPA operations, it
was extended in [12] by a mapping of its concepts to the meta-meta-model for
business process model languages created by Heidari et al. [3]. In order to model
and visualize the discussed data aspects, the newly introduced concepts must be
mapped to the meta-meta-model as well.

In general, the introduced concept of DataResources matches the concept of
DataStores in the meta-meta-model, since data can be read from or written to

1 The naming is inspired by the relations CSO:methodRequires and CSO:methodYields
that relate CSO:Methods with CSO:Data in the Core Software Ontology [6].
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Table 1. Mapping of ORPAO relations between AutomationOperations and Data-
Resources to process model patterns.

Relation Model Pattern
creates Task with DataStore as output
directly[ReadsFrom|WritesTo] Task with DataStore as

[input|output]
deletes No model concept for destructing

model elements
provisions Task with DataStore as input and

ProvisionedDataStore as output
implicitly[ReadsFrom|WritesTo] Task with ProvisionedDataStore as

[input|output]
persists Task with ProvisionedDataStore as

input and DataStore as output
closes No model concept for destructing

model elements

it, and it stores data permanently beyond the scope of the bot. But the concepts
in the meta-meta-model do not allow expressing different types of data access
beyond inputs and outputs. Thus, the finer-grained access types discussed before
cannot be expressed directly, such as the implicit access via provisioned data. To
address this issue, we differentiate between DataStores that represent the actual
data and ProvisionedDataStores, the provisioned version of it. They represent a
working copy of the data, e.g., created by opening a file in a software program.

Table 1 details the mapping of relations in the ORPAO between
DataResources and AutomationOperations to model patterns based on the
meta-meta-model. Due to the lack of data associations besides read and write in
the meta-meta-model, the relations creates and directlyWritesTo share the
same pattern. Still, both relations should be modeled to ensure the data-flow

Fig. 4. Exemplary RPA bot model with data annotations
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can be captured as detailed as possible and textual annotations could be used
for clarification.

TransientData is mapped to DataObjects, more specifically, to a DataOb-
jectInput if the TransientData is required by the operations and mapped to
DataObjectOutput in case the operation yields the data. Data objects in gen-
eral, also in the case of BPMN [7], represent data that only exists in the scope of
the (bot) process instance and is lost at instance termination. This corresponds
to the definition of TransientData as bot-internal, instance-specific data.

This definition also clarifies why the provisioned version of data is of type
DataStore and not DataObject. Even though they are not persisted, they still
exist outside the bot, such as an opened file in Excel that could remain open
after the bot terminated, or could be accessed externally as well.

The extended mapping is applied to the example bot model given in Fig. 2.
Figure 4 features the same process, now annotated with data information. As
there is no concept for the ProvisionedDataStores, the difference is marked
by italicizing the label. The model now shows which steps of the bot access
external data, and whether it is a direct access, like for AppendToFile, or
an indirect access, like SetCellValue. Moreover, it also visualizes the flow of
data in the model: The data extracted from the website “example.org” is first
internally manipulated by GetSubstring, further used to modify the Excel file
“newOrder.xlsx”, and later appended to the content of “orderList.txt”.

To reduce the complexity of the model, the concept of ContextContainers
introduced in [12] could be adapted, which allows subsuming operations that
handle the context for indirect operations and could thus help reduce the overall
model size and improve its clarity.2

5 Improving the Modeling of Bots by Considering Data

In the following, we outline possible applications of the introduced conceptual-
ization and visualization.

Currently, the configuration of an operation in a bot is often hidden, e.g., in
a sidebar. By using the semantic information provided by the ontology, the input
and output configuration for an operation could be automatically derived from
the visual bot model. For example, if an operation is connected to a data store
using a read association, it can be concluded that the modeled DataResource is
an input for the modeled operation. Consequently, the operation can be config-
ured accordingly, given that the actual data resource is referenced in a defined
way, such as using the label as in Fig. 4. However, it is important to note that
associations to ProvisionedDataStores do not result in a configuration, as these
operations depend on data provisioned before. Similarly, the model could be
automatically updated as soon as the input/output configuration of an opera-
tion is modified.
2 A model of the running example using these context containers and including

data can be found here: https://github.com/bptlab/onto-rpa-platform/raw/main/
components/data/figures/ContextContainerExample.svg.

https://github.com/bptlab/onto-rpa-platform/raw/main/components/data/figures/ContextContainerExample.svg
https://github.com/bptlab/onto-rpa-platform/raw/main/components/data/figures/ContextContainerExample.svg
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By leveraging ontological knowledge about the inputs and outputs of opera-
tions, the bot model repository can be searched for a specific data usage, such as
accessing a specific website or file, which can facilitate the maintenance of bots
in case a web service or file structure changes.

It also enables the application of well-established techniques for data-flow
analysis and error-detection in process models to RPA bot models, such as the
data validation problems described in [8,10]. In particular, problems such as
redundant data, where TransientData is written but never read; missing data;
or lost data, where data is overwritten without being read in between, are relevant
to RPA. Relevant in the context of RPA are also the problems of mismatched
data, i.e., the (in)compatibility of data structures produced as output and later
used as input, and inconsistent data due to concurrent data access.

In addition, RPA-specific data issues can be analyzed in the bot model. For
example, related to the concept of “working copies”, models can be checked for
missing context or lost changes, i.e., an implicit data access that is not preceded
by an appropriate provisioning step or that is not eventually persisted.

6 Conclusion

In this paper, we discussed the role of data in RPA services and their bot models,
and presented a corresponding extension to the ontology of RPA operations along
with a possible graphical representation for data in bot models. In addition to
the improved representation, it enables vendor-agnostic data-flow analysis that
can provide valuable insights and prevent errors. There are several aspects that
can be further developed in the future. For example, differentiating between
implicit and persisting accesses may help in error handling to determine which
changes have already been persisted and thus need to be reverted or compensated
for. Besides, the understandability and perceived usefulness of the approach by
users should be investigated, especially since the additional elements increase the
complexity of models. At the same time, different possible notations in addition
to the one outlined in the paper could be assessed.
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