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Preface

The 21st International Conference on Service-Oriented Computing (ICSOC 2023) took
place in Rome (Italy) from November 28 to December 1, 2023. ICSOC is the premier
international forum aiming at bringing together academics, industry researchers,
developers, and practitioners to report and share ground-breaking work in the area of
Service-Oriented Computing. It offers a top-tier platform for unveiling results
advancing our understanding of various aspects of the field. This includes everything
from application and system considerations to cutting-edge topics like artificial intel-
ligence, machine learning, big data analytics, the Internet of Things (IoT), and
emerging technologies such as quantum computing, blockchain, chatbots, and sus-
tainable green IT solutions. Reflecting upon the remarkable history of previous ICSOC
editions, including Trento (Italy, 2003), New York (USA, 2004), Amsterdam (the
Netherlands, 2005), Chicago (USA, 2006), Vienna (Austria, 2007), Sydney (Australia,
2008), Stockholm (Sweden, 2009), San Francisco (USA, 2010), Paphos (Cyprus,
2011), Shanghai (China, 2012), Berlin (Germany, 2013), Paris (France, 2014), Goa
(India, 2015), Banff (Canada, 2016), Malaga (Spain, 2017), Hangzhou (China, 2018),
Toulouse (France, 2019), Dubai (United Arab Emirates - virtual, 2020), Dubai (United
Arab Emirates - virtual, 2021) and Sevilla (Spain, 2022), ICSOC 2023 continued to
build for the next decade upon this rich tradition of excellence.

ICSOC 2023 followed the two-round submission and reviewing process introduced
in the previous two editions. Other than a traditional research track, it included four
tracks as they relate to service computing research: (1) Artificial Intelligence for Ser-
vices and as-a-Service, (2) Big Data Analytics for Services and as-a-Service, (3) Novel
Service Frameworks for IoT-based and Smart Environments, and (4) Emerging
Technologies. Each track was managed by a track chair, hence enhancing the quality
and rigor of the paper review process. The conference attracted 208 paper submissions
(29 received in the first round) co-authored by researchers, practitioners, and academics
from 30 countries across all continents. Three PC members carefully double-blindly
reviewed each paper submission, except for a small minority of papers (5%) with two
reviews. The reviews were followed by discussions moderated by a senior PC member
who made a recommendation in the form of a meta-review to the track chairs and PC
co-chairs. The PC consisted of 148 world-class experts in service-oriented computing
and related areas (131 PC members and 17 senior PC members) from different
countries across all continents. Based on the recommendations and the discussions, 35
papers (16.83%) were accepted as full papers. We also selected 10 short papers
(4.81%). In total, 12 of the 29 papers submitted in the first round were recommended
for resubmission with minor or major revisions, and 6 were accepted as full or short
papers. In addition, 4 papers were submitted to the industry track and 3 of them were
accepted as full papers.



The conference program also included three keynotes from distinguished
researchers:

– IoTility: Unleashing the Utility of Internet of Things through Microservices
Architectural Extensions, given by Abdelsalam (Sumi) Helal (University of Florida,
USA)

– Service Governance in a Transforming World - Challenges Ahead, given by Pablo
Fernandez (University of Seville, Spain)

– Logic, Automata, and Games in Service Composition, given by Giuseppe De
Giacomo (University of Oxford, UK)

Finally, tutorials, a Ph.D. symposium, a demo session and six workshops were
organized to broaden the scope of ICSOC 2023. The workshops were:

– The 7th Workshop on Adaptive Service-oriented and Cloud Applications (ASOCA
2023)

– The 3rd International Workshop on AI-enabled Process Automation (AIPA 2023)
– The 19th International Workshop on Engineering Service-Oriented Applications

and Cloud Services (WESOACS 2023)
– The 1st International Workshop on Secure, Accountable and Privacy-Preserving

Data-Driven Service-Oriented Computing (SAPD 2023)
– The 1st Services and Quantum Software Workshop (SQS 2023)
– The 1st International Workshop on Sustainable Service-Oriented Computing:

Addressing Environmental, Social, and Economic Dimensions (SSCOPE 2023)

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2023. We would like to thank all the authors and participants for
their insightful work and discussions. We are grateful to the members of the Senior
Program Committee, the international Program Committee, and the external reviewers
for their rigorous and robust reviewing process. We would like to express our gratitude
to the area chairs Fabio Patrizi, Dan Li, Francesco Leotta, and Juan Manuel Murillo
Rodriguez, for their tremendous support throughout the review process. ICSOC 2023
paper management was performed through the Conftool Conference Management
System.

We would like to thank the ICSOC Steering Committee for entrusting us with
organizing the 21st edition of this prestigious conference. We are grateful to all the
members of the Organizing Committee and to all who contributed to make ICSOC
2023 a successful event. We are indebted to the local arrangements team from Sapienza
Università di Roma for the successful organization of all conference, social, and co-
located events, and to Consulta Umbria who acted as organizing agency. We also
acknowledge the prompt and professional support from Springer, who published these
proceedings as part of the Lecture Notes in Computer Science series.

November 2023 Massimo Mecella
Stefanie Rinderle-Ma
Antonio Ruiz Cortés

Zibin Zheng
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Abstract. Artifact-driven process monitoring is an effective technique
to autonomously monitor business processes. Instead of requiring human
operators to notify when an activity is executed, artifact-driven process
monitoring infers this information from the conditions of physical or vir-
tual objects taking part in a process. However, SMARTifact, the exist-
ing monitoring platform implementing this technique, has been designed
to run entirely on edge devices, each of which can monitor only one
execution of the process. Thus, monitoring multiple executions at the
same time, or reducing the computational requirements of edge devices
is not possible. In this paper, we introduce a new artifact-driven monitor-
ing platform that overcomes these limitations and makes artifact-driven
monitoring fully scalable.

Keywords: Process monitoring · Scalability · Fog computing

1 Introduction

Business Process Management is the discipline devoted to oversee how orga-
nizations perform their work [4]. In particular, process monitoring focuses on
gaining insights on how business processes - a set of activities to be performed
to achieve a certain goal and the dependencies among them - are performed.
This is particularly relevant for so-called multi-party business processes, which
require multiple organizations to take part in the same process and to coordi-
nate their activities. In this setting, being able to promptly identify any issue
with respect to the planned behavior makes possible for the involved parties to
quickly react and take countermeasures.

Among the existing process monitoring techniques, artifact-driven process
monitoring [12] is one of the few that specifically targets multi-party business
processes. By collecting and processing information coming from physical and
virtual objects participating in a process, artifact-driven process monitoring can
autonomously identify when activities are executed. Also, by relying on a declar-
ative language named Extended-GSM (E-GSM) to represent the process to moni-
tor, artifact-driven monitoring can immediately detect discrepancies between the
planned process and the actual execution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14420, pp. 3–12, 2023.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48424-7_1&domain=pdf
http://orcid.org/0000-0002-9551-1860
https://doi.org/10.1007/978-3-031-48424-7_1


4 G. Meroni and S. Garda

Despite the advantages brought by artifact-driven process monitoring,
SMARTifact, the existing monitoring platform implementing this approach lim-
its its applicability to specific cases. In particular, SMARTifact has been designed
to be executed entirely on edge devices (that is, the physical objects in the pro-
cess). Also, each device can only monitor one execution of the process. If two
executions are running, they must be monitored by two distinct devices. Sec-
ondly, SMARTifact maintains the monitoring information on the device and in
memory. Therefore, if the device experiences a malfunctioning or simply it runs
out of battery, all monitoring information is lost.

In this paper we introduce a new monitoring platform, based on the fog
computing paradigm, that aims at overcoming the limitations of SMARTifact. In
particular, this platform is specifically designed with scalability in mind, making
possible to monitor a virtually unlimited number of parallel process executions.

This paper is structured as follows. Section 2 introduces artifact-driven pro-
cess monitoring and the architecture of SMARTifact. Section 3 discusses the
limitations of SMARTifact and identifies a set of requirements that need to
be addressed. Section 4 presents the architecture of our monitoring platform.
Section 5 discusses how our platform has been validated. Section 6 surveys the
state of the art for related work. Finally, Sect. 7 draws the conclusions and outline
possible future work.

2 Baseline

To make this paper self-contained, a brief discussion on how artifact-driven mon-
itoring works, and on the architecture of the SMARTifact platform is provided
in this section. The reader should refer to [12] for further details.

2.1 Artifact-Driven Process Monitoring

Traditional process monitoring techniques assume that, whenever an activity in
a process is executed, an event is always produced. This can be relatively easily
achieved when activities are at least partially automated. However, when manual
tasks - activities performed by humans without interacting with a computer - are
present in the process, events must be manually sent by the operators responsible
for the manual tasks and, as such, they are prone to be forgotten or delayed.
In addition, most monitoring techniques can detect discrepancies between the
expected execution and the actual one only after the execution is complete.

To address these limitations, artifact-driven process monitoring has been pro-
posed. this approach assumes that, whenever an activity is executed, it alters the
conditions of one or more physical or virtual objects, named artifacts, that take
part in the process. Therefore, by monitoring the conditions of these artifacts
during a process execution, it is possible to infer when activities are executed
without relying on explicit events.

In order to detect and react to violations, artifact-driven process monitoring
represents the process to monitor with a declarative language named E-GSM.
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Fig. 1. E-GSM model of LHR-AMS, and monitoring results of an incorrect execution.

In a nutshell, E-GSM represent activities and process portions as stages, which
are assessed according to three perspectives: status, compliance, and outcome.
The status of a stage can be unopened, opened or closed, indicating that the
corresponding activity or process portion was never executed, is running, or is
complete. The compliance can be onTime, outOfOrder or skipped, indicating
that the activity or process portion follows the process model, has been exe-
cuted when it should not, or has not been executed when it should. Finally, the
outcome can be regular or faulty, indicating that the activity or process portion
was correctly performed, or that something went wrong while it was running.
When the process starts, all stages are unopened, onTime, and regular. Stages
can be decorated with data flow guards, process flow guards, milestones and fault
loggers. Data flow guards and milestones specify the conditions on the artifacts
that cause the decorated stage to become, respectively, opened or closed, deter-
mining the status. Process flow guards specify control flow dependencies (i.e.,
which other stages should be executed before the decorated stage), determining
the compliance. Fault loggers specify the conditions on the artifacts that cause
the stage to become faulty, determining the outcome.

To better understand E-GSM, Fig. 1 shows how it can be used for representing
and monitoring the following process. A truck driver is expected to start the
process in the LHR airport, and to drive to the coast. Once it reaches it, the
driver has to take the Channel tunnel, and finally to drive to the AMS airport.
If we consider a process execution where, instead of taking the Channel tunnel,
the truck driver takes a ferry, stops before reaching the AMS airport and opens
the container, an E-GSM engine will be able to detect activity drive to coast as
closed, since it completed its execution, onTime, since it was the first activity
to be executed, and regular, since the container was never dropped while the
activity was running. The engine also will detect take tunnel as unopened, since
it was never executed, skipped, since it was not executed after drive to the coast
ended, and regular. Finally, the engine will detect drive to AMS as opened, since it
is still running, outOfOrder, since it was executed before take tunnel, and faulty,
since the container was dropped while the activity was running.
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Fig. 2. Architecture of the SMARTifact platform.

2.2 SMARTifact

Originally known as mArtifact [1], SMARTifact is one of the first artifact-driven
process monitoring platforms in the literature. Specifically targeting processes
involving physical artifacts, SMARTifact has been designed to run on edge
devices (e.g., single-board computers) attached to these artifacts. Its architec-
ture, as shown in Fig. 2, consists in the following components deployed on each
edge device:

On-Board Sensor Interface. This component is responsible for collecting
data from the sensors installed on the edge device attached to a physical artifact.

Event Processor. This component is responsible for aggregating and pro-
cessing sensor data, in order to determine when the conditions of the attached
artifact change.

Events Router. This component is responsible for sending changes in the
conditions of the attached artifact to the other edge devices taking part in the
same process execution. The events router is also responsible for receiving from
the other edge devices changes on the conditions of the other artifacts in the
same process execution.

E-GSM Engine. This component contains the E-GSM model of the process to
monitor. It is responsible for evaluating the data flow guards, process flow guards,
milestones and fault loggers of all stages whenever a change in the conditions of
one of the artifacts in the process is detected. It also exposes a Representational
State Transfer (REST) Application Programming Interface (API) outside the
edge device, which is used to configure the edge device (e.g., by providing the
E-GSM model of the process to monitor) and to retrieve information on the
process being monitored (e.g., the value of the status, compliance and outcome
perspectives for each stage).
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To communicate with each other, edge devices rely on an Message Queue
Telemetry Transport (MQTT) broker. MQTT is a publish-subscribe pro-
tocol specifically designed for Internet of Things (IoT) applications. Being a
message queue-based protocol, MQTT completely decouples the state of the
sender with the recipient.

3 Application Requirements

Despite having proven to be effective in some scenarios, such as smart logistics,
SMARTifact suffers from some limitations. Firstly, with the exception of the
MQTT Broker, all components are meant to run on an edge device. Although sin-
gle board computers capable of running SMARTifact are relatively inexpensive,
their size and power consumption can be a limiting factor for some processes.
For example, although SMARTifact can monitor the conditions of a shipping
container and its content, it cannot individually monitor the conditions of each
package in the container. To address this issue in our platform, we define the fol-
lowing application requirement. AR1: Edge devices should only run components
needed to process data they directly collect.

Another limitation of SMARTifact is the inability, for an edge device, to
monitor multiple executions of the same process at the same time. This lim-
itation comes from the E-GSM Engine, which is capable of running only one
instance of the process to monitor, and makes SMARTifact unsuited to monitor
process executions that share the same artifacts. For example, suppose that a
truck is shipping two containers that have to be delivered in two different places.
Then, the E-GSM Engine running on the truck will consider the two containers
as participants of the same execution, rather than to two distinct executions. To
address this issue in our platform, we define the following application require-
ment. AR2: the platform should allow monitoring multiple instances of the same
process at the same time.

Fig. 3. Architecture of our platform.

4 Proposed Solution

To address the requirements identified in Sect. 3, the architecture shown in
Fig. 3 has been designed. This architecture reuses and, when needed, adapts the
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components present in SMARTifact. In addition, new components and interfaces
are introduced.

To address AR1, this architecture embraces the fog computing paradigm [15].
Only the On-board Sensor Interface and the Events Processor are deployed on
the edge devices, since they are responsible for processing data created on that
device. To accommodate this change, the Events Processor no longer communi-
cates changes in the condition of the artifact to Events Router directly. Instead,
it publishes them to an MQTT topic. Therefore, it requires an MQTT interface
to the MQTT Broker.

To address AR2, the E-GSM Engine and the Events Router are moved inside
the Engine Worker component, which is deployed in a cloud environment. To
achieve vertical scalability, a software wrapper has been built around the E-
GSM Engine, making it multi-instance. Also, to achieve horizontal scalability,
the Engine Worker is deployed inside a container, making it easy to deploy
multiple instances of this component.

The Supervisor and Front-end Application components have also been
introduced. These components are deployed in a cloud environment as well. The
Supervisor keeps track of which Engine Worker instances are in charge of mon-
itoring a specific process execution. It also instantiates, monitors, and destroys
Engine Worker instances when needed. The Front-end Application is a web appli-
cation that allows the user to interact with the monitoring platform. By com-
municating with the Supervisor through WebSocket, the Front-end Application
can know which process executions are monitored and by which Engine Worker.
By communicating with the Engine Worker through a REST API, the Front-end
Application can pull monitoring information on-demand, and show them to the
user. With the exception of the Front-end Application, all components commu-
nicate through the MQTT broker. This makes possible for the components to
communicate with each other even if some of them change address, new instances
are instantiated, or unneeded instances are destroyed.

5 Evaluation

To evaluate our solution, we implemented a prototype of the monitoring plat-
form1. Since the E-GSM Engine and the Events Router were originally built
in Node.js, and we planned to extend them rather than to rewrite them, the
Engine Worker was implemented in Node.js. Also, since Node.js was proven to
be resource efficient and easy to port across different environments, and it also
provided native support for MQTT, we adopted this programming language
also for the Supervisor. The Front-end Application was built in Angular, due
to the availability of many data visualization libraries and the tight synergy
with Node.js. Like in SMARTifact, we implemented the Events Aggregator with
Node-red. Also, to simulate the On-board Sensor Interface, we adopted the sim-
ulator that was used by the authors of SMARTifact to test it, which generates

1 Source code available at https://github.com/eGSM-platform.

https://github.com/eGSM-platform
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sensor data from low-level logs. Finally, to deploy the components composing
the architecture, we adopted Docker.

To assess how our solution performs in terms of scalability, we compared the
memory usage of the Engine Worker components with the one of SMARTifact. To
this aim, we initiated an instance of the Engine Worker with a maximum engine
limit set to 10. We then proceeded to instantiate and monitor 20 instances of an
extended version the LHR-AMS process - which was also used to validate the
original version of SMARTifact [12] - 10 of which were compliant and 10 non
compliant. As we reached a total of 10 running process instances, we initiated
another Engine Worker and continued creating engines until we reached a total of
20 running engines. In order to draw a meaningful comparison with SMARTifact,
we enclosed the Event Router and the E-GSM of that platform inside a container.
We then deployed 20 instances of that container, and we measured the total
memory usage and the time to start monitoring a new execution. The results of
this comparison are presented in Fig. 4.

Fig. 4. Memory usage of our solution compared to SMARTifact.

As shown in this figure, the usage of Engine Worker components led to a
substantial reduction in memory usage when compared to the individual deploy-
ment of SMARTifact instances. The disparity in memory utilization becomes
more pronounced as the number of process executions increases. With SMAR-
Tifact, monitoring a new execution requires creating two instances of the Event
Router and the E-GSM Engine. In contrast, the Engine Worker implementation
only adds a negligible amount of data to its internal data structures. This is also
the reason why our solution is faster at starting to monitor a new instance. Com-
pared to SMARTifact, which requires on average 76 ms, our solution requires
only 28 ms. When the maximum engine limit is reached and an additional Engine
Worker is instantiated, memory utilization doubles. Nevertheless, even consid-
ering this spike, the memory usage of the Engine Worker remains significantly
lower than SMARTifact. This trend is expected to persist as the number of
engines continues to increase.
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Finally, to verify that no side-effects in process monitoring were introduced
in our platform, we compared the monitoring results with the ones obtained by
SMARTifact and ensured they were identical.

6 Related Work

Several solutions for runtime business process monitoring exist in the literature.
In [2,16], a Complex Event Processing (CEP) engine is adopted to determine
if an execution deviates from the expected behavior. Similarly, [13] proposes an
alternative platform to detect deviations as soon as they occur. However, all
these approaches rely on high-level events explicitly indicating that an activity
has started or completed its execution. Therefore, they cannot autonomously
infer when activities are running.

To address this limitation, [6,7,14] rely on IoT data to infer when activi-
ties are running. [3] focuses on monitoring multi-party business processes. The
authors assume that monitoring services are available for each participant, and
propose an algorithm to optimize them. It is worth noting that all these solutions
are unable to handle deviations from the expected execution.

To handle flexibility in process execution, several architectures relying on
artifact-driven process models have been introduced. In [5,8] the authors present
a platform for process execution. Similarly, [11] introduces a service-oriented soft-
ware architecture to integrate business artifacts with social media. [9] presents a
platform aiming at optimizing scalability. However, all these solutions are mainly
focused on process execution, rather than monitoring.

An artifact-driven monitoring platform is introduced in [10]. Despite allow-
ing for greater flexibility than monitoring platforms relying on imperative pro-
cess models, this platform still requires the process to behave as specified in
the process model. Therefore, it is unable to handle deviations. To our knowl-
edge, SMARTifact [1] is the only artifact-driven monitoring platform capable of
detecting and reporting deviations from the expected execution.

7 Conclusion and Future Work

In this paper we presented an artifact-driven monitoring platform capable of
handling a virtually unlimited number of process executions. By leaving on edge
devices only the components responsible for creating and processing data gener-
ated by these devices, it is possible to significantly reduce their computational
requirements. Thus, our platform can monitor processes involving small and
inexpensive physical objects.

A limitation of the current platform is the lack of security mechanisms in
the communication between edge devices and components running in the cloud.
Future work will focus on introducing authentication and encryption mechanisms
in the communication protocol. We also plan to more extensively validate the
platform with real-world use cases.
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Abstract. Process event logs record information about the execution of
the activities of a business process. Process mining techniques use these
event logs to discover, analyze, and optimize business processes. Process
mining tools offer many functionalities such as data filtering, process
discovery, process visualization, or conformance checking. Process visu-
alization is generally based on Directly-Follows Graphs (DFGs), where
each node represents an activity of the process, and each transition rep-
resents a directly-follows relation between nodes (activities). A workflow
frequently followed by process mining analysts involves manually com-
paring the DFGs of different event log subsets (e.g., subsets belonging
to different product categories in a purchase-to-pay process) to identify
patterns or behaviors in the process data (e.g., delays in process exe-
cution). However, performing this type of analysis with current process
mining tools is usually a time-consuming task, especially if the number
of event log subsets analyzed is large. This research aims to address this
limitation by presenting LoVizQL, a query language to obtain collections
of DFGs that meet specific user-defined conditions in the queries. The
language is evaluated using reports belonging to various Business Process
Intelligence Challenges. The evaluation demonstrates that LoVizQL cov-
ers analyses found in real scenarios and reduces the effort to find specific
subsets of event log data and their corresponding DFGs.

Keywords: directly-follows graph · process analysis · query language ·
LoVizQL · process mining

1 Introduction

Process mining techniques use event logs to discover, analyze, and optimize busi-
ness processes [1]. Event logs record information about the execution of the activ-
ities of a business process. They typically follow a standardized structure based
on the eXtensible Event Stream (XES) format [7]. In an XES log, every process
instance (or case) corresponds to a sequence (trace) of recorded entries, namely,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Examples of DFGs

events. Events are usually characterized by three attributes: case id, activity
name and timestamp. The case id uniquely identifies the process instance to
which the event belongs. The activity name is the identifier of the respective
activity. The timestamp indicates the exact time at which that activity instance
was executed [7]. Events can have other attributes, such as the person that per-
formed the activity (i.e., resource), the department related to that resource (i.e.,
organizational unit), or more generic attributes (e.g., cost).

There are many commercial tools for the practice of process mining (e.g.,
Disco and Celonis). These tools usually incorporate functionalities for data fil-
tering, process discovery, conformance checking, trace clustering, performance
reporting, and process visualization, among others. Regarding process discov-
ery and visualization, most process mining tools use Directly Follows Graphs
(DFGs) to explore event data. A DFG of an event log (also called process map)
is a graph where each node represents an activity of the process, and each tran-
sition represents a directly-follows relation between nodes (activities) [7]. Both
nodes and transitions can be associated with different metrics, such as the num-
ber of traces in which they occur (case frequency) or the average time spent in
a node or a transition (average cycle time). Examples are shown in Fig. 1.

DFGs can be used for many types of analyses. Among them, as observed
in previous work [3,10], a frequent workflow followed by analysts involves com-
paring different subsets of cases (e.g., cases grouped by product category of a
purchase-to-pay process) to identify patterns or behaviors in the process data
(e.g., cases that contain transitions with an unusually high cycle time). Per-
forming this type of analysis with current process mining tools is usually a time-
consuming task that involves many steps. First, the analyst filters the event log to
keep the cases related to one product. Then, the analyst configures and explores
the DFG to find insights related to those cases. Finally, the analyst repeats the
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same process for all of the products, which may be dozens or hundreds, usually
comparing the DFGs with each other or with a pattern the analyst is interested
in (e.g., transitions with a high cycle time). This comparison is usually performed
applying filters back and forth because most process mining tools can visualize
only one process at a time. For example, Disco does not provide the capability
to display two DFGs simultaneously, and Celonis only allows comparing cases
with similar sequences of activities (i.e., process variants).

In this paper, we aim to support the analyst when performing this type
of tedious analysis by developing Log data Visualization Query Language
(LoVizQL), a query language to obtain collections of DFGs that satisfy certain
conditions desired by the user. It is inspired by the Zenvisage Query Language
(ZQL) described in [17]. The goal of ZQL is to automatically find desired visual
patterns in collections of visualizations obtained from generic datasets. Each
query produces a collection of visualizations (e.g., line charts that represent
sales per year for all products sold by an organization), and selects those that
fulfill specific conditions (e.g., line charts of products with increasing trends of
sales per year). Instead of obtaining general visualizations from generic datasets,
LoVizQL is better suited for manipulating event logs, generating DFGs, and per-
forming operations to calculate properties related to them. Using our approach
the user can discover process insights without manually manipulating the event
log, exploring the data, and comparing the various visualizations that are gener-
ated during the analysis. For example, in one single LoVizQL query, the user can
filter the log traces by each organizational unit involved in the process, obtain
the corresponding DFG for each data subset, and search for those DFGs in which
the rework of the activities is higher than the average. Existing query languages
in the process mining domain lack of a DFG-based functionality and do not
support iterative filtering of event log data based on user-defined conditions.

We have evaluated LoVizQL by studying the analyses found in reports sub-
mitted to the Business Process Intelligence Challenges (BPICs). BPIC is an
annual contest where a real event log is provided by an organization along with
business questions, and the BPIC participants must send a report analyzing
that event log to answer them. Our evaluation shows that the type of analy-
sis addressed in this paper is used in a wide variety of real scenarios and that
LoVizQL reduces the effort to perform these analyses compared to using existing
tools.

The paper is structured as follows. Section 2 describes LoVizQL’s syntax
and semantics. Section 3 provides details about the evaluation of the language.
Section 4 outlines the literature related to this work. Section 5 summarizes the
conclusions drawn, limitations and future work.

2 Log Data Visualization Query Language (LoVizQL)

LoVizQL aims to obtain collections of DFGs that contain insights of a pro-
cess without manually applying several manipulation actions and comparisons
between visualizations. The queries of LoVizQL are represented as tables as
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Fig. 2. Query language steps

depicted in Table 1. Each query row specifies and selects a collection of DFGs.
The fields are used to specify the characteristics of each collection of DFGs across
four main groups of fields: the query identifier (Name), the data manipulation
properties (Filter), the DFG creation (Nodes, Metrics, %P and %A), and the
operation applied to the collection of DFGs to select those of interest (Selection).

Figure 2 depicts the main steps of the execution of each query row. All query
rows are executed iteratively. The query row receives as input an event log. In the
first step (Filter), event log subsets are created by filtering operations defined by
the user. For instance, in the first row of Table 1, the event log is filtered by each
value of the event attribute “case:parts", resulting in a collection of event log
subsets, one for each value of the attribute. In the second step (DFG creation),
a DFG is created for each event log subset according to the properties defined
in the query row. Following up the example of Table 1, the corresponding DFG
for each filtered subset is created using absolute frequency as a metric in the
DFGs. In the third step (Selection), users can define selection conditions related
to DFG properties or metrics to find specific DFGs. For instance, in the example
of Table 1, the two DFGs with the maximum number of nodes are selected. Note
that the result of the selection is not applied to the collection defined in the first
row. Instead, the selected collection of DFGs is stored in a variable v2 that is
used in the second row to obtain the collection of DFGs that meet the selection
condition (cf. Sect. 2.2 for more details). Once all the query rows have been
executed, the collection of DFGs of the rows selected as output (marked with
an asterisk) are displayed, and the user can inspect them. Next, we describe the
syntax of each of the fields and the semantics of the language.

2.1 Syntax

Name. This field uniquely identifies the collection of DFGs specified in each row
of the query so that it can be referred to in the Selection field. For instance, in the
first row of Table 1 a collection of DFGs named f1 is obtained. This collection is
then used as input to the function numberOfNodes() in the Selection field. The
Name field also specifies which collections of DFGs are part of the output of the
query by adding an asterisk before the name like in *f2 in Table 1.
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Table 1. Example of query

Name Filter Nodes Metrics %P %A Selection

f1 [Mandatory]
v1<-
“case:parts”.*

Absolute
Frequency

v2<-
argmaxv1(k = 2)
numberOfN-
odes(f1)

*f2 [Mandatory]
v2

Absolute
Frequency

0.1 0.1

〈Filter〉 ::= ‘[’〈Filter type〉‘]’ 〈Attribute and values〉
〈Filter type〉 ::= ‘Mandatory’ | ‘Forbidden’ | ‘Keep Selected’ | ‘Directly Followed’

| ‘Eventually Followed’ | ‘Keep Selected Fragments’

〈Attribute and values〉 ::= ((〈Var〉 ‘<-’)? 〈Attribute〉‘.’〈Values〉) | 〈Var〉
〈Attribute〉 ::= 〈Value〉 | 〈ValuesList〉
〈Values〉 ::= 〈Value〉 | 〈ValuesList〉 | 〈ValuesOR〉 | ‘*’

〈ValuesList〉 ::= ‘[’〈Value〉(‘,’〈Value〉)+‘]’

〈ValuesOR〉 ::= 〈Value〉(‘OR’〈Value〉)+
〈Value〉 ::= 〈String〉
〈Var〉 ::= ‘v’〈Digit〉
〈Digit〉 ::= (‘0’..‘9’)+

Grammar 1. Filter’s specification in EBNF. <String> is a sequence of alphanumerical
characters enclosed between quotes that can contain white spaces (e.g., ‘Send submis-
sion’), ? denotes that a symbol can appear zero times or once, + denotes that a symbol
can appear one or more times, and | is the OR operator.

Filter. This field allows the user to specify the filters to be applied to the event
log, such as a filter by attribute value. The language also allows users to carry
out multiple consecutive filters by adding additional filter fields (e.g., Filter 1,
Filter 2, ..., Filter N ). The result of each filter field can be a subset of the event
log or a collection of subsets (i.e., groupings of events). The syntax of this field
is described in Grammar 1 using the Extended Backus-Naur Form (EBNF) [20].
As defined in <Filter type>, LoVizQL offers three filter types related to event
attributes and three based on the process control flow, which are those most fre-
quently available in commercial process mining tools. However, new filter types
can be added. Attribute-based filters include Mandatory, which allows users to
keep sets of traces containing specific attribute values; Forbidden, which does
exactly the opposite, i.e., it is used when users want to filter out traces that
contain one or more values of a concrete attribute; and Keep Selected, which is
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used to maintain the events with the selected values of attributes. To specify a
filter for each value of an attribute, the character * is used in the <Values> part,
as shown in Table 1, where the events in the event log are grouped by each value
of the attribute “case:parts”. Regarding process control flow filters, the three
types (Directly Followed, Eventually Followed, and Keep Selected Fragments) fil-
ter the traces by the existence of a process fragment, i.e., a part of the process
that occurs between two activities given by the user. The syntax used is [Filter
type] ‘activity name attribute’.[‘ActivityA’, ‘ActivityB’]. For instance, [Directly
Followed] ‘concept:name’.[‘Registration’, ‘Payment’] filters the cases where these
two activities occur directly after each other1. Eventually Followed filters cases
with a sequence of events without requiring consecutive occurrences. Finally,
Keep Selected Fragments is used to filter the events that occur between two spec-
ified activities. Furthermore, LoVizQL supports the use of variables (<Var>) to
store attributes and their values for future reuse, following the structure “vari-
able <- results”. For instance, in Table 1, v1 stores all the values of the event
attribute “case:parts” in the event log.

DFG Creation. This group of fields specifies the characteristics of the DFGs
to be generated. In the Nodes field, the user specifies the event attribute used
as nodes in the DFGs. If empty, activity names are used as nodes by default.
Next, in the Metrics field, the user specifies the metrics that are associated to
nodes, transitions, and the whole DFG. Typically, metrics can be divided into
two categories: frequency and performance. Frequency metrics include Absolute
Frequency, or Max Repetitions, among others. For instance, Absolute Frequency
indicates how many times a node and a transition occur, ignoring repetitions
within the same case. Performance metrics include some statistics of cycle time,
such as Mean CT, which annotates each transition with the average time between
the occurrence of the two activities of the transition, and the complete DFG
with the average cycle time of the entire process. In any case, the set of available
metrics is open and can be extended by the user. Finally, in the %P and %A fields
the user can set thresholds to abstract the number of activities and transitions
displayed in the DFGs. The values range from 0 (to show only the activities and
paths from the most frequent process variant) to 1 (to display all activities and
paths). If no values are specified, 1 is taken by default in both fields.

Selection. This field specifies a user-defined condition to select a subset of the
collection of DFGs. Consider Table 1. As aforementioned, the goal of Selection
in the first row is to identify, from the collection of DFGs generated by each
value of the event attribute “case:parts”, the two values with the highest number
of activities (nodes) in their DFGs. To achieve this, it is necessary to iterate
over the collection of DFGs stored in f1 and find the two DFGs that meet
the specified conditions, specifically, those with the maximum number of nodes.
Thus, this field allows the definition of an optimization function according to
the EBNF syntax described in Grammar 2. The <Optimization> parameter

1 According to the XES standard, “concept:name" refers to the activity names.
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〈Selection〉 ::= 〈Optimization〉 〈Var〉+ 〈Condition〉 〈Expr〉

〈Optimization〉 ::= ‘argany’ | ‘argmax’ | ‘argmin’

〈Condition〉 ::= ‘(’〈Limiter〉‘)’
〈Limiter〉 ::= ‘k = ’〈Digit〉 | ‘t > ’〈Digit〉 | ‘t < ’〈Digit〉
〈Expr〉 ::= 〈Function〉‘(’〈Param〉‘)’ (〈Operator〉 〈Function〉‘(’〈Param〉‘)’)*
〈Param〉 = 〈Id〉 | 〈Digit〉‘,’〈Id〉
〈Function〉 ::= 〈String〉
〈Operator〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈Var〉 ::= ‘v’〈Digit〉
〈Id〉 ::= ‘f’〈Digit〉
〈Digit〉 ::= (‘0’..‘9’)+

Grammar 2. Selection’s specification in EBNF

can be argmin, argmax, or argany to find the minimum, maximum, or any value
that satisfies a condition, respectively. The <Condition> parameter limits the
number of results: k = N returns the top k values, and t>R or t<R returns values
greater than or lesser than a threshold value. The <Var> parameter serves as
an iterator over a collection of DFGs. Finally, in <Expr>, the user indicates a
collection of DFGs (<Id>) and the function (<Function>) they want to apply
to this collection of DFGs to obtain specific properties on the DFGs based on the
metrics associated with them. Functions can be combined, such as finding the
difference between applying a function to one collection of DFGs and another
(functionA(f2) - functionA(f1)), or the sum of the results from two functions
on the same collection (functionA(f1) + functionB(f1)). Some examples of
these functions are meanNodes() or maxEdges(), which return the average value
of the metric of the nodes or the maximum value of the transitions, respectively.

2.2 Semantics

To formally describe the semantics of LoVizQL, we introduce some formal defi-
nitions and an algorithm that reflects how the processing of a query takes place.
We assume the existence of these sets: C is the set of case identifiers, A is the set
of activity names, Att is the set of attribute names, T is the set of timestamps,
and V is the set of attribute values.

Definition 1 (Event and event log). An event is a tuple (c, a, t, p) where
c ∈ C indicates to which case the event belongs, a ∈ A is an activity name, t ∈ T
is a timestamp that indicates when exactly the event occurred, and p ∈ Att � V
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is a partial function that assigns a value to each attribute name. An event log L
is a nonempty finite set of events. UL is the universe of all possible event logs.

Definition 2 (Directly-Follows Graph). A Directly-Follows Graph (DFG)
is a tuple (A, T,M) where:

– A ⊆ A ∪ V ∪ {start, end} are nodes, where start and end are special nodes
that are typically used to represent the beginning and the end of the process.

– T ⊆ A × A are transitions.
– M is a set of metric functions m : A ∪ T ∪ {◦} � R that assign a metric

value to nodes, transitions, or the whole DFG, represented by ◦.

UDFG is the universe of all possible DFGs.

Next, we define several key concepts of the semantics of a LoVizQL query.
We start with the iteration function, which provides semantics to the variables
vx used in the query:

Definition 3 (Iterator Function). An iterator function is a partial injective
function defined as follows: it : (Att � V) � UL∪UDFGs. This function maps a
given assignment of values to attributes (Att � V) to a log or DFG. Its inverse
function is defined as it−1. Uit is the universe of all possible iterator functions.

For example, consider the query represented in Table 1, specifically, consider the
first row (f1) and suppose that the attribute case:parts has two values a and b. In
this case, an iterator function (itv1) for variable v1 would map {(case : parts, a)}
to the DFG obtained from the events where case:parts is a, and {(case : parts, b)}
to the DFG obtained from the events where case:parts is b. Using the iterator
function, we can define the semantics of each of the variables used in the queries
by mapping each variable id to an iterator function:

Definition 4 (Variable Mapping). Let Uvid be the universe of all possible
variable ids. A variable mapping vmap is a set of tuples (v, it) ∈ Uvid × Uit that
assigns a variable id to an iterator function. Let x = (v, it) be a set of tuples
with a variable v and an interator function it, we use xv and xit to refer to v
and it. Uvmap depicts the universe of all possible variable mappings.

Following up on the previous example, the pair (v1, itv1) would map variable v1
to its iterator function defined in the Filter field.

In addition to defining variables, each query row names a collection of DFGs.
This can be captured as follows:

Definition 5 (Collection Mapping). Let Ufid be an universe of all possi-
ble row names. A collection mapping cmap is set of tuples (n, c, v) ∈ Ufid ×
P(UDFGs) × P(Uvid) that assigns a name to a collection of DFGs and speci-
fies the iterators of that collection. Ucmap represents the universe of all possible
collection mappings.
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For instance, the first row of Table 1 specifies the mapping (f1, c, {v1}), where
f1 is the name of the row, c is the collection of DFGs specified in the row, and v1
is the variable identifier that iterates over that collection. Using these definitions,
we can define a query in LoVizQL.

Definition 6 (Query row). A query row is a tuple (n, f, g, s), where n ∈ Ufid

is the name of the row specified in the row field and f, g, s are three functions
defined as follows:

– Filter function (field Filter): f : UL × Uvmap → P(UL) × ((Uvid × Uit)∪ ⊥)
receives an event log L and a vmap that represents the variables vx defined in
the previous rows of the query and returns a set of event logs that are subsets
of L and (Uvid × Uit)∪ ⊥ represents the variable vx and its iterator function
assigned to the output of the filter or ⊥ if no variable is assigned.

– DFG creation function (fields Nodes,Metric,%A,%P ): g: UL → UDFG

receives an event log and returns a DFG of the event log.
– Selection function (field Selection): s : Ucmap×Uvmap → Uvid×Uit receives a

collection mapping and a variable mapping and returns a variable ids assigned
to its corresponding iterator.

Definition 7 (Query). A query Q is a tuple (O,R), where O represents the
outputs as a set of row names (O ⊆ Ufid), and R is a sequence of rows such
that O ⊆ {n ∈ Ufid|(n, z, g, s) ∈ R}.

For instance, in Table 1, O is f2, and R is the two rows of the table.
The execution of a query is represented in Algorithm 1, whose input is an

event log L and a query Q (line 1) and the output is a collection of DFGs (line
2). The process starts by creating the variable and collection mappings (lines 3
and 4). Then, each row of the query is processed as follows (line 5). First, the
filter function of the query receives the log and the variable mapping (line 6) and
returns a collection of event log subsets called logCol and, optionally, a variable
id together with its iterator function. Then, a collection of DFGs (dfgCol) and
a DFG iterator function (dfgIt) are created (line 7). For each event log subset
logCol (line 8), a DFG is generated with the g function of the query (line 9) and
it is added to the collection of DFGs of the query (line 10). In addition, if the
filter returned a variable id (line 11), the DFG iterator function is updated to
refer to the created DFG (line 12). After processing all event log subsets, if the
filter returned a variable id (line 15), both vmap and cmap are updated (lines
16–17). Otherwise, a tuple with n, dfgCol is added to cmap (line 19). Finally if
the selection function is defined, (line 21), it is executed and the result is added
to vmap (line 22). Finally, the collection of DFGs is returned (line 25).

3 Evaluation

The evaluation performed aims to show that (i) LoVizQL successfully addresses
typical analyses in real-world situations, and that (ii) it simplifies the finding of
specific subsets of event log data and their DFGs.
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Algorithm 1. Algorithm to process a LoVizQL query.
1: Input: a log L and a query (O,R)
2: Output: a collection of DFGs: P(UDFG)
3: vmap ← ∅
4: cmap ← ∅
5: for all (n, f, g, s) ∈ R do
6: (logCol, vm) ← f(L, vmap)
7: dfgCol ← ∅; dfgIt ← ∅
8: for all l ∈ logCol do
9: dfg ← g(l)

10: dfgCol ← dfgCol ∪ dfg
11: if (vm �=⊥) then
12: dfgIt(vm−1

it (l)) ← dfg
13: end if
14: end for
15: if (vm �=⊥) then
16: vmap ← vmap ∪ {(vmv, dfgIt)}
17: cmap ← cmap ∪ (n, dfgCol, {vmv})
18: else
19: cmap ← cmap ∪ (n, dfgCol, ∅)
20: end if
21: if (s �=⊥) then
22: vmap ← vmap ∪ s(cmap, vmap)
23: end if
24: end for
25: return {dfg ∈ UDFG|(n, dfg, x) ∈ cmap ∧ n ∈ O}

To address the first objective, we have analyzed the reports submitted to the
BPIC in 2015 [4], 2019 [5] and 2020 [6]. First, we reviewed the business questions
posed in the three challenges by three different organizations in three different
domains, and found at least one question in each of them whose objective is to
look for process differences, which makes them well-suited to apply LoVizQL.
This means that the questions that can benefit the most from LoVizQL can
be found in a wide variety of contexts. Next, we reviewed the reports where the
answer to these questions is clearly described for each BPIC (9, 13 and 14 reports,
respectively), and looked for analyses in which LoVizQL can be directly applied.
We identified 5, 3, and 7 reports in which LoVizQL can be directly applied in the
analysis. Therefore, we conclude that in at least 40% of the reports, LoVizQL
would have been useful to perform part of the analysis.

To address the second objective, we have implemented a functional version
of LoVizQL, and applied it to all the cases mentioned above. All details and the
implementation of the queries are publicly available.2 Due to space restrictions,
in this paper we focus on two BPIC reports [8,9] as representative examples. In
the following, we provide information on each use case. Specifically, for each of
them we briefly describe the dataset used, the analysis performed in the report,
2 https://doi.org/10.5281/zenodo.8182758.

https://doi.org/10.5281/zenodo.8182758
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how that analysis could be carried out using current process mining tools, and
the queries that could be defined to conduct the analysis with LoVizQL. Note
that in the analyses using current process mining tools, we have included the
steps that are most likely to be performed with tools like Disco and Celonis, but
there could be other alternatives.

3.1 Use Case 1: Where Are Differences in Throughput Times
Between the Municipalities and How Can These Be Explained?

Dataset. This business question was posed in the BPIC 2015 [4]. The data
offered in this challenge consists of five event logs provided by five Dutch munic-
ipalities. These logs encompass all building permit applications spanning a period
of roughly four years. The dataset has about 263,000 log entries.

Report. Report [8] answers this question as follows. First of all, the authors
merge the five event logs to facilitate the manipulation and analysis of the data.
Next, they analyze several aspects that could affect the throughput time of each
municipality, such as the presence of rework in the processes. To do this, they
calculate and compare the percentage of rework of activities of the complete
event log with the percentage of each municipality.

Process Mining Tools. Starting from the unified event log, the analysis using
a tool like Disco or Celonis involves the following steps. First, the analyst cal-
culates the percentage of rework of activities from the complete log by counting
the number of occurrences of each activity in each case but only considering
those that are repeated more than once in each case. Second, they compare the
percentage that this value represents with respect to the total number of occur-
rences of all activities. They need to manually check them and calculate these
percentages. Third, the analyst filters the event log for one municipality. Fourth,
the analyst calculates the percentage of rework for the municipality (similarly
to what was done for the complete event log). Fifth, the analyst compares the
value with the previous value. Sixth, the analyst repeats the last three steps for
each of the municipalities and draws conclusions from the results.

LoVizQL Query. Table 2 translates these actions to LoVizQL. In the first row,
the DFG corresponding to the complete event log is stored in f1. Then, in the
second row, the event log data is grouped by municipality so that a collection
of five DFGs, one for each municipality, is created and stored in f2. In the
Selection field of the second row, the difference between the percentage of rework
of activities of each DFG and the percentage of rework of the complete log is
calculated. Those cases in which this difference is positive (i.e., the municipalities
where the percentage of rework is above the average of the five municipalities),
are stored in v2. In the last row, v2 is used to filter the data and to generate the
respective DFGs. This collection of DFGs (f3) is the output of the query. Only
the most frequent activities and transitions are visualized according to the %P
and %A fields, and the total number of occurrences of each node and transition
is shown as specified by the “Total repetitions” metric.
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3.2 Use Case 2: What Is the Throughput of the Invoicing Process,
I.e., the Time Between Goods Receipt, Invoice Receipt
and Payment (clear Invoice)?

Dataset. This business question pertains to the BPIC 2019 [5]. In this challenge,
data from a multinational company in The Netherlands specializing in coatings
and paints was gathered. The dataset has about 1.5 million log entries.

Table 2. LoVizQL query for use case 1

Name Filter Nodes Metrics %P %A Selection

f1 [Total
Repetitions,
Absolute
Frequency]

f2 [Mandatory] v1<-“municipality”.* [Total
Repetitions,
Absolute
Frequency]

v2<-
arganyv1(t
> 0)
PercRe-
workAct(f2)
- PercRe-
workAct(f1)

*f3 [Mandatory] v2 Total
Repetitions

0.1 0.1

Report. In report [9], the authors investigate the distributions of case duration
for each combination of two event attributes, namely, “case:Document Type” and
“case:Item Type”, which, according to domain knowledge, may have an influence
on case duration. There are a total of 13 different combinations. For each of
them, they represent a pie chart with the cycle time of the transitions between
activities and they identify those that contain some transitions whose cycle time
is longer than 30% of the total duration.

Process Mining Tools. To perform this analysis with a process mining tool,
the analyst has to manually apply one filter for each of the 13 combinations of
values of the “case:Document Type” and “case:Item Type” attributes. Next, for
each of these 13 filtered event logs, they have to identify the transitions whose
cycle time is greater than 30% of the total duration. This involves manually
converting the duration into a percentage that represents with respect the total
duration of the process and visually identifying the transitions in each of the 13
DFGs obtained.

LoVizQL Query. The analysis performed in the report can be translated into
the query of Table 3. In the first row, we filter the traces by each possible com-
bination of the values of the attribute “case:Document Type” and “case:Item
Type”. These event attributes and their possible combinations are stored in v1.
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Then, we create the collection of DFGs with the average of cycle time (“Mean
CT” metric) corresponding to these subsets of data and it is stored in f1. Next,
we get the number of transitions whose cycle time is longer than 30% of the
total duration using the CTPorcTransitions() function for each subset of data
in f1. Finally, the combinations of attribute values for which at least one tran-
sition is returned are stored in the variable v2. The output of the query is the
collection of DFGs with “Mean CT” related to those values that are stored in f2
and represented in the second row of the query.

Table 3. LoVizQL query for use case 2

Name Filter Nodes Metrics %P %A Selection

f1 [Mandatory] v1<-
[“case:Document
Type”,“case:Item
Type”].“*”

Mean CT v2<-
arganyv1
(t>0)
CTPorc-
Transi-
tions(30,f1)

*f2 [Mandatory] v2 Mean CT 0.1 0.1

In conclusion, the previous use cases show that significant manual effort must
be put to obtain several groups of traces from the event log. Also, the identifica-
tion of particular subsets that meet certain conditions, which involves repeating
several actions and making comparisons between DFGs, relies heavily on the
user. This heavy user workload is caused because process mining tools are not
prepared to manage several DFGs at the same time in an homogeneous man-
ner. Instead, the user has to apply all the operations to each DFG one by one.
Furthermore, these tools do not usually make it easier to compare DFGs [3]. In
contrast, DFG collections are first-class citizens in LoVizQL. This allows per-
forming many of these steps in a single query, which reduces effort and errors.

4 Related Work

In the last decade, specific query languages have been developed in the busi-
ness process domain to obtain useful information about processes and provide
assistance to their executions. These languages have been classified in different
categories in the process querying framework [14]. Specifically, some of them
were classified as event log query languages [13], which covered different topics.

Some approaches have focused on treating event log data as graphs. For
instance, Beheshti et al. [2] developed a framework to model event log data as
graphs along with a language called BP-SPARQL to summarize the data and
discover hierarchies. Other approaches have focused on facilitating the writing
of queries. González López de Murillas et al. [12] designed a language called
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DAPOQ-LANG that combines process and data perspectives to make selections
and obtain insights more easily. Álvarez et al. [21] designed PIQL, a language
with a user-friendly notation to perform queries of Key Performance Indica-
tors (KPIs) and Process Performance Indicators (PPIs) of activities or cases.
In addition, some approaches have focused on formulating queries with complex
relations between elements of the process (e.g., control flow relations among
activities), which are called constrains. Momotko and Subieta [11] designed a
query language called BPQL to express constraints for dynamic processes fol-
lowing existing standards and in an understandable way. Schuster et al. [15]
designed an event log query language to select case instances using partially
ordered activity constraints. Tan et al. [18] designed a query language called
IQL, which retrieves information using workflow constraints (e.g., two activi-
ties that occur consecutively and with concrete attribute values). Finally, the
software company Celonis developed its own language [19] to formalize business
questions as queries.

None of the previous query languages is based on the use of DFGs nor allows
the user to iteratively filter event log data and select those that meet certain
conditions through comparisons between them. To compare them, process min-
ing tools usually provide DFGs, which are manually modified by the user to
specify the conditions. Thus, each time the user makes a change, a new DFG
is generated. This process is tedious and time-consuming since it is based on a
trial-and-error basis. In this regard, Seeliger et al. [16] developed a system to
group event log traces into subsets with similar behaviors and recommend those
related to the most deviating PPIs (e.g., the average case duration of a subset
is higher than that of all cases). However, the conditions in which the user is
interested are not considered since the groups are generated by trace clustering.

In data science, some proposals have also addressed the challenge of making
comparisons in exploratory data analysis and generating visualizations that meet
certain conditions. Our main inspiration is Siddiqui et al. [17], which designed a
query language for visual exploration called ZQL, with which the user can indi-
cate a set of desired visual patterns to explore the data. ZQL uses the patterns
to obtain the visualizations that fit them best. Thus, the user does not need to
generate thousands of graphs to explore the data and find specific graphs.

The work presented in this paper extends the previous research. Specifically,
it adapts concepts from ZQL [17] to process mining. We rely on DFGs instead
of bar charts or heatmaps, extend filters to consider the concept of case, and
provide functions to select DFGs based on their properties. Finally, we show that
LoVizQL is useful to ease analyses performed in real process mining reports.

5 Conclusions and Future Work

In this paper, we have introduced LoVizQL, a query language to ease the gener-
ation and the identification of DFGs that meet certain conditions from event log
data. In our qualitative comparison it can be deducted that LoVizQL reduces the
effort of the users compared to some manual tasks performed with current tools
which are frequently carried out [3,10] (e.g., manipulations, DFGs comparisons).
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Our proposal also has some limitations. First, it is based on DFGs, which
suffer from the issues described in [1]. For instance, the application of frequency
thresholds in DFGs can lead to interpretation problems. However, we chose
DFGs for process visualization because they are the predominant visualization
mode in process mining tools (e.g., Disco, Celonis) and also for efficiency reasons.
Second, we have shown that LoVizQL is useful for specific types of analysis. It
could be suitable in other contexts, but we have not explored that yet.

It should not be assumed that the user will always know what query to define
to obtain interesting results, but rather, in practice, they shall interact with a
tool that will help them to find the information of interest depending on their
objective or business question, and build the LoVizQL query accordingly. Our
future research efforts will focus on the development of such tool support as well
as a user interface to visually define the queries and interact with the obtained
DFG collections. Also, with the evaluation conducted so far we have observed
that LoVizQL reduces the effort of performing analyses in terms of steps, but
we still need to assess its performance with real users.
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Abstract. Robotic process automation (RPA) automates tasks tradi-
tionally performed by employees, reducing repetitive and error-prone
work. While RPA bot models are based on graphical notations, data,
a key component of RPA, is often not explicitly represented, making it
difficult to understand how data contributes to the automation. This
paper explores the role of data in RPA, extends the ontology of RPA
operations by data aspects, and proposes a visualization of data in RPA
bot models, promoting the design of more comprehensible RPA bot ser-
vices and enabling different bot analysis techniques.

Keywords: Robotic Process Automation · Ontology · Modeling · Data

1 Introduction

Modeling processes to enable their automation, including the orchestration of
services, has been a strong motivation for business process management (BPM)
for decades. With robotic process automation (RPA), a new technology emerged
that does not require changes to the existing IT systems, as it operates primarily
on the user interface level [1] to automate legacy systems, for example. Further-
more, RPA features various capabilities beyond simulating mouse clicks and
key presses, like accessing databases or connecting to modern cloud services by
using APIs [4], thus bridging the gap between legacy systems and modern ser-
vices. Tasks automated with RPA are usually of a structured nature and centered
around digital data [9], and common use cases include extracting or transferring
data between applications [5].

Targeting business users, RPA workflows can typically be defined in a graphi-
cal manner by composing predefined building blocks [4,11], such as for clicking a
button. However, the configuration of inputs, outputs, and parameters of build-
ing blocks is mainly done in a form-like manner. Consequently, data is typically
not represented graphically, which is especially problematic as the role of data in
the RPA bot and its data-flow cannot be conceived easily. To determine which
parts of the bot are dependent from a data-perspective, the configuration of each
building block needs to be reviewed individually.

In this paper, we conceptualize the role of data in RPA by refining the ontol-
ogy of RPA operations [11] (Sect. 3), and suggest an approach for visualizing data
and its flow in RPA bot models (Sect. 4). Furthermore, we highlight practical
implications in Sect. 5, such as data-flow analysis to prevent run-time errors.
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2 Preliminaries and Motivating Example

The lack of RPA standards leads to varied terminology and modeling inter-
faces across vendors [2,11]. To address this, the ontology of RPA operations
(ORPAO) was introduced in [11], featuring the various types of RPA operations
(the building blocks), software applications and services that can be automated,
and relevant data file types. Figure 1 shows some of the main concepts of the
ORPAO, including the taxonomy of RPA operations with its three main classes,
where AutomationOperations, for example, represent operations that actually
interfere with the system and applications outside the bot.

As shown in Fig. 1, the ontology already includes a rudimentary conceptu-
alization of data based on CSO:Data, originating from the upper Core Software
Ontology (CSO) by Oberle et al. [6]. For the ORPAO, CSO:Data was extended
by File, comprising a taxonomy of different file types [11]. Furthermore, the
CSO:accesses relation was refined to hold between RPAOperation and CSO:Data
and specialized by the subtypes reads, writes, and transforms [11].

The CSO further includes a notion of inputs and outputs, which was reused
in [11] to define that the reads relation defines the input and writes the output
of an operation: According to the CSO, CSO:Input and CSO:Output are roles
played by certain CSO:Data [6]. The relations CSO:inputFor and CSO:outputFor
connect CSO:Inputs and CSO:Outputs to operations, and reads, writes, and
transforms were introduced as “shortcut” for this construct [11].

In [12], the ontology was extended by information regarding the control flow
by mapping operations to the meta-meta-model for process model languages
by Heidari et al. [3]. This mapping enables the vendor-independent modeling
of RPA bots based on the concepts in the ORPAO in any common process
modeling language, such as BPMN. At the same time, these conceptual models
can be translated into RPA bot models of specific vendors and vice versa [12].

The ORPAO recognizes the importance of data in RPA by a separate class
of operations, the DataOperations with its subclasses [11]. DataExtractionOp-
erations access external data resources to retrieve data and cache it internally,
for example, ReadCell operations that extract a value of spreadsheets for future
use. DataInputOperations can write content to external data resources based

Fig. 1. Excerpt of important elements in the ontology of RPA operations, based on [11]
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Fig. 2. Exemplary RPA bot model

on internally available data, like WriteCell operations write a value to a spread-
sheet. DataTransformationOperations read the contents of an external data
resource, apply a specific transformation to the data, and immediately write the
result back to the data resource, like SortTable. DataFileOperations modify
the properties of the data “container”, such as creating, moving, or deleting a
file.

Consequently, we need to differentiate two types of data in RPA: External
data resources, such as files, exist independently of the RPA bot itself and are not
bound to RPA in any way. Internal data is only available within the scope of the
RPA bot and thus lost when it terminates. It can be a dynamic value determined
at run-time of the bot, i.e., a variable, or a hard-coded value specified in advance.

Although data plays a critical role in RPA, this aspect is typically not
expressed visually, but hidden in the configurations of the operations. Figure 2
shows a sample model of an RPA bot. This small example illustrates the need to
visualize data and its flow through the process: What URL is the bot visiting?
Which Excel file is being manipulated? Is there a relationship between the value
extracted from the web page and the value inserted into the spreadsheet cell?

This problem multiplies as bots become more complex and handle multiple
data sources. Data dependencies between operations are not visible, but can only
be uncovered incrementally by examining the configuration of each operation.

The example exhibits another peculiarity of data access in RPA: The “Get
Text From Element” and “Set Cell Value” operations are each preceded by oper-
ations that provide the appropriate data context for the operations to work in.
These preparatory operations determine the data on which the operations will
be performed, i.e., their input is not configured but determined by the context.

3 Conceptualizing Data in RPA Bots

To capture the dualism of data in RPA, the ontology of RPA operations and its
data relationships are refined and extended in the following.

Foremost, DataResource is introduced as an intermediate class between
CSO:Data and File, and TransientData as its sibling, representing internal
data. The more abstract DataResource class is intended to reflect that there are
more data sources than Files, like Databases or WebResources. DataResources
exist independently of RPA bots and can also be accessed by other services or
users. TransientData, on the other hand, only exists within the scope of the
bot instance and will be discarded when the bot instance terminates. It can be
further divided into SimpleTransientData, which represents data of primitive
types like strings, and ComplexTransientData, such as TabularData.
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The ORPAO already introduced the relations reads, writes, and
transforms as specializations of the generic CSO:accesses, connecting
RPAOperations and CSO:Data (cf. Sect. 2). With the newly introduced classes of
DataResources and TransientData, we can refine them to now hold between
AutomationOperations and DataResources. This complies with the definition
of AutomationOperations being the class of operations that can access data
outside the bot [11]. At the same time, focusing solely on read and write access
does not encompass the full spectrum of data access that services can typi-
cally perform, such as create, read, update, and delete (CRUD), and that can
also be implemented with RPA. Therefore, we first introduce two new relations,
creates and deletes, to be able to express that an operation creates or destroys
a DataResource.

Also, the different types of access to DataResources need to be extended
and detailed further. First, there are operations that can directly modify Data-
Resources in a persistent way, like AppendToFile. However, many operations,
such as those related to office or the browser, do not directly operate on the
data but on a working copy of it. For example, ExcelWriteCell requires that
an Excel workbook has been opened before to which it can write content, as
pointed out in Sect. 2. At the same time, only after an explicit save operation
(SaveWorkbook) has been performed, the change is persisted. Consequently, we
can observe additional subtypes of access related to these working copies:

provisions(New) describes that an operation provides a working copy
of the related (newly created) DataResource for the subsequent opera-
tions, e.g., OpenNewExcelWorkbook provisionsNew ExcelWorkbook. persists
describes that an operation saves the changes made to the provisioned
DataResource, like SaveWorkbook persists ExcelWorkbook. Finally, closes
describes that an operation destroys a working copy, such as CloseWorkbook
closes ExcelWorkbook.

Furthermore, we can specialize the relations reads and writes: Operations
that can access the resource directly without any preceding data provision-
ing are related to DataResources by directlyReadsFrom or directlyWrites-
To. For example, AppendToFile directlyWritesTo TextFile. In contrast, the
relations implicitlyReadsFrom and implicitlyWritesTo indicate that data
provisioning is required and thus that the data access is not performed directly
on the original resource. For example, ExcelWriteCell implicitlyWritesTo
ExcelWorkbook. Such implicit changes will be lost if not followed by a persists
operation.

As described in Sect. 2, the access relations in the ORPAO were already
associated with the notion of inputs and outputs using roles. We retain this
definition for the newly introduced specialized relations that reflect direct and
implicit access. Thus, given an operation and its relation to a DataResource, we
can deduce which data plays the role of an input for the operation and which
data is considered an output of the operation.



On the Nature of Data in RPA Bots 33

Fig. 3. Updated abstract of important elements in the ORPAO (cf. Figure 1), including
the new main data classes and relations (depicted in black)

Next, the relations to TransientData are investigated. Similar to the read
and write relations, we introduce requires and yields to express that certain
TransientData plays the input/output role for a given RPAOperation.1

While *ReadsFrom/*WritesTo and requires/yields all represent the same
idea of inputs and outputs, there are important differences. The former
denote access of AutomationOperations to external data, i.e., they affect the
state of the computer outside the RPA bot. The latter represent the use of
bot-internal data, i.e., TransientData, by any RPAOperation. For example,
InternalOperations like MatchRegularExpression operate on internal data
and ControlFlowOperations may use them for decision-making.

The updated overview of the main concepts is shown in Fig. 3. The dif-
ferent relations between AutomationOperations and DataResources are sub-
sumed under a generic relation operatesOn, which replaces the previously used
CSO:accesses, since it now encompasses more concepts than just read and write.

Overall, using the new relations, we can express at a conceptual level what
type of access an AutomationOperation performs on which DataResources,
and if and how an RPAOperation works with TransientData, i.e., bot-internal
data. For example, ExcelReadCell implicitlyReadsFrom ExcelWorkbook
and yields StringTransientData. Consequently, it requires data in form of
an Excel workbook as input, and produces data in form of a string to be used
internally. As it performs an implicit access, it can be inferred that the oper-
ation reads the data from a working copy of the workbook which needs to be
provisioned before.

4 Visualizing Data in RPA Bot Models

To be able to model RPA bots based on the ontology of RPA operations, it
was extended in [12] by a mapping of its concepts to the meta-meta-model for
business process model languages created by Heidari et al. [3]. In order to model
and visualize the discussed data aspects, the newly introduced concepts must be
mapped to the meta-meta-model as well.

In general, the introduced concept of DataResources matches the concept of
DataStores in the meta-meta-model, since data can be read from or written to

1 The naming is inspired by the relations CSO:methodRequires and CSO:methodYields
that relate CSO:Methods with CSO:Data in the Core Software Ontology [6].
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Table 1. Mapping of ORPAO relations between AutomationOperations and Data-
Resources to process model patterns.

Relation Model Pattern
creates Task with DataStore as output
directly[ReadsFrom|WritesTo] Task with DataStore as

[input|output]
deletes No model concept for destructing

model elements
provisions Task with DataStore as input and

ProvisionedDataStore as output
implicitly[ReadsFrom|WritesTo] Task with ProvisionedDataStore as

[input|output]
persists Task with ProvisionedDataStore as

input and DataStore as output
closes No model concept for destructing

model elements

it, and it stores data permanently beyond the scope of the bot. But the concepts
in the meta-meta-model do not allow expressing different types of data access
beyond inputs and outputs. Thus, the finer-grained access types discussed before
cannot be expressed directly, such as the implicit access via provisioned data. To
address this issue, we differentiate between DataStores that represent the actual
data and ProvisionedDataStores, the provisioned version of it. They represent a
working copy of the data, e.g., created by opening a file in a software program.

Table 1 details the mapping of relations in the ORPAO between
DataResources and AutomationOperations to model patterns based on the
meta-meta-model. Due to the lack of data associations besides read and write in
the meta-meta-model, the relations creates and directlyWritesTo share the
same pattern. Still, both relations should be modeled to ensure the data-flow

Fig. 4. Exemplary RPA bot model with data annotations
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can be captured as detailed as possible and textual annotations could be used
for clarification.

TransientData is mapped to DataObjects, more specifically, to a DataOb-
jectInput if the TransientData is required by the operations and mapped to
DataObjectOutput in case the operation yields the data. Data objects in gen-
eral, also in the case of BPMN [7], represent data that only exists in the scope of
the (bot) process instance and is lost at instance termination. This corresponds
to the definition of TransientData as bot-internal, instance-specific data.

This definition also clarifies why the provisioned version of data is of type
DataStore and not DataObject. Even though they are not persisted, they still
exist outside the bot, such as an opened file in Excel that could remain open
after the bot terminated, or could be accessed externally as well.

The extended mapping is applied to the example bot model given in Fig. 2.
Figure 4 features the same process, now annotated with data information. As
there is no concept for the ProvisionedDataStores, the difference is marked
by italicizing the label. The model now shows which steps of the bot access
external data, and whether it is a direct access, like for AppendToFile, or
an indirect access, like SetCellValue. Moreover, it also visualizes the flow of
data in the model: The data extracted from the website “example.org” is first
internally manipulated by GetSubstring, further used to modify the Excel file
“newOrder.xlsx”, and later appended to the content of “orderList.txt”.

To reduce the complexity of the model, the concept of ContextContainers
introduced in [12] could be adapted, which allows subsuming operations that
handle the context for indirect operations and could thus help reduce the overall
model size and improve its clarity.2

5 Improving the Modeling of Bots by Considering Data

In the following, we outline possible applications of the introduced conceptual-
ization and visualization.

Currently, the configuration of an operation in a bot is often hidden, e.g., in
a sidebar. By using the semantic information provided by the ontology, the input
and output configuration for an operation could be automatically derived from
the visual bot model. For example, if an operation is connected to a data store
using a read association, it can be concluded that the modeled DataResource is
an input for the modeled operation. Consequently, the operation can be config-
ured accordingly, given that the actual data resource is referenced in a defined
way, such as using the label as in Fig. 4. However, it is important to note that
associations to ProvisionedDataStores do not result in a configuration, as these
operations depend on data provisioned before. Similarly, the model could be
automatically updated as soon as the input/output configuration of an opera-
tion is modified.
2 A model of the running example using these context containers and including

data can be found here: https://github.com/bptlab/onto-rpa-platform/raw/main/
components/data/figures/ContextContainerExample.svg.

https://github.com/bptlab/onto-rpa-platform/raw/main/components/data/figures/ContextContainerExample.svg
https://github.com/bptlab/onto-rpa-platform/raw/main/components/data/figures/ContextContainerExample.svg
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By leveraging ontological knowledge about the inputs and outputs of opera-
tions, the bot model repository can be searched for a specific data usage, such as
accessing a specific website or file, which can facilitate the maintenance of bots
in case a web service or file structure changes.

It also enables the application of well-established techniques for data-flow
analysis and error-detection in process models to RPA bot models, such as the
data validation problems described in [8,10]. In particular, problems such as
redundant data, where TransientData is written but never read; missing data;
or lost data, where data is overwritten without being read in between, are relevant
to RPA. Relevant in the context of RPA are also the problems of mismatched
data, i.e., the (in)compatibility of data structures produced as output and later
used as input, and inconsistent data due to concurrent data access.

In addition, RPA-specific data issues can be analyzed in the bot model. For
example, related to the concept of “working copies”, models can be checked for
missing context or lost changes, i.e., an implicit data access that is not preceded
by an appropriate provisioning step or that is not eventually persisted.

6 Conclusion

In this paper, we discussed the role of data in RPA services and their bot models,
and presented a corresponding extension to the ontology of RPA operations along
with a possible graphical representation for data in bot models. In addition to
the improved representation, it enables vendor-agnostic data-flow analysis that
can provide valuable insights and prevent errors. There are several aspects that
can be further developed in the future. For example, differentiating between
implicit and persisting accesses may help in error handling to determine which
changes have already been persisted and thus need to be reverted or compensated
for. Besides, the understandability and perceived usefulness of the approach by
users should be investigated, especially since the additional elements increase the
complexity of models. At the same time, different possible notations in addition
to the one outlined in the paper could be assessed.
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Abstract. In collaborative business processes that involve multiple
organizations, privacy concerns prevent organizations from sharing the
raw data of their activities. This makes it challenging to predict remain-
ing time without access to data on completed activities of other organiza-
tions. To address this challenge, this research proposes a strategy for pre-
dicting remaining time in collaborative business processes, which involve
sequential sub-processes executed by different partners, while preserving
the privacy of organizations. The proposed strategy involves transferring
latent information from precedent sub-processes to the models of lat-
ter sub-processes, rather than raw data. Two models were designed to
implement this strategy, and the experimental results indicate that the
prediction accuracy of the models is comparable to that of models that
use raw data.

Keywords: predictive business process monitoring · remaining time
prediction · collaborative process · privacy preservation

1 Introduction

Predictive business process monitoring enables the assessment of future per-
formance or reduction of possible violations [13,26]. Over the years, different
methods have been proposed for various predictive business process monitoring
tasks, such as compliance violation checks [7,32], anomaly detection [12], next
activity prediction [17,24], and outcome prediction [27]. Remaining time predic-
tion for business process cases is one of these tasks and can be used to facilitate
remedial actions, such as resource allocation [33].

Various approaches have been proposed for remaining time prediction in
recent years [30]. These approaches can be classified based on their process-
awareness. Process-aware algorithms make predictions based on the process
model, which is typically represented as a state transition system constructed
from an event log [20]. Non-process aware approaches, on the other hand, rely on
machine learning algorithms to make predictions. Features are selected and gen-
erated from completed activities and other information [15,18], which are then
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14420, pp. 38–53, 2023.
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fed into regression models such as random forest [23] and XGBoost [22]. In recent
years, deep learning models for remaining time prediction have gained popular-
ity. These models obtain features automatically through end-to-end structures,
making them particularly useful for event sequences that record the execution
of business processes. Recurrent neural networks, especially those with a long
short-term memory (LSTM) architecture, have been applied to solve predictive
process monitoring problems due to their remarkable performance in sequence
modeling tasks [14]. Furthermore, more complex deep learning models have also
been proposed recently [33].

A typical collaborative business process structure consists of sequential sub-
processes and each partner is responsible for a sub-process that is initiated
after the completion of the preceding sub-process. As shown in Fig. 1, a sim-
plified international shipping process can be divided into three sub-processes:
transportation from the seller to the domestic warehouse, international shipping
between warehouses, and delivery from the overseas warehouse to the buyers.
The warehouses are responsible for packing, sorting, and picking the merchan-
dise from different logistics channels. In scenarios where multiple organizations
are involved, each responsible for a sub-process, predicting the remaining time
during process execution is crucial. However, due to privacy concerns, these
organizations may not want to share the raw data on activity execution for
their respective sub-processes. Unfortunately, existing remaining time prediction
models rely heavily on detailed information of the completed activities, making
it challenging to predict the remaining time without access to such information.

Fig. 1. A Collaborative Business Process Model for International Transportation

Currently, there is no research on how to undertake remaining time predic-
tion for collaborative business processes while maintaining privacy. Federated
learning (FL) [2] and split learning (SL) [21] are two popular privacy-preserving
machine learning models in a distributed environment. In FL, the machine learn-
ing model generation takes place at the data owners’ computers, and a coordi-
nating server is used to generate a global model and share the knowledge among
the distributed entities. In SL, a model is split between the client and the server.
The client model is trained on the client using the local data and the outputs of
the client model are sent to the server, which completes the rest of the training
without looking at raw data from any client. Compared with FL, SL is more
suitable for remaining time prediction for collaborative business processes since
different partners only have data on their own sub- processes. However, in SL,
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only one final result is generated from the model of the server. For the remaining
time prediction problem, each sub-process needs the remaining time prediction
service, which means the partial model for the sub-process should output the
remaining time prediction, and at the same time, it should provide information
to the latter partial models.

In this paper, we propose a strategy for predicting remaining time in the
collaborative business processes consisting of sequential sub-processes while pre-
serving privacy. Our main contributions are:

– We formalize the problem of remaining time prediction in collaborative busi-
ness processes with privacy preservation.

– We propose a strategy to share hidden state information between sub-models
for remaining time prediction in collaborative business processes. Specifically,
we design two models to implement this strategy.

– We conduct experiments on multiple datasets. The results show that our
models have comparable prediction accuracy to models that use raw data.

2 Related Work

2.1 Remaining Time Prediction

Remaining time is the time needed to complete an instance process. Existing
algorithms can be broadly classified into two categories based on whether the
algorithm relies on a process model. Process-aware models predict remaining
time based on statistical information derived from the process model, and two
primary tools for process-aware prediction algorithms are state transition sys-
tems [1] and stochastic Petri nets [19]. For instance, in [20], a specific type of
stochastic Petri net is utilized to capture arbitrary duration distributions for
remaining time prediction, while in [29], remaining time prediction is based on
stochastic Petri nets with generally distributed transitions using k-nearest neigh-
bors. On the other hand, non-process aware approaches predict remaining time
directly from event logs without explicitly constructing a process model. Sev-
eral traditional machine learning algorithms, such as naive Bayes [18], SVR [18],
random forest [23], and XGBoost [22], can be applied directly to the features
obtained from event logs.

Neural networks can encode raw data into higher-level feature representa-
tions [4]. Given that events in business processes are similar to words in natural
language processing, complex network structures like recurrent neural networks
(RNNs) [9] have been explored. Particularly, RNNs with long short-term mem-
ory (LSTM) structures have been adopted by many studies. For instance, LSTM
has been utilized to predict the cycle time of activities [24]. Researchers have
extended the basic LSTM model to further improve prediction performance.
For example, in [16], convolutional neural networks (CNNs) are combined with
LSTMs to consider both spatial and temporal dependencies in underlying busi-
ness processes. Deep learning models with more complex structures have also
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been explored [33]. For instance, in [31], a new deep learning model that uti-
lizes two types of data representation based on a parallel-structure model is
proposed, which consists of a CNN and a multi-layer perceptron (MLP) with
an embedding layer, to predict the remaining time. A transformer-based model
was proposed in [5] to learn high-level representations from event logs using an
attention-based network. Additionally, adversarial learning techniques are used
to boost prediction performance [25].

While numerous models for predicting remaining time have been developed,
they typically assume that the model can access information about all completed
activities, and prioritize improving prediction accuracy. In contrast, our focus is
on the prediction of remaining time for collaborative business processes, where
privacy concerns of the organizations responsible for executing sub-processes
must be taken into account.

2.2 Privacy Preservation in Process Mining

The issue of preserving privacy is crucial in the field of process mining, as event
logs may contain confidential information regarding the parties involved in the
process. Therefore, it is necessary to pre-process the logs prior to their publica-
tion to ensure the privacy of individuals. An established approach to this problem
is to anonymize the event log so that it becomes difficult for an attacker to iden-
tify any specific individual [8]. Additionally, context information is also taken
into account, as it can potentially reveal private details [10].

Our approach differs from the current privacy preservation research in process
mining, as we aim to protect the privacy of each organization during the training
and inference of a remaining time prediction model.

3 Problem Formulation

3.1 Event Logs and Traces

Business process monitoring typically relies on event logs that record the events
during process execution [28]. An event log is composed of sequences of events
called trace. Each trace corresponds to a case of a business process. An event
has various attributes, among which three attributes must appear: activity name,
timestamp and case id. The activity name represents the activity the event exe-
cutes, while the timestamp specifies when the event occurs. The case id indicates
to which case the event belongs. With other event-wise or case-wise attributes,
an event can be defined as follows:

e = (a, cid, t, (d1, v1), ..., (dm, vm)) (1)

where e is the event, a is the activity name, cid is the case ID and t is the
timestamp. Each tuple (di, vi) represents an attribute and its corresponding
value and m is the total number of attributes.
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Events with the same case ID form a chronological sequence called a trace,
which is defined as:

σ = [e1, ...en], ei.cid = ej .cid,∀i, j ∈ [1, ..., n] (2)

where σ is the trace, ei, ej are the i-th and j-th events in the trace and ei.cid
represents the case ID of ei.

In predictive business process monitoring, the goal is to make predictions for
ongoing traces based on a small set of events that have already occurred, which
forms the prefix of the trace. The prefix can be defined as:

prefix (σ, l) = [e1, ..., el], 0 ≤ l < |σ| (3)

where l is the length of the prefix and |σ| is the length of the complete trace.
The objective of the remaining time prediction problem is to develop a model

capable of forecasting the remaining time of an active business process instance
based on the given prefix:

ŷl = RTPM(prefix (σ, l), C) (4)

where ŷl is the predicted remaining time and C represents other information
that can be used for prediction. RTPM is the prediction model that can be
trained on the historical traces.

3.2 Remaining Time Prediction with Privacy Preservation

In a collaborative business process, each participant is accountable for executing
a sub-process, which refers to a segment of the overall process. The sub-processes
may have complex relationships between them, such as parallel or exclusive
relationships. In this paper, we focus on the most prevalent type of collabora-
tive business process where sub-processes are executed sequentially. Nonetheless,
activities within each sub-process may be organized into complex structures.

The trace of a business process instance executed by multiple participants
can be seen as a collection of segments. Each segment of a trace represents a sub-
process that is executed by one of the participants. Each participant has access
only to the segments of its sub-process. Each sub-process has its own model
for remaining time prediction. To improve the prediction accuracy, the models
for later sub-processes require information from preceding segments. However,
the participants of the preceding sub-processes do not wish to share detailed
activity information. One possible solution to this conflict is to only share implicit
information that does not reveal specific raw information about the activities
performed in the preceding sub-processes.

For instance, a collaborative business process consists of two sub-processes
as shown in Fig. 2. When the prefix P 1

2 , which consists of two events e11 and e12,
is available, the model for the first sub-process can make the prediction. After
the first sub-process is completed and the second sub-process starts to execute,
we have two prefixes, i.e., P 1

2 and P 2
2 . The two models use h12 and h21 to share
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Fig. 2. Two stages of remaining time prediction for collaborative business process

the features of the segmented input they obtain. These features are processed
information that do not include the raw information.

Therefore, the prediction of remaining time for the k-th sub-process is exe-
cuted in the following manner:

ŷk
l = RTPM(Pk

l , C,hk−1) (5)

hk = HG(Pk
l , C,hk−1) (6)

where hk−1 is the latent information provided by the k − 1-th sub-model, and
HG is the model to generate the latent information for the prediction model of
the next sub-process. Additionally, implicit information can also be provided to
train the model for the precedent sub-process.

4 Remaining Time Prediction with Privacy Preservation

To train the remaining time prediction models for each sub-process, we adopt a
strategy where the models are allowed to share hidden state information. This
strategy ensures that the input cannot be recovered from the hidden state infor-
mation even if the model structure is unknown. As LSTM has shown success
in solving the remaining time prediction problem, we propose two LSTM-based
models that implement this strategy.

4.1 Two-Way Information Sharing Model (TISM)

A potential solution is to adopt a split learning approach [3], which involves
dividing the LSTM model into a set of interconnected sub-networks, where each
sub-network corresponds to a sub-process. However, unlike the general split
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learning model, each sub-network in our approach not only provides implicit
information to the next sub-network, but also directly outputs predictions. Each
sub-network utilizes the final hidden state information and a fully connected
layer to generate a remaining time prediction and needs to pass the final hidden
state information of activation to the next sub-network. Additionally, gradients
are returned to the immediate precedent sub-network, which updates its net-
work weights during the training stage. This approach is depicted in Fig. 3 and
referred to as the two-way information sharing model (TISM).

Fig. 3. Two-way Information Sharing Prediction Model

Let us consider a business process with two sub-processes as an example. The
final hidden state of the sub-network for the first sub-process is:

h1
k = LSTM1(e11, ..., e

1
k,h0) (7)

where h1
k is the output of the sub-network at step k, where k is the sequence

length of the prefix until the split point and e1i , i ∈ 1, 2, ..., k represents the input
events for the first segment. The randomly initialized hidden state h0 is unique
to the first sub-network. Recurrent neural networks for the first sub-process are
represented by LSTM1().

The initial hidden state of the second sub-network is computed as follows:

h2
1 = LSTM2(e21, Relu(Wsplith

1
k)) (8)

Here, h2
1 denotes the first hidden state in the second sub-network, which imme-

diately follows the first sub-network. The second sub-network uses LSTM2() to
compute this state, with the input event e21 and the activation of the hidden
state from the first sub-network, h1

k . Relu represents the rectified linear acti-
vation function. Finally, the model predicts the remaining time at prefix length
l:

h2
l = LSTM2(e21, ..., e

2
l , Relu(Wsplith

1
k)) (9)

ŷt = FC2(h2
l ) (10)
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where ŷt is the predicted remaining time and FC2() is the fully connected layer.
The network optimization within each sub-network is carried out through

backpropagation through time (BPTT). Nevertheless, at the split layer, the gra-
dient is transmitted from the back sub-network to the front sub-network as
follows:

∂L

∂Wsplit
=

∂L

∂h2
1

∂h2
1

∂Wsplit
(11)

where L is the mean absolute error loss function. Gradient-based collaborative
models facilitate sufficient exchange of information between segments, enabling
preceding sub-process models to provide more valuable implicit data.

4.2 One-Way Information Sharing Model (OISM)

The prediction task of a sub-network in TISM may be affected unpredictably as
it needs to receive gradient information from the next sub-network to update its
parameters.

Thus, we present an alternative approach called the one-way information
sharing model (OISM) in which only the preceding sub-network shares informa-
tion with the subsequent sub-network, while the subsequent sub-network does
not provide any feedback to the preceding one. This approach ensures that each
sub-network can concentrate solely on optimizing its own objective without
any interference from the other sub-networks. The architecture of the OISM
is depicted in Fig. 4.

In OISM, LSTM-based models, except the last one, encode the prefix into
hidden states and produce D-dimensional vectors at every step. These vectors
can be combined to form a matrix of size ki ×D, where ki is the sequence length
of the i-th segment. Consider the first sub-network as an example:

H1 = [h1
1, ...,h

1
k1
]

= [LSTM1(x1
1,h

1
0), ..., LSTM1(x1

k1
,h1

k1−1)]
(12)

where H1 is the matrix produced by the first sub-network.h1
0 is the initial hid-

den state of the first sub-network. h1
i , i ∈ 1, 2, ..., k1 is the hidden state of the

first sub-network. x1
i , i ∈ 1, 2, ..., k1 form the prefix and k1 is the length of the

segmented prefix.
By performing maximum, minimum, and average pooling on the matrix, D-

dimensional vectors can be obtained respectively. By concatenating the three
pooled vectors with the final hidden state obtained by LSTM, a 4× D matrix is
obtained as the representation of the segmented prefix.

S1 = [Max(H1),Min(H1),Mean(H1),h1
k1
] (13)

where S1 is the representation of the first segment.
Assuming that there are N − 1 sub-processes prior to the last one, the con-

catenation of the matrices yields a larger matrix with a size of 4(N − 1) × D.
This matrix integrates all implicit features from the previous segments.

S = [S1, ...,SN−1] (14)
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The final sub-network, which is also the N -th sub-network, receives the 4(N−
1)× D matrix, along with the final hidden state that is encoded in its own sub-
network. An attention mechanism is employed to calculate a context vector using
both the feature matrix and the hidden state information.

hN
lN

= LSTMN (xN
1 , ...,xN

lN
,hN

0 ) (15)

The context vector is calculated as follows:

clN = AttentionN (hN
lN

,S) (16)

Fig. 4. One-way Information Sharing Prediction Model

where AttentionN () is the attention mechanism in the N -th sub-network. This
attention-based multi-segment model calculates the attention distribution of the
feature matrix of the previous segments with respect to the final hidden state
information to obtain the context vector. The context vector is obtained through
a weighted sum of the feature matrix based on the learned correlation between
the hidden state information and the matrix using an additive model with learn-
able parameters. This model not only extracts useful prefix information but also
minimizes the effect on the optimization of the former sub-networks during train-
ing. Finally, the context vector and the final hidden state information is used to
predict the remaining time.

ŷt = FCN ([cl ,hN
l ]) (17)

where FCN () is the fully connected layer of the N -th sub-network.
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4.3 Collaborative Model Training and Inference

The collaborative mechanisms for model training in TISM and OISM differ. In
TISM, the former sub-networks must accept the returned gradient information
when the latter sub-networks are trained, and they must remain online to par-
ticipate in parameter updating based on the gradient. The convergence of each
sub-network depends not only on its own training, but also on the optimization
of the other networks. Therefore, the total training time is determined by the
network that requires the most rounds of training.

In contrast, OISM provides more flexibility in model training. Each sub-
network can have its own training schedule, as long as the preceding models
have been trained completely. The preceding networks only need to participate
in the inference task and are no longer involved in the training process for the
subsequent networks. Therefore, the model can be trained sequentially according
to the segment ID, which reduces the complexity of collaboration. However, the
subsequent networks need to make necessary adjustments after the preceding
networks have been updated to ensure the consistency of the model versions.

The inference procedure for both TISM and OISM is identical. The sub-
sequent network waits for the information from the preceding network (either
hidden state information or pooled features), performs inference using its model,
and then forwards the information or outputs the remaining time prediction.

5 Experiments

5.1 Experiment Setup

Dataset. In order to address the challenge of obtaining real-world traces of
collaborative business processes, we resort to simulating such traces by dividing
each business process trace into multiple segments. In the following experiment,
we use the following datasets:

– 2012w: This event log pertains to a loan application process of a Dutch finan-
cial institute.1. In this dataset, in addition to activity names and timestamps,
each trace is associated with a loan amount information and each activity also
has the resource information.

– credit: This dataset contains information about a credit requirement process
in a bank2. Specifically, in this dataset, the event sequences in the traces are
consistent.

– PTC: The dataset contains events pertaining to two years of travel expense
claims in a university3. In this process, after submission by the employee, the
request is sent for approval to the travel administration.

1 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
2 https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5.
3 https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
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Sub-process Data Preparation. To divide the traces into segments based on
sub-processes, it is important to understand the general execution pattern and
semantic knowledge of the activities before segmenting the processes. We used
PROM6.94 to process the event logs. A heuristic net plugin in PROM6.9 was
used to analyze the processes and mine causal graphs. Based on the execution
paths and activity names’ semantics, we divided the processes into sub-processes.

After the trace segmentation, we created a total of five datasets whose sta-
tistical information is summarized in Table 1.

Table 1. Experiment Datasets

Name #Case #Activity Types Sequence Length Segment Time Span(days)

2012w_2 2043 {3,3} {5.4± 2.8,4.1± 3.6} {10.7± 6.5,4.1± 3.2}
credit_2 10035 {3,5} {3,5} {0.3± 0.5,0.7± 0.8}
credit_3 10035 {3,3,2} {3,3,2} {0.3± 0.5,0.5± 0.7,0.4± 0.7}
PTC_2 1392 { 7,10} {3.4± 0.7,5.2± 0.7} {3.8± 5.5,37.7± 40.2}
PTC_3 1381 {7,6,4} {3.4± 0.7,2.3± 0.6, 3} {3.8± 5.6,28.9± 39.7,12.6± 8.6}
a Name: the first part is the name of the dataset and the second part is the number of
sub-processes.
b # Case: the number of cases.
c # Activity Types: the number of activity types in each sub-process.
d Sequence Length: the average lengths of sub-processes respectively.
e Segment Time Span: the average duration of sub-processes.

Metrics. We use mean absolute error (MAE) to measure the prediction per-
formance of a model, which is defined by:

MAE =
1
m

m∑

i=1

| yi − ŷi | (18)

where m stands for the number of samples, and yi, ŷi stands for the real and
predicted value of each sample.

Comparative Models. As there is currently no research on the topic of remain-
ing time prediction for collaborative business process with privacy preservation,
we have designed the following models for comparison:

– Prediction with Complete Information (PCI): In this model, the privacy issue
is not considered. Therefore, a typical LSTM model is applied to the complete
traces.

– Prediction with Key Events (PKE) : In this model, in addition to the hidden
state, the first and last events of the former segments can be shared with the
sub-network of the next sub-process.

4 https://www.promtools.org/.

https://www.promtools.org/
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– Prediction with Own Data (POD): In this model, the sub-network can only
use the data of its own sub-process for remaining time prediction, i.e., no
information exchange takes place among the sub-networks.

Implementation. The PyTorch framework is used to implement all models,
which consist of a two-layer LSTM network. The hidden state dimension is set
to 64. The maximum input prefix length is determined based on the maximum
length of each segment, and the remaining input is padded with zeros if a segment
is shorter. The mean absolute error (MAE) is used as the loss function, and the
optimization algorithm is NAdam with default parameter values.

5.2 Experimental Results

The MAEs for the remaining time prediction on each segment and overall are
presented in Table 2. Generally, the models that share more raw data between
sub-models have lower MAE and perform better in both single-segment and
overall prediction. However, there is an exception on the 2012w_2 dataset,
where POD performs the best, which could be due to the independence between
sub-processes. Both TISM and OISM exhibit similar performance compared to
models that can access full or partial raw data.

Table 2. Prediction Accuracy of Different Models

Dataset Segment ID TISM OISM PCI PKE POD

2012w_2 1 5.66± 0.12 4.62± 0.13 4.52± 0.08 4.56± 0.18 4.52± 0.05
2 1.83± 0.02 1.76± 0.02 1.73± 0.08 1.71± 0.04 1.69± 0.03
total 4.14± 0.07 3.48± 0.08 3.41± 0.01 3.42± 0.11 3.40± 0.04

credit_2 1 0.135 0.092 0.090 0.088 0.089
2 0.058 0.087 0.053 0.055 0.054
total 0.092 0.089 0.068 0.069 0.070

credit_3 1 0.170 0.089 0.088 0.089 0.090
2 0.088 0.091 0.065 0.066 0.076
3 0.026 0.026 0.025 0.026 0.026
total 0.114 0.081 0.069 0.070 0.075

PTC_2 1 17.98± 0.01 18.06± 0.03 18.03± 0.04 18.08± 0.19 18.05± 0.04
2 3.02± 0.01 2.99± 0.01 3.00± 0.01 3.04± 0.03 3.08± 0.02
total 9.76± 0.01 9.79± 0.02 9.77± 0.01 9.79± 0.05 9.83± 0.01

PTC_3 1 18.03± 0.02 18.06± 0.11 18.05± 0.01 18.10± 0.07 18.10± 0.03
2 3.79± 0.08 3.78± 0.04 3.73± 0.03 3.79± 0.01 3.82± 0.02
3 2.07± 0.01 1.99± 0.05 1.97± 0.03 2.05± 0.06 2.09± 0.01
total 9.79± 0.03 9.76± 0.04 9.73± 0.01 9.79± 0.04 9.81± 0.01

The performance of TISM and OISM is highly comparable overall. How-
ever, when it comes to the credit dataset, where traces have identical activity



50 J. Cao et al.

sequences, the models only rely on temporal and resource information to make
predictions. As a result, TISM experiences a drop in performance on the first
sub-process. The reason for this is that the first sub-network receives gradient
information and updates the network to improve the performance of other sub-
networks, which can hinder its own performance.

5.3 Discussion on Privacy Preservation

TISM and OISM utilize the intermediate layer’s output to transfer the hid-
den state of the sub-network instead of sharing the original prefix encoding
directly. This approach ensures privacy preservation [34]. In federated deep learn-
ing, reconstruction attacks and membership attacks are two general methods
to invade private information. These attacks restore the clients’ data on the
client side by deciphering gradients based on the model parameter updates on
the server side [11]. However, the split learning framework used in our models
adopts a segmentation approach where each sub-process can only possess a part
of the overall prediction model. This approach eliminates the sharing of model
parameters and enhances isolation among sub-processes [6]. Moreover, TISM
and OISM incorporate non-linear activation and pooling layers, respectively, at
the split layer, which makes data restoration more challenging.

In conclusion, the privacy-preserving models proposed in this paper can sat-
isfy the requirements of data isolation and privacy protection while achieving
the expected prediction accuracy.

6 Conclusion

This paper proposes a privacy-preserving strategy for remaining time prediction
in collaborative business processes, where partners are reluctant to share their
detailed activity information. Instead of raw data, the hidden state of the network
is shared between sub-models to achieve privacy preservation. Two models, TISM
and OISM, are designed to implement this strategy. The experimental results
demonstrate that both models achieve comparable prediction performance to
models that can access partners’ raw data while preserving privacy. In the future,
the authors plan to investigate the addition of noise to the information exchanged
between sub-networks to enhance privacy protection.
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Abstract. Discovering and recommending scientific workflow fragments
that can be reused or repurposed from public repositories is becoming
increasingly significant in the scientific domain. Although popular frag-
ment discovery strategies can identify frequent and similar fragments,
they lack the ability to further mine pattern semantics. Moreover, cur-
rent recommendation approaches are primarily based on text match-
ing between natural language queries and the descriptions of candidate
fragments, neglecting crucial structural information that conveys their
functions. To address these challenges, this paper designs SWARM, a
scientific workflow fragments recommendation approach via contrastive
learning and semantic matching. SWARM consists of two phases: frag-
ment discovery based on frequent subgraph mining and a contrastive
semantics extraction model, and fragment recommendation based on a
matching degree prediction model incorporating a pre-trained fragment
encoder, which is used to predict and rank the degree of semantic match-
ing between the user query and candidate fragments. SWARM aims to
extract and integrate textual and structural semantics from fragments to
discover and recommend them. The experimental results on commonly-
used real-world datasets show that SWARM outperforms state-of-the-art
methods with statistical significance.

Keywords: Scientific Workflow · Fragment Discovery · Fragment
Recommendation · Contrastive Learning · Semantic Matching

1 Introduction

Scientific Workflows (SWs), represented as directed acyclic graphs (DAGs), can
arrange a series of services in a specific order [1,2]. They are widely used to pro-
cess complex data. By providing queries and retrieving shared scientific work-
flows with similar text or structure from online repositories like myExperiment
[3], Pegasus [4], and Galaxy [5], researchers can save more time for data prepara-
tion and analysis. However, as the complexity of needs increases, a single work-
flow may not suffice, and combining fragments from multiple workflows becomes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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necessary [6]. Consequently, discovering and recommending appropriate scientific
workflow fragments efficiently is becoming an important research topic.

Most methods for discovering fragments are based on the idea that frequently
occurring fragments in past service solutions are likely to appear in future ones
[7]. In [1], frequent basic subfunctions are discovered using the frequent subgraph
mining algorithm. Researchers in [6,8] develop a crossing-workflow fragments
discovery mechanism for reusing fragments from diverse scientific workflows.
In general, these methods can identify functionally similar fragments as service
patterns but lack the mining of pattern semantics from a higher-level abstraction
perspective, which is critical for downstream fragments recommendation.

Based on the format of user query, recommending scientific workflow frag-
ments can be divided into two primary approaches: text-based and structure-
based. Text-based approaches [9,10] involve users inputting relevant keywords or
natural language text, which are then matched with candidate fragments using
text similarity measures. These approaches are easy for users to put forward their
requirements, but overlook the structure of fragments. Structure-based methods
that use graph matching algorithms [8], such as subgraph isomorphism, can be
utilized if the user query is specified in a fragment template [6,11]. However, it
can be inconvenient and challenging for users to provide a fragment structure.

This paper focuses on the case when natural language is used to describe the
user query, which is more user-friendly than drafts and can express users’ needs
more accurately than keywords. Existing fragments recommendation approaches
for this case primarily rely on text matching [9], which neglects critical struc-
tural semantics of fragments. Meanwhile, frequently occurring fragments with
similar functions exhibit internal structural invariance referring to the fact
that two observations of the same concepts are identical [12], which can be
captured by contrastive model and facilitate the subsequent semantic match-
ing. Unfortunately, this aspect is often disregarded in the fragment discovery
stage of existing approaches. To overcome these shortcomings, we propose a
scientific workflow fragments recommendation approach via contrastive learn-
ing and semantic matching (SWARM). SWARM consists of two phases: frag-
ment discovery based on frequent subgraph mining and a contrastive semantics
extraction model, and fragment recommendation based on a matching degree
prediction model incorporating a pre-trained fragment encoder.

SWARM attempts to extract and integrate textual and structural semantics
from fragments in order to discover and recommend them. Specifically, it uses
contrastive learning to extract the structural semantics of fragments through
their paths. This is because scientific workflows are executed along the paths
[13]. The major contributions of this paper are as follows:

– We propose a novel two-phase framework for recommending relevant scientific
workflow fragments according to user queries.

– We design a contrastive model to extract the structural semantics of frequent
and similar fragments from a high-level abstraction perspective, resulting in a
pre-trained fragment encoder for facilitating the downstream semantic match-
ing.
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– We conduct comprehensive experiments on commonly-used real-world
datasets. The results demonstrate that our proposed method consistently
outperforms the state-of-the-art approaches in different metrics.

2 Related Work

2.1 Scientific Workflow Fragments Discovery

Frequent pattern mining techniques are the dominant approaches to discovering
fragments. For instance, Cheng et al. [10] propose a multi-layer mining approach
based on a hierarchical model to detect and abstract frequent workflow frag-
ments. Other methods such as FragFlow [14], employ graph mining techniques
to derive the most common usage patterns in a workflow repository. Furthermore,
several researchers argue that fragments can be found across various workflows
instead of just one. Hence, they develop an activity network model [8] and a
knowledge graph [6] to capture invocation relations between activity pairs, aim-
ing to construct crossing-workflow fragments.

In this paper, we use the dominating frequent subgraph mining algorithm
to discover fragments and additionally extract their pattern semantics from an
abstract perspective.

2.2 Scientific Workflow Fragments Recommendation

To leverage recommendation approaches for workflow fragments, users need to
provide textual or structural features of their personalized requirements.

Textual queries are usually keywords or natural language texts describing the
novel experiment [9]. TF-IDF (Term Frequency-Inverse Document Frequency)
and topic modeling can be used to match the textual features of queries and
discovered fragments [6]. Moreover, social information in the workflow reposi-
tory can help find semantically similar fragments [15]. However, most text-based
methods neglect the fragment structures that contain rich and important seman-
tic information. Structure-based methods that use graph matching algorithms
[8] can be utilized if the user query is specified in a fragment template or draft
[6]. Zhang et al. [11] use the term “unit of work” (UoW) to represent the work-
flow fragment and present a service social network-based technique for recom-
mending chained services. Additionally, some works introduce a fragment-index
mechanism and coverage strategy [1] to identify semantically relevant fragments.
Nevertheless, requiring users to provide the partial structure of their preferred
fragments could be difficult for inexperienced users.

Our approach is a text-based recommendation strategy. Unlike traditional
text-based methods that rely solely on the textual similarity, it recommends
fragments by matching semantics from both textual and structural features.
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3 Preliminaries

3.1 Definitions

Definition 1 (Scientific Workflow). A scientific workflow sw is a tuple
(title, dessw ,Act,Lnk), where title is the title of sw, dessw is the textual
description of sw in short-document, Act is a set of activities belonging to sw,
and Lnk is a set of datalinks connecting activities in Act [3].

Definition 2 (Activity). An activity act is a tuple (name, type, desact),
where name is the label of act reflecting the activity’s functionality directly,
type is the operation type, and desact is the textual description of act, which
explains the function of this activity in detail.

Definition 3 (Path). A path path is a sequence 〈act1, act2, ..., actn〉, where n
is a finite positive integer and acti �= actj(i �= j). These n activities are connected
by datalinks in Lnk. Paths are essential substructure of the workflow/fragment.

Definition 4 (Fragment). A scientific workflow fragment frag is a tuple
(Actfrag ,Lnkfrag , Inputf rag ,Outputf rag), where they are the frag’s
activity set, datalink set, inputs and outputs, respectively.

Fig. 1. Two partial scientific workflows in myExperiment. (sw2793 (http://www.
myexperiment.org/workflows/2793.html) and sw2390 (http://www.myexperiment.org/
workflows/2390.html) are two whole workflows. frag1, frag2 and frag3 are fragments
mined from these workflows.)

Definition 5 (User Query). A user query is a natural language text Tr . For
instance, a scientist may provide T0: “I want to create a framework configuration
XML file based on user interaction.” as the query.

Figure 1(a) and Fig. 1(b) depict parts of scientific workflow sw2793 and sw2390

from myExperiment repository, respectively. Notably, the sample fragments
frag1 and frag2 circled by the red curve are similar in structure and function.

3.2 Language Model

Since the majority users of scientific workflows are from the biomedical and
bioinformatics fields [3], we choose BioLinkBERT1 [16], achieving SOTA perfor-
1 https://huggingface.co/michiyasunaga.

http://www.myexperiment.org/workflows/2793.html
http://www.myexperiment.org/workflows/2793.html
http://www.myexperiment.org/workflows/2390.html
http://www.myexperiment.org/workflows/2390.html
https://huggingface.co/michiyasunaga
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mance on several biomedical NLP benchmarks such as BLURB2, as our basic
embedding model. To enhance its capability for multi-domain adaptation, we
unsupervisedly fine-tune the original BioLinkBERT using the workflow descrip-
tions in experimental datasets. This fine-tuning process enables us to effectively
embed different objects, such as description texts, paths and fragments. The
effectiveness is demonstrated through the experiment presented in Sect. 6.3.

4 Problem Formulation and the Framework of SWARM

4.1 Problem Definition

We formally state the fragment recommendation problem to be investigated as
follows: First, we build a repository of fragments mined from scientific workflows,
with each fragment having a DAG structure Gc. Given a textual user query Tr,
our goal is to recommend N workflow fragments by balancing the fragment
scale and the semantic matching degree between the user query and candidate
fragment, which is a value y ∈ [0.0, 1.0] describing the extent to which the
recommended fragment matches the user needs semantically. A higher semantic
matching degree means greater satisfaction for the user.

Moreover, given that small-scale fragments (e.g., two activities) offer lim-
ited functionality and necessitate additional effort to be integrated with other
fragments, we strive to recommend the largest N fragments (i.e., having the
maximum number of activities) whose matching degree is over the threshold R.
The recommended fragments, along with their contextual information (inputs
and outputs), are provided to users for facilitating the reusing and repurposing.

4.2 Overall Framework

The framework of SWARM is seamlessly integrated into two parts: Fragment
Discovery Phase and Fragment Recommendation Phase.

– In Fragment Discovery Phase, we employ a frequent subgraph mining algo-
rithm to identify frequent fragments, which are stored in a dedicated reposi-
tory. These frequent and similar fragments are combined into higher-level pat-
terns, and their structural semantics are extracted using contrastive learning,
resulting in a pre-trained fragment encoder.

– In Fragment Recommendation Phase, we first pre-select 5N scientific work-
flows based on the text similarity with the query, and the fragments contained
in those workflows serve as candidate fragments. Next, we develop a prediction
model based on the pre-trained fragment encoder for the degree of semantic
matching y, which is used to rank candidate fragments precisely and select
N fragments by balancing the fragment scale and y.

2 https://microsoft.github.io/BLURB/leaderboard.html.

https://microsoft.github.io/BLURB/leaderboard.html
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5 Method Design

5.1 Fragment Discovery Phase

The goal of Fragment Discovery Phase is to build a repository of workflow frag-
ments in preparation for fragment recommendation. Given a workflow repository,
we would like to mine frequent workflow fragments, i.e., fragments that occur
across multiple workflows. This is because a novel user query tends to be related
to various workflows, and frequent fragments are more likely to represent pat-
terns that can be reused in a newly specified experiment [7].

1) Frequent Subgraph Mining: Before mining the workflows, it is necessary
to homogenize the activity labels to avoid missing relevant fragments. The activ-
ity alignment approach, as introduced in [17] (using the finetuned BioLinkBERT
instead), is adopted to identify and align functionally similar activities that can
be represented by an abstract activity. Afterwards, workflows are rewritten in
an abstract format by replacing activities with their abstract counterparts.

Subsequently, we employ the gSpan algorithm [18], the state-of-the-art sub-
graph mining technique for handling directed graphs, to identify frequent frag-
ments from all workflow graphs. Those frequent subgraphs are named abstract
fragments. For each abstract fragment, we find the workflows in which it
appears and substitute the abstract activity name with the original activity
name, finally generating many concrete fragments making up fragment repos-
itory.

2) Contrastive Learning-Based Semantics Extraction: The discovery of
functionally similar fragments enables us to abstract and extract semantic pat-
terns. Indeed, different concrete fragments from the same abstract fragment
exhibit internal structural invariance [12]. For example, frag1 and frag2 in
Fig. 1 belong to the same abstract fragment, and they share similarities in both
structure and function.

Contrastive learning, on the other hand, is commonly used to capture the
invariant signal of positive samples with similar semantic information [19]. Thus,
our objective in this section is to leverage contrastive learning to extract the
structural semantics of frequent and similar fragments. Analogous to two aug-
mented views from an image in contrastive learning of visual representations
[12], the two similar concrete fragments from the same abstract fragment can
be viewed as a positive pair. These pairs are utilized as input to a contrastive
learning-based semantics extraction model, as illustrated in Fig. 2.

This model adopts an online-target branch architecture based on BYOL,
which is recognized as one of the leading contrastive methods and does not
require negative pairs. In the following, we mainly focus on the introduction
of Fragment Encoder in two branches, which consists of three parts, Path
Collector, Path Encoding, and Fragment Encoding based on PathAttention Net.
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Fig. 2. Overview of Contrastive Learning-based Semantics Extraction Model.

A. Path Collector. Within the context of DAGs, paths serve as essential topo-
logical information and encapsulate the core execution semantics of the work-
flows [13]. Therefore, we first collect all paths of each concrete fragment using the
Depth-first search (DFS) algorithm. Then, these paths are sent to Path Encoding
for representing the path semantics.

B. Path Encoding. Suppose a set of paths {p1, p2, ..., pe} is collected by Path
Collector for each fragment, where pi is a path consisting of Li activities.
To begin with, we employ the finetuned BioLinkBERT model to generate D-
dimensional activity vectors. Then, each path pi can be encoded by the average
pooling of Li activity vectors within its sequence. Notably, we select the k most
important paths for encoding to ensure feature uniformity. If the number of
paths is less than k, zero vectors are used as padding. The importance of paths
is determined using BioLinkBERT by the average semantic similarity of their
activity sets to the workflow descriptions. The effect of different values of k on
recommendation effectiveness will be discussed in Sect. 6.5.

C. Fragment Encoding based on PathAttention Net. After Path Encoding,
we get two sets of top-k path vectors of a positive fragment-pair. In the follow-
ing, we aim to build two fragment-level vectors from their path vectors using
the attention net, respectively. Taking one of the two fragments as an example,
the attention mechanism is utilized to extract the importance of different paths
and aggregate informative paths into fragment vectors. The attention score, rep-
resenting the path importance, is computed using a PathAttention Net. First,
the top-k path vectors are passed through a one-layer MLP for feature fusion.
Then, the softmax function is applied to the convoluted features using a projec-
tion vector to obtain the attention score γi for each path. Finally, the concrete
fragment vector a is the weighted average sum of k D-dimensional path vectors.

Other components of semantics extraction model are basically consistent with
the original BYOL and refer to [19] for details. The training goal is to minimize
the distance between two positive fragments projected to the unit hypersphere:
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where di, cj are the outputs of the online and target branch for fragi and fragj ,
respectively. d

′
j , c

′
i are the results of feeding fragj to the online branch and fragi

to the target branch. At the end of training, we keep only the fragment encoder
Fα for downstream recommendation.

5.2 Fragment Recommendation Phase

In this phase, we aim to recommend several “best” fragments from the frag-
ment repository to satisfy the user requirement. To address the computational
challenge of matching each fragment with the query using a complex model, we
follow a two-step process: Fragment Pre-Selection and Fragment Ranking.

1) Fragment Pre-selection: Intuitively, the workflow’s description text par-
tially describes the function of its constituent fragments. Therefore, we utilize
the fine-tuned BioLinkBERT model to embed the texts and select the top 5N
workflows that exhibit the highest text similarity to the user query. Subsequently,
the fragments found within these workflows (also in the fragment repository) are
considered as candidate fragments.

For instance, given the scientist’s query T0 in Definition 5, we can pre-select
5N candidate workflows based on the text similarity as follows: [sw2793(0.707),
sw2873(0.263), ..., sw2390(0.142), ...] (N is set to 10 in this case), where e.g.,
sw2793 refers to the most textually similar workflow with id 2793 (as shown in
Fig. 1(a)) and 0.707 denotes the text similarity score between T0 and T2793.

2) Fragment Ranking: After the preliminary, we aim to recommend the
largest N fragments whose matching degree is over the threshold R. Our Match-
ing Degree Prediction Model illustrated in Fig. 3 comprises three parts: Text
Encoder, Fragment Encoder, and Matching Degree Prediction.

Fig. 3. Overview of Matching Degree Prediction Model.

A. Text Encoder. In this part, we also use the finetuned BioLinkBERT to
acquire a D-dimensional vector of the user query for storing contextual seman-
tics.
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B. Fragment Encoder. We utilize the pre-trained Fragment Encoder to
further capture the structural semantics of fragments and their semantic correla-
tion with the query. The encoder’s parameters are initialized with the pre-trained
weights and are not frozen during the training. This encoding process generates
a D-dimensional vector representing the features of the candidate fragment.

C. Matching Degree Prediction. After concatenating two D-dimensional
vectors of the user query and candidate fragment, the fused features are passed
through a four-layer MLP for deep feature fusion. We have experimented with
alternative designs for feature integration, such as Bi-Interaction Pooling [20],
but have not observed improved performance. In the output layer, we use a sig-
moid function to ensure that the predicted score falls in the range [0, 1], repre-
senting the matching degree between the query and the candidate. Given training
data of size I, ŷi is the predicted score, and yi is the label, the training aims to
minimize the loss function:

Lossmdp =
1

I

I∑

i=1

(yi − ŷi)
2 + λ

∑

ω∈Ω

ω2 (2)

where λ controls the strength of regularization and Ω represents the parameters
of the neural network. Next, we discuss how to obtain the value of yi.

D. Label Generation based on Improved-Path Similarity (PS). To train
the matching degree prediction model, we select the description of a workflow swr

whose structure is Gr as the user query Tr. Meanwhile, the candidate fragment
Gc is also inputted into the model.

The workflow structure including the modules and their connections pro-
vides valuable insights into the functional semantics of the workflow [3]. Since
the matching degree, the prediction model’s output, represents the semantic sim-
ilarity between Gc and Tr, and as Gr, the golden standard workflow structure
corresponding to Tr, is known during the training process, we can utilize the
functional semantic similarity between Gc and Gr as the training label in Eq. 2.

Paths contain both textual and structural information, reflecting the work-
flow(fragment)’s execution semantics. Therefore, based on [3], we propose an
improved-path similarity of Gc and Gr, SimP S (Gc,Gr), as the label of match-
ing degree of Gc and Tr. To begin with, we present a matching optimization
problem, abstracted from the calculation of path similarity:

max tot =
∑

(q1,q2)∈M

sim(q1, q2)

s.t.

{
q1 ∈ Q1, q2 ∈ Q2

∀v ∈ Q1 ∪ Q2 , at most one edge in M is incident upon v

(3)

where Q1 and Q2 are two sets, sim(q1, q2) is their similarity, and we try to
find a matching M ⊆ Q1 × Q2 to maximize tot. This problem can be solved by
the maximum weight matching (mw) algorithm and the maximum weight non-
crossing matching (mwnc) algorithm [13]. For our path similarity calculation, all
pairwise activity (from Gc and Gr respectively) similarities are firstly computed
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by the alignment approach in Sect. 5.1. Then we collect path sets for fragment Gc

and workflow Gr as PSc and PSr, respectively. The mwnc algorithm considering
the order of activities is used to compare all pairs (Pc, Pr) from PSc and PSr.
We determine the similarity of each path-pair as follows:

nnSim(Pc, Pr) =
∑

sim(act1, act2), where (act1, act2) ∈ Matched(Pc, Pr)

Sim(Pc, Pr) =
nnSim(Pc, Pr)

|Pc|
(4)

where sim(act1, act2) is the similarity of two activities, Matched(Pc, Pr) is
the best matching solved by mwnc between Pc and Pr, and |Pc| is the size of
Pc. In this way, all pairwise path similarities Sim(Pc, Pr) are obtained. Follow-
ing that, we can determine the similarity of the fragment and the workflow by
computing and normalizing the maximum weight matching of PSc and PSr:

nnSimPS(Gc, Gr) =
∑

Sim(Pc, Pr), where (Pc, Pr) ∈ Matched(PSc, PSr)

SimPS(Gc, Gr) =
nnSimPS(Gc, Gr)

|PSc|
(5)

where Matched(PSc, PSr) is the best matching solved by mw between PSc and
PSr, and |PSc| is the size of PSc.

E. Fragment Recommendation. After the matching degree prediction model
has been successfully trained, it can determine how well each candidate fragment
matches the user query. Then the largest N fragments with a matching degree
higher than the threshold R are selected as the final result.

For instance, we input the features of the scientist’s query T0 and the candi-
date fragments contained in pre-selected workflows sw2793, sw2873, sw2390, ... to
the trained model to predict the matching degree one by one. Based on that and
fragment scale, the final top-N(=10) fragments are recommended: [frag1(0.887),
frag2(0.873), frag3(0.856), ...], where e.g., the first frag1 as shown in Fig. 1(a)
corresponds to the highest matching degree 0.887 with T0.

6 Experiments

6.1 Experimental Settings

1) Datasets: We conduct experiments on two real-world datasets: (1) myEx-
periment: a collection of 2,012 Taverna workflows obtained from the well-known
scientific workflow repository, myExperiment [1,11]; (2) Galaxy: a dataset com-
prising 627 Galaxy workflows sourced from the public European Galaxy repos-
itory3, which adheres to the FAIR data principles [5]. The prototype of our
SWARM is available at https://github.com/t-harden/SWARM.

Using frequent subgraph mining, we discovered abstract and concrete frag-
ments from the two datasets, creating fragment repositories, respectively. Table 1
presents the dataset statistics.
3 https://usegalaxy.eu/.

https://github.com/t-harden/SWARM
https://usegalaxy.eu/


64 Y. Gu et al.

Table 1. Statistics of two datasets with their fragments.

Dataset myExperiment Galaxy

# Original workflows 2,012 627
# Abstract fragments 6,243 2,814
# Concrete fragments 57,253 22,046
# Workflows containing fragments 716 335

The distribution of #Concrete fragments w.r.t. #Contained activities and
#Workflows containing fragments w.r.t. #Contained fragments are depicted in
Fig. 4 for both datasets. Generally, more than half of the fragments are relatively
large in scale (containing more than 16 activities), and most workflows have a
small number of fragments (containing less than 7 fragments) for both datasets.

Moreover, for the myExperiment (Galaxy) dataset, 156,963(77,481) positive
concrete fragment-pairs are selected from 6,243(2,814) abstract fragments to
construct the training set for the semantics extraction model. Regarding the
matching degree prediction model, 716*57,253(335*22,046) sample pairs of user
query-candidate fragment are generated, of which 65% are used for training (not
including sample queries), 15% for validation, and the remaining 20% for testing.

2) Evaluation Metrics: On the myExperiment (Galaxy) dataset, we select
S = 76(32) samples from 716(335) workflows, ensuring an even distribution of
fragment scales within each sample. The descriptions of these sample workflows
serve as testing queries. Given a sample user query Ts corresponding to the
workflow graph Gs, our objective is to recommend the largest N fragments with
a matching degree higher than the threshold R, as discussed in Sect. 4.1.

We evaluate the recommended fragments using three widely-used metrics
[1,11,15]: Path Similarity(PS)@N, Scale@N, and Recall@N, and larger values of
them indicate better performance. The statistical significance between SWARM
and comparative approaches is tested using a Wilcoxon signed-rank test [21].

Fig. 4. The distribution of #Concrete fragments w.r.t. #Contained activities and
#Workflows containing fragments w.r.t. #Contained fragments for two datasets. The
horizontal coordinate denotes #activities in a fragment and #fragments in a workflow.



A Scientific Workflow Fragments Recommendation Approach 65

(1)PS@N. Since Gs is the most desirable (golden standard) fragment for
Ts, we can evaluate the performance by measuring improved-path similarity
between the recommended fragment and Gs: PS@N = 1

N

∑N
i=1 SimPS(Gi, Gs),

where Gi is the ith fragment and SimPS denotes the structure similarity cal-
culated by Eq. 4 and Eq. 5. (2)Scale@N. It measures the average scale of N

recommended fragments: Scale@N = 1
N

∑N
i=1 Scale(Gi), where Scale(Gi) is

the number of Gi’s activities. (3)Recall@N. It is the ratio between the number
of N fragments’ activities that cover Gs’s activities and the total number of Gs’s

activities: Recall@N = |(⋃N
i=1 Acti)∩Acts|

|Acts| , where Acti and Acts are activity sets.

3) Implementation Details: In the frequent subgraph mining, support(g) is
set to 3. Consistent with BioLinkBERT, the vector dimension D is set to 768.
We train the semantics extraction model and matching degree prediction model
10 times each on a machine with an NVIDIA GeForce-RTX-3090-Ti GPU.

For the semantics extraction model, k is set to 2 and one-layer MLP in
PathAttention Net has 2∗k hidden cells. The moving average decay is set to 0.99.
The model is trained for a maximum of 100 epochs using the Adam optimizer
with a learning rate of 5 × 10−4. For the prediction model, Matching Degree
Prediction part consists of a four-layer MLP with dimensions [512, 512, 256,
256]. The model runs for at most 200 epochs using the Adam optimizer with a
learning rate, initially 5 × 10−4 and decreasing to 10−4 in the 50th epoch.

6.2 Comparative Methods

We compare SWARM with several state-of-the-art baselines:

1) Keyword-based Approach (KW) [9]: Homogenized activity labels are
used to match with the user query using an improved TF-IDF similarity
method.
2) Activity Description-based Approach (AD) [22]: This approach
recommends fragments based on the similarity of user queries and activity
descriptions.
3) Fragment Path Annotation-based Approach (FPA) [3]: Unlike KW,
all activity labels in the paths of the fragments, as well as the workflow
descriptions, are considered during similarity calculation and recommenda-
tion.
4) Topic Semantics-based Approach (TOPICS) [6]: Individual activi-
ties are selected based on a topic model, and candidate fragments are con-
structed using relations in the activity knowledge graph.
5) Unit of Work-based Approach (UOW) [11]: Workflow fragments
are represented as Unit of Works (UoWs), and a service social network is
developed for mining and retrieval of UoWs serving context-aware queries.
6) Social-aware Knowledge Graph-based Approach (SKG) [15]: Rules
from a social-aware knowledge graph are extracted to estimate the viability
of composing services and aid in locating and composing candidate services.
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Generally, the first three baselines rely solely on textual descriptions, whereas
the last three baselines focus primarily on the structural information of the
fragments. In SWARM, textual and structural features are both utilized.

6.3 Overall Performance

Table 2. The overall recommendation performance with different N .

Method
myExperiment Galaxy

N= 5 N= 10 N= 5 N= 10

PS Scale Recall PS Scale Recall PS Scale Recall PS Scale Recall
KW 0.405� 8.425� 0.094� 0.395� 8.109� 0.113� 0.324� 12.403� 0.076� 0.312� 12.102� 0.091�

AD 0.437� 8.562� 0.099� 0.419� 8.284� 0.121� 0.358� 12.472� 0.080� 0.339� 12.144� 0.098�

FPA 0.483� 10.847� 0.122� 0.480� 10.541� 0.133� 0.403� 14.865� 0.115� 0.386� 14.654� 0.128�

TOPICS 0.683� 8.765� 0.367� 0.653� 8.610� 0.394� 0.653� 12.967� 0.369� 0.633� 12.815� 0.396�

UOW 0.707� 8.799� 0.363� 0.663� 8.607� 0.398� 0.677� 12.989� 0.383� 0.649� 12.837� 0.418�

SKG 0.734� 8.902� 0.405� 0.701� 8.725� 0.453� 0.692� 13.002� 0.416� 0.668� 12.941� 0.446�

SWARM 0.951 9.764 0.538 0.945 9.642 0.601 0.901 13.854 0.525 0.893 13.663 0.593
∗ The best results are highlighted in bold. � denotes statistical significance (p < 0.05)
between the comparative method and SWARM.

We compare SWARM with various competitive methods as presented in
Table 2, where the average results for each metric across S samples are reported
when the threshold of matching degree R is 0.8. Below are our findings:

1) SWARM v.s. Baselines: SWARM almost consistently outperforms state-
of-the-art baselines with a significance level on both datasets. For instance,
it achieves significant improvements over six counterparts w.r.t. PS@5 and
Recall@5 by 29.5%–134.6% and 32.7%–474.3%, respectively on the myExper-
iment dataset. While SWARM is slightly inferior to FPA by 10.0% in Scale@5,
this slight difference is acceptable considering the substantial improvements in
PS and Recall. Furthermore, FPA searches the entire fragment repository, which
is much larger than SWARM’s, resulting in longer recommendation time.

Overall, SWARM surpasses annotation-based methods (the first three), high-
lighting the importance of the fragment structure besides textual information.
Although the last three baselines partially consider structural features, their
performance still lags behind SWARM’s, demonstrating the effectiveness of our
method in extracting and integrating textual and structural semantics.

2) myExperiment v.s. Galaxy: Another interesting observation is that the
performance of structure-based methods is significantly better than annotation-
based methods on the Galaxy dataset compared to the myExperiment dataset.
For instance, when comparing SKG and FPA as representatives of their respec-
tive methods, SKG demonstrates an average improvement of 49.0% and 236.3%
in PS and Recall metrics, respectively, on the myExperiment dataset. However,
this gap widens to 72.4% and 255.1% on the Galaxy dataset due to the lack
of well-annotated titles or descriptions for Galaxy workflows. Given the varying
quality of online repositories, our SWARM model, which effectively integrates



A Scientific Workflow Fragments Recommendation Approach 67

textual and structural features simultaneously, is indispensable and offers greater
generalization capabilities for different formats of workflow fragments.

Additionally, while myExperiment workflows are primarily from biomed-
ical domains, Galaxy workflows support many scientific domains. However,
SWARM performs impressively on both datasets, showing its high capability
for multi-domain adaptation. This underscores the effectiveness of fine-tuning
BioLinkBERT in enabling the model to effectively adapt to different scientific
domains.

6.4 Ablation Study

We conduct ablation studies on the two datasets for different values of N (5,10),
and the average results are presented in Table 3. Below are our observations:

Table 3. Ablation studies on the main components/mechanisms of our approach.

Method
myExperiment Galaxy

PS Scale Recall PS Scale Recall

SWARM 0.948 9.703 0.570 0.897 13.758 0.559
\PreEncoder 0.866 8.886 0.490 0.825 12.976 0.471
\PreSel 0.926 10.387 0.523 0.872 14.059 0.505
�PathAtt 0.822 7.936 0.459 0.793 12.045 0.446

∗ The best results are highlighted in bold. \PreEncoder and \PreSel
denote removing the pretraining of fragment encoder and the pre-
selection step from SWARM. �PathAtt denotes replacing PathAtten-
tion Net with average pooling and one-layer MLP projection for paths
in SWARM.

1) Removing the pretraining of fragment encoder causes severe perfor-
mance degradation, dropping by an average of [8.3%, 7.1%, 14.9%] on the two
datasets w.r.t. three metrics, respectively. Such striking differences highlight the
necessity of using a contrastive model to extract structural semantics of frequent
and similar fragments from a high-level abstraction perspective, resulting in a
pre-trained fragment encoder for facilitating downstream semantic matching.

2) The two-step approach SWARM generally outperforms the direct ranking-
based (one-step) approach, SWARM\PreSel. The pre-selection step that
selects candidate workflows and fragments with higher text similarity is skipped
in SWARM\PreSel, hence using the prediction model directly may return some
noisy fragments with a high matching degree but low text similarity. These frag-
ments may be slightly larger in scale but can harm the PS and Recall metrics,
not to mention the increase in computing cost for the whole fragment repository.
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3) Replacing average pooling with PathAttention Net obtains remarkable
performance gains. We owe it to the attention mechanism’s precise and selective
learning of textual and structural semantics in candidate fragments’ paths.

6.5 Further Investigation

To further evaluate the influence of key parameters or components in our frame-
work, we compare our method to those replacing with other standard values or
modules on the myExperiment dataset. The results are shown in Fig. 5.

Fig. 5. Performance analysis of different parameters or components (k, R, language
models, and contrastive models) when N = 10. � denotes statistical significance (p <
0.05) between the comparative method and SWARM.

1) Effect of k: In Fig. 5(a), it is evident that SWARM performs best when
k = 2, whereas a single path is insufficient for effective encoding. Moreover, a
larger k increases the training burden and introduces redundant or irrelevant
activity noise, causing a performance degradation when k = 3, 4. Further anal-
ysis reveals that the selected two key paths can cover more than 87% of the
activities in each fragment, indicating that they capture a significant portion of
the critical information. With the assistance of the attention mechanism, these
paths effectively represent the key semantics of the fragment. In short, k can
be set to a relatively small and appropriate value based on the coverage rate of
paths in fragments and the computational overhead.

2) Effect of R: Figure 5(b) shows the performance of SWARM when the thresh-
old R varies from 0.6 to 0.9. As R increases from 0.6 to 0.8, PS@10 and Recall@10
raise steadily, proving that a higher matching degree can select valuable frag-
ments. However, when R continues to grow to 0.9, Recall@10 drops obviously.
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Through a case study, the reason is that the number of fragments with a match-
ing degree higher than 0.9 is too small to cover the user needs. Furthermore,
Scale@10 exhibits a slight downward trend, but the difference is minimal, within
0.75. Thus, an appropriate value of R can be identified, i.e., R = 0.8.

3) Effect of Language Models: Figure 5(c) demonstrates that replacing
BioLinkBERT models with Word2Vec, BERT, and LinkBERT causes a consis-
tent performance reduction. For instance, compared to SWARM, the approach
with Word2Vec decreases by 12.65%, 11.10% and 18.49% on PS@10, Scale@10
and Recall@10. This confirms the effectiveness of finetuned large-scale domain-
specific language models in extracting linguistic information and underlying
semantics.

4) Effect of Contrastive Models: We compare different contrastive methods
in the semantics extraction model. Figure 5(d) shows that the variants employing
SimSiam, SwAV, or Barlow Twins all underperform SWARM with BYOL. These
results align with findings in the contrastive learning field [12,23].

6.6 Discussion

SWARM demonstrates encouraging overall performance in the experiment. How-
ever, the semantics-based approach is limited by the available information in
users’ text queries. To enhance the usability and compatibility of the recom-
mended fragments, it would be beneficial to request users to provide more
detailed fields such as intended inputs/outputs or structured specifications. By
incorporating additional contextual semantics, the quality of results could be
further improved. Nevertheless, it is important to strike a balance between user-
friendliness and the usability of the obtained outcomes.

7 Conclusion

This paper puts forward SWARM, a two-phase approach for scientific workflow
fragment recommendation based on contrastive learning and semantic matching.
In Fragment Discovery Phase, SWARM first created a fragment repository using
frequent subgraph mining. Then a contrastive learning-based semantics extrac-
tion model was used to pre-train the fragment encoder that captured the struc-
tural semantics of fragments. In Fragment Recommendation Phase, SWARM pre-
selected candidate fragments using text similarity measures and used a matching
degree prediction model based on the pre-trained fragment encoder to recom-
mend fragments, considering both semantic matching and fragment scale. Com-
prehensive experiments on real-world datasets prove the superiority of SWARM
over its counterparts with statistical significance. Future work will be dedicated
to exploring the composition of fragments to generate novel and tailored work-
flows that further precisely meet user requirements.
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Abstract. As we know that simply applying existing techniques in pro-
cess mining will often yield a highly incomprehensible process model that
called the spaghetti-like model, because real-life processes are typically
less structured and more complex than expected by stakeholders. In order
to address this issue, trace clustering is considered one of the most relevant
pre-processing approaches as grouping similar event logs can radically
reduce the complexity of the discovered models. Trace variants denote
unique control-flow complete trajectories of a process model. The com-
parison of trace variants opens the door for a fine-grained analysis of the
distinctive features inherent in the execution of a process. In this paper,
we propose a split-merge clustering method based on trace variants for
pre-processing event logs. Our method consists of three phases: (1) trace
variants are filtered out from the event log, and the k-nearest neighbor
graph is constructed based on all trace variants; (2) the graph would be
partitioned into the initial sub-clusters by applying the coarsening and
partitioning operations; (3) we dynamically merge two sub-clusters in the
hierarchical clustering process with the relative inter-connectivity and the
relative closeness. The experiments on real-life event logs confirmed the
improvements of our method compared with the baselines.

Keywords: Process mining · Trace clustering · K-nearest
neighborgraph · Hierarchical clustering

1 Introduction

Since web services are distributed over autonomous parties, it is vital to mon-
itor the correct execution of service processes. Fortunately, massive event logs
are collected in Information Systems (e.g., Process-Aware Information Systems),
which can be fully analyzed to improve service quality. Process mining acts as a
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Fig. 1. Illustration of the basic trace clustering procedure in process mining

link between data mining and business process management, which can extract
useful knowledge from event logs for setting and improving ongoing business
processes [1]. The topics in process mining can be broadly classified into three
categories [17]: process discovery (i.e. extracting one or several process models
from an event log without using any apriori information), conformance checking
(i.e. monitoring deviations by comparing a model and a log) and process model
enhancement (i.e. extending or improving an existing model using additional
information in a log). However, the challenge often faced in practical applica-
tions is that the process model mined from the raw log is extremely complex
and unreadable, which is called the spaghetti-like model as shown in Fig. 1. To
the best of our knowledge, trace clustering is one very interesting approach that
can help limit this issue. As depicted in Fig. 1, the raw log would be partitioned
into many sub-logs by trace clustering. Then, more accurate and comprehensible
models would be mined by applying process discovery algorithms on sub-logs.

In the last years, many excellent trace clustering algorithms have been pro-
posed and they provide good solutions for highly flexible environments. However,
most trace clustering algorithms only consider distances between traces in event
logs and do not take into account the internal relations among trace variants,
where the internal relations reflect the same semantics of business processes.
For example, imagine the process of purchasing a certain item in an online
shop; the fragment of the process that considers filling out the form for the
credit card number needs sometimes to be executed once, twice, three, ... several
times. These traces would be partitioned into different groups if only comput-
ing distances, but all these different executions are not semantically different.
A similar situation arises when certain fragments of a process can be executed
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concurrently. Boltenhagen et al. [4] tried to solve this problem based on already
existing models, but in many scenarios, the process is not known in advance.

In this paper, we propose a radically different approach for Trace Cluster-
ing analysis based on Trace Variants, named TCTV. Utilizing relative inter-
connectivity and relative closeness, TCTV considers not only the distances
between sub-clusters but also the internal relations in the clustering process.
Specifically, the main contributions are summarized as follows:

– We use trace variant instead of trace as the minimum unit for trace clustering,
which can improve the efficiency and accuracy of the technique. In addition,
a kNN graph based on the trace variants is constructed to depict the global
relationships among all variants in the log.

– Inspired by the METIS [15], which can efficiently partition the irregular graph
into a multilevel scheme, we divide the kNN graph into multiple sub-clusters
through two operations: coarsen and partition.

– We define relative inter-connectivity and relative closeness to compute the
similarity between different sub-clusters. Then, the idea of hierarchical clus-
tering is used to merge sub-clusters and the similarity between sub-clusters
is calculated dynamically during the merging process.

In the experiments, we evaluate the performance of TCTV on different
datasets. Empirical results show that the proposed method achieved state-of-
the-art in trace clustering.

2 Related Work

Discovering models from logs is an important means of optimizing business pro-
cesses. But logs originating from flexible environments contain many trace vari-
ants, which can significantly degrade the quality of the mined models. In the
ideal case, the process would obviously be mitigated if few trace variants could
be identified. Trace clustering provides a clever solution to address this issue.
Over the past decade, trace clustering has been widely applied in process mining.

Greco et al. [12] employed n-gram to depict traces, but the activity sequences
generated by n-gram are only locally constrained. Taking inspiration from the
n-gram pattern, Bose et al. [22] introduced multiple feature sets for user selection
(e.g., maximum, Super maximum, and Near Super maximum Repeats). These
feature sets can be easily discovered in linear time, enabling real-time analysis
of large datasets. However, this approach poses challenges when dealing with
loop structures. Following a similar approach, Appice and Malerba [2] devel-
oped a joint training strategy for clustering traces based on multiple dimensions
(i.e., activity, resource, sequence, and temporal). Similarity measures based on
instance-level similarity, however, may be domain-specific depending on how
similarity is extracted. In [10], the authors cleverly employed a multi-criteria
non-compensatory logic for achieving global aggregation among conflicting cri-
teria. To reduce the time complexity of trace clustering, [6] proposed a novel
technique based on trace profiling.
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Inspired by [5] in the area of web usage mining, Ferreira et al. [11] pro-
posed clustering sequences by learning a mixture of first-order Markov models
through the Expectation-Maximization (EM) algorithm. While this method can
handle incomplete information in logs (e.g., missing trace IDs), it suffers from
severe restrictions imposed by the order of trace selection. Weirdt et al. [9] iden-
tified a discrepancy between clustering and evaluation in methods that solely
rely on distance-based clustering. To address this phenomenon, they proposed a
model-driven clustering algorithm based on heuristic mining. However, this algo-
rithm employs a greedy strategy for trace selection from logs, which may lead to
local optimization. Furthermore, another drawback of this method is its time-
consuming nature due to frequent mining algorithm usage. Yaguang et al. [23]
improved the accuracy of trace clustering by utilizing Petri nets. Nonetheless, the
problem of high-time complexity still persists. Chatain et al. [7] performed trace
clustering using centroids, where centroids represent partial coverage in process
models. However, it fails to handle concurrent structures in process models. Tay-
mouri et al. [24] introduced activity duration as a novel discriminative feature
and applied discrete wavelet transform on this feature, termed mutual finger-
prints. However, constructing mutual fingerprints requires substantial domain
expertise to ensure algorithm correctness.

As already remarked, many excellent researchers are working hard to pro-
mote the work of trace clustering, but the existing methods still have limitations
with handling concurrent and loop structures. Therefore, we try to stand a new
perspective to improve the performance of trace clustering by utilizing relative
inter-connectivity and relative closeness between sub-clusters.

3 Preliminaries

In this section, a number of basic definitions will be introduced, and these defi-
nitions are borrowed from [8,20].

Definition 1 (Event log). Let T be a finite set of activities. An event log
L over T is defined as L = (E , C, ζ, τ,�), where E is a set of events, C is a
set of case identifiers, ζ : E → C a surjective function relating events to cases,
τ : E → T a function relating events to activities and � ⊆ E × E a total order
on events.

Definition 2 (Trace). Let T be a finite set of activties and L = (E , C, ζ, τ,�)
a log over T . For all cases c ∈ C, we define the trace σc = 〈e1, e2, · · · , en〉 as
an event sequence over the event set E(σc) = {e ∈ E|ζ(e) = c} as all events
relating to case c, where n is the number of events in E(σc), ei ∈ E(σc), i ∈
{1, 2, · · · , n−1} and if 1 ≤ i < n, it holds that ei � ei+1. The length of the trace
σc is defined as the number of elements in E(σc), which is denoted as |σc|.

Definition 3 (Trace Clustering). A trace clustering C is a partition of an
event log L: a set of nonempty subsets of L such that the union of all clusters is
equal to the event log, and none of the clusters overlap:

⋃
A∈C A = L ∧ ∀A,B ∈

C : A ∩ B �= ∅ → A = B.
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Definition 4 (Trace variant). Let T be the universe of activities. The
set of all finite sequences over T is denoted with T ∗. A trace variant γ =
〈e1, e2, · · · , en〉 ∈ T ∗ is a sequence of activities performed for a case.

Definition 5 (Simple event log). Let B (T ∗) is the set of all multisets over
T ∗. A simple event log L is defined as a multiset of trace variants L ∈ B (T ∗).
L denotes the universe of simple event logs.

Definitions 1 and 2 state that an event log consists of a set of traces, each
capturing the sequence of events for a given case of the process ordered by
timestamp [1]. Definition 3 outlines the goal of trace clustering, which is to
divide the raw log into sub-logs. Each sub-log contains at least one trace, and
there is no overlap between traces. In Definition 4, a trace variant represents a
specific instantiation or manifestation of a trace within the event log. In other
words, if two traces belong to the same trace variant, they must have the same
activities, events, and orders. The simple event log based on Definition 5 is a
collection of trace variants.

Fig. 2. Overview of our technique named TCTV for trace clustering

4 Methodology

In this section, we present TCTV (Trace Clustering based on Trace Variants), a
new trace clustering algorithm that overcomes the limitations of existing trace
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clustering algorithms discussed in Sect. 2. Figure 2 shows an overview of our
proposed method. Initially, we filter the event log to create a simple event log
comprising trace variants. We employ n-gram patterns to construct the fea-
ture space of this simple event log and build a connected k-nearest neighbor
(kNN) graph based on this space. Next, We perform multi-level coarsening and
partitioning of the kNN graph to obtain initial sub-clusters. Subsequently, we
dynamically merge two sub-clusters based on their relative inter-connectivity
and relative closeness. Finally, the number of clusters required by the users is
obtained through an upward-agglomerative hierarchical clustering process.

4.1 Constructing K-Nearest Neighbor Graph on Trace Variants

The first phase of TCTV involves constructing the k-nearest neighbor graph
of trace variants, where these variants are derived from the raw event log,
resulting in a simple event log. For instance, we assume that the raw event log
L = {σ1, σ2, σ3, σ4, ..., σn} = {〈A, B, C, D, E〉, 〈A, B, C, E〉, 〈A, B, C, D, E〉, 〈A, B, C, E〉,
..., 〈A, B, C, D, E, F〉}. After traversing L once, we can filter to get the simple event
log L = {γ1, γ2, ..., γm} = {〈A, B, C, D, E〉, 〈A, B, C, E〉, ..., 〈A, B, C, D, E, F〉}, where
the value of m is much smaller than the value of n.

Next, we perform feature extraction on trace variants in the sample event
log. The n-gram is an efficient feature extraction technique that has been well
utilized in the field of process mining [13]. In this paper, we combine different
lengths of n-gram patterns for clustering (i.e., 1-gram, 2-gram, and 3-gram),
which can yield more comprehensive representation of trace variants in the log.
Taking L above as an example, the trace variant is γ1 = 〈A, B, C, D, E〉. The 1-gram
set for this trace variant corresponds to{(A) , (B) , (C) , (D) , (E)} , the 2-gram set
corresponds to{(A, B) , (B, C) , (C, D) , (D, E)}, and the 3-gram set corresponds to
{(A, B, C) , (B, C, D) , (C, D, E)}. Furthermore, we incorporate the frequency infor-
mation of n-gram patterns to refine the trace variant features. At last, all the
trace variants would be transformed into a multidimensional feature space.

Fig. 3. The k-nearest graph from a simple event log
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Once the feature space is generated, we employ a k-nearest neighbor (kNN)
graph to depict the simple event log L. Specifically, let G = (V,E,w) be a kNN
graph, V = {v1, ..., vn} is a set of vertices and the number of vertices n = |V |,
where each vertex vi represents a trace variant γi, and E = {(u, v) |u, v ∈ V }
is a set of edges. The number of edges m = |E|. In this context, w (u, v) is the
positive weighting of the edges, which signifies the magnitude of affinity between
trace variants γu and γv. Figure 3 illustrates the kNN graph for a simple event
log with k set to 1, 2, and 3, respectively. It is important to note that the value
of k is determined by whether the kNN graph is a connected graph or not. In
other words, when k = 1, for ∀a, b ∈ V , if there is a path from a to b, then no
iteration is performed. As shown in Fig. 3(b), when k = 1, trace variants γa and
γb are not connected, so k = 2 iterations must be performed, and so on.

4.2 Building Initial Sub-clusters

In the second phase of TCTV, the kNN graph is partitioned into a large number
of initial sub-clusters. By only considering the distance between trace variants,
it is not possible to overcome the execution semantic gap caused by concurrency
or loop structures. In addition, the performance of TCTV can be effectively
improved by using sub-clusters as the minimum unit for clustering.

Before the partitioning operation, we will perform a coarsening operation.
Because in the real-life logs, the number of trace variants is very large, directly
dividing the kNN graph will seriously affect its efficiency. The coarsening process,
as illustrated in Fig. 3, involves obtaining a coarser version of the kNN graph
G = (V,E,w) by finding the maximal matching. For any vertex vi, its matching
value is the sum of the weights of all the edges connected to it. We define the
matching weight as w(M), and the computation formula is as follows:

w (Mi) =
∑

vj∈V,i�=j

(w (vi, vj) · I (vi, vj)) (1)

where w (vi, vj) represents the weight of the edge (vi, vj), I (vi, vj) is the
indicator function that represents if the edge (vi, vj) exists, the value of I (vi, vj)
is 1, otherwise 0. For example, shown in Fig. 4, after traversing all vertices,
we obtain a matrix of matching weights and find that w (Mp) = 4.1 is the
maximum matching weight in G. Therefore, the set of vertices γx, γy, γz, γp

in G are abstracted to form a single vertex p1 in the next coarser level graph.
To preserve the connectivity information in the coarser graph, the edges that
were originally connected to all four vertices γx, γy, γz, γp are reconnected to
p1. Note that if there exist multiple edges from a vertex to these four vertices,
then the weight of the reconnected edge to p1 is cumulative. As shown in Fig. 4,
γm has two edges (γm, γy) , (γm, γz) before coarsening operation, so the weight
w

(
γm, p1

)
= w (γm, γy) + w (γm, γz) = 0.3 + 0.1 = 0.4.
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Fig. 4. An example for illustrating the process of graph coarsening

After obtaining the coarsened graph, we utilize the spectral bisection (SB)
method [25] to compute a high-quality bipartition (i.e., small edge cut) of the
graph, ensuring that each partition contains approximately half of the total
weights of the original graph. We will iterate the partitioning process until the
number of sub-clusters equals NUM, where NUM is a hyperparameter in TCTV
and its value is much larger than the number obtained from the final trace
clustering. For most of the data sets that we encountered, setting NUM to 100
in TCTV which provides a good trade-off between efficiency and accuracy. It
should be noted that after the partitioning is completed, all abstract vertices in
the coarsened graph will be reverted to their original state in the kNN graph.

4.3 Merging Sub-clusters

As soon as the initial sub-clusters are generated in the second phase, TCTV then
switches to agglomerative hierarchical clustering, where these small sub-clusters
are merged together. In this phase, we define the relative inter-connectivity and
relative closeness to measure the similarity between two sub-clusters inspired by
the Chameleon algorithm [14].

Relative Inter-connectivit. The relative inter-connectivity between Ci and
Cj is defined as the absolute inter-connectivity Ci and Cj normalized by the
internal inter-connectivity of both Ci and Cj .

The relative inter-connectivity between Ci and Cj is given by

RI (Ci, Cj) =

∣
∣EC|Ci,Cj |

∣
∣

|ECCi |+|ECCj |
2

(2)

here,
∣
∣EC|Ci,Cj |

∣
∣ represents the sum of edge weights that connect Ci and

Cj , which indicates the absolute inter-connectivity between Ci and Cj . |ECCi
|

denotes the size of its min-cut bisector (i.e., the weighted sum of edges that
divide the fine-grained graph formed by the trace variants within Ci into two



80 L. Lin et al.

roughly equal parts), which reflects the internal inter-connectivity of Ci. Simi-
larly,

∣
∣ECCj

∣
∣ is the size of its min-cut bisector for Cj .

Relative Closeness. The relative closeness between a pair of sub-clusters Ci

and Cj is defined as the absolute closeness between Cj and Cj normalized with
respect to the internal closeness of Cj and Cj .

Hence, the relative closeness between Ci and Cj is computed as,

RC (Ci, Cj) =
S̄EC|Ci,Cj |

|Ci|
|Ci|+|Cj | S̄ECCi

+ |Cj |
|Ci|+|Cj | S̄ECCj

(3)

where |Ci| and |Cj | represent the number of trace variants contained in Cj

and Cj , respectively. S̄EC|Ci,Cj | denotes the average weight of all edges connecting
Cj and Cj , which reflects the average edge weight between these two sub-clusters.
S̄ECCi

and S̄ECCj
are the average weights of the edges that belong in the min-cut

bisector of Cj Cj . Also note that a weighted average of the internal closeness of
Cj and Cj is used to normalize the absolute closeness of the two sub-clusters,
that favors the absolute closeness of sub-cluster that contains the larger number
of trace variant vertices.

Next, we define a similarity score function S to combine the relative inter-
connectivity and relative closeness, and then each merging in the hierarchical
clustering would select the sub-cluster pairs of maximize similarity score.

S (Ci, Cj) = α ∗ RI (Ci, Cj) + (1 − α) ∗ RC (Ci, Cj) (4)

where α is a trade-off factor with a range of values between [0, 1]. When the
value of α is greater than 0.5, it indicates that the similarity score takes more
account of RI, otherwise it considers the RC more. In this paper, α = 0.5.

As shown in Fig. 5, the process of merging sub-clusters using agglomerative
hierarchical clustering is detailed. At the first level, there are a total of 7 sub-
clusters. By computing the similarity score function defined in Eq. 4, we obtain
a 7× 7 metric matrix, where matrix(i, j) represents the similarity score S(Ci,
Cj) between sub-clusters Ci and Cj . At the first level, the maximum similar-
ity score in the matrix is S(C2, C3) = 0.9, leading us to merge C2 and C3 to
form a new sub-cluster C23. Moving on to the second level, we recalculate the
similarity scores between clusters and update the metric matrix to a 6 × 6 dimen-
sion, enabling dynamic modeling of cluster similarities. We iteratively repeat the
above steps until the number of clusters reaches the desired value specified by
the users. This allows us to dynamically adjust and refine the clustering based
on the evolving similarities between clusters at each level of the hierarchy.
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Fig. 5. The details of merging sub-clusters in hierarchical clustering

5 Experiments

The proposed method (i.e., TCTV) is implemented as a stand-alone Python
application, and all the code is publicly-available11.

5.1 Datasets

We conducted all experiments using three publicly available datasets: BPIC132,
BPIC173 and BPIC204, which we refer to as event logs. BPIC is open real-world
data provided by IEEE Task Force on Process Mining, which has become an
important benchmark in process mining. These three datasets originate from
diverse domains and exhibit substantial disparities, providing robust validation
for the trace clustering algorithm’s capabilities: (i) BPIC13 is provided by the
Ghent University, contains the event log for the Volvo IT incident and problem
management with 819 traces and 2351 events; (ii) BPIC17 is generated by the
loan application process of Dutch financial institutions, includes all applications
submitted through the online system in 2016. This dataset has 31,504 traces and
1,202,267 events; (iii) BPIC20 covers events related to travel permits, including
all relevant events associated with the declaration of prepaid travel expenses and
travel declarations. It has 7,065 traces and 86,581 events.

5.2 Baselines and Metrics

Baselines. In order to comprehensively demonstrate the effectiveness of the
TCTV algorithm, in this section, we compare TCTV with three algorithms (MR
[22], ActiTraC [9] and TraCluSI [8]). The reasons for selecting these three
algorithms are: (i) the methods commonly applied in data mining and trace
clustering literature and their implementations are publicly accessible; (ii) if
there are many extended versions of a method, only the best one is selected; (iii)
1 https://anonymous.4open.science/r/TCTV.
2 https://data.4tu.nl/collections/789491a1-2b09-4ed6-af75-8a5aadada5ac.
3 https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884.
4 https://data.4tu.nl/collections/BPI_Challenge_2020/5065541.

https://anonymous.4open.science/r/TCTV
https://data.4tu.nl/collections/789491a1-2b09-4ed6-af75-8a5aadada5ac
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
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the input of the method is the set of traces and the smallest unit is a trace, while
the output is the set of trace clustering.

Metrics. There are many methods to measure the quality of trace clustering
[8,11,16,18], and in this paper, the silhouette coefficient [21], fitness [3] and pre-
cision [19] are chosen to evaluate the performance of trace clustering algorithm,
respectively:

1) Silhouette Coefficient: As we know, silhouette coefficient is the most com-
monly used to evaluate the effect of clustering. In Eq. 5, a(i) represents the
average distance between trace σi and the other traces in the same cluster, b(i)
represents the average distance between trace σi and the traces in the nearest
neighboring cluster. The calculation process of the silhouette coefficient s(i) for
trace σi is as follows:

s (i) =
b (i) − a (i)

max {a (i) , b (i)} (5)

The silhouette coefficient S for event log L is the average of silhouette scores
for all traces (total number of traces N) of L, as shown in Eq. 6. The silhouette
coefficient ranges from −1 (worst) to 1 (best).

SL =
1
N

N∑

i=1

s (i) (6)

2) Fitness: The ultimate goal of trace clustering is to improve the quality of
the model by dividing the event log. However, the silhouette coefficient cannot
measure clustering results from the perspective of the process model, leading to
the divergence between the clustering bias and the evaluation bias. Therefore,
we also choose fitness to measure the performance of trace clustering by replying
to the traces on process models. For each trace σi of the event log L, let ci be the
number of consumed tokens, pi the number of produced tokens, mi the number
of missing tokens and ri the number of remaining tokens. Then, the following
equation calculates the fitness of L.

fL =
1
2

(

1 −
∑

σi∈L mi
∑

σi∈L ci

)

+
1
2

(

1 −
∑

σi∈L ri
∑

σi∈L pi

)

(7)

As shown in Eq. 7, the range of fitness is [0, 1], where 0 is the worst value
and 1 is the best value.

3) Precision: The aim of precision in process mining is to prefer the model
with minimal behavior to represent as closely as possible the log, thus avoiding
the overly general model. Let L =

{
σi, ..., σ|L|

}
and PN = (P, T,W,M0) be

an event log and a petri net, respectively. For each trace σi (1 ≤ i ≤ |L|), state
si

j (1 ≤ j ≤ |σi| + 1) denotes the j-th state of σi. AT (s) represents the allowed
tasks of the PN under state s, while RT represents the reflected tasks of L under
state s. The escaping edges (EE) of s is defined as EE(s) = AT (s) \ RT (s). The
precision is defined as follows:
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p(L, PN) = 1 −
∑|L|

i=1

∑|σi|+1
j=1 |EE(si

j)|
∑|L|

i=1

∑|σi|+1
j=1 |AT (si

j)|
(8)

It’s worth noting that we use the Inductive Miner algorithm to discover the
process model, in order to evaluate the performance of trace clustering in terms
of fitness and precision.

Silhouette coefficient

BPIC 2020

BPIC 2013

BPIC 2017

0        0.05      0.1       0.15      0.2       0.25      0.3      0.35      0.4       0.45    

Dataset All-Variant1

Order-Variant2

Activity-Variant3

Fig. 6. The silhouette coefficient under three types of trace variants

5.3 Evaluation on Different Trace Variants

Different trace variants can have a significant impact on the clustering results.
Therefore, for our first experiment, we select three common trace variants to
evaluate the performance of TCTV: (a) “All-Variant1”, which considers all infor-
mation in trace (i.e., activities, events, and orders); (b) “Order-Variant2”, which
considers whether some orders appear or not; (c) “Activity-Variant3”, which
considers some activities appear or not. As shown in Fig. 6, on the BPIC2013
dataset, the silhouette coefficient of “Activity-Variant3” is significantly lower than
the other two trace variant types, while on the BPIC2020 dataset, the silhouette
coefficient of “Activity-Variant3” is higher than that of “Order-Variant2”. How-
ever, the silhouette coefficient scores of “All-Variant1” are consistently higher
than the other two trace variant types on all datesets. Therefore, in TCTV, we
default to using the “All-Variant1”.

5.4 Comparing with the Baselines

In the second experiment, the performance of our proposed method (TCTV)
and the baselines (MR, ActiTraC, and TraCluSI) are compared in silhouette
coefficient, fitness and precision.

Firstly, the performance of the silhouette coefficient is shown in Fig. 7(a)–
(c). We can see that ActiTraC and TraCluSI have significantly lower silhouette
coefficients than TCTV and MR. For example, as shown in Fig. 7a, TCTV and
MR can achieve an accuracy of about 0.4, while the average scores of ActiTraC
and TraCluSI are only about 0.3. Similar observations can also be made from
Fig. 7b and Fig. 7c. In addition, we can find that the silhouette coefficient score
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Fig. 7. Comparisons of four algorithms on three metrics.

of TCTV is generally higher than that of MR. Specifically, although TCTV out-
performed MR slightly in both BPIC2013 and BPIC2017, its average silhouette
coefficient score in BPIC2020 was higher than that of MR by 0.1.

Secondly, we use the fitness evaluation metric to measure the clustering effect
of the four algorithms. As shown in Fig. 7(d)–(f), TCTV outperforms the other
algorithms in terms of fitness. In comparison, although ActiTraC and TraCluSI
also take into account the structural information of sub-clusters, their fitness
scores are still lower than TCTV. This can be attributed to ActiTraC’s frequent
use of greedy strategies during the clustering process, which can lead to local
optima. Additionally, TraCluSI’s utilization of Super-Instances may result in
information loss. What’s worse, due to the uncertainty in Super-Instance selec-
tion, the clustering results exhibit evident instability. For instance, as shown
in Fig. 7(f), the distance between the best and worst fitness scores of the Tra-
CluSI algorithm can reach 0.2. On the other hand, MR appears to be ineffective
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on the BPIC2017 and BPIC2020 datasets. This is because MR solely considers
distance information between traces and neglects the structural information of
sub-clusters, leading to lower fitness scores. It is noteworthy that in Fig. 7(d),
the fitness scores of all four algorithms are exceptionally high, reaching 1. This
is due to the BPIC2013 dataset containing only three activities, resulting in a
limited number of possible permutations.

Thirdly, Fig. 7(g)–(i) show the precision scores under three datasets. TCTV
outperforms the other algorithms on all three datasets, indicating that the mod-
els obtained from TCTV clustering results do not suffer from overgeneralization
problems. The performance of MR on three datasets are extremely unstable,
mainly due to the neglect of concurrency and loop structures. ActiTraC also has
low precision scores after weighted average due to the use of a greedy strategy.

Fig. 8. Results of evaluation on three-dimensional scatter plot.

Overall, as illustrated in Fig. 8, each point in the scatter plot represents the
average score of the three datasets under the same number of clusters. We find
that MR performs well in terms of silhouette coefficient, but the performance on
fitness and precision is lower than ActiTraC and TraCluSI. In contrast, although
ActiTrac and TraCluSI have high fitness and precision, their silhouette coefficient
scores are very low. However, the proposed method (i.e., TCTV) in this paper
performed well in all aspects.

On the aspect of software and hardware, we conduct all experiments on an
AMD Ryzen i7-6800HQ@3.20 GHZ with 16 GB RAM (64 bit), running Windows
11 and Python3.7. Based on the test results, it is evident that TCTV demon-
strates the highest efficiency, with an average runtime of 141.37 s. In comparison,
TraCluSI has an average running time of 157.31 s, MR’s average running time
is 374.2 s, and ActiTraC’s execution time is significantly longer, with an average
running time of 2235.2 s.



86 L. Lin et al.

6 Conclusion and Future Work

Trace clustering is a highly relevant topic in process mining, because it can reduce
the complexity of the model mined from event logs in a flexible environment. In
this article, we present a novel technique of trace clustering, called TCTV, which
considers the intra-cluster and inter-cluster similarity based on trace variants.
Our approach consists of three phases: constructing the kNN graph, building
(hundreds of) initial sub-clusters, and merging sub-clusters. We choose three
metrics (i.e., silhouette coefficient, fitness, and precision) to evaluate the perfor-
mance of TCTV. The experimental results show that our method outperforms
state-of-the-art baselines with real-life logs.

In the future, we plan to extend our method to support multiple view clus-
tering, while TCTV only considers the control-flow perspective.
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Abstract. The graph contrastive learning approach, which combines
graph convolutional networks (GCNs) with contrastive learning, has
been widely applied in recommender systems and achieved tremendous
success. Most graph contrastive learning (GCL) methods for recom-
mendation perform random data augmentation operations on the user-
item interaction graph to generate subgraphs, learn node embeddings
through graph convolutional networks, and finally maximize the consis-
tency of node embeddings in different subgraphs using contrastive loss.
GCL improves the recommendation performance while slowing down
the rate at which node embeddings tend to be similar, alleviating the
over-smoothing problem to some extent. However, random data aug-
mentation (e.g., random node dropout or edge dropout) will destroy the
structure of the original input graph and change the original seman-
tic information, leading to performance degradation. In this paper, we
propose a novel graph contrastive learning model, IG-GCL, which uses
the influence of elements in a graph to achieve guided data augmenta-
tion. Specifically, the model uses the mutual reinforcement network and
node degree to calculate the importance scores of nodes and edges in
the graph, respectively, thereby creating a more powerful data augmen-
tation method to improve the performance of contrastive learning. We
conduct extensive experiments on three real-world benchmark datasets.
Experimental results demonstrate that IG-GCL can obtain performance
improvements by stacking multi-layer neural networks, has the ability to
mitigate the over-smoothing problem, and consistently outperforms the
baseline, validating the effectiveness of the proposed influence-guided
data augmentation method.

Keywords: Recommendation · Contrastive Learning · Graph
Convolution Network · Data Augmentation

1 Introduction

Graph Convolutional Networks (GCNs) [7] can aggregate neighborhood infor-
mation to enhance node representation learning and provide a flexible and con-
venient way to model multi-hop information. Therefore, GCN-based models
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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have gained more and more attention in recent years and achieve state-of-the-
art performance in recommendation [1,4,9,11]. Most GCN-based models fol-
low the supervised learning paradigm, where the supervised signals come from
observed user-item interactions. However, in practical recommendation scenar-
ios, the observed interactions are very limited, leading to data sparsity issues.
Therefore, researchers want to introduce unsupervised learning in recommenda-
tion.

Contrastive learning is an important unsupervised learning method that max-
imizes the mutual information between positive pairs while pushing away neg-
ative pairs. Researchers have applied contrastive learning to recommendation
and proposed many GCL strategies that show good results in scenarios such as
dat-sparse and cold start [8,10,12,13]. SGL [10] is a popular contrastive learning
recommendation method that uses randomized data augmentation (node/edge
drop, etc.). However, random augmentation may remove many influential nodes
or edges. Thus, the subgraphs may not align well with the semantic information
of the original graph, ultimately impacting model performance.

Besides, most GCN models achieve optimal performance when stacked with
two or three layers. If the depth increases, the performance decreases dramati-
cally. This is because stacking multiple layers can lead to over-smoothing, where
the embedding becomes increasingly similar and eventually indistinguishable.

To address the above problem, we propose IG-GCL. We introduce an impor-
tance calculation method to identify key elements, thus realize an influence-
guided graph contrastive learning process that maximally preserves the struc-
tural and semantic information of the original graph. Furthermore, in each train-
ing cycle, the data augmentation method removes some non-critical nodes or
edges from the input graph. This disrupts the message propagation that should
take place through these nodes or edges, causing certain nodes to not participate
in the neighborhood aggregation process, slowing down the rate at which nodes
embedding become similar, and thus mitigates the over-smoothing problem.

To summarize, the major contributions of this work are as follows:

• We propose an influence-guided data augmentation: node importance is calcu-
lated by the mutual augmentation network, and edge importance is calculated
by node degree. Then, use these to guide data augmentation.

• We propose IG-GCL, a recommendation model that utilizes influence-guided
data augmentation. IG-GCL consists of supervised and self-supervised tasks.

• Experimental results on three real-world datasets show that IG-GCL improves
recommendation performance and effectively mitigates over-smoothing.

2 Methods

2.1 Preliminaries

Let G = (V,E) represent user-item interaction graph, V = {U ∪ I|u ∈ U, i ∈ I}
consists of user nodes u ∈ U and item nodes i ∈ I, where the number of user
nodes is N and the number of item nodes is M . E = {eij}1≤i<j≤|V | is the
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set of user-item interaction edges in the graph. Let Nu and Ni denote the set of
neighbor nodes of the user and the item, respectively. Let R ∈ R

N×M denote the
user-item interaction matrix, where Rij = Rji = 1 if eij ∈ E, and 0 elsewhere.

2.2 Motivation and Framework

In recommendation, using random data augmentation causes the subgraph to
lose semantic information and fail to reflect real-world scenarios. To solve this
problem, we propose an influence-guided data augmentation method, IG-GCL.

Fig. 1. An illustration of IG-GCL model architecture.

Figure 1 shows the model framework. First, calculate the importance of nodes
and edges using the mutual augmentation network and node degree information.
Next, use the importance to guide the data augmentation so as to better retain
the key nodes. Node embeddings are then learned using the GCN model and
jointly optimized using supervised and self-supervised tasks.

2.3 Influence-Guided Data Augmentation Strategy

Importance Score Calculation. We argue that the influence of users and
items go hand in hand; the importance of items depends not only on the number
of users interacting with them but also on the influence of those users; similarly,
for users, if a user interacts with multiple cold items, then that user’s importance
will be somewhat affected.

Therefore, in this paper, we use the mutually reinforcing relationship between
user and item nodes according to the idea in HITS [14] to calculate the node
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Fig. 2. Take node u1 as an example to show the importance calculation process.

importance in the graph in a circular iteration. As shown in Fig 2, we take
u1 as an example to introduce how to calculate node importance in a mutual
reinforcement network. We calculate the l layer score s

(l)
u1 of u1 based on the

(l − 1) layer score s
(l−1)
i of the item interacting with u1. Similarly, we calculate

s
(l−1)
i based on the importance score s

(l−2)
u of the user interacting with the item.

So the importance scores of nodes are as follows:

s(l)u =
∑

i∈Nu

s
(l−1)
i , s

(l)
i =

∑

u∈Ni

s(l−1)
u (1)

We take the initial importance score s
(0)
v = 1 for node v ∈ V . We calculate the

importance of all user nodes and item nodes in the graph by iterating through
Eqs. (1) layer by layer until convergence. However, there are a large number of
nodes in the dataset, and the values of s

(l)
u and s

(l)
i are large when the importance

scores of user and item nodes are calculated after one layer. After a few cycles,
the amount of computation increases dramatically. Therefore, after we calculate
one layer, we normalize the current node importance scores as follows:

sum1 =
∑

u∈U

s(l)u s(l)u =
s
(l)
u

sum1
, sum2 =

∑

i∈I

s
(l)
i s

(l)
i =

s
(l)
i

sum2
(2)

Convergence is reached when the loop iterations are computed L times, and we
take the L-th level score as the importance parameter of the nodes: su = s

(L)
u and

si = s
(L)
i . Writing in matrix form, we use su ∈ R

N and si ∈ R
M to denote the

importance scores of user nodes and item nodes, respectively. The importance
scores of users and items are mutually reinforcing represented as follows:

s(l)u = ∂(R · s(l−1)
i ), s

(l)
i = ∂(RT · s(l−1)

u ) (3)

Which s
(0)
u = (1, 1, . . . , 1) and s

(0)
i = (1, 1, . . . , 1), ∂ represents normalized oper-

ation, take the L-th result as the final importance score: su = s
(L)
u , si = s

(L)
i .
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We introduce the degree information method [5] to calculate the edge impor-
tance score based on the degrees of the nodes at both ends. If there is an inter-
action between user u and item i, the importance score of edge eui is:

eui = du × di (4)

where du and di represent the degree of user u and item i, respectively. After
calculating the importance of all edges we also do a normalization operation:

sum3 =
∑

u∈U

∑

i∈I

eui and eui =
eui

sum3
(5)

writing in matrix form:
SE = ∂(du · R · di) (6)

where du ∈ R
N , di ∈ R

M are the degree vectors of user and item nodes, respec-
tively, and SE ∈ R

N×M is the edge importance score matrix.

Guided Data Augmentation. We devised two methods of data augmentation
based on importance scores: Guided node dropping and Guided edge dropping.

Guided node dropping (GND): Based on the importance scores su and si of
the nodes, guided deletion of nodes and their connecting edges is performed to
maximize the retention of critical nodes. G1 and G2 can be modeled as:

G1 = GND(su, si, ρ,G), G2 = GND(su, si, ρ,G), (7)

where ρ is the node loss rate, the number of nodes to be removed is ρ|V |.
Guided edge dropping (GED): Guided deletion operations are performed on

the edges in the interaction graph according to the edge importance matrix SE .
The method to generate two subgraphs is expressed as:

G′
1 = GED(SE , G, ρ), G′

2 = GED(SE , G, ρ), (8)

where ρ is the edge loss rate and the number of edges to be retained is (1−ρ)|E|.
IG-GCL can slow down the rate at which node embeddings converge to sim-

ilarity by removing the non-critical elements during neighborhood aggregation.
Thus, our model mitigates the problem of over-smoothing while retaining key
elements. After generating subgraphs through influence-guided data augmenta-
tion, we use the same GCN model (LightGCN) and loss function as the SGL to
learn node embeddings and optimize the model. The loss function is as follows:

L = LBPR + λLssl + μ‖Θ‖22 (9)

3 Experiments

3.1 Experimental Settings

Datasets and Evaluation Metrics. We conduct experiments on three
datasets: Yelp2018, Amazon-book and MovieLens-1M. We use top-K recom-
mendation evaluation metrics: Recall and NDCG [3] where K =20.
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Hyper-Parameter Settings. In this paper, the models are implemented in
the PyTorch environment, the embedding size is 64. We optimized our method
with Adam [6], with a learning rate of 1e−3, a training batch size of 2048, and
a discard rate ρ of 0.1.

Baselines. NGCF [9], LR-GCCF [2], LightGCN [4], SGL [10].

Table 1. Effect of the guided data augmentation strategy.

Datasets Yelp2018 Amazon-Book
Layer Method Recall NDCG Recall NDCG

1 SGL-ND 0.0643 0.0529 0.0432 0.0334
IG-GCL-GND 0.0654(+1.71%) 0.0542(+2.46%) 0.0451(+4.4%) 0.0351(+5.09%)
SGL-ED 0.0637 0.0526 0.0451 0.0353
IG-GCL-GED 0.064(+0.47%) 0.0532(+1.14%) 0.0455(+0.89%) 0.0354(+0.28%)

2 SGL-ND 0.0658 0.0538 0.0427 0.0335
IG-GCL-GND 0.0665(+1.06%) 0.0547(+1.67%) 0.044(+3.04%) 0.0352(+5.07%)
SGL-ED 0.0668 0.0549 0.0468 0.0371
IG-GCL-GED 0.0675(+1.05%) 0.0554(+0.91%) 0.0475(+1.5%) 0.0373(+0.54%)

3 SGL-ND 0.0644 0.0528 0.044 0.0346
IG-GCL-GND 0.0657(+2.02%) 0.0539(+2.08%) 0.0456(+3.64%) 0.0363(+4.91%)
SGL-ED 0.0675 0.0555 0.0478 0.0379
IG-GCL-GED 0.0684(+1.33%) 0.0559(+0.72%) 0.0486(+1.67%) 0.0382(+0.79%)

3.2 Effect of Data Augmentation Strategies

To verify the effectiveness of the data augmentation approach proposed in this
paper, we perform a detailed comparison with SGL.

Through Table 1, we can see that the results of IG-GCL outperform SGL,
proving the effectiveness of the influence-guided data augmentation strategy.

In addition, on average, GND improved recall by 2.65% and NDCG by 3.55%
on both datasets; GED improved recall by 1.15% and NDCG by 0.73%. GND
gets higher performance improvements than GED. This is because when the
node dropping operation is performed, all the interactions of the node are also
deleted, which is equivalent to doing multiple edge dropping operations. There-
fore, through GND, we can avoid dropping many important interactions while
retaining important nodes, so that the model’s performance can be improved
more.

3.3 Comparison Baseline

Table 2 shows the results of the model IG-GCL compared with the baseline.
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Firstly, we can see that the combined contrastive learning model outperforms
the traditional GCN-based model, further demonstrating the need to combine
self-supervised learning with recommender systems.

Secondly, IG-GCL outperforms all baseline models, which validates the effec-
tiveness of our proposed influence-guided data augmentation approach.

Table 2. Performance comparison of IG-GCL and baseline.

Datasets yelp2018 Amazon-book Movielens-1M
Method Recall NDCG Recall NDCG Recall NDCG

NGCF 0.0579 0.0477 0.0337 0.0261 0.2513 0.2511
LR-GCCF 0.0561 0.0343 0.03407 0.0204 0.2231 0.2124
LightGCN 0.0649 0.053 0.0411 0.0315 0.2576 0.2427
SGL-ND 0.0658 0.0538 0.044 0.0346 0.2849 0.3163
GND 0.0682 0.0562 0.0483 0.0378 0.2901 0.3239
SGL-ED 0.0675 0.0555 0.0506 0.0384 0.2829 0.3156
GED 0.0697 0.057 0.0514 0.0402 0.2915 0.3268

In addition, unlike previous recommendation models that achieve the best
performance at around the third layer, IG-GCL still achieves improved per-
formance when stacking more than three layers, as shown in Fig. 3. IG-GCL
achieves the best performance when stacking five layers on the Yelp2018 dataset
and six layers on the Amazon-Book dataset. This indicates that the model can
be made to mitigate the over-smoothing problem through guided data augmen-
tation operations.

Fig. 3. Performance comparison of IG-GCL with different layers.

4 Conclusion

In this work, we propose a novel graph contrastive learning model called
IG-GCL. The model addresses the problem that random data augmentation
operations destroy the original graph structure and lose semantic informa-
tion when generating contrastive views, resulting in degraded model perfor-
mance, through influence-based data augmentation operations. IG-GCL lever-
ages mutual enhancement networks to compute the importance of nodes in
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the graph and uses degree information to calculate the importance of edges.
Then, data augmentation is performed guided by the calculated influence to
increase the probability that unimportant nodes or edges are removed and to
maximize the retention of high-impact elements to improve the quality of the
generated subgraphs. Influence-guided data augmentation can slow down the
rate at which nodes tend to be similar in embedding learning, making the model
somewhat resistant to over-smoothing. Experimental results on the benchmark
datasets show that IG-GCL consistently outperforms the baseline model under
the same experimental setup, thus demonstrating the effectiveness of our pro-
posed method.
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Abstract. Accurate service tags recommendation plays a crucial role
in classifying, searching, managing, composing, and expanding services.
However, many service tags recommendation studies fail to consider real-
world scenarios, greatly limiting their performance and capability of han-
dling complex situations. First, the simplification of service tags recom-
mendation to single-tag classification or clustering overlooks the com-
plexity and diversity of crossover services, as well as the intricate inter-
actions between services or their tags. Second, inadequate or ambiguous
descriptions of many services result in insufficient information for accu-
rate recommendations. Third, the observation is not always reality due to
the presence of unseen data or noise. To address these issues, a new graph
diffusion-based graph neural network framework is proposed for multi-
tags recommendation, named SpiderTags. It considers both the textual
description of services and explicit relationships between services or their
tags to enhance performance. Moreover, considering that the observed
explicit graph may not be reality and not optimal for downstream tasks,
SpiderTags introduces a graph diffusion mechanism to search for a more
optimal graph for downstream tasks. A series of experiments conducted
on the real-world ProgrammableWeb dataset demonstrate the effective-
ness of SpiderTags in service tags recommendation task. Our code is
available on https://github.com/gplinked/SpiderTags.

Keywords: Web service · Service tags recommendation · Graph
diffusion · Graph neural network

1 Introduction

Service tags are crucial for users and managers to classify, retrieve, manage,
and expand services. Tagging services was initially done manually based on the
description of services. However, there are some problems with manual tagging.
First, it is difficult to standardize annotation due to the different understandings
of annotators. Second, with the explosion of the number of services, the cost of
manual annotation increases significantly. To ensure the objectivity of annotation
and reduce the annotation cost, the service tags recommendation task, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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utilizes machine learning technology to automatically tag services, come into
being and become a research hotspot in the service computing community.

Currently, many researches have been proposed and achieved competitive
performance on the service tags recommendation task, such as WTLearning
[10], ServeNet [27], Dual-GCN [21], PICF-LDA [14], and BGNN [2]. However,
these researches fail to fully consider the real scenarios of service tags recom-
mendation, greatly limiting the recommendation performance and the ability to
handle complex scenarios. More specifically,

(1) Most of the previous studies assumed that a service was only attached with
one tag or cluster [14,27,31]. These studies simplify the problem but have
some shortcomings. Firstly, most real-world services involve multiple aspects,
making a single tag insufficient to accurately describe the complexity and
diversity of crossover services (e.g., e-health, e-commerce, social media). The
absence of tags suppresses the search methods of services. Secondly, a sin-
gle tag cannot accurately express the complex interactions between services.
In reality, different services form an ecosystem where they depend on and
interact with each other. Attaching multiple representative tags to services
based on actual context would better depict the diverse interactions within
the service ecosystem, improving recommendation outcomes to match users’
needs and preferences.

(2) Due to inadequate or ambiguous descriptions of many services, it is challeng-
ing to provide sufficient information for accurate service tags recommenda-
tion. Researchers have confirmed that the graph-based information, such as
the service social network (SSN) [31] that captures the inherent invocation
and dependency relationships between services, and the tag collaboration net-
work (TCN) [4] that represents the correlations between tags assigned to these
services, can offer valuable insights for category inference that text alone lacks.
Therefore, it is necessary to introduce such graph-based information into the
service tags recommendation task to improve the performance.

(3) Notably, the algorithms such as those in (2) usually make assumption that the
observed explicit relationships are ideal enough to provide sufficient and effec-
tive information for training graph neural networks (GNNs) when considering
the social relationships among services or the mutual influences between tags
[20]. However, this assumption is inconsistent with the reality, as there are
many unobserved data in the real-world scenarios or the real-world graphs are
often noisy due to the inevitably error-prone data measurement or collection.
As a result, the observed explicit relationships from complex service systems
are not always reality or optimal for downstream tasks [6,30], limiting the
performance of GNNs in service tags recommendation [8].

For the first issue, this paper no longer regards the service tags recommenda-
tion as a simple single-tag classification or clustering problem. Instead, it focuses
on the multi-tags recommendation problem of associating services with one or
multiple tags. To address this, a novel GNN-based service tags recommenda-
tion approach called SpiderTags is proposed. For the second issue, inspired
by [4,31], SpiderTags considers both the textual description of services and the
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explicit structural relationships formed by the mutual influences between services
or service tags to learn feature representation. By incorporating these factors, the
performance of the service tags recommendation is enhanced. For the third issue,
this paper introduces a graph diffusion mechanism into SpiderTags backbone to
extract hidden valuable information from the original explicit graph structure,
thereby obtaining a more optimized graph structure for training SpiderTags and
achieving superior performance in service tags recommendation.

In summary, the main contributions of this paper are as follows:

1. A new graph diffusion-based GNN approach, SpiderTags, is proposed for
service tags recommendation. It incorporates both the textual description
of services and explicit relationships between services/tags to enhance the
performance. Considering that the observed explicit structure may not be
optimal for downstream tasks, SpiderTags introduces a graph diffusion mech-
anism to search for a more optimal graph structure for better results.

2. Through SpiderTags, a new graph is obtained to capture the associations
between services/tags. Compared to the original graph, the new graph has
a more optimized structure (i.e. is more in line with reality) and contains
valuable implicit information for service tags recommendation.

3. A series of experiments conducted on the real-world ProgrammableWeb
dataset demonstrate the effectiveness of SpiderTags with graph diffusion mod-
ule in the service tags recommendation task.

2 Related Works

Service tags are primarily used for concise and clear descriptions and categoriza-
tion of services, enabling users to quickly search and select services of interest.
Service tags recommendation involves automatically finding the most suitable
tags for a given service, aiding in personalized service recommendations for users.

Researchers often consider service tags recommendation as a simple text
classification problem, where each service description is treated as a textual unit,
and efforts are made to assign appropriate tags to them. Text classification is a
classic natural language processing (NLP) problem, and text feature extraction is
the core of solving the problem. In the early days, only one-hot encoding was used
to represent word vectors. Until 2013, the word2vec tool was proposed by Google,
which revolutionized word representation in NLP. However, word2vec can only
assign a static vector to represent each word regardless of its context, making
it challenging to handle polysemous words effectively. In 2018, ELMO [16] and
GPT [13] came out one after another. In the same year, Google developed a
transformer-based model, named Bidirectional Encoder Representations from
Transformers (BERT) [5,19]. These models employ more advanced techniques
to capture the contextual meaning of words within sentences or entire documents.
BERT stands out due to its transformer architecture enable efficiently process
and understand long-range dependencies between words in a sentence.

Recently, many deep learning-based models use the extracted features from
service descriptions to predict relevant tags for service recommendation, such
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as Recurrent Neural Network (RNN) [25], Long and short term memory neu-
ral network (LSTM) [22,29], Convolutional Neural Network (CNN) [28], hybrid
networks PSO-Bi-LSTM-CNN [12], and ServeNet [27]. However, relying solely
on textual information makes these methods ignore the dependencies and inter-
actions between services.

To further enhance the performance of the service tags recommendation,
researchers have proposed incorporating graph-based service interaction net-
work [4,31]. Recently, due to its unique information propagation mechanism
and remarkable abilities in modeling graphs, GNNs have attracted increasing
attention [11,15,24], especially for solving service tags recommendation tasks
with graph-based information [3,18,26]. For example, Chen et al. [3] proposed a
novel tag-aware recommendation model based on graph convolutional network
(GCN), called TGCN. TGCN leverages the contextual semantics of multi-hop
neighbors in the user-tag-item graph to alleviate the issues of sparsity, ambi-
guity, and redundancy in the existing feature-based tag-aware recommendation
systems. Wang et al. [18] presented a novel approach for web service recommen-
dation using a motif-based graph attentional network, allowing for the simulta-
neous learning of unique node weights across multiple motifs. Note that these
methods usually assume that the observed relationships are ideal enough for
service recommendation. Nevertheless, this assumption is inconsistent with the
reality due to the presence of unseen data and noise, which hinders the model
performance to some extent.

3 Methods

In this section, we detail the framework of the proposed SpiserTags model, before
which we need to introduce several preliminaries closely related to this study.

3.1 Preliminaries

Definition 1. A Service Set, denoted as S = {s1, s2, s3, . . . , sn}, consists of
atomic APIs or mashups that provide multiple functionalities to satisfy users’
need. Each service si ∈ S is defined as si = {di, Ti}, where di is the textual
description of the service and Ti is the set of labels associated with the service
si. 1 ≤ |Ti| ≤ |T |, where T is the pre-defined labels set.

Definition 2. Tag Collaboration Network (TCN) is an undirected graph,
denoted as Gt = {T,Et}, where T is a set of tags in TCN, defined as T =
{t1, t2, . . . , tn}. Et is an edge set in TCN, denoted as Et = {(ti, tj , ω) | ti ∈
T, tj ∈ T}, where ω represents the weight of co-occurrences of tags ti, tj.

Definition 3. Service Social Network (SNN) is an undirected graph,
denoted as Gs = {S,Es}, where S is a service set in SSN, Es = {(si, sj , ω) |
si ∈ S, sj ∈ S} is an edge set in SSN, ω is the weight denoting the times of
co-occurrence of APIs si, sj or the number of common APIs of mashups si, sj.
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Definition 4. Service Tags Recommendation is a task for training a model
Rp to predict the tag collection Ti ∈ T of the given service si ∈ S. The process
can be formally represented as Ti = Rp (si | T ).

3.2 Structure of SpiderTags

Figure 1 illustrates the structure of SpiderTags proposed in this paper. Spi-
derTags takes both the service text description and the service interaction net-
work as input, and outputs multiple tags that can fully describe the input service.
The model consists of two parts: encoder and decoder. The encoder comprises
three components: service network encoding, service description encoding and
feature integration. The first two components primarily focus on transforming
service text information and service network graph information into feature vec-
tors. The feature integration component concatenates the text feature and the
graph feature into a new feature vector as the input of the decoder. The decoder’s
role is to map the encoded feature vector to the tag space T . Next, we will provide
a detailed description of the three components in the encoder and the decoder
of SpiderTags model.

Fig. 1. Structure of SpiderTags.

A. Service Network Encoding

The service network encoding consists of two modules: graph diffusion module
and ChebNet encoding module.

Graph diffusion module. The graph diffusion module is used to improve
the structure of the service interaction network by combining the kernel-based
diffusion mapping with machine learning technique. Specifically, it uses a kernel
function K : Ω × Ω → R (such as Gaussian kernel, polynomial kernel, etc.) to
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compute the pairwise similarity between points in the data space Ω, and leverage
this similarity information to construct a mapping to a lower-dimensional space.

Assuming an undirected graph G = (V,E), with N = |V| representing the
number of nodes and A ∈ RN×N representing the adjacency matrix of the graph
G, the generalized graph diffusion based on the diffusion matrix is denoted as
follows [7]:

S =
∞∑

k=0

θkTk (1)

where T is the generalized transition matrix defined as T = D−1/2AD−1/2, with
D is the diagonal degree matrix, and θk is a non-negative scaling coefficient that
control the diffusion process. Here, the selection of θk and T should satisfy the
convergence condition in Eq. (1).

Generalized graph diffusion propagates signals through iterative application
of the diffusion operator (such as symmetric normalized Laplacian operator,
exponential operator), enabling smooth diffusion on the graph for effective infor-
mation transmission. In this paper, the graph diffusion module applies the gen-
eralized graph diffusion in Eq. (1) to the service interaction network, including
TCN and SSN, for capturing the associations between services or service tags.
This results in an optimized graph G̃ for downstream tasks, which improves
the accuracy and robustness of information processing. Figure 2 illustrates the
partial original graph from SSN and its new graph after graph diffusion.

Fig. 2. Example of partial original graph of SSN and new graph after diffusion.

ChebNet Encoding. SpiderTags uses ChebNet to extract feature represen-
tations of the service network. ChebNet is an improved version of GCN that
addresses two major shortcomings of the original spectral graph convolution.
First, the original convolution kernel is designed to capture global graph struc-
ture and has a large number of parameters. Second, the convolution operation
itself is computationally complex. To overcome these issues, ChebNet employs
Chebyshev polynomials to define the convolution kernel in GCN as follows:

gθ′(Λ) ≈
K∑

k=0

θ′
kTk(Λ̃) Λ̃

=
2

λmax
Λ − IN

(2)
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Here, K denotes the order of the polynomial, and Λ represents the eigenvalues
of the Laplacian matrix. λmax is the largest eigenvalue of the Laplacian matrix.
The Chebyshev polynomial Tk is recursively defined as follows:

T0(x) = 1 (3)

T1(x) = x (4)

Tn+1(x) = 2xTn(x) − Tn−1(x) (5)

The message-passing mechanism of ChebNet is a crucial step for transmitting
and aggregating information in graph structure data. Each node v has an ini-
tial feature representation xv. In each message-passing step, node v aggregates
and combines information from its neighboring nodes , the update of feature
representation is as follows:

x′
v = (pω(L)) vxv =

d∑

i=0

ωi

∑

u∈G

Li
vuxu (6)

After several rounds of message-passing, ChebNet learns the node features
from the diffused graph G̃ and finally outputs a fixed-length feature vector:

xi = fmean_pool (σ (TkHk−1Wk)) (7)

where fmean_pool is the pooling function, Hk is the output of the k-th layer
ChebConv, σ is the activation function, Tk is the k-th order Chebyshev poly-
nomial of the symmetric normalized Laplacian matrix, and Wk is the weight
matrix of the k-th layer.

B. Service Description Encoding

This section is primarily responsible for converting the input service description
text into fixed-length feature vectors xd. For this purpose, we use a transformer-
based embedding model BERT to convert the service text description into a
d-dimensional vector xd using a tokenizer:

xd = fBERT (tokenizer(r)) (8)

tokenizer(r) = (TokenEmbedding⊕SegmentEmbedding⊕PositionEmbedding)
(9)

C. Feature Integration

In this component, the obtained service description feature encoding xd and
service network feature encoding xi are concatenated to fuse as follows:

xmerge = (xi, xd) (10)
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D. Decoder

The fused feature vector (xmerge) from encoder part is input into the decoder
to obtain the category probability. In decoder, SpiderTags employs two fully
connected layers followed by a sigmoid layer to convert the fused feature xmerge

into the probability ỹi indicating whether each tag ti can describe the target
service. The decoder part can be expressed formally as follows:

f1 =
d+i∑

v=1

ωvxmerge + b1 (11)

f2 =
d+i∑

v=1

ωvf1 + b2 (12)

ỹi = sigmoid (f2) (13)

E. Optimization Object

The proposed SpiderTags utilizes the cross-entropy function as the loss function,
which is defined as follows:

L = − 1
N

∑

i

yi log (ỹi) (14)

where N is the number of tags, yi is the true tag, ỹi is the predicted probability.

4 Experiments

In this section, the experimental setup and experimental results will be intro-
duced and discussed in detail.

4.1 Experiment Setup

Dataset. The previous research has confirmed that the observed explicit ser-
vice network is helpful for service tags recommendation task. In this paper, we
introduce two service networks under different scenarios to validate the effective-
ness and applicability of the proposed SpiderTags model, i.e. TCN [4] and SSN
[31], both of which are extracted from the real-world data of ProgrammableWeb.
The two service networks are both weighted undirected graphs that describe the
interactions between service tags and the ones between atomic APIs (or mashups
[1]), respectively. Moreover, the dataset used for multi-tags recommendation in
this paper is obtained from [4], which is named MtR. Referring to the dataset
setting in reference [4], this dataset remove all services without related service
descriptions or tags, and selects the 50 most common tags, covering a total
of 10,000 services. Furthermore, to validate the applicability of the SpiderTags
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model for the classic single-tag recommendation task, the single-tag recommen-
dation dataset denoted as StR is obtained from [31], in which the dataset is
filtered to obtain 4,099 services with 3,380 mashups and 719 APIs, covering a
total of 255 tags.

Baselines. In this paper, we conduct a series of experiments to analyze and
validate the effectiveness of our proposed SpiderTags model. TagTag [4] and
SRaSLR [31] have already demonstrated that using graph data is more effective
for service tag recommendation. Therefore, this paper utilizes four graph-related
baseline models for comparison and ablation studies, including GAT [17], SGC
[23], APPNP [9], and TagTag [4]. These four methods adopt the same TCN, MtR
dataset, and feature fusion process. Moreover, we also compare the proposed
SpiderTags model with a single-tag recommendation model called SRaSLR [31]
on the StR dataset, in order to validate the applicability of SpiderTags model
for the single-tag recommendation task.

Experimental Settings. To reduce the randomness during the experimental
process, we conduct five independent repeated experiments for each method, and
calculate the averaged results and corresponding standard deviation (Std.) over
5 trials. All experiments are run on a RTX GPU server with Ubuntu 20.04 and
Pytorch 1.10.0. The dataset is randomly divided into a training set, a validation
set, a test set, in a ratio of 7:2:1, with batch sizes of 16, 8, and 4, respectively.
Moreover, all models utilize 128-dimensional word vectors obtained from training
with BERT and Node2Vec, including service description encoding, tags collab-
oration network encoding and social network encoding. The Adam optimizer is
adopted to automatically update weights during learning. The learning rate is
set to 0.0001, and the weight decay is set to 0.00001.

Evaluation Metrics. In experiments, five metrics are used to evaluate the
performance of the models comprehensively, including F1-score (F1), Precision,
Recall, and Loss. F1-score is the harmonic mean of precision and recall, which
is defined as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(15)

For the applicability analysis experiment (i.e. single-tag recommendation), the
Top-k Accuracy is additionally introduced to measure whether the correct tag is
included in the Top-k recommended tags for single-label recommendation. The
calculation for Top-k Accuracy (denoted as Acc@k) is given as follows:

Acc@k =
|{s|s ∈ S, ts ∈ ys}|

|S| (16)

Here, s denotes the given service, ts represents the tag for s, and ys refers to the
Top-k predicted results obtained by the learning models.

4.2 Performance Comparison

In this subsection, we compare the SpiderTags model with four other baselines
on the TCN-attached StR dataset. The results (in percent±standard deviation)
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are shown in Table 1. It can be seen from Table 1 that the SpiderTags model
achieves the best performance in terms of the Recall, F1, and Loss metrics, and
the second-best performance in terms of Precision. Compared to the second-best
model TagTag, the SpiderTags model improves by 15.9% and 7.3% in Recall and
F1, respectively. Compared to the third-place model APPNP, the SpiderTags
improves by 136.1% and 58.4% in Recall and F1, respectively.

Table 1. Performance comparison of different methods on the MtR dataset. The best
and second-best results are respectively addressed in bold and underline.

Models Precision Recall F1 Loss

GAT 21.04(±0.03) 6.89(±0.30) 11.45(±0.16) 26.02(±0.91)
SGC 17.11(±0.02) 2.98(±0.05) 4.92(±0.08) 27.41(±0.19)
APPNP 31.16(±0.29) 16.76(±0.31) 21.00(±0.14) 25.36(±0.22)

TagTag 29.85(±0.61) 33.09(±3.07) 31.00(±0.52) 30.87(±0.24)
SpiderTags 30.50(±0.22) 39.77(±0.23) 33.27(±0.23) 20.70(±0.31)

Note that the TagTag also achieves significant improvements in Recall and
F1 compared to the other three baseline models, indicating that the TagTag
model has a strong ability to recognize positive samples so achieving better
Recall. In terms of Loss, our proposed SpiderTags model reduces by 18.3% com-
pared with the APPNP model that ranks second, indicating that the prediction
results of the SpiderTags model are truly more superior. On the basis of ordinary
GCN, SpiderTags makes structural improvements to the upstream graph data,
so achieving significant improvement on the Recall, F1 and Loss metrics.

4.3 Ablation Study

To validate the effectiveness of the graph diffusion module for the service tags
recommendation task, Table 2 illustrates the effect of graph diffusion module on
the four baseline models including GAT, SGC, APPNP, and TagTag.

It can be seen from Table 2 that after adding the graph diffusion module,
there are significant improvements on the performance of Recall, F1, and Loss.
More specifically, in Recall, the SGC achieves the largest increase with 616.89%,
and the TagTag achieves the smallest increase with 10.9%. Moreover, as for the
F1 metric, the largest performance improvement is obtained by the SGC, reach-
ing 334.6%; and the smallest performance improvement is obtained by TagTag,
namely 1.8%. In addition, the TagTag algorithm achieves the most reduction in
the Loss metric, namely 222%; and the APPNP model achieves the least reduc-
tion in the same metric, namely 5.8%. In terms of Precision, the APPNP and
TagTag models present slight changes after incorporating the graph diffusion
module, while the GAT and SGC exhibited significant improvements of 43.5%
and 57.46% respectively.
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From the above results, it can be found that after incorporating the graph
diffusion module, the baseline models show varying degrees of improvements in
Precision, Recall, F1, and Loss. This indicates that the graph diffusion mod-
ule utilized by the proposed SpiderTags model indeed effectively enhances the
upstream graph structure and achieves superior recommendation performance.

Table 2. Results of four baseline models with/without graph diffusion (GD) module
(in percent±standard deviation) on the MtR dataset. The best results for each baseline
are respectively addressed in bold.

Models Precision Recall F1 Loss

GAT 21.04(±0.39) 6.89(±3.02) 11.45(±0.16) 26.02(±0.09)
GAT+GD 30.32(±0.79) 21.61(±0.31) 23.72(±0.35) 24.42(±0.12)

SGC 17.11(±0.02) 2.98(±0.05) 4.92(±0.08) 27.41(±0.19)
SGC+GD 26.58(±0.89) 21.50(±0.27) 22.17(±0.23) 0.2420(±0.82)

APPNP 31.16(±0.04) 16.76(±0.06) 21.00(±0.02) 25.36(±0.22)
APPNP+GD 29.90(±0.11) 26.73(±0.10) 26.90(±0.07) 23.89(±0.50)

TagTag 29.85(±0.61) 33.09(±3.07) 31.00(±0.52) 30.87(±0.24)
TagTag+GD 31.31(±0.24) 38.06(±0.18) 32.89(±0.12) 20.93(±0.05)

4.4 Adaptability Analysis

To verify the adaptability of the proposed SpiderTags model to the classic single-
tag recommendation task, we modify the output of SpiderTags for adapting to
the single-classification scenario. Since the SRaSLR model is just a single-tag
recommendation method, we regard it as a comparable method of the SpiderTags
under single-tag task. The results are shown in Fig. 3.

As shown in Fig. 3, there are significant improvements in Acc@1, Precision,
Recall, and F1. Although the improvement in the Acc@5 accuracy is minimal
compared with other four metrics, it has still increased by 7.1%, which demon-
strates that the SpiderTags model not only improves the performance on the
multi-tags recommendation scenarios, but also applies to the single-tag classifi-
cation scenarios.

4.5 Noise and Incomplete Problem Analysis

Table 3 intuitively shows the changes of the graph structure after introducing the
graph diffusion into the TCN and SSN respectively.The chosen form of graph
diffusion in this article is based on the heat kernel, with the parameters α repre-
sents the diffusion speed parameter in the heat kernel function, and ε represents
the convergence threshold of the algorithm.
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Fig. 3. Adaptability results of SpiderTags on the MsR dataset for the classic single-tag
recommendation task.

It can be observed from Table 3 that in the denser TCN graph, the graph
diffusion removes the less important edges through neighborhood filtering, effec-
tively eliminating the noise from the graph and improving the recommendation
performance. In addition, in the sparser SSN graph where each node has fewer
edges, the graph diffusion significantly spreads the limited edge information to
more nodes through neighborhood expansion, thus increasing the average node
degree. Next, the effects of graph diffusion module will be intuitively analyzed
in detail based on the characteristics of TCN and SSN graph, respectively.

As shown in Fig. 4, we display the graph structure changes of some nodes
on the SSN graph before and after graph diffusion. Taking nodes 6 and 10 as
examples, they have smaller node degrees in the original graph, while their adja-
cent node 12 has a larger node degree. During the diffusion process, node 12
shares its abundant edge information through diffusion with its adjacent nodes
6 and 10, giving them more adjacent nodes. A careful observation reveals that
after diffusion, node 12 (Twitter API) loses its adjacent node 11 (Google Map
API), but instead connects to node 11 through node 6 (Formstack API) and
10 (Giphy API), which improves structure of the graph by suggesting that the
Twitter API can be associated to the Google Map API through Formstack and
Giphy, rather than directly binding with Google Map. The transformation rec-
tifies the redundant correlation in original graph, demonstrating that the graph
diffusion enhances the graph structure without blind expansion, as it also takes
into account the removal of noisy edges (such as the edge (10,11)).

As shown in Fig. 5, we illustrate the graph structure changes of some nodes on
the TCN graph before and after graph diffusion. Taking nodes 4 and 5 as exam-
ples, node 4 removes noisy edges such as (4,13), (4,1), (4,10), (4,6) after graph
diffusion, while incorporating additional edge information such as (4,11). Node
5 removes the noisy edge (4,5), while incorporating additional edge information
such as (5,2) and (5,3).

Due to the diffusion of useful information through the neighborhood and the
removal of irrelevant noise during graph diffusion, the diffusion models can solve
the problem of fully connectedness with minor edges and incomplete capture of
global information.
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Table 3. Changes of the graph structure on TCN and SSN after graph diffusion.
|Nodes|, and |Edges| is the number of nodes and edges respectively, |Degree| denotes
the average node degree.

Graph data Original graph New graph after graph diffuison
|Nodes| |Edges| |Degree| Parameters |Edges| |Degree|

TCN 50 2014 80.56 α=10 ε=0.001 1,275 51
α=10 ε=0.005 600 24.04
α=10 ε=0.100 596 23.84
α= 5 ε=0.001 319 12.76
α= 2 ε=0.001 293 11.72
α=0.5 ε=0.001 1,275 51
α=0.1 ε=0.001 1,275 51
α=0.05 ε=0.001 1,275 51

SSN 720 3,431 9.53 α=10 ε=0.001 127,521 354.20
α=10 ε=0.010 126,431 351.10
α=10 ε=0.100 116,835 324.50
α= 5 ε=0.001 126,783 352.10
α= 2 ε=0.001 27,225 75.60
α=0.5 ε=0.001 10,324 28.60
α=0.1 ε=0.001 35,328 98.10
α=0.05 ε=0.001 41,196 114.43

Fig. 4. Illustration of graph diffusion on the SSN graph. (a) the original SSN graph;
(b) a subgraph from (a); (c) the novel graph of (b) after graph diffusion.
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Fig. 5. Illustration of graph diffusion on the TCN graph.

5 Conclusion

In this paper, a new graph diffusion-based GNN approach for service tags recom-
mendation is proposed, named SpiderTags. It considers both the textual descrip-
tion of services and the explicit relationships between services or their tags to
enhance performance. Since the observed explicit structure may not be optimal
for downstream tasks, SpiderTags introduces a graph diffusion mechanism to
search for a more optimal graph structure for service tags recommendation. A
series of experimental results demonstrate the effectiveness and adaptability of
SpiderTags for service tags recommendation, as well as the effectiveness of graph
diffusion module in improving graph structure. In the future, we will focus on
more effective graph diffusion mechanisms to optimize the graph structure, so
as to further improve the service tags recommendation performance.

Acknowledgement. The research in this paper is partially supported by the National
Key Research and Development Program of China (No.2022YFF0903301), the Natural
Science Foundation of China (No. 62372140), and the Natural Science Foundation of
Heilongjiang Province (No.LH2023F016).

References

1. Benslimane, D., Dustdar, S., et al.: Services mashups: the new generation of web
applications. IEEE Internet Comput. 12(5), 13–15 (2008)

2. Cao, B., Zhang, L., et al.: Web service recommendation via combining bilinear
graph representation and xdeepfm quality prediction. IEEE Trans. Netw. Serv.
Manage. 20(2), 1078–1092 (2023)

3. Chen, B., Guo, W., et al.: TGCN: tag graph convolutional network for tag-aware
recommendation. In: CIKM 2020, pp. 155–164 (2020)

4. Chen, W., Liu, M., et al.: Tagtag: a novel framework for service tags recommenda-
tion and missing tag prediction. In: ICSOC 2022, vol. 13740, pp. 340–348 (2022)

5. Devlin, J., Chang, M., et al.: BERT: pre-training of deep bidirectional transformers
for language understanding. In: NAACL-HLT 2019, pp. 4171–4186 (2019)

6. Ding, K., Xu, Z., et al.: Data augmentation for deep graph learning: a survey.
SIGKDD Explor. 24(2), 61–77 (2022)

7. Gasteiger, J., Weißenberger, S., et al.: Diffusion improves graph learning. In:
Advances in Neural Information Processing Systems 32 (2019)

8. Jin, W., Ma, Y., et al.: Graph structure learning for robust graph neural networks.
In: SIGKDD 2020, pp. 66–74 (2020)



114 S. Yu et al.

9. Klicpera, J., Bojchevski, A., et al.: Predict then propagate: graph neural networks
meet personalized pagerank. In: ICLR 2019 (2019)

10. Lo, W., Yin, J., et al.: Accelerated sparse learning on tag annotation for web service
discovery. In: ICWS 2015, pp. 265–272 (2015)

11. Luo, L., Haffari, G., et al.: Graph sequential neural ODE process for link prediction
on dynamic and sparse graphs. In: WSDM 2023, pp. 778–786 (2023)

12. Punitha, K.: A novel mixed wide and PSO-BI-LSTM-CNN model for the effective
web services classification. Webology 17(2), 218–237 (2020)

13. Radford, A., Narasimhan, K.: Improving language understanding by generative
pre-training (2018)

14. Shen, J., Huang, W., et al.: PICF-ldDA a topic enhanced lDA with probability
incremental correction factor for web API service clustering. J. Cloud Comput.
11(1), 1–13 (2022)

15. Tan, Y., Liu, Y., et al.: Federated learning on non-iid graphs via structural knowl-
edge sharing. CoRR abs/2211.13009 (2022)

16. Tseng, S., Georgiou, P.G., et al.: Multimodal embeddings from language models.
CoRR abs/1909.04302 (2019)

17. Velickovic, P., Cucurull, G., et al.: Graph attention networks. In: ICLR 2018 (2018)
18. Wang, G., Yu, J., et al.: Motif-based graph attentional neural network for web

service recommendation. Knowl.-Based Syst. 269, 110512 (2023)
19. Wang, R., Chen, D., et al.: Bevt: bert pretraining of video transformers. In: CVPR

2022, pp. 14733–14743 (2022)
20. Wang, R., Mou, S., et al.: Graph structure estimation neural networks. In: The

Web Conference 2021, pp. 342–353 (2021)
21. Wang, X., Liu, J., et al.: A novel dual-graph convolutional network based web

service classification framework. In: ICWS 2020, pp. 281–288 (2020)
22. Wang, X., Zhou, P., et al.: Servicebert: a pre-trained model for web service tagging

and recommendation. In: International Conference on Service-Oriented Comput-
ing, pp. 464–478 (2021)

23. Wu, F., Jr., A.H.S., et al.: Simplifying graph convolutional networks. In: ICML
2019. vol. 97, pp. 6861–6871 (2019)

24. Wu, Z., Pan, S., et al.: A comprehensive survey on graph neural networks. IEEE
Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021)

25. Xu, Y., Xiao, W., et al.: Towards effective semantic annotation for mobile and edge
services for internet-of-things ecosystems. Futur. Gener. Comput. Syst. 139, 64–73
(2023)

26. Yang, M., Cao, S., et al.: Intellitag: an intelligent cloud customer service system
based on tag recommendation. In: ICDE 2021, pp. 2559–2570 (2021)

27. Yang, Y., Qamar, N., et al.: Servenet: a deep neural network for web services
classification. In: ICWS 2020, pp. 168–175 (2020)

28. Yang, Z., Feng, J.: Explainable multi-task convolutional neural network framework
for electronic petition tag recommendation. Electron. Commer. Res. Appl. 59,
101263 (2023)

29. Ye, H., Cao, B., et al.: Web services classification based on wide & BI-LSTM model.
IEEE Access 7, 43697–43706 (2019)

30. You, J., Ma, X., et al.: Handling missing data with graph representation learning.
In: NeurIPS 2020 (2020)

31. Zhu, Y., Liu, M., et al.: Sraslr: a novel social relation aware service label recom-
mendation model. In: ICWS 2021, pp. 87–96 (2021)



Uncovering Implicit Bundling Constraints:
Empowering Cloud Network Service

Discovery

Hayet Brabra1(B) , Imen Jerbi1,2,3 , Mohamed Sellami1 ,
Walid Gaaloul1 , and Djamal Zeghlache1

1 SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France
hayet.brabra@telecom-sudparis.eu

2 ISITCom Hammam Sousse, University of Sousse, Sousse, Tunisia
3 OASIS, National Engineering School of Tunis, University of Tunis, Tunis, Tunisia

Abstract. Cloud service providers (CSPs) offer their networking ser-
vices (NSs) in the form of service bundles containing underlying services,
not necessarily requested by the users. While service bundling is a com-
mon practice in the cloud providing multiple components as a single ser-
vice, unawareness of this hidden structure of services at design time may
limit their portability, compatibility, and interoperability across multi-
ple providers. This calls for service discovery solutions that can identify
and reveal such hidden bundling to cloud users so they become aware of
the consequences of existing bundling before any deployment stage. This
paper presents a new NSs discovery approach that takes into account
and makes transparent network services bundling for cloud users.

Keywords: Service discovery · Service matching · Bundling
Constraints

1 Introduction

The expansion of published cloud network services (NSs) calls for efficient service
discovery solutions [1]. These latter aim to assist users in selecting the most
appropriate NSs for their distributed cloud applications. Most existing works [3,
5] focus on the description and discovery of services operating at the application
layer, i.e., the last layer of the Open Systems Interconnection (OSI) model [2].
Some efforts have also been proposed to adapt existing solutions to the network
layer [7,8], i.e., the third layer of the OSI model. While these approaches are
valuable, the discovery problem remains particularly more challenging in the
context of NSs due to the pure bundling strategy often employed by NS providers.
Pure bundling is a cloud provider purchase strategy in which only a bundle of
services is available to buy (i.e. component service from the bundles could not
be bought separately) [4]. From a service discovery perspective, this strategy
complicates the analysis of the offerings [10] especially since the bundling details
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are currently embedded in the textual descriptions published by existing CSPs.
Without a transparent description of the offer, service discovery algorithms are
likely to fall short in exploring this information and selecting the appropriate
services. What makes the discovery problem also challenging for cloud NSs is
their variation, between providers, areas, regions, and zones. For instance, the
same service may be available in some regions but restricted in others.

In this paper, we argue that user requests and advertised NSs should be
represented in a unified CSP-independent way. This description should take into
account the bundling and variation details of NSs as well. This allows cloud users
to observe all the resources that are bundled by each offered service and to predict
the bundling consequences at the design phase. As graph structures are a natural
choice to represent the dependency relationships between services and resources,
we describe both user requests and NS offers using a graph model. Thus, we
reformulate NS discovery as a matching problem between the NS request graph
and a Cloud NS offer graph. Our contributions can be summarized as follows:
(i) We propose a graph-based model that represents NS user requests and cloud
provider NS offers w.r.t the OSI principles and in a provider-agnostic way. (ii) We
leverage the advances in graph embedding and clustering techniques to enable
efficient service discovery. (iii) We propose a discovery algorithm that takes a
requested NS as input and locates the advertised NSs that best match it. The
algorithm’s innovation resides in its capacity to deliver precise service matching,
identifying subgraphs within the cloud NS offer that can be completely matched
with a requested NS, while also highlighting the unmatched portions. These
latter represent service bundles that were not explicitly requested by the users.

2 Approach Overview

Our approach for cloud NSs discovery consists of two parts: Offline and Online,
as in Fig. 1. During the “Offline” part, we create the service index for published
cloud NSs that serves later as one of the main inputs of the service discovery task
in the Online part. During the “Online” part, we handle the user’s request and
identify the most appropriate cloud NSs satisfying it. Specifically, the “Offline”
part relies on three tasks: OSI-compliant service description, vectorization, and clus-
tering. OSI-compliant service description (Of.1 in Fig. 1) takes two inputs: a catalog
of NSs defined by a network expert1 and textual descriptions of Cloud NSs
extracted from CSPs’ NS documentations. During (Of.1), we analyze the textual
descriptions of cloud NSs and map them into services from the catalog of NSs
to produce their OSI-compliant service description graphs (Cloud NS graphs for
short) defined according to our graph-based model2. Furthermore, the vectoriza-
tion task (Of.2) takes cloud NS graphs and transforms them into low-dimensional
vector representations. Precisely, we propose to vectorize the cloud NSs using
graph embedding vectors (embedding vectors for short) and location vectors.
1 The catalog describes high-level functionalities of NSs w.r.t to OSI principles, inde-

pendently from the CSPs vocabulary and implementation.
2 Details on the OSI-compliant service description task are at Supplementary-material-1.

https://drive.google.com/drive/folders/1Qbof53f_y6tZuvlhG8m-M5suhYKQSn5F?usp=drive_link
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Fig. 1. Hidden bundles-aware discovery architecture overview

Embedding vectors provide numerical representations that capture the proper-
ties of the entire graph, including node features (i.e., properties of the under-
lying services/resources) and graph connectivity edges (i.e., services/resources
dependencies). The aim is to represent cloud NSs from a purely functional view
independently of their location. Location vectors, capture location constraints
related to cloud NSs in terms of regions and availability zones where they oper-
ate. The clustering task (Of.3) uses the embedding vectors to group the cloud
NSs into clusters to reduce the discovery cost during the online part. The offline
part ends with building the service index structuring cloud NSs based on their
embedding vectors, location vectors, clusters, and graph-based descriptions.

The “Online” part consists of two key tasks: vectorization and service discovery.
First, the vectorization task (On.1) takes a user request defined as a graph (request
graph) and produces its corresponding embedding and location vectors. Then,
the service discovery task (On.2) uses the request graph, its associated vectors,
and the service index to find the appropriate cloud NSs that best match the
user request and respect the associated location constraints, while providing a
transparent description of the hidden bundles embodied in the cloud NSs.

3 OSI-Based Network Service Description

We introduce our model for describing users’ requests and cloud NSs as graphs.
The model, in Fig. 2, defines a service in terms of (a) its locations, (b) its com-
posing services and (c) the resources that it discloses or needs to realize its
functionality. The model represents NSs as a Directed Acyclic Labeled Property
Graph NLDAG=(V,E), where V represents a set of three types of nodes: Service,
for network services; Location, defining where services are situated; and Resource,
denoting service needs or disclosures. Both Service and Resource nodes hold a
single property, ID, marking their identifier. Location nodes possess three more
properties: region, AZ, and provider. E is a set of directed edges denoting the nodes’
dependencies. We consider only four labels for edges (Fig. 2): needs, disclose, com-
posed_by, located_in, each with its own semantic. Let e = (n,n’) ∈ E, if e is labeled
needs means n requires n’ to operate; disclose means n makes n’ accessible; located_in
means n is located in n’; composed_by means n is made up of n’.
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Values of services, resources, and locations nodes’ properties are defined based on
the OSI model vocabulary. As an example, we illustrate in Fig. 3 the description of
the Elastic Network Interface (ENI) service provided by AWS in the Ireland region and
specifically in the eu-west-1a availability zone. Because this service’s identifier varies
between providers (e.g., called Network Interface Card (NIC) in Azure vocabulary), we
represent it with a CSP-independent name and we identify it with NetworkEndPoint as
in the OSI model vocabulary. To be consistent with on-premise solutions, AWS (and
all CSPs) provide the NetworkEndPoint service as a logical network component to be
executed on a VM so it can connect to a network. Thus, the NetworkEndPoint is offered
as a Cloud NS that discloses (i.e., makes accessible) the IP address of the VM on which
it runs. To realize its functionality, a NetworkEndPoint service needs the DLConnectivity
service, that operates at the Data Link layer and establishes connectivity between VMs
of the same network via their MAC addresses. The DLConnectivity service is delivered
by all CSPs as a composition of two services: a DLSwitching to bridge packets between
VMs of the same network and a DLEndPoint that discloses the MACaddresses of the
communicating VMs to make them accessible within the network.

Fig. 2. Graph-based model for requests
and Cloud NSs description

Fig. 3. Description of the AWS Net-
workEndPoint service w.r.t our model

4 Service Vectorization and Clustering

We first present the adopted graph embedding model to learn the embedding vectors
in Subsect. 4.1. Then, we present our proposed method to generate the location
vectors in Subsect. 4.2. Finally, we detail our clustering algorithm to group the cloud
NSs in Subsect. 4.3.

4.1 Learning NS Embedding Vectors

To “learn embedding vectors” for the user request and cloud NS graphs, we propose a
Graph Neural Network (GNN) based model. GNN is a type of neural network that oper-
ates ongraph structures [12].Motivatedby theGNNpromising results,we trained aGNN-
based model for a graph classification task to learn embedding vectors. This task maps
the input graphs to either cloud NS labels (e.g., aws-NIC, azure-NIC, etc.) or labels of ser-
vices in our NS catalog (e.g., DL connectivity, Network connectivity, etc.). As in Fig. 4,
the pipeline of the proposed GNN model is composed of an encoding layer, L GNN layers,
a pooling layer, and a classification layer. It takes graphs representing Cloud NSs and user
requests as inputs (e.g.,G0, Gj) and outputs the corresponding embedding vectors (HG0 ,
HGj ) and a probability distribution over service labels (y0, y1,...).
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Fig. 4. The general pipeline of the GNN model for learning embedding vectors

4.2 Generating NS Location Vectors

Location vectors capture geographic location constraints related to network services
in terms of the region(s) and availability zone(s) in which they operate. For instance,
in Fig. 3, the location node through its region and az attributes: {region: “Ireland”,
az: “eu-west-1a” } represents a geographic location constraint for both NetworkEnd-
Point and DLConnectivity services. To capture this location constraint from a spatial
perspective, we encode it using 3 dimensions: region latitude, region longitude, and
az code. Latitude and longitude for regions can be obtained since they correspond to
precise locations. However, cloud providers do not provide precise locations for their
azs. Thus, we generate a code for each az reflecting its geographic location, using for-
mula (1):

azcode(i, j) = (i + j) · β (∀i ∈ [1, |Rp|], j ∈ [0, Zri − 1]) (1)
where i is the number attributed to a region after sorting, |Rp| is the total number

of regions for a provider p, Zri is the number of azs within the region ri and j is the
number attributed to az based on the default provider azs’ sorting (i.e., eu-west-1a
→ 0). The factor (i + j) ensures that the code for each az within a region is unique.
While β is a normalization factor. Thus, given the above geographic location constraint
{region: “Ireland”, az: “eu-west-1a” }, the corresponding location vector would
be [52.865196, −7.9794599, 0.0024].

4.3 Clustering Cloud NSs

The clustering task uses only embedding vectors to group cloud NSs into clusters
regardless of their location constraints to reduce the discovery cost. The intuition is
to create clusters that have similar services from the same provider. As a clustering
algorithm, we use K-means due to its simplicity and wide adoption for Web service
clustering [11]. Precisely, given the number of clusters K to form and a data set H =
H1, ..., Hn of n cloud NSs, with Hi a d-dimensional embedding vector. The K-means
algorithm partitions the cloud NSs into K clusters C = C1, ..., CK and identifies the
adequate centroids that minimize the sum of the distances between each embedding
vector and its assigned centroid.

5 Service Discovery

The service discovery (On.2 in Fig. 1) involves finding the best match for the requested
NS while, eventually, providing a clear description of any unrequested bundled service.
To achieve this, we propose a matching technique that combines vector-based similar-
ity (e.g., cosine similarity between two embedding vectors) and subgraph isomorphism
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Fig. 5. Execution of Algorithm 1

methods [6]. We used a subgraph isomorphism method to identify the subgraph within
the cloud NS offer that is isomorphic to the requested NS graph. Simultaneously, the
vector-based similarity is computed to check whether the identified subgraph is also
semantically similar to the requested NS graph. However, directly applying this match-
ing method to the initial number of cloud NS offers is time-consuming. Therefore, we
leverage the clustering we performed offline to limit the NS search space and benefit
from nearest-neighbor search (NNS) strategies [9] to first select the nearest cloud NSs
to the requested NS. Subsequently, we apply our matching technique to the selected
nearest cloud NSs. Concretely, our matching technique, as illustrated in Algorithm 1,
takes five inputs: a requested NS Us , the set of centroids of cloud NS clusters Sc , the
cloud NSs index Sind , c the number of the nearest clusters to the requested NS, and
finally s the number of the nearest cloud NSs to the requested NS. The algorithm
returns the most suitable cloud NSs (i.e. Scandidates ), matching the requested NS. In
doing so, it relies on three main steps: selection of c nearest clusters (line 1), selection
of s nearest services (line 2), and service matching (line 3). As illustrated in Fig. 5,
the service discovery algorithm first selects the c nearest clusters to the requested DL
Connectivity service by applying a linear search (Line 1 in Algorithm 1). This search
matches the embedding vector of the requested DL connectivity service to those of
the k cluster centers (i.e., C1, C2, ..., CN ). Moreover, from each c (c=2 in this exam-
ple) selected cluster, the algorithm selects the s (e.g., s=10) nearest cloud NSs to the
requested NS by applying a KD-tree search [9] over their location vectors.

Algorithm 1 Service discovery algorithm
Input: U s =< U

g
s ,Uev

s , Ulv
s > : requested NS, with U

g
s the NS graph, Uev the NS embedding vector, Ulv

s the NS
location vector
S c : Service clusters centroids
S i n d : The cloud NSs index
c : The number of cluster neighbors
s : The number of service neighbors
Output: Sc a n d i d a t e s : The most suitable cloud NSs matching the requested NS
1: Nclusters ← getNC(Uev

s , Sc) /* select the nearest clusters */

2: Nservices ← getNS(Ulv
s , Sind, Nclusters) /* select the nearest services */

3: Scandidates ← match(Us, Nservices) /* apply service matching */

From the selected s nearest cloud NSs (N services), the algorithm selects the most
appropriate cloud NSs for the requested NS by applying our service matching technique
whose algorithm is depicted in Algorithm 2. While its in-depth details are available
at3, note that it relies on two main functions: (i) get_isomorphic_subgraph which

3 Supplementary-material-1.

https://drive.google.com/drive/folders/1Qbof53f_y6tZuvlhG8m-M5suhYKQSn5F?usp=drive_link
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identifies the sub-graph (Csb) in the NS candidate graph (N services[C][0]g) that is
isomorphic and semantically equivalent to the requested NS graph (Ug

s ) (line 5); (ii)
get_hidden_bundles (line 7) that identifies the hidden bundle subgraphs (Hsb) in
the NS candidate graph(Cg) that are not present in the requested NS graph (Ug

s ).
As illustrated in Fig. 5, the subgraph in green from the graph of aws-nic-Ireland-eu-
west-1b is isomorphic and semantically similar to the requested DLConnectivity graph,
while the subgraph in red represents the hidden bundle subgraph. From this match, we
can reveal that aws-nic-Ireland-eu-west-1b from C1 is an appropriate candidate for the
requested DLConnectivity service, but it bundles the unrequested NetworkEndPoint
service.

Algorithm 2 Service matching operation: Scandidates ← match(Us,N services)
Input: U s =< U

g
s ,Uev

s , Ulv
s >): user requested NS with U

g
s the NS graph, Uev

s the NS embedding vector, and Ulv
s

the NS location vector
N c lu s t e r s : selected c nearest clusters
N s e r v i c e s : selected s nearest cloud NSs
Output: Sc a n d i d a t e s : The most suitable cloud NSs matching the requested NS

1: for cluster C in Nclusters
do

2: if similarity (Uev
s , Nservices[C][0]ev) == 1 then

3: Scandidates.append(Nservices[C][0], ∅);

4: else

5: Csb ← get_isomorphic_subgraph(Ug
s , Nservices[C][0]g) such that similarity (Uev

s ,

Nservices[C][0]evsb ) == 1

6: if Csb != ∅ then

7: Hsb ← get_hidden_bundles(Ug
s , Nservices[C][0]g , Csb)

8: Scandidates.append(Nservices[C][0], Hsb)

9: end if

10: end if

11: end forreturn sort(Scandidates)

6 Experimental Study

We evaluate the effectiveness of our discovery approach by studying its accuracy and
completeness in: (Q1) matching user requests with the most appropriate cloud NSs;
(Q2) identifying the hidden bundles included in cloud NS offers. To do so, we developed
our discovery approach in Python using several standard packages: PyG (PyTorch
Geometric) was used for GNN, Scikit-Learn for clustering and nearest-neighbor search
(NNS) algorithms, etc. As for the dataset, it was built upon the graphs of (1) two
cloud NS services, namely Network Card Interface and Peering, from two major cloud
providers (AWS and Azure), and (2) six NS services from NS catalog. This allowed us
to gather a total of 1843 real NS candidates. As for user requests, we relied on the DL
Connectivity service but with 12 different location constraints, as illustrated in Table 1.

6.1 Experimental Results

Table 2 present the results of the experiments conducted to evaluate Q1, and Q2. Both
number of the nearest clusters (c) and the number of the nearest cloud NSs (s) are
fixed for each request. s is fixed to 1 if the AZ is provided within the requested service.
Otherwise, if the AZ is not provided, s takes the product of the number of provider
regions in the given location and the maximal number of provider AZs. We report the



122 H. Brabra et al.

Table 1. User requests used for evaluating Q1 and Q2

Request Location constraints

DLC1 Location (Paris, eu-west-3a, AWS)
DLC2 Location (North Virginia, us-east-1c, AWS)
DLC3 Location (Mumbai, ap-south-1b, AWS)
DLC4 Location (France, not provided, AWS)
DLC5 Location (Germany, not provided, AWS)
DLC6 Location (USA, not provided, AWS)

Request Location constraints

DLC7 Location (Virginia, Zone 3, Azure)
DLC8 Location (Ireland, Zone 1, Azure)
DLC9 Location (Victoria (Australia), Zone 2, Azure)
DLC10 Location (France, not provided, Azure)
DLC11 Location (Germany, not provided, Azure)
DLC12 Location (USA, not provided, Azure)

Table 2. Q1 and Q2 evaluation results

Request N. of neighbors Q1 evaluation results Q2 evaluation results
Precision Recall F-Score Precision Recall F-Score

DLC1 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC2 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC3 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC4 c=1; s=6 (1*6) 50 % 100% 66.66 % 100% 100% 100%
DLC5 c=1; s=6 (1*6) 50% 100% 66.66% 100% 100% 100%
DLC6 c=1; s=24 (4*6) 100% 100% 100% 100% 100% 100%
DLC7 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC8 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC9 c=1; s=1 100% 100% 100% 100% 100% 100%
DLC10 s=6 (2*3) 100% 100% 100% 100% 100% 100%
DLC11 s=6 (2*3) 100% 100% 100% 100 % 100% 100%
DLC12 c=1; s=45 (15*3) 93 % 93 % 93 % 100 % 100 % 100 %
Average 91% 99,41 % 93,86 % 100 % 100 % 100 %

Q1 and Q2 evaluation in terms of Precision, Recall, and F-Score. Q1’s evaluation results
reveal that for the majority of user requests (DLC1-3 and DLC 6-11), both precision
and recall achieved a perfect score of 100%. This signifies that all the matched cloud
NSs were relevant and suitable for these requests. In contrast, we observe a low precision
(50 %) for DLC4 and DLC5. This is due to that both Germany and France have only
3 AZs, while the number of returned nearest cloud NSs is fixed to 6. As a result,
in addition to the 3 relevant services, 3 irrelevant ones are also included, leading to
lower precision. AS for Q2 evaluation, the precision values demonstrate the accuracy
of the NS discovery approach in identifying hidden bundles within cloud NS offers.
The results exhibit a consistent precision of 100% for all user requests, signifying that
all the identified hidden bundles were relevant and correctly identified. Furthermore,
the recall values indicate that the NS discovery approach successfully identified all the
hidden bundles for all user requests. As a result, the F-scores for Q2 are also 100%,
reflecting the high accuracy achieved in both precision and recall.

7 Conclusion

We proposed a bundles-aware NS discovery approach that takes into account and makes
transparent network services bundling for cloud users. Our approach performs well in
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accurately matching user requests with the most appropriate cloud NSs and identifying
hidden bundles. Evaluation results suggest adjusting parameters (c and s) dynamically
for future work. We also plan to expand evaluations with more user requests and
additional cloud NSs in the dataset.
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Abstract. Mobile edge computing (MEC) is receiving growing atten-
tion. In MEC environments, application requests (i.e., a set of consecu-
tive microservice requests) of users are first sent to nearby edge servers,
which can significantly reduce the latency compared to sending requests
to the cloud center. Therefore, it is vital to deploy suitable microser-
vices on edge servers considering the resource and coverage limitations
of edge servers and the movement of users. However, existing deployment
approaches focus on offline scenarios, where a service vacuum may occur
between two offline deployments due to the long deployment time. Online
microservice deployment is thus becoming an urgent need to satisfy user
requirements better. This paper proposes DDQN, a deep reinforcement
learning approach to online microservice deployment. Specifically, DDQN
leverages the Dueling DQN (Deep Q-Network) model to generate real-
time microservice deployment plans. Experiments show that the pro-
posed method can effectively improve the success rate of microservice
deployment in online scenarios without losing timeliness.

Keywords: Mobile Edge Computing · Microservice Deployment ·
Deep Reinforcement Learning

1 Introduction

With the rapid advancement of mobile applications and devices, MEC has
emerged as a promising computing paradigm. MEC aims to extend the capabili-
ties of cloud centers by bringing computing power and network capacity closer to
the users. By deploying applications in proximity to users, MEC offers significant
reductions in request latency and improved service experiences. However, edge
servers typically have limited computational resources and coverage capabilities
[6], making it feasible to deploy only a restricted number of applications and
serve a limited user range. Considering these limitations, deploying applications
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with smaller footprints and composable components on edge servers proves more
suitable than deploying single applications with larger footprints.

The microservice architecture, as a novel software architecture paradigm,
offers greater flexibility and adaptability to change compared to traditional
monolithic architecture. In the realm of MEC applications, the adoption of
microservice architecture has become widespread. This is primarily because it
enhances the resource utilization of edge servers and enables the realization of
complex user requests through the flexible composition of multiple microser-
vices [13]. For instance, a voice navigation request can be fulfilled by composing
three microservices: data loading, voice recognition, and path planning. In line
with this trend, user application requests are typically divided into a sequence of
microservice requests. Consequently, mobile users will request different microser-
vices at various locations, thereby sending corresponding requests to different
edge servers. However, two challenges arise in ensuring the successful delivery of
requested microservices to users.

The first challenge is the limited resources of edge servers, which can hin-
der microservice deployment, causing unfulfilled user requests [14]. The second
one arises when users move while microservices are processing, potentially mov-
ing out of the edge server’s coverage area before getting the result, leading to
retrieval failures. These challenges emphasize the crucial problem of microservice
deployment in MEC environments.

Existing approaches to microservice deployment [2,4,8] primarily focus on
offline scenarios, where they utilize known information about microservice
requests to deploy appropriate microservices on suitable edge servers. However,
the time required for offline pre-deployment processes can create a service vac-
uum, where certain service requests remain unattended. In other words, these
approaches may fail to respond to some service requests during the service vac-
uum period. This highlights the challenge of online microservice deployment,
where microservices need to be dynamically deployed in response to incoming
requests without prior knowledge of users’ microservice requests. Therefore, the
online scenario serves as a complement to the offline scenario. To address this
challenge, this paper proposes an online microservice deployment approach based
on deep reinforcement learning.

In our work, we transform the online microservice deployment problem into
an online bin packing problem to optimize resource utilization and success rates.
We propose DDQN, a solution based on Dueling Deep Q-Network (DQN) [17], to
enhance deployment success without compromising efficiency. Extensive experi-
ments validate the effectiveness of this approach in online and dynamic scenarios.

2 Problem Description

2.1 Scenario Analysis

A typical microservice online deployment scenario is illustrated in Fig. 1. The
scenario contains two main actors: a queue of microservices to be deployed Q
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Fig. 1. A typical microservice online deployment scenario.

and a number of edge servers S. The microservices in the queue of microservices
to be deployed need to be deployed to one of the edge servers one by one. Each
edge server has four main attributes: server id, remaining resources, coverage,
and location information. There are three remaining resources, including CPU,
memory, and bandwidth, and these attributes can be represented by a multi-
dimensional vector < C,M,B >. The coverage cov(sj) represents the range
of services the edge server can provide, and this edge server can process only
requests within this coverage. Each microservice to be deployed has three key
attributes: microservice id, resource requirement, and possible requested location
L. Resource requirement refers to the number of resources needed to deploy the
microservice in the same form as the remaining resources of the edge server,
which is also a multi-dimensional vector. The possible requested location refers
to the location where the microservice is likely to be requested by users in the
future. Considering the limited coverage of edge servers, this information will
impact which edge server is selected.

2.2 Problem Modeling

This section presents formal modeling of the online deployment problem of
microservices in mobile edge environments.

Definition 1: Coverage restriction. Coverage restriction refers to the fact
that a user can only initiate a microservice request to an edge server that covers
its current geographical location. Let dij denote the distance between a user ui

and a particular edge server sj and let cov(sj) represent the edge server the
coverage of sj . The coverage limit can then be expressed as:

dij ≤ cov (sj) ,∀i, j ∈ {1, 2, . . . , n} . (1)

Definition 2: Resource constraint. It means an edge server can only deploy
a microservice that requires no more resources than what is currently available.
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Since the required resources for a microservice are a multidimensional vector,
the edge server can deploy the microservice only if all needed resources are sat-
isfied. Let Need(mi) denote the resource requirement of microservice mi and
Remain(sj) denote the remaining resources of edge server sj . The resource lim-
itation can be expressed as:

Need(mi) ≤ Remain (sj) ,∀i, j ∈ {1, 2, . . . , n} . (2)

Definition 3: Image pulling limitation. In a realistic scenario, if an edge
server is requested for a microservice that has never been deployed before, it
needs to pull and deploy the image of the microservice, which will take up a large
number of bandwidth resources during the pull. Let Size(mi) denote the size
of microservice mi and bandwidthremain(sj) denote the remaining bandwidth
resources of edge server sj . During the pull process, the bandwidth of sj and the
duration time will be occupied as:

Tempbandwidth(sj) = Random(image) ∗ Bandwidthremain(sj), (3)

Ttemp =
Size(mi)

Bandwidthremain(sj) − Tempbandwidth(sj)
. (4)

If a service is requested again after a successful pull and deployment, there is
no need to pull the image again. If a microservice is requested during an image
pull, the request will also be considered a failure.

Definition 4: Deployment success rate. The success rate γ is a key indica-
tor of microservice deployment. Let np be the number of successfully deployed
microservices. Let nm be the total number of microservices to be deployed. Then
we have

γ =
np

nm
. (5)

Definition 5: Microservice deployment problem. The optimization objec-
tive of microservice deployment is to improve the success rate of microservice
deployment γ, with the restrictions of both resource and coverage conditions.
This problem can be regarded as a multi-constrained single-objective optimiza-
tion problem, which can be formally expressed as:

maximizeγ =
np

nm
,

subject to :
dij ≤ cov (sj) ,∀i, j ∈ {1, . . . , n}

Need (mi) ≤ Remain (sj) ,∀i, j ∈ {1, . . . , n}.

(6)

3 Proposed Model

To address the problem of online microservice deployment, the paper proposes
an optimization approach based on deep reinforcement learning, as shown in
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Fig. 2. As stated before, the core difficulty of this problem lies in the decision
selection of each edge server. First, we use the mobility prediction model and
the user’s historical trajectory information to predict the user’s future trajectory.
The expected future trajectory is then combined with the known knowledge of
the user’s service combinations to be requested to obtain the user’s microservice
pre-deployment information. The microservice pre-deployment information con-
sists of a series of key-value pairs, each consisting of two elements < L,CM >,
where L represents the location of the request to be initiated, and CM represents
the corresponding microservice candidate set.

Fig. 2. Framework for Edge Microservice Deployment.

3.1 Mobility Prediction

The mobility prediction model primarily aims to predict future trajectories from
historical data. The revolution in this section is a collection of positions con-
sisting of some columns of latitude and longitude, with the same time interval
between each place and no additional reference information beyond that. Con-
sidering that the accuracy of using latitude and longitude as coordinates is too
low, i.e., a slight deviation of latitude and longitude will lead to a significant
gap in physical distance, to improve the final prediction accuracy, the means of
converting the trajectory information from latitude and longitude information
into velocity variation information and normalizing it is adopted. The overall
prediction process uses the first seven trajectory points to predict the last tra-
jectory point and iterates one by one to predict the future trajectory containing
multiple locations.

3.2 The Proposed DDQN Model

The proposed DDQN is a direct action selection reinforcement learning method.
In this method, a value function uses an ε-greedy strategy to select the appropri-
ate action by outputting the probability distribution of each action. The output
of the network has two parts: one predicts the gain value of each action, and the
other predicts the value of the current environment. The two parts are weighted
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and summed to obtain the action advantage value of each action. The network
structure is shown in Fig. 3. The equation of DDQN is expressed as follows.

Ut = Rewardt + γRewardt+1 + γ2Rewardt+2 + · · · , (7)

where Ut denotes the weighted summation of all future rewards starting from
moment t. At moment t, Ut is unknown and depends on all future states and
actions. The action value function of DQN is:

Qπ (st, at) = E [Ut | St = st, At = at] , (8)

where Qπ(st, at) is the conditional expectation of the payoff Ut that eliminates
all states and actions after moment t + 1. The state value function is:

Vπ (st) = E [Qπ (st, A)] , (9)

where Vπ(st) is the expectation of Qπ(st, A) that eliminates the action at from
Qπ(st, A). Vπ(st) depends on the state st and the policy π.

The value function of the DDQN can be obtained as:

Q∗(s, a) = V ∗(s) + A∗(s, a) − meanaA∗(s, a). (10)

Fig. 3. DDQN model structure.

3.3 Module Configuration

Since DDQN adds the calculation for action gain to the network structure, it not
only evaluates the value of the current environment but also takes into account
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the impact of each action on the environment, making it possible to give better
actions in the face of complex environmental states.

However, in the dueling network, we use the neural network A(s, a;wA) to
approximate the optimal dominance function A∗(s, a) and the neural network
V (s;wV ) to approximate the optimal state value function V ∗(s), where both wA

and wV are network parameters.

Q(s, a;w) = V (s;wV ) + a(s, a;wA) − meanaA(s, a;wA). (11)

In this problem, a round refers to a microservice deployment process, where state
s refers to the edge server state information and the microservice to be deployed,
action a refers to the selected edge server, and the reward is the benefit of a
deployment action. Finally, the network is updated by calculating the overall
reward value.

Action Design. The action in this problem is a server ID constructed using the
one-hot coding. With the edge server number, an attempt is made to deploy the
current microservice on that edge server, and then a reward value is generated
based on the result of the deployment.

Reward Design. In addressing this problem, three factors are critical for cal-
culating the reward value. The initial factor, denoted by Y , concerns the success
of the deployment. The deployment can be deemed successful only when two
constraints are satisfied. This factor is calculated as follows.

Y =
{

1, dij ≤ cov (si) &Need (mi) ≤ Remain (sj) ,∀i, j ∈ {1, . . . , n}
−1, otherwise.

(12)

Proceeding further, we consider a factor given by the current deployment suc-
cess rate γc, as described in Eq. 5. The current deployment success rate signifies
the proportion of microservices successfully deployed when the current microser-
vice is rolled out. It is computed by dividing the number of successfully deployed
microservices np by the total number of microservices currently processed nc.

Finally, we evaluate the factor encapsulated by the current resource uti-
lization rate βc. The current resource utilization rate represents the calcu-
lated resource usage of the edge server following the deployment of the current
microservice. It is determined by dividing the total resources of the successfully
deployed microservice Needsum by the total initial resources of the currently
selected edge servers Initialsum. The equation is defined as follows:

βc =
Needsum

Initialsum
. (13)

The final Reward is calculated as:

Reward =
{

λ ∗ γc + (1 − λ) ∗ βc, Y = 1,
−1, Y = −1.

(14)
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A constant value λ greater than zero is introduced in the reward equation
to balance the deployment success rate with resource utilization. To enhance
the impact of deployment failure on the decision, the reward for the deployment
failure is set to -1.

4 Experiments

This section reports the experiments to analyze the effectiveness of the proposed
approach. All code was written in Python and ran on a Macbook Pro laptop
with 16 GB RAM and the macOS 12.4 operating system. The experiments were
designed to answer the following research questions:

– RQ1: Can the proposed deep reinforcement learning approach improve the
deployment success rate and resource utilization?

– RQ2: Is it possible to achieve model convergence with the proposed deep
reinforcement learning approach?

– RQ3: What is the time consumption of the proposed deep reinforcement learn-
ing method?

Table 1. Experimental parameter setting.

Parameter Name Default Value Change Range Change Step

λ 0.5 None None

ns 10 None None

Rs (500, 500, 500) None None

nm 30 30 → 70 5

Mr 1.0 1.0 → 2.0 0.1

Cr 1.0 0.5 → 1.0 0.05

4.1 Datasets

We experimented with two publicly accessible datasets: EUA-dataset [7], which
furnishes the geographical positions of 816 mobile users and 125 base stations,
and Telecom Dataset [16], which consists of more than 7.2 million Internet
access records over six months from 9,481 mobile phones of 3,233 base stations.

In this experiment, edge servers are randomly selected from the available
data, and the number of servers selected varies for each trial. Each edge server
has three attributes: location, coverage, and computational resources. For the
microservice data, this experiment requires constructing a large number of
microservice queues for the reinforcement learning model to be trained, with
each queue serving as one training round. Each microservice queue has nm

microservices, which are randomly drawn from the microservice data. To meet
the requirements of this experiment, we added one attribute to each microser-
vice: the possible requested location.
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4.2 Comparison Approaches

We compared the proposed Dueling-DQN with eight comparison approaches,
which are mainly divided into three types: optimal algorithms [9], quick algo-
rithms [1], and deep reinforcement learning-based algorithms [3,10]. The optimal
algorithms consist of optimized random and optimized greedy algorithms. The
quick algorithms include quick randomized algorithms and quick greedy algo-
rithms. The main difference between optimal algorithms and quick algorithms
is that quick algorithms do not perform edge server selection and directly select
one from all edge servers for microservice deployment, while the optimal ones
perform the selection process twice. We also performed different optimization
strategies based on the underlying deep reinforcement learning algorithm for
comparison.

4.3 Experiment Setup

In this experiment, six parameters are involved. Among them, the number of
edge servers (ns) and the total number of resources of edge servers (Rs) are fixed
because the prerequisite to apply the reinforcement learning method is that the
initial state information of all edge servers must be known. The constant λ in
the reward equation (Eq. 14) is determined by pre-testing and will not change
subsequently. Finally, the following three parameters will change the number

Table 2. Comparison of the deployment success rate over Mr.

Dataset Method Microservice Resource Ratio

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

EUA Dataset QG 50.12 51.87 41.77 40.4 54.67 45.91 59.56 46.97 55.6 51.99

OR 49.21 52.42 42.41 39.78 53.66 47.38 60 46.94 55.67 52.9

QR 53.95 55.62 54.91 56.5 56.24 56.3 56.2 54.09 58.56 54.04

OG 49.16 52.25 41.78 40.59 52.89 46.37 61.57 47.28 56.61 54.27

PG-no-req 57.49 58.66 65.46 52.04 62.62 64.76 50.72 52.6 64.03 63.24

PG-req 48.8 59.52 63.48 61.26 68.39 72.04 68.1 64.68 63.03 68.16

PG-eG 61.92 64.65 63.47 63.24 61.58 61.82 61.91 61.38 67.56 67.86

PG-req+eG 65.87 69.54 58.68 68.48 68 45.12 59.6 44.52 38.35 70.56

RSDQL 64.14 67.15 68.51 66.12 67.12 64.13 66.34 62.71 65.43 70.15

DDQN 71.46 68.09 70.94 66.46 69.67 72.05 69.85 64.92 67.67 73.68

Telecom Dataset QG 52.97 54.76 44.31 42.78 58.05 49.46 63.68 50.58 59.88 55.45

OR 52.46 56.58 45.78 42.22 57.35 50.75 63.76 49.54 58.99 57.02

QR 58.27 58.70 58.77 59.68 59.75 60.19 59.22 58.40 63.21 56.81

OG 52.66 55.64 44.25 42.92 56.55 49.59 64.98 50.78 59.75 57.26

PG-req 52.20 64.15 67.18 64.42 72.17 77.72 74.07 68.39 67.75 69.42

PG-no-req 60.61 63.33 69.98 55.75 65.91 69.43 53.31 55.89 68.86 66.76

PG-eG 66.08 68.78 67.35 67.72 65.87 66.61 66.36 64.62 72.25 71.36

PG-req+eG 70.28 72.10 62.04 72.60 72.49 48.69 64.00 47.57 41.11 75.98

RSDQL 67.87 70.59 71.98 70.61 71.61 68.61 71.42 65.96 69.31 74.07

DDQN 76.68 73.35 75.97 70.81 74.97 77.85 74.67 68.48 71.34 77.44
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of microservices (nm), the microservice resource ratio (Mr) and the
location coverage (Cr). Specifically, Mr represents the microservice’s resource
allocation relative to the total resources available on a specific edge server.

Default values were used for all parameters in each group of control experi-
ments, except for the varied parameters. To improve the accuracy of the results,
we conducted 100 iterations of each method and averaged the final results. The
configuration of all parameters involved in the experiments is shown in Table 1.

4.4 Model Performance Comparative Analysis(RQ1)

Deployment Success Rate. This part explores the effect of the deep reinforce-
ment learning model, primarily to ascertain whether it can enhance the deploy-
ment success rate (γ) when compared to alternative methods. Three experiments
were conducted to explore the effectiveness of the deep reinforcement learning
models by changing three parameters: the number of microservices, the propor-
tion of microservice resources, and location coverage, respectively. The overall
deployment success rate of the DDQN model is the highest, which indicates the
effectiveness of the proposed deep reinforcement learning method.

Analysis of the change of the microservice resource ratio: As shown in Table 2,
with the increase of the microservice resource ratio, it can be found that the

Table 3. Comparison of the deployment success rate over nm.

Dataset Method Number of Requests

30 35 40 45 50 55 60 65 70

EUA Dataset OG 52.28 58.71 48.82 54.95 57.96 55.74 54.83 48.88 49.16

OR 53.86 59.83 48.46 55.53 57.59 55.36 55.56 51.02 49.21

QG 53.33 57.32 47.66 55.18 58.54 55.59 54.92 51.98 50.12

QR 46.96 49.64 49.1 48.8 49.99 52.96 53.36 55.19 53.95

PG-no-req 46.19 44.72 27.77 55.4 46.66 58.36 64.74 64.7 57.49

PG-eG 62.31 64.44 64.69 67.66 67.44 63.76 63.55 66.75 61.92

PG-req 57.92 26.17 50.46 32.14 57.52 61.62 37.57 53.89 63.71

PG-req+eG 52.13 53.34 58.3 57.53 56.42 63.04 66.47 61.47 65.87

RSDQL 63.16 65.23 64.23 68.12 67.12 64.13 66.23 67.91 65.43

DDQN 66.3 67.29 68.55 70.67 70.43 69.2 70.84 71.44 71.46

Telecom Dataset OG 56.69 61.82 51.74 57.77 62.72 58.86 59.43 53.14 53.19

OR 57.62 64.61 51.68 60.00 62.31 60.08 59.74 53.69 52.03

QG 56.11 61.95 51.92 58.50 63.55 60.18 58.03 55.91 52.82

QR 50.00 52.32 53.01 52.76 53.11 57.21 58.12 60.07 57.90

PG-no-req 50.31 48.39 29.19 58.60 50.77 61.29 68.58 69.46 62.65

PG-eG 66.44 68.63 70.12 72.46 71.32 67.42 68.20 70.48 66.74

PG-req 61.35 27.68 54.54 33.76 60.94 66.93 40.32 58.63 69.30

PG-req+eG 56.05 57.92 62.16 60.70 60.31 67.31 70.13 65.04 69.50

RSDQL 67.03 69.23 70.84 73.75 72.73 68.45 71.47 72.40 69.16

DDQN 71.12 72.60 74.01 76.28 75.73 73.80 74.79 75.56 76.82
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deployment success rate of all three algorithms decreases. This is because when
the number of microservices remains unchanged, the increase of the microservice
resource ratio increases the average resource requirement of a single microservice.

Analysis of the change in the number of microservices: As shown in Table 3,
the success rate of microservice deployment increases for deep reinforcement
learning and random methods as the number of microservices increases. In con-
trast, the success rate for greedy methods shows an initial increase followed by
a subsequent decrease. When the number of microservices increases, the average
resource request of a single microservice decreases, and vice versa.

Analysis of the location coverage variation: As shown in Table 4, the deploy-
ment success rate of all three algorithms increases as the location coverage
increases. This is because the location coverage is one of the aspects of edge
server screening. When the location coverage increases, an edge server is more
likely to cover the location of the current microservice request, which can further
improve the deployment success rate of microservices.

Resource Utilization. This part explores the effect of the deep reinforcement
learning model. In other words, it investigates whether this model can improve
the resource utilization β compared with the competing methods. As shown in
Fig. 4, the overall resource utilization of the DDQN model is the highest, which
shows the effectiveness of the proposed method.

Table 4. Comparison of the deployment success rate over Cr.

Dataset Method Location Coverage

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

EUA Dataset OG 47.39 54.79 51.82 48.19 49.19 55.65 54.87 51.18 42.58 42.99

OR 47.39 54.63 52.29 49.46 47.66 54.7 54.15 51.12 42.95 43.78

QG 46.92 54.88 51.94 49.45 47.72 53.97 54.79 51.98 42.54 43.86

QR 53.49 53.85 52.96 54.79 52.97 53.67 52.23 52.92 55.6 55.66

PG-no-req 58.22 56.88 54.9 64.47 59.26 57.52 60.45 54.96 52.68 53.8

PG-eG 61.21 60.82 62.84 59.89 64.94 67.54 60.06 61.42 64.32 63.1

PG-req 61.4 56.17 61.66 42.18 50.47 47.96 59.3 59.48 60.48 55.28

PG-req+eG 57.69 67.9 54.76 61.02 63.27 63.98 67.53 57.54 66.21 67.22

RSDQL 65.23 66.32 63.51 63.12 67.33 65.76 65.32 63.61 65.43 63.25

DDQN 69.51 67.25 65.46 64.49 70.66 69.21 70.25 66.75 68.01 63.13

Telecom Dataset OG 50.43 59.87 55.62 53.49 54.81 61.24 60.21 55.67 46.97 46.31

OR 51.12 59.61 57.87 53.55 51.96 60.85 57.93 55.80 47.07 46.88

QG 51.59 60.40 56.96 55.28 52.78 59.93 58.30 57.77 47.20 48.74

QR 58.33 59.87 56.98 61.10 59.05 59.26 56.55 58.98 60.89 59.20

PG-no-req 64.16 62.47 59.54 70.14 64.57 63.00 65.82 60.38 58.87 57.25

PG-eG 68.03 65.55 69.21 65.26 69.70 73.73 66.69 65.83 70.27 69.28

PG-req 67.79 62.43 66.10 46.07 53.69 51.04 63.73 66.26 66.96 61.09

PG-req+eG 62.16 72.39 59.36 66.28 69.67 68.53 72.30 64.23 71.21 74.88

RSDQL 72.21 70.46 71.08 70.14 74.85 69.84 70.51 67.79 71.36 68.78

DDQN 75.17 73.44 69.46 70.37 75.79 74.92 75.93 72.58 73.63 68.22
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Impact of the microservice resource ratio change: As shown in Fig. 4(a),
with the increase of the microservice resource ratio, it can be found that the
resource utilization of all algorithms decreases. This is because when the num-
ber of microservices remains unchanged, an increase in the microservice resource
ratio results in a higher average resource demand for an individual microservice.

Impact of the number of microservices change: As shown in Fig. 4(b), when
the number of microservices reaches a certain threshold, there is a tendency to
consistently select the edge server with the highest total resources. This can
result in a concentration of resource allocation on a single edge server, poten-
tially leading to resource bottlenecks and an increased likelihood of subsequent
microservice deployment failures. Impact of the location coverage variation: As
shown in Fig. 4(c), the resource utilization of all three algorithms increases as the
location coverage increases. This is because the location coverage is one of the
aspects of edge server screening. When the location coverage increases, an edge
server is more likely to cover the location of the current microservice request,
which can further improve the resource utilization of edge serves.

Fig. 4. (a) Microservice resource ratio, (b) number of microservice, and (c) location
coverage vs. resource utilization.

4.5 Model Convergence Analysis (RQ2)

This part explores the convergence of deep reinforcement learning models. We
conducted experiments on five algorithms, including RSDQL, PG, PG-req, PG-
eg, and PG-req-eg, in an environment with a location coverage of 1, a microser-
vice resource rate of 1, and a total of 70 service requests. As shown in Fig. 5,
in the training rounds between 0 and 100, the model performance rises rapidly;
the model performance rises slowly between rounds 100 and 200; and finally, the
model can almost converge after 200 rounds. The results verify the convergence
of the models in terms of the optimal deployment success rate and resource
utilization.

Because the parameter λ plays the role of balancing the weights of the two
optimization goals, namely deployment success rate and resource utilization,
adjusting λ allows the model to align more effectively with the optimization
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Fig. 5. Deployment success rate under different training rounds.

goal that has the most significant overall impact. We subsequently fine-tuned
the model when λ = 0.5 and 0.7, and performed three experiments to de-average
each parameter, and the results indicate that the model performs the best when
Lambda = 0.5.

4.6 Time Consumption Analysis(RQ3)

This section delves into the timeliness aspect of the proposed deep reinforcement
learning model. When conducting time statistics, the duration of model training
is not considered. Instead, only the time taken for the model to make the edge
server selection decision is calculated, as the model in this scenario is trained well
in advance. The training concept behind the model is to generate various queues
for microservice deployment and continually carry out deployment operations,
enabling the reinforcement model to make improved decisions.

Table 5. Time consumption analysis at different data densities

Method Data Density Average

20% 40% 60% 80% 100%

QR 1.31 1.58 1.62 1.63 1.7 1.57

OR 1.36 1.56 1.67 1.67 1.68 1.59

QG 1.37 1.46 1.48 1.48 1.53 1.46

OG 1.55 1.88 1.96 1.98 2.22 1.92

PG 64.77 65.08 65.18 65.42 65.77 65.24

RSDQL 35.08 36.61 43.23 44.41 44.56 40.78

DDQN 14.86 17.08 17.88 17.91 18.31 17.21

Improvement 57.64% 53.35% 58.64% 59.67% 58.91% 57.80%
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Table 5 demonstrates the time required for different decision-making meth-
ods. The DDQN method takes approximately 17.21 ms per decision, while the
quick and random methods take around one to two ms. Among them, the fast
random method exhibits the shortest decision time. This is attributed to the fact
that the fast random method does not involve two screenings and only relies on
random decisions. Although the deep reinforcement learning methods take more
time, they still fall within the range of 20 ms. Considering that the deployment
time of microservices on the edge server exceeds 100 ms, the proposed deep
reinforcement learning model can be considered to have better timeliness.

5 Related Work

In response to the limitations imposed by edge server resources and coverage,
research on microservice deployment in mobile edge computing has typically
been classified into two main categories: static and dynamic service deployment.

Static service deployment assumes user stability during service requests [2,
5,15,18]. For example, Chen et al. [2] and Tonini et al. [15] proposed strategies
taking into account factors such as server coverage, adjacency characteristics, and
budget constraints, successfully addressing deployment in static edge scenarios.
However, these studies fail to consider the impact of user mobility.

Dynamic service deployment incorporates user mobility. For example, Xiong
et al. [19] used a learning-based approach for predicting service quality based on
multidimensional context, while Lv et al. [10] implemented a Reward Sharing
Deep Q Learning approach for multi-objective microservice deployment. Many
studies [11,12,16,20–22] have limited their scope to single service or single mobile
user scenarios or have assumed known user mobility without necessary compu-
tational predictions. These approaches often oversimplify problem scenarios or
overlook key factors like resource constraints and coverage limitations.

Present research frequently omits crucial factors related to service deploy-
ment, failing to fully incorporate user mobility and service portfolio flexibility. In
response, this paper suggests a deep reinforcement learning approach for dynamic
deployment, aiming to elevate the success rate of microservice deployment while
maintaining timeliness.

6 Conclusion

This paper presents an approach to online microservice deployment in mobile
edge environments, modeling the problem and proposing a solution using DDQN.
Experiments demonstrate the method’s efficacy in enhancing deployment success
rate without compromising decision speed. In our future endeavors, we strive
to enhance the practicality of the algorithm through a targeted reduction of
assumptions. This will be achieved by explicitly identifying and quantifying
these assumptions, allowing us to establish clear benchmarks and metrics for
improvement.
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Abstract. With the emergence of 5G (5th Generation mobile commu-
nication technology), the integration of AI (Artificial Intelligence) and
IoT (Internet of Things) has gained momentum, facilitating the rapid
development of AIoT (Artificial Intelligence of Things). Through sensor-
enabled data collection, smart terminals are able to analyze, forecast,
and make decisions based on data using AI technology. However, smart
terminals may inadvertently contribute corrupted and forged data, or
malicious terminals may intentionally spread false data, which poses a
significant threat to the credibility of AIoT services. Therefore, evaluat-
ing the trustworthiness of smart terminals plays a crucial role in ensur-
ing high-quality sensing data and reducing the risk of AIoT. To address
this issue, we propose a novel cloud-edge-terminal collaborative AIoT
trust model (CET-AoTM). CET-AoTM aggregates the cumulative expe-
rience attribute of smart terminals in AIoT and evaluates their credibil-
ity by leveraging the collaborative architecture of cloud-edge-terminal.
In order to solve the challenge that a large number of new smart ter-
minals lack historical interaction due to the high dynamic nature of
AIoT, CET-AoTM evaluates the credibility of the terminals based on
the fuzzy attributes such as location attribute, propagation attribute
and communication attribute of the smart terminals as a supplement
to the trust framework. And a demand-driven cloud-edge-terminal col-
laboration mechanism is designed to flexibly adapt to different service
requirements. The experimental results show that the proposed method
has high detection rate under low historical interaction scenario, which
is not inferior to popular approaches at prensent.

Keywords: Cloud-Edge-Terminal · AIoT · Trust · Neural Network ·
Fuzzy Logic

1 Introduction

The Internet of Things (IoT) [20] is a revolutionary network model that enables
connectivity and information exchange between physical objects via terminal
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sensors and specific communication media. As 5G, 6G (5th and 6th Genera-
tion mobile communication technology), and other mobile technologies continue
to advance, the immense volume of data generated by IoT poses significant
challenges in terms of data screening, storage, processing and analysis. Fortu-
nately, Artificial Intelligence (AI) technology holds great promise in addressing
these challenges by facilitating data analysis, prediction, and decision-making.
In 2017, the concept of Artificial Intelligence of Things (AIoT) [3] was pro-
posed, which is a research model aiming to seamlessly integrate AI with IoT.
Moreover, AIoT enables intelligent control of terminal devices and achieves deep
semantic understanding and value extraction from IoT information through nat-
ural language interactions, including voice and video. Currently, AIoT has been
extensively researched in various fields, including biometric recognition, smart
home [19], smart agriculture [11], smart industry [8], and smart city [4,21]. These
advancements highlight the immense potential of AIoT in transforming and revo-
lutionizing numerous industries by leveraging the power of combined AI and IoT
technologies. While AIoT brings convenience and efficiency to data awareness
and decision-making, it also poses significant challenges. One of the key chal-
lenges is evaluating the credibility of smart terminals. In the AIoT environment,
any IoT smart terminal can provide sensing data. However, due to limitations in
performance, smart terminals may provide low-quality or incorrect sensing data.
Moreover, some smart terminals may intentionally provide false sensing data
for malicious purposes [18], thereby undermining the credibility of entire data
ecosystem. The ultimate risk would be a breach of the collaboration environment
in AIoT. Therefore, it is imperative to establish a credible trust framework in
AIoT, which includes evaluating the credibility of smart terminals. Some research
[2,9,10,12–15,17,18] has been dedicated to the evaluation of trust in terminal
devices.

Based on recent research, we have identified two significant shortcomings that
the AIoT ecosystem still faces when it comes to building a robust and reliable
trust framework. Firstly, the AIoT environment is highly dynamic and new smart
terminals lack historical interaction and feedback ratings, making it difficult
to establish prior trust. Traditional trust frameworks used in the past work
are based on Jøsang’s trust model [9]. In the absence of prior trust, evaluating
the credibility of smart terminals is a challenge. Secondly, AIoT is demand-
oriented. For delay-sensitive services, trust evaluation in smart terminals needs to
be performed promptly. On the other hand, for precision-sensitive services, high
requirements are placed on the accuracy of trust evaluation in smart terminals.
Amidst the high integration of massive sensor data and AI technology, designing
and configuring a trust framework that meets the AIoT service requirements is
quite challenging.

In this paper, a novel cloud-edge-terminal collaborative AIoT trust evalua-
tion model (CET-AoTM) is proposed to evaluate the trust relationship of smart
terminals. At the terminal layer, the CET-AoTM extracts and analyzes records
of direct and “virtual” interactions between smart terminals to derive experi-
ence attributes such as interaction state, accuracy, and response time. These
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attributes are then aggregated and iterated to obtain cumulative experience
attributes for each smart terminal. The trust evaluation of smart terminals is
achieved using machine learning algorithms based on these cumulative expe-
rience attributes. To overcome the challenge of evaluating trust in new smart
terminals, the CET-AoTM incorporates the edge and cloud layers. These lay-
ers indirectly influence the trust attributes of the AIoT network services by
utilizing fuzzy attributes such as location, propagation, and communication.
This approach provides a supplementary means of trust evaluation at the ter-
minal layer. Additionally, to address the demand-oriented nature of AIoT, a
demand-driven cloud-edge-terminal collaboration mechanism is designed within
the CET-AoTM. This mechanism allows for flexible trust evaluation among the
cloud, edge, and terminal layers, enabling the system to meet different computing
service requirements.

The contribution of our work is as follows:

1) A novel cloud-edge-terminal collaborative AIoT trust evaluation model for
evaluating the trust value of smart terminals.

2) A fuzzy-logic based trust attribute for realizing trust evaluation in the absence
of historical interaction in AIoT.

3) A demand-driven cloud-edge-terminal collaborative mechanism for solving
the flexible trust needs in AIoT.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 introduces the proposed cloud-edge-terminal collaborative AIoT
trust evaluation model. Section 4 discusses the experimental results. Section 5
concludes the paper.

2 Related Work

A variety of trust mechanism of the Internet of Things has been investigated.
Behrouz Pourghebleh [14] et al. reviewed trust management technologies in the
Internet of Things. They classified the literature based on recommendations,
predictions, strategies, and reputation. And they summarized various indica-
tors of trust. Nguyen Binh Truong et al. [18] proposed an E-R trust evaluation
model, constructed virtual interactions with crowdsourcing users of the Internet
of Things based on experience and reputation And they realized high-quality
recruitment schemes based on trust values. Gour Karmakar [10] et al. consid-
ered time dependence by introducing discrete cosine transform coefficient in
trust evaluation. They trained the trust model with deep neural networks and
tested it on real data sets. Junbin Liang [12] et al. realized trust evaluation of
sensors through multi-source feedback. In the trust evaluation, they used multi-
dimensional aggregation and dynamically adjusted different trust factor weights
to adapt to the highly dynamic nature of the Internet of Things. Kashif Naseer
Qureshi [15] et al. proposed cumulative trust under the scenario of edge intelli-
gence. They realize the trust management of the edge intelligent IoT through the
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combination of direct trust and indirect trust. They implemented a trust man-
agement system based on omnet++ experimental platform. Ahmad Almogren
[13] et al. built a trust management model based on fuzzy logic in the medical
Internet of Things to prevent sybil attacks. They take the integrity and compat-
ibility of the edge nodes as fuzzy inputs, and set the five-level fuzzy outputs as
the reliability of the nodes. They have verified the good performance of the algo-
rithm through sufficient experiments. Serin V. Simpson [17] et al. proposed two
layers of trust for collusion attacks. They build a credible environment through
fuzzy logic and a collective reputation to counter collusion attacks. The aggre-
gation trust value is calculated at the edge node so that the damaged node in
the network cannot attack its neighbors by providing false internal trust val-
ues. Mohammed Bahutair [2] et al. extracted multi-perspective trust attributes
of crowdsourcing users in the Internet of Things, including social relationship,
location, device attributes and business reliability. And they trained feedforward
neural networks based on real data sets to obtain a trust evaluation model.

Most of the existing work is based on historical interactions and historical
data sets for trust evaluation. However, the emergence of new smart terminals
that either lack historical interaction with neighboring terminals or lack of data
sets because they have not yet participated in the service in AIoT. Therefore, the
existing work cannot accurately evaluate the trust value of these smart terminals
in AIoT. Since AIoT is service demand-oriented, it’s essential to balance the time
and precision of the trust evaluation based on the service requirements of AIoT.
Therefore, the existing work can’t meet the demand-oriented requirement of
trust in AIoT. Based on these considerations, this paper proposes a cloud-edge-
terminal collaborative AIoT trust evaluation model that fully addresses the lack
of interaction in AIoT and its service-oriented needs.

3 Cloud-Edge-Terminal Collaborative AIoT Trust
Evaluation Model

This section explores the cloud-edge-terminal cooperative architecture and sce-
nario of CET-AoTM, then introduces the cumulative experience trust algorithm
and fuzzy attribute trust algorithm.

3.1 Cloud-Edge-Terminal Cooperative Architecture and Scenario

In CET-AoTM, the cloud-edge-terminal collaborative [3] scenario of AIoT is
illustrated in Fig. 1. The scenario is composed of three layers: cloud layer, edge
layer and terminal layer. The terminal layer is responsible for collecting sensor
data and making early decisions with low computing requirements. The edge
layer on the other hand, handles the aggregation of sensor data from the terminal
layer and carries out advanced processing. Lastly, the cloud layer coordinates the
collaboration between the edge layer and the terminal layer. Additionally, the
cloud or edge layer can provide support for heavy calculations and high-precision
decisions. The specific description of each layer is as follows
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Fig. 1. AIoT cloud-edge-terminal col-
laborative scenario.

Fig. 2. The Neural Network architec-
ture for cumulatvie experience trust
algorithm.

In CET-AoTM, trust evaluation of smart terminals in AIoT is achieved
through cloud-edge-terminal collaboration. Smart terminals interact directly
with neighboring terminals and engage in “virtual interaction” [1] through the
edge server. By analyzing these interactions, smart terminals gain cumulative
experience attributes and evaluate trust using small machine learning algorithms.
However, the dynamic nature of AIoT presents a challenge, as new smart termi-
nals lack historical interactions. To address this, the edge or cloud layer fuzzifies
the trust attribute to complement the trust framework. Trust evaluation varies
based on computing tasks and delay requirements. For low-delay scenarios like
autonomous driving or industrial manufacturing, edge-terminal collaboration
minimizes time consumption. For high-accuracy tasks with relaxed delay con-
straints, the cloud layer enhances evaluation accuracy. CET-AoTM establishes
a trusted AIoT environment.

3.2 Cumulative Experience Trust Algorithm

This paper proposed a cumulative experience trust algorithm for evaluating the
trust value of smart terminals at the terminal layer. A smart terminal in AIoT
can act as a requestor or consumer of a service. After the service is completed,
direct interaction or “virtual interaction” will be generated between smart ter-
minals as the prior experience attribute. The accumulated experience obtained
by aggregating prior experience attribute can reflect the trust level of smart
terminals to some extent. For constructing the terminal-layer trust evaluation
algorithm, this paper employs a small machine learning algorithm - neural net-
work (NN) [16]. We chose neural network for two reasons: scarce computing
resources of smart terminals can be effectively utilized by small neural network
to perform operations at the terminal; the neural network can construct the non-
linear functional relationship between accumulated experience and trust value
of smart terminals.

The trust evaluation algorithm of the terminal layer includes two key steps:
the preprocessing of trust model and the trust evaluation of smart terminals.
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The preprocessing of the trust model is an off-line process established before the
smart terminal starts computing service (due to the consumption of computing
resources, most of the execution is handled by the edge layer and cloud layer).
The aim here is to explore the relationship between the accumulative experience
attribute of the smart terminal and its trust value. These associations are inferred
from the smart terminal’s previous direct interactions and “virtual interactions”
to form a trust model that is used to evaluate the trust value of the smart
terminal in the subsequent trust evaluation phase. Specifically, smart terminals
can use established trust models for decentralized trust evaluation on other smart
terminals.

Figure 2 illustrates how cumulative experience can be used to evaluate trust
values in a neural network. The diagram comprises an input layer of Nσ neurons,
two hidden layers (with 30 and 10 neurons, respectively), and a one-neuron
output layer. The neurons in the input layer correspond to the accumulative
experience attribute of the smart terminal. The neurons in the output layer
represent the trust values of the smart terminal. In this paper, the trust value
of the smart terminal is between 0 and 1, and the smart terminal is regarded as
either trustworthy or untrustworthy based on the trust threshold τts.

The steps to train the trust evaluation algorithm is shown as follow. The
algorithm takes the cumulative experience attribute EΨ of the smart terminals
as the input. A cost threshold δn is set in the algorithm. In each training iteration
of neural network, the trust value of smart terminal is calculated by input and
weight. The calculated trust value is compared with the ground-truth (the label
of the training data set), and the cost difference between them is calculated.
If the cost difference exceeds δn, the iterative training is continued. If the cost
difference is less than δn, the neural network stops training. EΨ of intelligent
terminals is used in Algorithm 1 to train the trust model. The calculation of EΨ

is discussed in detail in the following paragraphs. In this paper, the Gradient
Descent Optimizer [7] is used to adjust the weight of neural networks. Finally,
the algorithm returns the trained trust model, which can be used to evaluate
the trust value of the smart terminal.

In this paper, the terminal layer realizes trust evaluation of smart terminals
in AIoT by capturing their cumulative experience attributes. In AIoT, the smart
terminals at the terminal layer will participate in the cooperation of the task as
the initiator and executor of the computing task. And they generate the direct
interaction and “virtual interaction” of the cooperation. The terminal layer will
measure the interactions between smart terminals to gain their experiences and
their impact on trust. With the continuous execution of computing tasks in
AIoT, the experience of smart terminals will be continuously updated to form
cumulative experience. Smart terminals with good interaction in collaborative
computing tasks will enhance their trust value as their cumulative experience
increases. On the contrary, the trust value of smart terminal will be reduced if it
has bad interaction in the cooperation of computing task, because its cumulative
experience (bad cooperative interaction will make the cumulative experience of
smart terminal negative growth) will be reduced. In this paper, the cumulative
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experience attribute is proposed from the perspective of collaborative computing
tasks.

The experience attributes of smart terminals will affect the overall reliability
of AIoT computing task. Smart terminals with high experience attributes will
result in higher reliability and less vulnerability to aggression. The terminal layer
obtains its experience attribute by extracting the influence of the interaction
record among smart terminals on trust. The interaction record set between smart
terminals is described as ΞΠ , where ξ ∈ ΞΠ corresponds to an attribute in the
interaction record. ΞΠ mainly includes interaction state ξs, interaction accuracy
ξa, response time ξt, etc. The interaction state ξs ∈ [0,1] indicates whether the
collaborative computing task of smart terminals is successfully completed. The
interactive accuracy ξa ∈ [0,1] represents the accuracy degree of collaborative
computing task completion of smart terminals. The response time ξt represents
the time from the receiving of the computing task to the completion of the task.
The response time ξt is calculated as shown in Eq. 1.

ξt = 1 − TNi
− Tσ

TNi

(1)

where, TNi
is the time for the smart terminal to complete the computing

task, Tσ is the time threshold for a computing task response. Through Eq. 2, the
response time of the smart terminal is normalized, making ξt ∈ [−1, 1].

ξt = 2 ∗ ξt − ξtmin

ξtmax − ξtmin
− 1 (2)

where ξtmax is the maximum of response time, ξtmin is the minimum of
response time.

The terminal layer obtains the experience attribute of smart terminals by
aggregating the attributes recorded by the interaction between smart terminals.
For the aggregation of all attributes of interactive records, the average value
can’t be used to accurately obtain the accurate experience attributes of smart
terminals. For example, for delay-sensitive computing tasks, the task initiator is
most concerned about the response time of smart terminals, and can tolerate the
accuracy of task completion (the task initiator can make up for the accuracy of
task completion by recruiting more task completers). In addition, for accuracy-
sensitive computing tasks, the task initiator will be most concerned about ξs and
ξa, while the response time can be tolerated. Therefore, the experience attributes
of smart terminals are shown in Eq. 3.

Eψ =
1

∑
pξi

∈P pξi

·
ξi∈ΞΠ∑

ξi∈P

ξi · pξi
(3)

where ξi is the attribute of the interaction record, pξi
is the service require-

ment factor of the interactive record attribute (which refers to the weight of
interactive record attributes in service demand-oriented computing tasks).
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With the frequent computing tasks in AIoT, the experience attributes among
smart terminals will be continuously accumulated and updated iteratively to
obtain the cumulative experience attributes, thus summarizing the actual situ-
ation of smart terminals in the interaction of computing tasks. The cumulative
experience attribute of smart terminal is calculated as shown in Eq. 4.

EΨ = γ · EΨ−1 + (1 − γ) · Eψ (4)

where γ ∈ [0, 1], higher value of γ favor the accumulation of experiential
attributes generated from the interaction record of the smart terminal, rather
than the concentration of experiente attributes generated from the current inter-
action record.

Because of the lack of computing and storage capacity of smart terminals
at the terminal layer, this paper constructs a small neural network to realize
the trust evaluation of smart terminals. The neural network has four layers, one
input layer, one output layer and two hidden layers. The input layer of the neural
network is Nσ neurons, a hidden layer is 30 neurons, a hidden layer is 10 neurons,
and the output layer is 1 neurons.

3.3 Fuzzy Attribute Trust Algorithm

In CET-AoTM, a small trust evaluation algorithm based on neural network is
deployed at the terminal layer to realize the trust evaluation between smart ter-
minals in AIoT. However, due to the high dynamic nature of AIoT environment,
many new smart terminals lack interaction records. The cumulative experience
trust algorithm is unable to realize the trust evaluation of smart terminals due
to the lack of interaction records. Additionaly, due to the limited computing
resources of smart terminals, the accuracy of trust evaluation will be reduced
to some extent. Therefore, this paper establishes a trust evaluation algorithm
based on fuzzy logic as a supplement.

In AIoT, uncertainty is introduced into trust evaluation due to the complexity
of environment, unreliability of wireless communication transmission and unpre-
dictability of smart terminal behavior. Any slight change in AIoT will result in
a mismatch between the trust value of the smart terminals and their real-time
state. In this paper, fuzzy logic is used to fuzzifier the factors that affect the
trust value of smart terminals in AIoT to alleviate this mismatch. Secondly, the
trust evaluation algorithm based on fuzzy logic is scalable. Different application
scenarios in AIoT may have different requirements for smart terminals. The new
requirements can be fuzzifiered into additional fuzzy factors, so as to realize the
adjustment of trust evaluation algorithm. These are the reasons why this paper
uses fuzzy logic as a supplementary trust evaluation algorithm.

The process of fuzzy attribute trust algorithm is shown as follow. After receiv-
ing a request from a smart terminal, the edge server (or cloud server) evaluates
its trust value before providing a specific service to the terminal. The trust
value of smart terminal is evaluated by the trust attributes, namely the location
attribute, propagation attribute and communication attribute of smart termi-
nals in AIoT. In order to manage the relationship between trust values and trust
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attributes among smart terminals, if-then fuzzy rules [5] are adopted. According
to the predefined trust attributes, the server performs fuzzy logic processing to
obtain the final trust value of the smart terminal.

In order to evaluate the trust value of smart terminal, this paper defines
three trust attributes of the smart terminal: location attribute �loc, propaga-
tion attribute �pro and communication attribute �com as shown in Table 1.
�loc represents the interactive distance between smart terminals. The termi-
nal density and environment of AIoT will change with time. As the interaction
distance between intelligent terminals increases, the uncertainty of trust rela-
tionship will also increase. �pro represents the recommendation trust transitivity
between smart terminals. Trust is propagative, and the uncertainty of trust will
increase with the increase of the propagation hops of trust between smart ter-
minals. �com represents the medium for wireless communication between smart
terminals. As the reliability of communication media between smart terminals
decreases, the uncertainty of trust will increase. By applying these inputs to
the inference engine and applying fuzzy logic, the fuzzy trust Tfuz of the smart
terminal shown in Table 1 is obtained. And the final trust value of an smart
terminal is the aggregation of Tcum and Tfuz.

Table 1. The performance of our CET-AOTM under different rounds

Type Categories Location Attribute Ratings Symbols

Location Attribute Short 0 to 100 S
Medium 100 to 200 M
Long 200 to 300 L

Propagation Attribute Low 0 to 33 L
Medium 33 to 66 M
High 66 to 100 H

Communication Attribute Wire Link 0 to 20 wire
Wifi 20 to 40 wifi
Bluetooth 40 to 60 bluetooth
Zigbee 60 to 80 zigbee
Lora 80 to 100 lora

Fuzzy Trust Untrust 0 to 0.3 U-T
Trust-3 0.3 to 0.6 T-3
Trust-2 0.6 to 0.8 T-2
Trust-1 0.8 to 1 T-1
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3.4 Demand-Driven Cloud-Edge-Terminal Collaboration
Mechanism

To enhance the task demand-oriented of the trust algorithm, this paper adopts
a demand-driven cloud-edge-terminal collaboration mechanism. The service-
oriented nature of AIoT means that different computing tasks have varying
requirements for the trust values of smart terminals. For example, when deal-
ing with delay-sensitive computing tasks, it is important to evaluate the trust
value of smart terminals quickly to minimize delays caused by the trust eval-
uation process. Conversely, with accuracy-sensitive tasks, it is critical to accu-
rately evaluate the trust value of smart terminals after initiation. Therefore, this
paper focuses on time-delay sensitive and accuracy-sensitive computing tasks,
and adopts different trust evaluation mechanisms for each type of computing
task. For delay-sensitive computing tasks, the trust evaluation of smart termi-
nals is mainly conducted at the edge layer. This effectively reduces the data
transmission delay, thereby minimizing any delay caused by the trust evaluation
process. With accuracy-sensitive computing tasks, trust evaluation of the smart
terminals is primarily carried out at the cloud layer. The powerful computing
power of the cloud server is utilized to fully collect and process trust attributes
of terminals, ensuring an improved accuracy of trust evaluation. Additionally,
the demand-driven mechanism is scalable, with computing tasks able to consider
other requirements such as privacy protection and propose new requirements for
the trust evaluation of the smart terminals.

4 Experiments

4.1 Dataset

Some statistics and analysis were carried out a real-time data stream collected
from traffic sensors an parking sensors deployed in the city of Santander, Spain
[18]. And we have observed that the performance distribution from any sensor
nicely fits to the Beta probability distribution family. Therefore in this paper,
smart terminals in AIOT are divided into two groups by using a Beta parameter
estimation mechanism according to their behavior as shown in Fig. 3. On this
basis, we also configure the same distribution of communication capabilities for
these smart terminals. High-quality smart terminals have good performance in
most computing tasks. They have lower packet loss rates and transmission errors.
Based on the statistical information, performance of a high-quality smart termi-
nal distribute in the interval (0, 1) but the highest distribution is in the range
(0.75–0.85). Performance from a high-quality smart terminal follows a unimodal
Beta distribution with two positive shape parameters Beta(αh, βh) satisfying
10 < αh < 15 and 3 < βh < 5. Malicious smart terminals usually perform well
on tasks, but can be unpredictable and intentionally malicious during compu-
tational tasks. Thus malicious smart terminal model follows a bi-modal Beta
distribution. We define two Beta distribution models, one for very high perfor-
mance Beta(αmh, βmh), satisfying 18 < αmh < 22 and 2.5 < βmh < 3.5. And
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another for very low performance Beta(αml, βml), satisfying 4 < αml < 6 and
25 < βml < 35.

4.2 Experimental Settings

We evaluated the performance of the trust model by calculating the values of
precision (pre), accuracy (acc), recall (rec) [6] and F1 score.

The experimental test was implemented in Matlab containing a set of smart
terminals composed of a group of high-quality terminals and malicious terminals.
In the experiment, we set the number of smart terminals Nσ to 100, and the
trust threshold τts to 0.5. In calculating the response time of the computing
task, we set the response threshold Tσ to 25. In the aggregation of interactive
record attributes, we set demand-oriented factor pξi

to 1/3. In the calculation
of cumulative experience attribute, we set the cumulative factor γ to 0.7. In the
calculation of F1 score, we set the degree of precision and recall of important
factor υ to 0.5. Note that the parameter settings will be adjusted for different
use cases.

4.3 Comparison Methods

To demonstrate the effectiveness, we compared our proposed CET-AoTM with
FTM-IoMT [13] and MUTI-T (Multi-Perspective Trust Management Framework
for Crowdsourced IoT Services) [2], including the method based on neural net-
work and the method based on fuzzy logic. And below we will detail them.
FTM-IoMT [13]: This method uses fuzzy logic to model the pairwise trustwor-
thiness. In order to establish trust relationships between nodes in the medical
IoT, it evaluates the integrity and compatibility of the nodes as trust attributes.
In particular, it adopts the dual evaluation detection model based on fuzzy logic
processing and fuzzy filtering.
MUTI-T [2]: This method divides the inherent characteristics of services
in crowdsourcing IoT into multiple perspectives, including three perspectives:
device owner, device and service. It constructs a neural network based on social
relationship attributes, location attributes, reputation attributes and reliability
attributes as trust attributes to evaluate workers in the crowdsourced IoT.

4.4 Results and Discussion

Performance. Fig. 4 depicts the precision of CET-AoTM at different epochs
with low rounds of smart terminal interactive data training in AIoT. The
precision steadily increases as the epoch progresses and eventually stabilizes
around 95.5%. This indicates that even without interactive records, CET-AoTM
can achieve high evaluating accuracy and meet the trust requirements of new
intelligent terminals in AIoT. In our study, we considered scenarios with varying
percentages of malicious smart terminals, as shown in Fig. 5. As the percentage
of malicious terminals increased from 0% to 40%, both the accuracy and recall
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decreased. This means that even with an increase in the number of malicious ter-
minals, high-quality smart terminals can still be accurately identified, ensuring
that AIoT can recruit dependable workers for computing tasks.

Fig. 3. Terminal mod-
els in CET-AoTM.

Fig. 4. Precision of dif-
ferent epochs.

Fig. 5. Precision, accu-
racy, and recall of differ-
ent percentages of mali-
cious smart terminals.

Table 2. The Performance of Our CET-AoTM under Different Rounds

Our CET-AoTM Rounds
50 100 150 200 250 300 350 400 450 500

Accuracy 99.00 98.53 97.99 90.54 99.86 94.86 99.96 99.54 91.56 89.77
Recall 98.94 98.45 97.89 90.00 99.85 94.55 99.96 99.51 91.06 89.17
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F1 score 99.79 99.69 99.57 97.83 99.97 98.86 99.99 99.90 98.07 97.63

Scalability. In this experiment, we tested the performance of our CET-AoTM
in different rounds, as shown in Table 2. We observed that as the interaction
scale of smart terminals increased, the accuracy and recall of the algorithm
exhibited slight fluctuations, with a range of 10.19% and 10.79%, respectively.
However, the algorithm maintained an overall high accuracy of 96.16% and recall
of 95.94%. Only when the interaction scale reached 450 and 500 rounds did we
observe a decline in the accuracy and recall of the algorithm. This decline can be
attributed to the increasing complexity of the interaction environment in AIoT.
Nevertheless, the algorithm continued to demonstrate good performance. Thus,
our proposed CET-AoTM exhibited excellent scalability and adapted well to the
large-scale frequent interaction environment in AIoT.
Comparison. In the experiment, we simulated different network environments
in AIoT by varying the proportion of malicious smart terminals. We evaluated
the performance of three algorithms based on their F1 score. The experiments
were conducted over different rounds ranging from 80 to 100, as displayed in
Fig. 6. The results showed that as the proportion of malicious smart terminals
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increased in AIoT, the F1 scores of all three algorithms declined to varying
degrees. However, the CET-AoTM consistently achieved the highest F1 score,
outperforming the other two algorithms. Notably, the F1 score of the scheme
proposed in MUTI-T was consistently lower than the other two algorithms, with
a significant drop when the proportion of malicious smart terminals reached 40%.
Our CET-AoTM, as a supplementary trust framework, extracts attributes using
the fuzzy attribute trust algorithm, which indirectly improves the performance
of smart terminal trust evaluation in AIoT networks. Therefore, among the three
methods, our CET-AoTM is the most accurate and reliable method for evaluat-
ing the trustworthiness of smart terminals in AIoT networks. Furthermore, we
analyzed the precision, accuracy, and recall (shown in Fig. 7). Additionally, we
observed that the precision of our CET-AoTM was consistently higher than that
of the other two algorithms. As the proportion of malicious terminals increased,
the interaction records of neighboring smart terminals were affected. However,
CET-AoTM’s trust augmentation through the fuzzy attribute trust algorithm
improved the detection ability of trustworthy smart terminals.

Fig. 6. F1 score of different schemes with different percentages of malicious smart
terminal and different rounds. (a) 80 rounds (b) 90 rounds (c) 100 rounds.

Fig. 7. Three evaluation indexes in accordance with percentage of malicious smart
terminals. (a) precision (b) accuracy (c) recall.
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Fig. 8. Comparison of the performance of different schemes under low interaction (1–5
rounds). (a) precision (b) accuracy (c) recall.

Low Interaction Scenarios. In order to simulate the lack of interaction record
of the new smart terminals in AIoT environment, we conducted the experiments
of low interaction rounds as shown in Fig. 8. Through analysis, we found that the
precision of our CET-AoTM was 98.57% in the 1 round due to the extremely low
interactive scale of smart terminals (that the algorithm had 5 false evaluations in
the detection of untrustworthy smart terminals). However, in subsequent rounds
of low interaction scenarios, our CET-AoTM could still show superior perfor-
mance for detecting trustworthy smart terminals. By analyzing the accuracy of
the three schemes, it could be seen that in the low interaction scenario, FTM-
IoMT and MUTI-T proposed scheme presented poor performance due to the lack
of interaction with smart terminals (that the accuracy decreased by 27.40% com-
pared with that in the normal interaction scenario). In low interaction scenarios,
the accuracy of our CET-AoTM also fluctuated to a certain extent ( 17.47%),
and could still maintain at 91.25 %. This indicated the superior detection per-
formance of our CET-AoTM in the low interaction environment of AIoT.

5 Conclusion

We propose a cloud-edge-terminal collaborative AIoT trust evaluation model
(CET-AoTM) to try to determine the level of trust between smart terminals.
Specifically, our method is based on the cumulative experience trust algorithm at
the terminal layer, and obtains the cumulative experience attribute by extracting
and analyzing the interaction records of smart terminals. Then the trust value
of the smart terminal is obtained by using the neural network to evaluate the
cumulative experience attribute. In order to solve the lack of terminal interaction
records, we adopt fuzzy attribute trust algorithm to supplement the trust frame-
work by fuzzifier indirect trust attribute in AIoT. We also use a demand-driven
cloud-edge collaborative mechanism to meet the different trust requirements of
computing tasks in AIoT. We proved the superiority of our proposed method
by experiment. In future work, we will further study the adaptive mechanism of
cloud-edge-termianl collaboration in trust evaluation. Additionaly, the focus of
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our future work is to design a privacy protection framework to enable the data
exchange of smart terminals in AIoT.
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Abstract. The growth of capabilities of mobile devices allows them to
host increasingly sophisticated application services. Emerging paradigms
within the Cloud Continuum are based on the concept of running ser-
vices closer to users, even on their own devices. Nonetheless, running
collaborative services on these devices requires attention to constraints
that differentiate the devices from cloud servers, such as limited battery
or constrained data plans. New techniques are required to empower users
to, first, execute services locally and, second, allow services to migrate
to other available devices. We define Pervasive Delegation Of Services
(PODS), a framework to opportunistically select the best candidate to
run a service from among those in a local network, as well as to delegate
it to others whenever the contextual circumstances change.

Keywords: Service Offloading · Service Delegation · Pervasive
Computing · Opportunistic Computing · Mobile Computing

1 Introduction

Computing capabilities of end devices have increased enormously, with new
paradigms in the cloud continuum and mist computing [1] bringing computa-
tion closer to users. Increasingly, services are deployed on nodes closer to or
even owned by end users, increasing privacy and decreasing application response
time. The development of new, more collaborative applications with the potential
to leverage these paradigms is also growing. Liveboard [2] allows multiple people
to edit whiteboards locally and have them shared and synchronized with others
when connectivity allows. Such applications still often make use of the cloud, or
the furthest parts of the cloud continuum, to enable data integration, processing,
and communication between users. This may result in a loss of privacy and a
delay in response time, metrics that can be critical to the user experience.

The increasing capabilities of devices allow them to be used not only as a user
interface to applications, but also as communication mediators that can manage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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exchanges with peers (e.g., through device-to-device communication or oppor-
tunistic networks [3]). Shared whiteboards can be locally hosted and aggregated
among co-located devices, without the need to relegate such services to the cloud
or even an intermediate edge node. Applications like HTC Power to Give [4] allow
mobile users to host services that can be consumed using BOINC [5]. Games like
Minecraft [6] also leverage users’ mobile devices to host multiplayer servers.

While such services can be supported using various levels of the cloud con-
tinuum, we examine what is necessary to support service execution on devices
that are completely separated from the cloud. In some sense, this is extreme—we
are rarely completely disconnected from the Internet. However, from a research
perspective, such an approach allows us to examine what is feasible and to deter-
mine the degree to which the approach increases user privacy by providing local
data isolation, decreases response time by reducing round-trips to the cloud, and
lessens bandwidth demands on networks that connect users to the cloud.

We focus on collaborative services and in particular on services that facilitate
digital collaboration among co-located users. Our end devices like smartphones
are always with us and seem a natural conduit for facilitating these services.
However, these devices have several limitations: they are resource constrained
in terms of energy and computation; they are mobile, resulting in changing
connectivity over time; and they have other workloads and are not dedicated
solely to the service.

Therefore, while there is promise for delegating locally available services to
end devices, new techniques are required to support delegation that is: locally
facilitated among the participating devices themselves; context-dependent, using
the state of the devices to decide delegations; and dynamic, periodically adjusting
the configuration as the context changes. We characterize the use of a completely
decentralized architecture for such services as the collaborative mist and place
it in the context of other paradigms in Sect. 2, where we also examine existing
approaches to service delegation, off-loading, and on-loading. We then present
the Pervasive Delegation Of Services (PODS) framework in Sect. 3; PODS pro-
vides dynamic, context-dependent service delegation that is coordinated entirely
among a set of co-located nodes using only device-to-device interactions. The use
of PODS is likely to be highly applicable for services such as collaborative multi-
media sharing and processing, collaborative office automation suites, or applica-
tions deployed in intermittent connectivity scenarios. The key novelty of PODS
is the delegation of services to available nearby devices based on the context
of the situation, automatically adapting the collaborative services’ deployment
characteristics to the dynamic scenario over time, in an entirely peer-to-peer
manner.

2 Motivation

We next provide an introduction of aspects of the cloud continuum, and place
the collaborative mist in this context. We then examine work related dynamic
placement of services and motivate the gap that we seek to fill with PODS. We
close this section with a detailed motivating application example for PODS.
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The Cloud Continuum (and Beyond). The cloud continuum characterizes
a design space that moves from completely centralized services in a pure cloud
approach, through fog computing, which pushes infrastructure resources nearer
the edge devices and mist computing, which starts to leverage the computational
resources of the end devices themselves [1]. As the services become increasingly
decentralized, end devices take on more responsibility and ownership of user
data, increasing privacy. To leverage the capabilities of these architectures and
better utilize end devices, conceptual frameworks for organizing applications and
services have also emerged [7,8]. However, these applications and paradigms still
require a central coordinator, usually the cloud, to at least make decisions about
where services should be placed and distributed.

These paradigms have made great strides to improve user privacy, lever-
age the rich capabilities of end devices, and reduce the load on the infrastruc-
ture. However, the feasibility and implementation of such approaches depend on
the computing capacity and available resources of the mobile end-user devices.
Deciding which device or devices should host each service should account for the
capabilities and situations of nearby devices. Hence, closing the gap remaining in
realizing the collaborative mist requires higher-level yet completely distributed
coordination system.

A Motivating Application. Consider an application to generate and compose
video collaboratively among people at a party. From a computational perspec-
tive, such a video composition application can be easily executed on a mobile
device. Collaboratively created videos can also be shared among the attendees
in an opportunistic way, increasing the privacy of the attendees and reducing
the network load. A service running on the mobile phone of the video organizer
would be responsible for composing videos received from party-goers. Architec-
turally, the application could be composed of a single service whose API would
have, as input, images from attendees, and as output, the generated video.

There are several barriers to implementing such an application. First, smart-
phones have limited resources: during video generation, the device hosting the
video composition service could run out of battery, or have its user launch appli-
cations that compete for its resources. Moreover, the user running the collabora-
tive service may move or even leave the party. Finally, there may be more pow-
erful nodes available in the surroundings, able to host the service. The collabora-
tive mist can bring the computation to the end devices themselves. End devices
should also be supported in determining whether the service to be executed can
be hosted locally, or whether it needs to be migrated to another node. In this
application, the collaborative video organizer device itself can check if it ought
to delegate the video composition service to another device. To empower users
to manage their own information and applications in collaborative communities,
we present PODS, a framework to perform service delegation in opportunistic
and pervasive environments.
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Fig. 1. Strawman architecture of the delegation system

3 Proposed Architecture

We next introduce the PODS architecture (Fig. 1). PODS provides services in
the collaborative mist. Each service may be hosted by more than one device and
may receive requests from more than one device. In this context, we identify two
roles: delegatee, i.e., a device that is currently running an instance of the service,
and consumer, i.e., a device that requests to use the service’s functionality. These
roles are not mutually exclusive: a delegatee may also be a consumer of the same
service. A service of a collaborative application executing on a delegatee may
have been started by that device, or the instance of the service may have been
assigned to it at some point during the execution of the application.

PODS consists of three high-level functionalities. First, PODS monitors the
resources and contextual attributes of nearby computing nodes, including those
devices participating in a collaborative session (context scanner in Fig. 1). Sec-
ond, PODS analyzes which device(s) in the near surroundings should host each
collaborative service based on their context, optimizing application-specific Key
Performance Indicators (KPIs) to obtain a good user experience (µDADO in
Fig. 1). Third, in response to detected changes and updated analyses, PODS
migrates services among co-located nodes (service migrator in Fig. 1). This allows
running collaborative applications in a more reliable way when multiple devices
make their resources available to support service execution.

3.1 Context Scanner

To enable PODS to detect the best suitable delegatees based on their context,
as well as to adjust the number of replicas used, there are two key requirements
that must be fulfilled. On the one hand, PODS requires information about a
device’s context to evaluate the device’s suitability as a delegatee, as well as to
determine if the number of executed replicas is appropriate. On the other hand,
PODS needs to know about the context, not only of the device itself but also of
other nearby devices. The context scanner fulfills both of these roles in PODS,
through the use of two submodules, the context listener and the device scanner.

The context listener runs on every PODS device; its objective is to obtain a
view of the current context of its device. PODS relies on a generic representation
of context, using a simple 〈key, value〉 pair for each context attribute. This
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allows the use of context to be flexible and extensible for different applications
to use diverse attributes. In our implementation, we rely on measurements of the
device’s battery level, available RAM, and network connection to other devices.
The context listener updates the snapshot within PODS when triggered, either
by a timer or by a change in a sensed value that directly impacts the availability
of a service on the device, e.g., low battery warning or a network disconnection
or connection event, which is notified through a publish-subscribe mechanism.

For the service migrator to make delegation decisions, it needs the context
of the local device and the context of other connected devices. The device scan-
ner queries other nearby devices for their context attributes. Once the context
listener updates the local context, it triggers the device scanner to solicit the
other devices’ contexts. This allows each PODS device to maintain an up-to-
date view of the status of the local network: current delegatees for each service,
context status of each device, and, implicitly, the availability of services (e.g., if
the only delegatee of a service has disconnected from the network, the service
is unavailable for all its consumers in the local network). Possible interruptions
of a delegation process are also handled by the device scanner. If, during the
delegation of a service (described in Sect. 3.3), either the current or target dele-
gatees disconnect, the device scanner re-triggers the context listener to update
the context information. Once new context information is available, the context
scanner feeds it into the next subsystem: µDADO.

3.2 µDADO

The next step is for PODS to decide which devices are the most suitable del-
egatee(s) for each service, as well as how many replicas should be instanti-
ated. In environments with centralized coordination, similar problems have been
addressed, for instance using the DADO framework [9]. DADO can optimize the
number of replicas of each service, the device each replica should be deployed
on, and the network configuration. However, DADO is unsuitable for the col-
laborative mist scenarios. First, while DADO can output the desired replica
configuration, it is unable to instantiate the replicas directly. Moreover, DADO
operates over a centrally controlled software-defined network, rather than an
entirely opportunistic one. Third, although DADO automatically optimizes KPIs
such as response time, services in the collaborative mist may want to optimize
other (service-specific) KPIs, for instance, to minimize their effects on user activ-
ity (e.g., energy usage, relative RAM consumption). Finally, in situations with
large numbers of devices, DADO can take several hours to generate a deploy-
ment plan [9]. This is not acceptable in opportunistic situations, which are highly
dynamic and require quickly reaction to environmental changes.

Thus, we propose µDADO, a decision subsystem for PODS, adapted to
opportunistic environments to execute in a fast and lightweight way. Given the
input from the context scanner, µDADO outputs the number of replicas and
optimal placement for a service. For flexibility, µDADO allows developers to
configure and define the KPIs that their services should optimize. µDADO uses
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Mixed-Integer Linear Programming (MILP) to model the mathematical opti-
mization problem, with a set of parameters (i.e., inputs of the system), decision
variables (i.e., expected outputs the system will optimize), an objective function
(i.e., metrics to be optimized), and a set of constraints (i.e., rules of validity).

We first model the information obtained from the context scanner as an input
to the problem. Let D be the set of devices detected by the context scanner.
Let K be the set of needed KPIs that µDADO obtains from all neighboring
devices based on their context snapshots. We define the matrix V , of dimensions
|K| × |D|, which contains the values of each KPI in each device. Hence, Vkd , k ∈
K, d ∈ D, is the value of KPI k in the device d, as obtained by the device scanner.
We assume that each group of users is strongly connected, i.e., that all the devices
are neighbors of each other. If a user loses connection with devices in a group, it
is considered to be its own group. If the device is able to connect to the devices
in the group again, it will rejoin the group. Each device independently computes
its own V , but, the computation of Vkd is deterministic, i.e., any two devices will
compute the same value of Vkd because they receive the same context information
from d. Nonetheless, the local decision taken by µDADO is only considered if
either the device is a delegatee, or if there are no available delegatees.

Continuing with the developer-defined configuration, let O be a vector of
integer values of size |O| = |K|. Each element Ok, k ∈ K takes the value of
1 if the KPI should be minimized, −1 if the KPI should be maximized, and 0
otherwise. This lets the developer decide which metrics are to be optimized for
each service. Similarly, the developer can define constraints over these KPIs that
should be met by delegatees. Let EQ be a binary vector, of size |EQ | = |K|,
and an additional vector of real numbers, EQv, |EQv| = |K|. A binary element
EQk, k ∈ K will take the value of 1 if a valid delegatee d must have a value on
their KPI k equal to EQv

k. Analogously, the vectors GT and GT v are defined
to require a KPI of delegatees to be greater than a given value, and LT ,LT v

to require them to be less than a value. These can be combined to constrain
KPIs to be within a given range using GT and LT , or to create constraints such
as “greater than or equal to” combining GT and EQ . For a given service, the
vectors O, EQ , LT , and GT are identical for all of the devices.

Next, we define the problem’s decision variables. To perform delegatee selec-
tion we define a binary vector, X, of size |X| = |D|. Each binary element in the
vector, Xd, d ∈ D, will take the value of 1 if the device d is selected to host a
replica of the service. Moreover, it is important to consider whether each device
can or cannot access the service. Thus, we define a binary vector A, |A| = |D|,
where Ad, d ∈ D will take the value of 1 if the device d can access the service.

There are three essential elements that the objective function must optimize:
the KPIs the developer configured, the service’s availability (i.e., the number of
devices that can communicate with at least one delegatee), and the number of
instantiated replicas. The term of the objective function handling the developer-
configured KPIs is calculated as the summation of the KPIs in a delegatee;
the KPIs used are limited to those that are indicated by the O vector. The
term handling the service’s availability calculates and minimizes the number of
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devices that cannot access the service. The third term, the number of replicas,
simply counts the number of delegatees. Thus, the objective function (Eq. 1) is
the minimization of the summation of these three terms:

min
∑

k∈K

∑

d∈D

(OkVkdXd) +
∑

d∈D

(1 − Ad) +
∑

d∈D

Xd (1)

To account for the developer-defined constraints on the KPIs, we include:

XdVkdEQk = EQkEQ
v
k∀d ∈ D, k ∈ K (2)

XdVkdGT k ≥ GT v
k∀d ∈ D, k ∈ K (3)

XdVkdLT k ≤ LT v
k∀d ∈ D, k ∈ K (4)

Formally, we can declare the problem µDADO solves as optimizing Eq. 1, subject
to Eqs. 2–4. The developer provides µDADO with a configuration file , specify-
ing their KPIs and constraints of interest. This configuration is then passed to a
solver for this MILP formulation. In terms of temporal complexity, there are a
total of 22|D| solutions for any given scenario, and hence, the problem has expo-
nential complexity. On the other hand, in terms of memory, the total memory
required for a problem instance of µDADO grows as a second-degree polynomial
function of the number of devices and KPIs (2|D| + 8|K| + |K||D| + |D|2).

3.3 Service Migrator and Virtualization Platform

The service migrator takes on the task of executing the migration to achieve
the configurations that µDADO identifies. To do so, the service migrator first
checks if a migration must be performed, as the target delegatee(s) may be the
current delegatee(s). In case a delegatee differs, the migrator must know the
number of currently executing replicas and the target number of replicas, cre-
ating or removing as many replicas as necessary. Finally, because many services
are stateful, to move a service to another delegatee, the service migrator must
take care to transfer the state along with the service. In particular, the service
migrator packages the state of the service, including an data, files, or databases
it accesses or modifies, and shares these with the target delegatee, which must
reinstate the service in the same state as the previous delegatee. To maintain a
coherent system of services across devices using PODS, these services should be
provided as self-contained, self-provisioning, and ideally cross-platform packages
containing the service, as well as its dependencies, if they exist. To have self-
contained and self-provisioning packages that run in a cross-platform manner
and have their status saved on one machine and loaded in another, PODS relies
on an underlying service virtualization platform. The role of such a platform is
to minimize the friction in service delegation, allowing services to run machine-
agnostically, i.e., not needing to control the operating system they are running
on or the dependencies and programs installed within the device. To maintain
service availability continuously, the migration process first stands up the ser-
vice on any new delegatees. Once these new instances are running, the PODS
instance on the delegatee device notifies the PODS instance on the device that
previously hosted the service, notifying it that the service can be shut down.
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4 Conclusion and Future Work

The advent of paradigms in the Cloud Continuum motivates research focused
on moving services closer to users. However, most approaches currently focus
on moving services from the cloud to the mist layers, rather than into peer-to-
peer delegation. This paper presents PODS, a platform for the management and
delegation of services for opportunistic pervasive computing environments. In
the future, we expect to perform experiments over multiple changing conditions.
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Abstract. We propose an IoT energy service provisioning framework to
ensure consumers’ Quality of Experience (QoE). A novel context-aware
trust assessment model is proposed to evaluate the trustworthiness of
providers. Our model adapts to the dynamic nature of energy service
providers to maintain QoE by selecting trustworthy providers. The pro-
posed model evaluates providers’ trustworthiness in various contexts,
considering their behavior and energy provisioning history. Additionally,
a trust-adaptive composition technique is presented for optimal energy
allocation. Experimental results demonstrate the effectiveness and effi-
ciency of the proposed approaches.

Keywords: Energy-as-a-Service (EaaS) · Internet of Things (IoT) ·
Quality of Experience (QoE) · Trust Assessment · wireless power
transfer

1 Introduction

Energy-as-a-Service (EaaS) refers to the wireless delivery of energy from an
energy provider (e.g., a smart shoe) to a nearby energy consumer (e.g., a smart-
phone) [1]. Energy service may enable an eco-friendly self-sustained environment
by exchanging spare or harvested energy [2,3]. For instance, an energy provider
may offer their harvested energy to a nearby IoT device. Energy may be har-
vested from natural resources, e.g., physical movement [3]. For example, wearing
a PowerWalk harvester may produce energy from an hourly walk at a comfort-
able speed to charge up to four smartphones [4]. Moreover, energy services offer
a convenient and ubiquitous power access for IoT users without using cords or
power banks [5]. Energy services may be deployed through the newly developed
“Over-the-Air” wireless charging technologies [6,7]. Several companies are devel-
oping charging technologies that enable IoT devices to charge wirelessly over
a distance, such as Xiaomi, Energous, and Cota [4,8]. For instance, Energous
developed a device that can charge up to 3W of power within a 5-meter dis-
tance. Although current technology may not provide efficient energy delivery
[9], technological advances are expected to enable devices to exchange larger
amounts of energy [6].

We propose a dynamic energy service ecosystem that consists of energy
providers and consumers in microcells (see Fig. 1(A)). A microcell is any confined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-48424-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48424-7_13&domain=pdf
http://orcid.org/0000-0001-9159-6214
http://orcid.org/0000-0003-1254-8092
http://orcid.org/0000-0001-8005-1534
http://orcid.org/0000-0001-9756-642X
https://doi.org/10.1007/978-3-031-48424-7_13


168 A. Abusafia et al.

Fig. 1. (A) Microcells in a smart city (B) IoT energy services environment in a microcell

space where people may gather, e.g., cafes and restaurants. In this environment,
IoT devices may share energy with nearby devices. The energy Service Ori-
ented Architecture; SOA-based business model has three main actors: energy
provider1, energy consumer, and super-provider [6]. According to this business
model, providers advertise their services, consumers submit their requests, and
the super-provider (i.e., the microcell’s owner) manages the exchange of energy
services between providers and consumers in the microcell. This paper focuses
on energy services sharing from the super-provider perspective.

Recent research suggests that super-providers may use energy services to
enhance consumers’ Quality of Experience (QoE) [4,10]. Studies show that busi-
nesses providing wireless energy services, like “air-charge”, positively affect cus-
tomer experiences2. In energy services, Quality of Experience (QoE) refer to the
aggregated satisfaction of consumers with energy services over time [4,10]. Con-
sumers’ satisfaction is measured by the fulfillment of their energy needs [4,10].
This paper focuses on energy services provisioning as a key ingredient to provide
customers with the best QoE.

A key challenge in QoE-based energy service provisioning is to assess
providers’ commitment to sharing energy [6,8]. For example, a provider may
terminate the energy transfer by leaving the transfer range. They may also stop
the transfer due to excessive device usage. Such service disruptions may reduce
the expected amount of shared energy, thereby impacting the consumer’s QoE.
In such cases, real-time service replacement may not be guaranteed [11]. Thus,
a super-provider needs to assess providers’ trustworthiness before allocating ser-
vices to consumers. Hence, a trust assessment framework is necessary to evaluate
the uncertainty in a provider’s commitment.

Trust refers to the belief that providers will adhere to agreements and main-
tain the quality of service as advertised [6,8]. Existing trust frameworks are
hardly applicable to crowdsourced IoT energy services environments [2,6]. This
is mainly due to the highly dynamic and fluctuating energy provisioning and
usage behavior of IoT users [12]. Consequently, energy fluctuations directly result
from the uncertainty around crowdsourced IoT energy providers meeting their
energy commitments. As indicated, IoT users’ commitment may fluctuate due

1 We used interchangeably the terms energy provider and provider to refer to the
energy provider.

2 air-charge.com.

https://air-charge.com


Context-Aware Trustworthy IoT Energy Services Provisioning 169

to the mobility and usage patterns of IoT users [6,12]. For instance, an IoT user
may consume their advertised service due to unexpected heavy device usage
[11]. Given IoT users’ energy fluctuation and dynamic behavior, using exist-
ing trust frameworks may often lead to low trust scores for most providers. If
most providers have low trust scores, the super-provider may not find enough
trustworthy services to allocate. For example, existing trust frameworks would
typically give a low trust score to a provider who consistently offers only 50 mAh,
regardless of the advertised services. However, if the super-provider only needs
50mAh, assessing the provider based on this specific requirement would result in
a higher trust score, making them a suitable candidate for allocation. Therefore,
the same IoT energy provider’s trust will vary according to the super-providers’
requirements. Therefore, a new trust assessment framework is needed [6,8]. In
this respect, we propose a context-aware trust assessment framework tailored
specifically to energy services.

Fig. 2. IoT energy services business model

We propose a context-aware trust assessment framework to accurately assess
and effectively allocate trustworthy providers. The framework assesses providers’
trustworthiness based on the super-provider context-aware constraints. The
providers’ trust scores are then used to select and compose the best set of energy
services to fulfill the super-provider requirements. Our framework enables utiliz-
ing providers that may appear untrustworthy but can make valuable contribu-
tions while maintaining commitment. In addition, we propose a heuristic-based
approach that ensures a higher QoE. Our approach composes additional ser-
vices, based on the trust scores of providers, as a backup in the case of service
cancellation. The main contributions of this paper are:

– A novel trust-aware framework to compose energy services and ensure QoE.
– A context-aware trust assessment model to evaluate energy providers.
– A context model for defining super-provider constraints in evaluating provider

trust.
– A heuristic-based approach to compose trustworthy energy services.

Motivating Scenario: We describe a scenario in a confined place (i.e., micro-
cell) where people congregate, e.g., cafes and restaurants (see Fig. 1 (A)). Each
microcell may have several IoT devices acting as energy providers or consumers
(see Fig. 1 (B)). The super-provider aims to leverage the crowdsourced energy
services to enhance the consumers’ experience. We assume that all energy services
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and requests are sent to the edge (e.g., a microcell router, Fig. 1(B)) and man-
aged by the super-provider (Fig. 2). We assume that the super-provider has prior
knowledge of the energy demand distribution in the microcell over a given time
window. Additionally, the super-provider adopts a QoE-based approach, such as
[4,10], to select optimal providers to fulfill the microcell’s energy demand. We
assume that the super-provider offers incentives to encourage energy sharing in
the form of credits [10,13]. The credits would be used to receive more energy
when the providers act as consumers in the future [4]. However, rewards do not
guarantee providers’ commitment [13]. The uncertainty in providers’ behavior
may adversely affect consumers’ QoE if a service fails and no other nearby ser-
vices are available [11]. Thus, a trust framework is required to evaluate providers’
commitment. While there are several trust frameworks for IoT services, they are
not applicable to energy services as they do not accommodate the nature of
energy services. An inaccurate trust assessment may lead to misjudgment of
a service. This could lead to either not using it due to a low score or using
an untrustworthy service that disappoints consumers. Given energy scarcity,
it is paramount to assess trust in order to efficiently utilize all available ser-
vices correctly. Furthermore, super-providers typically may vary in their service
expectations and requirements. These expectations may result in different trust-
worthiness scores for the same provider. Hence, it is challenging to find the right
trust assessment that meets super-provider expectations.

Figure 3 shows a provider’s advertised service and history. Let us assume we
limit the trust metrics to the provider’s commitment to fulfill an energy request.
Using a traditional trust framework where a provider is assessed based on all
its available history, the provider trust score will be 67% without estimating the
provided amount. This score is computed based on the ratio of the total pro-
vided energy to the total requested energy. However, using a more context-aware
trust framework, where a super-provider defines their minimum requirements as
a threshold, may result in a different score. For example, if a super-provider
has a 60 mAh threshold, they will look at the provider’s history and how often
they fulfill 60 mAh requests. Based on this, they rated the provider’s service to
60 mAh with a 93% trust score. In another example, if the threshold is set to
evaluate the rate of providing 70mAh services in microcell B, the trust frame-
work will consider the provider’s history within microcell B to understand their
performance in that area. As a result, the super-provider will rate the provider’s
services as 70mAh with a 100% trust score.

Fig. 3. Example of how different trust assessments yield different trust scores.
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Allocating the limited available energy amid the uncertainty of providers’
commitment presents a critical challenge for the efficient and QoE-aware provi-
sioning of IoT energy services [6]. We propose a context-aware trust-assessment
framework for energy services. Our framework assesses provider trust based on
the expectations and requirements of super-providers, which may lead to varying
trust scores for the same service. The framework composes the most trustworthy
energy services, ensuring consumer QoE and leveraging super-providers’ expec-
tations to assess and adhere to their standards. Moreover, our composition app-
roach accounts for the natural untrustworthiness in the energy crowdsourcing
environment by selecting additional services as a backup. The selection of these
services relies on the trustworthiness of the available services.

2 System Model

We focus on assessing the trust of energy services in microcells during a single
time slot t. We use the below definitions to formalize the problem.

2.1 Energy Service Model

Definition 1. Energy Service (S). We adopt the definition of EaaS intro-
duced in [1]. An energy service S is defined as a tuple of < sid, pid, F,Q >,
where:

– sid is a unique service identifier,
– pid is a unique provider identifier,
– F is the function of delivering wireless energy,
– Q is a tuple of < q1, q2, ..., qn >, where each qi denotes the Quality of Service

(QoS), e.g., energy amount and geographical location.

Definition 2. Energy Quality of Service (QoS). QoS attributes enable
users to differentiate between energy services [8]. We extend the definition of
QoS attributes from [1]. QoS is presented as a tuple of < a, l, d, b > [1], where:

– a is the amount of energy offered by the provider,
– l is the geographical location of the provider,
– d is a tuple of < st, et > that represents the service’s start and end time,
– tr is the provider’s trust score to offer their service,

Definition 3. Energy Service Provider (P). P is an IoT device with spare
energy to be shared as a service. P is defined as a tuple of < pid,H >, where:

– pid is a unique provider identifier,
– H is the set of historical records of the provider’s previous provisioning.

We assume that all providers have a history, and dealing with newcomers
is not the focus of this paper. We also assume that the edge will retrieve
the history of providers from the cloud (see Fig. 1(B)). H is a tuple of
< h1, h2, ..., hm >, where each hi represent the record of previous energy
transfer as < s, de,m, t > where:

• s is the advertised energy service,
• de is the amount of delivered energy,
• m is the microcell where the energy sharing occurred,
• t is the time interval < st, et > of the energy sharing.
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2.2 Super-Provider Preferences

Definition 4. Energy Demand Distribution (ED). The super-provider
uses the traffic history of the microcell to define the Energy Demand distribution
(ED).

We adopt the definition of ED from [4]. ED is the predicted consumers’ energy
demand distribution in the service time window W . Therefore, the demand for a
single time slot is defined as a tuple < d, t > where d is the aggregation of the pre-
dicted energy requests at time interval t. The prediction of energy requests may
be obtained using prediction techniques applied to the historical records H for
all IoT users who visited the microcell at time interval t [14,15]. Energy requests
may be aggregated according to their spatio-temporal features [11]. Given a set
of predicted energy requests, the super-provider aggregates the energy requests
using the composition approach proposed by [1]. The approach considers the
time interval of each request to define a composite energy request that includes
all available requests. The super-provider sums the requested energy by all the
available requests at that time interval using:

Ed.d(t) =
m∑

j=0

f(Hj , t) (1)

where d is the aggregated energy demand at time slot t, Hj is the provider’s j
history of energy requests at time t, m is the number of consumers who have
visited the microcell at t in the past and f is the prediction function.

Definition 5. Quality of Experience (QoE). QoE measures the aggregated
satisfaction of energy consumers in a microcell at time slot t.

The consumers’ satisfaction is determined by the allocated services to the energy
demand ED. We adopt the definition of QoE from [10], which measures QoE
across time slots and adjusts it to assess a single time slot. Therefore, QoE is
computed as:

QoE =
n∑

i=1

Si.a/Ed.d(t) (2)

Where n is the number of selected services, a is energy service i’s amount,
Ed.d(t) is the aggregated energy demand at time slot t computed using Eq. 1,
m is the number of aggregated requests, and re is energy request size.

2.3 Problem Definition

Given a super-provider in a microcell m who wants to fulfill their consumer’s
expected energy demand Ed.d(t) at a time slot t. The super-provider has a set of
n candidate providers P = {p1, p2, ..., pn} who expressed their interest in offer-
ing their service S = {s1, s2, ..., sn} at that time and location. Each provider
has a history H =< h1, h2, ..., hm > of sharing energy. The super-provider aims
to ensure QoE by maximizing the fulfillment of energy demand. This will be
achieved by allocating the most trustworthy providers. We reformulate the ser-
vice provision problem as a time-constrained optimization problem as follows:
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– Maximize QoE as
∑n

i=1 Si.a ∗ PTrusti/Ed.d(t)

Subject to:

– Ed.d(t) > 0,
– Si.d ⊂ t for each Si ∈ S.

Where QoE is computed based on the allocated energy multiplied by the corre-
sponding provider trust score, PTrusti is provider i trust score, Sj .d is the time
interval < st, et > a provider of Si may offer their energy, t is the duration of a
time interval, and Ed.d is the aggregated energy demand at time slot t.
We use the following assumptions to formulate the problem:

– Providers’ energy size is fixed during composition.
– Providers and consumers are static during energy sharing.
– The super-provider context model is given as input, and determining the

constraints is out of the scope of this paper.
– There is no energy loss in sharing. As the technology matures, we anticipate

that the devices will share more energy, and the sharing energy loss will
become minimal [4].

– The super-provider uses credits as incentives for energy sharing, which
providers can later redeem for more energy when they become consumers
[10].

– All providers have a history of energy provisioning and are willing to share
them.

– The energy demand distribution ED is deterministic.
– A secure framework has been implemented to preserve the integrity and the

privacy of the IoT devices [16].

3 Trust Assessment Model

We define the provider trust level assessment to determine the trustworthiness
score (PTrust) of an energy service. The trust level assessment considers the
behavior of providers and their history in delivering energy. We compute the
trustworthiness of a provider using the following attributes:

– Success Rate: This attribute measures the reliability of a provider based on
their past performance. We argue that providers with a high success rate are
likely to be more reliable in the future, making this an important attribute
in trust evaluation. The success rate (SRP ) of a provider is the ratio of
completed energy services to the total number of initiated services by that
provider. Here, completed services refer to full energy delivery as advertised,
while initiated services count all, regardless of completion. We compute SRP

of provider P as follows:

SRP =
|{S ∈ EP | S is completed}|

|EP | (3)

where EP is all services initiated by provider P and |.| is the cardinality of
the set.
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– Delivery Size: This attribute gauges the consistency of a provider in terms
of the quantity of energy they deliver. The Delivery Size rate (DSP ) may
be calculated as the ratio of successful energy deliveries’ total size to all
attempted deliveries’ total size by a provider. DSP is computed using:

DSP =
∑n

i=1 hi.de∑n
i=1 Si.a

(4)

where n represents the number of previous services delivered by the provider,
hi.de represents the actual delivered energy retrieved from the history record
hi, and Si.a represents the advertised amount of the i-th energy service.

– Timeliness Score: This attribute measures a provider’s adherence to the
service schedule. Disconnections in the transfer process may sometimes occur
due to the provider’s indoor movement, leading to energy transfer delays
[12]. These delays, increasing consumer wait times, can negatively impact
their QoE. Hence, the Timeliness score T LP is crucial in the trust model.
T LP is calculated using the following formula:

T LP

{
1 if

∑n
i=1 (hi.t.et − Si.et) <= 0

1∑n
i=1 (hi.t.et−Si.et)/n

otherwise (5)

where n is the provider’s number of previously delivered energy services,
hi.t.et represents the actual end time of delivering a service i retrieved from
the provider’s history record hi, and Si.et represents the advertised end time
of the i-th energy service.

– Impact Score: A provider’s service cancellation may affect consumers’ QoE.
As a single service may be fulfilling multiple requests [11], the impact of
canceling service on the consumers may be used to evaluate the providers’
trustworthiness. We compute the service failure’s impact FS based on the
number of affected consumers. We compute the failure impact FS of a canceled
energy service as follows:

FS =
|{C ∈ c | C is receiving from S

|C| (6)

where C is the set of all consumers in the microcell within the duration of
the service [Sst − Set] and |.| is the cardinality of a set.
We define the provider impact as the cumulative effect of all their services
on consumers. Typically, a trustworthy provider will have minimal impact
on consumers when a failure occurs. In other words, the provider’s impact is
calculated as the complementary value to the failure impact. Therefore, We
compute the provider impact score IP as follows:

IP =

(
n∑

i=1

(1 − FSi
)

)
/n (7)

where n represents the number of previous energy services delivered by the
provider.

– Mobility Pattern: A provider’s mobility pattern may influence their energy
service provision. For example, if a provider’s mobility pattern shows their
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staying time at a microcell is 5min, and they advertised a service that requires
30min, this might indicate the probability of not committing to the request.
Therefore, we consider the staying duration pattern as an attribute in the
trust assessment. We use the history of the provider’s previous services to
compute their duration patterns [17]. The number of previous services should
be greater than a predefined threshold α to be considered. We compute the
staying duration pattern SDP as:

SDP =

(
k∑

i=1

(Si.et − Si.st)

)
/k | k > α (8)

where Si.st is the provider’s previous service i start time, Si.et is the
provider’s previous service i end time, and k is the number of previous ser-
vices. We compute the provider Duration trust factor DP using the staying
duration pattern SDP as follows:

DP =

{
1 if (S.et − S.st) <= SDP

SDC

(S.et−S.st) otherwise (9)

where S.st is the provider’s current service start time, S.et is the provider’s
current service end time.

Providers Trustworthiness

The provider trust score (PTrust) combines all the aforementioned trust
attributes to offer a holistic assessment of a provider’s trustworthiness. While
each attribute reflects different aspects of a provider’s service delivery, their
significance varies depending on the super-provider-specific requirements. For
example, a super-provider may ignore the timeliness score if they have customers
who stay for a long time. Hence, we added a component in the trust-assessment
constraints for the super-provider to determine attribute weights. PTrust is cal-
culated using the following formula:

PTrust =
∑

J∈l

wJ × LP (10)

where L = {SR, TL,DS, I,D} and w represents the weights of each trust
attribute based on its importance, with the constraint that

∑
wi = 1 to nor-

malize the impact of each factor on the overall trustworthiness score. Multiple
methods exist for calculating the weight of each attribute, depending on the
preference of the super-provider [18].

4 Energy Service Composition Framework

We introduce our energy service composition framework for allocating trustwor-
thy energy services to provide consumers with the best QoE (see Fig. 4). The
framework ensures QoE by allocating trustworthy services based on the super-
provider context. The framework is divided into two phases: (1) context-aware
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Fig. 4. Trust-based energy service composition framework

Algorithm 1 Trust-Based Energy Services Composition
Input: Energy Providers(P ), Energy Demand(ED), Context Model(CM)
Output: EScomp, QoE

Phase 1: Context-Aware Trust Assessment
1: for p in P do
2: if [p.st, p.et] ⊆ Ed.t then
3: p.h = History_Filtering(p.H, CM)
4: PTrust = Trust_Assessment(p.h, CM)
5: newE = p.s.a ∗ PTrust

6: SelectedP.add(p,PTrust, newE)

Phase 2: Composition of Energy Services
7: EScomp = Energy_Allocation(SelectedP,ED)
8: QoE = QoE_Assessment(EScomp, ED)
9: return EScomp, QoE

trust assessment and (2) trust-based energy service composition. The general
steps of the framework are present in Algorthim 1. In what follows, we discuss
each phase in detail:

4.1 Context-Aware Trust Assessment

In this phase, the proposed framework evaluates the historical performance of
each provider to assess their trustworthiness. This framework uses our proposed
trust model to evaluate a provider’s trust. It further incorporates a context
model, which represents the constraints set by the super-provider regarding the
attributes and data used for the trust assessment. The context model consists
of two main components: (1) history constraints and (2) trust assessment con-
straints. This model is then used in the trust assessment phase (see Fig. 4). In
the following subsections, we will present the context model and discuss each
step of the framework in detail.

Context Model. As mentioned, the context model establishes the constraints
set by the super-provider concerning the attributes and data used in evaluating
providers’ trustworthiness. The context model consists of two sets of constraints.
The first set pertains to the provider’s history, addressing aspects such as con-
sidering their entire history or focusing solely on their behavior within a specific
microcell. The second set defines the super-provider’s constraints on trust assess-
ment attributes, which may include using all trust model attributes or only a
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subset, adjusting the weights of trust model attributes, or evaluating particular
attributes. While we provide a comprehensive model to represent the possible
constraints of super-providers, we assume that the selection of which constraints
to apply and the values of the variables in these constraints will be provided as
input to our framework. These values will be determined based on the business
context and requirements of the super-provider. In what follows, we discuss each
constraint.

Fig. 5. Context-aware trust assessment model

– History Constraints: As previously mentioned, trust assessment can
employ the provider’s entire history or part of it, depending on the super-
provider history constraints (see Fig. 5). For instance, a super-provider may
assess providers’ trust based on their history within a specific microcell.
Another example would be evaluating the provider’s energy-sharing history
for larger requests, such as those exceeding 100 units. Therefore, we formulate
the history constraints as a constraint satisfaction problem (CSP) [19]. Con-
sequently, the super-provider history constraints are represented as a triple
< X,D,C >, where X is a set of variables, D is a set of corresponding domains
of values, and C is the super-provider’s constraint set. The formulation of the
super-provider history constraints is as follows:
X : yi : A variable that equals 1 if provider i meets the constraints, and 0 otherwise.
D : The domain of yi is binary, i.e.,0, 1.

C : Location constraint (cL) : ∀S ∈ P.H : cL = 1 ⇒ S.l = L, where L is a specific microcell.

Time constraint (cT ) : ∀S ∈ P.H : cT = 1 ⇒ S.d = D, where D is a specific time interval.

Energy constraint (cE) : ∀S ∈ P.H : cS = 1 ⇒ S.a >= A, where A is a specific energy service size.
(11)

The goal is to find an assignment for the variable yi that satisfies all the
constraints, effectively identifying the providers’ history that meets the super-
provider’s specific constraints. Our CSP formulation is designed to be highly
flexible and adaptable to various super-provider preferences. By allowing the
super-provider to select any combination of constraints, we provide a tailored
trust assessment that meets their specific requirements.

– Trust Assessment Constraints: The super-provider’s trust constraints are
related to the trust assessment attributes and the overall trust score. These
constraints are formulated as a tuple of < W,α, ae > where:

• w represents the weight assigned to each trust attribute based on its
importance, with the constraint that

∑
wi = 1 to normalize the impact

of each factor on the overall trustworthiness score,
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• α is a threshold for the provider trust score. α is determined based on
the super-provider preference. The super-provider might adopt a greedy
approach, aiming to maximize energy without considering the providers’
trustworthiness. Conversely, they could be risk-averse, prioritizing trust
over the amount of provided energy. Alternatively, the super-provider may
take a neutral stance, striking a balance between trustworthiness and the
energy provided,

• ae is the adjusted expectations of a super-provider. Super-providers may
have different expectations for assessing provider trustworthiness based
on their microcell needs. For instance, a provider with a low trust score
may be considered trustworthy by a super-provider if they need 50 units,
and the provider has historically delivered that amount. Super-providers
can determine their expectations according to their requirements, with
various parameters such as delivery time and failure impact. In this work,
we focus on adjusting expectations concerning energy. Consequently, we
propose three methods for determining the super-provider expectations
in terms of energy (see Fig. 5). This allows the super-provider to choose
what best fits their needs:
* Advertised amount: In this setting, a super-provider will assess

providers based on the amount of delivered energy against what they
advertised using Eq. 4,

* Capped amount: In this setting, a super-provider will assess providers
based on the amount of delivered energy against what the super-
provider needs (expected Amount). For instance, assessing them on
delivering 30 units regardless of their service advertisement. The
needed amount will be fixed for all providers and may depend on
the energy demand of the microcell, the available providers, and their
trust score. For instance, if a super-provider needs 100 mAh and has
five providers, and their trust score is low, then a possible solution
is to assess them by looking into their history and the rate of them
delivering 20 units,

* Customized amount: In this setting, the super-provider assesses
providers using an energy size extracted from their pattern of deliv-
ered energy from their history. The reason for adjusting the energy
is that sometimes IoT users may overestimate what they can deliver
[11]. The customized amount may be computed using statistical val-
ues such as mean, mode, and median, and it will be unique to each
provider based on their profile.

If the super-provider wants to assess the providers on delivering a fixed
amount or a profile-based amount as expectedAmount regardless of their
service advertisement. In such a scenario, the denominator in Eq. 4 will
be expectedAmount, and the DSP score will be one if what is provided
is larger than expectedAmount.

Recall that the context model is used in the context-aware trust assessment
phase of the framework (see Fig. 4). This phase consists of two steps: history
filtering and trust assessment. In the following subsections, we will discuss each
step of the phase in detail.
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History Filtering: As previously mentioned, the first step of the trust assess-
ment involves filtering the providers’ history. We employ the history constraints
of the context model as a filter to refine the providers’ history. The selection of
which constraints to apply and the values of the variables will be determined
based on the business context and requirements of the super-provider. Recall
that the selection of which constraints to apply and the values of the variables
in these constraints will be provided as input to our framework and are not
the focus of our work. If a provider lacks sufficient history after applying the
constraints, we can gather their history from microcells with similar contexts
to our microcell. However, this approach is beyond the scope of this paper. In
cases where there is insufficient history (i.e., the number of historical records
is less than a predefined threshold), we use the provider’s original history for
assessment.

Trust Assessment: The next step uses the proposed trust model to assess
the trust of the providers after refining their history in the previous step. The
input for this step is the trust constraints from the context model. Note that
the super-provider determines any combination of history and energy constraints
(see Fig. 5). For example, a super-provider may require to use the full history
and a fixed amount assessment. The output is each provider’s trust score Ptrust,
calculated using Eq. 10, and the weights of the equation are defined in the context
model W . Ptrust is then employed to identify the most trustworthy providers
exceeding the super-provider’s trust score threshold α.

4.2 Trust-Based Energy Services Composition

This phase aims to compose the most trustworthy energy services to ensure QoE.
Given a set of providers and their trust score, we may utilize any priority-based
spatio-temporal composition [1,4,13] or other resource allocation algorithms for
service provisioning such as Max-Min, knapsack, and genetic algorithms. How-
ever, due to the scarcity of energy, a super-provider may end up having a pool
of providers with lower trust scores. Intuitively, a super-provider may allocate
extra providers as a backup. Hence, we propose a trust-priority heuristic app-
roach that selects additional services to ensure sufficient energy services. Our
approach reduces providers’ services based on their trust scores and identifies
complementary services as backups if the original providers do not fulfill their
commitments. In other words, our approach will downsize the providers’ energy
service size based on their trust score (See Algorithm 1, Lines 5–6). There are
other possible ways to over-provision by increasing the amount of energy demand
based on the available providers and their trust score. We leave it for future work
to estimate the optimal increase in energy demand using other techniques. More-
over, Moreover, our proposed approach operates on a ’best effort’ basis. That is,
if the demand is larger than the supply, it will compose the best available set
of providers. Lastly, the super-provider assesses the QoE of the resulting com-
position using the model discussed in Sec. 2.3. The assessment of QoE gives an
indicator of consumers’ satisfaction in the microcell.



180 A. Abusafia et al.

5 Evaluation

We investigate the effectiveness and efficiency of the proposed composition
approaches based on a comprehensive set of experiments. This section presents
a description of the dataset used in the experiments, followed by a description
of the experiment setup and a discussion of the findings.

5.1 Dataset Description

We used a real dataset generated from an app developed in [20,21]. The app
monitors the wireless energy-sharing process that occurs by using coils connected
to two smartphones. The consumer determines the granularity of the monitoring
time. The app allows users to request energy from nearby smartphones by size,
e.g.,1000 mAh, or by time, e.g., to charge for 5min. The dataset consists of energy
transfer records between a provider (smartphone) and a consumer (smartphone).
The records include attributes such as provider ID, consumer ID, transaction
date, time, energy service amount, request amount, and transfer duration. We
used the energy dataset to generate QoS parameters for the energy services and
requests. For example, the amount of wireless charging transfer in mAh defines
the amount of requested/advertised/provided energy. Additionally, the energy
dataset records of the wireless charging transfer duration were used to define the
end time of each request/service.

We augmented the energy sharing dataset to mimic the behavior of the crowd
within microcells by leveraging a dataset published by IBM for a coffee shop
chain with three branches in New York City3. The dataset consists of transaction
records of customer purchases in each coffee shop over one month. On average,
each coffee shop has 560 transactional records per day and 16,500 transaction
records in total. We used the IBM dataset to simulate the spatio-temporal fea-
tures of energy services and requests. Our experiment employs the consumer
ID, transaction date, time, location, and coffee shop ID from each record in the
dataset to define the spatio-temporal features of energy services and requests,
e.g., the start and location of an energy service or a request. We randomly gen-
erate service cancellations to create untrustworthy providers. Table 1 presents
the experiment parameters and statistics.

5.2 Evaluation of the Composition Framework

We compare the proposed heuristic-based composition approached with a base-
line traditional resource allocation algorithms, namely, first come first served
allocation (Greedy), and a priority-based allocation algorithm (Priority-based)
[22]. In Greedy, services are processed based on their start time regardless of
their trust score. In Priority-based, services are processed based on the trust
score We also compared our approach with the knapsack-inspired service com-
position method (knapsack-based) proposed by [1]. The approach selects services
that maximize the minimum trust value of the participating providers. We also
attempted to implement a brute force approach; nonetheless, its substantial com-
putational and memory requirements made effective execution impossible. We
conducted an ablation analysis to assess the impact of different factors, including
3 https://ibm.co/2O7IvxJ.

https://ibm.co/2O7IvxJ
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Table 1. Experiments Variables

Variables Values

Total energy service records
for all coffee shops 49894
Energy providers 2248
Duration of all energy services 10–30min
Energy services amount 150–300 mAh
Energy demand amount 500–2500 mAh
Time window 2h

Fig. 6. The average of QoE using dif-
ferent history

Fig. 7. The average of QoE using dif-
ferent trust assessments

Fig. 8. The average of QoE in trust-
worthy environment

QoE with different: history constraints, energy delivery assessment constraints,
and allocation strategies in different environments. We also examined the cost of
incentives and compared the execution time for each method. As mentioned in
Sect. 3, multiple methods exist for calculating the weight of the trust assessment
attributes, depending on the preference of the super-provider [18]. We assigned
all w in Eq. 10 to 0.2 for equal impact on the trust score. We ran the approaches
in different settings by fixing the energy demand and gradually changing the
number of services over the time interval T . We repeated the experiment 1000
times at each point and considered the average value for each approach.

Quality of Experience Evaluation. The first experiment evaluates the
impact of the context model’s history constraints on QoE. As mentioned earlier,
QoE reflects consumer satisfaction over time, and a high QoE for a composi-
tion indicates a greater degree of consumer satisfaction. Figure 6 displays the
average QoE using the knapsack-based approach with different constraints, i.e.,
full history, time-constraints representing the history filtered based on the energy
demand’s time interval, and spatio-temporal constraints assessing trust using the
history at the time interval and the given microcell location. We set the energy
demand in this experiment to 1000 mAh. Figure 6 shows that using providers’
full history yielded the lowest QoE compared to the context-aware filtered his-
tory. This is because assessing trust based on the full history results in many
low-trust providers not being used. However, the context-aware trust assessment
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Fig. 9. The average of QoE in neutral
environment

Fig. 10. The average of QoE in
untrustworthy environment

Fig. 11. The average of cost Fig. 12. The average of computation
cost

focuses on their behavior in the microcell. This leads to better assessment and
thereby provides more services to allocate, which ensures a higher QoE.

The second experiment examines the impact of the context model’s trust
assessment constraints on QoE. Figure 7 displays the average QoE using the
knapsack-based approach with different expected energy assessments: “adver-
tised” assesses providers based on the service amount advertised in their his-
tory record, “capped” assesses them based on a fixed amount determined by the
super-provider (e.g., 50 units), and “customized” is a profile-based assessment.
In the customized assessment, we evaluated providers based on the median of
their historical records. Figure 7 shows a slight QoE improvement when assessing
providers based on the median; further experiments are needed to understand
the consistency in providers’ patterns and the sufficient number of records for
profiling a user. We plan to explore the provider’s patterns in the future.

The third experiment evaluates the effectiveness of our proposed heuristic-
based composition. We compare our approach with the aforementioned
approaches in three environment settings: a trustworthy environment where most
of the provider’s trust score is high, i.e., above 80% (see Fig. 8); a neutral environ-
ment where providers’ trustworthiness follows a random distribution (see Fig. 9);
and an untrustworthy environment where most of the provider’s trust score is
low, i.e., below 20% (see Fig. 10). Overall, our proposed approach performs better
than the rest of the approaches due to its over-provisioning strategy. However,
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the over-provisioning comes with a higher cost of rewards (See Fig. 11). We com-
pute the cost as the price per energy unit multiplied by the amount of provided
energy [13]. Another observation is that QoE increases for all approaches except
greedy in all settings. This is intuitive, as with the increase in services, there is
more energy to fulfill the energy demand and thereby increase QoE.

Computation Efficiency Evaluation In the fourth experiment, we assessed
the computational cost of all approaches. The execution time for all approaches
increases with the increase in services’ availability (see Fig. 12). This is due to
the increase in processing time to assign these services.

6 Related Work

The background of our work comes from energy services and trust assessment
in IoT services. We present the related work to our research in each domain.

Crowdsourcing Energy Services: Energy exchange services have emerged
as alternative solutions for charging IoT devices [2,8]. Several studies have
addressed challenges related to meeting the demands of energy consumers
[1,11,12]. A time-based composition algorithm was introduced to compose
energy services to satisfy consumers’ energy needs [1]. The algorithm suggests
using partial services and a fractional knapsack to maximize the provided energy.
The intermittent nature of energy services has been addressed using a fluid
approach [12]. Other research has addressed challenges from the provider’s per-
spective [6,13]. A context-aware incentive model was suggested to address the
resistance to offering energy services [13]. Another study proposed a model to
estimate the energy loss in sharing energy services [23]. Recent studies have
addressed these challenges from a super-provider’s perspective [4,10,24]. A QoE
model was suggested as a key indicator for allocating services to requests [4,10].
Neither QoE-based composition approach considers providers’ uncertain avail-
ability. To the best of our knowledge, challenges related to the uncertainty of
providers’ provisioning remain unaddressed.

Trust Assessment in IoT Services: Trust assessment in crowdsourced IoT
service environments is fairly new. Most of the proposed trust approaches rely on
either previous experiences [25] or social relations [26] to assess trust. The work
in [25] proposed a framework that assesses service providers based on their repu-
tations by a central authority. A framework was proposed in [26] to eliminate the
privacy risks associated with public Wi-Fi hotspots. The proposed framework
lacks generality as it can only be used for Wi-Fi hotspot services. Another study
proposed a QoE-based trustable framework for managing services in mobile edge
computing (MEC) [27]. However, its focus on MEC system layers and lack of
clear trust definition or experimental validation limits its applicability in our
context. Another study proposes a trusted resource allocation mechanism for
fog computing where a fog-to-fog offloading scheme balances the load on the fog
layer [28]. However, the approaches mentioned above may not be ideal for IoT
crowdsourcing environments. Trust assessment in such environments presents
unique challenges due to characteristics like the diversity and anonymity of IoT
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users and devices and the lack of a central managing authority [18]. These char-
acteristics make it more difficult to acquire an accurate measure of trust. A
recent study proposed to assess trust in crowdsourcing IoT environments from
multiple perspectives, such as device, owner, and service [18]. Other solutions
proposed to assess trust from a usage-based perspective [29]. A trust assessment
method is proposed to evaluate services based on their usage. For example, a
user streaming a video may have lower trust requirements than another user
engaged in online banking activities [29]. These frameworks are not applicable
in IoT energy environments due to the energy scarcity, fluctuating behavior of
IoT users, and influence of super-provider expectations on trust scores [12]. To
the best of our knowledge, no solution assesses the trustworthiness of providers’
provisioning while considering the super-providers’ expectations and require-
ments.

7 Conclusion

The allocation of energy services has been proposed as a tool to assure con-
sumers’ Quality of Experience (QoE). However, the existing frameworks assume
that providers will always deliver the advertised service. In contrast, the dynamic
nature of the energy services environment may result in uncertainty in providers’
commitment. Therefore, a trust assessment is required to evaluate the trustwor-
thiness of providers. Existing trust assessments are not applicable due to the
energy scarcity and the dynamic behavior of IoT users. Consequently, this paper
proposes a novel context-aware trust assessment model. The proposed model
assesses providers’ trustworthiness in various contexts, considering their behav-
ior and energy provisioning history. Moreover, a trust-adaptive composition tech-
nique is proposed for optimal energy allocation, ensuring efficient energy service
provisioning. We conducted a set of experiments to assess the performance of
the proposed framework. Experiments showed that filtering history based on the
microcell context and adjusting expectations based on the super-provider’s needs
resulted in better trust assessment and improved QoE. The future direction is
to consider the probability of change in the energy demand.
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Abstract. Business process management (BPM) technologies are
increasingly adopted in the Internet of Things (IoT) to analyze processes
executed in the physical world. Process mining is a mature discipline
for analyzing business process executions from digital traces recorded
by information systems. In typical IoT environments there is no central
information system available to create homogeneous execution traces.
Instead, many distributed devices including sensors and actuators pro-
duce low-level IoT data related to their operations, interactions and sur-
roundings. We leverage this data to monitor the execution of activities
and to create events suitable for process mining. We propose a framework
to generate activity detection services from IoT data and a software archi-
tecture to execute these services. Our proof-of-concept implementation
is based on an extensible complex event processing platform enabling the
online detection of activities from IoT data. We use a running example
from smart manufacturing to showcase the framework.

Keywords: Internet of Things · Business Process Management ·
Activity Detection Service · Complex Event Processing · Process
Mining

1 Introduction

The Internet of Things (IoT) emerged as new paradigm to foster the interac-
tion of software systems with the physical world through connected devices and
objects [3]. Thereby, sensors act as new data sources providing real-time infor-
mation about the execution of activities, interactions and states of devices and
objects and their surroundings. In a Business Process Management (BPM) con-
text, a Process-aware Information System (PAIS) is used to execute and monitor
process and activity executions, creating digital traces in event logs that can be
used for process mining [21]. In IoT, there is no central PAIS available to create
event logs suitable for process mining [4,12]. Instead, we are faced with a hetero-
geneous set of IoT devices that are controlled by different software applications
providing data on different levels of abstraction [3–5]. In this work we present a
data-driven framework for generating activity detection services from IoT data.
From an Activity Signature, which represents the sensor readings associated with
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an activity, we generate services that are able to detect the occurrence of this
activity using Complex Event Processing (CEP). These services are deployed to
a CEP platform to generate process and activity-related events from IoT data.
These high-level events serve as basis for process mining. We demonstrate and
discuss the framework as a proof-of-concept from service generation to deploy-
ment and detection using examples from smart manufacturing. The approach
promises to be generalizable to less automated IoT domains for analysis of man-
ual activities, which are tracked through IoT devices (e.g., in smart healthcare).
The contribution of this paper is 1) a framework for transforming IoT sensor
readings into CEP-based activity detection services; and 2) an extensible soft-
ware architecture enabling the use and composition of these services at runtime.

Section 2 recalls fundamentals and requirements. Section 3 presents the
framework and software architecture. Section 4 discusses our approach. Section 5
elaborates on related work. Section 6 concludes the paper and presents future
work.

2 Fundamentals and Requirements

Activities and Events: An activity is considered to be an atomic unit of work
in a business process, which is executed by a (non-)human process performer [21].
Events are used to capture the occurrence of something of relevance that has
happened in the process execution (e.g., the start of an activity). We refer to
these events as process-level events. In contrast, events are also used to capture
the state of IoT components and their surroundings sensed at a certain point in
time [3]. We denote these as low-level IoT events. Moving between these levels
requires event aggregation, event transformation, and event correlation [7,20].

IoT Setup: In this work, we use a smart factory model as a typical IoT envi-
ronment [18]. The model simulates the execution of production activities in dis-
crete manufacturing processes. It features different IoT components (production
machines) that act as performers of process activities. Each IoT component is
equipped with sensors i1, .., in, motors m1, ..,mm, output devices o1, .., oo, and
machine-specific sensors (e.g., representing positions) [18]. Real-time access to
the time-stamped values of these sensors and actuators (low-level IoT events) is
enabled via a message broker [19]. A PAIS to record event logs is not available.

Requirements: We follow design science [16] in developing the activity detec-
tion framework. The following non-exhaustive list of non-functional requirements
was derived based on the authors’ experience in the field of BPM and IoT and
on relevant characteristics of IoT/Cyber-physical Systems (CPS).

R1 Non-invasiveness: The approach should work non-invasively with existing
IoT systems assuming they provide at least one interface to emit low-level
events from their IoT components. It shall not be necessary to introduce a
heavy-weight software component (e.g., a PAIS) to the IoT environment.
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R2No-code services: Activity detection services shall be added to IoT environ-
ments at runtime to be used by other components. These services shall require
no implementation effort for service providers, enabling domain experts to cre-
ate and deploy services for new types of activities (extensibility).

R3 Runtime capabilities: Components in IoT and CPS are interacting with
the physical world when executing activities. Here activity detection is crucial
to provide (near) real-time feedback [14]. Activity detection must work at
runtime, possibly already considering partial activity occurrences.

R4 Robustness: IoT components interact with the physical world. They are
subject to various (context) factors [14], which influence the activity execu-
tions regarding execution times and involved sensors/actuators. The activity
detection shall be robust to a certain degree against these variations.

3 Generation of Activity Detection Services

Fig. 1. Framework for generation of activity detection services from IoT data

Figure 1 presents the framework for generating activity detection services from
IoT data. Low-level IoT events are published via a Message Broker. They are
retrieved by an IoT Event Subscriber and persisted in an IoT Event Log. We
rely on the domain expert applying an interactive method to identify and label
activity executions observed in the IoT data from the IoT Event Log [18].

Activity Signatures: In [18] we introduce Activity Signatures to represent the
IoT data associated with the execution of an activity. We assume the domain
expert to identify one representative instance for each type of activity in the

Table 1. Activity signature for activity prototype of Burn

Sensor/Actuator t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

i1_pos_switch 0 0 1 1 1 1 1 1 1 0 0 0 0
i2_pos_switch 0 0 0 0 0 0 0 0 0 0 0 1 0
i5_light_barrier 1 1 1 1 1 1 1 1 1 1 1 1 1
m1_speed 0 -512 0 0 0 0 0 0 0 512 512 0 0
o7_valve 0 512 512 512 0 0 0 0 0 512 512 512 0
o8_compressor 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2. Changes in the activity signature for Burn

Timestamps (ti, ti+1) Changes

1 (t0, t1) m1_speed: 0 → -512; o7_valve: 0 → 512
2 (t1, t2) i1_pos_switch: 0 → 1; m1_speed: -512 → 0
3 (t3, t4) o7_valve: 512 → 0
4 (t8, t9) i1_pos_switch: 1 → 0; m1_speed: 0 → 512; o7_valve: 0 → 512
5 (t10, t11) i2_pos_switch: 0 → 1; m1_speed: 512 → 0
6 (t11, t12) i2_pos_switch: 1 → 0; o7_valve: 512 → 0

Listing 1. Query for change detection in the event sequences for timestamps (t0,t1)
1@info(name="Detect -LowLevel -Pattern -1")
2from every e1 = OV_1Stream , e2 = OV_1Stream [(e1.m1_speed ==0 and

e2.m1_speed == -512) and (e1.o7_valve ==0 and e2.o7_valve ==512)]
3select "LowLevelPat -1" as name , "burn" as activity , "(t0,t1)" as time
4insert into DetectedLowLevelPatterns;

IoT data–denoted as Activity Prototype–from which the signature is extracted.
Table 1 contains the low-level IoT events for all sampled timestamps t0..t12 asso-
ciated with the prototype of the Burn activity executed by Oven. The domain
expert identified timestamps t0 as start of this activity and t12 as its end.

Service Generation: The signature of an activity prototype including the
activity-related data (start and end time, label) and low-level IoT events are
retrieved from the interactive dashboards and from the IoT event log by an Activ-
ity Signature Extractor. This component forwards the signature into the core
component of the framework, the Activity Detection Service Generator. We have
decided to use CEP as the basic technology here as it is designed for processing
high amounts of events in multiple streams in online settings (cf. 2) [6,8]. Typical
CEP platforms feature an event processing language (EPL), which simplifies the
development of CEP-based applications–CEP apps (cf. 2). We generate a CEP
app for activity detection based on a given activity signature as follows.

1) Change Detection: For each pair of consecutive timestamps (ti, ti+1) the
changes among the values of all sensors and actuators are derived. Table 2 shows
the result for the signature of the activity prototype for Burn.

2) Change Translation: For each pair of consecutive timestamps, the change
in the event attributes is translated into the syntax of the EPL for the Event
Sequence Pattern, which considers changes in the attributes of consecutive events
within one or multiple event streams [8]. Listing 1 shows the exemplary trans-
lation for (t0, t1) (Table 2, row 1) into a query of Streaming SQL used within
Siddhi [6]. The attributes of two events (e1, e2) on the stream related to the
Oven are analyzed for the occurrence of the derived changes (line 2). We denote
changes that relate to the low-level IoT events as low-level patterns. When one
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of these patterns is detected, a new event is created (line 3) and emitted on a
stream for the occurrence of low-level patterns (line 4).

3) Change Sequence Detection: The low-level patterns refer to changes in an
activity signature between two points in time (i.e., one row in Table 2). An
activity is represented by the sequence of these patterns (i.e., all rows in Table 2).
We use a hierarchy of events as CEP feature: the detection of the first low-level
pattern (cf. Table 2, row 1) leads to a high-level event eH1. The detection of the
second low-level pattern (cf. Table 2, row 2) leads to a high-level event eH2 only
if eH1 occurred before. This is continued by emitting eH3 only if eH2 occurred
before, etc. The sequence of eH1 to eH6 represents the entire activity with eH1

and eH6 denoting its start and end. This allows us to work with partial activity
detection (cf. 2), e.g., we can specify that 50% of the high-level events or only
eH1 are sufficient to identify an activity–trading off completeness and latency.

4) Activity Detection Service: The CEP app serves as event subscriber to receive
low-level IoT events and as event publisher to emit process-level events to other
subscribers following the publish-subscribe pattern. Additionally, we add service-
based interfaces for request-response communication, transforming the CEP
apps into CEP-based activity detection services. One service corresponds to one
type of activity to be detected. We query the current status of tracking the
activity detection as one service method. Additionally, we keep a log of detected
activity executions and expose it via another method of the service API.

Service Deployment: Fig. 2 shows the software architecture for the online
detection of process activities from IoT data streams. We use the CEP platform
Siddhi as technological basis to run the activity detection services. Siddhi is itself
a service providing an API for deploying and running CEP apps at runtime [6].
By using this API we are able to fully automate the generation of the activity
detection services and their deployment to the CEP platform (cf. 2). The activity
detection services may also be composed to create Process Detection Services.
Assuming that either the control flow (i.e., sequence of activities) or the Process
Signature (i.e., composition of activity signatures [18]) is known, a new CEP-
based service can be generated to detect process executions in a similar way.

Online Activity Detection: Upon deployment to the CEP platform, the activ-

Fig. 2. Service-based software architecture for activity detection at runtime
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ity detection services can be activated using the platform’s API. When activated,
a service establishes the connections to the external event sources (here: the IoT
components) and the interfaces to be used by external event and service con-
sumers. Low-level IoT events are processed based on the CEP queries in the
services. The detected process-level events are published via the message-based
interfaces to be used, e.g., for online process discovery or conformance checking.

4 Discussion

We implemented the framework as a proof-of-concept prototype. We generated
6 services to detect activities executed in our smart factory and recorded the
associated low-level IoT data (cf. https://doi.org/10.5281/zenodo.8087219). We
discuss how the framework fulfills requirements R1–R4 and its limitations:

R1 (Non-invasiveness): The integration with existing IoT environments is
achieved using Siddhi as a light-weight service that integrates seamlessly with
other services using standard protocols [6]. Nevertheless, activity detection
highly depends on the quality of the low-level data that the IoT components
provide. Here, additional sensors and semantic knowledge about IoT components
can help to increase data quality through more advanced CEP queries [18].

R2 (No-code services): The activity detection services are automatically gen-
erated and deployed to the CEP platform. The domain expert only needs to
identify an activity prototype [18]. In contrast to machine learning models, the
CEP apps show the patterns used in activity detection–fostering explainability.
Extensibility is ensured as new services can be added via the CEP platform API.

R3 (Runtime capabilities): CEP platforms process high volumes of event
streams at runtime [6,8]. The CEP-based activity detection services allow pro-
cessing IoT event streams in near real-time and emit process-level events with
CAIRO properties [9] for further process analysis. Relying on sequences of pat-
terns in the low-level IoT events, we can also detect partial activity executions.

R4 (Robustness): External factors and different execution parameters might
lead to variations in the low-level IoT events and the corresponding changes for
the same activities [14]. Detecting the sequence of changes is robust against vary-
ing execution durations as time is not factored in. Activities of the same type
showing different change sequences might lead to incorrect activity detections.
One approach to address variations is to limit the detection to only the low-level
start and end patterns. The domain expert might also resort to an underfitting
approach, selecting the activity prototype that is most common for all instances.

5 Related Work

A general discussion of opportunities, challenges and an architecture for CEP
as a service are presented in [11]. Prior works studied the integration of IoT

https://doi.org/10.5281/zenodo.8087219
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with BPM, with the BPM-meets-IoT manifesto [12] at the forefront. Related
works addressing process activity detection and monitoring are [13,17]. The
framework proposed in this paper involves event extraction, abstraction, and
correlation: Diba et al. in [7] give a general overview on existing approaches to
these tasks. Related to the processing of IoT data is the work in [5], which pro-
poses an architecture combining CEP with stream processing to realize a system
able to process heterogeneous IoT data in real time. The proposed architecture,
however, does not integrate automatically generated services: we aim at bridging
this gap and alleviating analysts’ workload. A similar intent is found in [10], with
a visual framework for programming CEP apps for processing IoT data; an app-
roach for developing IoT-based monitoring systems is also presented in [2]. While
the goal of these works is to support developers by abstracting low-level design
aspects, they still involve manual work in a visual programming environment. In
contrast, we provide an approach for a fully automated generation of CEP apps
as services. In [1], the authors propose a method to automatically generate CEP
queries associated with the lifecycle transitions of control flow elements for pro-
cess monitoring. The method is based on the annotation of a process model with
Monitoring Points, and therefore assumes formalized, structured knowledge of
a process. We relax this assumption and allow unstructured process knowledge,
requiring only domain knowledge for recognizing an activity prototype. The app-
roach in [15] allows automatically learning and generating CEP rules for activity
detection from historical traces. However, it requires a corpus of training data
for the learning phase, which might not always be available. Our approach is
applicable also in cases where only one trace is available.

6 Conclusion and Future Work

Novel IoT data sources foster process analysis and decision making at runtime,
even in the absence of a PAIS. However, IoT data can be too heterogeneous and
too fine-grained to be suitable for process mining [4]. We propose a framework
to generate services capable of detecting activity executions from IoT data at
runtime. The framework relies on the domain expert to identify an activity exe-
cution in the IoT data, from which we generate and deploy an activity detection
service based on CEP. The CEP platform provides means for near real-time
event processing and extension mechanisms for service composition at runtime.

In future work we will apply semantic knowledge about IoT components and
activities to integrate additional CEP patterns for increased robustness of the
approach. We will apply the framework in larger scale manufacturing and health-
care settings to prove its feasibility and generalizability in other IoT domains.
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Abstract. We propose a novel service framework to detect changes
in crowdsourced images. We use a service-oriented approach to model
and represent crowdsourced images as image services. Non-functional
attributes of an image service are leveraged to detect changes in an image.
The changes are reported in form of a version tree. The version tree is
constructed in a way that it reflects the extent of changes introduced in
different versions. Afterwards, we find semantic differences in between
different versions to determine the extent of changes introduced in a
specific version. Preliminary experimental results demonstrate the effec-
tiveness of the proposed approach.

Keywords: Image as a service · Modified images · Version tree · Fake
images · Fake news · Trust · Image provenance · Social media · Big
data

1 Introduction

Social media has become a key platform to share news and information related
to public incidents [5]. There are more than 5 billion active users on social
media [10]. Social media users publish a large amount of data related to public
events [12]. These social media images may contain critical information about
public incidents i.e., road accidents, crime scenes, violent scenes, etc. The images
related to a particular incident may have different versions uploaded on social
media. Utilizing these versions can significantly facilitate the task of scene recon-
struction to explore unfolding situations which might have led to the incident.

Existing work on scene reconstruction is based on image processing that
is usually computationally intensive [7]. A novel technique has recently been
proposed to reconstruct scenes using images’ metadata [2]. It leverages the ser-
vice paradigm to represent social media images and related posted information
as services. It abstracts social media users as social-sensors and an image as a
social-sensor service, abbreviated as SocSen. Henceforth, we use the term ‘image
service’ to refer to ‘social-sensor service’. The only difference between an image
service and a SocSen service is that an image service comparatively contains a
vast set of non-functional attributes. An image service is defined to have func-
tional and non-functional properties. Functional attributes are the parameters
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related to the actions pertaining to the capture of an image service. Examples
of functional attributes are switching picture/video modes, pressing on/off but-
ton, delayed/timed picture taking, taking panoramic shots, etc. Non-functional
attributes facilitate the delivery of the purpose of taking a picture. Examples
of non-functional attributes are subject distance, camera elevation angle, resolu-
tion, location etc. The non-functional attributes are usually available in form of
different metadata tags. An image service can also have different versions.

Most existing work on image services is related to image service selection
and composition [3,13]. An image service composition approach has been pro-
posed to form a tapestry in the spatial aspect and a storyboard in the temporal
aspect [2]. The focus of most existing work on image services has hitherto been
to reconstruct a scene. A fundamental assumption in this regard has so far been
that the participating image services are intrinsically trustworthy. However, the
trust issue becomes paramount when image services are assumed to be crowd-
sourced [20]. For instance, a crime scene analysis relying on crowdsourced image
services may contain untrustworthy images which may lead to wrong conclusions.
Untrustworthy image services can be avoided by analyzing different versions of
a social media image to find the most trustworthy version for the scene recon-
struction.

Detecting untrustworthy image services has traditionally been addressed
using image processing and information retrieval techniques [11]. These
approaches are usually costly and computationally expensive. A preliminary
service-based trust framework is proposed in [1,4] which is based on users’ com-
ments and stances in an image service to assess its credibility. However, the
credibility of image services may not be completely assessed based only on the
user’s stance. Fake posts on social media can get supportive comments from
other users [8]. The stance of credible users may also be biased [25]. Moreover,
these approaches focus on changes in an individual image service. Whereas, mul-
tiple social media images are being forged in conjunction to manipulate infor-
mation about an incident. To address these limitations, we propose to assess
trust among image services using a more objective and holistic framework con-
sisting of changes and updates in different versions of the image services. In this
regard, we leverage non-functional attributes of different versions of an image to
detect changes in image services. we operate under the assumption that the non-
functional attributes, encompassing critical technical details, can be seamlessly
accessed through the image service.

We propose a novel approach to detect changes in the non-functional
attributes of an image service, as a first step towards ascertaining whether an
image service is fake. Editing an image service may make it inconsistent with its
non-functional attributes. An attempt to hide the facts in metadata may create
some discrepancies among non-functional attributes. These discrepancies are not
straightforward to identify as they are usually embedded in the non-functional
attributes. We utilize these inconsistencies to detect changes in an image service.
In this respect, we form different groups of image non-functional attributes such
that analyzing each group collectively provides useful insights on inconsistencies.
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For instance, shutter speed, exposure time and aperture size are the attributes
that inform about the intake of light while capturing an image. Analyzing them
collectively may indirectly reflect the time of day while the image service was
captured. Changes in different versions of an image service are also investigated
to get more insights about the transformation of different versions from the orig-
inal image. In this regard, we assume that the provided image service is not the
only version of an image upload on social media. We use an image-based search
i.e., Reverse Image Search (RIS) to collect all versions of an image service avail-
able on social media. A temporal sorting is then performed to arrange them in
a sequence they were uploaded on social media. We propose a novel representa-
tion of changes in an image service in terms of a version tree. The version tree
is constructed in a way such that the information about changes in a specific
version is implicit in its position/placement in the tree. Therefore, one of the
main contribution of this paper is to propose a framework to build the version
tree. Afterwards, a state-of-the-art semantic similarity measure is used to find
semantic differences between an image and its versions. The proposed frame-
work is a kind of image provenance analysis based only on the non-functional
attributes. The proposed approach is validated on 5849 images collected from
an image metadata dataset. Below, we summarize our main contributions:

– A framework is proposed to detect changes in different versions of an image
service using only the non-functional attributes.

– We introduce a unique way of reporting changes in different versions of an
image service in terms of a version tree. Knowledge about changes in all
versions is implicit in the tree.

– The proposed framework also provides a serendipitous image provenance anal-
ysis using the version tree.

The proposed method effectively handles a typical set of modifications that
are reflected in the non-functional attributes. Although, the non-functional
attributes may not completely capture certain changes within the image itself,
such as alterations in shades, intensity of colors, or distortion, it remains well-
suited for a wide range of image modifications. It is worth noting that the pro-
posed framework’s performance may be influenced by the availability of non-
functional attributes. In cases where a limited number of such attributes are
available, an alternative approach involves obtaining meta-information from the
social media post. While this alternative approach may be less precise due to
potential questions about the accuracy of meta-information, it still offers valu-
able insights.

2 Motivating Scenario

We consider a scene of a plane crash in New York that happened in 2009 as our
motivating scenario. Figure 1 shows evacuation of US Airways Flight 1549 as it
floats on the Hudson River. This image was falsely claimed as the lost Malaysian
aircraft MH370 in many social media posts in 2014. In those misleading posts,
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the images are original but they contain a false claim. Many state-of-the-art solu-
tions rely on image processing to identify untrustworthy social media images [19].
These solutions focus on the content within the images and hence, they may fail
to identify changes which are not in images. Moreover, these solutions consider
changes in a single image and provide no knowledge about the image provenance.
To address these limitations, we propose a unique way of identifying untrust-
worthy images by doing image provenance analysis using only the non-functional
attributes of an image and its different versions. Exploring the non-functional
attributes of different versions of an image may reveal a lot of inconsistencies
among them. These inconsistencies reflect the trust of an image. For instance, in
Fig. 1, metadata of different versions of an image is inconsistent and is reflective
of the modifications in different versions.

Fig. 1. Motivating Scenario

3 Related Work

Existing work on image services is related to image service selection and com-
position strategies. A context and direction aware spatio-temporal clustering is
proposed in [3]. The proposed approach helps to compose the relevant images to
form a tapestry in the spatial aspect and a story in the temporal aspect. A fun-
damental assumption in this work has hitherto been that images participating
in scene reconstruction are trustworthy. However, image services in a crowd-
sourced environment can be untrustworthy. Traditional approaches to identify
untrustworthy images are based on image processing and machine learning [15].
Moreover, some text classification techniques are also available in the literature
that can be employed to classify fake text with an image [23]. The aforemen-
tioned image processing based technique has high accuracies in determining the
fakes in an image but require high computational power.

Some recent studies claim that a subset of trust can be derived using light
weight service-oriented approaches [1,4]. A new image services trust model is



Detecting Changes in Crowdsourced Social Media Images 199

proposed in [4]. The trustworthiness of an image service is measured based on
the users’ stance. Textual features of the image services, i.e., comments are uti-
lized to determine the trust of the service. Another users’ stance and credibility-
based image service’s trust model is proposed in [1]. The proposed model con-
siders various indicators such as the stance embedded in the services’ comments,
their meta-data, e.g., time, along with the users’ credibility. These approaches
are unable to capture modifications in an image service because the misleading
content on social media may receive positive comments from other users [8].
Moreover, comments from credible users can be biased.

We propose a relatively more objective and holistic approach that considers
modifications and updates introduced in an image service to determine the trust
of an image service. This paper focuses on detecting the changes, as a first step
towards determining the trust. In this regard, different versions of an image are
investigated to get more insights on image provenance details. Versions of an
image are being utilized in many state-of-the-art solutions to identify changes
in an image. For instance, an image provenance analysis is proposed in [6] using
the metadata. Different versions of an image are investigated in [18] to explore
different contexts in which the image was shared. Different versions of video
clips are analyzed in [9] to detect misinformation in videos. A framework is
proposed in [16] that relies on different versions of images to determine if they are
shared out of context. The difference between these approaches and our proposed
framework is that these approaches majorly rely on computer vision to determine
fake images, whereas, our proposed approach is completely based on analyzing
metadata of different versions to determine changes in an image. It is worth
clarifying that the proposed framework is different from object versioning. The
focus of object versioning systems is the creation and management of versions.
Whereas, the focus of the proposed framework is to find image versions based
on the changes in the non-functional attributes of an image service.

4 Image Service Model

We represent an image service in terms of its functional and non-functional
attributes:

ImgServ = {f} ∪ {nf} (1)

where f and nf represent the set of functional and non-functional attributes
respectively. Functional attributes represent the actions involved in capturing
an image. Functional attributes can be formalized as:

f = {α, μ, γ} (2)

where α represents the action of capturing an image, i.e., pressing the shutter,
μ is the action to switch from one capturing mode to another i.e., switching
from picture to video and vice versa, and γ represents the time delay in taking
a picture. Non-functional part of an image service consists of spatio-temporal,
contextual and intrinsic attributes as listed in Table 1.

nf = {ζ, τ, c, ι} (3)
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where ζ represents the set of spatial attributes, τ is the set of temporal attributes,
c contains contextual attributes, and ι represents intrinsic attributes. Intrinsic
attributes reflect changes inside the images i.e., changes in the visual content.

Non-functional Attributes of an Image Service: We identify different
non-functional attributes of an image service that may indicate changes within
an image (refer to Table 1). We group the non-functional attributes into the
following categories:

Table 1. Description of Non-functional Attributes

Categories Description Example Attributes

Spatial Features Spatial metadata tags describe the
location at which the image was
taken.

GPS Coordinates

City, Sate, Country

Temporal Features Temporal metadata tags describe
the date and time when the image
was taken.

GPS Timezone Offset

GPS Timestamp

Contextual Features Contextual features define the
context of an image. Contextual
attributes may also contain the
details of the ambiance.

Title

Caption

Headline

– Spatial Features: Spatial attributes represent the location where the image
was captured. Modified spatial tags may be an indication of fake background.

– Temporal Features: Temporal attributes represent the date and time when
the image was captured. Forged temporal metadata tags develop a fake story.

– Contextual Features: Contextual features are related to the context of an
image. Fake context may support fake spatio-temporal tags of an image.

Potential Modifications in Non-functional Attributes: We propose a cat-
egorization of potential modifications that may exist in an image service. The
following are the possible changes in image’s non-functional attributes:

Fig. 2. Potential Changes in Images’ Non-functional Attributes
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– Modified Date and Time: Figure 2a claims two children in 2015 Nepal earth-
quake. It is actually a picture of two Vietnamese taken in 2007.

– Modified Location: Figure 2b was a viral photo in 2014 claiming the picture
of the lost Malaysian MH370 plane. It turned out to be a photo of a plane
crash in New York in 2009.

– Modified Context : Figure 2c claims a camel with limbs cut off used for begging.
The camel is actually resting with legs bent under itself.

5 Proposed Framework

This Section provides details of our novel framework (shown in Fig. 3).

5.1 Feature Extraction

The proposed framework takes non-functional attributes of an image service
as an input and determines whether the image is modified. The first step is
to extract the meta-information available with the image which resides in the
metadata of the uploaded image and the information posted with the image. We
propose to perform image provenance analysis using the metadata of different
versions. In this regard, we assume that the provided image is not the only
version available on social media. Therefore, we utilize Reverse Image Search to
collect all versions of the provided image along with their metadata.

Fig. 3. The Proposed Framework

5.2 Grouping the Non-functional Attributes

We propose to determine changes in an image service using only the non-
functional attributes, i.e., without using the image itself. The non-functional
attributes should ideally be completely reflective of the content in the picture
to correctly reflect on the changes in an image. However, state-of-the-art repre-
sentation of non-functional attributes is not well-reflective of the semantics of
an image. Therefore, we propose a novel representation of these non-functional
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attributes in form of different groups in Table 2. The attributes are placed in a
same group if observing them collectively can provide some useful insights about
the changes. Analyzing each group reveals useful insights about the picture.
These insights are mostly related to spatio-temporal and contextual parameters
of an image service. For instance, shutter speed and exposure time are placed in
a same group because analyzing these attributes collectively indicates the intake
of light while capturing an image. It is indirectly reflective of the time of day
when the picture was captured.

5.3 Normalizing the Non-functional Attributes

Attributes in a group may have different units and scales. The attributes in
each group are first normalized on a common scale. In this regard, we transform
information provided by each group shown in Table 2 in to their normalized
values. For instance, if we have three attributes i.e., ζ, τ and c, then these
attributes can be normalized using the following equation:

ζ̂ =
ζi − min(ζ, τ, c)

max(ζ, τ, c) − min(ζ, τ, c)
(4)

where ζ̂ represents the normalized value of ζ. τ and c can be normalized similarly.

5.4 Creating a Distributed Representation of Attributes

We create a distributed representation of the normalized non-functional
attributes. Each attribute is represented on a high dimensional space. The num-
ber of dimensions depends on the types of attributes in a group. In most cases,
spatio-temporal and contextual attributes constitute the Cartesian space. These
dimensions are further composed of multiple sub-dimensions. For instance, the
spatial axis is represented by two axes: longitude and latitude. Similarly, a con-
textual attribute can be represented as a multi-dimensional vector using either
Latent Semantic Analysis or any Word-Embeddings-based approach. Therefore,
the contextual axis is further divided in to multiple sub-axes as shown in Fig. 4.
Afterwards, we plot the values of each group in this high dimensional space. We
then cluster the attribute values of each group for a specific version. The same
process is repeated for each group. As a result, we get different clusters plotted
in this distributed space as shown in Fig. 4. Each cluster corresponds to a sin-
gle version of an image. It is worth mentioning that there is an additional time
axis (tupload) in the distributed space that informs the time of upload of a spe-
cific version. Due to this axis, clusters cannot be overlapped completely. For two
clusters to overlap, their versions should be uploaded at exactly the same time.
The clusters projected in this space provides a holistic view of non-functional
attributes of all versions. The differences in placements and shapes of clusters
reflect discrepancies among the versions. Moreover, on time axis, it also reflects
the evolution of different versions from an image. However, this sequence of
uploads may not accurately inform about the sequence of changes introduced in
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Table 2. Grouping of Non-functional Attributes

Attributes Description

DateTimeOriginal, DateTimeDigitized,

DateTime

An image metadata contains various

timestamps. By comparing these

timestamps, we can see whether the image

has been modified.

Make, Model, Other attributes (focal

length, aperture, etc.)

A camera’s make and model can be

compared with different attributes i.e.,

focal length, aperture size, and resolution

etc. to check whether the camera supports

these attribute values.

Aperture, Shutter speed, Exposure value Exposure value is calculated from aperture

and shutter speed. We can re-compute

exposure value and compare it with the

attributes.

Shutter speed, Aperture, ISO The three pillars of exposure are shutter

speed, aperture, and ISO. These three

attributes are interconnected and changing

one affects the others. For example,

increasing the shutter speed may require a

wider aperture or higher ISO to

compensate for the reduced amount of

light reaching the sensor. Similarly, using

a narrow aperture for a deeper depth of

field may require a slower shutter speed or

higher ISO to compensate for the reduced

amount of light.

Aperture, Exposure Time, Shutter speed,

Datetime

Exposure time and shutter speed reflects

the light intake in a picture. It can be

transformed to the time of day based on

the following: Noon: high f/stop, fast

shutter speed; Night: low f/stop, slow

shutter speed to let more light in.

However, it depends on the environment

(indoor/outdoor) and purpose of shooting.

GPS info, TimeZoneOffset, DateTime,

Location

We analyze these attributes to see whether

the GPS is consistent with the timezone.

Moreover, we check whether the datetime

is consistent with the timezone.

Datetime, GPS info, ISO, white balance

and other camera settings

By using the datetime and GPS info, we

can find weather conditions of the

shooting location. The white balance and

ISO depends on the weather.

Temperature, Humidity, Pressure, Weather Using GPS and timestamp, we can

retrieve weather information of location of

shooting using online APIs.

WaterDepth, GPS info Using GPS info, we can get the water

depth information of the shooting location

that can be compared with the given

WaterDepth to see if it is consistent.
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an image. For instance, version corresponding to cluster C3 in Fig. 4 is uploaded
after C2, however, in reality, C3 may be the predecessor of C2. To address it, we
transform the sequence of uploads to the sequence of changes.

Fig. 4. Distributed Representation of
Attributes

Fig. 5. Version Tree

5.5 Version Tree

Most viral fake social media images are usually related to a specific incident
i.e., a road accident, a natural disaster, a man-made disaster etc. Manipulating
facts about these incidents may involve sharing relevant fake posts. We consider
relevant images and versions of an image to be two different entities. Relevant
images contain relevant stuff but they are not originated from a same image.
Whereas, an image b is a version of another image a if b is originated from
a. It is crucial to analyze different versions of an image to detect changes in
an image service because it provides a holistic view of manipulations about a
specific incident. We propose an image provenance analysis based only on the
image metadata. The provenance analysis results in a tree because of the fact
that an image version can only be originated from one single image. Therefore,
we propose to construct a version tree which is reflective of the modifications
introduced in each version of an image. It also informs about the transformation
of different attributes in that image. Figure 5 shows a generic version tree.

Definition 1: An image b is assumed to be version of another image a if

– Image b originated from image a.
– Attributes in image a can be transformed to attributes in image b. We lever-

age the concept of transformation matrix to analyze the nature of transform.
Equation 5 shows the linear transformations of one cluster to another.

Δt × Ia = Ib where Δt =

⎡
⎣

w x .
y z .
. . .

⎤
⎦ and Ia =

⎡
⎣

attr1

attr2

.

⎤
⎦ (5)
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where attr stands for attribute, Ia is an attribute matrix for image a, Ib is
an attribute matrix for image b, and Δt is a linear transformation matrix.
According to this statement, even if two images imageb and imagec are origi-
nated from imagea, if Δt×Ib = Ic is satisfied, then imagec will be considered
as a version of imageb.

– Linear transformation can cover the following transformations: translation,
scaling, rotation, reflection, shearing, projection, orthogonal projection and
affine transformation. If the relationship between the two clusters is inherently
nonlinear, a quadratic transformation (shown in Eq. 6) may better capture
the underlying transformation. Therefore, we consider the matrix form of
quadratic transformations if the linear transformation of an attribute matrix
can not be found or is too complex. The criteria to select linear or quadratic
transformation depends on the complexity of the transformation. We choose
the transform with a simpler transformation matrix.

Ita × Δt × Ia = Quadratic form of Ib (6)

We consider the complexity of Δt to check if Δt × Ia = Ib is satisfied. The
lower the complexity, higher will be the likelihood for imageb to be version of
imagea. The complexity is determined by the similarity of the transformation
matrix with the identity matrix (the matrix that, if used as a transformation
matrix, returns the same input matrix). However, to determine the complex-
ity of quadratic transformation, we compute the difference of the transforma-
tion matrix with the matrix that, if used as a transformation matrix, returns
quadratic form of the input matrix. It is worth mentioning that the tree proposed
in Fig. 5 is implicitly directional. In the process of constructing the version tree,
it automatically determines the origin of the image. However, in case of a linear
tree i.e., if there is a single path from root to a leaf node, then the direction of
the tree can be deduced from the order of uploads of images.

The version tree provides a holistic view of the changes introduced in different
versions of an image. More importantly, it informs about the transformation of
an image in to different versions that serves as a tool for image provenance
analysis. The depth of each node in the tree is reflective of the extent of changes
in the corresponding version. These insights can not be reflected by reporting
changes in each version individually.

5.6 Heuristics to Construct a Version Tree

We propose novel heuristics to construct version tree for an image. We utilize
the clustering and the transformation matrix proposed in the previous Sections
to construct the version tree. The clusters projected on the Cartesian space
are the groups of attributes of different versions. Each cluster corresponds to a
specific group of a specific version. The distance between these clusters reflect
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the changes among versions. The variations in the clusters actually represent
the transformation of a version in to another. As stated earlier, we consider
the sequence of uploads of image versions as a baseline solution. Therefore, we
propose reordering of the clusters on the time axes to make it accurate. It will
result in a sequence of edits/updates in an image. The criteria to start the
swapping is to check whether attributes in a version are being transformed from
another version. To ensure it, we rely on the transformation matrix proposed
in Eq. 6. According to Eq. 6, there will be multiple transformation matrices for
each version because we have a transformation matrix for each group of non-
functional attributes. Therefore, for each version, we have Δ1 to Δn matrices
where n represents the total number of groups. In the next step, we find the
nearest neighbors for each Δ using the Frobenius Distance:

Fa,b =
√

trace((a − b) × (a − b)′) (7)

Next, we need to decide the sequence of versions, V1 is placed before V2 if Δ1

to Δn of V2 can be derived using either linear or quadratic transformation. The
reordering is only possible if Eq. 5 or 6 is satisfied for two consecutive versions
on a time axis. Another factor, on which we rely to decide about swapping is the
similarity between two versions. If the clusters shapes are similar for two distant
versions, we do reordering to make them closer. The following equation is used
to check this criterion:

if Cn+1 ∩ Cn ≥ Cn ∩ Cn−1 (8)

We need a control statement to decide how many iterations are required to
reach an optimal sequence of versions. In this regard, we introduce a threshold
in Eq. 9 to control the reordering:

if (Cn+1 ∩ Cn) − (Cn ∩ Cn−1) ≥ Threshold (9)

The value of threshold is assigned in a way that the criterion for reordering
becomes relatively strict after every swap. As evident from Fig. 6, the threshold
follows an exponential trend. The exponential trend is reflective of the fact that
the reordering becomes relatively less likely after each iteration. However, the
difference/increase in threshold is not linear. Therefore, the change in threshold
must be computed after each interval. We calculate this gap based on the sim-
ilarity of changes between two consecutive clusters/versions on the time axis.
The less similar the changes are in two versions, the more likely should be the
swap, so we can assign a higher increase in threshold. The idea about the design
of the threshold is presented in [22,24].

ΔThreshold ∝ (ΔCn − ΔCn−1) (10)
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Fig. 6. Trend of Threshold Fig. 7. Accuracy

This procedure constructs one branch of the version tree. To construct other
branches, the same procedure is repeated for the remaining nodes/versions. Once
a version tree is constructed, the consecutive version nodes can be compared
using any semantic similarity measure to find its semantic difference with the
previous version. Comparing different nodes in the version tree results in δζ, δτ
and δc, where δ represents a change. The proposed framework is self-configurable.
Whenever, it encounters a distinct type of version, it becomes part of its learning.
The concept of self-configurable algorithms is presented in [21].

6 Experimentation and Results

We use a real image metadata dataset to conduct experiments [14]. The dataset
contains images and videos along with their metadata. The dataset includes a
wide range of images covering various subjects, scenes, and visual characteris-
tics. We use the metadata-extractor library, which is a Java-based library for
reading metadata from image files. The extracted metadata encompasses infor-
mation such as camera make and model, image dimensions, capture date and
time, GPS coordinates, and other technical details. Although, the dataset pro-
vides images, however, we only exploit their metadata. We use ChatGPT to
generate different versions of images contained in this metadata dataset. Chat-
GPT can be effectively utilized to generate versions of image metadata due to
its language generation capabilities and understanding of contextual informa-
tion. We also leverage ChatGPT to introduce systematic changes in the sample
metadata of different image versions. Instructions are provided to the ChatGPT
to create different types of variations in between metadata of different versions
of an image. For instance, in some images, shutter speed and exposure time
have been made inconsistent. By leveraging its language generation capabilities,
ChatGPT can produce altered metadata such as updated timestamps, modified
camera settings, or edited descriptions, providing an indication that the image
has undergone changes. Figure 8 shows a sample metadata of two versions gen-
erated by ChatGPT. It also shows inconsistencies introduced by ChatGPT. The
inconsistencies are shown in highlighted text in Fig. 8.
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The experiments are completely scalable as we use an API provided by Ope-
nAI to execute text commands on ChatGPT. The API allows us to make requests
to the ChatGPT model hosted on OpenAI’s servers and receive responses in
real-time, enabling interactive and dynamic conversations with the language
model. By utilizing the API, we leverage OpenAI’s infrastructure to handle the
computational resources required for generating versions of an image metadata,
ensuring scalability and availability. Moreover, the API provides quick responses,
allowing for real-time interactions and dynamic conversations with ChatGPT.
We use the HTTP POST method to send a request to the API endpoint. We
structure the request payload in JSON format. The payload may contain a list
of message objects with a role (either “system”, “user”, or “assistant”) and con-
tent (the text of the message). We cluster the attributes of each version for each
group. We use the clustering approach proposed in [17]. The distance between
the clusters and the dissimilarities among them are leveraged to determine the
transformation matrix to build the version tree.

Fig. 8. A Sample Metadata and Changes Introduced by ChatGPT

Effectiveness. We report the performance of the proposed approach in terms
of accuracy (in Fig. 7) and run-time. The ground truth of metadata is known
from the metadata dataset. Accuracy is calculated as the percentage of correctly
classified image versions. We compare our approach with a baseline and a brute
force approach. Sequence of uploads of an image (the order in which the image
versions were originally uploaded) on social media is regarded as the baseline
solution, whereas, the brute force approach doesn’t consider the criteria defined
in Eq. 9 and 10. The proposed framework achieves an accuracy of 76%. Whereas,
the baseline approach is correct 64% of the times. Brute force performs better
than the proposed framework but at the cost of additional computations. We
also report the run-time complexity and the time consumed (in nano seconds)
for brute force and our proposed approach as shown in Table 3. Time complexity
is computed by counting units of time. Moreover, the increase in run-time with
the increase in the number of inconsistencies is reported in Fig. 9.



Detecting Changes in Crowdsourced Social Media Images 209

Table 3. Run Time Efficiency

Baseline Brute-force Heuristics

Run-time Complexity 1 O(N2) O(N1/2)

Time Consumed (ns) 309 26500 15300

Comparison. We compare the accuracy of our proposed framework with a
state-of-the-art that uses image metadata along with image content to perform
image provenance analysis [6]. The framework proposed in [6] has three variants:
a complete image-based solution; Kruskal’s maximum spanning tree algorithm
based only on image metadata; and Cluster-SURF which utilizes both images
and their metadata. The accuracy of the approach is computed in terms of the
overlap between the original version tree and the constructed version tree. Our
proposed approach outperforms all variants as reflected in Fig. 10.

Fig. 9. Run-time Efficiency Fig. 10. Comparison with State-of-
the-art

7 Conclusion

We propose a novel framework to detect changes in an image service using only
the non-functional attributes. The proposed model returns a version tree for an
image service. Theory of matrix transformation is leveraged in this paper to
model the transformation of one image version to another. The results validate
the proposed approach. This work can be further extended to investigate the
detected changes to check whether the changes are constituting a fake. One
aspect to consider is that run-time may increase with a larger scale of images.
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Abstract. Intelligent Driver Assistance Services (IDAS) strongly
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driver assistance systems’ capabilities, enabling drivers to operate their
vehicles more safely and comfortably. Despite significant advancements
in Advanced Driving Assistance Systems (ADAS) over the past decade,
efficiently providing personalized decision-making for all kinds of drivers
is still a far-reaching challenge. This paper proposes a novel framework
for rapidly configuring and training context-aware personalized intelli-
gent driver assistance services. Based on the cloud-edge collaboration, we
investigate the efficient generation and updating of personalized decision
models on the edge and the effective integration of personalized experi-
ences in the cloud, forming a complete closed loop of driving experience
accumulation. In addition, a method for configuring the driving environ-
ment perception model is proposed, considering the variations in differ-
ent edge environments and edge equipment. This ensures the contextual
relevance of the personalized decision-making model and enhances its
effectiveness. The proposed approach is evaluated in CARLA, an open
urban driving simulator. The results demonstrate that our approach sur-
passes other methods regarding training time, communication cost, and
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1 Introduction

Advanced driver assistance system (ADAS) aims to improve vehicle safety by
repeatedly warning the driver or operating the vehicle’s control system based
on automatic speed adoption, lane departure assistance, collision alters, blind-
spot monitoring, etc. [12]. It incorporates several technologies, such as auto-
motive electronics, vehicle-to-vehicle (V2V) communication, RADAR, LIDAR,
computer vision, and machine learning. Although the ADAS concept has evolved
significantly over the last decade, and techniques like AI, Deep Neural Networks
(DNN), and the Internet of Things (IoT) [3,17] have been rapidly developing,
it is still a far-reaching challenge to efficiently generate comfortable and intu-
itive driving decisions for drivers with different preferences and styles in various
driving environments [1].

To provide context-aware personalized intelligent driver assistance services,
an agent is required to learn diverse and dynamic configurations of the driving
environment and predict optimal on the given driver’s preferences. This decision
making task is typically formalized as a sequential decision process and addressed
by Reinforcement Learning (RL) [7,12]. Since an optimal driving decision not
only requires suitability for the given environmental state but also needs to
accommodate various driver preferences, RL algorithms designed to assist drivers
often operate within a high-dimensional state space, which usually necessitates
a sufficiently large model.

Considering the common consensus that achieving greater AI power usually
requires more samples and computing resources, assigning affordable training
tasks to a single vehicle becomes crucial. Unlike existing solutions that run
a Deep Reinforcement Learning (DRL) [8] model independently on an edge
device, we propose a novel framework to enable fast configuring and training
of a context-aware personalized decision-making model, whose main features are
as follows.

– We facilitate a rapid construction mechanism of context-adaptive perception
systems by selecting and constructing existing data processing units (algo-
rithms or DNNs) according to different model inputs. This opens up numerous
possibilities for constructing complex, intelligent sensing systems in scenarios
with no unified hardware setting, such as driving assistance systems, smart
homes, intelligent healthcare systems, etc.

– Our approach enables edge devices to fast and personally update local
decision-making models based on their specific preferences with low inference
delays. Unlike traditional federated learning (FL) [10], our approach classi-
fies and considers different user preferences during parameter integration to
enhance the inference accuracy and convergence speed for local model updat-
ing and inferencing, which is crucial for providing personalized AI services.

– We propose a novel framework to construct a closed loop from initial-
izing an edge model, sharing emerging edge experiences to enhancing
the global model for generating a better initial model in the future.
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We provide all the key details in building and applying the proposed frame-
work and test the actual effects in an open urban driving simulator, CARLA
(https://carla.readthedocs.io/en/latest/).

2 Related Work

Reinforcement learning employs sequential actions based on the Markov Decision
Process (MDP), which is widely utilized in autonomous driving applications. For
instance, Min et al. [11] proposed the utilization of quantile regression DQN to
control lane keeping, lane changing, and acceleration in driver assistant systems.
Wu et al. [15] adopted an Actor-Critic continuous control scheme to regulate lim-
its for enhancing flow rate and reducing emission rate. Ye et al. [18] investigated
car following and lane changing behaviors of autonomous vehicles using DDDP.
Huang et al. [6] developed a DDPG-based agent and experimented its ability in
a human-in-the-loop dynamical simulator. However, few studies pay attention
to the dynamic adaptability and transferability of a well-trained model.

Besides, achieving greater AI power usually requires more samples and com-
puting resources, which is often unfeasible for a single-end device. To get a
smaller model, some researchers propose compressing a pre-trained “large” DNN
into a smaller one [2] that may compromise the accuracy of machine learning
inference. Conversely, other researchers suggest partitioning a DNN into several
small pieces and deploying them distributedly [13,16]. However, it may incur
additional communication costs.

To share edge samples and experiences, Federated Learning (FL) [10] has
been widely adopted. FL enables a group of distributed participators to col-
laboratively train a powerful global model on their private dataset, regardless of
whether they possess identical features or samples [10]. However, it is challenging
for conventional FL algorithms to obtain an effective global model if their par-
ticipants’ data are unbalanced and not Independent and Identically Distributed
(Non-IID) [5,14,19].

A feasible personalized driving assistance service must generate comfortable
and intuitive driving decisions based on perceived driving context according to
the installed sensors and specific driver preferences. As far as we know, this issue
still needs to be solved.

3 Our Basic Idea

To facilitate context-aware personalized DNN configuration and updating, we
propose a framework based on federated reinforcement learning (FRL) [20]. As
depicted in Fig. 1, it comprises two primary components: a parameter server and
an edge device.

As illustrated in Fig. 1, the parameter server comprises three mutually inde-
pendent components: a single input processing unit library, a decision parameters
library, and a model skeleton.

https://carla.readthedocs.io/en/latest/
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Fig. 1. Our framework for fast configuring and training DNN for providing context-
aware personalized intelligent driving assistance services.

– The model skeleton defines the fundamental structure of an edge model. The
inputs from various driving environment sensors are incorporated into the
model skeleton for personalized driving assistance. Each input will be pro-
cessed by its corresponding input processing unit (IPU), and the outputs of
all these IPUs will then be merged by the fully connected layer in the model
skeleton. The control intervention component receives the user’s real-time
driving behavior, such as going straight, turning left or right, and following.
The model generates control actions based on different driving behaviors,
including velocity, acceleration, steering angle, etc.

– The single IPU library contains various types of IPUs that an edge device can
leverage, including image recognition networks (IRN), infrared signal process-
ing units (ISPU), radar signal processing units (RSPU), laser signal processing
units (LSPU), and position analysis units (PAU), etc. Every IPU within the
library can be an existing DNN or an algorithm. It can be initialized during
parameter server construction, or an edge device can contribute later. Then,
these common IPUs can be selected and composed into a given edge model
during initialization.
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– The decision parameters library maintains multiple sets of model parameters
that are grouped according to users’ preferences. It clusters available user
behaviors into several groups, each capturing a different preference for gen-
erating personalized driving actions. Therefore, when initializing a new edge
model, one of these parameter sets will be selected and applied to initialize
the decision-making network of the edge model.

Therefore, when initiating a new edge model, we can start assembling the
input processing part of the edge model by matching corresponding IPUs to
sensors installed on the edge device. For instance, if a smart car is equipped
with an onboard camera, a radar sensor, and a position sensor, the corresponding
IRN, LSPU, and PAU (as depicted in Fig. 1) will be selected from the IPU library
and integrated into the edge model. Suppose the edge device is equipped with
additional sensors, such as a millimeter-wave radar sensor whose processing unit
is not included in the existing IPU library. In that case, the edge device must
provide the corresponding processing unit and determine whether to contribute
it to the existing IPU library.

Then, the personalized decision-making part is initialized by selecting an
appropriate parameter set from the existing library of decision parameters.
More specially, the edge device matches the most closely corresponding deci-
sion parameter set according to the edge user preference initially collected. The
parameter set is subsequently imported into the edge model to accomplish the
initialization of decision network parameters in the edge model. Additionally,
during the operation of the edge device, the model is adjusted through user
interaction to better align with specific preferences. And these adjustments will
be shared to update the global decision parameters library further.

In the following sections, we will provide a comprehensive description of the
design and implementation of our framework.

4 The DRL-Based Personalized Driving Assisted Model

We adopt DDPG [9] as the fundamental network. It is a model-free Actor-Critic
based reinforcement learning approach that can be effectively applied to contin-
uous action space. According to the Markov Decision Process (MDP) definition,
a tuple < S,A, P,R, γ > can be used to model a decision-making model. Here,
S is the state set of a given environment, A is the action set that contains all
possible actions the agent can select and perform, P is the probability of transi-
tion from one state to another, R is the reward function, and γ is the discount
factor.

To ensure compatibility and generalization, we choose the Global Naviga-
tion Satellite System (GNSS) sensor and the Inertial Measurement Unit (IMU)
sensor as inputs. Therefore, the state of a personalized driving-assisted model is
designed as follows.

State :< Speed,Accx,Accy,MDistance, LDistance,RDistance, Compass >
(1)
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To adhere to the design principles of action space, which includes integrity,
simplicity, and legality, we categorize the actions in a personalized driving assis-
tance model into two distinct parts: steering amplitude (Steer) and acceleration
(Acceleration), shown in Eq. 2.

Action =

{
Steer, 0 < Steer < 1
Acceleration, −1 < Acceleration < 1

. (2)

Theoretically, as the accelerator and brake cannot be pressed simultaneously,
we combine the amplitude of the accelerator pedal and the amplitude of the brake
pedal into the acceleration term. [0,1] is the amplitude of the accelerator, and
[−1,0) is the amplitude of the brake pedal.

Feedback reward plays a crucial role in the design of reinforcement learn-
ing algorithms. In complex tasks, it is impractical for agents to freely explore
and obtain the main reward due to the vast state set and infinite action space,
often leading to non-convergence. Therefore, sub-rewards should be introduced
to guide agents toward continuously achieving task objectives. It is necessary
to deconstruct the task objective and allocate appropriate rewards or penal-
ties at each step to enhance the likelihood of the agent obtaining the primary
reward. Based on repeated experiments, the reward values in the personalized
driving-assisted model are defined as follows:

Rsteer(c) =

{
abs(steer)× 10, Steering wheel angle is in optimal range
−abs(steer)× 10, otherwise

(3)

Rlocation(c) =

{
10, car is at the best position
−abs(location − bestlocation), otherwise

(4)

Rcollision(c) :

{
−2000, car crashed
0, otherwise

(5)

Rcross(c) =

{
−100, car crossed the line
1, otherwise

(6)

Rspeed(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s < so − 5,

⎧⎪⎨
⎪⎩
−10, throttle = 0 or in ro

vs + 5, throttle < ro

vs + 10, throttle is in ro

s <= so,

{
−5, braking > 0
vs., braking = 0

s > so,

⎧⎪⎨
⎪⎩
−10, throttle > 0
vs + 5, braking is not in ro

vs + 10, braking is in ro

(7)
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The variable c is the branch network selected by the control intervention.
Rsteer is steering angle reward value, Rlocation is car location reward value,
Rcollision is obstacle collision reward value, Rcross is crossing line reward value,
and Rspeed is speed reward value. The variable s is speed, so is the optimal
speed, and ro is the optimal range. The steering angle, speed, and reward value
obtained by obstacle collision can all directly reflect the agent’s decision in the
current state.

In experiments, we found that more than these are needed to make the car
drive usually because as long as it avoids obstacles, it will not get negative
rewards. The car often takes an S-shaped route during driving, which does not
meet the set task objectives. Additional reward values are needed to limit the
driving route of the car, so this paper adds the position reward value and the
crossing line reward value on the basis, and the final reward value Rtotal(c) is
the sum of the five reward values. The total reward value is shown below.

Rtotal(c) =Rsteer(c) + Rspeed(c) + Rlocation(c)+
Rcollision(c) + Rcross(c)

(8)

5 FRL-Based Edge Experiences Fusion

According to the characteristics of federated learning, models with similar envi-
ronments are more likely to learn from each other effectively. Therefore, we adopt
model clustering on edge personal driving styles by analyzing driving behaviors
collected at each edge. Then, federated learning is conducted among clients in
the same cluster to improve the learning effect.

On an edge device, we proposed the following model updating strategy (Eq. 9)
to control the cost of updating the local model.

CParm =a × SParm+

(1− a)× CParm

⎧⎪⎨
⎪⎩

a = α1, RDiff < threshold1

a = α2, RDiff < threshold2

a = 0, otherwise

(9)

Here, CParm is the personal experience parameter of an edge device. SParm
is the original model parameter from the parameter server. a is the fusion ratio
of model parameters. RDiff is the difference between the reward value of the
current round of reinforcement learning and the last round. threshold1 and
threshold2 are the proportional control threshold.

An edge device determines the retention of its differential experience. Sup-
pose the increased amplitude RDiff of the local model in interaction with the
environment is somewhat higher than that obtained in the last round. Then,
selective retention of part of the differential experience occurs according to the
self-defined increase amplitude in the current model. The fusion ratio of model
parameters a controls the proportion of edge personal parameters and global
decision-making parameters in the new model.
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Considering the different improvement amplitudes of decision-making mod-
els across edge devices, we propose a model update filtering approach based on
reward value fluctuation amplitude, where only selected local models will be con-
sidered to update corresponding global decision-making models. The fluctuation
range of reward value is determined as shown in Formula 10, where Rlist is the
set of model reward values.

FluctuationDetection =

√∑n
i=1(ri − r̄)2

n

Rlist = [r1, r2, · · · , rn]
(10)

Then, the global decision-making model is updated through weighted fusion
based on the selected model reward values, as shown in Eq. 11.

ServerParm =
n∑

i=1

ri
R

ClientParami R =
n∑

i=1

ri (11)

6 Evaluation

To validate the applicability and performance of our approach, we implement,
train, and test the personalized driving assistance model in the open urban
driving simulator, CARLA [4].

6.1 Experiment Setup

Running an FRL algorithm requires a parameter server and multiple edge
devices. We use a desktop computer with an I5-7200u processor, 8GB memory,
and an RTX 2080Ti GPU as the parameter server, primarily handling model
training, parameter fusion, model delivery, and other related operations. Mean-
while, we deploy virtual machines as edge devices to execute the CARLA simula-
tor (version 0.9.11), dynamically construct personalized driver assistance models,
and run online learning and parameter uploading. All the programs are written
in Python 3.7 on TensorFlow.

CARLA is an open-source autonomous driving simulator that facilitates the
construction of environments, model training, and testing for autonomous driv-
ing systems. The supported sensor types encompass camera, LIDAR, GNSS,
GPS, and IMU. The GNSS and IMU sensors are predominantly employed in
this paper.

Various evaluation criteria exist for reinforcement learning algorithms, such
as survival time in car poles, number of hits in shooting games, and confrontation
duration with opponents in table tennis games. Nevertheless, the most prevalent
criterion is an episode-reward graph that exhibits the amplitude and fluctuation
degree of reward values across episodes. In addition, we also evaluate commu-
nication times and transmission costs during model downloading and updating,
the convergence speed of an edge model, as well as training duration for an edge
model. The proposed algorithm’s robustness is tested on three driving scenarios:
straight driving, left turns, and right turns.
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6.2 Performance of Edge Model Initialization and Online Training

Experiment Settings. To assess the performance of initializing and online
training for an edge personalized decision-making model, we experiment by com-
paring downloading a suitable pre-trained model with training a model from
scratch. We have slightly modified the driving preferences of the edge device in
three driving scenarios - going straight, turning left, and turning right - from
those of the pre-trained model. Such slight differences can enhance the applicabil-
ity of deploying a pre-trained model on an edge device. As illustrated in Table 1,
the modifications mainly involve five aspects: optimal speed (OS), steering angle
(SA), gas pedal amplitude (GPA), brake pedal amplitude (BPA), and distance
to the road center (DTRC).

Table 1. Preferences setting in the pre-trained model and the edge model

Driving scenario Model OS SA GPA BPA DTRC

Straight driving pre-trained model 25 0.3 0.6 0.6 0.5
edge model 27 0.2 0.7 0.6 0.6

Left turn pre-trained model 20 0.5 0.5 0.6 0.5
edge model 18 0.4 0.4 0.6 0.6

Right turn pre-trained model 25 0.3 0.6 0.6 0.5
edge model 27 0.2 0.7 0.6 0.6

In each driving scenario, we conducted five experiments with 40 episodes per
experiment and plotted the corresponding episode-reward curve graph. Addition-
ally, we compared the average convergence rounds, reward values, and training
duration under different scenarios.

Experimental Results and Analysis. The episode-reward curves for the
three scenarios of going straight, turning left, and turning right are presented in
Fig. 2, Fig. 3, and Fig. 4, respectively.

The comparison of episode rewards for straight driving, as shown in Fig. 2(a),
indicates that our approach can achieve a higher reward value within the same
number of episodes than basic RL. Additionally, our approach reaches its first
highest reward value approximately 5–10 episodes earlier than basic RL. Our
approach also attains higher rewards in the other two driving scenarios, namely
left and right turns. However, as the effects are not as pronounced as those
observed during straight driving, we have omitted the curves that do not exhibit
significant differences. By the way, the abnormal reward values at episodes 15
and 30 in Fig. 2(a) are caused by the exploration in RL, which is an inherent
problem of RL.

Specifically, Table 2 compares average convergence rounds, reward values,
and training duration (TD) across various driving scenarios.

The comparison presented in Table 2 demonstrates that our approach can
achieve convergence 2 to 16 rounds faster than basic RL and its training dura-
tion for 40 episodes is reduced by 20 to 40 s. This improvement is attributed to
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Fig. 2. Episode-reward comparison between our approach and traditional RL under
straight driving

Fig. 3. Episode-reward comparison between our approach and traditional RL under
left turn

freezing three layers’ parameters during online training, which involves approx-
imately 600 parameters. Although this number may seem small, it significantly
saves computing resources and training time. Furthermore, this operation results
in a reduction of 217 KB in communication costs. In summary, the more network
parameters shared by an edge device, the greater the improvement effect of our
algorithm.

6.3 Performance of Edge Personal Experiences Fusion

Experiment Settings. To evaluate the performance of personal experiences
fusion of our approach, we established a collaborative environment consisting of
one pre-trained model and three distinct edges with varying driving preferences,
as outlined in Table 3. Similarly, we continue to utilize optimum speed (OS),
steering angle (SA), gas pedal amplitude (GPA), brake pedal amplitude (BPA),
and distance to the road center (DTRC) to characterize specific driving prefer-
ences. Based on this, we compare the performance of our approach, the basic
FRL, and the basic RL.
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Fig. 4. Episode-reward comparison between our approach and traditional RL under
right turn

Table 2. Comparison of average convergence rounds, reward values, and training dura-
tion (TD)

Driving scenario Method Avg. rounds Avg. reward Max TD(sec.) Min TD(sec.) Avg. TD(sec.)

Straight driving our approach 14 27006.30 2162.80 1619.87 1930.47
Basic RL 30 27167.60 2136.33 1642.49 1971.24

Left turn our approach 22 1507.44 558.61 553.42 557.13
Basic RL 38 1521.19 582.17 563.71 573.91

Right turn our approach 20 1104.00 236.99 236.20 236.60
Basic RL 22 1106.03 258.14 238.56 244.27

In this experiment, we also conducted 40 experiments for each driving sce-
nario: straight driving, left turn, and right turn. As our approach and the basic
FRL involve federated learning, every edge was trained for 50 episodes in each
experiment. We selected five data groups from these results as training data to
perform experience fusion. In the basic RL experiment, each edge was trained 50
episodes under its corresponding optimization objective after downloading the
pre-trained model. Based on the experimental results, episode-reward curves
were drawn respectively, and the model’s training time, communication fre-
quency, and average reward value were calculated and compared.

Experimental Results and Analysis. The episode reward curves for each of
the three edges in the straight driving scenario are depicted in Fig. 5, Fig. 6, and
Fig. 7, respectively. Each chart within the figures, from left to right, represents
the episode reward curves of our approach, basic FRL, and basic RL.

As depicted in Fig. 5, Fig. 6, and Fig. 7, the initial reward value of each edge is
determined by its preference, resulting in distinct values. For instance, the total
initial reward value for Edge-1 is approximately 20,000, while that of Edge-2 is
around 10,000, and that of Edge-3 is roughly 22,000. In addition, based on these
episode-reward curves, our approach exhibits significantly improved convergence
speed and total reward value compared to basic FRL and RL algorithms. Specif-
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Table 3. Preferences setting of the collaborative environment of one pre-trained model
and three distinct edges

Driving Scenario Model OS SA GPA BPA DTRC

Straight-driving Pre-trained model 25 0.3 0.6 0.6 0.5
Edge-1 27 0.2 0.7 0.6 0.6
Edge-2 33 0.2 0.6 0.7 0.4
Edge-3 30 0.3 0.6 0.6 0.5

Left-turn Pre-trained model 20 0.5 0.5 0.6 0.5
Edge-1 18 0.4 0.4 0.6 0.6
Edge-2 25 0.7 0.7 0.8 0.4
Edge-3 22 0.5 0.5 0.6 0.5

Right-turn Pre-trained model 25 0.3 0.6 0.6 0.5
Edge-1 27 0.2 0.7 0.6 0.6
Edge-2 33 0.2 0.6 0.7 0.4
Edge-3 30 0.3 0.6 0.6 0.5

Fig. 5. Episode-rewards of our approach, basic FRL, and basic RL in straight-driving
on edge-1.

ically, we set the convergence condition in this experiment as when the average
reward value obtained over five consecutive episodes meets or exceeds the pre-
trained model’s reward value. The specific comparison parameters for straight-
driving scenarios are presented below.

The column “Avg. Rounds” in Table 4 denotes the algorithm’s convergence
rate under consideration. Compared with the average convergence rounds on
three edges, it is observed that our approach exhibits the fastest convergence
speed, which is approximately twice as fast as basic RL and slightly faster than
basic FRL. From the perspective of local model updates and cloud-edge com-
munication triggered by these updates, our approach outperforms basic FRL
significantly, resulting in a reduction of approximately one-third in total train-
ing time for edge models.

We get similar conclusions in the other two scenarios, and the specific com-
parison parameters for the left turn and right turn are presented in Table 5.
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Fig. 6. Episode-rewards of our approach, basic FRL, and basic RL in straight-driving
on edge-2.

Fig. 7. Episode-rewards of our approach, basic FRL, and basic RL in straight-driving
on edge-3.

As observed from the specific values in Table 5, it can be noted that while
our approach maintains a faster convergence rate and lower communication cost
in left-turn and right-turn scenarios, the impact is not as evident as in straight-
driving scenarios. This is closely related to the complexity of decision-making and
data volume across these three scenarios. For example, when driving straight,
the agent interacts with the environment an average of 894 times per episode.
In the case of a left turn, the agent interacts with the environment an average of
445 times per episode which is only 170 in a right turn. This results in varying
amounts of data obtained per episode across the three driving scenarios, which
can impact the algorithm’s learning effect. Hence, we filter out dimensions with
minimal reward changes and only present those with significant variations in the
above figures.
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Table 4. Performance comparison on convergence speed and communication cost of
our approach, basic FRL, and basic RL for straight driving

Device Algorithm Avg.Rounds Avg.Updates Avg.Edge-Cloud Comm

Edge-1 our approach 11 2.6 25
Basic FRL 12 4.6 36
Basic RL 24 - -

Edge-2 our approach 12 2.6 16
Basic FRL 12 5.2 27
Basic RL 44 - -

Edge-3 our approach 9 2.4 23
Basic FRL 11 5.4 32
Basic RL 20 - -

Table 5. Performance comparison on convergence speed and communication cost of
our approach, basic FRL and basic RL for left turn and right turn

Device Algorithm Left-Turn Right-Turn
Avg.Rounds Avg.Updates Avg.EC Comm Avg. Rounds Avg.Updates Avg.EC Comm

Edge-1 our approach 23 1.2 8 12 1 7
basic FRL 23 2.2 11 20 1.8 9
basic RL 30 - - 22 - -

Edge-2 our approach 21 1 6 13 1 8
basic FRL 24 1.8 13 19 2.2 11
basic RL 25 - - 22 - -

Edge-3 our approach 18 1.2 9 14 1.2 8
basic FRL 24 2.0 14 19 1.4 8
basic RL 27 - - 24 - -

7 Conclusion

This paper proposes a novel framework for fast configuring context-aware per-
sonalized intelligent driver assistance services. It constructs an edge network
model skeleton based on reinforcement learning. It divides the network into gen-
eralization and personalized parts to emphasize the reuse of existing input pro-
cessing units while addressing personalized decision requirements. We compare
the decision-making effects of our approach, basic FRL, and basic RL in three
scenarios: straight, left, and right turns in the CARLA simulator. The exper-
imental results demonstrate that our approach has a significantly faster con-
vergence speed than basic RL. Additionally, compared to basic FRL, there are
fewer local model updates and cloud-edge collaboration communication times,
reducing communication costs. In the future, we plan to consider other types of
inputs, such as images and videos, to investigate the scalability and efficiency of
our approach.
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Abstract. With the development of GPS-enabled smart devices and
wireless networks, mobile crowdsourcing (MCS) has received wide atten-
tion in assigning location-sensitive tasks to mobile users. The task assign-
ment problem, in which tasks are released on the platforms and then
assigned to available users, is a fundamental problem in MCS. How-
ever, existing works generally consider users’ category preference and
mobile preference separately. Ignorance of the correlation between them
could lead to poor assignment results. To this end, We propose a frame-
work, Task Assignment with User Preference Learning, which consists
of two components: 1) Fused User Preference Learning (FUP); and 2)
Preference-Based Task Assignment. The first component called FUP is a
fusion of task-category preference learning and spatial-temporal prefer-
ence learning. For task-category preference learning, we propose a graph
session-based learning model with attention components to exploit users’
sparse historical records. To our knowledge, we are the first to use a
graph session-based learning model to explore task-category preference
in MCS. Meanwhile, we propose an efficient function metric to character-
ize the spatial-temporal preference of users. The second component aims
to achieve effective task assignment, in which we give higher priorities to
users with higher preference scores for the tasks. Extensive evaluations of
real data show the effectiveness and efficiency of the proposed solutions.

Keywords: Task assignment · Mobile crowdsourcing · Preference
learning · Session-based learning

1 Introduction

Mobile crowdsourcing (MCS) is an emergent working mode that decomposes
sophisticated tasks into multiple small and easy tasks and then assigns these
tasks to numerous mobile users (i.e., crowd workers). In recent years, MCS has
become a critical building block for the emerging Internet-of-Things in large-scale
sensing applications, such as road condition monitoring [3], crowdsourcing-aided
positioning systems [8], and smart city planning [1].

The major challenge of MCS is how to assign large-scale tasks to users, i.e.,
task assignment. Task assignment is the process of allocating tasks with unique
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14420, pp. 227–241, 2023.
https://doi.org/10.1007/978-3-031-48424-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48424-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-48424-7_17
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Fig. 1. Illustration of Task Assignment in MCS

characteristics, such as category and location, to users in service who also possess
specific characteristics, such as serviceable distance and personal preference. The
mentioned task-user matching process is implemented on the MCS platform, as
shown in Fig. 1. The MCS platform acts as a broker between the task publish-
ers and users. The task publishers release tasks to be completed with various
requirements to the platform, and users participate through the MCS platform.
After that, the platform matches suitable tasks with users according to their
completed task records, including category, location, and completed time.

There are many existing works on task assignment that attempt to maximize
the number of completed tasks [21], maximize the profit of platform [17], or max-
imize the utility of platform [18]. These works all share the underlying presump-
tion that users are willing to complete the tasks given to them. In practice, this
assumption could oversimplify the complicated behaviors of users [5]. Actually, a
user may not complete the assigned task honestly and promptly when he/she is
not interested, which cannot guarantee the quality of task result. Besides, users’
historical records are usually sparse. To preserve their privacy, most users may
not be ready to submit all of their mobile data, so the preferred category and
spatial-temporal information are recorded only when the user performs a task.
Therefore, it is challenging to precisely profile user preferences based on limited
records. To tackle these issues, we construct category session graphs and propose
a graph session-based model to capture users’ dynamic interest patterns.

Meanwhile, most works on task assignment generally consider users’ cate-
gory preference and mobile preference separately [20,22]. Note that conventional
assignment models infer user preferences based on past task-performance pat-
terns or explicit feedback [9]. Whereas, in MCS, besides the metric of the users’
task-category preferences, we also need to take the spatial-temporal information
of historical task records into consideration, because tasks need to be accom-
plished in a specific location during a valid time. Meanwhile, users have their
own mobile preference and prefer to perform tasks in the vicinity of their fre-
quent locations. Thus, it is necessary to jointly consider task-category preference
and spatial-temporal preference in task assignment.

To address these challenges, we propose a task assignment framework that
considers task-category and spatial-temporal preference to maximize the ratio
of completed tasks. This framework, called Task Assignment with User Prefer-
ence Learning, consists of two components: Fused U ser Preference Learning
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(FUP) and Preference-Based Task Assignment. FUP is a fusion of task-category
preference learning and spatial-temporal learning. Initially, we transform users’
historical records into session graphs and propose a graph session-based learning
model to investigate task-category preference. To our best knowledge, this is the
first work in MCS that learns users’ preferences based on the graph session-based
model. Furthermore, we propose an efficient function metric to obtain more aux-
iliary information for spatial-temporal preference. In the task assignment com-
ponent, we propose a preference-based greedy algorithm and a preference-based
optimized Kuhn-Munkras (KM) algorithm to achieve effective assignment.

To summarize, the main contributions of this work are listed as follows:

– We design a preference learning model, called FUP, which is a fusion of task-
category and spatial-temporal preference learning. We create graph sessions
to assist in discovering the dynamic category preferences of users.

– We propose two task assignment methods, i.e., preference-based greedy and
preference-based optimized KM algorithms, to achieve optimal and efficient
task assignment.

– We conduct extensive experiments on real-world datasets, offering evidence
of the effectiveness and efficiency of the proposed framework.

2 Related Work

There are many previous studies about task assignment in MCS [12]. Kazemi
and Shahabi [6] categorized the MCS based on the publishing mode: server
assigned tasks (SAT) mode [9,22] and worker selected tasks (WST) mode [4], in
which tasks are assigned by the MCS server or chosen by users, respectively. Most
previous research employed SAT mode, in which the MCS server was responsible
for task assignment, but they did not consider whether the task category matched
the users’ preference during the valid time of tasks. Our model follows SAT mode
while considering users’ preferences at the same time.

Recently, some studies have explored the variable preferences of users.
Mavridis et al. [9] and Cheng et al. [2] stated every user’s preference explic-
itly, so there was no uncertainty regarding the user’s preference. ETA2 [20] and
HCTD [22] inferred user preferences from historical task-performing patterns.
ETA2 [20] relied on a novel semantic analysis method to infer user expertise,
estimate truth, and allocate tasks based on the inferred expertise. HCTD [22]
incorporated temporal dynamics in preference inference, which constructed two
3-D tensors about recent and historical task-performing data, and two context
matrices that provided auxiliary information, but assumed that location had
no effect on preference. Moreover, Zhu et al. [23] employed a translation-based
recommendation model to learn spatio-temporal effects from the users’ histori-
cal task-performing activities and then calculate the mobile preference scores of
users.

The above works focus on task assignments that generally consider users’ cat-
egory preference and mobile preference separately. Nevertheless, users’ category
preference and mobile preference are distinct, and ignorance of their combined
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Fig. 2. Framework Overview

effects could reduce the matching number between users and tasks. In this paper,
we propose a task assignment framework that takes into account users’ category
preference and mobile preference simultaneously.

3 Problem Formulation

In this section, we introduce some basic concepts and present the formal defini-
tion of our problem. More specifically, the tasks and users are defined as follows:

Definition 1 (Task). The task set is denoted by R = {r1, · · · , rM}. Each task
rj is characterized by rj = 〈cj , lrj

, pj , ej〉, where cj is the task category, lrj
is the

task location, pj is publication time, and ej is expiration time. For each category
c ∈ C, Rc(Rc ⊆ R) is the task set belonged to category c.

Definition 2 (User). The user set is denoted by U = {u1, · · · , uN}. A user
ui = 〈lui

, sdi, spi, si, Li〉, has a location lui
at the current time instance,

a serviceable distance sdi, a travel speed spi, and a completed task-category
session si = [c1, c2, · · · ] ordered by timestamps, a mobile record Li ={
(li1, t

i
1), (l

i
2, t

i
2), · · ·

}
including check-in location and time.

Definition 3 (Preference-Based Spatial Task Assignment). Given a set
of online users U with recorded data (i.e., historical task records), and a set of
tasks R, our problem is to find a task assignment A that maximizes the ratio of
completed tasks by considering users’ preferences, i.e.,

max
|AR|
|R| (1)

where |AR| denotes the number of completed tasks in assignment A.

4 Methodology

Our framework, called Task Assignment with User Preference Learning, con-
sists of two components: 1) Fused User Preference Learning (FUP) including
task-category preference learning and spatial-temporal preference learning; and
2) Preference-Based Task Assignment, in which we propose preference-based
greedy and preference-based optimized KM algorithms to achieve effective task
assignment (as shown in Fig. 2).
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4.1 Fused User Preference Learning

We aim to learn users’ preferences on task category and spatial-temporal infor-
mation based on the historical data of users, thus we will calculate two preference
scores to judge users’ interests in different tasks and help us to assign tasks to
appropriate users.

Task-Category Preference Learning. Each user corresponds to a list of
completed task-category records. To capture user preferences for different task
categories, we first construct a session graph for each user and utilize the graph
neural network to learn the session embeddings of users. The intricate transi-
tional patterns underlying users’ sessions, which are difficult to be exposed by
conventional sequential methods, could be found using the graph session-based
learning model. Following that, we calculate the user’s preference score pi,j for
different task categories. Figure 3 shows the workflow of task-category learning.

Fig. 3. The Workflow of Task-Category Preference Learning

Constructing Session Graph. Since there are a large number of tasks on the
MCS platform, we want to model the user preference for the task category not
a specific task. Therefore, we construct a session graph based on each user’s
historical completed task category. Specifically, a session s = [c1, c2, · · · , cn]
ordered by timestamps is used to construct a directed session graph Gs = (Cs, Es),
where each node ci ∈ Cs indicates a task category, and each edge (ci−1, ci) ∈ Es

indicates that a user completes a task of category ci after last task of category
ci−1. Since some task categories may appear in the session repeatedly, we assign
each edge with a normalized weight w, which is calculated as the occurrence of
the edge divided by the outdegree of that edge’s start node.

Learning Node Embedding. Graph neural network (GNN) [16] is a class of
widely used deep learning models to capture complex node connections. Fol-
lowing that, we transform each task category node ci into a unified embedding
space. Specifically, we employ gated graph neural networks (GGNNs) [7] to learn
the embeddings e1, · · · ,en, where ei ∈ R

d, d is the embedding size.



232 Y. Ma et al.

Generating Session Embedding. We further investigate users’ short- and
long-term preferences exhibited in the current session s and generate an
enhanced global embedding by aggregating all node representations in a session.

Short-Term Embedding. As the user’s final action is usually determined by her
last action, we simply represent the user’s short-term preference as a short-term
embedding ss as the embedding of last-completed task category cn, i.e., ss = en.

Long-Term Embedding. Users’ long-term preference reflect their average interest.
After obtaining each task category embedding, now we present the key compo-
nent for modeling the long-term sequential dependencies. Specifically, we take
the entire task category sequence as input and encode the preference long-term
embedding representation sl ∈ R

d. The encoding process is carried out by a
soft-attention mechanism and we draw dependencies between the last-visited
task and each task involved in the session, the calculation is defined as follows:

αi = q�σ (W 1en +W 2ei + c) , sl =
sn∑

i=1

αiei (2)

where q, c ∈ R
d and W 1, W 2 ∈ R

d×d are weight parameters.

Enhanced Global Embedding. Here we fully consider the relevance of task cate-
gories and the dynamic evolution of user preference, then introduce a multi-head
self-attention block to calculate an enhanced global embedding. Inspired by the
architecture design of Transformer [13], we map the node embedding into key
and query vector, and calculate dot product as attention. Then we aggregate the
representation constructed by multi-head attention from different subspaces. The
multi-head self-attention block could better learn the dependencies among task
categories and extract transition patterns, the calculation is defined as follows:

headi(Q,K,V ) = softmax(
QK�
√

d/h
)V ,Q = EWQ,K = EWK ,V = EW V(3)

S = Concat(head1, head2, · · · , headh)WO (4)

where WQ, WK , W V ,WO represent the projection matrices, and h represents
the head number. In this way, each task category node learns about its interaction
with other task categories and we obtain new representation S for nodes.

Considering the information in these embedding may have different levels of
priority, we further adopt the soft-attention mechanism to better represent the
global session preference and calculate the enhanced global embedding se by the
average of category representations, which is defined as follows:

F = ReLU(SW 1 + b1)W 2 + b2, se =
1
n

n∑

i=1

f i (5)

where W 1, W 2 are parameter matrices, b1 and b2 are bias vectors. To alleviate
overfitting problems, we apply dropout techniques during training.
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User Session Embedding. Finally, we generate the user session embedding su of
session s by taking linear transformation over the concatenation of the enhanced
global embedding, long-term and short-term embedding:

su = W 3 [se; ss; sl] (6)

where W 3 ∈ R
d×3d projects the concatenated vectors into su ∈ R

d.
Then, we calculate the preference score p(i, c) of user ui on task category c

by taking the inner-product of category embedding ec and user session repre-
sentation su, as follows:

p(i, c) = s�
u ec (7)

whereafter, the task-category preference score of user ui for task rj is obtained
as pi,j = p(i, c), if rj ∈ Rc.

Spatial-Temporal Preference Learning. The task’s location is an essential
factor that might affect the preference of a user for the task. The tasks in the
MCS system are location-dependent, and a user needs to move to a specific
location to contribute his answer data. People usually have their own mobility
laws, and the mobility patterns of users may vary from user to user. Usually,
users prefer the tasks in their neighborhood to save on the cost of the transfer.
In addition, the platform prefers users who are near the newly published task
since they can return results as quickly as possible. Therefore, the matching of
spatial-temporal preference between tasks and users can not only bring benefits
to users but also improve the utility of the platform.

In the MCS system, when a user accomplishes a task, the location and com-
pleted time would be recorded by the platform. The above information would
affect users’ choices for future tasks, and we use those records as check-in infor-
mation to learn the spatial-temporal preference of users. To better learn users’
historical performances, the overall area is divided into H subareas, denoted as
SA = {sa1, · · · , saH}. The user ui’s mobile record containing m check-in ses-
sions is denoted as Li =

{
(li1, t

i
1), (l

i
2, t

i
2), · · · , (lim, tim)

}
, where the check-in time

ti1 < ti2 < · · · < tim. The check-in locations are li1, l
i
2, · · · , lim, and any check-in

location must belong to one subarea.
The users’ check-in locations in frequently visited subareas are indicative of

their own interests, and the preference of the subarea may be measured by the
session interval between the previous check-in and the next check-in. The smaller
session interval between the former check-in and the next check-in indicates the
user could more possibly pass by the former check-in subarea in terms of personal
interests. Since users who check in at different points may be good candidates to
perform tasks in the vicinity of those points, and their current locations are those
of the most recent check-in points. Therefore, we give higher preference priority
to the subarea with smaller check-in interval and higher check-in frequency.

To quantify the weights of subareas, we create a weighting function q(·)
inspired by the logistic function. It decays over the check-in session interval
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between the previous check-in and the next check-in. In particular, the user ui’s
spatial-temporal preference of subarea sah could be defined as

q(i, h) =
m∑

k=1

Isah
(lik)

1

1 + e− m
α(m−k+ε)

, (8)

where α controls the weight of different check-in session intervals of user ui, ε is
a tiny number to prevent potential overflow due to division by zero, which is set
to 10−6 by default. Hence, user ui’s spatial-temporal preference score for each
target task rj can be obtained as qi,j = q(i, h), if lrj

∈ sah.

Fused User Preference Score. So far, we have obtained the two part scores
of the user’s preference. The fused user preference score Score(ui, rj) is a fusion
of task-category preference score pi,j and spatial-temporal preference score qi,j

of user ui to task rj . Here, we employ a linear combination of the two part scores

score(ui, rj) = γpi.j + (1 − γ)qi,j (9)

where γ is a hyperparameter.

4.2 Task Assignment

In this section, we first detail how to generate the available user set for each
task and the serviceable task set for each user, that would be used throughout
the task assignment process, and then propose two algorithms for task assign-
ment, including a Preference-Based Greedy algorithm and a Preference-Based
Optimized KM algorithm.

Available User Set and Serviceable Task Set. Because of the constraints of
users’ serviceable distance as well as tasks’ expiration time, we should consider
spatial-temporal constraints to filter users and tasks. Given a user set U and a
task set R, the available user set for task rj ∈ R and the serviceable task set
for user ui ∈ U are denoted as AU(rj) and ST (ui), respectively. Both AU(rj)
(∀ui ∈ AU(rj), rj ∈ R) and ST (ui) (∀rj ∈ ST (ui), ui ∈ U) should satisfy the
following two conditions:

(1) d(lui
, lrj

) < sdi, and
(2) tnow + d(lui

, lrj
)/spi < ej , where d(lui

, lrj
) represents the distance between

lui
and lrj

(e.g., Euclidean distance).

Preference-Based Greedy Task Assignment. The input of the algorithm
is a user set U and a task set R. During each iteration, the algorithm begins to
randomly select a task r from the remaining ones and assigns the user of AU(r)
with the largest preference score to the selected task, and then adds the matching
to the task assignment A. Finally, we can obtain the final task assignment A.
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Preference-Based Optimized KM Algorithm. Taking users’ preference
scores as the priority, we transform the Preference-Based Task Assignment prob-
lem into a Bipartite Maximum Weight Matching problem and apply the Kuhn-
Munkras (KM) algorithm [10] to solve it.

For an undirected bipartite graph, it is represented by G = (V,E), where
V is the vertex set and E is the edge set. Given a set of users U and a set of
unassigned tasks R, the number of V is equal to the sum of |U | and |R|. For the
vertex construction, the entire vertex set V is divided into two sets V U and V R.
Each user ui maps to a vertex vU

i , and each task rj maps to a vertex vR
j . Due

to the spatial-temporal constraints, we add an edge from vU
i mapped from ui to

the vertex vR
j mapped from rj , if rj can be assigned to ui, i.e., rj ∈ ST (ui). For

each edge (vU
i , vR

j ), its weight (denoted by weight(vU
i , vR

j )) can be measured as
ui’s preference score (Eq. (9)) of task rj , i.e., weight(vU

i , vR
j ) = score(ui, rj).

Algorithm 1: Find Matching (FM) Algorithm
Input: The user ui, the recursion deepth dth
Output: Bool

1 visuser[ui] ← True;
2 if dth > λ then // dth cannot exceed the upper recursion limit λ
3 return False;
4 else
5 for task rj is adjacent to ui in G do
6 if vistask[rj ] then continue;
7 gap ← valuser[ui] + valtask[rj ] − weight(vU

i , vR
j );

8 if gap = 0 then
9 if A[ri] = −1 or FM(A[ri], dth + 1) then

10 A[rj ] = ui; // rj is assigned to ui

11 return True;

12 else slack[rj ] = min(slack[rj ], gap) ;

13 return False; // ui fails to match a task

The Preference-Based Task Assignment problem is now converted into a
Bipartite Maximum Matching problem in the undirected graph G, which is to
achieve the maximum weight matching of G. In our work, we use KM algo-
rithm with a limit of recursion to find the maximal weight matching. For better
understanding, we will first introduce the Find Matching algorithm as shown in
Algorithm 1. Find Matching (FM) algorithm is a depth-first search algorithm to
find a task for a user. In the algorithm, we calculate the difference between the
weight of the edge associated with the two vertices and the sum of the expec-
tations of the user and the task. If the difference is equal to 0, the task can be
assigned to the user (line 8). If the task has been assigned to another user, we
try to assign another task to that user (line 9–11). But the depth of recursion
cannot exceed the upper recursion limit λ (line 2–3).

The Preference-Based Optimized KM algorithm is shown in Algorithm 2.
Given the bipartite graph G, which is composed of two vertex sets V R and V U .
First, for each vertex in V U , its value of expectation is equal to the largest weight
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Algorithm 2: Preference-Based Optimized KM Algorithm
Input: The weighted bipartite graph G
Output: The task assignment A

1 A ← [−1, −1, . . .]; valtask ← [0, 0, . . .]; slack ← [INF, INF, . . .];
2 for user ui ∈ U do
3 valuser[ui] ← max(weight(vU

i , vR
j )); // Initialize expectation value

4 for user ui ∈ U do
5 while valuser[ui] > 0 do // If value is less than 0, stop matching
6 vistask ← [False, False, . . .]; visuser ← [False, False, . . .];
7 if FindMatching(ui, 0) then // Find whether a task matches ui

8 break;
9 else // ui fails to match a task

10 d = INF ;
11 for task rj ∈ R do
12 if !vistask[rj ] then d = min(d, slack[rj ]);

13 if visuser[ui] then valuser[ui]− = d;
14 if vistask[rj ] then valtask[rj ]+ = d;
15 else valtask[rj ]− = d;

16 return A; // The final task assignment result

among the edges associated with it in graph G (lines 2–3). Second, Algorithm 2
recursively finds matching tasks for user ui through the Find Matching function
(line 7). Third, if ui fails to match a task, we adjust the expectations of users
and tasks involved in the last matching to change the competitive relationship
among users so that more users can be assigned (lines 9–15).

The original KM algorithm is used to find the perfect matching of a weighted
bipartite graph, and it will not stop trying to match tasks for a user until a
successful match, which may cause an endless loop in our problem. However,
considering that perfect matching may not exist in a user-task bipartite graph, we
propose some optimization strategies to improve the KM algorithm. Therefore,
if the expectation value is less than 0 in Algorithm 2, we stop matching (line 5).

5 Experiments

In this section, we implement and evaluate the performance of our proposed
methods. We first conduct the experiments on user task-category preference
learning, and then further examine the performance of task assignment.

5.1 Datasets and Experiment Setting

We conduct evaluations on the real-world datasets crawled from Foursquare [19],
which are widely used in the MSC task assignment [22,23]. Here we choose six-
month data (from 1 May 2012 to 30 November 2012) of the Foursquare datasets
in New York City (NYC) and Tokyo (TKY), which contain check-ins with times-
tamps, GPS coordinates, and venue categories. We use the venue categories to
represent the task categories, and check-in information represents the users’ his-
torical task records. To ensure fair comparison, we exclude users with session
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lengths less than 10 and venue categories that appear less than 10 times. The
remaining 133, 518 check-ins and 317 venue categories are in Foursquare-NYC,
and 340, 260 check-ins and 293 venue categories are in Foursquare-TKY.

We set the dimensionality of embedding latent vectors d = 100 and set h = 4.
All parameters are initialized using a Gaussian distribution with a mean of 0
and a standard deviation of 0.1. The mini-batch Adam optimizer is exerted to
optimize these parameters, where the initial learning rate is set to 0.01 and decays
by 0.1 after every 3 epochs. At the same time, the l2 regularization parameter
is set to 10−5 to alleviate overfitting.

5.2 Experiment Results

The Correlation Between Two Part Preferences. Here, we investigate
the correlation between task-category preference and spatial-temporal prefer-
ence on Foursquare-NYC dataset, and the experimental results are presented
by histogram, as shown in Fig. 4. We use the Pearson correlation coefficient
(PCC) [11] to measure the linear correlation of the two part preference scores.
From Fig. 4, we can see that the correlation values concentrate between −0.2 and
0.2 with a probability higher than 90%, and there is no obvious linear correlation
between the two preferences. Therefore, it is reasonable that we model the two
part preferences separately.

Fig. 4. Histogram of PCC Fig. 5. Experiments on
Task-Category Preference

Fig. 6. Experiments on Para-
meter Setting

Experiments on Task-Category Preference Learning. We first evaluate
the performance of our proposed task-category preference learning mechanism.

Evaluation Methods. The methods are as followed:

1) HCTD: The latest HCTD [22] models users’ temporal preferences by History-
based Context-aware Tensor Decomposition.

2) SR-GNN: SR-GNN [15] is a classical session-based learning model.
3) FUP: The task-category preference learning part of FUP (i.e., γ = 1) is

detailed in Sect. 4.1.
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Metrics. To evaluate the accuracy of user task-category preference learning, we
use P@K and MRR@K as the evaluation metrics. P@K (Precision) metric takes
into account the accuracy of predicted tasks. MRR@K (Mean Reciprocal Rank)
takes the predicted task ranks into account.

Results. The performance comparison of three methods is shown in Fig. 5.
We generate the Top-5 task categories with the highest preference scores on
Foursquare-NYC and Foursquare-TKY datasets, and we can observe that four
metrics of our model FUP are superior to two benchmarks HCTD and SR-GNN
on category preference learning. As we can see, our method achieves the best
performance on task-category preference learning in terms of P@5 and MRR@5.
Moreover, the accuracy of Foursquare-TKY is higher than Foursquare-NYC
among all of the models, we conjecture that Tokyo users’ task-category pref-
erences have stronger regularities than New York users.

Experiments on Parameter Setting. To learn the influence of the parameter
setting on model performance, we provide each user with a list of 5 tasks with
the highest preference scores and check whether the user chooses those tasks
in the next action. We adopt the commonly-used metric P@5 (Precision) for
evaluation. The choices for the hyperparameters are made by grid search.

As shown in Fig. 6, the parameter γ is set from 0 to 0.9 (the results of γ = 1
are not shown, because the target tasks in the same category are so numerous
that P@5 is low only by category preference). The partition number of the area
is set from 100 to 800, which means the whole area is divided into 100 × 100
to 800 × 800 girds. The value of P@5 grows with the grid number when it is
less than 700. Furthermore, the performance of FUP does not improve anymore,
when the gird number is greater than 700. The above results show that when
the divided subareas are extremely small, the accuracy of the model would be
affected. When the parameter γ = 0.5 and the grid number is 700, P@5 is the
highest. Besides, we could see that the fused strategy of task-category preference
and spatial-temporal preference is better than the task-category preference- or
spatial-temporal preference-only strategy. Motivated by the results in Fig. 6, we
set γ = 0.5 and the grid number is 700 in the following experiments.

Performance of Task Assignment. We proceed to study the performance of
the task assignment on Foursquare-NYC dataset. Table 1 shows our experimental
settings, where the default values of all parameters are in bold. Besides, the speed
of users is set to 40 km/h and the serviceable distance of users is 1 km.

Table 1. Experiment Parameters for Task Assignment

Parameter Values

Number of Tasks M 1000, 2000, 3000, 4000, 5000
Number of Users N 1000, 2000, 3000, 4000, 5000
Valid Time of Tasks e− p (h) 0.01, 0.02, 0.1, 0.3, 0.5
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Evaluation Methods. We study the following task assignment algorithms.

1) PAR-Greedy [14]: The task assignment algorithm iteratively selects worker-
task pairs with the maximum utility increase.

2) PTA [22]: The task assignment algorithm with users’ temporal preferences
calculated by the HCTD method.

3) FUP+GD: The Greedy algorithm with users’ preference calculated by FUP.
4) FUP+KM: The Optimized KM algorithm with users’ preferences by FUP.
5) FUP_TC+KM: The Optimized KM algorithm with users’ preferences calcu-

lated by the task-category preference component of FUP.
6) FUP_ST+KM: The Optimized KM algorithm with users’ preferences calcu-

lated by the spatial-temporal preference component of FUP.

Metrics. The two main metrics are compared among the above algorithms, i.e.,
the number of allocated tasks, and the assignment success rate which is the
ratio of successful assignments to the total tasks in a certain time instance. In
our experiments, if a user performs tasks with the same category in the following
three tasks, the assignment of this task can be considered successful.

Fig. 7. Comparison on Allocated Task Number with Various M , N , and e− p

Fig. 8. Comparison on Assignment Success Rate with Various M , N , and e− p
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Effect of M . First, we study the effect of the number of tasks M . In Fig. 7(a),
the number of allocated tasks assigned by KM is slightly more than those of
greedy-based algorithms, which sacrifice the task assignment number in order to
improve the total preferences of users. In addition, with the increase of M , the
assignment success rate shows a declining trend in Fig. 8(a), due to the limited
number of users. As the task number increases, there are a large number of
tasks without users to match, which would decrease the assignment success rate.
Meanwhile, FUP+KM performs better than FUP_TC+KM and FUP_ST+KM
in terms of assignment success rate, indicating that ignorance of the combined
effects of two preferences would negatively impact assignment efficiency.

Effect of N . Next, we evaluate the effect of user number N . In Fig. 7(b),
the number of allocated tasks increases with the increase of N . In Fig. 8(b),
the assignment success rate exhibits an upward trend as the number of users
increases, and all preference-based algorithms maintain a high assignment suc-
cess rate. In summary, FUP+KM obtains the highest assignment success rate.

Effect of e− p. We then evaluate the effect of tasks’ valid time e− p. As shown
in Fig. 7(c), with e − p increasing, the number of task assignments increases
since users are more likely to be assigned their interested tasks with more tasks
available. In Fig. 8(c), FUP+KM achieves the highest assignment success rate,
which shows the importance of considering preferences. Besides, as the valid time
of tasks extends, the performance gap between FUP+KM and other baselines
becomes larger.

6 Conclusion

In this paper, we present solutions to a problem referred to as Preference-Based
Saptial Task Assignment in MCS, which aims to maximize the ratio of completed
tasks through user preference learning. We propose a framework, Task Assign-
ment with User Preference Learning, that consists of two components: FUP and
Preference-Based Task Assignment. FUP is the fusion of task-category prefer-
ence learning and spatial-temporal preference learning based on historical session
records. To our knowledge, we are the first to employ the graph session-based
learning model to characterize user preferences. In the Preference-Based Task
Assignment component, tasks are assigned to users with higher preference scores
first, so that the task assignment can achieve a higher success rate. Extensive
experiments on real data demonstrate the effectiveness of our proposed solutions.
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Abstract. Deep neural network (DNN) inference service at the edge is
promising, but it is still non-trivial to achieve high-throughput for multi-
DNN model deployment on resource-constrained edge devices. Further-
more, an edge inference service system must respond to requests with
bounded latency to maintain a consistent service-level objective (SLO).
To address these challenges, we propose Octopus, a flexible and adaptive
SLO-aware progressive inference scheduling framework to support both
computer vision (CV) and natural language processing (NLP) DNN mod-
els on a multi-tenant heterogeneous edge cluster. Our deep reinforcement
learning-based scheduler can automatically determine the optimal joint
configuration of 1) DNN batch size, 2) DNN model exit point, and 3)
edge node dispatching for each inference request to maximize the overall
throughput of edge clusters. We evaluate Octopus using representative
CV and NLP DNN models on an edge cluster with various heterogeneous
devices. Our extensive experiments reveal that Octopus is adaptive to
various requests and dynamic networks, achieving up to a 3.3× improve-
ment in overall throughput compared to state-of-the-art schemes while
satisfying soft SLO and maintaining high inference accuracy.

Keywords: Edge computing · Progressive inference · Deep
reinforcement learning · Multi-tenant

1 Introduction

Recent advancements in deep learning and Internet of Things (IoT) have facil-
itated the development of various edge intelligence applications [25], such as
autonomous driving [20] and augmented reality [14]. These applications utilize
deep neural network (DNN) models to perform various complex tasks. However,
it is non-trivial to deploy compute-intensive DNN models to IoT devices due to
limited resources. In this case, edge computing [18] has emerged as a promising
paradigm for providing low-latency inference services by deploying models to
edge devices, which are in closer proximity to users than cloud servers [1].
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As shown in Fig. 1, an edge inference service usually involves a multi-tenant
environment [6] comprised of various IoT devices. These IoT devices send their
inference requests to a nearby edge device, or in our case an edge cluster, on which
computing resources are allocated among multiple tenants and DNN models.
Existing edge inference serving systems adopt a wide range of approaches to
process as many requests as possible, i.e., achieve high throughput on resource-
constrained edge devices. For instance, DeepRT [23] adopts batching to provide
soft real-time inference services. Edgent [11] leverages multi-exit DNN models
for collaborative inference. MAEL [17] uses cross-processor scheduling to satisfy
service level objectives (SLO) of various requests. Indeed, a high-throughput edge
inference serving system needs to trade-off among inference accuracy, latency
and throughput. However, none of the works mentioned above targets inference
serving on an edge cluster, which poses new challenges in optimizing in multi-
dimensional search spaces.

An edge cluster equipped with GPUs located close to user devices can be used
to improve throughput of DNN inference serving. Furthermore, edge inference
services must be flexible to accommodate SLO budget, heterogeneous hardware
accelerator, and inference accuracy requirement. Thus, for an SLO-aware infer-
ence serving system on an edge cluster, the scheduler should be capable of dis-
patching inference requests from IoT devices to appropriate edge nodes, where
multiple DNN models are deployed, to satisfy different SLOs while maintaining
high inference accuracy.

Fig. 1. Deep learning (DL) inference serving on a multi-tenant edge cluster.

To address these challenges, we propose Octopus, the first progressive infer-
ence serving system designed for a multi-tenant edge cluster, which aims at
maximizing the overall throughput of the edge cluster while satisfying soft SLO
budget and inference accuracy. Octopus adopts the multi-exit DNN inference
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approach [19], i.e., progressive inference, a mechanism that enables early exit
at different points during DNN inference [10], given the request budget. The
scheduler in Octopus utilizes deep reinforcement learning to efficiently schedule
resources for inference requests. More precisely, Octopus automatically learns
the optimal joint configuration of exit point, batch size, and node dispatching, in
order to provide high-throughput progressive inference serving while taking into
account SLO and accuracy budget. Additionally, the latency predictor in Octo-
pus leverages an attention-based long short-term memory (LSTM) to achieve
SLO awareness, and ensure bounded response latency for inference requests.

Overall, this paper makes the following contributions:

– We propose a novel multi-exit DNN-based progressive edge inference serving
system, aiming to maximize the overall throughput of a heterogeneous edge
cluster while satisfying SLO budget and maintaining high accuracy.

– We design a deep reinforcement learning-based scheduler that automatically
co-optimizes a three-dimensional search space with batch size, exit point,
and node dispatching to provide high-throughput inference services for multi-
tenant edge intelligence applications.

– We implement a system prototype of Octopus on a heterogeneous edge cluster,
deploying three representative CV and NLP DNN models. Extensive evalua-
tions show that Octopus achieves up to 3.3× in overall throughput compared
to state-of-the-art schemes, while maintaining high inference accuracy and
low SLO violation rate below 5%.

The rest of this paper is organized as follows: Sect. 2 introduces related work.
Section 3 illustrates the system architecture and formulates the optimization
problem. Section 4 proposes an SLO-aware latency predictor. Section 5 details the
design of the learning-based scheduler. Section 6 provides the system prototype
and performance comparison. Section 7 summarizes our work.

2 Related Work

Edge inference services have recently attracted great attention among researchers.
Prior work utilizes multi-exit DNN to efficiently share limited resources on edge
devices. For instance,Delen [12] adoptsmulti-exitDNN to adaptively control infer-
ence requests with SLO, accuracy, and energy budget. Edgent [11] leverages an
early exit mechanism to achieves collaborative inference between end devices and
edge servers, balancing latency and accuracy. MAMO [3] proposes a bidirectional
dynamic programming approach to determine the optimal exit point, and utilizes
deep reinforcement learning to co-optimize resource allocation and model par-
titioning. However, none of these works provides SLO budget. In practice, edge
devices must respond to inference requests within bounded latency, so as to pro-
vide QoS consistent with SLO budget.

Prior work also proposes various scheduling algorithms for single-device edge
inference services. For instance, DeepRT [23] proposes a scheduler based on
earliest-deadline-first (EDF) [4], which aims to provide soft real-time inference
services. Jellyfish [16] leverages dynamic programming that adapt input data and
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DNNs, so as to provide soft SLOs while maintaining high accuracy. HiTDL [22]
proposes a latency-based performance model that considers resource availability,
DNN exit points, and cross-DNN interference, in order to improve throughput
while satisfying SLO. However, these works only provide limited inference ser-
vices due to the lack of an efficient resource sharing.

Additionally, some research focus on scheduling heterogeneous multiproces-
sor to provide on-device edge inference. For instance, BlastNet [13] introduces
a priority-driven algorithm for block-level scheduling across CPU-GPU proces-
sors. Similarly, Band [9] schedules the subgraphs of DNN model on heterogeneous
multiprocessor to coordinate multi-DNN inference. MAEL [17] proposes a het-
erogeneous multiprocessor-aware scheduling strategy for edge devices equipped
with CPU, GPU, and DSP, using a minimum-average-expected-latency algo-
rithm to satisfy SLO while reducing energy consumption. Note that these works
are orthogonal to Octopus, which can be used to further improve throughput.

3 System Architecture and Problem Formulation

In this section, we illustrate the workflow procedure of our proposed progressive
inference serving framework for multi-tenant edge cluster, and formulate the
scheduling problem as an optimization problem.

3.1 System Overview

Figure 2 shows an overview of the proposed Octopus system, which comprises
multiple clients and an edge cluster with heterogeneous devices. When multiple
clients ❶ send batch inference requests to the edge cluster via a network, the
monitor ❷ in Octopus generates configuration files that specify the SLO budget
and accuracy threshold for each request. Meanwhile, the latency predictor ❸ uti-
lizes historical data to estimate the end-to-end latency of subsequent requests,
thereby achieving SLO awareness (Sect. 4). The learning-based scheduler ❹ then
learns the optimal batch size, exit point, and node dispatching for each request
based on the collected request information and predicted latency (Sect. 5). Next,
each edge node ❺ deploys multi-exit DNN models using the joint optimal con-
figuration from the scheduler. Finally, the inference results ❻ are sent back to
clients, thus completing an end-to-end inference request.

Fig. 2. Overview of Octopus system architecture.



246 Z. Zhang et al.

3.2 Problem Formulation

Let K = {1, 2, . . . ,K} represent the set of inference requests. Each request k ∈ K

has its input data size Dk, network bandwidth Bk, expected accuracy ξk, request
rate τk and SLO budget sk. The edge cluster comprises multiple heterogeneous
edge nodes, denoted as N = {1, 2, . . . , N}, The computility (i.e., floating point
operations per second) and hardware clock frequency of each edge node n ∈ N are
represented by Cn and fn, respectively. The higher the hardware clock frequency,
the bigger the computility. An ensemble of domain-specific DNN models (such as
CV and NLP) forms a DNN Zoo, denoted as M = {1, 2, . . . ,M}. The inference
latency of each DNN model m ∈ M is related to the batch size b and exit point q.
The set of batch sizes is denoted as B = {1, 2, . . . , B}. The larger the batch size,
the higher the throughput. The set of exit points for a DNN model is denoted
as Q = {1, 2, . . . , Q}. Each exit point q(q ∈ Q) is sorted in ascending order
according to inference latency. Note that the later the exit point, the higher the
latency and the accuracy.

The end-to-end latency of the i-th request k comprises network latency and
inference latency. More precisely, network latency is modeled as a function of
input data size Dk and network bandwidth Bk. Inference latency is related to
the input data size Dk, the computility Cn and the clock frequency fn of each
edge node, and the batch size bk, which can be formulated as:

tk(b, n,m, q) =
Dk

Bk
+

Dk · Cn

fk · bk
, (1)

Inspired by [16], we introduce a binary decision variable ψb,n,m,q ∈ {0, 1} to
indicate whether a request k is dispatched to DNN m with exit point q and batch
size b deployed on edge node n. We first model the throughput on a single edge
node. Each edge node deploys multiple DNN models with varying exit points
and batch sizes. The throughput of each node processing K inference requests
can be formulated as:

rpsk(b, n,m, q) =
K

∑
K tk(b, n,m, q)

· ψb,n,m,q, (2)

The goal of Octopus is to maximize the overall throughput of the edge cluster
while satisfying the SLO budget and maintaining high accuracy for each inference
request. Based on the throughput of an individual edge node as defined in Eq. (2),
the scheduling problem can be formulated as:

min
ψ

∑N
n=1 rpsk(b, n,m, q) · τk · ψb,n,m,q (3)

s.t.
∑B

b=1

∑N
n=1

∑M
m=1

∑Q
q=1 ψb,n,m,q = 1,∀k ∈ K (4)

ITAk(b, n,m, q) ≥ ξk,∀k ∈ K (5)
tk(b, n,m, q) ≤ sk,∀k ∈ K (6)
τk · ψb,n,m,q ≤ rpsk(b, n,m, q),∀k ∈ K (7)
ψb,n,m,q ∈ {0, 1},∀b ∈ B,∀n ∈ N,∀m ∈ M,∀q ∈ Q (8)
ModelSize(mq) + PeakSize(mq) + BufSize(mq) ≤ Memoryn

avl (9)
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where Eq. (3) defines the maximizing overall throughput as the optimization
objective. Equation (4) ensures that each inference request can only be dis-
patched to a single edge node. ITAk(b, n,m, q) is the inference-to-accuracy of
request k on DNN mq deployed on node n with exit point q. Equation (5) spec-
ifies that ITAk(b, n,m, q) is higher than the accuracy budget ξk. Equation (6)
enforces latency budget, that is, the end-to-end latency should not exceed the
SLO budget. Equation (7) ensures that each edge node has enough resources
to support batch inference. Equation (8) illustrates that the dispatch of request
is a binary variable, meaning that a DNN model cannot be partitioned for dis-
tributed inference. Equation (9) considers the limited memory resources of edge
nodes. Since multi-exit DNN models require intensive memory for inference [8], it
is necessary to load the weight matrix ModelSize(mq), the intermediate feature
matrix PeakSize(mq), and the buffer size BufSize(mq) into memory to speed
up inference. The total memory requirement should not exceed the available
memory of the edge device Memoryn

avl.

4 SLO-Aware Latency Predictor

Octopus predicts the latency of the current batch requests based on the pre-
vious batches. Prior work [5] has revealed that DNN inference is highly pre-
dictable. Importantly, there is a highly correlated temporal relationship between
consecutive requests, such as video streams for object monitoring. Attention
mechanism [21] and long short-term memory (LSTM) [7] have shown impressive
effectiveness in predicting long- and short-term time series data, respectively.
Inspired by [24], we adopt an attention-based LSTM as latency predictor, to
achieve SLO-awareness for batch requests. The latency predictor aims to mini-
mize the error between the predicted and actual latency for batch requests:

min
σ

L(L̂t
b, L

t
b) = min

∑
b[(l̂

t
b − ltb)

2] (10)

s.t. L̂t
b = f({lt−N

b , lt−N+1
b , , lt−1

b , . . . }, σ) (11)

where Lt
b is the actual latency of batch requests with batch size b at time slot

t, and L̂t
b is the corresponding predicted latency. ltb and l̂tb represent the actual

and predicted latency of the b-th inference request in the batch requests, respec-
tively. σ is the LSTM parameter, and N represents the number of previous batch
requests used in the prediction network f(·).

As shown in Fig. 3, the attention-based LSTM-based latency predictor is
composed of an encoder, an attention module and a decoder.

Encoder. The encoder is implemented using a two-layer LSTM. To accurately
predict the latency of the b-th request in the current batch requests, the encoder
takes as input the latency corresponding to the b-th request in the past N batches
of requests, and encodes it into a feature map {Yt}:

Yt = f(Yt1 , L
N
b ) (12)



248 Z. Zhang et al.

Fig. 3. Overview of the attention-based LSTM for latency predictor.

where f(·, ·) denotes the LSTM network.

Attention Module. We use an attention module with a fully-connected layer
to evaluate the importance of encoded feature maps. The weight of the feature
map generated by the attention module can be formulated as:

μt = W1 tanh(W2[Y ; cN−1;hN−1]) (13)

β(Attn)t =
exp (μt)

∑
t exp (μt)

(14)

where [Y ; c(N − 1);h(N − 1)] represents the encoder output Y , the state vector
c(N − 1) of decoder unit, and the hidden state vector of decoder h(N − 1). W1

and W2 are the weights that need to be optimized. β(Attn)t is the normalized
weight of different feature maps. The context vector c(N −1) is used to evaluate
the contribution of each feature map.

Decoder. The decoder is implemented using two fully-connected layers and an
LSTM, which processes the context vectors.

5 Learning-Based Scheduler

Complexity Analysis: Octopus aims to find the optimal batch size, exit point
and node assignment for each inference request to maximize the overall through-
put of the edge cluster. The challenge with the three-dimensional scheduling
space for Octopus is that scheduling decisions are affected by several interde-
pendent variables. More precisely, the batch size and exit point depend on the
computing resources of the allocated nodes to ensure SLO and accuracy. To rep-
resent the search space, suppose Q is the number of exit points in a DNN model,
M is the number of DNN models to serve, and B is the number of batch sizes
on each multi-exit DNN model. Therefore, there are a total of BMQM possible
options to configure M DNN models. Since there are N edge nodes in an edge
cluster, the complexity of the search space is as follows:

Total Search Space = O(NQMBM ) (15)
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Solving such a huge search space is non-trivial. Exhaustively search and
heuristic-based approaches are unable to handle the problem in polynomial time.
In contrast, deep reinforcement learning (DRL) considers the impact of current
decisions on future outcomes by using Markov decision process (MDP), and
learns the optimal policy to maximize cumulative returns, enabling it to be
suitable for complex decision problems in multi-dimensional search spaces. Con-
sequently, we propose leveraging DRL to automatically learn the optimal joint
configuration of batch size, exit point, and node dispatching.

Markov Decision Process. In DRL, the agent continuously interacts with the
environment and makes decisions via a policy, which is achieved using Markov
decision process (MDP). Consequently, we first transform the scheduling problem
in Eq. (3) into an MDP. An MDP can be represented as a three-tuple: state space
S, action space A and reward function r, which are described as follows:

– State: At each scheduling time slot t, the agent in DRL constructs a state
st(st ∈ S) to periodically collect the information of inference requests. We
define the state st using four components: (I) Input data size Dt. (II) Band-
width Bk. (III) Request rate τk. (IV) Predicted latency L̂N+1

b .
– Action: The action represents a decision made by the agent based on the

current state. We define the action as the choosing of the appropriate batch
size b, exit point q, and edge node n for each multi-exit DNN model, which
can be denoted as at = (b, q, n).

– Reward: The agent aims to maximize the cumulative expected reward
E

[∑T
t=0 γtrt

]
, where γ ∈ [0, 1] is a discount factor. rt denotes the imme-

diate reward obtained when the agent executes inference after choosing the
appropriate batch size, exit point, and edge node. We define the reward func-
tion rt using the accuracy τk and SLO violation rate sk, based on Eq. (3):

rt(ξ; η) =
1

1 + e−ξ/η

∑N
n=1 rpsk(b, n,m, q) · τk · ψb,n,m,q (16)

Maximum Entropy Reinforcement Learning-Based Scheduling Algo-
rithm. Our proposed scheduling algorithm is based on the discrete soft Actor-
Critic (SAC) [2] framework. SAC is maximum entropy DRL algorithm, which
aims to maximize both the reward and the entropy of the visited states, enabling
the agent in DRL to learn more near-optimal actions and accelerating the learn-
ing process. Meanwhile, it also allows the agent to explore a larger search space
and enhances the robustness of the system.

The policy π is the function that determines the next action chosen by the
agent based on current state. The optimal strategy π∗ can be formulated as:

π∗ = argmax
π

∑T
t=0 E(st,at)∼ρπ

[r(st, at) + αH(π(· | st))] (17)

where ρπ is the trace distribution generated by the policy π. α is the temperature
parameter that balances the relative importance of entropy and reward. H(π(· |
st)) = − log π(· | st) denotes the entropy of policy π with state st.
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We utilize soft policy iteration [2] to achieve the optimal policy, which con-
sists of soft policy evaluation and soft policy improvement. These two steps are
alternated during the training process.

Soft policy evaluation involves the calculation of the policy value, that is,
soft state value function (V-function) and soft action-state value function (Q-
function). The discrete V-function with entropy is defined as:

V (st) := π (st)
T [Q (st) − α log (π (st))] (18)

We then obtain the soft Q-function using the soft Bellman equation:

T πQ (st,at) � r (st,at) + γEst+1∼p [V (st+1)] (19)

where Tπ is the modified Bellman backup operator. Based on the soft Bellman
equation in Eq. (19), soft policy evaluation can converge to the soft Q-function
of the optimal policy π∗ under limited state and action spaces.

We update the policy using the following soft policy improvement:

πnew = arg min
π′∈Π

DKL

(

π′ (· | st) ‖
exp

(
1
αQπold (st, ·)

)

Zπold (st)

)

(20)

where DKL denotes the KL divergence, and Zπold(st) is the partition function.
In our approach, we utilize two Q-networks, and for each training step, we

select the network with the lower Q-value, in order to alleviate the overesti-
mation of Q-values. The loss function of any Q-network LQ(θ) is calculated by
minimizing the soft Bellman residual in Eq. (19):

LQ(θ) = E(st,at)∼D,at+1∼πθ(·|st+1)[
1
2
(Qθ(st, at) − (r(st, at)

+ γ(min
j=1,2

Qθj
(st+1, at+1) − α logπ(at+1 | st+1))))2]

(21)

where D is the replay buffer that used to store the collected historical traces. To
facilitate more stable training, we utilize two target Q-networks Q̄θ̄j

(j = 1, 2)
that correspond to the two Q-networks used to calculate Q-values.

The loss function of policy Lπ(ϕ) is calculated by minimizing the KL diver-
gence in Eq. (20):

Lπ(ϕ) = Est∼D

[
πt (st)

T [α log (πϕ (st)) − Qθ (st)]
]

(22)

Note that it is critical to choose the appropriate temperature parameter α.
For instance, in states where the optimal action is highly uncertain, the impor-
tance of entropy should be increased. As a reference [2], the loss function of the
temperature parameter Lα is formulated as:

Lα = πt(st)T [−α(log(πt(st)) + H̄)] (23)

where H̄ is a constant vector. More precisely, when the entropy of the policy
is lower than H̄, the loss function L(α) will increase the value of α, thereby
enhancing the importance of entropy during training.



Octopus: SLO-Aware Progressive Inference Serving 251

Algorithm 1 provides an overview of our proposed learning-based scheduling
search algorithm. We take as input the request information collected by the pro-
filer and the latency predicted by the latency predictor. Before training, we first
initialize all network weights and the replay buffer (line 1∼3 ). For each training
episode, we take the current request as the initial state of the environment (line
5 ). At each environment step, we select an action at (line 7 ) based on the current
policy πϕ(at | st), and execute the action while receiving a reward (line 8 ). Next,
the scheduler feeds back the decisions made by the DRL to the corresponding
edge nodes for progressive inference (line 9 ). When inference is complete, DRL
updates the environment state (line 10 ) while storing the current trajectory in
the replay buffer (line 11 ). For each gradient step, we calculate the soft state
value and Q value by random sampling (line 14∼15 ), and update all network
weights and the temperature parameter (line 16∼19 ). As this process repeats,
the learning-based algorithm eventually converges on the optimal policy that
maximizes the overall throughput of the edge cluster.

Algorithm 1: Learning-based scheduling search algorithm.
Input : set of requests K = {1, 2, . . . , K}, information per request k with

input data size Dk, bandwidth Bk, predicted latency L̂N
b and request

rate τk, target budget with accuracy ξk and SLO sk

Output: the optimal schedule {bk, nk, qk} for each request k
1 Initialize actor network π(s | ϕ) with ϕ and critic network Qθ1 , Qθ2 with θ1 and

θ2, respectively
2 Initialize target network Q̄θ̄1

, Q̄θ̄2
: θ̄1 ← θ1, θ̄2 ← θ2

3 Initialize an empty replay buffer D ← ∅
4 for each epoch e = 1 → E do
5 Generate current request k(Dk, Bk, tauk, L̂N

b ) with target budget {τk, sk} as
the initial state of the environment s1

6 for each environment step t = 1 → T do
7 Sample action at = st(bk, nk, qk) ∼ πϕ(at | st)
8 Execute action at and obtain instant reward rt (at | st) using Eq. (16)
9 Execute progressive inference with action at(bk, nk, qk)

10 Update state st ← st+1

11 Store the transition (st, at, r(st, at), st+1) in the replay buffer D
12 end
13 for each gradient step g = 1 → G do
14 Sample transition from the environment st+1 ∼ p(st+1 | st, at)
15 Calculate the soft state value V (st) with policy π using Eq. (18) and

the soft Q-function Q(st, at) using Eq. (19), respectively
16 Update critic network weights θi for i ∈ {1, 2} using Eq. (21)
17 Update actor network weight ϕ using Eq. (22)
18 Update temperature parameter α using Eq. (23)
19 Update target network weights Q̄θ̄1

← λQθi + (1 − λ)Q̄θ̄1
for i ∈ {1, 2}

20 end
21 end
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6 Prototype and Performance Evaluation

6.1 Implementation

Octopus Prototype. Octopus is implemented using PyTorch. We use an
NVIDIA Xavier NX as the master node to receive inference requests from multi-
ple clients. Additionally, we employ three heterogeneous edge devices as nodes to
execute inference for specific multi-exit DNN models. The detailed configurations
of each edge device are detailed in Table 1. For offline training of Algorithm 1,
we use an edge server equipped with four NVIDIA GeForce GTX 3080 GPUs,
using a mini-batch size of 128 for 2000 epochs. All networks are trained using
the Adam optimizer with a learning rate of 10−3. Each network comprises a
two-layer ReLU neural network with 64 and 32 hidden units, respectively. The
size of the replay buffer is fixed at 106. The trained learning-based scheduler is
ultimately deployed online on the master node.

Table 1. The detailed configurations of edge devices.

Edge Device CPU GPU Memory Computility

NVIDIA Jetson Nano ARM Cortex-A57 128-core Maxwell 4 GB 0.47TFLOPS
NVIDIA Jetson TX2 ARM Cortex-A57 256-core Pascal 8 GB 1.33TFLOPS
NVIDIA Xavier NX Carmel ARMv8.2 384-core Volta 8 GB 21TOPS

DNN Zoo and Datasets. Three domain-specific DNN models are used to pro-
cess image and speech data, as summarized in Table 2. We adopt the BranchyNet
framework [19], which supports multi-exit DNN training with five early exit
points per DNN model. The DNN Zoo, comprising these multi-exit DNN mod-
els, is deployed on each edge node.

Table 2. The specific information for inference requests.

Request Type DNN Model Dataset SLO(ms) Accuracy(%)

Object Detection YOLOv4-Tiny VOC-2012 50 64.31
Semantic Segmentation EfficientViT-B1 Cityscapes 75 81.65
Natural Language Processing BERT-Base SQuAD v1.1 25 79.52

Baselines. We compare Octopus with three baselines: DeepRT [23] develops a
soft real-time scheduler for single edge device that leverages earliest-deadline-
first (EDF) [4] to schedule batch requests. DINA [15] utilizes matching theory
to achieve distributed inference with adaptive DNN partitioning and offloading.
Edgent [11] proposes a regression-based predictive model for multi-exit DNN
inference through device-edge synergy. Since our proposed Octopus is the first
framework for multi-tenant progressive inference serving on heterogeneous edge
clusters, we scale three baselines to the edge cluster in Table 1 and compare the
sum of their throughput on each edge node, for a fair comparison.
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Workloads and Network. We synthesize workloads using the three datasets
detailed in Table 2, and use three Jetson Nano edge devices as multi-clients
to generate inference requests based on these synthetic workloads. Note that
inference requests arrive randomly to simulate the real-world applications, and
each client always submits inference requests for a specific DNN model. The
default request rate is fixed at 30rps, unless otherwise specified. Besides, we
use WiFi to connect clients and edge devices, with available bandwidth ranging
from 2Mbps to 24Mbps to simulate fluctuations in dynamic network conditions.

6.2 End-to-End Performance

Overall Throughput Improvement. As shown in Fig. 4(a), the overall
throughput of Octopus, as detailed in Table 2, consistently outperforms the
baselines. More precisely, Octopus achieves 1.3×–3.3× improvement in over-
all throughput. Although DeepRT utilizes batching to improve throughput, it
suffers from resource-constrained edge devices and high memory overhead asso-
ciated with executing entire DNN models. As a result, its throughput is lower
than those of the two multi-exit DNN-based methods, Edgent and DINA, which
do not utilize batching. Octopus takes advantage of both batching and multi-exit
inference to improve the overall throughput of the edge cluster while significantly
reducing resource occupancy.

SLO Violation Rate. We also analyzed the SLO violation rate of Octopus
at a request rate of 30rps. As shown in Fig. 4(b), Octopus exhibits the lowest
SLO violation rate, below 5%, thanks to its SLO-aware latency predictor. The
admission control module in DeepRT aims to reduce the SLO violation rate by
analyzing the schedulability of inference requests, but it ignores the temporal
relationship between inference requests, resulting in a higher SLO violation rate
than Octopus. Edgent and DINA do not focus on SLO awareness for inference
requests, and thus have significantly higher SLO violation rates.

Fig. 4. The end-to-end performance of Octopus.
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6.3 Visualization of Scheduler in Three-Dimensional Search Space

As shown in Fig. 5(a), within the complex three-dimensional search space, the
scheduler chooses the Jetson Nano with the lowest computility, a moderate batch
size, and a moderate exit point for YOLOv4-Tiny, which has the lowest comput-
ing density. For EfficientViT-B1 in Fig. 5(b), which has the highest computing
density, the optimal configuration, is a larger batch size, the Xavier NX with the
highest computility, and a later exit point. For BERT-Base, which has a com-
puting density between that of YOLOv4-Tiny and EfficientViT-B1, as shown in
Fig. 5(c), the scheduler chooses the Jetson TX2 with moderate computility, a
larger batch size and a later exit point. Overall, Octopus can seamlessly adapt
to heterogeneous edge nodes and different multi-exit DNN models for various
inference requests, choosing the optimal batch size and exit point to maximize
throughput while satisfying SLO budget and accuracy requirement.

Fig. 5. The learning process of sheduler. 	 represents the optimal joint configuration.

6.4 Impact of Latency Predictor

To evaluate the effect of proposed SLO-aware latency predictor, we collected
end-to-end latency and SLO for a total of 500 inference requests. We randomly
selected 400 information of requests as training data and 100 data for validation.
Figure 6(a) presents the training loss curve over 120 epochs. The results demon-
strate that Octopus enables more accurate SLO-awareness based on contextual
historical requests compared to the widely adopted linear regression-based pre-
dictive model used in prior work [1]. Furthermore, benefit from the combination
of lightweight LSTM and attention, Octopus significantly reduces training loss
and achieves similar convergence to linear regression. We also report the SLO vio-
lation rate in Fig. 6(b), which shows that the attention-based LSTM reduces the
average SLO violation rate from 7.9% to 3.5%, compared with linear regression.
It reveals that linear regression is inefficient for accurately predicting the SLO of
unknown inference requests. In contrast, the attention-based LSTM focuses on
the temporal relationship between inference requests, which utilizes neural net-
works to model the nonlinear relationship between inference latency and complex
influencing factors, thereby effectively avoiding SLO violations.
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6.5 Impact of Network Bandwidth

In this section, we evaluate the impact of dynamic network conditions on the
optimal configuration chosen by the scheduler in Octopus. The trend in Fig. 7(a)
indicates that the batch size increases as network bandwidth improves, allowing
more requests to be processed and resulting in higher throughput. Figure 7(b)
shows that the scheduler chooses the earliest exit point for all requests when
the available bandwidth is only 2Mbps. Similarly, as the network bandwidth
improves, the position of exit point is gradually moved back to improve accuracy
while satisfying SLO. The results in Fig. 7(c) demonstrate that Octopus tends
to schedule requests to edge nodes with high computility, such as Xavier NX,
under poor network bandwidth conditions. In contrast, when bandwidth is not
the bottleneck, Octopus schedules requests to edge nodes with low computility,
such as Jetson Nano or TX2, to achieve load balancing of edge cluster.

Fig. 6. The performance of the proposed latency predictor.

Fig. 7. The impact of dynamic network on the optimal configuration.

6.6 Evaluation of Scalability

Different Request Rates. Since the performance of scheduler, especially the
position of the exit point, is affected by the request rate, we evaluate inference
accuracy by gradually increasing the request rate. Note that DeepRT, which
does not employ multi-exit DNNs, exhibits the highest accuracy. Figure 8 shows
that Octopus outperforms Edgent and DINA in terms of accuracy, with the
performance improvement increases as the request rate increases. For instance,
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at 50rps request rate, the average accuracy improvement of Octopus is up to
10.6% and 7.6% compared to Edgent and DINA, respectively. Additionally, the
accuracy loss of Octopus remains within 5%. The results indicate that the SLO-
aware latency predictor and learning-based scheduler enable Octopus to handle
high request rates while maintaining high accuracy.

Number of Edge Nodes. We evaluate the scalability of Octopus by scaling
the number of edge nodes. As shown in Fig. 9(a), the average overall throughput
improvement of Octopus with eight nodes is 3.1×, 2.1× and 1.2× that of two,
four and six nodes, respectively. This indicates that the number of edge nodes
is highly linear with the overall throughput of edge cluster. We also report the
effect of the number of edge nodes on SLO violation rate and inference accuracy
in Fig. 9(b). Intuitively, inference accuracy gradually improves as the number
of edge nodes increases. For instance, the average accuracy of Octopus with
eight nodes is 2.6%, 1.8% and 1% higher than that of two, four and six nodes,
respectively. Additionally, the SLO violation rate at the default request rate
(30rps) remains within 5%, demonstrating the flexible scalability of Octopus.

(a) YOLOv4-Tiny (b) EfficientViT-B1 (c) BERT-Base

Fig. 8. The impact of different request rates on inference accuracy.

Fig. 9. The impact of number of edge nodes on throughput and inference accuracy.
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7 Conclusion

In this paper, we propose Octopus, a multi-exit DNN-based progressive infer-
ence serving system for heterogeneous edge clusters. The learning-based sched-
uler in Octopus aims to maximize the overall throughput of edge clusters by
automatically co-optimizing the joint configuration of batch size, exit point, and
node dispatching for each inference request. Additionally, Octopus leverages an
attention-based LSTM as a latency predictor to achieve SLO-aware. Our proto-
type implementation illustrates that Octopus has flexible scalability, and it can
improve the overall inference serving throughput by up to 3.3× compared to the
state-of-the-art schemes, while satisfying SLO and maintaining high inference
accuracy. We emphasize that Octopus is primarily targets edge clusters, but is
also applicable to individual edge devices. For the future work, Octopus can be
combined with various inference optimization technologies (such as cloud-edge
collaborative inference, compilation optimization, model compression, etc.) to
further improve inference performance.
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Abstract. Modern Big Data Analytics services require compliance with
non-functional requirements such as privacy, in order to align with
the introduced legislation such as the General Data Protection Reg-
ulation (GDPR). Specifically, the Telco industry has been using Big
Data Analytics solutions for service continuity, whose basic steps revolve
around automatically transcribing call center text data to extract valu-
able insights and enhance customer service. Such data obviously contains
Personal Identifiable Information (PII) which hampers privacy-sensitive
service operations if not handled properly. To meet these requirements we
created Deperson—an efficient rule-based data anonymization service—
which enables companies to anonymize customer data effectively while
preserving its utility for further analysis. As a proof-of-concept, Deper-
son has been integrated into an existing Big Data Analytics solution
in the Customer Contact Analytics department of a major Dutch Telco
provider to ensure compliance with GDPR regulations. Based on dictio-
nary look-ups and pattern-matching rules Deperson effectively removes
PII achieving an accuracy of 0.82 while maintaining the essential infor-
mation necessary for analysis. Our concept shows that Deperson plays a
significant role in enabling the extraction and further processing of valu-
able insights from customer data without risking non-compliance with
GDPR.

Keywords: Data Anonymization · Anonymization as a Service ·
Natural Language Processing

1 Introduction

The “Big Data” age is characterized by the amount, diversity, velocity, and verac-
ity of data generated between individuals and numerous end-point devices and
censors [11]. Beyond the technological constraints, data overflow and insight
extraction create a number of challenges that might make it difficult to comply
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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with regulations. Privacy preservation is one such challenge [33]. Data privacy
has been characterized as the most important challenge for this decade [24]. As
privacy legislation is implemented globally organizations are required to take
action to comply with legal privacy regulations and individuals’ privacy pref-
erences [16]. In Computer Science and Information Systems, privacy is realized
within the context of personal data. Personal data, which contains Personal
Identifiable Information (PII), is any information about an identified or identi-
fiable natural person, called data subject, according to the General Data Pro-
tection Regulation (GDPR) [1]. Companies are frequently required to remove or
mask the PII contained within their data in order to perform lawfully the corre-
sponding data processing operations. Data anonymization is a common practice
used by companies across various industries to comply with privacy laws that
involve removing or obscuring PII from the collected data in order to process
the obtained data lawfully [15].

In the telco industry, it is common practice to analyze customer and agent
conversations that take place in call centers. Telco companies perform data
anonymization to ensure they comply with the relevant data privacy laws [20].
In this work, we utilize a real-life industrial setting from a Dutch Telco provider.
The provider has developed a Big Data Analytics solution based on transcribed
call center text with the goals of improving the process of customer service and
extracting insights from customers about the offered products and services. In
most cases when the calls between customers and agents occur, customers have
to disclose certain PII as part of the customer service process. Nevertheless, in
instances where the collected data lacks synchronization with the subsequent
data processing operations, it becomes imperative to exclude such data from the
textual corpus. To accomplish this, data anonymization techniques are employed
to remove sensitive information within the call center transcripts.

The recent advancements in Natural Language Processing (NLP), exempli-
fied by the Transformer architecture and the development of the BERT model
[35], have revolutionized the field of Large Language Models (LLMs), particu-
larly in the context of data anonymization in text documents. However, recent
studies have demonstrated that pre-trained models are susceptible to privacy
attacks [31] due to their inclination to memorize training data without overfit-
ting, commonly referred to as the “memorization issue” [8]. This concern gives
rise to three primary types of privacy attacks: membership inference [17], model
inversion [14], and training data extraction [9].

Furthermore, there has been a notable increase in data protection fines, reach-
ing a record high of approximately 1.6 billion in 2023 [2]. As a result of these
circumstances, the industrial sector has experienced a surge in concerns regard-
ing the implementation of LLMs and is actively seeking alternatives to mitigate
potential financial consequences and reputation damage [7,34]. Consequently,
we propose the introduction of a rule-based data anonymization system as a
solution to address these pressing concerns and attain a lightweight and scalable
approach to the problem.
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Our solution was integrated into the Telco provider’s Big Data Analytics
solution. We show our emerging results regarding data anonymization from the
Dutch telco industry. Motivated by the existing academic literature on rule-
based data anonymization [21,27,28,32,36] we developed Deperson, a service
that removes PII from corpora so that data analysis carried out at a later stage
complies with the law, in this case, the GDPR. In Fig. 1 we illustrate Deper-
son’s integration into the Telco provider’s Big Data Analytics solution. The
Telco provider’s Data Analytics Hub consists of various NLP services that sup-
port decisions aiming for customer service process improvement and knowledge
extraction for the provider’s offered products and services improvement. The
Deperson service assures that anonymized text data is provided for the afore-
mentioned data processing goals.

Fig. 1. Deperson’s Integration into the Telco Provider’s Big Data Analytics Solution.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground and some significant related work. Section 3 elaborates on the research
methodology used to build Deperson. Section 4 presents the data anonymization
methodology. Section 5 elaborates on the data anonymization as a service inte-
gration to a Big Data Analytics solution. Section 6 presents Deperson’s results
regarding data anonymization. Section 7 discusses the results, the advantages and
shortcomings of Deperson. Section 8 concludes the paper with future research
directions.

2 Backround and Related Work

Data anonymization is essential for protecting the privacy of individuals whose
data is collected and used for various purposes [32]. In this context, the most
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common solutions for data anonymization in text documents are either Language
Models (LLMs) or rule-based approaches.

Prior works studied the privacy leakage issues of LLMs and claimed that
memorizing training data leads to private data leakage [9,18,23,25,30]. More-
over, increasing apprehensions have emerged from multiple viewpoints that
encompass the entire lifecycle of LLMs development. For instance, the acquisi-
tion and handling of data for LLM training necessitate meticulous adherence to
privacy-preserving protocols [5]. Protecting user privacy throughout the lifecycle
is essential, involving secure data transmission, encryption, and access controls
[29]. Algorithmic transparency is vital to address biases or discriminatory behav-
ior in LLMs while data minimization required for training should be considered
to reduce privacy risks [13].

Rule-based approaches rely on a set of predefined rules to identify and replace
personally identifiable information (PII) in text documents with more general
and less identifiable terms. These rules can be customized for different types
of data and use cases, making them flexible and adaptable. One example of
a rule-based approach for data anonymization in text documents is the system
developed by [27]. In this word, they used a set of pre-defined rules to detect and
replace PII in text documents with more general terms. The system allows users
to specify their own custom rules and thresholds for anonymization, as well as to
manually review and edit anonymized text. Another example is the one devel-
oped by [21], which uses rule-based and statistical methods to identify and mask
sensitive information in text documents. The system is designed to be scalable
and can handle large volumes of data, making it suitable for enterprise-level data
anonymization. Other related works in this area include the rule-based Chinese
clinical text de-identification system proposed by [19], and the privacy-preserving
classification of customer data without loss of accuracy system proposed by [36].

3 Research Context and Methods

3.1 Industrial Context

For the adoption of our data anonymization service, we engaged the Data Sci-
ence Lab (DSL) of the Customer Contact Analytics (CCA) department within
a prominent Dutch Telco provider, which we refer to as the DSL Team. The
company has established itself as one of the pioneers of the Privacy by Design
framework, exhibiting a firm commitment to ensuring that all processing oper-
ations are conducted lawfully and in compliance with the GDPR. Our collabo-
ration with the DSL Team stemmed from our shared objectives of safeguarding
privacy and upholding legal obligations within the context of Big Data analytics.

With hundreds of branches, a vast workforce comprising hundreds of thou-
sands of employees, and an extensive customer base spanning both the Business-
to-Business (B2B) and Business-to-Consumer (B2C) domains, the Telco provider
holds a prominent position in the telecommunications industry. As part of their
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strategic decision-making processes, they have harnessed a sophisticated stream-
ing platform designed to analyze data derived from call centers. By transcrib-
ing this data into text and subjecting it to comprehensive analysis, the com-
pany gains invaluable insights into customer opinions regarding their products
and services, enabling them to make informed improvements. Furthermore, this
platform enables the identification of potential bottlenecks in customer service
processes, facilitating the enhancement of speed and efficiency.

Throughout the development process, we collaborated closely with the DSL
Team, the IT department, Subject Matter Experts (SMEs), and the Legal
Department to create a lightweight data anonymization service. Table 1 presents
the comprehensive roster of experts with whom we engaged in collaborative
endeavors. Our primary aim was to ensure that this solution seamlessly inte-
grates with the existing streaming platform, thereby preserving its performance
capabilities. Crucially, this anonymization service was meticulously designed to
adhere to the GDPR regulations, thereby upholding the Telco provider’s com-
mitment to privacy protection and legal compliance.

Table 1. Overview of the experts we collaborated with to develop Deperson.

Job Title Work Experience Department

Project Manager 10 years Data Science Lab
Data Scientist 7 years Data Science Lab
Data Engineer 8 years IT Product Engineering
Security engineer 12 years IT Product Engineering
IT Administrator 23 Years IT Product Engineering
Quality Assurance Specialist 8 years Data Science Lab
Data Privacy Officer 10 years Compliance & Legal Department
Legal Counsel 27 years Legal Department
Subject Matter Experts 20–29 years Product Development

3.2 Research Method

This paper addresses the problem of anonymizing sensitive PII from call center
text data and integrating it into a Big Data Analytics solution. With this goal,
we developed Deperson adopting Action Research (AR) [4] to refine and further
prototype the working solution. AR was well-suited for developing our solution
due to its participatory and iterative nature. By involving the key stakeholders
mentioned in Sect. 3.1 throughout the research process, AR ensured that the
solution aligned with real-world needs and challenges. The iterative nature of
AR allowed for continuous feedback and adaptation, enabling the refinement of
the approach to meet the industry requirements and compliance standards. AR
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encompasses distinct steps including problem identification, planning, action,
reflection, and iteration [12]. Figure 2 provides a succinct overview of the under-
taken actions corresponding to each phase throughout the iterative cycles of the
AR methodology.

Planning 
Phase

Action
Phase

Iteration
Phase

Documentation & 
Training Phase

- Evaluate existing techniques.
- Define anonymization rules.

- Develop prototype.
- Integrate solution.

- Enhance performance.
- Perform security review.

- Develop documentation & 
training materials.

Fig. 2. The adoption of Action Research cycle for developing Deperson.

During the planning phase, we rigorously evaluated anonymization tech-
niques, conducting a comprehensive assessment of diverse approaches. We metic-
ulously examined the suitability of each technique to address specific privacy
concerns in the industrial context and paid detailed attention to the definition
and documentation of anonymization rules. This established a robust framework
for data transformation and protection. This phase laid a solid foundation and
set a well-informed, purposeful direction for subsequent actions in the project.

In the action phase, we prioritized practical implementation. We developed
a finely crafted prototype of the anonymization tool, which incorporated the
identified techniques and strictly adhered to the established rules. Moreover,
we seamlessly integrated the tool into the existing Big Data Analytics Solution
within the Telco provider’s infrastructure during this phase.

The subsequent iteration phase emphasized refining the anonymization tool,
focusing on incorporating efficiency-enhancing features like parallel processing to
optimize performance and expedite the process. We also conducted a thorough
security review to fortify the tool against potential vulnerabilities. This phase
allowed for continuous improvements, effectively addressing emerging challenges
and incorporating stakeholder insights.

The final phase centered on developing concise documentation and train-
ing materials, crucial for facilitating the tool’s seamless adoption and effective
utilization within the industrial environment. These materials provided compre-
hensive instructions and best practices, enabling users to leverage the tool’s full
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potential with confidence. The thorough development of these materials under-
scored the commitment to academic rigor, ensuring knowledge dissemination to
support successful implementation and sustainability.

4 Solution Design for Rule-Based Data Anonymization:
The Deperson Approach

As illustrated in Fig. 1, the Big Data Analytics solution of the Telco Provider
incorporates services designed to identify customer opinions on offered services
or products and uncover potential bottlenecks in customer service processes.
This solution subjects transcribed dialogues between customers and call center
agents to NLP analysis. For optimal assistance, customers disclose specific PII,
necessitating its removal to comply with legal justifications for data processing
objectives. Additionally, language models, with a tendency to memorize phrases
from training sets, can inadvertently reveal sensitive contexts, enabling potential
reconstruction of original transcriptions by adversaries [8]. Hence, the removal
of PII from our corpora is imperative for legislative compliance and to avert
unintended PII disclosures.

To address these challenges, we developed Deperson . Deperson1 is a data
anonymization service that removes personal data from the unstructured text
for the Dutch language. Examples of such data in our corpora are:

– Names of persons and places.
– Street names and house numbers.
– Postal codes.
– Phone numbers.
– Bank account numbers.
– Dates (e.g. of birth).

We removed the aforementioned PII in collaboration with the company’s
legal department and SMEs who manually assessed and reviewed the transcribed
conversations. As a result, the subsequent NLP tasks became compliant with the
law by the specified data processing goals after the PII has been removed.

Deperson’s functionality is based on dictionary look-ups and pattern-
matching rules via regular expressions. In practical terms, we whitelisted all
parts of the text that are considered non-sensitive. This way, anything not
explicitly approved is assumed to be sensitive information; e.g. a name shall be
blocked no matter its specific spelling. Employing rule-based approaches, such
as whitelisting, is not something new in academic literature [28]. Whitelisting
requires a comprehensive dictionary of valid words to whitelist. The whitelist
utilized in Deperson is generated by combining the Dutch dictionary sourced
from an open-source spellchecker and publicly available datasets offered by the
Dutch government. We used pattern-matching rules and regular expressions to
identify indirect PII words that are language-specific and also not to falsely flag
words as PII.
1 available online at: https://github.com/kpnDataScienceLab/deperson.

https://github.com/kpnDataScienceLab/deperson
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Let C = (c1, c2, . . . , cm) be a sequence of m conversations, where ci =
(wi,1, wi,2, . . . , wi,ni

) represents the i-th conversation with ni words, where ni

is the number of words in the i-th conversation. Let Dspellchecker be the dictio-
nary obtained from the spellchecker data. Let Dpublic be the dictionary obtained
from the publicly available dataset. The reference dictionary Dreference is defined
as the union of Dspellchecker and Dpublic:

Dreference = Dspellchecker ∪ Dpublic

In addition, let P = {q1, q2, . . . , qk} be a set of pattern matching rules, where qi
represents the i-th rule in the set. An example of such a pattern-matching rule
is the Dutch surname recognition. Dutch surnames typically include words like
’van der’ or ’van den’.

For each word wi in C, we can determine if the word is PII by checking if it
satisfies either of these 2 conditions:

1. wi is in the reference dictionary Dreference.
2. There exists a combination of words before or after wi that matches any of

the pattern rules in P , then wi is also marked as PII.

We outline Deperson’s data anonymization process in Algorithm 1. The algo-
rithm takes as input a stream of customer conversations C. For each word wj of
each conversation ci, it checks whether wj is within the dictionary Dreference or
matches any of the pattern-matching rules in P . If wj matches either of these
conditions, it is replaced with the symbol ∗ ∗ ∗∗ otherwise, it is left unchanged.
The resulting modified stream of conversations is then returned. The algorithm
operates in O(n) time complexity, where n is the number of words in the input
stream.

Algorithm 1. Rule-based Data Anonymization Algorithm
1: procedure Deperson(c1, c2, ..., cn)
2: for all conversation ci do
3: for all word wj in ci do
4: if wj is in dictionary Dreference OR matches any pattern-matching rule

in P then
5: replace wj with ****
6: end if
7: end for
8: end for
9: return modified conversations c′

1, c
′
2, ..., c

′
n

10: end procedure

5 Anonymization-as-a-Service in Action

Motivated by the previous work [10], we integrated the Deperson text anonymiza-
tion as a service into our Big Data Analytics solution to ensure data privacy as
illustrated in Fig. 3.
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The main orchestrating API called by the Big Data Analytics solution is
responsible for importing the unstructured text and delivering the anonymized
output. When the API receives the raw text, it calls the library that we have
developed, which contains the Anonymize function. This function is modularized
to ensure that each step is executed sequentially.

The first step in the Anonymize function is to tokenize the text. The next step
is to flag each token as PII based on the outcome of two subsequent functions.
The first function is a Dutch dictionary lookup function that identifies PII based
on the presence of certain words in the dictionary. The second function is a
pattern-matching rule function that uses regular expressions to identify PII based
on a set of predefined rules. If the flag given to each token is TRUE, then the
token is considered PII and is removed by the subsequent corresponding function.

After the PII tokens are removed, the anonymized text is returned as the
output by the main orchestrating API. This output can be used as input for the
following data preparation and preprocessing steps in the Big Data Analytics
solution. The Deperson text anonymization as a service can be easily integrated
into any existing data pipelines using a REST API.

By integrating the Deperson service into our Big Data Analytics solution, we
were able to provide a seamless and effective way for anonymizing unstructured
call center text data. With Deperson’s modular design, this service can be easily
customized to meet the specific needs of any Big Data Analytics solution.

Fig. 3. Deperson’s Anonymization-as-a-Service process.

6 Results

For the implementation of Deperson we used Python as the programming lan-
guage. To construct the Dutch look-up dictionaries we used the open-source
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spellchecker Hunspell2 and publicly available datasets from the Dutch govern-
ment3. Motivated by the previous work [26], we formulate the PII removal task
as a binary classification task where each word in our corpora that is consid-
ered PII is removed otherwise is not. There are four possible outcomes when
obfuscating a word in sentences:

– True Positive (TP): when the actual word is recognized as PII and removed
in the sentence.

– False Negative (FN): when the actual word is PII but not removed in the
sentence.

– True Negative (TN): when the actual word is not PII and not removed in the
sentence.

– False Positive (FP): when the actual word is not PII but removed in the
sentence.

To assess the performance of Deperson, we employed widely adopted metrics
commonly utilized in binary classification problems [6], namely accuracy, preci-
sion, recall, F1-score and Area Under the ROC Curve (AUC) score. We define
them as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, F1-score = 2 × precision × recall

precision + recall

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
,

AUC =
∫ 1

0

TPR(FPR−1(t)) dt

The company’s SMEs manually assessed Deperson’s performance by looking
at every sentence in chats from our corpora where PII has been removed. Since
customer conversations are recorded daily and considering SME’s availability
we sampled an average of conversations that take place on a daily basis and we
evaluated only a statistically significant sample of sentences considering a 95%
confidence level and a 5% margin of error. The total number of sentences was
493, and 13% of the words were PII, in the amount of 9000 PII words.

The results of Deperson’s performance are illustrated in Table 2 and Fig. 4.
Deperson removed PII from our corpora with an accuracy of 0.82 and the Area
under the ROC Curve (AUC) score was 0.63.

2 https://github.com/OpenTaal/opentaal-hunspell.
3 https://data.overheid.nl/.

https://github.com/OpenTaal/opentaal-hunspell
https://data.overheid.nl/
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Table 2. Deperson’s anonymization performance.

Accuracy Precision Recall F1-score AUC

0.82 0.29 0.40 0.33 0.63

Fig. 4. The Receiver Operating Characteristic (ROC) Curve for Deperson

7 Discussion

7.1 Insights: Evaluating Rule-Based Data Anonymization
in an Industrial Context

We showcased the implementation of a rule-based data anonymization service
within an actualized Big Data Analytics solution operating under the context of
an industrial setting. We engaged in collaboration with multiple teams within
the industrial partner, including the DSL Team, the IT Department, SMEs, and
the Legal department.

Interpreting the findings derived from Sect. 6, we expected relatively low
values for precision, recall and F1-score since these metrics do not take into
account the TNs. The number of terms identified as TN was anticipated to
be very large because 88% of the words were not PII. The greater AUC metric
value, as illustrated also in Fig. 4, reflects the fact that this is the case. Deperson’s
performance is decreasing primarily due to a higher number of FPs. The most
prominent example of FP occurs with numbers. When a customer spells the
bank account or the address this is successfully obscured but when he needs
to state a number e.g. the times he tried to log in this gets falsely obscured.
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FN account for 10% of total falsely predicted values. A typical example of FN
is surnames. Some Dutch surnames can be common nouns or adjectives such
as “groot” which means large. This type of error is explained by the rule-based
nature that Deperson operates which completely ignores semantics in the corpora
which is a known shortcoming in the academic literature [26].

The significance of our research lies in the evaluation of a rule-based
anonymization service and its implications in an industrial context. While its
accuracy of 0.82 may fall short of state-of-the-art LLMs, the noteworthy advan-
tage lies in its lightweight nature, seamlessly integrated into a data-intensive
streaming platform without causing substantial computation overhead. This
characteristic is paramount, as it addresses the practical challenges of efficiently
implementing data anonymization within a real-life Big Data Analytics solution.

Moreover, the observed anonymization performance, despite exceeding cer-
tain thresholds, proves to be a virtue rather than a limitation. Manual assess-
ments conducted by SMEs revealed that the excess anonymization is instru-
mental in rendering subsequent data processing operations GDPR compliant.
Importantly, this rigorous anonymization does not impede the efficacy of sub-
sequent language modeling operations that endeavor to extract knowledge for
product improvement or enhance customer service processes.

Such findings hold significant implications for the broader research commu-
nity and industrial practitioners. They demonstrate that even with a less sophis-
ticated rule-based approach, data anonymization can effectively achieve GDPR
compliance and support data-driven operations, without necessitating the adop-
tion of more complex and resource-intensive LLMs. This knowledge is particu-
larly valuable for industries seeking privacy-preserving solutions while retaining
operational efficiency and streamlining data-handling practices. Researchers and
data privacy practitioners can draw insights from this study to tailor anonymiza-
tion strategies based on contextual requirements, balancing compliance and util-
ity within their specific domains. This aligns with the broader aim of enhancing
data protection measures while optimizing data utilization for innovative endeav-
ors and customer-oriented services.

7.2 Critical Insights: Design Principles for Data Anonymization

Motivated by the existing academic literature and based on a comprehensive
performance evaluation and astute observations within an industrial context,
we propose two distinctive design principles to guide the development of robust
data anonymization tools. These principles aim to strike a harmonious balance
between regulatory compliance, pragmatic usability, and strategic privacy mea-
sures, catering to the specific demands of real-world applications.

The first design principle, “Strive for Practicality and Compliance”, accen-
tuates the paramount importance of optimizing anonymization solutions for
seamless integration within existing infrastructures while scrupulously adhering
to pertinent data protection regulations like GDPR [22]. This approach places
emphasis on practical usability, ensuring that anonymization tools can be read-
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ily deployed within industrial environments without compromising operational
efficiency or data handling practices.

Design Principle 1: Strive for Practicality and Compliance.
Optimize anonymization solutions by emphasizing lightweight integration
into existing infrastructures, ensuring GDPR compliance, and balancing
accuracy with practical utility for real-life industrial applications.

The second design principle, “Prudent Anonymization with Strategic Over-
reach”, advocates for a judicious calibration of anonymization strategies that
transcend mere minimal compliance [3]. Deliberately exceeding standard require-
ments, this approach seeks to enhance data privacy while strategically consid-
ering the downstream impact on data processing tasks. By taking a meticulous
approach to anonymization, the aim is to maintain the utmost data utility for
vital insights and continuous improvements in language modeling operations and
customer-centric services.

Design Principle 2: Prudent Anonymization with Strategic
Overreach. Incorporate a carefully calibrated anonymization strategy
that goes beyond minimal compliance to enhance data privacy, while
strategically considering the impact on downstream data processing tasks,
ensuring they remain unobstructed and useful for valuable insights and
improvements.

8 Conclusions and Future Work

In this work, we have presented the outcomes of successfully integrating a rule-
based data anonymization service into a Big Analytics solution, establishing a
foundational baseline for future developments in this domain. Our findings will
serve as a benchmark to guide the formulation of more robust and sophisti-
cated solutions. One promising avenue for improvement lies in the incorpora-
tion of advanced modeling techniques, exemplified by Named Entity Recogni-
tion (NER), which has demonstrated compelling performance in relevant aca-
demic investigations. Additionally, we acknowledge the paramount significance
of addressing privacy preservation not solely at the input data level but also
throughout all subsequent stages, encompassing model training, deployment,
and inference. Looking ahead, we envisage conducting further research to inves-
tigate additional design principles and innovative methodologies, aiming to for-
tify data anonymization practices and optimize privacy preservation across the
entire data lifecycle. These endeavors are pivotal in advancing the field of data
anonymization within industrial settings and beyond.
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Abstract. With the growth of microservice-based architectures, API
Gateways have proven to be a viable intermediary service for enforc-
ing security policies including authentication, authorization, and access
control. Checking if a caller is entitled to invoke an API (API Level
Authorization) is available in many API Gateway solutions, however,
inspecting if the caller is entitled to specific attributes of the response
(Attribute Authorization) is not supported and is an unexplored problem
in the literature. This paper formally introduces the Attribute Authoriza-
tion problem and presents two real-time scalable low latency solutions,
that effectively process large responses. The first algorithm leverages a
traditional Trie-based approach to enforce attribute authorization and
the second utilizes a Tree representation coupled with traditional Depth
First Search (DFS) to speed up response transformation.

Keywords: Attribute Authorization · Response Transformation · API
Gateway · Service Oriented Architecture

1 Introduction

In micro-service based architectures [9,10], an application is divided into several
loosely coupled collaborating services that communicate with each other using
application programming interfaces (APIs) [11]. While this approach simplifies
the development, deployment, and maintenance of individual application com-
ponents at scale, it also introduces additional complexities including security
considerations [28,30] such as authentication and authorization. API Gateways
[22,26,27] play a vital role in addressing these challenges by streamlining enforce-
ment of security policies [8]. An API Gateway is a single point of entry for API
requests into an application. As illustrated in Fig. 1, it sits in between clients
and service providers [26,31], receiving API requests and providing capabilities
like authentication, authorization, routing, composition, and response transfor-
mation.

Authorization in the context of API security typically refers to API Level
Authorization [1,3] - providing access to specific services to a client. However,
service providers cater to multiple clients and hence need to manage differential
client responses for each API as well. Managing API access restrictions and
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F. Monti et al. (Eds.): ICSOC 2023, LNCS 14420, pp. 276–290, 2023.
https://doi.org/10.1007/978-3-031-48424-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48424-7_20&domain=pdf
http://orcid.org/0009-0005-1978-1016
http://orcid.org/0000-0002-1795-8333
https://doi.org/10.1007/978-3-031-48424-7_20


Attribute Authorization - A Novel Enhancement to API Gateways 277

Fig. 1. API Gateway

providing tailored responses per client, per API, at the service level can be
challenging to both developer and operation teams [21]. Being an intermediary
between the client and service providers, an API Gateway can offer an efficient
solution to address these tasks. In the absence of this feature, service providers
are limited in enforcing security policies at the attribute level in the response
within each service. Our research indicates that this problem of attribute level
authorization is largely unexplored in the current literature. Within the API
Gateway context, we formally introduce the Attribute Authorization problem
that refers to providing filtered responses to the clients, with only specific data
elements that are approved for the client.

In this paper, we propose two scalable low latency solutions for the Attribute
Authorization problem, which can be easily incorporated into an API Gate-
way. The first approach uses a Trie [12] based strategy to determine authorized
attributes and the second uses a Tree [16] based strategy with customized Depth
First Search [5] for this task. We also present our API Gateway architecture
tailored to solve the Attribute Authorization problem. The adaptability of the
attribute selection and filtering process to various use cases has made it highly
impactful and well received.

2 Preliminary

JavaScript Object Notation (JSON) [2,25] and Extensible Markup Language
(XML) [23,29] have become de-facto formats for information exchange between
micro services. Attribute Authorization involves parsing the incoming JSON
or XML response from the provider and applying filter criteria to only allow
authorized attributes. However, parsing JSON or XML data is expensive [6,
7,18,19] since the hierarchical complexity of the response document could be
unlimited. Likewise, as the size of the response increases, Attribute Authorization
becomes expensive and slow [24].
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Throughout this paper, we depict JSON as the default response format from
an API and use the following running JSON example representing an online
music store:

{
"library": {

"albums": [
{

"genre": "jazz",
"singer": "Miles Davis",
"title": "Kind of Blue",
"price": 18.95 ,
"releaseDates": {

"US": 1959,
"UK": 1959

}
},
{

"genre": "country",
"singer": "Shania Twain",
"title": "Come On Over",
"price": 10.99 ,
"releaseDates": {

"US": 1997
}

}
],
"sales": 248000 ,
"revenue": 300000

}
}

JSONPath [13,14] expressions provide a flexible way to address different parts
of the JSON and navigate to an element in the JSON structure. The root member
in a JSONPath expression is referred to as $ and subsequent child elements are
represented with the dot-notation (.). The JSONPath operators are elaborated
in Table 1. Analogous to JSONPath, XPath [4] expressions are utilized in XML
to address elements in the structure.

For example, the JSONPath expression to access the singer of the first album
is given by - $.library.albums[0].singer. Wildcard characters are also sup-
ported. For example, $.library.albums[*].singer defines the singers of all
albums.

3 Architecture

3.1 Overview

The architecture of our proposed API Gateway system with support for
Attribute Authorization (refer to Fig. 2), consists of four major components,
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Table 1. JSONPath Expressions

Expression Description

$ Root Element

@ Current Element

* Wildcard

. Child Operator

.parent Selects specified property in parent

.. Recursive descendant

[ ] Subscript Operator

[start: end] Selects array elements from start to end

[?(expression)] Filter expression

namely the Loader, Index Builder, and a custom Gateway Filter with Mapper
and Transformer. The data flow is as follows: (1) The service provider loads the
attribute authorization records structured as JSONPath expressions into a data
source. Upon system startup, two steps are performed: (2) first, the Loader reads
authorization records from the data source and provides it to the Index Builder.
(3) Next, the Index Builder builds an index [5,20] for each of the authorization
records that maps the client to the list of authorized APIs and attributes for
each of those APIs. (4) Upon receiving an API invocation from the client, the
gateway intercepts the request and routes it to the service provider. (5) The
service provider processes the request and sends the response to the API gate-
way. (6) Within the API gateway, we define a custom filter for each API route
which intercepts the response and invokes the Mapper to map the incoming API
response to pre-configured attribute authorizations in the index. (7) Finally, the
Transformer deletes attributes that are not entitled and returns the modified
response back to the client.

3.2 Data Setup

The service provider determines the services as well as the attributes of the ser-
vice endpoint a client is entitled to. For example, the provider may choose to
provide access to only a few of the attributes in an API response. This informa-
tion is stored in the data source as a JSON document where each record defines
the JSONPath expressions of the authorized attributes for the specified client.
For example, consider a GET call to service /api/v1/lookup/{album_name}.

The authorization record is setup in the database as below:

{
"clientId ": "123" ,
"method ": "GET",
"path": "/api/v1/lookup /{ album_name }",
"authorizedAttributes ": [

"$.library.albums [*]. genre",
"$.library.albums [*]. singer",
"$.library.albums [*]. title"

]
}
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Fig. 2. API Gateway Architecture

In this example, the client with clientId as 123 is entitled to the genre,
singer, and title attributes in the response JSON of the API endpoint
GET /api/v1/lookup/{album_name}.

3.3 Components

Loader. The Loader module retrieves the authorizations provided by the service
provider from the data source. The output of the Loader module is a list of
JSON documents representing authorized attributes for a client, for specific API
endpoints.

Index Builder. The Index Builder takes the output of the Loader module and
adds each record to an in memory index. The index maps the client to the list
of authorized request URIs as well as authorized attributes associated with each
of those URIs. The index is an extension of a simple map or dictionary. The
contents of the index can be logically represented in Table 2. The Loader and
Index Builder are preprocessing steps that occur upon startup of the system.
Index is refreshed periodically at configured intervals, which helps with dynamic
client authorization changes.
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Table 2. Index Setup

Key Value

Key Value

/api/v1/lookup/{album_name} [$.library.albums[∗].genre,

{clientId=‘123’, method=‘GET’} $.library.albums[∗].singer,

$.library.albums[∗].title]
/api/v1/lookup/price/{album_name} [$.library.albums[∗].title,

$.library.albums[∗].price]
/api/v1/lookup/sales [$.library.sales]

Mapper. The Mapper takes the original response and generates a list of JSON-
Path expressions for all attributes in the JSON response. To achieve this, we
flatten the JSON into JSONPath expressions. During the flattening process,
we replace any array indices with the wildcard ‘*’. The process is outlined in
Algorithm 1. For instance, the field sales in the attribute library within the
example JSON is converted into $.library.sales, with corresponding value
248000.

Algorithm 1. Map of JSONPaths
Input: originalResponse: Original JSON response from service provider
Output: paths: List of JSONPaths of attributes of response

1: function getJSONPaths(originalResponse)
2: dom ←parse(originalResponse)
3: paths ←flatten(dom) � Replace array indices in keys of map with *
4: return paths
5: end function

Transformer. The Transformer is responsible for filtering the original response.
The transformation pipeline consists of two modules, namely Retriever and
Response Builder.

Retriever. The Retriever builds the index lookup key as a JSON document
consisting of the clientId and the method type, from the incoming request. For
example, for the incoming request GET /api/v1/lookup/Come+On+Over from
client App Id 123, the lookup key built by the retriever module can be repre-
sented as: clientId=‘123’, method=‘GET’.

Next, the module performs a lookup in the index using the lookup key to
retrieve the corresponding value for the client. Since the value is a map itself, the
Retriever then iterates through all the keys of the map to find the matching incom-
ing request URI. We use template matching [15,17] to identify the key correspond-
ing to the incoming request URI. The value corresponding to the key is the list
of authorized attributes. In the above example, the Retriever returns authorized
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attributes as [$.library.albums[*].genre, $.library.albums[*]. singer,
$.library.albums[*].title] specifying that client 123 is authorized for the
genre, singer, and title fields in the response of the request URI GET
/api/v1/lookup/Come+On+Over.

Response Builder. The Response Builder module takes the list of authorized
attributes and the original response from the service, performs Attribute Autho-
rization, and then returns the transformed response. We implemented three
different approaches to solve the Attribute Authorization problem, which we
present in the subsequent section.

4 Solution Approaches

4.1 Trie-Based Approach

The solution approach is defined in Algorithm 2. We build a Trie [12] with pat-
terns of authorized attributes. Next, we invoke the Mapper to get the JSONPaths
associated with each attribute in the response and search each against entries
stored in the Trie. Finally, those attributes not found in the Trie are added to
the list of forbidden attributes for deletion.

Algorithm 2. Build Response
Input: originalResponse: Original JSON response from service provider
Input: authorizationConfiguration: JSONPaths of authorized attributes
Output: finalResponse: Modified JSON with only authorized attributes

1: function BuildResponse(originalResponse, authorizationConfiguration)
2: head ←BuildPatternTrie(authorizationConfiguration)
3: allAttributes ←getJSONPaths(originalResponse) � Retrieve from Mapper
4: for j = 1 to len(allAttributes) do
5: if not SearchPatternTrie(head, allAttributes[j]) then
6: forbiddenAttributes.append(allAttributes[j])
7: end if
8: j ← j + 1
9: end for

10: dom ←jsonToDom(originalResponse)
11: for j = 1 to len(forbiddenAttributes) do
12: dom.delete(forbiddenAttributes[j])
13: j ← j + 1
14: end for
15: finalResponse ←domToJson(dom)
16: return finalResponse
17: end function



Attribute Authorization - A Novel Enhancement to API Gateways 283

Algorithm 3. Build Pattern Trie
Input: jsonpaths: List of authorized attributes in JSONPath format
Output: Trie of authorized attributes

1: function BuildPatternTrie(jsonpaths)
2: head ← new Node()
3: for i = 1 to len(jsonpaths) do:
4: currentNode ← head
5: tokens ← split(jsonpaths[i], “.") � Tokenize on ‘.’
6: for j = 1 to len(tokens) do:
7: if currentNode.child = tokens(j) then
8: currentNode ← currentNode.child � Traverse to child
9: j ← j + 1

10: else
11: node ← new Node(tokens(j)) � Create a new node
12: currentNode.child ← node � Add node as child
13: currentNode ← node � Recurse
14: j ← j + 1
15: end if
16: end for
17: i ← i + 1
18: end for
19: return head
20: end function

Algorithm 4. Search Pattern Trie
Input: head: Root node of Trie
Input: jsonpath: JSONPath representation of attribute path in response
Output: True if JSONPath expression is found in Trie

1: function SearchPatternTrie(head, jsonpath)
2: currentNode ← head
3: tokens ← split(jsonpath, “.") � Tokenize on ‘.’
4: for j = 1 to len(tokens) do:
5: if currentNode.child = tokens(j) then
6: currentNode ← currentNode.child � Traverse to child
7: else
8: return false
9: end if

10: j ← j + 1
11: end for
12: return true
13: end function

Algorithm 3 defines building the Trie with patterns of authorized attributes.
We first create the root node with the token (‘$’) since all expressions begin
with ‘$’. Then for each JSONPath expression, we tokenize and split it on ‘.’. For
each of these tokens, we recursively traverse the Trie checking if the token exists
in the Trie. When we reach a leaf node, we create a new node with the token
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adding it as a child of the node. Therefore, the subsequent tokens become the
children of the node with the current token.

Algorithm 4 outlines how we can search the Trie for a JSONPath expression.
The input to the algorithm is a JSONPath expression representing a path in the
JSON response body. The JSONPath expression is tokenized and split on ‘.’.
For each of these tokens, we start from the root node and recursively traverse
the Trie checking if the token exists in the Trie i.e., we check if there is any node
with the current token as its value. If the node exists, we proceed to its children.
If not, we return false signifying that the current JSONPath expression is not
found in the Trie and add it to the forbidden attributes list for deletion. When
we have exhausted all the tokens, this means that we have found the current
JSONPath expression in the Trie and hence we return true. This signifies that
the current JSONPath expression is an allowed attribute and hence must be
included in the filtered response.

4.2 Tree-Based Solution - Approach 1

While the Trie algorithm is highly performant for smaller inputs, in practice,
the initial step of flattening the JSON is time intensive even for medium sized
inputs. Additionally the subsequent search process over the constructed Trie is
equally slow, resulting in execution times exceeding 1 s for inputs with over 100K
attributes. In order to efficiently filter the response JSON with low latency on
Gateway’s end, we need a customized mechanism that can quickly parse input
and identify authorized attributes.

To realize the goal of efficient parsing, we implement a JSON parser that
constructs a Tree representation of the input JSON. Each node of the JSONTree
uniquely corresponds to an attribute within the JSON and holds references to
nodes corresponding to the attribute’s children within the JSON. In addition,
each node holds a boolean variable flag representing if the node is an authorized
attribute. Nodes with flag value 1 are authorized attributes and considered to be
marked, while the flag value 0 represents a forbidden attribute. The JSONTree
representation for the sample JSON is illustrated in Fig. 3.

Once the JSONTree is constructed, for each authorized attribute, we then
retrieve the corresponding tree nodes and set their flag value to 1. Once all
the authorized nodes have been marked, we traverse the entire tree using a
depth-first search (DFS) based approach and delete those nodes that are neither
themselves marked nor have any marked children. After this step, the remaining
tree solely consists of the authorized attributes, representing the filtered JSON.
Refer to Algorithms 5 and 6 for the pseudo-code outlining this process.
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4.3 Complexity Analysis

Time Complexity
The first step in the algorithm is construction of the JSONTree based on the
input JSON. The time complexity (T1) of this step is proportional to the number

Fig. 3. Tree representation of the sample JSON

Algorithm 5. JSONTree Filtering Approach 1
Input: originalResponse - JSON
Input: authorizedAttributes - list of JSONPaths
Output: filteredResponse - JSON string

1: function BuildResponseApproach1(originalResponse, authorizedAttributes)
2: Build JSONTree on the input originalResponse
3: root ← JSONTree.getRoot();
4: for all attribute ai ∈ authorizedAttributes do
5: matchingNodes ← root.getMatchingNodes(ai);
6: for all node ∈ matchingNodes do
7: node.flag ← 1;
8: end for
9: end for

10: deleteUnmarkedNodes(root);
11: return Serialize(root);
12: end function
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Algorithm 6. Delete Forbidden Attributes
Input: node - JSONTree node
Output: delete - boolean flag

1: function deleteUnmarkedNodes(node)
2: if node.flag == true then
3: return false
4: else
5: deleteThisNode ← true
6: for each child cj ∈ node.children do
7: deleteThisChild ← deleteUnmarkedNodes(cj)
8: if deleteThisChild then
9: delete cj

10: end if
11: deleteThisNode &= deleteThisChild
12: end for
13: return deleteThisNode
14: end if
15: end function

of attributes (N) in the input i.e.

T1 ∝ N ≈ kN = O(N)

In the subsequent step, while marking a node is an instantaneous operation,
retrieving the nodes matching with the provided JSONPath is a linear time oper-
ation. Hence the total time complexity (T2) for marking all the nodes matching
with given M authorized attributes is

T2 ∝ M × N ≈ M × hN = O(MN)

In the final step of DFS traversal, we visit each node at most once. Hence

T3 = O(N)

Therefore the overall complexity of this whole approach is

T = T1 + T2 + T3 = O(MN)

Space Complexity
The space requirement of this algorithm is proportional to the memory required
for the input JSON, as we construct and store only the JSONTree.

4.4 Tree-Based Solution - Approach 2

A drawback of the previous algorithm is its inability to handle missing fields.
Consider the sample JSON as an API response and the authorized attributes as
[$.library.albums[*].title, $.library.albums[*].releaseDates.UK].
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The first authorized attribute gets matched with $.library.albums[0].title -
Kind of Blue and $.library.albums[1].title - Come On Over. However the
second authorized attribute only gets matched with $.library.albums[0].rel-
easeDates.UK because the object $.library.albums[1].releaseDates does
not have the nested field UK. Hence the filtered response returned by this algo-
rithm is:

{
"library ": {

"albums ": [
{

"title ": "Kind of Blue",
"releaseDates ": {

"UK": 1959
}

},
{

"title ": "Come On Over"
}

]
}

}

Note that the filtered response does not contain the releaseDates field in
the second element of the albums array. This disruption in structural symmetry
might be undesired and can have unintended consequences on the client’s side.
To address this problem of missing fields, we provide a solution by marking all
the ancestors of the authorized attributes nodes. Then, we identify forbidden
nodes as those that are not marked and proceed to delete them. This exercise
reduces the JSONTree to only contain authorized and empty nodes where the
fields are missing from the input JSON.

Given the hierarchical structure of JSONPaths, the ancestor JSON-
Paths can be easily derived from a given JSONPath. For instance, if
$.library.albums[*] .title is the given JSONPath, the ancestor paths {$,
$.library, $.library.albums[*]} can be computed by simply removing the
suffix after the last ‘.’. For all the authorized attributes, we generate a set (to
avoid duplicates) of ancestor attributes and mark all the nodes matching the
JSONPaths within this set. The complete algorithm is outlined in Algorithms 7
and 8.

4.5 Complexity Analysis

Time Complexity. In this variant, the only change is the inclusion of ances-
tor attributes as authorized attributes. As a result, the time complexity of the
algorithm increases proportionally to the number of new paths added. However,
it remains bounded by O(MN), where M represents the number of attributes
and N denotes the number of fields in the input JSON.
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Algorithm 7. MarkableJsonNode Filtering Approach - Missing Fields Included
Input: originalResponse - JSON string
Input: authorizedAttributes - list of JSONPaths
Output: filteredResponse - JSON string

1: function BuildResponseApproach2(originalResponse, authorizedAttributes)
2: Build the JSONTree on the input originalResponse
3: root ← JSONTree.getRoot();
4: authorizedAttributes ← generateAncestorPaths(authorizedAttributes);
5: for all attribute ai ∈ authorizedAttributes do
6: matchingNodes ← root.getMatchingNodes(ai);
7: for all node ∈ matchingNodes do
8: node.flag ← 1;
9: end for

10: end for
11: deleteUnmarkedNodes(root);
12: return Serialize(root);
13: end function

Algorithm 8. Delete Forbidden Attributes - Missing Fields Included
Input: node - JSONTree node

1: function deleteUnmarkedNodes(node)
2: if not node.isMarked then
3: delete node
4: else
5: for each child cj ∈ node.children do
6: deleteUnmarkedNodes(cj)
7: end for
8: end if
9: end function

Space Complexity. The space requirement of this variant remains unchanged
from Approach 1.

4.6 Performance Comparison

We evaluate performance of the three Response Builders on four different JSON
responses from three service providers, across total execution time, the most
critical metric for Gateways. We curated the input to contain JSON responses
with increasing size and total number of attributes. All the tests have been
performed under similar conditions. The results are summarized in Table 3.

From these benchmark results, we find that the eligibility Tree based algo-
rithms outperform the Trie algorithm and are at least 4 times faster on average.
We also establish that the Tree based algorithms are capable of processing over
2 Million attributes in under 1 s. Note that the runtime of the variant (Approach
2) of Tree based algorithm is slightly higher due to the additional computation
of generating parent attributes and further marking them.
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Table 3. Evaluation Test Results

Input Filtered Response Runtime

Size Total Attributes Size Total Attributes Trie Tree Approach 1 Tree Approach 2

40 KB 678 2 KB 54 168 ms 128 ms 129 ms

3.7 MB 161,708 369 KB 9,547 754 ms 208 ms 223 ms

25.5 MB 574,706 2.8 MB 80,558 1900 ms 474 ms 521 ms

102 MB 2,298,824 11.2 MB 322,232 5717 ms 1065 ms 1129 ms

5 Conclusion and Future Work

In this paper, we address the challenge of Attribute Authorization in API Gate-
ways, where each attribute in the response is selectively filtered based on specific
client entitlements. To provide a comprehensive solution for precise access con-
trol and enhanced security, we propose two solution approaches: a Trie-based
strategy and a novel Tree-based strategy. We also create a variant of the Tree-
based algorithm that preserves structural integrity of the input in the filtered
response. Our research shows that while both the Trie and Tree-based approaches
are highly scalable, the Tree-based method is at least four times faster than the
former.

As part of future work, we plan to develop a distributed algorithm for inputs
that do not fit into the memory.
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Abstract. To improve processes in logistics, it is crucial to understand
the factors influencing performance. To achieve this, process mining uti-
lizes event data to extract insights into operational processes. In this
paper, we present a case study conducted in an air cargo terminal, where
process mining is applied to event data collected during package distribu-
tion. The primary objective is to identify the root causes of bottlenecks in
the system. However, practical limitations, including noisy sensor data,
scalability challenges, and abstraction limitations, require a different app-
roach than conventional process mining projects. Building upon existing
process mining techniques, we develop a two-fold approach to identify
root causes at the data level and provide diagnostics at the business
level. Through a comprehensive analysis of the provided datasets, we
substantiate the effectiveness and practical applicability of our approach
in analyzing root causes.

Keywords: Process mining · Logistic · Root cause identification ·
Root cause diagnostics · Performance Spectrum · Case study

1 Introduction

Efficient processes are crucial for success in the logistics industry. Businesses
must understand their process performance to attain this objective. Material
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Handling Systems (MHS) are vital to efficient logistics management, facilitating
the timely movement of materials. Evaluating MHS performance enables orga-
nizations to optimize their operational processes by minimizing delays, reducing
manual labor, and overcoming obstacles encountered during the distribution [11].

Process mining aims to enhance the understanding of operational processes
by utilizing event data, consisting of records of process execution stored in infor-
mation systems. A process mining project typically involves discovering a process
model, which abstracts the process behavior, from event data using discovery
techniques [2,14]. The model is then compared with the expectations to identify
deviations or to repair the model [3,18]. Process efficiency is evaluated by ana-
lyzing the model annotated with performance information derived from the event
data [10]. In the case of a large system, activities (i.e., well-defined process steps)
can be abstracted, alongside performance information aggregated, to reduce the
process complexity for human analysis [4]. Leveraging the context provided by
the model and domain knowledge, one can diagnose bottlenecks and optimize
processes. Throughout the process described, it is evident that a reliable model
depicting the behavior in real life is central to a process mining project.

In this study, we aim to discern the underlying causes of bottlenecks affecting
the distribution of packages within the MHS of an air cargo terminal, as depicted
in Fig. 1. The figure delineates our specific focus and case study scope. Using a
logistic log, which captures package distribution data, and a fault log, encom-
passing information on equipment malfunctions and maintenance, we identify
and diagnose the root causes of detected bottlenecks. Subsequently, these identi-
fied root causes are mapped onto the transport layout for business owners to gain
a visual understanding, aiding them in monitoring and further controlling the
system effectively. However, we encounter challenges that compel us to deviate
from the conventional process mining approach [7].

Fig. 1. In this case study, we aim to uncover package distribution inefficiencies at an air
cargo terminal by analyzing logistic and fault logs. The resulting insights will inform
an integrated solution for optimizing the distribution process.



Unveiling Bottlenecks in Logistics 293

– Noisy event data: The system consists of thousands of equipment pieces with
sensors generating event data. Sensor data are prone to noise [12], which can
distort the actual relationships between different pieces of equipment.

– Scalability limitations: Given the large number of pieces of equipment and
the substantial volume of event data, existing open-source tools [17] cannot
adequately support the performance requirements to discover a model and to
interactively explore the process performance using the model.

– Abstraction limitations: Typically, abstraction resolves complexity and scala-
bility challenges caused by the excessive number of concepts in a process, like
the conveyor equipment in this case study. Yet, due to the queuing behavior
and equipment faults within the process, abstraction may lead to misleading
conclusions since it does not fully capture the queuing phenomenon.

To address these challenges, we devised a solution that delivers transparent
and reliable results, empowering business owners to make well-informed decisions
regarding their service efficiency. We uncover unbiased behavior and identify inci-
dents that contribute to bottlenecks, including identifying package distributions
that cause bottlenecks on specific pieces of equipment at particular points in
time. Despite the constraints, we devise a two-fold approach that uncovers inef-
ficiencies and provides explanations without relying on a process model. First,
we programmatically detect the root causes of bottlenecks at the data level to
narrow down the analysis scope. Building upon the findings, we derive diagnos-
tics at the business level, leveraging the Performance Spectrum Miner (PSM)
[5]. Our approach is quantitatively evaluated and integrated into the system,
aiming to enhance the overall service performance within the air cargo terminal.

In Sect. 2, we introduce the techniques and notations applied. Section 3
describes the available datasets in the case study. Package distribution behav-
ior is depicted in Sect. 4, while root cause identification is in Sect. 5. Sect. 6
demonstrates the results. We discuss the related work in Sect. 7. Lastly, Sect. 8
summarizes the case study and discusses future work.

2 Background

In this section, we introduce the techniques applied for root cause analysis and
mathematical notations.

2.1 Performance Spectrum

PSM is a visual analytic tool that formats the performance of activities in a
process within the context of a case (i.e., a process instance) [5]. By visualizing
how cases progress through activities over time, the tool enables the observation
of efficiency dynamics and facilitates the analysis of interactions between cases.
Numerous extensions have been developed to quantify [5], predict [6], and visual-
ize the performance within the context of a process model [1]. In our case study,
we employed the implementation which enables the interactive exploration of
performance based on a process model supported by PSM [1].
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However, scalability emerges as a practical challenge in this case study. First,
the existing discovery techniques within the tool exhibit limited scalability when
faced with a significant number of activities, as exemplified in the case study with
thousands of equipment pieces. As the complexity of the model increases, it pro-
gressively poses greater challenges for human analysts to effectively identify all
root causes effectively. Given the case study’s scale, it is challenging to pinpoint
the areas requiring analysis without adequate guidance for navigating the pro-
cess model. To address these issues, we have devised a programmatic approach
that detects root causes at the data level. By narrowing down the analysis scope,
we leverage PSM to facilitate the subsequent diagnosis at the business level.

2.2 Notations

Let X be an arbitrary set. A sequence is a function σ : {1, 2, ..., n} → X, where
σ = 〈x1, x2, x2, .., xn〉 is a sequence over X, and σ(i) = xi denotes the ith element
in σ. We denote |σ| as the length of σ and X∗ as the set of all possible sequences
over X. We write x ∈ σ ⇐⇒ ∃k ∈ N s.t. 1 ≤ k ≤ |σ| and σ(k) = x. The index
of x ∈ σ is denoted as σ−1(x) ∈ N and σ−1(x) = min{1 ≤ i ≤ |σ| | σ(i) = x}. A
path from m to n in σ, where 1 ≤ m < n ≤ |σ|, refers to a segment of σ, written
as pathσ(m,n) = 〈xm, xm+1, ..., xn〉. Note that pathσ(1, |σ|) = σ.

3 Datasets

The case study incorporates two logs: a logistic log and a fault log.1 The logis-
tic log captures the package distribution within the system and the fault log
documents fault instances related to the conveyor equipment.

3.1 Representation of Logistic Log

We represent the logistic log as an event log, i.e., a typical input for most process
mining techniques. Upkg is the universe of package identifiers, Ueqt is the universe
of equipment identifiers, and Utime is the universe of timestamps.

Definition 1 (Event Log). E is the universe of events. e ∈ E represents a data
sample collected by sensors for the package distribution, which is characterized
with the corresponding package identifier πpkg(e) ∈ Upkg, equipment identifier
πeqt(e) ∈ Ueqt, and the arrival timestamp πarr(e) ∈ Utime of πpkg(e) on πeqt(e).
An event log L is a set of events L ⊆ E.

A case is a collection of events describing a complete package distribution,
i.e., given pid ∈ Upkg, the case of pid is c = {e ∈ L | πpkg(e) = pid}. The trace
of a case c, denoted as πtrace(c), is a chronologically ordered sequence of events
in a case, where πtrace(c) = 〈e1, e2, ..., e|c|〉 such that ∀1 ≤ i < j ≤ |c|, πarr(ei) ≤
πarr(ej). Additionally, the time that a package distribution exits the system is
provided and we write as πexit(c) ∈ Utime, where πexit(c) ≥ max{πarr(e) | e ∈ c}.
1 For confidentiality, we pseudo-anonymized the datasets, preserving the relative rela-

tion between incidents. In this case study, we only present pertinent attributes.
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Table 1. An excerpt of an event log L. Each row represents an event describing the
arrival of a package (represented by PKG) on a specific piece of equipment (represented
by EQT) at a particular time (represented by ARR). For ease of reference, the event
identifier (represented by Event ID) is provided using the row index, e.g., the first event
is labeled as e1. The completion time of the distribution is also included, denoted as
EXIT, providing additional details about the distribution.

Event ID PKG (πpkg(e)) EQT (πeqt(e)) ARR (πarr(e)) EXIT (πexit(c))

1 2365884457 HXUF1928 2023-05-05 12:12:34 2023-05-05 14:00:31

2 2365884457 TFGT3578 2023-05-05 12:12:53 2023-05-05 14:00:31

3 2365884457 UENF3008 2023-05-05 13:59:51 2023-05-05 14:00:31

4 2459856232 GJWK4805 2023-05-05 13:33:56 2023-05-05 17:44:28

5 2459856232 UENF3008 2023-05-05 17:38:00 2023-05-05 17:44:28

6 2459856232 ITSC0915 2023-05-05 17:38:41 2023-05-05 17:44:28

7 2459856232 LKHS8902 2023-05-05 17:38:54 2023-05-05 17:44:28

8 2459856232 CJIF5952 2023-05-05 17:39:06 2023-05-05 17:44:28

Table 1 displays an excerpt from the event log, illustrating the package dis-
tribution. For example, the case c = {e1, e2, e3} describes the distribution of
package 2365884457, which undergoes three pieces of equipment in the sys-
tem. It first arrives on πeqt(e1) = HXUF1928 at πarr(e1) = 12:12:34, then
moves to πeqt(e2) = TFGT3578 at πarr(e2) = 12:12:53, and finally reaches
πeqt(e3) = UENF3008 at πarr(e3) = 12:59:51 before leaving the system at
πexit(c) = 14:00:31.

3.2 Fault Log

A fault refers to an incident that occurs on a piece of equipment and is unrelated
to the package distribution process. A fault log is a compilation of such incidents,
which we formalize as follows.

Definition 2 (Fault Log). F is the universe of faults. f ∈ F is a fault, which is
characterized by the corresponding equipment identifier πeqt(f) ∈ Ueqt, downtime
of πdt(f) ∈ Utime, and the corresponding uptime πut(f) ∈ Utime where πdt(f) <
πut(f). A fault log FL is a set of faults FL ⊆ F . Since at most one fault can
occur on a piece of equipment at any point in time, the faults on the equipment
form a sequence of faults in time, i.e., ∀f1 ∈ FL∀f2 ∈ FL, f1 = f2 =⇒
(πdt(f1) ≥ πut(f2))∨ (πdt(f2) ≥ πut(f1)).

Table 2 showcases a sample from the fault log, with each row depicting an
instance of a fault occurrence. For instance, equipment UENF3008 experiences a
fault from 12:15:23 to 12:16:49. Notably, the excerpt demonstrates a sequential
occurrence of five faults on UENF3008.

4 Behavioral Analysis

This section introduces identified constraints and outlines the assumptions of
the system behavior, which serve as the basis for defining the bottlenecks.
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Table 2. Every row in the dataset represents a fault occurrence in the system. A fault
is uniquely identified by three key pieces of information: the piece of equipment where
the fault happens (represented by EQT), the start time of the fault (represented by
DOWN), and the end time of the fault (represented by UP). Likewise, we provide the
fault identifier (represented by Fault ID) using the row index for ease of reference.

Fault ID EQT (πeqt(f)) DOWN (πdt(f)) UP (πut(f))

1 UENF3008 2023-05-05 12:15:23 2023-05-05 12:16:49

2 UENF3008 2023-05-05 12:28:07 2023-05-05 12:30:26

3 UENF3008 2023-05-05 12:31:16 2023-05-05 12:38:00

4 UENF3008 2023-05-05 12:47:23 2023-05-05 12:49:49

5 UENF3008 2023-05-05 13:11:40 2023-05-05 13:30:00

6 UAZB1814 2023-05-05 14:58:35 2023-05-05 15:16:05

4.1 Package Distribution – Constraints and Assumptions

The analysis reveals the following constraints of the package distribution. In col-
laboration with domain experts, we validate the constraints and impose specific
assumptions to facilitate the identification of bottlenecks.

Departure Time. We assume that a package departs from one piece of equip-
ment at the same time as it arrives on the next piece of equipment along its
trajectory. Let L ⊆ E . Given a case c ⊆ L, let σ = πtrace(c). For an event e ∈ σ,
we define the function depc(e) = πarr(σ(σ−1(e) + 1)) ⇐⇒ σ−1(e) < |σ| and
depc(e) = πexit(c) ⇐⇒ σ(|σ|) = e. We name the duration as the dwell time of
a package on a piece of equipment. As an illustration, considering Table 1, we
assume that package 2365884457 departs TFGT3578 at 13:59:51, and the dwell
time of 2365884457 on TFGT3578 is 1 h, 46 min, and 58 s.

Equipment Capacity. At any given time, one equipment piece can accommo-
date a maximum of one package. Let L ⊆ E denote an event log. Given eqt ∈ Ueqt,
∀e1∈L(πeqt(e1) = eqt) ∀e2∈L(πeqt(e2) = eqt), e1 = e2 =⇒ (πarr(e1) > depc(e2))
∨(πarr(e2) > depc(e1)). This constraint leads to a queuing behavior in the sys-
tem, wherein packages are distributed in a sequential manner, allowing a package
to move to the next piece of equipment only when the preceding package in its
trajectory departs from that piece of equipment.

Fault Impact on Package Distribution. The faults in the fault log can be
classified into three categories: warning, maintenance, and real fault. Warning
and maintenance faults do not have any impact on package distribution. How-
ever, a real fault disrupts the distribution process and may also affect the overall
system performance. Considering a real fault f ∈ F and an event log L ⊆ E ,
during the fault, πeqt(f) is unable to send or receive any packages. In other
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words, there does not exist an event e ∈ L such that πdt(f) < πarr(e) < πut(f)
or πdt(f) < depc(e) < πut(f). Since there are no specific attributes available to
directly determine the category of a fault in the fault log f ∈ FL, we define a
real fault using the function real(f, L) � F if there are no packages arriving or
departing from πeqt(f) during the time period of πdt(f) and πut(f).

4.2 Bottleneck Definition

A bottleneck event refers to an event indicating that a package remains on a piece
of equipment for a longer duration than anticipated. Let Udur be the universe of
time durations, e.g., 5 min, 3 s, etc. A bottleneck event in the system is defined
as follows.

Definition 3 (Bottleneck Event). Let eqt ∈ Ueqt be a piece of equipment
identifier, and thr(eqt) ∈ Udur denotes the theoretical service time of eqt. Let L
be an event log. Given an event e ∈ L and a case c, where e ∈ πtrace(c), e is a
bottleneck event iff depc(e) − πarr(e) > thr(πeqt(e)).

A baseline for comparison is crucial when evaluating process performance.
In this case study, since the efficiency is significantly influenced by the dynamic
nature of cases within the system, a rigid benchmark is impractical. Therefore,
we employ statistical metrics as a benchmark to evaluate the performance of the
equipment. Specifically, we establish benchmarks for each equipment type by
examining the first quartile of dwell time per equipment type, recognizing that
the dwell time of a piece of equipment varies depending on its type. For instance,
the dwell time of a package on a lift shaft differs from that on a conveyor belt.
Bottleneck events are identified when the corresponding dwell times exceed the
benchmark. Throughout the paper, we refer to these events as bottlenecks.

5 Root Cause Identification and Diagnostics

Considering the inherent complexity of the system, we devise a two-stage app-
roach for root cause analysis, as illustrated in Fig. 2. In the first stage, given
a bottleneck, we narrow down the scope by identifying the root cause at the
data level—extracting specific location and timing information that triggers the
bottlenecks. Next, we gather the relevant incidents and collaborate with domain
experts to visualize the entire process leading to the bottleneck using PSM. This
collaborative process facilitates a comprehensive examination and diagnosis of
the identified root causes from a business perspective. We integrate root cause
identification into our partner’s system, visually displaying the bottleneck and
its cause on their logistic map, enhancing stakeholder understanding.

5.1 Root Cause Identification

The scale and complexity of the system, comprising approximately 800,000
events from around 5,700 equipment pieces, present significant challenges in
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Fig. 2. Two-Stage Root Cause Analysis. The first stage involves narrowing down the
scope through root cause identification. The resulting root cause is visualized on the
logistic map, while the process leading to the bottleneck is visualized with PSM, allow-
ing for collaborative discussions with stakeholders.

systematically uncovering the underlying causes of bottlenecks. To address this,
root cause identification narrows down and extracts a subset of events and/or
faults that contribute to bottleneck occurrences. By focusing on this subset, we
efficiently pinpoint the incidents that are most relevant to our analysis, ensuring
a more targeted approach. In this context, a root cause is defined as an incident
on a piece of equipment that triggers a specific bottleneck. The formal definition
of a root cause is outlined below.

Definition 4 (Root Cause). Let L ⊆ E and FL ∈ F . Given a bottleneck
bn ∈ L, a root cause rc is an incident occurring on a piece of equipment in the
system rc ∈ L ∪ FL that causes bn.

Prior to the algorithm, we establish two conditions for identifying root causes.
First, we determine if a bottleneck occurs due to a fault occurring on the piece
of equipment associated with it. Since real faults do not allow for package recep-
tion nor sending, a package gets stuck due to fault if it arrives on the piece of
equipment before a fault happens and remains there until the fault is repaired.
During this period, the fault prevents the piece of equipment from processing
any packages, resulting in packages becoming stuck until the fault is resolved.

Definition 5 (Stuck due to Fault). Let L ⊆ E and FL ⊆ F . Given a
bottleneck bn ∈ L, stuck(bn, FL) = σ ∈ F∗ extracts a sequence of root causes
where 1 ≤ i ≤ |σ|(πeqt(σ(i)) = πeqt(bn) ∧ πarr(bn) < πdt(σ(i)) ∧ depc(bn) >
πut(σ(i))).

If a bottleneck is not due to a fault in the associated equipment piece, we
investigate the condition of the subsequent equipment along its trajectory. Equip-
ment condition is determined by the incidents at a specific time. In this case
study, two types of incidents are considered: an event indicating the availability
of the equipment piece (i.e., a package is present on the equipment piece) and a
fault indicating the unavailability of the equipment piece.

Definition 6 (Equipment Condition). Let L ⊆ E, eqt ∈ Ueqt, and t ∈ Utime.
CONocc : Ueqt ×Utime ×E � E, where CONocc(eqt, t, L) = e ∈ L ⇐⇒ πeqt(e) =
eqt ∧ πarr(e) < t < depc(e). Given FL ⊆ F , CONflt : Ueqt × Utime × F � F ,
where CONflt(eqt, t, FL) = f ∈ FL ⇐⇒ πeqt(f) = eqt ∧ πdt(f) < t < πut(f).
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Algorithm 1 outlines the identification of the root cause given a bottleneck.
The algorithm checks if the bottleneck is caused by being stuck on the associated
equipment piece. If no faults are detected, the algorithm proceeds to examine
the condition of the equipment on the trajectory of the bottleneck and extracts
the last incident until one of the following final conditions is met:

– The associated equipment piece is the last equipment piece on its trajectory;
– The associated equipment piece is empty and without a real fault;
– The associated equipment piece is at real fault.

A piece of equipment can be both at fault and occupied simultaneously.
However, considering that the business owner’s primary interest lies in identify-
ing and addressing faults, the developed method places a stronger emphasis on
identifying root causes related to faults. This focus allows for a more targeted
approach in determining the actions to be taken to address the identified faults.

Algorithm 1. Root Cause Identification

Require: event log L, fault log FL, bottleneck bn ∈ L
Ensure: a root cause rc ∈ E ∪ F
1: if |stuck(bn, FL)| > 0 then return stuck(bn, FL)(1)

2: c ← the corresponding case of bn
3: σ ← πtrace(c)
4: σ′ ← pathσ(σ−1(bn), |σ|)
5: current ← bn
6: for 1 ≤ i < |σ′| do
7: if πeqt(current) = πeqt(σ

′(|σ′|)) then return current

8: time ← πarr(current) + thr(πeqt(current))
9: next ← πeqt(σ

′(i + 1))
10: f ← CONflt(next, time, FL)
11: if real(f, L) then return f

12: e ← CONocc(next, time, L)
13: if e = ⊥ then return current
14: current ← e

5.2 Root Cause Diagnostics

In this section, we delve into a comprehensive analysis of the process leading to
bottlenecks, going beyond the identification of the root cause. We collect and
analyze incidents contributing to the bottleneck since the identified root cause.
This enables us to uncover the cause-effect relationships that influence bottle-
neck occurrences, facilitating a more profound understanding of the underlying
process. To strengthen our analysis, we utilize PSM to visually represent the
behavior of the incidents. Furthermore, engaging in effective discussions with
domain experts provides valuable insights and perspectives. The following diag-
nostics illustrate their implications from a business standpoint.
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Diagnosis 1 (Stuck on Faulty Equipment). Figure 3 depicts the diagnosis of an
internal root cause where a piece of faulty equipment causes a package to be stuck
on it, as described in Definition 5. The performance spectrum displayed on the
right side depicts the efficiency of the selected places in the discovered Petri net
shown on the left side. Selected places representing a single path are colored
in green, while aggregated paths are colored in blue. The example shows that
faulty equipment SRFH2430 blocks the package distribution, which is impossible
to reroute without human intervention.

We project the faults onto the timeline, displaying the downtime and uptime
for the respective piece of equipment. We utilize blue and red arrows to highlight
bottlenecks and the corresponding root causes. This visualization is consistently
applied across figures throughout the subsequent diagnostics.

Diagnosis 2 (Waiting for Repair). Figure 4 depicts a scenario with two bot-
tlenecks stemming from the same root cause, specifically a fault on equipment
UAZB1814. Once the fault is fixed, the distribution process resumes. Further-
more, Fig. 5 illustrates two bottlenecks resulting from a sequence of faults on
equipment UENF3008. For the bottleneck on equipment LFYV0354 in case
2654852459, the first fault is the root cause, while for the bottleneck in case
2365884457, the second fault is identified as its root cause. The figure also high-
lights distribution prioritization, with package 2365884457 being given higher
priority despite arriving later on equipment TFGT3578 due to its importance.

Diagnosis 3 (Waiting to Exit). Figure 6 showcases the cascading package waiting,
highlighting the impact of capacity constraints on the distribution. The packages
queue to exit, resulting in a sequence of bottlenecks. The root cause of the
bottlenecks is identified as the package 2968579218 on equipment KXLJ5003,
which is also a bottleneck itself and is observed waiting at the last piece of
equipment along the distribution trajectory of the bottlenecks. The visualization
emphasizes how the waiting of a single package on a piece of equipment affects
subsequent distributions, leading to inefficiencies propagating throughout the
system. Further investigation reveals that the root cause originates from the
package 2968579218 waiting to be loaded onto an aircraft.

Fig. 3. Package distribution of package 2679488216 gets stuck at faulty equipment
SRFH2430 during the distribution process. (Color figure online)
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Fig. 4. Two bottlenecks waiting for faulty equipment UAZB1814 to be repaired.

Diagnosis 4 (Unjustified Waiting). If no incidents are identified for a bottle-
neck, the root cause is defined as unjustified waiting, indicating the next piece
of equipment on the package’s trajectory is available for transfer without any
detected incidents. Nevertheless, the distribution inexplicably ceases. While one
reason could be the equipment piece serving as a storage place within the system,
there are root causes that remain unexplainable from a business perspective.

By gathering and analyzing the incidents that contribute to a bottleneck, we
facilitate the diagnostic at the business level through the utilization of a visual
analytic method inspired by PSM. This enables the process owner to identify
the appropriate measures to address the identified bottlenecks effectively.

5.3 Impact of Bottlenecks

Some bottlenecks may be circumvented by navigating around the identified
obstacles. To identify potential detours and their relationship with bottlenecks,

Fig. 5. Two bottlenecks due to waiting for sequential faults to be repaired. The inter-
section highlights the distribution priority of packages. Specific timestamps are anno-
tated to demonstrate the relationship between the arrival time of the packages and the
downtime and uptime of the faults.
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Fig. 6. Packages waiting to be loaded onto an aircraft, where the inefficiency cascades
through the equipment.

we make an assumption that cases with the same source and destination pieces of
equipment follow the same planned route if no obstacles are encountered during
distribution. Building upon this assumption, first, we extract cases that share the
same source and destination as the trajectory of a bottleneck. Next, we identify
the change points of these cases, i.e., the equipment piece where a case deviates
from the originally planned route. To relate the detour with the bottleneck, we
select the cases with the change points preceding the bottleneck on the route,
and the events at these change points temporally take place after the bottleneck.

Figure 7 exemplifies the impact of a bottleneck, which results in a detour
within the system. In this example, case 2159753596 detours on LHWU9366, i.e.,
the change point for its distribution, due to the bottleneck caused by the distri-
bution of package 2736942968 on equipment PGUL9655. Additionally, package
2159753596 experiences a temporary waiting period on LHWU9366 until the
decision to detour is made. As a result, the distribution of 2159753596 is com-
pelled to deviate from its initial planned route, leading to a longer path to reach
its destination. This scenario highlights how bottlenecks impact the overall dis-
tribution process, causing deviations and delays for affected cases.

By illustrating the impact of a bottleneck, we highlight that inefficiencies
may not be readily observable solely based on the presence of a bottleneck. The
distribution, taking a detour to circumvent the bottleneck, follows a longer route,
ultimately leading to increased throughput time in its distribution process.

6 Results

We present the quantitative results from our diagnostics, as depicted in Fig. 8.
The figure provides insights into the distribution of bottlenecks based on their
root causes. Notably, as the number of bottlenecks increased, we observed a
trend where multiple bottlenecks shared the same root causes, highlighting their
interconnectedness and shared contributing factors within the system.
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Fig. 7. An example highlighting the impact of a bottleneck: package 2736942968 on
equipment PGUL9655 triggers a cascading effect, causing 2159753596 to experience
additional waiting and detour, resulting in extended throughput time.

Interestingly, although only a small portion of bottlenecks appeared to be
attributed to equipment faults, our analysis of the root causes of unjustified
waiting reveals another possibility. Approximately 3% of the root causes of the
unjustified waiting could be attributed to storage-related reasons, which are
regarded as more of a business decision rather than operational inefficiencies. For
other root causes, we identified an example that illustrates the impact of design
decisions on threshold settings, as shown in Fig. 9. This instance resulted in unde-
tected root causes, where equipment ZGNT4301 was evaluated at 17:27:20 with
a 14-s threshold, while the fault occurred 17 s later, causing package 2736942868
to become stuck on equipment ZGNT4301. These findings highlight the impor-
tance of thoroughly considering design choices to accurately detect and address
root causes.

The identification of root causes demonstrates efficiency, with an average
time of approximately 0.2 s and a maximum of 2 s per bottleneck. These metrics
highlight a rapid identification process, influential in preserving optimal system
performance. Leveraging this efficiency, the root cause identification developed is

Fig. 8. The number of bottlenecks and the corresponding root causes based on diag-
nostics.
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Fig. 9. An example of unjustified waiting, highlighting the impact of design decisions
where the equipment fault occurred after evaluating the equipment condition.

integrated into the system, as exemplified in Fig. 10. Utilizing a logistic map that
visually represents the equipment layout and relationships within the system,
the root causes are swiftly detected based on the bottlenecks highlighted on the
map. The right panel provides an interactive interface for exploring the detected
root causes, enabling a comprehensive analysis of the distribution process. This
integration emphasizes its practical applicability and highlights its potential to
enhance operational efficiency.

7 Related Work

Diagnosing the root cause is crucial for optimizing service performance. Compre-
hensive process models are typically seen as essential for root cause diagnostics
[8,13,16]. For instance, in one study [13], a descriptive process model with statis-
tical metrics is used to identify root causes by observing resource status during
the bottleneck time periods. Another work in [8] employs conformance checking

Fig. 10. Visualizing root causes of bottlenecks in the distribution process on the logistic
map. note that the diagnostics are renamed for user clarity.
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to diagnose bottlenecks through deviations and cause-effect correlations, demon-
strated through an offshore oil and gas industry case study. However, discovering
a suitable process model is often challenging due to scalability issues with dis-
covery algorithms. Additionally, these models require a substantial amount of
data for each resource, making them less applicable in scenarios where resource
utilization is sparse, as presented in our case study.

Certain approaches rely heavily on knowledge-intensive domain understand-
ing, demanding significant effort and expertise to represent complex causal rela-
tionships. While innovative methodologies show promise in representing knowl-
edge [9,15,16], their effective implementation requires a high level of expertise.
For example, in an approach [15], fusion-based clustering and a hyperbolic neural
network are utilized to represent domain knowledge. Inspired by causality the-
ory, the authors [9] strive to avoid imposing assumptions on the data, enhancing
reliability in practical applications. In the work by Unger et al. [16], an event
log derived from business lawsuits is defined and subsequently analyzed using
process mining techniques. Although the analysis yields valuable insights, identi-
fying the root causes necessitates human analysis and a profound understanding
of the domain to interpret the performance metrics accurately and diagnose the
underlying reasons for bottlenecks. These methods demand specialized knowl-
edge, limiting their practical adoption and applicability.

In practical applications, scalability, accessibility to domain knowledge, and
the necessity of a process model pose significant challenges. In contrast, the
proposed solution automatically identifies root causes at the data level, demon-
strating scalability and potential for real-time application. We emphasize trans-
parency based on unbiased raw data and facilitate business-level interpretation
through visualization using PSM.

8 Conclusion

In this paper, we presented a case study focusing on the identification and diag-
nostics of root causes in the package distribution process of an air cargo terminal.
The process efficiency is closely tied to the dynamic nature of the system. We
formalized the provided datasets and analyzed the observed behavior within the
system. By identifying bottlenecks, we proposed a data-level method for extract-
ing root causes and conducting targeted diagnostics. Moreover, we demonstrated
the effectiveness of the visualization inspired by PSM in aiding the diagnostic
process. Additionally, we showcased the impact of bottlenecks, which led to inef-
ficiencies in the system that cannot be directly observed in individual package
distributions. The results of the case study further establish the practicality and
relevance of our method in real-world scenarios. For future work, we aim to
extend the visualization to include the status of the equipment, which can be
seen as the concept of resources in process mining, as it significantly impacts
the system. Developing a visual analytic tool considering equipment or resource
status would benefit scenarios similar to this case study.
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