
FUSE: Fault Diagnosis and Suppression
with eBPF for Microservices

Gowri Sankar Ramachandran(B) , Lewyn McDonald, and Raja Jurdak

Trusted Networks Lab, Queensland University of Technology, Brisbane, Australia

g.ramachandran@qut.edu.au

Abstract. Contemporary applications harness microservices architec-
ture to attain scalability, loose coupling, and abstraction advantages.
This approach involves breaking down applications into smaller, com-
posable services, which are hosted in the cloud. Cloud deployment offers
advantages like elastic load balancing, cost-efficiency, and ease of man-
agement. However, it raises two issues: trusting third-party providers and
limited fault diagnosis due to generic logs. Deep runtime introspection of
microservices on third-party clouds can enhance the resilience of cloud-
native microservice-based applications.
This paper introduces FUSE, a novel framework based on eBPF technol-
ogy that enables deep introspection of microservices’ runtime behavior.
FUSE observes microservices at the kernel level, tracing system calls,
function invocations, and disk accesses to create a unique hash-based
digest for each microservice invocation. This digest is then used to verify
runtime correctness: correct microservices consistently produce a known,
deterministic digest, while faulty services generate random traces. FUSE
provides real-time fault detection and suppression, preventing cascading
failures. Additionally, it introduces a stability score for succinctly cap-
turing runtime consistencies in microservices. In our evaluation with four
representative microservices on AWS EC2 instances, FUSE successfully
detected 53 runtime faults.

Keywords: eBPF · Resilient Microservice · Fault Diagnosis

1 Introduction

Contemporary applications adopt microservices architecture to achieve scala-
bility, load balancing, continuous integration and loose coupling for large-scale
enterprise applications [7]. Some of the largest tech companies, including Ama-
zon [8] and Microsoft [12], serve millions of customers following microservices
architecture. The emergence of cloud computing platforms further accelerates
the growth of microservices, allowing the service owners to deploy their appli-
cations on the cloud without needing to invest in hardware, software, and tool-
ing resources, as existing cloud platforms offer many built-in services, including
elastic load balancing, security, and remote management, for an affordable cost,
making them attractive for the deployment of microservices [21].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 243–257, 2023.
https://doi.org/10.1007/978-3-031-48421-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_17&domain=pdf
http://orcid.org/0000-0001-5944-1335
http://orcid.org/0000-0001-7517-0782
https://doi.org/10.1007/978-3-031-48421-6_17

244 G. S. Ramachandran et al.

As the applications switch from the “monolithic” to the “microservices”
model, the end system consists of a set of independent services running on dif-
ferent cloud instances in a virtualised environment. Although cloud providers
strive to provide reliable services to the service owners, there is still a possibil-
ity of service failures and faults at runtime [1,5,6]. Service meshes have been
developed to make microservices resilient against communication failures, as the
failure of a single service could impact other inter-connected services through
the cascading effect [11]. Figure 1 (left) shows how a single faulty service can
disrupt other interconnected services due to fault propagation. Sidecars monitor
individual services and relay the information to the service mesh control plane
to make dynamic decisions at runtime. Existing features of sidecars include traf-
fic monitoring, load balancing, and fault-tolerant networking, but there is no
support to deeply observe the “execution” of microservice at runtime to ensure
consistency [4,14].

Existing literature highlights the benefits of observing microservices at the
kernel level using the extended Berkeley Packet Filter (eBPF) [3,4,10,13,18,22].
eBPF offers a rich set of functionalities to monitor the runtime behaviour of
microservices. It enables the service owners to develop kernel probes, which are
user-defined programs with kernel privileges to deeply introspect the behaviour
of applications running in the user space. eBPF provides several functionalities,
including support for network observation, disk monitoring, and system call trac-
ing to get fine-grained activity logs of user-level programs such as microservices.
Extant literature proposes eBPF-based frameworks to classify microservices in
data centres [3,4] and for monitoring network and performance [13,18,22], lack-
ing a solution to detect and suppress runtime faults in microservice-based appli-
cations, which is the focus of this work.

Fig. 1. Composing Microservices using FUSE to suppress fault.

This paper introduces FUSE, an eBPF-based fault-diagnosis and suppression
framework for microservices architecture. FUSE differs from other works in the
following ways:

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 245

– FUSE observes the runtime behaviour of microservices by monitoring system
calls, function invocations, and disk accesses, including memory allocations,
to create a unique signature (or digest) from traces for each invocation.

– FUSE categories microservices as an idempotent or non-idempotent service
based on the signature.

– FUSE detects runtime faults by checking the signature of each invocation
against the expected signatures. Upon fault detection, it promptly alerts the
service administrator and the circuit-breaker to suppress cascading failures,
as shown in Fig. 1 (right).

– FUSE also helps the service owners and developers quantify the runtime con-
sistency of microservices through a novel stability score for microservices. A
microservice composition with a high stability score is good for resiliency.

FUSE is implemented in a Linux environment with eBPF and evaluated on
AWS EC2 instances running the Ubuntu operating system. The performance
and effectiveness of FUSE are validated using four representative microservices
that 1) register a user into a MySQL database, 2) query the system to retrieve
the list of users, 3) test the strength of a password, and 4) add the numbers
in a list. During the evaluation, FUSE successfully detected 53 runtime faults,
highlighting its ability to prevent cascading failures by alerting service admin-
istrators and circuit breakers. Lastly, the stability score is a valuable feature
for service administrators and software developers to improve the microservices’
resiliency.

2 Background

2.1 extended Berkeley Packet Filter (eBPF)

The extended Berkeley Packet Filter, commonly known as eBPF, is a special
type of virtual machine within the Linux kernel [15]. It was introduced in 1992
with a register-based filter for evaluating the network packets deep inside the
kernel. tcpdump is one of the popular tools from the eBPF family. Although net-
work monitoring is one of the popular use cases of eBPF, it does provide multiple
hooks to trace and monitor various subsystems inside the Linux kernel. Some of
the other hooks include Filetop (for tracking the file reads and writes), Open-
snoop (attempts to track the files accessed by a specific process), and syscount
(counts the number of system calls) [9]. The user-level programs can attach to
these kernel hooks through eBPF probes such as kprobe, uprobe, tracepoint, and
socket [9]. Depending on the type of selected hooks, the probes deliver detailed
information to the user for deep introspection of application activities, including
microservices.

2.2 Faults in Microservices

Microservices use a software framework such as Apache and Spring and run on
a hardware infrastructure provided by the cloud provider in the case of cloud-
native deployments. As discussed in [1], the microservices could be exposed to

246 G. S. Ramachandran et al.

intermittent hardware faults due to cosmic radiation or impure packaging mate-
rial. Facebook’s data centres that serve a multitude of apps, such as Facebook,
WhatsApp, and Instagram, experienced silent data corruptions, causing inac-
curate computations [6]. Such runtime silent faults occur as a result of manu-
facturing defects at the silicon level [5]. The aging of microservices also intro-
duces faults, which are undetected by Kubernetes probes, according to [17].
BROFY [10] explains the need to develop approaches for microservices’ integrity
validation as the attackers or faulty hardware could introduce bitflip errors (one
or more of the bits gets flipped, changing the runtime behaviour) to the compu-
tation infrastructure, causing silent and undetectable failures. Additionally, ser-
vices may fail to access the desired resource, including the database, to fulfil the
functional requirements, resulting in run-time faults. These problems underscore
the importance of developing approaches to detect runtime faults in microser-
vices, which is the focus of this work.

3 Related Work

Existing works have studied approaches to enhance the monitoring capabilities of
microservices to detect performance issues [3,4,13,18,22]. These works leverage
eBPF to observe microservices’ runtime behaviour by focusing on the networking
activities [13], including TCP traffic [22] and latency [18], CPU activations [3,
4,22], Block I/O performance [22] to understand the performance bottlenecks.
Although these works aim to improve microservices’ performance, they don’t
propose fault diagnosis or suppression.

MAGNet [3] is similar to FUSE in the aspect of application-focused eBPF
tracing, but it aims to generate identities for workloads in data centres without
detecting faults using the eBPF traces. Hyunseok et al. [4] introduced a microser-
vices fingerprinting technique by tracing the system calls used by microservices
and trained a machine learning model to classify services. FUSE classifies the
microservices based on eBPF trace, but it uses system calls, disk I/O activities,
and function invocations to generate a unique digest per invocation without
employing machine learning. Furthermore, FUSE contributes a fault detection
and suppression framework and a stability scoring mechanism to tackle runtime
faults.

The stability of microservices is studied using eBPF in [20], which leverages
variable autoencoders to detect unstable or compromised containers based on
eBPF traces. It monitors a pre-configured set of 72 Linux system calls to cap-
ture specific security incidents and application faults. This work is similar to ours
in the aspect of the eBPF-based approach for stability analysis, but we focus
on application-level or microservices fingerprinting using system calls, function
invocation, and disk accesses without involving any machine learning. Areeg and
Claus [19] detect anomalies in containerised microservices using Markov Models,
wherein the key performance indicators such as mpstat and vmstat are collected
at the application level to learn a model using Hierarchical Hidden Markov Mod-
els, which detect abnormal microservice behaviours with 97% accuracy. Unlike

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 247

this paper, FUSE generates microservice-specific eBPF traces and detects stabil-
ity and abnormality through a hash-based signature without applying machine
learning algorithms. Many other works tackle anomalies or eBPF-based observ-
ability for microservices, but they don’t focus on fault detection using eBPF-
based tracing by combining system calls, function invocations, and disk accesses.
Besides, none of the existing works introduces a stability scorecard for microser-
vices, which is another novel contribution of our work.

4 FUSE: Fault Diagnosis and Suppression with eBPF
for Microservices

4.1 System Model

Modern applications are composed of interconnected microservices, wherein each
service sx ∈ S could be connected with one or more services. In such circum-
stances, whenever the end user issues a request to a service, it may trigger a
series of services to generate a response to the user. Upon receiving a request
reqx, the service sx processes the request by running computations exex and
produces a response resx. Here, exex may involve contacting other services,
meaning the response could be generated with the help of other dependent ser-
vices. Each service in S gets invoked numerous times in deployment, depending
on the application’s popularity and the customer base. Each service gets invoked
K (K ∈ N) times in deployment, and the ith invocation of a service sx can be
denoted by Iix. Each invocation includes the execution phase (exeix), which will
use the hardware and software resources, including the Linux kernel. eBPF pro-
vides tools to introspect the behaviour of a service sx at the execution phase (also
called “runtime”) by capturing kernel-level traces for exeix, which is denoted by
traceix. In summary, ith invocation of a service sx can be represented by a tuple
〈reqix, exeix, resix, traceix〉. This work builds on some key concepts, such as idem-
potency and stability, which are defined below.

Definition 1. Idempotency The system’s state remains the same when an
operation is executed any number of times [16].

GET and HEAD are examples of idempotent HTTP operations because they
don’t change the server’s state on the request’ successful completion. Besides,
even the same request can be issued many times without altering the server’s
state. On the other hand, the POST operation of HTTP changes the server’s
state, meaning it may add a new item to a database; hence, it is non-idempotent.

Definition 2. Idempotent Microservice A microservice is considered idem-
potent if it doesn’t alter the system’s state when a request is processed any number
of times.

A microservice that reads an employee’s data from a database is an example of an
idempotent microservice. In contrast, the service that registers a new employee’s
data is non-idempotent as it changes the server’s state.

248 G. S. Ramachandran et al.

Definition 3. Trace A trace of a microservice corresponds to the low-level
activities that the service carries out inside the kernel to process a request reqx.
Tx denotes a set of unique traces of service sx and Lx denotes the length of Tx.

Software applications access the CPU, memory, and network by invoking sched-
ulers, I/O management modules, and network managers to fulfil the desired
functionalities. Here, the low-level activities correspond to all activities that
happen within the kernel as part of the application’s or microservice’s execu-
tion. This work assumes microservices perform single functions upon receiving
requests (reqx) with deterministic, bounded input sizes. For instance, the register
user to a database service limits ‘user name’ input to 20 characters.

Definition 4. Idempotent Trace A microservice’s trace is idempotent if it
doesn’t change when the same or different requests are processed any number of
times.

Considering three invocations, p, q, and r, of service sx the trace is said to be
idempotent if and only if:

tracepx = traceqx = tracerx = α, where Tx = {α} and Lx = 1 (1)

Definition 5. Stability of a Microservice: A microservice is said to be stable
if its traces are idempotent for a given request req. The stability of a service in
percentage is calculated using traces generated from E invocations. The stability
of a microservice, smx, is:

smreq
x = (1 ÷ Lx) ∗ 100 (2)

Figure 2 (top) shows an example of an idempotent service with a stability score
of 100% for E of 4 because it produces one unique trace. But, some services
may produce more than one trace for E (E ∈ N) invocations. Figure 2 (bottom)
illustrates an idempotent service with a stability score of 50% for E of 4, with two
unique traces α and β. The higher stability score indicates runtime consistency,
helping developers and administrators to build highly stable services.

Fig. 2. Stability Score of Idempotent Service based on 4 Invocations.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 249

Fig. 3. FUSE Architecture: The dotted line indicates operations in idempotency vali-
dation mode, while normal line denotes fault detection and suppression operations.

4.2 Architecture of FUSE

At a high level, FUSE is a cross-layer architecture running at user and ker-
nel spaces, as shown in Fig. 3. Microservices run in a computing environment,
including a cloud instance. Typically, services are hosted on a framework such
as Spring Boot. An operating system such as Ubuntu manages the resources
for the application-level services. In this model, the operating system functions
within the kernel space without offering much visibility to the users. In contrast,
the services sit in the user space, leveraging the operating system to function
correctly. FUSE leverages eBPF to monitor and extract kernel space activities of
services to generate signatures and suppress faults. The user space activities for
eBPF include setting up the necessary hooks and the configurations to generate,
process, store, and validate traces. In contrast, the kernel space intercepts the
traces required for the target microservices. The fundamental building blocks of
FUSE are discussed in the rest of the section.

FUSE Configurations. FUSE can operate in two modes, including idempo-
tency validation and fault detection and suppression modes, based on the con-
figurations set by the microservices administrator. In the idempotency valida-
tion mode, FUSE runs the same microservice E times and collects the traces
in a database. Subsequently, the traces are analysed to determine whether
the microservice is idempotent or not. This mode must be activated for each
microservice before production for fault diagnosis and suppression. The fault
detection and suppression mode is activated at runtime to validate the microser-
vices’ trace for each invocation against the database. As shown in Fig. 3, this
mode uses a different set of building blocks for detecting and suppressing faults
based on the runtime traces.

Syscall Monitor tracks the system calls used by the microservice. At each
microservice’s invocation, this building block intercepts the system calls and gen-
erates a list, including the counts for each system call. For example, read is one of

250 G. S. Ramachandran et al.

Algorithm 1: FUSE in idempotency validation and fault detection and
suppression modes: Stability score calculation is included in idempotency
validation mode.

FUSE in idempotency validation mode

Require: Sx, E
T ← {} /* Empty T */

for i = 1 to E do
tracei = generateDigest(Sx)
if tracei /∈ T then

T = T ∪ tracei
end if

end for
storeTraceinDatabase(Sx,T)
return

FUSE Stability Score Calculation

Require: Sx, T
L ← 0 /* Length of T is 0 */
sm ← 0 /* Stability score is initialised 0 */
L = |T | /* Length of T */
sm = (1 ÷ L)*100 /* Stability score is calculated */
storeStabilityScoreinDatabase(Sx,sm)
return

FUSE in fault detection and suppression mode

tracej = generateDigest(Sx) /* jth invocation of a service */
if tracej /∈ T then

notifyFault()
end if

the widespread system calls, and it opens a file or a resource. Functions Tracer
traces the functions and libraries invoked by the microservice. For each invoca-
tion, this captures the list of files and libraries accessed by the microservice.
Disk Read/Write Tracker tracks the number of reads and writes, including
memory allocations, that happen during the execution of microservice along with
a pointer to a file, indicating the files that were read from or written to.

Digest (or Signature) Generator processes the traces generated by the
syscall monitor, functions tracer, and disk read/write tracker to create a digest
or signature for each invocation. The digest is made by counting the number of
calls, the list of functions invoked, the amount of data read from or written to,
and malloc allocations. A cryptographic hash function such as sha256 creates a
unique signature per invocation.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 251

Idempotency Validator processes the digests during the idempotency val-
idation mode by studying the consistency of digests. Each microservice is exe-
cuted E times to perform idempotency validation. Therefore, this process is data
intensive as multiple traces must be generated to determine whether a given
microservice is idempotent or not. An idempotent microservice would always
produce the known cryptographic hash for a given request type reqx because
such a microservice always executes the same system calls, accesses the same
list of functions, has the same data read from or written to, and allocates the
same amount of memory. Algorithm 1 explains FUSE’s operations.

Digest Database stores and manages digests associated with a
microservice-based application. It is important to note that each microservice
need not have its database; instead, a single database can be used to manage
the digests.

Fault Detector gets activated in fault detection and suppression mode, and
it is responsible for checking whether a digest of a recent microservice’s invo-
cation produces the known and expected digests. Recall that an idempotent
microservice will have the known digest unless there is a fault. This module
checks the digest and generates an alert to the service admin. Besides, the digest
is also notified to the circuit breaker for fault suppression.

4.3 Fault Diagnosis and Suppression

Fig. 4. Fault breaks the idempotency of an idempotent service.

Definition 6. Faulty Microservice A microservice is said to be faulty when
its traces are intermittently non-idempotent. An idempotent microservice can
experience faults at runtime, breaking idempotency.

Figure 4 elucidates how an idempotent microservice can experience an unex-
pected fault at runtime due to hardware or software failures, breaking the trace
consistency. Note that any trace other than α is considered faulty for the first
idempotent service in Fig. 4 (top). On the other hand, Fig. 4 (bottom) shows an
idempotent service with more than one known trace to be considered non-faulty;

252 G. S. Ramachandran et al.

however, the 3rd invocation (see) produces an unexpected trace of Δ, denoting
a runtime fault.

Figure 1 (left) shows that a single faulty service could impact other intercon-
nected services if left untreated. Circuit breakers are recommended to increase
the resiliency and availability of microservices in the event of cascading failures.
A circuit breaker relies on fault event to open the circuit to prevent cascad-
ing failures. Network-related issues, server failures, and overloads are consid-
ered fault events in circuit breakers, allowing microservices to overcome major
and obvious faults. Our approach complements existing techniques and further
strengthens the circuit breakers by tackling less-obvious faults, which could arise
due to hardware abnormalities or any unexpected behaviour only noticeable at
runtime, including the involvement of an adversary. Our fault suppression tech-
nique is presented in the next section.

4.4 Fault Suppression

FUSE digests (or signatures) provide a stable reference for fault diagnosis, as a
service could be idempotent or non-idempotent. Our fault suppression technique
is proxy-based [2], meaning that the service interacts with other dependent ser-
vices if and only if the digest of the current invocation satisfies the idempotency
property (see Definitions 4). Any variations to the digest (or trace) indicate a
fault (see Definition 6), suppressing outbound communications with dependent
services, as shown in Fig. 1 (right). The circuit breaker opens the connection to
prevent cascading failures. The fault detection and suppression mode monitors
the trace following Algorithm 1 and notifies faults to the appropriate agent. Fol-
lowing a proxy-based fault suppression scheme, the outgoing requests to depen-
dent microservices are blocked to prevent cascading failures, as shown in Fig. 1.

4.5 Stability Score

FUSE validates the stability of microservices through a stability scorer module,
as shown in Fig. 3. As discussed in Definition 5, the stability of a microservice
depends on its trace (or signature) consistency. Our stability scoring mechanism
provides a score between 0% and 100% for microservices. A score closer to 100%
indicates high stability, while any score close to 0% indicates poor stability.
An idempotent service has a high stability score, while non-idempotent services
have a low stability score. The stability scorer module takes the digests from
the database and counts the unique digests per microservice in the idempotency
validation mode, as shown in Algorithm 1.

This score is beneficial for system administrators and microservice archi-
tects. From the service management and resilience viewpoint, having an idem-
potent microservice with a stability score of 100% maximises the determinism
and fault detection capabilities. In contrast, any score close to 0% shows the
non-determinism of the microservice. Besides, when designing a microservice,
the developers can aim to compose a strictly idempotent microservice by using

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 253

FUSE’s stability score as it helps the developers understand hidden uncertain-
ties in the code, which is only noticeable at runtime. Figure 2 shows how the
stability score is calculated for an idempotent microservice.

5 Proof-of-Concept Implementation and Evaluation

FUSE is implemented using eBPF and tested on AWS EC2 instances running
the Ubuntu operating system. To validate the practicality of FUSE, we have
developed POST and GET services using Python Flask with the following func-
tionalities: 1) New user registration service (S1): receives a POST request
with the user details, including the name, address, and country, and stores them
in a MySQL database. 2) Users data retriever service (S2): handles a GET
request to gather the users’ data from a MySQL database and sends it back
to the requester. 3) Password strength checker service (S3): receives a
POST request to check the strength of a password the user selects. It receives a
password string and checks its strength by assessing the lower and upper cases,
digits, and length, and returns the password strength as Strong or Weak. 4)
Addition service (S4): adds the numbers in the request and returns the sum
as a response. Our proof-of-concept implementation used a proxy that generates
and validates the trace (or signature) for each POST or GET request. We eval-
uate the performance and stability of the example representative services and
report the results. Each service was executed more than 1000 times in idempo-
tency validation mode, i.e. E > 1000.

5.1 Idempotency of Example Services

For E > 1000, services S1, S2, S3, and S4 have T of 2, 4, 3, and 10, respectively,
of which a single trace is dominant, making them idempotent. The sha256 hash
is shortened to four characters in Table 1 for brevity. However, the real digest
is 64 characters long. The amount of memory used, the number of functions
accessed, and system calls invoked changes depend on the microservices, resulting
in unique hashes per service. Figure 5 shows the distribution of hashes for S1, S2,
S3, and S4 - it is clear that each microservice has a dominating hash that appears
more than 97% of the time. Besides, S1, S2, S3, and S4 have stability scores of
50, 25, 33.3, and 10, respectively. The higher stability score corresponds to high
determinism and stability. S1 is the most stable among the example services,
while S4 is the least stable. Figure 6 shows how the stability score evolved with
each invocation and stabilised. The instability of S4 and the high stability of S1
are apparent in Fig. 6.

Table 1. Stability Score of Services based on Traces.

Service T L E Stability Score (in %)

S1 {‘8507’:7, ‘f8ec’:998} 2 1005 50

S2 {‘3173’:2, ‘7eb0’:1015, ‘913b’:1, ‘51a7’:4} 4 1022 25

S3 {‘075d’:1094, ‘4532’:11, ‘6947’:1} 3 1106 33.3

S4 {‘05db’:1, ‘23e2’:3, ‘4d6b’:6, ‘6398’:1163, ‘68c0’:1, ‘735d’:4, ‘8801’:2, ‘e280’:2, ‘f541’:7, ‘d447’:1} 10 1190 10

254 G. S. Ramachandran et al.

Fig. 5. Distribution of FUSE Traces for Services S1, S2, S3, and S4.

5.2 Overhead of FUSE

Traditional microservices don’t rely on kernel-level traces for fault suppression.
Thus, they don’t incur any overhead within the request-response cycle. When a
request is sent to a microservice, it gets processed, and the response is sent back.
However, FUSE introduces an overhead in storage and latency. The Storage
Overhead of FUSE originates from the storage of traces generated. FUSE
produces multiple eBPF trace files to store file accesses, system call statistics,
memory allocations, and disk operations. The storage overhead of FUSE per
microservice execution is presented in Table 2, wherein the disk IO trace file
takes up the most space while the system calls take up the least space, but these
can be deleted periodically or immediately based on the requirements.

Fig. 6. Stability Score vs. Number of Invocations for S1, S2, S3, and S4.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 255

Table 2. Storage Overhead for Trace Files

Service Syscall Trace (Bytes) Function Trace (Bytes) Disk I/O Trace (Bytes)

S1 751 1710 16380

S2 751 1710 16379

S3 751 1647 16380

S4 1039 1647 16385

The Latency of FUSE differs from traditional microservices as the digest is
generated immediately after the completion of each invocation. Without FUSE,
S1, S2, S3, and S4 have an average latency of 13 milliseconds (ms), 14 ms, 5
ms, and 6 ms, respectively. In contrast, the average latency of S1, S2, S3, and
S4 increases to 235 ms, 204 ms, 168 ms, and 276 ms with FUSE. The increased
latency comes from processing the traces and the generation and notification of
digest, which will be optimised in future work.

5.3 Faults Detected by FUSE

FUSE detected 53 faults at runtime for services S1 and S2 while S3 and S4 did
not experience any faults, meaning all the traces for S3 and S4 came from T
listed in Table 1. In contrast, for S1 and S2, FUSE detected faults with random
traces that are unfound in T in Table 1. These 53 faults are because S1 and S2
rely on a MySQL database, which crashed due to being out of memory as OOM
killer terminated the MySQL process, generating faulty traces. These traces
indicated early signs of memory issues as they had additional system calls. The
services ran correctly as long as there was enough memory, and then it started
to experience faults, resulting in random and unknown traces, triggering faults.
For S1, the observed trace during fault includes (8507), while for S2, the faulty
traces include (3173, 913b, 51a7). These faults underscore FUSE’s effectiveness
in capturing runtime faults.

6 Discussion

Tool Selection for Digest Generation: eBPF offers a robust toolkit for gen-
erating traces of user-level programs, including microservices. This study has
selected specific tools focused on system calls, function invocations, and disk
operations, as highlighted in Table 1. The resulting unique digests at the ker-
nel level attest to the effectiveness of these chosen tools. Nevertheless, there
remains untapped potential in expanding FUSE’s trace generation capabilities
to uncover hidden faults and runtime inconsistencies, representing an exciting
avenue for future research. Impact of Inputs on the Digest: Each service
invocation’s uniqueness arises from varying input characteristics. Many microser-
vices validate inputs for error prevention prior to processing. Our evaluation has

256 G. S. Ramachandran et al.

primarily considered microservices with typical inputs. However, there is room
for more in-depth analysis by drastically altering input parameters, offering a
promising area for future exploration. Platform-Agnostic Traces: This eval-
uation employed AWS EC2 instances running an Ubuntu operating system to
validate FUSE. A valuable opportunity exists to execute the same microservices
on diverse eBPF-compatible Linux systems, such as Amazon Linux, to assess the
platform-agnostic nature of FUSE’s traces. This paper assumes FUSE traces are
generated in ’idempotency validation’ mode on the production platform. How-
ever, testing how digests evolve when introducing a new platform could enhance
FUSE’s flexibility for platform migration, which we consider for future work.

7 Conclusion

Microservices frequently encounter runtime faults stemming from hardware
issues, software bugs, and network disruptions. Detecting these faults is cru-
cial for preempting failures and preventing cascading issues. FUSE, an innova-
tive fault diagnosis and suppression tool built on eBPF, distinguishes microser-
vices as idempotent or non-idempotent based on runtime traces. It dynamically
identifies runtime faults by comparing actual traces with expected ones and
blocks external requests to other services upon fault detection. FUSE intro-
duces a unique stability scoring mechanism, evaluating microservices based on
trace consistency and idempotency. A proof-of-concept implementation using
eBPF and Flask, deployed on AWS EC2 instances, validates FUSE’s practical-
ity. Performance evaluations involving four representative microservices demon-
strate FUSE’s capacity to detect 53 runtime faults, albeit with some latency
and storage overhead. Future work includes optimizing FUSE’s performance
through customized eBPF probes, confirming platform agnosticism across vari-
ous eBPF-compatible Linux platforms, and enhancing its capabilities to analyze
input impact on digests by varying inputs significantly in test services.

References

1. Cerveira, F., Oliveira, R.A., Barbosa, R., Madeira, H.: Evaluation of restful frame-
works under soft errors. In: 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), pp. 369–379. IEEE (2020)

2. Chandramouli, R.: Microservices-based application systems. NIST Spec. Publ.
800(204), 800–204 (2019)

3. Chang, H., Kodialam, M., Lakshman, T.V., Mukherjee, S., Van der Merwe, J.,
Zaheer, Z.: MAGNet: machine learning guided application-aware networking for
data centers. IEEE Trans. Cloud Comput. 11(1), 291–307 (2023)

4. Chang, H., Kodialam, M., Lakshman, T., Mukherjee, S.: Microservice fingerprint-
ing and classification using machine learning. In: 2019 IEEE 27th International
Conference on Network Protocols (ICNP), pp. 1–11 (2019)

5. Constantinescu, C.: Intermittent faults and effects on reliability of integrated cir-
cuits. In: 2008 Annual Reliability and Maintainability Symposium, pp. 370–374.
IEEE (2008)

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 257

6. Dixit, H.D., et al.: Silent data corruptions at scale. arXiv preprint arXiv:2102.11245
(2021)

7. Dragoni, N., et al.: Microservices: Yesterday, Today, and Tomorrow, pp. 195–216.
Springer, Cham (2017)

8. Fulton III, S.M.: What led amazon to its own microservices architecture. The New
Stack (2015)

9. Goldshtein, S.: The Next Linux Superpower: eBPF Primer. USENIX Association,
Dublin (2016)

10. Hartono, A.P.P., Fetzer, C.: BROFY: towards essential integrity protection for
microservices. In: 2021 40th International Symposium on Reliable Distributed Sys-
tems (SRDS), pp. 154–163. IEEE (2021)

11. Jagadeesan, L.J., Mendiratta, V.B.: When failure is (not) an option: reliability
models for microservices architectures. In: 2020 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 19–24. IEEE (2020)

12. Kakivaya, G., et al.: Service fabric: a distributed platform for building microservices
in the cloud. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

13. Levin, J., Benson, T.A.: ViperProbe: rethinking microservice observability with
eBPF. In: 2020 IEEE 9th International Conference on Cloud Networking (Cloud-
Net), pp. 1–8 (2020)

14. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of
the art, and future research opportunities. In: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225 (2019)

15. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: USENIX Winter, vol. 46 (1993)

16. Microservices, B.J., Varanasi, B., Bartkov, M.: Spring REST. Springer, Berkeley
(2021). https://doi.org/10.1007/978-1-4842-0823-6

17. Power, A., Kotonya, G.: A microservices architecture for reactive and proactive
fault tolerance in IoT systems. In: 2018 IEEE 19th International Symposium on
“A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 588–
599 (2018)

18. Ranjitha, K., Tammana, P., Kannan, P.G., Naik, P.: A case for cross-domain
observability to debug performance issues in microservices. In: 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD), pp. 244–246. IEEE
(2022)

19. Samir, A., Pahl, C.: DLA: detecting and localizing anomalies in containerized
microservice architectures using Markov models. In: 2019 7th International Con-
ference on Future Internet of Things and Cloud (FiCloud), pp. 205–213 (2019)

20. Sharma, P., Porras, P., Cheung, S., Carpenter, J., Yegneswaran, V.: Scalable
microservice forensics and stability assessment using variational autoencoders
(2021)

21. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20
(2016)

22. Weng, T., Yang, W., Yu, G., Chen, P., Cui, J., Zhang, C.: Kmon: an in-kernel
transparent monitoring system for microservice systems with eBPF. In: 2021
IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence), pp.
25–30 (2021)

http://arxiv.org/abs/2102.11245
https://doi.org/10.1007/978-1-4842-0823-6

	FUSE: Fault Diagnosis and Suppression with eBPF for Microservices
	1 Introduction
	2 Background
	2.1 extended Berkeley Packet Filter (eBPF)
	2.2 Faults in Microservices

	3 Related Work
	4 FUSE: Fault Diagnosis and Suppression with eBPF for Microservices
	4.1 System Model
	4.2 Architecture of FUSE
	4.3 Fault Diagnosis and Suppression
	4.4 Fault Suppression
	4.5 Stability Score

	5 Proof-of-Concept Implementation and Evaluation
	5.1 Idempotency of Example Services
	5.2 Overhead of FUSE
	5.3 Faults Detected by FUSE

	6 Discussion
	7 Conclusion
	References

