
Flavia Monti · Stefanie Rinderle-Ma ·
Antonio Ruiz Cortés · Zibin Zheng ·
Massimo Mecella (Eds.)

21st International Conference, ICSOC 2023
Rome, Italy, November 28 – December 1, 2023
Proceedings, Part I

Service-Oriented
ComputingLN

CS
 1

44
19

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 14419

Services Science
Subline of Lecture Notes in Computer Science

Subline Editors-in-Chief

Athman Bouguettaya, RMIT University, Melbourne, Australia

Michael P. Papazoglou, University of Tilburg, The Netherlands

Subline Editorial Board

Boualem Bentallah, Australia Paul Maglio, USA
Murthy Devarakonda, USA Klaus Pohl, Germany
Carlo Ghezzi, Italy Stefan Tai, Germany
Chi-Hung Chi, Tasmania Yuzuru Tanaka, Japan
Hani Jamjoom, USA Christopher Ward, USA
Ingolf Krueger, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Flavia Monti • Stefanie Rinderle-Ma •

Antonio Ruiz Cortés • Zibin Zheng •

Massimo Mecella
Editors

Service-Oriented
Computing
21st International Conference, ICSOC 2023
Rome, Italy, November 28 – December 1, 2023
Proceedings, Part I

123

Editors
Flavia Monti
Sapienza University of Rome
Rome, Italy

Stefanie Rinderle-Ma
Technical University of Munich
Garching, Germany

Antonio Ruiz Cortés
University of Seville
Seville, Spain

Zibin Zheng
Sun Yat-sen University
Guangzhou, China

Massimo Mecella
Sapienza University of Rome
Rome, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-48420-9 ISBN 978-3-031-48421-6 (eBook)
https://doi.org/10.1007/978-3-031-48421-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-3349-7861
https://orcid.org/0000-0001-5656-6108
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0002-7878-4330
https://orcid.org/0000-0002-9730-8882
https://doi.org/10.1007/978-3-031-48421-6

Preface

The 21st International Conference on Service-Oriented Computing (ICSOC 2023) took
place in Rome (Italy) from November 28 to December 1, 2023. ICSOC is the premier
international forum aiming at bringing together academics, industry researchers,
developers, and practitioners to report and share ground-breaking work in the area of
Service-Oriented Computing. It offers a top-tier platform for unveiling results
advancing our understanding of various aspects of the field. This includes everything
from application and system considerations to cutting-edge topics like artificial intel-
ligence, machine learning, big data analytics, the Internet of Things (IoT), and
emerging technologies such as quantum computing, blockchain, chatbots, and sus-
tainable green IT solutions. Reflecting upon the remarkable history of previous ICSOC
editions, including Trento (Italy, 2003), New York (USA, 2004), Amsterdam (the
Netherlands, 2005), Chicago (USA, 2006), Vienna (Austria, 2007), Sydney (Australia,
2008), Stockholm (Sweden, 2009), San Francisco (USA, 2010), Paphos (Cyprus,
2011), Shanghai (China, 2012), Berlin (Germany, 2013), Paris (France, 2014), Goa
(India, 2015), Banff (Canada, 2016), Malaga (Spain, 2017), Hangzhou (China, 2018),
Toulouse (France, 2019), Dubai (United Arab Emirates - virtual, 2020), Dubai (United
Arab Emirates - virtual, 2021) and Sevilla (Spain, 2022), ICSOC 2023 continued to
build for the next decade upon this rich tradition of excellence.

ICSOC 2023 followed the two-round submission and reviewing process introduced
in the previous two editions. Other than a traditional research track, it included four
tracks as they relate to service computing research: (1) Artificial Intelligence for Ser-
vices and as-a-Service, (2) Big Data Analytics for Services and as-a-Service, (3) Novel
Service Frameworks for IoT-based and Smart Environments, and (4) Emerging
Technologies. Each track was managed by a track chair, hence enhancing the quality
and rigor of the paper review process. The conference attracted 208 paper submissions
(29 received in the first round) co-authored by researchers, practitioners, and academics
from 30 countries across all continents. Three PC members carefully double-blindly
reviewed each paper submission, except for a small minority of papers (5%) with two
reviews. The reviews were followed by discussions moderated by a senior PC member
who made a recommendation in the form of a meta-review to the track chairs and PC
co-chairs. The PC consisted of 148 world-class experts in service-oriented computing
and related areas (131 PC members and 17 senior PC members) from different
countries across all continents. Based on the recommendations and the discussions, 35
papers (16.83%) were accepted as full papers. We also selected 10 short papers
(4.81%). In total, 12 of the 29 papers submitted in the first round were recommended
for resubmission with minor or major revisions, and 6 were accepted as full or short
papers. In addition, 4 papers were submitted to the industry track and 3 of them were
accepted as full papers.

The conference program also included three keynotes from distinguished
researchers:

– IoTility: Unleashing the Utility of Internet of Things through Microservices
Architectural Extensions, given by Abdelsalam (Sumi) Helal (University of Florida,
USA)

– Service Governance in a Transforming World - Challenges Ahead, given by Pablo
Fernandez (University of Seville, Spain)

– Logic, Automata, and Games in Service Composition, given by Giuseppe De
Giacomo (University of Oxford, UK)

Finally, tutorials, a Ph.D. symposium, a demo session and six workshops were
organized to broaden the scope of ICSOC 2023. The workshops were:

– The 7th Workshop on Adaptive Service-oriented and Cloud Applications (ASOCA
2023)

– The 3rd International Workshop on AI-enabled Process Automation (AIPA 2023)
– The 19th International Workshop on Engineering Service-Oriented Applications

and Cloud Services (WESOACS 2023)
– The 1st International Workshop on Secure, Accountable and Privacy-Preserving

Data-Driven Service-Oriented Computing (SAPD 2023)
– The 1st Services and Quantum Software Workshop (SQS 2023)
– The 1st International Workshop on Sustainable Service-Oriented Computing:

Addressing Environmental, Social, and Economic Dimensions (SSCOPE 2023)

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2023. We would like to thank all the authors and participants for
their insightful work and discussions. We are grateful to the members of the Senior
Program Committee, the international Program Committee, and the external reviewers
for their rigorous and robust reviewing process. We would like to express our gratitude
to the area chairs Fabio Patrizi, Dan Li, Francesco Leotta, and Juan Manuel Murillo
Rodriguez, for their tremendous support throughout the review process. ICSOC 2023
paper management was performed through the Conftool Conference Management
System.

We would like to thank the ICSOC Steering Committee for entrusting us with
organizing the 21st edition of this prestigious conference. We are grateful to all the
members of the Organizing Committee and to all who contributed to make ICSOC
2023 a successful event. We are indebted to the local arrangements team from Sapienza
Università di Roma for the successful organization of all conference, social, and co-
located events, and to Consulta Umbria who acted as organizing agency. We also
acknowledge the prompt and professional support from Springer, who published these
proceedings as part of the Lecture Notes in Computer Science series.

November 2023 Massimo Mecella
Stefanie Rinderle-Ma
Antonio Ruiz Cortés

Zibin Zheng

vi Preface

Organization

General Chair

Massimo Mecella Sapienza Università di Roma, Italy

Program Committee Chairs

Stefanie Rinderle-Ma Technical University of Munich, Germany
Antonio Ruiz Cortés Universidad de Sevilla, Spain
Zibin Zheng Sun Yat-sen University, China

Focus Area 1: Artificial Intelligence for Services and as-a-Service
Chair

Fabio Patrizi Sapienza Università di Roma, Italy

Focus Area 2: Big Data Analytics for Services and as-a-Service
Chair

Dan Li Sun Yat-sen University, China

Focus Area 3: Novel Service Frameworks for IoT-Based and Smart
Environments Chair

Francesco Leotta Sapienza Università di Roma, Italy

Focus Area 4: Emerging Technologies Chair

Juan Manuel Murillo
Rodríguez

University of Extremadura, Spain

Demo Co-chairs

Devis Bianchini Università di Brescia, Italy
Damian A. Tamburri TU/e - JADS, The Netherlands and Politecnico di

Milano, Italy

Workshop Co-chairs

Pierluigi Plebani Politecnico di Milano, Italy
Naouel Moha École de Technologie Supérieure de Montréal, Canada

Ph.D. Symposium Co-chairs

Gowri Ramachandran Queensland University of Technology, Australia
Helen Paik University of New South Wales, Australia
Johanna Barzen University of Stuttgart, Germany

Proceedings and Conference Management System Chair

Flavia Monti Sapienza Università di Roma, Italy

Local Organization, Finance and Sponsorship Chair

Massimo Mecella Sapienza Università di Roma, Italy

Publicity, Web and Social Presence Co-chairs

Marco Calamo Sapienza Università di Roma, Italy
Flavia Monti Sapienza Università di Roma, Italy

Local Committee

Consulta Umbria (Organizing Agency)
Filippo Bianchini Sapienza Università di Roma, Italy
Marco Calamo Sapienza Università di Roma, Italy
Francesca De Luzi Sapienza Università di Roma, Italy
Mattia Macrí Sapienza Università di Roma, Italy
Jerin George Mathew Sapienza Università di Roma, Italy
Flavia Monti Sapienza Università di Roma, Italy

Steering Committee

Boualem Benatallah Dublin City University, Ireland
Athman Bouguettaya University of Sydney, Australia
Fabio Casati University of Trento, Italy
Bernd J. Krämer FernUniversität in Hagen, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Senior Program Committee

Marco Aiello University of Stuttgart, Germany
Boualem Benatallah Dublin City University, Ireland

viii Organization

Athman Bouguettaya University of Sydney, Australia
Carlos Canal University of Malaga, Spain
Flavio De Paoli Università di Milano-Bicocca, Italy
Schahram Dustdar TU Wien, Austria
Hakim Hacid Zayed University, United Arab Emirates
Brahim Medjahed University of Michigan-Dearborn, USA
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
Manfred Reichert University of Ulm, Germany
Manuel Resinas University of Seville, Spain
Michael Q. Sheng Macquarie University, Australia
Stefan Tai TU Berlin, Germany
Mathias Weske HPI / University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Program Committee

Alessandro Aldini University of Urbino, Italy
Moayad M. Alshangiti University of Jeddah, Saudi Arabia
Andreas Andreou Cyprus University of Technology, Cyprus
Yacine Atif University of Skövde, Sweden
Marcos Baez Bielefeld University of Applied Sciences, Germany
Luciano Baresi Politecnico di Milano, Italy
Khalid Belhajjame Université Paris Dauphine, France
Salima Benbernou Université de Paris, France
Javier Berrocal University of Extremadura, Spain
Juan Boubeta-Puig University of Cádiz, Spain
Omar Boucelma Aix-Marseille University, France
Lars Braubach Hochschule Bremen, Germany
Uwe Breitenbücher University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Christoph Bussler Robert Bosch LLC, USA
Cristina Cabanillas University of Seville, Spain
Wing-Kwong Chan City University of Hong Kong, China
Francois Charoy University of Lorraine, France
Sanjay Chaudhary Ahmedabad University, India
Feifei Chen Deakin University, Australia
Lawrence Chung University of Texas at Dallas, USA
Marco Comuzzi UNIST, South Korea
Hoa Khanh Dam University of Wollongong, Australia
Valeria de Castro University Rey Juan Carlos, Spain
Martina De Sanctis Gran Sasso Science Institute, Italy
Bruno Defude Télécom SudParis, France
Andrea Delgado Universidad de la República, Uruguay

Organization ix

Shuiguang Deng Zhejiang University, China
Francesco Di Cerbo SAP, France
Claudio Di Ciccio Sapienza Università di Roma, Italy
Gregorio Diaz Descalzo Universidad de Castilla - La Mancha, Spain
Chen Ding Toronto Metropolitan University, Canada
Hai Dong RMIT University, Australia
Khalil Drira LAAS-CNRS, France
Yucong Duan Hainan University, China
Joyce El Haddad Université Paris-Dauphine, France
Rik Eshuis Eindhoven University of Technology, The Netherlands
Onyeka Ezenwoye Augusta University, USA
Noura Faci Université Lyon 1, CNRS, France
Marcelo Fantinato University of São Paulo, Brazil
Sheik Mohammad

Mostakim Fattah
University of Adelaide, Australia

Zhiyong Feng Tianjin University, China
Pablo Fernandez University of Seville, Spain
Afonso Ferreira CNRS, France
Joao E. Ferreira University of São Paulo, Brazil
George Feuerlicht University of Technology, Australia
Marios-Eleftherios Fokaefs École Polytechnique Montréal, Canada
Xiang Fu Hofstra, USA
G. R. Gangadharan NIT Tiruchirappalli, India
Felix Garcia University of Castilla-La Mancha, Spain
José María García Universidad de Sevilla, Spain
José Garcia-Alonso University of Extremadura, Spain
Ilche Georgievski University of Stuttgart, Germany
Mohamed Graiet ISIMM, Tunisia
Daniela Grigori Université Paris Dauphine, France
Georg Grossmann University of South Australia, Australia
Nawal Guermouche Université de Toulouse, France
Mohand-Saïd Hacid Université Claude Bernard Lyon 1, France
Jun Han Swinburne University of Technology, Australia
Chihab Hanachi IRIT - Toulouse University, France
Qiang He Swinburne University of Technology, Australia
Richard Hull IBM Research, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Hai Jin HUST, China
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Gerald Kotonya Lancaster University, UK
Hemza Labbaci University of Tours, France
Philippe Lalanda UGA, France
Alexander Lazovik University of Groningen, Netherlands
Weiping Li Peking University, China
Ying Li Zhejiang University, China

x Organization

Marin Litoiu York University, Canada
Xumin Liu Rochester Institute of Technology, USA
Yutao Ma Wuhan University, China
Maude Manouvrier University of Paris Dauphine, France
Esperanza Marcos Universidad Rey Juan Carlos, Spain
Philippe Massonet CETIC, Belgium
Nizar Messai University of Tours, France
Tommi Mikkonen University of Helsinki, Finland
Sumaira Sultan Minhas Unaffiliated, USA
Raffaela Mirandola Politecnico di Milano, Italy
Sajib Mistry Curtin University, Australia
Mohamed Wiem Mkaouer Rochester Institute of Technology, USA
Lars Mönch FernUniversität in Hagen, Germany
Michael Mrissa University of Primorska, Slovenia
Adel Nadjaran Toosi Monash University, Australia
Nanjangud C. Narendra Ericsson Research, India
Azadeh Ghari Neiat Deakin University, Australia
Talal H. Noor Taibah University, Saudi Arabia
Alex Norta Tallinn University of Technology, Estonia
Guadalupe Ortiz University of Cádiz, Spain
Óscar Pedreira Fernández Universidade da Coruña, Spain
Ricardo Perez-Castillo University of Castilla-La Mancha, Spain
Olivier Perrin Lorraine University, France
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Lianyong Qi Qufu Normal University, China
Colette Roland Universite Paris1 Panthéon Sorbonne, France
Diptikalyan Saha IBM Research India, India
Stefan Schulte TU Hamburg, Germany
Aviv Segev University of South Alabama, USA
Lionel Seinturier University of Lille, France
Mohamed Sellami Télécom SudParis, France
Jun Shen University of Wollongong, Australia
Weishi Shi University of North Texas, USA
Zheng Song University of Michigan - Dearborn, USA
Chang-ai Sun University of Science and Technology Beijing, China
Genoveva Vargas-Solar CNRS, France
Monica Vitali Politecnico di Milano, Italy
Maja Vukovic IBM T. J. Watson Research Center, USA
Hongbing Wang Southeast University, China
Mingxue Wang Huawei Ireland Research Center, Ireland
Xianzhi Wang University of Technology Sydney, Australia
Zhongjie Wang Harbin Institute of Technology, China
Jun Wei Institute of Software, Chinese Academy of Sciences,

China
Hanchuan Xu Harbin Institute of Technology, China

Organization xi

Jiuyun Xu China University of Petroleum, China
Sami Yangui CNRS-LAAS, France
Sira Yongchareon Auckland University of Technology, New Zealand
Tetsuya Yoshida Nara Women’s University, Japan
Jian Yu Auckland University of Technology, New Zealand
Qi Yu Rochester Institute of Technology, USA
Dong Yuan University of Sydney, China
Gianluigi Zavattaro University of Bologna, Italy
Uwe Zdun University of Vienna, Austria
Wei Zhang University of Adelaide, Australia
Xuyun Zhang Macquarie University Australia
Weiliang Zhao Macquarie University, Australia
Zhangbing Zhou China University of Geosciences, China
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Additional Reviewers

Roberto Cipollone
Leandro de Souza Rosa
Matthias Ehrendorfer
Ruibing Jin
Nataliia Klievtsova

Alessandro Trapasso
Silvestro Veneruso
Neng Zheng
Peilin Zheng
Zhijie Zhong

xii Organization

Keynotes

IoTility: Unleashing the Utility of Internet
of Things Through Microservices Architectural

Extensions

Abdelsalam (Sumi) Helal

Univerity of Florida, USA

While we all share the excitements of great IoT visions and impressive IoT scenarios
and possibilities, we do not yet have a clear pathway to realizing this vision system-
atically and on a broad and large scale. In fact, it can be argued that the focus on vision
and abstracting away many details, including about “things” themselves were inten-
tional to productively bolster our imagination; but this approach has now run its course.
Ignoring the details and staying abstract will be counterproductive at this stage. We
view the success of the IoT to largely depend on how its main ingredient, the thing, is
architected, prepared, and tooled to deliver on the high expectations of the blue-sky
visions. In other words, we see no short cuts to having to walk before we run. Service-
oriented device architecture (SODA) was a successful beginning in our research
journey, where devices were made capable of generating and publishing their services
to an edge node or as endpoints in the cloud. IoT programmability through traditional
service composition was a tangible gain at the time, which was utilized in the Gator
Tech Smart House – an assistive environment for graceful aging project. However,
much remains to be needed to achieve an explicit thing architecture capable of
delivering on the highly anticipated visions. For example, we still do not understand
how to expressly program an IoT as we have programmed previous generations and
forms of the computer. This is obviously an essential requirement for any meaningful
proliferation and adoption of the IoT technology. Except for a few ideas and tools that
exist today, the programmability view of IoT lacks clarity and, in fact, there are no clear
boundaries that separate IoT as a distributed computer from IoT as applications. In this
talk, after a brief introduction to SODA, we will present requisite requirements that we
must satisfy to bolster the programmability and utility of IoT as an emerging industry
and as an applications ecosystem. We will present our current/ongoing work on critical
extensions to the microservices architecture, collectively referred to as IoTility. First,
we will focus on self- and peer-conscious microservices, which enable the IoT to
autonomically learn how its things may relate to one another and what opportunities
can be collectively formed, even tentatively, to the IoT users and their smart spaces.
Second, we will show how giving microservices consciousness promises to make them
a first-class citizen and a capable actor in the development and operation lifecycles of
IoT applications and systems. This “collaborative microservice programmability”
extension brings disrupting changes to the well- and long-established roles of software
development, making the IoT thing (and its vendor who created it in the first place), as
well as the lay user, primary developers of the IoT applications. Third, we will present

IoTranx a “safety” framework that brings transactional extensions to microservices for
the development of safe cyber-physical systems and applications using IoT. We will
show how such “safety-oriented programming model” prevents or avoids harms, errors,
and malfunctions in presence of several cyber-physical uncertainties or un-orchestrated
multiple IoT deployments. Fourth, we will revisit programmability from a different
angle, and that is the inequitable utility. Despite numerous advances in IoT, it remains
the case that a lay user must be of the DIY type or a computer geek to combine and
program a collection of IoT devices into a smart space. We will present some ideas to
democratize the IoT technology and to overcome its inequitable utility. We will present
these democratization ideas within an example in the personal health domain.

xvi A. (Sumi) Helal

Service Governance in a Transforming
World - Challenges Ahead

Pablo Fernandez

University of Sevilla, Spain

Service-oriented computing (SOC) has gained traction across various domains, offering
a fertile ground for the emergence of new generations of service chains. These service
chains are growing and evolving continuously, unlocking unparalleled integration and
customization opportunities. This shift towards SOC has introduced an ecosystem of
seamless interoperability; however, it doesn’t come without governance challenges. As
the intricacy of the service chains grows, issues related to agility, privacy, and capacity
management become evident. In this talk, we will reflect on different challenges that
should be faced to harness these opportunities.

Logic, Automata, and Games in Service
Composition

Giuseppe De Giacomo

University of Oxford, UK

Temporal logics on finite traces (LTLf, LDLf, PPLTL, etc.) are increasingly attracting
the interest of the scientific community. These logics are variants of temporal logics
used for specifying dynamic properties in Formal Methods, but focussing on finite
though unbounded traces. They are becoming popular in several areas, including AI
planning for expressing temporally extended goals, reactive synthesis for automatically
synthesizing interactive programs, reinforcement learning for expressing non-Marko-
vian rewards and dynamics, and Business Process Modeling for declaratively speci-
fying processes. These logics can express general safety and guarantee (reachability)
properties, though they cannot talk about the behaviors at the infinitum as more tra-
ditional temporal logics on infinite traces. The key characteristic of these logics is that
they can be reduced to equivalent regular automata, and in turn, automata, once
determinized, into two-player games on graphs. This gives them unprecedented com-
putational effectiveness and scalability. In this talk, we will look at these logics, their
corresponding automata, and resulting games, and show their relevance in service
composition. In particular, we show how they can be used for automatically synthe-
sizing orchestrators for advanced forms of goal-oriented synthesis.

Contents – Part I

AI for Service Systems

Continuous Certification of Non-functional Properties Across System
Changes. 3

Marco Anisetti, Claudio A. Ardagna, and Nicola Bena

Deep Learning Model for Personalized Web Service Recommendations
Using Attention Mechanism . 19

Marwa Boulakbech, Nizar Messai, Yacine Sam, and Thomas Devogele

Deep Reinforcement Learning-Based Scheduling for Same Day Delivery
with a Dynamic Number of Drones . 34

Boyang Zhou and Liang Cheng

Designing Reconfigurable Intelligent Systems with Markov Blankets. 42
Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta,
and Schahram Dustdar

Exploiting Category Information in Sequential Recommendation. 51
Shuxiang Xu, Qibu Xiang, Yushun Fan, Ruyu Yan, and Jia Zhang

Niagara: Scheduling DNN Inference Services on Heterogeneous
Edge Processors . 67

Daliang Xu, Qing Li, Mengwei Xu, Kang Huang, Gang Huang,
Shangguang Wang, Xin Jin, Yun Ma, and Xuanzhe Liu

Plan, Generate and Match: Scientific Workflow Recommendation
with Large Language Models . 86

Yang Gu, Jian Cao, Yuan Guo, Shiyou Qian, and Wei Guan

Predicting Effect and Cost of Microservice System Evolution Using Graph
Neural Network . 103

Xiang He, Zihao Shao, Teng Wang, Haomai Shi, Yin Chen,
and Zhongjie Wang

QoS Prediction via Multi-scale Feature Fusion Based on Convolutional
Neural Network . 119

Hanzhi Xu, Yanjun Shu, Zhan Zhang, and Decheng Zuo

Architecture and System Aspects

Decision-Making Support for Data Integration in Cyber-Physical-System
Architectures . 137

Evangelos Ntentos, Amirali Amiri, Stephen Warnett, and Uwe Zdun

IDLGen: Automated Code Generation for Inter-parameter Dependencies
in Web APIs . 153

Saman Barakat, Ana Belén Sánchez, and Sergio Segura

Time-Aware Log Anomaly Detection Based on Growing
Self-organizing Map . 169

Daniil Fedotov, Jaroslav Kuchar, and Tomas Vitvar

Containers and Microservices

An Empirical Evaluation of the Energy and Performance Overhead
of Monitoring Tools on Docker-Based Systems . 181

Madalina Dinga, Ivano Malavolta, Luca Giamattei, Antonio Guerriero,
and Roberto Pietrantuono

ChainsFormer: A Chain Latency-Aware Resource Provisioning Approach
for Microservices Cluster . 197

Chenghao Song, Minxian Xu, Kejiang Ye, Huaming Wu,
Sukhpal Singh Gill, Rajkumar Buyya, and Chengzhong Xu

Energy-Efficient and Communication-Aware Resource Allocation
in Container-Based Cloud with Group Genetic Algorithm 212

Zhengxin Fang, Hui Ma, Gang Chen, and Sven Hartmann

Engineering Self-adaptive Microservice Applications:
An Experience Report . 227

Vincenzo Riccio, Giancarlo Sorrentino, Matteo Camilli,
Raffaela Mirandola, and Patrizia Scandurra

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 243
Gowri Sankar Ramachandran, Lewyn McDonald, and Raja Jurdak

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems
in Cloud-Edge Environment . 258

Haomai Shi, Xiang He, Teng Wang, and Zhongjie Wang

xxii Contents – Part I

Emerging Technologies and Approaches

2DPChain: Orchestrating Transactions in Order-Execute Blockchain
to Exploit Intra-batch and Inter-batch Parallelism . 275

Jianfeng Shi, Heng Wu, Wang Liu, Heran Gao, and Wenbo Zhang

A Dynamical Model for the Nonlinear Features of Value-Driven Service
Ecosystem Evolution . 291

Xinyue Zhou, Jianmao Xiao, Xiao Xue, Shizhan Chen, Hongyue Wu,
and Zhiyong Feng

A Middleware for Hybrid Blockchain Applications: Towards Fast,
Affordable, and Accountable Integration . 307

Olzhas Yessenbayev, Marco Comuzzi, Giovanni Meroni,
and Dung Chi Duy Nguyen

An AI Chatbot for Explaining Deep Reinforcement Learning Decisions
of Service-Oriented Systems . 323

Andreas Metzger, Jone Bartel, and Jan Laufer

BEAR: Revolutionizing Service Domain Knowledge Graph Construction
with LLM . 339

Shuang Yu, Tao Huang, Mingyi Liu, and Zhongjie Wang

Dependency-Aware Resource Allocation for Serverless Functions
at the Edge. 347

Luciano Baresi, Giovanni Quattrocchi, and Inacio Gaspar Ticongolo

Distributing Quantum Computations, by Shots . 363
Giuseppe Bisicchia, Jose García-Alonso, Juan M. Murillo,
and Antonio Brogi

Energy-Efficient Task Offloading with Statistic QoS Constraint Through
Multi-level Sleep Mode in Ultra-Dense Network . 378

Hongfei Li, Chongwu Dong, and Wushao Wen

Enhancing Blockchain Performance via On-chain and Off-chain
Collaboration . 393

Wuhui Chen, Zhaoxian Yang, Jianting Zhang, Junyuan Liang, Qilin Sun,
and Fan Zhou

Author Index . 409

Contents – Part I xxiii

http://dx.doi.org/10.1007/978-3-031-34347-6_28

Contents – Part II

Processes and Workflows

Artifact-Driven Process Monitoring at Scale . 3
Giovanni Meroni and Szabolcs Garda

LoVizQL: A Query Language for Visualizing and Analyzing Business
Processes from Event Logs. 13

María Salas-Urbano, Carlos Capitán-Agudo, Cristina Cabanillas,
and Manuel Resinas

On the Nature of Data in RPA Bots . 29
Maximilian Völker and Mathias Weske

Remaining Time Prediction for Collaborative Business Processes
with Privacy Preservation . 38

Jian Cao, Chi Wang, Wei Guan, Shiyou Qian, and Haiyan Zhao

SWARM: A Scientific Workflow Fragments Recommendation Approach
via Contrastive Learning and Semantic Matching . 54

Yang Gu, Jian Cao, Jinghua Tang, Shiyou Qian, and Wei Guan

TCTV: Trace Clustering Considering Intra- and Inter-cluster Similarity
Based on Trace Variants . 72

Leilei Lin, Ying Di, Wenlong Chen, Yunuo Cao, Rui Zhu,
and Yuan Zhang

Service Descriptions, Tags, Discovery and Recommendation

Influence-Guided Data Augmentation in Graph Contrastive Learning
for Recommendation . 91

Qi Zhang, Heran Xi, and Jinghua Zhu

Observation Is Reality? A Graph Diffusion-Based Approach for Service
Tags Recommendation. 100

Shuang Yu, Qingfeng Li, Mingyi Liu, and Zhongjie Wang

Uncovering Implicit Bundling Constraints: Empowering Cloud Network
Service Discovery . 115

Hayet Brabra, Imen Jerbi, Mohamed Sellami, Walid Gaaloul,
and Djamal Zeghlache

Service Frameworks for IoT, Mobile and Smart Environments

A Deep Reinforcement Learning Approach to Online Microservice
Deployment in Mobile Edge Computing . 127

Yuqi Zhao, Jian Wang, and Bing Li

CET-AoTM: Cloud-Edge-Terminal Collaborative Trust Evaluation
Scheme for AIoT Networks . 143

Chaodong Yu, Geming Xia, Linxuan Song, Wei Peng, Jian Chen,
Danlei Zhang, and Hongfeng Li

Context-Aware Service Delegation for Opportunistic Pervasive Computing . . . 159
Juan Luis Herrera, Hsiao-Yuan Chen, Javier Berrocal, Juan M. Murillo,
and Christine Julien

Context-Aware Trustworthy IoT Energy Services Provisioning 167
Amani Abusafia, Athman Bouguettaya, Abdallah Lakhdari,
and Sami Yangui

Data-Driven Generation of Services for IoT-Based Online Activity
Detection . 186

Ronny Seiger, Marco Franceschetti, and Barbara Weber

Detecting Changes in Crowdsourced Social Media Images 195
Muhammad Umair, Athman Bouguettaya, and Abdallah Lakhdari

Fast Configuring and Training for Providing Context-Aware Personalized
Intelligent Driver Assistance Services . 212

Jun Na, Handuo Zhang, Ouwen Zhu, Weiye Xie, Bin Zhang,
and Changsheng Zhang

Fused User Preference Learning for Task Assignment in Mobile
Crowdsourcing . 227

Yue Ma, Li Ma, Xiaofeng Gao, and Guihai Chen

Octopus: SLO-Aware Progressive Inference Serving via Deep
Reinforcement Learning in Multi-tenant Edge Cluster 242

Ziyang Zhang, Yang Zhao, and Jie Liu

xxvi Contents – Part II

Industrial Papers

Anonymization-as-a-Service: The Service Center Transcripts Industrial
Case . 261

Nemania Borovits, Gianluigi Bardelloni, Damian Andrew Tamburri,
and Willem-Jan Van Den Heuvel

Attribute Authorization - A Novel Enhancement to API Gateways 276
Archana Sulebele and Sai Krishna Munnangi

Unveiling Bottlenecks in Logistics: A Case Study on Process Mining
for Root Cause Identification and Diagnostics in an Air Cargo Terminal 291

Chiao-Yun Li, Tejaswini Shinde, Wanyi He, Sean Shing Fung Lau,
Morgan Xian Biao Hiew, Nicholas T. L. Tam, Aparna Joshi,
and Wil M. P. van der Aalst

Author Index . 309

Contents – Part II xxvii

AI for Service Systems

Continuous Certification of Non-functional
Properties Across System Changes

Marco Anisetti , Claudio A. Ardagna , and Nicola Bena(B)

Department of Computer Science, Università degli Studi di Milano, Milan, Italy
{marco.anisetti,claudio.ardagna,nicola.bena}@unimi.it

Abstract. Existing certification schemes implement continuous verifi-
cation techniques aiming to prove non-functional (e.g., security) prop-
erties of software systems over time. These schemes provide different
re-certification techniques for managing the certificate life cycle, though
their strong assumptions make them ineffective against modern service-
based distributed systems. Re-certification techniques are in fact built on
static system models, which do not properly represent the system evolu-
tion, and on static detection of system changes, which results in an inac-
curate planning of re-certification activities. In this paper, we propose a
continuous certification scheme that departs from a static certificate life
cycle management and provides a dynamic approach built on the mod-
eling of the system behavior that reduces the amount of unnecessary
re-certification. The quality of the proposed scheme is experimentally
evaluated using an ad hoc dataset built on publicly-available datasets.

Keywords: Assurance · Continuous Certification · Machine
Learning · Security

1 Introduction

From service to cloud-edge computing, from big data to machine learning (ML),
from mobile systems to 5G, we witnessed the birth of a new digital era where
the physical environment is strictly blended with complex service-based systems.
The huge benefits in terms of functionalities and efficiency in every domain of
life collide with the need of trust, including guarantees on safety, security, and
privacy, for the final users. This need for trust is the most important barrier to
the wide adoption of modern service-based systems in safety-critical scenarios,
requiring to redesign existing solutions for system non-functional verification.

Assurance is the accepted way to prove a specific non-functional behavior
on a target system [5]. In this context, several certification schemes (e.g., [2,
8–10]) have been defined to support continuous verification of target systems’
non-functional properties over time and across system changes [3,4,8,10]. These
schemes support a continuous certificate life cycle management based on re-
certification, implementing a verification process that aims to adapt a certificate
according to system and contextual changes. Current approaches however fall
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-48421-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_1&domain=pdf
http://orcid.org/0000-0002-5438-9467
http://orcid.org/0000-0001-7426-4795
http://orcid.org/0000-0003-4909-9892
https://doi.org/10.1007/978-3-031-48421-6_1

4 M. Anisetti et al.

short in supporting the peculiarities of modern dynamic, distributed systems [8,
10], building on strong assumptions that make them ineffective in the real world.
More in detail, they are built on system models [2,18] that are not designed to
tackle system evolution, and result in erroneous certification processes built on
inaccurate (i.e., partial) evidence. In addition, life cycle management is built on
static and predefined triggers, where re-certification is executed at fixed time
instants, or when code changes and new vulnerabilities are observed [6,8,9].
These assumptions result in the proliferation of unnecessary re-certification, on
one side, and inaccurate re-certification due to unpredictable and cascade effects
of a system change [8], on the other side.

The solution in this paper aims to fill in the above gaps (Sect. 2) by defin-
ing a continuous certification scheme that departs from a static management
of the certificate life cycle and provides a dynamic approach built on the mod-
eling of the system behavior (Sect. 3). The certification scheme implements a
new re-certification process that is triggered by changes to the system behav-
ior. Dynamic triggering reduces the amount of unnecessary re-certification and
considers the impact of cascading effects on re-certification.

The contribution of this paper is threefold: i) we first define a certification
scheme built on a new definition of valid certificate, where system behavior mod-
eling tracks system changes over time (Sect. 3); ii) we then design and implement
a dynamic certificate life cycle management that monitors system executions to
trigger re-certification (Sects. 4 and 5); iii) we finally extend a publicly-available
dataset built on three service-based distributed systems in literature to gen-
erate a dataset suitable for the assessment of continuous assurance techniques
(Sect. 6.1). The quality of our scheme is experimentally evaluated using such
dataset and a system behavioral modeling built on ML (Sect. 6.2).

2 Background and Motivations

2.1 Continuous Certification in a Nutshell

A certification scheme awards a certificate to the target (service-based) sys-
tem when enough evidence is collected to prove the support of a non-functional
property [5]. A scheme is based on three pillars: i) non-functional property p; ii)
target of certification ToC; and iii) certification model CM [2].

A non-functional property p models a system requirement as follows.

Definition 1. A non-functional property is a pair (p̂, {Ai}), where p̂ is the
name of the property and {Ai} is a set of attributes refining it [2,4].

Example 1. Let us consider a microservice written in Java managing applicable
discounts in an e-commerce system. An important requirement for the system is
to guarantee low response time to complete the checkout, for instance, at most
10ms with 1ms tolerance. Property performance can then be modeled as pp=(p̂p,
{lang=Java, max-time=10ms, tolerance=1ms}), with p̂p=Performance.

Continuous Certification of Non-functional Properties 5

A target of certification ToC represents the system to be certified, modeled
as a set of components {ci} grouped according to their functionalities (e.g., user
authentication, database management) or code organization (e.g., packages of a
Java program) [2].

Example 2. Following Example 1, the microservice is composed of the following
components: cdb for database interaction, capi for serving HTTP endpoints, and
ccross for horizontal functionalities such as logging and metrics.

A certification model CM=〈p, ToC, {{tci}cj}〉 specifies the activities to col-
lect the evidence proving that p holds on ToC; it is defined by the Certification
Authority (CA). It can be mapped to Evaluation Assurance Levels in Common
Criteria modeling the strength of the evaluation, while maintaining the flexibility
that is requested to properly evaluate dynamic service-based systems. Our app-
roach is agnostic to the specific evidence collection technique and can be used
with testing, monitoring, and formal methods [5]. With no lack of generality,
we consider test-based evidence collected by an accredited lab on behalf of CA
according to a set {{tci}cj} of test cases in CM; each test case tci insists on a
component cj of ToC, and specifies input and expected output. The collected
evidence is used to award a certificate C=〈CM, {ev}〉, with CM the correspond-
ing certification model and {ev} the set of collected evidence proving CM.p on
CM.T oC [2]. Digital signatures on CM and C implement the chain of trust
rooted at the CA [4].

Example 3. Following Example 2, test case tc1 sends 50 concurrent requests to
capi with a varying interval. Collected evidence contains the measured response
times and proves pp iff the average response time is less than the threshold in
pp.

Continuous certification schemes extend the above process to track the evo-
lution of the ToC over time by i) identifying changes occurred to the target, for
instance by monitoring its source code [6], execution traces [3,10], metrics [18],
or logs [12], and ii) updating certificate according to fixed rules [4].

2.2 Gaps of Continuous Certification

The fundamental assumptions underpinning the certification of modern sys-
tems [2,4] define their correctness, trustworthiness, and soundness as follows.

Definition 2. Trust, correctness, and soundness of existing certification
schemes build on the following three assumptions:

A1) the certification model CM is created by a trusted CA, binding certificates
on the chain of trust rooted at the CA [4] (Trust);

A2) CM.ToC correctly represents the target system components; CM.p correctly
represents the property held by the system (Correctness);

A3) when sufficient evidence is collected according to CM, a certificate C is
awarded proving that CM.ToC supports CM.p (Soundness).

6 M. Anisetti et al.

A certificate C (and the process that brought to its awarding) is valid iff
ToC, CM, and C itself satisfy A1, A2, and A3 as follows.

Definition 3 (Valid Certificate). A certificate is valid iff the certification
model prepared by a trusted CA (A1) correctly represents the target system and its
property (A2), and the certificate is released by successfully collecting sufficient
evidence from the target system represented in the certification model (A3).

Existing approaches fail to preserve certificate validity in Definition 3, accord-
ing to the following gaps.
Static Target of Certification. Existing certification schemes statically define
the ToC [1–3,17–19]. This approach assumes the CA to manually define the ToC,
or the ability to derive it from the code and accompanying artifacts (e.g., BPEL
workflow), which may not be available in modern systems. Also, it assumes
the ToC to always be valid across system changes, resulting in certification
schemes that provide an erroneous support for system evolution and continuous
evaluation. Assumption A2 does not hold in these settings.
Lack of a Proper Certificate Life Cycle Management. Existing contin-
uous certification schemes lack of a proper certificate life cycle management.
Assumptions A2 and A3 do not hold in these settings.

– Ineffective change detection. Existing schemes monitor ToC and trigger re-
certification mostly according to i) code changes [6,8] and ii) timers (i.e.,
expired evidence or certificate) [8,9]. Among them, Common Criteria builds
on static and predefined triggers (e.g., new attack landscape) to monitor the
system behavior, or involves developers in notifying such changes. Existing
approaches fail to consider the dynamicity of system behavior introducing
false positives and false negatives. A code change or an expired timer do
not necessarily require re-certification (false positive); static monitoring cause
environmental changes to go unnoticed (false negative).

– Inaccurate planning and inefficient adaptation. Detected changes trigger
adaptive actions that i) involve the CA in preparing a novel certification
model possibly based on information provided by the system developers [8],
or ii) directly adapt the certificate according to fixed rules [4]. Both cases
introduce inaccuracy, reducing the certificate validity. They consider detected
changes only, ignoring the unpredictable and cascade effects that a change on
a system component has on the other components [8]

Figure 1(a) shows existing continuous certification schemes [3,6,8,9] execut-
ing partial or full re-certification at each change. Figure 1(b) shows our certifi-
cation scheme that supports certificate validity in Definition 3.

3 Our Approach

We extend the notions of certification model and certificate in Sect. 2 to manage
the full chain of their releases, keeping track of ToC changes over time and
implementing a continuous certification process preserving certificate validity in
Definition 3. We define a certification model as a function of time as follows.

Continuous Certification of Non-functional Properties 7

Fig. 1. Continuous certification schemes

Definition 4 (CMt). A certificate model CMt at time t is a tuple of the form
〈p, ToC, {{tci}cj}, CMt−1〉, where

– p, ToC, and {{tci}cj} are described in Sect. 2.1 and defined at time t;
– CMt−1 is a reference to the certification model at time t−1 (if any).

We then extend the definition of certificate as a function of time as follows.

Definition 5 (Ct). A certificate Ct at time t is a tuple of the form 〈CMt, {ev}t,
B, Ct−1, st〉, where

– CMt is the certification model (Definition 4);
– {ev}t includes: i) the new evidence {ev} collected at time t and ii) the subset

of evidence {ev}t−1 in certificate Ct−1 not superseded by evidence in {ev};
– B is the adaptive system model (system model in the following) modeling the

system behavior. It originates from the first certificate release and is then
updated during the continuous certification process;

– Ct−1 is a reference to the certificate at time t−1 (if any);
– st is the certificate status retrieved using function state : Ct → {Valid,

Suspended, Superseded, Revoked}.

Building on industrial standards (e.g., CCRA [8]), our scheme considers 4
scenarios as follows.

– S0 : Certificate Ct−1 is still valid, when no changes are observed at time
t. The certificate and, in turn, certification model are still up-to-date.

– S1 : Certification model CMt−1 is still valid, the most frequent scenario,
when most of the updates (code or deployment) at time t are minor, such that
the certification model still correctly represents the system (A2). It is only
necessary to re-collect some evidence (A3) to preserve certificate validity.

– S2 : Certification model CMt−1 needs revision, when the system under-
goes some not-negligible changes at time t, to the point that some portions
of ToC and p in the certification model no longer represent the target of cer-
tification (A2). The certification model needs to be adjusted (A2) by the CA
(A1) and drives the release of an updated certificate (A3).

8 M. Anisetti et al.

Fig. 2. Overview of our approach.

– S3 : Certification model CMt−1 cannot be repaired, when the system
undergoes a significant change at time t, such that the certification model
does not correctly represent it (A2). A novel certification model should be
defined by a trusted party (A1) to award a valid certificate (A3).

Figure 2 depicts our certification process that consists of 5 phases as follows.
Initial certification executes the standard certification process in Sect. 2 (step
(1) in Fig. 2). Certification model CM0=〈p, ToC, {{tci}cj}, −〉 is first defined.
Evidence {ev}0 is then collected according to CM0, resulting in the award of
certificate C0=〈CM0, {ev}0, B, −, Valid〉.
Adaptive system model generation completes certificate C0 with system
model B (step (2) in Fig. 2). It models the normal system behavior and detects
behavioral changes on the target components, using, for instance, a formal rep-
resentation thereof (e.g., Petri nets, Abstract State Machines), or an ML model
created by collecting observable data from the system execution.

Upon awarding C0, the continuous certification process, the focus of this
paper, starts. It implements a semi-automatic MAPE (Monitoring, Analy-
sis, Planning, Execute) loop preserving certificate validity in Definition 3 as
described in the following three phases, and detailed in Sects. 4 and 5.
Change detection corresponds to phase Monitoring of the MAPE loop and
monitors the target system, comparing its current behavior against behavior B
in the certificate (step (3) in Fig. 2). Phase change detection detects several types
of changes caused by, for instance, workload variations, code changes, new vul-
nerabilities [4]. If a change is detected, certificate status changes to Suspended.
Contrary to [8], phase change detection strongly relies on dynamic system behav-
ior, reducing the number of false positives. Observed changes are then analyzed
in phase planning.
Planning corresponds to phases Analysis and Planning of the MAPE loop, and
analyzes the observed changes using fine-grained rules (step (4) in Fig. 2). Phase
planning first evaluates the impact of a change on the certification model CMt−1:
i) no impact (scenarios S0 and S1), ii) partial impact (scenario S2), iii) full

Continuous Certification of Non-functional Properties 9

impact (scenario S3). It then produces the adaptive actions to define the new
certification model CMt that correctly represents the system.
Execution corresponds to phase Execution of the MAPE loop and integrates the
adaptive actions in phase planning to collect evidence according to CMt (step
(5) in Fig. 2). If evidence collection is successful, an updated certificate Ct is
released, including system model B updated according to the changes identified
at phase change detection. The previous certificate Ct−1 is either superseded
(state(Ct−1) = Superseded) in case Ct is successfully awarded (state(Ct) =
Valid), or revoked (state(Ct−1) = Revoked), otherwise. The continuous process
restarts at phase change detection.

4 Change Detection

Phase change detection continuously monitors ToC to retrieve system changes
for later analysis. It considers system behavioral changes (Δb) according to sys-
tem model B in C, code changes (Δc), and vulnerabilities (Δv).
Behavioral change (Δb) detects anomalies in the system behavior at time t
and is defined as Δb=(r, {ci}), where r∈{�,⊥} and {ci} is the set of components
affected by behavioral changes. Our scheme continuously collects data that are
fed into the system model Ct−1.B to observe anomalies in the system behavior.
If an anomaly is detected, that is, the behavior of the target system at time t
differs from behavior Ct−1.B at time t−1, Δb=(�, {ci}); Δb=(⊥, ∅), otherwise.
Code change (Δc) detects variations in the code base, upon any releases, and
is defined as Δc=(r, {ci},M), where r∈{�,⊥}, {ci} is the set of components
affected by the change, and M is a set of metrics Mi. A metric Mi, possibly taken
from standard software engineering literature [7], is a function srct−1×srct →
[−1, 1], where a value <0 (≥0, resp.) indicates a minor change (major change,
resp.) to source code src at time t with respect to source code src at time t−1.
When a code change is detected, Δc=(r, {ci},M); Δc=(⊥, ∅, ∅), otherwise.
Vulnerability change (Δv) detects a new vulnerability and is in the form
Δv=(r, {(c, vuln)}), where r∈{�,⊥}, and pair (c,vuln) indicates the vulnerable
component c and the corresponding vulnerability vuln. Our certification scheme
monitors external databases for new vulnerabilities affecting ToC [8]. We adopt
a conservative approach that collects all relevant vulnerabilities and, later in
phase planning, filters out those not impacting on the property of interest (e.g.,
a bug on an encryption algorithm unlikely affects performance). When a new
vulnerability is discovered, Δv=(�, {(c, vuln)}); Δv=(⊥, ∅), otherwise.

Phase change detection can be defined according to Δb, Δc, Δv as follows.

Definition 6. Phase change detection takes as input i) the system (e.g., its
code, logs, traces) at time t, ii) certification model CMt−1, and iii) certificate
Ct−1; and returns as output a triple 〈Δb, Δc, Δv〉, where i) Δb=(r, {ci}); ii)
Δc=(r, {ci},M); iii) Δv=(r, {(c,vuln)})

We recall that in case r=⊥, Δb=(⊥, ∅), Δc=(⊥, ∅, ∅), Δv=(⊥, ∅).

10 M. Anisetti et al.

If at least one change has been detected, meaning that ∃Δi∈{Δb,Δc,Δv},
Δi.r =�, the status of current certificate Ct is state(Ct)=Suspended, until the
changes are analyzed and adaptive actions on the certification model or cer-
tificate are taken in phases planning and execution in Sect. 5. Otherwise, if
∀Δi∈{Δb,Δc,Δv}, Δi.r=⊥, no changes are detected and state(Ct)=Valid.

Example 4. Let us assume that certification model CMt−1 and corresponding
certificate Ct−1 have been released for ToC in Example 2. At time t, a new
version of the service is released, where component cdb has been updated to
improve its efficiency. As a consequence, the behavior of cdb and, as a cascading
effect, the one of capi are affected. Our system model identifies such changes, and
phase change detection returns as output 〈Δb=(�, {capi, cdb}), Δc=(�, {cdb},
{1}), Δv=(⊥, ∅)〉, where {1} is the metric value based on cyclomatic complexity
of cdb. Given the detected changes, state(Ct−1)=Suspended.

Phase change detection must account for change timing. For instance, a code
change is detected as soon as a new version is released on the repository; however,
it might take some time to observe its effects (if any) on the behavior of the
running system. To ensure consistent results, we adopt a buffering strategy,
where a time buffer is used to monitor for behavioral changes after any code
changes. The buffer duration depends on the specific system.

5 Planning and Execution

Phase planning produces the adaptive actions by integrating changes Δb, Δc,
and Δv retrieved in phase change detection (Sect. 5.1). Phase execution executes
these actions (Sect. 5.2).

5.1 Planning

Phase planning analyzes the detected changes in 〈Δb, Δc, Δv〉 (Sect. 4) and
defines the adaptive actions according to the applicable scenario in Sect. 3. To
this aim, each scenario is associated with a precondition as a Boolean formula
that must be evaluated � (true) and a set of conditions as Boolean formulas
expressed over 〈Δb, Δc, Δv〉 chained with a logical or (∨). The scenario identified
at time t is the one whose precondition and conditions are evaluated � first,
considering the evaluation order S0, S1, S2, S3.

Once the applicable scenario is selected, phase planning generates the pair
(CMt, T) as output, representing the adaptive actions to be executed in phase
execution, where i) CMt is the certification model correctly representing the
system after changes at time t (see A2 in Definition 2); ii) T ∈CMt is a subset
of test cases in CMt to be later executed in response to changes.

Table 1 summarizes, for each scenario, precondition, conditions, and corre-
sponding output, which are detailed in the following.

Continuous Certification of Non-functional Properties 11

Table 1. Summary of phases planning and execution (comp. stands for component).

S# Precondition Conditions Output (CMt, {tc})
S0 No behavioral changes

No vulnerabilities
(2a) No code changes
(2b) Minor code change on non-
critical, existing comp.

− CMt=CMt−1

− T =∅

S1 No vulnerabilities
No critical comp.
No new comp.

(4a) Behavioral change (environ-
mental)
(4b) Behavioral change (minor code
change)
(4c) Major code change without
impact on behavior

− CMt=CMt−1

− T =test cases on comp. affected
by the change

S2 – (6a) Vulnerability discovered
(6b) Behavioral change (major code
change) on non-critical, existing
comp.

− CMt=CMt−1 ∪ {tc}new

− T =test cases on comp. affected
by the change

S3 – (8a) Behavioral change (environ-
mental) on critical, existing comp.
(8b) Major/minor code change on
critical, existing comp.
(8c) Code change adding a new
comp.

− New CMt

− All test cases in CMt

S0 : Certificate Ct−1 is still valid.
Precondition: S0 does not involve any behavioral or vulnerability-related
changes.

¬Δb.r ∧ ¬Δv.r (1)

Conditions: S0 is selected in case of (2a) no code change; or (2b) minor code
change without impact on the behavior, critical components, and new compo-
nents, as formalized in the following.

¬Δc.r (2a)

Δc.r ∧ ∀Mi ∈ M,Mi(srct−1, srct) < 0∧
∀ci ∈ Δc.{c}, (¬critical(ci) ∧ ci ∈ srct−1)

(2b)

where function critical is a Boolean function that identifies those components
ci∈ToC that are critical for the non-functional property of interest (e.g., com-
ponent capi for property performance in Example 1).
Output: The code change does not have any observable effects on system behav-
ior, and CMt−1 and Ct−1 are valid (Definition 3). The continuous certification
process can then restart from phase change detection in Sect. 4.
S1 : Certification model CMt−1 is still valid.
Precondition: S1 does not involve vulnerability changes nor changes with impact
on critical and new components, as formalized in the following.

¬Δv.r ∧
(
∀ci ∈ Δc.{c} ∪ Δb.{c}, (¬critical(ci) ∧ ci ∈ srct−1)

)
(3)

Conditions: S1 is selected in case of (4a) a behavioral change caused by an
environmental change; (4b) a behavioral change caused by a minor change in

12 M. Anisetti et al.

the code; or (4c) a major change in the code without impact on the behavior, as
formalized in the following.

Δb.r (4a)
Δb.r ∧ Δc.r ∧ ∀Mi ∈ M,Mi(srct−1, srct) < 0 (4b)

¬Δb.r ∧ Δc.r ∧ ∃Mi ∈ M,Mi(srct−1, srct) ≥ 0 (4c)

A minor or major change on components Δc.{c} does not imply that only test
cases insisting on Δc.{c} should be considered, due to the unpredictable cas-
cading effects introduced by code changes. Our scheme exploits system model
B as the main source of actual changes, therefore retrieving all the components
Δc.{c} ∪ Δb.{c} involved in the change.
Output: CMt−1, which is still valid, and existing test cases insisting on the
components whose code or behavior changed (i.e., Δc.{c} ∪ Δb.{c}), as follows.

CMt ← 〈CMt−1.p, CMt−1.T oC, CMt−1.{tc}, CMt−1〉 (5a)
T ← ∀ci ∈ Δc.{c} ∪ Δb.{c}, CMt.{{tcj}ck} | ck = ci (5b)

S2 : Certification model CMt−1 needs revision.
Precondition: S2 does not have any preconditions.
Conditions: S2 is selected in case of (6a) a vulnerability retrieved from external
databases; or (6b) behavioral change caused by major code change not involving
critical and new components, as formalized in the following.

Δv.r (6a)

Δb.r ∧ Δc.r ∧ ∃Mi ∈ M,Mi(srct−1, srct) ≥ 0∧
∀ci ∈ Δc.{c} ∪ Δb.{c}, (¬critical(ci) ∧ ci ∈ srct−1)

(6b)

S2 involves the accredited lab in the addition or modification of test cases insist-
ing on the components involved in the change (i.e., Δc.{c} ∪ Δb.{c} ∪ Δv.{c}).
As in S1, our scheme relies on B to identify such components.
Output: An updated certification model CMt with novel test cases {tc}new, and
test cases insisting on all changed components, as follows.

CMt ← 〈CMt−1.p, CMt−1.T oC, CMt−1.{tc} ∪ {tc}new, CMt−1〉 (7a)
T ← ∀ci ∈ Δc.{c} ∪ Δb.{c} ∪ Δv.{c}, CMt.{{tcj}ck} | ck = ci (7b)

S3 : Certification model CMt−1 cannot be repaired.
Precondition: S3 does not have any preconditions.
Conditions: S3 is selected in case of (8a) a behavioral change on a critical,
existing component caused by an environmental change (e.g., an increased rate
of requests under property performance in Example 1); (8b) a code change of
any extents affects a critical, existing component; or (8c) a code change due to
a new component, as formalized in the following.

Δb.r ∧ ∃ci ∈ Δb.{c}, critical(ci) = � ∧ ci ∈ srct−1 (8a)
Δc.r ∧ ∃ci ∈ Δc.{c}, critical(ci) = � ∧ ci ∈ srct−1 (8b)

Δc.r ∧ ∃ci ∈ Δc.{c}, ci �∈ srct−1 (8c)

Continuous Certification of Non-functional Properties 13

S3 involves the accredited lab in the definition of a new certification model
including new test cases or updating existing ones. Certification model CMt−1,
in fact, cannot be repaired and re-certification from scratch is needed. The above
conditions specify that i) any critical components impacted by a change require
re-certification, ii) the addition of a new component cannot fall under S1 or S2
because B does not model the new version of the system yet. Therefore it cannot
identify all the components involved in the cascading effect as in S1 and S2.
Output: A new certification model CMt (function new) and new test cases, as
formalized in the following.

CMt ← new(previous = CMt−1) (9a)
T ← CMt.{tc} (9b)

Example 5. Let us consider detected changes 〈Δb=(�, {capi, cdb}), Δc=(�,
{cdb}, {1}), Δv=(⊥, ∅)〉 in Example 4. Phase planning identifies S3 as the appli-
cable scenario according to the corresponding conditions (8a)∨(8b)∨(8c). It then
returns as output i) a novel certification model CMt where the maximum allowed
response time in property performance in Example 1 is reduced to 7ms thanks
to the code changes on cdb, and ii) the set T of all test cases in CMt.

The result (CMt, T) of phase planning is used in phase execution to collect
additional evidence maintaining the certificate validity in Definition 3. We recall
that, at the end of phase planning, certification model CMt correctly represents
the target system as defined in Assumption A2 in Definition 2.

5.2 Execution

Phase execution, performed by the accredited lab, applies the adaptive actions
retrieved in phase planning to possibly restore certificate validity. It takes as
input the result (CMt, T) of phase planning and certificate Ct−1, and executes
test cases T against CMt.ToC to award a new Ct. It consists of three steps as
follows.
Evidence collection executes the test cases in T to collect fresh evidence
{ev}∈{ev}t from the system at time t.
System model re-training updates system model B according to the identified
changes, to model the evolved behavior of the target system (see Assumption
A2 in Definition 2).
Certificate release awards a valid certificate Ct=〈CMt, {ev}t, B,
Ct−1,Valid〉 according to Definition 3. Certificate Ct−1 is Superseded
(state(Ct−1)=Superseded). We note that evidence collected at time t−i with
i>0 can be obtained from the certificate Ct−i in the chain of certificate release.
We also note that, if evidence collection or system model updating fails, the
entire process stops, requiring to fix the system or the certification model. Cer-
tificate Ct−1 becomes invalid and is Revoked (state(Ct−1)=Revoked), and a
re-certification from scratch is needed.

14 M. Anisetti et al.

Example 6. Let us assume that the test cases T in Example 5 are executed by
the accredited lab and evidence is collected proving pp. B is updated according
to the new system behavior and Ct awarded with state(Ct)=Valid.

6 Experiments

We experimentally compared the quality of our approach with the state of the
art (SOTA) in Fig. 1(a) measuring i) the recall of phase change detection in
retrieving changes and the components affected by (cascading) changes; ii) the
precision of phase planning in the identification of adaptive actions (avoiding
unnecessary re-certification) and selection of scenario S0–S3. Additional paper
artifacts and a detailed walkthrough of our approach are available at https://
doi.org/10.13130/RD_UNIMI/9WXZRC.

6.1 A Dataset for Continuous Assurance Techniques Evaluation

We built our experimental datasets on three publicly-available datasets
DMS, DSN, DTT, providing normal and anomalous execution traces of three
microservice-based distributed systems [15,16]: i) media service (MS), a sys-
tem comprising N=38 microservices for streaming and reviewing movies [11]; ii)
social network (SN), a system comprising N=36 microservices for a social net-
work application [11]; iii) train ticket (TT), a system comprising N=41 microser-
vices for train tickets management [20]. The dataset DMS, DSN, DTT of each
system contained 1, 000 data points (after random filtering) with the response
time of each microservice according to an execution path in normal/anomalous
traces. Each distributed system was mapped to a ToC and each microservice to a
component c∈ToC. We then extended the above three datasets, which only con-
sider code and behavioral changes, to probabilistically generate datasets D′

MS,
D′

SN, and D′
TT maximizing the coverage of all scenarios S0–S3 of a system

evolution (see Sect. 3) The generated datasets fill in a major gap in literature,
supporting the evaluation of continuous assurance techniques in all their facets.

Table 2 shows the probabilities that drove the generation of datasets D′
MS ,

D′
SN , D′

TT , where each row is an experimental setting. Each point in the dataset
was annotated with probability 0.4 of representing a system change. Anomalous
data points were used to represent environmental changes (Δb) or code changes
with impact on the behavior (Δc with cascading), normal data points to repre-
sent no changes or code changes without impact on the behavior (Δc), according
to the specific experimental setting, which are detailed in the following.

We divided the experimental settings in four groups P1.*–P4.* varying the
probability of a specific change in Δb, Δc, Δc with cascading occurs. Group
P1.* assigned uniform probabilities to Δb, Δc, Δc with cascading. Groups P2.*–
P4.* assigned a larger probability (0.5) to environmental changes in P2.*, code
changes in P3.*, and code changes with cascading in P4.*, respectively, while
assigning uniform probability (0.25) to the remaining changes. We note that

https://doi.org/10.13130/RD_UNIMI/9WXZRC
https://doi.org/10.13130/RD_UNIMI/9WXZRC

Continuous Certification of Non-functional Properties 15

Table 2. Probabilities for the experimental datasets

Name Δb Δc Δbwith
cascad.

critical minor n(comp)b n(comp)m in n(comp)m aj

P1.1 0.33 0.33 0.33 0.75 0.25 0.25 0.25 0.25

P1.2 0.33 0.33 0.33 0.5 0.5 0.5 0.5 0.5

P1.3 0.33 0.33 0.33 0.25 0.75 0.75 0.75 0.75

P2.1 0.5 0.25 0.25 0.75 0.25 0.25 0.25 0.25

P2.2 0.5 0.25 0.25 0.5 0.5 0.5 0.5 0.5

P2.3 0.5 0.25 0.25 0.25 0.75 0.75 0.75 0.75

P3.1 0.25 0.5 0.25 0.75 0.25 0.25 0.25 0.25

P3.2 0.25 0.5 0.25 0.5 0.5 0.5 0.5 0.5

P3.3 0.25 0.5 0.25 0.25 0.75 0.75 0.75 0.75

P4.1 0.25 0.25 0.5 0.75 0.25 0.25 0.25 0.25

P4.2 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5

P4.3 0.25 0.25 0.5 0.25 0.75 0.75 0.75 0.75

changes caused by vulnerabilities were not included because both our scheme
and SOTA can correctly detect them.

We finally defined the probabilities that determine the profile of the compo-
nents involved in the change, modeling i) the probability critical that a com-
ponent is critical (probability (1−critical) that is not critical, resp.); ii) the
probability minor of a minor change Δc and Δc with cascading (probability
(1−minor) of a major change, resp.); iii) the probability n(comp)b that a com-
ponent is involved in an environmental change, n(comp)min is involved in a minor
code change, and n(comp)maj is involved in a major code change. We note that
the probability that more than one component is involved linearly decreases. We
also note that, in case of a code change with impact on the behavior, additional
affected components are extracted at random among the remaining components.
In other words, we defined three probability sets that properly represent the life
cycle of modern distributed systems (e.g., based on DevOps). The first proba-
bility set models the scenario of major changes with critical impact (i.e., with
impact on critical components) on a low number of components; it is applied
to experimental settings P*.1. The second probability set models an average
scenario balancing minor and major changes, as well as critical and non-critical
impact, on a medium number of components; it is applied to experimental set-
tings P*.2. The third probability set models the scenario of minor changes with
non-critical impact on a high number of components; it is applied to experimen-
tal settings P*.3. These settings jointly allow to measure the ability to detect
the correct scenario Si in representative system life cycles. For instance, the
criticality of a component is needed to distinguish between S1 and S3, and the
extent of the code change between S1 and S2.

16 M. Anisetti et al.

Table 3. Comparisons of our scheme and SOTA

Name REC(changes) PREC(no action) REC(comp) ACC(scenarios)
Our SOTA Our SOTA Our SOTA ACC(S0) ACC(S1) ACC(S2) ACC(S3)

P1.1 0.9948 0.6693 0.993 0.8179 0.8622 0.5727 0.8464 0.8716 0.9996 0.8622

P1.2 0.9894 0.6892 0.9882 0.8289 0.8769 0.5205 0.8397 0.8789 1 0.826

P1.3 0.9858 0.6741 0.9846 0.8242 0.8808 0.4215 0.8397 0.8456 0.9995 0.8402

P2.1 0.9958 0.6751 0.9946 0.8153 0.8633 0.5664 0.8445 0.8744 0.9998 0.8579

P2.2 0.9933 0.6738 0.9927 0.8203 0.8718 0.4968 0.844 0.8761 0.9998 0.8133

P2.3 0.9835 0.6645 0.9822 0.8218 0.8857 0.3874 0.835 0.8577 1 0.8072

P3.1 0.9948 0.6733 0.994 0.821 0.8676 0.5838 0.8469 0.9059 0.9998 0.8229

P3.2 0.9912 0.6761 0.9893 0.8184 0.8724 0.5129 0.8434 0.8621 1 0.8355

P3.3 0.9856 0.6726 0.9844 0.8157 0.8808 0.4037 0.8402 0.8549 0.9998 0.8172

P4.1 0.9949 0.6822 0.9947 0.8266 0.8707 0.5914 0.8439 0.8834 0.9998 0.8684

P4.2 0.9911 0.6821 0.9911 0.8373 0.8723 0.5325 0.8373 0.8404 0.9998 0.8802

P4.3 0.9875 0.6943 0.9858 0.8246 0.883 0.4238 0.8434 0.8494 0.9995 0.8391

AVG 0.9906 0.6772 0.9895 0.8227 0.874 0.5011 0.842 0.8667 0.9998 0.8392

6.2 Quality Evaluation

We comparatively evaluated the quality of SOTA and our scheme according to
datasets D′

MS, D′
SN, D′

TT in Sect. 6.1. Adaptive system model is implemented
as a set of isolation forests [13,14]. Each forest in the set was responsible for
detecting behavioral changes in a specific component of the considered system.
Results have been averaged on 10 executions over the three datasets.

Table 3 shows our results averaging the results on D′
MS, D′

SN, D′
TT, since

negligible variations were observed across the three datasets.
We first measured the recall of phase change detection in terms of detected

changes (REC (changes)). Our scheme detected ≈99% of changes, compared to
only ≈68% of SOTA.

We then measured the ability of our scheme (phase planning) and SOTA of
correctly classifying a change reducing unnecessary re-certification (scenario S0).
Column PREC (no action) shows the precision of our scheme and SOTA when
a change does not require any adaptive actions according to the certification
scheme. Our scheme exhibits a precision of ≈99%, compared to ≈82% of SOTA.

Furthermore, when adaptive actions are needed, existing solutions may target
a subset of ToC due to the inability of detecting cascading effects in code changes.
Column REC (comp) shows the recall of phase change detection in terms of the
ability of detecting the components affected by a change. Our scheme detects
≈87% of affected components, compared to ≈50% of SOTA, meaning that the
adaptive actions miss half of the affected components according to SOTA.

Columns ACC (S0)–ACC (S3) show the accuracy of phase planning in
retrieving the correct scenario. Our scheme achieved ≈84% for S0, ≈87% for
S1, ≈99% for S2, and ≈84% for S3, respectively, meaning that the detected
scenario, and corresponding adaptive actions, are correct in 90% of the cases.

We also evaluated the quality of our system model B in terms of accuracy
(ACC), precision (PREC), and recall (REC). On average on the three datasets,
precision is ≥99% (i.e., no risk of false positives), while accuracy and recall are

Continuous Certification of Non-functional Properties 17

≥81% and ≥75%, respectively. Interested readers can access detailed results and
their motivations in our online supplement.

7 Discussion and Future Work

We designed a continuous certification scheme for modern service-based dis-
tributed systems, implementing a dynamic certificate lifecycle management built
on the modeling of the system behavior. Fine-grained planning of adaptive
actions based on system behavior permits to reduce the amount of unneces-
sary re-certification, especially in scenarios (e.g., DevOps) with high frequency
of minor system changes. While our solution cannot guarantee to detect all
changes, we empirically demonstrated that it clearly outperforms the state of
the art also in cases where the system behavior is modeled with a standard ML
algorithm (i.e., isolation forest). The paper leaves space for future work. First,
we will study the impact of ML techniques for system behavior modeling on
our continuous certification. Then, we will provide a taxonomy of code metrics
for continuous certification. Finally, we will extend our solution to approach
continuous certification of composite service-based systems.

Acknowledgements. The work was partially supported by the projects i) MUSA –
Multilayered Urban Sustainability Action – project, funded by the European Union –
NextGenerationEU, under the National Recovery and Resilience Plan (NRRP) Mis-
sion 4 Component 2 Investment Line 1.5: Strengthening of research structures and
creation of R&D “innovation ecosystems”, set up of “territorial leaders in R&D” (CUP
G43C22001370007, Code ECS00000037); ii) SERICS (PE00000014) under the NRRP
MUR program funded by the EU – NextGenerationEU; iii) 1H-HUB and SOV-EDGE-
HUB funded by Università degli Studi di Milano – PSR 2021/2022 – GSA – Linea
6; and iv) program “piano sostegno alla ricerca” funded by Università degli Studi di
Milano.

References

1. Anisetti, M., Ardagna, C.A., Damiani, E., El Ioini, N., Gaudenzi, F.: Modeling
time, probability, and configuration constraints for continuous cloud service certi-
fication. In: COSE, vol. 72 (2018)

2. Anisetti, M., Ardagna, C.A., Bena, N.: Multi-dimensional certification of modern
distributed systems. IEEE TSC 16(3), 1999–2012 (2023)

3. Anisetti, M., Ardagna, C.A., Damiani, E., El Ioini, N.: Trustworthy cloud certi-
fication: a model-based approach. In: Proceedings of SIMPDA 2014. Milan, Italy,
November 2014

4. Anisetti, M., Ardagna, C.A., Damiani, E., Gaudenzi, F.: A semi-automatic and
trustworthy scheme for continuous cloud service certification. IEEE TSC 13(1),
30–43 (2020)

5. Ardagna, C., Asal, R., Damiani, E., Vu, Q.: From security to assurance in the
cloud: a survey. ACM CSUR 48(1), 1–50 (2015)

6. Baron, C., Louis, V.: Towards a continuous certification of safety-critical avionics
software. Comput. Ind. 125, 103382 (2021)

18 M. Anisetti et al.

7. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems: a literature review. In: Proceed-
ings of IWSM Mensura 2017. Gothenburg, Sweden, October 2017

8. Criteria, C.: Assurance continuity: CCRA requirements. Technical Report, Com-
mon Criteria (2021)

9. Egea, M., Mahbub, K., Spanoudakis, G., Vieira, M.R.: A certification framework
for cloud security properties: the monitoring path. In: Proceedings of A4Cloud
2014, Malaga, Spain, June 2014

10. Faqeh, R., et al.: Towards dynamic dependable systems through evidence-based
continuous certification. In: Proceedings of ISoLA 2020. Rhodes, Greece, October
2020

11. Gan, Y., et al.: An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. In: Proceedings of ASP-
LOS 2019. Providence, RI, USA, April 2019

12. Lins, S., Schneider, S., Sunyaev, A.: Trust is good, control is better: creating secure
clouds by continuous auditing. IEEE TCC 6(3), 890–903 (2018)

13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of IEEE ICDM
2008, Pisa, Italy, December 2008

14. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM TKDD
6(1), 1–39 (2012)

15. Qiu, H., Banerjee, S.S., Jha, S., Kalbarczyk, Z.T., Iyer, R.K.: FIRM: an intelligent
fine-grained resource management framework for SLO-oriented microservices. In:
Proceedings of USENIX OSDI 2020. Virtual, November 2020

16. Qiu, H., Banerjee, S.S., Jha, S., Kalbarczyk, Z.T., Iyer, R.K.: Pre-processed tracing
data for popular microservice benchmarks (2020)

17. Simons, A.J.H., Lefticaru, R.: A verified and optimized stream x-machine testing
method, with application to cloud service certification. STVR 30(3), e1729 (2020)

18. Stephanow, P., Fallenbeck, N.: Towards continuous certification of infrastructure-
as-a-service using low-level metrics. In: Proceedings of IEEE UIC-ATC-ScalCom.
Beijing, China, August 2015

19. Stephanow, P., Srivastava, G., Schütte, J.: Test-based cloud service certification
of opportunistic providers. In: Proceedings of IEEE CLOUD 2016. San Francisco,
CA, USA, June-July 2016

20. Zhou, X., et al.: Benchmarking microservice systems for software engineering
research. In: Proceedings of IEEE/ACM ICSE 2018. Gothenburg, Sweden, May,
June 2018

Deep Learning Model for Personalized
Web Service Recommendations Using

Attention Mechanism

Marwa Boulakbech(B), Nizar Messai, Yacine Sam, and Thomas Devogele

LIFAT, Tours University, Tours, France
{marwa.boulakbech,nizar.messai,yacine.sam,thomas.devogele}@univ-tours.fr

Abstract. The big volume of candidate Web services and their differ-
ences make it hard for developers to discover a set of appropriate ones
for mashup creation. Thus, recommending suitable services is a vital
problem. Service recommendation methods should not only meet the
functional needs of users but also consider contextual features like appli-
cation domain and service performances to provide more personalized
recommendations. In this paper, we propose an attention-based deep
learning model for service recommendation. It makes service recommen-
dation based on service characteristics and user feed-backs. Specifically,
we build a service network, which learns to intelligently discover services
with two attention mechanisms - a functional attention mechanism that
takes tags as functional prior to mine the function-related features of
services and mashups, and a non-functional attention mechanism that
considers service qualities to guide the selection of the most appropriate
ones and improves user satisfaction. Experiments are carried out on a
real-world web API dataset crawled from ProgrammeableWeb.com.

Keywords: Web services recommendation · Mashups · Deep
Learning · Attention mechanism · QoS and QoE

1 Introduction

With the wide adoption of Service-Oriented Architectures (SOA) and Cloud
Computing, Web services, usually in the form of Web APIs (Application Pro-
gramming Interface), have grown rapidly both in quantity and diversity. They
become first-class citizens and the core functionality of any Web application.
Developers can create value-added Mashup applications by integrating existing
Web resources to meet complex business requirements [1]. Typically they browse
and evaluate potentially useful Web services from a repository, and then “cen-
trally” leverage mashup tools to quickly include selected Web APIs, or services,
in their applications. Due to the overwhelming number of available services, it
is often hard and time-consuming for developers to find their desired ones from
a sea of resources. To speed up the mashup creation, recommending suitable
services for developers is a vital problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 19–33, 2023.
https://doi.org/10.1007/978-3-031-48421-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_2

20 M. Boulakbech et al.

In recent years, many service recommendation methods have been proposed
by researchers in various fields [2–4]. Generally, they can be classified into three
classes: (1) content-based service recommendation, (2) QoS-based service rec-
ommendation, and (3) service recommendation using deep learning techniques.

First, most of the content-based service recommendation approaches match
by analyzing the functionality provided by services and mashups. Since the con-
tent of services and mashups can be learned from their descriptions, natural
language processing techniques are often used to infer similarities between ser-
vice descriptions and mashup requirements. Such methods suffer from the inten-
tion gap issue. All learned features from service descriptions corresponding to
different intentions are considered equally important when generating recom-
mendations. For example, suppose we represent the description of a mashup m
as “A French Web Application that sends the best health insurance offers using
your GMail account”, a service s1 described as “Find best health insurance offers
in North America”, and a service s2 described as “It is a Web API that allows
users to get ideal protection for cars registered in The City of Paris” will be
recommended for the mashup M by traditional methods based on functional
context. However, they should not be matched together in practice since they
are describing two different application scenarios. To select a suitable service,
context information like application scenario should be considered. In addition,
non-functional context information like service quality from user feed-backs can
be exploited to improve recommendation performance and boost user satisfac-
tion.

Second, QoS-based methods primarily evaluate service quality and recom-
mend the best service based on service quality, response time and consistency.
Collaborative filtering is often used in QoS-based predictions, where services are
recommended considering a user’s past ratings for similar services or similar
users.

Third, service recommendation using deep learning techniques uses a variety
of deep learning technologies to process descriptions of services and mashups and
their invocation history, such as: RNN (Recurrent Neural Networks), DNN (Deep
Neural Networks). Deep learning technology helps developing more efficient ser-
vice recommendation models. For instance, the attention mechanisms have been
widely used in various fields, such as recommender systems [5,6]. The core of
the attention mechanisms is to assign different weights to inputs, paying more
attention to relevant information and ignoring irrelevant information. Recently,
the transform based entirely on the attention mechanisms has been proposed,
which completely eliminated recurrence and convolutions, and has achieved very
good performance.

Although many methods of the above three classes have been very successful,
there are still two problems that hinder their practical use:

(i) How to accurately capture user requirements for mashup creation? Service
descriptions usually correspond to different intentions. To select relevant
features from descriptions, feature extraction engineering can be used. How-
ever, it is a manual process and requires domain expertise.

Deep Learning Model for Web Service Recommendations 21

(ii) How to combine QoS and user perception to reach high satisfactory user
experience? Most of existing QoS-based recommendation techniques [4,7]
ignore user’s perception of the service quality. However, there are close rela-
tionships between QoS and user satisfaction. Different users may have dif-
ferent concerns and personalized experiences on the same service.

To address the above issues, this paper proposes a personalized Web services rec-
ommendations approach based on a deep learning model that fully mines func-
tional and non-functional service features from useful information using atten-
tion mechanism to capture user needs and satisfaction. We first intelligently
discover mashups with similar functionalities. Afterward, we build a composite
service network that learns function-related features of services based on tags
and description information. In parallel, based on user feedback, we learn the
non function-related features of services. Then, the recommendation module uses
attention aggregation to couple the two service representations and generate the
final recommendation result. Our contributions are summarized as follows:

– We use a deep learning model that employs embedding techniques to represent
features of Web services without using explicit feature engineering techniques.

– We use attention mechanism that considers contextual information to capture
user satisfaction and provide personalized recommendations.

– We implement the proposed approach and evaluate it on a real-world dataset.
Results show that the proposed approach outperforms the state-of-the-art
ones.

The rest of the paper is organized as follows. Section 2 provides preliminaries
and formal definitions. Section 3 details the architecture and main components
of the proposed deep learning model for personalized service recommendation.
Section 4 describes the implementation and the evaluation settings and discusses
the experimentation results. Section 5 surveys related work. Finally, Sect. 6 con-
cludes the paper and gives insights on future work directions.

2 Preliminaries

In this section, the symbolic representation and the problem definition are given.
The set of service, mashup, user feed-backs are expressed as S =

{s1, s2,sS}, M = {m1,m2,mM}, U = {u1, u2,uU}, F = {f1, f2,fF }
respectively.

Service. A service s is a collection of functions, denoted as a 3-tuple, s =
(ns, ds,< t1, t2,, tn >) where n is the name of s, d represents the description
of s and < t1, t2,, tn > represents the set of tags associated to s.

Mashup. A mashup m represents the composition of one or more Web ser-
vices into one single application, making it available as a composite service.
A mashup can be denoted as a 3-tuple, m = (nm, dm,< s1, s2,, sn >,<
t1, t2,, tm > where nm represents the name of m, dm represents the descrip-
tion of m, < s1, s2,, sn > denotes the set of service invoked by m and
< t1, t2,, tm > represents the set of tags associated to m.

22 M. Boulakbech et al.

User Feedback. A Feedback rating is the perception of each user about
invoked services representing an overall perception. For the ith invoked service,
a user provides a feedback rating that indicates the level of satisfaction with the
service after each interaction with the service. Then users maintain n feedback
ratings which represent their perception of si’s performance. ru,i is the feedback
ratings of web service si rated by user u.

Personalized Web Service Recommendation. Given a user requirement
description of a new mashup, find the top-k services that best match functional
and non-functional requirements.

3 A Deep Learning Model for Personalized Web Service
Recommendation

In this section, we detail the Personalized Service Recommendation Deep Learn-
ing model (PSRDL) for mashup creation. The architecture of the PSRDL model
is shown in Fig. 1. First, it finds the neighbor mashups that are most similar
to the new mashup according to their description through the neighbor find-
ing module. Then, representation module builds a deep neural network to learn
service representation using attention mechanism to capture functional and non-
functional representation learning. Finally, the top-k selected services for the new
mashup can be calculated, by the recommendation module, using the attention
matching from the representation of its neighbor mashups for each service.

Fig. 1. Architecture of PSRDL Model

Deep Learning Model for Web Service Recommendations 23

3.1 Neighbor Mashups Module

The mashup or service is typically represented by a description of its function-
ality. For each description in mashup m, we convert it into an l-dimensional
vector denoted as V Dm. For the new mashup m′ to be created, the developer
needs to enter the mashup requirements or description, m′dm, consisting of a
set of phrases, sentences, or even paragraphs as the developer’s initial query for
similar mashups. This module searches for its neighbor mashups that meet the
requirement of m′ based on their similarity as follow:

simm′,Nm′ = cosine(vDm′, vDNm′)

where Nm is the neighbor of the new mashup m′.

3.2 Mashup and Service Representation Module

This module aims to learn a service and a mashup representation based on a
three layer architecture.

A- Embedding Layer. The embedding layer generates the dense representa-
tions of services and mashups based on their descriptions di ∈ D∗ where 1 < i <
|D∗|, D∗ = [Ds,Dm] and their tags tj ∈ T∗ where 1 < j < |T∗|, T∗ = [Ts, Tm].
We use the Word2vec [8] technique, which is a shallow neural language model
that can process text data and generate word vectors. Latent vectors V Ds ∈ Rl,
V Dm ∈ Rl, V Ts ∈ Rl, V Tm ∈ Rl, represent the l-dimensional descriptions and
tags features of service and mashup respectively. For each service s ∈ S and each
mashup m ∈ M , the embedding layer generates the latent vectors Vs and Vm as:
Vs = V Ds + V Ts and Vm = V Dm + V Tm.

B- MLP & GRU Layer. This layer allows learning deep features of services,
mashups and user-feed-backs using their compressed representations generated
from the embedding layer. Since words in tags are usually discrete and semantic
independent, we choose MLP technique [9] to learn the tag representations h(ti)
as:

h(ti) = sigmoid(Wt.V T (ti) + bt)

where V T (ti) is the input vector of the ith tag and Wt, bt are parameters to be
learned.

To generate the final tag representation v(t) we mean-pooling all tags vectors:

v(t) =
1

|T | ×
T∑

i=1

h(ti)

where |T | represents the number of tags associated with a service or a mashup.
Different from tags, words in service or mashup description are interdepen-

dent and semantic-correlated, thus we use the GRU technique [10] to capture

24 M. Boulakbech et al.

their semantic dependencies. The description representation h(di) is formulated
as follows: −→zt = sigmoid (Wz.Xt + bz)

−→rt = sigmoid (Wr.Xt + br)
−→̃
ht = tanh (Wh.(−→rt × Xt) + bh)

−→
ht = (1 − −→zt) × −−→

ht−1 + −→zt ×
−→̃
ht

h(di) =
−→
ht

and
W∗ = {Wz,Wr,Wh}; Xt = {V W (di), ht−1}

C- Attention Layer. This layer aims to allocate more attention to the impor-
tant input regarding functional and non-functional features.

1) Functional Attention Mechanism
In the services and mashups network, tags are used to abstract the func-

tional features of services and the words related to the functional properties in
descriptions are semantically similar to the corresponding tags and should be
stressed. However, different words in descriptions have different importance for
the overall functional intention, some of them can be decisive while others are
irrelevant to the service’s recommendation. Therefore, we introduce a functional
attention layer that can detect pertinent function-oriented features and learns
to assign an attention score ai to each one in descriptions as follows:

ai = sigmoid(v(tx) h(di))

where v(tx) = {v(ts), v(tm)} is the tag representation, v(ts) is the tag represen-
tation of services and v(tm) is the tag representation of mashups.

2) Non-functional Attention Mechanism
This step aims to learn non functional features like reputation of service and

mashups to provide more personalized and accurate recommendation services.
We focus on QoS and QoE. Four QoS metrics are considered including avail-
ability, reliability, latency, and response time. There are two types of consid-
ered QoS parameters in this paper, including positive parameters, and negative
parameters. The positive parameters (q+) infer to the QoS parameters such as
reliability and availability that should be maximized. On the contrary, the neg-
ative parameters (q−) refer to QoS parameters that should be minimized, like
latency and response time. Equation 1 is for negative parameters and Eq. 2 is for
positive parameters. In these equations, s.qi refers to the ith QoS parameter (qi)
of the service s that is being normalized, and min (qi) and max (qi) represent
the minimum and maximum values of the corresponding QoS parameter in the
dataset.

Deep Learning Model for Web Service Recommendations 25

{
s.qi−min (qi)

max (qi)−min (qi)
if max (qi) �= min (qi)

1 if max (qi) = min (qi)
(1)

{
max (qi)−s.qi

max (qi)−min (qi)
if max (qi) �= min (qi)

1 if max (qi) = min (qi)
(2)

Then, we generate K random QoE values (K denotes the number of sub-
jective tests. It means that for each service, K persons give their feedback in a
number value format). Afterward, based on Pearson equation [11], we calculate
Q coefficient values (weights) for each service corresponding to its QoS values.
We have considered K = 100, and Q = 4 since we have four QoS parameters.
Finally, utilizing the calculated weights cij and QoS values given in the dataset,
we can calculate the final QoE value. To this end, we have used the following
equations, which linearly correlate QoE and QoS values [12,13]

cij =

∣∣∣∣∣∣

∑K
k=1(qij − q̄i)(qoek − ¯qoe)√∑K

k=1(qij − q̄i)2
√∑K

k=1(qoek − ¯qoe)2

∣∣∣∣∣∣
(3)

QoE(sj) =
Q∑

i=1

cij(sj) ∗ qij(sj) (4)

where qij is the current QoS value for jth service (sj), for which we calculate the
weight. q̄i is the mean value for the ith QoS parameter, and qoek is the kth user
feedback value among K users.

We consider the QoE value as a positive QoS parameter. The final service
rating value R(si) is calculated as follows:

R(si) =
2∑

i=1

wi ∗ s.q−
i +

5∑

i=3

wi ∗ 1
s.q+i

We use the simple additive weight (SAW) method to linearly combine the
objectives. wi are weights/coefficients for each of the QoS parameters and they
should sum up to 1

∑5
i=1 wi = 1. These weights can be defined by the service

requester. Since we focus on reliability, its coefficient is considered as wrel = 0.5
and for the rest of parameters (availability, response time, latency, and QoE)
the coefficients are considered as wi = 0, 125. For mashups, the rating value is
calculated using the several composed services each of which has its own QoS
and QoE values. The QoS values of the composite service is the aggregation
values of its sub-services.

We use MLP network to learn deeper and high-order features from rating
patterns as follows: h(rsi) = sigmoid(Wra.R(si) + bra)

where R(si) is the rating value of the ith service, Wra, bra are parameters to be
learned. The output h(rsi) will be the rating-based representation of the service
i. We calculate the rating-based representation of the mashup h(rmi

) using the

26 M. Boulakbech et al.

same equation. Afterward, we mean-pooling all service rating representations to
generate the final representation v(rsi)

v(rsi) =
1

Rs
×

Rs∑

i=1

h(rsi)

where Rs represents the number of ratings associated with a service si.
The final mashup rating representation v(rmi

) is as follow:

v(rmi
) =

1
Rm

×
Rm∑

i=1

h(rmi
)

where Rm represents the number of ratings associated with a mashup mi.
3) Attention aggregation
This module combines both the functional attention and the non functional

attention mechanisms. The representation of service v(si) and the mashup rep-
resentation v(mi) can finally be calculated as an aggregation process by adding
all weighted word representations, the mean-pooled tag representations, and the
rating representations as follow:

v(si) = v(tsi) ⊕
|Dsi

|∑

j

h(dj) ∗ aj

|Dsi |
⊕ v(rsi)

v(mi) = v(tmi
) ⊕

|Dmi
|∑

j

h(dj) ∗ aj

|Dmi
| ⊕ v(rmi

)

3.3 Recommendation Module

This module aims to generate the top-k services using an attention matching
operation as follow:

P (m′) = Matchning(N,V) = Sum(softmax

(
NV√

d

)
)

We use the scaled dot product [14] to calculate the similarity between the mashup
neighbor set and service representation. Here, the neighbor set can be expressed
as N = {n1, n2,nN} ∈ RN∗d and the service representation can be expressed
as V = {v1, v2,, vV }. Calculate the attention score of N and V by scaling
the dot product, and use softmax on it to get the attention weight. Finally,
the Sum operation computes the weighted sum of the last dimension of the
attention weights to generate P (m′). It represents the probabilities that services
in candidate set will form the new mashup m′.

Deep Learning Model for Web Service Recommendations 27

4 Evaluation

4.1 Parameter Learning

We minimize the recommendation ranking loss similar to [15] based on the triplet
Ranking Loss method. The triple contains a query qi (called the anchor instance),
a satisfying service s+i (called the positive instance) and a non-satisfying ser-
vice s−

i (called the negative instance) randomly sampled from the dataset. The
objective is that the distance between the anchor sample and the negative sam-
ple representations is greater (and bigger than a margin ma) than the distance
between the anchor and positive representations. Therefore, the loss function
can be defined as:

L(qi, s+i , s−
i) = max(0, Ma + d(qi, s+i) − d(qi, s−

i)

= max(0, Ma − cos(v(qi), v(s+i)) + cos(v(qi), v(s−
i)))

where Ma is a constant margin. Since the query can be satisfied with more than
one service (a mashup), it can hence be treated as multiple training samples.
Then, with all positive and negative triple training samples T = (qi, s+i , s−

i), 1 ≤
i ≤ N ; N the size of training samples. Then, our goal is to minimize the cumu-
lative loss:

J = argmin
W,b

N∑

i

L(qi, s+i , s−
i)

where W = {Wt,Wq,Wz,Wr,Wh,Wra} is a set of weight parameters and b =
{bt, bq, bz, br, bh, bra} is a set of biases that are to be learned.

We use Stochastic Gradient Descent (SGD) We use Stochastic Gradient
Descent (SGD) with mini-batches as the optimization strategy which minimizes
the above objective and updates the model parameters through back-propagation
process. Mini-batch gradient descent is typically the algorithm of choice when
training a neural network. It reduces the variance of the parameter updates,
which can lead to more stable convergence and make use of highly optimized
matrix that make computing the gradient efficient. We consider two cases:

1. if f(qi, s) � Ma
∂L

∂ω
= 0,

∂L

∂θ
= 0, ∀ω ∈ W, θ ∈ b

2. if f(qi, s) � Ma

∂L

∂ω
= −∂f(qi, s)

∂ω
, ω′ = ω − η.

∂L

∂ω
,∀ω ∈ W,

∂L

∂θ
=,−∂f(qi, s)

∂θ
θ′ = θ − η.

∂L

∂θ
, ∀θ ∈ b

where f(qi, s) = 2 y cos(v(qi), v(si)) y =

{
1, s+i ,

−1, s−
i

and η is the learning

rate of SGD.

28 M. Boulakbech et al.

4.2 Experimentation

Dataset Description: We use a real-world dataset crawled from pro-
grammableweb.com, which has been widely used in many tasks like API service
recommendation. We report in Table 1 statistics about the dataset. We collected
6417 Mashups, 19380 APIs and other information such as API category and API
rating. Before the model validation, we preprocessed the dataset as follows:

– Pruning and tokenization: We built a stop word list and discarded all the
meaningless words like “the”, “API”, “Mashup”, etc. We then used the Stan-
dardAnalyzer and PosterStemFilter tools from Lucene Package to transform
all terms into tokens with the prefix and suffix removed.

– Description segmentation and Repository construction: We split all service
and Mashup descriptions into sentences according to the separator. All terms
and sentences are properly numbered. We then constructed a service reposi-
tory and a Mashup repository.

Table 1. xx

Item Value

Number of APIs 19380
Number of Mashups 6417
Number of APIs categories 384
Average number of API per category 50.46
Average number of member API per Mashup 2.2

As it is hard to determine the number of services recommended for a given user
query, we set this number based on the statistical results, where is approximately
exponentially distributed, and more than 99% Mashups invoke 1–10 Web APIs.
Thus, we report experimental results obtained by recommending up to 10 Web
APIs. All the Mashups in the dataset have been divided into 10 equal subsets,
and each fold in the subsets is used as a testing set (i.e., we manually removed
all their linked Web APIs and used them as relevant Web APIs when evaluating),
while the other remaining subsets are combined as a training dataset. Then the
results of each fold are summed up and their averages are reported.

Evaluation Metrics: We evaluate the recommendation accuracy based on the
following metrics:

Recall@N =
|CR(mi)

⋂
Rec(mi)|

|CR(mi)|

Precision@N =
|CR(mi)

⋂
Rec(mi)|

|Rec(mi)|

F − measure@N =
2 ∗ Recall ∗ Precision

Recall + Precision

Deep Learning Model for Web Service Recommendations 29

where CR(mi) is the relevant APIs of Mashup mi, and Rec(mi) represents the
recommended APIs. |CR(mi)| and |Rec(mi)| are the numbers of APIs in CR(mi)
and Rec(mi) respectively. The higher values of these metrics mean better rec-
ommendation accuracy.

Approaches Comparison: We take these baselines to evaluate our method,
which are shown as follows:

– TF-IDF: It recommends Web APIs whose descriptions are similar to that
of the target Mashup based on the vector space model. The term frequency
and inverse document frequency are used to calculate the similarity between
Web APIs and the target Mashup based on the cosine similarity calculation
method.

– BLSTM: This method jointly learns two embeddings representing the func-
tional features of Web APIs and the functional requirements of Mashups
based on BLSTM. The cosine similarity is adopted and the top ranked Web
APIs are finally selected.

– TA-BLSTM [16]: This method introduces an attention mechanism to reveal
the functional information of Mashup and API descriptions. It also uses the
cosine method to calculate the closeness between Mashups and APIs.

– FC-LSTM [17]: this method is similar to TA-BLSTM but incorporates
Mashup requirements as an application scenario to help select the most appro-
priate services.

– ICNC-CF [18]: this method clusters Mashups based on the latent topics
learned by a two-level topic model with considering the relationships between
Mashups. Then, it explores item-based collaborative filtering algorithm to
rank and recommend Web services using historical invocation history between
Mashups clusters and Web services.

– PSRDL: our method combines a functional and non-functional attention-
based model for service recommendation using MLP and GRU techniques.

For parameters setting in the baselines, we experimented multiple times and
chose the following settings. For baseline method BLSTM and TA-BLSTM, we
learned the word embeddings based on the Skip-Gram algorithm in Word2vec
tool implemented in Java, and the dimension of learned embeddings is fixed as
100. We implemented the proposed model based on the TensorFlow platform.
During the model training, SGD is the optimization strategy with setting the
learning rate η and margin Ma as 0.01 and 0.1 respectively. In addition, a rec-
ommended candidate API pool with size P is required for each training Mashup.
We put all positive services into the pool then randomly sample negative services
from the entire service repository until the pool size reaches P. To choose the
best value, we design extensive experiments.

Experimental Results: Figure 2 illustrates the performance of the baseline
methods. We can observe that the Recall values increase gradually with the
increase of recommended services, while the Precision values follow the opposite

30 M. Boulakbech et al.

trend since more and more non-member services appear in the recommendation
results. The performance of our method PSRDL greatly exceeds that of other
state-of-the-art methods.

RNN-based methods, including BLSTM, TagBLSTM and TA-BLSTM,
demonstrate better performance compared with the keyword matching-based
method TF-IDF. This is because that deep RNN-based model can automati-
cally extract features that are helpful in the service recommendation task, while
other methods usually demand great human effort to mine features that are
sometimes meaningless.

Figure 2(c) shows the comprehensive metric F-measure which trade-offs the
Recall and Precision results. We can note that the proposed method outperforms
LSTM methods with an average F-measure improvement of 7.8% over FC-LSTM,
23.7% over TA-BLSTM and 48.4% over BLSTM. This demonstrates the GRU
model is superior to the LSTM model. In addition, we can also observe that
PRSDL performs better than methods without an attention mechanism (TF-
IDF, BLSTM and ICNC-CF) and the reason is that attention mechanism focuses
on more important properties of Mashups and services. Furthermore, PSRDL
is superior to FC-LSTM which means the QoE has a positive effect on the
recommendation accuracy since it contains rich information that can be useful
complementary to the recommendation.

During the training of the proposed recommendation model, each trained
Mashup is attached with a training pool size P . Figure 2(d) presents its influence
on the recommendation results measured by F-measure. We can observe that the
larger pool size is beneficial for obtaining better accuracy. However, although the
larger setting of P means larger training data, it also means that more training
time is required to complete an epoch over the whole training instance. Note that
after 10 epochs of training, PSRDL converges to the best recommendation results.

5 Related Work

5.1 Content-Based Web Service Recommendation

Content-based service recommendation methods focus on mining the relationship
between mashups and web service requirements, and directly recommend those
web services that are close to the mashup using functional description of services
[19,20]. Service topic features are extracted from the topic model, and service
recommendation is made by service topic feature matching. For example, [21]
proposed a method based on mashup description to discover the important word
characteristics of the service and bridge the vocabulary gap between mashup
developers and service providers. However, much efforts are required for manual
semantic annotation witch may lead to the loss of information and intention
gap. [22] used the factorization machine to model the information of multiple
dimensions, such as the similarity between mashups and services, the popularity
of services, etc., to predict and recommend the services corresponding to the
target mashups. Compared with the above works, we use a deep neural network
as the modeling basis to build a complete end-to-end service recommendation
framework.

Deep Learning Model for Web Service Recommendations 31

Fig. 2. Performance comparisons of the baseline methods (a) Recall results (b) Preci-
sion results (c) F-measure results (d) Influence of pool size on F-measure

5.2 QoS-Based Web Service Recommendation

[23] presented a location-aware collaborative filtering method for QoS-based Web
service which combines users’ location and services’ location to find similar users
and similar services. [24] proposed a session level representation method based on
multidimensional attention mechanism to enhance the matching degree between
user interaction sequences and user intentions, and reduce the impact of noise
interaction. However, because QoS is dynamic and changes over time, QoS-aware
methods may encounter uncertainty. Thus, inject user’s perception in the service
quality using QoE can deliver satisfactory user experience. [25] proposed a gen-
eral collaborative filtering (GCF) method based on a neural network to model
the user-service interactions. [26] presented a framework that leverages learning-
to-rank and active learning techniques to boost recommendation performance
by exploiting user feedback. In this paper, we combine QoS and QoE to provide
more personalized Web service recommendations.

5.3 Web Service Recommendation with Deep Learning Technology

In recent years, the adoption of deep learning technology for service recom-
mendation has become very popular. Different from the traditional method, it
can automatically learn representative features from the original data and mine

32 M. Boulakbech et al.

the hidden information, like the context and the word order. For example, [17]
proposed a service recommendation method based on text extension and depth
model, and LSTM model with two attention mechanisms is employed for service
recommendation to help select the most appropriate service. [27] constructed a
heterogeneous information network (HIN) to describe mashup, API and their
respective attribute information. Existing methods rely heavily on capturing
complex interactions between mashups and services and suffer from cold start
service.

6 Conclusion

In this paper, we propose a deep Learning Model for Personalized Web Ser-
vice Recommendations. Using Attention Mechanism we learn functional and
non-functional service features to provide more personalized and accurate rec-
ommendation. We propose a neighbor mashup finding module to deal with cold
start problem in recommender system. The experimental results demonstrated
the effectiveness of the proposed deep model compared with several state-of-the-
art ones. In the future we plan to do more experiments to qualitatively evaluate
our model.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Comput. 12(5), 44–52 (2008)

2. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A spatial-temporal
qos prediction approach for time-aware web service recommendation. ACM Trans.
Web (TWEB) 10(1), 1–25 (2016)

3. Yin, Y., Xu, H., Liang, T., Chen, M., Gao, H., Longo, A.: Leveraging data augmen-
tation for service qos prediction in cyber-physical systems. ACM Trans. Internet
Technol. (TOIT) 21(2), 1–25 (2021)

4. Yu, T., Yu, D., Wang, D., Hu, X.: Web service recommendation for mashup creation
based on graph network. J. Supercomput., 1–28 (2023)

5. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: Kgat: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

6. Li, X., Zhang, X., Wang, P., Cao, Z.: Web services recommendation based on
metapath-guided graph attention network. J. Supercomput. 78(10), 12 621–12 647
(2022)

7. Cao, B., Zhang, L., Peng, M., Qing, Y., Kang, G., Liu, J.: Web service recommen-
dation via combining bilinear graph representation and xdeepfm quality prediction.
IEEE Trans. Network Serv. Manage. (2023)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Ramchoun, H., Ghanou, Y., Ettaouil, M., Janati Idrissi, M.A.: Multilayer percep-
tron: architecture optimization and training (2016)

10. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1412.3555

Deep Learning Model for Web Service Recommendations 33

11. Lalanne, F., Cavalli, A., Maag, S.: Quality of experience as a selection criterion for
web services. In: 2012 Eighth International Conference on Signal Image Technology
and Internet Based Systems, pp. 519–526. IEEE (2012)

12. Lai, P., et al.: Qoe-aware user allocation in edge computing systems with dynamic
qos. Futur. Gener. Comput. Syst. 112, 684–694 (2020)

13. Li, M., Xu, H., Tu, Z., Su, T., Xu, X., Wang, Z.: A deep learning based personal-
ized qoe/qos correlation model for composite services. In: 2022 IEEE International
Conference on Web Services (ICWS), pp. 312–321. IEEE (2022)

14. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

15. Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z.: Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Syst. Appl.
69, 29–39 (2017)

16. Shi, M., Tang, Y., Liu, J.: Ta-blstm: tag attention-based bidirectional long short-
term memory for service recommendation in mashup creation. In: 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

17. Shi, M., Liu, J., et al.: Functional and contextual attention-based lstm for service
recommendation in mashup creation. IEEE Trans. Parallel Distrib. Syst. 30(5),
1077–1090 (2018)

18. Cao, B., Liu, X.F., Rahman, M.M., Li, B., Liu, J., Tang, M.: Integrated content
and network-based service clustering and web apis recommendation for mashup
development. IEEE Trans. Serv. Comput. 13, 99–113 (2017)

19. Lian, S., Tang, M.: Api recommendation for mashup creation based on neural graph
collaborative filtering. Connect. Sci. 34(1), 124–138 (2022)

20. Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommen-
dation by regularizing matrix factorization with api co-invocations. IEEE Trans.
Serv. Comput. 14(2), 502–515 (2018)

21. Shi, M., Liu, J., Zhou, D., Tang, Y.: A topic-sensitive method for mashup tag
recommendation utilizing multi-relational service data. IEEE Trans. Serv. Comput.
14, 342–355 (2018)

22. Kang, G., Liu, J., Xiao, Y., Cao, B., Xu, Y., Cao, M.: Neural and attentional
factorization machine-based web api recommendation for mashup development.
IEEE Trans. Network Serv. Manage. 18, 4183–4196 (2021)

23. Liu, J., Tang, M., Zheng, Z., Liu, X., Lyu, S.: Location-aware and personalized
collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput.
9(5), 686–699 (2015)

24. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation
based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.-J.
(eds.) SCC 2019. LNCS, vol. 11515, pp. 77–91. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-23554-3_6

25. Ma, W., Shan, R., Qi, M.: General collaborative filtering for web service qos pre-
diction. Math. Probl. Eng. 2018, 1–18 (2018)

26. Zhou, Y., Yang, X., Chen, T., Huang, Z., Ma, X., Gall, H.C.: Boosting api recom-
mendation with implicit feedback. IEEE Trans. Softw. Eng. 48, 2157–2172 (2021)

27. Liang, T., et al.: Mobile app recommendation via heterogeneous graph neural net-
work in edge computing. Appl. Soft Comput. 103, 107162 (2021)

https://doi.org/10.1007/978-3-030-23554-3_6
https://doi.org/10.1007/978-3-030-23554-3_6

Deep Reinforcement Learning-Based
Scheduling for Same Day Delivery
with a Dynamic Number of Drones

Boyang Zhou1,2(B) and Liang Cheng1,2

1 Lehigh University, Bethlehem, USA
boz319@lehigh.edu

2 University of Toledo, Toledo, USA

Abstract. Same-Day Delivery (SDD) has emerged as a popular trend
in the retail market, relieving workers from repetitive and monotonous
tasks. Despite these advantages, SDD scheduling is challenging as there is
no prior information available for upcoming tasks. Existing research has
attempted to address this problem using local heuristic search, approx-
imate dynamic programming, and reinforcement learning algorithms.
However, none of these approaches has considered a dynamic number
of drones, which can change due to unforeseen crashes or employing new
drones due to the heavy workload. In this paper, we propose a Same-
Day Delivery with a Dynamic Number of Drones (SD4) problem. To
address this problem, we present a reinforcement learning model using
Double Deep-Q Network (DDQN) to handle both task scheduling with
a dynamic number of drones and drone employment simultaneously.

Keywords: Unmanned Aerial Vehicles (UAV) · Double Deep-Q
Networks (DDQN)

1 Introduction

The advancement of battery technology and control theory has made Unmanned
Aerial Vehicles (UAVs), or drones, more applicable to commercial settings. Same-
day delivery (SDD) is one of the most important applications of UAVs. Although
SDD is widely investigated by researchers in logistics [1–4,6], existing research
lacks the consideration of a changing number of vehicles (e.g., drones) during the
delivery. Drones are vulnerable to crashes in harsh and uncertain environments
and can be shared by different depots causing a changing number of drones.
Thus, it is necessary to develop scheduling algorithms that deal with the dynamic
number of drones. We propose a Same-Day Delivery with a Dynamic number of
Drones (SD4) problem, specifically targeting same-day meal delivery.

This work is supported by NSF Award No. 2146968. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those of the author(s) and do
not necessarily reflect the views of the sponsors of the research.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 34–41, 2023.
https://doi.org/10.1007/978-3-031-48421-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_3

Deep Reinforcement Learning-Based Scheduling for Same Day Delivery 35

The SD4 problem involves two main novelties: The first novelty is scheduling
tasks for a dynamic number of drones, while the second novelty involves coordi-
nating drones, including their deployment and release, to enable more efficient
drone utilization, particularly when depots experience peak periods in different
time periods. The main contributions of the paper are as follows:

1. We propose the SD4 problem, which considers the dynamic number of drones
and drone coordination during delivery for more realistic delivery scenarios.

2. We use a reinforcement learning model that employs Double Deep-Q Networks
(DDQN [5]) to solve the SD4 problem. This model is evaluated in terms of
convergence, solution quality, and real-time performance.

The rest of the paper is organized as follows. Section 2 proposes the SD4 system
for same-day meal delivery. Section 3 and Sect. 4 demonstrate the reinforcement
learning model and environment setup. Section 5 evaluates our solution.

2 System Description for Meal Delivery with SD4

This section provides an overview of the SD4 system. We take same-day meal
delivery as the application scenario of SD4. Figure 1 illustrates the architecture
of the SD4 system for meal delivery.

Fig. 1. The system architecture for the same-day meal delivery

A meal delivery task tj in the SD4 system consists of two components: the
restaurant and the customer, denoted as rj and cj , respectively, in Fig. 1. There
are two types of delivery in the system: individual delivery and collaborative
delivery. Individual delivery occurs when a task can be assigned to a single
drone. For instance, in Fig. 1, tasks t1 and t2 are assigned to drone d1 as indi-
vidual deliveries. Collaborative delivery, on the other hand, is necessary when
the restaurant and the customer of a task are located in different service areas
of depots. Task t3 is an example of collaborative delivery. Drones may crash
during delivery. Moreover, depots may release their drones (i.e., d6). Depot 2
must estimate whether employing d6 would improve overall system performance
after it is released by depot 1.

36 B. Zhou and L. Cheng

3 Environment Setup for SDD Task Scheduling

Environment setup plays a crucial role in reinforcement learning. The environ-
ment of a reinforcement learning model consists of state, action, and reward. In
this section, we introduce the environment setup for SDD task scheduling. We
make the following assumptions for the SD4 problem:

1. Drones have a fixed maximum flight time regardless of the payload of a task.
2. Each drone can only deliver a single meal at a time.
3. Depots can reject any request without penalty, except in the case of a collab-

orative delivery where a drone has already picked up the meal.
4. Drones switch their batteries in depots and the switching time is negligible.

3.1 Task and State

Task tj can be described by a five-tuple (arrj , rj , cj , dlj , pj). arrj is the arrival
time of task tj . rj and cj are 2D coordinates for the restaurant and the customer,
respectively. dlj is the deadline for finishing this task. pj is the penalty for tj .
State Sj for task tj in the task scheduling environment is a vector that contains
the following elements:

1. Avl = [avl1, avl2, ..., avln] indicating the ready time for the next departure
of each drone, where n is the number of drones in the system.

2. pj and dlj , representing the penalty and deadline for task tj , respectively,
which are appended to Sj .

3. Fj = [f1j , f2j , ..., fnj], where fij is the time for the drone i to execute tj .

3.2 Action and Reward

Action aj needs to be taken for task tj . aj can take one of the following values:

aj =
{
0 if tj is rejected
k tj is assigned to the k th drone, 1 ≤ k ≤ n

(1)

The immediate reward R(Sj , aj) is designed to provide feedback action aj
under the current state Sj . It is defined by Eq. 2.

R(Sj , aj) =

⎧⎪⎨
⎪⎩

pj if tj is rejected
1 tfaj

<= dlj

1 − tfaj
−dlj

tmax
Otherwise

(2)

4 Reinforcement Learning Model and Environment Setup
for Drone Employment

This section discusses the reinforcement learning model and the environment
setup for the admission of drones. Figure 2 depicts the model for drone employ-
ment, where the shared environment can adaptively choose the agent and provide
states and rewards based on the task type. The DDQN2 set contains trained
DDQN models for scheduling with different numbers of drones.

Deep Reinforcement Learning-Based Scheduling for Same Day Delivery 37

Fig. 2. Reinforcement learning model for drone employment

4.1 Task and State

A two-tuple (darri, davli) describes employable drone dti, where darri is the
time when the depot is notified of the availability of dti, and davli is the time
when dti will be ready for the next task. dSi is the state for drone employment
at darri. It includes the following elements:

1. Avl′ = [avl1,...,avlmaxN], where maxN is the maximum number of drones
accommodated by the depot. When i > n, then avli = tmax so that no work
can be assigned to the ith drone since it is absent.

2. davli notifies the agent of the time when dti will be ready for meal delivery.
3. End = [end1, ..., endmaxN] indicates the off-work time for each drone. Drone

i will stop working and leave the depot at endi. N represents the number of
non-employed drones belonging to the depot. Drones belonging to the depot
are not allowed to leave the depot unless they crash.

4.2 Action and Reward

Two decisions must be made for each employable drone: whether to accept it
and the corresponding release time if accepted. Hence, dai is designed to make
these two simultaneous decisions. The values of dai are as follows:

dai =

⎧⎨
⎩

0 dti is rejected

k
dti is accepted and it needs to work
for tmax∗k

l , 1 ≤ k ≤ l
(3)

The parameter l is used to divide the time horizon tmax into l equal-length time
intervals. dR(dSi, dai) is the reward when action dai is taken under state dSi.
dR(dSi, dai) contains a immediate cost imci of employing drone dti. imci is
calculated using dp, davli, and dai in Eq. 4.

imci =

⎧⎨
⎩

0 if dai = 0
(min(tmax, davli + tmax∗dai

l)
−davli) ∗ dp

tmax
Otherwise

(4)

38 B. Zhou and L. Cheng

Besides imci, dR(dSi, dai) should also incorporate the reward for task
scheduling. Thus, dR(dSi, dai) can be calculated using Eq. 5.

dR(dSi, dai) = imci +
∑
j

R(Sj , aj) (5)

, where darri < arrj < darri+1.

5 Evaluation

This section presents the evaluation of our reinforcement learning-based app-
roach for SD4, which is divided into two parts: (i) evaluation for SDD task
scheduling, and (ii) evaluation for the model for drone employment.

5.1 Evaluation of DDQN for SDD Task Scheduling

We use simulations to evaluate the performance of our proposed model. Here
is the setup. The service area of a depot is a 30 by 30 plane, where each unit
distance takes one minute for a drone to travel. Euclidean distance is used for
the calculation. The maximum shift duration (tmax) is set to 600min, and the
maximum flight time maxF of a drone is 60min. The rj and cj coordinates are
randomly generated, ensuring that the drone can complete tasks in an individual
way or a collaborative way within maxF . The penalty pj is set to 0 for individual
delivery tasks and -1 for collaborative ones with food picked up.

Fig. 3. Plots for the rewards vs. training episodes using 5, 10, 15 drones under different
distributions

Convergence Evaluation. To investigate how the workload distribution
affects the performance of DDQN, we generated workload using uniform, normal,
and bimodal distributions. Figure 3 shows the variation of SDD meal delivery
rewards with trained episodes for 5, 10, and 15 drones under the three workload
distributions. Each episode represents a shift in the system. As we can see, the
model converges well in all scenarios.

Deep Reinforcement Learning-Based Scheduling for Same Day Delivery 39

Fig. 4. The average rewards and the average number of scheduled tasks achieved by
DDQN, greedy algorithm 1, and greedy algorithm 2 with different numbers of drones
under the three workload distributions

Solution Quality Evaluation. To evaluate the quality of solutions of our
DDQN, we compare our DDQN model with some traditional scheduling algo-
rithms, including the Shortest Execution Time First (SETF), the Earliest Finish
Time First (EFTF), round-robin, and random selection.

SETF: The depot greedily assigns task tj to the drone that has the shortest
task completion time (i.e., aj = argmin

i
fij).

EFTF: In EFTF, instead of greedily choosing the shortest execution time,
the depot assigns the task tj to the drone, which has the smallest avli after
tasking the task (i.e., aj = argmin

i
(avli + fij).

The evaluation for solution quality was conducted by running 100 episodes
for each scenario, and then calculating the average rewards of five algorithms.
Figure 4 (a), (b), and (c) shows the average rewards versus different numbers of
drones achieved by the five algorithms under different workload distributions.

Three workload distributions were used in the evaluation, and all three dis-
tributions have the same workload expectation. DDQN can increase the average
reward by a range from 2.5% to 104.1% compared with the best result from the
four traditional real-time scheduling algorithms.

5.2 Evaluation for the Drone Employment Model

In this section, we mainly evaluate the model for drone employment. The service
area and task generation are inherited from Sect. 5.1. A depot is assumed to
have 4 drones initially, and maxN is 8. We evaluate the performance of DDQN
for employable drones under normal and bimodal distributions. The uniform
distribution is not included as it cannot benefit from employing drones. There
will be 20 employable drone requests uniformly distributed in each shift. l is set
to 10 for the selection of dai and the calculation of endi.

Convergence Evaluation. The first part of the evaluation focuses on the con-
vergence of the DDQN model for employable drones. We set dp to −20 in this

40 B. Zhou and L. Cheng

example. The rewards vs. training episodes for normal and bimodal workload
distributions are shown in Fig. 5, with the mean rewards calculated for the clos-
est 50 episodes to provide a better measurement of convergence. The results
indicate that the DDQN model for employable drones converges well in both
distributions. It takes fewer than 200 episodes for the model to converge under
the two workload distributions.

Fig. 5. Plots for the rewards vs. training episodes of DDQN for employable drones
under different distributions

Solution Quality Evaluation. The solution quality evaluation involves com-
paring the performance of the drone employment model to that of DDQN models
designed solely for SDD task scheduling under different dp values. We use five
DDQN models that can schedule tasks using 4 to 8 drones as baselines. To ensure
a fair comparison, we adjust the reward for the DDQN models for task schedul-
ing by adding dp ∗ (n − 4), where n is the number of drones. We then compare
the gap between the reward obtained from the drone employment model and
the best-adjusted reward derived from the five DDQN models under different dp
values to evaluate the solution quality.

Figure 6 presents the reward achieved by the drone employment model and
the reward gap in different scenarios. As |dp| increases, the reward gap and
reward tend to decrease. There is an outlier of the reward gap when |dp| is 5
under the normal workload distribution. In this case, an additional drone can
always produce a positive effect because |dp| is small. However, the decrement
stops when |dp| reaches a threshold in both distributions since employing a
drone with a high cost will always cause a negative effect. Thus, the model stops
employing any drone in these scenarios, causing a 0 reward gap and a constant
reward. Drone employment in SD4 will not cause a negative effect no matter
how large |dp| is and can increase the reward by up to 21.0% compared with the
best-adjusted reward from DDQN models for static numbers of drones.

Deep Reinforcement Learning-Based Scheduling for Same Day Delivery 41

Fig. 6. Reward gap between the drone employment model and DDQN models

5.3 Real-Time Performance Evaluation

The evaluation is conducted on a machine equipped with an i9-13900k CPU and
an Nvidia RTX 4080 GPU. The average inference time is less than 50 µs for
both models in all scenarios.

6 Conclusion

This paper introduces a novel approach to solving the SD4 problem using a
reinforcement learning model. The proposed model is capable of dynamic task
scheduling and employment of drones by depots, which can increase the overall
system efficiency. The model is evaluated in terms of convergence, solution qual-
ity, and real-time performance. The results show that the DDQN model for task
scheduling outperforms traditional greedy algorithms under different workload
distributions and numbers of drones, while the drone employment model further
enhances the system efficiency.

References

1. Dayarian, I., Savelsbergh, M.: Crowdshipping and same-day delivery: employing
in-store customers to deliver online orders. Prod. Oper. Manag. 29(9), 2153–2174
(2020)

2. Dayarian, I., Savelsbergh, M., Clarke, J.P.: Same-day delivery with drone resupply.
Transp. Sci. 54(1), 229–249 (2020)

3. Klapp, M.A., Erera, A.L., Toriello, A.: The dynamic dispatch waves problem for
same-day delivery. Eur. J. Oper. Res. 271, 519–534 (2018)

4. Schubert, D., Kuhn, H., Holzapfel, A.: Same-day deliveries in omnichannel retail:
integrated order picking and vehicle routing with vehicle-site dependencies. Naval
Res. Logist. (NRL) 68(6), 721–744 (2021)

5. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (2016)

6. Voccia, S.A., Campbell, A.M., Thomas, B.W.: The same-day delivery problem for
online purchases. Transp. Sci. 53(1), 167–184 (2019)

Designing Reconfigurable Intelligent
Systems with Markov Blankets

Boris Sedlak(B) , Victor Casamayor Pujol , Praveen Kumar Donta ,
and Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria
{b.sedlak,v.casamayor,pdonta,dustdar}@dsg.tuwien.ac.at

Abstract. Compute Continuum (CC) systems comprise a vast num-
ber of devices distributed over computational tiers. Evaluating business
requirements, i.e., Service Level Objectives (SLOs), requires collecting
data from all those devices; if SLOs are violated, devices must be recon-
figured to ensure correct operation. If done centrally, this dramatically
increases the number of devices and variables that must be considered,
while creating an enormous communication overhead. To address this,
we (1) introduce a causality filter based on Markov blankets (MB) that
limits the number of variables that each device must track, (2) evalu-
ate SLOs decentralized on a device basis, and (3) infer optimal device
configuration for fulfilling SLOs. We evaluated our methodology by ana-
lyzing video stream transformations and providing device configurations
that ensure the Quality of Service (QoS). The devices thus perceived
their environment and acted accordingly – a form of decentralized intel-
ligence.

Keywords: Intelligent Systems · Computing Continuum · Markov
Blankets · Sensory State · Service Level Objectives · Exact Inference

1 Introduction

Computing Continuum (CC) systems as envisioned in [2,5] are large-scale dis-
tributed systems composed of a wide variety of devices. Applications running in
the CC pose ambitious requirements, e.g., near real-time latency while dealing
with huge volumes of data. Additionally, requirements may change over time;
to provide the best possible service, the CC system must adapt. However, given
the highly distributed nature of the CC, it is a challenging task to dynamically
reconfigure all contained devices, while ensuring high-level system objectives.

In this regard, we envision CC systems employing decentralized intelligence,
which allows system parts to make decisions independently, in favor of the appli-
cation running on top. Smaller units in the CC (e.g., edge devices) would thus
obtain the ability to evaluate their own state to ensure requirements are ful-
filled. One promising option to model this, is the behavioral concept introduced

Funded by the European Union (TEADAL, 101070186).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 42–50, 2023.
https://doi.org/10.1007/978-3-031-48421-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_4&domain=pdf
http://orcid.org/0009-0001-2365-8265
http://orcid.org/0000-0003-2830-8368
http://orcid.org/0000-0002-8233-6071
http://orcid.org/0000-0001-6872-8821
https://doi.org/10.1007/978-3-031-48421-6_4

Designing Reconfigurable Intelligent Systems with Markov Blankets 43

by Friston et al. [6,8]. Essentially, it comprises sensory information and actions
within a Markov blanket (MB) [10], through which a thing interacts with its
environment. The MB shields the thing from all the variables it is conditionally
independent of. Therefore, to determine the state of the thing, only the variables
in the MB must be considered. Transferring this concept to the CC, you could
model each device’s behavior through MBs [11] and evaluate device requirements
by considering a limited amount of variables. Existing work [7,9,11], however,
assumes prior knowledge of how metrics are related to the system state; this
approach is not scalable if requirements change during operation or metric cor-
relations are unknown at design time. Thus, existing approaches would fail to
ensure the intricate requirements of CC systems.

Each tier in the CC poses its own requirements, which must be fulfilled to
create a composable and unified service. To model requirements, Cloud Comput-
ing introduced Service Level Objectives (SLOs) as a means to achieve business
agreements between infrastructure provider and application developer. However,
we propose to expand SLOs to requirements that directly influence the system
behavior and the application performance. Inspired by the work of Friston et al.,
and continuing the research agenda set in [3,5], we aim to leverage the behavioral
concept of MBs to represent SLOs throughout the CC. The causality filter of the
MB reduces the scope of variables that each device must analyze; thus, decreas-
ing the computational effort of analysis. This empowers resource-constrained
devices along the Edge to evaluate SLOs themselves.

In this paper, we propose to evaluate application requirements through MB-
based SLOs. The method constrains each SLO to a set of metrics and infers
configurations that fulfill them. Further, the output is explainable due to the
graphical model used. Hence, the contributions of this article are the following:

– A statistical reasoning model for analyzing conditional dependencies between
metrics in distributed systems. Whenever requirements change, the model
may thus itself answer which metrics are related to their fulfillment.

– The graphical representation of the device state as MB, which allows inter-
preting the device behavior. The state can be broken down into several SLOs;
in case any of them is violated, it can be explained why.

– A mechanism to infer optimal configurations from MBs given mutable system
requirements. It was evaluated under two scenarios in which our approach
provided the only configuration that did not violate any SLO.

2 Methodology

From a high-level perspective, we plan to analyze the device state, map selected
variables to the SLO fulfillment, and provide adaptive device configurations. Our
three-step methodology to achieve this is visualized in Fig. 1: Edge devices pro-
duce metrics about ongoing processing; then Bayesian Network Learning (#1) is
used to identify correlations between metrics and reflect the impact of environ-
mental changes (e.g., increased incoming requests). Next, we introduce system

44 B. Sedlak et al.

Fig. 1. Methodology for training Bayesian networks and extracting knowledge

requirements (i.e., SLOs) and extract a minimum subset of metrics for SLO ful-
fillment (#2). Ultimately, we use these MBs to estimate the probability of SLO
violations and (#3) infer the configuration with the highest compliance level.

While the proposed methodology describes a sequence of actions, the tools
themselves (e.g., algorithms for structure learning) can be optimized depend-
ing on the data. This three-step methodology will be our main mechanism for
predicting the probabilities of SLO violations given a device configuration. If
an SLO is violated due to an environmental change, e.g., a high request count
and thus exceeded application delay, we compare possible configurations and
provide the one with the highest probability of fulfilling the SLO. This matches
our envisioned level of intelligence, i.e., “understanding a situation and reacting
according to needs”, and neatly fits the principles of elastic computing [4].

3 Case Study

The following case study will be used to evaluate our methodology. In partic-
ular, we present two video streaming scenarios that require privacy-preserving
transformations. We analyze device metrics to build a Bayesian Network (BN),
specify SLOs that characterize the QoS, extract the MB around each SLO, and
finally, infer system configurations that have the lowest chance of violating SLOs.

3.1 Setup

Training a BN requires data; therefore, we use the framework introduced in
[12], which allows edge devices to detect privacy-violating patterns (e.g., screen,
face, or voice) in a stream and transform it continuously to resolve possible
privacy violations. As a workload, it fits our methodology because it (1) provides
an ample set of metrics reflecting the QoS of ongoing processing, (2) can be

Designing Reconfigurable Intelligent Systems with Markov Blankets 45

Table 1. (Parameterizable) Metrics captured during workload execution

Name Unit Description Param

delay ms processing time per frame No
CPU % utilization of the CPU No
memory % utilization of the system memory No
pixel num number of pixel contained in a frame Yes
fps num number of frames received per second Yes
bitrate num number of pixels transferred per second No
distance px relative distance of object between frames No
transformed T/F if the model detected a pattern (i.e., face) No
GPU T/F if the device employs a GPU No
config nominal mode in which the device operates Yes
consumption W energy pulled by the device No

parameterized, and (3) can be executed on edge devices. Using the framework,
we specify a privacy model that detects faces within a video stream and blurs
the respective region, a scenario useful for office monitoring or AR setups [1,
12]. During execution, 11 metrics are captured, which we introduce in Table 1.
Each row contains a short description, the measurement unit, and if it can be
parameterized. For example, pixel and fps are video stream properties; however,
the producer can adapt them to create a variable bitrate. Config determines
the device operation mode; devices such as Nvidia Jetson Xavier NX1 can thus
limit their energy consumption and the number of active CPU cores. It is worth
mentioning the metric distance, which tracks the relative position of a detected
face between frames, indicating how fluent/sluggish an object is tracked.

To explore correlations between metrics, we simulate an adaptive bitrate;
precisely, the producer periodically switches between different fps (12, 16, 20,
26, 30) and pixel (120p, 180p, 240p, 360p, 480p, 720p), while the edge device
moves through config modes. Current parameter assignments are part of the
metrics set, which is persisted with every processed frame. Metrics are directly
observable by the device; except for consumption, which is captured through an
external power plug2 over a telemetry period of 10 s. Metrics are accumulated
in a CSV file, which will contain 756,000 rows, captured within 2.5 h.

We identified five SLOs that describe the system state in terms of QoS and
Quality of Experience (QoE); however, each applicable scenario can have its own
subset of relevant SLOs. We assign a name to each SLO and highlight the metrics
from Table 1 (e.g., bitrate) that are used to evaluate the state of the SLO. Some
SLOs are constructed by combining metrics (i.e., within time), others are com-

1 https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/
JetsonXavierNxSeries.html, accessed June 13th 2023.

2 https://www.delock.com/produkt/11827/merkmale.html, accessed June 13th 2023.

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/JetsonXavierNxSeries.html
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/JetsonXavierNxSeries.html
https://www.delock.com/produkt/11827/merkmale.html

46 B. Sedlak et al.

pared against a customizable threshold (e.g., pixel distance), while other SLOs
directly mimic the value (True/False) of the metric (i.e., transform success).

network usage Edge devices have limited network interfaces, and in some cases,
limited network bandwidth. Since video streams are transferred over the net-
work, bitrate is important to control network congestion.

energy cons Edge devices are restricted in terms of resources and thus must
economize or limit their energy consumption while ensuring compliance with
the remaining system requirements (i.e., other SLOs).

within timeVideo processing introduces a considerable streaming delay, which
can lead to dropping frames and consequently poorer QoE. Hence, the
stream’s fps can be adjusted to limit/avoid dropping frames.

pixel distance Measures the quality of the object tracking capacity; we expect
the tracked object not to jump, but to have a smooth trajectory. Hence, we
define a range for the acceptable distance.

transf success Private or confidential information must not be disclosed; there-
fore, it must maximize the number of transformed faces in the stream.

The workload was executed on the Jetson Xavier NX, which supports
GPU-accelerated video processing over NVIDIA CUDA. To explore correlations
between GPU and other metrics, we execute the entire workload twice on the
Xavier NX – once with and once without CUDA acceleration enabled.

3.2 Model Construction

For constructing the BN, we leverage pgmpy3, a Python-based framework that
supports an ample set of algorithms for structure and parameter learning, e.g.,
Hill-Climb Search (HCS) and Maximum Likelihood Estimation (MLE). We train
the BN with HCS and MLE on all captured metrics, which takes roughly 30 s
on the Xavier NX. After training the BN, we extract the MB for each SLO;
the resulting MBs are visualized in Figs. 2: The first three graphics show simple
SLOs, i.e., such that require exactly one metric for evaluation. For example,
energy cons must evaluate consumption to determine the state of the SLO.
Metrics that have an edge pointing to consumption (i.e., bitrate, config, and
GPU) causally influence the variable and thus the SLO fulfillment. On the other
hand, within time, is composed of two metrics and thus features two MBs.
Complex SLOs [9] (i.e., such that consist of n metrics) would produce n MBs;
therefore, increasingly complex SLOs will require a sophisticated mechanism to
merge and compress MBs.

We argue that the MBs extracted for each SLO are plausible because con-
tained edges can be rationally explained. Further, all MB SLOs contain at least
one parameterizable metric within their sensory state, i.e., among the variables
that influence the SLO outcome. From a requirements perspective, this is essen-
tial because it allows a device to adapt dynamically to fulfill given SLOs.

3 https://pgmpy.org/, accessed June 14th, 2023.

https://pgmpy.org/

Designing Reconfigurable Intelligent Systems with Markov Blankets 47

Fig. 2. Markov blankets of the SLOs extracted from the Bayesian network

3.3 Device Configuration Inference

To infer device configurations that comply with the SLOs, we extract information
from the BN with Variable Elimination (VE). Instead of querying the entire BN,
we execute the queries on the minimum subset of relevant variables, i.e., the MB
of each SLO. Since the MBs of the SLOs contained all three parameterizable
metrics (i.e., fps, pixel, and config), a device must include these parameters in an
inferred configuration; otherwise, there is no full control over the SLOs. However,
suppose we would only trace a subset of the SLOs (e.g., network usage &
transf success), a configuration must only include the respective parameters
contained in the MBs, e.g., fps & pixel, but not config.

VE computes the probability of SLO violations for exactly one parameter
assignment; we repeatedly apply this approach for all assignments. To be precise,
the parameter space for (pixel : fps : config) consists of (5 : 6 : 3) possible
assignments. Iterating over 5∗6∗3 = 90 combinations and 5 SLO-MBs produces
5∗90 = 450 inference queries, which require roughly 700ms on the Jetson Xavier
NX. The result is a list of configurations that fulfill the given SLOs, e.g., one
could be (240p : 20fps : 4C_20W). To deal with changing requirements and
heterogeneous characteristics of CC devices, it is possible to provide additional
constraints to the VE (e.g., GPU=False), or customize SLOs to rank a metric
rather than limiting it (e.g. minimize consumption).

3.4 Evaluation

To evaluate the quality of inferred configurations, we compare the number of
SLO violations between devices that apply inferred or arbitrary configurations.
We envision two scenarios that are based on the workload for face blurring.
The scenarios are described below, while the corresponding SLO thresholds are
presented in Table 2. We intend to minimize energy cons for both scenarios
regardless of whether the energy supply would be constrained:
Scenario A: To create a virtual map (like Google Street View4), a camera-
equipped car captures street videos. The car has an edge device installed to
transform the stream; the result is directly rendered to a local map and only
accessed remotely in case of inspection, so network usage is of less importance.
We assume the rendering process to run in the background; therefore, the GPU

4 https://www.google.com/streetview/, accessed June 18th 2023.

https://www.google.com/streetview/

48 B. Sedlak et al.

is not available for processing. To create a detailed map, pixel distance must
be low, and within time fulfilled in most cases. However, the stream can be
re-rendered to blur undetected faces, thus transf success is less critical.
Scenario B: Within a smart factory, employees equipped with head-mounted
cameras conduct an audit. To protect privacy, the video stream is transformed on
an edge device before streaming to remote consumers. Video content is intended
for live inspection only; therefore, pixel distance and within time are less
important, while high transf success prevents privacy breaches. However, since
audits involve various providers and consumers, low network usage is desired.

Table 2. SLO thresholds that reflect the scenarios’ requirements

Scenario transf success distance network usage within time energy cons GPU

A ≥ 90% ≤ 35 ≤ 8.2 Mio. px/s ≥ 95% min(x) No

B ≥ 98% ≤ 60 ≤ 1.6 Mio. px/s ≥ 75% min(x) Yes

Table 3. List of configurations generated by exact inference or picked naively

Scenario Source Resolution FPS Mode GPU

A inferred 240p 20 4C_15W No
naive 360p 30 6C_20W
random #1 120p 16 6C_20W
random #2 720p 12 2C_10W

B inferred 240p 16 2C_10W Yes
naive 180p 26 4C_15W
random #1 360p 20 2C_15W
random #2 480p 30 6C_20W

We supply the SLO thresholds to the inference mechanism; the resulting
configurations are presented in Table 3: The first line contains the inferred con-
figuration, and the second line the naive assumption; the third and fourth lines
are randomly generated. To evaluate the number of SLO violations, we measured
each configuration’s performance over 10min; results are presented in Table 4.
Over the measurement course, the inferred configurations fulfilled the SLOs for
both scenarios. The naive assumption, on the other hand, violated one SLO
within each scenario (red cell), i.e., in Scenario A it failed to fulfill within time,
while in Scenario B transf success was violated. The randomly generated con-
figurations committed two SLO violations in Scenario A and one in Scenario B
each. The results show that our inferred configurations fulfilled all given SLOs
while also consuming the least energy.

Designing Reconfigurable Intelligent Systems with Markov Blankets 49

Table 4. Fulfillment of SLOs depending on scenario and configuration

Scenario Source transf success distance network usage within time energy cons

A

inferred 98% 15 (97%) 2.0 Mio. 100% 6.0W

naive 100% 10 (100%) 6.9 Mio. 92% 8.0W

random #1 4% 127 (2%) 0.4 Mio. 100% 7.0W

random #2 100% 28 (89%) 11 Mio. 100% 6.0W

B

inferred 98% 18(98%) 1.6 Mio. 100% 6.0W

naive 92% 11(99 %) 1.5 Mio. 100% 6.5W

random #1 99% 15 (100%) 4.6 Mio. 100% 6.0W

random #2 100% 10 (100%) 12.3 Mio. 97% 7.5W

4 Conclusion and Future Work

This paper proposed a statistical reasoning model for explaining causal relations
between metrics and the system state, which is reflected by a set of SLOs and
their MBs. Essentially, this provides individual edge devices with decentralized
intelligence, which helps to cope with the scale and complexity of CC systems.
Our methodology was able to provide configurations that would not commit
SLO violations; however, the scale of CC systems makes it necessary to assess
the impacts of increasingly large Bayesian networks in terms of performance
and precision. Furthermore, to cover heterogeneity among CC devices, we aim
to infer configurations for arbitrary devices.

References

1. Baniya, P., et al.: Towards policy-aware edge computing architectures. In: 2020
IEEE International Conference on Big Data (Big Data), December 2020

2. Beckman, P., et al.: Harnessing the computing continuum for programming our
world. In: Fog Computing, pp. 215–230. John Wiley & Sons, Ltd., April 2020

3. Casamayor Pujol, V., Raith, P., Dustdar, S.: Towards a new paradigm for manag-
ing computing continuum applications. In: IEEE 3rd International Conference on
Cognitive Machine Intelligence, CogMI 2021, pp. 180–188 (2021)

4. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
Internet Comput. IEEE 15, 66–71 (2011)

5. Dustdar, S., Pujol, V.C., Donta, P.K.: On distributed computing continuum sys-
tems. IEEE Trans. Knowl. Data Eng. 35(4), 4092–4105 (2023). https://doi.org/
10.1109/TKDE.2022.3142856

6. Friston, K.: Life as we know it. J. R. Soc. Inter. 10(86), 20130475 (2013). https://
doi.org/10.1098/rsif.2013.0475

7. Fürst, J., Fadel Argerich, M., Cheng, B., Papageorgiou, A.: Elastic services for
edge computing. In: 2018 14th International Conference on Network and Service
Management (CNSM), pp. 358–362, November 2018

8. Kirchhoff, M., Parr, T., Palacios, E., Friston, K., Kiverstein, J.: The Markov blan-
kets of life: autonomy, active inference and the free energy principle. J. R. Soc.
Inter. 15(138), 20170792 (2018)

https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1098/rsif.2013.0475
https://doi.org/10.1098/rsif.2013.0475

50 B. Sedlak et al.

9. Nastic, S., et al.: SLOC: service level objectives for next generation cloud com-
puting. IEEE Internet Comput. 24(3) (2020). https://doi.org/10.1109/MIC.2020.
2987739

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California (1988)

11. Sedlak, B., Casamayor Pujol, V., Donta, P.K., Dustdar, S.: Controlling data gravity
and data friction: from metrics to multidimensional elasticity strategies. In: IEEE
SSE 2023, Chicago, IL, USA, July 2023

12. Sedlak, B., Murturi, I., Donta, P.K., Dustdar, S.: A privacy enforcing framework
for transforming data streams on the edge. IEEE Trans. Emerg. Top. Comput.
(2023). https://doi.org/10.1109/TETC.2023.3315131

https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1109/TETC.2023.3315131

Exploiting Category Information
in Sequential Recommendation

Shuxiang Xu1,2, Qibu Xiang1,2, Yushun Fan1,2(B), Ruyu Yan1,2,
and Jia Zhang3

1 Beijing National Research Center for Information Science and Technology, Beijing,
China

2 Department of Automation, Tsinghua University, Beijing, China
{xsx22,xqb22,yanry18}@mails.tsinghua.edu.cn, fanyus@tsinghua.edu.cn

3 Department of Computer Science, Southern Methodist University, Dallas, TX, USA
jiazhang@smu.edu

Abstract. In recent years, sequential recommender systems have been
widely applied for service recommendations. However, most existing solu-
tions do not take full advantage of one key factor that usually influences
user behaviors: the category of services. It is necessary yet challenging to
capture users’ category preferences. Firstly, the complex inherent rela-
tionships that exist among categories are vital but difficult to mine and
encode. Secondly, since interest preferences and category preferences are
closely related, their dynamic evolution has to be studied simultaneously.
To tackle the above challenges, we propose a novel Reciprocal Dual-
Channel Network (RDCN) to capture users’ comprehensive dynamic
characteristics toward more accurate recommendations. For the former
challenge, we devise a novel strategy to obtain the co-occurrence infor-
mation of services and categories and jointly pre-train their embeddings.
For the latter challenge, we design a Co-Guided Attention module and
a Co-Guided GRU module to extract interest preferences and category
preferences, respectively. Experimental results on three public datasets
have demonstrated the necessity of exploiting the category information
and the effectiveness of the proposed RDCN model.

Keywords: Sequential Service Recommendation · Category
Preference · Dual-Channel Learning

1 Introduction

To provide satisfactory user experiences, many online service platforms, such
as E-commerce sites, video sites, and news sites, need to predict the content
in which users are interested. Sequential recommender systems (SRSs) emerge
to solve this problem by modeling users’ sequential behaviors to capture the
evolution of their preferences, and thus providing personalized recommendations.

The key to SRSs is how to accurately capture users’ interests from their his-
torical behaviors. In recent years, RNN-based models and attention mechanisms
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 51–66, 2023.
https://doi.org/10.1007/978-3-031-48421-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_5

52 S. Xu et al.

have shown their effectiveness in capturing users’ general interests based upon
their ability to model sequential information [5,8]. In addition, some SRSs solu-
tions further leverage certain attributes of users and services (e.g., users’ age
and gender, or category and price of services) as well as contextual information
for preference extraction to obtain high-quality recommendations [19,20].

Despite the success of those solutions, they do not take full advantage of
one important factor that influences user behaviors: the category of services.
Although some methods realize the importance of category information [11], they
position category as one item in the attribute list among price, brand, and so on.
Economics reveals that the category factor is a key factor affecting user behaviors
[1]. Users typically target on a category first, before hunting for a specific service
as one instance of the selected category. Modeling inherent relationships among
categories may help to determine users’ category preferences, and consequently
narrow down the scope of recommendations. Therefore, we argue that category
should be considered as a first-class citizen when modeling user preference.

How to effectively represent category deserves careful examination, though.
Two major challenges arise. The first challenge is how to integrate the intrin-
sic relationships of categories into their embeddings. The concepts of comple-
ment and substitute in economics [1] have taught us that different categories
are intrinsically related. Most of the existing solutions simply use an embedding
lookup table to encode categories. For instance, Li et al. [9] adopt Word2vec [10]
to embed the text descriptions of categories into latent vectors with semantic
information, which ignores the relations of categories in the user-service inter-
actions. For example, cosmetics and makeup removers are not strongly semanti-
cally related categories, but they are tightly related good categories. The second
challenge is how to capture the dynamic evolution of users’ category preferences,
while simultaneously capturing their interest preferences. A user’s category pref-
erence keeps evolving and his/her recent behaviors significantly influence the
next behavior. For example, after buying a mouse, a user is likely to purchase
a matching keyboard. This scenario implies that users’ interest preferences and
category preferences are not only closely related, but also evolve dynamically.

To tackle the aforementioned two challenges, in this paper, we propose a novel
Reciprocal Dual-Channel Network (RDCN). For the first challenge, we devise
a two-phase mechanism. We first construct a co-occurrence matrix of categories
based on category sequences. Considering that bundling relationships also exist
in services, we adopt the same way to create a co-occurrence matrix of services.
We then design an extended Structural Deep Network Embedding (SDNE) [16]
model to simultaneously train the embedding matrices of service and category,
which ensures that the embeddings contain holistic correlations of service-service,
category-category, and service-category. For the second challenge, we devise an
improved multi-head attention module [15] and gated recurrent unit (GRU) [2]
module to mutually capture users’ interest preferences and category preferences,
respectively. Specifically, we introduce category embeddings to affect the alloca-
tion of attention values when capturing interest preferences, and apply service
embeddings to control the information flow of the gated unit when capturing

Exploiting Category Information in Sequential Recommendation 53

category preferences. During the actual prediction phase, both preferences are
combined to jointly score candidate services to obtain more comprehensive rec-
ommendation results. The contributions of this paper are summarized as follows:

– We devise a novel strategy to mine the complex intrinsic associations of ser-
vices and categories and fuse them into corresponding embedding matrices.

– We develop RDCN to simultaneously model users’ interest and category pref-
erences, which learns more precise profile-level features and enables more
interpretable prediction.

– Extensive experimental results on three public datasets demonstrate that
RDCN outperforms the state-of-the-art models.

2 Related Work

2.1 Sequential Recommendation

Sequential recommender systems (SRSs) focus on modeling users’ dynamic pref-
erences. Early studies on SRSs assume that a user’s next behavior only depends
on recent interactions, so Markov Chain (MC) is typically adopted to predict the
next service of interest to the user [4]. However, MC-based models perform poorly
in complex scenarios because of their incapacity to capture collective depen-
dencies over user-service interactions. In recent years, RNN-based models have
been adopted for sequential recommendation due to their superiority in model-
ing sequential patterns [5,19]. Hidasi et al. [5] propose GRU4Rec that exploits
Gated Recurrent Units to improve recommendation performance. In addition,
some methods leverage the attention mechanism to obtain the collective pref-
erences of a user [3,20]. SASRec [8] uses a self-attention block for sequential
recommendation; and LightSANs [3] maps a user’s behaviors into latent inter-
ests with low complexity. To solve the inconsistent prediction issue, CORE [7]
unifies the representation space and generates consistent latent representations.

2.2 Attribute Enhanced Recommendation

In addition to user-service interactions, the information carried by users and ser-
vices can be utilized to improve the quality of recommendations. Some methods
integrate the attribute data into a user’s representation to enrich user charac-
teristics [9,11,19,22], while some other methods extract attribute preferences
separately to construct a user’s multi-faceted preferences [20,21]. MLP4Rec [9]
embeds some service-related attributes, such as brand and category, into latent
vectors and adopts MLP to learn cross-channel and cross-feature relations. FDSA
[20] is relatively similar to our work, applying two multi-head attention chan-
nels to extract user preferences separately, but it does not introduce information
gain between channels. Zhang et al. [21] argue that the price factor plays an
important role in determining user purchase behaviors, and design a co-guided
heterogeneous hypergraph network to extract user price preferences.

54 S. Xu et al.

In contrast, we argue that the category factor is more essential and inter-
pretable than other attributes. Moreover, capturing user category preferences
may greatly help to interpret the motivation of user behaviors. Therefore, we
consider category as a first-class citizen instead of an attribute.

3 Methodology

3.1 Problem Statement

Let U = {u1, u2, ..., u|U|} and S = {s1, s2, ..., s|S|} denote the set of users and
the set of services, where |U| and |S| are the number of users and services,
respectively. Each user u has sequential interactions Iu = {su1 , ..., sut , ..., su|Iu|},
where sut ∈ S denotes the service invoked by user u at time step t. Each service
has a category attribute c ∈ C, where C = {c1, c2, ..., c|C|} is the set of all the
categories and |C| denotes the number of categories. Given the interaction history
Iu, the target of the sequential recommendation is to identify the services from
S that user u may interact with at the next time step, i.e., su|Iu|+1.

3.2 Framework Overview

Figure 1 illustrates the blueprint of our proposed method, which comprises two
stages. In the embeddings pre-training stage shown on the lower half, based on
user-service interactions, we calculate the co-occurrence frequency to construct
the similarity matrix, and then perform sparsification and graph embedding to
obtain the embeddings of services and categories.

In the second stage shown on the upper half, we encode user behaviors with
the pre-trained embeddings and adopt dual-channel, namely Co-Guided Atten-
tion and Co-Guided GRU, to extract the users’ interest preference and category
preference respectively, and then combine both preferences to jointly score can-
didate services.

3.3 Graph Construction

A common service graph construction method is to connect services in the same
interaction sequence in a pairwise manner. For long interactions, however, many
services at both ends may be weakly related. Therefore, we adopt the sliding
window method to filter the services with correlation in the same sequence and
take the co-occurrence frequency as the connection strength between service
vertices. We then sparse the service graph, using an adaptive dual-threshold
method to ensure the sparsity and connectivity of the graph structure.

Co-Occurrence Calculation. To calculate co-occurrence frequency, the con-
ventional sliding window method only considers the relative position interval
between services, but the real interaction time interval also affects the correlation
between services. Two services are weakly related if they have a large distance

Exploiting Category Information in Sequential Recommendation 55

Fig. 1. Illustration of the RDCN model, mainly comprising two parts: embeddings
pre-training and preference extraction.

in terms of position or time. Therefore, we integrate the sequence position and
the real interaction time to calculate the interval between services. Specifically,
we set the size of the sliding window to L. Taking service i as the center, service
j co-occurs with i if their sequence positions posi and posj and real interaction
time ti and tj satisfy:

|posi − posj | + log(
|ti − tj |

δ
) ≤ L

2
, (1)

where δ is the time scale factor. Let cnti denote the occurrence times of service
i, and numi,j denote the co-occurrence times of service i and service j. We
traverse all the user-service interaction sequences and obtain their co-occurrence
frequency via an average operation:

f(i, j) = f(j, i) =
2 ∗ numi,j

cnti + cntj
. (2)

The co-occurrence between services implies certain bundles and similarities,
so we apply the co-occurrence frequency to form the similarity matrix of services:
A ∈ R

|S|×|S|, where Ai,j = f(i, j). Similarly, we map the service sequence
to the category sequence and obtain the similarity matrix of categories: B ∈
R

|C|×|C|. The similarity matrix can be viewed as the adjacency matrix of a graph
with weighted connections. Different weights represent different influences, which
models the bundling relationship between services and between categories.

56 S. Xu et al.

Fig. 2. Illustration of the adaptive dual-threshold method.

Sparsification with Adaptive Dual-Threshold. The graph formed by the
co-occurrence frequency has a high connection density, so we devise an adaptive
dual-threshold method to sparsify the service graph and category graph to filter
out the noise and remove redundant information. Specifically, we first set the
upper ratio threshold γ1 to ensure the sparsity of the graph. For a particular
service node with more than γ1 ∗ |S| neighbors, we retain top γ1 ∗ |S| neighbors
by sorting the connection strengths and remove the other neighbors. Since this
operation is performed node by node, the connections of a particular node may
be all removed; that is, this node has no neighbors. As shown in Fig. 2, the
central node may close its connections with several neighbors and thus leading
to the appearance of isolated nodes. Therefore, we set the lower ratio threshold
γ2 to ensure the connectivity of the graph. If a service node originally with more
than γ2 ∗ |S| neighbors has less than γ2 ∗ |S| neighbors due to the sparsification
operation, we restore its top γ2 ∗ |S| neighbors. A similar operation is performed
on the category graph. Using the ratio threshold makes the number of neighbors
dynamically adjust with the number of vertices, and setting the dual-threshold
can ensure the sparsity and connectivity of the graph simultaneously.

3.4 Graph Embedding

After obtaining the similarity matrices of services and categories, we build an
extended Structural Deep Network Embedding (SDNE) [16] model to train their
embedding matrices simultaneously. The original SDNE model can embed homo-
geneous graphs, that is, it can only embed service-service graphs or category-
category graphs. Although services and categories are heterogeneous data, they
are closely related. If services and categories are embedded separately, their
latent representation will lack correlation. Thus, we adopt two autoencoders to
embed both services and categories by modifying the loss function.

An SDNE model comprises an encoder and a decoder, which first encodes
the similarity matrix into the embeddings and then decodes the embeddings
to reconstruct the similarity matrix. Taking the service similarity matrix A =
{a1,a2, ...,a|S|} as an example, given the similarity vector ai = {ai,j}|S|

j=1, we
represent the encoding and decoding process as follows:

vi = σ(Weai + be), (3)

âi = σ(Wdvi + bd), (4)

Exploiting Category Information in Sequential Recommendation 57

where σ(·) is the sigmoid function, We, be, Wd, bd are trainable model param-
eters, vi is the embedded vector of ai, and âi is the reconstructed similarity
vector. The loss function of the SDNE is as follows:

LS = L1st + L2nd =
|S|∑

i,j=1

ai,j‖vi − vj‖22 + λ

|S|∑

i=1

‖(âi − ai) � μ‖22, (5)

where μ is the penalty vector, and L1st and L2nd describes the first-order and the
second-order proximity between services, respectively. This loss function ensures
both the local pairwise similarity and global neighborhood structure similarity
of services. Similarly, given the similarity vector bi of category i, the encoded
embedding qi and the decoded vector b̂i, the loss function of training the cate-
gory embedding is as follows:

LC =
|C|∑

i,j=1

bi,j‖qi − qj‖22 + λ

|C|∑

i=1

‖(b̂i − bi) � μ‖22. (6)

The above two loss functions ensure the similarity within categories and
services, respectively. To introduce the similarity between categories and services,
we design the following service-category proximity cost function:

LS, C =
|S|∑

i=1

‖ai − bc(i)‖22, (7)

where c(i) represents the category of service i. Therefore, the loss function of
our extended SNDE model becomes:

Lemb = LS + LC + LS, C . (8)

After sufficient training, we can get the embeddings of services and categories:
M ∈ R

|S|×d and N ∈ R
|C|×d, where d denotes the dimensionality. These embed-

dings maintain not only internal relations but also external relations.

3.5 Preferences Extraction Block

After the pre-training process, we need to extract the user’s interest and category
preferences. It is worth noting that both preferences are closely related to each
other. For example, a user’s preference for a particular category depends not
only on the category but also on the specific service. Therefore, we design a way
to jointly capture either preference, as shown in the upper half of Fig. 1. When
capturing interest preferences, the category is used as auxiliary information;
when capturing category preferences, the service is used as auxiliary information.
This approach brings an information gain between the two preference extraction
processes and enhances personalized features of the user.

58 S. Xu et al.

Embedding Layer. Given the maximum length m of sequences that the model
can handle, the user-service interactions Iu can be truncated into {su1 , su2 , ..., sum}.
We use the pre-trained embedding matrices M and N to obtain the service
sequence embeddings ES := {eS

1 , eS
2 , ..., eS

m} ∈ R
m×d and corresponding cate-

gory sequence embeddings EC := {eC
1 , eC

2 , ..., eC
m} ∈ R

m×d.

Category Preference Extraction. Since users’ demand for a category mostly
originates from the influence of their recent behaviors, it is necessary to adopt
a temporal sequence model to capture the evolution pattern of category prefer-
ences. Specifically, we adopt the gated recurrent unit (GRU) [2] model, which
controls the propagation of information by an update gate and a reset gate,
to extract the sequential features. Considering that the service sequence also
affects users’ category preferences, we introduce the service information to con-
trol the value of both gates and name this model variant as Co-Guided GRU.
The extraction process of category preferences is as follows:

zt = σ(Wz · [ht−1, eC
t + α ∗ eS

t]), (9)

rt = σ(Wr · [ht−1, eC
t + α ∗ eS

t]), (10)

h̃t = tanh(W · [rt � ht−1, eC
t]), (11)

ht = (1 − zt) � ht−1 + zt � h̃t, (12)

where ht denotes the representation of the user’s category preference at time step
t, σ(·) denotes the sigmoid function, � denotes the element-wise product, and
Wz, Wr, W ∈ R

d×2d are trainable parameters. In this process, service features
can control the update gate rt and the reset gate zt, and further influence the
evolution of the category preference. Considering that service features play only
a minor role, we set the influence coefficient α ∈ [0, 1] to control the influence
of service features. It is worth noting that the representations of interest and
category preferences are not mixed, because the interest preference is only used
to control the flow of information. Moreover, since different service sequences
may correspond to the same category sequence, the service features can enhance
the personalized features of user category preference. For simplicity, the process
of category preference extraction with a residual structure can be defined as:

OC = EC +Co-GRU(EC , α ∗ ES). (13)

Interest Preference Extraction. In the phase of extracting the interest pref-
erence, we use a self-attention layer, which is defined as:

Attn(Q,K,V) = Softmax(
QKT

√
d/h

)V, (14)

where Q, K, and V represent queries, keys, and values, respectively, h denotes
the total number of heads, and

√
d/h is the scale factor. The basic idea of the

Exploiting Category Information in Sequential Recommendation 59

self-attention mechanism is to assign weights and integrate information by cal-
culating the similarity between service representations. Since the self-attention
model does not contain position information, we first introduce the trainable
position embeddings P := {p1,p2, ...,pm} ∈ R

m×d to the service embeddings:

ẼS = ES +P. (15)

Considering that the user’s interest preference is also influenced by the cat-
egory information, it is necessary to introduce category features when assigning
attention weights. Therefore, we combine the service vector and the category
vector as the service’s query and key, and take the service vector as the value.
We name this new method as Co-Guided Attention. Similar to the category pref-
erence extraction process, we also introduce the influence coefficient α ∈ [0, 1]
to control the influence of category features. The multi-head attention operation
can be represented as follows:

OS = ẼS +Co-Attn(ẼS , α ∗ EC), (16)

Co-Attn(ẼS , α ∗ EC) = [head1,head2, ...,headh]WO, (17)

headi = Attn((ẼS + α ∗ EC)WQ
i , (ẼS + α ∗ EC)WK

i , ẼSWV
i), (18)

where WQ
i , WK

i , WV
i ∈ R

d×d/h, WO ∈ R
d×d are model parameters, and h

denotes the total number of heads. With the introduction of category informa-
tion, services with strong category relevance have high attention scores. This
approach provides the possibility to reveal the real reason why a user is inter-
ested in a service, i.e., preference for a certain category. Specifically, some users’
behaviors may be strongly influenced by category, so the introduction of cate-
gory information can assign high weights to services with similar categories and
thus expose key services that affect users’ decisions.

Fully-Connected Layer. We use two two-layer fully-connected networks with
residual connections for the final interest and category preferences extraction:

OC = LayerNorm(OC +ReLU(OCW1 + b1)W2 + b2), (19)

OS = LayerNorm(OS +ReLU(OSW3 + b3)W4 + b4), (20)

where W∗, b∗ are learnable parameters.

3.6 Prediction and Optimization

After obtaining the user’s interest preference OS
t and category preference OC

t at
time step t, we integrate both preferences to score each candidate service s:

yt,s = OS
t M

T
s + β ∗ OC

t N
T
c(s), (21)

where MT
s and NT

c(s) represent the embeddings of service s and its category c(s),
respectively. To flexibly adjust the influence of category preference on prediction,

60 S. Xu et al.

we introduce a category importance coefficient β (β ≥ 0). In the training phase,
we apply the Binary Cross-Entropy loss function to train the model:

L = −
∑

Iu∈I

∑

t∈[1,...,m]

[log(σ(yt,st)) +
∑

j /∈Iu

log(1 − σ(yt,j))], (22)

where I is the set of user-service interactions, σ(·) denotes the sigmoid function,
st is the ground truth service, and j is the negative sampling service at time step
t. In the training phase, we drift the interaction sequence one step to the right
as the expected outputs of the previous interactions, and sample one negative
service for each positive service.

4 Experiments

We designed and conducted extensive experiments on public datasets to answer
the following questions: 1) Does RDCN perform better than baselines? 2) What
is the effect of the pre-trained embeddings? 3) What is the effect of the category
information? 4) What is the effect of the dual-channel preference extraction?

4.1 Experimental Setup

Table 1. Statistics of the datasets.

Statistics Jewelry Cosmetics Taobao

#user 1,937 3,515 1,026

#service 2,147 4,122 2,308

#category 7 125 305

#interaction 33,194 58,967 7,415

avg.length 17.14 16.78 7.23

Datasets. To evaluate the performance
of our RDCN and baseline models, we
selected three publicly available datasets:
Jewelry1, Cosmetics2 and Taobao3. The
characteristics of three datasets after pre-
processing are described in Table 1. As for
the interaction sequence, we set the maxi-
mum length as 50 and used the last service
for testing, the penultimate service for val-
idation, and the rest of the sequence for training.

Baselines and Evaluation Metrics. To evaluate performance, we compared
our proposed RDCN with 14 competitive baseline methods, which are RNN-
based or Attention-based models: GRU4Rec [5], GRU4Rec+ [6], SASRec [8],
SASRec+, SHAN [18], BERT4Rec [13], FDSA [20], RepeatNet [12], GC-SAN
[17], S3Rec [22], LightSANs [3], SINE [14], CORE [7], MLP4Rec [9]. SASRec+
is an improved version of SASRec, combining category embeddings and item
embeddings to enrich item representations. For the evaluation, we randomly
sampled 100 negative services for each positive service in the testing set. Follow-
ing [8,11], we adopted HR@K and NDCG@K to evaluate the performance of all
the models and set K = {5, 10} for both metrics.
1 https://www.kaggle.com/datasets/mkechinov/ecommerce-purchase-history-from-

jewelry-store.
2 https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-

cosmetics-shop.
3 https://tianchi.aliyun.com/dataset/649.

https://www.kaggle.com/datasets/mkechinov/ecommerce-purchase-history-from-jewelry-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-purchase-history-from-jewelry-store
https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://tianchi.aliyun.com/dataset/649

Exploiting Category Information in Sequential Recommendation 61

Hyper-parameters and Other Settings. In the phase of graph construction,
we set the size of the sliding window as 20 for Jewelry and Cosmetics and 10
for Taobao, and set the time scale factor as 20 days for Jewelry and 1 day for
Cosmetics and Taobao. For the service graph and the category graph on the
three datasets, we set the adaptive dual-threshold as {0.2, 0.1} and {0.3, 0.15},
respectively. In the phase of graph embedding, we set the hidden size as 256 for
Jewelry and Taobao and 128 for Cosmetics. As for the hyper-parameter settings,
we set the learning rate as 0.002 and the batch size as 64 for the three datasets,
the influence coefficient α as 0.2 for Jewelry and Cosmetics and 0.5 for Taobao,
the category importance coefficient β as 0.5 for Jewelry and 1.0 for Cosmetics
and Taobao, and the number of heads h as 4 for Jewelry and Taobao and 2 for
Cosmetics. For a fair comparison, we implemented all the models by PyTorch.

4.2 Overall Performance

We divided all the models into two categories based on whether they use cate-
gory information or not. The comparison results of the models are summarized
in Table 2, where the models above the dashed line only capture users’ inter-
est preferences and the models below introduce category information to enrich
profile-level features. From the results, we have the following observations:

Table 2. Performance comparison between different models on the three datasets.
In terms of each indicator, the best performance of all models is boldfaced and the
best performance of baselines is underlined. “*” indicates the significant improvement
against the best baseline by the two-sided t-test (p < 0.01).

Model Jewelry Cosmetics Taobao
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

GRU4Rec [5] 0.2984 0.2265 0.4037 0.2606 0.4575 0.3459 0.5838 0.3868 0.1947 0.1446 0.2619 0.1661
SASRec [8] 0.3810 0.3072 0.4641 0.3338 0.4905 0.3795 0.6074 0.4172 0.2808 0.2564 0.3578 0.2810
SHAN [18] 0.4218 0.3519 0.4874 0.3728 0.4706 0.3606 0.5829 0.3971 0.3219 0.2784 0.3852 0.2988
RepeatNet [12] 0.3856 0.3303 0.4631 0.3552 0.4407 0.3533 0.5621 0.3924 0.2902 0.2586 0.3508 0.2775
BERT4Rec [13] 0.3989 0.3393 0.4779 0.3625 0.4358 0.3525 0.5550 0.3909 0.2855 0.2447 0.3461 0.2639
GC-SAN [17] 0.4027 0.3272 0.4858 0.3541 0.4728 0.3731 0.5696 0.4056 0.2734 0.2393 0.3280 0.2567
LightSANs [3] 0.4166 0.3509 0.5028 0.3787 0.4982 0.3989 0.6125 0.4357 0.3090 0.2671 0.3577 0.2827
SINE [14] 0.3774 0.2982 0.4662 0.3268 0.4912 0.3656 0.5913 0.4001 0.3095 0.2719 0.3592 0.2878
CORE [7] 0.4140 0.3401 0.5049 0.3693 0.4817 0.3837 0.5995 0.4218 0.3311 0.2990 0.3682 0.3109
GRU4Rec+ [6] 0.3277 0.2546 0.4366 0.2903 0.4813 0.3770 0.5991 0.4150 0.2525 0.2075 0.3219 0.2267
SASRec+ 0.4325 0.3602 0.5007 0.3822 0.5164 0.4049 0.6165 0.4370 0.3143 0.2848 0.3738 0.3039
FDSA [20] 0.4259 0.3514 0.5137 0.3783 0.5098 0.4005 0.6179 0.4354 0.3415 0.3047 0.4010 0.3236
S3Rec [22] 0.4356 0.3585 0.5172 0.3846 0.5212 0.4054 0.6360 0.4419 0.3300 0.2991 0.3836 0.3163
MLP4Rec [9] 0.4036 0.3440 0.4913 0.3722 0.4902 0.3747 0.6105 0.4138 0.3102 0.2653 0.3541 0.2794
Ours 0.4423 0.3737∗ 0.5331∗ 0.4028∗ 0.5442∗ 0.4264∗ 0.6640∗ 0.4642∗ 0.3740∗ 0.3286∗ 0.4335∗ 0.3463∗

Improv. 1.54% 4.24% 3.07% 4.73% 4.41% 5.18% 4.40% 5.05% 9.52% 7.84% 8.10% 7.01%

(1) Models that leverage category information usually outperform those who
only use service embeddings, e.g., GRU+ outperforms GRU and SASRec+
outperforms SASRec, which demonstrates the importance of category infor-
mation.

62 S. Xu et al.

(2) In the baseline models, S3Rec and FDSA show competitive performance.
S3Rec exploits the association between services and categories by pre-
training, while FDSA uses a separate multi-head attention module to cap-
ture feature-level transition patterns. This suggests that exploiting associa-
tion information, as well as extracting category preferences, can effectively
improve model performance.

(3) On the three datasets, our proposed RDCN outperforms all the baseline
models in terms of all the evaluation metrics. The reasons may be two-fold
for the performance improvement. The first is that we model and encode
complex relationships between services and categories, which facilitates the
process of capturing sequential transition patterns. The second is that we
design a dual-channel preference extraction block to extract users’ prefer-
ences, and the introduction of the category information enhances the user’s
personalized characteristics to accurately identify the services of interest.

4.3 The Effect of the Pre-trained Embeddings

Recall that we adopt the graph embedding model to jointly pre-train the embed-
dings of services and categories. To validate the effectiveness of this approach,
we first observed the impact of this approach on the embeddings. As shown in
Fig. 3, we selected five categories in Jewelry and adopted the t-SNE algorithm
to map the embeddings into a two-dimensional plane, where the dots represent
services and the pentagrams represent categories. From the results, we can infer
that using the joint graph embedding method can obtain high spatial similarity
between services of the same category. At the same time, vectors of the ser-
vice and its category also have high spatial similarity. In general, the method
we devised can fuse the complex relationship between services and categories
into their embeddings, which lays the foundation for the process of preference
extraction.

Fig. 3. Service and category vectors of Jewelry after dimensionality reduction.

To verify that the pre-trained embeddings can enhance the model perfor-
mance, we set up ablation experiments and denoted the original model and the

Exploiting Category Information in Sequential Recommendation 63

model without pre-trained embeddings as w/ emb and w/o emb, respectively.
From Fig. 4, we can see that w/ emb outperforms w/o emb, which indicates
that after encoding the intrinsic association between services and categories, the
model can accurately capture their transition pattern and get precise predictions.

Fig. 4. Performance with/without pre-trained embeddings on the three datasets.

4.4 The Effect of the Category Information

To explore the role of the category information in predicting user behavior, we
conducted ablation experiments and denoted the original model and the model
without category information as w/ category and w/o category, respectively.
For w/o category, we pre-trained the service embeddings and used the multi-
head attention module to extract users’ interest preferences. As shown in Table 3,
w/ category outperforms w/o category over three datasets. We argue that
the introduction of category information can enhance the personalized charac-
teristics of users. In addition, the improvement is the smallest on Jewelry and
the largest on Taobao. From Table 1, with a similar number of services, Jew-
elry and Taobao contain 7 and 305 categories, respectively. Therefore, when the
number of categories is relatively large, the category information becomes more
important to identify services of interest to users.

Table 3. Performance with/without category information on the three datasets.

Model Jewelry Cosmetics Taobao
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

w/o category 0.5124 0.3911 0.6290 0.4420 0.3908 0.3145
w/ category 0.5331 0.4028 0.6640 0.4642 0.4335 0.3463
Improv. 4.04% 2.99% 5.56% 5.02% 10.93% 10.11%

Recall that we combine interest and category preferences to score the candi-
date services and set β to control the weight of category preferences. We tested
the effect of β on the model performance, which can present the effect of the

64 S. Xu et al.

category factor on the prediction. As shown in Fig. 5 (d)–(f), if β = 0, which
means we only use the user’s interest preferences to score the candidates, the
model performance is much worse than introducing the category information.
As β increases, the metrics first rise and then fall. The reason may be that each
category has multiple services, and if we overemphasize the importance of cate-
gories, the personality characteristics of the services will be difficult to capture,
and thus the model cannot recommend accurate services for users. In addition,
the model achieves the best performance at β = 0.5 for Jewelry and β = 1.0
for Cosmetics and Taobao. This result is consistent with the conclusion of the
previous experiment, that is the more categories in the dataset, the higher the
importance of category information.

Fig. 5. Performance with different α and β values on three datasets.

In general, we can draw a meaningful conclusion that with a fixed number
of services, if the dataset contains many categories, we should appropriately
increase the influence of categories in filtering candidate services; on the contrary,
if there are few categories, we should reduce the influence of the category.

4.5 The Effect of the Dual-Channel Preference Extraction

Recall that in the dual-channel preference extraction module, we set the influence
coefficient α to adjust the weight of the auxiliary information. We tested the
effect of α on model performance. As shown in Fig. 5 (a)–(c), when α = 0, that is,
there is no information exchange between two preference extraction channels, the
performance of the model is poor. As α increases, the performance of the model
improves, but too large α also leads to poor performance. We speculate that
the auxiliary information with a large proportion covers the original preference
information, and thus leads to inaccurate user preferences.

5 Conclusions

To further enrich personalized characteristics of users, this paper presents a
novel Reciprocal Dual-Channel Network (RDCN) to extract users’ category pref-
erences. Specifically, we devise a novel strategy to construct service and cate-
gory graphs and encode intrinsic associations among services and categories into

Exploiting Category Information in Sequential Recommendation 65

their embeddings. Two designed modules, a Co-Guided Attention module and a
Co-Guided GRU module, jointly mine users’ interest and category preferences.
Extensive experiments prove the effectiveness and scalability of the proposed
model. In the future, we plan to enhance the preference extraction process by
introducing more information such as item attributes and contextual informa-
tion. In addition, we plan to analyze social relationship between items by study-
ing the co-occurrence information between them.

References

1. Carbaugh, R.: Contemporary Economics: an Applications Approach. Routledge,
Oxfordshire, UK (2016)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Fan, X., Liu, Z., Lian, J., Zhao, W.X., Xie, X., Wen, J.R.: Lighter and better:
low-rank decomposed self-attention networks for next-item recommendation. In:
Proceedings of The 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1733–1737 (2021)

4. Garcin, F., Dimitrakakis, C., Faltings, B.: Personalized news recommendation with
context trees. In: Proceedings of The 7th ACM Conference on Recommender Sys-
tems, pp. 105–112 (2013)

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

6. Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural net-
work architectures for feature-rich session-based recommendations. In: Proceedings
of The 10th ACM Conference on Recommender Systems, pp. 241–248 (2016)

7. Hou, Y., Hu, B., Zhang, Z., Zhao, W.X.: Core: Simple and effective session-
based recommendation within consistent representation space. arXiv preprint
arXiv:2204.11067 (2022)

8. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: Proceed-
ings of IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE
(2018)

9. Li, M., Zhao, X., Lyu, C., Zhao, M., Wu, R., Guo, R.: Mlp4rec: A pure MLP archi-
tecture for sequential recommendations. arXiv preprint arXiv:2204.11510 (2022)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Rashed, A., Elsayed, S., Schmidt-Thieme, L.: CARCA: context and attribute-aware
next-item recommendation via cross-attention. arXiv preprint arXiv:2204.06519
(2022)

12. Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., De Rijke, M.: RepeatNet: a repeat aware
neural recommendation machine for session-based recommendation. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4806–4813 (2019)

13. Sun, F., et al.: Bert4rec: sequential recommendation with bidirectional encoder
representations from transformer. In: Proceedings of The 28th ACM International
Conference on Information and Knowledge Management, pp. 1441–1450 (2019)

14. Tan, Q., et al.: Sparse-interest network for sequential recommendation. In: Pro-
ceedings of The 14th ACM International Conference on Web Search and Data
Mining, pp. 598–606 (2021)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/2204.11067
http://arxiv.org/abs/2204.11510
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/2204.06519

66 S. Xu et al.

15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

16. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of The 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1225–1234 (2016)

17. Xu, C., et al.: Graph contextualized self-attention network for session-based rec-
ommendation. In: IJCAI, vol. 19, pp. 3940–3946 (2019)

18. Ying, H., et al.: Sequential recommender system based on hierarchical attention
network. In: Proceedings of International Joint Conference on Artificial Intelligence
(2018)

19. Zhang, M., Liu, J., Zhang, W., Deng, K., Dong, H., Liu, Y.: CSSR: a context-
aware sequential software service recommendation model. In: Hacid, H., Kao, O.,
Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 691–699.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_45

20. Zhang, T., et al.: Feature-level deeper self-attention network for sequential recom-
mendation. In: Proceedings of International Joint Conferences on Artificial Intel-
ligence, pp. 4320–4326 (2019)

21. Zhang, X., et al.: Price does matter! modeling price and interest preferences in
session-based recommendation. arXiv preprint arXiv:2205.04181 (2022)

22. Zhou, K., et al.: S3-rec: self-supervised learning for sequential recommendation with
mutual information maximization. In: Proceedings of The 29th ACM International
Conference on Information & Knowledge Management, pp. 1893–1902 (2020)

https://doi.org/10.1007/978-3-030-91431-8_45
http://arxiv.org/abs/2205.04181

Niagara: Scheduling DNN Inference
Services on Heterogeneous Edge

Processors

Daliang Xu1 , Qing Li1 , Mengwei Xu2(B) , Kang Huang3 ,
Gang Huang1,5 , Shangguang Wang2 , Xin Jin1(B) , Yun Ma4(B) ,

and Xuanzhe Liu1

1 Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, School of Computer Science, Peking University, Beijing, China

{xudaliang,liqingpostdoc,hg,xinjinpku,liuxuanzhe}@pku.edu.cn
2 State Key Laboratory of Networking and Switching Technology, Beijing University

of Posts and Telecommunications, Beijing, China
{mwx,sgwang}@bupt.edu.cn

3 Linggui Tech Company, Beijing, China
kang.huang@nlptech.com

4 Institute for Artificial Intelligence, Peking University, Beijing, China
mayun@pku.edu.cn

5 National Key Laboratory of Data Space Technology and System, Beijing, China

Abstract. Intelligent applications heavily rely on deep neural network
(DNN) inference services executed on edge devices to fulfill functional
prerequisites while safeguarding user data privacy. However, the execu-
tion of such DNN services on resource-constrained edge devices poses a
significant challenge: low throughput of inference tasks. To this end, this
paper proposes Niagara, a novel system designed to maximize system
throughput by judiciously scheduling DNN inference services on hetero-
geneous processors available on edge devices. Niagara faces two critical
challenges: uncertain workload dynamics and high scheduling complex-
ity. To effectively address these challenges, Niagara employs a predictive
model to anticipate incoming workload patterns and orchestrates the
allocation of services across heterogeneous processors through a com-
bination of offline scheduling optimization and online service dispatch-
ing strategies. We have implemented Niagara and conducted thorough
experiments. The results demonstrate that Niagara surpasses state-of-
the-art approaches by elevating DNN inference throughput by up to
4.67×, all while satisfying the same stringent inference latency require-
ments. Furthermore, Niagara has been successfully deployed in real-
world power supply substations to detect violations, ensuring uninter-
rupted, accident-free operation during its six-month deployment period.

Keywords: Edge Computing · Heterogeneous Processors · DNN
Inference Service

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 67–85, 2023.
https://doi.org/10.1007/978-3-031-48421-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_6&domain=pdf
http://orcid.org/0000-0002-6775-0688
http://orcid.org/0000-0002-1772-9194
http://orcid.org/0000-0001-6271-6993
http://orcid.org/0000-0002-7476-0665
http://orcid.org/0000-0002-4686-3181
http://orcid.org/0000-0001-7245-1298
http://orcid.org/0000-0001-8741-5847
http://orcid.org/0000-0001-7866-4075
http://orcid.org/0000-0002-7908-8484
https://doi.org/10.1007/978-3-031-48421-6_6

68 D. Xu et al.

1 Introduction

Recent years have witnessed various intelligent edge applications (e.g., health-
care, entertainment, and smart home applications) becoming integral compo-
nents of our daily lives [13]. These applications often rely on deep neural net-
works (DNNs) for sophisticated sensory interpretation, such as user context and
physical surroundings. To ensure a seamless user experience, these edge applica-
tions, such as violation operation detection [39], immersive online shopping [41]
and AR emoji [38], typically prefer to employ a set of flexible and reliable edge
DNN inference services [22,28,35,38]. For instance, violation operation detec-
tion, which determines whether operators in a state grid corporation wear valid
helmets and gloves during operations, necessitates at least four DNN inference
services: human detection, pose estimation, and helmet/gloves classification.

However, executing DNN inference services on resource-constraint edge
devices often encounters the low throughput problem [22,35,38,39]. Previous
studies have primarily focused on optimizing the execution of individual DNN
services [23,30,31,37], which limits their effectiveness in addressing performance
bottlenecks within a multi-service environment.

To tackle this issue, we have observed that various types of heterogeneous
processors on edge devices [3,5–7,12] (e.g., ARM A57 cores [1] and the NVIDIA
Pascal GPU on Jetson TX2 [3]) can be harnessed to deliver high-throughput
DNN services. To this end, we present Niagara, the first scheduling engine for
DNN inference services on edge devices. The core idea behind Niagara is to
monitor processor status, predict incoming workload dynamics, and efficiently
schedule DNN inference services across heterogeneous processors. Niagara faces
two primary challenges:
• High complexity in scheduling design. As will be elaborated in Sect. 2,
optimizing DNN-inference-service-to-processor affinity, enabling parallel execu-
tion, and efficiently batching inputs have the potential to significantly enhance
DNN inference services execution. However, the multiple interdependent opti-
mization choices render the scheduling of DNN services to processors a challeng-
ing task.
• Unknown and mutative DNN inference service workload. The design
of Niagara grapples with a dilemma between the need for global knowledge and
timely decision-making. Theoretically, having advanced knowledge of upcoming
requests could offer more scheduling opportunities. However, services depend on
future input, which is only accessible when the corresponding DNN inference
service (e.g., person detection) has been executed.

To address the above two challenges, we incorporate two novel techniques: (1)
Offline optimizer and online service scheduler. We have identified that DNN ser-
vice request patterns can be abstracted into several typical service graph tem-
plates. Based on that, Niagara optimizes the service-to-processor scheduling
strategy for each service graph template offline, caches the strategy, and matches
the appropriate strategy to user requests belonging to specific templates online.
The offline optimizer accounts for inter-service dependency, batch/parallel execu-
tion, and resource constraints. (2) Dynamic input predictor. We have found that

Scheduling DNN Inference Services on Heterogeneous Edge Processors 69

the service graph tends to be more stable than the content, providing an oppor-
tunity for prediction. Consequently, we construct a time series model [16,33] of
the DNN service graph based on the latest and global historical data and employ
a combined prediction algorithm to forecast the future DNN service graphs.

Implementation and Evaluation. We implement an end-to-end proto-
type of Niagara on the Android OS. Our evaluation comprises 8 types of DNN
inference service combinations, including 11 distinct DNN services, 3 real-world
video stream requests, and 3 different edge devices. These experiments have
been conducted in real-world settings. Compared to the state-of-the-art base-
lines, Niagara can enhance overall processing throughput by up to 4.67× while
maintaining the same response requirements on identical hardware.

In-the-Wild Deployment. Niagara has been integrated into a custom-
made IP camera on a Snapdragon 865 development board and deployed in sev-
eral power supply substations that serve millions of people in a large Chinese
city. This deployment aims to enhance the safety of operators working on elec-
tric switching operations. During the 6-month pilot run, which included over
18,000 maintenance jobs, zero accidents were reported, representing a signifi-
cant improvement over traditional human-based supervision. In the near future,
Niagara will be extended to thousands of substations, showcasing how edge
intelligence can contribute to society.

The key contributions of this paper are summarized as follows.

– We quantitatively analyze the challenges and opportunities of DNN inference
service execution on edge devices.

– We propose Niagara, the first DNN inference services scheduling engine on
heterogeneous edge processors. It incorporates two key techniques, including
a service graph predictor and a template-based optimizer that judiciously
schedules DNN services across processors.

– We evaluate our scheduling strategy and system on popular CNN services
with real-world datasets. The results show that Niagara and its scheduling
solution can effectively improve the overall processing throughput.

2 Background and Related Work

To enhance the quality of edge services, numerous prior studies [14,19,21,24–
26,34,36,40] have centered their efforts on augmenting the scheduling effi-
ciency of offloading tasks in the realm of mobile-edge computing, consider-
ing factors such as service caching, service dependencies, and multiple appli-
cation scenarios. For instance, some of these investigations have concentrated
on scheduling offloading tasks while simultaneously taking service caching into
account [14,24,34,40]. Their objective is to harness caching mechanisms for stor-
ing and retrieving frequently used services at the edge, thereby diminishing the
necessity for task offloading and mitigating latency. Other studies have under-
scored the scheduling of dependent services on fog or edge nodes, considering
service priorities or catering to multiple applications [19,25,26]. These works

70 D. Xu et al.

Table 1. Latency and utilization of DNN services on SnapDragon 865 SoC.

DNN service DNN model Latency Utilization

CPU GPU DSP CPU GPU DSP

Person detection SSD-quant 112.1ms 79.9ms 103.1ms 361% 56% 77%

Pose estimation CenterNet 22.9ms 31.7ms - 287% 30% -

Helmet detection SSD-helmet-quant 25.6ms 8.4ms 5.9ms 195% 58% 85%

Gloves detection pole-gloves 6.7ms 3.2ms - 198% 34% -

Text recognition OCR-recognition 30.8ms 38.1ms - 295% 35% -

meticulously address the dependencies between services and prioritize their exe-
cution to meet application requirements and bolster overall performance. How-
ever, our work, Niagara, focuses specifically on maximizing the utilization of het-
erogeneous processors available on edge devices for efficient and high-throughput
service scheduling.

Another critical issue in DNN services scheduling pertains to the unan-
ticipated dynamic inputs. Several studies have endeavored to forecast future
requests by harnessing deep learning methodologies [20,32]. Meanwhile, other
research endeavors [18,27] have taken it a step further by jointly addressing
scheduling challenges alongside input prediction. However, these undertakings
often prove excessively intricate for practical application in online DNN services
prediction scenarios.

In summary, the distinctive hardware specifications of edge devices and the
unique computing paradigm associated with DNN model inference render the
scheduling of edge services notably distinct from conventional web services and
offloading tasks. For instance, the Snapdragon 865 SoC, commonly deployed
as the main board for IP cameras [5], includes CPU, GPU, and DSP, whereas
other edge devices may feature an Edge TPU or NPU instead. Typically, differ-
ent DNN models executed on such heterogeneous processors exhibit divergent
behaviors. To gain a comprehensive understanding of these distinctive features,
we conducted preliminary offline experiments on the Snapdragon 865 SoC, as
summarized in Table 1.
• Service-processor affinity and hardware support. Our preliminary
offline experiments (Table 1) have yielded a crucial insight: a discernible service-
processor affinity exists. In other words, there is no one-size-fits-all processor
to which all services can be indiscriminately scheduled. For instance, the per-
son detection service achieves its optimal performance on the GPU, while the
pose estimation service exhibits superior execution on the CPU. This affinity
arises from the highly varied characteristics inherent in modern DNNs, includ-
ing network architecture, layer shapes, and input sizes [29]. Additionally, certain
processors, such as the Hexagon DSP, lack support for floating-point arithmetic,
thereby rendering services reliant on quantized models, like helmet detection,
more compatible with specific hardware compared to their floating-point coun-
terparts, which can be executed on a wider array of hardware platforms.

Scheduling DNN Inference Services on Heterogeneous Edge Processors 71

Fig. 1. System workflow of Niagara.

• Parallel or sequence execution. Different processors boast distinct capa-
bilities when concurrently executing multiple services (parallel execution), thus
maximizing hardware utilization. For instance, the CPU can achieve a maxi-
mum utilization of 400% in the Snapdragon 865 SoC, while the GPU and DSP
are capped at 100%. To ensure optimal performance, the resource consumption
by parallel execution on the same processor must not exceed the processor’s
capacity. Otherwise, processor contention can severely hamper inference perfor-
mance. Edge CPUs and GPUs typically support parallel execution, whereas edge
DSPs/NPUs do not.
• Batch execution is a common strategy to group several identical services
for simultaneous execution. This approach yields a longer instruction queue
and greater instruction parallelism, mitigating stalls in memory access. How-
ever, since all these batched services end simultaneously, their output cannot be
obtained until all services have completed their execution. Consequently, batch
execution can bolster processor utilization and throughput while simultaneously
introducing longer per-service latency. For instance, in the case of pose esti-
mation and helmet detection, employing batching can achieve a throughput
improvement by 33–68%, albeit at the cost of incurring a 45–51% increase in
latency on the GPU. To that end, Niagara should meticulously design batch
execution strategies to mitigate these drawbacks.
Summary and Implications. All the above factors must be carefully consid-
ered when optimizing DNN inference service scheduling for heterogeneous edge
processors. Furthermore, the dynamic nature of hardware contexts in multi-
tenant devices necessitates continuous monitoring and real-time adaptation of
scheduling decisions by our system.

72 D. Xu et al.

3 System Design

3.1 System Overview

Design Goal. The primary objective of Niagara is to achieve a high throughput
of DNN inference services by fully harnessing the computational capacity of
heterogeneous processors on edge devices, including CPUs, GPUs, and DSPs.
Workflow. Figure 1 provides an overview of the workflow of Niagara. The fun-
damental concept underlying Niagara is the utilization of DNN inference service
graph templates. These templates consist of a set of elements: <a service graph
G, the number of requested services RN , the resource status S, and a maximum
latency requirement LatRQ

max >. Specifically, it signifies that each of the RN sub-
sequent service requests will follow the same service graph G. Furthermore, these
service graphs are executed on heterogeneous processors, taking into account the
current processor status S, which could indicate the availability of idle CPUs
or the utilization of busy GPUs. Each inference service within G must respond
within the latency requirement LatRQ

max.
Niagara employs these service graph templates to generate feasible strategies

offline for various scenarios. These strategies subsequently schedule real-time
online services onto the heterogeneous processors.

The input to Niagara consist of user-initiated service requests and the cor-
responding response requirements. Once deployed on an edge device, Niagara
operates in two distinct stages:

Algorithm 1: Online service scheduling algorithm
Input : Cached template strategies cached_strategies_map
Output: Scheduling strategy strategy

1 Current_service_graph_template template
2 while True do
3 Input data = user.request.Get() // Receive input data from users
4 service_graph = Dynamic_input_predictor(data) // Section 3.5
5 states = Processor_monitor() // Section 3.6
6 if temple == NULL or Euclidean_distance(service_graph, template) <

threshold then
/* Section 3.4 Template-based strategy matcher */

7 for t, s ∈ cached_strategies_map do
8 if states < t.S and Euclidean_distance(service_graph, t.G) >

Euclidean_distance(service_graph, template.G) then
9 template = t, strategy = s

10 end
11 end
12 strategy = Strategy_adapter(strategy) // Section 3.4
13 return strategy

14 end
15 end

Scheduling DNN Inference Services on Heterogeneous Edge Processors 73

– Offline optimizer (Sect. 3.2 and Sect. 3.3) In the offline stage, Niagara for-
mulates the DNN inference services serving problem as a scheduling problem.
The inputs for this scheduling problem encompass the service graph template
and profiling data related to the services and the heterogeneous processors.
A solver is employed to identify feasible solutions for each template.

– Online service scheduler. When the request data is received, Dynamic Input
Predictor (Sect. 3.5) predicts the service graph within the data frame, while
the Processor Monitor (Sect. 3.6) continuously monitors the status of the pro-
cessors. Based on response requirements, processors status, and service graph,
the Template-based strategy matcher (Sect. 3.4) selects the most suitable strat-
egy from the precomputed offline strategies and adapts it to accommodate
the real service graph. This allows services to be dispatched effectively to het-
erogeneous processors. The scheduling algorithm is illustrated in Algorithm 1.

3.2 Problem Formulation

Preliminaries. Niagara considers how to schedule various DNN inference ser-
vices onto heterogeneous processors. Notably, Niagara does not modify the
structural aspects of the DNN models within these services, in order to main-
tain accuracy and performance. As a result, it is incumbent upon the developers
of each DNN inference service to provide configurations that specify essential
details about the DNN model and the processors. These configurations include
information about the processors on which the DNN models can potentially exe-
cute and the utilization of processors by each model. Users, in turn, are only
required to invoke the DNN inference services and supply their input data.
DNN Inference Service Graph Model. Within Niagara, it is assumed that
an edge device needs to process RN continuous requests, producing a total of
N services, denoted by V = {v1, v2, · · · , vN} which belong to L (L ≤ N) types.
Niagara employs a directed acyclic graph (DAG) G = (V, E) to represent the
dependent relationships among DNN inference services, where V signifies the
service set and E represents the set of edges symbolizing the dependencies among
these services. If there exists an edge ei,k between any two services i and k, it
implies that the output of service i serves as input to service k, signifying that
service k cannot commence execution until service i has completed its tasks.
Batch Execution Latency Model. Niagara employs a linear model [28] to
characterize batch execution latency:

batch_lat(b) = a(b − 1) + lat_single (1)

where b signifies the batch size and a represents the additional latency incurred
when a new service input is appended to an existing batch execution. Notably,
due to the diversity in services and processors, the parameter a is a two-
dimensional matrix with dimensions equal to the number of service types and the
number of processor types. Determining these parameters can be accomplished
through linear fitting, utilizing profiling results.

74 D. Xu et al.

Table 2. Notation table of problem definition in Niagara.

Variable Notation Description

Placement xi,j Whether service vi ∈ V executes on the processor rj ∈
R.

Batch Bi,k,j Whether services vi, vk ∈ V are batched on processor
rj ∈ R.

Parallel PLi,k,j Whether services vi, vk ∈ V execute in parallel on pro-
cessor rj ∈ R.

Starting time ti Starting time of service i.
Execution time intermediate variable Ti,j The i-th service’s latency when running on the j-th

type processor. If the i-th service executes separately,
the value equals Li,j . When the i-th service executes
in batch, based on Eq. (1), the value is formulated as
Ti,j = aT

i,j

∑N
k=1 Bi,k,j + Li,j

Heterogeneous Processors Execution Model. Niagara posits the existence
of M types of heterogeneous processors, denoted as R = {r1, r2, · · · , rM}. Each
processor rj ∈ R possesses its unique processing capacity denoted by Ej . Service
vi has the flexibility to execute on any processor rj ∈ Ri in various modes such
as sequential, batch, or parallel. However, it is essential to emphasize that service
execution is exclusive to a single processor at any given time. Regardless of the
execution mode, services must not be interrupted or preempted, and they must
complete their execution within the user-defined real-time threshold LatRQmax.
When multiple services execute in parallel, their combined hardware utilization
must not exceed the capacity of the processor.
Scheduling Problem Definition. Given the service graph G and associated
profiler information, including latency (Li,j) and hardware utilization (Ui,j) for
each service, processor capacity (Ej), and user-defined response requirement
(LatRQ

max), Niagara considers DNN service-to-processor selection, batch execu-
tion, and parallel execution simultaneously. This entails the introduction of four
primary decision variables and one intermediate variable are summarized in
Table 2.

Our solution should satisfy the following constraints:
• DNN service-to-processor selection constraint. Any service should execute on
exactly one supported processor. Niagara does not allow multiple processors to
cooperate to complete single DNN service inference.

∑

j∈Ri

xi,j = 1,∀i ∈ N (2)

• Dependency constraint: Any service can start iff all precedent services are
completed, formulated as for any edge < i, k >∈ E , vk can start iff vi finishes.

Scheduling DNN Inference Services on Heterogeneous Edge Processors 75

ti +
M∑

j=1

xi,jTi,j ≤ tk (3)

• Sequence execution constraint: Any service’s execution cannot be interrupted.
For any service i and k, if they execute on the same processor j in sequence and
ti < tk, then the service vk must wait until vi completes.

tk − ti
xi,jxk,j(1 − PLi,k,j)(1 − Bi,k,j)

≥ Tk,j (4)

• Parallel constraint: Paralleling services’ execution times must overlap, meaning
when services i and j both execute on the resource j and execute in parallel, their
start time distance must be less than or equal to their execution time.

xi,j ∗ xk,j ∗ PLi,k,j ∗ abs(tk − ti) ≤ min(Tk, Ti) (5)

• Batch constraint: Batch services must begin simultaneously, meaning when
services i and j execute on the resource j and are batched, their start time
distance must be zero.

xi,j ∗ xk,j ∗ Bi,k,j ∗ (tk − ti) ≤ 0 (6)

• Request real-time constraint: Any services within a request RQ should com-
plete before users’ requirement LatRQ

max to guarantee a real-time response.

∀vi, vk ∈ RQ, tk − ti ≤ LatRQ
max (7)

• Capacity constraint: When several services execute in parallel, their hardware
utilization cannot exceed the processor’s capacity. The overall hardware utiliza-
tion will be nearly equal to the combined hardware utilization of individual
services running independently.

N∑

k=1

PLi,k,jUk,j + Ui,j ≤ Ej (8)

• Objective and optimization model. Our goal is to find a feasible solution with a
maximum throughput which is denoted by C = 1/max{ti +

∑M
j=1 xi,jTi,j ,∀i ∈

N,∀j ∈ M}. Thus, the problem can be formulated as the following model:

maxC s.t. Eq. (2) − (8) (9)

NP-Hard Problem. It is important to note that the scheduling problem within
Niagara is an instance of a classical NP-Hard problem, the Traveling Salesman
Problem (TSP) [17]. Consequently, determining the optimal scheduling strategy
for this problem is also NP-hard.

76 D. Xu et al.

3.3 Template-Based Scheduling Strategy Generator

In addressing our scheduling problem, we have found success in leveraging the
cutting-edge GUROBI solver [2]. This solver yields solutions with an optimality
loss of less than 10% since our service decision variables remain relatively small,
numbering around 100. Nevertheless, it is imperative to acknowledge that obtain-
ing an approximately optimal solution through this method may entail several
hours of computational effort, rendering it impractical for online scheduling.

To circumvent this challenge, Niagara introduces an innovative offline-online
hybrid heuristic algorithm. Our insight stems from the observation that the
majority of service request patterns exhibit remarkable stability over time. For
instance, tasks such as face recognition consistently involve sub-tasks such as
person detection, face detection, and face recognition. In response to this obser-
vation, we introduce the concept of service graph templates, which encapsu-
late common service patterns frequently encountered in real-world scenarios.
For exceptional and unexpected cases, we also offer an adaptation mechanism
designed to modify the scheduling strategy in real-time, aligning it with the
specific requirements of dispatching online DNN cascades to heterogeneous pro-
cessors (as detailed in Sect. 3.4).

Each service graph template comprises four essential components: service
graph G, request number RN , resource status S, latency requirement LatRQ

max.
Through the analysis of existing request data, we endeavor to identify as many
request patterns for services within a single frame as possible. For the second
parameter, request number, the range is 1-N, with N representing the maxi-
mum number of frames that can be processed within a single second. In addi-
tion, Niagara conducts a comprehensive exploration of the status of heteroge-
neous processors, as elaborated in Sect. 3.6. Taking the Snapdragon 865 SoC
as an exemplar, Niagara systematically considers all feasible combinations of
CPU cores, GPUs, and DSPs, encompassing various resource-status scenar-

Fig. 2. The workflow of strategy matcher.

Scheduling DNN Inference Services on Heterogeneous Edge Processors 77

ios, thereby ensuring adaptability to the underlying hardware configurations.
Regarding the final parameter, the response requirement, Niagara endeavors to
generate scheduling strategies for all possible scenarios within intervals of 50ms,
ranging from 50ms to 1000ms. In practice, Niagara has the capacity to generate
a multitude of service graph templates and their corresponding feasible schedul-
ing strategies, all of which are stored locally on edge devices. This storage incurs
a minimal overhead of less than 10MB.

3.4 Template-Based Strategy Matcher

The matcher takes into account two primary inputs: the real-time service graph
and the processor’s status. We outline its workflow as illustrated in Fig. 2.

The service graph is stored in a two-dimensional matrix format, with a value
of 1 indicating the presence of a dependency between services. The Matcher,
guided by the processor’s status, is responsible for selecting appropriate template
strategies under conditions that are no worse than the input circumstances. To
achieve this, Niagara utilizes the Euclidean distance metric [15] to quantify the
disparity between the online service graph (derived from the current image) and
the service graph template, ultimately identifying the most suitable strategy.

The matcher includes the following steps:

– Step 1©: When the distance between the online service graph and the current
service graph template falls below a predefined threshold (e.g., 0.5), Niagara
continues to employ the current template. This process is depicted in Fig. 2 1©.

– Step 2©: If the distance exceeds the threshold, Niagara discontinues the cur-
rent scheduling strategy and selects a new one that closely matches the online

Algorithm 2: Dynamic predictor algorithm
Input : First_order_exponential_predictor A, Holt_Winters_predictor B

1 CSGP = NULL // CSGP: current_service_graph_prediction
2 while True do
3 Input data = user.request.Get() // Receive request data from user
4 image_info = Main_DNN_inference(data)
5 service_graph = Graph_generator(image_info)
6 if CSGP.service_graph != service_graph then
7 CSGP.service_graph = service_graph
8 if A.history_accuracy > B.history_accuracy then
9 CSGP.last_number = A.Predict(service_graph)

10 else
11 CSGP.last_number = B.Predict(service_graph)
12 end
13 end
14 CSGP.service_graph.Execute()
15 A.Update(number), B.Update(number)

16 end

78 D. Xu et al.

service graph. For instance, in Fig. 2 2©, the blue template is chosen due to its
minimal distance, and it corresponds to a scheduling strategy.

– Step 3©: Recognizing that the online service graph may not always align per-
fectly with the template, Niagara incorporates an adaptation mechanism to
accommodate unexpected variations. As demonstrated in Fig. 2 3©, Niagara
first reorganizes the current service graph. It endeavors to match online graph
services with template services as closely as possible. Services that do not
find a match, such as v6 and v7 in Fig. 2, are flagged, while the scheduling
positions of matching services remain consistent with the template’s corre-
sponding strategy. Notably, v6 represents an extra service, while v7 is a newly
added service.

– Step 4©: Niagara selects the first unmatching newly added service (e.g., v7)
and places it within the earliest available idle period, as depicted in Fig. 2 4©.
In cases where the template scheduling strategy includes extraneous, redun-
dant services, such services are eliminated (e.g., v6). Other services commence
as early as possible while adhering to any applicable constraints.

3.5 Dynamic Input Predictor

The predictor is a crucial component in forecasting future service graphs, denoted
as pairs of <service graph, request number>. Algorithm 2 shows its functionality.

Different scenarios often exhibit distinct recurring patterns in their service
graphs. For instance, in the context of a parking system, events such as license
plate recognition at an entrance gate may occur at regular intervals, while vio-
lation operation detection is more likely to follow a pattern similar to the most
recent historical data. To address these diverse scenarios, Niagara employs a
combined prediction approach, encompassing first-order prediction and triple
exponential smoothing (Holt-Winters method), to capture both the latest and
global historical patterns. It operates as follows:

– The predictor initiates the first DNN service inference in accordance with the
ongoing scheduling strategy or its affinity processor, should no active strategy
exist. After execution, the predictor obtains essential information such as the
count of people or cars, which forms the basis for predicting the service graph
within the current request.

– If the newly predicted service graph diverges from the current one, Niagara
proceeds to compare the historical accuracy of the predictors and selects the
more precise one. This selection informs the prediction of how many frames
the service graph will remain constant.

3.6 Processor Monitor

In this section, we discuss the processor monitoring mechanism implemented
in our system. The monitor leverages system files such as /proc/stat and
/sys/class/kgsl/kgsl-3d0/gpu_busy_ percentage to acquire real-time utilization

Scheduling DNN Inference Services on Heterogeneous Edge Processors 79

data for the CPU and GPU, and utilizes a benchmarking tool from the Hexagon
DSP SDK to obtain information about DSP utilization.

Our monitoring system continuously inspects the status of these processors
at intervals of 100ms. This monitoring frequency is deliberately set to be smaller
than the service inference time to ensure the precision of our measurements while
avoiding any adverse impact on the quality of service delivery.

4 Implementation and Evaluation

We have developed an end-to-end prototype of our system, comprising over 3,800
lines of code, built on the Android OS 10.0 platform. For DNN inference, we have
employed TFLite, a runtime environment capable of supporting on-device CPU,
GPU, and DSP inference. To ensure smooth execution of DNN inference while
preserving the desired strategy order, we have implemented a ThreadPool and
an InferenceFinishListener, enabling asynchronous processing.

4.1 Experiment Settings and Methodology

Hardware and OS. In order to assess the versatility of our scheduling strategy
across diverse heterogeneous processor platforms, we executed Niagara on three
SoCs configurations detailed in Table 4. These SoCs are widely employed in IP
cameras, as indicated by [5]. Each of these SoCs encompasses three heterogeneous
processors with varying capabilities. To maintain uniformity, all these devices
operated on the Android 10 system.
Baselines. To highlight the advantages of our approach, we conducted a com-
parative analysis of Niagara against the following existing methods:

Table 3. Experimental combinations of 3 scenarios and their corresponding datasets.

DNN service
combination

Name Complexity DNN1 DNN2 DNN3 Video Input Video Descrip-
tion

Violation
Operation
Detector
(VOD)

VOD High SSD-Main CenterNet- Keypoint Pole-gloves/
SSD-helmet-
quant

Power grid site
1 week, 1 cam-
era

Resolution:
960*540
FPS:30

VOD-Y Low Tiny-yolov3-quant
VOD-FH Middle SSD-Main Pole-gloves/

SSD-helmet
VOD-FR Low Fast-RCNN-quant Pole-gloves/

SSD-helmet-
quant

VOD-P Low SSD-Main Posenet
Vehicle
License Plate
Detector
(LPR)

LPR Low Tiny-yolov3-quant Wpod OCR-
recognizer

Traffic cam-
eras 1 week, 20
cameras [28]

Resolution:
: 960*540
FPS:30

Nameplate
Identification
(NI)

NI Middle SSD-Main Text detector OCR-
recognizer

Power grid site
1 week, 3 cam-
eras

Resolution:
416*416
FPS:30

NI-FR Middle Fast-RCNN-quant

80 D. Xu et al.

– TFLite employs unmodified TensorFlow Lite 2.4.0 [11]. When a service
request for a model is received, TFLite immediately invokes a new runtime
instance for execution, consistently dispatching the service to its affinity pro-
cessor.

– Greedy Algorithm consistently schedules the service to its affinity processor,
ensuring assignment until the processor becomes idle and can accommodate
it.

– FIFO-algortihm will transform the task graph into a FIFO queue according
to its topological sort. Whenever a processor can accommodate the first task
in the queue, it should execute immediately. If several processors can accom-
modate it, this algorithm will always select the processor with the minimum
latency.

– ODTSC Algorithm. Originally designed to optimize the scheduling of a DNN
service graph on heterogeneous edge nodes while minimizing total latency
under resource constraints, we have modified this algorithm to suit the on-
device heterogeneous processors’ environment [40].

– LSTM-Niagara algorithm uses the LSTM model as the dynamic predictor,
and other parts are the same as Niagara. We LSTM-Niagara to evaluate our
dynamic predictor efficiency.

Evaluation Scenarios. The assessment of Niagara encompasses 3 real applica-
tion (video surveillance) scenarios encompassing 8 distinct service combination
patterns, as outlined in Table 3. These scenarios make use of a range of pre-
trained DNN models, including publicly available models and those developed
by the authors, such as SSD-Helmet and pole-gloves.

Table 4. Experimental platforms.

SoC Description capacity

SnapDragon 865 [10] CPU: 4*Kryo 585(A77) 400%
GPU: Adreno 650 100%
DSP: Hexagon 698 100%

SnapDragon 855 [9] CPU: 4*Kryo 485(A76) 400%
GPU: Adreno 640 100%
DSP: Hexagon 690 100%

SnapDragon 750G [8] CPU: 2*Kryo 570(A76) 200%
GPU: Adreno 619 100%
DSP: Hexagon 694 100%

Fig. 3. Processing throughput of VOD atop
two different devices.

Evaluation Datasets. The evaluation dataset comprises three video streams,
with two of them collected from real-world environments where Niagara has
been deployed, and one sourced from open repositories commonly utilized in
edge service benchmarks, as meticulously delineated in Table 3. All videos have
undergone uniform preprocessing to attain a frame rate of 30 frames per second
(fps), thus ensuring evaluation consistency.

The complexity classification, as presented in Table 3, elucidates the number
of services encompassed within a given request. Here, “high”, “middle”, and “low”
denote the presence of more than 10 services, 7–10 services, and less than 7
services, respectively.

Scheduling DNN Inference Services on Heterogeneous Edge Processors 81

Fig. 4. Processing throughput of all eight experimental combinations.

Fig. 5. Throughput of one-minute real videos in three different situations.

4.2 Experiment Results

Different Combinations. We evaluate 8 combinations in Table 3 in three real
scenarios, as shown in Fig. 4. Each pipeline’s result is averaged over 100 same
requests. Overall, Niagara achieves a 3.0×, 1.9×, 2.0×, and 1.8× throughput
improvement compared with TFLite, FIFO, Greedy, and ODTSC on average,
respectively. That is because our strategy jointly considers batch and parallel
execution with DNN inference service-to-hardware selection. As the scenario is
more complex, the benefits Niagara obtains are more. VOD-Y is one of the best
examples. It uses a tiny-yolov3-quant model for person detection service, which
consumes the least hardware utilization. Thus, this service can be parallelized
with any other DNN services on the CPU, significantly reducing the critical path
length. On the contrary, the nameplate identification (NI) pipeline’s performance
improvement is not so obvious because the person detection service consumes
lots of hardware resources, and no one can be parallelized with it
Different Edge Devices. We also evaluate Niagara on different edge devices,
as shown in Table 4. From Fig. 3, Niagara always achieves the lowest delay com-
pared with the other four baselines. For instance, Niagara’s throughput is 10
FPS on Snapdragon 855 SoC development board, while 5.46 FPS, 3.78 FPS,
3.74 FPS, and 2.84 FPS under ODTSC, Greedy, FIFO, and TFLite baselines,
respectively. On Snapdragon 750G SoC development board, Niagara can achieve
4.56×, 1.87×, 1.52×, and 1.50× higher throughput, respectively.

Besides, comparing the two figures, Snapdragon 855 SoC achieves better
performance improvement than Snapdragon 750G SoC. That is because 855
SoC has a higher-performance SoC with a four-core CPU, while 750G SoC only
has two, providing more scheduling space for Niagara to exploit.

82 D. Xu et al.

Fig. 6. Throughput comparison of a 20-min real video.

Real Deployment. We have successfully deployed Niagara in an electric sta-
tion and conducted evaluations in three typical situations: stable, slowly chang-
ing, and frequently changing, with a focus on violation operation detection (VOD
in Table 3). Additionally, we also analyzed Niagara’s performance over a 20-min
work period to assess its efficiency.

The evaluation results, shown in Fig. 5 and 6, demonstrate the effectiveness
of Niagara compared to state-of-the-art baselines. Niagara achieves throughput
improvements ranging from 1.26 to 2.33 ×. Particularly, in scenarios with more
stable content, Niagara provides greater benefits, e.g., Fig. 5(a) and Fig. 6 200–
250 s. This can be attributed to Niagara accurately predicting unforeseen service
graphs, providing more scheduling space, which enables better utilization of its
offline strategies.

5 Discussion

Applicability of NPU in Edge Devices. Many contemporary edge devices
are furnished with Neural Processing Units (NPUs), such as the Kirin 9000 [4].
Since Niagara is a hardware-agnostic framework, the integration of support
for new NPUs entails minimal alterations to existing algorithms and system
design. This integration process primarily involves the addition of NPU-specific
support implementations, encompassing profiling, hardware configurations, and
hardware status monitoring. Actually, Niagara already extends its support to
NPUs, with experimental deployments showcasing its compatibility with a par-
ticular NPU architecture (Hexagon DSP) developed by Qualcomm.

6 Conclusion

This work proposed Niagara to achieve high throughput for serving DNN infer-
ence services on edge devices. Niagara proposes an offline algorithm for the
on-edge-device DNN inference service scheduling problem. It then applies the
template scheduling strategies to the variable unforeseen DNN cascades applica-
tion with the help of an input predictor, processor monitor, and strategy matcher.
We have implemented a prototype of Niagara on commodity edge devices and
comprehensively evaluate its effectiveness via a set of experiments on typical
DNN inference service scenarios.

Scheduling DNN Inference Services on Heterogeneous Edge Processors 83

Acknowledgement. This work was supported by the National Key Research and
Development Program of China under the grant number 2022YFB4500700, the
National Natural Science Foundation of China under the grant numbers 62325201,
62172008, 62102009, and 62102045, the National Natural Science Fund for the Excel-
lent Young Scientists Fund Program (Overseas), the China Postdoctoral Science Foun-
dation 8206300713, the Beijing Outstanding Young Scientist Program under the grant
number BJJWZYJH01201910001004, and Center for Data Space Technology and Sys-
tem, Peking University.

References

1. Cortex A57. https://en.wikipedia.org/wiki/ARM_Cortex-A57
2. Gurobi solver. http://www.gurobi.com
3. Jetson TX2. https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-tx2/
4. Kirin 9000. https://www.hisilicon.com/cn/products/Kirin/Kirin-flagship-chips/

Kirin-9000
5. Powerful 64-bit heterogeneous processing, advanced analytics and 4G LTE redefine

the IP camera. https://www.edge-ai-vision.com/2015/11/qualcomm-announces-
ip-camera-reference-platform-with-high-end-processing-imaging-and-analytics-
capabilities-to-advance-security-cameras/

6. Qualcomm snapdragon 625 IP camera. https://anyconnect.com/recommended-
sbcs/thundercomm/thundercomm-qualcomm-snapdragon-625-ip-camera

7. Snapdragon 650 IP camera brings consciousness to camera security. https://
www.qualcomm.com/news/onq/2016/02/snapdragon-650-ip-camera-brings-
consciousness-camera-security

8. Snapdragon 750G SOC. https://www.qualcomm.com/products/mobile/
snapdragon/smartphones/snapdragon-7-series-mobile-platforms/snapdragon-
750g-5g-mobile-platform

9. Snapdragon 855 SOC. https://www.qualcomm.com/products/mobile/
snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-
855-mobile-platform

10. Snapdragon 865 SOC. https://www.qualcomm.com/products/mobile/
snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-
865-plus-5g-mobile-platform

11. Tflite. https://www.tensorflow.org/lite/
12. Edge TPU (2021). https://github.com/XiaoMi/mace
13. Almeida, M., Laskaridis, S., Mehrotra, A., Dudziak, L., Leontiadis, I., Lane, N.D.:

Smart at what cost? Characterising mobile deep neural networks in the wild. In:
ACM IMC, pp. 658–672 (2021)

14. Chai, F., Zhang, Q., Yao, H., Xin, X., Gao, R., Guizani, M.: Joint multi-task
offloading and resource allocation for mobile edge computing systems in satellite
IoT. IEEE Trans. Veh. Technol. 72(6), 7783–7795 (2023)

15. Danielsson, P.E.: Euclidean distance mapping. Comput. Graphics Image Process.
14(3), 227–248 (1980)

16. Diggle, P., Al-Wasel, I.: Time series (1990)
17. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem.

Biosystems 43(2), 73–81 (1997)
18. Eshraghi, N., Liang, B.: Joint offloading decision and resource allocation with

uncertain task computing requirement. In: IEEE INFOCOM, pp. 1414–1422 (2019)

https://en.wikipedia.org/wiki/ARM_Cortex-A57
http://www.gurobi.com
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.hisilicon.com/cn/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://www.hisilicon.com/cn/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://www.edge-ai-vision.com/2015/11/qualcomm-announces-ip-camera-reference-platform-with-high-end-processing-imaging-and-analytics-capabilities-to-advance-security-cameras/
https://www.edge-ai-vision.com/2015/11/qualcomm-announces-ip-camera-reference-platform-with-high-end-processing-imaging-and-analytics-capabilities-to-advance-security-cameras/
https://www.edge-ai-vision.com/2015/11/qualcomm-announces-ip-camera-reference-platform-with-high-end-processing-imaging-and-analytics-capabilities-to-advance-security-cameras/
https://anyconnect.com/recommended-sbcs/thundercomm/thundercomm-qualcomm-snapdragon-625-ip-camera
https://anyconnect.com/recommended-sbcs/thundercomm/thundercomm-qualcomm-snapdragon-625-ip-camera
https://www.qualcomm.com/news/onq/2016/02/snapdragon-650-ip-camera-brings-consciousness-camera-security
https://www.qualcomm.com/news/onq/2016/02/snapdragon-650-ip-camera-brings-consciousness-camera-security
https://www.qualcomm.com/news/onq/2016/02/snapdragon-650-ip-camera-brings-consciousness-camera-security
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-7-series-mobile-platforms/snapdragon-750g-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-7-series-mobile-platforms/snapdragon-750g-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-7-series-mobile-platforms/snapdragon-750g-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-plus-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-plus-5g-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-plus-5g-mobile-platform
https://www.tensorflow.org/lite/
https://github.com/XiaoMi/mace

84 D. Xu et al.

19. Fu, X., Tang, B., Guo, F., Kang, L.: Priority and dependency-based DAG tasks
offloading in fog/edge collaborative environment. In: CSCWD, pp. 440–445 (2021)

20. Hu, S., et al.: Temporal-aware qos prediction via dynamic graph neural collabo-
rative learning. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P.,
Ruiz-Cortés, A. (eds.) ICSOC, vol. 13740, pp. 125–133. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20984-0_8

21. Huang, V., Wang, C., Ma, H., Chen, G., Christopher, K.: Cost-aware dynamic
multi-workflow scheduling in cloud data center using evolutionary reinforcement
learning. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-
Cortés, A. (eds.) ICSOC, vol. 13740, pp. 449–464. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-20984-0_32

22. Jeong, J.S., et al.: Band: coordinated multi-DNN inference on heterogeneous mobile
processors. In: ACM MobiSys, pp. 235–247 (2022)

23. Kim, Y., Kim, J., Chae, D., Kim, D., Kim, J.: µlayer: low latency on-device infer-
ence using cooperative single-layer acceleration and processor-friendly quantiza-
tion. In: EuroSys, pp. 1–15 (2019)

24. Li, Z., Yang, C., Huang, X., Zeng, W., Xie, S.: CoOR: collaborative task offloading
and service caching replacement for vehicular edge computing networks. IEEE
Trans. Veh. Technol., 1–6 (2023)

25. Liao, H., Li, X., Guo, D., Kang, W., Li, J.: Dependency-aware application assigning
and scheduling in edge computing. IEEE IoT (2021)

26. Liu, J., Ren, J., Zhang, Y., Peng, X., Zhang, Y., Yang, Y.: Efficient dependent task
offloading for multiple applications in MEC-cloud system. IEEE TMC (2021)

27. Meng, Z., Xu, H., Huang, L., Xi, P., Yang, S.: Achieving energy efficiency through
dynamic computing offloading in mobile edge-clouds. In: IEEE MASS, pp. 175–183.
IEEE (2018)

28. Shen, H., et al.: Nexus: a GPU cluster engine for accelerating DNN-based video
analysis. In: ACM SOSP, pp. 322–337 (2019)

29. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

30. Tan, T., Cao, G.: FastVA: deep learning video analytics through edge processing
and NPU in mobile. In: IEEE INFOCOM, pp. 1947–1956. IEEE (2020)

31. Wang, M., Ding, S., Cao, T., Liu, Y., Xu, F.: AsyMo: scalable and efficient deep-
learning inference on asymmetric mobile CPUs. In: ACM MobiCom, pp. 215–228
(2021)

32. Wei, T., Zhang, P., Dong, H., Jin, H., Bouguettaya, A.: Mobility-aware proactive
QoS monitoring for mobile edge computing. In: Troya, J., Medjahed, B., Piattini,
M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) ICSOC, vol. 13740, pp. 134–142.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_9

33. Wei, W.W.: Time series analysis. In: The Oxford Handbook of Quantitative Meth-
ods in Psychology, vol. 2 (2006)

34. Xiao, H., Xu, C., Ma, Y., Yang, S., Zhong, L., Muntean, G.M.: Edge intelligence: a
computational task offloading scheme for dependent IoT application. IEEE Wirel.
Commun. 21(9), 7222–7237 (2022)

35. Xu, M., Zhang, X., Liu, Y., Huang, G., Liu, X., Lin, F.X.: Approximate query
service on autonomous IoT cameras. In: ACM MobiSys, pp. 191–205 (2020)

36. Yang, Y., Chen, G., Ma, H., Zhang, M.: Dual-tree genetic programming for
deadline-constrained dynamic workflow scheduling in cloud. In: Troya, J., Med-
jahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) ICSOC, vol.
13740, pp. 433–448. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
20984-0_31

https://doi.org/10.1007/978-3-031-20984-0_8
https://doi.org/10.1007/978-3-031-20984-0_32
https://doi.org/10.1007/978-3-031-20984-0_32
https://doi.org/10.1007/978-3-031-20984-0_9
https://doi.org/10.1007/978-3-031-20984-0_31
https://doi.org/10.1007/978-3-031-20984-0_31

Scheduling DNN Inference Services on Heterogeneous Edge Processors 85

37. Yeo, H., Chong, C.J., Jung, Y., Ye, J., Han, D.: NEMO: enabling neural-enhanced
video streaming on commodity mobile devices. In: ACM MobiCom, pp. 1–14 (2020)

38. Yi, J., Lee, Y.: Heimdall: mobile GPU coordination platform for augmented reality
applications. In: ACM MobiCom, pp. 1–14 (2020)

39. Zhang, J., et al.: MobiPose: real-time multi-person pose estimation on mobile
devices. In: ACM SenSys, pp. 136–149 (2020)

40. Zhao, G., Xu, H., Zhao, Y., Qiao, C., Huang, L.: Offloading tasks with dependency
and service caching in mobile edge computing. IEEE Trans. Parallel Distrib. Syst.
32(11), 2777–2792 (2021)

41. Zhao, Z., Luo, H., Chu, S.C., Shang, Y., Wu, X.: An immersive online shopping
system based on virtual reality. J. Netw. Intell. 3(4), 235–246 (2018)

Plan, Generate and Match: Scientific
Workflow Recommendation with Large

Language Models

Yang Gu, Jian Cao(B), Yuan Guo, Shiyou Qian, and Wei Guan

Shanghai Jiao Tong University, Shanghai, China
{gu_yang,cao-jian,gy2022,qshiyou,guan-wei}@sjtu.edu.cn

Abstract. The recommendation of scientific workflows from public
repositories that meet users’ natural language requirements is becoming
increasingly essential in the scientific community. Nevertheless, existing
methods that rely on direct text matching encounter difficulties when it
comes to handling complex queries, which ultimately results in poor per-
formance. Large language models (LLMs) have recently exhibited excep-
tional ability in planning and reasoning. We propose “Plan, Generate and
Match” (PGM), a scientific workflow recommendation method leverag-
ing LLMs. PGM consists of three stages: utilizing LLMs to conduct plan-
ning upon receiving a user query, generating a structured workflow speci-
fication guided by the solution steps, and using these plans and specifica-
tions to match with candidate workflows. By incorporating the planning
mechanism, PGM leverages few-shot prompting to automatically gener-
ate well-considered steps for instructing the recommendation of reliable
workflows. This method represents the first exploration of incorporating
LLMs into the scientific workflow domain. Experimental results on real-
world benchmarks demonstrate that PGM outperforms state-of-the-art
methods with statistical significance, highlighting its immense potential
in addressing complex requirements.

Keywords: Scientific Workflow Recommendation · Large Language
Models · Planning · Prompting

1 Introduction

Scientific workflows, often depicted as directed acyclic graphs (DAGs), serve as a
formal representation of data processing services and their associated data flow.
These workflows are utilized to automate the handling and analysis of extensive
scientific data [1,2], thus accelerating scientific discovery. Nowadays, an increas-
ing number of scientific workflows are being shared in online repositories such as
myExperiment [3], Galaxy [4], and WorkflowHub [5]. For instance, Galaxy con-
tains over 18,000 workflows from diverse scientific domains, each with metadata
like title, annotations, tags.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 86–102, 2023.
https://doi.org/10.1007/978-3-031-48421-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_7

Scientific Workflow Recommendation with LLMs 87

The recommendation of scientific workflows from those repositories, utilizing
either textual [6] or structural queries [7], has emerged as an efficient and effective
approach for researchers to reuse and repurpose existing workflows. Users find it
more convenient and easier to express their requirements using natural language
descriptions, rather than structural features such as intended workflow drafts
[8]. Therefore, the research of recommending suitable scientific workflows that
precisely align with users’ textual requirements holds significant importance.

Existing workflow recommendation methods mainly rely on text matching
techniques [9], like bag-of-words approach [6], to calculate the text similarity
between user queries and candidate workflows. However, these methods are lim-
ited to handling simple and straightforward queries. As the complexity and scale
of user intents increase [10], recommending appropriate workflows becomes chal-
lenging for both human experts and computational models.

Actually, scientific workflow recommendation can be modeled as a complex
reasoning task, involving understanding user intents, extracting key information,
and matching it with candidate workflows. To tackle complex problems, humans
often employ planning to break down intricate problems and schedule solution
steps before implementation. Planning has been successful in various reasoning
tasks like arithmetic computation [11] and code generation [12]. Motivated by
these, we aim to integrate planning into recommendation, specifically focusing
on transforming user requirements into a plan that aligns them with the process
representation of workflows and facilitates the extraction of key information.

However, the realization of plan-guided recommendation relies on the app-
roach to generate plans from user requirements. Developing such an algorithm
from scratch necessitates a substantial amount of labeled requirement-plan data
for training, which can be time-consuming and knowledge-intensive. On the other
hand, large language models (LLMs) have recently exhibited remarkable reason-
ing capabilities without explicit training [13]. By incorporating auxiliary rea-
soning prompts [14] or a series of exemplary prompts (e.g., chain of thought
(CoT)) [15,16], known as zero-shot and few-shot prompting respectively, LLMs
have demonstrated significant improvements in planning to solve reasoning tasks
[11]. While some studies have found limitations in the planning abilities of LLMs
[17], these limitations are typically observed in classical planning problems with
constrained domains and action states.

Consequently, we propose “Plan, Generate, and Match” (PGM), an inno-
vative scientific workflow recommendation approach that harnesses the robust
planning and reasoning abilities of LLMs. PGM comprises three stages: 1) Plan-
ning: where LLMs are employed to parse user queries and conduct logical plan-
ning; 2) Specification Generation: which involves extracting and generating
a structured specification of the user’s intended workflow, guided step by step by
the plan; 3) Matching: where workflows are matched and recommended based
on the degree of matching with the user queries, determined by utilizing the
generated plan and specification. Benefiting from this planning mechanism,
PGM leverages few-shot prompting to autonomously generate plans without
requiring annotated plan corpora or additional training, thereby facilitating a

88 Y. Gu et al.

better understanding of user intents and instructing subsequent generation and
matching processes. In summary, this paper presents the following contributions:

– We develop a novel three-stage framework for recommending scientific work-
flows according to user queries, which marks the milestone of the first explo-
ration of introducing LLMs into the domain of scientific workflows.

– Utilizing LLMs as the brain for planning and generating, PGM can automat-
ically yield well-considered steps that guide the recommendation of reliable
workflows.

– Extensive experiments on real-world expert-rated benchmarks demonstrate
that PGM significantly surpasses state-of-the-art approaches across various
metrics, highlighting the remarkable capability and immense potential of
PGM in comprehending and addressing complex requirements.

2 Related Work

2.1 Scientific Workflow Recommendation

For simple textual queries, keyword-based search methods compute text simi-
larity between keywords and metadata (e.g., titles and tags) of candidate work-
flows [1]. When users provide paragraph descriptions, topic modeling and TF-
IDF (Term Frequency-Inverse Document Frequency) algorithms are employed to
match query features with workflows [8]. To enhance semantic relevance [18], a
hierarchical semantic similarity algorithm is proposed [19]. Graph matching and
activity knowledge graphs are used when users provide preliminary sketches [7],
which is yet less user-friendly and inconvenient for various users.

In this paper, we focus on user needs expressed in natural language para-
graphs. Unlike traditional methods relying on direct text matching, the emer-
gence of LLMs has created new possibilities for planning-based recommendation.

2.2 Prompting Methods

Prompting is a technique used to elicit reasoning capabilities and desired out-
puts from LLMs. It can be achieved through zero-shot prompting, where instruc-
tions are provided, or few-shot prompting, where a few input-output examples
are given. Zero-shot CoT prompting, proposed by Kojima et al. [14], adds a
“Let’s think step by step” prompt to facilitate coherent reasoning. Few-shot CoT
prompting, introduced by Wei et al. [15], achieves superior performance by pro-
viding human-crafted reasoning examples. Subsequent studies [11,20] have fur-
ther expanded on few-shot prompting, such as task decomposition and prompt
ensemble. For example, Lu et al. [20] develop Chameleon, an AI system based on
LLMs like GPT-4 [21], which employs a planner prompted by module sequence
examples to decompose complex problems into solvable sub-tasks.

Apart from Chameleon, several other methods have utilized LLMs for plan
generation in embodied fields. Wang et al. [16] develop DEPS, an interactive
planning approach to enable multi-task agents via a LLM-aided explainer and

Scientific Workflow Recommendation with LLMs 89

planner. Jiang et al. [12] propose a two-phase self-planning code generation
method that outperforms direct LLM-based approaches. However, these meth-
ods are tailored to domain-specific tasks with relatively fixed solving patterns,
rendering them unsuitable for scientific workflow recommendation problem. Our
plan-aided approach leverages LLMs prompted by a few samples to comprehend
user intents, devise plans and generate specifications for subsequent matching.

3 Preliminaries

Definition 1 (Scientific Workflow). A scientific workflow sw is a tuple
(T itle,Desc, Input,Output,Act,Link), where T itle is the title of sw,
Desc is the textual description of sw in short-document, Input is a set of
input data of sw, Output is a set of output data of sw, Act is a set of activ-
ities belonging to sw, and Link is a set of datalinks connecting activities in
Act.

Definition 2 (User Query). A user query q is a natural language paragraph.
For more intuition, we employ the workflow card to report comprehensive

details of workflows in the repository. As shown in Fig. 1, the workflow card
comprises a workflow preview and attribute information demonstrated in Defi-
nition 1, some of which are used for matching in our PGM.

Fig. 1. Workflow card of a sample workflow sw233 (http://www.myexperiment.org/
workflows/233.html) in myExperiment.

4 Plan, Generate and Match (PGM)

PGM is an LLMs-aided scientific workflow recommendation framework, which
is comprised of three stages: planning, specification generation and matching, as
shown in Fig. 2. Given a user query, the first stage involves adopting an LLM,
prompted by a few planning examples, to devise action plans. In the second stage,
the LLM utilizes spec-generation prompting to generate a structured specifica-
tion of the intended workflow, following the step-by-step guidance of the plan.
Finally, the structured specification and plan are used to compute the matching
degree between the user query and candidate workflows in the repository.

http://www.myexperiment.org/workflows/233.html
http://www.myexperiment.org/workflows/233.html

90 Y. Gu et al.

4.1 Stage I: Planning

In real-world scenarios, user queries often involve complex intents that require
orchestrating multiple sub-tasks to recommend the desired workflows. To address
this, we introduce planning as the initial step in PGM. The objective of this
stage is to utilize LLMs to analyze the user query and devise a step-by-step plan
that guides the subsequent generation process.

To accomplish this, we leverage the planning capabilities of LLMs through a
few-shot planning prompting approach. The inputs for the planning stage
consist of a user query q0, a planning task instruction I1, and a few demonstration
examples D1 = 〈(q1, p1) ⊕ (q2, p2) ⊕ · · · ⊕ (qt1 , pt1)〉, where each (qi, pi) denotes
a hand-crafted query-plan example pair, t1 is a relatively low number denoting
the number of examples, and ⊕ signifies the concatenation operation between
two samples. Prompted by the above natural language content, the LLMs-based
planner P is to output an action plan p0. That is to say,

p0 ← P(q0; I1, D1) (1)

The prompt that includes I1 and D1 plays a crucial role in effectively eliciting
LLMs for planning. To ensure the efficient and logical generation of plans, we
invite some domain experts to design prompts adhering to specific principles:

Fig. 2. Overview of the proposed PGM framework.

Scientific Workflow Recommendation with LLMs 91

1. To enable LLMs to gain a clear understanding of the task, we draw inspiration
from the successful application of Plan-and-Solve (PS) prompting [11]. The
instruction I1 is specified as “Your task is to first understand the user
query and devise a plan for generating a structured specification of the
user’s intended scientific workflow.”, as shown in Fig. 3.

2. To enhance the LLMs’ comprehending of planning intention and criteria, it
is important that the demonstrations D1 comprise representative examples.
These examples should contain essential steps without excessive details [12],
while maintaining logical connections between the steps to guide the correct
execution order. It is crucial to select typical examples of average length
that encompass various workflow structures, including pipelines, trees and
DAGs. Atypical or marginal examples should be avoided to ensure the model’s
generalizability.

3. In addition, a prompt “Let’s think step by step” [12,15] is introduced between
the user query and plan to trigger LLMs to devise a logical plan. Furthermore,
to ensure consistency in the prompt examples, we strive to use a uniform
expression, such as starting with a verb like “Input”, “Output”, “Use”, or a
conjunction like “If”, as illustrated in the example in Fig. 3.

Fig. 3. Exemplary prompts for the planning and specification generation stages of
PGM. These prompts contain injectable slots, such as user query and plan, which are
replaced with the corresponding text before being inputted into the LLM.

92 Y. Gu et al.

4.2 Stage II: Specification Generation

In the specification generation stage, the goal is to generate a structured spec-
ification of the user’s intended workflow based on the action plan. To achieve
this, we still employ LLMs with a few-shot spec-generation prompting. The
inputs for specification generation stage consist of a user query q0 appended
with an action plan p0, along with a generation task instruction I2 and a few
demonstration examples D2 = 〈(q1, p1, s1) ⊕ (q2, p2, s2) ⊕ · · · ⊕ (qt2 , pt2 , st2)〉,
where each (qi, pi, si) denotes a hand-crafted query-plan-specification example
triplet, and t2 denotes the number of examples. Note that t2 is lower than t1 due
to context length limitations. These natural language demonstrations are given
to an LLM generator G to produce a structured specification spec0:

spec0 ← G(q0, p0; I2, D2) (2)

To better generate spec0 that accurately represents user-desired workflows
and facilitate its use in the subsequent stage, LLMs should extract key infor-
mation of workflows by following a structured specification (e.g., JSON for-
mat). Therefore, we provide a standardized template for intended workflows and
instruct the LLM to conduct information extraction guided by the plan through
slot filling. As depicted in Fig. 3, this template includes four slots (“Title”,
“Inputs”, “Outputs”, and “Activities”) to capture the intended workflow’s key
information. Moreover, to enhance practicality and simplify the problem, we
incorporate a hint “Every input, output and activity should not be longer than
5 words” based on real workflow statistics. Domain experts fill in these fields
according to the query, plan, their expertise, and workflow information, creat-
ing demonstration examples D2. These examples trigger LLMs to automatically
analyze user queries and extract key information accordingly [20].

It is worth noting that the “Desc” attribute and “Link” attribute in the def-
inition of sw are not included in the output template. The “Desc” attribute,
representing the description of the expected workflow, is naturally filled with
the user query q0 and incorporated into the final structured specification with-
out a separate slot to preserve resources, as illustrated in Fig. 2. As for the “Link”
attribute, determining the appropriate links is on the basis of activity genera-
tion that may be unstable, which is more complex and uncertain for LLMs-based
approach. Therefore, introducing low-quality link information in the subsequent
matching process may have adverse effects.

4.3 Stage III: Matching

In the last matching stage, PGM leverages the generated plan and structured
specification to match with workflows in the repository. Just as shown in Fig. 2,
we aim to compute the matching degree MD between the user query and can-
didate scientific workflows.

4.3.1 Embedding Model. This part first briefly introduces the embedding
models used for the subsequent similarity computation. Since the majority users

Scientific Workflow Recommendation with LLMs 93

of scientific workflows are from the biomedical and bioinformatics fields [6], we
employ BioLinkBERT1 [22], achieving SOTA performance on several biomedical
NLP benchmarks like BLURB 2, as our basic embedding model. Furthermore,
to enhance its adaptability across multiple domains, we perform unsupervised
fine-tuning on the original BioLinkBERT using the workflow descriptions in
experimental datasets. This fine-tuning process enables us to effectively embed
different objects, facilitating the subsequent calculating of semantic similarity.

4.3.2 Similarity Computation. Given five key attributes (Title, Description,
Inputs, Outputs and Activities) of the user’s intended workflow extracted from
the query, we compute semantic similarity between them and the corresponding
attributes of candidate workflows. Moreover, since plans characterize workflows
in a more formalized and logical manner, we additionally use the LLM-aided
planning approach described earlier to generate a plan based on the description
of the candidate workflow. This results in six attributes considered for similarity
computation, which can be categorized into text-based and set-based approaches.
A. Text-Based Computation
The Title, Description and Plan attributes are represented as pure
strings, allowing for direct similarity calculation. We employ the fine-tuned
BioLinkBERT model to embed each attribute of both the intended workflow and
candidate workflow. The semantic similarity between them, denoted as Simtitle,
Simdesc, and Simplan respectively, is measured using cosine similarity.
B. Set-Based Computation
The Inputs, Outputs and Activities attributes are sets containing multiple
elements. To compute their similarity, we formulate it as a matching optimiza-
tion problem between sets [8]. Given two sets U1 and U2 (representing Inputs,
Outputs or Activities), and the similarities sim(u1, u2) between their respective
elements (computed using cosine similarity of their name embeddings obtained
from the fine-tuned BioLinkBERT model), our objective is to find a matching
M ⊆ U1 × U2 that maximizes the sum of similarities, denoted as sum:

max sum =
∑

(u1,u2)∈M

sim(u1, u2)

s.t. u1 ∈ U1, u2 ∈ U2; ∀v ∈ U1 ∪ U2 , at most one edge in M is incident upon v.

(3)
The maximum weight matching (mw) algorithm [23] can be used to solve this

problem. Then, the similarity between U1 and U2 is normalized by Sim(U1, U2) =
sum

|U1|+|U2|−sum , where |·| signifies the set size. In this way, we can obtain the
semantic similarity of these three attributes, SimInput, SimOutput and SimAct.

4.3.3 Matching Degree Computation. Finally, the semantic matching
degree between the user query and candidate workflow is determined by the
weighted average of six similarities:

1 https://huggingface.co/michiyasunaga.
2 https://microsoft.github.io/BLURB/leaderboard.html.

https://huggingface.co/michiyasunaga
https://microsoft.github.io/BLURB/leaderboard.html

94 Y. Gu et al.

MD = α · Simtitle + β · Simdesc + γ · SimInput

+ δ · SimOutput + ε · SimAct + ξ · Simplan

(4)

where the values of six weights are assigned using a combination weighting
method of analytic hierarchy process (AHP) and factor analysis such that
α + β + γ + δ + ε + ξ = 1. This method effectively integrates subjective expert
experience with objective data characteristics, ensuring the rationality and con-
sistency of the comprehensive evaluation metric MD [24].

5 Experiments

5.1 Experimental Settings

5.1.1 Benchmarks. The proposed method is evaluated on a widely-used
expert-generated benchmark [8], which consists of two datasets: the myEx-
periment dataset and the Galaxy dataset. The former contains 1,483 Taverna
workflows from myExperiment, while the latter contains 139 Galaxy workflows.
The benchmark includes over 2,000 matching degree ratings assigned by domain
experts.

Within the myExperiment dataset, there are two subsets. The first subset
includes 24 query workflows, each accompanied by a ranking list of 10 ran-
domly selected comparison workflows. The matching degree between the query
workflow and the comparison workflows was rated by experts with the options
well-matched, matched, related, and unmatched. The second subset includes 8
query workflows, each accompanied by 21–68 candidate workflows (not ranked),
with matching degrees rated by experts as before. The Galaxy dataset com-
prises a single subset, which follows the same structure as the first subset of the
myExperiment dataset, including 8 query workflows.

Before evaluation, we collected various attributes of these workflows. The
majority of experiments were conducted using myExperiment dataset due to its
larger and more comprehensive nature. The Galaxy dataset was utilized to inves-
tigate the impact of dataset-specific properties on the algorithm performance.

5.1.2 Evaluation Metrics. We use the descriptions of query workflows in the
datasets as sample queries, which are derived from actual users, thus closely
resembling real scenarios. Following [8], we evaluate the performance of match-
ing degree computation using Correctness and Completeness on the first
subset of both datasets. Additionally, we assess the recommendation perfor-
mance using Precision and Recall on the second subset of the myExperiment
dataset.

A. Correctness and Completeness: Using these two metrics, we aim to com-
pare the algorithms’ matching degree-based rankings against the experts’ rank-
ings. For each sample query, we would like to compute each comparison work-
flow’s matching degree with the query and produce a new ranking list of compar-
ison workflows sorted in descending order. If in both rankings the element-pair

Scientific Workflow Recommendation with LLMs 95

are not tied [6] and their order is the same, the pair’s order is called concordant.
If their orders differ, the pair is discordant. Correctness measures the correla-
tion between the algorithm ranking and the expert ranking, and Completeness
measures the completion of the algorithm ranking relative to the expert ranking:

Correctness =
#concordant − #discordant

#concordant +#discordant
(5)

Completeness =
#concordant +#discordant

#pairs_ranked_by_experts
(6)

where #pairs_ranked_by_experts denotes the number of ranked element-pairs
that are not tied in the expert ranking.

B. Precision and Recall: On the second subset of the myExperiment dataset,
we recommend top-k workflows from the candidate list for each query and eval-
uate the performance by:

Precision@k =

∑k
i match(swi)

k
(7)

Recall@k =

∑k
i match(swi)

#Match
(8)

where 1 ≤ k ≤ 10, match(swi) ∈ {0, 1} indicates the matching status of ith
workflow in the recommendation list, and #Match denotes the total number of
matched workflows in the candidate list. Since the expert ratings for whether
a workflow is considered a match are quaternary, we consider different match-
ing thresholds: well-matched or matched. For example, when the threshold is
matched, only workflows with a rating of well-matched or matched are consid-
ered matches. Moreover, it is difficult to adopt rank-related metrics because
expert ratings are discrete while algorithm ratings are continuous in this work.

5.1.3 Implementations. In our experiments, we employ the GPT-3.5-turbo
and GPT-4 as the main LLMs, accessed through the OpenAI API3. To ensure
more stable outputs from LLMs, we set temperature to 0. The number of few-
shot exemplars, t1, t2, are set to 8 and 4 as suggested in the paper [15]. Figure 3
shows the exemplary prompts in two stages. Additional prompts and the source
code of PGM can be found at https://github.com/t-harden/PGM. Moreover,
α, β, γ, δ, ε, ξ are set to 0.178, 0.211, 0.118, 0.113, 0.171, 0.209, respectively.

Furthermore, we compare four state-of-the-art baselines without using LLMs:
(1) Description-based Method (DM), which recommends workflows based on
the similarity between user queries and workflow descriptions using TF-IDF
model [6]. (2) Activity-based Method (AM), an extension of DM that incor-
porates activity names from workflows in the similarity calculation [1]. (3)
Workflow Embedding-based Method (WFER), which employs the SDNE graph

3 https://platform.openai.com/.

https://github.com/t-harden/PGM
https://platform.openai.com/

96 Y. Gu et al.

embedding model to represent workflows based on their textual descriptions,
retrieving workflows with high vector similarity [9]. (4) Heterogeneous Infor-
mation Network-based Method (HDSWR), which represents workflows and
their objects as a heterogeneous information network (HIN) graph and utilizes
metapath-based similarity algorithms for recommendation [18]. The statistical
significance between them and our approach is tested using a Wilcoxon signed-
rank test [25].

5.2 Main Results

5.2.1 Evaluation of Matching Degree Computation. Figure 4 shows the
mean correctness and completeness over all query workflows by different methods
on the first subset of both datasets. Here are the key findings from our analysis:

Fig. 4. The overall ranking performance on two datasets. Mean correctness (bars) with
standard deviation (errorbars), and mean completeness (black spots) for algorithms
against expert ratings. Numerical values denote mean correctness. ∗ denotes statistical
significance (p < 0.05) between the comparative method and PGM (GPT-4).

(1) Experimental results suggest that PGM achieves state-of-the-art ranking
performance in matching degree computation with statistical significance
on both datasets. With the benefits of LLMs’ exceptional planning and
reasoning abilities, PGM (GPT-3.5) outperforms the strongest competitor,
HDSWR, by 5.7% and 15.4% w.r.t Correctness metric on two datasets. When
employing GPT-4, PGM gains an additional 4.1% and 5.0% improvement.

(2) The decrease in correctness observed for all algorithms on the Galaxy dataset
can be attributed to the limited availability of textual information, such as
descriptions, in Galaxy workflows. This limitation hinders the extraction
and matching of semantics. However, PGM consistently achieves a mean
completeness of 1.0, surpassing the first three baselines. This emphasizes the
importance of employing more fine-grained similarity assessment methods.

5.2.2 Evaluation of Recommendation. In this part, we investigate the algo-
rithms’ recommendation performance in terms of Precision@k and Recall@k
over the top-k results, considering different matching thresholds as discussed in
Sect. 5.1. From Fig. 5, we can observe that:

Scientific Workflow Recommendation with LLMs 97

(1) Across all thresholds and metrics, PGM is nearly superior to other com-
parative methods and this competitive superiority continues for different
k. Particularly, PGM (GPT-4) is able to find almost all the well-matched
workflows as the recall of that is close to 1.0 when k ≥ 8. The results verify
that the plan-guided approach enables accurate understanding and logical
decomposition of complex user intents, thereby facilitating effective work-
flow recommendation.

(2) In general, pure text-based methods (DM and AM) underperform those con-
sidering structural features (other four). Although DM and AM yield rela-
tively comparable results to WFER and HDSWR for the matched thresh-
old, they perform much worse than PGM when looking for well-matched
workflows. This is because structural information, such as activity depen-
dencies, is implicitly captured through the specification generation guided
by the plan. This additional knowledge enhances the recommendation of top
matched workflows, complementing the explicit textual features.

Fig. 5. The overall recommendation performance on the myExperiment dataset.

5.3 Ablation Study

We conduct ablation studies to examine the contributions of the main stages or
mechanisms in the framework. The following variants are evaluated:

• PGM-Light. We merge the generation of plans and specifications into one
stage in this variant and use the almost same few-shot examples of spec-
generation prompting as in PGM’s Stage II.

• PGM\Plan. We remove the planning mechanism from PGM and instead use
a few-shot prompting to trigger LLMs to directly generate a structured spec-
ification from user queries (α = 0.217, β = 0.288, γ = 0.142, δ = 0.138, ε =
0.215).

98 Y. Gu et al.

• PGM\Spec. We remove the specification generation stage from PGM and
utilize the generated plans and user queries to perform matching degree com-
putation (β = 0.557, ξ = 0.443).

Table 1. Ablation studies on main stages/mechanisms of our approach. \ denotes
the removing operation. “Cor”, “Com”, “Pre” and “Rec” represent mean Correctness,
Completeness, Precision and Recall. All methods are equipped with GPT-4. ∗ denotes
statistical significance (p < 0.05) between the variant and PGM.

Method Cor Com Pre@5 Rec@5 Pre@10 Rec@10 Avg. Δ
PGM 0.939 1.000 0.467 0.648 0.400 0.972 -
PGM-Light 0.912∗ 1.000 0.437∗ 0.597∗ 0.381∗ 0.936∗ 4.3%↓
PGM\Plan 0.863∗ 1.000 0.372∗ 0.402∗ 0.342∗ 0.816∗ 16.2%↓
PGM\Spec 0.808∗ 0.967 0.311∗ 0.295∗ 0.274∗ 0.498∗ 30.9%↓

The mean results on two subsets of the myExperiment dataset, using the
well-matched threshold, are reported in Table 1.

(1) It can be seen that PGM-Light is slightly inferior to PGM. We speculate
that this may be attributed to the reduced number of few-shot exemplars for
planning in PGM-Light, which could result in lower-quality of devised plans
and further impact the specification generation. Nevertheless, this one-stage
generation approach can save more time and resources in demonstration
construction and model inferring. Thus, PGM-Light constitutes a trade-off
between saved resources and dropping performance.

(2) Note that removing planning mechanism causes severe performance degra-
dation, with an average decrease of [8.1%, 20.3%, 38.0%] in terms of Cor-
rectness, Precision@5 and Recall@5 metrics, respectively. These noticeable
differences provide compelling evidence that LLMs-aided planning plays a
vital role in understanding user intents and aligning them with workflow
processes by abstracting step-by-step instructions.

(3) Among the three variants, leaving out specification generation stage leads
to the most pronounced performance drop. This is due to the absence of
extracting fine-grained and structured information that is mixed within the
complex queries, which increases the risk of overlooking critical elements.

Scientific Workflow Recommendation with LLMs 99

5.4 Robustness Analysis

Table 2. Robustness results for different annotators
and different order of exemplars.

Cor Com Pre@5 Rec@5
PGM(annotator A) 0.94±0.02 1.00±0.00 0.47±0.03 0.65±0.03

different annotator B 0.93±0.02 1.00±0.00 0.45±0.02 0.63±0.01

different annotator C 0.95±0.04 1.00±0.00 0.47±0.05 0.66±0.05

∗ Standard deviation shown is for different order of exem-
plars, with five different random seeds.

In this part, we analyze
the robustness of plan-
ning mechanism by exam-
ining performance under
different prompt configu-
rations using GPT-4, well-
matched threshold and the
myExperiment dataset.
• Different annotators. We first investigate robustness to three different anno-
tators. In addition to the results above, which use planning prompting written
by an annotator A, two other experts (annotators B and C) independently wrote
plans for the same few-shot exemplars. Table 2 showcases no notable difference
among three annotations, which implies that the success of the planning mech-
anism is not dependent on a specific linguistic style.

Fig. 6. Robustness results for different num-
ber of exemplars.

• Different order of exemplars.
Following [15], we analyze the stan-
dard deviation of performance when
considering different exemplar orders
in the prompt. The results in Table 2
show relatively small standard devi-
ations in all cases, indicating that
the order of prompts does not signif-
icantly affect the performance.
• Different number of exemplars. From Fig. 6, we also find that the improve-
ment of planning prompting over direct spec-generation prompting remains con-
sistent when varying the number of few-shot exemplars in the prompt. This
again confirms the robustness and effectiveness of the planning mechanism.

5.5 Case Study

To further validate the effectiveness of our approach, we conduct case studies
with qualitative analysis. Figure 7 illustrates the recommendation process and
results for the user query depicted in Fig. 2 when the threshold is well-matched.
PGM generates a four-step plan to guide the specification generation, computes
the matching degree of candidates, and recommends the top-k workflows.

Note that the query in this case is derived from the description of the query
workflow with id 202 in the myExperiment dataset. Hence, the golden standard
workflow sw202 is not included in the final recommendation list. However, we still
compute the matching degree between the query and sw202, which yields a result
of 0.871 (Rank #0) that is higher than all the other candidates. This confirms
the correctness of our computation method. Moreover, among the top-3 work-
flows recommended by PGM, two are rated as well-matched by experts, and one
is rated as matched. These workflows can fulfill user requirements and provide

100 Y. Gu et al.

Fig. 7. Case study on the recommendation of PGM (GPT-4) for the user query in
Fig. 2. Please refer to the corresponding website, similar to sw233 in Fig. 1, for complete
information of workflow attributes that are not shown here due to space constraints.

valuable references for reuse and repurposing. For example, as shown in the work-
flow cards in Fig. 7, the textual information and graph structure of recommended
sw198 (Rank #1), sw200 (Rank #2) and the golden workflow sw202 are generally
identical, with the main difference being the substitution of individual activ-
ities, such as EBI_WU_BLAST, Nested_Workflow and EBI_NCBI_BLAST,
depending on user needs. To sum up, our LLMs-based approach demonstrates its
powerful capability in comprehending and addressing intricate queries, thereby
providing users with appropriate and reliable workflows.

6 Limitations and Discussions

As the pioneering work exploring the utilization of LLMs in the scientific work-
flow domain, PGM has introduced a novel paradigm for workflow recommenda-
tion. However, it is important to acknowledge that there are still some limitations

Scientific Workflow Recommendation with LLMs 101

and areas for improvement in our approach: 1) Although the results in Sect. 5.4
are relatively robust to the prompt for planning, the generated plans may not
always be optimal because the performance of LLMs could be unpredictable
and unstable. Addressing the challenge of reducing uncertainties and enabling
robust learning of plan patterns from prompts is an important area for further
investigation. 2) General-purpose LLMs, such as the GPT series used in PGM,
have limitations in learning domain-specific semantics due to their training data.
There is significant potential for enhancing the performance of PGM by fine-
tuning these general LLMs using domain-specific workflow data in future work.
3) Plan-aided recommendation methods are not exclusive to scientific workflows.
We believe that it is valuable and promising to explore the application of the
planning mechanism with LLMs in other process-oriented service compositions,
such as business processes and ML/AI workflows.

7 Conclusion

In this paper, we put forward PGM, a three-stage scientific workflow recommen-
dation method based on LLMs, to address users’ text queries. Leveraging the
inherent capabilities of LLMs in comprehension and reasoning, PGM effectively
handles complex problems by first parsing the query and devising a plan. Sub-
sequently, PGM generates a structured specification of the intended workflow
through few-shot prompting, guided by the plan. Finally, PGM computes the
matching degree between the query and candidate workflows using the plan and
specification, enabling recommendation. The core of PGM lies in LLMs-aided
planning mechanism, which facilitates a deep understanding of user intents and
provides guidance for subsequent generation and matching. Experimental results
validate the superior performance of PGM compared to alternative methods.
Furthermore, through extensive ablation studies, robustness analysis and case
studies, we provide compelling evidence of the effectiveness of our approach.

Acknowledgements. This work is supported by China National Science Foundation
(No. 62072301) and the Program of Technology Innovation of the Science and Tech-
nology Commission of Shanghai Municipality (No. 21511104700).

References

1. Djaffardjy, M., et al.: Developing and reusing bioinformatics data analysis pipelines
using scientific workflow systems. Comput. Struct. Biotechnol. J. (2023)

2. Gu, Y., Cao, J., Qian, S., Zhu, N., Guan, W.: MANSOR: a module alignment
method based on neighbor information for scientific workflow. Concurrency Com-
put. Pract. Exp., e7736 (2023)

3. De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myExperi-
ment Virtual Research Environment for social sharing of workflows. Futur. Gener.
Comput. Syst. 25(5), 561–567 (2009)

4. Blanchi, C., Gebre, B., Wittenburg, P.: Canonical workflow for machine learning
tasks. Data Intell. 4(2), 173–185 (2022)

102 Y. Gu et al.

5. da Silva, R.F., Pottier, L., Coleman, T., Deelman, E., Casanova, H.: WorkflowHub:
community framework for enabling scientific workflow research and development.
In: 2020 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), pp.
49–56. IEEE (2020)

6. Starlinger, J.: Similarity measures for scientific workflows. Ph.D. thesis, Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät (2016).
https://doi.org/10.18452/17406

7. Zhou, Z., Wen, J., Wang, Y., Xue, X., Hung, P.C., Nguyen, L.D.: Topic-based
crossing-workflow fragment discovery. Futur. Gener. Comput. Syst. 112, 1141–
1155 (2020)

8. Starlinger, J., Brancotte, B., Cohen-Boulakia, S., Leser, U.: Similarity search for
scientific workflows. Proc. VLDB Endowment (PVLDB) 7(12), 1143–1154 (2014)

9. Yu, X., Wu, W., Liao, X.: Workflow recommendation based on graph embedding.
In: 2020 IEEE World Congress on Services (SERVICES), pp. 89–94. IEEE (2020)

10. Gu, Y., Cao, J., Qian, S., Guan, W.: SWORTS: a scientific workflow retrieval
approach by learning textual and structural semantics. IEEE Trans. Serv. Comput.
(2023)

11. Wang, L., et al.: Plan-and-solve prompting: improving zero-shot chain-of-thought
reasoning by large language models. arXiv preprint arXiv:2305.04091 (2023)

12. Jiang, X., Dong, Y., Wang, L., Shang, Q., Li, G.: Self-planning code generation
with large language model. arXiv preprint arXiv:2303.06689 (2023)

13. Yao, Y., Li, Z., Zhao, H.: Beyond chain-of-thought, effective graph-of-thought rea-
soning in large language models. arXiv preprint arXiv:2305.16582 (2023)

14. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models
are zero-shot reasoners. arXiv preprint arXiv:2205.11916 (2022)

15. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903 (2022)

16. Wang, Z., Cai, S., Liu, A., Ma, X., Liang, Y.: Describe, explain, plan and select:
interactive planning with large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560 (2023)

17. Pallagani, V., et al.: Understanding the capabilities of large language models for
automated planning. arXiv preprint arXiv:2305.16151 (2023)

18. Wen, Y., Hou, J., Yuan, Z., Zhou, D.: Heterogeneous information network-based
scientific workflow recommendation for complex applications. Complexity 2020
(2020)

19. Zhou, Z., Cheng, Z., Zhang, L.J., Gaaloul, W., Ning, K.: Scientific workflow cluster-
ing and recommendation leveraging layer hierarchical analysis. IEEE Trans. Serv.
Comput. 11(1), 169–183 (2016)

20. Lu, P., et al.: Chameleon: plug-and-play compositional reasoning with large lan-
guage models. arXiv preprint arXiv:2304.09842 (2023)

21. OpenAI: GPT-4 Technical report (2023)
22. Yasunaga, M., Leskovec, J., Liang, P.: LinkBERT: pretraining language models

with document links. arXiv preprint arXiv:2203.15827 (2022)
23. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist.

Q. 2(1–2), 83–97 (1955)
24. Li, H.: Research progress on evaluation methods and factors influencing shale brit-

tleness: a review. Energy Rep. 8, 4344–4358 (2022)
25. Woolson, R.F.: Wilcoxon signed-rank test. Wiley Encycl. Clin. Trials, 1–3 (2007)

https://doi.org/10.18452/17406
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2303.06689
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2305.16151
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2203.15827

Predicting Effect and Cost of Microservice
System Evolution Using Graph Neural

Network

Xiang He(B), Zihao Shao, Teng Wang, Haomai Shi, Yin Chen,
and Zhongjie Wang

Faculty of Computing, Harbin Institute of Technology, Harbin, China
{hexiang,chenyin,rainy}@hit.edu.cn

Abstract. With the increasing prevalence of microservice technology,
the architectural flexibility and scalability of software systems have wit-
nessed notable advancements. However, this progress has also brought
about a challenge in meeting the frequent changes in user requirements,
thereby adversely affecting the quality of the system. It is crucial for
microservice systems to undergo evolution through the modification of
system configurations to adapt to changing requirements, and various
methods for system evolution have been proposed. However, the evolu-
tion schemes generated by these methods vary in terms of the degree
of improvement in quality and the cost required for evolution, such as
time and money, i.e., different evolution effect and evolution cost. Con-
sidering the above, it is necessary to predict effect and cost before apply-
ing these schemes to real systems. Existing physical methods possess
drawbacks such as high expenses and time-consuming setup procedures.
Conversely, simulation methods, which are based on mathematical mod-
els, necessitate certain simplifications, resulting in disparities between
the outcomes and the actual results. To overcome these challenges, this
paper introduces a prediction method for microservice system evolution.
By employing Graph Neural Network techniques to learn from histori-
cal data, this method enables precise prediction of the effects and costs
associated with various microservice evolution schemes. And based on the
above algorithm, an online prediction system is implemented, indepen-
dent of the microservice system for long-term prediction. Experimental
results validate the accuracy and robustness of the proposed prediction
method.

Keywords: Microservice system · Evolution Effect · Evolution Cost ·
Prediction

1 Introduction

With the rapid growth of the digital economy, software services have become
crucial infrastructures. Cloud-native technologies, particularly microservices,
have gained prominence due to their ability to handle complex requirements,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 103–118, 2023.
https://doi.org/10.1007/978-3-031-48421-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_8

104 X. He et al.

diverse technologies, and high concurrency [13]. The decentralized and decon-
centrated nature of microservices architecture enhances scalability and flexibility
but also introduces increased system complexity. However, the frequent changes
in microservice system requirements pose challenges for meeting system demands
and can lead to performance degradation. Therefore, it is essential to adapt the
system to changing requirements during runtime, known as microservice system
evolution, while ensuring maintainability, scalability, and reliability.

There are different methods for microservice system evolution to improve
performance and scalability. These methods vary in terms of the quality improve-
ment they provide and the cost they incur, known as the evolution effect and evo-
lution cost, respectively. Evolution methods like service placement and offloading
change how microservices are deployed to meet new requirements, affecting the
resource cost of the system and other evolution effects such as response time.

In order to assist developers in comprehending microservice system evolu-
tion, managing and maintaining the system, it is imperative to measure the
effects and costs of microservice evolution, such as average response time, energy
consumption, resources required for deployment. Figure 1 illustrates the impor-
tance of these measurements, as they provide valuable insights for developers to
make informed decisions and achieve better outcomes in the evolution process
of microservice systems.

Fig. 1. Comparison of Various Measurement Methods

As shown in Figure 1, the existing methods for evaluating the evolution effect
and cost include physical testing, simulation, and numerical experiment meth-
ods [1,2,17], which are evaluated prior to the implementation of the evolution
scheme. Physical testing involves conducting tests in a real hardware environ-
ment to verify system performance and indicators. While it provides a realistic
simulation of the production environment, it has drawbacks such as high cost,
time consumption, and setup difficulties. Simulation testing uses tools to mimic

Predicting Effect and Cost of Microservice System Evolution Using GNN 105

system behavior on computers, while numerical experiments rely on mathemat-
ical equations to calculate results without simulations or real systems. Both
methods allow for repeated testing without affecting the production environ-
ment, but their accuracy in representing reality is limited due to simplifications
in modeling.

To overcome the constraints of existing evaluation methods and to achieve
more accurate outcomes, this study introduces a novel prediction approach uti-
lizing Graph Neural Network (GNN). Our goal is to develop an online prediction
system for long-term evolution forecasting in microservice systems. By leverag-
ing historical data, our method enables more precise estimation of the impact
and cost of microservice evolution. The following major contributions have been
achieved:

1. Drawing from the definitions of evolution effect and cost, this paper intro-
duces a prediction method that is applicable to diverse evolution metrics
in microservice systems. Leveraging Deep Learning, the proposed method
comprises two steps: feature dimensionality reduction for single instance and
overall microservice system prediction based on GNN.

2. Based on the proposed prediction method, this paper implements a online
prediction system that is focused on evolution effect and evolution cost. The
prediction system operates independently of the running microservice system,
collects historical logs online to predict the evolution effect and cost of the
microservice system and can adapt to microservice collection additions and
deletions during long-term operation.

3. To validate the effectiveness of the proposed prediction method and system,
this paper conducts multiple experiments using an open-source service collec-
tion in a real physical environment. The experimental results obtained from
these experiments showcase the accuracy and reliability of the prediction
method and system.

The remainder of this paper is structured as follows. Section 2 provides a
summary of the relevant literature. Section 3 elaborates on the model of the
microservice system. Section 4 concentrates on the proposed prediction method
and prediction system. Section 5 outlines the experiments conducted in detail.
Finally, Sect. 6 concludes the paper and discusses potential future work.

2 Related Work

Existing studies provide a comprehensive investigation into the performance pre-
diction of microservice systems and serve as a valuable source of inspiration for
this paper. Service system evolution [16] refers to the continuous change and
development of a service system over time in response to changing business needs,
technological advancements. In a microservice system, the MAPE-K framework
[8] can be employed to achieve self-adaptation, which enables the system to auto-
matically adjust its configuration and behavior based on real-time system status

106 X. He et al.

and environmental changes, thus in turn leading to changes in evolution effects
and costs.

There are many studies on measures of evolution effects and costs [1,2,4,11,
17] nowadays. The traditional simulation tool, CloudSim [2], is widely utilized
in the simulation of large-scale cloud computing systems due to its high scal-
ability. Mahmud et al. [11] proposed a simulation of applications relied on the
simulation of energy consumption in CloudSim 3.0 to model the entire fog com-
puting infrastructure environment. In the numerical experiment method, Deng
[4] et al. discussed the problem of realizing optimal application deployment in a
resource-constrained distributed edge environment and mathematically modeled
the average response time of the environment as the optimization goal. Xiang [17]
and others discussed the allocation of computing resources and traffic scheduling
in the edge computing environment. The article defined the system model and
the corresponding response time in detail. The physical method is limited by
the high cost and the difficulty of setting up the physical environment. Simula-
tion and numerical methods may deviate from reality to some extent due to the
simplification of multiple factors that exist in reality.

Furthermore, there have been some studies conducted on QoS prediction
[3,6,12,15]. Wang et al. [15] proposed a deep learning-based QoS prediction
method in mobile edge computing. Luo et al. [10] introduced a tensor-based non-
negative latent factor decomposition method for solving the temporal pattern
problem in quality of service prediction. The method improves the accuracy and
scalability of QoS prediction by modeling the time-dependent effects. Zou et al.
[18] introduces a method called NDMF for solving the sparse and missing data
problem in quality of service prediction. The method improves the accuracy and
robustness of QoS prediction by integrating neighborhood information and depth
matrix decomposition. Courageux-Sudan et al. [3] proposed a simulation-based
approach to automatically predict the performance of microservice applications.
However, these studies primarily emphasize the interaction between services,
service requests, and services, while overlooking the impact of external evolution
schemes.

3 Microservice System Evolution Modeling

This section outlines the modeling of the problem in the context of microservice
systems, system evolution methods, and system evolution metrics.

3.1 Microservice System

In this paper, MSS can be represented as MSS =< U,G(V,E),MS >. They
are described separately below.

Definition 1 (Microservice). There is a set of microservices in a microser-
vices system, defined as MS = {ms1,ms2, ...}. A microservice is defined as
msi =< apii, ri >.

Predicting Effect and Cost of Microservice System Evolution Using GNN 107

– apii represents the set of functional interfaces provided by msi
– ri represents the computational resources required by msi, including the CPU

and memory resources.

Definition 2 (Service Instance). Based on user requests and resources, the
administrator deploys specific service instances S on Serveri. Each microservice
instance sij ∈ S indicates that msj is deployed on Serveri. A service instance sij
is defined as a tuple sij =< r

′
j , numi >.

– r
′
j denotes the computing resources allocated by the instance to Serveri

– numi denotes the number of deployed instances.

Definition 3 (Server). The microservices system is deployed on a set of
servers, which is defined as Server = {server1, server2, ...}. A Server is defined
as serveri =< Ri, Si >.

– Ri represents the computing and storage resources available on the server,
including CPU and memory. It is important to note that this arti-
cle does not currently consider other types of resources, hence Ri =<
CPUi,MEMORYi >.

– Si represents the set of microservice instances.

Definition 4 (Service Chain). Service chains are utilized to delineate the
interdependencies amidst microservices ms, defined as chaini = {msi, ...,msj}.

Circular dependencies are not considered in this paper as they are gener-
ally regarded as poor practice in microservice architectures, and in such cases,
achieving microservice independence and isolation from one another is difficult.

Definition 5 (Network Topology). The network topology among the servers
is graphically depicted by a denoted graph, referred to as G(V,E).

– V = {Server1, ..., ServerN}
– E = {edgeij , i �= j, 0 ≤ i, j ≤ |V |}, edgeij represents the data dependency

between Servers due to chain.

Definition 6 (User Request). Continuous user requests are divided into mul-
tiple time periods denoted as U =< u1, ..., ut >.

Within these time periods, user requests are represented as ut = {uij
t }N,m

i=0,j=0,
where uij

t represents the user requests that reach the msj instance on Serveri
at time t.

108 X. He et al.

3.2 Microservice System Evolution

The system evolution acquires and analyzes runtime information from the
Microservice System MSS and generates a viable evolution scheme based on
the analysis. The scheme is then executed in the MSS to bring about a new
state of the system.

The evolution scheme comprises a range of evolution operation. In this paper,
we focus on three types of widely used and more important evolution operation.
These three are the most common and are widely used in placement, offloading
and other problems.

Definition 7 (Evolution Scheme). The evolution scheme generated can be
considered as a fusion of the aforementioned three types of evolution methods,
namely, scheme =< Fd, Fu, Ft >.

– Evolution operation of deployment plan Fd. Deployment plan θ =
{θij}n,mi=0,j=0, where θij represents the number of msj deployed on Serveri.
Fd changes the original θ to θ

′
.

– Evolution operation related to user requests Fu. The operation include
authentication, traffic control, etc. At time point t, the microservices sys-
tem efficiently and stably processes ut by performing various operations and
filtering out any that do not meet the requirements.

– Evolution operation related to request forwarding Ft. This action makes
changes to the current system’s routing and load balancing policies. Different
policies correspond to different user distributions, which in turn affect the
performance of the whole system.

3.3 Evolution Metrics

To ensure the scalability and versatility of our method and system, we have
selected four particularly valuable and widely utilized metrics. These encompass
two types of effect metrics e: average response time and throughput rate, as
well as two cost metrics c: CPU requirements for deployment and MEMORY
resources. While our method is not limited to a specific metric but can be applied
to a range of effect and cost metrics.

Average Response Time. Response time refers to the cumulative duration
between the user’s request transmission and the receipt of a corresponding
response. It is typically quantified in milliseconds (ms) and represents the mean
duration expended on all requests.

Throughput Rate. Throughput rate pertains to the efficiency of a service in
processing requests and is computed as the ratio of the total number of processed
requests to the total processing time..

Predicting Effect and Cost of Microservice System Evolution Using GNN 109

CPU and Memory. Microservices rely on CPU and memory resources during
runtime to effectively carry out their tasks. CPU resources are used to process
computational tasks and execute code and algorithms, while memory resources
are used to store data and temporary computational results.

4 Proposed Method

Our proposed method consists of a prediction algorithm and a prediction system.
In which this paper introduces a GNN-based predicitonmethod for predicting
the evolution effects and costs, which is utilized to develop a comprehensive
predictionsystem that can be integrated into existing microservices systems.

4.1 Prediction Algorithm

As illustrated in Fig. 2, the prediction algorithm employed in this study can
be delineated into two main components: feature reduction for an individual
instance and graph neural network (GNN) prediction for the comprehensive
microservice system. The features f of a single instance are amalgamated with
MSS and scheme, serving as the input for the GNN model. Subsequently, the
GNN model predicts the evolution effect and cost of the overall microservice
system.

Fig. 2. Proposed Prediction Algorithm

Feature Dimensionality Reduction for Single Microservice Instance.
For MS = {ms1,ms2, ...}, where different msi correspond to different fea-
tures fi, and the same msi will have multiple feature choices f j

i under different
metricsj . Thus the feature F = {f1, f2, ...} of MS varies significantly among
different fi, and the overall feature space is particularly large. So it is challeng-
ing to identify a feature engineering approach that is applicable to all types of

110 X. He et al.

microservices. At the same time, in a large collection of microservices MS, it is
not a wise choice to input all the features of all services into the deep model,
both in terms of time, resources and prediction effectiveness. Therefore, the pre-
diction method proposed in this paper initially conducts feature dimensionality
reduction on a single microservice instance. Reducing the original m−dimension
features to m − n dimension features reduces the original complexity O(m) to
O

′
(m) + O(m − n) at a smaller cost, where the complexity O

′
(m) of the fea-

ture reduction work is much smaller than the complexity O(m−n) of the graph
neural network.

This approach is fundamentally equivalent to the QoS prediction of a single
microservice instance, and it maps various microservice feature types from the
original space to the same new feature space to ensure the task independence of
node features.

Based on existing literature [6,15] and microservice modeling, selected fol-
lowing features f . These features contain a rich amount of information and can
provide better predictive power for the target variables.

– Resource allocation: The performance of the program is based on the resources
it occupies. r =< Cpu,Memory >, here this article uses the CPU and Mem-
ory resources required for the deployment

– Bandwidth: Indicates the available bandwidth of the network connection.
– Service attributes: Microservice performance is related to its own service

attributes. Different features can be used for each type of microservice to
achieve better prediction results.

As shown on the left in Fig. 2, multilayer perceptron (MLP) is utilized
to reduce feature dimensionality and predict relevant indicators for individual
instances. Comprised of interconnected nodes or neurons, MLP represents a
nonlinear mapping between input and output vectors. Nodes are connected via
weights and output signals.

GNN-Based Prediction Method. Considering that MSS consists of a series
of distributed independent Servers as well as MS while the relationship between
services in MSS exhibits complex nonlinear characteristics, it can be viewed as
a graph structure. In contrast to traditional deep learning methods, graph neural
networks (GNNs) are capable of processing unstructured data in network formats
and disseminating information and parameter updates between nodes. Among
them GAT stands out by incorporating an attention mechanism to learn the
weight distribution of neighboring nodes. It also excels in tasks by applying the
message passing mechanism to dynamic graphs. As such, this paper leverages
the GAT [14] approach to predict overall performance metrics.

As depicted in Fig. 2, the prediction process consists of three steps. Firstly,
the initial features of microservices, denoted as fi, are dimensionally reduced to
obtain f

′
i . Secondly, the features of a single instance, f

′
i , along with the informa-

tion ofMS, Servers, and three evolution operations (Fd, Ft, Fu), are combined
to construct a graph-structured data denoted as G(V,E). Finally, the graph G
is fed into the GAT to obtain the final prediction result.

Predicting Effect and Cost of Microservice System Evolution Using GNN 111

The prediction model presented in this paper employs a two-layer GAT archi-
tecture, integrating the relu activation function and a dropout layer. It is crucial
to strike a balance in the depth of GAT layers as excessively deep networks can
adversely impact training stability. The dropout layer is incorporated to miti-
gate overfitting in the neural network. Specifically, the two-layer GAT network
is responsible for node-level prediction, yielding a node feature vector obtained
through weighted aggregation. In order to aggregate the node features into the
entire graph’s features, a fully connected layer is utilized.

4.2 Prediction System

Fig. 3. Prediction System

Predictive system P offers support for various functions, including informa-
tion collection, log collection, and data processing within MSS. Its purpose is
to establish a connection between the MSS, evolution methods, and predic-
tion algorithms. By decoupling the predictive system from the original MSS, it
becomes capable of operating independently. Furthermore, it can be adaptively
updated to accommodate long-running microservice systems that undergo fre-
quent evolution.

As depicted in Fig. 3, prediction system P can be partitioned into six distinct
steps that are involved in the interaction with MSS and the evolution methods:

(1) MSS is required to transmit certain properties to P , which include MSS,
interface information of all ms, and the intricate invocation relationship
between ms, among other things. Armed with this information, the prediction
system can engage in modeling activities pertaining to MSS.

112 X. He et al.

(2) P necessitates specific evolution operations, which may include, but are not
limited to, instance deployment plan, routing strategy, load balancing strat-
egy, and the like.

(3) P necessitate the log output of MSS over a period of time denoted by T .
Present-day microservice systems are predominantly based on container tech-
nologies like K8s and docker. Drawing upon them, a diverse array of perfor-
mance metrics can be extracted from MSS, which forms the foundation of
the predictive methodology expounded in this paper.

(4) The data processing component of P filters and processes raw log information
into the data format that is requisite for the prediction methodology.

(5) Drawing upon the logs from the past time period T , the prediction capability
is acquired from the data by amalgamating the information pertaining to
MSS and the evolution scheme. Consequently, the evolution effect and cost
within t are predicted. This iterative process, depicted in equations (4) and
(5), continues until a superior evolution scheme is attained.

(6) Refining evolution methods for implementation on real-world MSS can result
in significant time and economic savings, prevent unforeseen incidents, and
enhance the overall quality of MSS.

Simultaneously, the operation of a long-running MSS is susceptible to sig-
nificant changes, including hardware upgrades, server migrations, failures, and
microservice version updates. These changes can impact the performance of indi-
vidual microservices, which, in turn, affects the overall evolution performance of
the system. Consequently, existing prediction models must be retrained to reflect
the updated performance metrics and generate precise predictions about future
performance.

In the long-term operation of MSS, at time Ti, the prediction system P lever-
ages historical data from the preceding Ti − Ti−k period to learn the prediction
capabilities and forecast various performance metrics MSS under the influence
of the evolution scheme at time Ti. Similarly, at the next moment Ti+1, based
on the historical data from the preceding Ti − Ti−k+1 period, the system pre-
dicts the metrics at Ti+1. Here, k represents the parameter set by the forecasting
system, which can be flexibly adjusted based on the actual scenario.

During the initial phase of MSS, when there is a lack of data required for
training, a cold start phase occurs. To address this issue during phase T0, a warm-
up mechanism can be employed. The warm-up mechanism initializes the service
by simulating traffic and utilizing virtual users. During this warm-up period,
diverse performance metrics of the service, such as response time, throughput,
and error rate, are recorded to generate data for the prediction system.

5 Experiment and Analysis

In this section, experiments were conducted in a real-world environment to
demonstrate the prediction system P ’s accuracy and reliability. Additionally,
the experiment simulated typical microservice addition and deletion scenarios,
and the results indicate that the prediction system P can maintain a relatively
good health under such conditions.

Predicting Effect and Cost of Microservice System Evolution Using GNN 113

5.1 Experimental Setup

Experimental Environment and Metrics. In this paper, experiments were
conducted on a server cluster comprising five servers running the Linux operating
system, including a master node and four work nodes. The version of Kubernetes
(K8s) used was 1.17, and the version of Docker was 17.03.

The microservice set utilized in the experiment is the open-source benchmark
microservice system RescureService [7], which consists of over 20 services. The
user simulation was implemented using the Python thread pool, where a specific
type of user input was manually designed, and the number of users was generated
based on mathematical distribution. This paper conducted nearly one hundred
hours of experiments under different evolution methods and user distributions,
resulting in the collection of almost 8000 time periods of data. Relevant infor-
mation was then extracted from the data to organize the relevant experiments.

In this paper, we have selected RMSE (Root Mean Squared Error), MAE
(Mean Absolute Error), and Spearman’s correlation coefficient as the evolution
indicators for the experiment. RMSE is a commonly used indicator in regression
analysis to evaluate the accuracy of the prediction model. MAE measures the
mean absolute difference between the actual and predicted values in a regression
analysis.

The significance test of Spearman’s correlation coefficient is employed to
assess the statistical significance of the correlation between two variables. Its
purpose is to verify whether our predicted results align with the observed trends
in the actual results. The significance level, typically set at 0.05, serves as a
critical threshold to determine the significance of the correlation. If the resulting
p-value is below 0.05, it indicates a significant correlation between our predicted
results and the actual results.

Experimental Strategy. To evaluate the evolution of prediction effectiveness,
this paper compares four baseline methods.

– Math-Method [4]: A mathematical modeling-based approach is employed to
calculate response time and throughput rate. Regarding the determination
of resource requirements for deployment, they are calculated based on the
specific configuration at the time of deployment.

– Single-Step: The single-step instance prediction step is removed, and all fea-
tures are input into the GNN model without dimensionality reduction map-
ping.

– GCN [9]: The GNN method in the prediction algorithm chooses the GCN
model instead of the GAT model.

– GraphSage [5]: As above, choose the GraphSage model.

To enhance the reliability of the experimental outcomes and minimize errors,
we conducted three experiments for each experimental method. Each experi-
ment involved a distinct combination of evolution methods and user distribu-
tions, leading to varying evolution effects and costs. We collected three distinct

114 X. He et al.

datasets by conducting experiments in physical environments based on different
user distributions and evolution methods. Each set of experiments corresponded
to a different time period [1,2,... ,t0,t0 + 1,... ,t0+t1]. We trained the prediction
model using past data from 1-t0, subsequently generating predictions for MSS
from t0 to t1. The obtained results, denoted as y′, for the time period from t0
to t0 + t1, are compared against the ground truth results y. Various indicators,
including MAE, RMSE, and correlation coefficients, are then calculated to assess
the performance of the predictions.

Table 1. Experimental Results for Evolution Effects

evolution Effect Average Response Time Throughput Rate
Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3

RMSE Our 83.07 67.18 75.55 18.61 19.79 18.54

Math-Method 123.01 104.14 108.9 27.19 26.10 26.54

Single-Step 92.07 71.93 76.37 19.47 22.25 20.73

GCN 83.57 82.36 81.20 18.88 20.42 22.10

GraphSage 84.4475 75.8141 80.5187 19.2119 21.0231 19.9201

MAE Our 60.82 48.82 56.69 14.27 14.57 12.75

Math-Method 85.84 75.51 81.15 21.31 20.91 20.66

Single-Step 70.48 52.68 57.50 14.43 15.97 15.11

GCN 63.34 60.67 62.43 14.78 15.09 16.27

GraphSage 63.08 55.07 62.17 15.55 15.74 14.85

Spearman Our 4.84e-13 4.60e-17 5.00-09 5.10e-16 8.93e-25 3.54e-33

Math-Method 0.23 0.33 0.25 0.1528 0.17 0.1865

Single-Step 9.94e-07 6.77e-16 2.47e-08 2.24e-15 1.46e-12 1.46e-09

GCN 5.57e-15 2.56e-08 1.60e-06 2.64e-16 7.01e-14 3.95e-11

GraphSage 1.30e-14 4.63e-11 7.17e-06 4.44e-18 1.52e-13 9.61e-16

Meanwhile, with respect to the prediction of microservices evolution, this
study conducts simulations on the addition and deletion of diverse microser-
vices, and compares the results with prior experimental findings. Specifically, we
devise four comparative experiments involving the absence of certain services
[7], namely: a singular material management service (Management 1), a singular
sensor service (Sensor), a singular image recognition service (Image), and two
material management classes (Management 2). Among them, Management1, 2
are mainly for interaction with the database, Sensor is mainly for request send-
ing, and Image is a computationally intensive service. They better represent the
different kinds of microservices.

Predicting Effect and Cost of Microservice System Evolution Using GNN 115

5.2 Experiments for Evolution Effect and Cost

The experimental outcomes on evolution effect metrics are presented in Table 1.
The unit of RMSE and MAE for the average response time is in milliseconds,
while the unit of throughput rate is the number of requests per second, signifying
the average number of user requests processed by the microservice system in one
second.

Furthermore, the experimental findings on evolution cost metrics are dis-
played in Table 2. The numerical unit of CPU resources required for evolution
is millicore, which serves as a measure of CPU resources. In terms of the unit of
memory required for evolution, Kubernetes employs the unit of memory (Mem-
ory) in bytes, and Mi (Mebi) is utilized to denote 220 (1048576) bytes.

Table 2. Experimental Results of Evolution Cost

evolution Cost CPU Memory
Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3

RMSE Our 12.66 12.70 12.65 22.75 22.67 19.76

Math-Method 47.12 43.84 46.25 123.10 112.02 105.14

Single-Step 13.12 13.15 12.98 22.12 25.73 24.34

GCN 13.53 14.12 13.48 23.14 24.14 22.20

GraphSage 12.97 13.82 11.17 24.14 25.83 20.51

MAE Our 9.89 9.70 9.80 20.13 19.99 16.59

Math-Method 35.12 31.73 34.69 112.26 102.33 85.84

Single-Step 9.94 10.1277 9.57 20.17 22.11 22.70

GCN 10.12 11.34 10.63 14.78 15.09 17.27

GraphSage 10.13 10.29 11.17 21.19 23.93 18.12

Spearman Our 3.23e-17 1.36e-16 5.13e-15 5.27e-23 4.21e-19 5.07e-19

Math-Method 0.31 0.21 0.25 0.19 0.21 0.15

Single-Step 7.42e-08 3.73e-13 2.32e-09 4.94e-17 8.71e-16 3.47e-18

GCN 5.78e-08 5.85e-15 1.01e-07 7.37e-16 2.36e-13 6.61e-16

GraphSage 9.14e-13 7.31e-11 3.02e-08 2.14e-14 5.31e-17 3.12e-06

Based on the aforementioned results, it is evident that our proposed method,
GCN, and GraphSage, which utilize graph neural network methods, demonstrate
superior performance compared to traditional mathematical approaches. These
methods excel in extracting higher-level features from historical data to pro-
vide more accurate predictions. Among the various GNN methods, GAT has
demonstrated superior performance. The unique attention mechanism of GAT
can capture the nonlinear interactions between nodes, thereby enhancing the
network’s expressive ability.

116 X. He et al.

Moreover, the feature dimensionality reduction for single microservice
instance also improves the prediction accuracy to a certain extent. This pro-
cess compresses complex features and attributes into low-dimensional vectors,
facilitating better understanding and processing of the data by the prediction
system.

5.3 Experiments for Microservice Additions and Deletions

During the operation of MSS0, various scenarios may occur that go beyond
the proposed evolution scheme, such as the addition, deletion, and reconfigura-
tion of microservices, which lead to changes in graph topology of G(V,E) and
result in the emergence of MSS1. Although the prediction system developed in
this paper is capable of making predictions for MSS1, during the early stage of
its evolution, the system can only rely on data from MSS0 due to the lack of
new data. To assess the impact of this on our prediction performance, we con-
ducted experiments to evaluate the effectiveness of the prediction system during
this transitional phase. The experimental results for microservice additions and
deletions are presented in Table 3.

As can be observed from the experimental results, the absence of microser-
vices has varying impacts on different metrics and different microservices. The
impact of the absence of different services on the same metrics is influenced by
the inherent nature of the service.

Table 3. Experiments for Microservice Additions and Deletions

Microservice Evolution Effect Evolution Cost
Missing Response Time Throughout Rate CPU Memory

RMSE Management 1 101.05 20.01 12.14 22.25

Sensor 80.12 19.13 12.05 23.15

Image 874.56 18.73 13.56 25.35

Management 2 105.80 20.17 13.15 24.17

MAE Management 1 67.18 16.10 10.10 19.75

Sensor 60.84 16.17 10.15 21.84

Image 599.72 15.99 11.72 22.13

Management 2 85.91 16.87 10.89 21.10

Spearman Management 1 3.89e-16 2.10e-11 1.12e-17 1.87e-17

Sensor 5.79e-13 1.56e-14 2.15e-15 3.70e-15

Image 4.04e-08 7.10e-09 7.15e-08 4.04e-11

Management 2 4.22e-11 3.42e-12 9.35e-12 7.12e-14

Through comparison with the experimental results presented in Tables 1 and
2, it is evident that even in the absence of one or two service data, the proposed

Predicting Effect and Cost of Microservice System Evolution Using GNN 117

prediction system can still perform performance prediction with reasonable accu-
racy, as indicated by the acceptable range of loss accuracy.

6 Conclusion and Future Work

This paper presents a prediction method that is applicable to various metrics
pertaining to microservice system evolution. Using this method, a prediction
system for microservice evolution is developed to forecast the performance of a
long-running microservice system, which can guide the evolution of the system.
The accuracy and robustness of the proposed prediction method and system are
validated through long-term experiments conducted in a real-world environment.

Potential future research endeavors may involve optimizing the evolution
scheme based on the proposed prediction approach and extending the prediction
capabilities to multiple microservice systems, instead of being limited to a single
system. Additionally, the experimental program aims to collaborate with com-
panies to obtain larger-scale datasets, thereby providing more robust evidence
of the benefits of deep learning methods.

Acknowledgements. Research in this paper is supported by the National Key
Research and Development Program of China (2022ZD0115404) and the National Nat-
ural Science Foundation of China (62372140, 61832014, 61832004).

References

1. Aslanpour, M.S., Toosi, A.N., Taheri, J., Gaire, R.: AutoScalesim: a simulation
toolkit for auto-scaling web applications in clouds. Simul. Model. Pract. Theory
108, 102245 (2021)

2. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

3. Courageux-Sudan, C., Orgerie, A.C., Quinson, M.: Automated performance pre-
diction of microservice applications using simulation. In: 2021 29th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), pp. 1–8. IEEE (2021)

4. Deng, S., et al.: Optimal application deployment in resource constrained distributed
edges. IEEE Trans. Mob. Comput. 20(5), 1907–1923 (2020)

5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)

6. He, X., Tu, Z., Wagner, M., Xu, X., Wang, Z.: Online deployment algorithms for
microservice systems with complex dependencies. IEEE Trans. Cloud Comput. 11,
1746–1763 (2022)

7. He, X., et al.: Rescureservice: a benchmark microservice system for the research of
mobile edge and cloud computing. arXiv preprint arXiv:2212.11758 (2022)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

http://arxiv.org/abs/2212.11758
http://arxiv.org/abs/1609.02907

118 X. He et al.

10. Luo, X., Wu, H., Yuan, H., Zhou, M.: Temporal pattern-aware QoS prediction via
biased non-negative latent factorization of tensors. IEEE Trans. Cybern. 50(5),
1798–1809 (2019)

11. Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R.: iFogSim2: An extended
iFogSim simulator for mobility, clustering, and microservice management in edge
and fog computing environments. J. Syst. Softw. 190, 111351 (2022)

12. Ren, X., et al.: DeepQSC: a GNN and attention mechanism-based framework for
QoS-aware service composition. In: 2021 International Conference on Service Sci-
ence (ICSS), pp. 76–83. IEEE (2021)

13. Stine, M.: Migrating to Cloud-native Application Architectures. O’Reilly Media
(2015)

14. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.:
Graph attention networks. STAT 1050(20), 10–48550 (2017)

15. Wang, S., Zhao, Y., Huang, L., Xu, J., Hsu, C.H.: Qos prediction for service recom-
mendations in mobile edge computing. J. Parallel Distrib. Comput. 127, 134–144
(2019)

16. Wang, Z., He, X., Liu, L., Tu, Z., Xu, H.: Survey on requirement-driven microser-
vice system evolution. In: 2020 IEEE International Conference on Services Com-
puting (SCC), pp. 186–193. IEEE (2020)

17. Xiang, Z., Deng, S., Jiang, F., Gao, H., Tehari, J., Yin, J.: Computing power
allocation and traffic scheduling for edge service provisioning. In: 2020 IEEE Inter-
national Conference on Web Services (ICWS), pp. 394–403. IEEE (2020)

18. Zou, G., Chen, J., He, Q., Li, K.C., Zhang, B., Gan, Y.: NDMF: Neighborhood-
integrated deep matrix factorization for service QoS prediction. IEEE Trans. Netw.
Serv. Manage. 17(4), 2717–2730 (2020)

QoS Prediction via Multi-scale Feature
Fusion Based on Convolutional Neural

Network

Hanzhi Xu, Yanjun Shu, Zhan Zhang, and Decheng Zuo(B)

Harbin Institute of Technology, Harbin, Heilongjiang, China
hzxu@stu.hit.edu.cn, {yjshu,zhangzhan,zuodc}@hit.edu.cn

Abstract. Quality of Service (QoS) prediction is a crucial aspect in
service management. However, the existing QoS prediction methods face
several limitations, such as loss of information during encoding, incom-
plete feature extraction and neglect of the interaction between features.
To this end, this paper proposes a new QoS PRediction method based
on a Multi-Scale convolutional neural Network, i.e., QPRMSN. For each
service invocation, we build a feature matrix that encodes invocation con-
text and QoS characteristics by using status codes with degrees of mem-
bership. Then, a multi-scale convolutional neural network is employed
to extract features that keep detailed information during deep global
features mining. Moreover, we introduce attention mechanism to learn
the intrinsic relationships between features to strengthen key features.
Finally, QPRMSN completes the QoS prediction based on a multi-level
feature matrix. Extensive experiments are conducted on a real-world
dataset to evaluate the performance of QPRMSN. The experimental
results demonstrate that QPRMSN outperforms the state-of-the-art QoS
prediction models and is better at QoS context encoding.

Keywords: QoS prediction · Convolutional neural network ·
multi-scale

1 Introduction

Services have been widely used in our daily life, such as e-learning, e-commerce,
and e-shopping [1,2]. Quality of Service (QoS) is the non-functionality attributes
of service, including throughput, response time, availability, and reliability. It
expresses the quantitative performance of services invoked by users [3]. As an
intuitive and basic indicator, QoS plays a curial role in service selection [4]. Due
to the heterogeneous and dynamic network status, a service QoS is varied for the
same user in different invocations. However, monitoring QoS of each invocation
requires additional time and expense for cloud facilities and leads to a lot of
unknown QoS values. When many QoS values are unknown, users are difficult
to select a suitable service to fulfill their QoS requirements. Therefore, accurate
QoS prediction is necessary for effective service selection.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 119–134, 2023.
https://doi.org/10.1007/978-3-031-48421-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_9

120 H. Xu et al.

QoS prediction is a hot topic in service computing and a huge number of
QoS prediction methods have been developed. Collaborative filtering is widely
employed in QoS prediction, which can be roughly divided into memory-based
algorithms [6–8] and model-based algorithms [12,16,21]. The Memory-based fil-
tering method is simple to understand and implement. But its accuracy is low,
especially when the data is sparse. With the rise of deep-learning techniques, the
model-based filtering methods attract more and more attentions, such as CNN
(Convolutional Neural Network) [11,12] and MLP (MultiLayer Perceptron) [23].
However, the performance of these techniques in the field of QoS prediction is
still not perfect. There are three key limitations that need to be addressed.

Firstly, the QoS matrix data and environmental context information can-
not be directly utilized by deep neural networks [5]. Existing data preprocessing
methods suffer from significant loss of accuracy, especially when dealing with
numeric QoS attributes due to a lack of effective coding methods. Secondly,
the intrinsic relationship between adjacent data in the QoS matrix greatly con-
tributes to the QoS prediction, but it is difficult to reflect in the feature matrix
of the deep network. Thirdly, the interactions between feature vectors of differ-
ent attributes in QoS data are not fully learned and exploited. The interaction
between features is a critical aspect of QoS prediction information. However, the
existing model lacks a useful component to extract this important factor.

To address these limitations, this paper proposes a new QoS prediction
method based on multi-scale convolutional neural network, i.e., QPRMSN. The
method consists of two parts: data encoding and multi-scale convolutional neural
network. For the first limitation, the data encoding of QPRMSN maps original
QoS attribute values to discrete intervals with their membership degrees by fuzzy
logic, which ensures the rich semantic information of the input and avoids the
loss of precision caused by rounding of numeric information. To solve the second
limitation, QPRMSN employs a convolutional neural network with multi-scale
receptive fields [9]. The network reduces the size of the original feature matrix
to multiple scales by downsampling and then extracts features through convo-
lution operations on different scale feature matrices. To deal with the interac-
tion between different features and their importance in the total features, i.e.,
the third limitation, QPRMSN introduces the vector level attention mechanism
[10]. The weights of receptive fields with different scales are obtained through
the channel-level attention mechanism during receptive field fusion to improve
prediction accuracy. In the end, the multi-scale fused feature matrix is processed
by a fully connected layer to obtain the predicted QoS value.

In summary, the main contributions of this paper are as follows:

– A new encoding method is proposed to extract the characteristics of
user/service and environmental context. QoS feature data is mapped to dis-
crete intervals and their membership degrees of the intervals are encoded as
state codes to construct feature vectors with rich semantic information.

– We employ both vector-level and channel-level attention mechanisms to learn
the interaction between different feature vectors and the importance of dif-
ferent scale feature matrices.

QoS Prediction via Multi-scale Feature Fusion Based on CNN 121

– We propose a QoS prediction method QPRMSN by integrating feature encod-
ing, multi-scale CNN, and attention mechanism. It accurately expresses
the information related to QoS and extracts rich features with correla-
tions between them. Extensive experiments on the real-world data show that
QPRMSN achieves superior accuracy than traditional filter and deep learning
methods. We will share our code on Github1.

2 The Framework of QPRMSN

Figure 1 shows the overall architecture of QPRMSN, which consists of two parts:
an encoding layer and a multi-scale convolutional neural network. The informa-
tion about QoS is primarily from two aspects: the QoS matrix and the envi-
ronment of network invocations. In QPRMSN, both two types of information
are considered, and the encoding step transforms them into digital features. The
vector-level attention mechanism is introduced in the encoding layer to learn the
interaction between different feature vectors and their respective importance.
The deep features of these attributes are extracted by assembling them into
the feature matrix and passing them through a multi-scale convolution neural
network. The channel-level attention mechanism gives appropriate importance
degrees of feature matrices from different scale receptive fields.

Fig. 1. The architecture of QPRMSN.

3 Methodology of Forming the Feature Matrix

3.1 Features Within the Environment Context

The environment context comprises various relevant information about the net-
work conditions, such as regions and IP addresses, which significantly impact
QoS. The environment context features are divided into user context feature
matrix P e

u and service context feature matrix P e
s . The data in these two matrices

are directly referenced from the service and user respectively in service invocation
records. There is a WSDL document in service context, which records important
information about the service invocation. To make full use of the information
in the WSDL document, it is converted into the feature vector of the service
through the word2vec method after parsing it according to the important fields.

1 https://github.com/bearflying/QPRMSN.

https://github.com/bearflying/QPRMSN

122 H. Xu et al.

3.2 Features within the QoS Matrix

Suppose a service invocation scenario with M users and N services. Define the
QoS matrix as Q ∈ R

M×N (R is the set of real numbers), then the QoS of user
i to service j is qij ∈ Q. QoS prediction can be clearly abstracted to fill in the
vacant positions of a sparse QoS matrix in a reasonable way. The problem is that
such a QoS matrix implies few and confusing mathematical laws. Matrix factor-
ization is a technique that decomposes a matrix into the product of two matrices.
This approach separates the user-implicit features from the service-implicit fea-
tures, thereby increasing the expressiveness of the features. In QPRMSN, the
probability matrix factorization (PMF) is applied to split the user-service QoS
matrix into a user feature matrix P i

u = {u1, u2, ..., ui, ..., uM} and a service fea-
ture matrix P i

s = {s1, s2, ..., si, ..., sN}, where ui is the feature vector of user i,
sj is the feature vector of service j, and Q ≈ P i

uP i
s .

3.3 Encoding of Features

In QPRMSN, two encoding methods are used. For non-numeric data, we directly
use one-hot encoding [24]. It consists of several placeholders representing the
state space of attributes. Only the higher placeholder takes effect when encoding,
which represents the attribute in this state. However, such encoding in practi-
cal applications causes some semantic deficiencies because the encoding results
of different features are orthogonal, but some features are correlated with each
other. And the feature values of some attributes are floating point types, which
cannot be converted to activated bits through direct mapping. Directly discretiz-
ing to the nearest integer or retaining a few significant figures will bring about
an obvious loss of precision.

Fig. 2. Examples of encoding method of series numeric data.

We employ fuzzy logic to address this problem by discretizing the attribute
space into n intervals of equal width, as shown in Fig. 2., where the midpoint

QoS Prediction via Multi-scale Feature Fusion Based on CNN 123

of the i-th interval Ii is denoted as mi. The interval length equals the dis-
tance between adjacent interval midpoints, i.e., len(Ii) = mi+1 − mi = d. Each
attribute value is mapped into two adjacent discrete intervals, and the degree of
membership μi(x) to Ii is computed as:

D ← {I1 ∪ I2 ∪ ... ∪ Ii ∪ ... ∪ In|I1 ∩ I2 ∩ ... ∩ Ii ∩ ... ∩ In = φ} (1)

μi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |mi − x|
d

, x ∈ Ii

|mi±1 − x|
d

, x ∈ Ii±1, x ∓ d

2
∈ Ii

0 , else

(2)

where x is the value to be encoded. This discretization approach guarantees that
the same degree of membership holds equivalent meaning within the vector.

In some cases, the feature values of certain attributes exhibit large variation
ranges, leading to excessive intervals in their discretization results with few valid
intervals and scattered distribution. QPRMSN uses a preprocessing step that
utilizes the logarithmic function to increase the uniformity and density of the
data distribution. With the preprocessing step, the semantic expression effect is
improved from sparse data I to dense data Ĩ. The logarithmic function is applied
to both the feature values and memberships, as shown below:

Ĩ = lnI (3)

μ̃i(x) = μi(lnx) (4)

The final encoding result AD(x) is represented as a vector composed of the
membership degrees of the attribute value within each interval group, as follows:

AD(x) = (μ1(x), μ2(x), ..., μi(x), ..., μn(x)) (5)

AD(x) can be deblurred and accurately reconstructed into the original data
through a linear transformation, which is supported by an ample number of
parameters in the subsequent embedding layer. In other words, our encoding
method maximally preserves the information contained in the original data.
After encoding, the features of the user and service from QoS matrix, as well as
the user and service environmental context features, exhibit sparsity and differ
in size. Therefore, an embedding layer is required to transform these four types
of feature matrices or vectors into a unified size and concatenate them together
to form a dense feature matrix for one network invocation case, which serves as
the input to the neural network.

4 Neural Network with Multi-scale Receptive Fields

Figure 3 is the multi-scale convolutional neural network architecture, which
mainly consists of an embedding layer, feature fusing layers, attention mecha-
nism and fully connected layer. The embedding layer converts the sparse encoded

124 H. Xu et al.

feature vectors into dense uniform ones and concatenates them to matrices
with weights by vector-level attention mechanism. Then, the feature matrices
are resized into three scales and extracted deep features through convolutional
operations. The small-sized feature matrix contains more global and structural
information, while the large-sized feature matrix contains more shallow detail
information. Here, as a down-sampling process, the pooling layer functions flex-
ibly adjust the size of the feature matrix. After upsampling to the same size,
feature matrices of multiple scales are fused. To account for the interactions
between different channels and their contributions to the overall feature matrix,
the channel-level attention mechanism is introduced to obtain the most appro-
priate weights for them through network learning. The roles of key components
in the network are elaborated in the following sections.

Fig. 3. Network architecture of multi-scale convolutional neural network.

4.1 Embedding Layer

To transform sparse vectors into information-rich dense vectors and standardize
the sizes of vectors, we introduce an embedding layer at the beginning of the
network, as shown in Fig. 3.

Assume that e = (e1, e2, ..., et)T ∈ R
t×1 is a t-dimensional sparse feature

vector encoded by an attribute. That is, the state space of this attribute has t
states, or the total number of discrete intervals mapped to is t. We introduce the
embedding matrix X = (x1,x2, . . . ,xt) ∈ R

r×t and compute the intermediate
matrix EX = Xe = (e1x1, e2x2, . . . , etxt). So the embedded dense vector can
be calculated as follows:

eE = e1x1 + e2x2 + . . . + etxt ∈ R
r×1 (6)

The t-dimensional feature vector is converted to r-dimensional through the
embedding layer. Since this layer is a linear transformation, it can largely retain
the original features. The representation of correlations between features are
strengthened after converting to a dense matrix, laying the foundation for the
effective feature extraction by multi-scale convolution.

QoS Prediction via Multi-scale Feature Fusion Based on CNN 125

4.2 Fusing Multi-scale Receptive Fields

In QPRMSN, average pooling plays a crucial role in implementing multi-scale
receptive field variations, as it can modify the size of the output matrix by adjust-
ing the stride of the sliding window. The mathematical principle is illustrated
as follows:

pi,j =
(i+1)a−1∑

z=ia

(j+1)a−1∑

v=ja

xz, v + b (7)

where pi,j is the value of the feature matrix to be pooled at position (i, j), a is
the step size of the pooling sliding window, b is the bias and xz,v is the value of
position (z, v) in the feature matrix. It can be seen that the height and width
of each pooled feature matrix become 1

a of the original. The embedded dense
feature matrix is first passed through three pooling layers of different scales,
reducing its size by a = 1, 2, 4, respectively. As the compression size becomes
smaller, it implies that a new matrix of the same unit contains more original
information. Consequently, this is equivalent to a larger receptive field for the
subsequent convolutional feature extraction.

Convolutional layers extract the features at the three scales. By analyzing the
multi-scale network structure from the perspective of network backpropagation
and incorporating the pooling process into the neural network model Z(l+1) =
W (l+1)f(Z(l)) + b(l+1), we can deduce the gradient of the multi-scale fusion
matrix respect to the original feature matrix as follows:

∂ZF

∂ZO
=

3∑

i=1

1
ai
(WF

i)T � f ′(ZO) (8)

where ZF and ZO are the fused and original matrix, WF
i is the weight matrix

at the i-th scale, � denotes Hadamard product and f is the activate function.
As shown in Eq. 8, the feature matrices at different scales incur varying losses

to the previous layer. Matrices with larger receptive fields contribute to the loss
of original features at a proportion of 1

a , indicating that the global features of the
QoS information matrix are utilized to correct the original feature with the ratio
of 1

a . Moreover, the information within the encoded feature matrix of QPRMSN
is implicit and structured, containing numerous potential logical correlations
that may not be directly perceptible to humans. Ordinary convolutional layers
pay more attention to the correlation between adjacent elements in the feature
matrix while ignoring the correlation between elements that are far apart. The
multi-scale network can address this issue. High-receptive-field convolutions can
learn patterns among globally distributed information, whereas low-receptive-
field convolutions focus on patterns among closely distributed information.

In order to effectively fuse multi-scale feature matrices and retain more orig-
inal details, the deep small-size feature matrices need to be enlarged to the
same size. The upsampling process is realized by the deconvolution method. It
increases the size of the feature matrix by inserting 0 between the rows and
columns. After the convolution operation, a new large-size feature matrix is
obtained.

126 H. Xu et al.

4.3 Attention Mechanism

The attention mechanism can provide weights for the information in the network
so that the feature extraction and learning of the network can be directed in a
better direction. QPRMSN incorporates the attention mechanism twice. The
first usage is when concatenating feature vectors as shown in the leading of
Fig. 3. The weight calculation principle is illustrated as follows:

Eweighted = softmax
(
EWK(EWO)T

)
WV E (9)

WO, WK and WV are three parameter matrices. WO and WK map the origi-
nal feature matrix E to a higher-level linear space. In the new space, the interac-
tion between different vectors in the matrix is calculated by matrix multiplication
to generate a weight matrix. Finally, the elements in the feature matrix E are
assigned weights. The weights are normalized by the Softmax() function so that
the sum of the weights is 1.

The attention mechanism is introduced for the second time to assign different
weights to multi-scale information as shown in Fig. 3. The contributions of global
features at high receptive fields and detailed features at low receptive fields to
the overall representation are distinct. Thus, they require respective weights to
strike a balance. The channel-level attention mechanism here is implemented by
a parallel 1×1 scale convolutional layer with its network parameters. Specifically,
each channel of the feature matrix is compressed into a value by average pooling,
and this value has the receptive field of this channel. The relationship between
the compressed values of different channels is established using two matrix mul-
tiplication operations, and their parameters are updated to generate the weight
value of each channel, as follows:

w = sigmoid(W d× d
s

2 ReLU(W
d
s ×d
1 zd)) (10)

W
d
s ×d
1 and W

d× d
s

2 are parameter matrices. They update parameters for com-
pressed d-dimensional vectors zd to become weight vectors. The dimensional
transformation of W

d
s ×d
1 and W

d× d
s

2 is for the consideration of enhancing the
generalization ability of the matrix. After the vector is operated with W

d
s ×d
1 , it

is activated by ReLU to enhance the discrimination of its role as weight. The
weights are limited to the range (0, 1) by the sigmoid function. Finally, the
previous feature matrix is weighted channel-wise by multiplication.

4.4 Fully Connected Layer

The fully connected layer serves two purposes. Firstly, it enhances the network’s
fitting ability by introducing learnable parameters. Secondly, it flattens the three-
dimensional feature matrix into a final prediction value.

QPRMSN uses the absolute value error as the loss function, which has strong
robustness and can resist the influence of some outliers in service invocation data.
Its mathematical formula is as follows:

QoS Prediction via Multi-scale Feature Fusion Based on CNN 127

loss =
M∑

i=1

N∑

j=1

|yi,j − ŷi,j | (11)

where ŷi,j is the true QoS value of service j invoked by user i and yi,j is the
result of the network output.

5 Experiments

5.1 Data Set

We validate the effectiveness of our method on a real QoS dataset, i.e., the
WS-Dream dataset, which is one of the commonly used datasets in the field of
QoS prediction [12,23,24]. This dataset focuses on two QoS attributions, i.e.,
response time and throughput. Statistics of the dataset are shown in Table 1.

5.2 Metrics

To assess the effectiveness of QPRMSN, we use the mean absolute error (MAE)
and the root mean square error (RMSE) compared to other QoS prediction
methods. The MAE and RMSE are defined as follows:

MAE =
1
n

n∑

i=1

|yi − ŷi| (12)

RMSE =

√
√
√
√ 1

n

n∑

i=1

(yi − ŷi)
2 (13)

where ŷi is the ith true QoS value and yi is the ith result of the network. The
MAE can intuitively reflect the overall accuracy on this batch of data. The RMSE
is to highlight the weight of the larger error in the total error by the operation
of squaring.

Table 1. Statistics of Dataset

Statistics Values Statistics Values

Users 339 Services 4,107
Users’ Regions(UR) 31 Services’ Regions(SR) 71
Users’ Autonomous Systems(UAS) 137 Services’ Autonomous Systems(SAS) 822
Users’ Subnets(USN) 178 Services’ Subnets(SSN) 1,317
Users’ IP Addresses(UIP) 339 Services’ IP Addresses(SIP) 1,710
Service Invocations 1,392,951 Services’ Documents(WSDL) 4,107
Range of response-time(RT) 0–20 s Range of throughput(TP) 0–1000 kbps

128 H. Xu et al.

5.3 Baselines

The following classic algorithms with superior performance on the QoS predic-
tion task as baselines to compare with QPRMSN. They cover several basic ideas
in the field, namely, memory-based filtering, model-based filtering, matrix fac-
torization, and heuristic-based filtering.

– UPCC [17], IPCC [18], UIPCC [19]: These three methods are based on mem-
ory filtering, which focus on the users and services most similar to the users
to be predicted by calculating the Pearson coefficient.

– PMF [20], CSMF [21]: These two methods are based on model-based filtering.
They decompose the user-service QoS matrix through the probability matrix,
so as to predict QoS by obtaining more hidden information.

– FM [22]: It is a factorization machine, which is often used in the field of
feature combine.

– DNM [23]: It is a filtering method based on neural network. It uses deep
learning technology to mine the features between users, services and their
contextual information, so as to obtain accurate prediction results.

– MGCCF [12]: It is a filtering method based on neural network. It uses a
graph convolutional collaborative filtering with multi-component and deep
factorization machine for QoS prediction.

The experimental platform is a lightweight application server equipped with
a 26-core 3.9GHz CPU with the highest frequency and 256G memory, running
the Ubuntu 14.04 operating system.

5.4 Performance Comparison

In order to show the prediction accuracy of QPRMSN under real conditions, it
is necessary to construct sparse QoS data to verify the prediction accuracy. We
randomly delete the corresponding proportion of the original data set accord-
ing to different degrees of density. We compare the prediction performance of
QPRMSN and other baselines at four levels of density from 2.5% to 10%. The
environment context is combined of {UR, UAS, USN} and {SR, SAS, SSN, SIP}.
Among the parameters that may affect the accuracy of the network, we initial-
ize the network weights with random decimals in the interval (0,1). The network
uses MSGD as the optimizer. The learning rate gradually decreases until the net-
work converges, and its variation range is (10−6, 10−2). Other parameters that
have no effect on the accuracy of the network are obtained through adjustments.
The memory-based filtering methods calculate the prediction values by finding
several neighboring users/services with high similarity. The number of neighbors
for the user is set to 10 and the number of neighbors for the service is set to 50.
The regularization parameters of the matrix factorization algorithm are set to
0.1 for response time and 10 for throughput. Table 2 shows the response time and
throughput prediction results of QPRMSN and other baselines under different
data densities. The optimal data at each density is bolded.

QoS Prediction via Multi-scale Feature Fusion Based on CNN 129

Table 2. Performance Comparison For Response Time and Throughput Prediction

QoS Attributes Methods Density = 2.5% Density = 5% Density = 7.5% Density =10%
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Response Time UPCC 1.5178 0.7216 1.4115 0.6512 1.3717 0.6012 1.3469 0.5886
IPCC 1.6634 0.7592 1.4228 0.6461 1.3857 0.6148 1.3542 0.5934
UIPCC 1.5106 0.7132 1.4106 0.6384 1.3619 0.5896 1.3427 0.5835
PMF 1.6993 0.6510 1.5395 0.5982 1.4594 0.5614 1.4268 0.5449
CSMF 1.5618 0.6925 1.4337 0.6008 1.3832 0.5723 1.3476 0.5443
FM 1.5122 0.7124 1.4126 0.6356 1.3653 0.5963 1.3490 0.5698
DNM 1.4829 0.4777 1.4274 0.4147 1.3745 0.3843 1.3567 0.3628
MGCCF 1.4783 0.5116 1.3950 0.5010 1.3723 0.4202 1.3527 0.4008
QPRMSN 1.4652 0.4656 1.3790 0.3854 1.3701 0.3802 1.3464 0.3506

Throughput UPCC 64.26 28.03 56.63 25.43 52.16 21.88 51.52 20.32
IPCC 66.07 27.44 56.72 25.09 52.91 22.78 52.41 21.54
UIPCC 64.15 26.87 55.90 23.80 51.78 21.37 50.63 20.04
PMF 72.89 26.08 66.41 22.54 62.67 21.64 60.74 21.49
CSMF 68.80 24.26 60.53 21.26 58.24 19.24 56.76 18.41
FM 68.75 26.39 59.24 22.95 57.45 21.91 55.48 21.07
DNM 65.65 18.29 59.33 14.85 56.55 13.82 54.50 12.92
MGCCF 65.38 18.53 58.78 14.53 56.41 13.46 54.32 12.78
QPRMSN 64.08 16.63 57.96 14.15 55.85 13.06 54.16 12.54

QPRMSN outperforms all other baselines in terms of MAE. The most signifi-
cant improvement in terms of response time is observed at a density of 5%, where
the MAE decreases by 0.293, equivalent to a reduction of 7.06% in accuracy loss
compared to the best performance of other baselines. QPRMSN achieves the
minimum RMSE in most cases in terms of response time prediction. The most
significant improvement in throughput prediction is at the data density of 2.5%,
where the MAE reduces by 9.07%. But in RMSE about throughput predic-
tion, memory-based filtering methods perform better. This could be attributed
to the fact that the feature extraction process is incomplete when the data is
too sparse, making inferential prediction methods less effective than searching
for similar users or services. On the other hand, the large range of values for
throughput makes individual cases with large errors more impactful on RMSE,
indicating that neural network models tend to deviate more from the correct
value when the data range is large.

6 Discussion

We conduct a series of experiments to investigate the performance of QPRMSN
in-depth. In the hyperparameter study, the data density is set to 10%, and the
QoS attribute selected is response time.

130 H. Xu et al.

6.1 Ablation Study for Encoding Method

To evaluate the encoding method of QPRMSN, we conducted a comparative
experiment using the one-hot attribute encoding, which controls different num-
bers of digits after the decimal point. We choose the response time as the QoS
attribute and the range of decimal places is set from 1 to 5, with all other condi-
tions being optimal and identical. The experimental results are shown in Table 3.
Although the number of decimal places increases to 5, the accuracy gradually
improves but still remains below the performance of QPRMSN. This is because
that the one-hot encoding generates an excessive number of categories, which
leads to overly sparse encoded vectors and the loss of correlation among them.

Table 3. Ablation Study for Encoding Method

Methods Number Density = 2.5% Density =5% Density= 7.5% Density= 10%
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Controlling Digitals 1 1.6124 0.7529 1.5445 0.6574 1.5210 0.6257 1.4823 0.5856
2 1.5676 0.6534 1.5268 0.5360 1.4709 0.5241 1.4547 0.5156
3 1.5123 0.5975 1.4654 0.4765 1.4402 0.4683 1.3896 0.4426
4 1.4965 0.5112 1.4188 0.4223 1.4085 0.4168 1.3852 0.4082
5 1.4937 0.4954 1.4525 0.4552 1.4232 0.4512 1.3895 0.4130

QPRMSN 1.4652 0.4656 1.3790 0.3854 1.3701 0.3802 1.3464 0.3506

6.2 Effect of Embedding Dimension

The output dimension of the embedding layer is an important hyperparameter
of QPRMSN. It determines the distribution of features in the feature matrix
before entering the multi-scale CNN. Insufficient dimensions in the embeddings
may lead to inadequate feature expression, while excessive dimensions may result
in sparse features that carry little information and hinder feature extraction. To
conduct a comparative experiment, the dimensions of the embedding layer are
set to 16, 32, 64, 128, 192 and 256 respectively. The experimental results are
shown in Fig. 4 (a). Before the dimension reaches 128, the accuracy rate increases
with an increasing embedding dimension. When the dimension size continues to
increase and reaches 256, the accuracy rate drops due to the reasons previously
analyzed.

6.3 Effect of the Number of Convolution Kernels

As the number of convolution kernels increases, more levels of features can be
extracted. However, the increase in the number of convolution kernels also means
an increase in network parameters, which can lead to over-fitting and reduced
accuracy of the network. To validate the trend of accuracy as the number of
convolution kernels increases, we first maintain the same number of kernels at
each scale in the complex network structure proposed in QPRMSN. The number

QoS Prediction via Multi-scale Feature Fusion Based on CNN 131

of convolution kernels changes from 32 to 128 with a step size of 16. The exper-
imental results are shown in Fig. 4 (b). The accuracy rate reaches the highest
in the range of 64–80 convolution kernels, and the end of 80 is slightly higher
than 64. However, beyond 80 convolution kernels, the network accuracy tends
to decline as the number of convolution kernels continues to increase.

Fig. 4. Hyperparameter Analysis of QPRMSN.

Based on the current research on CNNs, deeper feature matrices require more
convolution kernels to extract more implicit information. We set the number of
convolution kernels in the three-scale convolutional layer according to the four
types of ratios {1:2:2, 1:2:4, 1:4:8, 1:4:16}. In order to maintain consistency in the
total number of convolution kernels across different ratios, we set the number
of kernels in the convolutional layer with the largest size to {48, 32, 20, 11}
respectively for each ratio. In this way, the total number of convolution kernels
can also maintain a high accuracy rate known from previous experiments. The
experimental results are shown in Fig. 4 (c). The ratio of {1:4:8} has achieved
the lowest MAE and RMSE.

6.4 Effect of the Number of Neurons in the Fully Connected Layers

The fully connected layer considers global information comprehensively and
serves as the final feature expression before calculating the predicted value. How-
ever, an excessive number of neurons in the fully connected layer not only waste

132 H. Xu et al.

computational resources, but can also lead to over-fitting. In order to study
the impact of the number of neurons in the fully connected layer on the accu-
racy rate, the number of the first two fully connected layers is set to {{32,
32},{32, 64},{64,32},{64,64},{64,128},{128,64},{128,128}}. The third fully con-
nected layer consisted of only one neuron to calculate a unique prediction value.
The experimental results are shown in Fig. 4 (d), and the setting of {64,64}
achieves the lowest MAE. The increase or decrease of neurons has a tendency to
reduce the accuracy rate on MAE. {128,128} is optimal on RMSE. In general,
as the number of neurons increases, the RMSE decreases all the time.

7 Related Work

Shao et al. first proposed a memory-based filter approach to predict QoS val-
ues of Web services [17]. They use the Pearson Correlation Coefficient (PCC)
to search users similar to the target, so as to calculate the prediction value
according to their QoS in the same service. He et al. classified users and services
by physical location through the k-means clustering algorithm. The QoS value
is predicted by matrix decomposition [13]. These similar neighbor-based meth-
ods exhibit lower accuracy. Xu et al. used the mathematical tool of Probability
Matrix Factorization (PMF) to calculate the most similar services [14,15]. He
et al. proposed HMF, which introduces geographic information based on user
and service latent matrix factorization to increase the semantics of information
[26]. The model-based filtering method has improved accuracy and can cope
with data sparseness, but it has poor flexibility and relies too much on artificial
hyperparameters. Moreover, compared to QPRMSN, these methods only uti-
lize partial QoS-related information, such as singular geographic or QoS matrix
information.

Recently, deep-learning-based QoS prediction models have been mainstream
due to their superior feature extraction ability. Wu et al. propose DNM (Deep
Neural Model) [23] for multiple attributes QoS prediction with contexts. In this
model, they map contextual features into semantical space through the embed-
ding layer. The dot product of feature vectors is used to extract interaction
information between them. Their model ignores the implicit digital patterns in
the QoS matrix. Xia et al. propose a joint deep networks based multi-source fea-
ture learning for QoS prediction (JDNMFL) [11]. They use the one-hot encoding
to express the QoS information, which causes the loss of precision by rounding
of numeric information. Ding et al. propose a graph convolutional collaborative
filtering (MGCCF) with multi-component and deep factorization machine for
QoS prediction [12]. They introduce node-level attention to identify latent com-
ponents and component-level attention to obtain the importance of components.
But they do not take full advantage of the QoS information in the context of
network invocations. Therefore, existing QoS prediction methods based on DNN
have limitations in model design and employ simplistic network architectures.
QPRMSN can effectively extract QoS-related information by exploring multi-
level features. Additionally, compared to QPRMSN, the existing methods lack

QoS Prediction via Multi-scale Feature Fusion Based on CNN 133

precise and efficient encoding schemes when utilizing various QoS-related infor-
mation as input to the network, leading to information loss.

8 Conclusion

In this paper, we propose a QoS prediction method based on a multi-scale convo-
lutional neural network which is named QPRMSN. Our method fuses the global
and detailed features of QoS by a multi-scale neural network. First, we introduce
a membership-based discretization method to encode the implicit information
within the QoS matrix of users and services, as well as the explicit information
of their context. Then, the sparse feature matrix is transformed into a dense
matrix through the embedding layer. Features are extracted through a multi-
scale convolutional neural network, and features of different scales are fused.
Finally, the QoS value is predicted by the fully connected layer. The multi-scale
convolutional neural network can extract deep features of the QoS matrix, and
the new encoding method is effective. Extensive experiments demonstrate that
QPRMSN achieves superior prediction accuracy compared to existing methods.
In future, we will focus on the matrix factorization step to find more efficient
and interpretable methods for improving the accuracy of QoS prediction.

Acknowledgements. This work is partially supported by China NSF (No. 61202091)
and China NSF (No. 62171155).

References

1. Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y., Zhang, T.: Collaborative web
service quality prediction via exploiting matrix factorization and network map.
IEEE Trans. Netw. Service Manage. 13(1), 126–137 (2016)

2. Xu, L.D., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans.
Ind. Informat. 10(4), 2233–2243 (2014)

3. Kritikos, K., Plexousakis, D.: Requirements for QoS-based web service description
and discovery. IEEE Trans. Serv. Comput. 2, 320–337 (2009)

4. Zheng, X., Da Xu, L., Chai, S.: QoS recommendation in cloud services. IEEE
Access 5, 5171–5177 (2017)

5. Xu, Y.: Context-aware QoS prediction for web service recommendation and selec-
tion. Expert Syst. Appl. 53, 75–86 (2016)

6. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service QoS prediction
via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3),
289–299 (2013)

7. Fletcher, K.K., Liu, X.F.: A collaborative filtering method for personalized
preference-based service recommendation. In: IEEE International Conference on
Web Services (ICWS), pp. 400–407 (2015)

8. Yu, Z., Wong, R.K., Chi, C.: Efficient role mining for context-aware service recom-
mendation using a high-performance cluster. IEEE Trans. Serv. Comput. 10(6),
914–926 (2017)

9. Hu, J., et al.: Squeeze-and-excitation networks. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2019)

134 H. Xu et al.

10. Vaswani, A., et al.: Attention is all you need. In: The 31st International Conference
on Neural Information Processing Systems (NIPS). Curran Associates Inc., Red
Hook, NY, USA (2017)

11. Xia, Y., et al.: Joint deep networks based multi-source feature learning for QoS
prediction. IEEE Trans. Serv. Comput. PP(99), 1–1 (2021)

12. Ding, L., et al.: QoS prediction for web services via combining multi-component
graph convolutional collaborative filtering and deep factorization machine. In: 2021
IEEE International Conference on Web Services (ICWS), Chicago, USA (2021)

13. He, P., Zhu, J., Zheng, Z., Xu, J., Lyu, M.R.: Location-based hierarchical matrix
factorization for web service recommendation. In: 2014 IEEE International Con-
ference on Web Services (ICWS), pp. 297–304. IEEE (2014)

14. Xu, Y., Yin, J., Lo, W.: A unified framework of QoS-based web service recommen-
dation with neighborhood-extended matrix factorization. In: Proceedings of the
IEEE 6th International Conference on Service-Oriented Computing and Applica-
tions, pp. 198–205 (2013)

15. Xu, Y., Yin, J., Lo, W., Wu, Z.: Personalized location-aware QoS prediction for
web services using probabilistic matrix factorization. In: Lin, X., Manolopoulos,
Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8180, pp. 229–242.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41230-1_20

16. Yin, Y., et al.: QoS prediction for service recommendation with deep feature learn-
ing in edge computing environment. Mob. Netw. Appl. 25, 1–11 (2019)

17. Shao, L., et al.: Personalized QoS prediction for web services via collaborative
filtering. In: Proceedings of the IEEE International Conference on Web Services,
pp. 439–446 (2007)

18. Sarwar, B.M., et al.: Item-based collaborative filtering recommendation algorithms.
In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–
295 (2001)

19. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4, 140–152 (2011)

20. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Proceedings
of the 20th International Conference Neural Information Processing Systems, pp.
1257–1264 (2008)

21. Wu, H., Yue, K., et al.: Collaborative QoS prediction with context-sensitive matrix
factorization. Future Gener. Comput. Syst. 82, 669–678 (2018)

22. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol.
3(3) (2012) Art. no. 57

23. Wu, H., et al.: Multiple attributes QoS prediction via deep neural model with
contexts. IEEE Trans. Serv. Comput. 14(4), 1084–1096 (2018)

24. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed QoS evaluation for real-world web
services. In: Proceedings of the IEEE International Conference on Web Services,
pp. 83–90 (2010)

25. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 936–944, Honolulu, HI, USA (2017)

26. He, P., et al.: A Hierarchical matrix factorization approach for location-based web
service QoS Prediction. In: IEEE International Symposium on Service Oriented
System Engineering. IEEE Computer Society (2014)

27. Su, K., et al.: Web service QoS prediction by neighbor information combined non-
negative matrix factorization. J. Int. Fuzzy Syst. 30, 3593–3604 (2016)

https://doi.org/10.1007/978-3-642-41230-1_20

Architecture and System Aspects

Decision-Making Support for Data
Integration in Cyber-Physical-System

Architectures

Evangelos Ntentos1(B), Amirali Amiri1, Stephen Warnett1, and Uwe Zdun2

1 University of Vienna, Faculty of Computer Science, Software Architecture Group,
Doctoral School Computer Science, Vienna, Austria

{evangelos.ntentos,amirali.amiri,stephen.warnett}@univie.ac.at
2 University of Vienna, Faculty of Computer Science, Software Architecture Group,

Vienna, Austria
uwe.zdun@univie.ac.at

Abstract. Cyber-Physical Systems (CPS) design is a complex challenge
involving physical and digital components working together to accom-
plish a specific goal. Integrating such systems involves combining data
from various distributed Internet of Things (IoT) devices and cloud ser-
vices to create meaningful insights and actions. Service-based IoT data
integration involves several steps: collection, processing, analysis, and
visualization. Adopting a holistic approach that considers physical and
digital aspects is crucial when designing data integration in distributed
CPS. Architectural design decisions are vital in shaping a CPS’ function-
ality and system qualities, such as performance, security, and reliability.
Although several patterns and practices for CPS architecture have been
proposed, much of the knowledge in this area is informally discussed in
the grey literature, e.g., in practitioner blogs and system documenta-
tion. As a result, this architectural knowledge is dispersed across many
sources that are often inconsistent and based on personal experience.
In this study, we present the results of a qualitative, in-depth study
of the best practices and patterns of distributed CPS architecture as
described by practitioners. We have developed a formal architecture deci-
sion model using a model-based qualitative research method. We aim to
bridge the science-practice gap, enhance comprehension of practitioners’
CPS approaches, and provide decision-making support.

Keywords: Architectural Design Decisions · Cyber-Physical Systems ·
Data Integration · Software Architecture · Grounded Theory

1 Introduction

Several authors have attempted to document patterns and best practices related
to distributed CPS [6,8,10,14]. However, these works focus on applying pub-
lished patterns or scientific results. In contrast, established industry practices
are primarily found in grey literature like blogs, experience reports, and system
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 137–152, 2023.
https://doi.org/10.1007/978-3-031-48421-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_10

138 E. Ntentos et al.

documentation. While these sources offer some understanding of existing prac-
tices, they lack systematic architectural guidance. The reported practices vary
and rely on personal experience, creating uncertainty and risk in CPS design.
One needs extensive experience or a comprehensive study of knowledge sources
to address this. We aim to provide a more complete and consistent view of
current industrial practices, complementing existing knowledge.

We conducted an in-depth qualitative study of CPS descriptions provided by
practitioners. These descriptions contain informal information about established
practices and patterns in distributed CPS. Following a model-based qualitative
research method [18], we systematically analyzed the practitioner sources using
coding and constant comparison methods [3], followed by precise software model-
ing. This allowed us to develop a detailed software model of established practices,
patterns, and their relationships. This paper aims to study the following research
questions:

– RQ1 What are the patterns and practices currently used by practitioners for
supporting data integration in CPS architectures?

– RQ2 How are the current data integration patterns and practices related?
In particular, which architectural design decisions (ADDs) are relevant when
architecting data integration in CPS?

– RQ3 What are the influencing factors (i.e., decision drivers) in architecting
data integration in CPS in the eye of the practitioner today?

This paper has three key contributions. Firstly, we conducted a qualitative
study on CPS architectures, analyzing 37 knowledge sources to identify estab-
lished industrial practices, patterns, relationships, and decision drivers. Secondly,
we created a formal architectural design decision (ADD) model. The model
encompasses 7 decisions, 31 decision options, and 22 decision drivers. Lastly,
we evaluated the model’s level of detail and completeness, demonstrating that
our research method provides a more comprehensive examination of established
practices than informal pattern mining. Our approach, derived from practition-
ers’ perspectives, offers valuable insights into distributed CPS design.

The rest of this paper is structured as follows: In Sect. 2, we compare our
work to the related work. Section 3 explains the research methods we have
applied in our study and summarizes the knowledge sources. Section 4 describes
our reusable ADD model on CPS. Section 5 evaluates and Sect. 6 discusses our
results. Finally, Sect. 7 considers the threats to the validity of our study, and
Sect. 8 summarizes our findings.

2 Related Work

Several approaches that study CPS patterns and practices exist: Jamaludin et
al. [8] present a comprehensive overview of CPS state of the art and highlight
the importance of understanding CPS characteristics and architectures. This
knowledge is crucial for designing and implementing CPS systems that can meet
the requirements of various applications and ensure their reliability and adapt-
ability. Henneke et al. [6] focus on analyzing communication patterns for CPS,

Data Integration in Cyber-Physical-System Architectures 139

such as discovery, request-response, and publish/subscribe. Reinfurt et al. [13]
present five patterns that address various problems derived by examining numer-
ous production-ready IoT offerings to identify recurring proven solution princi-
ples. Washizaki et al. [16] conducted a systematic literature review, identifying
32 papers from which 143 IoT architecture and design patterns were extracted.
These patterns were analyzed based on various characteristics, and directions for
improvements in publishing and adopting IoT patterns were outlined. Pontes et
al. [12] introduced the Pattern-Based IoT Testing approach to simplify and orga-
nize the testing process for IoT ecosystems. This approach uses testing tactics
that target common behavior patterns in the system, referred to as “IoT Test
Patterns.” Ghosh et al. [2] evaluated the current state of IoT research and dis-
covered that existing studies were limited, biased, and subjective. Their study
utilized a thorough qualitative approach to systematically analyze the grey lit-
erature on CPS to tackle this issue, providing the first comprehensive analysis.

There are several decision documentation-related approaches (e.g., for
service-oriented solutions [19], service-based platform integration [9], REST vs.
SOAP [11], and big data repositories [4]). However, this kind of research does not
yet encompass CPS architectures. Warnett and Zdun [15] present a Grounded
Theory-based approach to current practitioner understanding and architectural
concepts of ML solution deployment. They formulated seven ADDs along with
various relations between them. In particular, they modeled twenty-six deci-
sion options and forty-four decision drivers in ML deployment. Other authors
have combined decision models with formal view models [5]. We improve these
techniques with a formal modeling approach derived from qualitative research
methodology.

Our study analyzes practitioner methods and techniques to bridge the gap
between theory and practice in CPS data integration. Our formal model includes
ADDs, decision options, practices, drivers, and relationships and aims to provide
insights to help practitioners make informed data integration decisions in CPS.

3 Research Method

This section discusses the research method followed in this study and the mod-
eling tool we used to create and visualize the decision model.

This paper aims to systematically study established practices in data integra-
tion architecture within CPS architectures. We utilize a model-based qualitative
research method described in [18], which combines Grounded Theory (GT) [3]
with pattern mining techniques (e.g., [1]) and their integration with GT [7].
This approach involves iterative steps of data interpretation to construct a the-
ory based on the collected data. Data analysis is performed concurrently with
data collection rather than afterward.

Constant comparison is a crucial aspect of GT, where researchers continu-
ously compare existing and new data, identifying abstract concepts. These con-
cepts are organized into categories and linked with properties and relationships.
This iterative process guides subsequent research iterations.

140 E. Ntentos et al.

Our knowledge-mining procedure involved searching for new sources, apply-
ing coding techniques to identify model elements and decision drivers, and con-
tinuously comparing codes with the existing model to improve it. We stopped
the analysis using the concept of theoretical saturation, where additional sources
did not contribute anything new. Our study had already converged after twenty-
five sources. The sources used are summarized in Table 1, and our search relied
on our experience with relevant tools, methods, patterns, and practices.

We employed three types of coding in our methodology:

– Open coding, which involves developing concepts based on the data, asking
specific and consistent questions, precise and consistent coding, and memo
writing with minimal assumptions.

– Axial coding, which entails developing categories and linking data, concepts,
categories, and properties.

– Selective coding, which focuses on integrating developed categories and group-
ing them around a central core category.

Fig. 1 illustrates our research method steps. To gather practitioner sources,
we used popular search engines like Google, StartPage, and DuckDuckGo, along
with topic portals like InfoQ and DZone. Initial search terms aligned with our
focus, such as “CPS data integration.” GT coding practices and constant compar-
ison were employed iteratively to identify concepts, categories, properties, and
relationships. The decision model was developed using the CodeableModels tool,
a Python-based modeling tool1 that enabled precise definition of meta-models,
models, and instances in code.

Subsequent iterations involved searches using relevant terms based on identi-
fied topics from previous iterations, focusing on areas requiring coding and their
potential contributions to the model. Practitioner articles were selected based
on relevance to the topic and not primarily promotional in nature, with both
authors reviewing and approving the source selection.

During the coding process, open coding transformed conceptual details into
labels, while axial coding identified recurring and related concepts. Each source
was carefully examined line by line, with memos documenting thought processes,
interpretations, and reasoning for traceability. Selective coding extracted main
ideas and refined previous sources. Formal UML-based modeling was employed
for axial and selective coding, resulting in a precise and consistent theory repre-
sented as a UML model. Theoretical saturation was reached when approximately
twelve additional sources no longer significantly contributed to our model. A
summary of our knowledge sources can be found in Table 1.

1 https://github.com/uzdun/CodeableModels.

https://github.com/uzdun/CodeableModels

Data Integration in Cyber-Physical-System Architectures 141

Fig. 1. Research Method Steps

4 Reusable ADD Model for Data Integration in CPS
Architectures

This section presents the reusable ADD model we derived based on our study (see
the data2). Figure 2 depicts the meta-model for the ADD models. This model
encompasses the Decisions within an ADD model. Each Decision is associated
with a Context, represented by a domain object that signifies the specific system
part or aspect to which the decision applies. Decisions consist of Options and
all options are categorized as Solutions. Each option is accompanied by Forces,
which may have an impact on the decision. Furthermore, Decisions, Solutions,
and Options can have Relations among them. A Solution can be linked to another
Solution, with the condition that either the source or target of the relation must
be an Option. It is essential for all Solutions in the model to be directly linked to a
Decision, either through the Decision itself or through other Options. Decisions
and Options can also have next-decision relations, indicating their sequential
order or dependency.

The reusable ADD model consists of a single decision category, the Data Inte-
gration in CPS Category, which comprises seven top-level decisions, as depicted
in Fig. 3. It is worth noting that all elements of our model are instances of a
meta-model, with meta-classes such as Decision, Category, etc., which are also
included in the model descriptions below. Also note that our model consists of
concepts representing decisions, decision options, practices, patterns, and forces
arising from our sources while applying our research methodology. These emer-
gent concepts, appropriately named in our model, may be traced back to the
referenced sources.

IoT Data Stream Integration and IoT Data Stream Integration Tasks
(Fig. 4). IoT data stream integration combines and processes data from multiple
devices or sensors to extract meaningful insights and enable better decision-
making [S2, S3, S4, S33, S34, S35, S37]. It involves several steps, including
data acquisition, prepossessing, analysis, and visualization. Several practices and
patterns exist. Edge-based IoT Data Stream Integration is a decentralized prac-
tice for processing and analyzing IoT data. The data is processed closer to the
source rather than transmitted to a central server or cloud-based service [S22,
S3, S33]. Alternatively, Cloud-based IoT Data Stream Integration is a centralized
option for processing and analyzing IoT data, where the data is transmitted to
a remote server or cloud-based service for processing and analysis [S2, S26, S3,
2 https://doi.org/10.5281/zenodo.8367400.

https://doi.org/10.5281/zenodo.8367400

142 E. Ntentos et al.

Table 1. Knowledge Sources Included in the Study

ID Description Reference
S1 How to Build an Industrial IoT Project Without the Cloud https://bit.ly/3KqLsYd
S2 Understand the Azure IoT Edge runtime and its architecture https://bit.ly/3XTSJ5C
S3 Connecting IoT devices to the cloud https://thght.works/3KvnivM
S4 Real-time Data Streaming in IoT: Why and How https://bit.ly/3kek9Wp
S5 Edge to Twin: A scalable edge to cloud architecture for digital

twins
https://go.aws/3xIhSFR

S6 Understanding edge computing for manufacturing https://red.ht/3XTy2qw
S7 Husarnet: Connected Things Without a Cloud https://bit.ly/3XN0hHu
S8 How to use digital twins for IoT device configurations https://bit.ly/3kodBEz
S9 Mainflux 0.11 — Digital Twin, MQTT Proxy And More https://bit.ly/3xLbEoU
S10 Connecting OPC UA Publisher to Amazon AWS IoT with MQTT https://bit.ly/3klcDJi
S11 IoT Telemetry Collection using Google Protocol Buffers, Google

Cloud Functions, Cloud Pub/Sub, and MongoDB Atlas
https://bit.ly/3Zb1h9A

S12 Gathering system health telemetry data from AWS IoT
Greengrass core devices

https://go.aws/3YZBmlC

S13 Digital Twins: Components, Use Cases, and Implementation Tips https://bit.ly/3lZNyUH
S14 If You Build Products, You Should Be Using Digital Twins https://bit.ly/3Sj8r9v
S15 Choose a device communication protocol https://bit.ly/3SnEqW2
S16 Through edge-to-cloud integration framework https://bit.ly/3Zs1iFI
S17 Send cloud-to-device messages from an IoT hub https://bit.ly/3lSGRUl
S18 Stream Processing with IoT Data: Challenges, Best Practices, and

Techniques
https://bit.ly/3ILxtLd

S19 Intelligence at the Edge Part 3: Edge Node Communication https://bit.ly/3ZesxUI
S20 7 patterns for IoT data ingestion and visualization- How to decide

what works best for your use case
https://go.aws/3YUNMLg

S21 How does a digital twin work? https://ibm.co/3ZaZxgy
S22 Cloud Edge Computing: Beyond the Data Center https://bit.ly/3Inl92j
S23 Understand Azure IoT Edge modules https://bit.ly/3Ew9sFz
S24 Understand and use device twins in IoT Hub https://bit.ly/3KqHWwU
S25 Understand and use module twins in IoT Hub https://bit.ly/3xJCYDP
S26 How a Cloud Integration Platform Can Help Your Business https://bit.ly/3nmHwy1
S27 Edge-to-cloud communication https://bit.ly/3khYPiL
S28 Device connectivity https://ibm.co/41vHgfZ
S29 How the IoT is creating today’s hottest tech job: Edge analytics https://bit.ly/3lZe8xh
S30 Edge Computing Architecture https://bit.ly/3xTdwvz
S31 The Hark Platform https://bit.ly/3xKFfik
S32 IoT Gateway User Guide https://bit.ly/3InyJTx
S33 How to structure data ingestion and aggregation pipelines https://bit.ly/3StSSMb
S34 What Is Streaming Data Integration? https://bit.ly/3IIFPDp
S35 Plan your IoT real-time data streaming process https://bit.ly/3EumGSZ
S36 What Is an Integration Platform? Do I Need One? https://ibm.co/3kU52Sh
S37 What is Data Streaming? https://bit.ly/3yrJrDI

S33]. Another option is Peer-to-peer (P2P) based IoT Integration, which is a
decentralized practice of connecting IoT devices and integrating their data [S2,

https://bit.ly/3KqLsYd
https://bit.ly/3XTSJ5C
https://thght.works/3KvnivM
https://bit.ly/3kek9Wp
https://go.aws/3xIhSFR
https://red.ht/3XTy2qw
https://bit.ly/3XN0hHu
https://bit.ly/3kodBEz
https://bit.ly/3xLbEoU
https://bit.ly/3klcDJi
https://bit.ly/3Zb1h9A
https://go.aws/3YZBmlC
https://bit.ly/3lZNyUH
https://bit.ly/3Sj8r9v
https://bit.ly/3SnEqW2
https://bit.ly/3Zs1iFI
https://bit.ly/3lSGRUl
https://bit.ly/3ILxtLd
https://bit.ly/3ZesxUI
https://go.aws/3YUNMLg
https://ibm.co/3ZaZxgy
https://bit.ly/3Inl92j
https://bit.ly/3Ew9sFz
https://bit.ly/3KqHWwU
https://bit.ly/3xJCYDP
https://bit.ly/3nmHwy1
https://bit.ly/3khYPiL
https://ibm.co/41vHgfZ
https://bit.ly/3lZe8xh
https://bit.ly/3xTdwvz
https://bit.ly/3xKFfik
https://bit.ly/3InyJTx
https://bit.ly/3StSSMb
https://bit.ly/3IIFPDp
https://bit.ly/3EumGSZ
https://ibm.co/3kU52Sh
https://bit.ly/3yrJrDI

Data Integration in Cyber-Physical-System Architectures 143

Fig. 2. Meta-model for ADD Models

Fig. 3. Reusable ADD Model on Data Integration in CPS Architectures: Overview

S3, S4, S33, S34, S35]. In a P2P network, devices communicate directly with
each other without the need for a central server or cloud-based service. Finally,
some systems require No IoT Data Stream Integration.

Integrating the copious amounts of data IoT devices generate into a larger
system can prove daunting [S1, S3, S4, S18, S33, S34, S35, S37]. Data stream inte-
gration involves several essential tasks, including Data Gathering, which involves
collecting data from various sources to gain insights, make informed decisions,
or optimize business operations [S1, S3, S4, S18, S20, S35]. Data Normalization

144 E. Ntentos et al.

arranges data in a database to reduce redundancy and enhance consistency [S1,
S3, S4, S18, S20]. Data Filtering involves selecting a subset of data from a larger
dataset based on specific criteria. Data Aggregation merges data from multiple
sources or groups into a concise summary view [S1, S3, S4, S18, S20]. Lastly, Data
Anomaly Detection entails identifying patterns or data points within a dataset
that deviates from expected behavior [S18, S4, S20]. The decision context is the
IoT Data Stream, i.e., the decision has to be taken for every IoT data stream
separately.

Several factors influence the decision outcome. For instance, P2P and edge-
based IoT data stream integration offer advantages such as shorter development
time, resilience, as well as increased data security and privacy [S33, S34, S35].
Cloud-based IoT data stream integration may have higher network latency and
may be more susceptible to data security, integrity and privacy concerns. How-
ever, scalability is an advantage of this practice [S2, S3, S4, S34, S35, S37].

Fig. 4. IoT Data Stream Integration and IoT Data Stream Integration Tasks Decision

IoT Integration Platform and IoT Integration Platform Tasks (Fig. 5).
An IoT integration platform is a software solution enabling connecting and com-
municating between different devices and systems in an IoT ecosystem [S1, S16,

Data Integration in Cyber-Physical-System Architectures 145

S20, S26, S30, S36]. It provides a central hub for managing and controlling IoT
devices, data, and applications [S16, S20, S21, S26, S30, S36]. IoT integration
platforms typically offer a range of features and functionalities, such as device
management, data analytics, security and authentication, communication proto-
cols, and integration with third-party systems and applications [S36, S20]. Dif-
ferent patterns and practices are used for connecting and integrating systems,
applications, and services. One option is to use a Cloud Integration Platform
From Cloud Vendor that seamlessly connects cloud-based applications and ser-
vices [S1, S26, S30, S36]. Alternatively, Edge Integration Platform from a Cloud
Vendor can integrate edge devices and systems with their cloud-based applica-
tions and services [S2, S30, S23]. Another practice is Open/Standardized Cloud
Integration Platform that provides standard protocols, interfaces, and tools to
connect and integrate different systems, applications, and services [S2, S30, S26].
Similarly, the Open/Standardized Edge Integration Platform simplifies the inte-
gration process by offering a common framework that can be used across edge
devices, vendors, and domains [S1, S2, S23, S26, S30, S36].

When deciding on an IoT integration platform, the following tasks should be
considered. One possible platform task is Install and Update Device Workloads,
which involves deploying new software or updates to devices in a system [S20,
S23, S26, S30, S36]. Additionally, updating device workloads requires careful
planning and testing to ensure that updates are applied smoothly and do not
cause downtime. Establish Security is another practice that involves implement-
ing measures to protect against unauthorized access, data breaches, and other
potential security threats [S36, S20]. Another practice is Monitoring referring
to the ongoing observation and analysis of a system’s performance and behav-
ior. Health Checking evaluates the health status of a system, service, or appli-
cation [S2, S20, S23]. The practice Managing Device Communication involves
ensuring that devices can communicate with each other effectively and securely
[S23, S3, S28]. Edge/Cloud Platform Integration involves integrating edge devices
with cloud platforms to enable seamless data exchange, processing, and analysis
between edge and cloud [S6, S9, S23]. Both decisions are made in the context of
IoT Edge and Cloud Computing.

According to sources [S26, S30, S36], the Cloud Integration Platform
and Edge Integration Platform provided by the cloud vendor affect sys-
tem evolvability. They also impact vendor lock-in [S2, S23, S30]. Conversely,
Open/Standardized Cloud Integration Platform and Open/Standardized Edge
Integration Platform have a positive influence on interoperability [S1, S16, S26]
and configuration effect, ensuring effective implementation of system configu-
ration changes without negatively affecting performance or stability [S16, S26,
S30, S36]. Moreover, Installing and Updating Device Workloads and Edge/Cloud
Platform Integration contribute to compatibility. Monitoring and health checking
ensure data integrity [S30, S31, S36]. Lastly, Managing Device Communication
can impact the security.

Digital Twins and Digital Twins Tasks (Fig. 6). Digital Twins refer to
virtual representations of physical objects, systems, or processes [S9, S21]. They

146 E. Ntentos et al.

Fig. 5. IoT Integration Platform and IoT Integration Platform Taks Decision

are created using data from sensors, IoT devices, and other sources that collect
data on the object or system in question [S21]. The digital twin mimics the phys-
ical object or system in real-time, allowing for better monitoring, analysis, and
optimization [S5, S8, S9, S13, S14, S21, S24, S25]. Digital Twins enable remote
monitoring, predictive maintenance, and provide insights into performance. The
relation between digital twins and CPS data integration is that digital twins are
an integral part of the data integration process in CPS. There are two options
regarding this decision; one is to use Digital Twin and No Digital Twin. This
decision can be decided in each IoT Data Stream context. If Digital Twin is
chosen, the Digital Twin Tasks decision is an important follow-up decision on
the tasks the twin shall fulfill [S5, S8, S9, S13, S14, S20, S21]. A Device Meta-
data Twin is a type of digital twin that reflects a physical device’s metadata
and configuration information, providing a virtual representation of the device
for monitoring, management, and maintenance purposes [S5, S14, S21]. The IoT
Module Data Twin practice involves creating a digital twin that mimics the
behavior and data of an IoT module [S13, S14, S21]. Device Visualization trans-
forms physical devices into digital representations displayed on dashboards for
easier monitoring, management, and interaction [S14, S20, S21]. Device Control
enables remote management and operation of physical devices through a digital
interface, including functions like power control, settings adjustment, and other
necessary operations [S14, S24, S25]. Device Configuration involves the setup and
customization of physical devices [S21, S24, S25]. This decision can be made for
each IoT Data Stream where a digital twin is applied.

Data Integration in Cyber-Physical-System Architectures 147

Device Metadata Twin and IoT Module Data Twin benefit the flexibility
for adapting and changing in response to new requirements or changes in the
physical system it represents, as well as automation for automating tasks and
processes [S5, S8, S9, S14, S20, S21]. Device Visualization positively impacts
visibility for monitoring and visualizing the performance and behavior of physical
systems in a digital form [S20, S21]. Device Configuration and Device Control
practices benefits Configurability.

Fig. 6. Digital Twins and Digital Twins Tasks Decision

IoT Runtime Telemetry Collection (Fig. 7). IoT runtime telemetry col-
lection involves collecting and analyzing data related to the performance and
behavior of IoT devices and systems while in operation [S2, S11, S12, S15, S17,
S19, S27, S28]. The telemetry data includes device status, network connectiv-
ity, sensor readings, and other performance indicators. Options for implementa-
tion include not collecting telemetry, using cloud-based or edge-based runtime
telemetry collection. The option No Runtime Telemetry Collection is the most
straightforward. Cloud-based Runtime Telemetry Collection gathers data and
metrics from cloud-based applications and systems for analysis, collected in a
central platform [S2, S11, S12, S15, S27]. On the other hand, Edge-based Run-
time Telemetry Collection [S2, S11, S12, S15, S27] is a practice that involves the
collection of runtime data from various devices and systems located at the edge
of a network. This practice can use Device Configuration to set up and customize
a device’s settings to meet specific requirements [S21, S24, S25]. This decision
can be made for each IoT Data Stream.

Cloud-based Runtime Telemetry Collection and Edge-based Runtime Teleme-
try Collection can benefit product quality improvement [S12, S15, S27]. Further-

148 E. Ntentos et al.

more, it enables monitoring of connected devices to detect anomalies and prevent
downtime while providing insights into device performance and usage to opti-
mize operations and improve efficiency. Additionally, by analyzing telemetry
data, organizations can predict when maintenance is needed to improve reliabil-
ity.

Fig. 7. IoT Runtime Telemetry Collection

5 Evaluation

We meticulously constructed an ADD model based on the chosen sources follow-
ing the sequence presented in Table 1. We named the ADD model elements using
the terminology from the respective sources and generated generic type names
based on these element names. Whenever a new type name arose, we compared
it against the existing names and determined whether the new type name was
required. As illustrated in Fig. 8, the theoretical saturation point was attained
after incorporating twenty-five sources. In the initial thirteen sources, we had to
modify the designated type names frequently. However, in the following twelve
sources, such changes were less frequent. No further modifications and additions
were necessary for the remaining sources.

6 Discussion

This section discusses our findings for the research questions from Sect. 1.

RQ1: After analyzing 37 practitioner knowledge sources, we discovered evi-
dence for 31 patterns and practices currently used by practitioners for support-
ing data integration in CPS architectures, which we modeled as ADD decision
options. These patterns and practices are associated with ADDs and were found
to be largely independent of each other. An exception is the Edge-based Runtime

Data Integration in Cyber-Physical-System Architectures 149

Telemetry Collection practice, which can use the Device Configuration practice.
Another commonality is that the IoT Data Stream Integration, IoT Integration
Platform, IoT Integration Platform Tasks and IoT Runtime Telemetry Collec-
tion decisions all offer decision edge-based and cloud-based decision options.
Depending on the specific needs, the practitioner may wish to mix and match
these edge and cloud-based practices.

During our research, we discovered a subtle aspect that the practitioner
should take note of. Both the decisions for Digital Twins Tasks andIoT Run-
time Telemetry CollectionincludeDevice Configuration as an option, while the
decision for IoT Data Stream Integration offers P2P-based IoT Integration. It
is important to highlight that the latter decision option, despite its different
description, may still involve device configuration implicitly. Therefore, when
designing CPS, the practitioner should consider this potential overlap.

Fig. 8. Number of Elements of Newly-Added Sources

RQ2: Given the central CPS Data Integration decision, we identified 7 top-
level ADDs for supporting data integration in CPS architectures. Our research
revealed subtle relations between ADDs and decision options, which may not be
immediately apparent. For instance, the seemingly loosely-related Data Anomaly
Detection, Digital Twins, IoT Runtime Telemetry Collection, Cloud-based IoT
Data Stream Integration decisions all are applied in the IoT Data Stream context,
which is an important consideration during the planning of a CPS architecture.

RQ3: Our research helped us discover 22 influencing factors (forces) when archi-
tecting CPS in the context of data integration from the practitioners’ perspec-
tive. We found that these forces were generally fairly specific to the individual
ADDs and decision options but identified some common to multiple ADDs and
their options. For example, Flexibility, Automation, Visibility apply to the Digital

150 E. Ntentos et al.

Twins decision and, assuming the Digital Twin decision option is selected, then
also the decision options for the Digital Twin Tasks decision; Device Configura-
tion applies to decision options for both the Digital Twins Tasks decision and
the IoT Runtime Telemetry Collection decision; Security applies especially to
decision options associated with IoT Data Stream Integration, IoT Data Stream
Integration Tasks and IoT Integration Platform Tasks decisions, but must be
considered throughout.

Since the above forces are central to multiple ADDs and their respective
decision options, the practitioner may wish to consider the significance of these
forces early in the architectural planning of a system and be guided accordingly.

7 Threats to Validity

We discuss the threats to validity based on the threat types by Wohlin et al. [17].
To enhance internal validity, we used independent practitioner reports instead

of interviews to avoid bias. However, interviews could have revealed important
information that might be missing in reports. To address this, we extensively
examined diverse sources, exceeding what was necessary.

To minimize researcher bias, different team members cross-checked all models
independently. Yet, a potential threat to internal validity remains due to possi-
ble biases within the research team. This applies to our coding procedure and
formal modeling as well, where different researchers might have used different
approaches.

The experience and search-based procedure for knowledge sources may
introduce bias. However, our research method primarily relied on additional
sources adhering to specific criteria, mitigating this threat. Nonetheless, there
is still a potential threat of unconsciously excluding certain sources, which we
addressed by assembling an experienced author team and conducting compre-
hensive searches.

Our results can likely be generalized to various types of architectures involv-
ing data integration in CPS. However, there is a threat to external validity,
indicating that our findings are applicable only to similar CPS architectures.
Generalizing to novel or unconventional architectures may require modifications
to our models.

8 Conclusion

We conducted a GT-based grey literature study to create a model for data inte-
gration in CPS architectures that included ADDs, decision options, relations,
and decision drivers. Our research focused on supporting data integration in
CPS architectures and addressed three research questions. For RQ1, we ana-
lyzed 37 practitioner knowledge sources and identified 31 patterns and practices
used by practitioners in data integration. These patterns and practices were
modeled as ADD decision options and were found to be largely independent. We
also highlighted the relationships between certain practices and the flexibility

Data Integration in Cyber-Physical-System Architectures 151

of mixing edge-based and cloud-based approaches. RQ2 explored the top-level
ADDs for data integration in CPS architectures. Based on the central CPS Data
Integration decision, we identified seven top-level ADDs and revealed subtle rela-
tionships between them. Understanding the shared contexts and dependencies
among these ADDs is crucial during CPS architectural planning. In RQ3, we
identified 22 influencing factors (forces) that impact CPS architecture design in
the context of data integration. These forces varied across individual ADDs and
their options.

This paper proposes a promising approach that systematically and impar-
tially studies multiple sources and integrates findings through formal modeling.
By following this methodology, potential issues can be mitigated, and a rigor-
ous and unbiased understanding of current practices in specific fields, like data
integration in CSP architecture, can be obtained.

Acknowledgements. This work was supported by the FFG (Austrian Research Pro-
motion Agency) project MODIS (no. FO999895431).

References

1. Coplien, J.: Software Patterns: Management Briefings. SIGS, New York (1996)
2. Ghosh, A., Edwards, D., Hosseini, M.R.: Patterns and trends in internet of things

(IoT) research: future applications in the construction industry. Eng., Constr.
Architect. Manage. 28, 457–481 (2020)

3. Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: strategies for qual-
itative research. de Gruyter (1967)

4. Gorton, I., Klein, J., Nurgaliev, A.: Architecture knowledge for evaluating scalable
databases. In: Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 95–104 (2015)

5. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85(4), 795–820 (2012)

6. Henneke, D., Elattar, M., Jasperneite, J.: Communication patterns for cyber-
physical systems. In: 2015 IEEE 20th Conference on Emerging Technologies and
Factory Automation (ETFA), pp. 1–4 (2015)

7. Hentrich, C., Zdun, U., Hlupic, V., Dotsika, F.: An approach for pattern mining
through grounded theory techniques and its applications to process-driven SOA
patterns. In: Proceedings of the 18th European Conference on Pattern Languages
of Program, pp. 1–16 (2015)

8. Jamaludin, J., Rohani, J.M.: Cyber-physical system (CPS): state of the art. In:
2018 International Conference on Computing, Electronic and Electrical Engineer-
ing (ICE Cube), pp. 1–5 (2018). https://doi.org/10.1109/ICECUBE.2018.8610996

9. Lytra, I., Sobernig, S., Zdun, U.: Architectural decision making for service-
based platform integration: a qualitative multi-method study. In: Proceedings of
WICSA/ECSA (2012)

10. Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., Sharaf, M.: Patterns for
self-adaptation in cyber-physical systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.)
Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 331–
368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_13

https://doi.org/10.1109/ICECUBE.2018.8610996
https://doi.org/10.1007/978-3-319-56345-9_13

152 E. Ntentos et al.

11. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th World
Wide Web Conference, pp. 805–814 (2008)

12. Pontes, P., Lima, B., Faria, J.: Test patterns for IoT, pp. 63–66 (2018)
13. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet

of things patterns, pp. 1–21 (2016). https://doi.org/10.1145/3011784.3011789
14. Sha, L., Meseguer, J.: Design of complex cyber physical systems with formalized

architectural patterns. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer,
A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol.
5380, pp. 92–100. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89437-7_5

15. Warnett, S.J., Zdun, U.: Architectural design decisions for machine learning deploy-
ment. In: 19th IEEE International Conference on Software Architecture (ICSA
2022) (2022). http://eprints.cs.univie.ac.at/7270/

16. Washizaki, H., Ogata, S., Hazeyama, A., Okubo, T., Fernández, E., Yoshioka, N.:
Landscape of architecture and design patterns for IoT systems. IEEE Internet
Things J. 7, 10091–10101 (2020). https://doi.org/10.1109/JIOT.2020.3003528

17. Wohlin, C., Runeson, P., Hoest, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering. Springer, Cham (2012)

18. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: Guiding archi-
tectural decision making on quality aspects in microservice APIs. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 73–89.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_5

19. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

https://doi.org/10.1145/3011784.3011789
https://doi.org/10.1007/978-3-540-89437-7_5
https://doi.org/10.1007/978-3-540-89437-7_5
http://eprints.cs.univie.ac.at/7270/
https://doi.org/10.1109/JIOT.2020.3003528
https://doi.org/10.1007/978-3-030-03596-9_5

IDLGen: Automated Code Generation
for Inter-parameter Dependencies in Web

APIs

Saman Barakat(B) , Ana Belén Sánchez , and Sergio Segura

SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain
{salias,anabsanchez,sergiosegura}@us.es

Abstract. The generation of code templates from web API specifica-
tions is a common practice in industry. However, existing tools neglect
the dependencies among input parameters (so-called inter-parameter
dependencies), extremely common in practice and usually described in
natural language. As a result, developers are responsible for implement-
ing the corresponding validation logic manually, a tedious and error-
prone process. In this paper, we present IDLGen, an approach for the
automated generation of validation code for inter-parameter dependen-
cies in web APIs. Specifically, we exploit the IDL4OAS extension for
specifying inter-parameter dependencies as a part of OpenAPI Speci-
fication (OAS) files. To make our approach applicable in practice, we
present an extension of the popular OpenAPI Generator tool ecosystem,
automating the generation of Java and Python code for the manage-
ment of inter-parameter dependencies in web APIs. Evaluation results
show the effectiveness of the approach in accelerating the development of
APIs, generating up to 9.4 times more lines of Java code than the current
generator. This leads to average time savings ranging from 16 to 24 min
when implementing API operations including between one and three
dependencies, when compared to manual coding. More importantly, the
generated code mitigates human errors, making web APIs significantly
more reliable.

Keywords: Web APIs · Open API and Scaffolding · Code generation

1 Introduction

Web Application Programming Interfaces (APIs) enable communication between
heterogeneous devices and systems over the Web. They have gained significant
interest in the software industry as the de-facto standard for software integra-
tion. API directories such as Rapid [32] index over 40K web APIs from different
domains such as shopping, finance, and social networks. Web APIs can be cate-
gorized into various types based on application designs and the communication
protocols they use. Hypertext Transfer Protocol (HTTP) APIs, arguably the
de-facto standard, use the HTTP protocol to interact—typically through CRUD
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 153–168, 2023.
https://doi.org/10.1007/978-3-031-48421-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_11&domain=pdf
http://orcid.org/0000-0002-7714-3742
http://orcid.org/0000-0003-1473-0955
http://orcid.org/0000-0001-8816-6213
https://doi.org/10.1007/978-3-031-48421-6_11

154 S. Barakat et al.

(Create, Read, Update, and Delete) operations—with resources (e.g., a video in
the YouTube API [40] or an invoice in the PayPal API [30]). HTTP APIs often
implement the principles of the REST architectural style for distributed systems,
being referred to as RESTful APIs [10]. Henceforth, we will use the term web
API to refer to RESTful web APIs or, more generally, to HTTP APIs.

Web APIs are commonly described using the OpenAPI Specification (OAS)
format [12,29]. An OAS document describes a web API in terms of the opera-
tions supported, as well as their input parameters and the possible responses.
OAS documents are heavily used nowadays for automating certain tasks in the
API lifecycle. One of these applications is scaffolding : generating code templates
for both API servers and clients from the OAS specification of the API. There are
multiple tools available for code generation, including AutoRest [2], Codegen [6],
NSwag [25], and OpenAPI Generator [28], among others. OpenAPI Generator
Ais a popular open-source code generation tool ecosystem for OAS. It is devel-
oped in Java and offers over 50 generators for clients and servers in different
programming languages.

Web APIs typically include inter-parameter dependencies. These are con-
straints that restrict the way in which two or more input parameters can be
combined to form a valid call to the service [20,21]. For example, when searching
for businesses in the Yelp API1, the parameter location is “required if either
latitude or longitude is not provided”, and both parameters are “required
if location is not provided”. A recent study revealed that dependencies are
extremely common and pervasive in industrial web APIs: they appear in 4 out
of every 5 APIs across all application domains and types of operations [21]. How-
ever, the current version of OAS provides no support for the formal description of
these types of dependencies, despite being a highly demanded feature by practi-
tioners2. Instead, users are encouraged to describe them informally using natural
language3. As a result, current scaffolding tools do not support the generation
of validation code for inter-parameter dependencies, as these are not specified
in OAS documents. Therefore, the validation code associated to these depen-
dencies must be manually implemented. In the previous example, for instance,
developers should write the required assertions to make sure that latitude and
longitude parameters are used together when the location parameter is not
provided in an API call, both in clients and servers. This is not only tedious,
but also error-prone, making validation failures very common in practice [22].

In this paper, we present IDLGen, an approach for the automated generation
of code for validating inter-parameter dependencies in web API servers. For this,
we leverage IDL4OAS, an OAS extension for specifying inter-parameter depen-
dencies as a part of OAS documents using the Inter-parameter Dependency
Language (IDL) [17,20]. To make our approach readily applicable in practice,
we present an extension of the OpenAPI Generator tool ecosystem, enabling
the automated generation of Java and Python code for the validation of inter-

1 https://docs.developer.yelp.com/reference/v3_business_search.
2 https://github.com/OAI/OpenAPI-Specification/issues/256.
3 https://swagger.io/docs/specification/describing-parameters.

https://docs.developer.yelp.com/reference/v3_business_search
https://github.com/OAI/OpenAPI-Specification/issues/256
https://swagger.io/docs/specification/describing-parameters

Automated Code Generation for Inter-parameter Dependencies in Web APIs 155

parameter dependencies in API servers. Evaluation results show that our app-
roach generates up to 940% more lines of code (LoC) for Java, 491% on aver-
age. This improvement is even more noticeable for Python, where the OpenAPI
Generator generates an empty method for each API operation, whereas IDLGen
generates up to 68 LoC, 37.2 on average, Additionally, the results of an empirical
study with 81 participants revealed that IDLGen saves, on average, between 16
and 24min per API operation (including between one and three dependencies)
when compared to manual coding. More importantly, our results show that IDL-
Gen effectively avoids human mistakes, common in practice, making web APIs
significantly more reliable.

A very preliminary version of this work, restricted to code generation for Java,
was presented in [3]. This paper extends our previous work in several directions,
including a significantly larger evaluation with 14 industrial API operations, code
generation for Java and Python, and an empirical study with 81 participants.

2 Background

This section introduces key concepts to contextualize our proposal, namely, IDL,
the IDL4OAS extension, and the OpenAPI Generator tool ecosystem.

2.1 Inter-parameter Dependency Language (IDL)

The Inter-parameter Dependency Language (IDL) is a textual domain-specific
language used to describe dependencies among input parameters in web APIs
[20]. IDL was created based on the results of a study of more than 2.5K operations
of 40 real-world APIs. Specifically, IDL supports expressing seven types of inter-
parameter dependencies widely used in practice. As an example, Listing 1 shows
a fragment of an IDL document describing the inter-parameter dependencies
found in the Google Maps Places API [13]. In what follows, we briefly introduce
the types of dependencies supported by IDL including references to Listing 1:

1 // Operation: Search for places within specified area:
2 ZeroOrOne(radius , rankby==‘distance ’);
3 IF rankby==‘distance ’ THEN keyword OR name OR type;
4 maxprice >= minprice;
5
6 // Operation: Query information about places:
7 AllOrNone(location , radius);
8 Or(query , type);
9 maxprice >= minprice;

10
11 // Operation: Get photo of place:
12 OnlyOne(maxheight , maxwidth);
13
14 // Operation: Automcomplete place name:
15 IF strictbounds THEN location AND radius;

Listing 1. IDL specification of Google Maps Places API.

– Requires. This type of dependency emerges when the presence of a parame-
ter p1 in a request requires the presence of another parameter p2. For exam-
ple, line 3 indicates that if the parameter rankby of the search operation in

156 S. Barakat et al.

Google Maps is set to ‘distance’, then at least one of the following parameters
must be present: keyword, name or type.

– Or. Given a set of parameters, one or more of them must be included in the
request. As an example, in the Google Maps Places API, when searching for
places (line 8), both query and type parameters are optional, but at least one
of them must be used.

– OnlyOne. Given a set of parameters, one and only one of them must be
included in the request. For example, line 12 indicates that only one of the
parameters maxheight and maxwidth must be used.

– AllOrNone. Given a set of parameters, either all of them must be included
in the request, or none of them. For example, as expressed in line 7, either
both location and radius are used, or none of them.

– ZeroOrOne. Given a set of parameters, zero or at most one must be included
in the request. For example, line 2 indicates that if the parameter radius is
used, then rankby cannot be set to ‘distance’ and vice versa.

– Arithmetic/Relational. Relational and arithmetic dependencies relate two
or more parameters using standard relational and arithmetic operators. For
example, as stated in line 4, the parameter maxprice must be greater than or
equal to minprice.

– Complex. These dependencies are specified as a combination of the previous
ones.

We refer the reader to [17,20] for a detailed description of the language,
including its grammar.

2.2 IDL4OAS

Web APIs are commonly described using the OAS [29] format, arguably the
industry standard. OAS documents describe web APIs in terms of the ele-
ments it comprises, namely, paths, operations, resources, request parameters,
and responses. IDL4OAS [20] is an OAS extension for describing inter-parameter
dependencies within OAS using the IDL language. This makes it possible to pro-
cess dependencies automatically and leverage them, for example, for automated
test case generation [22].

IDL4OAS supports specifying inter-parameter dependencies at the operation
level. As an example, Listing 2 shows an excerpt of an OAS document in YAML
format extended with IDL4OAS, corresponding to the Get Bussiness operation
of the Yelp API [38]. As illustrated, the property “x-dependencies” has been
added to the “GET /businesses/search” operation. This property is an array
of elements, where each element—preceded by a hyphen— represents a single
dependency following the syntax of IDL.

1 paths:
2 /businesses/search:
3 get:
4 parameters:
5 - name: location [...]
6 - name: latitude [...]
7 - name: longitude [...]

Automated Code Generation for Inter-parameter Dependencies in Web APIs 157

8 - name: open_now [...]
9 - name: open_at [...]

10 - name: limit [...]
11 - name: offset [...]
12 - [...]
13 [...]
14 x-dependencies:
15 - Or(location , latitude AND longitude);
16 - ZeroOrOne(open_now , open_at);
17 - offset + limit <= 1000;
18 - IF offset AND NOT limit THEN offset <= 980;

Listing 2. OAS document of the Get Businesses operation from the Yelp API extended
with IDL4OAS

2.3 OpenAPI Generator

OpenAPI Generator is a set of tools that automatically generate API clients
library, server stubs, configuration, and documentation files based on a given
OAS definition of the API [28]. It is developed in Java, with over 50 generators
for clients and servers that generate code for different programming languages.

OpenAPI Generator has transforming logic as well as templates for each
generation of code. Built-in templates are written in Mustache [24], which is
a template system with multiple implementations for different languages and
technologies. The templates contain common code, independent of the specific
API, and have variables that are replaced with the parsed data from the OAS
file. As an example, Listing 3 (Lines 1, 18–28), shows the code generated when
running OpenAPI Generator on the Search Business operation within the Yelp
API, as shown in Listing 2. It basically consists of a method including some media
type checks and returning an HTTP error (501 -“Not implemented”) to let the
developer know that (s)he must implement the functionality of the operation.

3 Approach: IDLGen

We propose IDLGen, an approach for the automated generation of validation
code for inter-parameter dependencies in Web APIs. Given an API request,
the generated code automatically checks its conformance to the inter-parameter
dependencies of the API, returning an informative error in case a violation is
detected. By automating this process, our approach not only saves development
time but also eliminates potential bugs caused by programming mistakes, which
are prevalent in the validation code of web APIs [21,23].

Figure 1 depicts an overview of the approach. IDLGen generates code from
the API specification in OAS format, arguably the industry standard. This makes
our approach readily applicable and language-independent. Specifically, we lever-
age the IDL4OAS extension for extending OAS files with a rigorous specification
of inter-parameter dependencies using the IDL language. Hence, given an input
OAS file enriched with IDL4OAS, we propose transforming each dependency into
a fragment of executable code that checks whether the incoming API request sat-
isfies it or not, returning an informative message and an HTTP error status code

158 S. Barakat et al.

in case it is violated. We propose using code templates for the generation of code,
making our approach easily customizable.

1 default ResponseEntity <BusinessesResult > getBusinesses(. . .) {
2 + // Check dependency: Or(location , latitude AND longitude);
3 + if(DependencyUtil.doNotSatisfyOrDependency((location != null) ,(latitude != null) &&

(longitude != null))){
4 + return new ResponseEntity("Dependency not satisfied: Or(location , latitude AND

longitude);", HttpStatus.BAD_REQUEST);
5 + }
6 + // Check dependency: ZeroOrOne(open_now , open_at);
7 + if(DependencyUtil.doNotSatisfyZeroOrOneDependency ((openNow != null) ,(openAt != null))){
8 + return new ResponseEntity("Dependency not satisfied: ZeroOrOne(open_now , open_at);",

HttpStatus.BAD_REQUEST);
9 + }

10 + // Check dependency: offset + limit <= 1000;
11 + if(!(!(offset != null && limit != null) || (offset+limit <=1000.0))){
12 + return new ResponseEntity("Dependency not satisfied: offset + limit <= 1000;",

HttpStatus.BAD_REQUEST);
13 + }
14 + // Check dependency: IF (offset AND NOT limit) THEN offset <= 980;
15 + if (!(!((offset != null) && !(limit != null)) || (offset != null && offset <=980.0))){
16 + return new ResponseEntity("Dependency not satisfied: IF (offset AND NOT limit) THEN

offset <= 980;", HttpStatus.BAD_REQUEST);
17 + }
18 getRequest ().ifPresent(request -> {
19 for (MediaType mediaType: MediaType.parseMediaTypes(request.getHeader("Accept"))) {
20 if (mediaType.isCompatibleWith(MediaType.valueOf("application/json"))) {
21 String exampleString = ". . .";
22 ApiUtil.setExampleResponse(request , "application/json", exampleString);
23 break;
24 }
25 }
26 });
27 return new ResponseEntity <>(HttpStatus.NOT_IMPLEMENTED);
28 }
29 + public static boolean doNotSatisfyOrDependency(boolean ... assertions){
30 + boolean result = false;
31 + for (int i=0;i<assertions.length;i++){
32 + result = result || assertions[i];
33 + if (result)
34 + return false;
35 + }
36 + return true;
37 + }
38 + public static boolean doNotSatisfyZeroOrOneDependency (boolean ... assertions){
39 + boolean result = true;
40 + for (int i=0;i<assertions.length;i++){
41 + result = result && ZeroOrOneAllOrNoneElement(i,assertions ,false ,true);
42 + if (! result)
43 + break;
44 + }
45 + return !result;
46 + }
47 + private static boolean ZeroOrOneAllOrNoneElement(int i,boolean [] allElements ,

boolean negateElement , boolean negateRemainingElements){
48 + boolean element = negateElement ? allElements[i]:! allElements[i];
49 + if (element)
50 + return true;
51 + boolean result = true;
52 + for (int j=0;j<allElements.length;j++){
53 + if (i!=j){
54 + boolean otherElement = negateRemainingElements ? !allElements[j]: allElements[j];
55 + result = result && otherElement;
56 + if (! result)
57 + return false;
58 + }
59 + }
60 + return true;
61 + }

Listing 3. Code generated by IDLGen for the Get Businesses operation (Yelp API)

To make our approach applicable in practice, we have developed IDLGen, an
extension of the widely recognized OpenAPI Generator tool suite [28], comple-

Automated Code Generation for Inter-parameter Dependencies in Web APIs 159

menting its functionalities to generate Java and Python code to deal with depen-
dencies in web API servers. To achieve our objectives, we created a fork of the
OpenAPI Generator project on GitHub [15]. Within this fork, we extended the
functionality of two generators, responsible for generating projects for “Spring”
and “FastAPI” frameworks. Additionally, we developed a Mustache template
that incorporates the necessary logic for different types of dependencies, includ-
ing Or, OnlyOne, AllOrNone, and ZeroOrOne. Leveraging the extended classes,
the IDL parser [16], and the Mustache template, we translated dependencies
expressed using IDL4OAS [20] into conditional blocks for each assertion within
an operation. If the condition specified by the dependency is not met, the code
returns a bad request HTTP status code (400), accompanied by descriptive error
messages.

Open API
Specification

IDL4OAS
}

Modified template filesAPI info + Dependencies assertions

Fig. 1. IDLGen overview

As an example, Listings 3 depicts the Java server code generated by IDLGen
for the Get Bussiness operation of the Yelp API. The tool receives as input the
specification of the API operation, shown in Listing 2, including the description
of dependencies in an IDL4OAS block. Lines of code generated by IDLGen are
highlighted in green and preceded by the symbol ‘+’ for illustrative purposes.
Lines not highlighted are those generated by the original OpenAPI Generator.
As illustrated, the code generated by IDLGen consists of conditional statements
checking whether or not each dependency is violated (lines 2–17), plus some
auxiliary methods for checking non-trivial dependencies (lines 29–61). Overall,
IDLGen generates 55 LoC without counting comments, whereas the original
OpenAPI Generator generates 10 LoC. This means an improvement of 450% on
the amount of generated code.

4 Evaluation

We aim to answer the following research questions:

– RQ1: What are the gains of usingIDLGen in terms of the amount of generated
code? We aim to quantify the gains of our approach in terms of the lines of
code automatically generated in comparison with standard code generators.

160 S. Barakat et al.

– RQ2: What are the benefits of IDLGen in terms of development time and
ratio of failures? We aim to study the benefit of using our approach in reduc-
ing development time and faults in the validation code of inter-parameter
dependencies compared to manual implementation.

4.1 Subject APIs

We used a dataset of 14 API operations from 10 real-world APIs previously used
in the context of web API testing [33]. These operations represent a diverse set
in terms of domains, sizes, and dependencies, including all the types of inter-
parameter dependencies identified in [21] (c.f. Sect. 2.1). Table 1 shows the web
API operations used in this study. For each operation, the table shows the name
and reference of the API it belongs to, name, number of parameters, number
of dependencies, and number (and percentage) of parameters involved in its
dependencies (column PD(%)). For each API, we used the OAS specification
file provided in [33], which includes the specification of IDL dependencies using
IDL4OAS. Since the experiments were run locally, we slightly modified each OAS
file changing the server URL and removing security-related configuration details,
e.g. OAuth. The resulting OAS files used in our experiments are available as part
of the supplementary material [4].

4.2 Experiment 1: Code Generation

In this experiment, we aim to answer RQ1 by evaluating the amount of code
generated by our approach in comparison to standard specification-driven tools.

Experimental Setup. We used IDLGen—our extension of the OpenAPI Gen-
erator tool—to generate Java server code (Spring) and Python server code
(FastAPI) for the API operations listed in Table 1. Specifically, for each oper-
ation, we generated code using the standard OAS specification files—with no
information about inter-parameter dependencies—and the OAS files enriched
with IDL4OAS—describing inter-parameter dependencies using IDL. Then, we
computed the number of generated lines of code on each scenario, with and with-
out dependencies. To make the results more accurate, we restricted the counting
of LoC to the method implementing the API operation (and corresponding aux-
iliary methods), excluding imports and class definitions code, since it is common
in both cases. The generated projects are available as part of the supplementary
material of the paper [4].

Experimental Results. Table 1 shows the result of our experiment on 14
real-world API operations. On the one hand, the original OpenAPI Generator
tool—with no support for dependencies—generated exactly 10 LoC of Java for
each API operation. This is because the code generated is always the same: a
method template with some basic media type checks (see lines 18–28 from the
example in Listing 3). Analogously, it generated an empty method in Python

Automated Code Generation for Inter-parameter Dependencies in Web APIs 161

for each API operation. On the other hand, IDLGen—including support for
dependencies–generated between 13 and 104 LoC of Java (59.1 LoC on average)
and between 2 and 68 LoC of Python (37.2 on average). This means IDLGen
generated between 30% and 940% more Java code (491% on average) than the
popular OpenAPI Generator tool (recall that the tool generates a method with
10 LoC for all API operations). The improvement is even more noticeable in
Python, where OpenAPI Generator generated an empty method for each API
operation, whereas IDLGen generated up to 68 LoC. As expected, this improve-
ment seems to be proportional to the number of dependencies of the operation.
As an example, the largest portion of code (94 LoC for Java, 68 LoC for Python)
was generated for the API operation with more dependencies, YouTube Search,
with 31 parameters and 15 dependencies (c.f. Table 1).

Table 1. Java and Python #LoC generated by IDLGen. Deps = Dependencies. PD(%)
= Number and percentage of parameters involved in the dependencies.

API Operation Parameters Deps PD(%) Java Python

Amadeus - HotelOffers [1] 27 8 11 (41%) 93 62
Box - FoldersItems [5] 9 3 5 (56%) 43 25
DHL - FindByAddress [8] 10 1 2 (20%) 22 9
Foursquare - VenuesSearch [11] 17 3 7 (41%) 53 32
Ohsome - ElementArea [26] 11 3 7 (64%) 86 59
Ohsome - ElementAreaRatio [26] 15 4 9 (60%) 89 61
OMDb - Search [27] 9 1 3 (33%) 47 29
Travels - TripsUser [35] 6 1 2 (33%) 13 2
Tumblr - BlogLikes [36] 5 1 3 (60%) 37 21
Yelp - BusinessesSearch [38] 14 4 7 (50%) 55 34
Yelp - TransactionsSearch [38] 3 1 3 (100%) 22 9
YouTube - Comments [40] 6 3 4 (67%) 77 52
YouTube - CommentThreads [40] 11 6 9 (82%) 86 58
YouTube - Search [40] 31 15 26 (84%) 104 68
Mean 59.1 37.2

To check the correctness of the generated code we performed a sanity check as
follows. We used the open-source framework RESTest [22,33] for automatically
generating test cases for the API operations under test. Specifically, for each
subject API operation, we used RESTest to generate 1000 valid test cases—
satisfying all the dependencies described in the OAS file—and 1000 invalid test
cases—API requests violating one or more inter-parameter dependencies. Then,
we ran the test cases against the validation code generated and confirmed that
they were correctly processed. Specifically, valid calls were handled returning a

162 S. Barakat et al.

200 HTTP status code4, whereas invalid calls were correctly identified, returning
proper 400 HTTP status codes and descriptive error messages. This supports the
validity of the generated code. The generated test cases are also available as a
part of the supplementary material [4].

Response to RQ1

IDLGen generates between 1.3 and 9.4 times more Java code than a
standard code generator. The improvement is even more noticeable in
Python, where OpenAPI Generator generates no code (empty method),
and IDLGen generates between 2 and 68 LoC.

4.3 Experiment 2: Implementation Time and Faults

In this experiment, we aim to address RQ2 by evaluating the time required
by developers to implement the validation code for checking inter-parameter
dependencies, as well as the failure rate of the produced code.

Experimental Setup. We conducted an experiment with 81 s-year students of
the Software Engineering Bachelor Degree at University of Seville. Specifically,
the experiment was conducted in the course on Software Architecture and Inte-
gration. The experiment took place at the end of the course when students had
gained experience consuming and implementing REST APIs using the Spring
framework. Participants were tasked with implementing inter-parameter depen-
dencies for two API operations, keeping a record of the invested time. Then, the
resulting code was analyzed by the authors, who ran a thorough test suite on
each participant project to identify failures.

The 81 participants were divided into four groups, who attended a session
of 1 h and 50min each. The authors of the paper conducted each session. At
the beginning of each session, the instructors briefly introduced inter-parameter
dependencies and IDL. Then, participants were asked to download two tem-
plate Java projects (Spring Boot) from GitHub, where they had to implement
the inter-parameter dependencies of two API operations: a mock version of the
search business transactions operation in the Yelp Fusion API, and a mock ver-
sion of the folder listing operation in the Box API. The Yelp Fusion API project
featured a single dependency, whereas the Box API project had three dependen-
cies, depicted in IDL format in Listings 4 and 5, respectively. Participants were
asked to implement and test their code and then submit it through the univer-
sity virtual platform, indicating the starting and ending time for each project
as a part of the submission. In a later step, each submission was thoroughly
analyzed by the authors, running a test suite on each participant project. These

4 We configured the tool such that the generated code returns a 200 status code (rather
than 501 - “Not implemented”) when all dependencies are satisfied.

Automated Code Generation for Inter-parameter Dependencies in Web APIs 163

test suites were carefully crafted by the authors trying to cover the most rele-
vant input combinations and including both valid and invalid API requests. As
a sanity check, we used IDLGen for generating code for both API operations
and confirmed that the generated code passed both test suites.

Among the 162 submissions received (two projects per participant), five of
them were empty and were discarded, resulting in 77 projects for the Yelp API,
and 80 for the Box API. All submissions, duly anonymized, are included in the
supplementary material [4], as well as the test suites used.

1 - Or(location , latitude AND longitude);

Listing 4. IDL specification of the Search Business Transactions operation (Yelp API)

1 - IF marker THEN usemarker == true;
2 - IF (usemarker == true AND folder_id == ’0’) THEN NOT sort;
3 - ZeroOrOne(usemarker == true , offset);

Listing 5. IDL specification of the Folder Listing operation (Box API)

Experimental Results. As summarized in Table 2, participants took between
2 and 42min (15.6min on overage) to implement the validation code for the
Yelp API operation (one dependency), and between 8 and 62min (24.3min on
average) for the Box API operation (three dependencies). In sharp contrast,
IDLGen took less than one second to automatically generate the validation code
of both API operations.

Table 2. Average implementation time (min) and percentage of projects with failures

Time
API operation Projects Min Max Avg Failures (%)

Box - FoldersItems 80 8 62 24.3 92.5
Yelp - TransactionsSearch 77 2 42 15.6 51.9

In terms of faults, more than half (51.9%) of the Yelp API projects did not
pass one or more of the test cases created by the authors. On the other hand, a
significantly higher percentage (92.5%) of the Box API projects failed at least one
test case. Upon analyzing the test results, it was observed that 44.3% of Yelp API
projects failed when making a valid request that included the location parameter.
It appears that the participants either misunderstood the logic behind the Or
dependency or did not adequately test their code for valid requests. This is
because when the location dependency is passed, the request should be valid
regardless of the latitude and longitude values. In the case of the Box API, we
found that a significant portion of the failures (78%) were due to a null value not
properly checked (dependency (IF marker THEN usemarker==true;)) throwing
a Null Pointer Exception. These results support previous findings revealing that
many of the failures revealed in Web APIs are due to faults in the input validation

164 S. Barakat et al.

logic [23]. Again, this is in sharp contrast with our approach, where valid code
is automatically generated, discarding potential human mistakes.

As expected, the time and percentage of failures observed in manual coding
seem to increase with the number and complexity of dependencies. This suggests
that the benefits of IDLGen would be significantly more noticeable in highly-
constrained API operations, e.g., 25 out of the 31 input parameters of the search
operation in the YouTube API are involved in at least one dependency [20].

The results also revealed the potential of IDLGen to improving code main-
tainability. For example, we observed that some of the participants tried to check
all the dependencies in a single long if statement, making the code error-prone
and hard to understand. In contrast, code generated by IDLGen addresses each
dependency independently, showing descriptive error messages for each of them.

Response to RQ2

IDLGen saves, on average, between 16 and 24 minutes in API operations
with between one and three dependencies. More importantly, the gener-
ated code mitigates human error, making Web APIs substantially more
reliable. Savings are expected to be more noticeable as the number and
complexity of dependencies increases.

5 Related Work

Several papers have addressed the problem of automated code generation of
web APIs. Ed-douibi et al. presented an approach called EMF-REST that takes
Eclipse Modeling Framework (EMF) data models as input to generate REST
APIs [9]. GÃşmez et al. introduced a proposal called CRUDyLeaf based on
Domain-Specific Languages (DSL). The tool takes an entity with CRUD opera-
tions (Create, Read, Update, Delete) to generate Spring Boot REST APIs [14].

QueirÃşs presented Kaang, an automatic generator of REST Web applica-
tions. Its goal is to reduce the impact of creating a REST service by automating
all its workflow, such as creating file structuring, code generation, dependen-
cies management, etc. [31]. This tool is based on Yeoman [39], an open-source,
client-side development stack consisting of tools and frameworks intended to
help developers build web applications.

Deljouyi et al. introduced MDD4REST [7], a model-driven methodology that
uses Domain-Driven Design (DDD) to produce a rich domain model for web ser-
vices. Also, it designs REST web services using modeling languages and supports
automatic code generation through a transformation of models. The authors in
[37] used UML class diagrams to model a set of NoSQL database collections,
and then automate the generation of common database access functions and the
wrapping of these functions within a set of REST APIs.

Li et al. proposed a Navigation-First Design approach to make a REST API
navigable before implementing any service actions [19]. This approach is based
on REST Chart [18], which is a model and language to design and describe REST

Automated Code Generation for Inter-parameter Dependencies in Web APIs 165

APIs without violating the REST constraints. Rossi [34] proposed a model-driven
approach to develop a REST API. First, they used modeling of the API with
specific profiles. Then, a model transformation exploited REST API Modeling
Language (RAML) as an intermediate notation that could be used to produce
documentation and code for various languages automatically.

In contrast to related papers, this is the first work addressing code generation
for inter-parameter dependencies in web APIs. Evaluation results show that this
leads to important gains in terms of productivity and reliability. Our work is
based on exploiting an enriched version of the OAS specification— arguably the
de-facto standard in the industry—making it easy to integrate our approach into
related tools.

6 Threats to Validity

In this section, we discuss the potential validity threats that may have influenced
our work and how these were mitigated.

Internal Validity. Are there factors that might affect the results of our eval-
uation? A potential threat is the possibility of implementation errors within
the IDLGen extension, which could compromise the accuracy and reliability of
the generated code. To mitigate this threat, we conducted extensive testing and
validation throughout the development process. More importantly, we ran 28K
automatically generated test cases (2K test cases per API operation) on the code
generated for the 14 subject API operations revealing no failures.

The validity of the experiment with people may be compromised due to the
lack of experience of the students who participated in the study. To mitigate this
threat, we conducted the experiment at the end of the course, when students
had gained extensive experience in consuming and implementing REST APIs.
We also simplified the examples by excluding parameters unrelated to dependen-
cies, which allowed students to focus exclusively on the implementation process.
In addition, we provided thorough explanations of the dependencies for both
examples to ensure that students understood the tasks effectively. Overall, the
results show that implementing the validation code for inter-parameter depen-
dencies is time-consuming and error-prone, supporting the value of IDLGen to
generate error-free code in a matter of seconds.

External Validity. To what extent can we generalize the findings of our inves-
tigation? The generalizability of our findings may be limited due to the specific
set of API operations evaluated. To mitigate this threat, we carefully selected a
diverse sample of 14 operations from 10 industrial APIs with millions of users
worldwide. Similarly, we focused on a specific and highly popular code generator,
OpenAPI Generator, and therefore our results may not be generalized further.
To the best of our knowledge, however, none of the state-of-the-art generators for

166 S. Barakat et al.

web APIs supports the generation of validation code for inter-parameter depen-
dencies, and therefore the gain reported in our paper should be analogous when
considering similar tools.

7 Conclusions and Future Work

This paper presents IDLGen, an approach for the automated generation of vali-
dation code for inter-parameter dependencies in web APIs. Specifically, our app-
roach leverages the IDL4OAS extension for describing dependencies as a part of
OAS files. The generated code can automatically detect whether or not incoming
API calls satisfy the dependencies among input parameters, returning informa-
tive errors in case they are violated. To implement our approach, we extended
the well-known OpenAPI Generator tool ecosystem to automate the generation
of Java and Python code for inter-parameter dependencies in web APIs. The
evaluation results show that IDLGen generates up to 9.4 times more LoC for
Java servers than a state-of-the-art code generator (5 times more LoC on aver-
age), with similarly noticeable savings in Python. The results of an empirical
study with 81 participants revealed that IDLGen saves an average of between
16min (one dependency) and 24min (three dependencies) per API operation.
More importantly, the code generated minimizes the possibility of making mis-
takes, making APIs significantly more robust and reliable.

Several challenges remain for future work. We plan to address the automated
generation of documentation for inter-parameter dependencies. Also, we aim
to obtain feedback from the core team of the OpenAPI Generator project for
eventually merging our approach into the official tool ecosystem.

Acknowledgements. This work has been partially supported by grants PID2021-
126227NB-C22 and TED2021-131023B-C21, funded by MCIN/AEI/10.13039/5011
00011033 and by European Union “NextGenerationEU”/PRTR». Ana B. Sánchez was
supported by the VI Plan Propio de Investigación y Transferencia of Universidad de
Sevilla 2021 [VI PPIT-US].

References

1. Amadeus Hotel Search API. https://developers.amadeus.com/self-service/
category/hotel/api-doc/hotel-search/api-reference. Accessed July 2023

2. AutoRest. https://github.com/Azure/autorest. Accessed June 2023
3. Barakat, S., Roque, E.B., Sánchez, A.B., Segura, S.: Specification-driven code

generation for inter-parameter dependencies in web APIs. In: Troya, J., et al.
(eds.) ICSOC 2022. LNCS, pp. 261–273. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-26507-5_21

4. Barakat, S., Sánchez, A.B., Segura, S.: [Supplementary material] IDLGen: Auto-
mated Code Generation for Inter-parameter Dependencies in Web APIs, July 2023.
https://doi.org/10.5281/zenodo.8138633

5. Box API. https://developer.box.com/reference/. Accessed July 2023

https://developers.amadeus.com/self-service/category/hotel/api-doc/hotel-search/api-reference
https://developers.amadeus.com/self-service/category/hotel/api-doc/hotel-search/api-reference
https://github.com/Azure/autorest
https://doi.org/10.1007/978-3-031-26507-5_21
https://doi.org/10.1007/978-3-031-26507-5_21
https://doi.org/10.5281/zenodo.8138633
https://developer.box.com/reference/

Automated Code Generation for Inter-parameter Dependencies in Web APIs 167

6. Swagger Codegen. https://swagger.io/tools/swagger-codegen/. Accessed June
2023

7. Deljouyi, A., Ramsin, R.: MDD4REST: model-driven methodology for developing
RESTful web services. In: MODELSWARD, pp. 93–104. Scitepress (2022)

8. DHL Location Finder API. https://developer.dhl.com/api-reference/location-
finder. Accessed July 2023

9. Ed-Douibi, H., Izquierdo, J.L.C., GÃşmez, A., Tisi, M., Cabot, J.: EMF-REST:
generation of RESTful APIs from models. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing, vol. 04–08-April-2016, pp. 1446–1453.
Association for Computing Machinery (2016)

10. Fielding, R.T.: REST: Architectural Styles and the Design of Network-Based Soft-
ware Architectures. Doctoral dissertation, University of California (2000)

11. Foursquare Search for Venues API. https://developer.foursquare.com/reference/
v2-venues-search. Accessed July 2023

12. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Automating SLA-driven API
development with SLA4OAI. In: Yangui, S., Bouassida Rodriguez, I., Drira, K.,
Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895, pp. 20–35. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33702-5_2

13. Google Maps API. https://developers.google.com/maps/documentation/places/
web-service/search. Accessed July 2023

14. Gómez, O.S., Rosero, R.H., Cortés-Verdín, K.: CRUDyLeaf: a DSL for generating
spring boot REST APIs from entity CRUD operations. Cybern. Inf. Technol. 20(3),
3–14 (2020)

15. IDLGen. https://github.com/ssegura/openapi-generator/tree/IDLGen-extension.
Accessed July 2023

16. IDL Parser. https://github.com/isa-group/IDL-mvn-dep. Accessed July 2023
17. Inter-parameter Dependency Language (IDL). https://github.com/isa-group/IDL.

Accessed July 2023
18. Li, L., Chou, W.: Design and describe REST API without violating REST: a petri

net based approach. In: 2011 IEEE International Conference on Web Services, pp.
508–515 (2011)

19. Li, L., Tang, T., Chou, W.: Automated creation of navigable REST services based
on REST chart. J. Adv. Manage. Sci., 385–392 (2016)

20. Martin-Lopez, A., Segura, S., Muller, C., Ruiz-Cortes, A.: Specification and auto-
mated analysis of inter-parameter dependencies in web APIs. IEEE Trans. Serv.
Comput., 1–14 (2021)

21. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A catalogue of inter-parameter
dependencies in RESTful web APIs. In: Yangui, S., Bouassida Rodriguez, I., Drira,
K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895, pp. 399–414. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33702-5_31

22. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: black-box constraint-
based testing of RESTful Web APIs. In: Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) Service-Oriented Computing,
pp. 459–475. Springer, Cham (2020)

23. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Online testing of RESTful APIs:
promises and challenges. In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 408–420. ESEC/FSE 2022. Association for Computing Machinery, New
York (2022)

24. Logic-less templates. https://mustache.github.io/. Accessed July 2023

https://swagger.io/tools/swagger-codegen/
https://developer.dhl.com/api-reference/location-finder
https://developer.dhl.com/api-reference/location-finder
https://developer.foursquare.com/reference/v2-venues-search
https://developer.foursquare.com/reference/v2-venues-search
https://doi.org/10.1007/978-3-030-33702-5_2
https://developers.google.com/maps/documentation/places/web-service/search
https://developers.google.com/maps/documentation/places/web-service/search
https://github.com/ssegura/openapi-generator/tree/IDLGen-extension
https://github.com/isa-group/IDL-mvn-dep
https://github.com/isa-group/IDL
https://doi.org/10.1007/978-3-030-33702-5_31
https://mustache.github.io/

168 S. Barakat et al.

25. NSwag toolchain. https://github.com/RicoSuter/NSwag. Accessed June 2023
26. Ohsome API. https://docs.ohsome.org/ohsome-api/v1/. Accessed July 2023
27. OMDb API. https://www.omdbapi.com/. Accessed July 2023
28. OpenAPI Generator. https://openapi-generator.tech/. Accessed July 2023
29. OpenAPI Specification. https://www.openapis.org/. Accessed July 2023
30. PayPal Invoicing API. https://developer.paypal.com/docs/api/invoicing/v1/#

invoices. Accessed July 2023
31. Queirós, R.: Kaang: A RESTful API Generator for the Modern Web. In: 7th Sym-

posium on Languages, Applications and Technologies SLATE 2018. vol. 62, pp.
1:1–1:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

32. RapidAPI Hub. https://rapidapi.com/hub. Accessed March 2022
33. RESTest: Automated Black-Box Testing of RESTful Web APIs. https://github.

com/isa-group/RESTest. Accessed July 2023
34. Rossi, D.: UML-based model-driven REST API development. In: WEBIST 2016

- Proceedings of the 12th International Conference on Web Information Systems
and Technologies, pp. 194–201 (2016)

35. Travel API. https://github.com/isa-group/RESTest/tree/master/src/test/
resources/Travel. Accessed July 2023

36. Tumblr API. https://www.tumblr.com/docs/en/api. Accessed July 2023
37. Wang, B., Rosenberg, D., Boehm, B.W.: Rapid realization of executable domain

models via automatic code generation. In: 2017 IEEE 28th Annual Software Tech-
nology Conference (STC), pp. 1–6 (2017)

38. Yelp API. https://docs.developer.yelp.com/reference. Accessed July 2023
39. Yeoman. https://yeoman.io/. Accessed July 2023
40. YouTube Data API. https://developers.google.com/youtube/v3/docs. Accessed

July 2023

https://github.com/RicoSuter/NSwag
https://docs.ohsome.org/ohsome-api/v1/
https://www.omdbapi.com/
https://openapi-generator.tech/
https://www.openapis.org/
https://developer.paypal.com/docs/api/invoicing/v1/#invoices
https://developer.paypal.com/docs/api/invoicing/v1/#invoices
https://rapidapi.com/hub
https://github.com/isa-group/RESTest
https://github.com/isa-group/RESTest
https://github.com/isa-group/RESTest/tree/master/src/test/resources/Travel
https://github.com/isa-group/RESTest/tree/master/src/test/resources/Travel
https://www.tumblr.com/docs/en/api
https://docs.developer.yelp.com/reference
https://yeoman.io/
https://developers.google.com/youtube/v3/docs

Time-Aware Log Anomaly Detection
Based on Growing Self-organizing Map

Daniil Fedotov(B), Jaroslav Kuchar, and Tomas Vitvar

Czech Technical University in Prague, Prague, Czech Republic
{daniil.fedotov,jaroslav.kuchar,tomas.vitvar}@fit.cvut.cz

Abstract. A software system generates extensive log data, reflecting its
workload and potential failures during operation. Log anomaly detection
algorithms use this data to identify deviations in system behavior, espe-
cially when errors occur. Workload patterns can vary with time, depend-
ing on factors like the time of day or day of the week, affecting log entry
volumes. Thus, it’s essential for log anomaly detection to consider tempo-
ral information that captures workload variations. This paper introduces
a novel log anomaly detection method that incorporates such time infor-
mation and demonstrates how smaller models enhance anomaly detec-
tion precision. We evaluate this method on a high-throughput production
workload of a software system, showcasing its superior performance over
conventional log anomaly detection methods.

Keywords: anomaly detection · GSOM · clustering

1 Introduction

A software system generates a vast amount of structured and semi-structured
data written to log files. These files contain various information types, such
as garbage collector logs, diagnostic logs, or component-specific logs. In a pro-
duction environment, the system’s workload typically fluctuates throughout the
day or experiences seasonal variations, like increased activity on Black Fridays
or during Christmas. Incidents may trigger specific error types that occur more
frequently, accompanied by new error messages not seen during standard opera-
tions. Log files serve as a tool for operations teams to monitor system behavior
changes that might signal an incident. Early detection enables rapid response to
mitigate business impact.

In this paper we define a novel method for log anomaly detection with tem-
poral information based on Growing Self-Organizing Map (GSOM) [1]. GSOM
is an artificial neural network based on unsupervised competitive learning and
we use it to produce spatially organized low-dimensional representation of high-
dimensional data. We define a sliding window that we use to split log data into a

This research was supported by the Student Summer Research Program 2021 of FIT
CTU in Prague and the Grant Agency of the Czech Technical University in Prague,
grant No. SGS20/209/OHK3/3T/18.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 169–177, 2023.
https://doi.org/10.1007/978-3-031-48421-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_12

170 D. Fedotov et al.

number of overlapping time intervals that represent various workloads. We train
models for each window and use the models to detect anomalies in log data
during runtime. We evaluate the method on a system that handles a production
workload of several hundreds of requests per second.

2 Related Work

There are several research approaches used in log anomaly detection. Wurzen-
berger et al. [8] defines an incremental clustering method and semi-supervised
anomaly detection method. Such an approach leads to loosing semantic and
temporal information. Liang at al. [4] use Rule-based classifier, Support Vector
Machines and Nearest Neighbor classifiers. The downside of these approaches is
that they are difficult to use in real-world settings as they require a retraining of
models anytime when changes occur in log files. Vinayakumar et al. [7] proposes
methods based on Long-Short Term Memory neural network. Meng et al. [5]
present their own word representation method called template2vec inspired by
word2vec [6]. LSTM neural networks can provide powerful methods for analyz-
ing logs, however, since they use supervised learning algorithms, they require
labeled data for training.

3 Time-Aware Log Anomaly Detection

Sliding Window. We use timestamps to assign entries to specific windows,
defining a sliding window technique. Normal system operation involves fluctu-
ations in request volumes, as well as occasional restarts or updates, impacting
workload and log generation. Log entries considered “normal” during one time
period may be anomalous at another time, like higher server workloads on Mon-
day mornings compared to weekends which is driven by increased user activity.
Existing approaches typically train models on the entire dataset. Such larger
models may struggle with identifying narrower anomalies specific to certain time
intervals, influenced by biased training data favoring frequently occurring log
messages.

Figure 1 illustrates the sliding window technique that helps to collect the
most detailed training set for the GSOM models. A white stripe in the figure
represents the log data, the gray rectangle is the sliding window, where parameter
T defines the size of the window, the dashed line rectangle shows the starting
position of the sliding window which corresponds to the first recorded log entry,
and δt parameter defines a step the window slides through the log data. In Sect. 4
we define the parameters on a specific dataset.

Log Parsing. We extract information from the created windows. For each
log entry, we process the text using NLP techniques. This involves filtering out
redundant information like file paths, numbers, and punctuation, converting mes-
sages to lowercase, and tokenizing them into words. We also remove stopwords,
which are common words with little meaning.

Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map 171

Fig. 1. Sliding window over log data

Feature Extraction. After we parse log entries, we use Doc2Vec model [3] to
transform entries to their numeric vector representation. Each vector is a feature
representing attributes and properties of its corresponding log entry. The vectors
represent points in a high-dimensional semantic space.

Training of GSOM Models. We use GSOM method to compute a set of
models that we use to evaluate logs during runtime to detect anomalies in the
log data. In the GSOM training algorithm neurons compete among themselves
for the opportunity to best represent an input vector with a dimension dim
from a training dataset. Formally, in a training step t, a neuron i with a weight
vector wi that is the closest in Euclidean distance to an input vector xt wins the
competition. The winner is called Best Matching Unit (BMU):

d(xt, wi) =
dim∑

k=1

√
(xt,k − wi,k)2. (1)

The BMU further adjusts its weights and weights of neighbor neurons towards
the input vector:

wi(t + 1) = wi(t) + θ(i, v, t) · η(t) · (xt − wi(t)) (2)

where θ(i, v, t) is a neighborhood function for the BMU i to a neuron v on a
training step t and η(t) is a learning rate on the training step t.

The training of the GSOM network consists of one training (growing) phase
and a number of so called smoothing phases. During smoothing phases, the
method adjusts weights of existing neurons to minimize the quantization error.

Anomaly Detection. We define two approaches to detect anomalies, namely
Clustering and GSOM model structure.

Clustering. As a result of the GSOM algorithm, similar input vectors are close to
each other in the GSOM model which in turn form clusters. In order to identify
such clusters and their centroids in the model, we apply K-means algorithm.
We run K-means partitioning on a trained GSOM model’s weights several times
with different values of k parameter ranging from 2 to

√
N , where N is a number

of neurons in the GSOM model. We then identify the best cluster partition as
the one with the lowest Davies-Bouldin index (DB index), which measures the

172 D. Fedotov et al.

within-cluster variation and between-cluster variation for the resulting clusters
(see Formula 3).

DB =
1
n

n∑

i=1,i �=j

max(
Si + Sj

d(ci, cj)
), (3)

where

– n – number of clusters,
– Si, Sj – within cluster variations,
– d(ci, cj) – between cluster variation.

GSOM model structure. We compute Euclidean distances from each input vector
to neurons’ weight vectors of GSOM models.

When log entries are anomalous, they tend to deviate significantly from the
corresponding GSOM model’s neurons in Euclidean space. Therefore, it is cru-
cial to establish a maximum allowable distance, referred to as a threshold, to
determine whether log entries are anomalous or not. In the first approach, we
calculate the average Euclidean distance from each input vector in the training
dataset to the nearest cluster centroid within the GSOM model. In the second
approach, we directly compute the Euclidean distance to the weight vectors of
GSOM neurons. These distances are calculated using a training dataset that
contains vectors representing the baseline behavior of the server.

For both approaches, we gather statistical data on these distances, which
serves as the basis for subsequent threshold computation. Using Formula 4, we
determine the threshold as a k -sigma upper limit of the distances from the
baseline vectors to the GSOM models (further details on how we determine the
value of k for calculating the threshold are provided in Sect. 4).

threshold = μ + kσ, (4)

where

– k – number of standard deviations from the mean,
– μ – mean Euclidean distance from baseline vectors to trained GSOM,
– σ – standard deviation for Euclidean distances from baseline vectors to trained

GSOM.

Finally, according to Formula 5 we say that log entries from a testing dataset
are anomalous if their distance of vectors to corresponding model’s neurons is
greater than the threshold value.

GSOM(x) =

{
d(x, c) ≥ threshold, anomaly
d(x, c) < threshold, normal

(5)

Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map 173

4 Experiments and Evaluation

Model Training. In order to establish a baseline, we use logs from multiple
server instances running production workloads for 7 days. During the training
phase, we divide daily log data into 24 overlapping intervals using a sliding
window technique. We configure parameters as T = 75 min and δt = 60 min.
Figure 2 illustrates log trends for these intervals. These parameter choices align
with our knowledge of data and workload patterns. For instance, there are mes-
sage peaks from around 11:50 to 12:00 and message dips at approximately 11:45.
The chosen sliding window parameters ensure that workload patterns are cov-
ered at most once for each interval, making intervals “equivalent” in terms of
pattern coverage.

Fig. 2. Baseline log data partitioned into overlapping intervals

We extract features for each window using a 120-component Doc2Vec embedding
enriched with timestamps, resulting in 123-component feature vectors for every
log entry. Pre-trained embedding models on general text data are unsuitable
for our domain-specific log data. Consequently, we trained a custom Doc2Vec
model on server log data to compute these embeddings. We then normalize the
data within each window using MinMax scaling (see Formula 6) to make sure
all values are positive, aligning with the GSOM model’s weight initialization in
the 0; 1 interval.

Xscaled =
X − min(X)

max(X) − min(X)
, (6)

For each window we then train a GSOM model with uniform hyperparameters
and iterations to maintain consistency across all models. Table 1 lists the hyper-
parameter values and iteration counts.

174 D. Fedotov et al.

Table 1. GSOM training and smoothing parameters

Training Smoothing 1. Smoothing 2.

Iterations 400 50 50
Learning rate 0.9 0.6 0.6
Spread factor 0.6 0.6 0.6
Neighborhood 6 2 1
Max neurons 5000 5000 5000

Anomaly Detection Evaluation. We use log data from a separate time period
and a single server instance within the server cluster, distinct from the training
data. This period corresponds to incidents on the server instance, resulting in
behavior different from the baseline servers used during training. We use log
data from 8:00 to 16:00 when the system experienced high workloads.

Fig. 3. Anomaly detection results using GSOM without clustering

Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map 175

In Fig. 3, we show 4 plots that correspond to 4 time intervals with high work-
loads. The upper charts represent a frequency of log messages per minute where
the solid line shows the baseline trend we use in the training phase and the
dashed line represents the testing log trend that contains anomalies. The bot-
tom charts show the anomaly detection results. The straight solid lines represent
the threshold value, the points below the threshold line represent log entries as
true negatives, the circles represent log entries as false positives, and finally the
crosses represent log entries that are true positives. We identify 4 types of server
behavior that we mark in charts as 1,2,3 and 4:

Type 1: Correctly detected log entries as anomalies (the crosses above the
threshold line).

Type 2: Log entries detected as anomalies, but they actually correspond
to normal server’s behavior (circles). There are anomalies of this type due to
the imbalance in the training datasets and the same hyperparameters’ preset for
the models (types of log entries in the training dataset are not equal from the
quantitative point of view).

Type 3: The trend of the baseline server’s behavior and the trend of messages
in the testing dataset do not match while there are no anomalies detected. Such
differences in the two trends are normal due to the dynamic nature of receiving
and processing requests and the generation of corresponding log entries.

Type 4: The trend of the baseline server’s behavior shows dynamics in gen-
eration of log entries, however, there is no such dynamics in the testing trend.
We call this type the “gap”. This behavior is caused by a temporary suspension
of the server. In our work, we focus on detection of anomalous log entries by
using the content of log entries and we do not consider the gap anomalies to be
critical to be detected.

Evaluation Details. We compared our method with two widely used anomaly
detection techniques: PCA and Isolation Forest from Loglizer [2]. PCA represents
a basic approach, while Isolation Forests are a commonly adopted method in
anomaly detection. We fine-tune method parameters to optimize precision, recall,
and F-measure metrics and assess their performance on the same datasets. The
evaluation results, presented in Table 2, include “Pr” (precision), “Rec” (recall),
and “F1” (F-measure). The columns “GSOM w/o cl.” and “GSOM w/ cl.” show
results with and without clustering applied to GSOM models, respectively.

During the evaluation we experimentally found that our method achieves the
best performance when the value of k parameter in anomaly threshold compu-
tation is set to 10 for GSOM w/o cl. and set to 2 for GSOM w/ cl.

In the evaluation results, both GSOM methods perform well on our test
dataset, surpassing PCA and outperforming Isolation Forest in terms of precision
and recall. Comparing the two GSOM methods, GSOM without clustering and
GSOM with clustering yield similar results for precision, recall, and F-measure,
with the latter showing slightly lower precision only in the 11:00–12:15 interval
(0.89 for GSOM with clustering and 0.99 for GSOM without clustering), but

176 D. Fedotov et al.

Table 2. Evaluation results

Time Metric
GSOM w/o cl. GSOM w/ cl. PCA Isolation Forest
Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1

08:00–09:15 0.99 0.74 0.85 0.99 0.74 0.85 0.63 0.24 0.35 0.33 0.78 0.47
09:00–10:15 0.99 0.75 0.86 0.99 0.75 0.86 0.65 0.26 0.37 0.42 0.76 0.54
10:00–11:15 0.98 0.74 0.85 0.99 0.74 0.85 0.59 0.23 0.33 0.39 0.75 0.51
11:00–12:15 0.99 0.74 0.85 0.89 0.78 0.83 0.67 0.23 0.35 0.41 0.87 0.56
12:00–13:15 0.99 0.74 0.85 0.99 0.74 0.85 0.41 0.25 0.31 0.23 0.70 0.35
13:00–14:15 0.99 0.78 0.87 0.99 0.76 0.86 0.58 0.25 0.35 0.29 0.76 0.43
14:00–15:15 0.99 0.77 0.86 0.99 0.77 0.86 0.53 0.24 0.33 0.38 0.79 0.51
15:00–16:15 0.98 0.76 0.86 0.99 0.76 0.86 0.54 0.25 0.34 0.39 0.81 0.53
Average 0.99 0.75 0.86 0.98 0.75 0.85 0.57 0.24 0.34 0.35 0.78 0.49

better recall (0.78 for GSOM with clustering and 0.74 for GSOM without clus-
tering). Despite their similar performance, applying clustering to GSOM weight
vectors reduces problem dimensionality and the time complexity of the method.

5 Conclusion and Future Work

Log anomaly detection is crucial for operations teams to identify potential inci-
dent triggers within log data. One approach involves using unsupervised machine
learning algorithms to train models on log data representing standard system
behavior, enabling real-time anomaly detection. We’ve developed a method uti-
lizing Growing Self-Organizing Map and time information in log data. Time is
significant in enterprise environments, as log data generation varies with system
workloads and operational events.

In our future research we plan to expand our GSOM model with a Knowledge
Graph, providing background knowledge of service architecture. This integra-
tion will help uncover data links and incident patterns during server operation,
enhancing model explainability and interpretability.

References

1. Alahakoon, D., Halgamuge, S., Bala, S.: Dynamic self-organizing maps with con-
trolled growth for knowledge discovery. IEEE Trans. Neural Netw. 11(3), 601–614
(2000). https://doi.org/10.1109/72.846732

2. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: System log analysis for
anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reli-
ability Engineering (ISSRE), pp. 207–218 (2016). https://doi.org/10.1109/ISSRE.
2016.21

https://doi.org/10.1109/72.846732
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21

Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map 177

3. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 1188–
1196. PMLR, Beijing (2014). https://proceedings.mlr.press/v32/le14.html

4. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: Failure prediction in IBM BlueGene/L
event logs, pp. 583–588 (2007). https://doi.org/10.1109/ICDM.2007.46

5. Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantita-
tive anomalies in unstructured logs (2019)

6. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 746–751. Association for Computational Linguistics, Atlanta (2013).
https://aclanthology.org/N13-1090

7. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Long short-term memory
based operation log anomaly detection. In: 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pp. 236–242
(2017). https://doi.org/10.1109/ICACCI.2017.8125846

8. Wurzenberger, M., Skopik, F., Landauer, M., Greitbauer, P., Fiedler, R., Kstner,
W.: Incremental clustering for semi-supervised anomaly detection applied on log
data (2017)

https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1109/ICDM.2007.46
https://aclanthology.org/N13-1090
https://doi.org/10.1109/ICACCI.2017.8125846

Containers and Microservices

An Empirical Evaluation of the Energy
and Performance Overhead of Monitoring

Tools on Docker-Based Systems

Madalina Dinga1, Ivano Malavolta1 , Luca Giamattei2(B) ,
Antonio Guerriero2 , and Roberto Pietrantuono2

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
m.dinga@student.vu.nl, i.malavolta@vu.nl
2 University of Naples Federico II, Naples, Italy

{luca.giamattei,antonio.guerriero,roberto.pietrantuono}@unina.it

Abstract. Context. Energy efficiency is gaining importance in the
design of software systems, but is still marginally addressed in the area of
microservice-based systems. Energy-related aspects often get neglected
in favor of other software quality attributes, such as performance, service
composition, maintainability, and security.

Goal. The aim of this study is to identify, synthesize and empiri-
cally evaluate the energy and performance overhead of monitoring tools
employed in the microservices and DevOps context.

Method. We selected four representative monitoring tools in the
microservices and DevOps context. These were evaluated via a controlled
experiment on an open-source Docker-based microservice benchmark
system.

Results. The results highlight: i) the specific frequency and workload
conditions under which energy consumption and performance metrics
are impacted by the tools; ii) the differences between the tools; iii) the
relation between energy and performance overhead.

1 Introduction

In recent years, the motivation to reduce energy consumption by conservation
and efficient use has grown significantly. It has become not only a means for
gaining control over costs but, most importantly, a way of reducing the carbon
footprint of economic and human activity. This is reflected across all industries,
including software development [16]. Nevertheless, energy consumption has only
recently come to attention in literature [5]. With the advent of microservice-
based systems coupled with agile (specifically DevOps) practices, a great focus
is put on continuous monitoring: teams need feedback from the system run-
ning in the field, in order to get measures about systems performance, secu-
rity, reliability, to track the status of microservices, to timely detect issues,
and act consequently. However, this requires the deployment and operation of
(sometimes complex) monitoring tools running alongside the microservices,
which in turn might contribute to the overall energy consumed by the system.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 181–196, 2023.
https://doi.org/10.1007/978-3-031-48421-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_13&domain=pdf
http://orcid.org/0000-0001-5773-8346
http://orcid.org/0000-0003-3767-4036
http://orcid.org/0000-0002-8104-3832
http://orcid.org/0000-0003-2449-1724
https://doi.org/10.1007/978-3-031-48421-6_13

182 M. Dinga et al.

This study aims to raise awareness on this matter by assessing the impact
on energy consumption and performance overhead of monitoring tools employed
in microservice-based systems. We limit the scope to systems running in Docker
containers since energy is highly dependent on the platform. This helps to sepa-
rate its effect from the main factor (i.e., the tools). Docker was chosen because
it is one of the most popular container-based virtualization solutions [11].

To achieve our goal, we answer the following research questions. RQ1: What
is the impact of using different monitoring tools on energy efficiency of Docker-
based systems? RQ2: What is the impact of using different monitoring tools on
performance of Docker-based systems?

We set up an extensive empirical study in which we select 4 monitoring tools
run alongside a Docker-based system, and we measure energy consumption at
machine level and several performance indicators (CPU, RAM, network, execu-
tion time). We then statistically analyze the results to understand the impact of
the monitoring tools on both aspects under different conditions.

The contribution and results of this study are relevant to i) Docker-based
systems developers, as they offer a better understanding on how to integrate
monitoring tools within their applications in an energy-efficient manner; ii) the
tools’ maintainers, as they highlighting the impact of their monitoring systems
on energy and performance, and showing potential improvements; iii) researchers
working on microservices and DevOps, as they push toward addressing the prob-
lem of an efficient monitoring that has to trade off energy consumption for the
need of gathering as much relevant information as possible to ensure quality.

The full replication package of the study is available at https://github.com/
S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg.

2 Background

As defined by Fowler and Lewis, the microservices architectural style is “an app-
roach for developing a single application as a suite of small services, each run-
ning in its own process and communicating with lightweight mechanisms, often
an HTTP resource API” [1]. Docker [11] is one of the most recurrent technolo-
gies for implementing microservices [4]. It is a lightweight virtualization platform
for packaging software solutions into self-contained and independently-deployed
units (i.e., containers). Among others, with Docker, teams can develop and deploy
their (loosely-coupled) microservices independently from each other, make faster
and more frequent releases, and test their microservices in autononomy.

Being inherently distributed, microservice-based systems require specialized
monitoring tools, such as Netdata1, Prometheus2, etc. Without losing gener-
ality, a monitoring tool is typically composed of one or more DBs for storing
the collected metrics (e.g., the Time Series Database in Prometheus), a dash-
boarding platform for querying the DBs and/or showing the collected metrics to
the user (e.g., Grafana), an alerting subsystem for sending notifications to the

1 https://www.netadata.cloud.
2 https://prometheus.io.

https://github.com/S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg
https://github.com/S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg
https://www.netadata.cloud
https://prometheus.io

Evaluating Energy and Performance Overhead of Monitoring Tools 183

user (e.g., the rule-based Alert Manager component in Prometheus), and a set
of monitoring components (e.g., Prometheus exporters) – typically one for
each microservice – that collect metrics about their associated microservice (e.g.,
average CPU usage) and make those metrics available to the DBs. Despite their
undoubted usefulness for the observability of the system, the just-mentioned
monitoring components do not contribute directly to the functionalities of the
system; still, they are deployed together with the microservices being monitored
and compete for the same hardware resources. In this study, we are interested in
quantifying the overhead that the just-mentioned monitoring components pro-
duce in terms of performance and energy consumption of the monitored system.

The collection of performance-related measures (e.g., CPU load, memory
utilization, network requests) is relatively straightforward for Docker-based sys-
tems, primarily thanks to already-existing monitoring components wrapping
Linux utilities such as SAR3. Differently, the measurement of power con-
sumption (and thus energy) requires extra effort and technical skills. Some
well-known tools for monitoring energy are PowerPack (physical measurement),
RAPL (software-based measurement), or PowerAPI (software library). In this
study, we favour accuracy and measure the power consumption at machine-level
using a well-known physical power meter called Watts Up Pro [8].

3 Related Work

To our knowledge, there is no comprehensive study about the energy consump-
tion of monitoring tools in the context of microservices.

Heward et al. [7] look into the performance impact of service monitoring for
web applications. They explore various architecture designs for monitoring the
web traffic. One conclusion is that a colocated proxy used for monitoring is much
more efficient than a proxy located on a different machine. Similar to our study,
this paper assesses the impact of monitoring tools, however it does not consider
their impact on energy efficiency.

Foutse et al. [9] assess the impact of cloud patterns on performance and
energy consumption and provide a series of guidelines for implementing energy-
efficient cloud-based applications. Their results focus around the environmental
impact of microservice-based systems, showing that migration to a microservices
architecture can improve performance, while reducing energy consumption. The
study does not take into account monitoring.

A related study [10] investigates the use of SmartNIC’s, a low-power pro-
cessor, for improving server energy-efficiency without latency loss, in the con-
text of microservices. They propose E1, an execution platform for SmartNIC-
accelerated servers, which, according to the authors, can significantly improve
cluster energy-efficiency up to 3×, with minimal latency cost, for com-
mon microservices. The paper focuses on improving the energy efficiency of
microservice-based systems, however it does not take into account the poten-
tial overhead of monitoring tools.
3 https://linux.die.net/man/1/sar.

https://linux.die.net/man/1/sar

184 M. Dinga et al.

Santos et al. [14] compare the energy consumption of applications running in
Docker containers to those running bare-metal. The authors demonstrate that
Docker increases the energy consumption even if the system under test is idle.
The effect is caused by the activity of the Docker daemon (dockerd), a service
that permanently runs on the host and orchestrates the containers. While this
paper focuses on the energy footprint of Docker, our study explores how various
monitoring tools running alongside Docker-based systems impact energy.

4 Study Design

4.1 Experimental Subjects: Monitoring Tools

Tools Selection. We searched for open-source monitoring tools on GitHub,
looking at the ones reporting DevOps as topics in their description. The tools
have been selected according to the following requirements:

– Compatible with microservices applications running in Docker containers.
– Do not require integration at the application level (i.e. code instrumentation),

and in general aiming to:
• avoid introducing unnecessary confounding variables, such as communi-

cation overhead due to interaction between additional components,
• avoid increasing the deployment of the integrated applications,
• aid replication of the experiments.

– Capable to collect metrics at container level.

Table 1. Monitoring tools

Monitoring Tool

ELK Stack Website https://www.elastic.co/elastic-stack/

Github https://github.com/elastic/elasticsearch

First and last release* 2/8/2010 and 07/29/2022

Stars on Github* 60,700

Netdata Website https://www.netdata.cloud/

Github https://github.com/netdata/netdata

First and last release* 9/26/2015 and 08/11/2022

Stars on Github* 60,300

Prometheus Website https://prometheus.io/

Github https://github.com/prometheus/prometheus

First and last release* 2/25/2015 and 08/13/2022

Stars on Github* 43,800

Zipkin Website https://zipkin.io/

Github https://github.com/openzipkin/zipkin

First and last release* 6/3/2016 and 1/27/2022

Stars on Github* 15,600

*The date of access for the most recent release and for the number of stars on Github is
8/15/2022.

https://www.elastic.co/elastic-stack/
https://github.com/elastic/elasticsearch
https://www.netdata.cloud/
https://github.com/netdata/netdata
https://prometheus.io/
https://github.com/prometheus/prometheus
https://zipkin.io/
https://github.com/openzipkin/zipkin

Evaluating Energy and Performance Overhead of Monitoring Tools 185

With these requirements, we aim to aid the replicability of the experiments
and facilitate the interpretation of the results avoiding biases. Then, we ranked
the tools in terms of stars and selected the top four, reported in Table 1. Specif-
ically, the ranking included three metric-based tools (ELK Stack, Netdata, and
Prometheus) and one tracing-based tool (Zipkin).
Benchmark System. As part of the setup, we select a well-known Docker-
based microservice application, TrainTicket4 (TTS) [17], and integrated it with
the monitoring tools. TTS is a medium-size benchmark system containing 24
microservices related to business logic, out of 41 in total, implemented in different
languages. It has been previously used in several experimental studies and is
representative for industrial multi-container Docker applications through to its
size, granularity, and variety of microservices [3].
Integration. The integration of TTS with the monitoring tools follows the most
basic configuration and deployment described in the documentation of the tools.
ELK stack is integrated using Metricbeat5, a lightweight shipper for host and
service metrics. Metricbeat is deployed directly on the host and it monitors all
of the deployed Docker containers. Metrics are stored in Elasticsearch and can
be visualised in Kibana - both running in separate Docker containers. Frequency
is the time interval (in seconds) at which metrics are sent to the Elasticsearch
cluster. A snapshot of Metricbeat metrics is generated every second for high
level, 5 s for medium level and 10 s for low level.

Netdata, similar to Metricbeat, has an agent that discovers all available con-
trol groups (cgroups) on the host system and collects their metrics. The collection
frequency has the same progression as for ELK stack (1/5/10 s).

Prometheus is integrated with cAdvisor (Container Advisor)6 to monitor the
running containers. cAdvisor has the same approach as Metricbeat and Netdata
– it gathers container metrics, such as CPU and memory through cgroups. Fre-
quency is configured the same way (1/5/10 s) as the previous two tools.

As for Zipkin7, the integration with the TTS is made with Java Sleuth8. It
is configured using the PercentageBasedSampler, i.e., only a given proportion of
traces are stored. The frequency is changed using probabilistic sampling: only a
configurable percent of the traces are processed and stored. The setting for high
is 100%, for medium 50%, and for low 25%. Further details about the integration
are in the replication package: each integration has its own Compose file defining
the services, networks, and volumes required to run the tools alongside the TTS.

4.2 Goal and Research Questions

The goal of the experiment is expressed via the Goal-Question-Metric app-
roach [2]: to analyze monitoring tools, for the purpose of evaluation, with respect

4 https://github.com/FudanSELab/train-ticket.
5 https://www.elastic.co/beats/metricbeat.
6 https://github.com/google/cadvisor.
7 https://zipkin.io/.
8 https://spring.io/projects/spring-cloud-sleuth.

https://github.com/FudanSELab/train-ticket
https://www.elastic.co/beats/metricbeat
https://github.com/google/cadvisor
https://zipkin.io/
https://spring.io/projects/spring-cloud-sleuth

186 M. Dinga et al.

to their energy and performance overhead, from the point of view of developers
and tool maintainers, in the context of Docker-based systems. The RQs are:

RQ1: What is the impact of using different monitoring tools on the
energy efficiency of Docker-based systems?

RQ2: What is the impact of using different monitoring tools on the
performance of Docker-based systems?

Several performance indicators are considered pertaining to resource con-
sumption and execution time, which will be analyzed individually. These are:
percentage of CPU utilization while running at user level; load average, com-
puted as the average number of runnable or running tasks (R state), and the
number of tasks in uninterruptible sleep (D state) over the last minute; percent-
age of used memory (RAM); number of input datagrams successfully delivered
per second to IP user-protocols, and total number of input datagrams received
per second, including those received in error; execution time in seconds.

4.3 Experiment Variables

To mitigate the mono-operation bias and to accurately represent the runtime
overhead of the tools, we consider the following independent variables.

Monitoring Tool, five levels: the baseline, where we run the TTS deployed
without any monitoring tool, plus the above-mentioned tools, Elasticsearch, Net-
data, Prometheus, and Zipkin. The tool is deployed along with the TTS.

Frequency: the scrape interval, in the case of tools that collect metrics
(Elasticsearch, Netdata, Prometheus), and the sampling interval, in the case of
the tracing tool (Zipkin). It is treated as a blocking factor with three levels
(high, medium, low). Ratio measures are transformed to ordinal ones based on
the minimum allowed scrape interval and maximum allowed sampling rate among
the tools. Based on this, level “high” corresponds to 1 s for metric collection tools
and 100% sampling rate for tracing tools, level “medium” is 5 s and 50% and
level “low” is 10 s and 25%, respectively.

Workload: the number of virtual users that stress the system during the
test. It is treated as a blocking factor with three levels (high, medium, low). The
mapping to ordinal scale considers the capabilities of the system as follows: level
high corresponds to the highest number of users supported such that the tests
are completed successfully (Table 2).

Deployment: the strategy used for deploying the system. This factor is fixed,
in order to separate its effect from the main factor. The monitoring tools, next
to the TTS are deployed on a single Ubuntu machine using Docker Compose V2
for running the containers on Docker platform.

The dependent variables are: Energy efficiency (total energy consumed
(Joules) by TTS during a load test), and the above-defined performance metrics
(CPU usage, CPU load, RAM usage, Network traffic, Execution time).
The null hypotheses for RQ1 and RQ2 state that a dependent variable does not
significantly differ when using different monitoring tools. The proper hypothesis
tests will be used depending on the data characteristics. Table 2 shows the ratio
values for the co-factors (frequency and workload).

Evaluating Energy and Performance Overhead of Monitoring Tools 187

Table 2. Ratio values corresponding to treatments for every monitoring tool

Tool Frequency Workload

Low Medium High Low Medium High

ELK Stack 10 s 5 s 1 s 10 20 40

Netdata 10 s 5 s 1 s 10 20 40

Prometheus 10 s 5 s 1 s 10 20 40

Zipkin 25% 50% 100% 10 20 40

4.4 Experiment Design

We alternate every possible combination (4 monitoring tools plus the baseline,
3 frequency levels, and 3 workload levels) of all of the levels across all inde-
pendent variables, following a 5× 3× 3 full factorial design. We do not consider
frequency in the case of the baseline treatment, since it does not apply in that
case. This means we only have 3 runs for the baseline, for 3 levels of workload,
leading to 39 trials in total, i.e., (5× 3× 3)-6. We aim to keep the monitoring
tool effect at the core of the experiment, while also considering frequency and
workload as factors that might influence energy efficiency. In order to mitigate
their effect and to ensure an unbiased assignment, we analyze each combination
of the co-factors separately, resulting in 9 different blocks. The results might
differ depending on how energy and performance are affected at runtime when
running the experiment under different frequency and workload conditions.

Each of the 39 runs is repeated 10 times and in randomized execution order,
to mitigate the potential bias caused by the order in which tools are run.

4.5 Experiment Execution

Testbed. The experiment is performed on a machine with a 64-bit Intel(R)
Xeon(R) CPU E3-1231 v3 @ 3.40 GHz octa-core processor, 32 GB RAM, running
Ubuntu Server 18.04 as operating system, which runs TTS and the monitoring
tool. The server is fully dedicated to this experiment to reduce the chances of
external factors contributing to the energy and performance measurements. The
scripts orchestrating and running the experiments and the results of the energy
measurements are run on two further separate machines to avoid bias.
Metrics Collection. For energy measurements collection, we opted for mea-
suring energy at machine level using a physical power meter. Specifically, the
Watts Up Pro power meter is used to collect power measures from the moni-
tored server, in watts (W), at one second intervals, then used to compute energy
(J). For performance measurements, we use SAR, a system utility allowing for
monitoring the resources of a Linux system, again with a one-second interval.
Experiment Execution. Each run has a profiling time of 13.7 min on average,
which may vary depending on the execution time of the load test. We add 3 min
idle time between consecutive runs to guards against carryover effects (consecu-
tive runs influencing each other) [15] and 10 min, for system initialization, which

188 M. Dinga et al.

leads to 26.7 min to complete one run. We perform 10 runs for every trial (39 tri-
als), resulting in 390 runs in total, executing for 10,413 min (more than 7 d). We
set the execution time for a run to be at least 10 min, taking into account the fre-
quency of 1 s at which Watts Up Pro collects energy measurements. This results
in at least 600 measurements for a run, which allows to accurately compute the
energy efficiency.

We orchestrated the experiment using Experiment Runner9, a Python-based
framework for automatically executing experiments targeting software systems.
For each run, these steps are performed: (i) deploy of TTS along with the chosen
monitoring tool, (ii) start monitoring energy and performance (with Watts Up
Pro and SAR), (iii) interact with the system by triggering a load test script, (iv)
stop monitoring once the load test has completed, (v) stop all processes related
to TTS, or to the monitoring tool running alongside, (vi) clean up the system
by removing all unused local volumes and restarting Docker Engine.
Workload. The load test script was obtained by merging together a set of scripts
generated with K610, an open-source load testing tool. K6 can generate scripts
for performance testing starting from the Swagger/OpenAPI specification of the
REST APIs. We obtain 34 scripts for each of the 34 microservices which are
integrated with Swagger. The scripts are included in the replication package of
the study. Each of the scripts is stressing a different microservice by interacting
with its API. Since the requests propagate through the entire system, the 7
remaining microservices which are not directly tested are also interacted with.

The 34 scripts are merged together into a single load test script which will
be used during a run to stress the entire system. We perform multiple itera-
tions of this script, with several virtual users (10, 20 and 40), to ensure that the
duration of a run is at least 10 min. On average, each user performs the same
amount of work (i.e., 34.5 iterations of the load test script in one run). The
replication package contains: (i) the raw measures, (ii) the scripts for data pro-
cessing and analysis and (iii) the scripts to automate the experiment execution.

5 Results

5.1 Results on Energy Efficiency (RQ1)

Figure 1 reports the energy consumed by the compared tools, with values ranging
from 38,552 to 88,516 J. The coefficient of variation is between 21.3% and 26.8%
and the standard deviation shows that the data is relatively disperse (13,453
globally), which most probably comes from the difference among the frequency-
workload blocks. Considering the mean values (the diamond in the box plot),
there is a visible difference between the baseline (53,755 J) and running a tool
alongside the TTS (54,543 J, 55,046 J, 56,760 J, 60,668 J, respectively for Net-
data, Prometheus, ELK Stack, Zipkin). As expected, the tools have a footprint
on energy, with Netdata being the most energy-efficient tool and Zipkin the

9 https://github.com/S2-group/experiment-runner.
10 https://k6.io/.

https://anonymous.4open.science/r/esec-fse-2023-rep-pkg-6E05/
https://github.com/S2-group/experiment-runner
https://k6.io/

Evaluating Energy and Performance Overhead of Monitoring Tools 189

Fig. 1. Energy efficiency across monitoring tools

least one. Median values (the bars in the plot) are slightly lower but confirm
the ranking. The distributions are similar to each other, with Zipkin having the
highest variance (ranging from 38,552 J to 88,516 J). All the distributions are
highly bimodal, with two separate groups, suggesting an impact of the blocking
factors, frequency and workload. Figure 2 reports the results by block, showing
that Zipkin consumes more than other monitoring tools when the workload is
high.

Fig. 2. Energy efficiency across all frequency and workload level combinations

To statistically analyze the data, we first run Shapiro-Wilks test to check
for normality for each of the 9 blocks. Results are in Table 3, SW column, with
significance level α = 0.05. The p-value for testing the null hypothesis, stating
that the energy sample is drawn from a normal distribution, is lower than 0.05 for
7 blocks out of 9, even after applying various data transformations (logarithmic,
reciprocal, square root and exponential). We conclude that data are mostly not
normally distributed for energy, hence we proceed with non-parametric statistical

190 M. Dinga et al.

Table 3. Results of Shapiro-Wilk (SW) and Kruskal-Wallis (KW) tests for each fre-
quency (F) and workload (W) block. Bold text denotes a significant difference (α = .05)

Block SW (p-value) KW (p-value) η2 η2 interpretation

F Low, W Low 0.00113 0.00156 0.3 large

F Low, W Medium 0.0939 0.21 0.0413 small

F Low, W High 0.0157 3.77e-06 0.59 large

F Medium, W Low 0.0172 0.00157 0.299 large

F Medium, W Medium 0.019 0.303 0.0189 small

F Medium, W High 0.00228 1.17e-06 0.645 large

F High, W Low 9.25e-05 0.154 0.0594 small

F High, W Medium 0.0826 0.022 0.165 large

F High, W High 9.52e-05 4.58e-07 0.69 large

tests. Specifically, we apply the Kruskal-Wallis test to determine if at least one
of the monitoring tools differ from the others. The p-values are lower than the
α = 0.05 (Table 3, column KW) for 6 out of 9 blokcs. It means that for those
blocks a significant difference in energy efficiency among monitoring tools is
detected. The magnitude of variability in energy efficiency attributable to the
monitoring tools, computed as the eta-squared statistic [12], η2, is generally
large, for all the statistically significant results (Table 3, last two columns).

Table 4. Results of the Wilcoxon test - frequency (F) and workload (W) combination
of treatments (block). Bold text denotes a significant difference (α = .05)

Tool Block p-value Cliff’s δ δ interpretation

ELK stack F Low, W High 0.002 −0.86 large

F Medium, W Low 0.015 −0.72 large

F Medium, W High 0.733e-03 −0.94 large

F High, W High 0.825e-03 −0.96 large

Netdata F High, W High 0.014 −0.68 large

Prometheus F Medium, W Low 0.015 −0.70 large

F High, W High 0.026 −0.60 large

Zipkin F Low, W High 0.458e-03 −1.00 large

F Medium, W Low 0.009 −0.84 large

F Medium, W High 0.458e-03 −1.00 large

F High, W High 0.825e-03 −1.00 large

Evaluating Energy and Performance Overhead of Monitoring Tools 191

Table 5. Dunn test (α = 0.05) per block. grey: not significant, green: significant

As a significant difference between the tools exists, we perform a pairwise
comparison between each monitoring tool and the baseline, by applying the
Wilcoxon test across all blocks with Benjamini-Hochberg (B-H) correction for
multiple-comparison protection. There is significant difference for every tool for
at least one block (Table 4). The Cliff’s delta for those blocks shows a large effect
according to the interpretation by Romano [13]. Also, Table 5 reports the Dunn’s
test comparing each tool with each other. Both these tests confirm that Zipkin
is the most-consuming tool, followed by ELK stack.

Result 1 - Monitoring tools significantly impact the energy efficiency of
Docker-based systems, under several (6 out of 9) frequency and workload
conditions. Not all tools have the same impact; Zipkin has the largest neg-
ative impact. A high workload contributes markedly to high consumption
of all the tools, and exacerbates the difference between the tools.

5.2 Results on Performance (RQ2)

Figure 3 reports performance. The replication package contains Tables with sum-
mary statistics of these results. The CPU usage percentage is 52.4% on average
globally, with the lowest recorded values for ELK stack (49.0%) and the highest
for Zipkin (57.6%). Apart from Zipkin, there seems to be a negligible differ-
ence between the baseline and the tools. For the CPU load average, Zipkin still
shows the highest value, 18.4, while Netdata and Prometheus show the lower
ones (16.6). RAM usage has a very low standard deviation. The mean is 70.7%,
with the minimum average value for the baseline (65.1%) and the highest for
ELK stack (99.2%). This means that ELK stack has a very high memory foot-
print, keeping the RAM usage close to the maximum capacity throughout the
execution of the load test. This phenomenon might be an indication of the high
energy consumption of ELK stack, where we obtained a significant difference for
4 out of 9 blocks (Table 4). Also, Zipkin tends to be more memory- and CPU-
intensive than other monitoring tools like Netdata and Prometheus, and also
in this case Zipking was shown to consume more energy than the baseline for
4 out of 9 blocks. In terms of execution time, looking at the mean values, it is
not highly impacted by tools such as Netdata and Prometheus. ELK stack and
Zipkin however have the highest execution time on average. A run has a duration
of 13.7 min on average, with the minimum being 10 min (for Prometheus) and a
maximum of 18 min (for Zipkin).

192 M. Dinga et al.

Fig. 3. Dependent variables across monitoring tools

Table 6. Results of the Shapiro-Wilk test for each frequency (F) and workload (W)
block. Bold text denotes a significant difference (α = .05)

Block CPU Memory Network Load Exec. time

F Low, W Low 0.000412 1.07e-05 0.0015 0.178 2.81e-05

F Low, W Medium 0.000864 9.09e-06 0.298 3.88e-06 0.585

F Low, W High 0.014 1.95e-05 0.323 0.575 0.0807

F Medium, W Low 0.435 1.02e-05 1.94e-05 0.212 7.77e-05

F Medium, W Medium 0.00248 1.01e-05 0.114 3.68e-07 0.00395

F Medium, W High 0.388 8.72e-05 0.533 0.639 0.59

F High, W Low 0.693 5.94e-06 0.00158 0.657 0.000204

F High, W Medium 0.0466 1.71e-05 0.066 0.000453 0.518

F High, W High 0.183 5.43e-05 0.0041 0.111 0.0317

Result 2 - Monitoring tools like Zipkin (for CPU) and ELK Stack (for
RAM) increase the resources’ usage and affect the execution times more
than other tools. The same result was observed with total energy con-
sumed.

Evaluating Energy and Performance Overhead of Monitoring Tools 193

The mean network traffic is similar for all the tools. This is expected, since the
same amount of traffic is likely generated while running the load test. The distri-
butions in all the cases except for RAM are bimodal, highlighting the variability
among the different blocks.

The Shapiro-Wilk normality tests (Table 6) show that in most cases data are
not normally distributed for any of the dependent variables.

As before, we run the Kruskal-Wallis test for each variables to detect a pos-
sible difference between the monitoring tools on performance. For CPU usage,
CPU load, and RAM usage, the obtained p-values are significant forall the blocks.
The magnitude of the difference attributable to the tool (eta-squared statistic)
is large in 9 out 9, 2 out of 9, and 9 out 9 cases for CPU usage, CPU load, and
RAM usage, respectively. For network traffic and execution time, the difference
is significant only in 2 and 4 cases, respectively. The Tables per variable with
KW p-values and η2 results are in the replication package.

The Wilcoxon test across all blocks, with the B-H correction, compares each
tool against the baseline. Results are hereafter summarized:

– CPU Usage: In general, for ELK stack and Zipkin there is a significant
impact of monitoring tools on CPU usage. The trend is more pronounced
under a high workload. The p-values for 3 blocks allow to reject the null
hypothesis that the median difference between the baseline and ELK stack
is zero. The same stands for 6 blocks regarding Zipkin. This confirms the
previous observations. Also, the Cliff’s delta reveal always a large effect when
the p-values are significant.

– CPU Load: For Zipkin and Netdata there is at least one block where the
impact on CPU load is significant. This means that these tools can influence
CPU load under specific frequency and workload conditions.

– RAM Usage: Except for Netdata, there is statistical significance for every
tool, for at least one block. The Cliff’s delta effect size is large for all these
blocks but one (on Prometheus). The results for ELK stack further confirm
the previous observations that ELK stack has a very high memory footprint
(under all workload-frequency conditions, RAM usage is close to 100%).

– Network Traffic: In general, there is no statistical significance for network
traffic (only in one block for Netdata, Prometheus and Zipkin the difference
is significant). This is expected, as running a monitoring tool should not
influence the network traffic generated by running the load test.

– Execution Time: In case of ELK stack and Zipkin there is statistical signifi-
cance and Cliff’s delta estimates show large effect size. Again, a high workload
increases the impact and exacerbates the differences: the longest execution
time is for Zipkin under the high workload-high frequency configuration (more
details in the replication package plots). For Netdata and Prometheus, there
are no statistically significant results.

194 M. Dinga et al.

Result 3 - Monitoring tools influence the CPU usage, CPU load, RAM
usage and execution time, under specific frequency and workload condi-
tions. Zipkin and ELK stack have the largest impact, exacerbated when
running under high workload conditions.

Table 7. Correlation coefficients

CPU usage CPU load RAM usage Execution time Network

Pearson 0.859 0.899 0.187 0.867 0.961

Spearman 0.829 0.851 0.290 0.796 0.954

Finally, we analyze each dependent variable in relation to energy efficiency
(Table 7). CPU usage, load average and execution time are strongly correlated
with energy efficiency. Although this does not imply causation, their reduction
can potentially improve energy efficiency. However, there is a relatively small
correlation between RAM usage and energy efficiency. This also explains why
ELK stack is not worse than Zipkin in terms of energy consumption, despite its
intensive use of RAM. The correlation between network traffic and energy effi-
ciency is also high, primarily due to the presence of 3 groups each corresponding
to a level of workload – high network traffic leads to the highest energy values,
while low network traffic leads to the lowest values.

Result 4 - CPU usage, CPU load average and execution time are strongly
correlated with energy efficiency.

6 Threats to Validity

Internal Validity. To mitigate the history threat, where events occurring at the
same time a treatment is applied could produce the effect, we repeat each run
10 times. Also, to avoid order effects, execution order is randomized. To avoid
carryover effects (i.e., consecutive treatments influencing each other), we stop
the running systems and wait for 3 min before starting the next run. We also
alternate the baseline with the other treatments, as a best practice to be able to
verify any noticeable changes in absence of intervention. We address the ambigu-
ous temporal precedence threat by ensuring replication of the exact sequence of
independent variables manipulation, thanks to the Experiment Runner tool.
External Validity. We select well-known monitoring tools for microservices, con-
sidering their popularity on GitHub. Clearly, different tools might impact energy
and performance differently. To mitigate this risk, we applied a minimalistic
setup, following the documentation to avoid introducing unnecessary confound-
ing variables (due to additional components, for instance). We compared the

Evaluating Energy and Performance Overhead of Monitoring Tools 195

tools on a widely used microservice benchmark application, Train Ticket; though,
using another application would lead to different results. Future replications of
this experiment will help in mitigating this potential source of bias.
Construct Validity. We are confident about the integration of the monitoring
tools, as we carefully tested each of them running alongside the system before
running the experiment. The implementation is publicly available. Also, hard-
ware power meters, like the one we used, are known to have high accuracy and
do not influence the measured system [6].

7 Conclusions and Future Work

In this study we conducted an empirical assessment of the energy and per-
formance overhead of monitoring tools on Docker-based systems. We obtained
significant results in terms of energy and performance (CPU usage, CPU load,
RAM usage, network traffic and execution time), under specific frequency and
workload conditions. Not all the tools impact energy efficiency and performance
in the same way, but we observed a high energy consumption and a high CPU,
RAM and execution time for the same tools. The correlation analysis confirms
the association for CPU and execution time, but not for memory, hence the lat-
ter is likely to have a smaller impact on energy. For a more granular analysis,
to be able to detect energy hotspots in monitoring tools, we plan to deploy a
software power meter in a future iteration, such as SmartWatts11, that measures
energy at container level.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lo- dowska-Curie
grant agreement No 871342 “uDEVOPS”.

References

1. Microservices (2023). https://martinfowler.com/articles/microservices.html
2. Basili, V.R.: Software Modeling and Measurement: The Goal Question Metric

Paradigm. Computer Science Technical Report Series, CS-TR-2956 (1992)
3. Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M.: A model-driven approach for

continuous performance engineering in microservice-based systems. J. Syst. Softw.
183, 111084 (2022)

4. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a sys-
tematic mapping study. J. Syst. Softw. 150, 77–97 (2019)

5. Ergasheva, S., Khomyakov, I., Kruglov, A., Succi, G.: Metrics of energy consump-
tion in software systems: a systematic literature review. IOP Conf. Ser. Earth
Environ. Sci. 431, 012051 (2020)

6. Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: A comparative study
of methods for measurement of energy of computing. Energies 12(11), 2204 (2019)

7. Heward, G., Müller, I., Han, J., Schneider, J.G., Versteeg, S.: Assessing the perfor-
mance impact of service monitoring. In: ASWEC 2010, pp. 192–201. IEEE (2010)

11 https://powerapi-ng.github.io/smartwatts.html.

https://martinfowler.com/articles/microservices.html
https://powerapi-ng.github.io/smartwatts.html

196 M. Dinga et al.

8. Hirst, J.M., Miller, J.R., Kaplan, B.A., Reed, D.D.: Watts up? pro ac power meter
for automated energy recording (2013)

9. Khomh, F., Abtahizadeh, S.A.: Understanding the impact of cloud patterns on
performance and energy consumption. J. Syst. Softw. 141, 151–170 (2018)

10. Liu, M., Peter, S., Krishnamurthy, A., Phothilimthana, P.M.: E3: energy-efficient
microservices on smartnic-accelerated servers. In: USENIX, pp. 363–378 (2019)

11. Merkel, D., et al.: Docker: lightweight linux containers for consistent development
and deployment. Linux j 239(2), 2 (2014)

12. Pierce, C.A., Block, R.A., Aguinis, H.: Cautionary note on reporting eta-squared
values from multifactor ANOVA designs. Educ. Psychol. Meas. 64(6), 916–924
(2004)

13. Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J.: Appropriate statistics for
ordinal level data: Should we really be using t-test and cohen’sd for evaluating
group differences on the NSSE and other surveys. In: FAIR, vol. 177, p. 34 (2006)

14. Santos, E.A., McLean, C., Solinas, C., Hindle, A.: How does docker affect energy
consumption? evaluating workloads in and out of docker containers. J. Syst. Softw.
146, 14–25 (2018)

15. Vegas, S., Apa, C., Juristo, N.: Crossover designs in software engineering experi-
ments: benefits and perils. IEEE Trans. Softw. Eng. 42(2), 120–135 (2015)

16. Verdecchia, R., Lago, P., Ebert, C., de Vries, C.: Green it and green software. IEEE
Softw. 38(6), 7–15 (2021)

17. Zhou, X., et al.: Benchmarking microservice systems for software engineering
research. In: 40th ACM/IEEE International Conference on Software Engineering
(ICSE) (2018)

ChainsFormer: A Chain Latency-Aware
Resource Provisioning Approach

for Microservices Cluster

Chenghao Song1 , Minxian Xu1(B) , Kejiang Ye1 , Huaming Wu2 ,
Sukhpal Singh Gill3 , Rajkumar Buyya4 , and Chengzhong Xu5

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

{ch.song,mx.xu,kj.ye}@siat.ac.cn
2 Tianjin University, Tianjin, China

whming@tju.edu.cn
3 Queen Mary University of London, London, UK

s.s.gill@qmul.ac.uk
4 Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing

and Information Systems, The University of Melbourne, Melbourne, Australia
rbuyya@unimelb.edu.au

5 State Key Lab of IoTSC, University of Macau, Macau, China
czxu@um.edu.mo

Abstract. The trend towards transitioning from monolithic appli-
cations to microservices has been widely embraced in modern dis-
tributed systems and applications. This shift has resulted in the creation
of lightweight, fine-grained, and self-contained microservices. Multiple
microservices can be linked together via calls and inter-dependencies to
form complex functions. One of the challenges in managing microser-
vices is provisioning the optimal amount of resources for microservices
in the chain to ensure application performance while improving resource
usage efficiency. This paper presents ChainsFormer, a framework that
analyzes microservice inter-dependencies to identify critical chains and
nodes, and provision resources based on reinforcement learning. To ana-
lyze chains, ChainsFormer utilizes light-weight machine learning tech-
niques to address the dynamic nature of microservice chains and work-
loads. For resource provisioning, a reinforcement learning approach is
used that combines vertical and horizontal scaling to determine the
amount of allocated resources and the number of replicates. We eval-
uate the effectiveness of ChainsFormer using realistic applications and
traces on a real testbed based on Kubernetes. Our experimental results
demonstrate that ChainsFormer can reduce response time by up to 26%
and improve processed requests per second by 8% compared with state-
of-the-art techniques.

Keywords: Microservice · Chain · Reinforcement learning ·
Kubernetes · Scaling

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 197–211, 2023.
https://doi.org/10.1007/978-3-031-48421-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_14&domain=pdf
http://orcid.org/0000-0002-4570-2722
http://orcid.org/0000-0002-0046-5153
http://orcid.org/0000-0001-8985-2792
http://orcid.org/0000-0002-4761-9973
http://orcid.org/0000-0002-3913-0369
http://orcid.org/0000-0001-9754-6496
http://orcid.org/0000-0001-9480-0356
https://doi.org/10.1007/978-3-031-48421-6_14

198 C. Song et al.

1 Introduction

Microservice architecture is a popular approach for designing and developing
modern applications. It involves breaking down monolithic applications into
smaller, fine-grained components that can work together to provide services for
users [15]. This approach allows development teams to focus on implementing dif-
ferent microservices, thereby speeding up the development process. Additionally,
microservices can be updated or upgraded independently, making maintenance
efforts more manageable. To ensure reliability and performance, microservices
can be scaled and operated individually, depending on workload fluctuations and
environmental variance.

Despite their independence, microservices are not entirely self-contained.
Communication-based dependencies, such as remote procedure calls, exist
between different microservices [7]. These dependencies can represent how
requests are processed among different microservices. Based on these dependen-
cies, microservices can be combined into chains to fulfill complex services. The
length of a chain can vary from several nodes to tens of nodes. A single microser-
vice, such as a database-related service, can also be shared by multiple chains
to support the formation of different services. Additionally, microservice chains
can be dynamic, scaling in or out as needed to accommodate new microservices.
Given these features of microservices and the resource usage fluctuations, it is
challenging to precisely pre-configure the amount of resources, provision and
scale resources when deploying microservices in clusters.

Traditional approaches for improving application performance often rely on
over-provisioning and autoscaling, which involve allocating more CPU and mem-
ory resources to microservices. These approaches typically use performance mod-
els, simple heuristics, static thresholds, or machine learning algorithms. How-
ever, these approaches have several limitations. Firstly, accurate performance
models and efficient heuristic-based scheduling policies require significant man-
ual efforts and training, which are infeasible for large-scale microservices with
a large number of configurable parameters. Secondly, machine learning (ML)
based approaches, such as support vector machines, rely on centralized graph
databases, which can lead to scalability issues and inefficient scheduling when
microservice chains are updated. Therefore, alternative approaches are needed
to address these limitations and enable effective management of microservices.

This paper presents a solution to the limitations of traditional approaches
with ChainsFormer, a chain latency-aware resource provisioning framework for
microservices cluster based on chain feature analysis. ChainsFormer dynami-
cally scales CPU and memory resources to microservices to ensure high-quality
service. This framework utilizes online telemetry data, including requests infor-
mation, application running data, and hardware resource usage, to capture the
system state. By leveraging ML and reinforcement learning (RL) models, Chains-
Former can adapt to variances in the system and reduce the need for man-
ual efforts. Overall, ChainsFormer provides an effective solution for managing
microservices with a high degree of automation and accuracy.

Latency-Aware Resource Provisioning for Microservices Cluster 199

Table 1. Comparison of related work

Approach Autoscaling Workloads Prediction Machine Learning based Resource Provisioning Chain Analysis Quick Adaption to Dynamic Chains SLO-awareness

Sage [2] � � Partial �
Firm [9] � � � �
Parslo [8] � � �
PEMA [4] � �
Autopilot [10] � � � �
Sinan [14] � � � �
Seer [3] � � � �
CoScal [12] � � � �
ChainsFormer (ours) � � � � � �

To efficiently manage the dynamic nature of microservice chains and adapt
to changes quickly, ChainsFormer employs various techniques. It first identifies
the critical chain using the calling graph and utilizes a decision tree to find the
critical node that has a significant influence on microservice performance. This
approach avoids the limitations of heavy machine learning techniques and cen-
tralized graph databases, which struggle with dynamic changes. Additionally,
ChainsFormer utilizes RL to make efficient and optimized decisions regarding
vertical and horizontal scaling. These decisions include when to conduct scal-
ing actions, which microservice should be scaled with resources, and how many
resources of each type should be scaled. Furthermore, these decisions can be
further optimized through RL with updated decisions, resulting in even more
efficient resource provisioning.

To evaluate the effectiveness of ChainsFormer, we deployed representative
microservice applications on Kubernetes, which is the state-of-the-art container
orchestration platform. We compared ChainsFormer with three state-of-the-art
baselines and used realistic traces from Alibaba to measure application perfor-
mance and response time. Our results show that ChainsFormer outperforms the
baselines in terms of application performance and response time. These findings
demonstrate the effectiveness of ChainsFormer in providing efficient resource
provisioning and management for microservice chains.

In summary, we make the following key contributions:

– We present the design of a framework that aims to handle the dynamic
changes in microservice applications by identifying critical chains and nodes.

– We propose an RL-based approach for combining vertical and horizontal scal-
ing to make decisions on efficient resource provisioning, which uses historical
data for offline training and makes online decisions based on system states.

– We develop the designed framework on top of Kubernetes platform. Using
realistic workload traces and real-world microservice, we demonstrate the
efficiency of ChainsFormer compared to the state-of-the-art baselines.

2 Related Work

In this section, we will discuss the current state-of-the-art techniques that are
designed to address the challenges of resource provisioning and autoscaling in
microservices, in order to meet the desired quality of service levels.

200 C. Song et al.

Resource Provisioning for Microservices. Sage [2] aims to perform root
cause analysis in microservice-based systems by utilizing causal Bayesian net-
works to identify the underlying reason for service level objective (SLO) viola-
tions. After identifying the root cause, Sage initiates autoscaling actions to mit-
igate the issue. One of the advantages of Sage is that it only requires lightweight
tracking and is suitable for large-scale deployments. However, a major limita-
tion of Sage is its heavy reliance on pre-trained machine learning models. Seer [3]
employs deep learning models to predict quality of service (QoS) violations and
dynamically adjusts allocated resources to each microservice to prevent such vio-
lations. It is particularly suitable for scenarios with frequent service updates and
requires a large amount of tracking data. However, the accuracy of detection can
be affected by significant application changes. Parslo [8] is a gradient descent-
based approach that assigns partial SLOs to nodes in a microservice to provide
resource configuration solutions quickly. One of Parslo’s main advantages is its
ability to achieve a globally optimal solution for large-scale services that have
already been deployed. However, Parslo is limited in its support for only certain
types of Directed Acyclic Graphs, and its performance may not be guaranteed
in all circumstances. PEMA [4] uses iterative feedback-based tuning to optimize
resource allocation to meet SLO requirements. Compared to other approaches,
PEMA is lightweight and does not require any offline experiments or pre-training.
However, PEMA’s performance may be poor during resource update intervals,
and its inability to capture the dependencies between microservices due to the
lack of pre-training may limit its effectiveness. The fundamental limitation of
this line of work is that they do not consider features of microservice chain,
which can lead to inefficient actions and performance degradation.

Micoservice Autoscaling. Autopilot [10] utilizes ML algorithms to analyze
historical data on prior executions and performs a set of finely-tuned heuris-
tics to adjust a job’s resource requirements while it is running. The benefit of
Autopilot is its ability to modify resource requirements on-the-fly, allowing it to
adapt to changing workload demands. However, Autopilot’s conservative app-
roach can lead to overprovisioning and resource wastage. Sinan [3] leverages a set
of machine learning models to determine the performance impacts of microser-
vice dependencies and allocate appropriate resources for each tier. Sinan is an
explainable approach and can be used for complex microservices, while it only
monitors CPU resources and does not provide auto-tuning capabilities. CoScal
[12] leverages data-driven decisions and enables multi-faceted scaling based on
reinforcement learning. CoScal utilizes gradient recurrent units to accurately
predict workloads, which assists in achieving efficient scaling. However, one lim-
itation is that the model re-training required for adapting to new applications
can be costly. FIRM [9] is a system that utilizes online telemetry data and
machine learning methods to adaptively detect and locate microservices that
lead to SLO violations. It can make decisions based on reinforcement learning
to mitigate SLO violations via fine-grained and dynamic resource provisioning.
FIRM proposes a two-level ML framework to locate critical microservice paths
and nodes. However, FIRM has certain limitations. The scalability of centralized

Latency-Aware Resource Provisioning for Microservices Cluster 201

Fig. 1. (a) Microservice graph structure of Sock Shop application. (b) CPU utilization
of each microservice from top tier to bottom tier. When workloads increase, the CPU
utilization of all microservices increases.

graph databases is limited, and it cannot handle transient SLO violations that
occur within an interval shorter than the minimum interval due to the heavy
ML techniques.

The comparisons between ChainsFormer and other relevant work are pre-
sented in Table 1. Our work is most similar to CoScal and FIRM. However,
there are notable differences between them. Firstly, CoScal is deployed on Docker
Swarm, while ChainsFormer is designed specifically for Kubernetes. Secondly,
CoScal does not incorporate chain analysis for resource management, whereas
ChainsFormer leverages chain analysis techniques to optimize resource alloca-
tion within microservice chains. Thirdly, both CoScal and ChainsFormer employ
reinforcement learning, but ChainsFormer utilizes the SARSA algorithm, which
allows for faster convergence by updating Q-values based on the current policy.
In comparison to FIRM, ChainsFormer employs lightweight ML techniques to
handle transient SLO violations in microservice chains, a task that FIRM does
not address due to its heavy ML models and the associated high costs of model
re-training. Additionally, ChainsFormer does not require a centralized graph
database like FIRM, which enhances its scalability by avoiding a central bottle-
neck caused by large amounts of data. In ChainsFormer, runtime data is stored
on worker nodes and only fetched by the central node when model training or
retraining is required, significantly reducing the overhead on the central node.

3 The ChainsFormer Framework

To motivate our design, we deployed the Sock Shop application1 to observe how
different microservices react to changes in workloads by monitoring utilization
usage. As shown in Fig. 1a, a request sent to the Sock Shop application can
be distributed to different microservices from front-end to back-end tiers. The
processing of a request can form different calling chains, for example, a request
1 Sock Shop: A Microservices Demo Application. https://microservices-demo.github.

io/.

https://microservices-demo.github.io/
https://microservices-demo.github.io/

202 C. Song et al.

can go through different chains to complete different functionalities, e.g. check-
ing items under a user account (front-end → carts → users), or paying for an
item (front-end → catalog → payment). As shown in Fig. 1b, workloads increase
from 0–110 requests per second during 0–11 minutes (requests per second is
increased with 10 after each minute), and the CPU utilization also increases
for all microservices, while the resource usage propagation among the nodes
in a chain is not consistent. Thus, to achieve efficient resource provisioning of
microservices, the scheduler should consider the features of the microservice
chain properly.

To address the above observations, we propose the overview architecture
design of ChainsFormer as shown in Fig. 2 and the key designs are as below:

– ChainsFormer first processes the incoming requests from users via Workload
Generator by recording the number of requests and extracting the tracing
data and performance counters.

– To make the resource provisioning more efficient, ChainsFormer applies the
neural network-based prediction algorithm to estimate future workloads.

– ChainsFormer detects SLO violations and utilizes real-time data to dynam-
ically identify critical chains and locate critical nodes that result in SLO
violations. To support the quick adaption to the dynamic changes in chains,
ChainsFormer includes an auto-adaptor that can quickly detect the changes.

– ChainsFormer analyzes the telemetry data collected by Workload Genera-
tor and node information identified by Chains Analyzer, and makes scaling
decisions to provision resources for critical nodes. The decision is made auto-
matically on the Kubernetes cluster by an RL-based resource scaler, which
considers resource utilization, performance metrics, and future workloads.

3.1 Workload Generator

Workload Generator module in ChainsFormer is responsible for processing the
raw workload trace to make fit with other modules, e.g. extracting the key infor-
mation of workloads (e.g. timestamp and user id) and providing initial analy-
ses for the workloads. Based on the required functionalities, workloads are dis-
tributed to different microservices that are deployed on different work nodes in
the microservices cluster. For example, we have observed that the workloads of
the Sock Shop application are distributed to Front-end (45.5%), Order (22.7%),
Carts (22.7%), Catalog (5.7%) and Random item (3.4%) with different percent-
ages. The processed workloads are also regularly stored in log files for workloads
prediction, and the performance counters that indicate system performance are
provided to resource scalers for autoscaling microservices.

To reduce the state space of our RL model, we process the workloads by
dividing the workloads into a number of levels, e.g. using CPU utilization levels to
represent the number of workloads, where the same scaling actions can be applied
to the same level to reduce action space. For example, Fig. 3 shows the original
continuous Alibaba’s workloads converted to 10 discrete CPU utilization levels
at per-day and per-minute intervals, and each level represents 10% utilization,
e.g. level 0 represents utilization ranges from 0% to 10%.

Latency-Aware Resource Provisioning for Microservices Cluster 203

Fig. 2. Framework of ChainsFormer

(a) (b) (c) (d)

Fig. 3. (a) Original Alibaba per-day workloads. (b) Original Alibaba per-minute work-
loads. (c) Converted Alibaba per-day workloads. (d) Converted Alibaba per-minute
workloads.

3.2 Neural Network-Based Workload Predictor

The Workload Predictor aims to accurately forecast the future workloads in
system, and provides information for the RL-based Resource Scaler module to
dynamically scale the number of pod replicates. The Workload Predictor module
can be realized via different prediction approaches, such as ML-based prediction
algorithms. ChainsFormer considers the workloads prediction as a category of
multi-variate time series forecast problem, where the workloads are time-relevant
and multiple variables (e.g. CPU usage, memory usage, network throughput, and
hard disk read/write) can influence the final prediction results.

ChainsFormer utilizes a GRU-based neural network validated in [13], named
esDNN, to predict future workloads, which can overcome the limitations of gra-
dient explosion and disappearance when conducting long-term prediction. The
esDNN can extract the key features of workloads, and convert multivariate time
series forecasting into supervised learning to keep as much information as possi-

204 C. Song et al.

ble. The performance of esDNN has been validated to achieve good accuracy in
predicting workloads.

3.3 Chains Analyzer

One of the main goals of ChainsFormer is to identify the critical chain efficiently
and accurately based on tracing data and inter-dependencies, along with identi-
fying the critical nodes that impact the latency of the critical chain. We define
the critical chain as the one with the longest end-to-end latency, which represents
the total time taken by a request to traverse the entire microservice chain, start-
ing from the moment it enters the system until the user receives the response.
Furthermore, the critical nodes (highlighted in Fig. 4a for Train-Ticket applica-
tion) are defined as the nodes that have a substantial impact on the latency of
the critical chain, and any performance degradation in these nodes can severely
affect the performance of the microservices.

To identify the critical chain, ChainsFormer uses tracing data to construct
an execution graph that shows the processing sequence of a user request. The
graph includes all the microservices involved in processing the request. We then
apply a weighted longest path algorithm [5] to find the critical chain, which is
the chain with the longest end-to-end latency. The weight of each edge is the
processing time between different nodes. This algorithm is lightweight and can
adapt to changes in chains quickly. For example, if the blue chain in Fig. 4a has
the highest latency, it can be identified as the critical chain. The critical chain
will be changed to the red chain when its latency becomes to be the longest. We
also identify critical nodes in the critical chain, which are the nodes that have a
significant impact on latency. These critical nodes can significantly degrade the
performance of microservices.

The critical nodes are identified based on a decision tree, as shown in Fig. 4b.
This tree classifies the nodes into critical and non-critical based on real-time data
from the selected critical microservice chain and a trained model using historical
running data. To reduce the overhead on the central node, the runtime data
is stored on worker nodes and only fetched by the central node when model
training or retraining is required. Nodes with high latency, CPU, and memory
usage are more likely to be classified as critical nodes. In case the identification
has a high error rate (e.g. 5%), a model updating mechanism is triggered to
update the decision tree.

3.4 RL-Based Resource Scaling

The resource scaler uses RL techniques to determine the optimal scaling actions.
Compared to static and meta-heuristic approaches, the RL-based approach can
effectively explore a larger solution space and respond to dynamic status changes.
The RL-based resource scaler employs a hybrid scaling approach that includes
both vertical scaling and horizontal scaling. Vertical scaling is used to quickly
adjust resources such as CPU, memory, and network on the local machine, while
horizontal scaling adds or removes active nodes in the system.

Latency-Aware Resource Provisioning for Microservices Cluster 205

Fig. 4. (a) Train-Ticket application with critical chain (https://github.com/Fudan
SELab/train-ticket). (b) Decision tree model for critical node identification

In ChainsFormer, the problem of RL-based resource scaling is modeled as
a Markov Decision Process [11]. At each time interval t, the system state is
represented by st ∈ S, and an action at ∈ A can be taken to transition the
state to st+1, yielding a reward of Rt+1 based on the policy πθ, which has
configurable parameters θ. The state space S is associated with an action space
A, and a transition matrix captures the probability of taking different actions
during state transitions. The goal of RL is to optimize the policy to maximize
the expected cumulative reward.

To achieve this, ChainsFormer employs the SARSA algorithm [6] to learn
the policy for the Markov decision process and estimate the expected cumulative
reward of state-action pairs using the action-value function Qt(s, a). When action
at is taken at time interval t, the value of Qt+1 is updated using the reward Rt+1

and propagated to the next time interval as:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γmaxa′Qt(st+1, a
′) − Qt(st, at)], (1)

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor. To
address the curse of dimensionality associated with updating the Q Table with
a large solution space, we train the model offline to minimize the loss function
and reduce training time. Online training is used to make decisions and update
actions with rewards. We also employed the divided load levels to reduce the
state space, as discussed in Sect. 3.1. In addition, we use the SARSA algorithm
to further reduce computational costs by using Rt+1 + γmaxa′Qt(st+1, a

′) as
the update target to guide the estimate of the true action-value function. This
approach considers only the sampling of successive st+1, at+1, and immediate
reward Rt+1. The estimation of the action-value function at the time interval
t + 1 is given by:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γQt(st+1, at+1) − Qt(st, at)], (2)

where the Qt(st+1, aa+1) and each update can be obtained via one-step transition
(st, at, Rt+1, st+1, at+1) of the state-action-reward-state-action pair.

To implement the RL-based resource scaler module, we utilize various param-
eters of the current pod as inputs to the RL model. These parameters include the

206 C. Song et al.

load state, the position of the pod in the chain, and the latency of the microser-
vice. The RL model considers the state st ∈ S to represent the current status
of the microservice chain, and action at ∈ A comprises scaling operations that
adjust the chain status and provisioned resources by a specific amount. We also
assume the presence of a set of physical machines P = (M1,M2, . . . ,MK) in the
system that provides resources. Each physical machine Mk is represented by a
tuple Uk = (u1

k, u2
k, . . . , uI

k), where ui
k represents the resource utilization of type

i out of a total of I resource types on physical machine Mk. For each Mk, we
denote the set of possible actions as ai

k = {hk, vi
k}, where hk ∈ [−n, n] represents

the number of horizontal replicates that can be added or removed, vi
k ∈ [−m,m]

represents the amount of vertical scaling that can be applied to resource type i.
A positive value of hk or vi

k indicates that more resources are added, whereas
negative values indicate resource removal. Given K as the total number of phys-
ical machines, the final set of actions is represented as the Cartesian product of
the sub-action sets: A =

∏K
k=1

∏I
i=1 ai

k.
The main objective of the ChainsFormer system is to enhance resource uti-

lization while ensuring QoS requirements are met. Therefore, the reward function
is designed to consider two key metrics: resource utilization and response time.
The reward for resource utilization is formulated in Eq. (3).

Ru(uk) =

{∑K
k=1 Umax

k −uk

K + 1, uk ≤ Umax
k ,

∑K
k=1 uk−Umax

k

K + 1, uk > Umax
k ,

(3)

where Umax
k represents the highest utilization threshold of all resource types

for physical machine Mk, and uk is the current utilization of Mk. The system
receives a positive reward when the utilization is below the threshold, and the
reward decreases when the utilization is higher or significantly lower than the
predefined threshold.

The reward for response time, denoted as Rq(rt), is modeled based on the
maximum acceptable response time RTmax.

Rq(rt) =

{
e−(rt−RTmax

RTmax
)2, rt > RTmax,

1, rt ≤ RTmax,
(4)

which shows that when the system is operating normally, the reward is 1. How-
ever, as the system’s performance degrades and violates the RTmax, the reward
gradually decreases and converges to 0.

The final reward value is based on the resource utilization Ru and response
time Rq at time interval t, which is formulated as follows:

r(st, at) =
Rt

q

Rt
u

, (5)

where higher values of Rt
q and lower values of Rt

u can increase the total reward.
Algorithm 1 outlines the overall procedure of ChainsFormer. Initially, the

algorithm collects the system status to enable the RL process (line 1), which

Latency-Aware Resource Provisioning for Microservices Cluster 207

Algorithm 1: ChainsFormer : Overall Procedure
Input : Table Q(s, a) contains all state/action pairs from experience pool by

offline training, time intervals T , probability of random action ε,
learning rate α, discount factor γ

1 Initialize system status, and monitoring model;
2 for t from 1 to T do

3 Uk
t ← Resource utilization of Mk at time interval t;

4 Wt−1 ← Workloads level at time interval t − 1;

5 Ŵt ← Predicted workload level;

6 if Ŵt �= Wt−1 then
7 Choose a action from action set A with ε probability, or select an action

with the max(Qt(st, at));
8 Conduct at ={hk(t), vi

k(t)} with horizontal scaling and vertical scaling
9 if online training is triggered then

10 st+1 ← system state at time interval t + 1;
11 Rt+1 ← reward calculation by Eq. (5);
12 Update Q value:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γQt(st+1, at+1) − Qt(st, at)];
13 end
14 Store transition (st, at, Rt+1, st+1, at+1)in experience pool;

15 end

16 end

includes monitoring the workloads level, resource utilization, and metrics at each
time interval to construct the complete system states (lines 3-5). Upon a change
in workload level (line 6), resources are dynamically scaled to optimize resource
usage while maintaining the required QoS. The SARSA algorithm commences
by selecting actions randomly with a probability of ε from the experience pool
and transitions to another state (line 7). The chosen actions entail vertical and
horizontal scaling to allocate resources effectively (line 8). ChainsFormer facil-
itates online training by storing the transition (st, at, Rt+1, st+1, at+1) in the
experience pool and subsequently updating the decisions based on rewards with
better outcomes (lines 9–14).

4 Performance Evaluations

4.1 Experimental Settings

We use the workload dataset provided by Alibaba2 as demonstrated in Sect. 3.1,
which includes 8-day data traces from homogeneous 4,034 servers. We utilize the
Locust toolkit to generate resource usage based on profiled data of machines. We
evaluate the performance of the Train-Ticket application (a larger application

2 Alibaba Cluster Trace Program: https://github.com/alibaba/clusterdata/tree/
v2018.

https://github.com/alibaba/clusterdata/tree/v2018
https://github.com/alibaba/clusterdata/tree/v2018

208 C. Song et al.

than the Sock Shop used for motivation in Sect. 3) and use the Jaeger monitoring
toolkit to track the distribution of requests. The application is deployed on a
Kubernetes-based cluster consisting of five nodes, each with an Intel Xeon E5-
2660 processor and 64 GB of RAM. One physical machine serves as the master
of the cluster, while the others serve as workers.

4.2 Baselines and Metrics

We have compared ChainsFormer (CF) with 3 state-of-the-art baselines imple-
mented by us.

KS [1]: it is employed by native Kubernetes and mainly relies on horizontal
scaling, which involves dynamically adding or removing the number of replicas.
It follows a threshold-based approach based on resource usage metrics such as
CPU and memory, where more replicas are added when the pre-defined resource
threshold is exceeded (e.g. CPU utilization > 0.7) and vice versa.

AUTO [10]: it is derived from Google Autopilot and uses a hybrid approach to
scale resources based on workloads. The approach combines horizontal scaling
and vertical scaling to dynamically adjust the allocated resources to tasks based
on historical data.

FIRM [9]: it utilizes machine learning techniques, specifically support vec-
tor machine and reinforcement learning, to identify and mitigate microservices
responsible for SLO violations.

We have adopted three widely used metrics to evaluate the performance: 1)
Requests per second (RPS) represents the system’s ability to process requests
within a specific time period, and a higher value shows better performance. 2)
Number of failures indicates the number of requests that were not processed
or did not receive a response due to an overloaded situation. A lower value for
this metric represents a more reliable system. 3) Average response time: is a
dominant metric to measure performance, and a good autoscaling algorithm
should aim to reduce it.

4.3 Experiment Analyses

Due to page limitations, we present key results. Figure 5a compares the average
requests per second over different time periods. To highlight differences among
periods, we analyze results over 5 periods (e.g. 1,000 minutes, 2,000 minutes, and
5,000 minutes), covering short-term and long-term comparisons. It is notewor-
thy that the loads significantly vary during different time periods. For instance,
the highest loads were observed during the first 2,000 minutes, and the average
load during the 5,000 minutes period was much lower. It is observed that the
KS approach performs the worst in terms of RPS compared to other baselines.
This could be due to the limited capability of the threshold-based approach.
The AUTO approach, which leverages ML-based techniques, can process larger
RPS compared to KS. The FIRM approach can obtain better RPS during the

Latency-Aware Resource Provisioning for Microservices Cluster 209

first 3,000 minutes, but during the 4,000-5,000 minutes, it performs worse than
AUTO. Our proposed approach, ChainsFormer, can achieve the best RPS in the
long-term, i.e., when the time period is larger than 3,000 minutes. This optimiza-
tion comes from our more accurate identification of critical chains and nodes. At
the early stage of request processing, FIRM performs well when the critical path
is identified. However, after load changes, the identified critical path may not be
critical anymore. Additionally, it is reasonable to note that FIRM with a static
critical path does not fit workloads with high variances well. In conclusion, CF
optimized the requests per second up to 8.1% compared to the baselines.

Figure 5b illustrates the comparison of the number of failures, presenting the
average results in five different time periods. It is observed that KS has the
highest number of failures compared to other baselines due to its static policy,
which shows that it struggles to handle high-variant workloads. AUTO signifi-
cantly reduces the number of failures. For instance, during the first 1,000 minutes,
AUTO reduces the failures from 350 to 80 by leveraging historical data. FIRM
and CF further optimize the failures by utilizing critical chains and nodes, where
the results are quite close. Overall, CF can reduce the number of failures by 8.3%
compared to FIRM.

Fig. 5. Comparison of (a) requests per second, (b) number of failures, and (c) average
response time.

Figure 5c depicts the comparison of average response time. Among all five
time periods, the average response time of KS is at the highest value, which
we consider as a benchmark test to analyze the performance of the other three
algorithms. AUTO is optimized compared to KS and maintains the second-
highest response time. It optimizes around 10% of response time, for example,
decreasing from 110 ms to 100 ms during the first 1,000 minutes. The results of
CF and FIRM are consistent with the analyses of RPS. In the early stage, FIRM
slightly outperforms CF, while in the long run (e.g. 3,000 to 5,000 minutes), CF
achieves a lower response time than FIRM. Overall, ChainsFormer optimizes
response time by 1.4% to 26.6% compared to the baselines.

To evaluate the scalability of ChainsFormer, we conducted experiments com-
paring it with FIRM under different numbers of requests as shown in Fig. 6.
We gradually increased the number of requests (from 400 to 1200 per second)

210 C. Song et al.

Fig. 6. Scalability comparison of (a) number of failures, and (b) average response time
when the number of requests increase.

and monitored the system’s performance. The number of failures in Chains-
Former exhibited a slower rate of increase compared to FIRM as the number of
requests grew. Similarly, the average response time in ChainsFormer remained
relatively stable as the number of requests grew. In contrast, FIRM experienced
a more pronounced increase in average response time under the same conditions.
These findings validate the scalability of ChainsFormer and its ability to handle
larger workloads while maintaining good performance. The results suggest that
ChainsFormer is a promising solution for scaling microservice-based systems in
scenarios with dynamic and growing request loads.

5 Conclusions

In this paper, we propose ChainsFormer, a microservice scaling approach that
combines deep learning and reinforcement learning techniques to dynamically
adjust resource allocation based on workload predictions and critical chain iden-
tification. By leveraging decision trees for rapid identification of critical chains
and nodes, and using reinforcement learning to make real-time scaling decisions,
ChainsFormer optimizes resource usage while maintaining high-quality of ser-
vice in terms of response time, number of failures, and requests per second. Our
experiments, conducted on a representative microservices application, show that
ChainsFormer outperforms state-of-the-art algorithms from research and indus-
try in terms of QoS optimization. Our approach has the potential to significantly
improve the efficiency and reliability of microservices-based applications in cloud
computing environments.

Acknowledgments. This work is supported by National Key R & D Program of
China (No.2021YFB3300200), the National Natural Science Foundation of China (No.
62072451, 62102408), Shenzhen Industrial Application Projects of undertaking the
National key R & D Program of China (No. CJGJZD20210408091600002), Shenzhen
Science and Technology Program (No. RCBS20210609104609044), and Alibaba Group
through Alibaba Innovative Research Program.

Latency-Aware Resource Provisioning for Microservices Cluster 211

References

1. Burns, B., Beda, J., Hightower, K.: Kubernetes: up and running: dive into the
future of infrastructure. O’Reilly Media (2019)

2. Gan, Y., Liang, M., Dev, S., et al.: Sage: practical and scalable ml-driven perfor-
mance debugging in microservices. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, pp. 135–151 (2021)

3. Gan, Y., Zhang, Y., Hu, K., et al.: Seer: leveraging big data to navigate the com-
plexity of performance debugging in cloud microservices. In: Proceedings of the
24th International Conference on Architectural Support for Programming Lan-
guages and Operating Systemsm ASPLOS 2019, pp. 19–33 (2019)

4. Hossen, M.R., Islam, M.A., Ahmed, K.: Practical efficient microservice autoscaling
with qos assurance. In: Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, HPDC 2022, pp. 240–52 (2022)

5. Ioannidou, K., Nikolopoulos, S.D.: The longest path problem is polynomial on
cocomparability graphs. Algorithmica 65, 177–205 (2013)

6. Kardani-Moghaddam, S., Buyya, R., Ramamohanarao, K.: Adrl: a hybrid anomaly-
aware deep reinforcement learning-based resource scaling in clouds. IEEE Trans.
Parallel Distrib. Syst. 32(3), 514–526 (2021)

7. Luo, S., Xu, H., Lu, C., et al.: An in-depth study of microservice call graph and
runtime performance. IEEE Trans. Parallel Distrib. Syst. 33(12), 3901–3914 (2022)

8. Mirhosseini, A., Elnikety, S., Wenisch, T.F.: Parslo: a gradient descent-based app-
roach for near-optimal partial slo allotment in microservices. In: Proceedings of
the ACM Symposium on Cloud Computing, SoCC 2021, pp. 442–457 (2021)

9. Qiu, H., Banerjee, S.S., Jha, S., et al.: {FIRM}: an intelligent fine-grained resource
management framework for {SLO-Oriented} microservices. In: 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20), pp. 805–825
(2020)

10. Rzadca, K., Findeisen, P., Swiderski, J., et al.: Autopilot: workload autoscaling
at google. In: Proceedings of the Fifteenth European Conference on Computer
Systems. EuroSys 2020 (2020)

11. Wang, S., Guo, Y., Zhang, N., et al.: Delay-aware microservice coordination in
mobile edge computing: a reinforcement learning approach. IEEE Trans. Mob.
Comput. 20(3), 939–951 (2021)

12. Xu, M., Song, C., Ilager, S., et al.: Coscal: multifaceted scaling of microservices
with reinforcement learning. IEEE Trans. Netw. Serv. Manage. 19(4), 3995–4009
(2022)

13. Xu, M., Song, C., Wu, H., et al.: Esdnn: deep neural network based multivari-
ate workload prediction in cloud computing environments. ACM Trans. Internet
Technol. 22(3) (2022)

14. Zhang, Y., Hua, W., Zhou, Z., et al.: Sinan: Ml-based and qos-aware resource man-
agement for cloud microservices. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, pp. 167–181 (2021)

15. Zhong, Z., Xu, M., Rodriguez, M., et al.: Machine learning-based orchestration of
containers: A taxonomy and future directions. ACM Comput. Surv. 54(10s) (2022)

Energy-Efficient
and Communication-Aware Resource
Allocation in Container-Based Cloud

with Group Genetic Algorithm

Zhengxin Fang1(B), Hui Ma1, Gang Chen1, and Sven Hartmann2

1 Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington, Wellington, New Zealand

{zhengxin.fang,hui.ma,aaron.chen}@ecs.vuw.ac.nz
2 Department of Informatics, Clausthal University of Technology,

Clausthal-Zellerfeld, Germany
sven.hartmann@tu-clausthal.de

Abstract. Microservice is a new architecture for application develop-
ment that makes applications more flexible to deploy, extend and update
compared to monolithic architectures. As container-based clouds rapidly
gained popularity in recent years, more microservices are deployed in
containers and composed of complex and elaborated applications for
users. The challenges of microservices deployment in a container-based
clouds arise from two-level resource allocations to not only minimize the
overall energy consumption but also to reduce the communication data
volume between microservices in physical networks to improve applica-
tion performance. However, there is still a lack of research that considers
these two important challenges jointly during microservice composition
and resource allocation. Motivated by this, in this work, we propose a
genetic algorithm-based algorithm, namely EC-GGA, to not only min-
imize the energy consumption in cloud data centers but also minimize
the communication data volume of applications. We compare EC-GGA
with several state-of-the-art algorithms to demonstrate the effectiveness
of our proposed algorithm.

Keywords: Microservice · Container · Cloud Computing · Group
Genetic Algorithm · Resource Allocation

1 Introduction

Service oriented architecture (SOA) in software development has the advantage
of loose coupling compared to monolithic architectures, allowing to develop and
extend applications with high flexibility [10]. Microservices [10], an essential
architecture in SOA, are widely deployed in cloud data centers with virtualiza-
tion technologies such as containers, and are composed of complex and elabo-
rated applications for users. Container-based cloud becomes a new trend in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 212–226, 2023.
https://doi.org/10.1007/978-3-031-48421-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_15

ECRAC with GGA 213

cloud computing environment since it is lightweight and easy to scale up, which
significantly reduces the computation overheads compared to Virtual Machines
(VMs) based cloud [12]. Deploying applications composed of microservices gives
rise to Energy-efficient and Communication-aware Resource Allocation prob-
lem in Container-based cloud (ECRAC), which allocates proper resources to
microservices with the objectives of minimizing energy consumption of applica-
tions while minimizing communications between microservices.

Currently, there are two main challenges of resource allocation in the
container-based cloud environment. Firstly, resource allocation in container-
based cloud is an NP-hard problem due to its complex and large search space
[20]. Container-based clouds involve resource allocation at two levels, that is
containers should be allocated to VMs (Container-VM level) and VMs should
be allocated to Physical Machine (VM-PM level), which makes it more difficult
than resource allocation in VM-based cloud. On the container-VM level, con-
tainers are allocated to VMs via VM selection or VM creation, to either select
currently leased VM instances or new VM instances with selected VM types.
Similarly, at the VM-PM level, VMs are allocated via PM selection or PM cre-
ation to allocate VMs to existing PMs or new PMs with selected PM types.
Each level of resource allocation should satisfy constraints regarding CPU and
memory resource capacity. Moreover, the selection and creation of VMs at the
first level have a significant impact on the selection and creation of PMs at the
second level. Therefore, to find resource allocation with minimal energy con-
sumption, multiple VM and PM selection and VM and PM creation decisions
must be made simultaneously.

The second challenge is that microservices deployed in different VMs and
PMs frequently exchange high volumes of data, creating communication affinities
[14]. In this paper, affinity is defined as the data volumes exchanged between two
containers [4]. If containers with affinity are deployed to different PMs, it brings
communication overhead, which depends on the communication data volumes
transmitted by the physical network between different PMs in the cloud data
center. Physical network overhead is incurred by the communication overhead,
which ultimately affects the network latency, application request/response time,
and causes extra energy consumption in the cloud data center. To minimize
communication overhead, it is desirable to allocate containers with affinities
into the same PM. However, placing all containers with affinity together may
lead to inefficient usage of resources, i.e., VMs and PMs, resulting in energy
inefficiency. In line with the above analysis, it is important to develop effective
new approaches for resource allocation to strike a desirable trade-off between two
contradicting objectives, i.e., energy consumption and communication overhead.

Existing research works on two-level resource allocation problems in
container-based clouds mainly focus on optimizing energy consumption. In
[17,18], a genetic algorithm is proposed to allocate applications with minimal
energy consumption, with no consideration of communication overhead. Other
works such as [4,7,11] aim to reduce the communication data volume in a cloud
data center but only consider one-level resource allocation. As the above reviews,

214 Z. Fang et al.

existing works consider either energy consumption or communication overhead
alone. There is a lack of effective approaches that consider both the two objec-
tives jointly.

Motivated by the above, in this paper, we aim to propose a Group Genetic
Algorithm (GGA) based algorithm, namely EC-GGA, to solve ECRAC. To the
best of our knowledge, our proposed algorithm is the first work to consider
energy consumption and communication overhead jointly in the resource alloca-
tion problem of cloud data centers. The novelties of our proposed approach are
the following:

– We develop a novel Energy-efficient and Communication-aware Crossover
(EC-Crossover) for GGA to consider energy consumption and communica-
tion overhead jointly during the crossover operator;

– We propose a Best-Fit-Decreasing Insert (BFDI) method for re-arranging
free containers (will be introduced in Sect. 4) that are generated by crossover
according to both resource utilization and communication overhead; and

– We introduce a novel mutation operator to explore better solutions with less
energy consumption and less communication data across PMs.

Organization. This paper is organized as follows. In Sect. 2 the related
work is discussed. In Sect. 3 the energy-efficient communication-aware resource
allocation problem in container-based cloud is defined. In Sect. 4 we present
our new proposed algorithm to tackle this problem. In Sect. 5 we report on the
experiments that we have conducted to evaluate our new algorithm. Finally, in
Sect. 6 conclusions are given.

2 Related Work

Existing research works on resource allocation either consider two-level Resource
Allocation in Container-based cloud (RAC) without paying attention to data
communications between containers or consider communication cost but only
focusing on one level resource allocation as in [8]. In this section, we first review
algorithms for resource allocation problems in RAC in recent years and then
review existing communication-aware algorithms for resource allocation.

Approaches for RAC. Heuristics is often used for RAC, which is treated
as a bin packing problem. Best-Fit [1] is used to allocate containers/VMs to
VMs/PMs with the highest resource utilization. Three heuristics are used in [20]
to perform resource allocations on two levels simultaneously. First-Fit is used
for both VM selection and PM selection. If no existing VMs can be used to host
a given container, Best-Fit is used to select a VM type for a new VM instance.
However, these heuristics often lead to local optima rather than global optimal
solutions.

Due the the global search capacity, various evolutionary algorithms have
been proposed to solve RAC. In [17], a vector-based GA method with a dual-
chromosome representation is proposed to solve the RAC. The chromosomes at
the first level encodes the solutions that allocate containers to VMs; while the

ECRAC with GGA 215

chromosome at the second level encodes the solutions that allocate VMs to PMs.
To get the allocation solutions, the chromosomes need to be decoded using the
Next-Fit heuristic [15]. The decoding heuristic may not lead to the best final
solutions.

To directly represent the two-level allocation solutions, [18] proposed a GA-
based approach with a group-based representation, [18]. To evolve solutions in
group-based solutions, several operators, including gene-level crossover, rear-
rangement, and merge, are proposed to search for the best solution of the RAC.
To encourage evolved solutions to use a small number of PMs, [2] proposes
a GGA-based approach with a group-based representation that constrains the
length of the representation to solve the RAC.

Communication-Aware Resource Allocation. To reduce the communi-
cation overhead, [4] clusters VM with data communication into affinity groups.
Within a group, all the items have affinity with at least one of the other items
in the same group. If the affinity group is too large to be allocated into one
single PM, [4] applies the min-cut heuristic to divide the affinity group into
several smaller affinity groups, which are then allocated to PMs using the First-
Fit-Decreasing method. Similarly, [7] also applies min-cut to partition an appli-
cation into several microservice groups to minimize the communication data
volume between each group. Partition ensures that each group can be allocated
to at least one VM. Each group is allocated to the machine that has the highest
communication data volumes within the group. When the communication data
volumes are the same, the group chooses the most-loaded machine to host it.

As aforementioned algorithms place containers or VMs one by one, but the
order of the placement also affects the outcomes. [8] proposed a concurrent con-
tainer scheduling algorithm to allocate a batch of containers at the same time.
They model the container scheduling problem as the minimum cost flow problem
(MCFP) and represent the container requirement by a flow network. Each node
of this flow network represents a container or a machine and the weight of this
flow network implies the mapping quality between containers and machines. The
containers with dependencies will be merged into an aggregator node that will
be allocated into the same VM. Based on MCFP, the shortest path algorithm is
used to find the best mapping between container nodes and VM nodes. However,
this algorithm cannot deal with the situation when a group of containers cannot
be allocated into one machine due to the resource capacity limit.

3 Energy-Efficient Communication-Aware MAC

An application is composed of a list of microservices M = [m1, ...,mk], and each
microservice is exclusive to a container. In a container-based cloud, given a list
of containers C = [c1, ..., ck], a range of VM types, and a range of PM types, con-
tainers are allocated to VM instances, which are further allocated to PMs. Each
container ci has a CPU occupation ζcpu(ci) and a memory occupation ζmem(ci).
A VM type is defined as a tuple γt = (Ωcpu(γt), Ωmem(γt), πcpu(γt), πmem(γt)),
where Ω is the capacity and π is the overhead. A VM instance vi is of a VM type

216 Z. Fang et al.

γt. A PM type is defined as a tuple τt = (Ωcpu(τt),Ωmem(τt), Eidle(τt), Efull(τt)),
capturing its CPU and memory capacities, as well as the energy consumption
when it is idle or under full workload, respectively. A PM instance pi is of a PM
type τt.

Energy Model. Eq. (1) quantifies the energy consumption for a given PM
instance pi, based on the popular non-linear energy model proposed in [5].

E(pi) = Eidle(pi) + (Efull(pi) − Eidle(pi)) × (2μcpu(pi) − (μcpu(pi))1.4) (1)

where Eidle(pi) and Efull(pi) are the energy consumption of the PM instance pi
when it is idle or fully loaded, respectively. μcpu(pi) is the CPU utilization level
of the PM instance pi, which is calculated by:

μcpu(pi) =

∑L
l=1(

∑m
j=1 πcpu(γj) ∗ zj,l +

∑n
i=1 ζcpu(ci) ∗ xi,l) ∗ yl,p

∑|Π|
k=1 Ωcpu(τt) ∗ wp,k

(2)

where xi,l, yl,p, zj,l and wp,k are binary decision variables, and L is the number
of created VMs. xi,l takes 1 if ci is allocated to the l-th created VM, and 0
otherwise. yl,p takes 1 if the l-th created VM instance is allocated to the p-th
PM, and 0 otherwise. zj,l is 1 if the l-th created VM is of type j, and 0 otherwise.
wp,k is 1 if the p-th created PM is of type k, 0 otherwise. And τt is the type of
pi.

Let s = [p1, p2, ..., pi] denote a solution, which is a list of PM instances. The
total energy consumption with respect to a solution s is calculated as follows:

TEC(s) =
∑

pi∈s

E(pi) (3)

Communication Model. Let s denote a solution of ECRAC and Xs be an
n-by-m binary matrix, where xi,j equals to 1 when container ci is allocated to
PM instance pj in solution s, and 0 otherwise. Since there is data communica-
tion between microservices in the same application, we define an n-by-n affinity
matrix A, where ai,j represents the affinity between container ci and container
cj . It quantifies the total communication data volumes between container ci and
container cj .

The total communication overhead can be computed as follows:

D(Xs) =
n∑

i=1

n∑

j=1

ai,j · (1 −
m∑

k=1

xi,k · xj,k) (4)

where (1 − ∑m
k=1 xi,k · xj,k) equals to 1 when container ci and container cj

are on different PMs, otherwise it is 0. As a result, D(Xs) indicates the total
communication data volume between microservices that are placed on different
PMs.

Optimization Objective. The objective of ECRAC is to jointly minimize
the cloud data center energy consumption as well as the communication over-
head. Let S = {s1, s2, ..., sl} denote the set of all possible solutions. The opti-
mization objective of the ECRAC is defined as:

ECRAC with GGA 217

min
si∈S

ω · TEC(si) + (1 − ω) · D(Xsi) (5)

where 0 < ω < 1 indicates the importance of energy consumption while 1 − ω
indicates the importance of the communication overhead. Both TEC(si) and
D(Xsi) in Eq. (5) are normalized by using the common min-max normalization
technique [6].

4 Proposed Algorithm

In this section, we describe our proposed Energy-efficient and Communication-
aware Group Genetic Algorithm (EC-GGA). The algorithm flowchart is shown
in Fig. 1 (a), where the novel contributions of the algorithm are highlighted
in green. It starts by generating an initial population of solutions using newly
designed initialization, which are then evolved using a novel crossover opera-
tor, a rearrangement method, a mutation operator. Our new developments real-
ize several key advantages. Firstly, the operators of EC-GGA are designed to
improve resource utilization, which has a big impact on overall energy consump-
tion. Meanwhile, EC-GGA tends to co-locate containers with affinity to reduce
the communication overhead. Moreover, each operator considers two-dimensional
resources (e.g., CPU and memory) jointly, which balances the utilization of these
resources.

Fig. 1. Overall algorithm and representation of a chromosome in EC-GGA

4.1 Representation

EC-GGA employs a direct representation that represents the candidate solu-
tions as a combination of PMs, VMs and containers. Figure 1 (b) shows an

218 Z. Fang et al.

example solution that highlights PMs, VMs and containers with different colors,
which includes a list of PMs, while every item in the list of PMs is a list of
VMs. Similarly, every item in the list of VMs is a list of containers. This direct
representation is a variable-length representation since the length of a solution
depends on the number of used PMs. Such a variable-length representation has
the advantage that it is flexible to permit the exploration of different solutions
using well-designed evolution operators.

4.2 EC-Initialization

Algorithm 1 presents our proposed EC-Initialization algorithm. To generate a
full population of initial solutions for the first generation, EC-GGA first checks
whether each application (a group of containers with affinity) can be allocated
to at least one of the existing VMs or a new VM instance. If not, the application
will be partitioned by binaryCut into two affinity groups, which have the least
communication data volumes between each other (lines 2 to 4). Each affinity
group or application will be allocated through the First-Fit (FF) heuristic into
VM, and similarly, VMs are also allocated to PMs with FF heuristic. Upon
VM/PM creation, EC-Initialization creates VM/PM instances randomly when
the existing VM/PM instances have insufficient resources. By using the First-Fit
heuristic to allocate applications and VMs, EC-GGA ensures that the majority
of VMs and PMs can enjoy high resource utilization to reduce the number of
VMs and PMs in the initial solution. Meanwhile, the binaryCut can divide
an application into two partitions and ensure that different partitions have the
minimum communication between each other. Consequently, all initial solutions
tend to enjoy low communication overhead between any pair of PMs.

Algorithm 1: EC-Initialization
Input : A list of applications, a set of VM types, a set of PM types
Output: An initial solution

1 affinityGroupList ← application ;
2 while the occupation of group in affinityGroupList exceed the largest

capacity of VM do
3 Split group into two groups using binerayCut;
4 Update affinityGroupList;
5 for group in affinityGroupList do
6 Allocate group to VM using FF or RandomlyCreation heuristic;
7 Allocate newVm to PM using FF or RandomlyCreation heuristic;

4.3 EC-Crossover

Our proposed Energy-efficient and Communication-aware Crossover operator,
named EC-Crossover, is illustrated in Fig. 2. Each offspring solution is gener-
ated by preserving PMs from parent solutions. For example, in Fig. 2, two-parent

ECRAC with GGA 219

solutions are sorted by the criterion introduced below. Afterward, PM1 is com-
pared with PM1’, PM2 is compared with PM2’, and so on. The winning PM is
the one with a higher criterion value, which is preserved in the offspring solution
by copying the PM type and all of the VM types hosted in it. After copying, the
crossover operator checks whether each container in VMs has been allocated. If
so, the allocated containers will not be reallocated; otherwise, containers will be
allocated to the corresponding VMs. Finally, the crossover operator will further
remove PMs and VMs that do not have any workload.

...
PM1 PM2 PMK

parent 1

Criterion

Container list [2, 3, 5, 7] [1, 4, 6] [8, 9, 10]

...

PM1’ PM2’ PMK’

parent 2

Criterion
Container list [3, 4, 7, 9] [1, 2, 6] [5, 8]

0.48 0.40 0.11

0.130.410.45

vs vs vs

...
PM1 PM2’ PMK’

offspring

Criterion

Container list [2, 3, 5, 7] [1, 6] [5, 8]

0.48 0.41 0.11

Free container: [4, 9, 10, ...] ...

Fig. 2. An example of EC-Crossover

To maintain the population diversity, we propose to use two different preser-
vation criteria, i.e., the normalized resource criterion in Eq. (6), and the inner
affinity criterion in Eq. (7), to generate two offspring solutions from two-parent
solutions. The normalized resource considers the CPU and memory utilization
together, and the inner affinity indicates the communication data volumes inside
the PM. The first offspring solution is generated by sorting the PMs according
to the normalized resource and preserving PMs with high normalized resource;
while the other offspring solution is generated by sorting the PMs in each par-
ent solution according to the inner affinity and preserving PMs with high inner
affinity.

NOR =
ζcpu(ci))
Ωcpu(pk)

× ζmem(ci)
Ωmem(pk)

(6)

IA =
∑

ci,cj∈pk

A(i, j) (7)

Since ECRAC is a two-dimensional bin packing problem, we should consider
both CPU and memory capacity utilization when preserving PMs for the next
generation. Otherwise, the resource utilization of VMs and PMs may not be bal-
anced. For example, only considering memory utilization may result in PMs with

220 Z. Fang et al.

high memory utilization but low CPU utilization, which leads to CPU resource
wastage, as evidenced in [18]. To avoid such a situation, in our crossover operator,
we preserve PMs for the next generation according to the normalized resource,
which considers both CPU and memory utilization. It is expected to generate
offsprings with balanced resource utilization and low resource wastage. By pre-
serving PMs with high normalized resource, EC-Crossover improves the resource
utilization of each PM to reduce the total number of used PMs, which further
reduces the overhead energy consumption. Meanwhile, to reduce the commu-
nication data between PMs, EC-Crossover also preserves PMs with high inner
affinity into the offspring solution, which helps to reduce data communication
between PMs.

As shown in Fig. 2, some containers may not be allocated after the crossover
operator since their hosting PMs are not selected to preserve offspring solutions.
We refer to these unallocated containers as free containers. The free containers
will be allocated subsequently through a new rearrangement operator proposed
in Sect. 4.4.

4.4 Best-Fit-Decreasing Insert (BFDI)

To reallocate free containers to suitable PMs, we propose a Best-Fit-Decreasing
Insert (BFDI) method. Our BFDI rearrangement method is developed based on
the Best-Fit-Decreasing (BFD) heuristic [9]. Meanwhile, to find a suitable PM
for a newly created VM, we propose a concept Between Affinity BA to calculate
the affinity of the new VM vnew with each pk of the PMs, see Eq.(8):

BAk =
∑

cj∈pk

∑

ci∈vnew

A(i, j) (8)

Algorithm 2 shows the process of our proposed BFDI algorithm. BFDI first
groups free containers with affinity into free affinity groups (lines 3 to 8) that
can be allocated into one single VM instance. After grouping, BFDI inserts the
free affinity groups from the largest to the smallest into the most packed VM
with sufficient resources. If there are no existing VM instances that can host
the free affinity group, a new VM instance is created using LargestVM heuristic
that selects a VM type not only can load the free affinity group but also has
the largest remaining resource after hosting the free affinity group. In this way,
the number of VMs and the overall VM overhead can be reduced. Once a new
VM instance is created it should be placed into a PM instance. BFDI places the
new VM into the PM with the largest BA and also enough capacity to host the
new VM (LargestBA heuristic). If no existing PM instance has enough remaining
resources to host the new VM, a new PM will be created randomly.

BFDI inserts the largest group first to the most packed VM and PM to
improve resource utilization. Subsequently, smaller groups are allocated to reduce
resource fragmentation. It considers the resource utilization and affinity together
when re-arranging free containers, in order to balance the CPU and memory uti-
lization and reduce resource wastage. Meanwhile, during the process of allocating

ECRAC with GGA 221

newly created VMs to PMs, BFDI tends to place the new VM in the PM that
has the largest affinity between the containers in the new VM and the containers
in the PM, which helps to reduce the communication overhead.

Algorithm 2: BFDI Algorithm
Input : A set of free containers, a set of PMs
Output: A set of allocated PMs

1 freeContainerList ← free containers;
2 freeAffinityGroup ← ∅;
3 for C in freeContainerList do /*group free containers with affinity into

affinity group*/
4 affinityGroup ← ∅;
5 affinityGroup.add(C);
6 affinityGroup.add(the container that have affinity with C);
7 freeContainerList.remove(containers in affinityGroup);
8 freeAffinityGroup.add(affinityGroup);
9 for group in freeAffinityGroup do /*allocating affinity group*/

10 Allocate group into a VM using BFD or LargestV M heuristic;
11 Allocate newVm into PM using LargestBA or RandomlyCreation heuristic;

4.5 Mutation

The mutation operation in EC-GGA consists of two steps, Energy-efficient and
Communication-aware Unpack (ECUnpack) and Merge.

ECUnpack aims to remove PMs with low resource utilization or low inner
communication. The ECUnpack operator first sorts the PMs in a solution accord-
ing to either the normalized resource or the inner affinity in ascending order.
One of the two criteria is randomly chosen with equal probability for sorting.
Then the ECUnpack operator unpacks PMs in a roulette wheel style. That is,
the probability of unpacking a PM is proportional to its rank in the sorted PM
list.

Merge aims to reduce the overhead consumption of VMs. It repeatedly checks
whether the total resource requirements of the two smallest VMs are in excess
of the resource capacity of a larger VM, If not, all the containers in the two
smallest VMs are reallocated to the larger VM so that the two small VMs can
be released.

5 Experimental Evaluation

This section presents the experiment design and the experiment results to evalu-
ate the performance of EC-GGA. We evaluate the performance of all competing
algorithms in terms of fitness, overall energy consumption and communication
overhead based on the resource allocation solutions found by the respective algo-
rithms.

Dataset and Test Instance. There are 6 test instances in our experiments
that cover four different sizes of containers (500, 1000, 1500) with two sets of VM

222 Z. Fang et al.

types (real-world VM types and synthetic VM types) [18]. These test instances
are shown in Table 1. We consider 20 different real-world VM types from Ama-
zon EC21. Additionally, 10 synthetic VM types are generated randomly. These
irregular VM types bring additional challenges for the problem [2], which reflect
the performance of our algorithm in an environment with irregular VM configu-
rations. There are 12 types of PMs with different CPU and memory capacities,
following [19].

Table 1. Six test instances in the experiment, size indicates the number of containers
to be allocated in each test instance.

Instance VM types Sizes Instance VM types Sizes

1 Real-world 500 4 Synthetic 500

2 Real-world 1000 5 Synthetic 1000

3 Real-world 1500 6 Synthetic 1500

Eight business application structures from [16] are considered as the patterns
for composing microservices in this paper, corresponding to diverse online activ-
ities such as travel planning services and online shopping and so on. An example
of such a business application structure is shown in Fig. 3. For any business
application, the communication data volume between any pair of microservices
of the application is generated randomly following a log-normal distribution, as
recommended in [3].

Fig. 3. An example of application structure in [16]

Baselines. We compare EC-GAA to four state-of-the-art algorithms: GGA
[18], Docker Swarm (DS) [1], KP-HP [7], and ECSched [8]. GGA, DS, KP-HP
and ECSched have been introduced in Sect. 2.

Experiment Setting. The parameter settings of EC-GGA are as follows:
the crossover rate is 70%, the mutation rate is 20%, the elite size is 5, the
tournament size is 7, and the population size is 100. The terminal condition
of EC-GGA is the number of evolutionary generations reaching 100 [18]. The
parameter settings of GGA are the same as EC-GGA.
1 https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/

ECRAC with GGA 223

5.1 Experiment Results

We report the experiment results of EC-GGA and GGA based on their aver-
age performance across 30 independent runs. EC-GGA are compared with each
baseline algorithm by the Wilcoxon rank-sum test with a significance level of
0.05. The criteria used to compare are the fitness (Eq. (5)), energy consumption
(Eq. (3)) and communication overhead (Eq. (4)), and the results are shown in
Table 2, where “+”, “−” and “=” imply that the performance is significantly
better than, significantly worse than or equal to the algorithm is compared.

Table 2. Fitness (Eq. (5)), E (Energy consumption (kWh)) and C (Communication
overhead (Mbps)) of 6 test instances with different numbers of containers and two sets
of VM types for the baseline algorithms and EC-GGA (Note: the lower values in the
table the better performance)

Instance Criteria GGA [18] DS [1] KP-HP [7] ECSched [8] EC-GGA

1 Fitness 0.4193 0.3733 0.2398 0.2618 0.1917 (+)(+)(+)(+)

E 439.10 ± 33 548.76 604.30 651.19 479.85 ± 12 (−)(+)(+)(+)

C 2408 ± 278 1533.00 15 49 15 ± 3 (+)(+)(=)(+)

2 Fitness 0.6679 0.6702 0.4411 0.4280 0.2983 (+)(+)(+)(+)

E 952.25 ± 25 1385.00 1566.38 1516.84 1060.72 ± 47 (−)(+)(+)(+)

C 7582 ± 610 5410 72 87 47 ± 14 (+)(+)(+)(+)

3 Fitness 0.7346 0.7682 0.4822 0.4679 0.4055 (+)(+)(+)(+)

E 1417.42 ± 50 2016.51 2129.18 2043.32 1643.81 ± 61 (−)(+)(+)(+)

C 12090 ± 1252 9095 99 244 100 ± 12 (+)(−)(+)(+)

4 Fitness 0.2516 0.2604 0.1786 0.1621 0.1204 (+)(+)(+)(+)

E 470.85 ± 7 628.36 748.06 659.79 501.19 ± 32 (−)(+)(+)(+)

C 2526 ± 267 2023 63 138 53 ± 16 (+)(+)(+)(+)

5 Fitness 0.6298 0.6591 0.4060 0.3427 0.2697 (+)(+)(+)(+)

E 947.82 ± 7 1525.12 1696.56 1397.90 1113.10 ± 51 (−)(+)(+)(+)

C 8257 ± 285 6113 181 315 191 ± 17 (+)(+)(−)(+)

6 Fitness 0.7441 0.7584 0.4814 0.4435 0.3690 (+)(+)(+)(+)

E 1406.43 ± 21 2026.24 2170.50 1952.91 1641.64 ± 92 (−)(+)(+)(+)

C 13739.93 ± 608 9925 236 538 335 ± 30 (+)(+)(−)(+)

We can observe from the results in Table 2 that EC-GGA significantly outper-
forms all other four baseline algorithms in terms of fitness. This demonstrates
that our proposed EC-GGA can find the best trade-off solutions to minimize
both energy consumption and communication overhead.

In terms of energy consumption, EC-GGA reduces around 20% of energy
consumption in test instances 3 and 6 compared with DS, KP-HP and ECSched.
As for communication overhead, EC-GGA achieves the least communication
overhead in three test instances (instances 1, 2 and 4) and is competitive in
the other three instances (instances 3, 5 and 6) with KP-HP. Though EC-GGA
consumes a small amount more energy (up to about 200 kWh) than GGA, it
results in significantly less communication overhead (up to about 13300 Mbps)
than GGA, and therefore much better application performance [13].

224 Z. Fang et al.

5.2 Further Analysis

Number of the Used VMs and PMs. Figure 4 presents the comparison of
the baseline algorithms, and our proposed EC-GGA regarding the number of
used VMs and PMs in the solutions of three test instances with real-world VM
types (e.g., test instances 1, 2 and 3). As evidenced in this figure, EC-GGA
significantly reduces the number of used VMs and PMs so as to reduce the
overhead of VMs and PMs, which can save energy consumption.

Fig. 4. The number of used VMs and PMs in test instances 1, 2 and 3 for the baseline
algorithms and EC-GGA (Note: the lower number the better)

Resource Utilization of PMs. Figure 5 presents the comparison of CPU
and memory utilization between baseline algorithms and EC-GGA. The compar-
ison results show that EC-GGA achieves high-level utilization on both CPU and
memory utilization in each test instance; while the CPU utilization of baseline
algorithms in test instances with 1000 and 1500 containers are just around 30%
to 40%, which causes resource wastage.

Fig. 5. The CPU and memory utilization of PMs in test instances 1, 2 and 3 for the
baseline algorithms and EC-GGA.

Ablation Study. To analyze the effectiveness of our proposed operators
(e.g. EC-Crossover, BFDI, ECUnpack), we conduct experiments to compare the

ECRAC with GGA 225

fitness of EC-GGA with GGA and EC-GGA without our newly designed opera-
tors. Table 3 presents the ablation study results, where all the results are tested
by the Wilcoxon rank-sum test and the meanings of “+”, “−” and “=” are the
same as defined above. The result shows that each of our proposed operators is
effective since after removing one of these operators, the performance is worse
than the EC-GGA but still better than GGA.

Table 3. Ablation experiment for our proposed operators. The fitness (Eq. (5)) of EC-
GGA are compared with GGA [18], and EC-GGA without EC-Crossover, BFDI and
ECUnpack respectively. (Note: the lower values in the table, the better performance)

Instance GGA EC-GGA without

EC-Crossover

EC-GGA

without

BFDI

EC-GGA

without

ECUn-

pack

EC-GGA

1 0.4119 0.1901(+) 0.1877(+) 0.2068(+) 0.1835(+)(+)(+)(+)

2 0.6550 0.3010(+) 0.3159(+) 0.3184(+) 0.2900(+)(+)(+)(+)

3 0.7105 0.3562(+) 0.3759(+) 0.3742(+) 0.3422(+)(+)(+)(+)

4 0.4037 0.1498(+) 0.1627(+) 0.1655(+) 0.1422(+)(+)(+)(+)

5 0.6357 0.2608(+) 0.2881(+) 0.2903(+) 0.2574(+)(+)(+)(+)

6 0.7352 0.3669(+) 0.4078(+) 0.3985(+) 0.3588(+)(+)(+)(+)

6 Conclusion

In this paper, we propose a group genetic algorithm-based algorithm (EC-GGA)
for resource allocation in container-based cloud, which jointly considers the
energy consumption of data center and communication overhead. The experi-
ment results show that EC-GGA reduces energy consumption and communica-
tion overhead when compared to the baseline algorithms. Meanwhile, EC-GGA
reduces the number of used VMs and PMs, and also balances the CPU and mem-
ory utilization which reduce wastage of resource. An ablation study is conducted
to show the effectiveness of our newly designed operators for the algorithm.

References

1. Docker swarm. https://docs.docker.com/engine/swarm/
2. Akindele, T., Tan, B., Mei, Y., Ma, H.: Hybrid grouping genetic algorithm for

large-scale two-level resource allocation of containers in the cloud. In: Long, G.,
Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 519–530. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-97546-3 42

3. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic
characteristics. ACM SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)

4. Chen, J., et al.: Joint affinity aware grouping and virtual machine placement.
Microprocess. Microsyst. 52, 365–380 (2017)

https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-030-97546-3_42

226 Z. Fang et al.

5. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a
survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2015)

6. Gajera, V., et al.: An effective multi-objective task scheduling algorithm using min-
max normalization in cloud computing. In: 2016 2nd International Conference on
Applied and Theoretical Computing and Communication Technology (iCATccT),
pp. 812–816. IEEE (2016)

7. Hu, Y., de Laat, C., Zhao, Z.: Optimizing service placement for microservice archi-
tecture in clouds. Appl. Sci. 9(21), 4663 (2019)

8. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints. Futur. Gener. Comput. Syst.
102, 562–573 (2020)

9. Kaaouache, M.A., Bouamama, S.: Solving bin packing problem with a hybrid
genetic algorithm for VM placement in cloud. Procedia Comput. Sci. 60, 1061–1069
(2015)

10. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice architecture:
aligning principles, practices, and culture. O’Reilly Media, Inc. (2016)

11. Narantuya, J., Ha, T., Bae, J., Lim, H.: Dependency analysis based approach for
virtual machine placement in software-defined data center. Appl. Sci. 9(16), 3223
(2019)

12. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A framework and algo-
rithm for energy efficient container consolidation in cloud data centers. In: IEEE
International Conference on Data Science and Data Intensive Systems, pp. 368–
375. IEEE (2015)

13. Rong, H., Zhang, H., Xiao, S., Li, C., Hu, C.: Optimizing energy consumption for
data centers. Renew. Sustain. Energy Rev. 58, 674–691 (2016)

14. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-
based applications with runtime placement adaptation. J. Internet Serv. Appl.
10(1), 1–30 (2019)

15. Sengupta, J., Singh, P., Suri, P.K.: Energy aware next fit allocation approach
for placement of VMs in cloud computing environment. In: Arai, K., Kapoor, S.,
Bhatia, R. (eds.) FICC 2020. AISC, vol. 1130, pp. 436–453. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39442-4 33

16. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
service deployment for composite applications in multi-cloud environment. IEEE
Trans. Parallel Distrib. Syst. 31(8), 1954–1969 (2020)

17. Tan, B., Ma, H., Mei, Y.: Novel genetic algorithm with dual chromosome repre-
sentation for resource allocation in container-based clouds. In: IEEE International
Conference on Cloud Computing (CLOUD), pp. 452–456. IEEE (2019)

18. Tan, B., Ma, H., Mei, Y.: A group genetic algorithm for resource allocation in
container-based clouds. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS,
vol. 12102, pp. 180–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-43680-3 12

19. Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-aware
dynamic resource allocation in container-based clouds via cooperative coevolution
genetic programming. In: International Conference on the Applications of Evolu-
tionary Computation (Part of EvoStar), pp. 539–555. Springer (2023). https://doi.
org/10.1007/978-3-031-30229-9 35

20. Zhang, R., Zhong, A., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a
novel architecture for docker container placement. In: Luo, M., Zhang, L.-J. (eds.)
CLOUD 2018. LNCS, vol. 10967, pp. 128–140. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94295-7 9

https://doi.org/10.1007/978-3-030-39442-4_33
https://doi.org/10.1007/978-3-030-43680-3_12
https://doi.org/10.1007/978-3-030-43680-3_12
https://doi.org/10.1007/978-3-031-30229-9_35
https://doi.org/10.1007/978-3-031-30229-9_35
https://doi.org/10.1007/978-3-319-94295-7_9
https://doi.org/10.1007/978-3-319-94295-7_9

Engineering Self-adaptive Microservice
Applications: An Experience Report

Vincenzo Riccio1, Giancarlo Sorrentino1, Matteo Camilli1,
Raffaela Mirandola2(B), and Patrizia Scandurra3

1 Politecnico di Milano, Milano, Italy
{vincenzo.riccio,giancarlo.sorrentino,matteo.camilli}@polimi.it

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
raffaela.mirandola@kit.edu

3 University of Bergamo, Bergamo, Italy
patrizia.scandurra@unibg.it

Abstract. This paper reports our experience in engineering RAMSES,
a Reusable Autonomic Manager for microServicES that conforms to the
well-known MAPE-K feedback control loop model to realize self-adaptive
microservices. The goal of RAMSES is to enforce the satisfaction of user-
defined QoS attributes (e.g., availability, performance) of a microservice
application at runtime. RAMSES’s control loop components themselves
are microservices. RAMSES is designed to ease its reuse across microser-
vice applications. To illustrate RAMSES, we describe how we used it for
making self-adaptive an e-food microservice application. We report the
results of an experimental evaluation we conducted to validate the capa-
bility of RAMSES. Finally, we discuss our experience in facing existing
challenges as well as the main lessons learned.

Keywords: Microservice applications · self-adaptation · MAPE-K

1 Introduction

The microservice architectural style is nowadays the de-facto standard to achieve
scalable, flexible, and maintainable applications. Microservice frameworks (e.g.,
Spring, GoMicro, Flask) allow practitioners to speed up microservices devel-
opment and realize production-ready applications. These frameworks provide
some self-adaptation means, mainly limited to autoscaling and circuit-breaking.
However, there is a lack of frameworks supporting the seamless integration of
control loops to realize the self-* properties for microservices. For this reason,
developing microservice applications that can enact self-adaptation strategies to
achieve arbitrary adaptation goals and, therefore realizing more resilient systems,
is still challenging for practitioners.

To bridge the existing gap and investigate the challenges related to the devel-
opment of microservice-based self-adapting systems, we developed RAMSES1 a
1 Source code and documentation publicly available at https://doi.org/10.5281/

zenodo.8169049.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 227–242, 2023.
https://doi.org/10.1007/978-3-031-48421-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_16&domain=pdf
https://doi.org/10.5281/zenodo.8169049
https://doi.org/10.5281/zenodo.8169049
https://doi.org/10.1007/978-3-031-48421-6_16

228 V. Riccio et al.

Reusable Autonomic Manager for microServicES, and here we report our experi-
ence in this engineering process. RAMSES conforms to the well-known feedback
control loop model MAPE-K (Monitor-Analyse-Plan-Execute over a Knowledge
base) [8] and wraps a microservice application for realizing self-adaptation. The
goal of RAMSES is to enforce the satisfaction of user-defined QoS attributes
(e.g., availability and response time) of a microservice application at runtime.
RAMSES’s control loop components themselves are microservices. We developed
RAMSES using the Java-based Spring Boot and Spring Cloud frameworks2

for building microservices systems. RAMSES has been designed for reusability;
it can be used for adapting a preexisting microservice application built with any
microservice framework, given that the target application provides an implemen-
tation for the probing and effecting interfaces required by RAMSES as API-led
integration with the target microservice application.

In this experience report, we illustrate RAMSES describing how we used it
to make a standalone e-food microservice application self-adaptive with user-
defined QoS-driven adaptation goals. We also report the results of an experi-
mental evaluation conducted to evaluate RAMSES, faced challenges, and lessons
learned. Our main contributions are as follows: (i) the RAMSES framework and
approach to engineering self-adaptive microservice applications, which is pub-
licly available and ready for reuse; (ii) the application and evaluation of the
RAMSES approach on a target microservice application; (iii) the results of an
experimental campaign conducted with appropriate research questions to analyse
how RAMSES behaves in specific scenarios that synthetically reproduce relevant
operating conditions; and finally (iv) lessons learned and reflections gained from
the engineering experience with RAMSES.

This paper is organized as follows. In Sect. 2, we present the e-food microser-
vice application used to illustrate RAMSES. In Sect. 3, we describe the RAMSES
framework. In Sect. 4, we report the results of the experimental evaluation of
RAMSES. In Sect. 5, we discuss the faced challenges and lessons learned, while
in Sect. 6 we discuss related work. Finally, we conclude the paper in Sect. 7.

2 Running Example

We introduce here SEFA (SErvice-based eFood Application), an open-source
microservice application that we use as a running example throughout the paper.
SEFA allows customers to browse a list of restaurants and their respective menus,
choose some dishes, and finally place orders, paying for them by credit card
and getting them delivered to a specific address. In architecture-based self-
adaptation [5,8], we typically have a managed and a managing system. The
former provides the domain functionality, while the latter realizes a (centralized
or decentralized) MAPE-K feedback control loop that wraps the managing sys-
tem to carry out adaptation goals. In our case, SEFA is the managed microservice
application and RAMSES is the managing microservice layer that adapts SEFA.

2 https://spring.io/microservices.

https://spring.io/microservices

Engineering Self-adaptive Microservice Applications: An Experience Report 229

Table 1. supported adaptation scenarios in RAMSES

Scenario Observable Properties Examples of Adaptation strategies

S1: Violation of QoS specifications Values of the QoS indicators of
the service over time (e.g.,
availability, average response
time)

- Change the current service implementation
- Add instances in parallel
- Shutdown of an instance with low performance
- Change configuration properties

S2: Service unavailable Success or failure of each service
invocation

- Change the current service implementation
- Add instances in parallel

S3: Better implementation available Properties of the service
implementations

- Change the current service implementation

SEFA is composed of domain-specific microservices, a gateway to expose
RESTful APIs, and the infrastructure services Eureka for service discovery
and a configuration server for storing and serving distributed configurations
to microservices at runtime. The set of domain-specific microservices include:
restaurant service (handles restaurants and menus); ordering service (han-
dles the customers’ carts, and allows them to place their orders); payment proxy
service (mediates with a third-party payment service; and delivery proxy ser-
vice (mediates with a third-party delivery service at the end of an order).

SEFA is built using a modern technology stack including Spring Boot,
Spring Cloud, and Docker containers. Furthermore, it adopts state-of-
practice architectural patterns such as API gateway to handle incoming requests,
load balancer to allocate requests to service instances according to a roulette
wheel selection policy [11], and circuit breaker natively supported by Spring
Cloud.

3 RAMSES Framework

RAMSES is a managing system that conforms to the MAPE-K feedback control
loop. Each stage of the feedback loop is implemented as a standalone microservice
implemented in Java using Spring Boot and Spring Cloud. The design of
RAMSES was driven by the common adaptation scenarios Self-Adaptive Systems
(SASs) listed in Table 1. These scenarios describe adaptation goals commonly
found in microservices applications.

We designed RAMSES to be reusable accross different microservices applica-
tions. To this end, RAMSES is completely decoupled from the managed systems
and interacts with it via two components: the probe allows RAMSES to retrieve
all the relevant data from the managed microservice application, while the actu-
ator allows RAMSES to change the configuration of the managed system. These
probe/actuator components must be provided by the managed application fol-
lowing specific probing/actuating APIs. Once the managed application is con-
nected to RAMSES via these APIs, RAMSES shows all configuration parameters
of the MAPE-K loop and the current state of the knowledge (through an interac-
tive web-based dashboard), including current QoS values, and the history of the
actuated adaptations. In the following, we describe the probing and actuating
APIs of RAMSES as well as the MAPE-K components in more detail.

230 V. Riccio et al.

Fig. 1. Probing API

Knowledge and probing/actuating API. The Knowledge component maintains
an up-to-date runtime model that abstracts relevant information about managed
microservices either provided by the probing API or computed by other MAPE
components. The Service is the main entity of this model. Each service has one
or more Service Implementations. This latter entity includes attributes related
to the operational profile of a specific service implementation, such as trust
attributes (i.e., level of trust in a service implementation based on its ability to
keep QoS requirements satisfied), and shutdown threshold (i.e., minimum number
of requests that the service should be able to process). Each service is also
associated with a Service Configuration that includes properties of the load
balancer and the circuit breaker. Each service implementation yields one or more
running instances, reified by the entity Service Instance.

We defined the probing/actuating interfaces as RESTful APIs. Figure 1 shows
an example of PlantUML class diagram generated from the APIs in the stan-
dard format OpenAPI3. The diagram shows available probing endpoints in terms
of HTTP methods, their paths, and request/response parameters. The focus of
monitoring is to gather metrics from all the instances of each service and store
them in the knowledge as a collection of objects Instance Metrics Snapshot
(or simply snapshot). Each snapshot includes a timestamp, the status of the
instance, metrics related to the resource usage (e.g., CPU usage), metrics related
to HTTP requests (e.g., number of server errors), and to circuit breakers (see the
attributes of the classes InstanceMetricsSnapshot, CircuitBreakerMetrics,
and OutcomeMetrics in Fig. 1). The metrics collected by RAMSES are used to

3 https://spec.openapis.org/.

https://spec.openapis.org/

Engineering Self-adaptive Microservice Applications: An Experience Report 231

Fig. 2. Design patterns adopted in RAMSES.

extract QoS indicators. At the current stage, the implementation of RAMSES
focuses on availability and response time.

The actuating API of RAMSES exposes low-level operations to be applied to
the managed microservices. These operations are, for instance, adding or remov-
ing service instances, and changing service configuration, such as the weights of
the load balancer or the circuit breaker.
Monitor. This component is responsible for collecting data from the managed
microservices. It periodically invokes the probe API to receive a snapshot of all
the running instances (i.e., a collection of InstanceMetricsSnapshot objects).
The Monitor is asynchronous w.r.t. the rest of the loop. It stores the snapshots
in the knowledge, and then triggers the Analyze component to start a new
asynchronous adaptation loop. The sampling period of the Monitor (monitor
scheduling) can be dynamically configured via the RAMSES API or dashboard.
Analize. The Analyze component is in charge of (i) QoS values computation
from incoming snapshots and (ii) adaptation proposal. In the first phase (i),
the latest snapshots of each instance i for a service s are analyzed to com-
pute the metrics of interest for each QoS indicator. To realize this phase we
developed the so-called double sliding window pattern shown in Fig. 2a. The
pattern represents a general solution that can be reused to customize RAM-
SES according to the specific QoS indicators. The DataCollector component
is used to keep track of two collections: incoming snapshots and computed QoS
estimates. Whenever a new snapshot or new QoS estimate is available, the com-
ponent notifies all the WindowObservers in charge of analyzing the last win-
dow of interest with a given size. The observer components can be either
of type SnapWindowObserver or QoSWindowObserver, for snapshots and QoS
estimates, respectively. According to Fig. 2a, a SnapWindowObserver retrieves
the last snapshot window and then computes a QoS estimate. The last esti-
mate is then collected and, as a consequence, QoSWindowObservers are noti-
fied. A QoSWindowObserver retrieves the last QoS estimate window, checks a

232 V. Riccio et al.

QoS requirement, and then triggers the next phase of the analysis. Our current
implementation has two SnapWindowObservers and two QoSWindowObserver
(for availability and response time). SnapWindowObservers estimate the QoS by
aggregating data in the last window by computing a weighted average of the
measurements of interest. The weights are values in [0, 1] dynamically assigned
to microservice instances by the load balancer. If the QoS requirement satisfac-
tion rate (computed based on the QoS estimates in the last window) is below the
user-defined reference threshold, then the service requires adaptation. It is worth
noting that, large window size increases the robustness of the system to false
positives and outlier QoS estimates, while it decreases the adaptation reactivity.
This parameter may be even changed at runtime given that a proper adaptation
strategy is implemented. For instance, when the managed microservices enter
a steady state the size can be increased. On the contrary, in case of transient
states (e.g., due to bursts of users) the size shall decrease.

When a requirement is not satisfied, phase (ii) proposes a set of adaptation
options with different priority levels. Options are compared by the Plan to select
the one associated with the highest expected benefit. The current implementa-
tion of RAMSES includes the following extensible set of adaptation options that
can be applied to each service s: addInstance to add a new instance i for s;
removeInstance to shut an instance i of s down; changeImplementation to
replace all n instances of s with n instances of another service implementation;
and changeWeights to change the weights of the load balancer that handles the
requests directed to the instances of a service s. The proposed adaptation options
are stored in the shared knowledge before triggering the Plan component.
Plan. The Plan component determines the best adaptation option for each pri-
ority level. To estimate and compare the expected benefit of alternative options,
we make use of the so-called nested utility pattern represented in Fig. 2b. This
pattern represents a reusable solution we adopt to realize the notion of compos-
ite utility function through a hierarchical structure. Due to the heterogeneity
of adaptation options and QoS indicators, we realized this general structure
that can be customized to meet the needs of the managed system. Accord-
ing to Fig. 2b, AdaptationOption can be extended to represent the actions
to be actuated. Selected examples follow: AddInstanceOption to resize the
weight w of all instances in a uniform way using w equal to (#instances)−1;
ChangeWeightsOption to recompute the weights all by solving an optimization
problem using Mixed Integer Linear Programming (M-ILP) [18] maximizing the
expected QoS for all services.

The method estimate() of each AdaptationOption computes the expected
benefit by estimating the QoS values after applying the corresponding actions.
For example, if the availability of a service does not satisfy the requirement,
a ChangeWeightsOption instance estimates the availability of the service by
calculating the weighted average availability of the current instances using the
new weights. Ultimately, an UtilityEstimator instance computes, for a specific
service, the best adaptation option depending on the selected strategy. As an
example, MaxUtility selects the option associated with the highest estimated

Engineering Self-adaptive Microservice Applications: An Experience Report 233

Fig. 3. Design of the experiments.

benefit. OptimizeUtility selects the option by maximizing multiple objectives
(i.e., multiple QoS indicators). Then the chosen option for each service is referred
to as adaptation plan. The plan is stored in the knowledge and the Execute
component is triggered.
Execute. The Execute component retrieves from the knowledge the adaptation
plan. Then, for each adaptation action, it invokes the actuator API as exposed by
the managed microservice application to apply the changes required by the plan
and update the knowledge for all the changes made to the services configuration.
After processing the plan, the Execute component notifies the Monitor that the
current MAPE-K loop is terminated in order to start a new loop execution.

4 Evaluation

In this section, we describe the evaluation of the managing system RAMSES
using SEFA as managed microservice application benchmark. The evaluation
aims at answering the following research questions:

RQ1: How does RAMSES perform regarding the achievement of QoS require-
ments?

RQ2: Does RAMSES achieve the self-healing property in case of unavailable
services?

RQ3: Does RAMSES achieve the self-optimizing property in case better
microservice instances are available?

We addressed these questions by conducting an experimental campaign com-
posed of multiple experiments where the behavior of RAMSES has been assessed
considering the three adaptation scenarios of interest introduced in Sect. 3. The
adaptation scenarios were synthetically reproduced by controlling relevant oper-
ating conditions of the managed application SEFA. The effects of adaptations
applied by RAMSES have been measured over the observation period of 20 min-
utes for all experiments. Each experiment includes the following two runs to

234 V. Riccio et al.

assess our framework in the selected scenarios: (i) SEFA+RAMSES: managed
system SEFA controlled by the managing system RAMSES (with adaptation);
(ii) SEFA: managed system SEFA only (without adaptation).

Testbed Infrastructure. Our in-house developed testbed is illustrated in Fig. 3a.
In our experiments, the two nodes N1 and N2 are physical machines equipped
with an Apple M1 (8-core) processor, 16GB RAM LPDDR4, and 256GB NVMe
SSD. The testbed includes two compute nodes N1 (driver node) and N2 (subject
node). The driver contains the managing subsystem RAMSES as well as the
ExperimentManager and DockerManager components. The ExperimentManager
takes as input the definition of the experimental campaign and then it runs all
the experiments following the workflow in Fig. 3b for each one of them.

The setup phase deploys two fresh instances of SEFA and RAMSES follow-
ing a given configuration. We rely on DockerManager and DockerWorker com-
ponents for the deployment/undeployment of the containerized microservices of
the managed subsystem onto the subject node N2. The database images are then
loaded onto SEFA, and the initial state of the loop’s knowledge is restored to
make sure decisions are not influenced by past experiments. During the execu-
tion phase, the ExperimentManager replicates the desired operating conditions
in N2 by generating a workload for SEFA and by injecting specific issues/failures
into microservices, as specified in the experimental campaign. After the ramp-
up (from t1 to t2), the monitoring phase starts. Here, the ExperimentManager
computes the metrics to quantify the effectiveness of RAMSES in achieving the
adaptation goals. After the observation period T (from t2 to t3), the teardown
phase terminates and undeploys both SEFA and RAMSES.

Table 2 lists all the factors we can control including the issues that can be
synthetically injected into our testbed to realize the adaptation scenarios of
interest. Concerning the configuration of the managing system, we adopted the
following parameters: metric and analysis window size equal to 5, shutdown
threshold 40%, monitor scheduling 5 seconds.

4.1 Results

RQ1 (Achievement of QoS Requirements). To address this RQ, we created and
executed the adaptation scenario S1 by injecting degraded QoS as shown in
Table 3. To measure the performance of RAMSES in achieving the QoS require-
ments we define the QoS Degradation Area (QoSDA) quantitative metric. Given
an adaptation goal in terms of QoS requirement (e.g., target availability level)
and an observation period T , the QoSDA measures the area between the QoS
threshold and the actual QoS, for all time intervals in T such that the operating
mode is degraded, that is, the actual QoS value is worse than the corresponding
QoS requirement. Since the QoSDA measures the overall level of degradation,
we compare this quantity collected from the two runs (with and without adap-
tation). Indeed, the adaptation actions actuated by RAMSES shall reduce the
QoSDA as much as possible compared to no adaptation (the smaller the better).

Figure 4a shows an extract of our experimental results considering the two
runs (SEFA and RAMSES+SEFA) under a uniform workload intensity of 100

Engineering Self-adaptive Microservice Applications: An Experience Report 235

Table 2. Controllable factors to realize the adaptation scenarios in our testbed.

Type Factor Description Arguments

configuration
(managed)

instances N. of instances per
microservice

target microservice,
#instances

boot time Boot time required by
each microservice
instance.

target microservice instances,
time (sec)

configuration
(managing)

metric window size N. of metric snapshots
collected from each
microservice instance
buffered before triggering
the analysis

#snapshots

analysis window size N. of metric values used to
estimate the QoS level of
each microservice instance

#values

shutdown threshold Minimum amount of
requests that each
microservice instance
must be able to process to
stay alive

rate (%)

monitor scheduling Sampling period of the
monitor service.

period (sec)

environment workload Requests per second
issued to the managed
subsystem.

target microservice instances,
#requests

issues failures Synthetic exceptions occur
in the interval [t, t′]
following a given failure
rate

target microservice instances,
t, t′ (min:sec), rate (%)

delays Synthetic delay in the
time interval [t, t′]
following a given Normal
distribution N (μ, σ)

target microservice instances,
t, t′ (min:sec), μ (millisec), σ
(millisec)

network issues Microservice instances
become unreachable in the
time interval [t, t′] due to
synthetic network issues.

microservice instances, t, t′

(min:sec)

requests per second generated by 50 concurrent users. The plot shows the
microservice restaurant and its QoS requirement availability > 0.9. RAMSES
plans and then actuates two adaptations to satisfy the QoS requirement (t = 2
and t = 3 adaptation points). At the beginning of the run (t < 2) the availability
is equal to ∼ 0.7. RAMSES changes the weights of the load balancer to penalize
the bad-performing instances. Indeed, as shown in Table 3, restaurant1 has 80%
failure rate. The changes actuated by RAMSES improve the availability up to
∼ 0.8 at time t = 3. Since the target requirement is still not satisfied, RAMSES
plans another change: two instances out of three are shut down, due to their
poor performances. The microservice finally achieves a stable and desired QoS
value from t = 4 on. The QoSDA is 4.28 × 102 when adaptation is performed

236 V. Riccio et al.

Table 3. Issues injected in the adaptation scenarios.

Scenario Factor Arguments

S1 instances (restaurant, 3), (ordering, 2), (payment, 1),
(delivery, 1)

failures (restaurant1, [0:00–20:00], 80%),
(restaurant2, [0:00–20:00], 15%),
(restaurant3, [0:00–20:00], 5%),
(ordering1, [0:00–20:00], 5%), (ordering2,
[0:00–20:00], 7%), (payment1, [0:00–20:00],
1%)

delays (ordering1, [11:00–11:15, 13:00–15:00],
500 ms, 50ms)

(ordering2, [11:00–11:15, 13:00–15:00],
400 ms, 100ms)

S2 instances (restaurant, 3), (ordering, 2), (payment, 1),
(delivery, 1)

failures (payment1, [0:35–20:00], 100%)

S3 instances (restaurant, 2), (ordering, 2), (payment, 1),
(delivery, 1)

failures (payment1, [0:00–20:00], 14%)

delays (payment1, [00:00–20:00], 19ms, 1 ms)

(red area), while it is equal to 3.65 × 103 when no adaptation is performed. The
adaptation options executed by RAMSES reduce the QoSDA by 88%. Figure 4b
shows another extract considering the ordering service and the QoS require-
ment response time < 800 milliseconds. At the beginning of the experiment, the
QoS requirement is not satisfied. It is worth noting that the first short-lasting
delay injected at time t = 11 does not cause an adaptation since the analysis ser-
vice recognizes the QoS level goes back to nominal. The second delay injected at
time t = 13 triggers instead the adaptation process. Since both instances exhibit
degraded performance, a new instance is added to the pool. This choice improves
the service that satisfies again the QoS requirement from t = 16. QoSDA is equal
to 6.39 × 103 and 8.22 × 103 with and without adaptation, respectively. In this
case, RAMSES reduces the QoSDA by 22%.

RQ2 (Self-healing Property). This RQ focuses on the self-healing capability of
the system when one or more services are fully unavailable. This means that from
the point of view of a client, there are no instances that can process the client’s
requests. We consider here S2 in Table 3. In particular, the service instance
payment fails at t = 35 seconds. Figure 4c shows the number of instances of the
payment service over time (seconds) during the execution of this scenario. The
plot shows the external point of view (i.e., client perception of the issues) and
the internal one (i.e., RAMSES perspective). RAMSES takes around 25 seconds
to react to the failure. In this period, the metrics window of the instance is filled

Engineering Self-adaptive Microservice Applications: An Experience Report 237

Fig. 4. Achievement of QoS requirements using RAMSES.

up with unreachable status. RAMSES identifies the current best adaptation
strategy at t = 57: it shuts the faulty instance down and starts a new one.
From the external perspective, the service goes back to operation and is ready
to process new requests at t = 68.

RQ3 (Self-optimizing Property). In this RQ we study the self-optimizing capabil-
ity of RAMSES when better instances of the managed services are available. We
consider the adaptation scenario S3 in Table 3 and we specifically focus on the
availability of payment service. In particular, the option changeImplementation
considered by the managing system occurs when the trust level of the current
implementation of a service decreases below the one associated with other avail-
able implementations. S3 starts with a single implementation of payment with
a trust level equal to 2.0. Due to the injected failures in Table 3, the service
does not satisfy the availability requirement 0.92 as illustrated by the QoS
over time (minutes) in Fig. 4d. RAMSES executes addInstance at t = 2 and
then changeWeights to favor the fresh service instance with higher availability.
The two applied adaptations are enough to satisfy the target QoS from t = 4.
However, the current implementation is penalized twice reducing the level of
trust to zero. At time instant t = 11 a new service implementation becomes
available (with new trust level 2.0). Since the trust is higher, RAMSES exe-
cutes changeImplementatio to optimize the managing system further even if
the requirements are satisfied. After this latter adaptation, the availability of
payment reaches the maximum 1.0 from t = 13.

238 V. Riccio et al.

4.2 Threats to Validity

We limited external validity threats by selecting common technology stacks
adopted by practitioners to develop microservices. Furthermore, our testbed
allows us to control the environment and carry out common practices such as
automated and continuous deployment and testing of the selected scenarios.
Additional generalization of RAMSES may require experimental activities with
a diverse set of managed microservice applications. To reduce threats to internal
validity, we designed a scenario-based evaluation by detailing the independent
variables of interest (Table 2) and how we control them to reproduce selected
scenarios (Table 3). Direct manipulation has been crucial to assess cause-effect
relations between external factors and observed results. We addressed construct
validity threats by assessing the metrics used during our experiments. In par-
ticular, QoSDA is a monotonically increasing function of the relative distance
between actual and required QoS level. Thus, a valid measure of the degradation.

5 Challenges and Lessons Learned

We identify the following key challenges from two main perspectives, namely
design space and control loop deployment [9].

C1: Definition of adaptation goals. How to identify adaptation goals for
microservices and balance contradictory requirements (e.g., quality proper-
ties trade-off) from the beginning? How to reconcile the proposed adaptation
requirements with those pursued by the native self-adaptation capabilities of
the underlying infrastructure-management framework?

C2: Design of probing/actuating interfaces. How to endow the managed
microservices with probes/actuators components to make it observable and
adaptable at runtime according to the adaptation goals? How to exploit the
native support of diverse infrastructure-management frameworks, in which
the managed microservices are realized to further extend these last with prob-
ing/actuating functions?

C3: Design of the control loop. How to design control loop components for
monitoring and adapting microservice applications? How to exploit the native
support to self-adaption of the underlying infrastructure-management frame-
work to realize the MAPE-K control functions?

C4: Deployment of the control loop. How to distribute and allocate activ-
ities of the control loop components? Should the control loop components
be deployed as a single monolithic service or decomposed into a collection of
independently developed and deployed microservices?

C5: Reusability of the control loop. How to reuse the control loop compo-
nents for diverse microservice applications to manage?

Concerning C1, we target adaptation goals that are commonly required in
service-based applications, namely QoS-based reactive adaptation. To avoid any

Engineering Self-adaptive Microservice Applications: An Experience Report 239

dependency to vendor-specific and version-specific external frameworks, this self-
adaptation capability is fully implemented in RAMSES. This choice was also
made to avoid possible issues emerging from conflicting user-defined goals in
RAMSES and internal goals of the underlying layers.

To address C2, we exploited some mechanisms offered by Spring and
other external tools (e.g., the Spring Boot module Actuator combined with
Prometheus for collecting metrics). Observability features include auditing,
health logging (e.g. for liveness and readiness states of an application), and
metrics gathering, such as statistics on the HTTP requests made to the exposed
endpoints and on the resource usage (e.g., CPU usage, memory usage). The
actuation of adaptations is also delegated to the Spring Config Server mod-
ule. Indeed, we found this approach useful to speed up the development of the
probing/actuating APIs.

To address C3, the adaptation mechanism in RAMSES is implemented from
scratch by microservices that reflect a MAPE-K control loop architecture, with-
out using the native support for self-adaptation of the infrastructure. As a result,
we developed reusable design patterns for the analysis and plan phases, namely
the double sliding window and the Nested utility patterns. According to our expe-
rience, further managing meta-layers are needed to reconcile conflicting adapta-
tion decisions made by RAMSES and infrastructure adaptation means.

To face C4, one can consider a spectrum of levels of granularity in the deploy-
ment of the control loop components [9]. In our solution, the control loop compo-
nents are independently deployed as microservices that compose a single control
loop for the managed microservices. An alternative is having multiple indepen-
dent microservice-based control loops, one for each managed microservice (or
quality aspect). In this case, control loops must coordinate their adaptation
actions at the application level to resolve potential conflicts in their goals.

To address C5, we decided to adopt an API-led integration approach to con-
nect to a target microservice application. Conforming to the MAPE-K architec-
ture style, we defined probing and actuating interfaces in terms of RESTful APIs.
The APIs allow RAMSES to be reusable given that the managed microservices
implement such APIs to be monitored and adapted by RAMSES. In our current
evaluation, we used a small-scale subject (SEFA). Thus, we do not generalize
our results to other microservice applications, possibly based on different execu-
tion infrastructures. To mitigate this issue, we experimented RAMSES also with
another microservice application Randint4 still using Spring Boot and Spring
Cloud. Randint is composed of a small set of microservices running in Docker
containers, an API gateway acts as a single entry point, while service discovery
and load balancing are implemented by using the Spring Cloud, Netflix Eureka,
and the weighted load balancer. In this second benchmark, we could reuse the
existing probe/actuator components realizing the APIs required by RAMSES.
We plan to further investigate the extent to which RAMSES is reusable consid-
ering more heterogenous microservice applications and frameworks.

4 Available in the supporting material.

240 V. Riccio et al.

6 Related Work

As highlighted by the research community of self-adaptive systems, the develop-
ment of realistic exemplars is a challenging task [16]. Their development process
is costly and time demanding. Even if some works have proposed reusable self-
adaptation frameworks to ease the engineering of self-adaptive systems (e.g.,
the RAINBOW framework [4] and its extension REFRACT [15], and Activ-
FORMS [6], to name a few), they are not ready-to-use, due to their complexity of
use (mainly for the formal runtime models used in the decision making) and low
generality (being experimented in specific domains and for exploratory research
prototypes). Another research line in this community has been the development
of exemplars that support comparing and evaluating the research on software
engineering for adaptive and self-managing systems5. Similar exemplars related
to our work are Hogna [1], TAS [17] and SEAByTE [13], which, however, focus
on specific aspects (like deployment on cloud platform such as Amazon EC2 [1],
or A/B testing for [13]) or provide a simulated environment [17].

On the other hand, with the increasing popularity, of microservices tech-
nologies and frameworks, the need has arisen for approaches able to monitor
the microservices’ status (and the containers where they execute) at runtime
to provide autoscaling and resilience capabilities management [12]. As already
stated in Sect. 1, some of the existing platforms provide basic autoscaling and
self-healing abilities. In [2], the authors present the results of a systematic map-
ping study where the use of self-adaptation techniques has been explored. They
highlight the presence of philosophical papers setting the stage for the research
in this direction [9], and the presence of several papers proposing theoretical
solutions or models based on feedback loops. Only few of them are accompa-
nied by the development of tools that are devoted to the solution of specific
challenges. In [14], the authors address the challenge of finding an optimal allo-
cation of microservices among the available servers. [7] focuses on cloud-native
applications and defines a prototype allowing scalable applications on the cloud.
In [3] the authors propose a framework that implements automatic container
sizing and self-healing features for a microservice-based application deployed in
Docker containers exploiting MAPE-K loops. In [19], an extension of Kuber-
netes has been developed to monitor microservices data and manage aspects of
scalability. Towards the direction of reusing existing self-adaptation services and
frameworks, of particular interest is the so-called service mesh technology, a dedi-
cated infrastructure layer for handling service-to-service communication through
well-established reliable libraries6. In [10] the authors envision the Microservices
and Service Mesh MAPE pattern, where the system’s containerized microservices
communicate via a service mesh, and both the microservices and the service mesh
are managed by MAPE services provided by the infrastructure.

The development of RAMSES stands at the confluence of these two research
directions: the need to develop ready-to-use exemplars to share and facilitate

5 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/.
6 https://philcalcado.com/2017/08/03/pattern service mesh.html.

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/
https://philcalcado.com/2017/08/03/pattern_service_mesh.html

Engineering Self-adaptive Microservice Applications: An Experience Report 241

the adoption of self-adaptive systems, and the need to empower microservice-
based applications with self-adaptation capabilities. RAMSES is a publicly avail-
able reusable managing system with an API-led integration with the managed
microservice application. Besides, the development of RAMSES brings with it a
set of lessons learned that can be useful to the research community.

7 Conclusion and Future Work

RAMSES is a microservice-based autonomic manager tailored to microservice
applications. RAMSES is reusable given that the managed system implements
the probing/actuating APIs. We discussed our experience in dealing with existing
challenges to realize self-∗ properties with user-defined QoS indicators. We also
defined design patterns that can be used to analyze and plan service adaptations.

We plan to extend the RAMSES’s analysis task and its set of adaptation
options. We want to consider other metrics (e.g., resource usage and circuit
breakers metrics) to build more reliable indicators of the managed services. As a
further improvement, the decision-making process could consider the costs and
the risks derived from the application of an adaptation option. Moreover, the
estimation could analyse the history of actuated adaptations using ML tech-
niques. to quantify the actual benefits they brought.

Acknowledgment. This work has been partially founded by the topic Engineer-
ing Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs.

References

1. Barna, C., Ghanbari, H., Litoiu, M., Shtern, M.: Hogna: a platform for self-adaptive
applications in cloud environments. In: SEAMS, pp. 83–87 (2015)

2. Filho, M., Pimentel, E., Pereira, W., Maia, P., Cortes, M.: Self-adaptive
microservice-based systems - landscape and research opportunities. In: SEAMS,
pp. 167–178 (2021)

3. Florio, L., Nitto, E.D.: Gru: an approach to introduce decentralized autonomic
behavior in microservices architectures. In: IEEE ICAC, pp. 357–362 (2016)

4. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

5. Garlan, D., Schmerl, B.R., Cheng, S.: Software architecture-based self-adaptation.
In: Zhang, Y., Yang, L., Denko, M. (eds.) Autonomic Computing and Networking,
pp. 31–55. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89828-5 2

6. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: SEAMS 2014, pp. 125–134. ACM, New York (2014)

7. Kehrer, S., Blochinger, W.: Model-based generation of self-adaptive cloud services.
In: Muñoz, V.M., Ferguson, D., Helfert, M., Pahl, C. (eds.) CLOSER 2018. CCIS,
vol. 1073, pp. 40–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29193-8 3

https://doi.org/10.1007/978-0-387-89828-5_2
https://doi.org/10.1007/978-3-030-29193-8_3
https://doi.org/10.1007/978-3-030-29193-8_3

242 V. Riccio et al.

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

9. Mendonca, N.C., Jamshidi, P., Garlan, D., Pahl, C.: Developing self-adaptive
microservice systems: challenges and directions. IEEE Softw. 38(2), 70–79 (2021)

10. Mendonça, N.C., Garlan, D., Schmerl, B., Cámara, J.: Generality vs. reusability
in architecture-based self-adaptation: the case for self-adaptive microservices. In:
ECSA ’18. ACM (2018)

11. Mitchell, M.: An Introduction to Genetic Algorithms, pp. 124–125. The MIT Press,
Cambridge (1999)

12. Ntentos, E., Zdun, U., Plakidas, K., Geiger, S.: Evaluating and improving microser-
vice architecture conformance to architectural design decisions. In: Hacid, H., Kao,
O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 188–
203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8 12

13. Quin, F., Weyns, D.: SEAByTE: a self-adaptive micro-service system artifact for
automating a/b testing. In: SEAMS, pp. 77–83 (2022)

14. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-
based applications with runtime placement adaptation. J. Internet Serv. Appl. 10,
1–30 (2019)

15. Swanson, J., Cohen, M.B., Dwyer, M.B., Garvin, B.J., Firestone, J.: Beyond the
rainbow: self-adaptive failure avoidance in configurable systems. In: FSE 2014, pp.
377–388. ACM, New York (2014)

16. Weyns, D.: An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. Wiley, Hoboken (2020)

17. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system
exemplar. In: SEAMS, pp. 88–92 (2015)

18. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization, vol. 55.
John Wiley & Sons, Hoboken (1999)

19. Zhang, S., Zhang, M., Ni, L., Liu, P.: A multi-level self-adaptation approach for
microservice systems. In: 2019 IEEE 4th International Conference on Cloud Com-
puting and Big Data Analysis (ICCCBDA), pp. 498–502 (2019)

https://doi.org/10.1007/978-3-030-91431-8_12

FUSE: Fault Diagnosis and Suppression
with eBPF for Microservices

Gowri Sankar Ramachandran(B) , Lewyn McDonald, and Raja Jurdak

Trusted Networks Lab, Queensland University of Technology, Brisbane, Australia

g.ramachandran@qut.edu.au

Abstract. Contemporary applications harness microservices architec-
ture to attain scalability, loose coupling, and abstraction advantages.
This approach involves breaking down applications into smaller, com-
posable services, which are hosted in the cloud. Cloud deployment offers
advantages like elastic load balancing, cost-efficiency, and ease of man-
agement. However, it raises two issues: trusting third-party providers and
limited fault diagnosis due to generic logs. Deep runtime introspection of
microservices on third-party clouds can enhance the resilience of cloud-
native microservice-based applications.
This paper introduces FUSE, a novel framework based on eBPF technol-
ogy that enables deep introspection of microservices’ runtime behavior.
FUSE observes microservices at the kernel level, tracing system calls,
function invocations, and disk accesses to create a unique hash-based
digest for each microservice invocation. This digest is then used to verify
runtime correctness: correct microservices consistently produce a known,
deterministic digest, while faulty services generate random traces. FUSE
provides real-time fault detection and suppression, preventing cascading
failures. Additionally, it introduces a stability score for succinctly cap-
turing runtime consistencies in microservices. In our evaluation with four
representative microservices on AWS EC2 instances, FUSE successfully
detected 53 runtime faults.

Keywords: eBPF · Resilient Microservice · Fault Diagnosis

1 Introduction

Contemporary applications adopt microservices architecture to achieve scala-
bility, load balancing, continuous integration and loose coupling for large-scale
enterprise applications [7]. Some of the largest tech companies, including Ama-
zon [8] and Microsoft [12], serve millions of customers following microservices
architecture. The emergence of cloud computing platforms further accelerates
the growth of microservices, allowing the service owners to deploy their appli-
cations on the cloud without needing to invest in hardware, software, and tool-
ing resources, as existing cloud platforms offer many built-in services, including
elastic load balancing, security, and remote management, for an affordable cost,
making them attractive for the deployment of microservices [21].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 243–257, 2023.
https://doi.org/10.1007/978-3-031-48421-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_17&domain=pdf
http://orcid.org/0000-0001-5944-1335
http://orcid.org/0000-0001-7517-0782
https://doi.org/10.1007/978-3-031-48421-6_17

244 G. S. Ramachandran et al.

As the applications switch from the “monolithic” to the “microservices”
model, the end system consists of a set of independent services running on dif-
ferent cloud instances in a virtualised environment. Although cloud providers
strive to provide reliable services to the service owners, there is still a possibil-
ity of service failures and faults at runtime [1,5,6]. Service meshes have been
developed to make microservices resilient against communication failures, as the
failure of a single service could impact other inter-connected services through
the cascading effect [11]. Figure 1 (left) shows how a single faulty service can
disrupt other interconnected services due to fault propagation. Sidecars monitor
individual services and relay the information to the service mesh control plane
to make dynamic decisions at runtime. Existing features of sidecars include traf-
fic monitoring, load balancing, and fault-tolerant networking, but there is no
support to deeply observe the “execution” of microservice at runtime to ensure
consistency [4,14].

Existing literature highlights the benefits of observing microservices at the
kernel level using the extended Berkeley Packet Filter (eBPF) [3,4,10,13,18,22].
eBPF offers a rich set of functionalities to monitor the runtime behaviour of
microservices. It enables the service owners to develop kernel probes, which are
user-defined programs with kernel privileges to deeply introspect the behaviour
of applications running in the user space. eBPF provides several functionalities,
including support for network observation, disk monitoring, and system call trac-
ing to get fine-grained activity logs of user-level programs such as microservices.
Extant literature proposes eBPF-based frameworks to classify microservices in
data centres [3,4] and for monitoring network and performance [13,18,22], lack-
ing a solution to detect and suppress runtime faults in microservice-based appli-
cations, which is the focus of this work.

Fig. 1. Composing Microservices using FUSE to suppress fault.

This paper introduces FUSE, an eBPF-based fault-diagnosis and suppression
framework for microservices architecture. FUSE differs from other works in the
following ways:

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 245

– FUSE observes the runtime behaviour of microservices by monitoring system
calls, function invocations, and disk accesses, including memory allocations,
to create a unique signature (or digest) from traces for each invocation.

– FUSE categories microservices as an idempotent or non-idempotent service
based on the signature.

– FUSE detects runtime faults by checking the signature of each invocation
against the expected signatures. Upon fault detection, it promptly alerts the
service administrator and the circuit-breaker to suppress cascading failures,
as shown in Fig. 1 (right).

– FUSE also helps the service owners and developers quantify the runtime con-
sistency of microservices through a novel stability score for microservices. A
microservice composition with a high stability score is good for resiliency.

FUSE is implemented in a Linux environment with eBPF and evaluated on
AWS EC2 instances running the Ubuntu operating system. The performance
and effectiveness of FUSE are validated using four representative microservices
that 1) register a user into a MySQL database, 2) query the system to retrieve
the list of users, 3) test the strength of a password, and 4) add the numbers
in a list. During the evaluation, FUSE successfully detected 53 runtime faults,
highlighting its ability to prevent cascading failures by alerting service admin-
istrators and circuit breakers. Lastly, the stability score is a valuable feature
for service administrators and software developers to improve the microservices’
resiliency.

2 Background

2.1 extended Berkeley Packet Filter (eBPF)

The extended Berkeley Packet Filter, commonly known as eBPF, is a special
type of virtual machine within the Linux kernel [15]. It was introduced in 1992
with a register-based filter for evaluating the network packets deep inside the
kernel. tcpdump is one of the popular tools from the eBPF family. Although net-
work monitoring is one of the popular use cases of eBPF, it does provide multiple
hooks to trace and monitor various subsystems inside the Linux kernel. Some of
the other hooks include Filetop (for tracking the file reads and writes), Open-
snoop (attempts to track the files accessed by a specific process), and syscount
(counts the number of system calls) [9]. The user-level programs can attach to
these kernel hooks through eBPF probes such as kprobe, uprobe, tracepoint, and
socket [9]. Depending on the type of selected hooks, the probes deliver detailed
information to the user for deep introspection of application activities, including
microservices.

2.2 Faults in Microservices

Microservices use a software framework such as Apache and Spring and run on
a hardware infrastructure provided by the cloud provider in the case of cloud-
native deployments. As discussed in [1], the microservices could be exposed to

246 G. S. Ramachandran et al.

intermittent hardware faults due to cosmic radiation or impure packaging mate-
rial. Facebook’s data centres that serve a multitude of apps, such as Facebook,
WhatsApp, and Instagram, experienced silent data corruptions, causing inac-
curate computations [6]. Such runtime silent faults occur as a result of manu-
facturing defects at the silicon level [5]. The aging of microservices also intro-
duces faults, which are undetected by Kubernetes probes, according to [17].
BROFY [10] explains the need to develop approaches for microservices’ integrity
validation as the attackers or faulty hardware could introduce bitflip errors (one
or more of the bits gets flipped, changing the runtime behaviour) to the compu-
tation infrastructure, causing silent and undetectable failures. Additionally, ser-
vices may fail to access the desired resource, including the database, to fulfil the
functional requirements, resulting in run-time faults. These problems underscore
the importance of developing approaches to detect runtime faults in microser-
vices, which is the focus of this work.

3 Related Work

Existing works have studied approaches to enhance the monitoring capabilities of
microservices to detect performance issues [3,4,13,18,22]. These works leverage
eBPF to observe microservices’ runtime behaviour by focusing on the networking
activities [13], including TCP traffic [22] and latency [18], CPU activations [3,
4,22], Block I/O performance [22] to understand the performance bottlenecks.
Although these works aim to improve microservices’ performance, they don’t
propose fault diagnosis or suppression.

MAGNet [3] is similar to FUSE in the aspect of application-focused eBPF
tracing, but it aims to generate identities for workloads in data centres without
detecting faults using the eBPF traces. Hyunseok et al. [4] introduced a microser-
vices fingerprinting technique by tracing the system calls used by microservices
and trained a machine learning model to classify services. FUSE classifies the
microservices based on eBPF trace, but it uses system calls, disk I/O activities,
and function invocations to generate a unique digest per invocation without
employing machine learning. Furthermore, FUSE contributes a fault detection
and suppression framework and a stability scoring mechanism to tackle runtime
faults.

The stability of microservices is studied using eBPF in [20], which leverages
variable autoencoders to detect unstable or compromised containers based on
eBPF traces. It monitors a pre-configured set of 72 Linux system calls to cap-
ture specific security incidents and application faults. This work is similar to ours
in the aspect of the eBPF-based approach for stability analysis, but we focus
on application-level or microservices fingerprinting using system calls, function
invocation, and disk accesses without involving any machine learning. Areeg and
Claus [19] detect anomalies in containerised microservices using Markov Models,
wherein the key performance indicators such as mpstat and vmstat are collected
at the application level to learn a model using Hierarchical Hidden Markov Mod-
els, which detect abnormal microservice behaviours with 97% accuracy. Unlike

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 247

this paper, FUSE generates microservice-specific eBPF traces and detects stabil-
ity and abnormality through a hash-based signature without applying machine
learning algorithms. Many other works tackle anomalies or eBPF-based observ-
ability for microservices, but they don’t focus on fault detection using eBPF-
based tracing by combining system calls, function invocations, and disk accesses.
Besides, none of the existing works introduces a stability scorecard for microser-
vices, which is another novel contribution of our work.

4 FUSE: Fault Diagnosis and Suppression with eBPF
for Microservices

4.1 System Model

Modern applications are composed of interconnected microservices, wherein each
service sx ∈ S could be connected with one or more services. In such circum-
stances, whenever the end user issues a request to a service, it may trigger a
series of services to generate a response to the user. Upon receiving a request
reqx, the service sx processes the request by running computations exex and
produces a response resx. Here, exex may involve contacting other services,
meaning the response could be generated with the help of other dependent ser-
vices. Each service in S gets invoked numerous times in deployment, depending
on the application’s popularity and the customer base. Each service gets invoked
K (K ∈ N) times in deployment, and the ith invocation of a service sx can be
denoted by Iix. Each invocation includes the execution phase (exeix), which will
use the hardware and software resources, including the Linux kernel. eBPF pro-
vides tools to introspect the behaviour of a service sx at the execution phase (also
called “runtime”) by capturing kernel-level traces for exeix, which is denoted by
traceix. In summary, ith invocation of a service sx can be represented by a tuple
〈reqix, exeix, resix, traceix〉. This work builds on some key concepts, such as idem-
potency and stability, which are defined below.

Definition 1. Idempotency The system’s state remains the same when an
operation is executed any number of times [16].

GET and HEAD are examples of idempotent HTTP operations because they
don’t change the server’s state on the request’ successful completion. Besides,
even the same request can be issued many times without altering the server’s
state. On the other hand, the POST operation of HTTP changes the server’s
state, meaning it may add a new item to a database; hence, it is non-idempotent.

Definition 2. Idempotent Microservice A microservice is considered idem-
potent if it doesn’t alter the system’s state when a request is processed any number
of times.

A microservice that reads an employee’s data from a database is an example of an
idempotent microservice. In contrast, the service that registers a new employee’s
data is non-idempotent as it changes the server’s state.

248 G. S. Ramachandran et al.

Definition 3. Trace A trace of a microservice corresponds to the low-level
activities that the service carries out inside the kernel to process a request reqx.
Tx denotes a set of unique traces of service sx and Lx denotes the length of Tx.

Software applications access the CPU, memory, and network by invoking sched-
ulers, I/O management modules, and network managers to fulfil the desired
functionalities. Here, the low-level activities correspond to all activities that
happen within the kernel as part of the application’s or microservice’s execu-
tion. This work assumes microservices perform single functions upon receiving
requests (reqx) with deterministic, bounded input sizes. For instance, the register
user to a database service limits ‘user name’ input to 20 characters.

Definition 4. Idempotent Trace A microservice’s trace is idempotent if it
doesn’t change when the same or different requests are processed any number of
times.

Considering three invocations, p, q, and r, of service sx the trace is said to be
idempotent if and only if:

tracepx = traceqx = tracerx = α, where Tx = {α} and Lx = 1 (1)

Definition 5. Stability of a Microservice: A microservice is said to be stable
if its traces are idempotent for a given request req. The stability of a service in
percentage is calculated using traces generated from E invocations. The stability
of a microservice, smx, is:

smreq
x = (1 ÷ Lx) ∗ 100 (2)

Figure 2 (top) shows an example of an idempotent service with a stability score
of 100% for E of 4 because it produces one unique trace. But, some services
may produce more than one trace for E (E ∈ N) invocations. Figure 2 (bottom)
illustrates an idempotent service with a stability score of 50% for E of 4, with two
unique traces α and β. The higher stability score indicates runtime consistency,
helping developers and administrators to build highly stable services.

Fig. 2. Stability Score of Idempotent Service based on 4 Invocations.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 249

Fig. 3. FUSE Architecture: The dotted line indicates operations in idempotency vali-
dation mode, while normal line denotes fault detection and suppression operations.

4.2 Architecture of FUSE

At a high level, FUSE is a cross-layer architecture running at user and ker-
nel spaces, as shown in Fig. 3. Microservices run in a computing environment,
including a cloud instance. Typically, services are hosted on a framework such
as Spring Boot. An operating system such as Ubuntu manages the resources
for the application-level services. In this model, the operating system functions
within the kernel space without offering much visibility to the users. In contrast,
the services sit in the user space, leveraging the operating system to function
correctly. FUSE leverages eBPF to monitor and extract kernel space activities of
services to generate signatures and suppress faults. The user space activities for
eBPF include setting up the necessary hooks and the configurations to generate,
process, store, and validate traces. In contrast, the kernel space intercepts the
traces required for the target microservices. The fundamental building blocks of
FUSE are discussed in the rest of the section.

FUSE Configurations. FUSE can operate in two modes, including idempo-
tency validation and fault detection and suppression modes, based on the con-
figurations set by the microservices administrator. In the idempotency valida-
tion mode, FUSE runs the same microservice E times and collects the traces
in a database. Subsequently, the traces are analysed to determine whether
the microservice is idempotent or not. This mode must be activated for each
microservice before production for fault diagnosis and suppression. The fault
detection and suppression mode is activated at runtime to validate the microser-
vices’ trace for each invocation against the database. As shown in Fig. 3, this
mode uses a different set of building blocks for detecting and suppressing faults
based on the runtime traces.

Syscall Monitor tracks the system calls used by the microservice. At each
microservice’s invocation, this building block intercepts the system calls and gen-
erates a list, including the counts for each system call. For example, read is one of

250 G. S. Ramachandran et al.

Algorithm 1: FUSE in idempotency validation and fault detection and
suppression modes: Stability score calculation is included in idempotency
validation mode.

FUSE in idempotency validation mode

Require: Sx, E
T ← {} /* Empty T */

for i = 1 to E do
tracei = generateDigest(Sx)
if tracei /∈ T then

T = T ∪ tracei
end if

end for
storeTraceinDatabase(Sx,T)
return

FUSE Stability Score Calculation

Require: Sx, T
L ← 0 /* Length of T is 0 */
sm ← 0 /* Stability score is initialised 0 */
L = |T | /* Length of T */
sm = (1 ÷ L)*100 /* Stability score is calculated */
storeStabilityScoreinDatabase(Sx,sm)
return

FUSE in fault detection and suppression mode

tracej = generateDigest(Sx) /* jth invocation of a service */
if tracej /∈ T then

notifyFault()
end if

the widespread system calls, and it opens a file or a resource. Functions Tracer
traces the functions and libraries invoked by the microservice. For each invoca-
tion, this captures the list of files and libraries accessed by the microservice.
Disk Read/Write Tracker tracks the number of reads and writes, including
memory allocations, that happen during the execution of microservice along with
a pointer to a file, indicating the files that were read from or written to.

Digest (or Signature) Generator processes the traces generated by the
syscall monitor, functions tracer, and disk read/write tracker to create a digest
or signature for each invocation. The digest is made by counting the number of
calls, the list of functions invoked, the amount of data read from or written to,
and malloc allocations. A cryptographic hash function such as sha256 creates a
unique signature per invocation.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 251

Idempotency Validator processes the digests during the idempotency val-
idation mode by studying the consistency of digests. Each microservice is exe-
cuted E times to perform idempotency validation. Therefore, this process is data
intensive as multiple traces must be generated to determine whether a given
microservice is idempotent or not. An idempotent microservice would always
produce the known cryptographic hash for a given request type reqx because
such a microservice always executes the same system calls, accesses the same
list of functions, has the same data read from or written to, and allocates the
same amount of memory. Algorithm 1 explains FUSE’s operations.

Digest Database stores and manages digests associated with a
microservice-based application. It is important to note that each microservice
need not have its database; instead, a single database can be used to manage
the digests.

Fault Detector gets activated in fault detection and suppression mode, and
it is responsible for checking whether a digest of a recent microservice’s invo-
cation produces the known and expected digests. Recall that an idempotent
microservice will have the known digest unless there is a fault. This module
checks the digest and generates an alert to the service admin. Besides, the digest
is also notified to the circuit breaker for fault suppression.

4.3 Fault Diagnosis and Suppression

Fig. 4. Fault breaks the idempotency of an idempotent service.

Definition 6. Faulty Microservice A microservice is said to be faulty when
its traces are intermittently non-idempotent. An idempotent microservice can
experience faults at runtime, breaking idempotency.

Figure 4 elucidates how an idempotent microservice can experience an unex-
pected fault at runtime due to hardware or software failures, breaking the trace
consistency. Note that any trace other than α is considered faulty for the first
idempotent service in Fig. 4 (top). On the other hand, Fig. 4 (bottom) shows an
idempotent service with more than one known trace to be considered non-faulty;

252 G. S. Ramachandran et al.

however, the 3rd invocation (see) produces an unexpected trace of Δ, denoting
a runtime fault.

Figure 1 (left) shows that a single faulty service could impact other intercon-
nected services if left untreated. Circuit breakers are recommended to increase
the resiliency and availability of microservices in the event of cascading failures.
A circuit breaker relies on fault event to open the circuit to prevent cascad-
ing failures. Network-related issues, server failures, and overloads are consid-
ered fault events in circuit breakers, allowing microservices to overcome major
and obvious faults. Our approach complements existing techniques and further
strengthens the circuit breakers by tackling less-obvious faults, which could arise
due to hardware abnormalities or any unexpected behaviour only noticeable at
runtime, including the involvement of an adversary. Our fault suppression tech-
nique is presented in the next section.

4.4 Fault Suppression

FUSE digests (or signatures) provide a stable reference for fault diagnosis, as a
service could be idempotent or non-idempotent. Our fault suppression technique
is proxy-based [2], meaning that the service interacts with other dependent ser-
vices if and only if the digest of the current invocation satisfies the idempotency
property (see Definitions 4). Any variations to the digest (or trace) indicate a
fault (see Definition 6), suppressing outbound communications with dependent
services, as shown in Fig. 1 (right). The circuit breaker opens the connection to
prevent cascading failures. The fault detection and suppression mode monitors
the trace following Algorithm 1 and notifies faults to the appropriate agent. Fol-
lowing a proxy-based fault suppression scheme, the outgoing requests to depen-
dent microservices are blocked to prevent cascading failures, as shown in Fig. 1.

4.5 Stability Score

FUSE validates the stability of microservices through a stability scorer module,
as shown in Fig. 3. As discussed in Definition 5, the stability of a microservice
depends on its trace (or signature) consistency. Our stability scoring mechanism
provides a score between 0% and 100% for microservices. A score closer to 100%
indicates high stability, while any score close to 0% indicates poor stability.
An idempotent service has a high stability score, while non-idempotent services
have a low stability score. The stability scorer module takes the digests from
the database and counts the unique digests per microservice in the idempotency
validation mode, as shown in Algorithm 1.

This score is beneficial for system administrators and microservice archi-
tects. From the service management and resilience viewpoint, having an idem-
potent microservice with a stability score of 100% maximises the determinism
and fault detection capabilities. In contrast, any score close to 0% shows the
non-determinism of the microservice. Besides, when designing a microservice,
the developers can aim to compose a strictly idempotent microservice by using

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 253

FUSE’s stability score as it helps the developers understand hidden uncertain-
ties in the code, which is only noticeable at runtime. Figure 2 shows how the
stability score is calculated for an idempotent microservice.

5 Proof-of-Concept Implementation and Evaluation

FUSE is implemented using eBPF and tested on AWS EC2 instances running
the Ubuntu operating system. To validate the practicality of FUSE, we have
developed POST and GET services using Python Flask with the following func-
tionalities: 1) New user registration service (S1): receives a POST request
with the user details, including the name, address, and country, and stores them
in a MySQL database. 2) Users data retriever service (S2): handles a GET
request to gather the users’ data from a MySQL database and sends it back
to the requester. 3) Password strength checker service (S3): receives a
POST request to check the strength of a password the user selects. It receives a
password string and checks its strength by assessing the lower and upper cases,
digits, and length, and returns the password strength as Strong or Weak. 4)
Addition service (S4): adds the numbers in the request and returns the sum
as a response. Our proof-of-concept implementation used a proxy that generates
and validates the trace (or signature) for each POST or GET request. We eval-
uate the performance and stability of the example representative services and
report the results. Each service was executed more than 1000 times in idempo-
tency validation mode, i.e. E > 1000.

5.1 Idempotency of Example Services

For E > 1000, services S1, S2, S3, and S4 have T of 2, 4, 3, and 10, respectively,
of which a single trace is dominant, making them idempotent. The sha256 hash
is shortened to four characters in Table 1 for brevity. However, the real digest
is 64 characters long. The amount of memory used, the number of functions
accessed, and system calls invoked changes depend on the microservices, resulting
in unique hashes per service. Figure 5 shows the distribution of hashes for S1, S2,
S3, and S4 - it is clear that each microservice has a dominating hash that appears
more than 97% of the time. Besides, S1, S2, S3, and S4 have stability scores of
50, 25, 33.3, and 10, respectively. The higher stability score corresponds to high
determinism and stability. S1 is the most stable among the example services,
while S4 is the least stable. Figure 6 shows how the stability score evolved with
each invocation and stabilised. The instability of S4 and the high stability of S1
are apparent in Fig. 6.

Table 1. Stability Score of Services based on Traces.

Service T L E Stability Score (in %)

S1 {‘8507’:7, ‘f8ec’:998} 2 1005 50

S2 {‘3173’:2, ‘7eb0’:1015, ‘913b’:1, ‘51a7’:4} 4 1022 25

S3 {‘075d’:1094, ‘4532’:11, ‘6947’:1} 3 1106 33.3

S4 {‘05db’:1, ‘23e2’:3, ‘4d6b’:6, ‘6398’:1163, ‘68c0’:1, ‘735d’:4, ‘8801’:2, ‘e280’:2, ‘f541’:7, ‘d447’:1} 10 1190 10

254 G. S. Ramachandran et al.

Fig. 5. Distribution of FUSE Traces for Services S1, S2, S3, and S4.

5.2 Overhead of FUSE

Traditional microservices don’t rely on kernel-level traces for fault suppression.
Thus, they don’t incur any overhead within the request-response cycle. When a
request is sent to a microservice, it gets processed, and the response is sent back.
However, FUSE introduces an overhead in storage and latency. The Storage
Overhead of FUSE originates from the storage of traces generated. FUSE
produces multiple eBPF trace files to store file accesses, system call statistics,
memory allocations, and disk operations. The storage overhead of FUSE per
microservice execution is presented in Table 2, wherein the disk IO trace file
takes up the most space while the system calls take up the least space, but these
can be deleted periodically or immediately based on the requirements.

Fig. 6. Stability Score vs. Number of Invocations for S1, S2, S3, and S4.

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 255

Table 2. Storage Overhead for Trace Files

Service Syscall Trace (Bytes) Function Trace (Bytes) Disk I/O Trace (Bytes)

S1 751 1710 16380

S2 751 1710 16379

S3 751 1647 16380

S4 1039 1647 16385

The Latency of FUSE differs from traditional microservices as the digest is
generated immediately after the completion of each invocation. Without FUSE,
S1, S2, S3, and S4 have an average latency of 13 milliseconds (ms), 14 ms, 5
ms, and 6 ms, respectively. In contrast, the average latency of S1, S2, S3, and
S4 increases to 235 ms, 204 ms, 168 ms, and 276 ms with FUSE. The increased
latency comes from processing the traces and the generation and notification of
digest, which will be optimised in future work.

5.3 Faults Detected by FUSE

FUSE detected 53 faults at runtime for services S1 and S2 while S3 and S4 did
not experience any faults, meaning all the traces for S3 and S4 came from T
listed in Table 1. In contrast, for S1 and S2, FUSE detected faults with random
traces that are unfound in T in Table 1. These 53 faults are because S1 and S2
rely on a MySQL database, which crashed due to being out of memory as OOM
killer terminated the MySQL process, generating faulty traces. These traces
indicated early signs of memory issues as they had additional system calls. The
services ran correctly as long as there was enough memory, and then it started
to experience faults, resulting in random and unknown traces, triggering faults.
For S1, the observed trace during fault includes (8507), while for S2, the faulty
traces include (3173, 913b, 51a7). These faults underscore FUSE’s effectiveness
in capturing runtime faults.

6 Discussion

Tool Selection for Digest Generation: eBPF offers a robust toolkit for gen-
erating traces of user-level programs, including microservices. This study has
selected specific tools focused on system calls, function invocations, and disk
operations, as highlighted in Table 1. The resulting unique digests at the ker-
nel level attest to the effectiveness of these chosen tools. Nevertheless, there
remains untapped potential in expanding FUSE’s trace generation capabilities
to uncover hidden faults and runtime inconsistencies, representing an exciting
avenue for future research. Impact of Inputs on the Digest: Each service
invocation’s uniqueness arises from varying input characteristics. Many microser-
vices validate inputs for error prevention prior to processing. Our evaluation has

256 G. S. Ramachandran et al.

primarily considered microservices with typical inputs. However, there is room
for more in-depth analysis by drastically altering input parameters, offering a
promising area for future exploration. Platform-Agnostic Traces: This eval-
uation employed AWS EC2 instances running an Ubuntu operating system to
validate FUSE. A valuable opportunity exists to execute the same microservices
on diverse eBPF-compatible Linux systems, such as Amazon Linux, to assess the
platform-agnostic nature of FUSE’s traces. This paper assumes FUSE traces are
generated in ’idempotency validation’ mode on the production platform. How-
ever, testing how digests evolve when introducing a new platform could enhance
FUSE’s flexibility for platform migration, which we consider for future work.

7 Conclusion

Microservices frequently encounter runtime faults stemming from hardware
issues, software bugs, and network disruptions. Detecting these faults is cru-
cial for preempting failures and preventing cascading issues. FUSE, an innova-
tive fault diagnosis and suppression tool built on eBPF, distinguishes microser-
vices as idempotent or non-idempotent based on runtime traces. It dynamically
identifies runtime faults by comparing actual traces with expected ones and
blocks external requests to other services upon fault detection. FUSE intro-
duces a unique stability scoring mechanism, evaluating microservices based on
trace consistency and idempotency. A proof-of-concept implementation using
eBPF and Flask, deployed on AWS EC2 instances, validates FUSE’s practical-
ity. Performance evaluations involving four representative microservices demon-
strate FUSE’s capacity to detect 53 runtime faults, albeit with some latency
and storage overhead. Future work includes optimizing FUSE’s performance
through customized eBPF probes, confirming platform agnosticism across vari-
ous eBPF-compatible Linux platforms, and enhancing its capabilities to analyze
input impact on digests by varying inputs significantly in test services.

References

1. Cerveira, F., Oliveira, R.A., Barbosa, R., Madeira, H.: Evaluation of restful frame-
works under soft errors. In: 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), pp. 369–379. IEEE (2020)

2. Chandramouli, R.: Microservices-based application systems. NIST Spec. Publ.
800(204), 800–204 (2019)

3. Chang, H., Kodialam, M., Lakshman, T.V., Mukherjee, S., Van der Merwe, J.,
Zaheer, Z.: MAGNet: machine learning guided application-aware networking for
data centers. IEEE Trans. Cloud Comput. 11(1), 291–307 (2023)

4. Chang, H., Kodialam, M., Lakshman, T., Mukherjee, S.: Microservice fingerprint-
ing and classification using machine learning. In: 2019 IEEE 27th International
Conference on Network Protocols (ICNP), pp. 1–11 (2019)

5. Constantinescu, C.: Intermittent faults and effects on reliability of integrated cir-
cuits. In: 2008 Annual Reliability and Maintainability Symposium, pp. 370–374.
IEEE (2008)

FUSE: Fault Diagnosis and Suppression with eBPF for Microservices 257

6. Dixit, H.D., et al.: Silent data corruptions at scale. arXiv preprint arXiv:2102.11245
(2021)

7. Dragoni, N., et al.: Microservices: Yesterday, Today, and Tomorrow, pp. 195–216.
Springer, Cham (2017)

8. Fulton III, S.M.: What led amazon to its own microservices architecture. The New
Stack (2015)

9. Goldshtein, S.: The Next Linux Superpower: eBPF Primer. USENIX Association,
Dublin (2016)

10. Hartono, A.P.P., Fetzer, C.: BROFY: towards essential integrity protection for
microservices. In: 2021 40th International Symposium on Reliable Distributed Sys-
tems (SRDS), pp. 154–163. IEEE (2021)

11. Jagadeesan, L.J., Mendiratta, V.B.: When failure is (not) an option: reliability
models for microservices architectures. In: 2020 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 19–24. IEEE (2020)

12. Kakivaya, G., et al.: Service fabric: a distributed platform for building microservices
in the cloud. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

13. Levin, J., Benson, T.A.: ViperProbe: rethinking microservice observability with
eBPF. In: 2020 IEEE 9th International Conference on Cloud Networking (Cloud-
Net), pp. 1–8 (2020)

14. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of
the art, and future research opportunities. In: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225 (2019)

15. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: USENIX Winter, vol. 46 (1993)

16. Microservices, B.J., Varanasi, B., Bartkov, M.: Spring REST. Springer, Berkeley
(2021). https://doi.org/10.1007/978-1-4842-0823-6

17. Power, A., Kotonya, G.: A microservices architecture for reactive and proactive
fault tolerance in IoT systems. In: 2018 IEEE 19th International Symposium on
“A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 588–
599 (2018)

18. Ranjitha, K., Tammana, P., Kannan, P.G., Naik, P.: A case for cross-domain
observability to debug performance issues in microservices. In: 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD), pp. 244–246. IEEE
(2022)

19. Samir, A., Pahl, C.: DLA: detecting and localizing anomalies in containerized
microservice architectures using Markov models. In: 2019 7th International Con-
ference on Future Internet of Things and Cloud (FiCloud), pp. 205–213 (2019)

20. Sharma, P., Porras, P., Cheung, S., Carpenter, J., Yegneswaran, V.: Scalable
microservice forensics and stability assessment using variational autoencoders
(2021)

21. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20
(2016)

22. Weng, T., Yang, W., Yu, G., Chen, P., Cui, J., Zhang, C.: Kmon: an in-kernel
transparent monitoring system for microservice systems with eBPF. In: 2021
IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence), pp.
25–30 (2021)

http://arxiv.org/abs/2102.11245
https://doi.org/10.1007/978-1-4842-0823-6

ServiceSim: A Modelling and Simulation
Toolkit of Microservice Systems
in Cloud-Edge Environment

Haomai Shi, Xiang He, Teng Wang, and Zhongjie Wang(B)

Faculty of Computing, Harbin Institute of Technology, Harbin, China
{hexiang,rainy}@hit.edu.cn, willtynn@outlook.com

Abstract. With the utilization of edge servers, cloud-native microser-
vice systems are gradually evolving to the network edge, and large-
scale distributed microservice systems in cloud-edge environments are
emerging. Due to the limited resources of edge servers and dynamic end-
user requests, service providers have to continuously propose optimized
resource allocation, scheduling, and microservice system configuration
policies to balance cost and quality of services. In the early stages of pol-
icy proposal, there is an urgent need for service providers to know how
well the policy is working and to use this to rapidly iterate and optimize
it. However, policy validation in such large-scale real cloud-edge environ-
ment is time-consuming and high resource cost. We propose ServiceSim,
a simulation toolkit to simulate microservice systems in large scale cloud-
edge environment to support policy validation. By comparing with real
microservice system, it is show that ServiceSim can correctly reflect the
trend of response time of service chains in a microservice system under
dynamic end-user requests. Meanwhile, experiments validating edge col-
laboration and service deployment policies in traffic scenarios reflecting
temporal and spatial preferences further illustrate that ServiceSim can
effectively help the analysis of microservice system configuration poli-
cies and sensitively perceive cloud-edge network changes and the service
structure of microservice system.

Keywords: Simulation · Microservice systems · Cloud-edge
computing environment

1 Introduction

The low-latency service requirements of end-users drive computing resources
down to the network edge [14], thus the centralized cloud computing paradigm
is further extended with the emergence of distributed fog computing and edge
computing paradigms, and the three together constitute a multi-layer cloud-
edge computing environment [6,10,11]. Cloud-native microservice architecture
with its characteristics of flexibility, high scalability, high resilience, and agile
service delivery [12] successfully is used in such distributed environment. Appli-
cations are deployed as microservices on cloud and edge servers, constituting a
distributed microservice system across multiple computing environments.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 258–272, 2023.
https://doi.org/10.1007/978-3-031-48421-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_18

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 259

However, due to the limitation of computing, storage and other resources of
edge servers, service providers have to optimize the use of network, computing,
storage and other resources to meet diverse quality-of-service (QoS) require-
ments of users [19] and offer low-latency, resource-efficient services. A series of
resource allocation policies (including user allocation [5], service placement, task
offloading, data caching [18], etc.) and microservice system configuration poli-
cies (including load balancing, auto-scaling, etc.) were proposed, verified, and
ultimately utilized to achieve these goals.

Notably, the headache-inducing policy validation process consumes a lot of
effort and cost for service providers. Firstly, it is difficult and costly to build or
rent a large-scale cloud-edge real experiment platform; secondly, the experiment
results in the real environment cannot be reproduced; finally, the validation
cycle on the real experiment platform is long, policies need to be realistically
implemented and deployed in the platform. In fact, at this early stage of policy
formulation, as it needs to be constantly optimized, there is an urgent need for
a tool that can quickly validate the policy to help iterate it quickly.

For this purpose, simulation emerged. In particular, CloudSim [2] and a series
of simulation tools based on it, such as EdgeCloudSim [16] and iFogSim [4], have
been designed to support experimental verification of cloud, edge, and fog com-
puting systems for various purposes. However, to the best of our knowledge,
there is no simulation tool that supports both configuration policies verifica-
tion of cloud-edge computing system and microservice system running on it.
iFogSim2 [9], which most closely resembles what we are trying to achieve, also
only supports the study of infrastructure configuration-related policies valida-
tion, such as application module migration from the perspective of infrastructure
providers. While they modeled microservices on a multi-tier fog infrastructure,
they did not consider the management of microservices. A set of configuration
policies related to the running of the microservice system, such as service deploy-
ment, routing, load balancing, load admission are also need to be validated.

To address these limitations, we have developed a simulation toolkit called
ServiceSim. This toolkit, built on the CloudSim simulation framework [2], is
designed to simulate the running of microservice systems in large-scale, dis-
tributed cloud-edge environments. It takes into account the intricate relation-
ship between services and provides a more flexible configuration interface for
microservice systems. Our contributions are as follows:

– To support the simulation of large-scale microservice systems, we designed
ServiceSim based on CloudSim with the capability to model heterogeneous
network topology and flexible data transfer. Additionally, a more efficient sim-
ulation event update mechanism is implemented to effectively handle large-
scale requests.

– We modeled the intricate invocation relationship between microservices in
ServiceSim, enabling it to support not only the commonly used asynchronous
service invocations in the form of directed acyclic graphs but also synchronous
service invocations. At the same time, in addition to providing common
microservice system components such as service discovery and load balancing

260 H. Shi et al.

for modeling and simulation, load admission and request dispatching com-
ponents are also designed to support more complex and flexible microservice
system configurations.

– Based on the above two advantages, it can support various configuration poli-
cies verification of microservice system in large-scale cloud-edge environment.
Comparison experiments with real microservices system validate the simula-
tion effect of ServiceSim. Two sets of use cases on service deployment and
edge collaboration illustrate the functionality of ServiceSim.

2 Related Work

Currently, CloudSim [2] and its derivatives are the most mainstream simulation
tools for cloud-edge computing systems. CloudSim [2] was initially developed
for the purpose of verifying task scheduling policies in cloud computing systems,
and has been gradually improved, with the emergence of ContainerCloudSim [13]
for container layer simulation, Cloudsimsdn [15] for software-defined network
simulation, and NetworkCloudSim [3] for dependent tasks simulation. Later,
various derivatives emerged for different purposes, such as Cloudanalyst [17] for
verifying multi-cloud collaboration policies, and AutoScaleSim [1] for verifying
resource scaling policies.

Table 1. The comparison in simulation objects and simulation goals between Ser-
viceSim and other simulation tools.

Simulation tools Simulation Objects

CloudSim Cloud computing system Task

AutoScaleSim Cloud computing system Task

NetworkCloudSim Cloud computing system Parallel tasks

EdgeNetworkCloudSim Edge computing system Dependent tasks

EdgeCloudSim Edge computing system Task

iFogSim Fog computing system Application

iFogSim2 Fog computing system Microservice based application

ServiceSim Cloud-edge computing system Microservice system

Gradually, with the emergence of edge computing systems, CloudSim [2] has
been transformed again and applied to the verification of task scheduling poli-
cies under edge computing systems. Among them, the most famous are Edge-
CloudSim [16] and iFogSim [4]. EdgeCloudSim [16] models each phase of a task
from its entry into the edge computing system to the end of execution, and mul-
tiple models interact with each other to simulate the whole lifecycle of a task in
the edge computing system. iFogSim [4] divides the cloud-edge computing sys-
tem into multiple layers, which can well simulate the process of tasks scheduling
from the edge to the cloud. Its biggest advantage is that it can fully and flexibly
model cloud-edge computing systems with different structures.

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 261

However, as shown in Table 1, all the above simulation tools do not con-
sider microservice systems. In real applications, services are mostly deployed
as microservices in cloud-edge computing systems and provided to end-users.
iFogSim2 [9] takes this into account by using directed acyclic graphs to model the
relationships between services. Although it introduces the concept of microser-
vices and provides the simulation of basic components such as service discovery
and load balancing, as it is an extension of iFogSim [4], it still mainly focuses
on the policies validation of sensor-driven task generation, task offloading, and
task scheduling.

As can be seen, the simulation of microservice systems in a cloud-edge envi-
ronment is still an urgent matter to be addressed. We aim to inherit CloudSim’s
good modeling of cloud-edge computing systems and add simulation of microser-
vice systems on top of it.

3 Architecture and Implementation

To realize the simulation of microservice systems in the large-scale cloud-
edge environment, as shown in Fig. 1, ServiceSim extends CloudSim “vertically
upward” with three layers: the Infrastructure Layer, the Microservice Layer,
and the User Request Layer. The following subsections describe the design and
implementation of these key components in detail.

Fig. 1. ServiceSim architecture overview.

262 H. Shi et al.

3.1 Infrastructure Layer

This layer is used to model and simulate the running environment of the entire
microservice system, i.e., the distributed cloud-edge computing system. It con-
sists of two main components: NetworkDevice and Channel, and four policies:
VmAllocation, VmScheduler, CloudletSchedulet, and PacketScheduler.

NetworkDevice and Channel. ServiceSim divide the cloud-edge computing
system into multiple levels based on the network distance from the end-user
devices. As shown in Fig. 2, the levels range from Level 0 (end-user devices) to
Level n (cloud), with intermediate levels including edge servers, base stations,
fog devices, and network routers. The devices in each level and the connections
between them are modeled using the components NetworkDevice and Channel,
respectively. In this structure, each NetworkDevice may have multiple Same
Level Devices, Parent Devices, and Children Devices.

Fig. 2. Cloud-edge infrastructure architecture.

VmAllocation Policies and VmScheduler Policies. ServiceSim specifies
that the smallest virtual computing unit in NetworkDevice is Vm, and each Vm
will be assigned to run on a Host according to the VmAllocation Policy. As
in the first phase of Fig. 3, each Host runs more than one Vm, and the Host
manages its own compute resources according to the VmScheduler Policy to
determine the compute capacity of each Vm on it. Both types of policies inherit
from CloudSim, and each has a simple implementation.

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 263

Fig. 3. Four resource allocation and task scheduling policies for Infrastructure Layer.

PacketScheduler Policies. When there is a network transmission between two
NetworkDevices, the Channel manages its own network bandwidth and other
resources to determine the transmission process of each packet according to
the PacketScheduler Policy. As shown in the second phase of Fig. 3, Service1
deployed in NetworkDevice1 needs to call Service2 deployed in NetworkDevice3.
Both Channel1 and Channel2, through which the data passes, need to be man-
aged by PacketScheduler. PacketSchedulerTimeShared, a packet scheduler with
a time-sharing policy, is implemented in ServiceSim, in which packets trans-
mitted simultaneously share the bandwidth resources of a channel. ServiceSim
users can also customize the scheduling policy for data transmission based on
the interface defined in this policy.

CloudletScheduler Policies. After the request is transmitted over the net-
work to the destination, the destination microservice instance receives the
request, generates the task and executes it, as shown in phases 3 and 4 of
Fig. 3. Tasks are executed on Vm according to the resources allocated by the
CloudletScheduler Policy. In microservice systems, services may invoke other
services during the execution, so the CloudletScheduler Policy in the infras-
tructure layer must be able to accurately identify such tasks with invocation
dependencies. For this purpose, we draw on the modeling of dependency tasks
in NetworkCloudSim [3] to complete this part of the CloudletScheduler Policy
design. Unlike NetworkCloudSim, tasks in the microservice system are generated
based on microservice invocations, and only when a service invocation occurs will
a new task be generated on the corresponding microservice instance.

State Update Mechanism. Some redundant updates will be avoided in Ser-
viceSim. A task’s state will be updated when its own state changes, when the
state of other tasks in the same service instance changes, and when the service
it calls responds to its request.

264 H. Shi et al.

3.2 Microservice Layer

This layer is used to model and simulate the key elements and components in
a microservice system. Services with complex invocation relationships, gateway
services, service discovery, request dispatching, load admission, load balancing
are all implemented in ServiceSim. The arrival and response details of end-user
requests are recorded by Service Provider.

Microservice, Microservice Instance, Service Chain. Most applications
in the cloud-edge environment exist as microservices, which are deployed as
containers and form service instances [8]. Because of the invocation relationships
between microservices, an end-user request may trigger a series of requests within
the microservice system, i.e., between microservice instances. A service chain
commences at the entry gateway service and terminates at the atomic services
(that do not call any other services). In ServiceSim, the invocation relationships
between microservices is depicted by Service Stage, which is similar to the Task
Stage in NetworkCloudSim [3]. As shown in Fig. 5(b), the request for a call
between services is represented by WAIT SEND and the response is represented
by WAIT RECV.

Load Admission and Load Balance. In the cloud-edge environment, each
cloud or edge node is a cluster with multiple microservice instances deployed on
it. As shown in Fig. 4, Service1 and Service2 are deployed on NetworkDevice1,
and Service3 is deployed on NetworkDevice2. When an end-user request or a
request for a call between services within the microservice system reaches the
cluster, it first passes through the Load Admission component, and if the request
is admitted, the request is forwarded to a specific microservice instance through
the Load Balance component. ServiceSim users can design and implement their
own load admission and load balancing algorithms.

Service Discovery and Request Dispatching. As microservices are
deployed as multiple microservice instances, the service discovery mechanism
is designed in ServiceSim to record the access addresses of the microservice
instances. It is worth noting that each edge device maintains its own service dis-
covery information in ServiceSim. If there is a collaborative relationship between
multiple edge devices, they exchange their service discovery information with
each other. As shown in step 4 of Fig. 4, Service2 needs to invoke Service3, and
the deployment information of Service3 cannot be found in this device. Due
to the collaborative relationship between NetworkDevice1 and NetworkDevice2,
NetworkDevice1 has the service deployment information in NetworkDevice2, and
the request will be dispatched based on the information. When there are mul-
tiple devices in the service discovery information that all contain microservice
instances of Service 3, the Request Dispatching component will come into play,
selecting a device and sending the request to it according to its defined priority
rules. The collaboration mechanism between edge devices is controlled by these
two components, the functionality of which is verified by the cases in Sect. 4.

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 265

Fig. 4. The simulation components of microservice system.

3.3 Service Request Layer

End-user requests arriving at each edge device [7] and service invocation requests
within the microservice system hold the end-user’s personal data information.
We use EndUserInformation to simulate this information, EndUser to model dif-
ferent distributions of end-user requests and NetworkPacket to simulate service
requests or responses sent or received by end-users or between service instances.
If it carries service request data, then a new task will be created in the corre-
sponding microservice instance. If it carries response data, then the state of the
relevant task in the corresponding microservice instance will be updated.

4 Use Case and Performance Evaluation

In this section, we utilize four sets of comparison experiments with real microser-
vice systems to evaluate the simulation effect of ServiceSim. Meanwhile, two sets
of policy validation case studies are constructed to illustrate the effectiveness of
ServiceSim in helping microservice systems in cloud-edge environment to per-
form policy validation.

4.1 Simulation Effect Evaluation

We deployed a microservice system containing 10 services on a Kubernetes clus-
ter with a node count of 4. Kubernetes cluster nodes have 56, 16, 56, 20 cpu
threads and 160G, 160G, 256G, 32G of memory respectively. The invocation rela-
tionships between the microservices are shown in Fig. 5(a). The whole microser-
vice system contains six service chains, and the entry services of Service Chain
0 (SC0) to Service Chain 5 (SC5) are Service 1 to Service 6, respectively.

266 H. Shi et al.

Fig. 5. Service chains and service lifecycle example.

We designed four sets of end-user request sequences and observed the
response time of these four sets of end-user requests to compare them with the
real physical experiment. The four sets of end-user request sequence are shown in
Fig. 6. Request sequence 1 obeys Poisson distribution. SC3 and SC4 in Request
sequence 2 are periodic requests and SC2 is burst requests. SC2 in Request
sequence 3 is periodic requests and SC5 is burst requests. SC5, SC2, and SC3 in
Request sequence 4 are periodic requests, burst requests, and sudden reduction
requests, respectively. (Note: Because end-user requests obey Poisson distribu-
tion, the number of end-user requests per second in Fig. 6 shows the average
value every 7 s in order to present the fluctuation of requests more clearly.)

Fig. 6. Four groups of end-user request sequences.

Due to the limited length of the paper, we only show the simulation effect
of Request sequence 4. The simulation results of Request sequence 1, Request
sequence 2 and Request sequence 3 will be presented by ADF test (see below for
details). The results are shown in Fig. 7, the six subplots in each of these figures
show the comparison of response time of SC0 to SC5 under ServiceSim (SIM)
and real microservices system (PHY).

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 267

Fig. 7. Simulation effect under request sequence 4.

It can be seen that ServiceSim can correctly reflect the different distribution
of end-user requests, and the response time is numerically similar to the real
microservice system. In particular, the response time of SC4 in the PHY always
fluctuates little and is almost lower than the simulated value. We have obtained
from the link analysis of the PHY that there is a request exception when Service
5 in SC4 goes to request Service 8, and the request reception time of Service
8 is smaller than the request completion time of Service 8, which indirectly
causes the response time of SC4 to depend only on Service 5. This fact tells us
that one of the next optimization directions for ServiceSim is the generation of
random exceptions. We further use the ADF test to check whether the sequence
of response time differences between SIM and PHY of each service chain is
smooth to determine whether ServiceSim presents results consistent with the
trend of the real microservice system. The results of the ADF test are shown in
Table 2, where values less than 0.05 are considered smooth.

The test results of most experiments are normal except the SC2 in Request
sequence 3 and SC2 and SC5 in Request sequence 2. We use Fig. 8 to show more
visually the comparison of the response time of these three service chains. It
can be seen that ServiceSim can correctly simulate the trend of response time
changes. It is possible that the response time of the real microservice system
fluctuates more dramatically due to network conditions, etc.

268 H. Shi et al.

Table 2. ADF test results for the sequence of response time differences between
ServiceSim and real microservice system.

ADF test result SC0 SC1 SC2 SC3 SC4 SC5

Request sequence 1 0.0024 2.66e−10 9.40e−6 5.87e−19 2.48e−6 4.52e−30

Request sequence 2 3.18e−5 1.29e−12 0.0877 0.0072 1.75e−7 0.3691

Request sequence 3 0.0003 2.22e−5 0.1426 2.15e−5 1.11e−5 4.98e−15

Request sequence 4 0.0074 3.99e−9 0.0099 0.0003 0.0007 0.0003

Fig. 8. Simulation effect of ADF numerical anomaly service chains.

4.2 Case Study

Based on the design of the muti-level cloud-edge infrastructure in Sect. 3, in this
experiment, We built a four-level cloud edge environment consisting of 32 edge
clusters, one cloud data center (edge clusters and clouds are connected by two
layers of routers). The network delay between edge clusters and routers in level
2 is set to 0.5 ms, while the network delay between routers in level 2 and level
3 is set to 2 ms. The network delay between router in level 3 and the cloud will
be varied in subsequent experiments. The microservice structure is the same as
in Sect. 4.1, as shown in Fig. 5. The number of microservice instances across the
entire edge clusters is set to 200.

Case 1: Study on Edge Collaboration Policies Under Different Net-
work Delay Characteristics. In this case, we observe the average response
time (RT) of end-user requests corresponding to each service chain and the final
completion time (FCT) of all requests in 10 s under two policies of global edge
collaboration (GEC) and local edge collaboration (LEC) with an average of 600
end-user requests per second (100 requests per second for each service chain).

– Global edge collaboration policy (GEC): All 32 edge nodes work together to
handle all requests.

– Local edge collaboration policy (LEC): Each of the 4 routers in level 2 acts
as the center, connecting to 8 edge nodes. Requests can be passed between
these 8 edge nodes and if the required service is not available, the request will
be redirected to the cloud.

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 269

The edge collaboration policies are compared under different network condi-
tions by flexibly configuring the network latency between edge and cloud. The
final completion time (FCT) of all requests within 10 s and average response
time (RT) for each service chain (6 in total, numbered from 0 to 5) within the
microservice system are shown in the Table 3.

Table 3. Comparison of simulation results for global edge collaboration and local
edge collaboration.

Policy FCT RT (0) RT (1) RT (2) RT (3) RT (4) RT (5)

GEC 10.16434 s 0.15847 s 0.12521 s 0.11785 s 0.09909 s 0.05105 s 0.04527 s

LEC (60 ms) 10.16233 s 0.15829 s 0.11415 s 0.09615 s 0.10799 s 0.04491 s 0.04435 s

LEC (100 ms) 10.20884 s 0.19946 s 0.12283 s 0.09949 s 0.12822 s 0.04469 s 0.05549 s

LEC (150 ms) 10.45002 s 0.19129 s 0.11871 s 0.13104 s 0.14047 s 0.04821 s 0.05785 s

It can be seen that when the cloud-edge network delay is 60 ms, the RT of
each service chain under GEC is very close to that of the corresponding service
chain under LEC. When the cloud-edge network latency increases to 100 ms and
150 ms, ServiceSim is able to simulate the change in response time due to the
increase in network latency. Since the LEC policy sends a portion of the requests
to the cloud for execution, overall, the response time of service chains increases.
This phenomenon is more evident in the longer SC0 and SC3, further validating
ServiceSim’s accurate simulation of service invocation relationships.

Case 2: Study on Service Deployment Policies Under Different Traf-
fic Preference Characteristics. In edge computing scenarios, the geographic
location of the server and the mobility of end-users may cause the request
sequence to exhibit certain spatial and temporal characteristics. In order to sim-
ulate the request sequence of these two features, as shown in Fig. 9, we divide
the 32 edge nodes into four regions centered on the four routers in the second
layer, and each region has a preference for a certain service chain, with blue,
orange, gray, and brown indicating business services 0, 1, 2, and 3, respectively.
Preference indicates the percentage of requests to a service chain in a certain
time period.

– Spatial feature traffic scenario (SFT): As shown in Fig. 9(a), if Preference is
0.2, that is, the requests arriving in the four regions have 20% probability of
being SC0, SC1, SC2, SC3, respectively, and the remaining 80% probability
of being other requests.

– Temporal feature traffic scenario (TFT): This scenario is shown in Fig. 9(b), in
this scenario, the user requests in the four regions are no longer differentiated,
and all of them have a specific degree of preference for service chain 0. For
example, if the Preference is 0.2, it means that the entire requests arriving at

270 H. Shi et al.

the whole microservice system have a 20% probability of being for SC0, and
the remaining 80% probability of being other requests.

Fig. 9. Traffic scenarios with different characteristics.

In this case, the cloud edge network delay is set to 60 ms and the requests
arrival rate of the microservice system is configured to be 600 r/s (each region is
150 r/s). The traffic distribution of each region is set according to the value of
Preference for the two traffic scenarios mentioned above. We observe the impact
of two service deployment methods, random deployment and simple deployment,
on the response time of service chains under the GEC and LEC, respectively.

– Random deployment policy (RD): A total of 200 microservice instances are
deployed, where the number of instances of each service is proportional to the
number of times it is invoked by other services. These service instances are
eventually deployed randomly on 32 edge nodes.

– Simple deployment policy (SD): A total of 200 microservice instances are
deployed, where the number of instances of each service on each edge node is
proportional to the volume of requests for the service.

We observe the response time of these service chains when adopting the four
policies of GEC And RD (GEC-RD), GEC And SD (GEC-SD), LEC And RD
(LEC-RD), and LEC And SD (LEC-SD), respectively.

Figure 10 shows the FCT of requests within 1 s under SFT and TFT scenar-
ios. It can be seen that ServiceSim can simulate the effects of different service
deployment policies. The FCT of the microservice system is smaller under the
SD policy than the RD policy, regardless of the edge collaboration police. In
addition, since each region in the TFT scenario has a preference for the same
SC, the traffic distribution is more uneven compared to the SFT scenario.

ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems 271

Fig. 10. Results under two different feature traffic scenarios.

The results of the two use cases show that ServiceSim can sensitively identify
changes in end-user requests, changes in network and computing resources, and
correctly verifies the effectiveness of the edge collaboration policies and microser-
vice deployment policies.

5 Conclusion

In this paper, we propose ServiceSim, a modeling and simulation toolkit for
microservice systems in cloud-edge environment. It extends CloudSim and can
support the simulation of end-user requests, multi-level cloud-edge systems and
microservice systems. The comparison experiments with real microservice system
verify that ServiceSim can correctly reflect the distribution characteristics of
end-user requests. The validation of edge collaboration and service deployment
policies further illustrates that ServiceSim can capture the impact of different
configuration policies on the microservice system in the cloud-edge environment.
However, ServiceSim still has many shortcomings, and the simulation of system
volatility factors such as the dynamic fluctuation characteristics of network and
the system anomalous events will be further considered in the future.

Acknowledgements. Research in this paper is supported by the Key Research and
Development Program of Heilongjiang Province (2022ZX01A11) and the National Nat-
ural Science Foundation of China (62372140, 61832014, 61832004).

References

1. Aslanpour, M.S., Toosi, A.N., Taheri, J., Gaire, R.: AutoScaleSim: a simulation
toolkit for auto-scaling web applications in clouds. Simul. Model. Pract. Theory
108, 102245 (2021)

2. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exper. 41(1), 23–50 (2011)

272 H. Shi et al.

3. Garg, S.K., Buyya, R.: NetworkCloudSim: modelling parallel applications in cloud
simulations. In: 2011 Fourth IEEE International Conference on Utility and Cloud
Computing, pp. 105–113. IEEE (2011)

4. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw. Pract. Exper. 47(9), 1275–
1296 (2017)

5. He, Q., et al.: A game-theoretical approach for user allocation in edge computing
environment. IEEE Trans. Parallel Distrib. Syst. 31(3), 515–529 (2019)

6. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture,
key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42
(2017)

7. Hu, S., Shi, W., Li, G.: CEC: a containerized edge computing framework for
dynamic resource provisioning. IEEE Trans. Mob. Comput. 22, 3840–3854 (2022)

8. Khazaei, H., Mahmoudi, N., Barna, C., Litoiu, M.: Performance modeling of
microservice platforms. IEEE Trans. Cloud Comput. 10, 2848–2862 (2020)

9. Mahmud, R., Pallewatta, S., Goudarzi, M., Buyya, R.: IFogSim2: an extended
IFogSim simulator for mobility, clustering, and microservice management in edge
and fog computing environments. J. Syst. Softw. 190, 111351 (2022)

10. Okegbile, S.D., Maharaj, B.T., Alfa, A.S.: A multi-user tasks offloading scheme
for integrated edge-fog-cloud computing environments. IEEE Trans. Veh. Technol.
71(7), 7487–7502 (2022)

11. Pallewatta, S., Kostakos, V., Buyya, R.: Microservices-based IoT application place-
ment within heterogeneous and resource constrained fog computing environments.
In: Proceedings of the 12th IEEE/ACM International Conference on Utility and
Cloud Computing, pp. 71–81 (2019)

12. Pallewatta, S., Kostakos, V., Buyya, R.: Microservices-based IoT applications
scheduling in edge and fog computing: a taxonomy and future directions. arXiv
preprint arXiv:2207.05399 (2022)

13. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: ContainerCloudSim:
an environment for modeling and simulation of containers in cloud data centers.
Softw. Pract. Exper. 47(4), 505–521 (2017)

14. Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., Taleb, T.: Survey on
multi-access edge computing for internet of things realization. IEEE Commun.
Surv. Tutor. 20(4), 2961–2991 (2018)

15. Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R.:
CloudSimSDN: modeling and simulation of software-defined cloud data centers.
In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 475–484. IEEE (2015)

16. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol.
29(11), e3493 (2018)

17. Wickremasinghe, B., Calheiros, R.N., Buyya, R.: CloudAnalyst: a cloudSim-based
visual modeller for analysing cloud computing environments and applications. In:
2010 24th IEEE International Conference on Advanced Information Networking
and Applications, pp. 446–452. IEEE (2010)

18. Xiao, Z., et al.: Multi-objective parallel task offloading and content caching in
D2D-aided MEC networks. IEEE Trans. Mob. Comput. 22, 6599–6615 (2022)

19. Zhang, Y., Di, B., Wang, P., Lin, J., Song, L.: HetMEC: heterogeneous multi-layer
mobile edge computing in the 6G era. IEEE Trans. Veh. Technol. 69(4), 4388–4400
(2020)

http://arxiv.org/abs/2207.05399

Emerging Technologies and Approaches

2DPChain: Orchestrating Transactions
in Order-Execute Blockchain to Exploit
Intra-batch and Inter-batch Parallelism

Jianfeng Shi1,3, Heng Wu2,3,5, Wang Liu2,3, Heran Gao1,3,
and Wenbo Zhang2,3,4,5(B)

1 University of Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Nanjing, China

3 Software Engineering Technology Research and Development Center
(Institute of Software, Chinese Academy of Sciences), Beijing, China

4 State Key Laboratory of Computer Science (Institute of Software, Chinese
Academy of Sciences), Beijing, China

5 Nanjing institute of software technology, Nanjing, China

zhangwenbo@otcaix.iscas.ac.cn

Abstract. The order-execute blockchains have two obvious features,
namely batch processing and replicated state machine, which lead to
two issues that degrade throughput. (1) Conflicting transactions within
each batch degrade parallelism utilization, because conflicting transac-
tions can only be executed serially. (2) Heterogeneous processing capa-
bilities between nodes degrade parallelism utilization, because each node
needs to execute each batch once. Therefore, we propose a collaboration-
oriented parallelism enhancement architecture that is capable of exploit-
ing intra-batch and inter-batch parallelism. The architecture is oriented
towards parallel sub-batches, and includes a transaction management
mechanism, a transaction packing mechanism and a parameter tun-
ing and assignment mechanism. Experimental results show that our
blockchain (2DPChain) effectively improves parallelism utilization and
thus improves throughput compared to three related blockchains.

Keywords: Blockchain · Batch scheduling · Parallelism utilization

1 Introduction

Blockchain can be viewed as a decentralized database that support smart con-
tract transactions (Txs). The order-execute transaction processing architecture
is widely adopted by blockchains, such as Ethereum [17] and FISCO BCOS [2].

As shown in Fig. 1, the transaction processing in order-execute blockchains
can be divided into 4 phases, i.e., ordering, packing, execution and consensus.

Feature 1: Batch processing. In each round, the blockchain node that obtains
the packing right packs a batch of Txs from its own transaction pool (Txpool),
executes them, and finally generates a block. Obviously, the blockchain transac-
tion processing has the feature of online batch scheduling.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 275–290, 2023.
https://doi.org/10.1007/978-3-031-48421-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_19

276 J. Shi et al.

Fig. 1. Architecture of the order-execute blockchain.

In these blockchain systems applied to business scenarios, conflicts between
Txs are common [10] [13] [11]. In Fig. 2(a), Tx1 and Tx2 indicate that store1
issues 10 points to customers. Tx3 means that a customer transfer 40 points
to store4 to pay his parking fee. Obviously, Tx1 and Tx2 can only be executed
serially because there is a data conflict (i.e. store1) between them.

Fig. 2. The order of Txs affects the parallelism utilization during the execution phase.

Most blockchains use the first-come-first-served (FCFS) strategy to order
and pack Txs [8]. Figure 2(b) shows the pending Txs and their conflicting rela-
tionships. Txs marked in red have a processing time of 4, while others have a
processing time of 1. Assuming each block contains up to 8 Txs, Fig. 2(c) shows
the blocks generated according to the FCFS strategy. The time taken by a node
with 4-core CPU to process the blocks is 11. The parallelism utilization is 50%.
However, if Tx2 in blocki−1 is exchanged with Tx9 in blocki, the processing time
required is only 8. The parallelism utilization is improved to 68.75%.

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 277

Fig. 3. Transaction flow of blockchains adopting PBFT consensus protocol.

Feature 2: Replicated State Machine. To prevent any node from tampering
with the blockchain ledger, each node needs to maintain the same state. For
each batch of Txs, each node will execute it to update its local state. Obviously,
blockchain is a replicated state machine, which raises two issues. (1) The paral-
lelism provided by nodes with strong processing capability may be wasted. As
shown in Fig. 3, the nodes with 4-core CPU complete the execution of a batch of
Txs earlier than the nodes with 2-core CPU. (2) Increasing the number of nodes
cannot increase the transaction processing capability. The transaction processing
capability of the blockchain is equal to that of the weakest node.

The above observations motivate us to enhance order-execute blockchains
from two aspects. (1) How to make each batch of Txs fully utilize the paral-
lelism provided by the multi-core processor. (2) How to enhance the nodes with
weaker processing capabilities so that the parallelism provided by the nodes with
stronger processing capabilities can be fully utilized.

Contributions. This paper makes the following contributions.
• We propose a collaboration-based parallelism enhancement architecture

named 2DPChain, which enables two-dimensional parallelism, i.e., intra-
batch parallelism and inter-batch parallelism.

• We propose three parallel-sub-batch-oriented mechanisms to improve par-
allelism utilization, namely a transaction management mechanism, a trans-
action packing mechanism, an adaptive parameter tuning and assignment
mechanism.

• Using simulated datasets and real datasets, experimental results show that
2DPChain achieves higher parallelism utilization and thus higher throughput
compared to three related blockchains.

The rest of the paper is organized as follows. Section 2 shows our system
model. Section 3, 4 and 5 describe our methods. Section 6 shows the evaluation
results. Section 7 summarizes the related work. Section 8 concludes the paper.

2 System Model

2.1 Concept Definition

• Transaction (Tx): A Tx usually consists of a series of operations that change
the state of the blockchain ledger. For Txi, its processing time is pti, its read-
operation set is ρ(Txi), and its write-operation set is ω(Txi).

278 J. Shi et al.

Fig. 4. System architecture of 2DPChain.

• Conflict: When there is an intersection between the read-write sets of two
Txs (Txi and Txj), they are in conflict (Cij = 1). Conflicting Txs cannot be
executed in parallel at the same moment, because errors such as dirty reads
and dirty writes may occur.

Cij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ρ(Txi) ∩ ω(Txj) �= ∅
1 if ω(Txi) ∩ ρ(Txj) �= ∅
1 if ω(Txi) ∩ ω(Txj) �= ∅
0 otherwise

(1)

• Batch: A set of Txs, i.e. batchk={Tx1,Tx2, ...}.
• Parallel Sub-batches: A set of sub-batches that have no read-write set

intersection with each other. They can be executed in parallel by different
nodes without fear of conflicts. batchk consists of a set of parallel sub-batches.

batchk = {subBatch1, subBatch2, ...} (2)

if subBatchm, subBatchn ∈ batchk

∀Txi ∈ subBatchm ∀Txj ∈ subBatchn, Cij �= 1
(3)

• Block: The basic unit for processing Txs, including the hash of the previous
block, a set of parallel sub-batches and their merged execution results, etc.

• Blockchain Node. Each node receives Txs submitted by clients and stores
them in its own Txpool, namely, Txpool = {Tx1,Tx2, ...}. The time taken
by nodej processing multiple sub-batches within batchk is ntjk.

• Peer Node. Those nodes that participate in consensus on the new block.
• Community. Multiple nodes can join a weak peer node to form a commu-

nity [6]. Each node executes one or more specified sub-batches, and return the
execution result (i.e. a read-write set) to the peer node, augmenting the par-
allel processing capability of the weak peer node in a collaborative manner.
We use cptik to denote the time it takes for communityi to finish processing
batchk.

cptik = max
nodej∈communityi

ntjk (4)

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 279

• Block Processing Time. 2DPChain consists of multiple communities. To
maintain the same state, each community needs to execute each batch once.
The longest time taken to process batchk among all communities is bptk.

bptk = max
communityi∈communities

cptik (5)

2.2 Transaction Flow

2DPChain adopts PBFT (Practical Byzantine Fault Tolerance) as its consensus
protocol. We will illustrate how 2DPChain processes Txs based on Fig. 4.

Stage 1: Pack Parallel Sub-batches. The peer node that obtains the packing
right packs a set of parallel sub-batches from its own Txpool, and then broadcasts
these parallel sub-batches to other peer nodes.

Stage 2: Execute Parallel Sub-batches. Each peer node distributes the
received parallel sub-batches to other nodes belonging to the same community.
When any node finishes executing the assigned sub-batches, it sends the read-
write set of the assigned sub-batches to the peer node.

Stage 3: Merge Execution Results. For each peer node, after collecting all
the execution results within its community, it can directly merge these results as
the final result, because there are no conflicts between these sub-batches. Then,
each peer node broadcasts its final execution result to other peer nodes.

Stage 4: Consensus. Each peer node compares its own final execution result
with that of other peer nodes. In a blockchain with (3*f+1) peer nodes, if the
final execution results generated by more than (2*f+1) peer nodes are consistent,
the peer node broadcasts a commit message to other peer nodes.

Stage 5: Generate a New Block. If a peer node receives more than (2*f+1)
commit messages, it will use the final execution result of the sub-batches to
update its local state, and commit the new block to its local ledger.

2.3 Offline-Version Problem Formulation

The transaction processing in 2DPChain is actually to divide all pending Txs
into multiple batches (i.e., batches = {batch1,batch2, ...}), and processing them
in sequence. The goal of our paper is to maximize throughput (the average
number of successfully processed Txs per second).

2DPChain : max TPS =
n

∑

batchk∈batches

(bptk + bctk)
(6)

s.t.
∑

batchk∈batches

∑

subBatchj∈batchk

Iij = 1 i = 1, . . . n (7)

280 J. Shi et al.

∀batchk ∈ batches, 0 <
∑

subBatchj∈batchk

n∑

i=1

Iij ≤ blockSize (8)

In objective function (6), n is the number of pending Txs, and bctk is the
consensus time on blockk. Const. (7) restricts each Tx to be assigned to only
one sub batch. Iij ∈ {0/1} indicates whether Txi is packed into subBatchj .
Const. (8) limits the number of Txs within each block to be greater than 0 and
not exceeding the block size.

3 A Transaction Management Mechanism for Parallel
Sub-batches

3.1 Conflict Management Based on DAG

When a node starts, a DAG (Directed Acyclic Graph) is initialized for its Txpool.
In the DAG, each vertex represents a Tx, and each edge indicates that the two
Txs connected by it are in conflict. A Tx with in-degree equal to 0 is called a
ready Tx. A Tx containing a shared variable v is called an exit Tx of v if it does
not have a child Tx containing v.

Fig. 5. Manage transaction in the Txpool through a DAG, a shared-variable relation-
ship table and two-level ordered queues.

For a new Tx, add it to the DAG as a vertex, then find all exit Txs in Txpool
that conflict with it, finally establish directed edges from these conflicting exit
Txs to it. For example, in Fig. 5(a), when Tx20 reaches the Txpool, the shared

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 281

variables it accesses (i.e. v40 and v42) are first extracted through static analysis,
and then the conflicting exit Txs that access these shared variables in the DAG
are found (i.e. Tx17), finally establish a directed edge from Tx17 to Tx20.

3.2 Ready Transaction Management Based on Two-Level Ordered
Queues

Ready Txs have no dependencies on each other, so they can be executed in
parallel. However, when packing a ready Tx into a sub-batch, the ready Tx may
conflict with a Tx in another sub-batch, i.e., the ready Tx is not suitable for
packing into the current sub-batch. We call such a Tx an inappropriate Tx. For
example, suppose Tx1 has been packed into subBatch1, and now you need to
pack a Tx into subBatch2. If Tx2 is packed, due to a conflict between Tx2 and
Tx1, Tx2 can only be abandoned.

A large number of inappropriate Txs will increase the overhead of the packing
phase. Therefore, 2DPChain adopt two-level ready queues, i.e., a main ready
queue and multiple sub-ready queues.

• The main ready queue is responsible for recording new ready Txs that do not
currently conflict with Txs in any of the sub-batches.

• Each sub-ready queue corresponds to a sub batch. A sub-ready queue records
the ready Txs that conflict with a Tx in its corresponding sub-batch. When
a ready Tx packed into a sub-batch is removed from the DAG, the released
ready Txs will be directly added to the sub-ready queue corresponding to the
sub batch.
Ready Txs in any ready queue are ordered by their priority. The priority
definition for Txi is similar to that in [15], which considers its topological
position in the DAG (LPi) and its ability to release ready Txs after being
packed (CPDi).

priorityi = LPi + αCPDi (9)

3.3 Conflict Prediction Based on Shared-Variable Relationship
Table

In Fig. 5, if Tx13 is packed into subBatch1 and Tx14 is packed into subBatch2,
Tx18 cannot be packed into any sub-batch because it conflicts with the Txs in
both sub-batches. We call such a Tx a cross-sub-batch Tx.

A large number of cross-sub-batch Txs will make it more difficult to pack a
batch Txs that can fully utilize parallelism. Therefore, 2DPChain introduces a
shared-variable relationship table, which records the shared variables related to
each shared variable.

When a Tx is added to the DAG, its shared variables are added to the
shared-variable relationship table. In Fig. 5(b), the shared variables related to
v30 include v31 and v35. If Tx13 is packed into subBatch1, since Tx14 accesses
v35, Tx14 will not be packed into another sub-batch, which avoids the generation
of cross-sub-batch Txs (i.e., Tx18).

282 J. Shi et al.

When a Tx is removed from the DAG, its shared variables will be removed
from the shared-variable relationship table.

The pseudo code of Algorithm 1 implements the above content.

Algorithm 1. Add a new Tx to the Txpool
Input: Txnew: A new transaction;
Output: ∅;
1: conflictingExitTxs = getConflictingExitTxsFromDAG(Txnew);
2: for each Txconflicting ∈ conflictingExitTxs do
3: addEdge(Txconflicting, Txnew);
4: Txconflicting.outDegree += 1;
5: Txnew.inDegree += 1;
6: end for
7: if Txnew.inDegree == 0 then
8: insertIntoReadyQueue(Txnew);
9: end if

10: updateSharedVariableRelationshipTable(Txnew);

4 A Transaction Packing Mechanism for Parallel
Sub-batches

4.1 Problem Model Based on 2D Multi-bin Packing Problem

In order to make each sub-batch fully exploit parallelism during execution, the
generation problem of parallel sub-batches can be abstracted as a variable-sized
two-dimensional multi-bin packing problem. As shown in Fig. 6(d), Each sub-
batch is treated as a rectangular bin. A block contains multiple bins. Each Tx
is treated as a rectangular piece with width = 1 and length = Tx.pt.

(1) In each bin, each row represents a CPU core, and these rows can execute
Txs in parallel. Therefore, the Txs executed at the same moment cannot conflict.

(2) The width of bini is equal to NPTi (Number of Parallel Threads), and
the length of bini is variable.

(3) There are no conflicting Txs between any two sub-batches. We equip
each sub-batch with a pool sharedV arsPool that contains the shared variables
accessed by the Txs within the sub-batch.

sharedVarsPooli
⋂

sharedVarsPoolj = ∅ (10)

Determining how to pack a set of parallel sub-batches to maximize parallelism
is equivalent to determining how to make the lengths of these bins consistent
while minimizing vacancies in these bins.

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 283

Fig. 6. Example of packing Txs for parallel sub-batches.

4.2 Select a Candidate Location Based on Load Balancing

For any bin, Txs are placed from left to right. Each row coreik in bini maintains
a variable APTi

k (Accumulated Processing Time), which is the total time spent
by coreik executing Txs. For example, in Fig. 6(e), APT 1

3 = 4.
The row with the smallest APT is responsible for accommodating the next

ready Tx to be packed. RT (Ready Time) indicates the smallest APT.

RT = min
i∈[1,NPSB]

{ min
k∈[1,NPTi]

{APTi
k | k /∈ ITS}} (11)

where NPSB is the number of parallel sub-batches. ITS (Idle Thread Set) is used
to keep track of idle rows that have no executable Txs at this moment.

However, there may be multiple bins, each with at least one row with APT
equal to RT. A static selection strategy will result in some sub-batches not having
enough appropriate Txs. Therefore, we select the best candidate location corezd
(i.e., the row cored in binz) by the following load balancing algorithm.

corezd = arg max
z∈[1,NPSB],d∈[1,NPTz]

{NRTz

NPTz
+ βNPTz + γ

1
d
} (12)

where β and γ are coefficients, and NRTz denotes the number of rows with
APT = RT in binz.

In Fig. 6(a), after Tx9 is packed into subBatch1, the next candidate location
is core21 instead of core12. APT for each row in ITS needs to be extended to RT.
For rows with APT no greater than RT, the last Tx on each of them needs to
be removed from the DAG.

284 J. Shi et al.

4.3 Pack a Ready Transaction Based on Two-Level Ready Queues

For Txr to be placed in subBatchz, the following condition needs to be met.

∀i ∈ [1,NPSB] and i �= z, Txr.sharedVars
⋂

sharedVarsPooli = ∅ (13)

We follow the steps below to find an appropriate ready Tx. (1) First pack
the highest-priority Tx from subReadyQueuez. (2) If the Tx does not satisfy
condition (13), pack the highest-priority Tx from the main ready queue. (3) If the
Tx also does not satisfy condition (13), release the Txs in the sub ready queues
corresponding to those bins that have been filled by Txs, and then retry. During
the above process, those Txs that conflict with more than two sub-batches will
be added to an ignore set, and remove them from the DAG.

• If Txr is found, place Txr on corezd, empty ITS, and add the shared variables
accessed by Txr to sharedVarsPoolz.

sharedVarsPoolz ∪ = Txr.sharedVars (14)

Based on the shared-variable relationship table, the first p related shared
variables of each shared variable of Txr will also be added to sharedVarsPoolz.

• If Txr is not found, add corezd to ITS. In Fig. 6(e), when time = 2, RT =
APT 1

4 = 2. There is no appropriate ready Txs in the DAG at this moment, so
add core14 to ITS, and recompute RT. RT = APT 1

2 = 3, thus core12 is selected
to place the next ready Tx. Repeat the above steps until the number of packed
Txs reaches blockSize. We call the above process the filling stage.

4.4 Align All Sub-Batches

After the filling stage, as shown on the right side of Fig. 6(f), the lengths of the
rows in each bin may not be aligned, and the lengths of these bins may also not
be aligned, resulting in many vacancies. Therefore, we pack a few more ready
Txs to fill these vacancies. We call this process the make-up stage.

ET is used to represent the maximum value among all APTs.

ET = max
i∈[1,NPSB]

{ max
k∈[1,NPTi]

APTi
k} (15)

When packing a ready tx, the following condition will be added.

Txr.pt <= ET − APTz
d (16)

As shown in Fig. 6(g), after the filling stage and the make-up stage, we obtain
a set of parallel sub-batches that can maximize parallelism utilization. Finally,
the Txs in the ignore set will be re-added to the DAG.

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 285

5 An Adaptive Parameter Tuning and Assignment
Mechanism for Parallel Sub-batches

5.1 An Adaptive Parameter Negotiation Method

There are two parameters for parallel sub-batches, namely the number of par-
allel sub-batches (NPSB) and the number of parallel threads of each sub-batch
(NPT). As shown in Fig. 7, (1) when the blockchain network starts or when a
new node joins the network, each community will broadcast a message (the num-
ber of CPU cores per node it contains). (2) In each message, nodes are listed in
descending order by the number of CPU cores. (3) Find the minimum number
of CPU cores per layer as the number of parallel threads in the corresponding
sub-batch. (4) Determine the number of parallel sub-batches based on the fact
that the cumulative number of parallel threads in all sub-batches cannot exceed
the cumulative number of CPU cores in the weakest community. In Fig. 7, the
number of CPU cores in the weakest community is 8, so NPSB=3.

Fig. 7. Negotiate NPSB and NPT between communities.

5.2 A Greedy-Based Assignment Method for Parallel Sub-Batches

Each community uses the following steps to assign the received sub-batches to its
nodes. (1) The community sorts its nodes in descending order by their number
of CPU cores. (2) The community sorts sub-batches in descending order by their
number of parallel threads. (3) Each sub-batch traverses each node in turn. If
the number of remaining cores in a node is greater than or equal to the number
of parallel threads of the sub-batch, the sub-batch is assigned to the node.

5.3 Analysis of Solutions for Malicious Behavior

2DPChain may suffer from two types of malicious behavior. (1) A node falsely
reports its processing capability. Each node will record the waiting time for
receiving execution results from other nodes and rate them. (2) There is a conflict
between sub-batches packed by the node with the packing right. When other
nodes execute these sub-batches, they will verify that there is an intersection
between sub-batches based on their read-write sets. In the future, we will study
reputation-based node scoring methods to address these malicious behaviors.

286 J. Shi et al.

6 Experimental Evaluation

6.1 Baseline Blockchains

• FISCO BCOS v2.7.2 [2]: A typical order-execute blockchain that employs the
FCFS strategy to pack Txs, and supports each node to execute Txs in parallel
using the multi-core processor. However, it does not support collaborative
execution between nodes.

• DiPETrans [6]: A leader-follower-based blockchain that divides independent
Txs within a block into multiple groups, and distributes them to followers to
execute concurrently. Txs can only be executed serially on each follower.

• DiPETrans-parallel: An enhanced version of DiPETrans that we imple-
mented, where Txs can be executed in parallel on each follower.

6.2 Datasets

• Simulated dataset: We generate multiple datasets by varying the conflict rate
(CR) of Txs. Each contains 100,000 Txs, and the processing-time distribution
of these Txs is [10% → 1, 20% → 2, 40% → 3, 20% → 4, 10% → 10]. Conflicts
and different processing times follow a uniform distribution in each dataset.

• Real dataset: Tether USDT Stablecoin is the most popular ERC-20 appli-
cation on Ethereum. For its transaction logs from 2019 to 2023, we extract
the first 100,000 entries per year as a real dataset.

6.3 Overall Performance

Our environment has 4 communities, i.e., [8], [6,2], [4,4] and [4,2,2]. For FISCO
BCOS, the strongest node in each community serves as the peer node, while the
other nodes are observer nodes that only synchronize blocks. The block size of
each blockchain is set to 1000 Txs.

We send the simulated datasets to 2DPChain, FISCO BCOS, DiPETrans,
and DiPETrans-parallel at a transaction arrival rate (TAR) of 4,000 Txs/s.
As shown in Fig. 8, 2DPChain achieves higher throughput (TPS) than other
blockchains under various conflict rates. For example, when CR=40%, 2DPChain
improves throughput by 38.61% over FISCO BCOS, 134.64% over DiPETrans,
and 22.25% over DiPETrans-parallel.

For an experiment under CR=40% and TAR=4,000 Txs/s, Fig. 9 shows the
first 20 blocks of 2DPChain. Each block achieves almost 100% parallelism uti-
lization (PU), which shows the effectiveness of our approaches. As shown in
Fig. 10, 2DPChain takes more time to import Txs (i.e., order Txs), but effec-
tively reduces the time to execute them.

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 287

Fig. 8. Throughput and parallelism utilization under different conflict rates.

Fig. 9. Number of Txs packed in two
stages.

Fig. 10. Runtime breakdown.

6.4 Scalability Evaluation

We evaluate the scalability of these blockchains by varying the number of 2-
core-CPU nodes in each community. As shown in Fig. 11, 2DPChain can achieve
better scalability than DiPETrans, because 2DPChain schedules Txs from a
global perspective, while DiPETrans only schedules intra-block Txs. However, as
the number of nodes in each community increases, the growth rate of 2DPChain’s
throughput decreases, as the complexity of the packing phase increases.

Fig. 11. Scalability comparison. Fig. 12. Throughput under real
datasets.

288 J. Shi et al.

6.5 Performance Under Real Datasets of Ethereum

We send 5 real datasets of Ethereum at TAR=4,000 Txs/s to 2DPChain, FISCO
BCOS, DiPETrans and DiPETrans-parallel, respectively. As shown in Fig. 12,
2DPChain still outperforms other blockchains in terms of throughput.

7 Related Work

According to the order of the ordering phase and the execution phase,
blockchains can be divided into order-execute blockchains (e.g., Ethereum [17],
FISCO BCOS [2] and ChainMaker [1]) and execute-order blockchains (e.g.,
Hyperledger Fabric [4] and XuperChain [16]).

• Execute-order blockchains. Hyperledger Fabric adopts MVOCC to support
parallel execution of Txs. It can add execution nodes to enhance its transac-
tion processing capability. However, it checks for transaction conflicts after
the ordering phase, and aborts the conflicting Txs. To reduce conflicts, Fab-
ric++ [14] uses reordering and early abort methods, FabricSharp [12] uses a
fine-grained OCC-based method, and FabricCRDT [9] uses conflict-free repli-
cated datatypes.

• Order-execute blockchains. In order to deterministically concurrently execute
Txs within a block, studies such as ParBlockchain [3] and OptSmart [5] use
a dependency graph. DiPETrans [6] uses a cluster of machines that form a
community to execute or validate Txs. Each community consists of a leader
and multiple follower. The leader divides independent Txs within a block
into different groups through static analysis, and distributes them to follow-
ers to execute concurrently. SChain [7] can exploit intra-block concurrency
by dispatching Txs within a block to multiple executors, and inter-block con-
currency by using the pipeline technique.

In short, the aforementioned studies on order-execute blockchains mainly
focus on scheduling intra-block Txs, so the optimization effect is limited. Differ-
ent from them, we orchestrate the global pending Txs, so the scheduling space
is larger. In addition, we also take into account the heterogeneous processing
capabilities among blockchain nodes.

8 Conclusion

Conflicts between transactions and heterogeneous processing capabilities
between nodes degrade the parallelism utilization in order-execute blockchains.
We propose a collaboration-based parallelism enhancement architecture called
2DPChain, which allows multiple poorly performing nodes to form a single strong
performing node (i.e., a community). In 2DPChain, a block contains a set of
parallel sub-batches, which can be executed by multiple nodes in parallel. At
the same time, each sub-batch can fully utilize the parallelism provided by the

Orchestrating Transactions in OE Blockchain for 2-Dimensional Parallelism 289

multi-core processor of the corresponding node. Therefore, 2DPChain enables
two-dimensional parallelism, i.e., intra-batch parallelism and inter-batch par-
allelism. Experimental results show that 2DPChain effectively improves paral-
lelism utilization and throughput compared to three related blockchains.

Acknowledgments. This work is supported by the Provincial Key Research and
Development Program of Shandong, China (No. 2021CXGC010101), the National Nat-
ural Science Foundation of China (No. 61872344 and No. 61972386).

References

1. ChainMaker (2022). https://docs.chainmaker.org.cn
2. FISCO BCOS (2022). https://fisco-bcos-documentation.readthedocs.io
3. Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: leveraging transaction

parallelism in permissioned blockchain systems. In: 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 1337–1347. IEEE (2019)

4. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

5. Anjana, P.S.: Efficient parallel execution of block transactions in blockchain. In:
Proceedings of the 22nd International Middleware Conference: Doctoral Sympo-
sium, pp. 8–11 (2021)

6. Baheti, S., Anjana, P.S., Peri, S., Simmhan, Y.: Dipetrans: a framework for dis-
tributed parallel execution of transactions of blocks in blockchains. Concurr. Com-
put. Pract. Exp. 34(10), e6804 (2022)

7. Chen, Z., et al.: Schain: a scalable consortium blockchain exploiting intra-and inter-
block concurrency. Proc. VLDB Endow. 14(12), 2799–2802 (2021)

8. Goel, S., Singh, A., Garg, R., Verma, M., Jayachandran, P.: Resource fairness and
prioritization of transactions in permissioned blockchain systems. In: Proceedings
of the 19th International Middleware Conference Industry, pp. 46–53 (2018)

9. Nasirifard, P., Mayer, R., Jacobsen, H.A.: FabricCRDT: a conflict-free replicated
datatypes approach to permissioned blockchains. In: Proceedings of the 20th Inter-
national Middleware Conference, pp. 110–122 (2019)

10. P̂ırlea, G., Kumar, A., Sergey, I.: Practical smart contract sharding with ownership
and commutativity analysis. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, pp.
1327–1341 (2021)

11. Ponnapalli, S., et al.: RainBlock: faster transaction processing in public
blockchains. In: USENIX Annual Technical Conference, pp. 333–347 (2021)

12. Ruan, P., Loghin, D., Ta, Q.T., Zhang, M., Chen, G., Ooi, B.C.: A transactional
perspective on execute-order-validate blockchains. In: Proceedings of 2020 ACM
SIGMOD International Conference on Management of Data, pp. 543–557 (2020)

13. Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in Ethereum
smart contracts. In: International Conference on Blockchain Economics, Security
and Protocols (Tokenomics 2019) (2019)

14. Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: Blurring the lines
between blockchains and database systems: the case of hyperledger fabric. In: Pro-
ceedings of the 2019 International Conference on Management of Data (2019)

https://docs.chainmaker.org.cn
https://fisco-bcos-documentation.readthedocs.io

290 J. Shi et al.

15. Shi, J., Wu, H., Luo, D., Gao, H., Zhang, W.: InstantChain: enhancing order-
execute blockchain systems for latency-sensitive applications. In: International
Conference on Database Systems for Advanced Applications (2023)

16. Wei, X., Junyi, S., Qi, Z., Fu, C.: XuperChain: a blockchain system that supports
smart contracts parallelization. In: 2020 IEEE International Conference on Smart
Internet of Things (SmartIoT), pp. 309–313. IEEE (2020)

17. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

A Dynamical Model for the Nonlinear
Features of Value-Driven Service

Ecosystem Evolution

Xinyue Zhou1, Jianmao Xiao2,3, Xiao Xue1, Shizhan Chen1, Hongyue Wu1,
and Zhiyong Feng1(B)

1 College of Intelligence and Computing, Tianjin University, 300350 Tianjin, China
{zhouxinyue,jzxuexiao,shizhan,hongyue.wu,zyfeng}@tju.edu.cn

2 School of Software, Jiangxi Normal University, 330022 Nanchang, China
jm xiao@jxnu.edu.cn

3 Jiangxi Provincial Engineering Research Center of Blockchain Data Security and
Governance, 330022 Nanchang, China

Abstract. As the full integration of human-cyber-physical has become
mainstream, various services are interconnected to meet the ever-
changing demands of users, forming service ecosystems. Service ecosys-
tems constantly evolve driven by value and present many nonlin-
ear responses, where inadvertent perturbations may lead to significant
changes. This paper proposes a nonlinear dynamical model of value-
driven service ecosystem evolution inspired by the energy flow of natural
ecosystems, thereby explaining stability changes based on nonlinear fea-
tures from the perspective of ecosystems. The model considers the non-
linear features, including interdependence and mutation of services and
demands, and time delay due to service development. Further, we use
stability and bifurcation theories to study the critical conditions under
which parameter changes lead to phase transitions. In addition, numeri-
cal simulations are conducted to verify the effectiveness of the model and
the correctness of the phase transition conditions. Through this method,
service ecosystem managers can accurately predict the inflection point of
the system from stable to unstable. Our method provides a novel way for
the evaluation and governance of service ecosystems to have better uni-
versality and interpretability than current data-based mining methods
and time series models based on neural networks.

Keywords: Service Ecosystem · Nonlinear Dynamical Model · Phase
Transition · Time Delay · Numerical Simulation

This work was supported in part by the National Natural Science Foundation of China
under Grants No.61832014, No.62032016 and No.62102281, the Jiangxi Provincial Nat-
ural Science Foundation under Grant No.20224BAB212015, the Foundation of Jiangxi
Educational Committee under Grant No. GJJ210338. Zhiyong Feng is the correspond-
ing author.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 291–306, 2023.
https://doi.org/10.1007/978-3-031-48421-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_20

292 X. Zhou et al.

1 Introduction

In recent years, human society, information space, and the physical world have
been fully integrated with the development of information technology. Service
ecosystems have become new organizational forms that have created huge eco-
nomic and social value. The operation logic of value-driven service ecosystems
is shown in Fig. 1. The demand side is personalized demands emerging from the
evolving user social network. The supply side is service resources that evolve and
integrate dynamically under the maintenance of service providers and operators.
Value is the intermediary of transactions. Services are continuously matched with
demands, thus gaining revenue. Service providers and operators develop, reuse,
update, and innovate services to improve the service market for more value.
Such a value circulation can facilitate the realignment of social networks and
contribute to the evolution of service networks.

Fig. 1. Operation Logic of value-driven service ecosystem evolution.

Service ecosystems are complex systems that encompass natural ecosystems,
economic systems, and information systems. Modeling and predicting service
ecosystem evolution is very important and challenging. Meynhardt et al. [11]
concluded nine system principles of value co-creation and the dynamics of ser-
vice ecosystem evolution. Among them, nonlinearity is important to the global
behavior of the systems and should be mainly considered [15]. Nonlinear pertur-
bations may have insignificant effects for a short time, but explode at a critical
point and have a huge impact on ecosystems, which makes service ecosystems
difficult to control. However, due to the complexity of the service ecosystem,
current data-based mining methods and time series models based on neural net-
works generally have low universality and interpretability. In addition, some
works on service ecosystem evolution are based on computational experiments
with multi-agent simulations. Their results cannot theoretically explain the con-
ditions under which special phenomena emerge. In response, researchers spend
a lot of time on tuning parameters.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 293

This paper considers system dynamics approaches to directly model value-
driven service ecosystems, thereby mining an efficient and interpretable evolution
analysis method. Inspired by predator models in natural ecosystems, this paper
proposes a dynamical model to analyze the nonlinear features, which are the
most important features of the service ecosystem evolution, from a macroscopic
perspective. Theoretical analysis and numerical simulation experiments promote
the understanding of the service ecosystem evolution mechanism, thus providing
an analysis and evaluation method for the governance of service ecosystems
to ensure their health and sustainability. The contributions are summarized as
follows:

– This paper points out the fact that value chains of supply and demand in
service ecosystems are isomorphic to energy flows of predators and prey in
natural ecosystems, and points out the obvious nonlinear features. Then,
this paper proposes a dynamics model constructed for the service ecosystem
evolution based on the Leslie-Gower model [8].

– We analyze the critical conditions for system stability and Hopf bifurcation.
Especially when the time delay reaches the threshold, a periodic solution
appears from the gradually stable positive equilibrium of the system. We
theoretically show that reducing time delay due to service development is
beneficial for the stability of the service ecosystem.

– Numerical simulations verify the effectiveness of the model and the correctness
of the critical condition of the system phase transition.

2 Related Work

Service ecosystems contain multiple stakeholders and complex internal struc-
tures. Some researchers study service ecosystem evolution from the perspective
of dynamic service networks. Huang et al. [5] studied the static structure of ser-
vice ecosystems and proposed dynamic metrics for ecosystem evolution. Liu et
al. [10] proposed a framework for identifying the evolutionary patterns of service
ecosystems based on the service community. A systemic perspective asserts that
studying a certain level in isolation is incomplete [11]. Some researchers model
the service ecosystem evolution from the perspective of an ecosystem. Lim et al.
[9] study the effects of developer dynamics on fitness in an evolutionary ecosys-
tem model of the App Store. They also point out predator behaviors in the App
ecosystem. Jia et al. [6] proposed a service population evolution model and a
service community succession model of the Internet of Service based on ecosys-
tem theory. Xue et al. [17] proposed a value entropy model linking the system
operation state to the value creation efficiency. These works do not consider the
important impact of the delay of service supply and have limited prediction abil-
ity and interpretability for critical points, which makes it hard to predict sudden
collapses.

294 X. Zhou et al.

3 Model

3.1 Overall

Previous research on supply and demand matching often regards demand as the
active side, which is due to the following considerations: whether to consume is
decided by users, so the demand side holds the dominant power. It’s microscopic
and a representation. In fact, the service side has a stronger drive for survival and
makes the best effort to capture demands, which is the essence and foundation
of service ecosystem evolution. Inspired by natural ecosystems, we found that
the matching of supply and demand in service ecosystems has similarities with
the predation behavior in natural ecosystems.

We treat demands as prey and services as predators. Table 1 shows the com-
parison of evolution mechanisms between demand and service in service ecosys-
tems and prey and predator in natural ecosystems in detail, including growth,
death, etc. We also mapped the service ecosystem and the natural ecosystem as
a whole, as shown in Fig. 2. In a service ecosystem, services constantly seek to
match demand and gain profit. And services are developed or upgraded according
to demand, thus generating a time delay. The demand population is restricted
by the number of services and the environment’s carrying capacity. In a natu-
ral ecosystem, predators prey on prey and obtain energy, which promotes the
growth and development of the predator population. The predator population is
constrained by the prey population and predation ability. The prey population
depends on the number of predators and the environment’s carrying capacity.
The process of services matching the demands is abstracted as predators prey-
ing on prey. Value streams from demands to services are portrayed as biological
energy transferred from prey to predators.

Fig. 2. Mapping of service ecosystems to natural ecosystems

Driven by value, the nonlinear features of service ecosystems are reflected in
three main aspects: 1) supply and demand affect each other. The increase
in demand may attract an explosion of services. Reduced demand can lead to
the death of services. 2) Mutation in service and demand. Services and
demands are evolutionary. The matching rate between supply and demand is
constantly changing as well. 3) Time delay due to service development.
Service development and production are time-consuming, resulting in delays.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 295

Table 1. Evolution mechanism of natural ecosystems and service ecosystems

Mechanism Nature Ecosystem Service Ecosystem

−− Prey Demand

Birth/Growth Prey increases exponentially when
resources are abundant and there
are no predators.

Ecosystems gradually show trends of
demand explosion when the supply
decreases. For example, medicines and
medical services are in shortage during
the epidemic influenced by consumer
psychology such as hoarding and panic.

Death Prey die naturally and die when
they are captured by predators.
The prey then disappears in the
ecosystem and turns into a source
of survival energy for the preda-
tors.

Demands are time-limited. Demands that
have not been satisfied for a long time will
disappear from the system. If a demand is
processed by a service in time, it will disap-
pear and convert into the service’s profit.

Competition When prey density exceeds envi-
ronmental carrying capacity, they
will compete for resources and
slow down growth.

When demand density is too high, some
users will choose to avoid competition and
delay the transaction, thus slowing down
demand growth.

Mutation Prey mutation evolves new abili-
ties to avoid predation, reducing
the predation rate of predators.

Demand mutation refers to the new
demand derived from the original demand
that is not in the system. Due to the lack of
suitable supply, the matching rate of sup-
ply and demand in the system decreases.

−− Predator Service

Birth/Growth Predators grow and reproduce
based on their prey for energy.
Exponential growth occurs when
prey is abundant.

Services gain profit from demands, then
optimize facilities, increase volume, and
develop new services to match more
demands. There may be a bullwhip effect
[16] due to over-optimism about demand.
A small increase in demand may lead to
the emergence of a large number of services

Death Predators die mainly because of a
lack of prey.

Services die mainly because of a lack of
demand. Even cloud services are deployed
on demand. Service density is also con-
stantly changing with demand. It’s just
easier to change

Competition Predators compete for prey and
fewer natural resources, such as
water and habitat.

Service compete for demand and less social
resources, such as computing resources and
human resources.

Mutation Predator mutation causes preda-
tors to evolve new abilities to bet-
ter hunt and increase the rate of
predation.

Service mutation refers to the develop-
ment of new services that are not in the
original system according to new demands
or the development strategies of service
providers, so as to increase the matching
rate.

Time Delay Juvenile predators have no ability
to prey. There is a time delay for
predator maturation.

Services under development can’t match
demand, thus generating a time delay for
trading

296 X. Zhou et al.

However, demands are time-sensitive. If the service development time exceeds the
time deadline of the demand, the demand no longer needs this service capability.

Based on these, we improve the modified Leslie-Gower model [8] to model
the evolution of a service ecosystem. The density of demand and service in the
service ecosystem is denoted by D and S, respectively. They are comprehensive
reflections of the prosperity of demand and service. A delay term τ is added
to the model to represent the service development time delay. The symbol p
represents the probability that service and demand exactly match after they
meet, and has the value range (0, 1). It is mainly affected by mutation and the
density of demand and service. The full model can be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

dD
dt = D

(
b1 − d1 − aD − pcS(t−τ)

1+pchD

)
= y1,

dS
dt = S

(
b2 − d2 − S

ρ+kD

)
= y2,

dp
dt = p

(
S
D − vp

)
= y3,

(1)

where all parameters are positive.

3.2 Demand Growth Model

Assuming that the growth of demand conforms to the logistic growth model.
The change in demand density over time can be expressed as dD

dt = D(b1 −
d1 − aD), where b1 and d1 is the birth rate and death rate, respectively. a is
the demand competition coefficient that is the inverse of the carrying capacity
of the environment. Since services take time to process demand, the matching
capability of service to demand is not linear with demand density. Draw on
functional response in ecology [4], assuming that each service can match the
demand quantity x in time t, the time for the service to handle the demand is h.
Use c to represent the efficiency of supply and demand meeting. Then we can be
obtained x = Dpc(t − hx), i.e. x

t = pcD
1+pchD , where p represents the probability

of service and demand match successfully. The delay term expresses that the
number of services matching the demand at time t depends on the density of
services at time t − τ . Finally, the demand growth model is shown as y1 in
model (1).

3.3 Service Growth Model

Assuming that the growth of service conforms to the logistic growth model. The
service growth model is expressed as dS

dt = S
(
b2 − d2 − S

C

)
, where b2 is the birth

rate, d2 is the death rate, and C is the carrying capacity of the environment for
services. The carrying capacity C is proportional to the density of demand [1].
In addition, the benefits that services derive from demand need to be stripped
of costs. Finally, the service growth model is shown as y2 in model (1), where k
is the value conversion coefficient, which represents the value conversion ability
between service and demand in the service ecosystem, ρ is the protection of the
environment for the service.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 297

3.4 Matching Probability Model

Assuming that the variation of the matching probability p with time t is
described by the sigmoid function p = 1

1+e−t , i.e., dp
dt = p(1 − p). When demand

increases(decreases), the price may increase(decrease), and the user’s desire to
trade may decrease(increase). Therefore, the probability p is closely related to
the total amount of service and demand, which decreases with the increase of
demands and increases with the increase of services. At the same time, there
are continuous changes in services and demand. Mutations can bring a sudden
no-match. Thus, p is related to the mutation coefficient of the new service and
the new demand. We use m1(m2) to denote the mutation coefficient of the new
demand(service) relative to the original demand(service). The change in match-
ing probability p over time can be expressed as

dp

dt
=

S

D
p

(

1 − m1b1D

m2b2S
p

)

= p

(
S

D
− m1b1

m2b2
p

)

.

Let v = m1b1
m2b2

, which is a non-scalar parameter that represents the ratio of
demand variation to service variation intensity. Finally, the matching probability
model is shown as y3 in the model (1).

We take ride-hailing services as an example. At the time t, the demand den-
sity D is equal to the sum of the users who are in the car plus the potential
demand for the ride-hailing divided by the unit area. The service density S is
the total number of cars divided by the unit area. The parameter c represents
that a car C encounters c potential demands at time t. But not all of these
c demands can be matched with the car C. These c demands have different
requirements for the quality, price, and destination of ride-hailing services. Like-
wise, different cars(drivers) have different demand preferences. The parameter
p is used to describe the probability of matching supply and demand from a
macro perspective. At the micro level, it describes how many demands in these
c demands that can match the car C. Mutations are changes in requirements
and the car’s(driver’s) preferences. The time delay can be mapped to the user’s
waiting time.

4 Stability and Bifurcation

4.1 Positive Equilibria

Equilibria mean that D, S, and p remain constant over time. We can get
two equilibria containing 0: E1 =

(
b1−d1

a , 0, 0
)
, E2 =

(
b1−d1

a , (b2 − d2)
(
ρ + k(b1−d1)

a

)
, 0

)
. In addition, we get zero to three positive equilibria E∗ =

(D∗, S∗, p∗), where D∗ is the positive real roots of the equation

f(D) = D3 + q2D
2 + q1D + q0 = 0, (2)

298 X. Zhou et al.

where

q = − achk(b2 − d2), q0q = −cρ2(b2 − d2)2,

q1q =v(b1 − d1) − 2ckρ(b2 − d2)2 + chρ(b1 − d1)(b2 − d2),

q2q =chk(b1 − d1)(b2 − d2) − av − achρ(b2 − d2) − ck2(b2 − d2)2,

and S∗ = (b2 − d2)(ρ + kD∗), p∗ = S∗
vD∗ . Based on the root distribution charac-

teristics of cubic equation in one unknown summarized in Lemma 3.3 [14], the
distribution of roots of Eq. (2) is shown in the following lemma.

Lemma 1. For the polynomial Eq. (2),
i)Eq. (2) has no positive real roots, if one of the following holds: a)q0 ≥

0, q1 ≥ 0, and q2 ≥ 0; b)q0 ≥ 0, and Δ = q2
2 − 3q1 ≤ 0.

ii)Eq. (2) has positive real roots, if one of the following holds: a)q0 ≤ 0;
b)q0 ≥ 0,Δ = q2

2 − 3q1 ≥ 0,D∗
0 = −q2+

√
Δ

3 ≥ 0, and f(D∗
0) ≤ 0.

In the following, we focus on the system features near positive equilibrium E∗.

4.2 Stability and Hopf Bifurcation Depends on Time Delay

This subsection discusses the stability condition of the system and Hopf bifur-
cation depending on the time delay τ . Linearizing system (1) at the equilibrium
point E∗, we can obtain the characteristic equation

∣
∣
∣
∣
∣
∣

λ − a11 a12e
−λτ a13

−a21 λ − a22 0
a31 −a32 λ − a33

∣
∣
∣
∣
∣
∣
= 0, (3)

where

a11 =b1 − d1 − 2aD∗ − p∗cS∗

(1 + p∗chD∗)2
, a12 =

p∗cD∗

1 + p∗chD∗ , a13 =
cS∗D∗

(1 + p∗chD∗)2
,

a21 =(b2 − d2)2k, a22 = −(b2 − d2), a31 =
S∗p∗

D∗2
, a32 =

p∗

D∗ , a33 = −vp∗.

After calculation, the following equation can be obtained,

λ3 + A2λ
2 + A1λ + A0 + (B1λ + B0)e−λτ = 0, (4)

which is a third-degree transcendental polynomial, where

A0 =a21a32a13 − a11a22a33 + a13a31a22, A1 = a11a22 + a11a33 + a22a33 − a13a31,

A2 = − (a11 + a22 + a33), B0 = −a12a21a33, B1 = a12a21.

Based on nonlinear system theory, a positive equilibrium point is asymptotically
stable if all the roots of Eq. (4) have negative real parts [7].

Case1. For τ = 0, Eq. (4) can be simplified to

λ3 + A2λ
2 + (A1 + B1)λ + A0 + B0 = 0. (5)

Analyzing the characteristic polynomial by Routh-Hurwitz criterion [12], we can
get the following lemma.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 299

Lemma 2. The system (1) is locally asymptotically stable at the positive equi-
librium if the following hypotheses hold:

A2 > 0, A0 + B0 > 0, (A1 + B1)A2 − (A0 + B0) > 0.

Case2. For τ > 0, we consider the third-degree transcendental polynomial
Eq. (4). Applying the Hopf bifurcation existence theorem [3], we obtain:

Lemma 3. System (1) undergoes a Hopf bifurcation depend on τ near equilib-
rium E∗, if all the following conditions hold:

i)Eq. (4) has a pair of simple pure imaginary eigenvalues λ0 and λ0;
ii) all the remaining eigenvalues λj for any integer m, inequality λj �= mλ0

holds;
iii)Re

(
λ′(τ (k)

j)
)

�= 0.

We assume that iω(ω > 0) is a pure imaginary root of Eq. (4). After substi-
tution by Euler’s formula, we obtain

iω3 − A2ω
2 + A1iω + (B1iω + B0)(cos ωτ − i sin ωτ) = 0.

Separating the real and imaginary parts, we have

−ω3 + A1ω = B0 sin ωτ − B1ω cos ωτ,A2ω
2 − A0 = B0 cos ωτ + B1ω sinωτ.

(6)

The trigonometric terms can be eliminated by squaring the two formulas and
adding them together. Then, we get

(ω3 − A1ω)2 + (A2ω
2 − A0)2 = B2

0 + B2
1ω2.

Let
h(ω) = ω6 + C2ω

4 + C1ω
2 + C0 = 0, (7)

where

C0 = A2
0 − B2

0 , C1 = A2
1 − 2A0A2 − B2

1 , C2 = A2
2 − 2A1.

Let x = ω2, Eq. 7 becomes a cubic equation in x:

h(x) = x3 + C2x
2 + C1x + C0 = 0. (8)

Replacing C0, C1, C2 and h(x) for the q0, q1, q2 and f(D) respectively in
Lemma 1, the conditions for the existence of positive real roots in Eq. (8) can
be obtained. Assuming that Eq. (8) has positive real roots, without loss of gen-
erality, we suppose that Eq. (8) has three positive roots xj(j = 1, 2, 3), corre-
spondingly, ωj(j = 1, 2, 3) is the three positive roots of Eq.(7). Substituting ωj

into Eq. (6) and solving for τ , we get

300 X. Zhou et al.

sinωjτ =
(A2B1 − B0)ω3

j + (B0A1 − A0B1)ωj

B2
0 + B2

1ω2
j

,

cos ωjτ =
B1ω

4
j + (A2B0 − A1B1)ω2

j − A0B0

B2
0 + B2

1ω2
j

.

Then

τ
(k)
j =

⎧
⎪⎪⎨

⎪⎪⎩

1
ωj

(arccos cos ωjτ + 2πk), sin ωjτ ≥ 0,

1
ωj

(2π − arccos cos ωjτ + 2πk), sin ωjτ < 0,

where j = 1, 2, 3 and k = 0, 1, 2, ...,thus ±iωj is a pair of pure imaginary roots
of Eq. (4) with τ = τ

(k)
j . Let λ(τ) = α(τ) + iω(τ)(ω > 0) be the root of Eq. (4),

then α(τ (k)
j) = 0 and ω(τ (k)

j) = ωj are satisfied near τ = τ
(k)
j . We define

τ0 = τ
(0)
j0

= min
1�j�3

{
τ

(0)
j

}
, ω0 = ωj0 , x0 = xj0 . (9)

Here, we get the stability conclusion of positive equilibria by corollary 2.3
and 2.4 [13], which are about the zero-point characteristics of transcendental
equations.

Theorem 1. τ0 is defined by (9), if system (1) is locally asymptotically stable
at the positive equilibrium E∗:

i)If Eq. (8) has no positive real roots, then the roots of the characteristic
equation Eq. (4) with τ ∈ [0,+∞) have negative real parts, thus system (1) is
asymptotically stable at E∗ with τ ∈ [0,+∞);

ii)If Eq. (8) has positive real roots, then the roots of the characteristic equa-
tion Eq. (4) with τ ∈ [0, τ0) have negative real parts, thus system (1) is asymp-
totically stable at E∗ with τ ∈ [0, τ0).

Then, we have the following lemma.

Lemma 4. Suppose h′(ω2
j) �= 0, then

i)λ(τ (k)
j) = iω(τ (k)

j) is a simple root of Eq. (4);

ii)Re
(
λ′(τ (k)

j)
)

�= 0, and the sign of Re
(
λ′(τ (k)

j)
)
depends on h′(ω2

j).

The proof is omitted for space reasons. Combined with Theorem 1, we get the
following conclusions:

Theorem 2. τ
(k)
j , τ0 is defined by (6) and (9), system (1) undergoes a Hopf

bifurcation at τ = τ
(k)
j if the following hypotheses holds:

i)Eq. (8) has positive real roots;
ii)h′(ω2

j) �= 0.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 301

4.3 Hopf Bifurcation Depends on Other Parameters

Based on the Hopf bifurcation existence theorem [3], we know that the charac-
teristic equation has a pair of conjugate pure imaginary roots when the system
undergoes a Hopf bifurcation. If the characteristic equation Eq. (5) has a pair of
conjugate pure imaginary roots, Eq. (5) can be written as (λ+μ1)(λ2 +μ2) = 0,
where μ1 > 0 and μ2 > 0. Then we can get

⎧
⎨

⎩

μ1 = A2,
μ2 = A1 + B1,
μ1μ2 = A0 + B0.

Thus we can obtain the conditions under which a Hopf bifurcation of the system
occurs.

Lemma 5. Eq. (5) has a pair of conjugate pure imaginary roots if the following
hypotheses hold:

A2 > 0, A1 + B1 > 0, (A1 + B1)A2 = A0 + B0.

Combining lemma 2, it can be concluded that holding A2 > 0, A0 + B0 > 0 and
A1 + B1 > 0, the system changes from stable to unstable when the parameters
keep changing to make (A1 + B1)A2 ≤ (A0 + B0). Periodic solutions appear at
(A1 +B1)A2 = (A0 +B0). It also needs to verify the transversal condition. Here,
we will analyze the competition coefficient a as an example. Using the similar
approach as in the previous Subsect. 4.2, we can obtain if a22a33 − (A1 + B1 +
(a22 + a33)A2) �= 0, then Re (λ′(a)) �= 0. The proof is omitted for space reasons.

5 Numerical Simulations

We show specific examples and numerical simulations. We verify the stability
conditions of the system and the Hopf bifurcation conditions related to the
time delay τ and the competition coefficient a. The parameter values for these
examples are shown in Table 2. These parameters are estimated based on our
experience.

Table 2. Parameter settings of examples

b1 d1 b2 d2 a c h ρ k m1 m2

1 0.9 0.5 0.6 0.3 0.1 100 0.5 0.1 0.4 0.1 0.2

2 0.9 0.1 0.48 0.3 0.1 76 0.06 0.09 0.4 0.2 0.8

3 0.95 0.45 0.65 0.32 0.01 25 0.3 0.27 0.2 0.05 0.12

4 0.89 0.56 0.44 0.278 0.1735 393 0.33 0.078 0.36 0.026 0.26

302 X. Zhou et al.

5.1 System Stability

Two examples are presented to verify the stability conditions of the positive
equilibrium point. The first is for stability, which parameter values are shown
in the first line in Table 2. According to Lemma 2 in Sect. 4.2, the A2, A0 + B0

and (A1 + B1)A2 − (A0 + B0) on E∗(1.3643, 0.1937, 0.1893) are about 0.3338,
0.0048, and 0.0149, respectively. They’re all greater than zero. Thus E∗ is a
stable equilibrium point. The results of the numerical simulations are shown in
Fig. 3. It can be seen that D, S, and p converge to the equilibrium point E∗

as time varies. The second example is for an unstable equilibrium point. The
settings of the parameters are shown in the second line in Table 2. The stability
conditions on E∗(1.0783, 0.0938, 0.1856) are about 0.0445, 0.0045, and -0.0033.
The positive equilibrium point is unstable. As shown in Fig. 4, the system will be
attracted to the equilibrium near 0, which will cause the ecosystem to collapse.

Fig. 3. Waveform plots and portrait diagram with values in the first line in Table 2
and τ = 0, D0 = 1, S0 = 0.2, p0 = 0.18.

Fig. 4. Waveform plots and portrait diagram with parameters in the second line in
Table 2 and τ = 0, D0 = 1, S0 = 0.2, p0 = 0.18.

5.2 Hopf Bifurcation Depends on Time Delay

We use an example to validate the Hopf Bifurcation conditions depending on
the time delay τ . The settings of parameters are shown in the third line in
Table 2. After calculation, we obtain that the positive equilibrium point E∗ is
approximately (27.8662, 1.9283, 0.1136). When τ = 0, the A2, A0 + B0 and
(A1+B1)A2−(A0+B0) on E∗ are about 0.4655, 0.0063, and 0.0488, respectively.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 303

Fig. 5. Waveform plots and portrait diagram for Hopf bifurcation depending on the
time delay τ with parameters in the third line in Table 2 and τ0 ≈ 8.2341, D0 = 26, S0 =
2, p0 = 0.15.

Thus, E∗ is asymptotically stable. According to Eq. (7) we can get ω0 ≈ 0.1747
and further we can get τ0 ≈ 8.2341. We compute the transversal condition and
get h′(ω2

0) ≈ 0.00014 > 0. Therefore, according to Theorem 1 and Theorem 2,
the system is asymptotically stable at E∗ with τ ∈ [0, 8.2341) and undergoes
a Hopf bifurcation at τ ≈ 8.2341. We selected four different values of τ for
numerical simulations. The results are shown in Fig. 5. When τ = 2, it converges
to near the equilibrium point in a short time. As the time delay increases, the
system fluctuates more and more. When τ = 7.5 < τ0, the system starts with
big fluctuations but eventually stabilizes around the equilibrium point. When
τ = 8.24 > τ0, the system will not converge to the equilibrium point and will
continue to fluctuate periodically.

Such periodic fluctuations are dangerous. A slight perturbation may cause
the system to collapse. Recurring changes in demand density and service density
can lead to unstable supply and demand relationships, which may result in a
waste of social resources. For example, if users wait too long for ride-hailing
services, they may cancel and re-book frequently which brings chaos. To some
extent, this explains theoretically why the e-commerce and service ecosystem can
continue to grow and prosper steadily after the efficiency of logistics systems has
increased and agile development has become popular in the information age.

5.3 Hopf Bifurcation Depends on Competition Coefficient

We verify the bifurcation condition depends on the competition coefficient
a. The parameter settings of the system are shown in the fourth line in Table 2.
Using the method in 4.3, after calculation, a ≈ 0.1735 is a solution that makes
the equation (A1 + B1)A2 = A0 + B0 hold as well as A2 > 0, A1 + B1 > 0. Since
the value of the positive equilibrium depends on a, the equilibrium changes as

304 X. Zhou et al.

Fig. 6. Waveform plots and portrait diagram before bifurcation with values in the
fourth line in Table 2 and a = 0.1730, τ = 0, D0 = 0.47, S0 = 0.04, p0 = 0.35.

Fig. 7. Waveform plots and portrait diagram during bifurcation with values in the
fourth line in Table 2 and a = 0.1735, τ = 0, D0 = 0.47, S0 = 0.04, p0 = 0.4.

a changes, unlike the example in 5.2. We choose values 0.1730, 0.1735 of a for
numerical simulations.

When a = 0.1730, the stability criteria on the positive equilibrium point
E∗(0.4777, 0.0405, 0.4191) is about 0.0912, 0.00016, and 0.00003, respectively.
The system gradually converges to E∗. The numerical simulation results are
shown in Fig. 6. At this point, Re (λ′(a)) ≈ 0.0341 > 0. This means that as the
eigenvalues of the characteristic equation of the system increase as a increases,
the system may change from stable to unstable. When a = 0.1735, the stability
criteria on E∗(0.4667, 0.0399, 0.4222) are about 0.0887, 0.00011, and 0.000001.
E∗ is close to the bifurcation condition. Periodic solutions appear. The numeri-
cal simulation results are shown in Fig. 7. At this point, Re (λ′(a)) ≈ 0.0345 > 0.
Based on the previous theoretical analysis, the system is undergoing a bifurca-
tion.

According to the model, the competition coefficient is the reciprocal of the
carrying capacity of the environment. When the competition factor of demand is
too high, part of the demand can’t be shown due to the restrictions of the market
environment, resulting in fluctuations and instability. For example of ride-hailing
services, during the pandemic, social environment and policy restrictions on
people’s demand for ride-hailing services. Similar examples include the network
throughput capacity on user demand and resource environment carrying capacity
on human economic activities [2], etc. Expansion of the carrying capacity of the
environment for demand is beneficial for the stable development of the system.

A Dynamical Model for the Nonlinear Features of Value-Driven Service 305

6 Conclusion

This paper proposes a method that uses differential equations to model demand,
service, and supply-demand matching probabilities in service ecosystems. We
apply nonlinear system dynamics theory and numerical simulations to analyze
and validate the evolutionary mechanisms of service ecosystems. Our model pro-
vides a strong basis for assessing the evolutionary direction, stability, and sus-
tainability of service ecosystems. Our model is easily extensible. In the future,
we’ll refine our model for specific services. We can incorporate more influencing
factors, such as group behavior of species and invasion of new species into the
model.

References

1. Aziz-Alaoui, M., Okiye, M.D.: Boundedness and global stability for a predator-
prey model with modified Leslie-Gower and Holling-type ii schemes. Appl. Math.
Lett. 16(7), 1069–1075 (2003)

2. Bao, H., et al.: Resources and environmental pressure, carrying capacity, and gov-
ernance: a case study of Yangtze river economic belt. Sustainability 12(4), 1576
(2020)

3. Hassard, B.D., Kazarinoff, N., Wan, Y-H.: Theory and applications of HOPF bifur-
cation, vol. 41. CUP Archive (1981)

4. Holling, C.S.: Some characteristics of simple types of predation and parasitism1.
Can. Entomol. 91(7), 385–398 (1959). https://doi.org/10.4039/Ent91385-7

5. Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: A network
analysis on a service-mashup system. In: 2012 IEEE 19th International Conference
on Web Services, pp. 552–559. IEEE (2012)

6. Jia, Z., Huang, S., Fan, Y.: Research on the synecological model and dynamic
evolution mechanism of service internet. In: 2020 IEEE International Conference
on Services Computing (SCC), pp. 12–19. IEEE (2020)

7. Lefschetz, S., Salle, J.P.L.: Differential—difference equations. In: International
Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, pp.
155–171. Elsevier (1963)

8. Leslie, P., Gower, J.: The properties of a stochastic model for the predator-prey
type of interaction between two species. Biometrika 47(3/4), 219–234 (1960)

9. Lim, S.L., Bentley, P.J., Ishikawa, F.: The effects of developer dynamics on fitness
in an evolutionary ecosystem model of the app store. IEEE Trans. Evol. Comput.
20(4), 529–545 (2015)

10. Liu, M., Tu, Z., Xu, H., Xu, X., Wang, Z.: Community-based service ecosystem
evolution analysis. Service Oriented Computing and Applications, pp. 1–14 (2022)

11. Meynhardt, T., Chandler, J.D., Strathoff, P.: Systemic principles of value co-
creation: synergetics of value and service ecosystems. J. Bus. Res. 69(8), 2981–2989
(2016)

12. Routh, E.J.: A Treatise on the Stability of a Given State of Motion. Macmillan
and Company, New York (1877)

13. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to
stability of delay differential equations with two delays (2003)

14. Tipsri, S., Chinviriyasit, W.: The effect of time delay on the dynamics of an SEIR
model with nonlinear incidence. Chaos, Solitons Fractals 75, 153–172 (2015)

https://doi.org/10.4039/Ent91385-7

306 X. Zhou et al.

15. Tzafestas, S.G.: Energy, Information, Feedback. Adaptation and Self-organization.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66999-1

16. Wang, X., Disney, S.M.: The bullwhip effect: progress, trends and directions. Eur.
J. Oper. Res. 250(3), 691–701 (2016)

17. Xue, X., Chen, Z., Wang, S., Feng, Z., Duan, Y., Zhou, Z.: Value entropy: a system-
atic evaluation model of service ecosystem evolution. IEEE Trans. Serv. Comput.
15, 1760–1763 (2020)

https://doi.org/10.1007/978-3-319-66999-1

A Middleware for Hybrid Blockchain
Applications: Towards Fast, Affordable,

and Accountable Integration

Olzhas Yessenbayev1 , Marco Comuzzi1(B) , Giovanni Meroni2 ,
and Dung Chi Duy Nguyen1

1 Ulsan National Institute of Science and Technology, Ulsan, Korea
{yess,mcomuzzi,int2k}@unist.ac.kr

2 Technical University of Denmark, Kgs. Lyngby, Denmark
giom@dtu.dk

Abstract. Hybrid blockchain architectures combine centralized appli-
cations, like enterprise systems, with (public) blockchain to implement
additional functionality, such as tamper-proof record keeping. To reduce
the latency and cost of using a public blockchain, these systems may rely
on batching of transactions or general-state channel networks. While
reducing costs, the former increase the latency. With the latter, only
major state updates are recorded on-chain, while most transactions his-
tory remains only on the channels. This paper describes a novel solution
that combines the benefits of both approaches to decrease the latency
and cost of hybrid blockchain applications. We propose to combine a local
blockchain that runs on a centralized server to provide near-immediate
state update confirmation, with a batching mechanism sending transac-
tions to a public blockchain for record-keeping at a most convenient time.
We also introduce a dispute mechanism promoting the prompt delivery
of correct batches to the public blockchain by the application provider,
thereby deterring malicious behaviours. The solution is motivated by a
fintech use case, for which we also show the implementation of a proto-
type and an experimental evaluation of the latency and cost savings.

Keywords: Blockchain · Ethereum · gas price · latency ·
meta-transaction delegation

1 Introduction

Blockchains, as transparent and open databases, enable immutable records trace-
able to the original signer; through smart contracts, they can provide auto-
mated rule enforcement [1]. Originally developed for decentralized peer-to-peer
applications, blockchains also enable the so-called hybrid blockchain architec-
tures, where users interact with traditional centralized applications augmented
with blockchain [2]. Specifically, the use of public blockchains presents intrigu-
ing scenarios in enterprise applications. For instance, a corporate enterprise
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 307–322, 2023.
https://doi.org/10.1007/978-3-031-48421-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_21&domain=pdf
http://orcid.org/0000-0002-5830-4715
http://orcid.org/0000-0002-6944-4705
http://orcid.org/0000-0002-9551-1860
https://doi.org/10.1007/978-3-031-48421-6_21

308 O. Yessenbayev et al.

resource planning (ERP) system paired with the Ethereum blockchain can pro-
vide tamper-proof record keeping and digitized asset tracing. Platforms like
Provenance leverage this to prove product authenticity on public blockchains [3],
while MedRec employs the Ethereum blockchain to offer secure medical records,
thus enhancing healthcare data interoperability [4].

The architectural limitations of public blockchains, such as latency from a
few seconds to several hours [5] and volatile transaction costs depending on net-
work congestion and transaction complexity [6], still limit the enterprise-wide
adoption of hybrid architectures. To address these issues, batching and general
state channel networks have emerged as viable solutions. Batching involves send-
ing multiple transactions at once, instead of individually. In this way, the fixed
per-transaction costs [7] can be reduced. However, latency could increase, since
the transactions are not processed until the whole batch is sent. General-state
channel networks allow near-instant interactions between participants by simu-
lating smart contract state transitions [8] until the final state is posted on the
public blockchain. However, most of the transaction history is recorded off-chain.
Therefore, this option may not suit hybrid blockchain applications, where the
transaction history often serves as a comprehensive, tamper-proof record for
traceability and auditing purposes.

In this paper, we present a novel solution that combines the strengths of
the two approaches described above. We propose a middleware system that can
be integrated with a centralized application to provide reliable and immutable
record-keeping on a public blockchain, limiting the application latency and costs.
The system consists of two key components: (i) a local private blockchain to
instantly simulate state transitions and (ii) an asynchronous process batch-
transferring local transactions to the public blockchain network. A target smart
contract used for record-keeping on the public blockchain is replicated on a local
private blockchain, enabling near-instantaneous transaction confirmation. The
transactions are then cost-efficiently batch-sent to a public blockchain network
for permanent and immutable record-keeping. By maintaining the transaction
order within batches, the proposed approach guarantees consistent execution
across both networks. We also introduce a dispute mechanism that creates an
incentive for the application provider to eventually send all the correct batches
to the public blockchain, thus preventing opportunistic or generally malicious
behaviours. The proposed approach is inspired by the needs of a real-life fintech
company in South Korea providing a flexible salary payment service that uses
a public blockchain for transparent record-keeping. Besides describing this use
case, we also experimentally evaluate the proposed approach in terms of cost
reduction as a function of the batch size, and latency improvement.

The remainder of the paper is organized as follows. Section 2 introduces the
use case and the requirements, while Sect. 3 presents our solution. Section 4 dis-
cusses the implementation and the experimental evaluation. Section 5 compares
our solution with existing literature. Finally, Sect. 6 draws the conclusions and
outlines future work.

A Middleware for Hybrid Blockchain Applications 309

2 Problem Definition

Section 2.1 introduces the fintech use case that inspired the development of the
proposed solution, whereas Sect. 2.2 extrapolates more general requirements that
the proposed solution must address.

2.1 A Fintech Motivating Case Study

GivingDays Inc.1 is a financial intermediary providing a flexible payment service
(Thankspay) enabling employees of partner companies to request salary advances
through their application. The advances are immediately paid by GivingDays
(that is, earlier than the scheduled pay-day) and charged to the partner company
later.

While managing funds purely in cryptocurrency is infeasibile, the ThanksPay
service can leverage public blockchain to ensure traceability, transparency, and
asset reusability. Through private key encryption, blockchain can allow to pub-
licly verify that each salary advance request genuinely originates from a worker,
and is not forged arbitrarily by the ThanksPay service to maliciously charge
partners. This eliminates the need for laborious server audits. Smart contracts
also enable automated and transparent compliance with salary withdrawal reg-
ulations. Finally, the open nature of public blockchains allows to extend the
service to other use-cases, such as flexible loans.

2.2 Requirements

Inspired by the Thankspay use case, we identified a set of requirements that must
be addressed by a more general system that provides transparent record-keeping
by adopting a hybrid blockchain architecture.

R1: Minimize application latency: The latency of public blockchain is
usually high and unpredictable, which might jeopardize an application whose
logic relies on blockchain as a database. For instance, the Ethereum latency is
15–20 seconds for simple cases and significantly higher for complex transactions.

R2: Minimize transaction fees: As the number of transactions to be
recorded grows, the costs of facilitating them also increase. Moreover, transaction
fees on public blockchains like Ethereum might be extremely volatile, posing
additional challenges for a record-keeping system.

R3: Maintain full transaction history: Record-keeping systems must
demonstrate an unalterable record of every transaction. This requires each trans-
action to go through rules-checking and storage on the public blockchain. There-
fore, posting only periodic hash updates would not be sufficient.

R4: Guarantee transaction order and inclusion: Reordering or exclud-
ing user transactions can alter the state of the blockchain. If the correct ordering
is not enforced, the service owner can exploit this for its own benefit.

1 https://www.thankspay.co.kr/.

https://www.thankspay.co.kr/

310 O. Yessenbayev et al.

Fig. 1. Overview of the system

R5: Provide a balanced approach to user self-custody: It would be
infeasible to expect each user to own a cryptowallet to fund and manage trans-
actions. On the other hand, centralizing the entire process within a backend
service recording all the transactions on behalf of the users would nullify the
trust brought by blockchain technology [2].

3 Solution Design

We propose a middleware solution functioning as an intermediary between
users and the public blockchain. The static system components are outlined
in Sect. 3.1, with a use-case scenario discussed in Sect. 3.2. Economic incentives
ensuring the service owner’s adherence to the batch-process (i.e. the dispute
mechanism) are explained in Sect. 3.3.

3.1 System Architecture

A high-level overview of the proposed middleware solution is sketched in Fig. 1.
It involves the following entities:

– Owner: the host of the service (e.g., GivingDays hosting the ThanksPay
service in our motivating use case), which deploys smart contracts on the
local and the public blockchains.

– Users: the end-users of the owner’s service (e.g., the workers and partner
companies in the motivating use case).

User actions are recorded as invocations of a Target smart contract deployed
at a public blockchain network, representing the specific business application logic
(i.e., logic of the Thankspay service in the motivating use case, determining, for
instance, when workers can receive their salary in advance). To facilitate the user
interactions with it, the owner instantiates a local private blockchain and deploys
in it a replica of the target smart contract for the lifetime of the application.
The local private blockchan instantly processes user invocations, enabling any
business logic dependencies on the target smart contract state to be immedi-
ately fulfilled. Besides hosting the target smart contract, the public blockchain

A Middleware for Hybrid Blockchain Applications 311

network also hosts a Relayer smart contract, responsible for batch-transferring
transaction invocations from the local blockchain to the public blockchain’s Tar-
get smart contract.

Users sign what are known as meta-transactions [2], transactions signed by
a user’s private key but sent by a third-party service provider. This technique
allows users to interact with smart contracts without having to interact with the
Ethereum blockchain, addressing R5.

The meta-transactions are immediately executed on the local blockchain for
instant feedback (i.e., satisfying R1). When sufficient local transactions are
accumulated, the server batch-transfers them to the public network, combin-
ing reduced per-transaction invocation costs with the possibility of strategically
selecting the best time to send a batch to minimize transaction costs (address-
ing R2 and R3). The users’ signed messages contain a batch identifier and a
relative position within the batch, guaranteeing the same order of transaction
execution. By leaving a hash-trace of which transactions were executed inside of
a public blockchain, we enable users to open and win monetary disputes against
transaction exclusion from malicious owners, thus addressing R4.

To ensure state consistency between the local and the public blockchains,
the Target smart contract follows constraints similar to the ones of general state
channel contracts [9]:

1. Limited access: they should only be invoked by authorized users. In the
local blockchain, this is ensured by giving access only to the users of the
service. On the public blockchain, all calls to the target smart contract are
routed through the Relayer contract.

2. Insulation from external contracts: they should not depend on external
contract states, allowing the application state to be accurately predicted in
advance, before on-chain execution.

3. No global clock dependencies: they should ban references to
block.timestamp, given the unpredictability of when a transaction will be
executed on the public blockchain.

4. Modifying references to the senders of transactions: in a meta-
transaction executed via a relayer contract, msg.sender refers to the initiat-
ing address (i.e., the Relayer), not the original user. Therefore, the sender’s
identity needs to be included in the relayed transactions for the target smart
contract to identify the user actually sending a transaction.

The latter can be addressed by passing the deciphered user address to the
Target smart contract when invoked by the Relayer smart contract. This is done
in an implementation-specific way (we discuss how we address this in Ethereum
in Sect. 4).

3.2 System In-Use View

The system usage involves two stages: i) local execution of meta-transactions,
which users sign and exchange with the owner and ii) an asynchronous process
batch-transferring these to the public blockchain.

312 O. Yessenbayev et al.

Fig. 2. Message exchange

Local Execution of Meta-Transactions. Upon user registration, a unique
private key is created locally within a user’s applications. This private key can
be used to produce a unique digital signature against a given message, ensuring
that the signed data has not been tampered with (integrity of the message) and
that the true signer’s public account can be recovered (identity of the user).
Users employ the private key to sign the digest (hash) of meta-transactions. In
particular, the digest is computed from the following data:

(a) txData: a byte-encoded representation of the selected blockchain function
(e.g., requestSalaryAdvance) and specified parameters (e.g., amount).

(b) batchNonce: a per-batch nonce to prevent malicious replay attacks.
(c) positionNonce: a transaction’s position in the batch to prevent reordering

and maintain execution order integrity.

To exchange these meta-transactions with the owner and obtain the owner’s
commitment to including the transaction into a batch, users follow the process
outlined in Fig. 2:

1. Users initiate a request to the owner, who responds with (batchNonce,
positionNonce).

2. Users generate txData and their signature, sigUser, and send these to the
owner.

3. The owner then sends the txData to the local network, which simulates the
transaction, updates the state, and emits the necessary events for immediate
feedback to the users. The owner also sends their signature (sigOwner) over
the same parameters (with the addition of sendTimestamp, the timestamp
by which the transaction is meant to be sent).

The sigOwner acts as proof of the owner’s commitment to include the trans-
action into the next batch destined for the public network (important for the

A Middleware for Hybrid Blockchain Applications 313

Fig. 3. Asynchronous sending

dispute procedure in Sect. 3.3). Until then, the users should assume the transac-
tion has not yet been processed.

The owner can only process new transactions after the current one completes
or times out. If a user fails to provide the necessary txData and sigUser within
a specified timeout, the transaction is rejected and its positionNonce can be
reused for the next transaction.

Asynchronous Batch-Transfer Process. Once enough transactions are col-
lected, the owner (see Fig. 3) sends a batch to public network through the Relayer
smart contract. The relayTransactions function iterates through the meta-
transactions. For each set of (positionNonce, batchNonce, txData[i]), the
verify function decodes a user’s public address from the message hash composed
of these parameters and the given sigUser[i]. Any alteration to the message
hash or signature will result in a different public address than the original one,
preserving the integrity of the signed message and authenticating the signer’s
identity. The Relayer smart contract then relays txData to the target smart con-
tract, together with the original user’s public address. The target smart contract
executes the transaction and updates its state (and corresponding digital assets)
accordingly, on the behalf of the original user.

314 O. Yessenbayev et al.

Fig. 4. Dispute procedure

Upon the completion of all transactions in the batch, the Relayer calculates
and saves the hash over the executed transactions (txData[]), providing a ref-
erence for maintaining a consistent transaction execution order across batches.
Afterwards, the smart contract emits the event signifying successful process-
ing; the owner increments the nonce associated with the batch (batchNonce)
off-chain, allowing for the processing of the next batch of transactions.

The signature verification coupled with user address relaying to the receiving
target smart contract enables users to maintain unique and persistent on-chain
identities in meta-transactions. The finalization of transaction batches and the
storage of their associated hashes provide a traceable reference for maintaining
accountability in the system, as detailed in the next section.

3.3 Maintaining Accountability of Meta-Transactions

A malicious owner can potentially disrupt the system by (i) not including certain
local transactions in a batch sent to the public blockchain or (ii) modifying
the order of execution of the transactions. In the Thankspay service scenario,
this may be driven by financial objectives to manipulate the workers’ account
balances and forge undue settlement.

A Middleware for Hybrid Blockchain Applications 315

To address this issue, we introduce a dispute procedure fully managed by the
public Relayer smart contract that allows for the monetary punishment of any
owner misconduct (see Fig. 4)q. This mechanism requires the users to make a
deposit of amount of cryptocurrency X to open a dispute, discouraging frivolous
claims. If the owner does not address a dispute within a specified timeframe,
the user can claim a compensation of X + Y, disincentivizing the owners from
any wrongdoing. To enforce compensation payouts for successful disputes, the
Relayer smart contract is required to have sufficient funding to continue operat-
ing.

Implementing the dispute mechanism requires the following:

1. Proof of the owner’s commitment to include the transaction. The owner is
required to sign a user’s transactions, with the addition of a sendTimestamp,
as part of the feedback to the user (see Sect. 3.2). This signature, as sigOwner,
ensures that transactions are committed for inclusion in the batch. Conversely,
without this signature, the transactions are not “confirmed” from a users’
perspective. If a transaction is signed by the owner and not sent to the public
blockchain, the user can use these signatures as proof of commitment on the
public blockchain that has not been fulfilled.

2. Trace of transaction execution. To leave an efficient trace of executed trans-
actions in relayTransactions without storing the entire array, all txData[]
in a batch are hashed together and stored in a mapping (batchId =>
batchHash).

The sendTimestamp is added to determine if the owner’s promised timestamp
has passed by comparing it to block.timestamp, therefore preventing premature
disputes.

If the user is satisfied with the transaction execution, the process is concluded.
If not, the user can initiate the dispute, which unfolds as follows (3.3):

(a) The user opens the dispute by invoking openDispute with the owner’s sig-
nature as proof of commitment and the specified parameters (txData +
nonceId + batchId + sendTimestamp). If the owner’s signature is valid
for these parameters, and sendTimestamp > block.timestamp, the dispute
is successfully opened, and a corresponding event notifies about the opened
dispute is emitted.

(b) The owner may close the dispute if they can provide evidence that the
user’s transaction was included and executed correctly. The owner submits
all txData[] used to create the batch at a given batchNonce and calculates
its hash. They win the dispute if the txData at nonceId matches the user’s
data, and the hash of the array txData[] corresponds to the recorded
batchHash for that batchNonce.

(c) If the owner fails to resolve the dispute after the specified timeframe passes,
the user is eligible to claim compensation.

Overall, this process safeguards against fraud. sigOwner only works for the
given (txData, positionNonce, batchNonce, sendTimestamp) combination,

316 O. Yessenbayev et al.

deterring users from fabricating commitments. The hashing of all txData[] on-
chain also prevents false inclusion of a user’s txData in the owner’s proof, if it
was not genuinely executed.

4 Implementation and Evaluation

The prototype implementation2 of the Thankspay service is detailed in Sect. 4.1,
with an experimental evaluation presented in Sect. 4.2.

4.1 Thankspay Service Implementation

Target Smart Contract. The Thankspay target smart contract is imple-
mented as an Ethereum ERC-20 token, called ThanksPaySalaryToken, cus-
tomized to manage salary advances, debt tracking, and settlements. The salary
advances are implemented through “minting” and “burning” of the tokens. On
a designated salary day, partner companies mint new tokens equivalent to the
workers’ salaries, replenishing balances and offsetting previous advances. As
workers request salary advances, these tokens are burned, reducing the worker’s
balance and increasing the debt of the partner company, as tracked by the
partnerDebt mapping. The debt is settled off-chain by transferring real funds to
Thankspay, which is then reflected on-chain via the settlePartnerDebt func-
tion. The ERC-20 standard provides pre-defined functions and events for token
management, making the solution more generalizable to other use-cases; token-
burning functionality is inherited from ERC20Burnable. To minimize on-chain
data, worker salaries are stored off-chain and passed as arrays of integers when
required.

To allow the Relayer to pass the user address to the Target smart con-
tract, we attach the user’s address (authenticated from msgHash and sigUser)
to the end of the relayed call data as contractAddr.call(abi.encodePacked
(txArray[i], msgSender)). Secondly, within the target smart contract, we
substitute all references to msg.sender with msgSender() from the ERC2771
Context [10]. This function interprets the tail-end of the call data as the sender’s
address, identifying the original user.

Relayer Smart Contract. We set both the deposit (X) and compensation (Y)
values for openDispute to 0.1 ETH, with a dispute resolution time of one day.
Disputes are managed within a mapping, userAddress => disputes. To ensure
sufficient funds for dispute resolution, the smart contract is required to maintain
a minimum balance of 0.5 ETH to continue operating (enough to cover five dis-
putes), enforced by adding a modifier onlyIfFunded to the relayTransactions
function.

2 Available at: https://github.com/olzh-yess/A-Middleware-for-Hybrid-Blockchain-
Applications.

https://github.com/olzh-yess/A-Middleware-for-Hybrid-Blockchain-Applications
https://github.com/olzh-yess/A-Middleware-for-Hybrid-Blockchain-Applications

A Middleware for Hybrid Blockchain Applications 317

Fig. 5. Latency comparison

Initially, the owner deploys the contract with 0.5 ETH and can add more
funds through the fund function. User deposits also contribute to the contract’s
balance and could potentially be used to resolve earlier disputes. This approach
is justified, since successful dispute resolution results in a net loss of funds (0.2
ETH), implying that the owner would need to replenish the contract’s balance
to maintain the required minimum. This method is cost-effective as checking the
smart contract balance consumes only 38 gas units, significantly less than the
2000 gas units needed to allocate and read a dedicated variable for tracking the
owner’s funds.

4.2 Experimental Evaluation

We implemented a server prototype using NestJS with a WebSocket connection
for real-time client-server message exchange. A persistent Ganache simulation
and the Sepolia test network served as local and public blockchains, respectively.
Simulated transactions are stored in SQLite database for easy batch-transferring.

We set up a typical workflow (deploying the target contract, enrolling partner
companies, enrolling workers, processing salary advances, increasing chargeable
balances, and resetting withdrawable balances on salary day) on the Thankspay
service prototype. Then, we evaluated (i) the transaction confirmation latency
and (ii) the cost (gas) savings. We compare our solution with two baselines: one
in which transactions are sent to the public blockchain as soon as generated by
the users, and one in which standard batching of transactions is used (but with-
out local blockchain simulation to speed-up the confirmation). For the standard
batching, we consider batch sizes from 1 to 100.

Latency Savings. We define confirmation latency for the three considered
scenarios as follows:

– Public blockchain without batching: Transactions are submitted directly
to the Sepolia test network. To account for unpredictable network latency, we
report average values from 10 tests for each smart contract function invoca-
tion, spaced at one-hour intervals.

318 O. Yessenbayev et al.

Fig. 6. Gas costs

– Public blockchain with standard batching: Transactions are reflected
in the smart contract states only after an entire batch is completed and sub-
mitted to the public network. Consequently, latency comprises the public
network latency and the rate at which new transactions are generated. For
the latter, we consider three hypothetical throughput conditions: (a) high -
an average of 100,000 transactions per day (approximately 70 per minute),
similar to Uniswap [11]; (b) medium - an average of 1 transaction per minute;
(c) low - a scenario inspired by the ThanksPay service, with 3.35 transactions
per day based on a scenario with five partner companies with an average of
100 employees, 20% of whom request their salary ahead of time each month.

– Our proposed approach: latency consists of the time required for users to
sign and settle the results on a local network, as well as to get the owner’s
signature. We evaluated the average confirmation latency using the same
settings as the solution described above without batching. The confirmation
times on the public blockchain are expected to be similar to those associated
with standard batching, as they are contingent on the time taken to generate
a full batch.

Figure 5 shows the results obtained. Our solution (0.1 s) is on average sig-
nificantly faster than the baseline without batching (11 s). Note that the real
Ethereum network may have latency up to four times higher than the Sepolia
network [12]. The confirmation latency on the batching solutions is several orders
of magnitude worse, especially for medium and low throughput scenarios.

Gas Cost Savings. We examine (see Fig. 6) gas costs of individual function
invocations for batch transfers of varying sizes. Batching can notably reduce per-
transaction invocation costs (e.g. miner fees and transaction verification), while
not affecting the smart contract execution costs. Consequently, less complex
functions, where invocation costs form a greater share of the total expense,
benefit more from batching.

We can observe that gas reductions ranging from 15% to 45% can be achieved
by setting batch sizes between 40 and 50, depending on the specific function.

A Middleware for Hybrid Blockchain Applications 319

Increasing batch size further might be impractical, as the gas price reduction
flatlines. Different timing policies of the batch-transfer can even further increase
its efficiency (extensively explored in [7]).

Dispute Procedure Costs. As disputes are expected to be opened infre-
quently, our primary focus is minimizing the amount of smart contract state
stored for dispute resolution within the relayTransactions function. The only
state-altering code instruction for disputes is saving the hash-trace of transac-
tion execution for a given batchNonce, which adds a fixed per-batch additional
cost of 30K gas units. In a batch of 40 transactions, this equates to a mere 750
gas units per transaction, a relatively low cost considering that the costs per
transaction range from 20K to 100K gas units. Since it does not modify smart
contract state, checking if the smart contract balance is higher than 0.5 ETH
before the function invocation only adds negligible 38 gas units.

The remaining costs related to disputes are opening a dispute (149,623 gas
units), closing a dispute (71,473) and claiming compensation costs (49,688).

5 Related Work

The blockchain’s architectural scalability can be achieved by altering its fun-
damental architecture (Level-1 or L1), or by introducing cheaper side-chains
anchored to the native one (Level-2 or L2).

One approach to L1 scaling involves increasing transaction count per block
or accelerating block generation frequency. This, however, faces the “blockchain
trilemma” [13] - a trade-off between security, scalability, and decentralization.
For instance, reducing block time could undermine consensus mechanism if new
blocks cannot promptly reach all nodes. However, increasing the block size might
preclude less powerful nodes from processing new blocks, threatening decentral-
ization. This is illustrated by Binance Smart Chain’s lower fees, but reliance on
only 21 validator nodes [14].

L2 sidechains address the blockchain trilemma by processing a significant
portion of transactions on smaller, faster blockchains with lower fees, while inter-
acting with the main L1 chain when needed [15]. L2 sidechains ensure that the
data is reliable, consistent, and unaltered by posting periodic updates, state
hashes, or cryptographic proofs on the L1 chain. Although L2 sidechains inherit
L1-level security for data integrity, they are still vulnerable to data availabil-
ity attacks due to the smaller number of nodes and the off-chain nature of L2
transactions.

Batching services aim to reduce L1 gas fees by packing multiple meta-
transactions within a single invocation, reducing the fixed per-transaction over-
head costs. Meta-transactions encapsulate a user’s desired action, the target
smart contract address, along with unique signatures verifying the senders’ iden-
tity; they are then batch-sent to the public network on the users’ behalf by a
central relayer and executed by a specially deployed dispatcher smart contract
after appropriate verification [16]. Different batching policies have been explored

320 O. Yessenbayev et al.

Table 1. Comparison with different solutions

Requirement Our Solution Metatransaction
Batch-
ing/Relaying

General-State
Channel Net-
works

✓ ✗ ✓

R1: Minimize
application
latency

Instant feedback
with local blockchain
simulation

Increased per-
transaction latency
for a batch to
accumulate

Low-latency transac-
tions through off-
chain processing

✓ ✓ ✓

R2: Minimize
transaction fees

Batching and select-
ing periods with
lower gas fees

Reduced fees
through batching
transactions

Significantly reduced
fees with only set-
tling the final state

✓ ✓ ✗

R3: Maintain
full transaction
history

Full transfer of
transactions to the
public blockchain

Full transfer of
transactions to the
public blockchain

Only the final state
is settled on-chain

✓ ✗ ✓

R4: Guarantee
transaction order
and inclusion

Nonce values and
dispute resolution
mechanism

Can maintain order
within a batch, but
may not guarantee
transaction inclusion
by a batcher

On-chain dispute
process by publish-
ing signatures of the
state

✓ ? ?

R5: Provide a bal-
anced approach to
user self-custody

Multisignature wal-
lets provide conve-
nience and security

Varying degrees of
user custody and
traditional meth-
ods depending on
implementation

Often complex and
may require higher
technical expertise,
less user-friendly

in iBatch [7], while MultiCall [17] has explored hash-based authentication to
decrease the costs of verification. The EIP-4337 [18] is a successful proposal to
enable meta-transactions in Ethereum.

Channel networks enable the participants to exchange simulated transac-
tions off-chain, settling the final agreed-upon state on-chain. Examples are Bit-
coin’s Lighting Network [19] and Ethereum’s Raiden [20]. General-state channel
networks extend this idea to arbitrarily complex smart contracts [8]. In this
approach, most of the transaction history is not recorded on the main chain;
additionally, the parties need to be online to authorize new state transitions.
While channels imply that multiple parties exchange simulated transactions
among themselves based on self-enforcing signature authorizations, a local pri-
vate blockchain can also be instantiated on the server of one party. Such a
use-case has been explored in [21] for auctions.

To conclude, Tab. 1 qualitatively compares the proposed solution with the
batching and general-state channel networks approaches while addressing the
requirements elicited in Sect. 2.

A Middleware for Hybrid Blockchain Applications 321

6 Conclusion

This study presented a novel middleware solution that streamlines integration of
public blockchains in hybrid architectures. By combining a local blockchain with
asynchronous batch-transfers to a public blockchain, we ensure instant feedback
and reduced costs. The effectiveness of the solution was confirmed by reduced
latency and gas cost achieved by the Thankspay service prototype compared to
two baseline cases. The solution also includes a dispute resolution mechanism
enforcing accountability for the operator of the service.

At present, to ensure consistency between local and public blockchains, the
owner can process only one transaction at a time. For instance, if we locally
process a transaction with a higher positionNonce before a lower one is com-
pleted, it will be executed after the lower one on the public blockchain, leading
to inconsistencies. In the future work, we plan to address this limitation, as well
as to further enhance the dispute resolution mechanism and to test the system
in more complex scenarios.

References

1. Tai, S., Eberhardt, J., Klems, M.: Not ACID, not base, but salt. Closer 2017,
755–764 (2017)

2. Wöhrer, M., Zdun, U.: Architectural design decisions for blockchain-based appli-
cations. In: ICBC 2021, pp. 1–5. IEEE (2021)

3. Ltd, P.P.: Blockchain: The solution for supply chain transparency, November 2015
4. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for

medical data access and permission management. In: OBD 2016, pp. 25–30. IEEE
(2016)

5. Spain, M., Foley, S., Gramoli, V.: The impact of Ethereum throughput and fees on
transaction latency during ICOS. In: Tokenomics 2019, Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2020)

6. Donmez, A., Karaivanov, A.: Transaction fee economics in the Ethereum
blockchain. Econ. Inq. 60(1), 265–292 (2022)

7. Wang, Y., Zhang, Q., Li, K., Tang, Y., Chen, J., Luo, X., Chen, T.: iBatch: saving
Ethereum fees via secure and cost-effective batching of smart-contract invocations.
ESEC/FSE 2021, 566–577 (2021)

8. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks.
SIGSAC 2018, 949–966 (2018)

9. McCorry, P., Buckland, C., Bakshi, S., Wüst, K., Miller, A.: You sank my battle-
ship! A case study to evaluate state channels as a scaling solution for cryptocur-
rencies. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC
2019. LNCS, vol. 11599, pp. 35–49. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-43725-1 4

10. Sandford, R., et al.: ERC-2771: secure protocol for native meta transactions, July
2020

11. Chong, N.: As Ethereum Defi craze continues, Uniswap is processing over 100,000
transactions a day, November 2020

12. Zhang, L., Lee, B., Ye, Y., Qiao, Y.: Evaluation of Ethereum end-to-end transaction
latency. In: NTMS 2021, pp. 1–5. IEEE (2021)

https://doi.org/10.1007/978-3-030-43725-1_4
https://doi.org/10.1007/978-3-030-43725-1_4

322 O. Yessenbayev et al.

13. Abadi, J., Brunnermeier, M.: Blockchain economics. Technical report, National
Bureau of Economic Research (2018)

14. Jia, Y., Xu, C., Wu, Z., Feng, Z., Chen, Y., Yang, S.: Measuring decentralization
in emerging public blockchains. In: IWCMC 2022, pp. 137–141. IEEE (2022)

15. Sguanci, C., Spatafora, R., Vergani, A.M.: Layer 2 blockchain scaling: a survey.
arXiv preprint arXiv:2107.10881 (2021)

16. Seres, I.A.: On blockchain metatransactions. In: ICBC 2020, pp. 178–187. IEEE
(2020)

17. Hughes, W., Magnusson, T., Russo, A., Schneider, G.: Cheap and secure metatrans-
actions on the blockchain using hash-based authorisation and preferred batchers,
p. 100125. Research and Applications, Blockchain (2022)

18. Buterin, V., Weiss, Y., Gazso, K., Patel, N., Tirosh, D., Nacson, S., Hess, T.:
ERC-4337: Account abstraction using alt mempool [draft], September 2021

19. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016)

20. : Raiden network. https://raiden.network/ Accessed 15 Jun 2023
21. Desai, H., Kantarcioglu, M., Kagal, L.: A hybrid blockchain architecture for

privacy-enabled and accountable auctions. In: ICBC 2019, pp. 34–43. IEEE (2019)

http://arxiv.org/abs/2107.10881
https://raiden.network/

An AI Chatbot for Explaining Deep
Reinforcement Learning Decisions

of Service-Oriented Systems

Andreas Metzger(B) , Jone Bartel, and Jan Laufer

paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Essen, Germany

{andreas.metzger,jone.bartel,jan.laufer}@paluno.uni-due.de

Abstract. Deep Reinforcement Learning (Deep RL) is increasingly used
to cope with the open-world assumption in service-oriented systems.
Deep RL was successfully applied to problems such as dynamic ser-
vice composition, job scheduling, and service adaptation. While Deep
RL offers many benefits, understanding the decision-making of Deep
RL is challenging because the action-selection policy that underlies its
decision-making essentially appears as a black box. Yet, understand-
ing the decision-making of Deep RL is key to help service developers
perform debugging, support service providers to comply with relevant
legal frameworks, and facilitate service users to build trust. We intro-
duce Chat4XAI to provide natural-language explanations of the decision-
making of Deep RL. Compared with visual explanations, the reported
benefits of natural-language explanations include better understandabil-
ity for non-technical users, increased user acceptance, and more efficient
explanations. Chat4XAI leverages modern AI chatbot technology and
dedicated prompt engineering. Compared to earlier work on natural-
language explanations using classical software-based dialogue systems,
using an AI chatbot eliminates the need for eliciting and defining poten-
tial questions and answers up-front. We prototypically realize Chat4XAI
using OpenAI’s ChatGPT API and evaluate the fidelity and stability of
its explanations using an adaptive service exemplar.

Keywords: chatbot · explainable AI · reinforcement learning · service
engineering · service adaptation

1 Introduction

Reinforcement Learning (RL) is increasingly used to cope with the open-world
assumption of service-oriented systems, as it helps to address the design-time
uncertainty during service and systems engineering [1,27]. In general, RL aims to
learn an optimal action selection policy, which is used to decide on which action
to execute in any given environment state [42]. In a service-oriented system,
RL can learn suitable actions via the system’s interactions with its initially
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 323–338, 2023.
https://doi.org/10.1007/978-3-031-48421-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_22&domain=pdf
http://orcid.org/0000-0002-4808-8297
https://doi.org/10.1007/978-3-031-48421-6_22

324 A. Metzger et al.

unknown environment and thereby can make use of information only available at
runtime [35]. RL helped successfully address various problems in service-oriented
systems, including dynamic service composition [38], task/job scheduling [12,14,
44], resource management [13], and service adaptation [33].

Need for Explainability. Recent research on using RL for realizing service-
oriented systems leverages Deep RL algorithms, which represent their action-
selection policy as a deep artificial neural network (e.g., [9,12,20,29]). Benefits
of Deep RL include that environment states are not limited to elements of finite
or discrete sets, and that the used artificial neural networks can generalize well
over unseen environment states.

However, one key shortcoming of Deep RL is that the learned action-selection
policy is not represented explicitly, but is hidden in the parameterization of the
artificial neural network. As the action-selection policy underlies RL’s decision-
making, the decision-making of Deep RL thus essentially appears as a black
box [37]. This means that we require techniques to explain and interpret the
internal workings of such black-box systems and how their decisions are made [3,
10,28,30].

Explaining the decision-making of Deep RL can help service developers debug
the reward function by understanding why Deep RL took certain decisions. The
successful application of Deep RL depends on how well the learning problem,
and in particular the reward function, is defined [5]. Further, explainability can
facilitate regulatory compliance [30]. For example, in the EU, service providers
must ensure that their services comply with the relevant legal frameworks, such
as the General Data Protection Regulation and the forthcoming AI Act. Third,
explanations facilitate service users to build trust. They can understand how the
service arrived at its results and thus can accept its results or not [30].

Problem Statement. Two major types of explanation formats can be distin-
guished [2,22,30]: (i) visual explanations, including graphical user interfaces,
charts, data visualization, or heatmaps, and (ii) verbal explanations, which,
for instance, may take the form of a natural-language dialogue between the
explainer and explainee. The chosen presentation method has a direct effect on
user comprehension and, therefore, on the success of the explanation [22]. Com-
pared with visual explanations, the benefits of verbal explanations reported in
the literature [2,23] include (1) better understandability for people with diverse
backgrounds as well as non-technical users, (2) increased user acceptance, and
(3) more efficient explanations.

While the literature on using Deep RL for service-oriented systems provides
extensive and systematic evaluations of the performance of Deep RL [9,12,20,29],
the problem of how to explain the decision-making of Deep RL using natural
language was not yet addressed. In the broader area of explainable AI (XAI),
approaches for providing natural-language explanations for machine learning
exist [18,19,22,34]. However, these XAI approaches focus on supervised learn-
ing and not on RL. Also, they are all built using classical software-based dialogue
systems [32], which require the additional engineering step of eliciting and defin-
ing potential questions and answers up-front.

An AI Chatbot for Explaining Deep RL Decisions 325

Contributions. We introduce Chat4XAI, which leverages the capabilities of a
modern AI chatbot powered by a large language model to provide natural-
language explanations about the decision-making of Deep RL. AI chatbots are
intriguing in that they provide answers to any question posed to them. However,
as a downside of this flexibility, the underlying large language model may halluci-
nate, i.e., generate nonsensical text unfaithful to the provided source input [16].
This means AI chatbots may deliver explanations that do not faithfully explain
the decision-making of RL, i.e., the explanations may exhibit low fidelity [10].
In addition, AI chatbots may provide different explanations for the very same
question asked, i.e., the explanations may exhibit low stability [39].

To deliver natural-language explanations with high fidelity and high stability,
Chat4XAI uses dedicated prompt engineering for the AI chatbot and careful selec-
tion of the hyper-parameters of the underlying large language model. Prompt
engineering helps increase the correctness of the answers by providing a set of
targeted, initial questions (a.k.a. prompts) before the actual question [41,43].

We prototypically realize and evaluate Chat4XAI using OpenAI’s ChatGPT
Completion API. We evaluate the fidelity and stability of the explanations deliv-
ered by Chat4XAI using an adaptive cloud service exemplar realized using Double
DQN as Deep RL algorithm. We assess Chat4XAI for different prompting strate-
gies, open and closed questions, as well as different hyper-parameter settings. To
contextualize the performance of Chat4XAI, we compare Chat4XAI’s explanations
with the results of our earlier user study that assessed how well human software
engineers were able to understand the decision-making of Deep RL using visual
explanations [26].

Paper Structure. Section 2 provides background and a running example.
Section 3 describes the conceptual architecture and proof-of-concept implementa-
tion of Chat4XAI. Section 4 provides the experiment design and results. Section 5
discusses limitations and future enhancements. Section 6 relates Chat4XAI to
existing work.

2 Background and Exemplar

Deep RL in a Nutshell. In general, RL aims at learning an optimal action
selection policy π for a given environment by interacting with this environment,
typically at discrete timesteps [42]. Upon executing an action a ∈ A in a state
s ∈ S at timestep t, the environment transitions to the next state s′ and awards a
specific numeric reward R(s, a). The action selection policy π maps states S to a
probability distribution over the set of possible actions A, i.e., π : S ×A → [0, 1]
with π = Prob(a|s). An optimal policy π is a policy that optimizes the cumu-
lative reward received. We focus on providing insights into the decision-making
of value-based Deep RL algorithms. In value-based Deep RL, the action selec-
tion policy π depends on a learned action-value function, also called Q function,
Q(s, a). The action-value function gives the expected cumulative reward when
executing action a in state s. Value-based Deep RL uses an artificial neural
network to approximate Q(s, a).

326 A. Metzger et al.

XRL-DINE. Chat4XAI leverages the XRL-DINE technique from our earlier
work [6]. XRL-DINE generates different types of so-called Decomposed Interest-
ingness Elements (DINEs), which provide insights into different aspects of Deep
RL’s decision-making. In the original approach in [6], DINEs are visualized in
the XRL-DINE graphical user interface. Here, we use the information of the
DINEs as input to Chat4XAI. XRL-DINE combines and enhances the following
two explanation techniques.

Reward Decomposition [17] splits the reward function R(s, a) into k sub-
functions R1(s, a), . . . , Rk(s, a), called reward channels, which reflect a differ-
ent aspect of the learning goal. For each of the reward sub-functions a sep-
arate action-value-function Qi(s, a), is learned. To select a concrete action a
in state s, an aggregated action-value-function Q(s, a) is computed: ∀a ∈ A :
Q(s, a) =

∑
i=1,...,k Qi(s, a). Trade-offs in decision making become observable

via the reward channels, and made explicit via the “Reward Channel Domi-
nance” DINE.

Interestingness Elements [40] facilitate identifying situations where the
decision-making of Deep RL is uncertain and thus helps select interesting
timesteps for explanation. To determine the uncertainty of a decision for state
s, the evenness e(s) of the probability distribution over actions a ∈ A is
calculated. XRL-DINE approximates the probability distribution as π̂(s, a) =
Q+

k (s, a)/
∑

a′∈A Q+
k (s, a′) with Q+

k (s, a) = Qk(s, a) − max(0,mina∈AQk(s, a)).
An evenness of e(s) = 1 indicates maximum uncertainty. If at least one of the
reward channels is uncertain (determined by a user-defined threshold) and the
aggregated action does not correspond to the action that the sub-agent would
choose, these actions are reported via the “Uncertain Action” DINE.

SWIM Exemplar. To demonstrate the use of Chat4XAI and to serve as basis for
our experiments, we introduce the SWIM exemplar used in our previous work on
XRL-DINE [6]. SWIM simulates an adaptive multi-tier webshop, where the goal
of adaptation is to maximize a given utility function in the presence of varying
workloads [31].

SWIM’s action space consists of (1) adding/removing web servers, and (2)
changing the proportion of requests for which optional, computationally inten-
sive recommendations are generated (so called “dimmer”). SWIM’s state space
S is determined by different monitoring metrics, including (1) the request arrival
rate (i.e., “workload”), (2) the average throughput, and (3) response time. While
both types of adaptations have an impact on user satisfaction (due to their
influence on throughput and response time), adaptations of type (1) have an
impact on costs (due to the costs of more/fewer servers), and adaptations of
type (2) have an impact on revenue (due to recommendations leading to poten-
tial further purchases in the webshop). The reward function R aims to bal-
ance conflicting QoS goals via the weights a, b, and c (see [6] for rationales):
Rtotal = a · Ruser satisfaction + b · Rrevenue + c · Rcosts

The information of the DINEs is encoded in JSON format, an open-standard
data interchange format using human-readable text, and thus can serve as input
to the AI chatbot. The below JSON snippet illustrates a “Reward Channel

An AI Chatbot for Explaining Deep RL Decisions 327

Dominance” DINE giving the relative contributions of the reward channels to
the overall decision.
"reward_channel_dominance":

"Add Web Server":{"U.Satisf.": 0.35, "Revenue": 2.61, "Cost": 1.19},

"Decrease Dimmer":{"U.Satisf.": 0.13, "Revenue": 0.0, "Cost": 1.51}, ...

The next JSON snippet illustrates an “Uncertain Action” DINE, indicating
the alternative actions proposed by the reward channels Cost and Revenue that
have a probability of being chosen that is very close to the probability of the
action actually been chosen.
"uncertain_actions": [["Cost", "Remove Server"],["Revenue","Add Server"]]

3 Chat4XAI Architecture and Realization

Figure 1 shows the main conceptual components of Chat4XAI and how they may
be embedded to realize an explainable service-oriented system. The numbers
depict the control and data flow among these components. The Question Ana-
lyzer takes the question received via the Explanation Interface 1©, determines
the timestep(s) to which the question refers 2©, identifies the question type 3©
and uses this information to request the matching DINEs from XRL-DINE 4©.
The Prompt Generator takes the question 1©, its type 3©, the matching DINEs
4©, and a description of the main system concepts 6© to generate a series of
prompts for the AI chatbot 7©. The final response from the AI chatbot 8© is
then sent back as explanation via the Explanation Interface 9©.

Fig. 1. Chat4XAI conceptual architecture and embedding into service-oriented system

328 A. Metzger et al.

Question Analyzer Component. This component classifies a given question
into one of two question types: Question Type A concerns a single decision, i.e.,
it covers the decision taken at a single timestep. One example is to ask why Deep
RL decided for adaptation “X” rather than “Y” at timestep t. Question Type B
concerns a sequence of decisions, i.e., it covers the decision trajectory of several
timesteps. One example is to ask how often, along the concerned timesteps tk to
tl, Deep RL was uncertain in its decisions.

We classify the questions for two reasons. First, while state-of-the-art AI
chatbots are capable of directly answering natural-language questions (zero-shot
prompting), the quality of the answers can be increased via prompt engineer-
ing, i.e., by providing a set of instructions before the actual question [41,43].
Differentiating two types of questions allows for a more targeted prompt engi-
neering. Second, AI chatbots typically limit the cumulative length of questions
and answers per conversation. Depending on the question type, we can more
precisely select the DINEs that are requested from XRL-DINE and forwarded
to the Prompt Generator.

To identify the question type, we ask the AI chatbot to provide us with a
list T of all relevant timesteps mentioned in the question. Then, by counting
the size of T we can identify whether it is a question of Type A (|T | = 1) or
Type B (|T | > 1). Note that in the case of |T | = 0, one may use a default set of
timesteps; e.g., the 20 most recent ones, i.e., T = (tnow−19, . . . , tnow).

Prompt Generator Component. The description of the service-oriented sys-
tem given to this component provides relevant concepts, including domain-
specific terms, the different actions available, and the learning goals. These con-
cepts provide relevant service-specific knowledge to the AI chatbot, as the DINEs
also refer to these concepts. Potential sources for such a description include
WSDL specifications (in particular the documentation, types, and interface sec-
tions giving a logical description of the service) and WS-Agreement (providing
the QoS goals in terms of SLA terms).

The Prompt Generator generates and issues the following prompts:
Prompt 1 provides relevant concepts to the AI chatbot by providing it with

the textual description of the service-oriented system, introduced by the text
The following scenario description will be available...

Prompt 2 provides the context for the answers to be given by the AI chatbot.
It gives the type of data that will follow after this prompt (which depends on the
question type) together with the name of the service-oriented system to allow
the AI chatbot to connect to the description given in Prompt 1:
– Question Type A: You will be given the state for a single timestep of

<name> as JSON enclosed in ***:

– Question Type B: You

will be given a trajectory of timesteps for <name> as JSON enclosed in

***:

Prompt 3 provides the actual DINEs in JSON format enclosed in *** to mark
the boundaries between the DINEs and the final question in Prompt 4.

Prompt 4 provides the actual question.

An AI Chatbot for Explaining Deep RL Decisions 329

Typically, an explainee will ask open questions (i.e., without any fixed set of
answers to choose from) and expect an answer in concrete terms. Directly asking
open Type B questions turned out to be too challenging for the AI chatbot. We
thus employ “chain of thought” prompt engineering, in which the AI chatbot
is given smaller subtasks leading up to the final result. In a first prompt, we
ask the AI chatbot to provide us with a list of relevant timesteps; e.g., the ones
where Deep RL is uncertain. In a second prompt, we then ask the AI chatbot
concrete questions about these relevant timesteps; e.g., to count these.

Proof-of-Concept Realization. We developed our proof-of-concept realiza-
tion of Chat4XAI in Python using the OpenAI ChatGPT Completion API. We
are using GPT 3.5 turbo as a large language model, which offers fast genera-
tion of responses, and is capable of providing in-depth answers. The following
hyper-parameters are considered in our realization and experiments:
– n gives how many responses to generate.
– max token limits the length of the answer. The OpenAI API imposes two

constraints on the overall length of a request, i.e., a sequence of prompts and
responses. First, there is an overall token limit of 4, 096 tokens (ca. 3,000
words) per request. Second, there is a limit of 90, 000 tokens per minute.
max token helps to set a trade-off between these two constraints.

– temperature controls text generation behavior. Temperature ∈ [0, 2] controls
the randomness of the text, with a higher temperature resulting in more
“creative” text but with a higher risk of hallucinations. A temperature of 0
leads to deterministic text generation behavior.

– Top p sampling is an alternative to temperature. Instead of considering all
possible tokens, only a subset of tokens is considered whose cumulative prob-
ability adds up to top p ∈ [0, 1].

Example Explanations. Table 1 gives examples of explanations (slightly edited
for readability) for the SWIM exemplar.

Table 1. Example explanations generated by Chat4XAI for the SWIM exemplar

“Add Web Server”
“Decrease Dimer”

“Add
Web Server” instead of “Decrease Dimer” “Add Web
Server” “Revenue” and “User
Sa�sfac�on” compared “Decrease Dimmer”.

“Remove
Server”

“Remove Server”

“Cost”. “Remove Server”
“Cost”

“User Sa�sfac�on”

The explanation for EQ1 indicates that the aggregated decision is to execute
“Add Web Server” because it has the highest relative reward with the “Revenue”

330 A. Metzger et al.

reward channel contributing most to the aggregated decision. During debugging,
software engineers can evaluate whether this strategy is what they expected, or
whether they rather expected the dimmer value to be lowered at the expense
of “Revenue”. The explanation for EQ2 indicates why the overall decision is to
perform “No Adaptation”, instead of choosing the possible alternative action
“Remove Server”. If such a decision is not expected, this may indicate that
the reward function has to be re-engineered to provide stronger rewards for the
respective state to choose “Remove Server” over “No Adaptation”.

4 Experiments

We perform a set of controlled experiments to evaluate the fidelity and stability
of Chat4XAI’s explanations. We contextualize the capabilities of Chat4XAI against
the results of an empirical user study from our earlier work [26]. The user study
involved 54 software engineers from academia (82%) and industry (8%), 87%
of which held an academic degree in software engineering or related fields. It
assessed how well software engineers were able to understand the decision-making
of Deep RL by using DINEs in visual form. To compare the results, we use the
same system exemplar (SWIM, as introduced in Sect. 2), the same realization of
system’s adaptation logic (Double DQN with Experience Replay), and the same
21 timesteps to be explained. Also, we ask Chat4XAI the same questions that
were posed to the software engineers in the user study.

To facilitate reproducibility, relevant background and supplementary mate-
rial is available from https://git.uni-due.de/rl4sas/chat4xai.

4.1 Experiment Setup

Metrics. We use the following metrics from the explainable AI literature [10,39]:
Fidelity expresses how well the explanations reflect the behavior of the black-

box model. As we use AI chatbots to generate explanations, Chat4XAI exhibits
the risk of hallucination, i.e., producing answers not corresponding to the learned
Deep RL decision-making policy. We quantify fidelity by measuring the rate of
correct explanations for m given questions. Let xi = 1 mean correct explanation,
and 0 otherwise, then fidelity is computed as

∑
xi/m.

Stability gives the degree to which the same explanation is generated for
the same input. Explanations of Chat4XAI for the same input may vary because
the AI chatbot may produce non-deterministic results depending on the cho-
sen hyper-parameter settings. We measure stability as 1 − σ, with σ being the
standard deviation of fidelity across several experiment repetitions for the same
input and configuration of independent variables.

To compare the performance of Chat4XAI with the performance of software
engineers using XRL-DINE, we selected the following metric from [26]:

Effectiveness quantifies the performance of software engineers by measur-
ing the rate of correctly answered questions among n participants. Let ci = 1

https://git.uni-due.de/rl4sas/chat4xai

An AI Chatbot for Explaining Deep RL Decisions 331

mean correct explanation, and 0 otherwise, then the effectiveness is computed
as

∑
ci/n.

Independent Variables. To analyze the performance of Chat4XAI, we varied
the following three main independent variables.

Prompting: We analyze the performance depending on whether (i) zero-
shot prompting or (ii) prompt engineering is used. This indicates how much
Chat4XAI’s performance is impacted by prompt engineering, resp. how robust
the approach would be independent of any specific prompt engineering.

Question Form: We analyze the performance of Chat4XAI in providing expla-
nations for open questions (which would be the typical scenario in a practical
setting) and closed questions (like in the user study from [26]).

Hyper-parameters: We consider different concrete settings of temperature and
top p. We vary temperature ∈ {0, 0.2, 0.5, 1}. For each temperature, we vary
top p ∈ {1, 0.8, 0.5} and report the aggregated results per temperature. We use
54 repetitions to get the same number of explanations as in the user study. We
split these 54 repetitions into three clusters of 18 repetitions, with each cluster
having a different top p setting. To efficiently execute the experiment, we set
n = 18, i.e., retrieve 18 answers per prompt. Also, we set max token = 350,
delivering a good trade-off between length of answers and throughput.

Questions to be Explained. To assess the performance of Chat4XAI, we have
to choose concrete questions that are posed to the AI chatbot to retrieve expla-
nations. As we are interested in comparing the performance of Chat4XAI with
that of software engineers from the empirical user study in [26], we use the same
set of questions that were formulated there. Study participants were asked eight
closed questions and were provided with several single-choice answers for each
question. These questions are shown in Table 2.

Table 2. Questions for which explanations should be given2

„Decrease Dimmer“ instead „Add Server“?
did the service choose “No

” instead of „Add Server“?

selec�ng „ “ instead of „No Adapta�on“?

selec�ng „Add “instead of „Remove Server“?

—

—

—

2 Questions are numbered in the order they were asked user study participants. Ques-
tion text adapted from [26] and edited for clarity.

332 A. Metzger et al.

4.2 Experiment Results

Table 3 presents the results concerning the fidelity and stability of Chat4XAI as
well as the effectiveness of software engineers from the user study.

Table 3. Experiment Results

As expected Chat4XAI with prompt engineering outperforms Chat4XAI with
zero-shot prompting. For closed questions, zero-shot prompting only achieves an
average fidelity of 48% with an average stability of 50%. Prompt engineering
achieves an average fidelity of 97% with an average stability of 85%, because
the underlying large language model has been provided with better information
about the scope and nature of answers expected via initial prompts.

Indeed, prompt engineering together with low-temperature settings can lead
to a fidelity of 100% with a stability of 100%, because the underlying large
language model gives deterministic answers. Here, increasing the temperature
leads to a lower fidelity and lower stability, as the chance of wrong answers
being created from an already strong baseline of correct explanations increases.

Interestingly, when considering zero-shot prompting, a temperature larger
than 0 leads to a higher fidelity albeit with the same low stability. The higher
temperature and the resulting more “creative” answers from the AI chatbot
appear to increase the chance of providing a correct explanation as we start
from a very weak baseline of correct explanations.

Finally, as one might expect, providing correct explanations for the open
questions is more challenging. Except for temperature = 0, the fidelity for open
questions is generally lower than for closed questions (88% vs. 97% on average)
and also exhibits a lower stability (74% vs. 89% on average), indicating a higher
randomness of answers.

Comparing the fidelity of Chat4XAI with the effectiveness of software engi-
neers, Chat4XAI was able to outperform the software engineers in 8 out of the 12
experiment configurations and was able to answer all eight questions correctly

An AI Chatbot for Explaining Deep RL Decisions 333

(100% fidelity) in 3 configurations. According to [26], only 33% of the software
engineers were able to answer all eight questions correctly.

Validity Risks. Concerning internal validity, we addressed the risk that results
for Chat4XAI may have been achieved by chance. To this end, we carefully con-
trolled experimental variables. In addition, we repeated the experiment multiple
times to account for the typical stochastic effects and thus variance of machine
learning models [36]. While we chose metrics for Chat4XAI and the user study
that allow numerically comparing them, semantically they are not fully compa-
rable. To do so would require complementing the Chat4XAI results by user studies
that assess how well explainees could use the natural-language explanations to
understand Deep RL decision making.

Concerning external validity, we chose a concrete service exemplar (SWIM)
together with real-world workload traces and an actual subset of the interactions
between Deep RL and the service environment. Still, our experiments cover only
one concrete problem in service-oriented systems (i.e., service adaptation) and
use only one concrete service-oriented system exemplar. We cover different styles
of questions (“what/which”, “why”, “how many”) reflecting various insights into
the decision-making of Deep RL. Yet, we limited the questions to the ones from
the user study in [26] to compare the performance of Chat4XAI with that of
software engineers. While we designed Chat4XAI to be as generic as possible and
thus applicable to different problems in service-oriented systems, experimental
results are limited with respect to generalizability.

5 Current Limitations and Potential Enhancements

Multi-round Question Answering. Currently, Chat4XAI generates a natural-
language explanation for a given question. Enhancing Chat4XAI to also allow for
follow-up questions thus appears as a natural next step. An interesting further
direction for such multi-round question answering is to follow the metaphor of
the Socratic dialogue. A Socratic dialogue may take the form of a cooperative
argumentative dialogue between the explainer and explainee, where the explainer
initiates the dialogue by asking questions to stimulate ideas by the explainee [43].
This may especially help non-technical users to come up with concrete questions
concerning the decision-making of Deep RL.

Coping with Missing Insights. Once an explainee is provided with the power-
ful natural-language interface of an AI chatbot, the explainee may ask questions
concerning the decision-making of Deep RL for which the underlying explainable
AI technique (here: XRL-DINE) does not provide the required insights. One may
check whether the answer given by the AI chatbot is backed by actual insights
and inform the explainee accordingly. Here, work on explainable large language
models may be leveraged [45]. Even more intriguing would be to use the AI chat-
bot to directly derive the actual explanations from the Deep RL policy without
resorting to an external explanation technique such as XRL-DINE.

334 A. Metzger et al.

Protecting Sensitive Information. AI chatbots and thus Chat4XAI may be
tricked into revealing information that should not be given away [11,24]. One
open question thus is how to leverage AI chatbots for explainable service-oriented
systems while protecting sensitive information of the service provider [7].

Explanations for Policy-Based Deep RL. We focused on value-based Deep
RL, which represents the action-value function Q(s, a) as an artificial neural
network (see Sect. 2). Another important class of Deep RL is policy-based Deep
RL. Policy-based Deep RL directly uses and optimizes a parameterized stochastic
action selection policy πθ(s, a) in the form of a deep artificial neural network,
and thus does not make use of an action-value function Q(s, a). In comparison to
value-based Deep RL, policy-based Deep RL has the important advantage that
it can naturally cope with concept drifts [25,35]. As the underlying XRL-DINE
technique requires access to the action-value function Q(s, a) to compute the
DINEs, Chat4XAI currently works for value-based Deep RL only.

6 Related Work

As introduced in Sect. 1, RL – and recently Deep RL – was successfully applied to
different problems in service-oriented systems [12–14,33,38,44]. While existing
papers provide extensive and systematic evaluations of the performance of Deep
RL for service-oriented systems, they did not yet address the problem of how to
explain the decision-making of Deep RL using natural language.

There exists related work on natural-language explanations in the general
area of explainable AI (XAI), which can be grouped into two main areas.

Requirements Elicitation. Jentzsch et al. perform an empirical study to elicit
user expectations towards chatbots for XAI [15]. Results indicate that questions
of users differ concerning the question form (open vs. closed), the level of abstrac-
tion, and the temporal scope (e.g., past, current or future outcomes). Kuzba and
Biecek elicit typical questions a human would ask a chatbot [18]. From around
600 collected dialogues, they distill the 12 most common types of questions.
Liao et al. construct a corpus of questions via literature review, as well as expert
reviews and interviews [19]. The resulting corpus contains 73 types of questions
in 10 categories. Gao et al. introduce a chatbot-based explanation framework
built using IBM Watson Assistant [8]. Similar to Kuzba and Biecek, they use
this framework to understand what users would like to know about AI and elicit
concrete user requests about AI-generated results.

All these works provide interesting insights into what questions may be asked,
but are limited to supervised learning. Also, in contrast to these works, Chat4XAI
does not require the up-front elicitation and fine-grained classification of ques-
tions. Chat4XAI works with only two types of questions because more specific
aspects are handled naturally by the underlying powerful large language model.

Design and Realization. Carneiro et al. suggest combining a chatbot with
an explainable model serving as a less complex surrogate than the actual black-
box prediction model [4]. They use natural language understanding to extract

An AI Chatbot for Explaining Deep RL Decisions 335

structured information from user questions concerning the user intent and the
entity concerned with the question. Nguyen et al. leverage classical conversa-
tional agent architectures for question-answer dialogues [34]. They (1) construct
a question phrase bank, (2) establish a mapping between questions and explain-
able AI techniques, and (3) use template-based natural language generation to
create explanations. Malandri et al. consider the knowledge and experience of
the users when generating explanations [22]. They explicitly introduce “clarifica-
tion” as a further dialogue type on top of an earlier explanation framework [21].
Their user study indicates that different user groups perceive explanations dif-
ferently, that all user groups prefer textual explanations over graphical ones, and
that clarifications can enhance the usefulness of explanations.

All these works provide evidence for the benefits of using natural-language
explanations. However, they do not deliver explanations for Deep RL. Also, they
are all built using classical dialogue systems and natural language processing,
and thus do not leverage the capabilities of modern large language models.

7 Conclusion

We took a first step towards natural-language explanations of Deep RL used
for realizing service-oriented systems. We introduced Chat4XAI, an explainable
AI technique powered by modern AI chatbot technology built on top of large
language models. We performed a proof-of-concept implementation for Chat4XAI

using ChatGPT. Experimental results suggest that Chat4XAI can provide expla-
nations with high fidelity and stability.

In future work, we will work on the potential enhancements of Chat4XAI

described above. We will also extend our experiments to other service-oriented
system exemplars, which cover additional problems, such as service composition.

Acknowledgments. We cordially thank the anonymous reviewers and Xhulja Shahini
for their constructive comments. Research leading to these results received funding from
the EU’s Horizon Europe R&I programme under grant 101070455 (DynaBIC).

References

1. Baresi, L., Nitto, E.D., Ghezzi, C.: Toward open-world software: issue and chal-
lenges. Computer 39(10), 36–43 (2006)

2. Cambria, E., Malandri, L., Mercorio, F., Mezzanzanica, M., Nobani, N.: A survey
on XAI and natural language explanations. Inf. Process. Manag. 60(1), 103111
(2023)

3. Camilli, M., Mirandola, R., Scandurra, P.: XSA: explainable self-adaptation. In:
37th International Conference on Automated Software Engineering (ASE 2022).
ACM (2022)

4. Carneiro, D., Veloso, P., Guimarães, M., Baptista, J., Sousa, M.: A conversational
interface for interacting with machine learning models. In: 4th International Work-
shop on eXplainable and Responsible AI and Law. CEUR Workshop Proceedings,
vol. 3168. CEUR-WS.org (2021)

336 A. Metzger et al.

5. Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014
AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, 24-26
March 2014. AAAI Press (2014)

6. Feit, F., Metzger, A., Pohl, K.: Explaining online reinforcement learning decisions
of self-adaptive systems. In: International Conference on Autonomic Computing
and Self-Organizing Systems, ACSOS 2022. IEEE (2022)

7. Følstad, A., et al.: Future directions for chatbot research: an interdisciplinary
research agenda. Computing 103(12), 2915–2942 (2021)

8. Gao, M., Liu, X., Xu, A., Akkiraju, R.: Chat-XAI: a new chatbot to explain arti-
ficial intelligence. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 296, pp. 125–134.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82199-9 9

9. Ghanadbashi, S., Safavifar, Z., Taebi, F., Golpayegani, F.: Handling uncertainty in
self-adaptive systems: an ontology-based reinforcement learning model. J. Reliable
Intell. Environ. (2023)

10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
1–42 (2019)

11. Hasal, M., Nowaková, J., Saghair, K.A., Abdulla, H.M.D., Snásel, V., Ogiela, L.:
Chatbots: security, privacy, data protection, and social aspects. Concurr. Comput.
Pract. Exp. 33(19), e6426 (2021)

12. Huang, V., Wang, C., Ma, H., Chen, G., Christopher, K.: Cost-aware dynamic
multi-workflow scheduling in cloud data center using evolutionary reinforcement
learning. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernandez, P., Ruiz-
Cortes, A. (eds.) Service-Oriented Computing. Lecture Notes in Computer Science,
vol. 13740, pp. 449–464. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-20984-0 32

13. Iftikhar, S., et al.: AI-based fog and edge computing: a systematic review, taxonomy
and future directions. Internet Things 21, 100674 (2023)

14. Jamil, B., Ijaz, H., Shojafar, M., Munir, K., Buyya, R.: Resource allocation and task
scheduling in fog computing and internet of everything environments: a taxonomy,
review, and future directions. ACM Comput. Surv. 54(11s), 1–38 (2022)

15. Jentzsch, S.F., Höhn, S., Hochgeschwender, N.: Conversational interfaces for
explainable AI: a human-centred approach. In: Calvaresi, D., Najjar, A., Schu-
macher, M., Främling, K. (eds.) EXTRAAMAS 2019. LNCS (LNAI), vol. 11763,
pp. 77–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30391-4 5

16. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput.
Surv. 55(12), 1–38 (2023)

17. Juozapaitis, Z., Koul, A., Fern, A., Erwig, M., Doshi-Velez, F.: Explainable rein-
forcement learning via reward decomposition. In: IJCAI/ECAI Workshop on
Explainable Artificial Intelligence (2019)

18. Kuźba, M., Biecek, P.: What would you ask the machine learning model? identifi-
cation of user needs for model explanations based on human-model conversations.
In: Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 447–459.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3 30

19. Liao, Q.V., Gruen, D.M., Miller, S.: Questioning the AI: informing design prac-
tices for explainable AI user experiences. In: Conference on Human Factors in
Computing Systems (CHI ’20). ACM (2020)

20. Ma, W., Xu, H.: Skyline-enhanced deep reinforcement learning approach for
energy-efficient and QoS-guaranteed multi-cloud service composition. Appl. Sci.
13(11), 6826 (2023)

https://doi.org/10.1007/978-3-030-82199-9_9
https://doi.org/10.1007/978-3-031-20984-0_32
https://doi.org/10.1007/978-3-031-20984-0_32
https://doi.org/10.1007/978-3-030-30391-4_5
https://doi.org/10.1007/978-3-030-65965-3_30

An AI Chatbot for Explaining Deep RL Decisions 337

21. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: A grounded interaction pro-
tocol for explainable artificial intelligence. In: 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS19. International Founda-
tion for Autonomous Agents and Multiagent Systems (2019)

22. Malandri, L., Mercorio, F., Mezzanzanica, M., Nobani, N.: ConvXAI: a system
for multimodal interaction with any black-box explainer. Cogn. Comput. 15(2),
613–644 (2023)

23. Mariotti, E., Alonso, J.M., Gatt, A.: Towards harnessing natural language gen-
eration to explain black-box models. In: 2nd Workshop on Interactive Natural
Language Technology for Explainable Artificial Intelligence. ACL (2020)

24. Maslej, P., et al.: The AI index 2023 annual report. Technical report, AI Index
Steering Committee, Institute for Human-Centered AI, Stanford University (2023)

25. Metzger, A., Kley, T., Rothweiler, A., Pohl, K.: Automatically reconciling the
trade-off between prediction accuracy and earliness in prescriptive business process
monitoring. Inf. Syst. 118, 102254 (2023)

26. Metzger, A., Laufer, J., Feit, F., Pohl, K.: A user study on explainable online
reinforcement learning for adaptive systems. CoRR abs/2307.04098 (2023)

27. Metzger, A., Quinton, C., Mann, Z.Á., Baresi, L., Pohl, K.: Realizing self-adaptive
systems via online reinforcement learning and feature-model-guided exploration.
Computing (2022)

28. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

29. Mo, R., Xu, X., Zhang, X., Qi, L., Liu, Q.: Computation offloading and resource
management for energy and cost trade-offs with deep reinforcement learning in
mobile edge computing. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik,
H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 563–577. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91431-8 35

30. Mohseni, S., Zarei, N., Ragan, E.D.: A multidisciplinary survey and framework
for design and evaluation of explainable AI systems. ACM Trans. Interact. Intell.
Syst. 11(3–4), 1–45 (2021)

31. Moreno, G.A., Schmerl, B.R., Garlan, D.: SWIM: an exemplar for evaluation and
comparison of self-adaptation approaches for web applications. In: 13th Interna-
tional Conference on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS@ICSE 2018. ACM (2018)

32. Motger, Q., Franch, X., Marco, J.: Software-based dialogue systems: survey, tax-
onomy, and challenges. ACM Comput. Surv. 55(5), 1–42 (2023)

33. Mutanu, L., Kotonya, G.: State of runtime adaptation in service-oriented systems:
what, where, when, how and right. IET Softw. 13(1), 14–24 (2019)

34. Nguyen, V.B., Schlötterer, J., Seifert, C.: Explaining machine learning mod-
els in natural conversations: towards a conversational XAI agent. CoRR
abs/2209.02552 (2022)

35. Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive
information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.)
CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49435-3 11

36. Pham, H.V., et al.: Problems and opportunities in training deep learning software
systems: an analysis of variance. In: 35th International Conference on Automated
Software Engineering (ASE 2020). IEEE (2020)

37. Puiutta, E., Veith, E.M.S.P.: Explainable reinforcement learning: a survey. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS,

https://doi.org/10.1007/978-3-030-91431-8_35
https://doi.org/10.1007/978-3-030-49435-3_11
https://doi.org/10.1007/978-3-030-49435-3_11

338 A. Metzger et al.

vol. 12279, pp. 77–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57321-8 5

38. Razian, M.R., Fathian, M., Bahsoon, R., Toosi, A.N., Buyya, R.: Service composi-
tion in dynamic environments: a systematic review and future directions. J. Syst.
Softw. 188, 111290 (2022)

39. Robnik-Šikonja, M., Bohanec, M.: Perturbation-based explanations of prediction
models. In: Zhou, J., Chen, F. (eds.) Human and Machine Learning. HIS, pp.
159–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90403-0 9

40. Sequeira, P., Gervasio, M.T.: Interestingness elements for explainable reinforce-
ment learning: understanding agents’ capabilities and limitations. Artif. Intell. 288,
103367 (2020)

41. Strobelt, H., et al.: Interactive and visual prompt engineering for ad-hoc task adap-
tation with large language models. IEEE Trans. Vis. Comput. Graph. 29(1), 1146–
1156 (2023)

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

43. White, J., et al.: A prompt pattern catalog to enhance prompt engineering with
chatgpt. CoRR abs/2302.11382 (2023)

44. Yu, Z., et al.: DeepSCJD: an online deep learning-based model for secure collabo-
rative job dispatching in edge computing. In: Troya, J., Medjahed, B., Piattini, M.,
Yao, L., Fernandez, P., Ruiz-Cortes, A. (eds.) Service-Oriented Computing. Lec-
ture Notes in Computer Science, vol. 13740, pp. 481–497. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20984-0 34

45. Zhao, H., et al.: Explainability for large language models: a survey. CoRR
abs/2309.01029 (2023)

https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1007/978-3-031-20984-0_34

BEAR: Revolutionizing Service Domain
Knowledge Graph Construction

with LLM

Shuang Yu, Tao Huang, Mingyi Liu, and Zhongjie Wang(B)

Faculty of Computing, Harbin Institute of Technology, Harbin, China
yushuang@hit.edu.cn,22s103254@stu.hit.edu.cn{liumy,rainy}@hit.edu.cn

Abstract. Knowledge graph (KG), as a novel knowledge storage app-
roach, has been widely used in various domains. In the service com-
puting community, researchers tried to harness the enormous potential
of KG to tackle domain-specific tasks. However, the lack of an openly
available service domain KG limits the in-depth exploration of KGs in
domain-specific applications. Building a service domain KG primarily
faces two challenges: first, the diversity and complexity of service domain
knowledge, and second, the dispersion of domain knowledge and the lack
of annotated data. These challenges discouraged costly investment in
large, high-quality domain-specific KGs by researchers. In this paper,
we present the construction of a service domain KG called BEAR. We
design a comprehensive service domain knowledge ontology to automat-
ically generate the prompts for the Large Language Model (LLM) and
employ LLM to implement a zero-shot method to extract high-quality
knowledge. A series of experiments are conducted to demonstrate the fea-
sibility of graph construction process and showcase the richness of con-
tent available from BEAR. Currently, BEAR includes 133, 906 nodes,
169, 159 relations, and about 424, 000 factual knowledge as attributes,
which is available through github.com/HTXone/BEAR.

Keywords: Service domain knowledge graph · Service domain
ontology · Knowledge graph construction · Large language model

1 Introduction

Knowledge graphs (KGs) are widely applied in knowledge-driven intelligent
applications. The service computing community also acknowledges the immense
potential of KGs, which allows providers to effectively manage resources, under-
stand customer requirements, and enhance customer satisfaction by enabling
personalized recommendations, semantic search, and other applications with
interpretability and reasoning capabilities for more automated and intelligent
service interactions [5,7].

The benefits of introducing KGs are not always apparent due to the
paradigms of utilization. Researchers typically employ two paradigms when
applying KGs in service computing tasks: one involves utilizing open, general
KGs [6,7], and the other focuses on organizing data into KG formats tailored to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 339–346, 2023.
https://doi.org/10.1007/978-3-031-48421-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_23

340 S. Yu et al.

specific service domains [3,12]. But neither of these two paradigms has truly
leveraged the powerful capabilities of KGs. Thus, a large-scale, high-quality
service-oriented KG is urgently needed in the current service computing com-
munity, which will promote application and algorithm innovation in the service
computing community.

As a specific domain KG, service domain KG faces two major challenges
during its construction:

1. Diversity and complexity. Constructing a service domain KG involves
encompassing knowledge from various fields, each with its distinct terms and
concepts that interrelate within the service computing community. Further-
more, the knowledge within the service domain exhibits unique characteris-
tics, adding complexity to the construction of the service domain KG.

2. Insufficient data source. The lack of data is reflected in two aspects.
Firstly, there is a severe shortage of annotated data in the service computing
domain, and the labeling cost is also high due to the typically complex, het-
erogeneous nature of service data. Secondly, service-related knowledge data is
highly scattered, making it challenging to gather enough sources and quickly
organize their relationships.

To address the pressing requirements for an open service domain KG within
the service computing community, we construct a service domain KG called
BEAR in this paper. On the one hand, BEAR addresses the first challenge by
providing a relatively comprehensive ontology and using this ontology to guide
and standardize the construction process of the service domain KG. On the
other hand, BEAR utilizes the exceptional semantic understanding and reason-
ing capabilities of LLM to address the second challenge.

The main contributions of this paper can be summarized as follows:

1. Introducing a new open KG in the service computing community:
We have developed a comprehensive ontology specifically designed for the
service computing field. Using this ontology, we have created a large-scale
service domain KG comprising over 130,000 entities, 160,000 relations, and
4,240,000 factual knowledge1.

2. Novel approach for service domain KG construction: We have devised
a novel zero-shot framework for constructing KGs. This framework facilitates
the extraction of knowledge based on ontology, enabling the acquisition of
high-quality knowledge without the need for label training.

2 Related Works

2.1 Knowledge Graph in Service Computing

In the top venues of service computing, there has been a notable surge in the
utilization of KGs in recent years, while few of them focus on constructing a
service domain KG.
1 The download address is github.com/HTXone/BEAR.

BEAR: Service Domain Knowledge Graph 341

There are two main paradigms in the service domain community for utilizing
KGs. The first paradigm involves applying general KGs to service computing
tasks [6,7]. This paradigm suffers from coarse granularity and broad, weakly
relevant content in general KGs when applied to the service domain. The second
paradigm organizes original data into the form of a KG for each specific task [3,
12]. This paradigm repeatedly constructs small-scale service domain KGs for
each task/dataset, which can be time-consuming, labor-intensive, and limited
to the knowledge derived from the original input data without any additional
information.

2.2 Specific Domain Knowledge Graph Construction Methods

With the development of knowledge-based research, in other specific domains,
more and more domain KG construction methods have been proposed [1]. For
the construction of service domain KGs, the real challenge lies in data collection,
annotation, and how to limit the scope of knowledge effectively. The emergence
of LLMs greatly reduces the amount of data annotation required and improves
the quality of data extraction. Wei et al. [11] confirmed the feasibility and effec-
tiveness of taking named entity recognition (NER) and relation extraction (RE)
by using ChatGPT to solve the problem of missing annotation data. In this
paper, the KG construction process will build upon this finding.

3 Ontology for Service Domain Knowledge

KG can be divided into two parts: concept layer and data layer, and ontology is
the main content of the concept layer [8]. Ontology is essential in domain KGs
due to the diversity and complexity of concepts within a domain. It provides a
common framework for organizing and categorizing diverse concepts, allowing
for efficient knowledge retrieval, integration, and reasoning.

RQ1: What characteristics should be included in the service domain
ontology?

IBM has introduced the concept of service science, which combines service,
science, management, and engineering (SSME) [2]. Services in SSME encompass
all non-tangible products or constructs that are typically consumed during pro-
duction and offer additional value in terms of convenience, pleasure, time-saving,
comfort, or health benefits [9]. Based on this description and further research
[10], the main characteristics of the service domain can be summarized as follows:

1. Behavioral nature of services: The service provider performs a series of
behaviors to the service consumer to realize the service value.

2. Service participants: Services require the participation of both service
providers and consumers who interact with each other to realize the value
transfer of service.

342 S. Yu et al.

3. Supporting resources for services: Services do not exist in physical enti-
ties, but can be realized by relying on resources with physical entities.

4. Value of services: The service realizes some kind of value conversion during
its execution, typically with the service provider delivering the service value
to the service consumer, and these values can be assessed by some indicators
within the industry.

5. Goal of services: The goal of services is an attribute related to the service
value, and the value of services is measured by evaluating whether the goal
of services is realized.

6. Constraints on services: In the real world, there are some provider-centric
constraints that have an influence on the operation of services.

RQ2: What elements should service domain ontology contain and how
do they reflect the characteristics of service domain ontology?

In the original research on service computing, the concept of the service
model focused on four elements: people, resources, shared information, and
behavior [10]. However, as service computing has evolved and tackled real-world
problems, these four elements no longer fully capture the breadth of the ser-
vice field. To better characterize the knowledge in the service domain, we have
re-summarized and organized the ontology. The definitions of the main entity
classes are provided in Table 1. Currently, we have defined 24 entity classes and
68 relations in the service domain ontology2

4 Knowledge Extraction with LLM

In the service field, there is a shortage of annotated datasets, and creating such
datasets usually requires a considerable amount of manual work. Additionally,
gathering enough information poses a challenge due to the complex and dispersed
nature of knowledge from various fields. To overcome the challenge of limited
data sources in the service domain knowledge, we propose a knowledge extraction
method based on LLM shown in Fig. 1.

RQ3: How to effectively obtain knowledge from unannotated data
sources with LLM?

In order to obtain sufficient knowledge, a KG construction framework that
supports knowledge extraction from structured and text data is developed to
fit most storage methods of real-world knowledge. For the structured data, the
knowledge extraction is performed by the traditional approach: aligning the data
concept with the ontology concept and then importing them into the KG [4].
2 Full ontology is in https://github.com/HTXone/BEAR.

https://github.com/HTXone/BEAR

BEAR: Service Domain Knowledge Graph 343

Table 1. Ontology element definition. Noted each element has rich relations that are
not listed in this table.

Element Introduction Example

Organization Service participant act as service providers or as service consumers. Ser-

vice providers are responsible for releasing and maintaining the service,

while service consumers are responsible for using it.

Google Com-

pany

Product Product(resource) hosting services, as the tangible carrier of the service,

the participants of the service realize the value exchange of the service

through the carrier.

Google

Translation

Software

Business Interactions between service participants, describes a certain predeter-

mined interoperability behavior adopted by both service participants

for a certain value exchange.

Text

Translation

Service

Document Information exchanged within the service, valuable information records

generated during the service, or description records of the elements of

the service itself.

Google

Translation

Patent

People Form organization, participate in the business, key figures appearing in

the organization or service, perform a certain service on behalf of the

organization or exert influence on the organization in real events.

Larry Page

Environment The objective conditions on which organizations and businesses exist,

which restrict the development of organization or execution of services.

Privacy Pol-

icy

Field Abstract types related to organization or business, is the location of

an organization or service, used to distinguish and compare similar ser-

vices.

Internet

Service Value Service value realized through business, in the business model, it usually

means using funds to purchase a certain service.

Marketing

Value

Fig. 1. Service domain knowledge extraction framework of BEAR

To extract knowledge and construct KG from text data, the system employs
the prompt automatically generated from the service domain ontology through
the expected knowledge scope, knowledge samples, response formats, and pre-
defined prompt templates, and then engages in multiple rounds of question-and-
answer interactions with ChatGPT3 to extract the desired knowledge content
and update the KG. Table 2 shows the template for prompts.

3 https://chat.openai.com/.

https://chat.openai.com/

344 S. Yu et al.

In certain scenarios, ChatGPT might generate knowledge that extends
beyond the predefined concepts of the ontology. This supplementary knowledge
is stored as factual information attributes linked to relevant nodes within the
KG.

RQ4: How to query the hidden knowledge outside the data source with
LLM?

To address the issues of wide range of knowledge involved in the service
domain and the dispersed nature of knowledge across various corners of the
Internet, and extract knowledge that may not be directly available in the data
source but is publicly accessible, we employ the ontology to generate a query
prompt that covers multiple aspects of the node information as shown in Table 2
to supplement knowledge in case of insufficient information.

Due to the validity threats associated with ChatGPT, we set a configurable
parameter to determine that the search method can be applied when the node
is pointed to by the specific number of edges.

5 Experiment and Result

As the effectiveness experiment of knowledge extraction using ChatGPT has
been proved in the reference [11], in this subsection we provide an example to
indicate that the ChatGPT based KG construction process we designed can
obtain correct service domain knowledge with the prompt generated by the pro-
posed ontology and without large manually labeled datasets in advance.

We use the first three paragraphs of the description of Google on Wikipedia4

to test the effect of ChatGPT in extracting facts/knowledge from service domain.

Table 2. Prompt for knowledge extraction from text data

Role Content

Prompt for NER and RE tasks

system As a knowledge extraction model, your task is to extract entities and
their corresponding attributes and relationships from the given infor-
mation.

user Please perform the named entity recognition task on the given infor-
mation now. information:{Text information that waiting for knowledge
extraction}

user Please extract the {entity class} entity in the above information,
and return the results in the specified format. Result example:
—Entity Type—Entity Name— —{sample entity class}—{sample
entity name}—

4 https://en.wikipedia.org/wiki/Google.

https://en.wikipedia.org/wiki/Google

BEAR: Service Domain Knowledge Graph 345

The prompt declared in Sect. 4 is used to question Google information. Figure 25

shows the knowledge extract result.
To further obtain knowledge outside the given information, we use the prompt

declared in Sect. 4 to question Amazon information to test the feasibility of the
knowledge search method. Figure 36 shows the knowledge search result.

In the final result, we get 186 entities and 230 relations where 116 entities
and 147 relations are obtained by the search method. Through verification, the
answers from ChatGPT are all correct.

Fig. 2. Knowledge extraction of Google Fig. 3. Knowledge search of Amazon

6 BEAR Overview

We gather data sources for BEAR from various content channels, including online
application stores like Google Store, enterprise online data such as WikiData,
and online news reports. The complete list of data sources is available on GitHub
and is regularly updated. In BEAR, there are 133, 906 entities and 169, 159 rela-
tionships. To effectively use the information from LLM, we retain the knowledge
not included in the ontology as the node attribute, and get 424, 184 attribute
triples from this type of knowledge.

7 Threat of Validity

As a generative model, GPT3.5 (ChatGPT) may provide unintended answers.
To address this issue, we include example samples in the generated prompt,
which helps to standardize the generation of answers. We also implement rule
checks to ensure that only samples meeting the desired format are included in
the KG.

It should be noted that the LLMs are evolving rapidly, and at the time
of writing this paper, GPT4 is already available. The more efficient LLM will
greatly improve the accuracy of knowledge extraction.
5 Full answer in https://github.com/HTXone/BEAR.
6 Full answer in https://github.com/HTXone/BEAR.

https://github.com/HTXone/BEAR
https://github.com/HTXone/BEAR

346 S. Yu et al.

8 Conclusion

In response to the urgent need of the service computing community for a large-
scale, pre-constructed, high-quality domain KG, this paper constructs an open-
access service domain KG called BEAR. Currently, BEAR contains 133, 906
entities, 169, 159 relationships, and over 420, 000 domain facts/knowledge stored
in entity attributes. The use of ontology-based prompts and LLM’s zero-shot
learning ability greatly reduces the annotation cost in the entire process. In
addition, LLM can also be used to retrieve/infer potential factual knowledge.
Furthermore, the method of constructing the service domain KG in this paper
can also provide a reference for the construction of KG in other domains.

Acknowledgment. This research is partially supported by the National Key Research
and Development Program of China (No.2021YFB3300700), the Key Research and
Development Program of Heilongjiang Province (No.2022ZX01A11).

References

1. Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput.
Appl. 185, 103076 (2021)

2. Bishop, K., Bolan, G., et al.: Succeeding through service innovation: a service
perspective for education, research, business and government (2008)

3. Gao, Z., Fan, Y., et al.: Service recommendation from the evolution of composition
patterns. In: SCC 2017, pp. 108–115 (2017)

4. Hao, X., et al.: Construction and application of a knowledge graph. Rem. Sens.
13(13), 2511 (2021)

5. Hu, S., Tu, Z., et al.: A poi-sensitive knowledge graph based service recommenda-
tion method. In: SCC 2019, pp. 197–201 (2019)

6. Huang, B., Dong, H., Bouguettaya, A.: Conflict detection in IoT-based smart
homes. In: ICWS 2021, pp. 303–313 (2021)

7. Mezni, H.: Temporal knowledge graph embedding for effective service recommen-
dation. IEEE Trans. Serv. Comput. 15(5), 3077–3088 (2021)

8. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Sem. Web 8(3), 489–508 (2017)

9. Quinn, J.B., Baruch, J.J., et al.: Technology in services. Sci. Am. 257(6), 50–59
(1987)

10. Wang, Z., Xu, X.: Ontology-based service component model for interoperability of
service systems. In: IESA 2008, pp. 367–380 (2008)

11. Wei, X., Cui, X., et al.: Zero-shot information extraction via chatting with Chat-
GPT. arXiv preprint arXiv:2302.10205 (2023)

12. Zhang, M., Zhao, J., et al.: A knowledge graph based approach for mobile appli-
cation recommendation. In: ICSOC 2020, pp. 355–369 (2020)

http://arxiv.org/abs/2302.10205

Dependency-Aware Resource Allocation
for Serverless Functions at the Edge

Luciano Baresi1, Giovanni Quattrocchi1(B), and Inacio Gaspar Ticongolo1,2

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Milano, Italy

{luciano.baresi,giovanni.quattrocchi,inaciogaspar.ticongolo}@polimi.it
2 Departamento de Matematica e Informatica, Universidade Eduardo Mondlane,

Maputo, Mozambique

Abstract. Serverless computing allows developers to break their code
into small components, known as functions. Being lightweight and mod-
ular, serverless functions have been increasingly employed in edge com-
puting, where quick responses and adaptability are key to meeting strict
latency requirements. In particular, edge nodes are intrinsically resource-
constrained, and efficient resource allocation strategies are crucial for
optimizing their usage. Different approaches exist in the literature, but
they often overlook the dependencies among functions, that is, how and
when functions invoke other functions, and obtain suboptimal results.
This paper presents NEPTUNE+, a dependency-aware resource (CPU
cores) allocation solution for serverless functions deployed on edge infras-
tructures. The approach extends NEPTUNE, an existing framework for
managing edge infrastructures, with a new theoretical model and control
algorithm that take function dependencies into account. We evaluated
NEPTUNE+ by using three applications and it is able to allocate up to
42% fewer cores compared to NEPTUNE.

Keywords: serverless · edge computing · function dependencies ·
resource allocation

1 Introduction

Complex1 applications are increasingly built as sets of independent components,
like microservices [4], to foster agility and speed during both development and
runtime management. This high degree of modularization allows for independent
management, but complicates communication among components and affects
their performance. Understanding the logical dependencies among components
becomes then essential for the efficient management of these systems [11].

1 The work presented in this paper is partially supported by project ICTD4Dev,
funded by AICS, and by project EMELIOT, funded by the MUR under the PRIN
2020 program (Contract 2020W3A5FY).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 347–362, 2023.
https://doi.org/10.1007/978-3-031-48421-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_24

348 L. Baresi et al.

Serverless computing is imposing as a new family of such highly modularized
architectural paradigms [17]. It promotes the creation of applications as collec-
tions of “small” functions [18], which are usually executed in lightweight con-
tainers to ensure their fast and efficient management [6]. Serverless functions are
designed to be independently developed, deployed, and automatically scaled by
a service provider. This high degree of flexibility allows for fast re-configuration
and scaling in response to changes in the system workload and contributes to
the overall agility of the system.

Given these characteristics, serverless functions have been increasingly
employed in edge computing [17]. In this context, applications are often con-
strained by strict latency requirements. The inherent agility and ability to
rapidly scale individual components allow serverless platforms to quickly adapt
to workload fluctuations, facilitate the prompt execution of functions, and allow
the system to meet latency requirements more effectively [22]. However, it is
essential to acknowledge that serverless functions can depend on other functions,
which can significantly impact their performance and management [10].

In the last few years, serverless computing has been widely studied as means
to improve the management of applications deployed on edge infrastructures [13].
Some approaches tackle the intelligent placement of edge functions on resource-
limited nodes [6,9]; others focus on optimizing resource allocation [20]. Yet,
these approaches often overlook function dependencies, a crucial factor for per-
formance modeling [23].

This paper introduces NEPTUNE+, a solution that focuses on resource
allocation for serverless functions deployed on edge infrastructures. NEP-
TUNE+ extends NEPTUNE, our previously developed edge framework [2],
which allows for the smart placement and allocation of serverless functions, but
it does not consider function dependencies. NEPTUNE+ extends the theoreti-
cal model behind NEPTUNE by proposing i) a new formalization of the prob-
lem that encodes function dependencies as an annotated Direct Acyclic Graph
(DAG), and ii) a novel control algorithm that exploits the function dependency
graph to save resources. To the best of our knowledge, this is the first work that
specifically focuses on resource allocation for serverless functions with depen-
dencies. This distinguishes our work from existing studies, which primarily con-
centrate on function placement rather than on resource allocation. This work
focuses on edge computing, where resource-constrained devices necessitate opti-
mized resource allocation for effective computation. However, it can also be
adopted in cloud computing scenarios to minimize resource consumption and
thereby reduce operational expenses.

A comprehensive empirical evaluation compared NEPTUNE and NEP-
TUNE+ by means of three benchmark applications. Obtained results show that
NEPTUNE+ allocates up to 42% fewer cores than NEPTUNE, with comparable
performance in terms of response times.

The rest of the paper is organized as follows. Section 2 introduces NEPTUNE
and highlights its limitations. Section 3 describes our solution, the new prob-
lem formulation, and control algorithm. Section 4 presents the evaluation and

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 349

discusses obtained results. Section 5 surveys the related work, and Sect. 6 con-
cludes the paper.

2 NEPTUNE in a Nutshell

Serverless computing is the driver of a significant paradigm shift that frees devel-
opers from infrastructure management [18], and some approaches [7,23] explored
this paradigm for deploying and managing applications on edge infrastructures.
To our best knowledge, only NEPTUNE [2] provides a comprehensive and holis-
tic management approach that considers network partitioning, placement, request
routing, and combined dynamic allocation of memory, CPUs and GPUs.

NEPTUNE requires the code of the functions to deploy, a threshold (ser-
vice level agreement or SLA) on its response time, and the identification of the
memory required for proper execution. The management exploits a three-level
hierarchy: topology, community, and node. The global network topology is split
into a set of independent communities. Each community is composed of edge
nodes (or servers) that are close to each other, that is, their network inter-delays
are smaller than a set threshold. Each community is managed by a dedicated con-
troller that takes into account user mobility, workload provenance, and memory
requirements for each function. This controller exploits an optimization problem
based on Mixed-Integer Programming to calculate the best placement of function
instances and a set of routing policies that minimize network latency. Function
placement implies deciding how many function instances are needed for each
used function and the best node to host each of them. Since each node cannot
always host all the instances and handle all the incoming workload, NEPTUNE
uses routing policies to compute the request fraction to be routed to other nodes.
The same formulation is used to first handle the workload that can be accelerated
through GPUs, and then, the remaining workload is assigned to CPUs.

Whereas GPUs and memory are entirely managed by the community con-
troller, the node level controller oversees the proper execution of requests on
CPUs, and ensures that each function instance is provisioned with enough cores
to execute within the given SLA. A lightweight Proportional Integral (PI) con-
troller is attached to each function instance fi with the goal of keeping the
response time close to a given set point:

spi = α ∗ SLAi (1)

where α is a scaling parameter (0 < α ≤ 1). The more α is close to 1, the
more the response time is kept close to SLA, with a risk for potential viola-
tions. Conversely, if α is significantly lower than 1, the controller ensures better
performance, but more resources are needed. Therefore, α represents a tunable
trade-off between performance and resource utilization.

2.1 Limitations

NEPTUNE does not consider function dependencies, which can lead to inefficient
resource allocation. Let us consider, for example, the application in Fig. 1. This

350 L. Baresi et al.

Fig. 1. Example application with function dependencies.

application consists of five functions, f1, f2, f3, f4, f5, with their dependencies
outlined in a directed acyclic graph (DAG): f1 depends on f2 and f3, while f2
depends on f4 and f5.

If we assume that function f5 is supposed to manage a workload spike, its
response time suddenly increases, and its local node level controller is prompted
to augment allocated cores. While f5’s controller stabilizes the situation and
brings the response time closer to the set point, the response times of f2, and
then of f1, also grow, given their dependency on f5.

The inefficiency of NEPTUNE lies in the behavior of the controllers associ-
ated with f2 and f1: higher response times, due to the slow responses from f5,
imply increasing the cores allocated to f1 and f2. This reaction is redundant, as
the issue does not stem from either f2 or f1, but the bottleneck is f5. Instead
of allocating extra cores to f2 and f1, these resources would have been better
utilized to speed up f5.

This is why NEPTUNE must be improved/extended to address this limita-
tion and fix redundant allocations: CPU cores must be allocated efficiently even
in the presence of dependent serverless functions. Unlike CPUs, GPUs are stat-
ically allocated each time NEPTUNE determines a new placement. Therefore,
they do not face the same issue of inefficient allocation.

3 NEPTUNE+

NEPTUNE+ extends NEPTUNE with a new theoretical model and control algo-
rithm to efficiently allocate resources to serverless functions with dependencies.
In particular, NEPTUNE+ aims to improve the allocation of CPUs cores at
the node level in light of the limitations described in Sect. 2.1, while it inherits
from NEPTUNE its placement strategy that minimizes network delays and the
management of GPUs and memory.

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 351

Fig. 2. Example of annotated DAG.

3.1 Theoretical Model

Let F be a set of serverless functions whose dependencies are encoded as a DAG,
where nodes are function instances and edges are function invocations. This DAG
is assumed to be either manually defined by the user or automatically generated
by means of network or log analysis techniques [14].

We do not consider invocation cycles (i.e., we employed DAGs for modeling
dependencies), in line with the recommendations against their use, as suggested
by Fontana et al. [12]. A cycle denotes a situation where a function indirectly
relies on its own output to commence execution, forming an untenable loop.
This could lead to an endless cycle of executions or deadlock scenarios that are
unmanageable cost-wise on real serverless platforms [21].

NEPTUNE+ considers the response time rti of a function fi ∈ F as follows:

rti = lrti + erti (2)

where lrti is the local response time spent for executing its code, that is, the set
of instructions that implements the function without considering external calls
to other functions, and erti is the external response time, that is, the time spent
for invoking other functions. The external response time depends on the type of
dependency between fi and another function fj . First, the invocation could be
either sequential or parallel. In the former case, the invocation is synchronous,
that is, other invocations must wait for its completion. The latter allows a func-
tion to be executed in parallel with some other invocations. More formally, each
edge in the DAG is annotated with an identifier idi,j . If two edges Ei,j and Ei,k,
which represent the invocations of fj and fk, respectively, in fi, have different
identifiers, the invocations are executed sequentially. If they are annotated with
the same value, they are called in parallel.2 Moreover, each edge is also anno-
tated with a multiplier mi,j , which denotes how many times such invocation is
executed within the same function call [23].
2 Note that our approach allows a function fi to invoke another function fj both in

sequential and parallel mode by having multiple, properly annotated, edges between
i and j (as in multigraphs [1]). Here, we do not focus on such edge cases to keep our
formalization as simple as possible.

352 L. Baresi et al.

Figure 2 shows an example annotated DAG with 6 functions. Function f1
(searchP laceRoute) sequentially calls function f2 (getGeolocation), thus id1,2
is unique. This call is performed twice during its execution (i.e., m1,2 = 2)–
for example, to get the coordinates of the user and of the destination location,
respectively. Moreover, searchP laceRoute invokes getRoute (f3) and trackUser
(f4) in parallel (i.e., id1,3 = id1,4 = 2), each function executed once (i.e., m1,3 =
m1,4 = 1). Finally, getGeolocation sequentially invokes getCoordinates (f5) and
processLocationMap (f6), each once, since the edge identifiers are unique.

The external response time is defined as follows:

erti =
∑

j∈S

mi,j ∗ rtj +
∑

P∈P̄

max(mi,j ∗ rtj , ∀j ∈ P) (3)

where S is the set of functions sequentially invoked by fi , P̄ is the set of the
subsets of functions that fi invokes in parallel, and P represents each subset (i.e.,
a group of parallel invocations). In essence, the external response time is the sum
of all sequential invocations plus the sum of all the longest response times of each
parallel group times the number of times each dependency is called (i.e., mi,j).

In NEPTUNE+, function instances can receive requests from users (i.e.,
direct invocations) and/or from other functions (i.e., external invocations). More
formally, the total amount of requests rwi received by fi in a time window w is
defined as follows:

rwi = rwusers→fi +
∑

j∈E∗,i

mj,i ∗ rwj (4)

where rwusers→fi
is the total amount of direct invocations of fi in w and E∗, i

is the set of source nodes i(i.e., a function fj) having an edge directed to node
fi.

3.2 Control Algorithm

While NEPTUNE’s node controllers consider each function independently, NEP-
TUNE+ adapts the control strategy by considering the dependency DAG. The
control algorithm we employ distinguishes between entrypoint and externally
invoked functions. The former can be invoked by users, that is, rwusers→fi

> 0
for some w, whereas the latter are only called by other functions in the DAG3.

NEPTUNE+ allows users to define an SLA for each entrypoint function fi. If
fi is only called by users and not by other functions, such an input is mandatory,
whereas it is optional if fi is also invoked by other functions (as a consequence
of a direct invocation of another entrypoint).

NEPTUNE+ inherits from NEPTUNE its PI controllers, which compute
resource allocations without synchronizing with one another. The main dif-
ference between the two approaches is that NEPTUNE monitors and controls

3 Note that an invocation is external with respect to the execution environment of the
invoked function (as for the use of “external” in external response time).

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 353

Fig. 3. Example of local set point computation.

the response rti of each function fi without discriminating between local and
external response times; NEPTUNE+ focuses on the local response time lrti.
The intuition behind this design is that rti is affected by the response times of
other functions (external invocations), which results in the problems described
in Sect. 2.1. In contrast, lrti depends solely on the resource allocation of fi and
allows for a more fine-grained and optimized control strategy.

Since NEPTUNE+ exploits lrti, it cannot simply reuse Eq. 1 to define the
local set points of the PI controllers, since SLAi is defined as an upper bound of
the total response rti. Thus, NEPTUNE+ computes, at design time, the local
set points lspi of each function fi by considering: i) the user-defined SLAs for
entrypoint functions, ii) the dependencies among functions, and iii) the weight of
each function within the DAG. Intuitively, higher weights correspond to higher
set points since such functions are considered more complex compared to others.

In particular, the weight of a function fi is calculated by using the nominal
response time nrti and the nominal local response time nlrti: nrti and nlrti
are modeled, respectively, by using the formulas used to calculate rti (Eq. 2)
and lrti (Eq. 3). However, whereas rti and lrti are measured at runtime under
user-generated workloads, nrti and nlrti are measured during a profiling phase
while considering the system in a quiescent state (i.e., without saturation or
request queue). Each function is profiled with a static core allocation (e.g., 1
core) and by sending one request at a time, waiting for the previous to finish. To
avoid considering cold starts, the measurement starts after a warm-up period.
These two metrics are used to understand the complexity of functions and their
dependencies in a “controlled” state and are used to properly compute set points.

To explain how we calculate local set points, we employ the same application
described in Sect. 2 and Fig. 3 shows the main calculations. Functions f1 and f5
are depicted in light gray and are the two entrypoints of the application. For
the sake of simplicity, we consider all the dependencies as sequential and with
all multipliers mi,j equal to 1. Thus, we do not report the DAG annotations.

354 L. Baresi et al.

Let fi be an entrypoint function with a user-defined SLAi, and a set point
spi defined as in Eq. 1. In the example, only f1 has a user-defined SLA that is
equal to 90 ms. Since α is set to 0.5, the set point sp1 is equal to 45 ms. The
local set point lspi is defined as:

lspi = spi ∗ nlrti
nrti

(5)

Thus, it follows that, in the example, the local set point of function f1 is
equal to 21 ms. Moreover, for each function fj that is invoked by fi, the set
point spj is then defined as:

spj =
spi
mi,j

∗ nrtj
nrti

(6)

The setpoint spi is used to compute the local set point of fi and the set
points spj of all the dependencies. Given that spj is intended to consider a
single invocation, the calculation is divided by mi,j .

In the example, the dependencies of f1 are f2 and f3. This means that, ideally,
the sum of the local response time of f1 and the (total) response times of f2 and
f3 should be equal to set point sp1. Since f3 has no dependencies, its nominal
response time nrt3 is equal to its nominal local response time nlrt3. Intuitively,
since nrt3 is around 3 times lower than nlrt1, the set point of f3 (6 ms) is roughly
3 times lower than the local set point of f1 (21 ms). Instead, f2 depends on f4
and f5, and its set point sp2 is set to 18 ms with a nominal response time nrt2
equal to 6 ms. This means, in turn, that the sum of the local response time of
f2 and the response times of f4 and f5 should be kept equal to 18 ms.

Recursively, the local set points of each dependency are calculated by using
Eq. 5. For example, the set point sp2 is used to calculate the local set point of f2
(3 ms) along with the set points of f4 (6 ms) and f5 (9 ms). Note that the case of
a function without dependencies is the base case of the recursive procedure, and
its set point is equal to its local set point, such as for f3, f4, and f5. Finally, to
further optimize the resource allocation, the set points of parallel dependencies
(i.e., edges with the same source node and identifiers) are calculated as in Eq. 6.
However, after the calculation, the set point of each dependency is set to be equal
to the maximum of the parallel group. This means that even though siblings
could complete execution faster, they are slowed down with higher set points to
match the slowest function of the parallel group. This strategy does not affect
the overall response time of the application and allows for saving resources.

Proportional-Integral Control. After the previous steps, each function is pro-
vided with a local set point lspi. As in NEPTUNE, each function fi is equipped
with a PI controller. In NEPTUNE+, the controller for a function fi monitors
only the local response time lrti and allocates cores to meet lspi. Without any
synchronization and thanks to the computations above, if all the controllers are
able to meet their local set points, user-defined SLAs are fulfilled. The control
algorithm we used, adapted from NEPTUNE, is reported in Algorithm 1.

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 355

Algorithm 1. Core allocation
1: lrti ← getLocalResponseT ime(fi)
2: err ← lsp−1

i − lrt−1
i

3: P ← gainP ∗ err
4: I ← I + gainI ∗ err
5: cores ← P + I
6: cores ← min(coresMAX , max(coresMIN , cores))
7: allocateCores(fi, cores)

The procedure is invoked at every control period for each function instance
fi. The local response time (obtained at line 1) and the local set point are used
to compute error err. The higher the error is, the higher the mismatch between
the local set point and the actual measured local response time (line 2) is. The
proportional contribution (P) is equal to the proportional gain gainP multiplied
by err (line 3). The integral contribution (I) is the sum of the previous actions
and the error times the integral gain gainI (line 4). Both gainP and gainI are
tuning parameters of the controller and can be set using different well-known
heuristics [5]. The core allocation is computed as the sum of P and I (line 5)
properly scaled according to the allowed minimum (coresMIN) and maximum
(coresMAX) amount of cores (line 6). The allocation is enacted at line 7.

4 Evaluation

To evaluate NEPTUNE+, we compared it against NEPTUNE. A comprehensive
comparison of NEPTUNE against industrial competitors (i.e., K3S, Knative, and
OpenFaaS) is reported in our previous work [2] and demonstrated the advantages
of NEPTUNE over these industrial solutions.

We ran all the experiments on a MacBook Pro equipped with 4 cores and
16GB of RAM and running macOS Ventura (version 13.2.1). To test the two
systems, we relied on an existing simulator called RAS (Resource Allocation
Simulator) [3]. RAS was originally used to evaluate the performance of the con-
trol algorithms of NEPTUNE against industrial approaches (i.e., Amazon Web
Services, Google Cloud Platform, and Microsoft Azure). We extended the sim-
ulator4 in two ways: i) we adapted the code to support function dependencies,
and ii) we implemented the novel theoretical model and control algorithm.

The tests used three different applications. The first two are benchmarks
widely used in the literature [16], namely hotel reservation5 and sockshop6). The
first is a serverless application that mimics a hotel reservation website, whereas
the second is an online e-commerce application that exploits a microservice archi-
tecture that we converted to serverless functions [2]. Hotel reservation includes
four functions (2 entrypoints), and it is characterized by a DAG with an average

4 Source code available at https://github.com/deib-polimi/RAS/tree/dependencies.
5 https://github.com/vhive-serverless/vSwarm/tree/main/benchmarks/hotel-app.
6 https://github.com/microservices-demo/microservices-demo.

https://github.com/deib-polimi/RAS/tree/dependencies
https://github.com/vhive-serverless/vSwarm/tree/main/benchmarks/hotel-app
https://github.com/microservices-demo/microservices-demo

356 L. Baresi et al.

out-degree of 3 edges, an average in-degree of 1 edge, and all the dependencies
have type sequential. Sockshop includes 7 functions (5 entrypoints) with an aver-
age out − degree of 6 edges, an average in − degree of 1 edge, and one third
of the dependencies have type sequencial and two thirds have type parallel. We
also created a more complex application (complex), by synthesizing a DAG of
25 functions (6 entrypoints), with an average out-degree of 2 edges, an average
in-degree of 1 edge, and roughly balanced sequential and parallel dependencies.
We repeated each experiment 10 times. In each test, we simulated executions
of 20 minutes each, and for each function, we collected the average (μ) and the
standard deviation (σ) of three metrics: response time (RT) in milliseconds, core
allocation (C) in millicores, and percentage of SLA violations (V).

The tests employed workloads similar to the ones used to evaluate NEPTUNE
in [2,3]. In particular, each entrypoint function was stimulated with either a ramp
or a step workload. We employed ramps that start from 10 requests and added
one request every second up to 100 (as in [2]) and randomly generated steps
that varied the workload every 50 s in a range between 20 and 120 requests. We
also simulated bottlenecks by changing the random step to a number of requests
that ranges between 800 and 6000.

For NEPTUNE we set an SLA for each function, whereas for NEPTUNE+ we
only set them for entrypoints, since our approach is able to automatically cal-
culate the set points for all the other functions. For sock-shop, we employed the
same SLAs reported in the original NEPTUNE paper [2]. For hotel reservation
and complex application, we set the SLAs to double their nominal response times.
The nominal response times of hotel reservation were obtained by profiling each
function, while for complex application we generated them randomly.

We configured both NEPTUNE and NEPTUNE+ the same way. We
employed a value for α equal to 0.5 for each function with an SLA as in [2].
We derived the values of gainP and gainI through manual tuning (again, as
in [2]). To be sure that the simulator was aligned with realistic results and that
our modifications did not affect its accuracy, we executed a preliminary experi-
ment. We simulated the same tests on NEPTUNE as those reported in [2] with
application sockshop (i.e., same workload and configuration). We collected the
results and compared them against those reported in the paper. We observed
that on average the differences were minimal: 0.3% for response times and 4.3%
for core allocation.

4.1 Performance Without Bottlenecks

Table 1 shows the results obtained by NEPTUNE (N) and NEPTUNE+ (N+).
For the first two applications, the table lists the tested functions along with
their SLAs. For application complex, it only shows averages due to lack of space.
Functions marked with a ∗ are entrypoints. Row overall reports the averages
over all functions.

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 357

Fig. 4. Results for function order (sockshop).

If we focus on the part without bottlenecks, one can observe that NEP-
TUNE+ consistently outperforms NEPTUNE in many cases. For example, if
we consider function order in sockshop, NEPTUNE+ yields a significantly more
efficient resource allocation than NEPTUNE (788 millicores allocated by NEP-
TUNE+ against 1133 millicores allocated by NEPTUNE). The response time of
NEPTUNE+ (291.3 ms) is closer to the set point (300 ms with α ∗ SLA with
α = 0.5 and SLA = 600 ms) compared to the result obtained by NEPTUNE
(211.2 ms). This means that NEPTUNE+ does not need to over-provision CPU
cores to meet the user-defined SLA and only allocates needed resources. Overall,
with benchmark sockshop, NEPTUNE+ demonstrates a more efficient perfor-
mance by reducing required millicores from 510 to 388, that is, a 24% reduction
with only a small increase in average response time (85.6 vs. 63.1 ms) and no
SLA violations. Note that faster response times can be also obtained by NEP-
TUNE+ by simply lowering the set points.

The trend is similar with more complex applications (i.e., complex): NEP-
TUNE+ yields a more efficient allocation (3013 vs. 4627 millicores), with a 27%
improvement, no SLA violations, and response times that are comparable to
NEPTUNE’s ones.

Conversely, the two approaches provide similar performance with benchmark
hotel reservation, except for function search where NEPTUNE+ is slightly more
efficient in terms of core allocation. This can be attributed to the application’s
simple DAG and its limited amount of dependencies. This result demonstrates
that NEPTUNE+ does not introduce any performance degradation in scenarios
where dependencies are not a critical factor.

4.2 Performance with Bottlenecks

Table 1 also shows the results obtained when managing bottlenecks (created as
explained above). As for application hotel reservation, we raised the number
of requests for function profile, leading to a significant amount (around 47%)
of SLA violations obtained by both NEPTUNE and NEPTUNE+. Such a bot-
tleneck inevitably raises the response time of search, which directly depends

358 L. Baresi et al.

Table 1. Results without and with bottlenecks.

without bottlenecks with bottlenecks

f SLA RT V C RT V C

N N+ N N+ N N+ N N+ N N+ N N+

hotel reservation

search* 118 μ 56.6 62.6 0 0 327 282 65 78.2 0 0 2719 282

σ 0 0.1 0 0 0.2 0 0 0 0 0 4 0

profile* 36 μ 17.3 17.2 0 0 343 346 33 33 46.6 46.5 2285 2290

σ 0 0 0 0 0.2 0.2 0 0 0.1 0.1 0.7 0.7

geo 27 μ 12.9 12.8 0 0 243 245 12.9 12.8 0 0 243 245

σ 0 0 0 0 0.1 0.1 0 0 0 0 0.1 0.1

rate 34 μ 16.3 16.3 0 0 295 295 16.3 16.3 0 0 295 295

σ 0 0 0 0 0.2 0.2 0 0 0 0 0.1 0.1

overall µ 25.8 27.2 0 0 302 292 31.8 35 11.7 11.6 1386 778

sockshop

orders* 600 μ 211.2 291.3 0 0 1133 788 317.3 384.7 0 0 2093 788.3

σ 0.1 0 0 0 0 0.6 0.1 0.1 0 0 5.2 0.5

catalogue* 200 μ 50.6 72.4 0 0 126 88 50.6 72.4 0 0 126 88

σ 0 0 0 0 0 0.1 0.1 0 0 0 0 0.1

shipping 50 μ 15.4 20.6 0 0 414 312 15.4 20.6 0 0 414 312

σ 0 0 0 0 0 0.1 0 0 0 0 0 0.2

users* 50 μ 24.1 29.7 0 0 154 127 24.1 29.7 0 0 154 127

σ 0 0 0 0 0.1 0.1 0 0 0 0 0.1 0.1

payment* 50 μ 13.7 14.4 0 0 605 578 13.7 14.4 0 0 605 578

σ 0 0 0 0 0 0.6 0 0 0 0 0 0.5

cart-utils 200 μ 58.8 79 0 0 511 372 58.9 79 0 0 511 372

σ 0 0 0 0 0 0.4 0 0 0 0 0 0.3

cart-del* 200 μ 67.8 92 0 0 628 450 185.8 185.4 45.9 45.9 1527 1530

σ 0 0 0 0 0 0.3 0.1 0.1 0 0 0.2 0.2

overall µ 63.1 85.6 0 0 510 388 95.1 112.3 6.6 6.6 776 542

complex

overall µ 240.0 263.7 0 0 4627 3013 313.2 357.5 11.5 15.3 6530 3760

on profile. Since NEPTUNE+ only considers local response times, our solution
is able to properly manage this function by only allocating 282 millicores on
average, while NEPTUNE raises the average core allocation to 2719 millicores,
that is, some 90% more than NEPTUNE+. The response times are compara-
ble: 65 ms with NEPTUNE and 78.2 ms NEPTUNE+. The other functions, not
affected by the bottleneck, showed performance similar to the ones observed in
the experiments described in the previous section. Overall with this application,
NEPTUNE+ obtained a slightly higher average response time (35 ms vs. 31.8 ms)
and a 44% lower average core allocation (778 vs. 1386 millicores).

We observed similar results also with sockshop. In this case, we created a
bottleneck in function cart-del as demonstrated by the high number of viola-
tions obtained by the two approaches. The results reported for function order,

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 359

which depends on cart-del, clearly show the benefits of NEPTUNE+. While NEP-
TUNE+ results in a higher response time (384.7 vs. 317.3), it also significantly
reduces the number of cores used, and only allocates 788.3 millicores against
2093 (62% improvement). This is clearly shown in Fig. 4, where NEPTUNE’s
controller for function order is unstable due to the bottleneck in cart-del and
reaches a peak of some 4000 allocated millicores. In contrast, NEPTUNE+ keeps
its allocation roughly stable at around 800 millicores after the initial ramp.
Overall, as for sockshop, NEPTUNE+ obtained a core allocation that is almost
30% better (lower) on average than NEPTUNE with comparable response times
(equal SLA violations).

Application complex suggests that the more complex an application becomes,
the more efficient NEPTUNE+ is: 3760 vs. 6530 millicores, with a 42% improve-
ment at the cost of only 4.8% more SLA violations.

By taking into account function dependencies, NEPTUNE+ efficiently allo-
cates resources across diverse benchmarks and scenarios. Conversely, NEP-
TUNE, without dependency awareness, tends to over-provision resources. This
results in faster, yet less optimized, response times that only rarely lead to fewer
SLA violations. NEPTUNE’s behavior is partly due to its inability to maintain
set points, resulting in an over-speeding that is not beneficial in most of the cases.
Instead, NEPTUNE+ provides more precise control and offers a more convenient
trade-off between resource efficiency and response times. If faster response times
are required, NEPTUNE+ users can simply define stricter SLAs or lower the
value of α to obtain a more responsive system.

5 Related Work

The problem of managing microservices or serverless functions deployed on edge
infrastructures has been already studied in the literature [2,22]. Such approaches
tackle component placement, routing, and resource management, but only a few
of them take function dependency into account [8,15,19,23].

He et al. [15] introduce a novel approach for deploying microservices to edge
servers by taking into account their intricate dependencies with the goal of opti-
mizing response times. They do not consider resource allocation but only compo-
nent placement. Therefore, the amount of CPU cores to obtain a certain response
time is not optimized. In contrast, NEPTUNE+ considers the trade-off between
allocated resources and response times. They also do not consider parallel and
multiple invocations of the same components.

Deng et al. [8] and Xu et al. [23] propose solutions for optimizing the place-
ment at the edge of serverless functions with dependencies. They also take into
account network delays, stateful computations, and data transfers. Similarly,
Ashraf et al. [19] propose SONIC, a solution that aims to optimize the perfor-
mance and operation cost of serverless applications by deciding the best func-
tion placement for exchanging data. Applications are abstracted as DAGs as

360 L. Baresi et al.

in NEPTUNE+. These approaches select the best path for exchanging data by
considering data size, function dependencies, and network state. They are com-
plementary to NEPTUNE+ since they exploit dependencies for optimizing data
exchange and do not consider resource allocation.

Moving to runtime resource management [22,24], these studies either dis-
regard function dependencies entirely, as in the case of [22], or they utilize a
probabilistic approach to pre-allocate functions, such as [24]. For instance, Daw
et al. [7] introduce Xanadu, which uses a dependency DAG and a probabilistic
model to identify the most likely execution paths. To reduce the overhead of the
cascading cold-start of functions, it pre-allocates resources (i.e., containers) for
the most probable path in response to each function call.

Conversely, Wang et al. [22] present LaSS, a platform for managing the
latency of serverless computations. LaSS uses a dynamic resource allocation
strategy based on workload variations and a queuing model. A weighted fair-
share resource allocation strategy is employed to prevent overload and maintain
the desired response time. While this work makes a significant contribution by
mitigating SLA violations and over-allocation of resources, the authors do not
consider function dependencies, which could lead to inefficient allocations. Com-
pared to these solutions, NEPTUNE+ uses control theory to only allocate the
necessary resources to functions, based on the number of requests and defined
SLAs, and allows for a more efficient resource usage.

6 Conclusions

This paper presents NEPTUNE+, a dependency-aware resource allocation solu-
tion for serverless functions deployed on edge infrastructures. We extended NEP-
TUNE by developing a new theoretical model and control algorithm that exploit
dependencies to efficiently allocate CPU cores to serverless functions. The eval-
uation shows that NEPTUNE+ outperforms the original framework up to 42%
in terms of resource allocation. In the future, we will improve our solution by
also considering the placement of dependency-aware functions.

References

1. Balakrishnan, V.K.: Graph Theory, vol. 1. McGraw-Hill, New York (1997)
2. Baresi, L., Hu, D.Y.X., Quattrocchi, G., Terracciano, L.: Neptune: network-and

GPU-aware management of serverless functions at the edge. In: Proceedings of the
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pp. 144–155 (2022)

3. Baresi, L., Quattrocchi, G.: A simulation-based comparallelison between indus-
trial autoscaling solutions and COCOS for cloud applications. In: International
Conference on Web Services, pp. 94–101 (2020)

Dependency-Aware Resource Allocation for Serverless Functions at the Edge 361

4. Bhasi, V.M., Gunasekaran, J.R., Thinakaran, P., Mishra, C.S., Kandemir,
M.T., Das, C.: Kraken: adaptive container provisioning for deploying dynamic
DAGs in serverless platforms. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM (2021)

5. Borase, R.P., Maghade, D.K., Sondkar, S.Y., Pawar, S.N.: A review of PID con-
trol, tuning methods and applications. Int. J. Dyn. Control 9, 818–827 (2021)

6. Cassel, G.A.S., et al.: Serverless computing for internet of things: a systematic
literature review. Futur. Gener. Comput. Syst. 128, 299–316 (2022)

7. Daw, N., Bellur, U., Kulkarni, P.: Xanadu: mitigating cascading cold starts in
serverless function chain deployments. In: Proceedings of International Middle-
ware Conference. ACM (2020)

8. Deng, S., et al.: Dependent function embedding for distributed serverless edge
computing. Trans. Parallel Distrib. Syst. 33(10), 2346–2357 (2021)

9. El Ioini, N., Hästbacka, D., Pahl, C., Taibi, D.: Platforms for serverless at the
edge: a review. In: Zirpins, C., et al. (eds.) ESOCC 2020. CCIS, vol. 1360, pp.
29–40. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71906-7 3

10. Elgamal, T., Sandur, A., Nahrstedt, K., Agha, G.: Costless: optimizing cost of
serverless computing through function fusion and placement. In: ACM Sympo-
sium on Edge Computing, pp. 300–312 (2018)

11. EsParallelrachiari, S., Reilly, T., Rentz, A.: Tracking and controlling microser-
vice dependencies: Dependency management is a crucial parallelt of system and
software design. Queue 16(4), 44–65 (2018)

12. Fontana, F.A., Pigazzini, I., Roveda, R., Zanoni, M.: Automatic detection of insta-
bility architectural smells. In: International Conference on Software Maintenance
and Evolution, pp. 433–437 (2016)

13. Gadepalli, P.K., Peach, G., Cherkasova, L.A., Parallelmer, R.: Challenges and
opportunities for efficient serverless computing at the edge. In: Symposium on
Reliable Distributed Systems, pp. 261–2615 (2019)

14. Ghirotti, S.E., Reilly, T., Rentz, A.: Tracking and controlling microservice depen-
dencies. Commun. ACM 61(11), 98–104 (2018)

15. He, X., Tu, Z., Wagner, M., Xu, X., Wang, Z.: Online deployment algorithms
for microservice systems with complex dependencies. Trans. Cloud Comput. 11,
1746–1763 (2022)

16. Hossen, M.R., Mohammad, A.I., Ahmed, K.: Practical efficient microservice
autoscaling with QoS assurance. In: Proceedings of International Symposium on
High-Perf. Parallel and Distributed Computing. ACM, June 2022

17. Kjorveziroski, V., Filiposka, S., Trajkovik, V.: IoT serverless computing at the
edge: a systematic mapping review. Computers 10(10), 130 (2021)

18. Li, X., Kang, P., Molone, J., Wang, W., Lama, P.: KneeScale: efficient resource
scaling for serverless computing at the edge. In: International Symposium on
Cluster, Cloud and Internet Computing, pp. 180–189 (2022)

19. Mahgoub, A., Shankar, K., Mitra, S., Klimovic, A., Chaterji, S., Bagchi, S.:
SONIC: application-aware data passing for chained serverless applications. In:
USENIX Annual Technical Conference Forthcoming (2021)

20. Pinto, D., Dias, J.P., Ferreira, H.S.: Dynamic allocation of serverless functions
in IoT environments. In: International Conference on Embedded and Ubiquitous
Computing, pp. 1–8 (2018)

21. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. Software
35(3), 56–62 (2018)

https://doi.org/10.1007/978-3-030-71906-7_3

362 L. Baresi et al.

22. Wang, B., Ali-Eldin, A., Shenoy, P.: LaSS: running latency sensitive serverless
computations at the edge. In: Proceedings of International Symposium on High-
Perf. Parallel and Distributed Computing. ACM (2021)

23. Xu, Z., et al.: Stateful serverless application placement in MEC with function and
state dependencies. Trans. Comput. 72, 1–14 (2023)

24. Zuk, P., Rzadca, K.: Reducing response latency of composite functions-as-a-
service through scheduling. J. Parallel Distrib. Comput. 167, 18–30 (2022)

Distributing Quantum Computations,
by Shots

Giuseppe Bisicchia1(B) , Jose Garćıa-Alonso2 , Juan M. Murillo2 ,
and Antonio Brogi1

1 Department of Computer Science, University of Pisa, Pisa, Italy
giuseppe.bisicchia@phd.unipi.it, antonio.brogi@unipi.it

2 Quercus Software Engineering Group, University of Extremadura, Cáceres, Spain
{jgaralo,juanmamu}@unex.es

Abstract. Quantum Process Units (QPUs) are becoming more widely
accessible to the public. Nonetheless, they still are very susceptible to
noise and feature only a small amount of qubits, making it possible to
only execute short quantum computations. Facing this problem, several
approaches were proposed to make the most of the present situation,
either by distributing the Quantum load, sending different Quantum pro-
grams to different QPUs or by distributing Quantum program fragments,
by cutting a Quantum program into multiple smaller chunks. Here, we
propose a change of perspective. Due to the probabilistic nature of Quan-
tum Mechanics, it is usually required to iterate the execution of a Quan-
tum program numerous times or shots. We suggest considering the shots
dimension while determining how to distribute quantum computations.
In this paper, we design and develop a methodology to distribute the
shots of a Quantum program among many QPUs. Exploiting multiple
QPUs improves the resilience to potential QPUs failures. Our solution
also enables users to directly encode, through a proposed DSL, their own
distribution strategies according to their needs and considered scenarios,
offering an expressive and customisable approach. Finally, we showcase
a prototype implementation and discuss a life-like use case that can only
be addressed by relying on our approach.

Keywords: Quantum Computing · Service Engineering · Quantum
Software Engineering · Hybrid Classical-Quantum Services · Quantum
Cloud Computing · Distributed Quantum Computing

This work is supported by the QSALUD project (EXP 00135977/MIG-20201059) in
the lines of action of the Center for the Development of Industrial Technology (CDTI);
and by the Ministry of Economic Affairs and Digital Transformation of the Spanish
Government through the Quantum ENIA project call – Quantum Spain project, by the
European Union through the Recovery, Transformation and Resilience Plan – NextGen-
erationEU within the framework of the Digital Spain 2025 Agenda, and by UNIPI
PRA 2022 64 “hOlistic Sustainable Management of distributed softWARE systems”
(OSMWARE) project funded by the University of Pisa, Italy. This work is also part
of the Grant PID2021-1240454OB-C31 funded by MCIN/AEI/10.13039/50100011033
and by “ERDF A way of making Europe”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 363–377, 2023.
https://doi.org/10.1007/978-3-031-48421-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_25&domain=pdf
http://orcid.org/0000-0002-1187-8391
http://orcid.org/0000-0002-6819-0299
http://orcid.org/0000-0003-4961-4030
http://orcid.org/0000-0003-2048-2468
https://doi.org/10.1007/978-3-031-48421-6_25

364 G. Bisicchia et al.

1 Introduction

Quantum Computing has the potential to become the next revolution in Com-
puter Science [11]. An increasing number of researchers and practitioners are
focusing their efforts on understanding how to make the most of Quantum Com-
puters, or Quantum Process Units (QPUs). This trend is also driven by classical
Cloud Computing which, through its infrastructures, platforms and software,
makes easily and publicly available access to QPUs.

Despite the growing number of Quantum Computers in the market, cur-
rent QPUs are still in their early days. They are usually referred to as Noisy
Intermediate-Scale Quantum (NISQ) computers [3]. This highlights their sen-
sitivity to external interferences (noise), which can easily disrupt an ongoing
computation, and that their size cannot easily scale. Current NISQ QPUs can,
therefore, execute only Quantum programs featuring a small number of qubits
and consecutive steps, since long programs would be highly affected by noise.

Researchers are trying to figure out how to best exploit present QPUs by
studying how to best distribute Quantum Computations in the contemporary
NISQ scenario. Two main strategies are currently under study. The first propose
to distribute the Quantum load by sending different Quantum programs to dif-
ferent Quantum QPUs, possibly reducing the waiting time, the cost or the errors
(e.g., [7,17]). The second approach suggests cutting big quantum programs in
smaller fragments, of a suitable size for existing QPUs, so they can be successfully
executed on present NISQ QPUs and their results combined (e.g., [13,23]).

In this paper, we propose a different distribution strategy by offering a highly
expressive way to define custom distribution policies. It improves the resilience
of Quantum Computations over the possible failures of QPUs. At the same
time, it enables users to specify their run-time requirements for the distribution
process (e.g., execution and waiting time, cost, expected fidelity, energy foot-
print, and legal regulatory compliance). Furthermore, considering the current
highly heterogeneous quantum landscape, our approach is designed to hide and
abstract the complexity of managing and interacting with compilers, QPUs and
their cloud providers. Our distribution strategy leverages the restriction imposed
by the fundamental characteristics of quantum computing, which often call for
many iterations, or shots, of a quantum program in order to generate a proba-
bility distribution of the results. Exploiting such a need, we suggest that given a
quantum program, its shots can be spread across various QPUs. By distributing
its shots, users may also make full use of what the QPUs have to provide.

To achieve these goals, we created a tool called Quantum Broker that dis-
tributes quantum computations shot-by-shot, optionally using user-defined dis-
tribution strategies. The main responsibility of the Quantum Broker is to auto-
matically choose, given a quantum program and a set of requirements, the best
set of QPUs on which to execute such a program. At the same time, the Quan-
tum Broker also selects for each Quantum Computer the best compiler on which
to compile the program for that QPU and the right amount of shots to perform
for that specific pair of Quantum Computer and compiler. To help developers
easily and intuitively encode their requirements as distribution strategies we pro-

Distributing Quantum Computations, by Shots 365

pose a simple Domain Specific Language (DSL). Finally, by acting entirely on its
own when interacting with QPUs and choosing which quantum compilers will be
used to compile a given quantum program for a certain quantum computer, the
Quantum Broker is able to reduce and manage the heterogeneity of the exist-
ing quantum environment. The Quantum Broker is deployed as-a-Service to act
as a single virtual ingress point to the Quantum world, completely abstracting
and hiding the complexity of managing present very heterogeneous Quantum
Computers and quantum cloud platforms.

We illustrate the expressiveness of our solution by proving how existing quan-
tum load distribution strategies can be encoded with our DSL and performed
by our Quantum Broker . We also discuss a life-like use case that existing tools
cannot tackle but that can be solved by leveraging our proposal.

The rest of this article is divided as follows. Section 2 reviews the main con-
cepts of Quantum Computing employed in this paper. Section 3 describes more in
detail the current Quantum Cloud Computing landscape. Section 4 discusses the
design choices, architecture and behaviour of our Quantum Broker and describes
our DSL with which users can express their requirements. Section 5 illustrates
the expressiveness of our proposal and discusses a life-like use case. Finally,
Sect. 6 reviews the present state-of-the-art while Sect. 7 concludes the paper and
discusses some possible threats to validity and future work.

2 Quantum Computing Fundamentals

2.1 Quantum Computers

A Quantum Computer or Quantum Process Unit (QPU) is a device that lever-
ages Quantum Mechanical properties (such as superposition and entanglement)
to perform computations [12]. The computational unit of a Quantum Computer
is the qubit (as opposed to the classical bit). A qubit state can be 0, 1 or in a
superposition (i.e., linear combination) of both. In the latter, when measured it
will be only 0 or 1, with different probabilities according to its superposition.

Despite several QPU architectures being currently under study [1,9,14], from
now on, we focus our discussion on gate-based Quantum Computers [14]. We
chose such architecture being one of the most studied and popular. Gate-based
computers are already publicly available and users can interact with and test
them. In a gate-base QPU it is possible to interact with qubits through gates and
measurements. A quantum gate is an operation performed on one or more qubits
that does not destroy their superposition, but that can change their states. A
measurement instead is an operation that collapses a qubit’s superposition into
a 0 or 1 state, according to the probability associated with such superposition.

The qubit implementation technology and the number of featured qubits are
usually the main attributes used to characterise a QPU. However, there exist
other commonly used metrics to identify the major features, capabilities and

366 G. Bisicchia et al.

general behaviour of a Quantum Computer. Here, we briefly discuss the main
ones from the point of view of ordinary users1.

– T1 & T2: these are two different values that indicate time bounds over which
the qubits start losing the contained information (usually T2 < T1),

– Fidelity: how much the results of computation match the theoretical ones,
– Gate speed and fidelity: the time required to perform a single gate oper-

ation and how accurate it is in its execution,
– Readout time and fidelity: the same concepts of the gate speed and fidelity

but applied to the measurement operations,
– Gate connectivity or topology: all the available links among qubits.

2.2 Quantum Circuits

A Quantum Algorithm for a gate-based Quantum Computer is modelled as a
Quantum Circuit. A Quantum Circuit is a sequence of gates and measurements.
Several pieces of information can be associated with a circuit (e.g., the num-
ber of qubits or width, the longest sequence of executable gates or depth). Such
data offer an aggregated view of that circuit, providing a simple way to reason
over the properties of such an algorithm and easily estimate consumed resources
(e.g., its executing time, and its energy consumption) without having to exe-
cute it. Usually, developers produce an abstract Quantum circuit, that is then
compiled by a compiler in an actually executable Quantum circuit, and (possi-
bly) optimised for a particular QPU. The execution of a Quantum Algorithm
is inherently probabilistic. Therefore, usually, a Quantum Circuit is executed
several times. When qubits are measured, only a single output state is observed.
So at each shot (i.e., a single execution of a quantum circuit), we obtain only
one possible result. Thus, running the same Quantum Algorithm several times
allows building a distribution of output states, each of them associated with the
frequency it appeared in the measurements. So, the result of an execution of a
Quantum Circuit is that distribution after having executed all the shots.

3 Quantum Cloud Computing

Quantum computers are usually publically accessible through the Cloud. Cur-
rently, Quantum Manufacturers have two ways to offer QPUs. Some of them
developed their own Cloud to make accessible their own QPUs (e.g., Rigetti,
IonQ), while others rely on already existing Clouds (e.g., AWS, Azure). Actually,
most of them decided to exploit both possibilities by having their own cloud but
also making available their QPUs in existing more popular and general Clouds
(e.g., IonQ and Rigetti computers are also available on AWS and Azure). Finally,
some already existing Cloud providers (e.g., IBM) decided also to develop their
own QPUs. Additionally, there is no agreement for the manufacturers on the
1 The presentation is deliberately simplified and the actual physical definitions or

motivations are not discussed due to lack of space.

Distributing Quantum Computations, by Shots 367

information to measure and associate with a Quantum Computer and, for the
Cloud providers, on which data and how to report it for their users.

We can then observe a high level of complexity and heterogeneity in the
QPUs, how they are offered to the public and the accessible information. In
such a context, it can be very difficult for a developer to decide on which Quan-
tum Computer a given Quantum Algorithm should be executed. Moreover, the
Quality of Service associated with each QPU on a specific cloud can be different,
according to the intrinsic features of the computer and of the cloud providers.
Finally, such information can also vary over time both for the cloud providers
and for the computers themselves (e.g., their fidelity varies over time).

There are also various Quantum compilers (e.g., Qiskit, Quilc, Cirq), some
of them dedicated to QPUs of a certain Quantum Manufacturer, others more
general. Each compiler can accept as input only a subset of the available Quan-
tum languages and can output a circuit in only some languages. Moreover, the
compiled circuit can be also optimised for a specific QPU. Thus, even a single
circuit for a specific QPU could be compiled by different compilers (with different
options). If a target QPU is not selected, instead, the number of combinations
of compiler, options and target QPU increases even more. Currently, all the pro-
posals to overcome the mentioned limitation are either focused on the selection
of the best Quantum Computer to execute all the shots for a given Quantum
Program or on finding the best way to cut a Quantum Circuit, so as to have
smaller fragments that can be performed on available QPUs.

In this paper, we propose an alternative approach by considering three other
factors. (1) The possibility to select more than one Quantum Computer and
spread the shots of a Quantum Program among them, (2) the possibility for
the users to define their own run-time requirements on Quantum Computers,
compiled circuits and distribution of shots to be allowed and, (3) the possibility
for the users to prioritise the valid distributions so to select the best one.

4 Distributing Quantum Computations Shot-by-Shot

The Quantum Broker is designed to apply a shot-wise approach to the problem
of Distributing Quantum Computations. Given a circuit and the number of shots,
multiple independent QPUs receive the request to execute such a circuit with a
fraction of the total amount of shots. A shot-by-shot distribution improves the
circuit execution resilience to QPUs failures. When a QPU fails the whole execu-
tion of all requested shots is lost. If only a QPU is targeted for the computation,
then all the results are lost. On the other hand, if a many-QPU execution is
performed, then only a fraction of the whole results is lost and the remaining
data can be enough to be significant.

Also, when multiple QPUs are running at the same time, each of them will
eventually output the final distribution of its computation. Due to the differ-
ent characteristics of QPU architectures and cloud providers, such data will be
available at different moments. Thus, our Quantum Broker whenever receiving a
distribution by a QPU immediately publishes it as partial distribution, merging

368 G. Bisicchia et al.

them with the ones already available. In such a way, users can access partial data
even before the termination of the last shot. Partial distributions also allow users
to speed up the execution time of their whole application by making it possible
to make some”early” decisions while getting partial results. For instance, in a
Variational Quantum Algorithm [5] the next iteration could be triggered when
a certain fraction of shots have completed their execution.

Our approach also features expressiveness and customisation, thanks to the
decoupling of the distribution policies from the Quantum Broker behaviour.
Users can specify their own distribution policies, through our DSL, adapting
the selection process to their needs, applications and considered scenarios. The
proposed DSL is, indeed, powerful enough to model a vast category of user
requirements but also simple to use, relying only on a few main concepts.

Users can easily specify their distribution policies since the Quantum Broker
is designed to abstract and hide all the complexity of Quantum Cloud Com-
puting. Users have only to submit one circuit that is automatically translated,
compiled and optimised in multiple compiled circuits by different compilers with
different options and targeting different QPUs (as in [18,20]). Furthermore, both
the compiled circuits and QPUs data are modelled in an abstract and uniform
way so as to easily define policies on them.

4.1 Running the Quantum Broker

The Quantum Broker2 is implemented in Answer Set Programming (ASP, a fully
declarative logic programming language specialised for search and combinatorial
problems) [4] and Python3. Through ASP we execute the decision algorithm to
generate a good distribution, while the Quantum Broker leverages Python3 for
the classical pre and post-processing of the data, to collect the user requests and
to interact with the Quantum Providers. As illustrated in Fig. 1, the Quantum
Broker is composed of several components and exploits the QPUs’ manifests
contained in a repository managed by the QPUs Scraper .

The QPUs Scraper is in charge of periodically collecting all the available
information on the QPUs, by interacting with the Cloud providers (through the
QPUs’ APIs and web pages) and reporting them in a uniform manifest, manifests
are designed to merge in a single format the differences in the retrieved data.

As for the Quantum Broker , when a request is received, the Circuit Analyser
first compiles the input circuit with all the available compilers for which at least
a Quantum Computer is online. Given the input circuit language, if a compiler
does not support such language the input circuit is first translated into a sup-
ported one (as in [18]). Each compiled circuit is then analysed and the relevant
information, required by the Control Plane to perform the decision process (e.g.,
circuit’s depth and width, number of 1- and 2- qubit gates), is extracted. Once

2 The full code, comprising the use cases, examples of QPUs manifest and a
detailed explanation of our DSL are available at https://github.com/di-unipi-socc/
QuantumBroker.

https://github.com/di-unipi-socc/QuantumBroker
https://github.com/di-unipi-socc/QuantumBroker

Distributing Quantum Computations, by Shots 369

Fig. 1. A black box view of the Quantum Broker .

all the compiled circuits data are available, the Control Plane encodes the infor-
mation of the QPUs manifests, the circuits data and the user requirements into
a set of ASP facts, rules and constraints. Some default constraints (e.g., a valid
Quantum Computer must feature at least the same number of qubits required by
the user) and metrics (e.g., the cost of a distribution) are embedded by default
on the Quantum Broker decision process. Then, the ASP program is launched
to generate a set of valid distributions, ranking them according to the order of
the user-defined metrics in the requests. Finally, the Data Plane starts send-
ing the requests to the different Quantum providers and waits for the answers.
Whenever a new response is received it updates the partial distributions making
it available for the users.

Through this methodology, it is possible to clearly decouple the Control Plane
and the Data Plane of the Quantum Broker . The Control Plane is in charge of
receiving updates on the Quantum Computers status and the user requests, on
the other hand, the Data Plane actuates on the Control Plane determined dis-
tribution. This process is completely application-independent and can be easily
customised by the users, allowing them to express different requirements depend-
ing on the managed applications and the considered scenarios.

4.2 Modelling a User Request
Users interact with the Quantum Broker through a JSON object containing all
the run-time requirements. Figure 2 shows a simple example of such a request.

A request contains the following data:

– directives: a set of directives related to the Quantum Broker execution. They
are preceded by a @ (e.g., @time limit, which represents the maximum time
limit within which the user wants the distribution to be computed);

– shots: the number of shots the user requires to be executed;
– granularity: the level of detail with which the Quantum Broker can dis-

tribute shots (e.g., if 100 then the Quantum Broker assigns the shots to each

370 G. Bisicchia et al.

Fig. 2. A simple example of user request with run-time requirements.

Quantum Machine in blocks of 100 shots). A larger granularity speeds up
the reasoning time, while a smaller one makes the distribution more precise.;

– metrics: the user can define its own custom metrics, asking the Quantum
Broker to compute and use those metrics in its decision process (e.g., counting
the number of machines which have assigned at least one shot, computing the
total waiting time by considering both the expected waiting and execution
times). In such definitions, it is possible to use also other existing metrics or
Quantum Computer manifests’ data. To define metrics the users can decide
to use a regular mathematical formula or can use some predefined ones e.g.,
count/sum/maximum/average/etc. of a given formula;

– optimise: users can also rank the metrics so that, if several alternative dis-
tributions are possible, the one that minimises/maximises a certain metric is
chosen (and in case of a tie the second metric is considered, and so on);

– constraints: users can constrain some QPUs, compiled circuits, distributions
or metrics to be equal/larger/smaller/... of a given value (e.g., the qubit
technology must be superconductive, the maximum waiting time must be
under 3 h, each distribution must features at least 100 shots per QPU and
the selected circuits must have a maximum depth of 40). Some manufacturers
and providers may decide not to disclose some QPU’s data, so the user can
declare whether to accept (i.e., default = true) or discard (i.e., default =
false) a QPU without such information in its manifest.

– other constants: users can freely add as many constants as they want,
such values (e.g., max cost and max time) are then mapped as facts in the
distribution policy and can be used inside metrics and constraints.

Distributing Quantum Computations, by Shots 371

Users have to deal with two main concepts: metrics and constraints. They
offer a complimentary, declarative way to reason over distributions. Metrics allow
users to evaluate distributions by assigning a set of values to them, representing
how good is for that user such distribution. Constraints, instead, allow users
to filter out all the distributions that do not satisfy some user requirements,
independent of how good they are from the point of view of the metrics. However,
users can use also metrics inside the constraints to express even more complex
policies. Finally, if several distributions are available they can be ranked so as
to choose the best one according to the user’s needs. In this way, users have a
flexible, high-level model to declare their needs, requirements and preferences on
the run-time execution of their Quantum Algorithms.

5 Use Cases

5.1 Load Distribution
Here, we consider the hard-coded load distribution policies implemented by exist-
ing solutions like the NISQ Analyzer [17] and the Quantum API Gateway [7], two
Quantum load distribution tools. We selected these two tools because, among the
strategies for the Quantum load distribution they are those which offer higher
expressiveness and flexibility. We show that not only our Quantum Broker is
able to perform the same strategies, but by considering the shots distribution,
such policies become more flexible and resilient.

The strategy implemented by the NISQ Analyzer [17] considers both the
QPUs and the possible compiled circuits selecting the best pair that most sat-
isfies the users. Briefly, the policy first selects, based on a repository of possible
circuit implementations, all of them which satisfy the selection rule associated
with each implementation. Then, given a compiled circuit, all the Quantum
Computers which have at least the same number of required qubits, support the
circuit’s depth and the used Software Development Kit (SDK) are chosen. If
more combinations of Quantum Computers and compiled circuits are available,
the users have to manually select the best one.

As for the Quantum Broker , the circuit implementations selection phase is
not required as the Circuit Analyser automatically generates all the possible
compatible implementations leveraging the available SDKs and compilers. As
for the QPUs selection, all the controls performed are already present in the
default metrics and constraints offered by the Control Plane. So, in such a case,
users are not required to input any more policies. However, the best combination
is automatically chosen. Users can include their custom metrics to rank the valid
combinations. Finally, given the shot distribution perspective performed by the
Quantum Broker , multiple combinations of circuits and QPUs can be selected
at the same time improving the resilience.

The Quantum API Gateway [7] does not consider different compilers and
circuits implementation, but reasons on a specific circuit, finding for it the best
QPUs on which to execute all the shots. Its policy, however, allows not only
the selection of a suitable Quantum Computer but in case of multiple options
determines the best one automatically. First, the Quantum API Gateway checks

372 G. Bisicchia et al.

the number of required qubits, that the cost is under a user input threshold and
that the QPU is online. Finally, If multiple Quantum Computers are available
the users can select to choose the cheapest or the fastest one. Also, in this case, all
the checks are natively performed by the Control Plane’s default rules. However,
the ranking process is not included, but we can express such a policy as a metric.

Fig. 3. Quantum API Gateway ’s distribution policy [7] implemented with our DSL.

A possible request embedding the Quantum API Gateway ranking policy is
illustrated in Fig. 3. Users specify the number of shots, the cost threshold (i.e.,
max cost) and a priority value between 0 and 100. Indeed, the Quantum API
Gateway allows users to choose only the cheapest (priority = 0 or the fastest
priority = 100). However, with the Quantum Broker we can leverage its ability
to distribute the shots to have fine-grained management of the users’ requests,
enabling them to ask for a more nuanced policy in which it is possible to express
also intermediate values of ”speed” and ”cost”. Our metric cost time metric
(that will be minimised), indeed, multiply the total execution time by the priority
value and the total cost by 100 − priority. However, with priority equal to 0 or
100 we have the same exact Quantum API Gateway ’s behaviour.

Even in this case, we can have more resilient output by exploiting multiple
QPUs to distribute the shots. We can enforce such behaviour by asking to max-
imise the used computers metric3. In such a case, the Quantum Broker finds
among the distributions with the minimum value for the cost time metric met-
ric, the one that exploits the largest number of QPUs. We can also play more
with this logic, asking also to select the combination that, among the ones with
the same minimum cost time metric value and exploiting the same maximum
number of QPUs, spreads most fairly the shots among the Quantum Computers
(i.e., shots faireness).

5.2 Green Quantum Computing and GDPR

Here, we consider a life-like use case that cannot be tackled by existing proposals
based on hard-coded distribution policies but that can be solved with our Quan-
tum Broker . The proposed use case considers three main requirements for our
3 used computers counts the number of QPUs in the distribution and is predefined.

Distributing Quantum Computations, by Shots 373

Fig. 4. Possible solution to the “Green Quantum Computing & GDPR” use case.

Quantum application. (R1) Users do not want to use Quantum simulators, (R2)
due to the restriction imposed by the European General Data Protection Reg-
ulation (GDPR), the quantum computations must be performed in Quantum
Computers located in Europe, and (R3) because of the ever-increasing energy
concerns the developers want that their application has the smallest ecological
footprint possible. Figure 4 shows an excerpt of a possible solution for our use
case. To face requirements R1 and R2 we added two constraints. The first spec-
ifies that the QPUs technology (e.g., superconductive, trapped ions, simulator)
cannot be a simulator. The second, instead, specifies that the region in which
the Quantum Computer is located must be in Europe, which is a constant (i.e.,
user region) that can be changed to be adapted to different regulations.

We solved requirement R3 through metrics. In detail, we implemented a met-
ric total energy cost which is the energy cost of an entire distribution, calcu-
lated by summing up the contributions of each selected pair of QPU and compiled
circuit for which at least one shot is assigned. The energy cost of a triple (M,

374 G. Bisicchia et al.

C, S), where M is the selected Quantum Machine, C is the selected compiled
circuit and S is the number of shots assigned to that pair, is then computed
by the metric energy cost. We have computed the energy cost of each triple
for each considered quantum technology, following the formulas reported in [10].
In Fig. 4, for space reasons, we show only two of them, for the superconductive
and neutral atoms QPUs. Finally, we first minimise the execution time, then the
energy cost and eventually we also try to enforce the most resilient distribution
by selecting the distribution that maximises the number of QPU and distributes
most fairly the shots (among those that minimise the other metrics).

As a final remark, note that the considered use case is completely independent
of the actual quantum application and circuit considered, and it is, thus, fully
general. In fact, the performed circuit can also be a fragment of a larger quantum
program. Moreover, the Quantum Broker is inherently customisable, so such
distribution policy can be easily extended, updated or re-used in other scenarios
also adding further metrics and constraints.

6 Related Work

To the best of our knowledge, our proposal is the first work facing the problem
of distributing quantum computations with a shot-wise approach. Therefore, in
this section, we revise existing solutions working on that problem through the
load or fragments dimensions.

Works focusing on distributing the Quantum load propose to, given an input
Quantum program, select the best QPU on which to execute all the shots.

In [7], the authors propose the Quantum API Gateway, a tool that given
as input a Quantum circuit, automatically determines the best (single) QPU
through a decision process that involves the computer’s architecture (i.e., gate-
based or annealing [9]) and circuit’s width. Users can also specify if the Quantum
API Gateway must select the fastest or the cheapest available solution.

Instead, the NISQ Analyzer [17] determines the best single pair of compiled
circuits and QPUs. The circuit is selected among those available in a repository of
quantum circuit implementations and filtered through a selection rule associated
with each implementation, provided by the circuit’s developer, and based on the
actual input data. The best pair is then determined considering the used Software
Development Kit (SDK) and the circuit’s width and depth. However, if multiple
combinations are available the user has to manually select the preferred one.

Several extensions have been developed by the NISQ Analyzer ’s authors,
such as to compare the output of different compilers given an input circuit
and a Quantum Computer [18], or to directly compile through the available
SDKs the input circuit and to boost such compilation process by discarding,
leveraging Machine Learning (ML) models, compilers and Quantum Computers
before the compilation of the input circuit [21]. Other extensions regard ranking
compiled circuits for different QPUs through Multi-Criteria Decision Analysis
methods [20] and even optimising the process through ML [19]. In detail, in [20]
the authors propose to rank the pairs of QPUs and compiled circuits accord-
ing to the users’ requirements. However, the requirements users can express are

Distributing Quantum Computations, by Shots 375

limited to only assigning weights to some specific QPUs and compiled circuits
aspects (e.g., the gates errors and the circuit depth) while in our solution users
can express also various custom metrics, even domain-specific (e.g., the QPU
energy consumption or the execution cost), and high-level custom constraints
(e.g., GDPR constraints). Furthermore, our approach differs from the idea of
using the tool of [20] to select the first best pairs, because our Quantum Broker
selects the best combination of pairs of QPUs and compiled circuits, consid-
ering the combination as a single indivisible unit and computing metrics and
constraints for it. So usually happens that the best combination can differ from
selecting the best single pairs. Moreover, the distribution of the shots among
the pairs is also taken into account, so even for the same set of pairs different
distributions of the shots can be evaluated very differently.

With a different approach, balancing the estimated fidelity and the expected
waiting time, [16] proposes a quantum job scheduler for selecting the best QPU.
[8], instead, faced the problem of how to integrate Quantum Computing into
a classical enterprise cloud system. To choose the best single QPU the authors
proposed to select the one with a compatible amount of qubits and the short-
est waiting queue. In [15], the authors proposed a framework to automatically
predict, given a circuit, the best combination of Quantum Computers, compiler
and compiler options considering the gate and measurement operations fidelity.

Finally, it is worth observing that our proposal of distributing quantum com-
putations by shots differs from the notion of session of IBM Quantum4, where a
session is a collection of jobs that can be grouped and jointly prioritised by the
(same) quantum computer’s job scheduler.

Works focused on distributing Quantum fragments propose given a circuit,
usually too big to be successfully executed on present NISQ computers, to “cut”
it into smaller fragments which can be actually performed in current QPUs.

In [23] the authors proposed CutQC, a scalable hybrid approach that cuts
Quantum circuits and distributes them onto quantum (i.e., QPU) and classical
(i.e., CPU or GPU) platforms for co-processing. In [13], instead, the authors
suggested using randomised measurements and classical communication to coor-
dinate measurement outcomes and state preparation to express the output state
of a large circuit as a separable state across distinct computers. Working in a dif-
ferent context, in [22], the authors proposed to distribute a large Quantum circuit
over a homogeneous network of QPUs. Finally, with a different approach, [22]
proposes to distribute a Quantum circuit over a homogeneous network of QPUs
minimising the quantum communication cost.

7 Conclusions

In this paper, we suggested distributing the quantum computations among mul-
tiple independent QPUs shot-by-shot and enabled users with a DSL to express
their run-time requirements as distribution policies. Such an approach improves
the resilience of the distribution process to QPUs failure. Furthermore, it enables

4 https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/sessions/.

https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/sessions/

376 G. Bisicchia et al.

users with partial distributions, which can be used both to furtherly increase
the resilience of their whole application and to speed up its execution, with-
out having to wait for all the shots. To the best of our knowledge, our work is
the first proposal to tackle the problem of distributing quantum computations,
across multiple QPUs, with a shot-by-shot logic. Our Quantum Broker is also
the first quantum distributing tool, as far as we know, enabling users to fully
customise their distribution policies. Indeed, in the existing literature, we found
only hard-coded solutions. We have illustrated the expressiveness of our proposal
by comparing it with the most expressive tools already present in the literature
and proving how our Quantum Broker can implement their policies and make
them more resilient and general by leveraging the shot-by-shot distribution app-
roach. Moreover, we have presented a life-like use case that can not be tackled
by existing proposals but that can be solved by our Quantum Broker .

Nonetheless, in our proposal, we identify three main limitations. The first is
about the behaviour of the Circuit Analyser which requires translating, compil-
ing and optimising the input circuit numerous times to build the set of avail-
able compiled circuits. However, such limitation is present in almost all the
existing works which consider multiple compilers and circuit implementations
(e.g., [16,18]). The second limitation regards the proposed DSL. Such a lan-
guage is based on ASP and, in some cases, a minimum knowledge of ASP syntax
and semantics is required to build custom metrics. We plan to investigate if it is
possible to define a syntax completely independent from that of ASP. Nonethe-
less, users are required to know such syntax and some basic information about
the functioning of a Quantum Computer and the quantum cloud ecosystem.
Therefore, we want also to build a repository containing pre-defined metrics and
constraints that developers can easily compose and plug in their requests.

Finally, the last threat can be identified in the biases (i.e., the noise patterns
of the QPUs) on the final distribution that execution on multiple QPUs can
produce. However, in [2] the authors noticed that recombining noisy fragments
yields overall results that can outperform the results of an execution without
fragmentation. Based on their discovery, we believe that employing multiple
Quantum Computers should reduce the overall bias, with respect to relying on
a single QPU, in a similar manner. We plan to verify such a hypothesis and also
to study how error mitigation techniques can fit into our approach.

Starting from our proposal different future research lines can be undertaken.
The user request model can be enriched to improve its expressiveness. It could
be interesting to provide a repository of pre-defined constraints and metrics that
users can simply use as plugins in their requests. Furthermore, it could be inter-
esting to include some Machine Learning processes by adding forecasting capa-
bilities. Moreover, the prototype and its possible extensions could be actually
executed in real case scenarios, also comparing its performance with the other
existing works. Finally, our proposal fits very well in the Cloud-Edge Quantum
Continuum paradigm [6], in which an even larger infrastructure of heterogeneous
Quantum Computer is available. In this scenario, indeed, it could be interesting
and useful to have a tool capable of managing such complexity and heterogeneity
trying to exploit the quantum computational power in the best way.

Distributing Quantum Computations, by Shots 377

References

1. Albash, T., et al.: Adiabatic quantum computation. Rev. Mod. Phys. 90(1), 015002
(2018)

2. Ayral, T., et al.: Quantum divide and compute: hardware demonstrations and
noisy simulations. In: 2020 IEEE ISVLSI, pp. 138–140 (2020)

3. Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys.
94(1), 015004 (2022)

4. Bonatti, P., et al.: Answer set programming. 25 Years GULP, pp. 159–182 (2010)
5. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644

(2021)
6. Furutanpey, A., et al.: Architectural vision for quantum computing in the edge-

cloud continuum. CoRR arxiv:2305.05238 (2023)
7. Garcia-Alonso, J., et al.: Quantum software as a service through a quantum API

gateway. IEEE Internet Comput. 26(1), 34–41 (2022)
8. Grossi, M., et al.: A serverless cloud integration for quantum computing (2021)
9. Hauke, P., et al.: Perspectives of quantum annealing: methods and implementa-

tions. Rep. Prog. Phys. 83(5), 054401 (2020)
10. Jaschke, D., et al.: Is quantum computing green? an estimate for an energy-

efficiency quantum advantage. Quant. Sci. Technol. 8(2), 025001 (2023)
11. Kim, Y., et al.: Evidence for the utility of quantum computing before fault toler-

ance. Nature 618(7965), 500–505 (2023)
12. Ladd, T.D., et al.: Quantum computers. Nature 464(7285), 45–53 (2010)
13. Lowe, A., et al.: Fast quantum circuit cutting with randomized measurements.

Quantum 7, 934 (2023)
14. Michielsen, K., et al.: Benchmarking gate-based quantum computers. Comput.

Phys. Commun. 220, 44–55 (2017)
15. Quetschlich, N., et al.: Predicting good quantum circuit compilation options. CoRR

arxiv:2210.08027 (2022)
16. Ravi, G.S., et al.: Adaptive job and resource management for the growing quantum

cloud. In: IEEE QCE, pp. 301–312 (2021)
17. Salm, M., et al.: The NISQ analyzer: automating the selection of quantum com-

puters for quantum algorithms. In: SummerSOC 2020, pp. 66–85 (2020)
18. Salm, M., et al.: Automating the comparison of quantum compilers for quantum

circuits. In: CCIS, vol. 1429, pp. 64–80 (2021)
19. Salm, M., et al.: Optimizing the prioritization of compiled quantum circuits by

machine learning approaches. In: CCIS, vol. 1603, pp. 161–181 (2022)
20. Salm, M., et al.: Prioritization of compiled quantum circuits for different quantum

computers. In: IEEE SANER, pp. 1258–1265 (2022)
21. Salm, M., et al.: How to select quantum compilers and quantum computers before

compilation. In: CLOSER, pp. 172–183 (2023)
22. Sundaram, R.G., et al.: Efficient distribution of quantum circuits. In: LIPIcs, vol.

209, pp. 41:1–41:20 (2021)
23. Tang, W., et al.: Cutting quantum circuits to run on quantum and classical plat-

forms. CoRR arxiv:2205.05836 (2022)

http://arxiv.org/abs/2305.05238
http://arxiv.org/abs/2210.08027
http://arxiv.org/abs/2205.05836

Energy-Efficient Task Offloading
with Statistic QoS Constraint Through
Multi-level Sleep Mode in Ultra-Dense

Network

Hongfei Li1, Chongwu Dong2(B), and Wushao Wen1(B)

1 School of Computer Science and Engineering, Sun Yat -sen University,
Guangzhou, China

lihf67@mail2.sysu.edu.cn, wenwsh@mail.sysu.edu.cn
2 Cyberspace Institute of Advanced Technology, Guangzhou University,

Guangzhou, China
dongchongwu@gzhu.edu.cn

Abstract. While ultra-dense networks (UDN) greatly enhances network
performance, the extensive deployment of small base stations poses sig-
nificant energy consumption challenges. Traditional ON/OFF base sta-
tion sleep schemes can alleviate some energy issues. Still, complete shut-
downs and lengthy reactivation times of base stations lead to coverage
gaps in the network, severely impacting the quality of service delivered
to users. In this paper, we introduce a multi-level Sleep Mode (SM)
technique, focusing specifically on energy-efficient task offloading in the
context of Mobile Edge Computing (MEC) scenarios. To ensure the per-
formance of delay-sensitive services in user devices, we employ stochastic
network calculus (SNC) theory to analyze the stability of the two-stage
system. Combining the SNC-derived delay bounds, we propose a Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) based approach,
which we refer to as SNC-MADDPG. This approach aims to minimize
long-term system energy consumption. Numerical results demonstrate
that the proposed algorithm achieves more significant energy savings
under reliability constraints than other optimization algorithms. Fur-
thermore, the results indicate that the multi-level sleep mode outper-
forms the traditional ON/OFF base station sleep schemes in meeting
the reliability requirements of delay-sensitive applications.

Keywords: Ultra-Dense Network · Mobile Edge Computing ·
Multi-level Sleep Mode · Stochastic Network Calculus · Deep
Reinforcement Learning

1 Introduction

To further improve energy efficiency for MEC in UDN, the technology of multi-
level sleep mode (SM) has been proposed [15]. In [3], multi-level sleep mode
consists of four different SM levels, each characterized by activation/deactivation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 378–392, 2023.
https://doi.org/10.1007/978-3-031-48421-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_26

Energy-Efficient Task Offloading with Statistic QoS 379

time and minimum sleep duration. Unlike the traditional binary sleep mode,
multi-level sleep mode can adapt to more complex network traffic variations and
achieve more significant energy savings. Multi-level sleep mode allows small BSs
to transform gradually to the deepest sleep level. It can quickly restore to an
operational state with lower restart delays, meeting the high-reliability demands
of latency-sensitive critical applications for edge computing.

In the current research, significant results have been achieved in reducing the
energy consumption of the base station by introducing the Multi-level BS sleep-
ing strategy. In [11], the authors investigated the trade-off between energy effi-
ciency and service quality and proposed a multi-level sleep management method
based on the SARSA algorithm. In [12], the authors proposed a multi-level base
station SM selection strategy based on online reinforcement learning. This strat-
egy selects the optimal SM based on new information, such as evaluation time
and BS load. In [5], the authors analyzed the effect of multi-level sleep mode in
the architecture of renewable energy systems. The blocking probability at MBS
is given to instruct the traffic load distribution in UDNs. In [4], the authors
proposed one energy provision combing renewable energy and multi-level SM.
In [14], the authors proposed a framework to dynamically change the configu-
ration of multi-level SM settings. These studies both illustrate the advantage of
multi-level SM compared with traditional sleeping strategy.

To guarantee the service performance of task offloading in MEC, current
research mainly focuses on single-stage reliability assurance, such as task offload-
ing reliability [17] or edge node processing reliability [21]. Single-stage analysis
neglected the propagation of failures between different stages and thus failed
to ensure the accuracy of system reliability assessment. Several recent studies
have modeled and analyzed the two-stage process of user task offloading and
edge server processing [2,8,20]. However, these studies primarily focus on aver-
age latency metrics [1,2,17], which do not accurately reflect the quality of user
services in complex scenarios. Meanwhile, the existing two-stage process research
does not consider the effect of the uncertainties incurred by base sleep mecha-
nisms, where BSs may be in a sleep state and unable to connect to users, and
edge servers may fail to complete user tasks promptly.

Traditional approaches use convex optimization theory or heuristics to con-
trol the operation of BS energy-saving mechanism to reduce the transient energy
consumption of the system [9,16]. However, due to the dynamic complexity of
the environment, much of the information in the system cannot be known in
advance, making the traditional convex optimization approach inappropriate.

To sum up, motivated by the advantage of multi-level sleep mode in UDN,
this paper investigates the effect of multi-level sleep modes on the reliable per-
formance of delay-sensitive services in user devices for task offloading in MEC.
Unlike previous studies, we use the stochastic network calculus approach to ana-
lyze the service reliability of the two-stage process and investigate the degrada-
tion of service quality caused by multi-level SM. Instead of focusing on determin-
ing the sleep level of BSs, we consider the association between users and BSs and
propose a SNC-MADDPG algorithm based on our analysis of service reliability.

380 H. Li et al.

This approach effectively mitigates the problem of exploding action space dimen-
sionality and employs a centralized training and distributed execution (CTDE)
framework to facilitate information sharing among agents during training. We
conduct extensive simulation experiments on the proposed algorithm to evaluate
the performance of the algorithm and validate our theoretical derivations. The
results demonstrate superior energy savings compared to baseline algorithms.

The remainder of the paper is summarized as follows. Section 2 describes the
system model and presents the target problem. Section 3 analyzes the theoretical
service performance bounds. Section 4 develops the deep reinforcement learning
algorithm. Section 5 provides our experimental results. Section 6 concludes the
work of this paper.

2 System Model

Fig. 1. Illustration of the heterogeneous 5G MEC-enabled UDN system.

2.1 System Overview

As shown in Fig. 1, we consider a heterogeneous 5G MEC-enabled UDN system
containing M SBSs, the set of which is denoted as M = {1, · · · ,M}, and an
MBS denoted as M + 1. Each SBS is deployed with a MEC server, and the
MBS is connected to the central cloud server. There are K user devices (UEs)
in the network, the set of which is denoted as K = {1, · · · ,K}. In this paper,
the UE can offload a portion of the tasks to the edge server and the rest to the
central cloud server without considering the local computing. Task offloading is
a two-stage process consisting of task upload and remote computing. According
to the multi-level SM proposed in [3], SBS has a total of N = 5 states, and the
set of states S = {Active, Idle, SM 1, SM 2, SM 3}, where Active indicates full
power operation of the BS, similar to the study [3].

Energy-Efficient Task Offloading with Statistic QoS 381

We adopt a block-fading channel model [6], where a time frame is considered
as a large-scale coherent block and consists of I time slots as small-scale coher-
ent blocks, the set of which is denoted as T = {1, · · · , i, · · · , I}. Rather than
changing the association policy of SBSs and users in a small-scale time slot,
we only update the strategy before the start of each time frame, thus avoiding
the extra overhead caused by frequent policy changes. As determined by the
BS association strategy, the SBS can turn to deep sleep and remains unchanged
within the frame when not associated with any user device. If the SBS has an
association with the UE within the frame, the SBS will perform a Markov state
transition at each time slot [13]. Specifically, if no task arrives within the slot,
the SBS will automatically move to the next sleep level or remain in the deepest
sleep level, i.e., SM 3. Otherwise, it will move to the working state. The state
transition of the BS causes some latency, and we focus on analyzing the impact
of the multi-level SM mechanism of the BS on task offloading.

2.2 Communication and Computation Model

Denote the binary indicator of user association with SBS as xt
k,m ∈ {0, 1}.

xt
k,m = 1 represents that k-th user associates with the m-th SBS and selects

it for task unloading in the t-th time frame. The achievable uplink transmis-
sion rate between the user device Uk and the nearby SBSs is given Rt

k,m,i =

Bm log2 (1 + Pkxt
k,mht

k,m,i

σ2+Ik,m,i
), where Pk is the transmission power of Uk. Bm is the

bandwidth of the SBS subchannel. Similar with the work [10], ht
k,m,i is the chan-

nel gain from Uk to the m-th SBS at time frame t of time slot i, reflecting the
effect of Rayleigh fading. The noise power and inter-cell interference are repre-
sented by σ2 and Ik,m,i, respectively. We assume orthogonal channel allocation
to enable the omission of intra-cell interference [10].

Similarly, the corresponding task uploading rate between the user device Uk

and the MBS is given as Rt
k,M,i = BM log2 (1 + Pkht

k,M,i

σ2+Ik,M,i
), where BM is the

bandwidth of the MBS. ht
k,M,i is the channel gain from Uk to the MBS.

The computation latency can differ since Uk divides the tasks into two parts
and offloads them to the SBS and MBS independently. If offloading to SBS,
the computation rate of the edge server is Re = fe

Ccpu
,, where fe is the CPU

frequency of the edge server. Ccpu denotes the CPU cycles required per bit.
If offloading to a cloud server through the MBS, the computation rate on a

cloud server is Rc = fc

Ccpu
, where fc is the CPU frequency of the cloud server.

2.3 Energy Consumption Model

To ensure system stability, the MBS remains in an always-on state with a fixed
power consumption per frame. So, we only focus on the power consumption of
the SBSs and the servers in the overall system. The association policy between
the BS and the user divides the SBSs into two categories. 1) One category is
the SBSs that do not associate with the user will gradually move to SM 3 and

382 H. Li et al.

remain state SM 3 throughout the frame. 2) The other category is the SBSs that
associate with the user device, whose state in each time slot is random. These
SBSs maintain one state in each time slot, and the state transition between
time slots follows the Markov model, as shown in Fig. 2. The specific energy
consumption values in states are given in [7].

The energy consumption Em[t] =
∑

i∈T
∑

m∈M
(
∇P t

m,i +
∑

s∈S PsU
t
m,s,i

)

belongs to the SBSs, where Ps is the power of the SBS in state s. The binary
indicator of the state of SBS is denoted as U t

m,s,i ∈ {0, 1}. U t
m,s,i = 1 represents

that m-th SBS is in state s at time frame t of time slot i. ∇P t
m,i is the energy

consumption of the m-th SBS state transition at time frame t of time slot i.
The offloaded tasks are eventually processed on the server, and the energy

consumption of the server is proportional to the load. Denote the load of the
edge server at time frame t as Qe[t], which is related to the number of tasks
offloaded by the users. Thus, the energy consumption of edge servers in t-th
frame is Ee[t] = εef

3
e

Qe[t]
Re

= εef
2
e CcpuQe[t], where εe is the energy consumption

coefficient of the CPU in the edge server.
Denote the amount of task generated by k-th user device at time frame t of

time slot i as At
k,i. The user’s offloading ratio strategy can affect server load and

the quality of service. The offloading ratio of the k-th user device unloading to
the mth SBS at time frame t is denoted as ηt

k,m, which is unchanged over t-th
frame. Then, Qe[t] is given as Qe[t] =

∑
i∈T

∑
k∈K

∑
m∈M ηt

k,mAt
k,i.

Likewise, the energy consumption of cloud servers in t-th frame is Ec[t] =
εcf

3
c

Qc[t]
Rc

= εcf
2
c CcpuQc[t], where εc is the energy consumption CPU coefficient

in the cloud server. Qc[t] can be obtained by Qc[t] =
∑

i∈T
∑

k∈K
∑

m∈M(1 −
ηt

k,m)At
k,i, which is the cloud server load.

So, the total energy consumption is Etot[t] = Em[t] + Ee[t] + Ec[t], which is
generated by SBSs and servers.

Fig. 2. Markov Model for the Small Base Station.

2.4 Problem Formulation

For a user device Uk, the task delay violation boundary must not exceed εd:

Pr {Dk(t) > dmax} < εd, (1)

Energy-Efficient Task Offloading with Statistic QoS 383

where Dk(t) is the task delay of Uk in t-th frame and dmax is the maximum delay
requirement of the task.

And in each time frame, Uk is located within the coverage of multiple SBSs,
but can only select only one SBS for the association. We have

∀k ∈ K,
∑

m∈M
xt

k,m = 1. (2)

Since the user access capacity of each SBS is limited, the number of users
associated with an SBS in the time frame t must not exceed its maximum capac-
ity. We have

∀m ∈ M,
∑

k∈K
xt

k,m ≤ Cm, (3)

where Cm is the maximum user-associated capacity of the m-th SBS.
In this paper, our goal is to minimize the long-term system energy con-

sumption while satisfying the task delay violation reliability, and the problem is
formulated as

P1 : min
{xt

k,m},{ηt
k,m}

lim
T→∞

1
T

T∑

t=1

Etot[t]

s.t.(1), (2), (3)

(4)

3 Stochastic Delay Analysis

In this section, we perform a comparative analysis of the QoS for BSs with and
without the sleep strategy while investigating the end-to-end delay bounds. To
simplify the analysis, we assume that the task arrival process for all user devices
follows a compound Poisson process with a parameter λ for each time slot, and
the length of each task remains fixed at a value L. Then, using the SNC theory,
we derive the probability of a task delay violation under different scenarios.

3.1 Delay Analysis for Offloading to MBS

Task offloading consists of two phases: task upload to the MBS and central cloud
server computation. To maintain the system’s stability, the MBS is always on
without running the energy-efficient mechanism, which indicates that there is no
BS state transition delay in the task latency. So, Dk = dqueue + doff + dcom .

For device Uk, assuming association with m-th SBS at a certain frame, then
the task arrival process to the MBS throughout the frame is denoted as A1

k(t) =
∑I

i=1 A1
k,i(1 − ηk), and the task departure process to the MBS is denoted as

A1∗
k (t), where t denotes the length of the time frame.

The phase of Uk uploading tasks to the MBS has the corresponding stochastic
arrival curve α1

k(t) and the boundary function f1
k (x), i.e., A1

k(t) ∼
〈
f1

k , α1
k

〉
. Then

based on the SNC theory [19], we can obtain the stochastic arrival curve (SAC)
and bound function as α1

k(t) = 1
θt log E

[
eθA1

k(t)
]
t and f1

k (x) = e−θx.

384 H. Li et al.

Moreover, the service process of task upload throughout the t-th frame is
denoted as S1

k(t) =
∑I

i=1 Rk,M,i, which is related to the channel capacity of
the wireless link. Then, the corresponding stochastic service curve (SSC) β1

k(t)
and the boundary function g1

k(x), i.e., S1
k(t) ∼

〈
g1

k, β1
k

〉
, can be calculated as

β1
k(t) = 1

−θt log E
[
e−θS1

k(t)
]
t, and g1

k(x) = e−θx.
According to the characterization of output traffic [19], the task departure

process to the MBS A1∗
k (t), i.e., task arrival process to the cloud server from

the device Uk, has the corresponding random arrival curve α1∗
k (t) and boundary

function f1∗
k (x), i.e., A1∗

k (t) ∼
〈
f1∗

k , α1∗
k

〉
, which is given as α1∗

k (t) = α1
k � β1

k(t)
and f1∗

k (x) = f1
k (x) ⊗ g1

k(x).
For the cloud server, its arrival process Ac(t) is the aggregation of all devices’

departure processes from the MBS, saying that Ac(t) =
∑

k∈K A1∗
k (t).

According to the aggregation nature of SNC, the stochastic arrival curve
(SAC) and bound function to the cloud server is αc(t) =

∑
k∈K α1∗

i (t) and
fc(x) = f1∗

1 ⊗ · · · ⊗ f1∗
K (x).

The whole arrival traffic except Uk to the cloud server can be considered as
a background arrival traffic αbg(t) for target device Uk with the corresponding
boundary function fbg(x), which is given as αbg(t) = αc(t)−α1∗

k (t) and fbg(x) =
f1∗
1 ⊗ · · · ⊗ f1∗

k−1 ⊗ f1∗
k+1 ⊗ · · · ⊗ f1∗

K (x).
The cloud server has a deterministic service curve βc(t) = Rct. The service

process provided by the central cloud server for target device Uk is denoted as
S2

k(t). Then based on the theory of Leftover Service [19], the corresponding SSC
β2

k and boundary function g2
k, i.e., S2

k(t)∼
〈
g2

k, β2
k

〉
, can be derived as β2

k(t) =
(βc − αbg) (t) and g2

k(x) = fbg(x).
In summary, the equivalent stochastic service curve βk(t) and delay boundary

gk(x) service of the whole service process for target device Uk can be calculated
as βk(t) = β1

k ⊗ β2
k(t) = β1

k ⊗ (βc − αbg) (t) and gk(x) = g1
k ⊗ g2

k = g1
k ⊗ fbg(x).

As a result, the time delay boundary of target device Uk for offloading to
MBS in the tandem network is given by

Pr {Dk(t) > dmax} ≤
[

f1
k ⊗ gk

(

inf
0≤s≤t

{
βk(t − s + dmax) − α1

k(t − s)
}
)]

1

≤
[
f1

k ⊗ gk

(
β1

k ⊗ β2
k(dmax)

)]
1
,

(5)

where [·]+ denotes max{0, ·}.

3.2 Delay Analysis for Offloading to SBS

The process of offloading tasks to SBS and MBS follows a similar procedure.
However, two key differences deserve attention: task size and the inclusion of
BS sleep mode in SBSs. Specifically, the task arrival process to the m-th SBS
associated with Uk at a certain frame is simplified as A1

k(t) =
∑I

i=1 ηkA1
k,i.

Since the BS may be in different states, resulting in uncertainty in
the state transition delay dtrans, to further analyze the effect of the

Energy-Efficient Task Offloading with Statistic QoS 385

BS state on the task delay, we derive the stationary distribution π =
[πActive πIdle πSM1 πSM2 πSM3] = [π0 π1 π2 π3 π4].

The Markov model in Fig. 2 is not the same in each large time frame due to
the different association strategies between the BS and the user. The transition
probability p of the SBS can be derived from the user association and offloading
ratio, and it is transferred to the next sleep level only when no user task arrives in
the small time slot. For the m-th SBS in t-th frame, its task arrival process obeys
the Poisson process with parameter λt

m =
∑

k∈K ηt
k,mλk. Thus, the transition

probability for the m-th SBS in t-th frame is denoted as pt
m, which can be

pt
m = 1 − e−λt

m , where τ is the duration of a small time slot.
We drop the indices t and m to simplify the expressions in the following.

Then according to the Markov model, the stationary distribution can be

∀j ∈ [0, N − 1] , πj =
N−1∑

i=0

πiPi,j ,
N−1∑

j=0

πj = 1, (6)

where Pi,j is the probability of transition from state i to j.
Once we have the stationary distribution π, we seek to determine the reacti-

vation delay for user devices transitioning from sleep state to active state, as this
is a critical factor affecting service reliability. Due to the uncertainty of the state
within each time slot, the transition delay is a random variable. Let dj denote
the delay for transitioning from the sleep state j to the active state, with spe-
cific values given in [3]. Using the stationary distribution π, we can calculate the
average state transition delay within each time slot, just as dtrans =

∑N−1
j=0 πjdj .

The task arrival process to the edge server is the sum of the departure process
from the SBS and the edge provides a deterministic service curve βe(t) = Rc(t)
for the uploaded tasks. Similar to (5), the time delay boundary is given by

Pr {Dk (t) > dmax − dtrans} ≤
[
f1

k ⊗ gk

(
β1

k ⊗ β2
k(dmax − dtrans)

)]
1
. (7)

So far, the time delay boundary of target device Uk for offloading to SBS is
obtained. Therefore, the optimization problem is formulated as P2:

P2 : min
{xt

k,m},{ηt
k,m}

lim
T→∞

1
T

T∑

t=1

Etot[t]

s.t.(2), (3), (5), (7)

(8)

4 Algorithm

In this section, the original optimization problem in the last section first needs
to be transformed into the MDP (Markov decision process) form and then solved
using the MADDPG approach.

386 H. Li et al.

4.1 MADDPG Problem Formulation

We consider task offloading in a network based on the BS sleep mode. In general,
two factors affect the sleep of a BS: one is the BS association policy, i.e., a BS
not associated with any user device will gradually shift to the deepest level;
the other is the possibility of the BS shifting to the next sleep level, and the
triggering of this sleep depends on the arrival of the task in each time slot.

The main goal of this work is to find a BS association strategy that minimizes
the cumulative system energy consumption and a task offloading ratio strategy
while satisfying the user device latency. Furthermore, given the dynamic and
complex nature of such a system, traditional single-agent reinforcement learning
methods may struggle to cope with challenges such as action space dimension
explosion and policy learning difficulty. To achieve the goal of energy consump-
tion minimization, we formulate the optimization problem as a multi-agent MDP,
which is specified by a five-tuple {S,A,P,R, γ}. S is the state space and A is
the action space. P represents the state transition probability. R is the reward
function, and γ ∈ [0, 1] denotes the reward discount factor.

We present a MADDPG-based solution for BS association and task offloading
to minimize the penalty for user device delay violation probability and maximize
the reward for energy consumption utility. Each user device acts as an agent, and
the agents are in a complex relationship of cooperation and mutual competition
to achieve the desired goal. At each stage, the agent learns the best policy in
the decision problem by observing and interacting with the environment, and we
use the sum of the penalty for task delay violation and the energy consumption
utility as the system reward. To implement the MADDPG approach, we define
the state space, action space, and reward function at each large time frame as
follows:

State Space. The state refers to the specific environmental situation observed
by each agent. The set state should be able to fully reflect the current observation
of the environment by the agent and contain important information for strategy
training. Therefore, the state space of the Agent k can be expressed as

sk(t) = {χ(t), αk(t − 1), βk(t − 1)}. (9)

where χ(t) = {χ1(t), χ2(t), .., χM (t)} represents the BS association at the
beginning of time frame t. If the current small BS m is associated with the user
device, then χm(t) = 1, otherwise χm(t) = 0. αk(t − 1) and βk(t − 1) represents
the BS association policy and the offload ratio policy of the user device k at
the last time frame, respectively. Given the local observations of all agents, the
global state space is derived by S(t) = {s1(t), s2(t), ..., sK(t)}.

Action Space. The action space contains all possible decisions (BS association
and offloading ratio) made by the agent. In this paper, the agent’s action is
represented as

ak(t) = {αk(t), βk(t)}. (10)

Energy-Efficient Task Offloading with Statistic QoS 387

To solve the dimensional problem and improve the training efficiency, this paper
discretizes the action space. Specifically, the unloading ratios are sliced, i.e., there
are three types of unloading ratios { 1

3 , 2
3 , 1}, instead of outputting a continuous

value. Therefore, the global state space is A(t) = {a1(t), a2(t), ..., aK(t)}.

Reward Function. The reward should accurately reflect the quality of the
agent’s actions. The main goal of Eq. (8) is to maximize the long-term system
energy reward while satisfying the user device delay constraint. Since many active
BSs can lead to increased system power consumption, it is possible to reduce
power consumption by putting BSs into a sleep state. Meanwhile, to satisfy the
service reliability requirements of user device tasks, a corresponding penalty is
given if the latency constraint is not satisfied. Therefore, we set the reward as
follows

rk(t) = (1 − w)Ue(t) + wUd(t)

= (1 − w)(Emax − Etot(t)) − w(Pmbs
k (t) + P sbs

k (t))
(11)

where w is the weight. w can be set higher if the quality of service is more
important. Conversely, if the system is more inclined to save energy, w can be
decreased. Ue(t) represents the energy consumption utility, and Emax denotes
all energy consumption when all SBSs are turned on. Ud(t) denotes the delay
violation penalty, and Pmbs

k (t) and P sbs
k (t) denote the penalty terms for not

satisfying the reliability of offloading to the MBS and SBS, respectively.
Then, the overall reward of the system is expressed as R(t) =

∑
k∈K rk(t)

4.2 Stochastic Network Calculus-Driven MADDPG Algorithm

Since the service reliability derived from the SNC theory largely affects the selec-
tion of agent actions and the system energy consumption, we propose an algo-
rithm called stochastic network calculus-driven MADDPG (SNC-MADDPG)
that can reduce the system energy consumption as much as possible while sat-
isfying the user device delay constraint.

MADDPG is an Actor-Critic based algorithm, where each agent has two
networks, i.e., a policy network and an evaluation network, with parameters of
ϑk and θk, respectively, and the network structure is a deep neural network
(DNN). The agent makes the appropriate decision based on its observed state,
and the critic is responsible for evaluating the actions taken by the agent in
the current state. To address the limitation of Q-learning, which requires the
use of the same information during both training and application, MADDPG
uses a centralized training decentralized execution framework, which allows the
critic to use additional information (global state and action strategies of other
agents) for learning during training, and local information for decision making
during execution. In addition, in order to improve the stability of the training,
each agent also has a target-policy network and a target-evaluation network with
parameters ϑ

′
k and θ

′
k, respectively. Thus, the main framework of the algorithm

consists of the four DNNs. To improve the training efficiency, a technique called
experience replay pool is introduced, which stores a large amount of training

388 H. Li et al.

Algorithm 1. SNC-MADDPG for BS Association and Task Offloading
1: Initialization: each agent’s replay buffer D, the parameters of policy network ϑk

and evaluation network θk, the parameters of target-policy network ϑ′
k and target-

evaluation network θ′
k.

2: for episode = 1,2,. . . do
3: Initialize the state space S(t).
4: for t = 1,2,. . . do
5: Each agent selects action ak(t) = μk(sk(t)) + random noise ζ.
6: All SBSs set their status of association with user devices according to the joint

action A(t).
7: Each agent obtain the reward rk(t) and the next state s′

k(t) ← sk(t).
8: Save the tuples (sk(t), ak(t), R(t), s′

k(t)) in D.
9: for agent k = 1,2,. . . ,K do

10: Sample a random mini-batch of B tuples {sj ,aj , rj , s
′
j} from D

11: Update evaluation network parameters with (13).
12: Update policy network parameters with (12).
13: end for
14: Update target-policy network and target-evaluation network for each agent in

(14).
15: end for
16: end for

data. During each training iteration, a random subset of data is sampled from
the pool. This approach helps break the correlation between the data, resulting
in improved training performance.

The SNC-MADDPG approach for the optimization problem is summa-
rized in Algorithm1. During training, for each UE, a random mini-batch of
{sj ,aj , rj , s′

j} of size B is sampled from the replay buffer D. Suppose the parame-
ter set of the corresponding deterministic strategy is given by μ = {μϑ1 , ..., μϑK

}.
The policy network for agent k is updated using the gradient approach as follows:

∇ϑk
J (μk) = 1

B

∑B
j=1∇ϑk

μk

(
sj

k

)
∇ak

Qθ
k

(
sj , a

j
1, ak, ..., aj

K

)∣
∣
∣
ak=μk(sj

k)
(12)

where j denotes the index of the sample, and the Q-function is denoted as
Qθ

k

(
sj , a

j
1, ..., ak, ..., aj

K

)
. Then, the parameters of the policy network are ϑk =

ϑk − ξa∇ϑk
J (μk), where ξa denotes the learning rate. The evaluation network

updates the weights by minimizing the mean square error loss, which can be
represented as

L(θk) =
1
B

B∑

j=1

[
yj − Qθ

k(sj ,aj)
]2

y = rk + γQθ′
k (s′

j ,a
′
j),

(13)

where γ is denoted as the discount factor and a′
j is the target actions. Therefore,

the parameters of the evaluation network are updated as θk = θk − ξc∇θk
L(θk),

where ξc denotes the learning rate. On the other hand, the target network uses

Energy-Efficient Task Offloading with Statistic QoS 389

soft update to update the parameters, and the parameters ϑ
′
k and θ

′
k of the target

policy network and target evaluation network of each UE Agent are updated as

ϑ′
k = τϑk + (1 − τ)ϑ′

k

θ′
k = τθk + (1 − τ)θ′

k

(14)

where τ denotes the updating rate.

5 Simulation Results

5.1 Experimental Setup

In this section, we conduct simulation experiments to evaluate the effectiveness
of the algorithm. Specifically, considering a heterogeneous network, there is one
MBS, M = 6 SBSs, and K = 10 user devices randomly distributed within the
coverage of the MBS and SBSs. The core cloud is connected to the MBS, and the
computational frequency of the server is 14 GHz. While each SBS is connected to
an edge server, and the computational frequency of the edge server is 2.5 GHz.
On the timescale, a large time frame contains n = 100 slots, and the length of the
slots is τ = 0.02 sec. For the time delay constraint, the time delay threshold dmax

= 0.2 sec and the violation probability εd = 0.05 indicate that the reliability
is expected to be at least 95%. The bandwidth of the SBS and the MBS is
6MHz and 2MHz, respectively. The CPU cycles per bit is set as 800. The White
Gaussian noise is set as -70dBm. The energy consumption coefficient of the edge
server and the cloud server is 10−27 and 10−29. The length for each task is set
as 0.23 Mbits. The task arrival rate of each UE is set as 0.3 packets/slot.

5.2 Comparing Methods

To evaluate the performance of the proposed algorithm, we compare it with the
following four benchmark algorithms: (1) Binary sleep mode algorithm (BiSM):
In a large time frame, if no task arrives in the current time, the SBS with user
association is directly transferred to the next sleep mode, and then to the Active
mode when a task arrives next time. Binary sleep mode is widely used in previous
studies [6,18]. (2) Without base station sleep mode (NoSM): For the base station
without user association, it will gradually enter into deepest sleep mode to save
energy; for the base station with user association, it will not make any state
transfer throughout the large time frame and maintain the Active state. (3)
Only offload to SBSs policy (OnlySBS): All user devices’ offloading decisions are
only related to SBSs and will not be offloaded to the MBS.

In this section, we analyze the training performance as well as the convergence
of the proposed algorithm. Figure 3a shows the system reward with training
time, at 0–500 episodes, the rewards increase sharply after a period of small
fluctuations and finally level off at 800 episodes. Figure 3b and Fig. 3c show the
change in delay penalty and energy score during training. From Fig. 3b and
Fig. 3d, we can see that the penalty for delay violation consistently decreases

390 H. Li et al.

Fig. 3. Training curves of SNC-MADDPG.

from 0 to 500 episodes, indicating a gradual decrease in the probability of delay
violation resulting from the agent’s decision. Finally, the probability tends to
be 0, confirming the satisfaction of service reliability for all user devices. From
Fig. 3c, it can be seen that the system energy consumption is sacrificed for the
delay constraint in the early stage, but after 500 episodes, the agent’s decision is
more biased towards the system energy saving under the premise that the user’s
decision does not violate the reliability, which makes the energy score rebound
a lot, which also shows the effectiveness of the multiple sleep mechanism for
energy saving.

Figure 4b and Fig. 4b show the variation of delay penalty and the energy score
of different algorithms when M = 5, respectively. From Fig. 4a, we can find that
the binary sleep mode algorithm can not satisfy user latency reliability, compared
with other strategies. This is because the binary sleep mode can be more in deep
sleep level and potentially more energy efficient. Besides, the activation time and
reactivation time also increase in the binary sleep mode, which will affect the user
delay constraints. From Fig. 4b, we can see that the energy value of the binary
sleep mode algorithm does not outperform the multi-level sleep mode algorithm,
which may be because the binary sleep mode algorithm does not reduce the
delay penalty, and thus cannot learn the optimal base station association and
task offloading strategies.

Figure 4c shows the relationship between the system rewards and the task
reach rate λ for different algorithms. As the task reach rate increases, more
energy needs to be consumed by the edge server or cloud server, leading to a
decrease in rewards for all algorithms. Also, it can be seen that the proposed

Fig. 4. Training curves of SNC-MADDPG.

Energy-Efficient Task Offloading with Statistic QoS 391

algorithm can guarantee that the system rewards are always higher than the
other algorithms.

Fig. 4d shows the relationship between system rewards and the number of
small base stations M for different algorithms. As the number of SBSs increases,
the choice of base station access points for user devices increases, and the number
of SBSs not associated with user devices increases, which can be more energy
efficient and increase the system rewards. Compared with the other four learning
methods, our proposed method achieves the maximum total system reward for
any number of SBSs.

6 Conclution

In this paper, we investigate the joint optimization problem of base station power
saving and edge computing in B5G heterogeneous networks. Based on the multi-
level base station sleep mode technique, we address the BS association problem
and analyze the uncertainties incurred by the multi-level sleep mode. Besides,
to ensure the performance of delay-sensitive services in user devices, we apply
stochastic network theory to analyze the delay of the two-stage process and use
the derived conclusions to construct the model of service reliability for delay-
sensitive services in UDN. We then formulate the problem of minimizing the
system energy consumption as a Markov decision process model and propose
an algorithm called SNC-MADDPG to address these challenges. The algorithm
uses the framework of CTDE, where each user acts as an agent, to learn the
optimal base station association and task offloading strategies. Extensive sim-
ulation results show that our proposed algorithm effectively satisfies stringent
service reliability requirements.

Acknowledgments. This research was funded by National Natural Science Founda-
tion of China (Grant No. U1711264).

References

1. Chen, X., Yao, Z., Chen, Z., Min, G., Zheng, X., Rong, C.: Load balancing
for multi-edge collaboration in wireless metropolitan area networks: a two-stage
decision-making approach. IEEE Internet of Things J. 10, 17124–17136 (2023)

2. Chu, W., Jia, X., Yu, Z., Lui, J.C., Lin, Y.: Joint service caching, resource allo-
cation and task offloading for MEC-based networks: a multi-layer optimization
approach. IEEE Trans. Mobile Comput. (2023)

3. El Amine, A., Chaiban, J.P., Hassan, H.A.H., Dini, P., Nuaymi, L., Achkar, R.:
Energy optimization with multi-sleeping control in 5G heterogeneous networks
using reinforcement learning. IEEE Trans. Netw. Service Manag. 19, 4310–4322
(2022)

4. Israr, A., Yang, Q., Israr, A.: Emission-aware sustainable energy provision for 5g
and b5g mobile networks. IEEE Trans. Sustain. Comput. (2023). https://doi.org/
10.1109/TSUSC.2023.3271789

https://doi.org/10.1109/TSUSC.2023.3271789
https://doi.org/10.1109/TSUSC.2023.3271789

392 H. Li et al.

5. Israr, A., Yang, Q., Israr, A.: Renewable energy provision and energy-efficient
operational management for sustainable 5G infrastructures. IEEE Trans. Netw.
Service Manag. 20, 2678–2710 (2023)

6. Kim, S., Son, J., Shim, B.: Energy-efficient ultra-dense network using LSTM-
based deep neural networks. IEEE Trans. Wireless Commun. 20(7), 4702–4715
(2021)

7. Lähdekorpi, P., Hronec, M., Jolma, P., Moilanen, J.: Energy efficiency of 5G
mobile networks with base station sleep modes. In: 2017 IEEE Conference on
Standards for Communications and Networking (CSCN), pp. 163–168. IEEE
(2017)

8. Li, X., Li, C., Liu, X., Chen, G., Dong, Z.Y.: Two-stage community energy trading
under end-edge-cloud orchestration. IEEE Internet Things J. 10(3), 1961–1972
(2023)

9. Liao, Y., Friderikos, V.: Optimal deployment and operation of robotic aerial 6G
small cells with grasping end effectors. IEEE Trans. Veh. Technol. (2023)

10. Liu, S., Cheng, P., Chen, Z., Xiang, W., Vucetic, B., Li, Y.: Contextual user-
centric task offloading for mobile edge computing in ultra-dense network. IEEE
Trans. Mobile Comput. 22, 5092–5108 (2022)

11. Malta, S., Pinto, P., FernÃaindez-Veiga, M.: Using reinforcement learning to
reduce energy consumption of ultra-dense networks with 5g use cases require-
ments. IEEE Access 11, 5417–5428 (2023)

12. Masoudi, M., Khafagy, M.G., Soroush, E., Giacomelli, D., Morosi, S., Cavdar, C.:
Reinforcement learning for traffic-adaptive sleep mode management in 5G net-
works. In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor
and Mobile Radio Communications, pp. 1–6 (2020)

13. Masoudi, M., Soroush, E., Zander, J., Cavdar, C.: Digital twin assisted risk-aware
sleep mode management using deep q-networks. IEEE Trans. Veh. Technol. 72(1),
1224–1239 (2023)

14. Renga, D., Umar, Z., Meo, M.: Trading off delay and energy saving through
advanced sleep modes in 5G RANs. IEEE Trans. Wireless Commun. (2023)

15. Salahdine, F., Opadere, J., Liu, Q., Han, T., Zhang, N., Wu, S.: A survey on sleep
mode techniques for ultra-dense networks in 5G and beyond. Comput. Netw. 201,
108567 (2021)

16. Tan, X., Xiong, K., Gao, B., Fan, P., Letaief, K.B.: Energy-efficient base station
switching-off with guaranteed cooperative profit gain of mobile network operators.
IEEE Trans. Green Commun. Netw. 7, 1250–1266 (2023)

17. Wei, Z., Li, B., Zhang, R., Cheng, X., Yang, L.: Many-to-many task offloading
in vehicular fog computing: a multi-agent deep reinforcement learning approach.
IEEE Trans. Mobile Comput. (2023)

18. Wu, Q., Chen, X., Zhou, Z., Chen, L., Zhang, J.: Deep reinforcement learning
with spatio-temporal traffic forecasting for data-driven base station sleep control.
IEEE/ACM Trans. Netw. 29(2), 935–948 (2021)

19. Liu, Y., Jiang, Y.: Stochastic Network Calculus. Springer, London (2008). https://
doi.org/10.1007/978-1-84800-127-5

20. Zhou, X., et al.: Edge-enabled two-stage scheduling based on deep reinforcement
learning for internet of everything. IEEE Internet Things J. 10(4), 3295–3304
(2023)

21. Zhou, Z., et al.: Learning-based URLLC-aware task offloading for internet of
health things. IEEE J. Sel. Areas Commun. 39(2), 396–410 (2021)

https://doi.org/10.1007/978-1-84800-127-5
https://doi.org/10.1007/978-1-84800-127-5

Enhancing Blockchain Performance
via On-chain and Off-chain Collaboration

Wuhui Chen1, Zhaoxian Yang1, Jianting Zhang2(B), Junyuan Liang1,
Qilin Sun1, and Fan Zhou1

1 Sun Yat-sen University, Guangzhou, China
{chenwuh,isszf}@mail.sysu.edu.cn,

{yangzhx9,liangjy53,sunqilin}@mail2.sysu.edu.cn
2 Purdue University, West Lafayette, USA

zhan4674@purdue.edu

Abstract. Transactions concurrent execution is one of the most promis-
ing solutions to enhance throughput for blockchain systems. Traditional
concurrent execution schemes include on-chain concurrency and off-chain
concurrency. However, they either increase hardware requirements to
nodes or bring extra overheads for transaction verification, compromis-
ing the decentralization and security properties of blockchains. In this
paper, we propose a new concurrent execution scheme that integrates
off-chain execution into the on-chain concurrent execution scheme, by
which a blockchain system can enhance performance without compro-
mising security and decentralization. To achieve this, we first propose a
consistent information scheduling mechanism. This mechanism divides
scheduling information of transactions based on the execution-related
information, improving the efficiency of scheduling information trans-
mission and execution between on-chain and off-chain nodes. Then, to
achieve secure and efficient collaboration between on-chain and off-chain
nodes, our scheme proposes a secure collaboration validation mechanism
without additional security assumptions. Finally, we implement our pro-
totype based on Tendermint and compare it with the serial execution
scheme in the blockchain. The experimental results show that our scheme
can achieve a maximum throughput improvement of 2.6×, 11.2× less
execution time, and 2.1× less verification time.

Keywords: Blockchain · concurrent computing · off-chain computing

1 Introduction

Blockchain is a distributed ledger where participants jointly maintain a consis-
tent state without trusting each other, and it has been applied to many fields,
such as the financial sector, healthcare and wellness application scenarios. To
achieve this, blockchain relies on a consensus protocol, e.g., Proof-of-Work [1]
and Byzantine Fault Tolerance (BFT) [2]. A consensus protocol works in two

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 393–408, 2023.
https://doi.org/10.1007/978-3-031-48421-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_27&domain=pdf
https://doi.org/10.1007/978-3-031-48421-6_27

394 W. Chen et al.

stages: first, a block proposer creates a new block consisting of a list of transac-
tions and broadcasts it to the network; then, the other nodes verify the received
block and execute and commit it to their local ledgers if the block is valid. To
achieve strict consistency, traditional blockchain systems execute transactions of
a block in a serial way. Such a serial execution scheme, however, significantly
limits the capability of processing transactions, leading to poor system perfor-
mance [3].

To enable concurrent execution, many recent works [4–11] propose various
concurrent execution schemes for blockchain systems. In summary, there are
two types of concurrent execution schemes: on-chain and off-chain concurrent
schemes. In on-chain solutions [4–7], a block proposer divides transactions of a
block into several sets based on their data dependencies, by which other nodes
can utilize their multi-core feature to execute these sets of transactions in par-
allel. Obviously, this solution can improve system performance by adding more
transactions into a block and dividing more transaction sets. However, the on-
chain solution still requires each node to execute all transactions. For some
nodes with limited computation resources, they cannot execute transactions
efficiently when a block becomes larger, and thus slow the consensus process.
To address this problem, off-chain solutions [8–11] try to offload some transac-
tions (e.g., computation-intensive transactions) into off-chain. Specifically, in an
off-chain scheme, there are some off-chain nodes that are responsible for exe-
cuting a set of transactions but do not participate in on-chain consensus. The
on-chain nodes, therefore, can get the execution results from the off-chain nodes
for consensus without executing these computation-intensive transactions. This
prevents resource-limited nodes from slowing the consensus process. However,
it introduces new security problems and requires additional costs. To ensure
the trustworthiness of off-chain results, various schemes are proposed, such as
leveraging the hardware Trusted Execution Environments [11], assuming new
security models [8,9], and relying on cryptographic proofs [12]. However, all
these off-chain methods either introduce new security problems or extra over-
heads [13,14], sacrificing the security and performance of blockchains. In this
work, we propose a new on-chain and off-chain collaboration scheme to imple-
ment a high-performance blockchain system. In a nutshell, our collaboration
scheme has on-chain validation for a portion of the transactions and off-chain
validation for another portion, allowing on-chain nodes and off-chain nodes to
collaborate in executing transactions efficiently and ensuring system security.
Transaction processing in our scheme consists of two stages: first, a block pro-
poser creates a block with separate portions of transactions (i.e., scheduling
information); then, on-chain and off-chain nodes collaboratively execute and
verify transactions based on the separate transactions. However, designing such
a two-stage collaborative verification is non-trivial. Specifically, since our scheme
involves both on-chain concurrency and off-chain concurrency, it faces two main
challenges: 1) how does the block proposer effectively generate, partition, and
distribute scheduling information, and 2) how to achieve efficient and secure
collaboration between on-chain and off-chain nodes?

On-chain and Off-chain Collaboration 395

To solve the above challenges, first, we propose a new information scheduling
mechanism. We introduce a so-called versioning information in the scheduling
relationship and perform finer-grained slicing and allocation of transactions. This
ensures consistency of the node states on the blockchain and improves the effi-
ciency of subgraph transmission and execution, thereby enhancing the system’s
performance. Furthermore, this mechanism can effectively balance the compu-
tational overhead among on-chain nodes by which nodes with limited resources
will not slow the consensus process. Then, for the second challenge, we pro-
pose a mechanism named secure collaboration validation mechanism without
any additional security assumptions. Specifically, we divide the on-chain nodes
into groups flexibly based on the trust assumptions and ensure that each group
of on-chain nodes has at least one honest node. The at-least-one honest node
setting guarantees the correct execution in each group.

The contributions of this work can be summarized as follows:

– We propose a scheme for collaborative execution on-chain and off-chain,
reducing the validation burden on on-chain nodes. On-chain nodes only need
to validate a portion of the transactions, improving system performance while
ensuring security.

– Building upon the on-chain and off-chain scheme, we design an information
scheduling mechanism and a secure collaboration validation mechanism to
enhance the security and efficiency of the system.

– We implement our prototype based on Tendermint [15]. Compared with the
serial execution scheme, experimental results show that our concurrent execu-
tion scheme can improve throughput by 2.6× and achieve 11.2× less execution
time and 2.1× less validation time.

2 Related Work and Motivation

A blockchain is a distributed ledger. To ensure a consistent state for nodes, a
consensus protocol is used in blockchain systems. Informally, a consensus pro-
tocol in blockchain systems is a repeated two-phase activity. Specifically, in the
first stage, there is a block proposer creating a new block and broadcasting it
to the network. In the second stage, other nodes (or called validators) check the
validity of the new block. They then execute and commit transactions of the
block into their local ledgers. This two-phase activity will repeat continuously as
new transactions are created and received by nodes of the blockchain system. As
a result, the ledger grows as a chain consisting of blocks. To ensure a consistent
state, traditional blockchain systems adopt a serial execution scheme when per-
forming a consensus [16], i.e., a block proposer first orders transactions in a new
block and serially execute them, and then other nodes serially execute trans-
actions in the same transaction order. However, such a serial execution scheme
cannot utilize the multi-core features in modern computers and thus leads to
poor system performance [4–6].

396 W. Chen et al.

On-chain Concurrent Execution . To enhance performance of blockchains,
many recent works propose on-chain concurrent execution solutions [4,6,7,17,
18]. The main idea is to introduce a concurrent scheduling algorithm in the first
stage of consensus by which the block proposer can generate a dependency graph
that is used for validators to execute transactions concurrently. For instance,
Dickerson et al. [4] propose the use of abstract lock mechanisms to prevent
resource contention and allow miners and validators to execute transactions in
parallel. Miners generate deterministic fork-join programs, enabling consistent
parallel execution by validators. Jin et al. [7] takes a two-stage approach to
accelerate contract execution between the master node and validation nodes.
They design a TDG (Transaction Dependency Graph) to maintain consistency
between the master node and validation nodes. Garamvölgyi et al. [6] propose
Optimistic Concurrency Control with Deterministic Aborts (OCC-DA), which
makes it possible to use OCC scheduling in public blockchain settings The above
on-chain concurrent execution solutions allow nodes to utilize their multi-core
hardware to execute transactions efficiently. However, a node still needs to exe-
cute all transactions. When transactions are computation-intensive (e.g., smart
contract transactions [19]), the improvement of throughput is limited. Besides,
the existence of hotspot accounts (i.e., data are accessed frequently) can lead to
high data contention, and thus nodes still need to execute transactions serially.

Off-chain Concurrent Execution . To better execute computation-intensive
transactions and hotspot account transactions concurrently, other works [8–11,
20,21], propose an off-chain concurrent execution scheme. Its main idea is to
offload some transactions into off-chain nodes by which on-chain nodes and off-
chain nodes can execute disjoint sets of transactions in parallel. On-chain nodes,
in this case, can directly use execution results from off-chain nodes for consensus.
However, since on-chain nodes do not execute locally, the results computed by
off-chain nodes may not be trusted. Therefore, additional measures need to be
taken to ensure the trustworthiness of the off-chain results, which incurs extra
costs. Arbitrum [8] introduces a so-called challenge mechanism to ensure the
correctness of off-chain executions. Specifically, the mechanism allows users or
nodes to challenge the execution results from off-chain nodes for a period of
time before a transaction can eventually be committed. Such a challenge period,
however, increases the confirmation of transactions. Some other works [10,12]
adopt zero-knowledge proof techniques to provide verifiable execution results,
where off-chain nodes must perform a highly-cost computation for generating
a proof. Ekiden [11] and Fastkitten [22] rely on a hardware Trusted Execution
Environment (TEEs) to assist on-chain nodes in verifying execution results from
off-chain nodes. However, many recent works [13] report TEEs are vulnerable to
some attacks.

Motivation. The existing concurrent execution solutions, unfortunately, have
their intrinsic limitations. While on-chain concurrent execution solutions can-
not parallelize computation-intensive and hotspot account transactions well, the

On-chain and Off-chain Collaboration 397

existing off-chain concurrent execution solutions either introduce non-negligible
overheads or security risks [9]. In this work, we will present a new concurrent
execution scheme to enhance the performance of blockchains without sacrificing
the security property.

Fig. 1. System overview

3 Scheme Overview

In this section, we will present an overview of our scheme, followed by its chal-
lenges.

3.1 System Overview and Trust Assumptions

System Overview. Figure 1 presents an overview of our scheme, consisting of
three node types.

– Clients. Clients are the users of the blockchain system. Their state data is
maintained by the blockchain ledger, and they request to modify the state
data by sending transactions to the blockchain network.

– On-chain nodes. On-chain nodes run consensus protocol to maintain the
blockchain ledger jointly. An on-chain node can either be a (i) block pro-
poser (also called leader), who is responsible for generating new blocks, or
(ii) block validator, who verifies new blocks.

– Off-chain nodes. Off-chain nodes work as service nodes that help on-chain
nodes commit transactions. They do not participate in consensus directly
but execute transactions based on the scheduling information received from
block proposers.

398 W. Chen et al.

Trust Assumptions. We assume a partially synchronous network, where nodes
can receive messages from honest nodes within an unknown time-bound [23].
Under the partial synchrony network, we assume our system consists of n =
3f +1 on-chain nodes, where f nodes are Byzantine nodes. The Byzantine nodes
can behave maliciously by intentionally delaying messages or sending incorrect
messages. Different from previous off-chain schemes [9,11] that assume some off-
chain nodes must be honest, off-chain nodes in our scheme could be arbitrarily
malicious, making our scheme more practical in a real-world scenario. We will
show how we can achieve this in Sect. 4.2.

Workflow. Similar to previous concurrent execution schemes, we adopt a two-
stage consensus. Figure 1 shows the transaction processing in our scheme, which
mainly includes the following steps:

– Steps 1 and 2 : First, leaders separates transactions via a consistent infor-
mation scheduling mechanism (Sect. 4.1). Specifically, a leader creates a block
with a batch of transactions and executes them concurrently to generate
scheduling information. After that, the leader divides the scheduling infor-
mation into several parts that will be sent to specific on-chain nodes and
off-chain nodes for executions.

– Steps 3 : Then, on-chain nodes and off-chain nodes collaboratively verify and
execute the received transaction parts via a secure collaboration validation
mechanism (Sect. 4.2).

3.2 Challenges

However, designing an on-chain and off-chain collaborative execution scheme is
non-trivial and faces the following challenges.

Challenge A: In our scheme, similar to the previous on-chain concurrent exe-
cution schemes, the leader will collect a batch of transactions and execute them
concurrently, generating scheduling information and dividing it into three parts,
which are then sent to the nodes both on-chain and off-chain. However, unlike
previous work, in our scheme, on-chain nodes do not need to validate all trans-
actions. The leader sends the scheduling information to both on-chain validators
and off-chain nodes. Therefore, the challenge in the design of the scheme lies in
how to generate, partition, and distribute the scheduling information to ensure
consistency.

Challenge B: Different from previous on-chain concurrent execution solutions,
we also assign off-chain nodes to assist in executing transactions. As a result,
the on-chain nodes need to combine the results from both themselves and off-
chain nodes to determine the correctness of the results and update the state.
This introduces a new challenge in the coordination between on-chain and off-
chain nodes. Therefore, in our scheme, ensuring secure and efficient collaboration
between on-chain and off-chain nodes is another challenge.

On-chain and Off-chain Collaboration 399

4 On-chain and Off-chain Collaborative Execution
Scheme

In this section, we will detail our on-chain and off-chain collaborative execution
scheme. First, we propose a consistent information scheduling mechanism, which,
even if some transactions are delegated to off-chain validation, still ensures the
consistency of on-chain nodes and enables more efficient partitioning, provid-
ing the system with better concurrency and reducing the amount of data that
needs to be transmitted by on-chain nodes. After that, we present a secure col-
laboration validation mechanism. By dividing on-chain nodes into groups and
introducing a new challenge approach, our scheme reaps a secure and efficient
collaboration between on-chain and off-chain nodes without any additional secu-
rity assumptions on off-chain nodes.

4.1 Consistent Information Scheduling Mechanism

The first stage of processing transactions in our scheme is to ask leaders to gen-
erate scheduling information for transactions so that both on-chain nodes and
off-chain nodes can execute transactions concurrently in the second stage. The
key to generating scheduling information is the Transaction Scheduling Informa-
tion Graph (TSIG).

TSIG Structures . Figure 2 shows an example of a TSIG. Specifically, a TSIG
is a directed acyclic graph consisting of the following elements: i) Txi, where
i = 1, 2, ..., n, i ∈ N , represents the transaction id; ii) Directed edges, represent
the execution order of transactions, where arrows point to the transactions that
are executed later; iii) Ei,j , represents the information passed from Txi to Txj ,
which can be any relevant information; 4. Si, where i = 1, 2, 3, indicates the
subgraph to which the scheduling information belongs.

Fig. 2. Transaction scheduling information graph

The leader ensures conflict-free execution of resources by using a locking
mechanism. Whether a transaction is executed depends on whether it has
acquired the lock. However, the locking mechanism introduces some random-
ness, as the order of execution may vary even for the same batch of transactions.

400 W. Chen et al.

To enable the other nodes to know the order in which the leader executes trans-
actions, the leader needs to provide scheduling information, i.e., the dependency
relationship between transactions. To maintain consistency when utilizing the
off-chain results, we propose a versioning information method to ensure con-
sistency. Specifically, in addition to the account values, we include additional
version information in Ei,j , representing the version of an account in this batch
of transactions. When an account is updated, the on-chain nodes can compare
the version number returned by the off-chain nodes with the version number of
the account they executed. The results with the higher version number indicate
that its state is more up-to-date; thus, the results with the higher version number
are selected for updating.

A TSIG provides the dependent relationships among transactions, along with
some intermediate states (i.e., Ei,j). To allow independent validation of transac-
tions within each subgroup, we need to partition the TSIG into subgraphs and
allow each subgraph to run independently. If there are dependencies between
transactions in different subgraphs, such as E1,3 in Fig. 2, then the dependency
needs to be included in S2 so that S2 can execute Tx3 without executing Tx1, as
the execution result of Tx1 is already known. However, there are no dependencies
between S2 and S3. Clearly, we only need to transmit the topological relationship
of the subgraphs, as the dependency information Ei,j can be generated internally
and does not rely on other subgraphs.

Different partitioning ways result in different sizes of the transmitted infor-
mation and also lead to variations in the computation time required for each
subgroup. In our scheme, the leader records the execution time of each trans-
action and the size of the data to be transmitted between transactions. We use
t(Txi) to represent the execution time of Txi and Wij to represent the size of the
message transmitted from Txi to Txj . After concurrent execution, we sort Wij

in descending order and set one-third of the total execution time as the thresh-
old. We then add transactions to the subgroup in descending order of Wij until
the computation threshold is reached. By following this approach, we minimize
the amount of information that needs to be transmitted between subgroups and
achieve a more balanced distribution of computation load among the subgroups.

Illustrative Example: In Fig. 2, we assume Tx1 is a transaction involving
accounts Alice and Bob; Tx2 is a transaction involving account Alice; Tx3 is a
transaction involving account Bob, Tx4 and Tx5 are both transactions involving
Tom. It is given that Tx1 is executed before Tx2 and Tx3, and Tx4 is executed
before Tx5. Three directed edges are present in the graph and contain relevant
information, namely E1,2, E1,3, and E4,5. We sort the sizes of Ei,j in descending
order, assuming E1,2, E4,5, and E1,3 in that order. We set the threshold to be
1/3 of the total execution time.

During the process of generating subgraphs, we first split the larger edge,
E1,2, which involves Tx1 and Tx2. Assuming that the sum of the execution
time of the two transactions exceeds the threshold, we consider them as a single
subgraph. Next, we proceed with the second subgraph. We then examine E4,5,

On-chain and Off-chain Collaboration 401

which involves Tx4 and Tx5. If their total execution time exceeds the threshold,
we separate them into another subgraph. Since we need to create three subgraphs
in total, we do not need to perform any further checks. The transactions involved
in E1,3 will be assigned to the last subgraph. However, Tx1 is already present in
another subgraph. Therefore, we need to keep E1,3 in the last subgraph. In this
way, we generate the TSIG as shown in Fig. 2.

4.2 Secure Collaboration Validation Mechanism

The second stage of processing transactions in our scheme is that on-chain nodes
and off-chain nodes collaboratively execute transactions and verify the execution
results. The key is to ensure secure and efficient collaboration between on-chain
and off-chain nodes.

Corresponding to the division of transaction subgraphs, our scheme also
divides on-chain nodes into groups, by which on-chain nodes only need to execute
part of subgraphs but not all transactions. If a group of nodes in the on-chain
groups consists entirely of malicious nodes, it can compromise the security of
the system. Specifically, these malicious nodes can collude to manipulate the
off-chain nodes into returning incorrect results for a specific subgraph.

Illustrative Example: Figure 3 shows an example where malicious on-chain
and off-chain nodes collude to manipulate the execution result and eventually
compromise the correctness of the ledger. As shown in Fig. 3, there are two
subgraphs, S1 and S2, two on-chain groups, G1 and G2, and multiple off-chain
nodes. All nodes in G1 are malicious, while all nodes in G2 are honest. G1 is
assigned to execute S1 and receives the result of S2 returned by off-chain nodes.
Because all the nodes in G1 are malicious, they can manipulate the execution
result of S1 in a malicious manner. G2 executes another subgraph and receives
an erroneous off-chain result about S1. Since G2 does not execute S1 but directly
relies on the off-chain results, the malicious nodes can successfully modify the
result of the S1 without being detected by the on-chain nodes.

Fig. 3. An example of collusion between on-chain and off-chain nodes

To ensure the security of the system, we propose an at-least-one honesty
mechanism. Specifically, we guarantee that there is at least one honest node

402 W. Chen et al.

involved in the computation of each subgraph. Recall from the trust assumptions
in Sect. 3, where are n = 3f + 1 on-chain nodes in our system, where f is the
number of byzantine nodes. Therefore, in our scheme, we divide the nodes into
three groups, each of which consists of f nodes and the leader (thus, (f+1) nodes
in each group). However, we emphasize the number of groups in our scheme
can be adjusted to accommodate different trust models and requirements. For
example, we can allow group overlap where on-chain nodes can join multiple
groups at the same time.

Groups are responsible for executing different subgraphs. The group size of
(f + 1) ensures that each subgraph has at least one honest node involved in its
computation. By having at least one honest node in the group responsible for
computing a particular subgraph, we can detect malicious behavior when the
result of a subgraph is tampered with off-chain. When honest on-chain nodes
detect malicious behavior from a node, they no longer rely on the off-chain
results returned by that node. Instead, they calculate the remaining subgraphs
to update their local state. After calculating the remaining subgraphs, they can
compare their own computed results with the off-chain results to identify which
ones are incorrect. They can then issue challenges to punish the malicious node.

By grouping the transactions in this way, our scheme prevents the malicious
leader from succeeding. If the TSIG sent by the leader contains incorrect Ei,j

values, the honest on-chain nodes, having access to all the TSIGs, will compare
the computed Ei,j values after executing the transactions. If they find any dis-
crepancies, they will roll back to executing all the transactions themselves and
issue challenges to punish the malicious leader.

Security Proof: We prove that our scheme can satisfy consistency, i.e., any two
honest nodes store the same prefix ledger.

Theorem 1 (Consistency). Our on-chain and off-chain collaborative execu-
tion scheme guarantees consistency.

Proof. If malicious nodes want to compromise consistency among honest nodes,
they need to output inconsistent execution results to different honest nodes dur-
ing the second stage of consensus. However, since our collaboration validation
mechanism ensures that each group contains at least one honest node, an incor-
rect execution result will be detected. In this case, the honest node will launch
a challenge to the incorrect result by broadcasting evidence to the network.
Consequently, all other honest nodes will re-execute the relevant subgraph and
eventually reach a consistent state.

5 Evaluation

Implementation. We implement a prototype system for our scheme in Golang.
Additionally, we leverage Tendermint [15] consensus to implement our scheme.
Tendermint is a project that can be used to securely and consistently repli-
cate applications across multiple machines [24]. Building upon Tendermint, we

On-chain and Off-chain Collaboration 403

establish P2P connections between on-chain and off-chain nodes using the HTTP
protocol for information transmission, which enables collaboration between on-
chain and off-chain nodes. In order to make a comparison, we will compare our
scheme with the serial execution scheme. To ensure a fair comparison, we also
implement batch transaction execution for the serial execution scheme.

Fig. 4. Comparison of throughput under different CPUs

Dataset. In order to evaluate the performance of our scheme, we have imple-
mented SmallBank in Golang, a commonly used OLTP benchmark that has also
been applied in blockchain networks to simulate contract transactions [7]. Addi-
tionally, we have used the Zipfian distribution to simulate the access frequency
of contracts in the real world and adjusted the skew parameter to simulate trans-
action conflicts. The skew parameter ranges from 0 to 1, where a higher value
indicates a higher conflict rate.

Setup. We conduct all experiments on one machine with an Intel Xeon Gold
5320 Processor and 128 GB RAM to reveal the performance improvement of our
scheme, which is fairly common in a series of related works [4,5,7]. To impose
finer resource constraints on each node, we package the required resources for
each node into a docker image. By instantiating each image, we create inde-
pendent containers that represent individual nodes. To enable communication
between these container nodes, we set up a subnet on the machine and use the tc
command in Linux to restrict communication between nodes. We add a qdisc to
each node’s communication interface and use the Token Bucket Filter (TBF) as
the queuing algorithm. The token generation rate is set to an average of 1Gbps,
with a peak rate of 1.5Gbps. The maximum burst transmission size is 64KB,
and the minimum transmission size is 1540 bytes. We introduce a delay of 50ms
to simulate the communication process between distributed machines. Addition-
ally, we use docker-compose to orchestrate each container node, limiting their
CPU and memory resources and ensuring that the nodes are on the same subnet
for communication. We repeat each experiment three times and calculate the
average of the results.

404 W. Chen et al.

Metrics. We use the following metrics to measure the performance of the sys-
tem. 1) Transaction throughput, measured in transactions per second (TPS),
represents the throughput of confirmed transactions. 2) Confirmation latency
refers to the time delay from when a transaction is sent from the client to when
it is confirmed by the nodes in the system. 3) Transaction execution time is the
time it takes for the leader in the system to execute a batch of transactions upon
receiving them. 4) Transaction verification time is when the other validators in
the system validate the transactions in a block sent by the leader.

Fig. 5. Comparison of delay under different CPUs with 4 nodes

In the experiment, we set the number of on-chain nodes to be 4, 7, 10, 13,
16, and 19, respectively, and an off-chain node, of which the resource allocation
is consistent with on-chain nodes. To evaluate the performance, we measured
the system’s throughput with different CPU numbers per node, ranging from 1
to 5, under different conflict rates, shown in Fig. 4. We simulated low, medium,
and high conflict rate scenarios by setting the skew parameter to 0.1, 0.5, and
0.9, respectively. We find that as the number of nodes in the system increased,
the throughput gradually decreased for both our scheme and the serial execu-
tion scheme. With increasing nodes, the communication overhead in the system
significantly increased. The complexity of network communication implemented
by Tendermint is O(n3), which leads to a decrease in system throughput.

Although batch transaction execution is being implemented in the serial
scheme, the conflict rate does not affect it. Whether the conflict rate is low,
medium, or high, the throughput and latency of batch processing remain largely
unaffected. On the other hand, our scheme’s throughput is generally unaffected,
but the latency increases linearly with the increase in conflict rate, as shown in
Fig. 5, which measures the latency of the system when the nodes number is 4,
and the CPUs number ranges from 1 to 5, under different conflict rates. This
is mainly because our scheme needs to transmit subgraphs, and if the conflict
rate is high, the amount of information that needs to be transmitted among
subgraphs increases due to the increased dependencies among them. In contrast,
batch processing executed in a serial manner is not affected because it does not

On-chain and Off-chain Collaboration 405

require the transmission of additional information and can simply be executed
based on the order of transactions.

The performance of the serial execution scheme is not significantly affected by
the number of CPUs. As the number of CPUs increases, the throughput of serial
execution remains relatively constant. However, in our scheme, we can observe
an increase in throughput as the number of CPUs increases. This is because
the serial batch processing scheme cannot leverage the performance of multiple
cores, and all transactions need to be executed sequentially, our scheme can
take advantage of multiple cores, resulting in improved system performance with
an increasing number of CPUs. As the number of CPUs reaches 3, the growth
gradually slows down, indicating that the parallel performance is approaching its
limit. However, as the number of CPUs increases, the throughput of the scheme
increases, but the latency also increases. Because with increased throughput,
there are more transactions that need to be transmitted between nodes, which
consumes more network bandwidth and leads to higher system latency.

To further demonstrate how our scheme can reduce the computational burden
on on-chain nodes, we increased the complexity of each transaction execution
and measured the time cost for the leader to execute and the validators to verify.
We increased the computational complexity of each transaction by calculating
the SHA256 hash 100 times on a 1000-byte length input before execution. We
conducted experiments using 7 nodes, shown in Fig. 6.

Fig. 6. Comparison of execution time and validation time under different CPUs with
4 nodes

When the CPU is limited to 1, our scheme reduces verification time compared
to serial execution by nearly half. This illustrates that even with limited CPU
resources, we are able to reduce the computational burden on the on-chain nodes
by approximately 2 times. The execution time of the leader in our scheme and
the serial execution scheme is very close, indicating that they have similar com-
putational loads. The leader scheme has the additional burden of transmitting
subgraphs to off-chain nodes. We have utilized Go’s goroutines to asynchronously
send the subgraphs to off-chain nodes without affecting the leader computation.

406 W. Chen et al.

With the increasing number of CPUs, the execution time of the leader in our
scheme has been dramatically reduced, as the leader can fully utilize the multi-
core CPUs. However, validators only have slight improvement. This is because
the leader execution is based on lock mechanisms, which fully leverage the multi-
core CPU, while the validators need to execute based on the dependency rela-
tionships in the TSIG. The validators need first to perform a topological sort on
received subgraphs and then sequentially execute transactions with dependency
relationships. Independent transactions can be executed in parallel. Increasing
the number of CPUs can speed up the execution of independent transactions,
but the number of independent transactions is still relatively small compared to
transactions with dependencies. Therefore, the increase in CPU does not signif-
icantly impact reducing validation time.

In addition, as the conflict rate increases, the validators require more time for
validation. With an increasing conflict rate, there are fewer independent transac-
tions in the subgraph, and more transactions have dependencies. This prevents
the validation nodes from effectively utilizing multi-core CPU, resulting in an
increased validation burden on the on-chain nodes. However, overall, the valida-
tion time is still reduced by a factor of two compared to batch serial execution.

6 Conclusion

In this paper, we aim to improve the performance of blockchain systems. We pro-
pose an on-chain and off-chain collaborative execution scheme. This new execu-
tion scheme integrates off-chain execution into the on-chain concurrent execution
scheme, enhancing the performance of blockchain systems significantly without
introducing any security assumptions on off-chain nodes. We implement our pro-
totype based on Tendermint and compare it with the serial execution scheme.
The experimental results show that our scheme can achieve a maximum through-
put improvement of 2.6×, 11.2× less execution time, and 2.1× less verification
time.

Acknowlegements. The work described in this paper was supported by the National
Key Research and Development Plan(2022YFF0903100), the National Natural Science
Foundation of China (62172453), the National Natural Science Foundation of Guang-
dong province(2022A1515010154), the Major Key Project of PCL(PCL2021A06), and
the Pearl River Talent Recruitment Program (No. 2019QN01X130).

References

1. Wang, X., Muppirala, V.V., Yang, L., Kannan, S., Viswanath, P.: Securing parallel-
chain protocols under variable mining power. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1700–1721
(2021)

2. Duan, S., Zhang, H.: Foundations of dynamic bft. In: 2022 IEEE Symposium on
Security and Privacy (SP), pp. 1317–1334. IEEE (2022)

On-chain and Off-chain Collaboration 407

3. Zhang, J., Hong, Z., Qiu, X., Zhan, Y., Guo, S., Chen, W.: Dynamic sharding: a
trade-off between security and scalability. In: Blockchain Scalability, pp. 193–221.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-1059-5 8

4. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, pp. 303–312 (2017)

5. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An efficient framework
for optimistic concurrent execution of smart contracts. In: 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pp. 83–92. IEEE (2019)

6. Garamvölgyi, P., Liu, Y., Zhou, D., Long, F., Wu, M.: Utilizing parallelism in smart
contracts on decentralized blockchains by taming application-inherent conflicts.
In: Proceedings of the 44th International Conference on Software Engineering, pp.
2315–2326 (2022)

7. Jin, C., Pang, S., Qi, X., Zhang, Z., Zhou, A.: A high performance concurrency
protocol for smart contracts of permissioned blockchain. IEEE Trans. Knowl. Data
Eng. 34(11), 5070–5083 (2021)

8. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 1353–1370 (2018)

9. Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: ACE: asynchronous
and concurrent execution of complex smart contracts. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 587–
600 (2020)

10. Kang, H., Dai, T., Jean-Louis, N., Tao, S., Gu, X.: Fabzk: supporting privacy-
preserving, auditable smart contracts in hyperledger fabric. In: 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 543–555. IEEE (2019)

11. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 185–200. IEEE (2019)

12. Xie, T., et al.: zkbridge: trustless cross-chain bridges made practical. In: Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pp. 3003–3017 (2022)

13. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In: 27th USENIX Security Symposium
(USENIX Security 2018), pp. 991–1008 (2018)

14. Cai, Z., et al.: Benzene: scaling blockchain with cooperation-based sharding. IEEE
Trans. Parallel Distrib. Syst. 34(2), 639–654 (2022)

15. Cason, D., Fynn, E., Milosevic, N., Milosevic, Z., Buchman, E., Pedone, F.: The
design, architecture and performance of the tendermint blockchain network. In:
2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp.
23–33. IEEE (2021)

16. Zhang, R., Zhang, D., Wang, Q., Wu, S., Xie, J., Preneel, B.: Nc-max: breaking the
security-performance tradeoff in nakamoto consensus. Cryptology ePrint Archive
(2020)

17. Reijsbergen, D., Dinh, T.T.A.: On exploiting transaction concurrency to speed up
blockchains. In: 2020 IEEE 40th International Conference on Distributed Comput-
ing Systems (ICDCS), pp. 1044–1054. IEEE (2020)

https://doi.org/10.1007/978-981-99-1059-5_8

408 W. Chen et al.

18. Bartoletti, M., Galletta, L., Murgia, M.: A true concurrent model of smart contracts
executions. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol.
12134, pp. 243–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50029-0 16

19. Klems, M., Eberhardt, J., Tai, S., Härtlein, S., Buchholz, S., Tidjani, A.: Trustless
intermediation in blockchain-based decentralized service marketplaces. In: Max-
imilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 731–739. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69035-3 53

20. Sariboz, E., Kolachala, K., Panwar, G., Vishwanathan, R., Misra, S.: Off-chain
execution and verification of computationally intensive smart contracts. In: 2021
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp.
1–3. IEEE (2021)

21. Kim, Y., Jeong, S., Jezek, K., Burgstaller, B., Scholz, B.: An off-the-chain execution
environment for scalable testing and profiling of smart contracts. In: 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pp. 565–579 (2021)

22. Das, P., et al.: Fastkitten: practical smart contracts on bitcoin. In: USENIX Secu-
rity Symposium, pp. 801–818 (2019)

23. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

24. Zhang, J., Chen, W., Luo, S., Gong, T., Hong, Z., Kate, A.: Front-running
attack in distributed sharded ledgers and fair cross-shard consensus. arXiv preprint
arXiv:2306.06299 (2023)

https://doi.org/10.1007/978-3-030-50029-0_16
https://doi.org/10.1007/978-3-030-50029-0_16
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1007/978-3-319-69035-3_53
http://arxiv.org/abs/2306.06299

Author Index

A
Abusafia, Amani II-167
Amiri, Amirali I-137
Anisetti, Marco I-3
Ardagna, Claudio A. I-3

B
Barakat, Saman I-153
Bardelloni, Gianluigi II-261
Baresi, Luciano I-347
Bartel, Jone I-323
Bena, Nicola I-3
Berrocal, Javier II-159
Bisicchia, Giuseppe I-363
Borovits, Nemania II-261
Bouguettaya, Athman II-167, II-195
Boulakbech, Marwa I-19
Brabra, Hayet II-115
Brogi, Antonio I-363
Buyya, Rajkumar I-197

C
Cabanillas, Cristina II-13
Camilli, Matteo I-227
Cao, Jian I-86, II-38, II-54
Cao, Yunuo II-72
Capitán-Agudo, Carlos II-13
Chen, Gang I-212
Chen, Guihai II-227
Chen, Hsiao-Yuan II-159
Chen, Jian II-143
Chen, Shizhan I-291
Chen, Wenlong II-72
Chen, Wuhui I-393
Chen, Yin I-103
Cheng, Liang I-34
Comuzzi, Marco I-307

D
Devogele, Thomas I-19
Di, Ying II-72

Dinga, Madalina I-181
Dong, Chongwu I-378
Donta, Praveen Kumar I-42
Dustdar, Schahram I-42

F
Fan, Yushun I-51
Fang, Zhengxin I-212
Fedotov, Daniil I-169
Feng, Zhiyong I-291
Franceschetti, Marco II-186

G
Gaaloul, Walid II-115
Gao, Heran I-275
Gao, Xiaofeng II-227
García-Alonso, Jose I-363
Garda, Szabolcs II-3
Giamattei, Luca I-181
Gill, Sukhpal Singh I-197
Gu, Yang I-86, II-54
Guan, Wei I-86, II-38, II-54
Guerriero, Antonio I-181
Guo, Yuan I-86

H
Hartmann, Sven I-212
He, Wanyi II-291
He, Xiang I-103, I-258
Herrera, Juan Luis II-159
Hiew, Morgan Xian Biao II-291
Huang, Gang I-67
Huang, Kang I-67
Huang, Tao I-339

J
Jerbi, Imen II-115
Jin, Xin I-67
Joshi, Aparna II-291

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 409–411, 2023.
https://doi.org/10.1007/978-3-031-48421-6

https://doi.org/10.1007/978-3-031-48421-6

410 Author Index

Julien, Christine II-159
Jurdak, Raja I-243

K
Kuchar, Jaroslav I-169

L
Lakhdari, Abdallah II-167, II-195
Lau, Sean Shing Fung II-291
Laufer, Jan I-323
Li, Bing II-127
Li, Chiao-Yun II-291
Li, Hongfei I-378
Li, Hongfeng II-143
Li, Qing I-67
Li, Qingfeng II-100
Liang, Junyuan I-393
Lin, Leilei II-72
Liu, Jie II-242
Liu, Mingyi I-339, II-100
Liu, Wang I-275
Liu, Xuanzhe I-67

M
Ma, Hui I-212
Ma, Li II-227
Ma, Yue II-227
Ma, Yun I-67
Malavolta, Ivano I-181
McDonald, Lewyn I-243
Meroni, Giovanni I-307, II-3
Messai, Nizar I-19
Metzger, Andreas I-323
Mirandola, Raffaela I-227
Munnangi, Sai Krishna II-276
Murillo, Juan M. I-363, II-159

N
Na, Jun II-212
Nguyen, Dung Chi Duy I-307
Ntentos, Evangelos I-137

P
Peng, Wei II-143
Pietrantuono, Roberto I-181
Pujol, Victor Casamayor I-42

Q
Qian, Shiyou I-86, II-38, II-54
Quattrocchi, Giovanni I-347

R
Ramachandran, Gowri Sankar I-243
Resinas, Manuel II-13
Riccio, Vincenzo I-227

S
Salas-Urbano, María II-13
Sam, Yacine I-19
Sánchez, Ana Belén I-153
Scandurra, Patrizia I-227
Sedlak, Boris I-42
Segura, Sergio I-153
Seiger, Ronny II-186
Sellami, Mohamed II-115
Shao, Zihao I-103
Shi, Haomai I-103, I-258
Shi, Jianfeng I-275
Shinde, Tejaswini II-291
Shu, Yanjun I-119
Song, Chenghao I-197
Song, Linxuan II-143
Sorrentino, Giancarlo I-227
Sulebele, Archana II-276
Sun, Qilin I-393

T
Tam, Nicholas T. L. II-291
Tamburri, Damian Andrew II-261
Tang, Jinghua II-54
Ticongolo, Inacio Gaspar I-347

U
Umair, Muhammad II-195

V
Van Den Heuvel, Willem-Jan II-261
van der Aalst, Wil M. P. II-291
Vitvar, Tomas I-169
Völker, Maximilian II-29

W
Wang, Chi II-38
Wang, Jian II-127
Wang, Shangguang I-67
Wang, Teng I-103, I-258

Author Index 411

Wang, Zhongjie I-103, I-258, I-339, II-100
Warnett, Stephen I-137
Weber, Barbara II-186
Wen, Wushao I-378
Weske, Mathias II-29
Wu, Heng I-275
Wu, Hongyue I-291
Wu, Huaming I-197

X
Xi, Heran II-91
Xia, Geming II-143
Xiang, Qibu I-51
Xiao, Jianmao I-291
Xie, Weiye II-212
Xu, Chengzhong I-197
Xu, Daliang I-67
Xu, Hanzhi I-119
Xu, Mengwei I-67
Xu, Minxian I-197
Xu, Shuxiang I-51
Xue, Xiao I-291

Y
Yan, Ruyu I-51
Yang, Zhaoxian I-393
Yangui, Sami II-167
Ye, Kejiang I-197

Yessenbayev, Olzhas I-307
Yu, Chaodong II-143
Yu, Shuang I-339, II-100

Z
Zdun, Uwe I-137
Zeghlache, Djamal II-115
Zhang, Bin II-212
Zhang, Changsheng II-212
Zhang, Danlei II-143
Zhang, Handuo II-212
Zhang, Jia I-51
Zhang, Jianting I-393
Zhang, Qi II-91
Zhang, Wenbo I-275
Zhang, Yuan II-72
Zhang, Zhan I-119
Zhang, Ziyang II-242
Zhao, Haiyan II-38
Zhao, Yang II-242
Zhao, Yuqi II-127
Zhou, Boyang I-34
Zhou, Fan I-393
Zhou, Xinyue I-291
Zhu, Jinghua II-91
Zhu, Ouwen II-212
Zhu, Rui II-72
Zuo, Decheng I-119

	Preface
	Organization
	Keynotes
	IoTility: Unleashing the Utility of Internet of Things Through Microservices Architectural Extensions
	Service Governance in a Transforming World - Challenges Ahead
	Logic, Automata, and Games in Service Composition
	Contents – Part I
	Contents – Part II
	AI for Service Systems
	Continuous Certification of Non-functional Properties Across System Changes
	1 Introduction
	2 Background and Motivations
	2.1 Continuous Certification in a Nutshell
	2.2 Gaps of Continuous Certification

	3 Our Approach
	4 Change Detection
	5 Planning and Execution
	5.1 Planning
	5.2 Execution

	6 Experiments
	6.1 A Dataset for Continuous Assurance Techniques Evaluation
	6.2 Quality Evaluation

	7 Discussion and Future Work
	References

	Deep Learning Model for Personalized Web Service Recommendations Using Attention Mechanism
	1 Introduction
	2 Preliminaries
	3 A Deep Learning Model for Personalized Web Service Recommendation
	3.1 Neighbor Mashups Module
	3.2 Mashup and Service Representation Module
	3.3 Recommendation Module

	4 Evaluation
	4.1 Parameter Learning
	4.2 Experimentation

	5 Related Work
	5.1 Content-Based Web Service Recommendation
	5.2 QoS-Based Web Service Recommendation
	5.3 Web Service Recommendation with Deep Learning Technology

	6 Conclusion
	References

	Deep Reinforcement Learning-Based Scheduling for Same Day Delivery with a Dynamic Number of Drones
	1 Introduction
	2 System Description for Meal Delivery with SD4
	3 Environment Setup for SDD Task Scheduling
	3.1 Task and State
	3.2 Action and Reward

	4 Reinforcement Learning Model and Environment Setup for Drone Employment
	4.1 Task and State
	4.2 Action and Reward

	5 Evaluation
	5.1 Evaluation of DDQN for SDD Task Scheduling
	5.2 Evaluation for the Drone Employment Model
	5.3 Real-Time Performance Evaluation

	6 Conclusion
	References

	Designing Reconfigurable Intelligent Systems with Markov Blankets
	1 Introduction
	2 Methodology
	3 Case Study
	3.1 Setup
	3.2 Model Construction
	3.3 Device Configuration Inference
	3.4 Evaluation

	4 Conclusion and Future Work
	References

	Exploiting Category Information in Sequential Recommendation
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Attribute Enhanced Recommendation

	3 Methodology
	3.1 Problem Statement
	3.2 Framework Overview
	3.3 Graph Construction
	3.4 Graph Embedding
	3.5 Preferences Extraction Block
	3.6 Prediction and Optimization

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 The Effect of the Pre-trained Embeddings
	4.4 The Effect of the Category Information
	4.5 The Effect of the Dual-Channel Preference Extraction

	5 Conclusions
	References

	Niagara: Scheduling DNN Inference Services on Heterogeneous Edge Processors
	1 Introduction
	2 Background and Related Work
	3 System Design
	3.1 System Overview
	3.2 Problem Formulation
	3.3 Template-Based Scheduling Strategy Generator
	3.4 Template-Based Strategy Matcher
	3.5 Dynamic Input Predictor
	3.6 Processor Monitor

	4 Implementation and Evaluation
	4.1 Experiment Settings and Methodology
	4.2 Experiment Results

	5 Discussion
	6 Conclusion
	References

	Plan, Generate and Match: Scientific Workflow Recommendation with Large Language Models
	1 Introduction
	2 Related Work
	2.1 Scientific Workflow Recommendation
	2.2 Prompting Methods

	3 Preliminaries
	4 Plan, Generate and Match (PGM)
	4.1 Stage I: Planning
	4.2 Stage ii: Specification Generation
	4.3 Stage III: Matching

	5 Experiments
	5.1 Experimental Settings
	5.2 Main Results
	5.3 Ablation Study
	5.4 Robustness Analysis
	5.5 Case Study

	6 Limitations and Discussions
	7 Conclusion
	References

	Predicting Effect and Cost of Microservice System Evolution Using Graph Neural Network
	1 Introduction
	2 Related Work
	3 Microservice System Evolution Modeling
	3.1 Microservice System
	3.2 Microservice System Evolution
	3.3 Evolution Metrics

	4 Proposed Method
	4.1 Prediction Algorithm
	4.2 Prediction System

	5 Experiment and Analysis
	5.1 Experimental Setup
	5.2 Experiments for Evolution Effect and Cost
	5.3 Experiments for Microservice Additions and Deletions

	6 Conclusion and Future Work
	References

	QoS Prediction via Multi-scale Feature Fusion Based on Convolutional Neural Network
	1 Introduction
	2 The Framework of QPRMSN
	3 Methodology of Forming the Feature Matrix
	3.1 Features Within the Environment Context
	3.2 Features within the QoS Matrix
	3.3 Encoding of Features

	4 Neural Network with Multi-scale Receptive Fields
	4.1 Embedding Layer
	4.2 Fusing Multi-scale Receptive Fields
	4.3 Attention Mechanism
	4.4 Fully Connected Layer

	5 Experiments
	5.1 Data Set
	5.2 Metrics
	5.3 Baselines
	5.4 Performance Comparison

	6 Discussion
	6.1 Ablation Study for Encoding Method
	6.2 Effect of Embedding Dimension
	6.3 Effect of the Number of Convolution Kernels
	6.4 Effect of the Number of Neurons in the Fully Connected Layers

	7 Related Work
	8 Conclusion
	References

	Architecture and System Aspects
	Decision-Making Support for Data Integration in Cyber-Physical-System Architectures
	1 Introduction
	2 Related Work
	3 Research Method
	4 Reusable ADD Model for Data Integration in CPS Architectures
	5 Evaluation
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References

	IDLGen: Automated Code Generation for Inter-parameter Dependencies in Web APIs
	1 Introduction
	2 Background
	2.1 Inter-parameter Dependency Language (IDL)
	2.2 IDL4OAS
	2.3 OpenAPI Generator

	3 Approach: IDLGen
	4 Evaluation
	4.1 Subject APIs
	4.2 Experiment 1: Code Generation
	4.3 Experiment 2: Implementation Time and Faults

	5 Related Work
	6 Threats to Validity
	7 Conclusions and Future Work
	References

	Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map
	1 Introduction
	2 Related Work
	3 Time-Aware Log Anomaly Detection
	4 Experiments and Evaluation
	5 Conclusion and Future Work
	References

	Containers and Microservices
	An Empirical Evaluation of the Energy and Performance Overhead of Monitoring Tools on Docker-Based Systems
	1 Introduction
	2 Background
	3 Related Work
	4 Study Design
	4.1 Experimental Subjects: Monitoring Tools
	4.2 Goal and Research Questions
	4.3 Experiment Variables
	4.4 Experiment Design
	4.5 Experiment Execution

	5 Results
	5.1 Results on Energy Efficiency (RQ1)
	5.2 Results on Performance (RQ2)

	6 Threats to Validity
	7 Conclusions and Future Work
	References

	ChainsFormer: A Chain Latency-Aware Resource Provisioning Approach for Microservices Cluster
	1 Introduction
	2 Related Work
	3 The ChainsFormer Framework
	3.1 Workload Generator
	3.2 Neural Network-Based Workload Predictor
	3.3 Chains Analyzer
	3.4 RL-Based Resource Scaling

	4 Performance Evaluations
	4.1 Experimental Settings
	4.2 Baselines and Metrics
	4.3 Experiment Analyses

	5 Conclusions
	References

	Energy-Efficient and Communication-Aware Resource Allocation in Container-Based Cloud with Group Genetic Algorithm
	1 Introduction
	2 Related Work
	3 Energy-Efficient Communication-Aware MAC
	4 Proposed Algorithm
	4.1 Representation
	4.2 EC-Initialization
	4.3 EC-Crossover
	4.4 Best-Fit-Decreasing Insert (BFDI)
	4.5 Mutation

	5 Experimental Evaluation
	5.1 Experiment Results
	5.2 Further Analysis

	6 Conclusion
	References

	Engineering Self-adaptive Microservice Applications: An Experience Report
	1 Introduction
	2 Running Example
	3 RAMSES Framework
	4 Evaluation
	4.1 Results
	4.2 Threats to Validity

	5 Challenges and Lessons Learned
	6 Related Work
	7 Conclusion and Future Work
	References

	FUSE: Fault Diagnosis and Suppression with eBPF for Microservices
	1 Introduction
	2 Background
	2.1 extended Berkeley Packet Filter (eBPF)
	2.2 Faults in Microservices

	3 Related Work
	4 FUSE: Fault Diagnosis and Suppression with eBPF for Microservices
	4.1 System Model
	4.2 Architecture of FUSE
	4.3 Fault Diagnosis and Suppression
	4.4 Fault Suppression
	4.5 Stability Score

	5 Proof-of-Concept Implementation and Evaluation
	5.1 Idempotency of Example Services
	5.2 Overhead of FUSE
	5.3 Faults Detected by FUSE

	6 Discussion
	7 Conclusion
	References

	ServiceSim: A Modelling and Simulation Toolkit of Microservice Systems in Cloud-Edge Environment
	1 Introduction
	2 Related Work
	3 Architecture and Implementation
	3.1 Infrastructure Layer
	3.2 Microservice Layer
	3.3 Service Request Layer

	4 Use Case and Performance Evaluation
	4.1 Simulation Effect Evaluation
	4.2 Case Study

	5 Conclusion
	References

	Emerging Technologies and Approaches
	2DPChain: Orchestrating Transactions in Order-Execute Blockchain to Exploit Intra-batch and Inter-batch Parallelism
	1 Introduction
	2 System Model
	2.1 Concept Definition
	2.2 Transaction Flow
	2.3 Offline-Version Problem Formulation

	3 A Transaction Management Mechanism for Parallel Sub-batches
	3.1 Conflict Management Based on DAG
	3.2 Ready Transaction Management Based on Two-Level Ordered Queues
	3.3 Conflict Prediction Based on Shared-Variable Relationship Table

	4 A Transaction Packing Mechanism for Parallel Sub-batches
	4.1 Problem Model Based on 2D Multi-bin Packing Problem
	4.2 Select a Candidate Location Based on Load Balancing
	4.3 Pack a Ready Transaction Based on Two-Level Ready Queues
	4.4 Align All Sub-Batches

	5 An Adaptive Parameter Tuning and Assignment Mechanism for Parallel Sub-batches
	5.1 An Adaptive Parameter Negotiation Method
	5.2 A Greedy-Based Assignment Method for Parallel Sub-Batches
	5.3 Analysis of Solutions for Malicious Behavior

	6 Experimental Evaluation
	6.1 Baseline Blockchains
	6.2 Datasets
	6.3 Overall Performance
	6.4 Scalability Evaluation
	6.5 Performance Under Real Datasets of Ethereum

	7 Related Work
	8 Conclusion
	References

	A Dynamical Model for the Nonlinear Features of Value-Driven Service Ecosystem Evolution
	1 Introduction
	2 Related Work
	3 Model
	3.1 Overall
	3.2 Demand Growth Model
	3.3 Service Growth Model
	3.4 Matching Probability Model

	4 Stability and Bifurcation
	4.1 Positive Equilibria
	4.2 Stability and Hopf Bifurcation Depends on Time Delay
	4.3 Hopf Bifurcation Depends on Other Parameters

	5 Numerical Simulations
	5.1 System Stability
	5.2 Hopf Bifurcation Depends on Time Delay
	5.3 Hopf Bifurcation Depends on Competition Coefficient

	6 Conclusion
	References

	A Middleware for Hybrid Blockchain Applications: Towards Fast, Affordable, and Accountable Integration
	1 Introduction
	2 Problem Definition
	2.1 A Fintech Motivating Case Study
	2.2 Requirements

	3 Solution Design
	3.1 System Architecture
	3.2 System In-Use View
	3.3 Maintaining Accountability of Meta-Transactions

	4 Implementation and Evaluation
	4.1 Thankspay Service Implementation
	4.2 Experimental Evaluation

	5 Related Work
	6 Conclusion
	References

	An AI Chatbot for Explaining Deep Reinforcement Learning Decisions of Service-Oriented Systems
	1 Introduction
	2 Background and Exemplar
	3 Chat4XAI Architecture and Realization
	4 Experiments
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Current Limitations and Potential Enhancements
	6 Related Work
	7 Conclusion
	References

	BEAR: Revolutionizing Service Domain Knowledge Graph Construction with LLM
	1 Introduction
	2 Related Works
	2.1 Knowledge Graph in Service Computing
	2.2 Specific Domain Knowledge Graph Construction Methods

	3 Ontology for Service Domain Knowledge
	4 Knowledge Extraction with LLM
	5 Experiment and Result
	6 BEAR Overview
	7 Threat of Validity
	8 Conclusion
	References

	Dependency-Aware Resource Allocation for Serverless Functions at the Edge
	1 Introduction
	2 NEPTUNE in a Nutshell
	2.1 Limitations

	3 NEPTUNE+
	3.1 Theoretical Model
	3.2 Control Algorithm

	4 Evaluation
	4.1 Performance Without Bottlenecks
	4.2 Performance with Bottlenecks

	5 Related Work
	6 Conclusions
	References

	Distributing Quantum Computations, by Shots
	1 Introduction
	2 Quantum Computing Fundamentals
	2.1 Quantum Computers
	2.2 Quantum Circuits

	3 Quantum Cloud Computing
	4 Distributing Quantum Computations Shot-by-Shot
	4.1 Running the Quantum Broker
	4.2 Modelling a User Request

	5 Use Cases
	5.1 Load Distribution
	5.2 Green Quantum Computing and GDPR

	6 Related Work
	7 Conclusions
	References

	Energy-Efficient Task Offloading with Statistic QoS Constraint Through Multi-level Sleep Mode in Ultra-Dense Network
	1 Introduction
	2 System Model
	2.1 System Overview
	2.2 Communication and Computation Model
	2.3 Energy Consumption Model
	2.4 Problem Formulation

	3 Stochastic Delay Analysis
	3.1 Delay Analysis for Offloading to MBS
	3.2 Delay Analysis for Offloading to SBS

	4 Algorithm
	4.1 MADDPG Problem Formulation
	4.2 Stochastic Network Calculus-Driven MADDPG Algorithm

	5 Simulation Results
	5.1 Experimental Setup
	5.2 Comparing Methods

	6 Conclution
	References

	Enhancing Blockchain Performance via On-chain and Off-chain Collaboration
	1 Introduction
	2 Related Work and Motivation
	3 Scheme Overview
	3.1 System Overview and Trust Assumptions
	3.2 Challenges

	4 On-chain and Off-chain Collaborative Execution Scheme
	4.1 Consistent Information Scheduling Mechanism
	4.2 Secure Collaboration Validation Mechanism

	5 Evaluation
	6 Conclusion
	References

	Enhancing Blockchain Performance via On-chain and Off-chain Collaboration
	1 Introduction
	2 Related Work and Motivation
	3 Scheme Overview
	3.1 System Overview and Trust Assumptions
	3.2 Challenges

	4 On-chain and Off-chain Collaborative Execution Scheme
	4.1 Consistent Information Scheduling Mechanism
	4.2 Secure Collaboration Validation Mechanism

	5 Evaluation
	6 Conclusion
	References

	Author Index

