q

Check for
updates

Data Integration in a Multi-model Environment

Jaroslav Pokorny !>
1 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
jaroslav.pokorny@matfyz.cuni.cz, pokorny@savs.cz
2 Skoda Auto University, Mlada Boleslav, Czech Republic

Abstract. A multi-model approach to heterogeneous database (DB) integration
requires a more user-friendly solution, i.e., a possibility to see various conceptual
or data schemas in a unified way. We use a functional approach based on so-called
attributes named by short natural language expressions with associated expressions
describing their type. Attributes are functions that can be manipulated by a version
of typed lambda calculus, which with arithmetic and aggregation functions enables
to build a powerful query language. We consider the relational, E-R, JSON, and
graph data/conceptual models. A query over such integrated DB can be expressed
by a term of the typed lambda calculus. A more user-friendly version of such
language can serve as a powerful query tool in practice.

Keywords: functional approach - typed lambda calculus - multi-model approach

1 Introduction

Historically, data integration is associated with distributed databases (DB) developed
mainly in 80ties. These DBs used mostly the relational DB model, a global schema
and local schemas for DBs were placed in multiple DB nodes in a network. Then, two
approaches based on DB schemas management occurred:

e top-down — starting with a global schema to design schemas for particular data stores
in network sites,

e bottom-up — i.e., to use a schema mapping for schemas of data stores in sites with
a middleware (e.g., JDBC). The process consists of integrating local DBs with their
(local) schemas into a global DB with its global schema.

We remind that the former concerns rather homogenous DB models used in integrated
data stores, using usually relational DBs, while the latter supports various DB models
and consequently heterogeneous database systems (DBS).

Now, systems that store and process Big Data have become a common component
of data management architectures. Generally, Big Data can be a combination of (i)
structured data in DBs and data warehouses based on SQL, (ii) semi-structured data,
such as web server logs or streaming data from sensors, organized by the means of, e.g.,
RDF graphs or XML documents, or (iii) unstructured data, such as document (or text)
collections. Here, we will consider categories (i) and (ii).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Delir Haghighi et al. (Eds.): iiWAS 2023, LNCS 14416, pp. 121-127, 2023.
https://doi.org/10.1007/978-3-031-48316-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48316-5_14&domain=pdf
http://orcid.org/0000-0003-3177-4183
https://doi.org/10.1007/978-3-031-48316-5_14

122 J. Pokorny

A traditional problem how to approach data in such environment is the way how
data is integrated. The remainder of the paper is organized as follows. Section 2 presents
a functional modelling of conceptual and DB structures including tools appropriate for
their querying, i.e., typed functions and a typed lambda calculus. Section 3 explores some
approaches to data integrations. Section 4 presents also functional querying integrated
data. Finally, Sect. 5 provides conclusions and topics for future works.

2 Functional Data Modelling

We start from classic approaches to functional DBs, that use a version of functional
typing and a typed lambda calculus in Sects. 2.1 and Sect. 2.2. (for more details, e.g.,
[6]). In Sect. 2.3, we present how functional conceptual structures attributes can be
described by expressions of a natural language. Combining attributes and typed lambda
calculus we obtain a powerful query language (QL) presented in Sect. 2.4.

2.1 Functional Data Types

We assume the existence of some elementary types S, ..., Sk (k > 1) constituting a
base B. More complex types are constructed in the following way:
IfS, Ry, ..., Ry (n> 1) are types, then

(1) (S:Ry, ..., Ry) is a (functional) type,
@ii) (Ry, ..., Ry)is a (tuple) type.

The set of types T over B is the least set containing all types from B and those given
by (i)-(ii). When Sj in B are interpreted as non-empty sets, then (S:R1, ..., R,) denotes
the set of all (total or partial) functions from Ry X ... X Ry into S, (Ry, ..., Ry) denotes the
Cartesian product Ry X ... X Ry. Elementary type Bool = {TRUE, FALSE} is also in B. It
allows to model sets (resp. relations) as unary (resp. n-ary) characteristic functions. An
object o of the type T is called a T-object. We denote it o/T. Logical connectives, quanti-
fiers, and predicates are typed functions, e.g., and/(Bool: Bool, Bool) and implies/(Bool:
Bool, Bool). Arithmetic operations are (Number: Number, Number)-objects. The aggre-
gation functions have also associated types, e.g., SUM/(Real:(Bool:Real)). We use the
infix notation for functions and arithmetic operations. We write ‘Vx...” and ‘3x...’,
for application of the universal and existential quantifier, respectively. Relations are
(Bool:S1, ..., Sm)-objects, where S; are descriptive elementary types.

2.2 Typed Lambda Calculus

Let F be a collection of constants, each having a fixed type, and suppose to have a
denumerable set of variables of each type at disposal. The language of lambda terms LT
is defined as follows:

Let types R, S, Ry, ..., Ry (n > 1) be elements of T. Then

(1) Every variable of type R is a term of type R. (variable)
(2) Every constant (a member of F) of type R is a term of type R. (constant)

Data Integration in a Multi-model Environment 123

(3) If M is a term of type (S:Ry, ..., Ry), and Ny, ..., N, are terms of types Ry, ..., Ry,

respectively, then M(Ny, ..., Ny) is a term of type S. (application)
(4) Ifxy, ..., x, are distinct variables of types Ry, ..., Ry, respectively, and M is a term of
type S, then Ax1, ..., xn(M) is a term of type (S:Ry, ..., Rp). (A-abstraction)
(5) If Ny, ..., Ny, are terms with types Ry, ..., Ry, respectively, then (N, ..., Ny) is a
term of type (Ry, ..., Ry). (tuple)
(6) If Mis aterm of type (Ry, ..., Ry), then M [1], ..., M[n] are terms of respective types
Ry, ..., Ry (components)

Terms can be interpreted by an interpretation assigning to each function from F
an object of the same type, and a semantic mapping from LT into all functions and
Cartesian products given by the type of system T. Briefly, an application is evaluated as
the application of an associated function to its arguments, the h-abstraction “constructs”
a new function. A tuple is a member of the Cartesian product of sets of typed objects.

2.3 Conceptual Modelling with Attributes

In general, attributes are parametrized by possible worlds (elementary type w) and time
moments (elementary type f). Mathematical/logical functions are not dependent on w
and . For simplicity, we will not assume either possible worlds or time moments in
the paper. For example, ACTORS/(Bool:Name, Title, Role) and MOVIES/(Bool:Title,
Released, Director, Genre) represent named attributes - relations.

A JOURNAL_TO_WHICH_ THE_USER_CONTRIBUTES/(Journal:User),
MOVIES_RATED_BY_A USER/((Bool:Stars, Movie): User),

are rather functional attributes. We will denote them JU and SMU, respectively.

Other conceptual constructions are propositions of type Bool. Attributes generate cer-
tain basic propositions, e.g., “Mr. Baker contributes to the journal Computer Reviews”.
It is generated by the JU attribute. A conceptual schema is a tuple of attribute specifica-
tions and, possibly, a set of integrity constraints, i.e., certain propositions giving explicitly
some information about attributes. An information base is a set of TRUE-propositions
induced by attributes in an actual world and in a given time moment. Obviously, all
known conceptual constructs used in conceptual modelling are cases of attributes. In [4]
and [7] we applied this approach to XML and JSON data, respectively.

2.4 Querying with Attributes

The LT language can be used as a theoretical tool for building a functional QL. The
choice of functions determines the expressive power of QL. A query in such language
is expressed by a LT term, e.g.,

)\’ uUSEr’ nNumber(n — COUNT()\. mMOViE(a SStars SMU(U)(S, m))))

of type (Bool:User, Number). Indexes of variables denote their types. The query means
“Find for each user the number of rated movies”.
A more complex example of a term uses a universal quantifier and implication:

124 J. Pokorny

by nName(vtTitle (E| reRolasede’ gGenre MOVIES(tT”/e, reRelaesed’ ’Spielberg’ Directz')r’ gGenre)
implies 3 ro®°’¢ ACTORS(nee, t7itle roRoley)

expressing the query “Find the names of actors, who play in each Spielberg film.”

We gain a tool for common manipulation of relations and other typed functions. Then,
the query results can be relations, nested relations, typed functions, etc. For Boolean
queries, YES/NO can be a query result. It is important that there is no sharp line between
conceptual and DB modelling with the functional approach. An application of the typed
lambda calculus with equality is used in the approach of Hillebrand [2].

3 Multi-model Approach to Data Integration

Today, polystores and multi-model DBs are considered for DBs with multiple data stores
[3]. In a polystore multiple storage engines are distinct and accessed separately through
their own query engines. A more user-friendly solution of heterogeneous DB integration,
is referred to as multi-model DBs. Typically, the relational data model can be one of them
[1]. The query is then executed on more data sources, but an additional layer is often
used to enable data integration.

Movie
Rates Title
Stars Director
- Released
Submits_to \\\\ A
Date ~ 4
. Movie/((Title, Director, Released): Movie)

Journal \\ User User/((U_ID, Name, Birth_y):User)
T Tame N u_ID Journal/((Address, Publisher):.Journal)
Publisher U_Name Rates/((Bool:Stars, Movie):User)
Address Birth_year Submittes_to/((Date, Journal): User)

Fig. 1. GDB conceptual schema Movies and its functional version

The notion of attribute applied in GDBs can be restricted to attributes of types (R:S),
(Bool(R):S), or (Bool:R, S), where R and S are entity types. This strategy simply covers
binary functional types, binary multivalued functional types, and binary relationships
described as binary characteristic functions. The last option corresponds to M:N rela-
tionship types. For modelling directed graphs, the first two types are sufficient, because
M:N relationship types can be expressed by two “inverse” binary multivalued functional
types. For graphical expressing a graph conceptual schema, we use two types of arrows
according to associated binary functional types (see Fig. 1).

Properties describing entity types can be of types (Si, ..., Sm:R), where S; are
descriptive elementary types and R is an entity type. They are of types (Si, ..., Sm,
Ri:Rp) and ((Bool:Sy, ..., Sm, R1):R2) for binary functional and binary multivalued
functional types, respectively. Functional querying in GDBs is described, e.g., in [5].

For relational DBs, we can assume the existence of an E-R schema describing the
semantics of relations. Here we use attributes for conceptual schemas based on E-R

Data Integration in a Multi-model Environment 125

models and sufficiently structured approach for expressing semantics of data in particular
NoSQL DBs. The database schemas of these DBs are then described by sets of attributes,
i.e. rather as local conceptual schemas (LCSs), a global schema is obtained by union of
these LCSs. Such approach can be generalized to most NoSQL DBs [8].

In the case of NoSQL, even more than one data model is often included in one DB
architecture. For example, the distributed DB Cassandra combines column-based and
key-value data models, DynamoDB combines document-oriented and key-value data
models. ArangoDB also represents a multi-model approach, meaning that it can address
JSON documents, graphs, and key-values. OrientDB is a multi-model DB including
geospatial, graph, fulltext, and key-valued data models. MarkLogic enables to store and
search JSON and XML documents and RDF triples. In [10] the gap between SQL and
NoSQL is solved via an abstraction level in which the NoSQL data are transformed to
triples incorporated into SQL DB as virtual relations.

4 Querying Multi-model Data

In literature, we can find two basic general frameworks for unified modelling and man-
agement of multi-model data. The categorical approaches described [3, 9] use category
theory for transformations between models and are usable also for conceptual querying.
Querying multi-model data by a functional approach means to describe DB structures in
particular DBs functionally by attributes. It means, in principle, that LCSs are specified.
Since sets (relations) are modelled as their characteristic functions, we gain a tool for
common manipulation of relations and functional data from NoSQL DBs. In conse-
quence, the query results can be relations, nested relations or XML [4], JSON [7], graph
data [5] as well, again expressed by LT terms.

Another approach uses a global schema similarly to the ANSI/SPARC approach. In
such logical integration, the global conceptual (or mediated) schema (GCS) is entirely
virtual and not materialized. The bottom-up design involves both the generation of the
GCS and the mapping of individual LCSs to this GCS. In any case, there are difficulties
in schema integration, because of different structures and semantics among local DBs.
Details of integration of relational DBs and GDBs functionally are described in [6].
Data selection is performed in the source systems using SQL and Cypher. The results
are mapped into data structures associated with the source query term.

Example 1: Suppose the relational attributes { ACTORS, MOVIES} from Sect. 2.3 and
GDB described in Fig. 1, i.e., attributes { Movie, User, Journal, Rates, Submittes_to}.
In the integrated DB, i.e., the multi-model system, the term in the simplified notation

User Genre . Number
Au” g ,n

(nNumber:COUNTMuvie O\' mMovie (Rates(uUser)(mMoviE) and
3 tTitIe sTitle MOVie(InMOViE).tTitle =3 Title and MOV|ES(S Title’ gGenre))
))

expresses the query “Find for each user the genres and the number of reviews he/she
made in them”. The answer will be of type ((Bool: Genre, Number), User), i.e. a new
multivalued attribute assigning to each user a binary relation with tuples containing a

126 J. Pokorny

genre and the number of the rates created for this genre by a given user. The query
term is decomposed and transformed into a query program that requires evaluation of
the included attributes, e.g., by SQL and Cypher expressions, respectively. These partial
results serve to the integration that generates the query result.

5 Conclusions

In the paper, we have focused on integration of relational and NoSQL DBs. Even a variant
of the E-R model can be used in without problems. Formally, we used a functional typing
system serving for specification of so-called attributes. The attributes can be named
with expressions of a natural language, bringing database querying closer to conceptual
querying. A typed lambda calculus can be used as a manipulation language.

The presented tools create a formal background covering querying an integrated
multi-model DB. Such a language could be based on SQL-like syntax, in principle.
Another interesting topic for research is the expressive power of the subsets of LT
considered, the solution of their user variants, and the complexity of formulating queries
in such apparatus. In general, the expressive power of a user QL depends on a choice of
constant functions included into the QL. These are themes for future work.

References

1. Candel, C.J.F, Sevilla Ruiz, D., Garcia-Molina, J.J.: A unified metamodel for NoSQL and
relational databases. Inf. Syst. 104, 101898 (2022)

2. Hillebrand, G., Kanellakis, P.C., Mairson, H.G.: Database query languages embedded in the
typed lambda calculus. Inf. Comput. 127(2), 117-144 (1996)

3. Lu, J., Holubov4, 1., Cautis, B.: Multi-model databases and tightly integrated polystores:
current practices, comparisons, and open challenges. In: Proceedings of the CIKM 2018, 27th
ACM International Conference on Information and Knowledge Management, pp. 2301-2302
(2018)

4. Pokorny, J.: XML functionally. In: Desai, B.C., Kioki, Y., Toyama, M. (eds.) Proceedings of
the IDEAS2000, pp. 266—-274. IEEE Computer Society (2000)

5. Pokorny, J.: Functional querying in graph databases. In: Nguyen, N., Tojo, S., Nguyen, L.,
Trawinski, B. (eds.) ACIIDS 2017, Part I. LNCS, vol. 10191, pp. 291-301. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54472-4_28

6. Pokorny, J.: Integration of relational and NoSQL databases. Vietnam J. Comput. Sci. 6(4),
389-405 (2019)

7. Pokorny, J.: JISON functionally. In: Proceedings of ADBIS 2020, Lyon, France, August 25-27,
pp. 139-153 (2020)

8. Pokorny, J., Richta, K.: Towards conceptual and logical modelling of NoSQL databases. In:
Insfran, E., et al. (eds.) Advances in Information Systems Development. LNISO, vol. 55,
pp. 255-272. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95354-6_15

https://doi.org/10.1007/978-3-319-54472-4_28
https://doi.org/10.1007/978-3-030-95354-6_15

Data Integration in a Multi-model Environment 127

9. Svoboda, M., Contos, P., Holubov4, I.: Categorical modelling of multi-model data: one model
to rule them all. In Proceedings of the 10th International Conference on MEDI 2021, Tallin,
pp- 190-198 (2021)
10. Thant, P.T., Naing, T.T.: Hybrid query processing system (HQPS) for heterogeneous databases
(relational and NoSQL). In: Proceedings of the International Conference on Computer
Networks and Information Technology, pp. 53-58 (2014)

	Data Integration in a Multi-model Environment
	1 Introduction
	2 Functional Data Modelling
	2.1 Functional Data Types
	2.2 Typed Lambda Calculus
	2.3 Conceptual Modelling with Attributes
	2.4 Querying with Attributes

	3 Multi-model Approach to Data Integration
	4 Querying Multi-model Data
	5 Conclusions
	References

