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Abstract. OpenASR21 evaluation was on 15 low resource languages
and 3 case sensitive languages. During the evaluation, participants got
significant reduction in word error rates (WER) with text downloaded
from the internet for only the case sensitive languages, since the devel-
opment and evaluation audio contained broadcast news. For the 15 low
resource languages, participants showed only small gains for some of
the languages. The reason is that the development and test set contain
dialog between two people, which is very different from the primarily
news texts and web pages available over the internet. Here, we show
that training text translated from other OpenASR21 languages reduces
the WER for many languages. During the evaluation, one team added
words to the lexicon using a 3-gram phone language model, but they do
not show what WER reduction they achieve. We show that adding new
words in the lexicon from public text is beneficial for languages where the
out-of-vocabulary rate is high, and outline conditions for reducing the
WER. Adding an attention layer to the TDNN (time delay neural net)
based voice activity detector reduced the WER for 17 out of the 18 lan-
guages. With all the improvements combined, we are getting lower word
error rate for the development set for three languages (Farsi, Kazakh
and Tamil) than the site that achieved the best error rate for all the
languages during the evaluation period.

Keywords: OpenASR21 · Low-resource · Speech recognition ·
Language modeling

1 Introduction

The OpenASR21 (Open Automatic Speech Recognition 2021) Challenge set out
to assess the state of the art of ASR technologies under low-resource language
constraints [11]. The task consisted of performing ASR on audio datasets in up
to 15 different low-resource languages and 3 languages with case sensitive scor-
ing, to produce the recognized text. Ten languages were carried over from the
OpenASR20 challenge [10], and five new languages were added. A case sensitive
scoring was also added for three of these languages: Kazakh, Swahili and Taga-
log. In case-sensitive scoring, words capitalized differently from the reference
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transcript will not count as a match. Case-sensitive scoring is used as a proxy
for evaluating ASR performance on proper nouns.

We took part in the constrained condition for all the 15 languages and the
3 languages with case sensitive scoring. In the constrained condition, only a 10-
hour audio Build dataset for that language can be used for training acoustic
models. Additional text data, either from the Build dataset or publicly avail-
able resources, can be used for training the language model in the constrained
condition. Any such additional training text must be specified in detail in the
system description. In the constrained condition, no pre-trained large models
were allowed.

A good overview of OpenASR20 is given in [10]. In OpenASR20, two teams
achieved very good results [1,17]. They used larger training text and lexicon
from Linguistic Data Consortium (LDC) corpora for training language models
(LM) and using a larger lexicon. These LMs and larger lexicon reduced the word
error rate (WER) significantly for each language.

For OpenASR21 see [11] for a good overview. The team from USTC/iFlytek
Research [19] achieved the lowest word error rate (WER) for all the 15 lan-
guages. Their WER was significantly lower than any other participant for all
the languages. For acoustic modeling, they used TTS to generate additional
audio for training either from public text or the Babel training text. This gave
them an additional 1.3% average WER reduction for the 15 languages. They
also interpolated language model (LM) from LDC text with LM from public
text (publicly available text downloaded from internet). This interpolated LM
gave them better results for 3 of the 7 languages. They also rescored the decoded
lattices with bidirectional LSTMP (LSTM with a recurrent projection layer) [14]
language model from public text. This LM was fine tuned with the LDC training
text before rescoring. Note that, the leading teams in the OpenASR21 evalua-
tion used hybrid DNN-HMM systems rather than end-to-end systems, since the
end-to-end systems perform poorly with only 10 h of audio.

In [18], they do not use any publicly available text for either decoding or for
rescoring with LSTM LM. They use a larger lexicon for the 15 languages and
3 case sensitive languages. They generate a 3-gram phone language model from
the lexicon, and then generate 12 million sequences from this LM, and keep 1
million most likely sequences not in the lexicon. Words corresponding to these
phone sequences are generated using G2P (grapheme to phoneme) methods to
augment the lexicon. But they do not show the benefit of using such a large
lexicon.

In [4], the authors use three different features (MFCCs, MFCCs+Conformer
embeddings, MFCCs + voice activity detector embeddings) to generate 3 differ-
ent acoustic models for later fusion. They also used publicly available text for
language modeling. Instead of generating separate LM from LDC and public text
and then interpolating the two [19], they first filter the public text with sentence
selection to match the sentences in the LDC training text, and then generate
an LM from the combined LDC + filtered public text. The filtered public text
is about the same size as the LDC text. This resulted in reduced WER (word
error rate) for many languages.
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However, the reduction in WER with the added public text was small. The
primary reason for this small reduction is that the public text comes mostly from
news and web pages, while OpenASR21 contains conversations between two peo-
ple. So the question is how can we add text corresponding to conversations. Here
we introduce a method to generate synthetic conversational text and augment
data for a language of interest, using a back-translation approach, and obtain
small reduction in WER for that language. Although back-translation has been
used to improve machine translation models [15], here it is used for the first time
to improve a monolingual model for ASR (to the best of our knowledge).

During the evaluation period, we had used a voice activity detector (VAD)
[4] to remove noise segments. This VAD, as outlined in Chime6 track2 speech
activity detection1 had 5 TDNN layers and 2 layers of statistics pooling [2] with
an added specAugment layer [8]. We propose to add an attention layer, similar
to the one outlined for ASR in [13]. The speech/non-speech segmentation with
this attention layer results in small reductions in WER for most languages. The
reason is that an attention layer provides longer term context and it improves
discrimination between segments with long duration. Silent and speech segments
fall in that category.

We also show that increasing the lexicon with new words from public text is
effective for languages where OOV (out of vocabulary) rate is high.

As the NIST scoring server for the evaluation set is closed, we only show
comparative results for the development set. Through all the improvements in
[4], we showed that we got lower WER for the eval set for Tamil than any
participant during the evaluation period. In this paper, we show that with all
the improvements combined, we get lower single decode WER for development
set for Farsi, Kazakh and Tamil than the best team during evaluation [19].

2 Dataset

In the constrained condition, for acoustic model training, we only used the 10-
hour Build data set provided by NIST for the language being processed, with
corresponding transcripts in UTF-8 encoding. Training and development lexicons
were also provided by NIST.

For the 13 languages with LDC packs (all the languages except for Farsi
and Somali), we used the expanded lexicon and text provided in those packs.
For example, the training text in the OpenASR21 build dataset varies from 66k
words for Kazakh to 126k words for Vietnamese, while the training text in the
LDC packs varies from 270k words for Kazakh to 989k words for Vietnamese.
Overall, the LDC training text is between 4 times and 8 times larger than the
text in the OpenASR21 build. The lexicon in the LDC packs is also much larger
than the lexicon in the OpenASR21 build. For example, the number of words for
Vietnamese in the OpenASR21 lexicon is 3.2k, while in the LDC lexicon there
are 6.4k words. For these reasons, training a language model from the training

1 https://chimechallenge.github.io/chime6/track2software.html.

https://chimechallenge.github.io/chime6/track2 software.html
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text and lexicon in the LDC packs reduces the word error rate significantly for
all the 13 languages with the LDC packs.

3 ASR Approach

Our system is a hybrid HMM-DNN based on WFSTs (Weighted Finite-State
Transducers) and trained with the Kaldi toolkit [12]. During the evaluation
period, we trained three different acoustic models for decoding the dev and eval
sets so that we could combine the multiple results after decoding [4]. In this
paper, we just use one set of acoustic models with 40-dim MFCC’s and 2-stream
TDNN-F architecture (for multi-stream architecture see [5]) for decoding the
development (dev) set (we cannot use the eval set since the scoring server at
NIST is closed). These models are the same as those used during evaluation.
The idea here is to test new algorithms to reduce WER using improved language
modeling, better voice activity detector models, and larger vocabulary.

3.1 Enhanced Voice Activity Detector

During the OpenASR21 evaluation [4], we used two voice activity detectors to
segment development and evaluation audio into speech/nonspeech segments: one
based on DNN-HMM architecture, and another based on TDNN architecture [9]
as outlined in Chime6 track2 speech activity detection2. This VAD TDNN has
40-dim MFCC features as input, followed by 3 TDNN layers, followed by 2 layers
of statistics pooling [2], followed by 2 TDNN layers. During the OpenASR21
evaluation, we showed that adding a specAugment layer after the input layer to
this VAD-TDNN results in lower WER for most of the languages [4]. Here we
show that by adding an attention layer [13], we can reduce the WER even more
for most of the languages. The attention layer is added after the 5th TDNN
layer (see Fig. 1). The attention layer has 12 heads, a value dimension of 60, key
dimension of 40, and the number of left and right inputs are 5 and 2 respectively.
The attention layer has a wider context (108 frames of left context and 69 frames
of right context) and it is able to improve speech/non-speech discrimination as
speech and non-speech segments are longer in duration. All the TDNN layers
have an output dimension of 256. Table 1 compares WER with/without the
attention layer in one back-to-back comparison. Except for Swahili, the WER
goes down for the other languages. So the attention layer consistently gives lower
WER. Overall, the WER is reduced on average by 0.3% absolute. The largest
WER reduction is for Cantonese and Georgian (0.7% absolute).

3.2 Enhanced Lexicon

We carried out many experiments to see if adding new words from publicly
downloaded text will reduce word error rates. Public text was heavily filtered

2 https://chimechallenge.github.io/chime6/track2software.html.

https://chimechallenge.github.io/chime6/track2 software.html
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Fig. 1. VAD TDNN with attention. All the TDNN layers have a dimension of 256.

by sentence selection to be similar to the LDC training text [4], and the filtered
text was about the same size as the LDC text (see Language Model Sec. 3.3).
We added new words in this filtered public text to the lexicon. We tried adding
frequency one and frequency two words (words not in LDC lexicon occurring
at least 2 times in the public text) to the lexicon. To be consistent, we ran
all the decoding experiments in this paper with the same acoustic models: LF-
MMI (lattice free MMI) training followed by discriminative training of 2-stream
acoustic models with 40-dim MFCC [4].

One question is how do we add pronunciations for the new words? We know
that the training and test audio are very well transcribed, including the lex-
icon in the LDC build. The LSP (language specific peculiarities) file in the
LDC build contains details about dialects of speakers, any special handling of
spelling, character set used for orthographic transcription, romanization scheme,
word boundary detection, where the transcribers are from, etc. So the text is
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Table 1. WER for the dev set segmented with / without attention layer in VAD-
TDNN. CSS stands for case sensitive scoring. (No LSTM LM rescoring is done.)

Lang no att att Lang no att att

Amharic 38.0 37.7 Mongolian 48.0 47.9
Cantonese 47.3 46.6 Pashto 48.1 47.9
Farsi 52.6 52.4 Somali 59.2 58.9
Georgian 41.4 40.7 Swahili 36.4 36.5
Guarani 42.4 42.3 Tagalog 44.6 44.2
Javanese 53.3 53.0 Tamil 61.0 60.9
Kazakh 47.3 46.9 Kazakh css 53.2 52.8
Kurmanji 65.5 65.3 Swahili css 48.5 48.4
Vietnamese 48.6 48.0 tagalog css 47.8 47.4

probably quite consistent in transcription, and the words in the LDC lexicon
are probably transcribed in a consistent manner. So we did not want to change
the transcriptions in this lexicon. This lexicon is transcribed using X-SAMPA3

phoneme set. To this LDC lexicon, we added pronunciations for the new words
in X-SAMPA using two possible scenarios. In one scenario, we train a G2P [7]
(grapheme-to-phoneme) from the LDC lexicon (or OpenASR21 lexicon for Farsi
and Somali), and then transcribe the new words with this G2P. The second
scenario is to use existing G2P from LanguageNet [6] to transcribe the new
words. The advantage with LanguageNet is that there are finite state transduc-
ers (FSTs) trained for over 120 languages with a large amount of training data
for each language. The problem is that some OpenASR21 languages maybe miss-
ing (Farsi is missing from LanguageNet). Another problem with LanguageNet
is that words are transcribed in IPA symbols, while the OpenASR21 lexicon
is transcribed in X-SAMPA. To overcome this, we transcribed the LDC lexi-
con with the LanguageNet G2P to get a training lexicon with IPA symbols,
and then trained another G2P from it to convert IPA phone sequences into X-
SAMPA phone sequences. With this conversion capability, we transcribed new
words in IPA using languageNet G2P and then converted phoneme sequences in
IPA to phoneme sequences in X-SAMPA. So now we had two enhanced lexicons:
one from new words transcribed using G2P trained from LDC lexicon4, and one
from new words transcribed with LanguageNet G2P in IPA symbols and then
converted to X-SAMPA phone sequences.

We compared the two lexicon with new words added to the LDC lexicon on
Amharic and on Somali. The two lexicons gave very similar WER with a small
preference for G2P trained from LDC lexicon. So we used the G2P trained from
LDC lexicon for the rest of the languages.

3 https://en.wikipedia.org/wiki/X-SAMPA.
4 Note that in many languages, some new words had graphemes that do not occur in

the LDC lexicon, so we removed these new words before transcribing with G2P.

https://en.wikipedia.org/wiki/X-SAMPA
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Table 2 shows for each language the OOV (out-of-vocabulary) rate for the
development (dev) set, and the WER (word error rate) with/without the
enhanced vocabulary. The last column in Table 2 shows the vocabulary size
with/without enhancement. For Amharic, Cantonese and Guarani, we used
words occurring 2 times or more in the public text for adding to the exist-
ing LDC or OpenASR21 lexicon. For the rest of the languages, we added all
the new words occurring 1 time or more in the public text to the LDC or Ope-
nASR21 lexicon. From the table we see that the major benefit from adding the
new words in the lexicon is for languages where the OOV rate is high: Farsi,
Somalese, Kazakh css (case sensitive scoring), Swahili css, and Tagalog css. The
reason for high OOV rate for Farsi and Somali is that there is no LDC pack for
them, so the lexicon derived from the small training text is small. For the case
sensitive scoring languages also there is no LDC pack, so the training text is from
only 10 h of audio. But the OOV rate is higher also because words in training
text are capitalized where necessary, so many words are OOV if the correct case
does not occur in the lexicon.

The decoding scenario for Table 2 is that a 4-gram LM is computed with
SRILM toolkit from the LDC training text (where available) with/without the
enhanced lexicon. The WER shows decoding results with this LM (without
rescoring with LSTM LM).

As we can see from Table 2, decoding with larger lexicon results in WER
reduction for languages where OOV rate is high: Farsi, Somali, Kazakh CSS,
Swahili CSS, and Tagalog CSS. Why should the error rate go down for languages
with larger OOV rate and not for languages with small OOV rate, even though
the likelihood for OOVs in the language model is small (since they are assigned a
low unigram probability as they do not occur in the LDC text)? For large OOV
rate, the words in the enhanced lexicon may come up as top choice despite small
LM likelihoods and reduce WER. While for languages with low OOV rate, there
are many more new words not in the development set, and if these words show
up as top choice, then they will increase the WER. That is why the biggest gain
is for the case sensitive scoring (CSS) languages as their OOV rate is the highest
(between 17.8% and 23.7%), and the OOV rate reduction with enhanced lexicon
is the largest (between 7.6% and 9.7%), as shown in Table 2. Also, the audio for
case sensitive languages is from broadcast audio, and so there is a better match
between publicly available text and the training text.

3.3 Language Model

We will first outline what we have done in language modeling in the past [4] for
OpenASR21 evaluation, and then describe the new improvements. For language
modeling (LM) in the constrained condition, we could use any text publicly
available over the internet. For 13 of the 15 languages, we used the LDC IARPA
Babel language packs from 2016 to 2020 (there were no language packs for Farsi
and Somali). The larger LDC training text together with the larger lexicon
reduced the WER for all the languages. The LDC text is from conversational
speech, and it reduces WER for the dev set significantly as can be seen in [4,19].
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Table 2. OOV rate before and after enhancement, and WER for dev set for each
language without/with enhanced lexicon. The last column shows vocabulary size with-
out/with enhancement.

Lang OOV% no enh with enh vocab no enh/with enh

Amharic 2.0 / 0.7 37.7 38.4 36.9k / 46.5k
Cantonese 1.4 / 0 46.6 46.6 19.9k / 21.2k
Farsi 9.5 / 6.0 52.4 52.3 3.7k / 14.7k
Georgian 1.1 / 0 40.7 42.4 35.2k / 130.7k
Guarani 2.0 / 1.1 42.3 42.5 28.0k / 30.9k
Javanese 1.0 / 0.6 53.0 53.9 15.5k / 44.0k
Kazakh 0.5 / 0.3 46.9 48.4 22.3k / 71.4k
Kurmanji 1.1 / 0.2 65.3 65.6 14.4k / 63.5k
Mongolian 0.5 / 0.5 47.9 48.9 23.9k / 66.9k
Pashto 0.3 / 0 47.9 48.0 18.7k / 77.2k
Somali 9.4 / 7.4 58.9 58.8 9.6k / 29.3k
Swahili 3.7 / 0.7 36.5 37.7 25.2k / 56.9k
Tagalog 1.0/0.8 44.2 45.1 22.6k / 59.1k
Tamil 0.5 / 0.2 60.9 62.0 58.4k / 104.0k
Vietnamese 0.3 / 0.2 48.0 48.1 6.4k / 26.7k
Kazakh css 23.7/14.0 52.8 48.0 15.8k / 69.0k
Swahili css 18.6 / 10.9 48.4 46.3 11.3k / 58.1k
Tagalog css 17.8 / 10.2 47.4 43.9 11.2k / 59.2k

In [4], we also downloaded a significant amount of publicly available mono-
lingual texts from NewsCrawl5 and CommonCrawl6, but this text was primarily
from news and web sources, and not from conversational speech. So this text sig-
nificantly increased the perplexity on the development set for every language. We
had to resort to sentence selection [16] to use only sentences close to the training
text. Through strong sentence selection, we were able to reduce the overall WER
after LSTM LM rescoring for 8 of the 15 languages, and all the case sensitive scor-
ing languages (the audio for CSS languages is from broadcast news) [4].

The team with the lowest WER in the evaluation [19] did not filter the
downloaded text, but they interpolated the 4-gram LM from this downloaded
text with the 4-gram LM from the LDC training text using the SRILM toolkit7.
They were able to reduce WER for 3 of 7 languages after decoding with this
interpolated 4-gram LM.

So the real question is whether we can get additional conversational text that
can reduce the perplexity of most of the languages after 4-gram training? In this

5 https://www.aclweb.org/anthology/W19-5301.
6 https://data.statmt.org/cc-100/.
7 https://www.sri.com/platform/srilm/.

https://www.aclweb.org/anthology/W19-5301
https://data.statmt.org/cc-100/
https://www.sri.com/platform/srilm/
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paper, we have experimented with Back-translation in order to get additional
independent conversation language model training text for each language. Back-
translation is used in machine translation [15] to generate synthetic data in a
language with scarce resources. Here, since all languages have conversational
speech between two speakers on cell phone, we translated the training text in
each language to the text in all the other languages. We then combined all
translations to a language of interest for generating a 4-gram language model
for that language.

For translation we used the Google translation interface8 in batch mode.
We were able to get translations for 14 of the 15 languages (Google translates
Mandarin but not Cantonese), thus augmenting LM training data 13-fold for
each of these 14 languages. To prepare transcription texts for translation, we
merged utterances from the different channel recordings by concatenating them
in chronological order, to recreate the full conversation. The transcribed text
does not have punctuation marks. We also removed silence and noise markers
from this text. At first we considered each utterance as a sentence, but trans-
lation results in English made more sense when we concatenated all utterances
of a conversation in a single document. Since punctuation marks are added dur-
ing translation, we used them to split the translated document back into short
utterances, then removed the punctuation marks, to make the text similar to
the training transcripts.

We have some examples in English (below) that we generated as spot checks
for languages. For example, from Vietnamese to English (before punctuation
removal):

hello, hello sister Kieu, oh baby, I haven’t eaten yet, have you scratched
there, how do you study and only study is normal? what is that dish? my
husband just let it go so slowly wear the pink shirt and wear it while it’s
okay oh my god what is it oh my god what is it my god what is it that
makes me laugh everyone studied at this time but didn’t go to school at
night, did you go to school tonight,

Similarly, translation from Guarani to English is shown below:

we’ll hear we can talk hello hello hello dear brother what’s up what’s
up brother what are you doing right my friend what’s the door i aka
dehkansándo yeah and here I’ll correct and you what are you doing yeah
correct what’ e here here I’m looking at the movies

Although we cannot actually confirm it, anecdotal evidence suggests that
Google translation uses English as the pivot language9. We can see that the
translation from one language to English is poor, and when English is trans-
lated back to another language, it may still be poorer. But we found that in
terms of language modeling, this text reduced perplexity more than using the

8 https://cloud.google.com/translation-hub.
9 https://www.teachyoubackwards.com/extras/pivot/.

https://cloud.google.com/translation-hub
https://www.teachyoubackwards.com/extras/pivot/
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downloaded news related text from the internet even after strong filtering. We
generated three 4-gram’s from three sources: LDC alone (LDC), translated text
from 13 languages combined (Trans), and the downloaded and filtered text from
the internet (Sel). We then generated two interpolated language models: LDC
interpolated with Trans (LDC·Trans), and LDC interpolated with Trans and
Sel (LDC·Trans·Sel). The “ ·” symbol is used here for interpolation. The optimal
interpolation weights are found by the iterative E-M (expectation-maximization
algorithm) estimation of SRILM. The perplexity and word error rate (WER) for
the three 4-grams is shown in Table 3. So for example, in Table 3, perplexity for
Amharic dev set with language model trained from LDC is 404, and the WER is
37.7%, perplexity with interpolated LDC·Trans is 394, and the WER is 37.6%,
while perplexity with the interpolated LDC·Trans·Sel is 393, and the WER is
37.6%. As can be seen from the Table, we were able to reduce WER for 10 of
the 14 languages.

Even though differences reported in Table 3 seem small, the test sets are large
samples, between 60K and 112K words for each language, so that confidence
intervals10 for these results range from ±0.20% to ±0.28%. The differences are
significant at a 95% level for Farsi, Pashto, Swahili and Vietnamese while for the
other languages the differences are not so significant.

Table 3. Perplexity (PPL) and word error rate (WER) for the dev set for each language
for 4-gram LMs from LDC, LDC·Trans, LDC·Trans·Sel. No LSTM LM rescoring is
done.

Lang LDC LDC·Trans LDC·Trans·Sel Interp. weights
PPL / WER PPL / WER PPL / WER LDC Trans Sel

Amharic 404 / 37.7% 394 / 37.6% 393 / 37.5% 0.885, 0.073, 0.042
Farsi 231 / 52.3% 221 / 52.0% 221 / 52.0% 0.823, 0.153, 0.024
Georgian 477 / 40.7% 466 / 40.6% 464 / 40.6% 0.884, 0.070, 0.046
Guarani 251 /42.3% 249 / 42.3% 249 / 42.2% 0.945, 0.036, 0.019
Javanese 271 / 53.0% 269 / 53.1% 269 / 53.2% 0.946, 0.039, 0.015
Kazakh 267 / 46.9% 257 /46.8% 257 / 46.7% 0.874, 0.097, 0.029
Kurmanji 174 / 65.3% 170 / 65.3% 170 / 65.3% 0.904, 0.096, n/a
Mongol 169 / 47.9% 166 / 47.8% 164 / 47.7% 0.897, 0.058, 0.045
Pashto 163 / 47.9% 162 / 47.5% 161 / 47.4% 0.931, 0.034, 0.035
Somali 279 / 58.8% 261 / 59.0% 261 / 59.0% 0.800, 0.179, 0.021
Swahili 319 / 36.5% 306 / 36.3% 305 / 36.2% 0.852, 0.094, 0.054
Tagalog 155 / 44.2% 152 / 44.5% 152 / 44.4% 0.899, 0.067, 0.034
Tamil 769 / 60.9% 765 / 60.8% 763 / 60.8% 0.951, 0.016, 0.033
Vietnam 144 / 48.0% 143 / 48.0% 140 / 47.8% 0.885, 0.013, 0.102

10 We use an 83% confidence interval computed with the Wilson score binomial interval,
so that non-overlapping intervals represent a 95% significant difference between the
two results [3].
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Due to the poor quality of the translation (language → English → another
language), the improvement with the translated text is small. However, if we
can somehow find two way conversations in English, then we should do much
better. It just happens that the switch board11 data, the call home12 data, and
the Fisher corpus13 is just that data. These corpus contain millions of words of
text. Maybe translating them may lead to appropriate conversational text that
can lead to significant reduction in WER. We can even filter this text to be close
to the conversations in the training text, and still have a significant amount of
additional training text left over. However, we have not exploited this avenue
yet.

The final issue is whether all the above improvements (voice activity detector,
enhanced lexicon, and translated text) result in significant reduction in WER
after LSTM LM rescoring compared to the previous results with LSTM LM
rescoring where LSTM LM was trained from LDC + public text or LDC text
alone [4]. What we found was that decoding with LDC·Trans·Sel LM followed
by rescoring with LSTM LM trained from LDC + translated + filtered public
text resulted in lowest WER for Amharic and Farsi. For Guarani and Kazakh,
decoding with LDC·Trans LM and rescoring with LSTM LM trained from LDC
+ filtered public text gave the lowest WER. For other languages, decoding with
LDC LM and rescoring with LDC + public text lead to the lowest WER for the
dev set. For the case sensitive languages, decoding with 4-gram LM from LDC +
public text with enhanced vocabulary, and rescoring with LSTM LM from LDC
+ public text resulted in the lowest WER. The best WER on dev set in [4] and
with all the improvements in this paper is shown in Table 4. For Kurmanji and
Swahili, there is no improvement because enhanced VAD, increased vocabulary,
translated text and filtered public text did not contribute to WER reduction.
So the conversational LDC text for these languages is probably quite different
from the text for other languages, and the translation maybe of poor quality. In
Table 4, we also compare our results on the dev set for single decode with those
of [19] (Table 1, column 1). We can see that we got lower WER for the dev set
for three languages: Farsi, Kazakh, and Tamil. For many other languages, our
WER for the dev set single decode is close to that in [19].

We also computed confidence intervals for our improvements in WER in
Table 4 in a similar manner as for Table 3. The results after the improvements
are 95% significant for 13 out of 18 languages14 (Amharic, Cantonese, Farsi,
Georgian, Kazakh, Pashto, Somali, Tagalog, Tamil, Vietnamese, Kazakh css,
Swahili css and Tagalog css). When we make a similar comparison of our best
WER with the WER in [19], our WER is better than or same as in [19] for 6
out of 15 languages (Farsi, Javanese, Kazakh, Pashto, Tagalog and Tamil) and
worse for 9 out of the 15 languages.

11 https://catalog.ldc.upenn.edu/LDC97S62.
12 https://catalog.ldc.upenn.edu/LDC97T14.
13 https://catalog.ldc.upenn.edu/LDC2004T19.
14 We assumed confidence intervals in the same range for Cantonese and the three

case-sensitive languages as the other languages since they have similar test sizes.

https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC97T14
https://catalog.ldc.upenn.edu/LDC2004T19
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We also tried to fine tune the LSTM LM language model with LDC training
text using a small learning rate. But in each case, we only achieved a 0.1%
reduction in WER. The major effect was whether LSTM LM was trained with
LDC + translated + filtered public text, or LDC + filtered public text. Another
important factor was whether the decoded lattices for rescoring with LSTM LM
were generated from LM trained with LDC alone, or from LDC·Trans·Sel, or
from LDC + public text with enhanced vocabulary (as described in the previous
paragraph).

Table 4. WER for the dev set before and after all the improvements in this paper.
CSS stands for case sensitive scoring. Numbers in bold show whether WER before or
after was significantly lower. Numbers in underline show that the WER in ref [19] was
significantly lower.

Lang before After from ref [19] Lang Before After from ref [19]

Amharic 37.2 36.1 35.0 Mongolian 46.4 46.3 45.4
Cantonese 45.6 45.0 42.3 Pashto 45.7 45.3 45.2
Farsi 51.7 50.8 52.4 Somali 58.6 57.4 55.9
Georgian 40.3 39.2 37.5 Swahili 34.6 34.7 32.3
Guarani 40.9 40.8 39.0 Tagalog 42.8 42.3 42.1
Javanese 52.0 51.9 51.9 Tamil 60.3 59.4 61.0
Kazakh 45.9 45.2 46.1 Kazakh css 51.9 46.0
Kurmanji 64.1 64.1 63.7 Swahili css 47.6 44.2
Vietnamese 47.0 46.3 43.9 Tagalog css 46.3 41.4

4 Conclusion

We participated in all the 15 low resource languages and the three languages
with case sensitive scoring in the OpenASR21 Challenge for the constrained
condition. In the past, use of downloaded public text has shown small reductions
in word error rate (WER) primarily due to mismatched domains (conversational
speech versus news sources). We show that we can achieve small reductions in
WER by translating training text from other languages in OpenASR21 to the
target language. The small improvement is possibly due to the quality of the
translation. Translation is the way to possibly improve the language models in
low resource languages for conversational speech, since a significant amount of
conversational text is available in English (for example, switchboard, call home,
Fisher corpus etc.).

We show that we can reduce the WER for a DNN-based voice activity
detector by adding an attention layer to the DNN architecture. We also show
that increasing the vocabulary for languages in OpenASR21 with high out-of-
vocabulary rate reduces the WER significantly.
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Overall, for 13 of 18 languages, we reduced the WER for the single decode of
the dev set when we combine the three enhancements. For Kazakh css by 5.9%
(absolute), for Tagalog css by 4.9%, for Swahili css by 3.4%, for Somali by 1.2%,
for Amharic and Georgian by 1.1%, for Farsi and Tamil by 0.9%, for Kazakh
and Vietnamese by 0.7%, for Cantonese by 0.6%. These WER reductions are
significant in the evaluation scenario.
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vation (MEI) of the Government of Quebec for the continued support.

References

1. Alumäe, T., Kong, J.: Combining hybrid and end-to-end approaches for the Ope-
nASR20 challenge. In: Proceedings of the Interspeech, pp. 4349–4353 (2021)

2. Ghahremani, P., Manohar, V., Povey, D., Khudanpur, S.: Acoustic modelling from
the signal domain using CNNs. In: Proceedings of the Interspeech, pp. 3434–3438
(2016)

3. Goldstein, H., Healy, M.J.R.: The graphical presentation of a collection of means.
J. Roy. Stat. Soc.: Ser. A: Appl. Stat. 158, 175–177 (1995)

4. Gupta, V., Boulianne, G.: CRIM’s speech recognition system for OpenASR21
evaluation with conformer and voice activity detector embeddings. In: Prasanna,
S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S. (eds.) Speech and Com-
puter, pp. 238–251. Springer International Publishing, Cham (2022). https://doi.
org/10.1007/978-3-031-20980-2_21

5. Han, K.J., Pan, J., Tadala, V.K.N., Ma, T., Povey, D.: Multistream CNN for robust
acoustic modeling. In: Proceedings of the ICASSP, pp. 6873–6877 (2021)

6. Hasegawa-Johnson, M., Rolston, L., Goudeseune, C., Levow, G.-A., Kirchhoff, K.:
Grapheme-to-phoneme transduction for cross-language ASR. In: Espinosa-Anke,
L., Martín-Vide, C., Spasić, I. (eds.) SLSP 2020. LNCS (LNAI), vol. 12379, pp.
3–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59430-5_1

7. Novak, J.R., Minematsu, N., Hirose, K.: Phonetisaurus: exploring grapheme-to-
phoneme conversion with joint n-gram models in the WFST framework. Nat. Lang.
Eng. 22(6), 907–938 (2016). https://doi.org/10.1017/S1351324915000315

8. Park, D.S., et al.: SpecAugment: a simple data augmentation method for automatic
speech recognition. In: Proceedings of the Interspeech, pp. 2613–2617 (2019)

9. Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture
for efficient modeling of long temporal contexts. In: Proceedings of the Interspeech,
pp. 3214–3218 (2015)

10. Peterson, K., Tong, A., Yu, Y.: OpenASR20: an open challenge for automatic
speech recognition of conversational telephone speech in low-resource languages.
In: Proceedings of the Interspeech, pp. 4324–4328 (2021)

11. Peterson, K., Tong, A.N., Yu, J.: OpenASR21: The second open challenge for
automatic speech recognition of low-resource languages. In: Proceedings of the
Interspeech (2022)

12. Povey, D., et al.: The Kaldi speech recognition toolkit. In: Proceedings of the ASRU
(2011)

13. Povey, D., Hadian, H., Ghahremani, P., Li, K., Khudanpur, S.: A time-restricted
self-attention layer for ASR. In: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5874–5878 (2018). https://doi.org/
10.1109/ICASSP.2018.8462497

https://doi.org/10.1007/978-3-031-20980-2_21
https://doi.org/10.1007/978-3-031-20980-2_21
https://doi.org/10.1007/978-3-030-59430-5_1
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1109/ICASSP.2018.8462497
https://doi.org/10.1109/ICASSP.2018.8462497


86 V. Gupta and G. Boulianne

14. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural
network architectures for large scale acoustic modeling (2014)

15. Sennrich, R., Haddow, B., Birch, A.: Improving Neural Machine Translation Mod-
els with Monolingual Data. In: Proceedings of ACL, pp. 86–96 (2016)

16. Sethy, A., Georgiou, P.G., Ramabhadran, B., Narayanan, S.: An iterative relative
entropy minimization-based data selection approach for n-Gram model adaptation.
IEEE Trans. Audio Speech Lang. Process. 17(1), 13–23 (2009)

17. Zhao, J., et al.: The TNT team system descriptions of cantonese and mongolian
for IARPA OpenASR20. In: Proceedings of the Interspeech, pp. 4344–4348 (2021)

18. Zhao, J., et al.: The THUEE system description for the IARPA OpenASR21 chal-
lenge. In: Proceedings of Interspeech, pp. 4855–4859 (2022). https://doi.org/10.
21437/Interspeech.2022-649

19. Zhong, G., et al.: external text based data augmentation for low-resource speech
recognition in the constrained condition of OpenASR21 challenge. In: Proceedings
of Interspeech, pp. 4860–4864 (2022). https://doi.org/10.21437/Interspeech.2022-
649

https://doi.org/10.21437/Interspeech.2022-649
https://doi.org/10.21437/Interspeech.2022-649
https://doi.org/10.21437/Interspeech.2022-649
https://doi.org/10.21437/Interspeech.2022-649

	Improvements in Language Modeling, Voice Activity Detection, and Lexicon in OpenASR21 Low Resource Languages
	1 Introduction
	2 Dataset
	3 ASR Approach
	3.1 Enhanced Voice Activity Detector
	3.2 Enhanced Lexicon
	3.3 Language Model

	4 Conclusion
	References


