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Abstract. Identifying individual speaker utterances in overlapped
multi-speaker conversations pose a challenging problem in speaker
diarization, specifically under multi-lingual scenarios. Standard speech
diarization the system consists of a speech activity detector, a speaker-
embedding extractor followed by clustering. We improve each of these
components from the standard pipeline to enhance the speaker diariza-
tion in such complex cases. Our investigation focuses on addressing key
sub-aspects of the task like the presence of noise variations, utterance
duration variations, inclusion of enhanced ECAPA-TDNN embeddings
for robustness etc. Finally, we use the DOVER-LAP approach to combine
these system predictions so that complementary advantages of individual
systems are efficiently incorporated. Our best-proposed systems outper-
form the baseline by achieving DER of 27.7% and 28.6% on Phase-1 and
Phase-2 of Track-1 blind evaluation sets, respectively.
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1 Introduction

In today’s digital world, most of our communications and meetings tend to be
online. In many applications like doctor visits, counsellor sessions, teacher-child
interactions and customer support calls, it is necessary to know the time dura-
tions where each of the two parties are conversing. Precise time durations are
one of the essential requirements in conversational scenarios to detect robust
end-point detection [11], to generate high-quality transcription using automatic
speech recognition [22] and to process using natural language understanding [24]
and speech-to-speech translation [26]. In these cases, it is also important to label
speech regions with the corresponding speakers to generate further enriched tran-
scriptions. The segmentation of audio recordings by speaker labels, known as
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speaker diarization, is the process of recognizing “who spoke when” [21]. Diariza-
tion is considered as a major task in conversational AI systems and has appli-
cations in the processing of telephone conversations, broadcast news, meetings,
clinical recordings, etc. [4,6,21].

An overview of speaker diarization system is shown in Fig. 1. It consists
of speech activity detector (SAD), speaker embedding extractor and clustering
technique.

Fig. 1. Overview of Speaker Diarization System.

Recently, deep learning techniques are being widely used for speech diariza-
tion tasks. [30] proposed a deep neural network (DNN) with fully-connected
hidden layers to classify all speakers in the training set, and then use bottle-
neck features as a speaker representation. Later, D-vectors were improved by a
long short-term memory (LSTM) [10] network with a triplet loss function [13].
An improved version of D-Vectors with TDNN architecture and a statistical
pooling layer was proposed in [6] and this work was further improved by gener-
ating robust speaker representations as X-Vectors in [28]. Emphasized Channel
Attention, Propagation and Aggregation Time delay Neural networks (ECAPA-
TDNN) were proposed [7], which is an enhanced structure based on X-Vectors’
network. The basic TDNN layers are replaced with 1D-Convolutional Layers [9]
and Res2Net-with-Squeeze-Excitation (SE-Res2Net) Blocks [9,12,14], while the
basic statistical pooling layer is replaced with an Attentive Statistical Pooling.
The ECAPA-TDNN system outperformed a strong X-Vectors baseline system as
experimented in both speaker verification task and speaker diarization task [6,7].
Although all these approaches tried to address speaker diarization in clean condi-
tions, however, challenges remain open under noisy and speech-overlapping con-
ditions. Recently, deep learning-based end-to-end speaker diarization approaches
are also proposed to solve the issue of overlapping speech [21].

Alternatively, most of the speaker diarization systems in the literature are
developed by considering monolingual recordings. When a speaker speaks in mul-
tiple languages then the diarization becomes more challenging than the mono-
lingual cases. In code-switched conversational speech, it is trivial that a single
speaker could speak in multiple languages [19]. In this case, diarization becomes
more complex as both the language and speaker compete during clustering [32].
The higher variance among the languages along with the speakers also poses
challenge for the speaker diarization task [32].
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In this paper, we propose a system for speaker diarization in multilingual
code-switched scenarios for Track-1 of the DISPLACE 2023 Challenge. We start
with the baseline architecture and improve each of its components as more robust
substitutes. We use Silero VAD for improving performance in noisy and reverber-
ant conditions. We validate the robustness of improved ECAPA-TDNN embed-
dings over X-vector variations for speaker diarization in the presence of multi-
lingual code-switched data. We also observe that speaker clustering works much
better than AHC for speaker diarization tasks. Observing that these incremental
system enhancements improve the overall system performance for individual key
aspects of the task, we combine these system outputs for final predictions on the
evaluation set.

The remainder of this paper is organized as follows. Section 2 describes the
Track-1 DISPLACE challenge dataset and the evaluation metric used during the
system development. In Sect. 3, the technical details of our system are discussed.
Experimental results and discussion are detailed in Sect. 4 along with case-by-
case analysis. Finally, Sect. 5 provides the main conclusions of this work along
with the future work directions.

2 DISPLACE Challenge Overview

In this section, we briefly describe the DIriazation of SPeaker and LAnguage in
Conversational Environments (DISPLACE) Challenge [2] details. The challenge
aims to detect and label all speaker or language segments automatically in each
conversation. It features two tracks: Track-1 focuses on speaker diarization in
multilingual scenarios, while Track-2 focuses on language diarization in multi-
speaker settings.

Track-1 aims to perform speaker diarization (“who spoke when”) in multi-
lingual conversational audio data, where the same speaker speaks in multiple
code-mixed and/or code-switched languages. On the other hand, track-2 aims
to perform language diarization (“which language was spoken when”) in multi-
speaker conversational audio data, where the same speaker speaks in multiple
languages within the same recording. We participated in the Track-1 speaker
diarization challenge.

2.1 Challenge Dataset

The development set provided by the challenge was recorded in far-field condi-
tions. The development and evaluation set consist of real-life multilingual, multi-
speaker conversations. Each conversation is around 30 to 60 min long involving
3 to 5 participants. The participants show good proficiency in Indian languages
along with English (though English is often observed to use the L1 accent).
The development and evaluation set consists of approximately 15.5 h (27 record-
ings) and 16 h (29 recordings) of multilingual conversations, respectively. The
evaluation was done in two phases, namely, Phase-1 and Phase-2. The Phase-1
evaluation set consists of a subset of the full evaluation set with 20 recordings
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spanning 11.5 h, and the Phase-2 evaluation set consisted of the full evaluation
set.

The data was collected using a close-talking microphone worn by each speaker
as well as a far-field microphone. The latter was provided to the participants for
working on the challenge, while the organizers marked the ground truth using
the close-talking microphone. The data contains natural code-mixing, code-
switching, a variety of language dialects, reverberation, far-field effects, speaker
overlaps, short turns, and short pauses.

The evaluation set features unseen languages as well. Participants were
encouraged to use any publicly available datasets for training and developing
the diarization systems.

2.2 Evaluation Metric

The performance metric is the diarization error rate (DER) calculated with
overlap (the speech segments with multiple speakers speaking simultaneously
are included during the evaluation) and without collar (tolerance around the
actual speaker boundaries). Only the speech-based speaker activity regions are
considered for evaluation. DER consists of three components: false alarm (FA),
missed detection (Miss), and speaker confusion, among which FA and Miss are
mostly caused by VAD errors. DER is defined as:

DER =
DFA + Dmiss + Derror

Dtotal
(1)

where, DFA is the total duration of wrongly detected non-speech, Dmiss refers to
the duration of wrongly detected speech, Derror refers to the duration of wrong
speaker labeling, while Dtotal refers to the total speech duration in the given
utterance.

3 Speaker Diarization System

This section explains the baseline system and the proposed system architectures
in detail.

3.1 Core System

The core of the speaker diarization baseline is largely similar to the Third
DIHARD Speech Diarization Challenge [23]. It uses basic components: speech
activity detection, front-end feature extraction, X-vector extraction, and PLDA
scoring followed by AHC. SAD is a TDNN model based on the Kaldi Aspire
recipe (“egs/aspire/s5”). The speech intervals detected by the SAD are split
into 1.5-sec windows with 0.25-sec shifts. For every window, 30-dimensional Mel
Frequency Cepstral Coefficients (MFCCs) are computed with 25 ms window
length and 10 ms hop. These are used to extract X-vectors at every 0.25 sec.
The network used for X-vector extraction is the BigDNN architecture reported
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in [31] instead of the DNN network used in [23]. The X-vectors are centred
and whitened every 3-sec using statistics estimated from the DISPLACE Dev
set part 1. These vectors are then grouped into different speaker clusters using
AHC (Agglomerative Hierarchical Clustering) and a similarity matrix produced
by scoring with a Gaussian PLDA (Probabilistic Linear Discriminant Analysis)
model. Finally, the speaker and non-speech labels are aligned temporally with the
utterance waveform. The labels are further refined using Variational Bayes Hid-
den Markov Model (VB-HMM) and as Universal Background model-Gaussian
Mixture Model (UBM-GMM). X-vector extractor as well as UBM-GMM and
total variability matrix used for resegmentation are trained on VoxCeleb I and
II [5,20] augmented with additive noise and reverberation.

3.2 Speech Activity Detection (SAD)

In our experiments, we investigate the use of TDNN-based SAD used in the
baseline system [23], Silero VAD [29] and LSTM-based VAD [25]. The open-
source Silero VAD [29] is trained on a large amount of data from over 100
languages and various background noises and reverberation conditions. It uses
CNNs and transformers. It has been known to perform better than conventional
VAD approaches in challenging noisy conditions both in terms of both precision
and recall [29]. The model is trained using 30 ms frames and can also handle
short frames without performance degradation.

Furthermore, we also evaluate our performance using the 2-layer LSTM
VAD [25] system that predicts speech or non-speech decisions at frame-level.
The system uses 20ms long frames to compute the input features: log energies
of six frequency bands in the range 80 Hz to 4 kHz. The decisions may indi-
cate some spurious unlikely short spurts of speech/silence. These are removed
through post-processing where every speech region is expected to be at least 100
ms and every silence region is expected to be at least 200 ms.

3.3 Speaker Embeddings

Besides the X-vector used in the baseline, we try a different variation of the
X-vector reported in [28] which is trained for the speaker verification task. In
particular, we use the improved ECAPA-TDNN embeddings inspired by our
previous work [6].

X-Vector. We used the X-vector described in the baseline system. This has
been trained on the Voxceleb dataset augmented with additive noise and rever-
beration. The RIR dataset from [15] has been used to generate reverberation
samples, while the additive noise sampled are taken from MUSAN [27], a corpus
of music, speech and noise. The X-vectors are 512-dimensional vector embed-
dings computed every 1.5-s segments with a shift of 0.25 s.
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VoxCeleb SID. We used Speaker Identification (SID) X-vector system in our
experiments. It uses a smaller DNN network than a regular X-vector specifically
trained for speaker recognition task [28]. The initial few layers use temporal
context such that every frame sees a total context of 15 frames. The features are
24-dimensional filter banks with a frame length of 25 ms, mean-normalized over
a sliding window of up to 3 s. The model is trained on VoxCeleb I and II [5,20]
datasets augmented with additive noise and reverberation from Room Impulse
Response and Noise Database [3] and MUSAN [27] datasets.

ECAPA-TDNN. We use the ECAPA-TDNN model inspired by our previ-
ous work [6] to extract enhanced speaker embeddings. It is an X-vector model
improved to include Res2 blocks and channel- and context-dependent attention
pooling. Multi-layer Feature Aggregation (MFA) is also used to merge com-
plementary information before the statistics pooling. It has been trained on
data with different augmentation strategies like waveform dropout, frequency
dropout, speech perturbation, reverberation, addition noise, and noise with
reverberation augmentation techniques. The data augmentation is applied on-
the-fly to every speech utterance during training. This helps us more variety of
data. The ECAPA-TDNN is trained using VoxCeleb I and VoxCeleb II [5,20]
database with Room Impulse Response and Noise Database [3] and MUSAN [27]
datasets used for the augmentation. 80-dimensional log Mel-filterbank energies
mean-normalized across an input segment forms the input to the ECAPA-TDNN
model. For every speech segment, 192-dimensional embeddings are extracted
with a sliding window of size 1.5 s. In this work, we empirically try different hop
sizes while computing the embeddings. Best performing hop sizes are 0.75 sec
and 0.25 sec, and we refer to them as ECAPA-TDNN-1 and ECAPA-TDNN-2,
respectively.

3.4 Clustering Algorithms

We tried different types of cluttering techniques in our experiments. In addition
to using AHC from baseline setup, we also tried spectral clustering from [17]
which has been shown to give high performance [6]. Spectral clustering is a graph-
based clustering technique that uses an affinity matrix calculated using the cosine
similarity metric. The affinity matrix is then enhanced and the Eigenvectors
are computed. The Eigen-values are thresholded to get the number of speaker
clusters k. The top Eigenvectors give the spectral embeddings which are more
separable and give quite distinct speaker clusters through k-means clustering.
We observed that AHC is better if there is hierarchy in the clusters while spectral
clustering is useful if the data has connected clusters that do not form a globe.

4 Results and Discussion

The challenge provided baseline results on development dataset. Even though
the challenge paper [1] reports DER to be 32.60%, we observe DER of 40.24%
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in our implementation. We treat the latter as the baseline for all comparisons
as indicated in Table 1. The baseline had UB-GMM and VB-HMM-based reseg-
mentation modules as optional elements. We try modifying this module by using
the default speaker shift probability as 0.45. The first two systems S1 and S2 in
Table 1 show that adding resegmentation helps improve the DER of the baseline
system. This holds not only for the baseline system but also for other systems
as can be seen in Table 1.

Table 1. Diarization error rate on development set for different combinations of SAD,
speaker embedding vectors and clustering methods.

System No System Description DER (%)

Baseline System

S1 BL SAD+X-vector+PLDA+AHC [1] 40.24

S2 BL SAD+X-vector+PLDA+AHC+VB-HMM 38.74

VAD variation

S3 Internal VAD+X-vector+PLDA+AHC 49.11

Replacing AHC with SC

S4 BL SAD+X-vector+SC 51.49

S5 BL SAD+X-vector+PLDA+SC 37.67

S6 BL SAD+X-vector+PLDA+SC+VB-HMM 35.99

Finetuned Model

S7 BL SAD+X-vector+PLDA+SC 31.08

Replacing X-vector with Voxceleb SID

S8 BL SAD+VoxCeleb SID (0.25) 45.29

S9 BL SAD+VoxCeleb SID (0.25)+VB-HMM 38.23

Previous Work

S10 Silero VAD+ECAPA-TDNN-1+SC [6] 39.29

S11 Silero VAD+ECAPA-TDNN-1+SC+VB-HMM 39.02

Towards Best System

S12 BL SAD+ECAPA-TDNN-1+SC 36.93

S13 BL SAD+ECAPA-TDNN-1+SC+VB-HMM 36.30

S14 BL SAD+ECAPA-TDNN-2+SC+VB-HMM 35.64

4.1 Enhancements Using Clustering Techniques

We replaced the PLDA and AHC modules with spectral clustering. However,
this gave poor performance compared to the baseline system. We observed that
the input to the spectral clustering algorithm needs to consist of well-separated
“connected components” [18] for robust clustering. As PLDA is expected to
perform the required vector discrimination, we included the PLDA block before
spectral clustering. The DER in Table 1 shows indeed a large improvement is
observed when applied spectral clustering on X-vector with PLDA vectors (S5)
than only X-vectors alone (S4).
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4.2 Investigating the Separability of Speaker Embeddings

We observed that the spectral clustering works well if the speaker embedding
vectors are well-separated, as shown in Sect. 4.1. We further explored different
versions of speaker embeddings for their noticeable level of separability across
speakers. As part of the analysis, we plot X-vector, X-vector with PLDA, Vox-
celeb SID and ECAPA-TDNN embeddings for audio in Fig. 2. The scatter plot
in Fig. 2a shows that speaker discrimination is not sufficient enough with X-
vectors. The PLDA scoring helps improve the speaker separation capability of
the X-vectors resulting in better discrimination among the multi-lingual speak-
ers as shown in Fig. 2c. The speaker distinction is the best using ECAPA-TDNN
without the need for PLDA as seen from Fig. 2c.

Fig. 2. Scatter plots of (a) X-vector, (b) X-vector+PLDA, and (c) ECAPA-TDNN
based enhanced embeddings after the U-map based dimensionality reduction. Red,
blue and green color indicate three different speakers in an utterance. (Color figure
online)

We were able to achieve 36.93% DER on Dev sets - a marginal improve-
ment compared to Baseline numbers, using ECAPA-TDNN with a TDNN-based
SAD system. We observe a further reduction in DER (S13 and S14) compared
to baseline (S1) along with VB-HMM rescoring. As seen from Table 1, all the
ECAPA-TDNN-based model performances are almost comparable with the X-
vector+PLDA+SC approach. This is in line with the observations from Fig. 2.
Furthermore, we observe from Table 1 that for the sliding window hop period,
p=0.25 gives better results than when p=0.75. This is because the short speaker
utterances like ‘yes’, ‘no’, ‘oh’, etc. can be easily accounted for with small hops.

4.3 Voice Activity Detection

As the DISPLACE challenge data was recorded in far-field conditions, we tried to
remove noise or reverberation from the utterances using a DNN pre-processing
model. This was followed by utterance segmentation into speech-only regions
using LSTM VAD trained on noise-augmented Librispeech data discussed in
Sect. 3.2.

In order to incorporate more data, we further tried replacing the TDNN based
VAD with Silero VAD as discussed in Sect. 3.2. We see that the use of Silero VAD
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reduces the DER compared to when baseline TDNN SAD is used. However, a
close analysis of failed cases indicates that the Silero VAD improves the perfor-
mance for the utterances with high noise and reverberation, while TDNN SAD
works best in the case of clean utterances. The development set did not contain
many noisy utterances which led to aggregate performance deterioration for S13.

4.4 Results on Dev and Eval Datasets

Results on the development set using various experiments are shown in Table 1.
Here, S7 is the finetuned version of the model S5. In general, overfitting happens
when the model performs better with very low error rates on test data set [16].
On the contrary, the DERs are higher on the development data set due to the
presence of largely divergent data conditions in this task. So, we finetuned the
weights of model S5 using the development set and created model S7. In prin-
ciple, it is not meaningful to measure the DER on the development set itself
using system S7. However, as the DER is still on the higher scale even after
the finetuning, we consider system S7 as one of the competing systems in our
experiments.

Performance Evaluation on Phase-1. We selected four models based on
development set results and observations, that is, S13, S14, S11 and S7. The
corresponding evaluation set results are shown in Table 2. We observed that the
Silero VAD proves to be more robust in the presence of noise variability and
works well with short window and hop sizes. Corresponding system S11, there-
fore, outperforms very short and noisy utterances. That is, if a speaker speaks
for a small time in a conversation, used ECAPA-TDNN embedding computed
with a small window hop size provides an advantage in helping more accurate
speaker change detection for system S14. We combine our four system’s outputs
for final submission, considering that each system has its characteristics which
help in specific aspects of the task. We performed the fusion based on the max-
imum voting criteria. The speaker label which appears more times for a given
frame is voted as the final speaker label. If none of the four systems claimed the
same speaker label, we retained the labels from S7 - the system performing best
on the development set. After fusion, the results improved further to achieve a
lower DER of 27.70% as shown in Table 2.

Table 2. Results of different combination SAD, speaker vectors and clustering methods
in DER (%) on eval phase 1 and phase 2 set.

System No Systems Dev Phase-1 Phase-2

S1 BL X-vector + PLDA + AHC [1] 40.24 39.60 32.50

S13 BL SAD+ECAPA-TDNN (p 0.75)+SC+VB-HMM 36.30 28.11 29.45

S14 BL SAD+ECAPA-TDNN (p 0.25)+SC+VB-HMM 35.64 29.67 28.85

S11 Silero SAD +ECAPA-TDNN (p 0.75)+SC+VB-HMM 39.02 32.41 28.86

S7 BL SAD+X-vector+PLDA+SC 31.08 31.84 29.87

S15 Fusion of S13, S14, S11 and S7 NA 27.67 28.7

S16 Fusion of S14, S11 and S7 NA 27.89 28.59
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Table 3. Individual DER results on the eval set for the individual audio files.

Audios → B015 B016 B020 B023 B027 B029 B035 B039 B051 B053 B054 M007 M008 M010 M017 M044 M047 M048 M050 M053

Sys ↓
S13 25.67 41.52 34.55 22.01 7.19 15.81 6.52 33.16 30.04 32.35 22.64 21.89 37.45 30.34 30.81 33.06 15.02 35.47 56.75 13.40

S14 25.60 41.94 34.75 23.94 7.32 15.76 6.45 33.25 29.96 32.33 23.20 30.30 37.37 30.18 30.69 34.70 30.55 35.44 62.32 16.54

S11 27.99 42.03 32.43 31.03 9.69 20.13 7.62 36.08 39.64 41.72 25.86 30.80 37.17 34.46 32.40 27.02 18.97 46.50 77.24 17.23

S7 41.75 48.65 38.53 22.01 7.19 27.48 19.82 33.33 34.08 34.21 22.64 23.57 38.97 50.44 32.61 33.06 15.02 37.90 56.75 13.40

Performance Evaluation on Phase-2. We decided to improve the fusion
technique further based on the DOVER approach [8] for the Phase-2 part of
the challenge. DOVER-LAP is a method to combine multiple diarization system
hypotheses while handling the overlap between multiple speakers. The DOVER-
LAP S15 and S16 systems were used to combine individual systems based on
empirically selected custom weights. These weights were calculated based on the
leave-one-out cross-validation performance on the development set.

4.5 Analysis After Phase-1 Evaluation

We performed a detailed analysis of the audio after the completion of the Phase-
1 evaluation. The individual file-wise results for Phase 1 Eval-set are shown in
Table 3. We observe that for a few files, the DER is relatively very less (e.g., file
B027), while for some others the DER is very high (e.g., file M050).

We observe the scatter plots for the files M007 and M050 as shown in Fig. 3.
For the M007 file the speakers are clearly distributed from each other which
results in less DER (as reported in Table 3). In particular, with X-vector embed-
dings the DER obtained is relatively less compared to ECAPA-TDNN embed-
dings that are reflected from Fig. 3a and Fig. 3b. In addition, we also observe
that the M050 recording is highly noisy. Figure 3c and 3d show the X-vector and
ECAPA-TDNN embeddings respectively for this recording. In both cases, the
speaker embeddings show a large overlap. Due to the noisy nature of speaker
embeddings and distance metrics, the quality of the affinity matrix degrades
affecting the spectral clustering, thereby leading to poor performance.

On the other hand, the audios B027 and B035, are near-field audios with
relatively less noise and reverberation. Further, the gender-related speaker tran-
sitions in these audios are generally well-defined. That is, even within the same
gender, different speakers have clearly distinct voices due to noticeable variations
in pitch and timber. However, these audios do not have overlapping speakers.
Each speaker speaks for a longer time as opposed to a short 2 to 3-sec dura-
tion. All these are helpful in getting better discrimination across embeddings of
different speakers and hence better speaker diarization.

As shown in Table 2, stand-alone system S7 performed better on the dev set
and did not perform well on the Eval set compared to other systems. Further
investigation shows that most of the audios from the Dev set are clean, while the
audios from the Eval set contain comparatively more noise under reverberation
conditions. This indicates the importance of domain mismatch not only in terms
of language and accent but also in terms of noise and reverberation as well.
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Fig. 3. Scatter plots of (a) X-vector+PLDA, and (b) ECAPA-TDNN embeddings for
M007 recording. Scatter plots of (c) X-vector+PLDA, and (d) ECAPA-TDNN embed-
dings for M050 recording. The U-map based dimensionality reduction is performed
before plotting scatter plots.

As shown in Table 3, we observe that all baseline VAD systems perform poorly
for the M044 audio, while system S11 using Silero VAD performs much better.
M044 audio is extremely noisy with very high pitch and loudness variations due
to frequent switching between near-field and far-field conditions. This condition
seems to have been captured well by Silero VAD compared to the baseline VAD.

5 Conclusion

In this paper, we built a system for Track-1 of the DISPLACE Challenge that
aims at speaker diarization in multilingual scenarios. The system is implemented
using different combinations of core sub-modules such as VAD, robust speaker
embeddings, and clustering methods. The best system is the combination of
different systems obtained using the DOVER-LAP fusion techniques. This rep-
resents a significant relative improvement over the baseline by 30.05% which led
us to the second position for both phase-1 and phase-2 of the DISPLACE chal-
lenge. Although there is still room for improvement, we do believe that these are
promising results. Our systems perform noticeably well with gender-specific tran-
sitions compared to same-gender conversations under multilingual and far-field
conditions. The mismatch in the Dev and Eval sets due to huge reverberation
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and noisy data made the task more challenging. The use of models trained on
large datasets helped with reducing the data mismatch under challenging acous-
tic conditions.
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