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Abstract. Speaker Verification (SV) is a task to verify the claimed iden-
tity of the claimant using his/her voice sample. Though there exists an
ample amount of research in SV technologies, the development concern-
ing a multilingual conversation is limited. In a country like India, almost
all the speakers are polyglot in nature. Consequently, the development of
a Multilingual SV (MSV) system on the data collected in the Indian sce-
nario is more challenging. With this motivation, the Indic-Multilingual
Speaker Verification (I-MSV) Challenge 2022 was designed to under-
stand and compare the state-of-the-art SV techniques. An overview of
the challenge and its outcomes is given here. For the challenge, approx-
imately 100 h of data spoken by 100 speakers were collected using 5
different sensors in 13 Indian languages. The data is divided into devel-
opment, training, and testing sets and has been made publicly available
for further research. The goal of this challenge is to make the SV system
robust to language and sensor variations between enrollment and testing.
In the challenge, participants were asked to develop the SV system in
two scenarios, viz. constrained and unconstrained. The best system in
the constrained and unconstrained scenario achieved a performance of
2.12% and 0.26% in terms of Equal Error Rate (EER), respectively.
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1 Introduction

Speaker Verification (SV) is the task of validating the identity of a speaker using
the voice sample of the claimant. The tremendous development in SV technol-
ogy in the last five decades has enabled the system to be deployed in various
application areas, starting from voice-based attendance systems to authentica-
tion for bank transactions [1]. However, the performance of the systems suffers
when multiple languages and sensors are involved during testing [9]. Hence, the
scalability of SV systems is limited considering such scenarios. The citizens of
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India use approximately 122 major and 1599 other languages in their day-to-
day conversation. Most importantly, they are polyglot in nature. Therefore, the
flexibility in language and sensors during testing may restrict the reach of SV
technologies. With this motivation, the Indian Institute of Technology Guwa-
hati Multi Variability (IITG-MV) data was collected using five different sensors
from the people coming from different geographical locations of India having
variations in the native language, dialect, and accent [5].

In the literature, there exist few works on the development of SV in multi-
lingual and domain mismatch scenarios [9]. The reported works contribute to
the feature, model, and score level for minimizing the impact of language and
domain mismatch [9]. Most of the reported work uses either an in-house dataset
or publicly available data (mostly crawled from the public domain) for per-
forming their studies. The in-house data are limited by the number of speakers,
languages, and sensors. Though the publicly available data have a huge num-
ber of speakers, languages, and environmental variations, the unavailability of
appropriate annotations (mostly done with automatic algorithms) poses a chal-
lenge for an in-depth analysis [9]. The current challenge was planned with the
aim of resolving the above-mentioned issues by inviting the community to work
on the development of the language and sensor invariant speaker representation.

This work considers the conversation recordings of the IITG-MV phase-I
dataset. The dataset is divided into four parts, viz. (1) Development, (2) Enroll-
ment, (3) Public test set, and (4) Private test set. The development set consists
of speech utterances from 50 speakers recorded with all 5 sensors and in 13 lan-
guages. The enrollment set consists of utterances from the remaining 50 speakers,
spoken in English language and through a headset microphone. The public test
set consists of utterances from the 50 enrolled speaker in both matched and
mismatched sensors and languages. The private test set only consists of cross-
lingual and sensor utterances. Along with releasing the dataset, the challenge
was offered in the form of two sub-tasks, (1) constrained and (2) unconstrained.
The constrained sub-task restricts the participants to use only the provided data.
On the other hand, no such restrictions are there in the unconstrained sub-task.
The aim of the constrained sub-task here was to encourage the community to
develop the SV with limited training data. Conversely, the aim of the uncon-
strained sub-task was to observe the performance of SV technologies developed
with a sufficient amount of training data. The dataset is available at1. A base-
line system implemented with the X-vector framework for both constrained and
unconstrained sub-tasks was made available to the participants during the chal-
lenge (available at2). The performance of the baseline in public test data on both
the sub-tasks were 9.32% and 8.15%, respectively.

The rest of the paper is organized as follows: the challenge rules are described
in Sect. 2. The detailed description of the data preparation is described in Sect. 3.
Section 4 reports the procedure of baseline system development and the perfor-
mance measure used. A brief description of the top five systems along with their

1 https://doi.org/10.5281/zenodo.7681049.
2 https://github.com/jagabandhumishra/I-MSV-Baseline.

https://doi.org/10.5281/zenodo.7681049
https://github.com/jagabandhumishra/I-MSV-Baseline


I-MSV 2022 439

performance are described in Sect. 5. Finally, the summary and future directions
are reported in Sect. 6.

2 Challenge Rules

As mentioned in the earlier section, the challenge consisted of two sub-tasks, viz.
(1) constrained SV and (2) unconstrained SV.

– Constrained SV: Participants were not allowed to use speech data other
than the speech data released as a part of the constrained SV challenge for
the development of the SV system.

– Unconstrained SV: Participants were free to use any publicly available
speech data in addition to the audio data released as a part of unconstrained
SV.

The challenge was organized as a part of the 25th edition of the
O-COCOSDA-2022 conference along with the Asian-Multilingual Speaker Verifi-
cation (A-MSV) track. The participants were asked for registration. Upon agree-
ing to the data usage licenses agreement, the download link of the development,
enrollment, and public test sets were provided. Through a license agreement, the
participant teams agreed that they could use the data only for research purposes.
Moreover, the top five systems in both the sub-tasks would have to submit the
source code of their systems and a detailed report.

The public test set released during the time of registration had ground truth
information. The purpose here was to tune the system parameter using the public
test data. The participants were asked to upload their score files in a specific
format on the challenge portal. The corresponding performance was evaluated by
a back-end script and the results were uploaded to a online leader board. There
was no constraint on uploading and evaluating the score files on the public test
set. After around one month of the public test set release, the private test set was
released without ground truth information. The participant teams were asked to
submit their final results on the private test set within 24 h from the release of
the private test set. A maximum of three successful attempts were allowed for
each team for evaluating their system on the private test set.

3 Data Preparation

The IITG-MV speaker recognition dataset was recorded in four phases for deal-
ing with various speaker recognition applications, viz. speaker identification,
verification, and change detection, etc. [5]. Among the four phases, the phase-I
dataset is considered for this study. The IITG-MV-Phase-I dataset consists of
recordings from 100 speakers in reading and conversation mode. In both modes,
each speaker has given their speech data in two sessions. The duration of each
session is around 5–8 min. In addition, each speaker has given their data in two
languages, viz. English and favorite language. Favorite language mostly meant
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their mother tongue/native language and varied from person to person. Further-
more, all the speech utterances were recorded through five different sensors, viz.
H01, M01, M02, D01 and T01. The details of the dataset can be found at [5]. The
utterances belonging to the conversation mode were only considered here. The
total duration of the selected utterances is approximately 100 h. The selected
utterances are named as the I-MSV dataset. Further, the I-MSV dataset is seg-
regated into four parts, viz. development, enrollment, public test, and private
test.

3.1 Development Set

This partition consists of recordings from 50 speakers. The utterances from each
speaker are available in two languages, with two sessions, and with five sensors.
The approximate duration of the development set is 50 h.

3.2 Enrollment Set

This partition consists of recordings from 50 speakers that are disjoint from
the speakers used in the development set. The utterances belonging to both
the sessions with the English language and the Headset (H01) sensor are used
here. The first session utterances are completely used in this set. However, the
utterances from the second session are segmented into two parts. Half of them are
used in enrollment and the rest have been used in the public test set (to observe
the performance in matched sensor and language conditions). The approximate
duration of speech available for each speaker is 8–10 min.

3.3 Public Test Set

This set consists of the utterances from the second session recordings with three
sensors and cross-languages along with the matched utterances. The second ses-
sion utterances in the original IITG-MV-Phase-I dataset are segregated into two
parts. Half of them are reserved for the preparation of the private test set. After
that, each utterance is segmented into 10, 30, and 60 s utterances. The segments
are split into silence regions using the knowledge of Voice Activity Detection.
The segmented files were made available to the participants as the public test
set. The total number of utterances available in this partition is 5907.

3.4 Private Test Set

This set consists of the utterances from the second session recordings with four
sensors and cross-languages. This partition does not consist of matched sensors
and language utterances. The selected utterances are segmented into 10 s, 30 s,
and 60 s utterances and made available to the participants as the private test set.
The total number of utterances available in this partition is 9521. The partition
consists of cross-language utterances from 10 Indian languages.
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Table 1. Baseline results on I-MSV dataset, UC: unconstrained condition.

Model EER (%)

Overall Matched Condition

I-vector 13.72 4.61

X-vector 9.32 2.40

X-vector (UC) 8.15 0.82

4 Performance Measures and Baselines

This challenge employs the Equal Error Rate (EER) measure to compare the
performances of the different submissions with the baseline results. This section
briefly describes the method of computing the EER measure and reports the
baseline results on the I-MSV dataset. Let, NP and NN be the number of positive
and negative test samples in the data, respectively. The number of samples
out of a total of NP positive samples predicted as positive are termed as True
Positives (TP). On the other hand, the number of samples out of a total of NN

negative samples correctly predicted as negative are termed as True Negatives
(TN). Incorrectly predicted positive and negative samples are termed as False
Positives (FP) and False Negatives (FN), respectively. The prediction of a test
sample as positive or negative is based on a pre-determined threshold τ which
may be varied. The total number of TP, TN, FP, and FN for the whole test data
can be used to compute two measures, viz., False Acceptance Rate (FAR) and
False Rejection Rate (FRR). The FAR can be defined using Eq. 1.

FAR =
FP

FP + TN
(1)

Similarly, the FRR can be defined as in Eq. 2.

FRR =
FN

TP + FN
(2)

When τ is varied, different values of FAR and FRR can be obtained. Among all
the different τ used, a specific threshold τequal can be identified which provides
equal (or almost equal) values of FAR and FRR. The EER measure is computed
as the mean of FAR and FRR at τequal (Eq. 3).

EER =
1
2

(FAR + FRR) (3)

where, | FAR − FRR |→ 0.
The challenge organizers provided results on the I-MSV dataset using Kaldi-

based I-vector and X-vector systems as a baseline for comparison. The baseline
performances are reported in Table 1.
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Fig. 1. Illustrating the effect of (a) different duration, (b) different languages, and (c)
different sensors on the performance of submitted systems.
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5 Systems and Results

A total of 25 teams registered for the I-MSV 2022 challenge. Among these, 10
teams submitted their results for the public test set evaluation. For the pri-
vate test set evaluation, a total of 6 teams submitted their results and systems.
The attributes of the best 5 participating systems are summarised in the next
paragraph. Table 2 lists a brief summary of the top 5 systems.

Table 2. Summary of top 5 submissions to the challenge. FE:=Frontend, LF:=Loss
Function, BE:=Backend, C-SV:=Constrained-SV, UC-SV:=Unconstrained-SV.

Team FE LF BE EER (%)

C-SV UC-SV

T0 Rawnet3 Training: triplet margin loss;
Fine-tuning: AAM Loss +
K-Subcenter loss +
Inter-topK loss

Cosine similarity – 0.26

T1 ResNet with SE attention Softmax + Angular
Prototypical Loss

Model scoring (DNN,
Random Forest and Gradient
Boosting Trees)

– 0.36

T2 ECAPA-TDNN + SE-ResNet blocks Weight Transfer loss +
AAM-Softmax loss + L2 loss

Cosine similarity 2.12 0.63

T3 ECAPA-TDNN SE-ResNet blocks AAM Loss Cosine similarity 2.77 2.70

T4 ECAPA-TDNN + SE-ResNet blocks Large Margin Cosine Loss PLDA 2.97 2.97

The submission of T0 obtained the best EER of 0.26 on the private test set
using unconstrained training data. The best system of T0 used the Rawnet3
architecture [8] as their front-end system. They initially trained the model with
a Triplet Margin loss [11]. Subsequently, they fine-tuned their model with a
combination of Adaptive Angular Margin (AAM) K-Subcenter loss [3] and Inter-
TopK loss [13]. They performed the backend scoring using the cosine-similarity
measure and used adaptive score normalization.

The second best EER of 0.36 using unconstrained data was obtained by T1.
They used the ResNet-34 architecture proposed in [6] with Attentive Statistics
Pooling [10] for their front-end. They trained the model using a combination
of vanilla Softmax loss and Angular Prototypical loss [2]. They also proposed
a two-layer model scoring system composed of Fully-Connected Feed-Forward
layers, Random Forests and Gradient Boosting Trees.

The EER obtained by T2 on the constrained data scenario was 2.12. They
achieved an EER of 0.63 using unconstrained training data. They used com-
bination of ECAPA-TDNN [4] and ResNet-34 [6] with Squeeze-and-Excitation
(SE) attention as front-end models to obtain the best results in the constrained
data scenario. However, only the ResNet-34-SE network provided the best per-
formance in the unconstrained scenario. For the unconstrained scenario, they
fine-tuned the backbone model using a combination of Weight-Transfer loss [12],
AAM-Softmax loss and L2 loss. The backend scoring was performed using cosine
similarity measure.
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The T3 obtained an EER of 2.77 in the constrained scenario and EER of 2.70
in the unconstrained scenario. They used a similar front-end system as that of
T2 and trained it using the AAM loss. They also performed the backend scoring
using cosine similarity.

The EER obtained by T4 in the unconstrained scenario was 2.97. They
also employed a similar front-end architecture as that of T2 and used the Large
Margin Cosine loss for training. They performed the backend scoring using Prob-
abilistic Linear Discriminant Analysis (PLDA) [7].

6 Summary and Discussion

The results obtained by the submitted systems can be summarised along the fol-
lowing broad directions. First, the use of unconstrained training data is hugely
beneficial in performing SV in low-resource scenarios like the current challenge.
Second, automatic feature learning and end-to-end models can learn highly dis-
criminating features. Third, the choice of loss function for the front-end sys-
tem has a huge impact on the obtained performance of similar architectures.
Fourth, simple backend scoring like cosine similarity might be enough if the
learned speaker embedding is highly discriminating. Fifth, longer utterances
(refer Fig. 1(a)) are more helpful in identifying the speakers. Sixth, a change
in language (Fig. 1(b)) degrades the SV performance. However, it might also be
noted that such an observation may also be the result of an imbalance in the
number of utterances for the different languages in the I-MSV dataset. Seventh,
the change in sensor (Fig. 1(a)) has a huge impact on the performance of SV sys-
tems. More specifically, SV systems fare poorly when presented with telephone
channel recordings. In future, better SV systems may be developed by taking
into consideration the observations made in this challenge.
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