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Abstract. Automatic syllable stress detection is helpful in assessing
L2 learners’ pronunciation. In this work, for stress detection, we pro-
pose a representation learning framework by jointly optimizing VAE and
DNN. The obtained representations from the proposed VAE plus DNN
framework are compared with the implicit representations learned from
DNN-based stress detection. Further, we compare the obtained repre-
sentations from VAE plus DNN with those obtained from autoencoder
(AE) plus DNN, and sparse-autoencoder (SAE) plus DNN considering
with/without implicit representations from DNN. We perform the exper-
iments on the ISLE corpus consisting of English utterances from German
and Italian native speakers. We observe that the detection performance
with the learned representations from VAE plus DNN is significantly
better than that with the state-of-the-art method without any represen-
tation learning with the highest improvement of 2.2%, 5.1%, and 1.4%
under matched, combined, and cross scenarios, respectively.

Keywords: Syllable stress detection · Joint representation learning ·
Computer-assisted language learning

1 Introduction

The technological advancements showed their impact on teaching with the devel-
opment of different computer-assisted language learning (CALL) based modules
[3,14]. In recent years, applications related to CALL have shown benefits for sec-
ond language learning. The reasons for the benefits include, 1) flexibility in its
availability, 2) low cost of usage, and 3) ability to provide personalized learning
[24]. However, developing robust modules for CALL is a challenging task, mainly
due to the variabilities in L2 learners’ native languages and accents. One of the
many different aspects that the CALL applications have been focusing on is the
detection and diagnosis of prosodic errors such as stress/prominence and into-
nation [9,16,31] errors made by the L2 learners in their pronunciation. Syllable
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stress plays a critical role in communication to convey the meaning and intent
of the message. Also, correct syllable stress placements in a word convey correct
pronunciation. In this work, we consider the problem of automatic syllable stress
detection which could be useful for downstream tasks such as CALL systems.

Syllable stress is referred to as the emphasis on a particular syllable in a word.
Stressed syllables appear more prominent than unstressed syllables. In [1,5,27],
it is stated that stress is mirrored through the changes in intensity, pitch, and
duration. In [7], it is defined that the stressed syllable can be longer in relative
duration and with greater physical intensity than the unstressed syllables but
pitch movement does not always contribute to stress. Also in the literature, there
is no strong agreement on the definition of stress in terms of acoustics for non-
native English learners. Aoyama et al. [1] hypothesized that Japanese speakers
rely more on differences in F0 compare to intensity and duration to indicate
stress in English. Because of the native language influence, the production and
perception of L2 will differ which in turn affects the acoustic parameters respon-
sible for stress perception [15]. It highlights the need for a clearer and more
consistent representation of stress.

Typically, automatic syllable stress detection has a feature extraction step
followed by a machine learning (ML) based classification step. In the literature,
various methods were proposed for better performance at both steps. At the
model level, different ML algorithms like support vector machines (SVM), deep
neural networks (DNN), convolutional neural networks (CNN), and attention
networks were used for stress detection. Johnson et al. [10] used five different
machine learning classifiers namely, neural networks, SVM, decision tree, bag-
ging, and boosting algorithms for automatic detection of Brazil’s prominence
syllables with seven sets of different acoustic features embedding with variations
in intensity, pitch, and duration. Arnold et al. [2] used random forests for promi-
nence detection in the German language. Tian et al. [30] used an attention-based
neural network and bidirectional LSTMs for stress detection problem using Mel
frequency cepstral coefficients (MFCCs), energy, and pitch features. Ruan et al.
[22] performed stress detection using a transformer network. Further, there were
attempts on non-native speech in French, Spanish, and Mandarin with SVM for
stress detection using acoustic and context-based features [4,8]. The above works
are based on different models and features. Also, there are works [27,31] that
focused only on feature level to extract the best features that can capture the
syllable prominence.

Neural networks are often seen as a black box and it is difficult to interpret the
kind of representation that the network is learning. Neural network architectures
like DNN, CNN, and LSTM involves complex, nonlinear, and structured depen-
dencies and they have been gaining popularity in different speech applications
with their better performance over traditional ML methods. In automatic clas-
sification tasks, these neural networks learn representations implicitly, referred
to as implicit representations, of the given input and map it to a specific class
by learning weights. Even though these networks are known for learning task-
specific implicit representations, they are sensitive to factors like variation and
entanglement [6] in the data which can’t be eliminated in real data scenarios.
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One of the ways to overcome these factors is by learning a good representation of
the data explicitly, prior to the classification task. To resolve this, AEs [23] were
proposed and used in several applications for learning representations explicitly
[28], referred to as explicit representations. But, AEs are not consistent in gen-
erating disentangled representation and regularized latent space. By addressing
these issues, variational autoencoders (VAE) [13] gained attention in the field
of computer vision [17] and speech processing applications [18,25] to learn the
disentangled explicit representation of the data.

Obtaining combined representations by incorporating both the explicit and
implicit representations through a single framework would benefit the stress detec-
tion task. However, to the best of our knowledge, there is no work that learns the
combined as well as the explicit representations from the acoustic features for the
stress detection task. To obtain combined (explicit and implicit) representations,
we propose to optimize VAE and DNN in a joint learning framework.

In this work, we analyze the representations in a task-specific manner using
acoustic and context-based features by modelling in two ways. First, we con-
sider a DNN which implicitly learns representation from state-of-the-art acoustic
and context-based features and performs classification. Second, we use the pro-
posed representation learning framework jointly with VAE and DNN to obtain
effective explicit and implicit representations for the stress detection task. Fur-
ther, we analyze the effectiveness of the jointly learned representations obtained
with VAEs compare to those obtained with other autoencoders namely, simple
autoencoder (AE), and sparse autoencoder (SAE). We perform experiments on
the ISLE corpus which consists of polysyllabic English words uttered by non-
native speakers of German, and Italian. We conduct the experiments in three
scenarios: 1) matched: train and test data are from the same language, 2) com-
bined: train data is from both the speakers’ but tested on each of them sepa-
rately, and 3) cross: trained with German and tested on Italian, and vice-versa.
The jointly learned representations from VAE outperform the state-of-the-art
method (without any representation learning) and implicit representations from
DNN for stress detection. We found an absolute improvement in the classifica-
tion accuracies by 2.2% & 1.2%, 5.1% & 1.1%, and 1.4% & 1.1% on German &
Italian under matched, combined, and cross scenarios, respectively.

Table 1. Details of train and test splits of GER and ITA showing the number of
stressed and unstressed syllables.

Train Test

#Stressed #Unstressed #Stressed #Unstressed

GER 3076 3905 2756 3492

ITA 4408 5854 2148 2754
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2 Database

For the experiments in this work, we consider ISLE [20] corpus. From this cor-
pus, we consider 7834 speech utterances from 46 non-native speakers learning
English where each speaker uttered 160 sentences following the work [31]. Out
of 46 speakers, 23 are German (GER), and 23 are Italian (ITA). The entire audio
was phonetically annotated by a team of five linguists to reflect the speakers’ pro-
nunciation. Using the automatic force alignment process, each utterance is pho-
netically aligned. We use P2TK [26], syllabification software to obtain syllable
transcriptions from the phone transcriptions. From the syllable transcriptions,
we obtain the aligned syllable boundaries using aligned phone boundaries. Sylla-
ble stress markings were also manually labeled while ensuring only one stressed
syllable for each word. Labelling resulted in a total of 48868 syllables as stressed
and 16693 syllables as unstressed. For the experiments, we consider data con-
taining all polysyllabic words which result 12388 stressed and 16005 unstressed
syllables. Train and test splits of both GER and ITA are done by balancing the
speakers’ nativity, age, sex, and proficiency [20]. Table 1 shows the details of the
train test splits considered in the experiments.

Fig. 1. Block diagrams of AE, SAE, and VAE.

3 Methodology

In this work, we consider VAE to learn the representations from the input fea-
tures for the stress detection task. The VAEs are part of the autoencoder family,
which includes AE, and SAE. In this section, we first briefly review AE, SAE,
and VAE networks and then describe the framework of joint learning with VAE
and DNN for syllable stress detection task.

3.1 Simple Autoencoder (AE):

Figure 1(a) illustrates the basic architecture of a simple autoencoder. It consists of
an encoder and a decoder. The encoder encodes the d dimensional input feature
vector X into a low dimensional latent vector and the decoder decodes the cor-
responding feature vector X̂ from the latent vector. The entire encoder-decoder
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architecture is trained on the loss function which encourages the model to recon-
struct the input from the latent vector at the output. Equation 1 shows the AE loss
function, which is the mean square error between the encoder input and decoder
output.

AE loss = (X − X̂)2 (1)

3.2 Sparse Autoencoder (SAE):

The autoencoders are usually prone to noise and learn more redundant informa-
tion. In order to overcome this, sparse autoencoders were proposed. The sparse
autoencoder architecture is the same as the autoencoder in Fig. 1(a) which has
an encoder and decoder network. However, the loss function varies from AEs to
SAEs. The SAE loss function includes a regularizer besides MSE loss in AE for
penalizing the redundant information learning. The regularizer penalizes unnec-
essary nodes and activates selective nodes in the hidden layers of the encoder and
decoder to avoid learning redundant information. Equation 2 shows the SAE loss
function, in which the regularizer cost can be Lp norm (p=1 or 2) or Kullback-
Leibler (KL) - divergence on the parameters of encoder and decoder networks.

SAE loss = (X − X̂)2 + regularizer (2)

3.3 Variational Autoencoder (VAE):

Figure 1(b) illustrates the architecture of VAE. In VAE, for a given input vector
X, unlike a fixed latent vector in AE and SAE encoder, qθ(z|X) encodes the input
feature vector to a latent vector space with a predefined random distribution
(p(z)), typically a Gaussian density function with the mean μ and standard
deviation σ. The decoder has two steps, the first step randomly samples the latent
vectors z from the encoded latent space distribution using a reparametrization
trick that uses unit normal Gaussian distribution, z = μ+ε·σ, where ε ∼ N (0, I).
The second step decodes the input feature vector X̂ from the latent vector z.
Equation 3 shows the loss function for VAE, which is defined considering two
objectives. 1) Reconstructing the input (MSE), 2) Constraining the latent space
to Gaussian distribution with KL-divergence. With this formulation, VAEs have
shown great success in the field of computer vision [11]. Further, these have
gained attention in speech processing analysis requiring latent representation
learning. Thus, we believe the learned representations from the VAE could be
robust for the stress detection task.

V AE loss = (X − X̂)2 + KL(qθ(z|X)||p(z)) (3)

3.4 Joint Learning with VAE and DNN

Figure 2 illustrates the block diagram of the joint learning with VAE and DNN
for syllable stress detection1. It has two flows, the first one is training flow
1 https://github.com/Prasanth-Sai-Boyina/Syllable stress detection.

https://github.com/Prasanth-Sai-Boyina/Syllable_stress_detection
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Fig. 2. Block diagram of joint learning approach.

and the second one is testing/inference flow. The two steps associated with the
first two blocks are common for both training and testing flows. The first step
obtains the syllable segments for a given speech utterance considering respective
syllable transcriptions and their aligned boundaries. The second step computes
input features for both training and testing. During training, we feed the input
features to the VAE to learn the latent representations. The representations are
learned by jointly training the VAE and the DNN classifier, which take latent
representation and input features together (shown in the figure with blue lines)
as input and stress markings (stressed and unstressed) as the output.

This joint training distinguishes our work from the typical training considered
in the VAE. Equation 4 shows the loss function for the joint learning approach,
which is defined considering two terms. 1) VAE loss consisting of MSE and
KL-divergence, 2) Cross entropy (CE) loss between the predicted label (Ŷ ) and
ground truth (Y ). λ1 and λ2 are the weight parameters. We hypothesize that
by jointly optimizing the loss functions of VAE and DNN, we can learn the
task-specific representations that would be robust for the detection task.

Joint loss = λ1(V AE loss) + λ2(CE(Y, Ŷ )) (4)

These representations consist of 1) representations that are explicit to DNN
i.e. the latent representations learned by VAE, and 2) representations that are
implicitly learned by DNN. Thus, we consider the proposed approach uses both
explicit and implicit representations for the detection task. On the other hand,
the learned latent representations are considered as explicit to the DNN when
VAE and DNN are jointly trained without the concatenation step shown in
Fig. 2.
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After training VAE and DNN jointly, we extract the latent representations
for the test data from the trained encoder, as shown in the inference block of
the figure. We then use latent representation along with the input features as
input (or only latent representation) to detect the syllable stress using DNN and
SVM classifiers separately. The detected stress markings are post-processed to
ensure that each polysyllabic word has only one stressed syllable following the
work proposed by Yarra et al. [32].

4 Experimental Setup

In this study, both GER and ITA speakers’ data is split into two non-overlapping
sets namely, train and test sets. For the train set, following the previous work
[31], we consider 1st-12th & 1st-13th speakers data and 13th-23rd & 14th-23rd
speakers data for test set respectively for GER, and ITA [9]. Table 1 presents the
details of syllable count in train and test conditions for both GER and ITA. We
consider the state-of-the-art 19-dim acoustic-based features along with 19-dim
binary features representing context dependencies following the work by Yarra et
al. [32]. We consider their method, which uses an SVM classifier in the detection
task as the baseline. We perform experiments in a 5-fold cross-validation setup
where the train set is equally split into five groups, and the number of stressed
and unstressed syllables are similar across five groups. In each fold, we use four
sets for training, and one set for validation following a round-robin fashion. We
normalize the training and testing set with the mean and standard deviation of
the vectors obtained from the training set.

Architecture Details: The approach that we consider for representation learn-
ing jointly with VAE and DNN and classification with DNN/SVM is referred to
as VAE+classifer (x + y; x represents the autoencoder used for learning task-
specific representations jointly with DNN, y represents the classifier in the test
time, either DNN or SVM that is used for classification with the learned represen-
tations from x). In the proposed approach, along with the VAE, we analyse the
latent representations learned with simple AE, and SAE jointly with DNN and
the corresponding networks are referred to as AE+classifer, and SAE+classifer,
respectively. The DNN model in each of these consists of 8 hidden layers. We
consider Relu [21] as activation function for the hidden layers and Adam [12] as
optimizer. Binary cross-entropy is the loss function in DNN. AE and SAE con-
sists of 2 hidden layers in encoder and decoder with Relu activation function. In
SAE, we use L1 regularizer in one of the hidden layers of encoder. VAE consists
of 1 hidden layer each in encoder and decoder with Relu activation function. All
the DNN, VAE, AE, and SAE parameters like number of layers, and number of
nodes in each layer are optimal and we choose them by maximizing the perfor-
mance on the validation set. The optimal values of the parameters λ1 and λ2 in
joint loss are found to be 0.53 and 0.47, respectively. For the SVM, we consider
radial basis kernel and the parameter C by optimizing on the validation set.
We consider an average of classification accuracies on the test set obtained from
five training folds as a performance metric. We perform experiments in three
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different scenarios. 1) matched: We train with GER & ITA train sets and test
on the GER & ITA test sets, respectively, 2) combined: We train with pooled
data of GER and ITA, and test on GER and ITA test sets separately, and 3)
cross: We train with GER(ITA) train set and test on ITA(GER) test set.

5 Results and Discussion

We analyze the learned representations – 1) both explicit and implicit, 2)
implicit, 3) explicit, with the accuracies shown in Table 2 and Fig. 4. Table 2
reports the average classification accuracies with (in brackets) and without post-
processing obtained from baseline, DNN, VAE+DNN, and VAE+SVM on GER
and ITA with acoustic (A) and acoustic plus context features (A+C) under
all three scenarios. The results with VAE+DNN indicates the effectiveness of
explicit and implicit representations combination. The results with DNN indi-
cate the effectiveness of implicit representations. The explicit representations are
analyzed with Fig. 4 by computing the accuracies without performing concate-
nation in Fig. 2 during testing/inference.

5.1 With Explicit and Implicit and Implicit Representations

Under Matched Scenario: From Table 2 under matched scenario, it is
observed that in all the cases the accuracies obtained from VAE+DNN higher
than those from baseline, DNN, and VAE+SVM with and without postprocess-
ing. The highest improvements are found to be 2.2% & 1.2% and 1.9% & 1.4% on
GER & ITA considering acoustic and acoustic plus context features, respectively.
This indicates the benefit of both explicit and implicit representation compared
to baseline (without any representations) and DNN (only with implicit repre-
sentations). Further, the higher accuracies with DNN over baseline indicate the
benefit of implicit representations. The higher accuracies with VAE+DNN com-
pared to VAE+SVM indicate the effectiveness of implicit representations from
DNN over SVM. The higher accuracies with the acoustic plus context features
compared to acoustic features with the representation learning approach are con-
sistent with the findings from the literature [27,29,32]. Altogether supports the
benefit of the representation learning in stress detection task.

Under Combined Scenario: The comparisons made under matched scenario
across baseline, DNN, VAE+DNN, and VAE+SVM are consistent under com-
bined scenario also. From the table, the highest accuracies in GER and ITA
are found in the combined scenario and those are 94.1% and 94.2%, respec-
tively, obtained from VAE+DNN considering acoustic plus context features
with postprocessing. Further, while comparing the accuracies between matched
and combined scenarios, the accuracies are higher under combined than those
under matched with VAE+DNN and DNN but not in all cases of baseline and
VAE+SVM. Both these together suggest that the combined scenario has an
advantage for the stress detection task compared to the matched scenario and
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Table 2. Classification accuracies with (without) postprocessing considering acoustic
(A) and acoustic plus context (A+C) features under three different scenarios.

Test
data

Train
scenario

SVM DNN VAE+DNN VAE+SVM

A A+C A A+C A A+C A A+C

GER Matched 83.5
(80.3)

92.3
(88.7)

84.6
(81.1)

92.6
(88.3)

85.7
(82.1)

93.5
(90.4)

84.5
(81.3)

92.4
(89.1)

Combined 83.2
(80.5)

89
(85.1)

84.1
(81.1)

92.7
(89.1)

85.4
(82)

94.1
(90.9)

84.6
(81.6)

92.3
(89.5)

Cross 80.5
(77.7)

88.2
(84.5)

80.2
(77.4)

88.3
(84.5)

80.9
(78.1)

89.6
(85.6)

80.7
(78.5)

87.5
(83.6)

ITA Matched 82.7
(80.5)

91.5
(88.2)

82.8
(81.1)

91.7
(87.7)

84.6
(82.3)

92.9
(89.5)

83.7
(81.4)

91.3
(88.4)

Combined 83.4
(81)

93
(89.8)

83.8
(81.6)

93.3
(89.2)

85.4
(82.6)

94.2
(90.6)

84.5
(82.2)

92.6
(89.7)

Cross 82.1
(79.3)

90.7
(86.6)

82.7
(79.4)

90.9
(86.2)

83.6
(80)

91.8
(86.8)

81.9
(79)

87.6
(84)

shows that VAE+DNN and DNN utilize the extra data in the stress detection
task whereas baseline and VAE+SVM failed to do so.

Under Cross Scenario: From Table 2, it is observed that there is a drop in
accuracies under cross scenario compared to those under matched scenario in
baseline, DNN, VAE+DNN, and VAE+SVM. This could be due to the mis-
match in the nativity. But the VAE+DNN is performing better over the base-
line, and DNN in GER, and ITA in all the cases considering both with and
without postprocessing. This indicates that the explicit and implicit representa-
tions learned with VAE+DNN could be independent of speakers’ nativity and
effective in learning the stress detection task-specific cues through the repre-
sentations. From all the above comparisons, the significant improvements with
the VAE+DNN over baseline, DNN, and VAE+SVM among all three scenar-
ios indicate the robustness of the explicit and implicit representations for stress
detection.

Fig. 3. t-SNE visualizations of learned representations under three approaches. • Class
0, • Class 1.
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5.2 With Explicit Representations

Representations can be learned through different types of autoencoders. In this
work, we consider VAE due to its effectiveness in learning representations. In
order to analyze the same, we also compute the accuracies with the repre-
sentations learned from other types – AE and SAE. We perform the analysis
considering only explicit representations (without concatenation in Fig. 2) and
comparing them with DNN and the baseline. The accuracies obtained from the
autoencoders’ (AE, SAE, and VAE) explicit representations and those from DNN
and the baseline have similar trend across both GER and ITA, so for better read-
ability, we present the accuracies averaged across GER and ITA.

Fig. 4. Comparison of average classification accuracies obtained from explicit repre-
sentations learned with AE, SAE, and VAE using classifier as SVM (first row) and
DNN (second row) separately.

Figure 4 presents the average classification accuracies considering acoustic,
and acoustic plus context features under all three scenarios with and without
postprocessing. Each bar height represents average classification accuracy. The
first and second rows correspond to the classification accuracies considering the
test classifier as SVM, and DNN, respectively. From the figure, we observe that
acoustic plus context features are significantly better than acoustic features with,
and without postprocessing. From the first row, where the classifier is SVM, it is
observed that classification with representation learning approaches (AE, SAE,
and VAE) are higher than the baseline in majority of the cases. And there
is an increasing trend in the performance among AE+SVM, SAE+SVM, and
VAE+SVM in 3 out of 4 cases except in the cross scenarios. This indicates that
the representations learned from VAE are comparable to and better than the
other autoencoder types. On the other hand, a similar trend among the autoen-
coders is not consistent in the second row, where the classifier is DNN. Fur-
ther, the accuracies with the DNN are higher than those with the AE+DNN,
SAE+DNN, and VAE+DNN. This suggests that the explicit representations
alone could be less effective compared to the implicit representations learned by
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DNN. However, comparing Table 2 and Fig. 4, it is observed that the accuracies
with the VAE+DNN considering explicit and implicit representation are higher
than those with the DNN. Further, we observe that the accuracies with the
VAE+DNN are higher than those with the AE+DNN and SAE+DNN consid-
ering explicit and implicit representations. These together indicate the benefit
of the representations learned from VAE in the stress detection task considering
the proposed explicit and implicit representation-based approaches compare to
implicit, and explicit alone representations based approaches. The t-SNE [19]
visualizations shown in Fig. 3 suggest that the explicit and implicit based repre-
sentation learning approach is capable of discriminating the classes better.

6 Conclusion

In this work, we have considered a representation learning approach jointly with
VAE and DNN for automatic syllable stress detection task using acoustic and
context-based features. The learned representations include three sets of repre-
sentations namely, 1) implicit, 2) explicit, and 3) explicit and implicit. The pro-
posed joint learning approach learns both explicit and implicit representations.
Experiments with ISLE corpus showed that stress detection performance with
the proposed joint representation learning approach consistently performs better
than the baseline, and DNN (implicit) in both GER and ITA under matched,
combined, and cross-native scenarios. Further, representations learned from VAE
were found to be better than those of AE, and SAE. In the future, we would
like to investigate end-to-end based representation learning and self-supervised
based representations for syllable stress detection to overcome the difficulty in
manual labeling of stress markings.
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