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Abstract. Speaker verification has been widely explored using speech
signals, which has shown significant improvement using deep models.
Recently, there has been a surge in exploring faces and voices as they can
offer more complementary and comprehensive information than relying
only on a single modality of speech signals. Though current methods in
the literature on the fusion of faces and voices have shown improvement
over that of individual face or voice modalities, the potential of audio-
visual fusion is not fully explored for speaker verification. Most of the
existing methods based on audio-visual fusion either rely on score-level
fusion or simple feature concatenation. In this work, we have explored
cross-modal joint attention to fully leverage the inter-modal complemen-
tary information and the intra-modal information for speaker verifica-
tion. Specifically, we estimate the cross-attention weights based on the
correlation between the joint feature presentation and that of the indi-
vidual feature representations in order to effectively capture both intra-
modal as well inter-modal relationships among the faces and voices. We
have shown that efficiently leveraging the intra- and inter-modal rela-
tionships significantly improves the performance of audio-visual fusion
for speaker verification. The performance of the proposed approach has
been evaluated on the Voxceleb1 dataset. Results show that the proposed
approach can significantly outperform the state-of-the-art methods of
audio-visual fusion for speaker verification.
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1 Introduction

Speaker verification is the task of verifying the identity of a person, which is
primarily carried out using acoustic samples. It has become a key technology
for person authentication in various real-world applications such as customer
authentication, security applications, etc [14,19]. In recent years, the perfor-
mance of speaker verification has been significantly boosted using deep learn-
ing models based on acoustic samples such as x-vector [41], xi-vector [20], and
ECAPA-TDNN [9]. However, in a noisy acoustic environment, it would be dif-
ficult to distinguish different speakers only based on speech signals. Therefore,
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other modalities such as face, iris, and fingerprints are also explored for verifying
the person’s identity. Out of all the modalities, face and voice share a very close
association with each other in identifying a person’s identity [16]. Authenticating
the identity of a person from videos has been widely explored in the literature
by relying either on faces [15,32,44] or voices [2,40,59]. Inspired by the close
association between faces and voices, audio-visual (A-V) systems [6,52,55,58]
have been proposed for speaker verification. However, effectively leveraging the
fusion of voices and faces for speaker verification is not fully explored in the lit-
erature [22,46]. Face and voice provide diverse and complementary relationships
with each other, which plays a key role in outperforming the performance of
individual modalities.

Conventionally, A-V fusion can be achieved by three major fusion strategies:
feature-level fusion, model-level fusion, and decision-level fusion [54]. Feature-
level fusion (or early fusion) is performed by naively concatenating the features
of individual audio and visual modalities, which is further used for predicting the
final outputs. Model-level fusion deals with specialized architectures for fusion
based on models such as deep networks [56], Hidden Markov Model (HMM)
[57], and kernel methods [4]. In decision-level fusion, audio and visual modal-
ities are trained independently end-to-end, and then the scores obtained from
the individual modalities are fused to obtain the final scores. It requires little
training and is easy to implement, however, it neglects the interactions across
the modalities and thereby shows limited improvement over the individual per-
formances of faces and voices. Though feature (or early-level) fusion allows the
audio and visual modalities to interact with each other at the feature level,
they fail to effectively capture the complementary inter-modal and intra-modal
relationships with each other. Most of the existing approaches for speaker veri-
fication based on A-V fusion either fall in the category of decision-level fusion,
where fusion is performed at score level, or early feature-level fusion, which relies
on early feature concatenation of audio and visual modalities. Even though naive
feature concatenation or using score level fusion shows improvement in the per-
formance of speaker verification, it does not fully leverage the intra-modal and
inter-modal relationships among the audio and visual modalities. In some of the
videos, the voices might be corrupted due to background clutter. On the other
hand, face images can also be corrupted due to several factors such as occlusion,
pose, poor resolution, etc. Intuitively, an ideal strategy of A-V fusion should give
more importance to the modality, exhibiting better-discriminating features by
fully exploiting the complementary relationships with each other.

Recently, attention mechanisms have been explored to focus on the more
relevant modalities of the video clips by assigning higher attention weights to
the modality exhibiting higher discrimination among the speakers [38]. In this
work, we have investigated the prospect of leveraging the complementary rela-
tionships among the faces and voices, while still leveraging the intra-modal tem-
poral dynamics within the same modality to improve the performance of the
system than that of individual audio and visual modalities. Specifically, a joint
feature representation is introduced to the joint cross-attentional fusion model
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along with the feature representations of individual modalities to simultaneously
capture both the intra-modal relationships and complementary inter-modal rela-
tionships. The major contributions of this paper are as follows:

– A joint cross-attentional model is explored for an effective fusion of faces
(visual) and voices (audio) by leveraging both the intra-modal and inter-
modal relationships for speaker verification.

– Deploying the joint feature representation also helps to reduce the hetero-
geneity among the audio and visual features, thereby resulting in better A-V
feature representations

– A detailed set of experiments are conducted to show that the proposed app-
roach is able to outperform the state-of-the-art A-V fusion models for speaker
verification.

2 Related Work

2.1 Audio-Visual Fusion for Speaker Verification

Nagrani et al. [27] is one of the early works to investigate the close association of
voices and faces and proposed a cross-modal biometric matching system. They
have attempted to match a given static face or dynamics video with the cor-
responding voice and vice-versa. They have further explored joint embeddings
for the task of person verification, where the idea is to detect whether the faces
and voices come from the same video or not [26]. Wen et al. [53] also explored
shared representation space for voices and faces and presented a disjoint map-
ping network for cross-modal biometric matching by mapping the modalities
individually to their common covariates. Tao et al. [45] proposed a cross-modal
discriminative network based on the faces and voices of a given video. They
have also investigated the association of faces and voices, whether the faces and
voices come from the same person or not, and their application for speaker recog-
nition. Another interesting work on cross-modal speaker verification was done
by Nawaz et al. [30], where they analyzed the impact of languages for cross-
modal biometric matching tasks in the wild. They have shown that both face
and speaker verification systems rely on spoken languages, which is caused due to
the domain shift across different languages. Leda et al. [37] attempted to leverage
the complementary information of audio and visual modalities for speaker ver-
ification using a multi-view model, which uses a shared classifier to map audio
and visual into the same space. Wang [50] explored various fusion strategies
at the feature level and decision level, and showed that high-level features of
audio and visual modalities share more semantic information than low-level fea-
tures, which helps in improving the performance of the system. Chen et al. [3]
proposed a co-meta learning paradigm for learning A-V feature representations
in a self-supervised learning framework. In particular, they have leveraged the
complementary information among the audio and visual modalities as a means
of supervisory signal to obtain robust A-V feature representations. Meng et al.
[22] also proposed a co-learning cross-modal framework, where the features of
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each modality are obtained by exploiting the knowledge from another modality
using cross-modal boosters in a pseudo-siamese structure. Tao et al. [46] pro-
posed a two-step A-V deep cleansing framework to deal with the noisy samples.
They have used audio modality to discriminate the easy and complex samples
as a coarse-grained cleansing, which is further refined as a fine-grained cleans-
ing using the visual modality. Unlike prior approaches, we have investigated the
prospect of leveraging attention mechanisms to fully exploit the complementary
inter-modal and intra-modal relationships among the audio and visual modalities
for speaker verification.

2.2 Attention Models for Audio-Visual Fusion

Attention mechanisms are widely used in the context of multimodal fusion with
various modalities such as audio and text [21,25], visual and text [23,51], etc.
Stefan et al. [13] proposed a multi-scale feature fusion approach to obtain robust
A-V feature representations. They have fused the features at intermediate layers
of the audio and visual backbones, which are finally combined with the feature
vectors of individual modalities in the shared common space to obtain the final
A-V feature representations. Peiwen et al. [43] proposed a novel fusion strat-
egy, that involves weight-enhanced attentive statistics pooling for both modal-
ities, which exhibit a strong correlation with each other. They further obtain
keyframes in both modalities using cycle consistency loss along with a gated
attention mechanism to obtain robust A-V embeddings for speaker verification.
Shon et al. [38] explored an attention mechanism to conditionally select the rel-
evant modality in order to deal with noisy modalities. They have leveraged the
complementary information among the audio and visual modalities by assign-
ing higher attention weights to the modality, exhibiting higher discrimination for
speaker verification. Chen et al. [5] investigated various fusion strategies and loss
functions to obtain robust A-V feature representations for speaker verification.
They have further evaluated the impact of the fusion strategies on extremely
missing or corrupted modalities by leveraging the data augmentation strategy to
discriminate the noisy and clean embeddings. Cross-modal attention among the
audio and visual modalities has been successfully explored in several applications
such as weakly-supervised action localization [18], A-V event localization [10],
and emotion recognition [34,36]. Bogdan et al. [24] explored a cross-attention
mechanism for the A-V fusion based on cross-correlation across the audio and
visual modalities. The features of each modality are learned under the constraints
of other modalities. However, they focus only on inter-modal relationships and
fail to exploit the intra-modal relationships. Praveen et al. [33] explored a joint
cross-attentional (JCA) framework for dimensional emotion recognition, which
is closely related to our work. However, we have further adapted the JCA model
for speaker verification by introducing the attentive statistics pooling module.
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3 Problem Formulation

For an input video sub-sequence S, L non-overlapping video segments are uni-
formly sampled, and the corresponding deep feature vectors are obtained from
the pre-trained models of audio and visual modalities. Let Za and Zv denote
the deep feature vectors of audio and visual modalities respectively for the given
input video sub-sequence S of fixed size, which is expressed as:

Za = {z1
a,z

2
a, ...,z

L
a } ∈ R

da×L (1)

Zv = {z1
v,z

2
v, ...,z

L
v} ∈ R

dv×L (2)

where da and dv represent the dimensions of the audio and visual feature vec-
tors, respectively, and zl

a and zl
v denotes the audio and visual feature vectors of

the video segments, respectively, for l = 1, 2, ..., L segments The objective of the
problem is to estimate the speaker verification model f : Z → Y from the train-
ing data Z, where Z denotes the set of audio and visual feature vectors of the
input video segments and Y represents the speaker identity of the corresponding
video sub-sequence S.

4 Proposed Approach

4.1 Visual Network

Faces from videos involve both appearance and temporal dynamics of video
sequences, which can provide information pertaining to a wide range of intra-
variations of visual modality. Effectively capturing the spatiotemporal dynamics
of facial videos plays a key role in obtaining robust feature representations.
Long Short-Term Memory Networks (LSTMs) have been found to be promising
in modeling the long-term temporal cues in sequence representations for various
applications [35,48]. In this work, we have used Resnet18 [12] trained on the
Voxceleb1 dataset [28] to obtain the spatial feature representations of the video
frames. Conventionally, the size of the visual feature vectors of the last convo-
lutional layer will be 512 × 7 × 7, which is fed to the pooling layer to reduce
the spatial dimension from 7 to size 1. However, this spatial reduction may leave
out some useful information, which may deteriorate the performance of the sys-
tem. Therefore, as suggested by [10], we have deployed scaled dot-product of
audio and visual feature vectors for each segment in order to leverage the audio
feature vectors to smoothly reduce the spatial dimensions of video feature vec-
tors. Then, we encode the temporal dynamics of the segments of the sequence
of visual feature vectors using Bi-directional LSTM with residual embedding.
Finally, the obtained feature vectors of visual modality are stacked to form a
matrix of visual feature vectors as shown by

Xv = (x1
v,x

2
v, ...,x

L
v ) ∈ R

dv×L (3)
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Fig. 1. Block Diagram of the Joint cross-attention model for A-V fusion.

4.2 Audio Network

With the advent of deep neural networks, speaker verification based on deep
feature vectors has shown significant improvement over the conventional i-vector
[7] based methods. One of the most widely used deep feature vector embeddings
is the x-vector paradigm [41], which uses time-delay neural network (TDNN) and
statistics pooling. Several variants of TDNN such as Extended TDNN (ETDNN)
[42] and Factored TDNN (FTDNN) [47] have been introduced to boost the
performance of the system. Recently, ECAPA-TDNN [9] has been introduced for
speaker verification, which has shown significant improvement by leveraging the
residual and squeeze-and-excitation (SE) components. So we have also explored
ECAPA-TDNN to obtain the deep feature vectors of the audio segments. In
order to exploit the temporal dynamics in the speech sequence, LSTMs have also
been explored for speaker embedding extraction [1,60]. Similar to that of visual
modality, we have also used Bi-directional LSTMs with residual embedding to
encode the obtained audio feature vectors. Finally, the audio feature vectors of
L video clips are stacked to obtain a matrix, shown as

Xa = (x1
a,x

2
a, ...,x

L
a ) ∈ R

da×L (4)

4.3 Joint Cross-Attentional AV-Fusion

Though audio-visual fusion can be achieved through unified multimodal training,
it was found that multimodal performance often declines over that of individual
modalities [49]. This has been attributed to a number of factors, such as differ-
ences in learning dynamics for audio and visual modalities [49], different noise
topologies, with some modality streams containing more or less information for
the task at hand, as well as specialized input representations [29]. Therefore, we
have obtained deep feature vectors for the individual audio and visual modali-
ties independently, which are then fed to the joint cross-attentional module for
audio-visual fusion.

Since multiple modalities convey more diverse information than a single
modality, effectively leveraging the intra-modal and inter-modal complementary
relationships among the audio and visual modalities plays a key role in effi-
cient audio-visual fusion. In this work, we have explored joint cross-attentional
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fusion to encode the intra-modal and inter-modal relationships simultaneously
in a joint framework. Specifically, the joint A-V feature representation, obtained
by concatenating the audio and visual features is also fed to the fusion module
along with the feature representations of individual modalities. By deploying
the joint representation, features of each modality attend to themselves, as well
as other modalities, thereby simultaneously capturing the semantic inter-modal
and intra-modal relationships among audio and visual modalities. Leveraging the
joint representation also helps in reducing the heterogeneity among the audio
and visual modalities, which further improves the performance of speaker ver-
ification. A block diagram of the proposed model is shown in Fig. 1. The joint
representation of audio-visual features, J , is obtained by concatenating the audio
and visual feature vectors:

J = [Xa;Xv] ∈ R
d×L (5)

where d = da + dv denotes the feature dimension of concatenated features.
The concatenated audio-visual feature representations (J) of the given video

sub-sequence (S) are now used to attend to the feature representations of indi-
vidual modalities Xa and Xv. The joint correlation matrix Ca across the audio
features Xa, and the combined audio-visual features J are given by:

Ca = tanh

(
XT

aW jaJ√
d

)
(6)

where W ja ∈ R
L×L represents learnable weight matrix across the audio and

combined audio-visual features, and T denotes transpose operation. Similarly,
the joint correlation matrix for visual features is given by:

Cv = tanh

(
XT

vW jvJ√
d

)
(7)

The joint correlation matrices Ca and Cv for audio and visual modalities
provide a semantic measure of relevance not only across the modalities but also
within the same modality. A higher correlation coefficient of the joint correlation
matrices Ca and Cv shows that the corresponding samples are strongly corre-
lated within the same modality as well as other modality. Therefore, the proposed
approach is able to efficiently leverage the complementary nature of audio and
visual modalities (i.e., inter-modal relationship) as well as intra-modal relation-
ships, thereby improving the performance of the system. After computing the
joint correlation matrices, the attention weights of audio and visual modalities
are estimated.

For the audio modality, the joint correlation matrix Ca and the corresponding
audio features Xa are combined using the learnable weight matrices W ca to
compute the attention weights of audio modality, which is given by

Ha = ReLU(XaW caCa) (8)
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whereW ca ∈ R
da×da andHa represents the attention maps of the audio modality.

Similarly, the attention maps (Hv) of visual modality are obtained as

Hv = ReLU(XvW cvCv) (9)

where W cv ∈ R
dv×dv denote the learnable weight matrices.

Then, the attention maps are used to compute the attended features of audio
and visual modalities as:

Xatt,a = HaW ha + Xa (10)

Xatt,v = HvW hv + Xv (11)

where W ha ∈ R
d×da and W hv ∈ R

d×dv denote the learnable weight matrices
for audio and visual modalities respectively.

The attended audio and visual features, Xatt,a and Xatt,v are further con-
catenated to obtain the A-V feature representation, which is given by:

X̂ = [Xatt,v;Xatt,a] (12)

The attended audio-visual feature vectors are fed to the Bi-directional LSTM in
order to capture the temporal dynamics of the attended joint audio-visual feature
representations. The segment-level audio-visual feature representations are in
turn fed to the attentive statistics pooling (ASP) [31] in order to obtain the sub-
sequence or utterance-level representation of the audio-visual feature vectors.
Finally, the embeddings of the final audio-visual feature representations are used
to obtain the scores, where the additive angular margin softmax (AAMSoftmax)
[8] loss function is used to optimize the parameters of the fusion model and ASP
module.

5 Experimental Methodology

5.1 Datasets

The proposed approach has been evaluated on the VoxCeleb1 dataset [28],
obtained from videos of YouTube interviews, captured in a large number of
challenging multi-speaker acoustic environments. The dataset contains 1,48,642
video clips from 1,251 speakers, which is gender-balanced with 55% of the speak-
ers being male. The speakers are selected from a wide range of different ethnic-
ities, accents, professions, and ages. The duration of the video clips ranges from
4 s to 145 s. In our experimental framework, we split the voxceleb1 development
set (comprised of videos from 1211 speakers) into training and validation sets.
We have randomly selected 1150 speakers for training and 61 speakers for val-
idation. We have also reported our results on the Vox1-O (Voxceleb1 Original)
test set for performance evaluation. This test set consists of 37720 trials from 40
speakers.
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5.2 Evaluation Metric

In order to evaluate the performance of our proposed approach, we used equal
error rate (EER) as an evaluation metric, which has been widely used for speaker
verification in the literature [7,24]. It depicts the error rate when the False Accept
Rate (FAR) is equal to the False Reject Rate (FRR). So the lower the EER, the
higher the reliability of the system.

5.3 Implementation Details

For the visual modality, the facial images are taken from the images provided by
the organizers of the dataset. For regularizing the network, dropout is used with
p = 0.8 on the linear layers. The initial learning rate of the network was set to
be 1e − 2 is used for the Adam optimizer. Also, weight decay of 5e − 4 is used.
The batch size of the network is set to 400. Data augmentation is performed on
the training data by random cropping, which produces a scale-invariant model.
The number of epochs is set to be 50 and early stopping is used to obtain the
best weights of the network.

For training the audio network, 80-dimensional Mel-FilterBank (MFB) fea-
tures are extracted using an analysis window size of 25 ms over a frameshift
of 10 ms. The acoustic features are randomly augmented on-the-fly with either
MUSAN noise, speed perturbation with a rate between 0.95 and 1.05, or rever-
beration [39]. In addition, we use SpecAugment [17] for applying frequency and
time masking on the MFB features. The initial weights of the audio network are
initialized with values from the normal distribution and the network is trained
for a maximum of 100 epochs, and early stopping is used. The network is opti-
mized using Adam optimizer with the initial learning rate of 0.001 and the batch
size is fixed to be 400. In order to prevent the network from over-fitting, dropout
is used with p = 0.5 after the last linear layer. Also, weight decay of 5e − 4 is
used for all the experiments.

For the fusion network, we used hyperbolic tangent functions for the activa-
tion of cross-attention modules. The dimension of the extracted features of audio
modality is set to 192 and visual modality as 512. In the joint cross-attention
module, the initial weights of the joint cross-attention matrix are initialized with
the Xavier method [11] and the weights are updated using the Adam optimizer.
The initial learning rate is set to be 0.001 and batch size is fixed to be 100. Also,
a dropout of 0.5 is applied on the attended A-V features and weight decay of
5e − 4 is used for all the experiments.

6 Results and Discussion

6.1 Ablation Study

In order to analyze the performance of the proposed fusion model, we compare
the proposed fusion model with some of the widely-used fusion strategies for
speaker verification. One of the widely used fusion strategies is score-level fusion,
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where the scores of the individual modalities are obtained and fused together to
estimate the identity of a person. Another common approach for A-V fusion is
based on early fusion, where the deep features of audio and visual modalities are
concatenated immediately after being extracted, and the concatenated version
of the individual modalities is used to obtain the final scores. As we can observe
in the Table, the proposed fusion model consistently outperforms both the early
fusion and the score level (decision level) by leveraging the semantic intra-modal
and inter-modal relationships among the audio and visual modalities for speaker
verification.

In order to analyze the contribution of the LSTMs in improving the model-
ing of intra-modal relationships for both individual feature representations and
the final attended A-V feature representations, we have carried out a series of
experiments with and without Bi-directional LSTMs (BLSTM). The experimen-
tal results to analyze the impact of BLSTMs have been shown in Table 1 Ini-
tially, we conducted an experiment without using Bi-LSTMs with the proposed
fusion model. Then, we introduced Bi-LSTMs only for modeling the temporal
dynamics of individual feature representations. We can observe that the perfor-
mance of the proposed fusion model with the U-BLSTMs for individual feature
representations has been improved. Now, we introduce BLSTMs for modeling
the temporal dynamics of the final A-V attended feature representations. As
observed in Table 1, the performance of the proposed fusion model has been fur-
ther improved by introducing J-BLSTMs for modeling the temporal dynamics
of final A-V feature representations.

Table 1. Performance of various fusion strategies on the validation set.

Fusion Method EER

Feature Concatenation (Early Fusion) 2.489

Score-level Fusion (Decision-level) 2.521

Proposed Fusion (JCA) without BLSTMs 2.315

Proposed Fusion (JCA) with U-BLSTMs 2.209

Proposed Fusion (JCA) with U-BLSTMs and J-BLSTMs 2.173

6.2 Comparision to State-of-the-Art

In order to compare with state-of-the-art, we have used the recently proposed
A-V fusion model based on two-step multimodal deep cleansing [46]. We have
used their deep cleansing approach as a baseline and extended their approach
by introducing our proposed fusion model to obtain robust A-V feature repre-
sentations. The experimental results of the proposed approach in comparison
to that of [46] are shown in Table 2. We have reported the results for both the
validation set and the Vox1-O test partition of the Voxceleb1 dataset. In order
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to analyze the fusion performance of the proposed model, we have also reported
the results for the individual audio and visual modalities. We can observe that
the proposed fusion model clearly outperforms the performance of individual
modalities. We can also observe that by introducing the proposed fusion model,
the performance of the system has been improved better than that of [46].

Table 2. Performance of the proposed approach in comparison to state-of-the-art on
the validation set and Vox1-O set.

Fusion Method Validation Set Vox1-O Set

Face 3.720 3.779

Speech 2.553 2.529

Tao et al. [46] 2.476 2.4096

Proposed Fusion Model 2.125 2.214

7 Conclusion

In this paper, we present a joint cross-attentional A-V fusion model for speaker
verification in videos. Unlike prior approaches, we effectively leverage the intra-
modal and complementary inter-modal relationships among the audio and visual
modalities. In particular, we obtain the deep features of audio and visual modal-
ities from pre-trained networks, which are fed to the fusion model along with
the joint representation. Then semantic relationships among audio and visual
modalities are obtained based on the cross-correlation between the individual
feature representations and the joint A-V feature representation (concatenated
version of audio and visual features). The attention weights obtained from the
cross-correlation matrix are used to estimate the attended feature vectors of
audio and visual modalities. The modeling of intra-modal relationships in the
proposed system has been further improved by leveraging Bi-directional LSTMs
to model the temporal dynamics of both the individual feature representations
and the final attended A-V feature representations. Experiments have shown that
the proposed approach outperforms the state-of-the-art approaches for speaker
verification.
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