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Abstract. The work presented in this paper aims at enhancing
the recognition performance of zero-shot children’s speech recognition
task through frame-level concatenation of two complementary front-
end acoustic features. The acoustic features chosen are TANDEM-
STRAIGHT-based Mel-frequency cepstral coefficients (TS-MFCC) and
Gamma-tone frequency cepstral coefficients (GFCC). The GFCC model
the cochlear response of the human auditory system. The MFCC fea-
tures, on the other hand, model the human pitch perception. Therefore,
the GFCC and TS-MFCC features capture the acoustic information dif-
ferently and that too with very low correlation. Consequently, concate-
nation of TS-MFCC and GFCC feature vectors helps in modeling com-
plementary and a wider range of relevant acoustic information. This, in
turn, enhances the recognition performance significantly. The experimen-
tal evaluations presented in this paper show that a relative reduction of
nearly 12% is achieved by feature concatenation.
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1 Introduction

Automatic speech recognition (ASR) is the technology that aides in converting
human speech into text. Cutting edge computational techniques such as highly
efficient deep learning algorithms [5–7,17,20] have boosted the research work in
this domain. As a result, ASR systems are employed in several applications such
as voice-based digital assistance, voice-to-text conversion for hands-free comput-
ing, voice commands to smart home devices, virtual agents, reading tutors, inter-
active voice response (IVR) systems, live captioning, language learning tools,
voice biometrics, automotives, entertainment and clinical note-taking.

To be effective and to generalize well for all kinds of users, ASR systems
are supposed to be speaker-independent. For that purpose, a large amount of
speech data is used for learning the statistical model parameters. Most of the
ASR systems are designed for adult population and hence use data from adult
speakers only. Therefore, such ASR systems have high recognition rates with
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respect to adult’s speech. However, their performance degrades substantially
when they are subjected to the children’s speech. Absence of speech data from the
child domain in the training set leads to acoustic mismatch between the training
and test conditions. This, in turn, results in severe degradation in recognition
performance [4,11,19]. This task of recognising children’s speech using statistical
models trained on adults’ speech is referred to as zero-shot children’s ASR.

The acoustic mismatch between the training and test data can be alleviated
by modifying children’s speech test set prior to decoding by using techniques like
prosody modification [26], formant scaling [9] and vocal-tract length normaliza-
tion [10,22]. However, those approaches require two-pass decoding in order to
optimally modify the test data which, in turn, results in increased computation
time. Resorting to out-of-domain data augmentation [8,23,24] as well as develop-
ing robust front-end features specifically for children’s speech can help overcome
the issue of increased computation time. One such acoustic features, suitable
for zero-shot children’s ASR is referred as TS-MFCC, was proposed in [25].
The TS-MFCC feature extraction process employs pitch-synchronous spectrum
estimation called TANDEM STRAIGHT (TS). This results in smoothed power
spectra that suppresses the ill-effects of pitch harmonics. The Mel-frequency
cepstral coefficients (MFCC) computed using the TANDEM-STRAIGHT power
spectra are reported to be very effective for zero-shot children’s ASR task.

In this study, we have revisited the TS-MFCC features and studied its effec-
tiveness in combination with another front-end acoustic feature called Gamma-
tone frequency cepstral coefficient (GFCC) [14]. The GFCC models the human
auditory system’s cochlear response whereas the MFCC models the human pitch
perception. Consequently, the two kinds of features capture and model the acous-
tic information present in the speech signal differently and that too with a very
low correlation. Therefore, it is expected that combining these two front-end
acoustic feature vectors will capture a broader range of relevant acoustic infor-
mation leading to improved recognition performance. Motivated by this fact, in
our present work, we have studied the effect of frame-level concatenation of TS-
MFCC and GFCC features for zero-shot children’s ASR task. The ASR system
trained on the concatenated feature vectors leads to significantly lower error
rates as demonstrated by the experimental evaluations presented later in this
paper.

The rest of the sections of this paper is organised as follows: In Sect. 2, the
proposed approach is described and the experimental evaluations demonstrating
the effectiveness of the proposed approach are presented in Sect. 3. Finally, the
paper is concluded in Sect. 4.

2 Proposed Approach

In this work, we have studied the effect of concatenating TS-MFCC and GFCC
features in order to enhance the recognition performance of zero-shot children’s
ASR task. The proposed feature concatenation approach is summarized in the
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block diagram shown in Fig. 1. It involves appending the coefficients of TS-
MFCC and GFCC feature vectors at the frame-level. The resultant feature vec-
tors are then used for the training purpose. In this section, we first describe the
two kinds of features in detail. Next, we discuss the motivation behind concate-
nating those two feature vectors.

Fig. 1. Block diagram outlining the proposed approach for frame-level concatenation
of TS-MFCC and GFCC features.

2.1 Overview of GFCC Features

Fig. 2. Block diagram illustrating the process of exctracting GFCC features.

We have borrowed the idea of using Gamma-tone frequency cepstral coefficients
[14,29] from other speech-related research fields where they have been success-
fully employed for speech recognition [2,21,27] and speaker identification [28].
However, it’s application in children’s speech recognition has not been explored
yet. The computation of the GFCC features is similar to that of the MFCC
extraction process. The speech signal is first analyzed into short-time frames.
The non-stationary speech signal is known to show stationary behaviour in such
short frames. This aides in the spectro-temporal signal analysis. Next, each of
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the frames is processed using a bank of Gamma-tone filters. The Gamma-tone
filters are derived by observing the psychophysical and physiological behaviour
of the auditory peripheral and hence serve as a standard model for Cochlear
filtering. As a consequence, Gamma-tone filtering helps in effectively capturing
acoustic information that is left out due to the use of Mel-filterbank.

The cochlea not only amplifies sound waves and converts them into neural
signals, but also decomposes complex acoustic waveform into simpler elements.
Thus, it acts as mechanical frequency analyzer where each position along the basi-
lar membrane corresponds to a particular frequency. The Gamma-tone filters are
designed as such to replicate this process. For this purpose, the magnitude or the
power spectrum of the signal is passed through a Gamma-tone filterbank. We
have used a bank of 40 filters spaced linearly on the equivalent rectangular band-
width (ERB) scale whose central frequency varies between 50 Hz and 8000 Hz.
The ERB is a psychoacoustic measure of the auditory filter width at each point
along cochlea. The frequency conversion from Hz to the ERB scale is given by:

ERB = A × log10(1 + 0.00437f) (1)

where, f is in Hz and A is given by:

A = 1000
ln(10)

24.7 × 4.37
(2)

Next, nonlinear cubic-root function is applied on the obtained time-frequency
representation to model human loudness perception. To reduce dimensionality
and de-correlate the resulting components, discrete cosine transform is applied.
The overall GFCC feature extraction process is summarized in Fig. 2.

2.2 Review of TS-MFCC Features

A periodic signal h(t) has a temporally stable power spectrum usually calculated
over a sum of two power spectra. To serve this purpose, a pair of time windows
are chosen such that they are separated for half of the fundamental period [13].
Let, h(t) has a Fourier transform H(ω) and assuming that only two harmonic
components of the fundamental frequency (ω0 = 2π

T0
) occupy the main lobe of

H(ω), then
h(t) = ejkω0t + αej(k+1)ω0t+β . (3)

where α and β represent real numbers. Taking Fourier transform of the above
equation (assuming k = 0 for simplicity):

H(ω) = δ(ω) + αejβδ(ω − ω0). (4)

The respective power spectra of the windowed test signal is then

P (ω, t) = |H(ω)|2 + α2|H(ω − ω0)|2 + 2αH(ω)H(ω − ω0) cos(ω0t + β). (5)

The third term in the above equation is time-dependent and represents the
temporal dependency in the spectrum estimation. It can be cancelled by taking
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an opposite polarity with a window at t + T0/2. The spectrum without any
temporal fluctuation i.e., the TANDEM spectrum T (ω, t) is now given as:

T (ω, t) =
1
2

{P (ω, t) + P (ω, t + T0/2)} . (6)

The TANDEM spectrum T (ω, t) results in smoothed vocal-tract response.
The suppression of pitch-harmonics through spectral smoothing due to TAN-
DEM STRAIGHT analysis was demonstrated in [25]. MFCC features extracted
after smoothing out the pitch-harmonics were noted to be effective in the context
of zero-shot children’s ASR task.

2.3 Motivation for Feature Concatenation

Fig. 3. Canonical correlation between TS-MFCC and GFCC features demonstrating
that the two kinds of feature vectors are highly uncorrelated.

As mentioned earlier, the contribution of this work is to explore the effect of
frame-level concatenation of two front-end features, i.e., TS-MFCC and GFCC
on zero-shot children’s ASR task. Due to inherent differences in the way the Mel-
and Gamma-tone filterbanks are designed and act on a frame of speech, the two
kinds of features capture and model complementary acoustic information. To
demonstrate that the two kinds of features model the speech data differently
and represent a wider range of acoustic attributes, canonical correlation analysis
(CCA) was performed on these two features. As evident from Fig. 3, the CCA
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results in low values (≤ 0.15) for most of the indexes. This, in turn, implies that
the TS-MFCC and GFCC features are highly uncorrelated. Hence, their frame-
level concatenation is expected to represent a wider range of acoustic attributes
as intended. Modeling those will, in turn, help in capturing the missing targeted
attributes more robustly and hence improve the recognition performance.

3 Experimental Evaluations

3.1 Database and Experimental Specification

For experimental evaluations, we have used two different British English speech
corpora, namely, WSJCAM0 [18] and PF STAR [1]. The motivation behind
using the said corpora is that the mismatches in the recording conditions and
the accent of the speakers are minimal. Furthermore, both WSJCAM0 and the
PF STAR databases contain read speech. In our study, the training set was
derived from WSJCAM0 and it consisted 15.5 h of speech data from 92 adult
speakers (39 females). In order to deal with the unavailability of speech data
from child domain, the acoustic attributes of adults’ speech training set were
modified to make them similar to that of children’s speech. For that purpose,
we up-scaled the pitch and formant frequencies as well as increased the dura-
tion of the adults’ speech [8,23]. In addition to that, adults’ speech was also
subjected to voice-conversion using a generative adversarial network (GAN) to
synthetically generate children’s like speech [24]. The pitch of the adults’ speech
training set was increased by a factor of 1.35 while the duration was increased by
a factor of 1.4 using the technique reported in [3]. The formant frequencies were
up-scaled by a factor of 0.08. For formant modification, the approach proposed
in [9] was used which employed scaling of the linear prediction coefficients [12].
These scaling factors were determined by performing experiments on a develop-
ment set described later. The modified data-sets were then pooled into training.
This out-of-domain augmentation approach helps in capturing the missing tar-
geted attributes of children’s speech. In addition to that, the overall duration of
the training data is increased which, in turn, helps in more robust estimation of
model parameters.

Children’s speech test set was derived from the PF STAR corpus and it
comprised of 1.1 hours of speech data from 60 speakers (28 females). The age
of the child speakers in this test set varied from 4 to 13 years. Furthermore, a
development set of children’s speech was also derived from the PF STAR corpus.
The development set consisted of 2.1 h of speech data from 63 speakers whose
age varied between 6 and 14 years. This set was used for determining the optimal
values for the tunable parameters. To gain better insight into the effect of feature
concatenation, the test set was split into two, based on the age of the speakers.
The first split consisted of nearly 0.6 h of data from children in the age group
4 to 8 years. The second split comprised of nearly 0.5 h of data from speakers
belonging to the ages 9 to 13 years. Further to that, another split was done based
on the gender of the speakers.
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The Kaldi toolkit was used to perform all the experiments [16]. However, front-
end speech parameterization was done using MATLAB. The TS-MFCC features
reported in [25] were used for front-end speech parameterization in the case of
baseline ASR system since those are observed to be more suitable than other
existing features in the context of children’s speech recognition task. Speech data
was analyzed through short-time frames using overlapping Hamming windows of
duration 25 ms with a frame-shift of 10 ms. A 40-channel log-Mel-filterbank was
used to compute the 13-dimensional base TS-MFCC feature vectors. The base
features were time-spliced with context size of ±4 frames and then projected to
a 40-dimensional subspace and de-correlated using linear discriminant analysis
(LDA) and maximum-likelihood linear transform (MLLT). For feature normal-
ization, cepstral mean and variance normalization (CMVN) as well as feature-
space maximum likelihood linear regression (fMLLR) were used. This helps in
imparting robustness towards speaker variations. In the case of the GFCC fea-
tures, frame-size and frame-overlap were chosen as 25 ms and 10 ms. The Gamma-
tone-filterbank consisted of 40 channels. Cubic-root function was used for non-
linear rectification prior to the application of DCT. The base features extracted
in this case were also 13-dimensional. LDA, MLLT, CMVN and fMLLR were then
applied in succession to obtain 40-dimensional feature vectors.

Hidden Markov models (HMM) were used for acoustic modeling. The obser-
vation probabilities for the HMM states were generated using Gaussian mixture
models (GMM) as well as time-delay neural network (TDNN) [15,30]. Cross-
word triphone models consisting of eight diagonal covariance components per
state were used for the GMM-HMM-based ASR system. Furthermore, decision
tree-based state tying was performed with the maximum number of senones being
fixed at 2000. Speaker-adaptive training employing fMLLR transforms was used
to optimize the final GMM-HMM system. The time-alignments generated using
this GMM-HMM-based ASR system were used for initializing the TDNN-HMM.
The lattice-free maximum mutual information (LF-MMI) criterion [17] was used
for training TDNN-HMM-based ASR system. The TDNN consisted of 13 hid-
den layers with 1024 nodes per layer. The initial and final learning rates were
set to 0.0005 and 0.00005, respectively. Prior to learning the TDNN parameters,
100-dimensional i -vectors were extracted and appended to the base acoustic fea-
ture vectors. The universal background model employed for extracting i -vectors
consisted of 512 Gaussian components.

A domain-specific 1.5k bi-gram language model (LM) was used while decod-
ing the children’s speech test set. This LM was trained on the transcripts of the
speech data from PF STAR corpus after excluding the utterances from the test
set. The employed LM had an out-of-vocabulary rate of 1.20% and a perplexity
of 95.8 for the children’s speech test set. The lexicon consisted of 1969 words
including pronunciation variations. The metric used for performance evaluation
are word error rate (WER) and character error rate (CER).

3.2 Results and Discussions

The WERs and CERs for the children’s speech test set with respect to an ASR
system trained on adults’ speech and its’ modified versions pooled into training
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Table 1. WERs and CERs for the children’s speech test set with respect to an ASR sys-
tems trained on augmented data. The recognition performances are given with respect
to the explored front-end features as well as their fame-level concatenation.

Front-end features Evaluation metrics

WER (%) CER (%)

TS-MFCC 10.01 7.20

GFCC 10.07 7.20

TS-MFCC + GFCC 8.86 6.29

are given in Table 1. The baseline ASR system is trained using TS-MFCC fea-
tures as already stated earlier. It is worth mentioning here that, a WER of 19.5%
is achieved if only adults’ speech is used for training. In other words, the WER
gets nearly halved when data augmentation is employed. The WER and CER for
GFCC features are almost the same as those obtained using TS-MFCC features.
However, on concatenating the two kinds of features, an absolute reduction in
WER by 1.15% over the baseline is obtained. Similarly, the absolute reduction
in CER is 0.91%. The relative changes in WER and CER over the baseline
are shown in Fig. 4. These, results statistically substantiate the efficacy of the
proposed approach in the context of zero-shot children’s ASR task.

Fig. 4. Age-group and gender-wise relative change in WERs and CERs over the respec-
tive baselines obtained by the concatenation of TS-MFCC and GFCC features.
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Table 2. Age-group as well as gender-specific WERs and CERs for children’s speech
with respect to an ASR systems trained on augmented data.

Front-end Features Speaker Group Evaluation metrics

WER (%) CER (%)

TS-MFCC Age-Gr.-I 15.08 11.34

Age-Gr.-II 6.71 4.36

Female 11.58 8.59

Male 8.86 6.16

GFCC Age-Gr.-I 15.93 12.03

Age-Gr.-II 6.09 3.91

Female 11.58 8.59

Male 8.76 6.16

TS-MFCC + GFCC Age-Gr.-I 13.39 10.00

Age-Gr.-II 5.82 3.82

Female 10.32 7.54

Male 7.63 5.20

Next, we performed another study to determine the age-group-specific and
gender-specific recognition performances. The age-group as well as gender-
specific WERs and CERs are given in Table 2. As evident for the tabulated
results, both TS-MFCC and GFCC give similar WER and CER values for each
of the speaker groups. However, when the two kinds of feature vectors are con-
catenated, there are significant reductions in WERs as well as CERs in each of
the case. The relative changes in WER and CER obtained over the respective
baselines are shown in Fig. 4. In each of the cases, the relative reduction is more
than 10%. These results show that the proposed approach is equally powerful
not only for Age-Gr.-I kids where the pitch is relatively very high but also for
the Age-Gr.-II children having relatively lower pitch values. Similarly, the gains
are similar for both male as well as female speakers. Its worth mentioning here
that, the pitch values for female speakers are somewhat higher than those for the
male children. Thus it can be concluded that the proposed feature concatenation
approach imparts pitch-robustness to the ASR system.

4 Conclusion

The work presented in this paper outlines our efforts towards enhancing the
recognition performance of zero-shot children’s ASR system. In this regard,
we have implemented frame-level concatenation of two complementary features
namely, TS-MFCC and GFCC. The TS-MFCC features employ Mel-filterbank
for spectral warping while Gamma-tone filterbank is used in the case of GFCC.
Consequently, the two kinds of features model speech data differently and with
very low correlation. Hence, on concatenating those at the frame-level helps in
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capturing a wider range of acoustic attributes. This, in turn, enhances the recog-
nition performance significantly. In our experimental setup, a relative reduction
in WER by nearly 12% over the baseline is obtained.
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