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Abstract. This paper focuses on the time and phase-domain analysis
of speech signals to extract breathing patterns. The speech signals under
investigation fall into two categories: reading and spontaneous speaking.
We introduce SBreathNet, a deep Long Short-Term Memory (LSTM)
based regressive model, to extract breathing patterns from speech sig-
nals. SBreathNet is trained with speech collected from 100 individuals
reading a phonetically balanced text and extracts the breathing patterns
with an average Pearson correlation coefficient (r-value) of 0.61 with
the true breathing signal captured using a respiratory belt. The aver-
age breaths-per-minute error (BPME) across 100 speakers is 2.50. The
analysis is done using leave-one-speaker-out approach. Similarly, when
SBreathNet is trained with spontaneous speech signals, it extracts the
breathing patterns with an r-value of 0.41 and an average BPME of 3.9.
By comparing the performance across speakers, speech categories, and
speech-breathing categories, we aim to uncover the factors influencing
SBreathNet’s effectiveness when applied to these two types of speech
signals.

Keywords: Speech analysis - Computational paralinguistics *
Speech-breathing patterns - Health informatics

1 Introduction

Speech signals and breathing patterns are inherently interconnected as they both
rely on the use of respiratory organs. Moreover, they are both susceptible to
being influenced by various psychological and physiological factors. An illustra-
tive instance is the noticeable alteration in an individual’s voice when affected
by a cough or cold. Similarly, as highlighted in the works of [1,2], breathing pat-
terns serve as an indicator for the presence of respiratory infection, COVID-19.
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In particular, the authors of [1] reveal that breathing signals contain a greater
wealth of information regarding COVID-19 infection compared to speech signals.

Among multiple ways of capturing breathing patterns, visual inspection is
the simplest of all, but is prone to errors. All other techniques require a measure-
ment instrument connected to the individual under observation. For example,
in RIP, a transducer is connected over the chest area to convert the changes in
lung volume into digital breathing patterns. The acquisition of such patterns to
enable further analysis of the signals requires an instrument called a respiratory
belt along with a data acquisition unit. As an individual needs to visit a clinic
for an inspection of the breathing pattern, this is usually done only after the dif-
ficulty in breathing becomes severe. Consequently, our proposition is to utilise
speech signals as a means to extract and analyse breathing patterns, enabling
a deeper comprehension of an individual’s underlying physiological and psycho-
logical states. Speech signals can be conveniently captured using a smartphone
microphone, even in non-clinical settings.

1.1 Previous Work

Various approaches have been employed to extract breathing patterns from
speech signals. A common metric used to evaluate the performance of predic-
tive models is the Pearson’s correlation coefficient, which measures the correla-
tion between the predicted and true breathing patterns. Additionally, breath-
ing parameters like breaths-per-minute (BPM) and tidal volume are also com-
pared between the predicted and true patterns. Several speech features have
been utilized to extract breathing patterns from speech. These include Mel Fre-
quency Cepstral Coefficients (MFCCs), Root Mean Square Error, ZCR, and
spectral slope, as described in [3]. Cepstrograms, as discussed in [4], and log
mel-spectrograms, as explored in [5-8], have also been employed for this pur-
pose. Furthermore, in their work, Nallanthighal et al. [7] have investigated the
use of raw speech waveforms fed into deep neural networks.

In [5], simultaneous breathing and conversational speech is collected from 20
healthy subjects. A maximum Pearson correlation (r-value) of 0.47 is achieved
with long-short term memory (LSTM) networks for a segment duration of 4
seconds (s). Further breathing parameters such as breathing rate and tidal vol-
ume are also calculated with an error rate of 4.3% and 1.8%, respectively. In
[6], 40 healthy subjects’ data is analysed for the detection of breathing rate
using LSTM models. The authors have compared mean squared error (MSE)
with BerHu as the regression loss function (similar to Huber loss function — see
[6]). They present the hypothesis that the breathing patterns have sudden peaks
of inhalation followed by a gradually descending curve of exhalation which can
be modelled using a BerHu loss function. They also present the results show-
ing BerHu loss optimises the model better than MSE giving an r-value of 0.42.
With the same approach, the authors of [7] have performed cross-corpus analysis
and have achieved an r-value of 0.39 when training using Philips-Database and
testing on the UCL-SBM database [9] and the r-value of 0.36 with the reversed
datasets. The Computational Paralinguistics challengE (ComParE) organised
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Fig. 1. Two broad categories of the speech-breathing patterns: speech during inhalation
called ingressive and speech during exhalation called egressive speech-breathing.

at Interspeech 2020 [9] had in its Breathing Sub-Challenge a baseline Pearson
correlation of r = 0.50 on the development (16 speakers), and r = 0.73 on the
test data set (17 speakers). The winners of this challenge [10] reported r = 0.76
between the breathing patterns derived from the speech signal and corresponding
breathing values of the test set of 17 speakers.

Speech can be primarily categorised into two types: reading speech, which
refers to speech produced while reading a paragraph, and spontaneous speech,
which pertains to speech generated during natural, unplanned conversations
or presentations. The breathing patterns generated during these two speech
tasks differ. There have been relatively fewer comparisons made between mod-
els that extract breathing patterns from both reading and spontaneous speech.
As reported in [11], spontaneous speech task exhibit grammatically inappropri-
ate overlap of speech during exhale duration as compared to reading task. The
spontaneous speech task also have longer exhalations overlapping with speech
production than the passage reading task. In the study conducted in [7], a per-
formance evaluation of deep learning models is performed on both reading and
spontaneous speech tasks. The obtained r-values for the reading and spontaneous
speech tasks are reported as 0.56 and 0.51 respectively. It is important to note
that the speech data for these tasks is sourced from two separate databases with
distinct speakers: the Philips read speech database and the UCL Speech Breath
Monitoring (UCL-SBM) database, as mentioned in [9]. Analysing the differences
and similarities in the captured breathing patterns of the same set of speakers
between reading and spontaneous speech tasks would provide valuable insights.

The main contributions of this paper are as follows:

— We present a deep network: SBreathNet, trained with data from 100 speakers
to extract breathing patterns from speech signals.

— We present additional insights with leave-one-speaker-out (LOSO) analysis
on r-value and BPME metrics.
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Fig. 2. Simultaneous speech (S) and breathing (B) is collected from the participants
while they read and speak spontaneously. The speech signals are analysed for extracting
breathing patterns from them. We present a comparison of the performance of the
models extracting breathing patterns from reading and spontaneous speech signals.

— We augment the understanding of the speech-breathing patterns. As seen
in Fig. 1, the left breathing pattern with a sudden inhalation peak followed
by exhalation is called egressive speech-breathing. Here, the speech produc-
tion happens during exhalation. The right side of Fig. 1 shows the breathing
pattern with longer inhalation and a sudden drop during exhalation. This
is called ingressive breathing pattern [12]. Here, the speech production hap-
pens during inhalation. In this paper, we introduce the impact of ingressive
patterns on the model performance.

— We compare SBreathNet performance across 100 speakers, two speech cate-
gories (reading and spontaneous speaking), and two speech-breath categories:
ingressives and egressives.

2 Methodology

As shown in Fig. 2, speech and breathing patterns are captured simultaneously
from the participants while they perform four different tasks: reading a phoneti-
cally balanced passage, speaking spontaneously, pronouncing vowels, and laugh-
ing out loudly. We present the analysis of speech-derived breathing patterns for
the reading and spontaneous speaking tasks and compare their performances.
This section explains the study design for capturing the data followed by speech
representation techniques explored to build the model for extracting breathing
patterns from speech signals.

2.1 Data Acquisition

ADInstruments’ respiratory belt transducer is used for recording the breathing
patterns and a condenser microphone for recording the speech signals. ADInstru-
ments PowerLab data acquisition system’s two channels are connected to these
two recording devices to capture the time synchronised signals. The transducer is
positioned on the chest (4 centimetres (cm) below the collarbone) and the head
mounted microphone is placed at a distance of 4cm from the mouth. A sur-
vey questionnaire is designed to capture the participants’ metadata comprising
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personal and physiological information along with their anxiety level using the
state and trait anxiety inventory scale. Personal information includes age group,
gender, height, weight and if they have received any formal training of singing.
We also ask them if they currently smoke or have smoked in the past. Physio-
logical information includes the momentary pulse rate, and the blood pressure
measured using Omron’s digital blood pressure monitoring machine.

An approval from the ethical committee of Bharti Vidyapeeth Medical Col-
lege is taken for execution of the data collection. An informed consent is taken
from the participants for collection of data. The participants are seated in a chair
and are given approximately 2 min time to relax before starting the experiment.
They read the phonetically balanced sentences from the List 2, List 3, List 7, List
8, List 9 and List 10 of Harvard sentences. Harvard sentences are phonetically
balanced sentences using specific phonemes at the same frequency as they appear
in English [13]. Each participant took around two to three minutes to read these
sentences. This activity is called as “Reading Task”. After this, the participants
are asked to speak spontaneously about any topic they like. They are also given
some pointers in the form of questions (such as, what are your hobbies, which is
your favourite city and further on) to help them recall any incident they want to
narrate. A timer of one minute is set such that they speak at-least for a minute.
This is called as “Spontaneous Task”. This is followed by the “Vowels Task”, in
which they pronounce five English vowels and 12 Devnagari vowels. At the end,
each participant laughs out loudly (LoL) for around two to three seconds. This
is called as “Vowels and LoL Task”.

2.2 Speech Representation Analysis

For the extraction of breathing patterns from speech, the significance of the low-
level time-domain features is discussed in [14]. Using these features, an r-value of
0.57 is achieved between the speech and the predicted breathing patterns of the
ComParE dataset [9]. Among other speech parameters used for understanding
the respiratory problems such as COVID-19 from human voice, MFCCs and the
phase-domain decomposed filter components (PDDFC) of speech signal are dis-
cussed to classify COVID-19 subjects from healthy subjects in [1]. We explore
the time-domain features, MFCCs, and PDDFC for training an LSTM-based
deep network, to extract the breathing patterns from the speech signals. It is
observed that the combination of time-domain features along with PDDFC per-
forms the best. Both the features are calculated for every speech frame of 20
miliseconds (ms). Time domain features form a feature vector of length 16 com-
prising of: ZCR, kurtosis, RMS, auto-correlation, and 10 time domain difference
features [15] and PDDFC forms the feature vector of length 160.

2.3 SBreathNet: LSTM-Based Deep Model

As shown in the Fig. 3, the network architecture is trained using time domain
features and PDDFC as input. The network is trained with a batch length of 250
corresponding to a duration of 5s (A sample for every 20 ms is calculated, hence
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Fig. 3. The speech signals that are captured with breathing patterns are represented
using time and phase domain analysis. This representation is then fed to SBreathNet,
LSTM-based deep architecture to extract breathing patterns from the speech signals.

250 samples = 250 x 20 ms = 5000 ms). Both the inputs are passed separately to
corresponding LSTM blocks comprising of two LSTMs and a dense layer. The
outputs of these two LSTM blocks are concatenated and fed to two consecutive
dense layers. This forms the output of the encoder network. The loss function
calculates the concordance correlation coefficient (CCC) loss between true and
predicted values. The network learns with a learning rate of 0.001 and with an
Adam optimiser. The activation function of the last dense layer is the hyperbolic
tangent (tanh) function. This causes the prediction values to range between —1
to 1. Figure 3 shows the number of nodes of each network layer in brackets.

3 Results

With the SBreathNet model described in Sect. 2.3, the breathing patterns for
both reading and spontaneous speech are extracted when trained with respective
speech data. The predicted breathing patterns are then compared with the true
breathing patterns captured with the respiratory belt to analyse the respective
model performance. We present the separate analysis of reading and spontaneous
speech, followed by comparing their performances and the challenges.

3.1 Read Speech

An average r-value of 0.61 is achieved across the 100 speakers’ breathing patterns
extracted from the speech signals captured while they read the phonetically bal-
anced passage. We experimented with varying batch length values (the time-step
value for the LSTM layer) of the network ranging from 1s to 1 min to under-
stand the impact of the time-series-encoding on the performance. The overall
performance is achieved the best for 5s based analysis. As seen in Fig. 4 (a), the
number of speakers having an r-value above 0.50 is 80.

The BPME count for every speaker is calculated on the predictions obtained
and compared with that of the true breathing pattern. The peak detection algo-
rithm from scipy [16] is used for the detection of peaks keeping a distance as 100
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Fig.4. (a) Number of speakers belonging to six bins of r-value performance of the
SBreathNet model trained with the speech captured during reading task. (b) Number
of speakers belonging to five bins of breaths-per-minute error calculated between the
true breathing patterns and the breathing patterns predicted using SBreathNet model
for the reading task.
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Fig. 5. Pearson’s correlation coefficient is calculated between the true breathing pat-
terns and the breathing patterns extracted using SBreathNet for the reading task. The
predictions are obtained using Leave-one-speaker-out analysis.

points and a height as 0.2. Using the peak count, further, BPME is calculated
for each speaker. An average BPME obtained is 2.50. Figure4 (b) shows that
90% of the speakers have BMPE less than 4. Hence, SBreathNet can extract
breathing patterns with an r-value above 0.50 for 80% speakers and a BPME
below 4 for 90% speakers.

Leave One Speaker Out Analysis: Figure 5 visualises the LOSO performance
of the SBreathNet architecture. As seen in the Figure, three speaker IDs: 40,
73, and 76 consistently have a negative r-value. As described before, varying
batch-lengths from 1s to 60s are explored; also regularisation techniques are
explored, however, the performance for these three speakers remains unchanged.
The speaker-wise BPME for the 100 speakers for the predictions obtained using
SBreathNet ranges between 0.3 to 7.5. It is observed that the change in BPME
across the speakers is not synchronised with the r-value exhibited by them. This
can be seen in the case of speakers with negative r-value of —0.40 and —0.21, who
have relatively low BPME of 3 and 2.1, respectively. This shows that SBreathNet
captures the breathing event equally well for speakers with low r-value.
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Table 1. Number of speakers belonging to each breathing pattern cluster and their
corresponding performances. The performance is reported using r-value, BPME, and
Centroid-R between the true and the predicted values.

Cluster | Speakers | R BPME | Centroid-R
0 24 0.60 | 3.6 0.80
1 20 0.37 1.8 —0.30
2 16 0.68 2.4 0.74
3 26 0.66 | 2.2 0.68
4 14 0.65 | 2.6 0.90

Clustering on True Breathing Patterns: To further understand the per-
formance exhibited in LOSO analysis, the true breathing patterns are studied
using clustering technique. It is observed that an average breathing cycle dura-
tion lasts for around five seconds while a speaker reads loudly. The breathing
patterns of the read-task are captured continuously for around 3-4 min from
each speaker. Such breathing patterns are segmented into smaller breathlets of
5s each giving around 3545 such breathlets per speaker. With each breathlet
as a data point, the elbow method indicates that five distinct clusters can be
formed using a k-means clustering algorithm. On clustering the breathlets using
k-means with random_state defined as zero, the cluster centres show that four
of the clusters represent four distinct locations of the inhalation peak in the five
seconds duration. These locations are: 1) within first second, 2) between 24 s, 3)
between 4-5s, and 4) towards the end of the 5s. For all these four clusters, the
speakers speak during exhalation, hence these four clusters represent the egres-
sive speech-breathing. The fifth cluster represents an inhalation that starts from
the first second and the inhalation-pause lasts until five seconds. The speakers
belonging to this cluster speak during inhalation, hence, this cluster represents
the ingressive speech-breathing. This observation indicates that there are two
broad categories of breathing data: ingressive and egressive as shown in Fig. 1.
The red dotted lines in Fig.5 are put against the speaker IDs that belong to
cluster 1 and hence are ingressive speakers. It is observed that, the 14 out of 20
(70%) of the speakers exhibiting r-value below 0.50 (low-performers) are ingres-
sives. This contributes to 70% of the total ingressive speakers. These results
suggest that, ingressiveness considerably impacts the model performance.

Table 1 explains the average r-value (R) for the five clusters showing the least
performance from ingressive cluster; cluster 1. The BPME for the five clusters
is as given in Table 1. Once again, we observe a lack of synchronisation between
the BPME and the r-values within the cluster. This is particularly evident in
cluster 1, which exhibits the lowest average BPME of 1.8. Table1 also provides
an r-value between the mean 5s breathlet of the five predicted clusters with the
corresponding true ones (Centroid-R). For the four egressive clusters, the mean
breathlets overlap well with the true ones.
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Fig. 6. Breathing predictions for speaker identity 76 (a) and 93 (b). 76 is ingressive
and 93 is egressive speaker having an r-value of —0.40 and 0.21 respectively.

Ingressives and Egressives: The average r-value of egressive speaker clus-
ters (1, 3, 4, and 5) is 0.65 and that of ingressive speaker cluster is 0.37 using
SBreathNet predictions. From the predicted breathing patterns of SBreathNet,
it is observed that the ingressive pattern is apparent in four of the lowest per-
forming ingressive speakers with the speaker IDs 40, 73, 76, and 96. Figure 6
(left) shows the 10s prediction for speaker 76. As seen in the Figure, the breath-
ing events are correctly identified resulting in predicting the BPME of only
1.2. However, the breathing pattern is inverted such that the inhalation and
inhalation pause exhibited by true breathing patterns are not captured by the
predictions. Instead, the predictions show an expiration for the corresponding
time slot. This explains the absence of synchronisation between the r-value and
the BPME across the speakers.

With the proposed model, 6 egressive speakers have a low performance such
as speaker ID 93, who has an r-value of 0.21. As seen in Fig. 6 (right), for the 20s
predictions of speaker 93, the peaks are correctly matched as well as the shape.
However, the valleys are not matching between the predicted and true values.
This is seen when the speakers exhale breath to a large extent resulting in deep
valleys. Since the sound of such exhalation activity is not captured in speech or
voice, it becomes difficult to trace them. This underscores the second challenge
encountered by SBreathNet, which involves identifying the valleys of breathing
patterns from speech signals.

3.2 Spontaneous Speech

This section describes the analysis being performed on the speech signals cap-
tured while the participants speak spontaneously. The results are obtained using
the SBreathNet model trained on the spontaneous speech signal. The calcula-
tion of metrics such as the r-value and BPME remains the same as done for read
speech. The average r-value, representing the breathing patterns extracted from
the speech signals of the same 100 speakers during spontaneous speech, is found
to be 0.41. As illustrated in Fig.7 (a), 42% of the speakers exhibit an r-value
above 0.50, while 65% of them have an r-value exceeding 0.40. By experimenting
with batch lengths ranging from 1s to 60s, we determine that the analysis based
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Fig. 7. (a) Number of speakers belonging to six bins of r-value performance of the
SBreathNet model trained with the speech captured during spontaneous speaking
task. (b) Number of speakers belonging to five bins of breaths-per-minute error calcu-
lated between the true breathing patterns and the breathing patterns predicted using
SBreathNet model for the spontaneous task.
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Fig. 8. Pearson’s correlation coefficient calculated between the true breathing patterns
and the breathing patterns extracted using SBreathNet for the spontaneous task. The
predictions are obtained using Leave-one-speaker-out analysis.

on a 5s batch length produces the most optimal outcome. Figure 7 (b) displays
the distribution of BPME across 5 bins. The data reveals that 54% of speakers
have a BPME value below 4, whereas 15% of them exhibit a high BPME value
surpassing 10.

Leave One Speaker Out Analysis: Based on the LOSO analysis, it is evident
that there are eight speakers displaying negative r-values, ranging from —0.3 to
—33.4. Speaker ID 66 exhibits the highest correlation of 75.3%. When adjust-
ing the batch length, the performance of the speakers with negative correlation
varies, but consistently remains negative. Furthermore, the varying batch length
not only impacts individual speaker performance but also affects the overall per-
formance. Figure 8 illustrates the performance obtained using a batch length of
5 s, which yields the best overall results.

Clustering on True Breathing Patterns: To gain deeper insights into
the LOSO performance, the true breathing patterns in spontaneous speech are
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Table 2. Number of speakers belonging to each breathing pattern cluster and their
corresponding performances. The performance is reported using r-value, BPME, and
Centroid-R between the true and the predicted values of the spontaneous task.

Cluster | Speakers | R BPME | Centroid-R
0 32 0.40 | 5.7 0.41

1 27 0.20/1.9 —0.27

2 17 0.50 | 4.0 0.71

3 12 0.54 4.2 0.56

4 12 0.56 | 4.2 0.19

divided into breathlets of 5s each. This segmentation follows a similar approach
to the analysis of breathing in read speech. When considering these actual 5s
breathlets in spontaneous speech as individual data points, the elbow method
suggests the presence of five clusters within the data. By utilising the k-means
clustering algorithm, these five clusters are successfully identified and formed.

The two main categories of breathing patterns observed in Fig.1 are also
evident within the 5 clusters of spontaneous speech. Among these clusters, one
exhibits an ingressive breathing pattern, while the remaining four demonstrate
an egressive breathing pattern. Notably, all the eight speakers displaying negative
correlation belong to the ingressive cluster. Among the 100 speakers, a total of 27
individuals exhibit ingressive breathing patterns. Within this group, 20 speakers
(74%) possess an r-value lower than 0.40, indicating a weaker correlation. To
highlight this, red dotted lines are delineated in Fig.8 to represent the speakers
belonging to the ingressive cluster, Cluster 1.

In addition, the performance of the SBreathNet model across the five clusters
is illustrated in Table 2. Observing the table, it is evident that cluster 1 exhibits
the lowest performance with an average correlation of 0.20. Nevertheless, it is
noteworthy that the BPME for this cluster is also the lowest, suggesting accurate
identification of breath events within this cluster. Furthermore, the Centroid-R.
value for the ingressive cluster is negative, indicating a negative correlation.
Regarding the egressive clusters, Cluster 3 and Cluster 4 exhibit similar average
r-values (R) compared to the other two egressive clusters. However, it is impor-
tant to highlight that cluster 4 demonstrates notably low correlation in terms of
mean breathlet (Centroid-R).

Ingressives and Egressives: According to the findings presented in Table 2,
the average correlation of ingressive cluster is 0.20, while that of egressive clusters
is 0.48. These results once again highlight the influence of ingressiveness on the
model’s performance. However, even within egressive speakers, there are other
factors that contribute to a decrease in the model’s performance. As previously
discussed in the context of read speech, the presence of breathing valleys leads
to a reduction in correlation since they are not captured in speech. This observa-
tion holds true for spontaneous speech as well. Additionally, spontaneous speech
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presents the additional challenge of random breath events, which can result in
a loss of synchronisation between speech signals and breathing patterns across
both the speech-breathing categories of egressives and ingressives.
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Fig. 9. Leave one speaker out performance of the deep LSTM model SBreathNet on
the ComParE dataset.

3.3 Observations on ComPaRe Dataset

As described in [9], the authors have captured the speech and breathing pat-
terns from 49 subjects following a similar protocol as described in Sect. 2.1. The
authors mention that spontaneous speech is captured for 4 min per speaker.
Training, validation and test partitions of the total data is provided in the chal-
lenge organised by the authors. The three partitions have 17, 16, and 17 speakers’
data respectively. For the presented discussion, we analyse the training and val-
idation partition data. Figure9 shows the speaker-wise performance obtained
with SBreathNet architecture in the LOSO analysis. We used the same features
as defined in Sect. 2.2 along with SBreahNet for this dataset. It is observed from
the LOSO analysis of the 33 speakers that 6 speakers have r-value below 0.50.
Only one speaker has the r-value as 0.0. On further analysis, it is seen that the
breathing patterns of these six speakers follow ingressive pattern. Empirically,
they have breathing values above the average value for more than half of the 5
s duration. The average r-value for egressive speakers is 0.67 and for ingressive
speakers is 0.24.

The overall performance exhibited by SBreathNet is an r-value of 0.58 on the
development partition of ComParE challenge dataset, which is comparable to the
winners of this challenge [10] (0.64). Moreover, SBreathNet has 40K parameters
as compared to 1.4M and 3.5M parameters of the models discussed in [10].

4 Discussion

In Sect. 3, the results obtained using time and phase domain features with
SBreathNet architecture are presented for both read and spontaneous speech. It
is observed that the performance for spontaneous speech is 0.2 lower compared
to that of read speech. The correlation (r-value) between the predictions of read
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and spontaneous speech across the 100 speakers is 0.59. This suggests that the
predicted breathing patterns for the reading and spontaneous tasks of the same
speaker have a similarity index of 59%.

Both categories of speech face similar challenges, including ingressiveness
and deep valleys, which have a negative impact on the model’s performance.
Speakers who exhibit ingressiveness during reading also tend to exhibit the same
breathing pattern during spontaneous speech. However, it is not mandatory for
the vice-versa to hold true. For instance, speakers with identity 9 and 100 show
ingressive patterns while speaking spontaneously but not while reading. Among
all the speakers, a total of 14 individuals showcase superior performance in terms
of spontaneous speech compared to their performance in read speech. Likewise,
86 speakers demonstrate higher performance in the read speech task.

It is observed from the results that extracting breathing patterns for ingres-
sive speech is difficult. To collect more data belonging to ingressive class, we
need to understand such speaker characteristics. We asked further questions on
physiological and psychological states to the speakers exhibiting ingressiveness
in both reading and spontaneous task. The questions about their involvement
in sports, yoga, swimming, if they were infected by COVID-19, about respira-
tory disorder in their family, the sleep quality, and their metabolic, physical and
mental health were asked. We also discussed if they find themselves introvert,
if they have stage fear and hence practise talking. None of the conditions are
found uniform across all the speakers. For all of them, neither they nor anyone
in their family have any respiratory disorders. 9 out of 20 common ingressive
speakers reported that they are actively involved in sports activities related to
athletics. 3 of them were infected by mild COVID-19 and were asymptomatic.
The three ingressive speakers whose r-value is found negative in both reading
and spontaneous task reported that they are introverts and had stage fear. They
have practised speaking skills. This observation matches with the case study
performed in [17]. The authors have found that a subject has used inspiratory
speech for 6 years as a means of overcoming the communication problems of
long-standing adductor spastic dysphonia. These observations show that not
only physiological, but behavioural parameters also impact the breathing pat-
terns of an individual.

5 Conclusion and Future Work

In this paper, we presented the novel SBreathNet architecture consuming time
and phase domain features for the extraction of breathing patterns from speech
signals during reading and spontaneous tasks. We performed LOSO analysis to
understand the r-value between the predicted and the true breathing patterns
for each speaker. The speaker-wise analysis helps in understanding the perfor-
mance variation across speakers. This also reveals the impact of ingressiveness
on the model performance. These observations are not evident from the overall
performance of the model. We conclude that LOSO analysis is a strong analysis
technique to understand the performance better and identify the challenges in
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extracting breathing patterns from the speech signals. We have presented the
impact of the ingressive speech on the model’s performance in extracting the
breathing patterns accurately. Hence, in future work, we will have a focus on
collecting more data and identifying ingressive speech.

During our discussion, we explored the performance of SBreathNet on two
speech categories: reading and spontaneous speaking, involving a group of 100
speakers. It was evident that the model achieved superior results in reading
speech compared to spontaneous speech. However, both categories encountered
common challenges, such as ingressiveness and deep valleys in the breathing
patterns. Moreover, the spontaneous speech category presented an additional
obstacle: the randomness of breath events, including the start of inhalation and
exhalation. We plan to extend our analysis to address these challenges in our
future work.
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