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SPECOM 2023 Preface

The International Conference on Speech andComputer (SPECOM) has become a regular
event since the first SPECOM held in St. Petersburg, Russia, in October 1996. The
SPECOM conference series was established 27 years ago by the St. Petersburg Institute
for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS).

SPECOM is a conference with a long tradition that attracts researchers in the area
of speech technology, including automatic speech recognition and understanding, text-
to-speech synthesis, and speaker and language recognition, as well as related domains
like digital speech processing, natural language processing, text analysis, computational
paralinguistics,multi-modal speech, anddata processingor human-computer interaction.
The SPECOM conference is an ideal platform for know-how exchange – especially for
experts working on highly inflectional languages – including both under-resourced and
regular well-resourced languages.

In its long history, the SPECOM conference was organized alternately by the
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC
RAS)/SPIIRAS and by the Moscow State Linguistic University (MSLU) in their home
towns. Furthermore, in 1997 it was organized by the Cluj-Napoca subsidiary of the
Research Institute for Computer Technique (Romania), in 2005 and 2015 by the
University of Patras (in Patras and Athens, Greece), in 2011 by the Kazan Federal
University (in Kazan, Russia), in 2013 by the University of West Bohemia (in Pilsen,
Czech Republic), in 2014 by the University of Novi Sad (in Novi Sad, Serbia), in 2016
by the Budapest University of Technology and Economics (in Budapest, Hungary),
in 2017 by the University of Hertfordshire (in Hatfield, UK), in 2018 by the Leipzig
University of Telecommunications (in Leipzig, Germany), in 2019 by the Bogaziçi
University (in Istanbul, Turkey), in 2020 and 2021 by SPC RAS/SPIIRAS (fully online),
in 2022 by the KIIT (in Gurugram, India).

SPECOM 2023 was the twenty-fifth event in the series, this year we celebrated
the silver jubilee of the conference. SPECOM 2023 was organized jointly by IIT
Dharwad, IIIT Dharwad, NIT Goa, KLE Tech, and KIIT Gurugram. The conference
was held during November 29 – December 2, 2023, in a hybrid format, mostly in-
person in Hubli-Dharwad, Karnataka, India at Denissons Hotel and online via video
conferencing. SPECOM2023was sponsored and supported byMcAfee, IndSCA,ARM-
SOFTECH.AIR, TiHAN, ASM Solutions, the International Speech Communication
Association (ISCA) and some other organizations.

This year, beside the regular technical sessions, three special sessions were orga-
nized: “Industrial Speech and Language Technology”, “Speech Processing and Speech
Technology for Under Resourced Languages”, and Students Special Session on Speech
Analysis. In addition, the one-day SatelliteWorkshop “Speaker and Language Identifica-
tion,Verification, andDiarization”was organized by theNational Institute of Technology
Goa on 2nd December 2023.
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During SPECOM 2023, four keynote lectures were given by Bhiksha Raj (Carnegie
Mellon University, USA) on “Learning fromweak and noisy labels”, Visar Berisha (Ari-
zona State University, USA) on “Translating clinical speech analytics from the lab to the
clinic: challenges and opportunities”, S. Umesh (IITMadras, India) on “Speech and Lan-
guage Research For Indian Languages” and Satoshi Nakamura (Nara Institute of Science
and Technology, Japan) on “Modeling Simultaneous Speech Translation”. In addition,
two keynote talks were given at the Satellite Workshop on “Speaker and Language Iden-
tification, Verification, and Diarization” by Hema A. Murthy (IIT Madras, India) on
“Signal Processing guided Machine Learning” and Oldřich Plchot (Brno University of
Technology, Czech Republic) on “Current and emerging trends in extracting speaker
embeddings”.

This volume contains a collection of submitted papers presented at SPECOM 2023,
which were thoroughly reviewed by members of the Program Committee and additional
reviewers consisting ofmore than 120 specialists in the conference topic areas. In total, 94
full papers out of 174 papers submitted for SPECOM2023were selected by the Program
Committee for presentation at the main conference, the special sessions and the satellite
workshop, as well as for inclusion in two volumes of SPECOM 2023 proceedings.
Theoretical and more general contributions were presented in common plenary sessions.
Problem-oriented sessions as well as panel discussions brought together specialists in
niche problem areas with the aim of exchanging knowledge and skills resulting from
research projects of all kinds.

We would like to express our gratitude to all authors for providing their papers on
time, to themembers of the SPECOM2023 ProgramCommittee for their careful reviews
and paper selection, and to the editors and correctors for their hard work in preparing two
volumes of the conference proceedings. Special thanks are due to the members of the
SPECOM2023Organizing Committee for their tireless effort and enthusiasm during the
conference organization. We are also grateful to IIT Dharwad, IIIT Dharwad, NIT Goa,
KLE Tech, and KIIT Gurugram for organizing and hosting the jubilee 25th International
Conference on Speech and Computer SPECOM 2023 in Dharwad, India.

November 2023 Alexey Karpov
K. Samudravijaya

K. T. Deepak
Rajesh M. Hegde

Shyam S. Agrawal
S. R. Mahadeva Prasanna
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Vlado Delić University of Novi Sad, Serbia
Milos Zelezny University of West Bohemia, Czech Republic
Nikos Fakotakis University of Patras, Greece
Géza Németh Budapest University of Technology and

Economics, Hungary
Oliver Jokisch Meissen University (HSF), Germany
Iosif Mporas University of Hertfordshire, UK
Samarendra Dandapat IIT Guwahati, India
Bhiksha Raj Carnegie Mellon University, USA
Nobuaki Minematsu University of Tokyo, Japan
Hema A. Murthy IIT Madras, India
K. Sreenivasa Rao IIT Kharagpur, India
Hemant A. Patil DA-IICT, India
Mathew M. Doss IDIAP, Switzerland
Sriram Ganapathy IISc Bangalore, India
Hugo L. Rufiner Universidad Nacional del Litoral, Argentina
Chandra Sekhar S. IISc Bangalore, India



Organization xiii

Additional Reviewers

Abderrahim Fathan
Jovan Galić
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Abstract. This paper focuses on the time and phase-domain analysis
of speech signals to extract breathing patterns. The speech signals under
investigation fall into two categories: reading and spontaneous speaking.
We introduce SBreathNet, a deep Long Short-Term Memory (LSTM)
based regressive model, to extract breathing patterns from speech sig-
nals. SBreathNet is trained with speech collected from 100 individuals
reading a phonetically balanced text and extracts the breathing patterns
with an average Pearson correlation coefficient (r-value) of 0.61 with
the true breathing signal captured using a respiratory belt. The aver-
age breaths-per-minute error (BPME) across 100 speakers is 2.50. The
analysis is done using leave-one-speaker-out approach. Similarly, when
SBreathNet is trained with spontaneous speech signals, it extracts the
breathing patterns with an r-value of 0.41 and an average BPME of 3.9.
By comparing the performance across speakers, speech categories, and
speech-breathing categories, we aim to uncover the factors influencing
SBreathNet’s effectiveness when applied to these two types of speech
signals.

Keywords: Speech analysis · Computational paralinguistics ·
Speech-breathing patterns · Health informatics

1 Introduction

Speech signals and breathing patterns are inherently interconnected as they both
rely on the use of respiratory organs. Moreover, they are both susceptible to
being influenced by various psychological and physiological factors. An illustra-
tive instance is the noticeable alteration in an individual’s voice when affected
by a cough or cold. Similarly, as highlighted in the works of [1,2], breathing pat-
terns serve as an indicator for the presence of respiratory infection, COVID-19.
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A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-48312-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48312-7_1&domain=pdf
http://orcid.org/0000-0003-4814-9114
https://doi.org/10.1007/978-3-031-48312-7_1


4 G. Deshpande et al.

In particular, the authors of [1] reveal that breathing signals contain a greater
wealth of information regarding COVID-19 infection compared to speech signals.

Among multiple ways of capturing breathing patterns, visual inspection is
the simplest of all, but is prone to errors. All other techniques require a measure-
ment instrument connected to the individual under observation. For example,
in RIP, a transducer is connected over the chest area to convert the changes in
lung volume into digital breathing patterns. The acquisition of such patterns to
enable further analysis of the signals requires an instrument called a respiratory
belt along with a data acquisition unit. As an individual needs to visit a clinic
for an inspection of the breathing pattern, this is usually done only after the dif-
ficulty in breathing becomes severe. Consequently, our proposition is to utilise
speech signals as a means to extract and analyse breathing patterns, enabling
a deeper comprehension of an individual’s underlying physiological and psycho-
logical states. Speech signals can be conveniently captured using a smartphone
microphone, even in non-clinical settings.

1.1 Previous Work

Various approaches have been employed to extract breathing patterns from
speech signals. A common metric used to evaluate the performance of predic-
tive models is the Pearson’s correlation coefficient, which measures the correla-
tion between the predicted and true breathing patterns. Additionally, breath-
ing parameters like breaths-per-minute (BPM) and tidal volume are also com-
pared between the predicted and true patterns. Several speech features have
been utilized to extract breathing patterns from speech. These include Mel Fre-
quency Cepstral Coefficients (MFCCs), Root Mean Square Error, ZCR, and
spectral slope, as described in [3]. Cepstrograms, as discussed in [4], and log
mel-spectrograms, as explored in [5–8], have also been employed for this pur-
pose. Furthermore, in their work, Nallanthighal et al. [7] have investigated the
use of raw speech waveforms fed into deep neural networks.

In [5], simultaneous breathing and conversational speech is collected from 20
healthy subjects. A maximum Pearson correlation (r-value) of 0.47 is achieved
with long-short term memory (LSTM) networks for a segment duration of 4
seconds (s). Further breathing parameters such as breathing rate and tidal vol-
ume are also calculated with an error rate of 4.3% and 1.8%, respectively. In
[6], 40 healthy subjects’ data is analysed for the detection of breathing rate
using LSTM models. The authors have compared mean squared error (MSE)
with BerHu as the regression loss function (similar to Huber loss function – see
[6]). They present the hypothesis that the breathing patterns have sudden peaks
of inhalation followed by a gradually descending curve of exhalation which can
be modelled using a BerHu loss function. They also present the results show-
ing BerHu loss optimises the model better than MSE giving an r-value of 0.42.
With the same approach, the authors of [7] have performed cross-corpus analysis
and have achieved an r-value of 0.39 when training using Philips-Database and
testing on the UCL-SBM database [9] and the r-value of 0.36 with the reversed
datasets. The Computational Paralinguistics challengE (ComParE) organised
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Fig. 1. Two broad categories of the speech-breathing patterns: speech during inhalation
called ingressive and speech during exhalation called egressive speech-breathing.

at Interspeech 2020 [9] had in its Breathing Sub-Challenge a baseline Pearson
correlation of r = 0.50 on the development (16 speakers), and r = 0.73 on the
test data set (17 speakers). The winners of this challenge [10] reported r = 0.76
between the breathing patterns derived from the speech signal and corresponding
breathing values of the test set of 17 speakers.

Speech can be primarily categorised into two types: reading speech, which
refers to speech produced while reading a paragraph, and spontaneous speech,
which pertains to speech generated during natural, unplanned conversations
or presentations. The breathing patterns generated during these two speech
tasks differ. There have been relatively fewer comparisons made between mod-
els that extract breathing patterns from both reading and spontaneous speech.
As reported in [11], spontaneous speech task exhibit grammatically inappropri-
ate overlap of speech during exhale duration as compared to reading task. The
spontaneous speech task also have longer exhalations overlapping with speech
production than the passage reading task. In the study conducted in [7], a per-
formance evaluation of deep learning models is performed on both reading and
spontaneous speech tasks. The obtained r-values for the reading and spontaneous
speech tasks are reported as 0.56 and 0.51 respectively. It is important to note
that the speech data for these tasks is sourced from two separate databases with
distinct speakers: the Philips read speech database and the UCL Speech Breath
Monitoring (UCL-SBM) database, as mentioned in [9]. Analysing the differences
and similarities in the captured breathing patterns of the same set of speakers
between reading and spontaneous speech tasks would provide valuable insights.

The main contributions of this paper are as follows:

– We present a deep network: SBreathNet, trained with data from 100 speakers
to extract breathing patterns from speech signals.

– We present additional insights with leave-one-speaker-out (LOSO) analysis
on r-value and BPME metrics.
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Fig. 2. Simultaneous speech (S) and breathing (B) is collected from the participants
while they read and speak spontaneously. The speech signals are analysed for extracting
breathing patterns from them. We present a comparison of the performance of the
models extracting breathing patterns from reading and spontaneous speech signals.

– We augment the understanding of the speech-breathing patterns. As seen
in Fig. 1, the left breathing pattern with a sudden inhalation peak followed
by exhalation is called egressive speech-breathing. Here, the speech produc-
tion happens during exhalation. The right side of Fig. 1 shows the breathing
pattern with longer inhalation and a sudden drop during exhalation. This
is called ingressive breathing pattern [12]. Here, the speech production hap-
pens during inhalation. In this paper, we introduce the impact of ingressive
patterns on the model performance.

– We compare SBreathNet performance across 100 speakers, two speech cate-
gories (reading and spontaneous speaking), and two speech-breath categories:
ingressives and egressives.

2 Methodology

As shown in Fig. 2, speech and breathing patterns are captured simultaneously
from the participants while they perform four different tasks: reading a phoneti-
cally balanced passage, speaking spontaneously, pronouncing vowels, and laugh-
ing out loudly. We present the analysis of speech-derived breathing patterns for
the reading and spontaneous speaking tasks and compare their performances.
This section explains the study design for capturing the data followed by speech
representation techniques explored to build the model for extracting breathing
patterns from speech signals.

2.1 Data Acquisition

ADInstruments’ respiratory belt transducer is used for recording the breathing
patterns and a condenser microphone for recording the speech signals. ADInstru-
ments PowerLab data acquisition system’s two channels are connected to these
two recording devices to capture the time synchronised signals. The transducer is
positioned on the chest (4 centimetres (cm) below the collarbone) and the head
mounted microphone is placed at a distance of 4 cm from the mouth. A sur-
vey questionnaire is designed to capture the participants’ metadata comprising
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personal and physiological information along with their anxiety level using the
state and trait anxiety inventory scale. Personal information includes age group,
gender, height, weight and if they have received any formal training of singing.
We also ask them if they currently smoke or have smoked in the past. Physio-
logical information includes the momentary pulse rate, and the blood pressure
measured using Omron’s digital blood pressure monitoring machine.

An approval from the ethical committee of Bharti Vidyapeeth Medical Col-
lege is taken for execution of the data collection. An informed consent is taken
from the participants for collection of data. The participants are seated in a chair
and are given approximately 2 min time to relax before starting the experiment.
They read the phonetically balanced sentences from the List 2, List 3, List 7, List
8, List 9 and List 10 of Harvard sentences. Harvard sentences are phonetically
balanced sentences using specific phonemes at the same frequency as they appear
in English [13]. Each participant took around two to three minutes to read these
sentences. This activity is called as “Reading Task”. After this, the participants
are asked to speak spontaneously about any topic they like. They are also given
some pointers in the form of questions (such as, what are your hobbies, which is
your favourite city and further on) to help them recall any incident they want to
narrate. A timer of one minute is set such that they speak at-least for a minute.
This is called as “Spontaneous Task”. This is followed by the “Vowels Task”, in
which they pronounce five English vowels and 12 Devnagari vowels. At the end,
each participant laughs out loudly (LoL) for around two to three seconds. This
is called as “Vowels and LoL Task”.

2.2 Speech Representation Analysis

For the extraction of breathing patterns from speech, the significance of the low-
level time-domain features is discussed in [14]. Using these features, an r-value of
0.57 is achieved between the speech and the predicted breathing patterns of the
ComParE dataset [9]. Among other speech parameters used for understanding
the respiratory problems such as COVID-19 from human voice, MFCCs and the
phase-domain decomposed filter components (PDDFC) of speech signal are dis-
cussed to classify COVID-19 subjects from healthy subjects in [1]. We explore
the time-domain features, MFCCs, and PDDFC for training an LSTM-based
deep network, to extract the breathing patterns from the speech signals. It is
observed that the combination of time-domain features along with PDDFC per-
forms the best. Both the features are calculated for every speech frame of 20
miliseconds (ms). Time domain features form a feature vector of length 16 com-
prising of: ZCR, kurtosis, RMS, auto-correlation, and 10 time domain difference
features [15] and PDDFC forms the feature vector of length 160.

2.3 SBreathNet: LSTM-Based Deep Model

As shown in the Fig. 3, the network architecture is trained using time domain
features and PDDFC as input. The network is trained with a batch length of 250
corresponding to a duration of 5 s (A sample for every 20 ms is calculated, hence
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Fig. 3. The speech signals that are captured with breathing patterns are represented
using time and phase domain analysis. This representation is then fed to SBreathNet,
LSTM-based deep architecture to extract breathing patterns from the speech signals.

250 samples = 250×20 ms = 5000 ms). Both the inputs are passed separately to
corresponding LSTM blocks comprising of two LSTMs and a dense layer. The
outputs of these two LSTM blocks are concatenated and fed to two consecutive
dense layers. This forms the output of the encoder network. The loss function
calculates the concordance correlation coefficient (CCC) loss between true and
predicted values. The network learns with a learning rate of 0.001 and with an
Adam optimiser. The activation function of the last dense layer is the hyperbolic
tangent (tanh) function. This causes the prediction values to range between −1
to 1. Figure 3 shows the number of nodes of each network layer in brackets.

3 Results

With the SBreathNet model described in Sect. 2.3, the breathing patterns for
both reading and spontaneous speech are extracted when trained with respective
speech data. The predicted breathing patterns are then compared with the true
breathing patterns captured with the respiratory belt to analyse the respective
model performance. We present the separate analysis of reading and spontaneous
speech, followed by comparing their performances and the challenges.

3.1 Read Speech

An average r-value of 0.61 is achieved across the 100 speakers’ breathing patterns
extracted from the speech signals captured while they read the phonetically bal-
anced passage. We experimented with varying batch length values (the time-step
value for the LSTM layer) of the network ranging from 1 s to 1 min to under-
stand the impact of the time-series-encoding on the performance. The overall
performance is achieved the best for 5 s based analysis. As seen in Fig. 4 (a), the
number of speakers having an r-value above 0.50 is 80.

The BPME count for every speaker is calculated on the predictions obtained
and compared with that of the true breathing pattern. The peak detection algo-
rithm from scipy [16] is used for the detection of peaks keeping a distance as 100
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Fig. 4. (a) Number of speakers belonging to six bins of r-value performance of the
SBreathNet model trained with the speech captured during reading task. (b) Number
of speakers belonging to five bins of breaths-per-minute error calculated between the
true breathing patterns and the breathing patterns predicted using SBreathNet model
for the reading task.

Fig. 5. Pearson’s correlation coefficient is calculated between the true breathing pat-
terns and the breathing patterns extracted using SBreathNet for the reading task. The
predictions are obtained using Leave-one-speaker-out analysis.

points and a height as 0.2. Using the peak count, further, BPME is calculated
for each speaker. An average BPME obtained is 2.50. Figure 4 (b) shows that
90% of the speakers have BMPE less than 4. Hence, SBreathNet can extract
breathing patterns with an r-value above 0.50 for 80% speakers and a BPME
below 4 for 90% speakers.

Leave One Speaker Out Analysis: Figure 5 visualises the LOSO performance
of the SBreathNet architecture. As seen in the Figure, three speaker IDs: 40,
73, and 76 consistently have a negative r-value. As described before, varying
batch-lengths from 1 s to 60 s are explored; also regularisation techniques are
explored, however, the performance for these three speakers remains unchanged.
The speaker-wise BPME for the 100 speakers for the predictions obtained using
SBreathNet ranges between 0.3 to 7.5. It is observed that the change in BPME
across the speakers is not synchronised with the r-value exhibited by them. This
can be seen in the case of speakers with negative r-value of −0.40 and −0.21, who
have relatively low BPME of 3 and 2.1, respectively. This shows that SBreathNet
captures the breathing event equally well for speakers with low r-value.
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Table 1. Number of speakers belonging to each breathing pattern cluster and their
corresponding performances. The performance is reported using r-value, BPME, and
Centroid-R between the true and the predicted values.

Cluster Speakers R BPME Centroid-R

0 24 0.60 3.6 0.80

1 20 0.37 1.8 −0.30

2 16 0.68 2.4 0.74

3 26 0.66 2.2 0.68

4 14 0.65 2.6 0.90

Clustering on True Breathing Patterns: To further understand the per-
formance exhibited in LOSO analysis, the true breathing patterns are studied
using clustering technique. It is observed that an average breathing cycle dura-
tion lasts for around five seconds while a speaker reads loudly. The breathing
patterns of the read-task are captured continuously for around 3–4 min from
each speaker. Such breathing patterns are segmented into smaller breathlets of
5 s each giving around 35–45 such breathlets per speaker. With each breathlet
as a data point, the elbow method indicates that five distinct clusters can be
formed using a k-means clustering algorithm. On clustering the breathlets using
k-means with random state defined as zero, the cluster centres show that four
of the clusters represent four distinct locations of the inhalation peak in the five
seconds duration. These locations are: 1) within first second, 2) between 2–4 s, 3)
between 4–5 s, and 4) towards the end of the 5 s. For all these four clusters, the
speakers speak during exhalation, hence these four clusters represent the egres-
sive speech-breathing. The fifth cluster represents an inhalation that starts from
the first second and the inhalation-pause lasts until five seconds. The speakers
belonging to this cluster speak during inhalation, hence, this cluster represents
the ingressive speech-breathing. This observation indicates that there are two
broad categories of breathing data: ingressive and egressive as shown in Fig. 1.
The red dotted lines in Fig. 5 are put against the speaker IDs that belong to
cluster 1 and hence are ingressive speakers. It is observed that, the 14 out of 20
(70%) of the speakers exhibiting r-value below 0.50 (low-performers) are ingres-
sives. This contributes to 70% of the total ingressive speakers. These results
suggest that, ingressiveness considerably impacts the model performance.

Table 1 explains the average r-value (R) for the five clusters showing the least
performance from ingressive cluster; cluster 1. The BPME for the five clusters
is as given in Table 1. Once again, we observe a lack of synchronisation between
the BPME and the r-values within the cluster. This is particularly evident in
cluster 1, which exhibits the lowest average BPME of 1.8. Table 1 also provides
an r-value between the mean 5 s breathlet of the five predicted clusters with the
corresponding true ones (Centroid-R). For the four egressive clusters, the mean
breathlets overlap well with the true ones.
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Fig. 6. Breathing predictions for speaker identity 76 (a) and 93 (b). 76 is ingressive
and 93 is egressive speaker having an r-value of −0.40 and 0.21 respectively.

Ingressives and Egressives: The average r-value of egressive speaker clus-
ters (1, 3, 4, and 5) is 0.65 and that of ingressive speaker cluster is 0.37 using
SBreathNet predictions. From the predicted breathing patterns of SBreathNet,
it is observed that the ingressive pattern is apparent in four of the lowest per-
forming ingressive speakers with the speaker IDs 40, 73, 76, and 96. Figure 6
(left) shows the 10 s prediction for speaker 76. As seen in the Figure, the breath-
ing events are correctly identified resulting in predicting the BPME of only
1.2. However, the breathing pattern is inverted such that the inhalation and
inhalation pause exhibited by true breathing patterns are not captured by the
predictions. Instead, the predictions show an expiration for the corresponding
time slot. This explains the absence of synchronisation between the r-value and
the BPME across the speakers.

With the proposed model, 6 egressive speakers have a low performance such
as speaker ID 93, who has an r-value of 0.21. As seen in Fig. 6 (right), for the 20 s
predictions of speaker 93, the peaks are correctly matched as well as the shape.
However, the valleys are not matching between the predicted and true values.
This is seen when the speakers exhale breath to a large extent resulting in deep
valleys. Since the sound of such exhalation activity is not captured in speech or
voice, it becomes difficult to trace them. This underscores the second challenge
encountered by SBreathNet, which involves identifying the valleys of breathing
patterns from speech signals.

3.2 Spontaneous Speech

This section describes the analysis being performed on the speech signals cap-
tured while the participants speak spontaneously. The results are obtained using
the SBreathNet model trained on the spontaneous speech signal. The calcula-
tion of metrics such as the r-value and BPME remains the same as done for read
speech. The average r-value, representing the breathing patterns extracted from
the speech signals of the same 100 speakers during spontaneous speech, is found
to be 0.41. As illustrated in Fig. 7 (a), 42% of the speakers exhibit an r-value
above 0.50, while 65% of them have an r-value exceeding 0.40. By experimenting
with batch lengths ranging from 1 s to 60 s, we determine that the analysis based
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Fig. 7. (a) Number of speakers belonging to six bins of r-value performance of the
SBreathNet model trained with the speech captured during spontaneous speaking
task. (b) Number of speakers belonging to five bins of breaths-per-minute error calcu-
lated between the true breathing patterns and the breathing patterns predicted using
SBreathNet model for the spontaneous task.

Fig. 8. Pearson’s correlation coefficient calculated between the true breathing patterns
and the breathing patterns extracted using SBreathNet for the spontaneous task. The
predictions are obtained using Leave-one-speaker-out analysis.

on a 5 s batch length produces the most optimal outcome. Figure 7 (b) displays
the distribution of BPME across 5 bins. The data reveals that 54% of speakers
have a BPME value below 4, whereas 15% of them exhibit a high BPME value
surpassing 10.

Leave One Speaker Out Analysis: Based on the LOSO analysis, it is evident
that there are eight speakers displaying negative r-values, ranging from −0.3 to
−33.4. Speaker ID 66 exhibits the highest correlation of 75.3%. When adjust-
ing the batch length, the performance of the speakers with negative correlation
varies, but consistently remains negative. Furthermore, the varying batch length
not only impacts individual speaker performance but also affects the overall per-
formance. Figure 8 illustrates the performance obtained using a batch length of
5 s, which yields the best overall results.

Clustering on True Breathing Patterns: To gain deeper insights into
the LOSO performance, the true breathing patterns in spontaneous speech are
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Table 2. Number of speakers belonging to each breathing pattern cluster and their
corresponding performances. The performance is reported using r-value, BPME, and
Centroid-R between the true and the predicted values of the spontaneous task.

Cluster Speakers R BPME Centroid-R

0 32 0.40 5.7 0.41

1 27 0.20 1.9 −0.27

2 17 0.50 4.0 0.71

3 12 0.54 4.2 0.56

4 12 0.56 4.2 0.19

divided into breathlets of 5 s each. This segmentation follows a similar approach
to the analysis of breathing in read speech. When considering these actual 5 s
breathlets in spontaneous speech as individual data points, the elbow method
suggests the presence of five clusters within the data. By utilising the k-means
clustering algorithm, these five clusters are successfully identified and formed.

The two main categories of breathing patterns observed in Fig. 1 are also
evident within the 5 clusters of spontaneous speech. Among these clusters, one
exhibits an ingressive breathing pattern, while the remaining four demonstrate
an egressive breathing pattern. Notably, all the eight speakers displaying negative
correlation belong to the ingressive cluster. Among the 100 speakers, a total of 27
individuals exhibit ingressive breathing patterns. Within this group, 20 speakers
(74%) possess an r-value lower than 0.40, indicating a weaker correlation. To
highlight this, red dotted lines are delineated in Fig. 8 to represent the speakers
belonging to the ingressive cluster, Cluster 1.

In addition, the performance of the SBreathNet model across the five clusters
is illustrated in Table 2. Observing the table, it is evident that cluster 1 exhibits
the lowest performance with an average correlation of 0.20. Nevertheless, it is
noteworthy that the BPME for this cluster is also the lowest, suggesting accurate
identification of breath events within this cluster. Furthermore, the Centroid-R
value for the ingressive cluster is negative, indicating a negative correlation.
Regarding the egressive clusters, Cluster 3 and Cluster 4 exhibit similar average
r-values (R) compared to the other two egressive clusters. However, it is impor-
tant to highlight that cluster 4 demonstrates notably low correlation in terms of
mean breathlet (Centroid-R).

Ingressives and Egressives: According to the findings presented in Table 2,
the average correlation of ingressive cluster is 0.20, while that of egressive clusters
is 0.48. These results once again highlight the influence of ingressiveness on the
model’s performance. However, even within egressive speakers, there are other
factors that contribute to a decrease in the model’s performance. As previously
discussed in the context of read speech, the presence of breathing valleys leads
to a reduction in correlation since they are not captured in speech. This observa-
tion holds true for spontaneous speech as well. Additionally, spontaneous speech
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presents the additional challenge of random breath events, which can result in
a loss of synchronisation between speech signals and breathing patterns across
both the speech-breathing categories of egressives and ingressives.
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Fig. 9. Leave one speaker out performance of the deep LSTM model SBreathNet on
the ComParE dataset.

3.3 Observations on ComPaRe Dataset

As described in [9], the authors have captured the speech and breathing pat-
terns from 49 subjects following a similar protocol as described in Sect. 2.1. The
authors mention that spontaneous speech is captured for 4 min per speaker.
Training, validation and test partitions of the total data is provided in the chal-
lenge organised by the authors. The three partitions have 17, 16, and 17 speakers’
data respectively. For the presented discussion, we analyse the training and val-
idation partition data. Figure 9 shows the speaker-wise performance obtained
with SBreathNet architecture in the LOSO analysis. We used the same features
as defined in Sect. 2.2 along with SBreahNet for this dataset. It is observed from
the LOSO analysis of the 33 speakers that 6 speakers have r-value below 0.50.
Only one speaker has the r-value as 0.0. On further analysis, it is seen that the
breathing patterns of these six speakers follow ingressive pattern. Empirically,
they have breathing values above the average value for more than half of the 5
s duration. The average r-value for egressive speakers is 0.67 and for ingressive
speakers is 0.24.

The overall performance exhibited by SBreathNet is an r-value of 0.58 on the
development partition of ComParE challenge dataset, which is comparable to the
winners of this challenge [10] (0.64). Moreover, SBreathNet has 40K parameters
as compared to 1.4M and 3.5M parameters of the models discussed in [10].

4 Discussion

In Sect. 3, the results obtained using time and phase domain features with
SBreathNet architecture are presented for both read and spontaneous speech. It
is observed that the performance for spontaneous speech is 0.2 lower compared
to that of read speech. The correlation (r-value) between the predictions of read
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and spontaneous speech across the 100 speakers is 0.59. This suggests that the
predicted breathing patterns for the reading and spontaneous tasks of the same
speaker have a similarity index of 59%.

Both categories of speech face similar challenges, including ingressiveness
and deep valleys, which have a negative impact on the model’s performance.
Speakers who exhibit ingressiveness during reading also tend to exhibit the same
breathing pattern during spontaneous speech. However, it is not mandatory for
the vice-versa to hold true. For instance, speakers with identity 9 and 100 show
ingressive patterns while speaking spontaneously but not while reading. Among
all the speakers, a total of 14 individuals showcase superior performance in terms
of spontaneous speech compared to their performance in read speech. Likewise,
86 speakers demonstrate higher performance in the read speech task.

It is observed from the results that extracting breathing patterns for ingres-
sive speech is difficult. To collect more data belonging to ingressive class, we
need to understand such speaker characteristics. We asked further questions on
physiological and psychological states to the speakers exhibiting ingressiveness
in both reading and spontaneous task. The questions about their involvement
in sports, yoga, swimming, if they were infected by COVID-19, about respira-
tory disorder in their family, the sleep quality, and their metabolic, physical and
mental health were asked. We also discussed if they find themselves introvert,
if they have stage fear and hence practise talking. None of the conditions are
found uniform across all the speakers. For all of them, neither they nor anyone
in their family have any respiratory disorders. 9 out of 20 common ingressive
speakers reported that they are actively involved in sports activities related to
athletics. 3 of them were infected by mild COVID-19 and were asymptomatic.
The three ingressive speakers whose r-value is found negative in both reading
and spontaneous task reported that they are introverts and had stage fear. They
have practised speaking skills. This observation matches with the case study
performed in [17]. The authors have found that a subject has used inspiratory
speech for 6 years as a means of overcoming the communication problems of
long-standing adductor spastic dysphonia. These observations show that not
only physiological, but behavioural parameters also impact the breathing pat-
terns of an individual.

5 Conclusion and Future Work

In this paper, we presented the novel SBreathNet architecture consuming time
and phase domain features for the extraction of breathing patterns from speech
signals during reading and spontaneous tasks. We performed LOSO analysis to
understand the r-value between the predicted and the true breathing patterns
for each speaker. The speaker-wise analysis helps in understanding the perfor-
mance variation across speakers. This also reveals the impact of ingressiveness
on the model performance. These observations are not evident from the overall
performance of the model. We conclude that LOSO analysis is a strong analysis
technique to understand the performance better and identify the challenges in
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extracting breathing patterns from the speech signals. We have presented the
impact of the ingressive speech on the model’s performance in extracting the
breathing patterns accurately. Hence, in future work, we will have a focus on
collecting more data and identifying ingressive speech.

During our discussion, we explored the performance of SBreathNet on two
speech categories: reading and spontaneous speaking, involving a group of 100
speakers. It was evident that the model achieved superior results in reading
speech compared to spontaneous speech. However, both categories encountered
common challenges, such as ingressiveness and deep valleys in the breathing
patterns. Moreover, the spontaneous speech category presented an additional
obstacle: the randomness of breath events, including the start of inhalation and
exhalation. We plan to extend our analysis to address these challenges in our
future work.
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Abstract. Speaker verification has been widely explored using speech
signals, which has shown significant improvement using deep models.
Recently, there has been a surge in exploring faces and voices as they can
offer more complementary and comprehensive information than relying
only on a single modality of speech signals. Though current methods in
the literature on the fusion of faces and voices have shown improvement
over that of individual face or voice modalities, the potential of audio-
visual fusion is not fully explored for speaker verification. Most of the
existing methods based on audio-visual fusion either rely on score-level
fusion or simple feature concatenation. In this work, we have explored
cross-modal joint attention to fully leverage the inter-modal complemen-
tary information and the intra-modal information for speaker verifica-
tion. Specifically, we estimate the cross-attention weights based on the
correlation between the joint feature presentation and that of the indi-
vidual feature representations in order to effectively capture both intra-
modal as well inter-modal relationships among the faces and voices. We
have shown that efficiently leveraging the intra- and inter-modal rela-
tionships significantly improves the performance of audio-visual fusion
for speaker verification. The performance of the proposed approach has
been evaluated on the Voxceleb1 dataset. Results show that the proposed
approach can significantly outperform the state-of-the-art methods of
audio-visual fusion for speaker verification.

Keywords: Cross-attention · Audio-visual fusion · Speaker
verification · Joint-attention

1 Introduction

Speaker verification is the task of verifying the identity of a person, which is
primarily carried out using acoustic samples. It has become a key technology
for person authentication in various real-world applications such as customer
authentication, security applications, etc [14,19]. In recent years, the perfor-
mance of speaker verification has been significantly boosted using deep learn-
ing models based on acoustic samples such as x-vector [41], xi-vector [20], and
ECAPA-TDNN [9]. However, in a noisy acoustic environment, it would be dif-
ficult to distinguish different speakers only based on speech signals. Therefore,
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other modalities such as face, iris, and fingerprints are also explored for verifying
the person’s identity. Out of all the modalities, face and voice share a very close
association with each other in identifying a person’s identity [16]. Authenticating
the identity of a person from videos has been widely explored in the literature
by relying either on faces [15,32,44] or voices [2,40,59]. Inspired by the close
association between faces and voices, audio-visual (A-V) systems [6,52,55,58]
have been proposed for speaker verification. However, effectively leveraging the
fusion of voices and faces for speaker verification is not fully explored in the lit-
erature [22,46]. Face and voice provide diverse and complementary relationships
with each other, which plays a key role in outperforming the performance of
individual modalities.

Conventionally, A-V fusion can be achieved by three major fusion strategies:
feature-level fusion, model-level fusion, and decision-level fusion [54]. Feature-
level fusion (or early fusion) is performed by naively concatenating the features
of individual audio and visual modalities, which is further used for predicting the
final outputs. Model-level fusion deals with specialized architectures for fusion
based on models such as deep networks [56], Hidden Markov Model (HMM)
[57], and kernel methods [4]. In decision-level fusion, audio and visual modal-
ities are trained independently end-to-end, and then the scores obtained from
the individual modalities are fused to obtain the final scores. It requires little
training and is easy to implement, however, it neglects the interactions across
the modalities and thereby shows limited improvement over the individual per-
formances of faces and voices. Though feature (or early-level) fusion allows the
audio and visual modalities to interact with each other at the feature level,
they fail to effectively capture the complementary inter-modal and intra-modal
relationships with each other. Most of the existing approaches for speaker veri-
fication based on A-V fusion either fall in the category of decision-level fusion,
where fusion is performed at score level, or early feature-level fusion, which relies
on early feature concatenation of audio and visual modalities. Even though naive
feature concatenation or using score level fusion shows improvement in the per-
formance of speaker verification, it does not fully leverage the intra-modal and
inter-modal relationships among the audio and visual modalities. In some of the
videos, the voices might be corrupted due to background clutter. On the other
hand, face images can also be corrupted due to several factors such as occlusion,
pose, poor resolution, etc. Intuitively, an ideal strategy of A-V fusion should give
more importance to the modality, exhibiting better-discriminating features by
fully exploiting the complementary relationships with each other.

Recently, attention mechanisms have been explored to focus on the more
relevant modalities of the video clips by assigning higher attention weights to
the modality exhibiting higher discrimination among the speakers [38]. In this
work, we have investigated the prospect of leveraging the complementary rela-
tionships among the faces and voices, while still leveraging the intra-modal tem-
poral dynamics within the same modality to improve the performance of the
system than that of individual audio and visual modalities. Specifically, a joint
feature representation is introduced to the joint cross-attentional fusion model
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along with the feature representations of individual modalities to simultaneously
capture both the intra-modal relationships and complementary inter-modal rela-
tionships. The major contributions of this paper are as follows:

– A joint cross-attentional model is explored for an effective fusion of faces
(visual) and voices (audio) by leveraging both the intra-modal and inter-
modal relationships for speaker verification.

– Deploying the joint feature representation also helps to reduce the hetero-
geneity among the audio and visual features, thereby resulting in better A-V
feature representations

– A detailed set of experiments are conducted to show that the proposed app-
roach is able to outperform the state-of-the-art A-V fusion models for speaker
verification.

2 Related Work

2.1 Audio-Visual Fusion for Speaker Verification

Nagrani et al. [27] is one of the early works to investigate the close association of
voices and faces and proposed a cross-modal biometric matching system. They
have attempted to match a given static face or dynamics video with the cor-
responding voice and vice-versa. They have further explored joint embeddings
for the task of person verification, where the idea is to detect whether the faces
and voices come from the same video or not [26]. Wen et al. [53] also explored
shared representation space for voices and faces and presented a disjoint map-
ping network for cross-modal biometric matching by mapping the modalities
individually to their common covariates. Tao et al. [45] proposed a cross-modal
discriminative network based on the faces and voices of a given video. They
have also investigated the association of faces and voices, whether the faces and
voices come from the same person or not, and their application for speaker recog-
nition. Another interesting work on cross-modal speaker verification was done
by Nawaz et al. [30], where they analyzed the impact of languages for cross-
modal biometric matching tasks in the wild. They have shown that both face
and speaker verification systems rely on spoken languages, which is caused due to
the domain shift across different languages. Leda et al. [37] attempted to leverage
the complementary information of audio and visual modalities for speaker ver-
ification using a multi-view model, which uses a shared classifier to map audio
and visual into the same space. Wang [50] explored various fusion strategies
at the feature level and decision level, and showed that high-level features of
audio and visual modalities share more semantic information than low-level fea-
tures, which helps in improving the performance of the system. Chen et al. [3]
proposed a co-meta learning paradigm for learning A-V feature representations
in a self-supervised learning framework. In particular, they have leveraged the
complementary information among the audio and visual modalities as a means
of supervisory signal to obtain robust A-V feature representations. Meng et al.
[22] also proposed a co-learning cross-modal framework, where the features of
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each modality are obtained by exploiting the knowledge from another modality
using cross-modal boosters in a pseudo-siamese structure. Tao et al. [46] pro-
posed a two-step A-V deep cleansing framework to deal with the noisy samples.
They have used audio modality to discriminate the easy and complex samples
as a coarse-grained cleansing, which is further refined as a fine-grained cleans-
ing using the visual modality. Unlike prior approaches, we have investigated the
prospect of leveraging attention mechanisms to fully exploit the complementary
inter-modal and intra-modal relationships among the audio and visual modalities
for speaker verification.

2.2 Attention Models for Audio-Visual Fusion

Attention mechanisms are widely used in the context of multimodal fusion with
various modalities such as audio and text [21,25], visual and text [23,51], etc.
Stefan et al. [13] proposed a multi-scale feature fusion approach to obtain robust
A-V feature representations. They have fused the features at intermediate layers
of the audio and visual backbones, which are finally combined with the feature
vectors of individual modalities in the shared common space to obtain the final
A-V feature representations. Peiwen et al. [43] proposed a novel fusion strat-
egy, that involves weight-enhanced attentive statistics pooling for both modal-
ities, which exhibit a strong correlation with each other. They further obtain
keyframes in both modalities using cycle consistency loss along with a gated
attention mechanism to obtain robust A-V embeddings for speaker verification.
Shon et al. [38] explored an attention mechanism to conditionally select the rel-
evant modality in order to deal with noisy modalities. They have leveraged the
complementary information among the audio and visual modalities by assign-
ing higher attention weights to the modality, exhibiting higher discrimination for
speaker verification. Chen et al. [5] investigated various fusion strategies and loss
functions to obtain robust A-V feature representations for speaker verification.
They have further evaluated the impact of the fusion strategies on extremely
missing or corrupted modalities by leveraging the data augmentation strategy to
discriminate the noisy and clean embeddings. Cross-modal attention among the
audio and visual modalities has been successfully explored in several applications
such as weakly-supervised action localization [18], A-V event localization [10],
and emotion recognition [34,36]. Bogdan et al. [24] explored a cross-attention
mechanism for the A-V fusion based on cross-correlation across the audio and
visual modalities. The features of each modality are learned under the constraints
of other modalities. However, they focus only on inter-modal relationships and
fail to exploit the intra-modal relationships. Praveen et al. [33] explored a joint
cross-attentional (JCA) framework for dimensional emotion recognition, which
is closely related to our work. However, we have further adapted the JCA model
for speaker verification by introducing the attentive statistics pooling module.
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3 Problem Formulation

For an input video sub-sequence S, L non-overlapping video segments are uni-
formly sampled, and the corresponding deep feature vectors are obtained from
the pre-trained models of audio and visual modalities. Let Za and Zv denote
the deep feature vectors of audio and visual modalities respectively for the given
input video sub-sequence S of fixed size, which is expressed as:

Za = {z1
a,z

2
a, ...,z

L
a } ∈ R

da×L (1)

Zv = {z1
v,z

2
v, ...,z

L
v} ∈ R

dv×L (2)

where da and dv represent the dimensions of the audio and visual feature vec-
tors, respectively, and zl

a and zl
v denotes the audio and visual feature vectors of

the video segments, respectively, for l = 1, 2, ..., L segments The objective of the
problem is to estimate the speaker verification model f : Z → Y from the train-
ing data Z, where Z denotes the set of audio and visual feature vectors of the
input video segments and Y represents the speaker identity of the corresponding
video sub-sequence S.

4 Proposed Approach

4.1 Visual Network

Faces from videos involve both appearance and temporal dynamics of video
sequences, which can provide information pertaining to a wide range of intra-
variations of visual modality. Effectively capturing the spatiotemporal dynamics
of facial videos plays a key role in obtaining robust feature representations.
Long Short-Term Memory Networks (LSTMs) have been found to be promising
in modeling the long-term temporal cues in sequence representations for various
applications [35,48]. In this work, we have used Resnet18 [12] trained on the
Voxceleb1 dataset [28] to obtain the spatial feature representations of the video
frames. Conventionally, the size of the visual feature vectors of the last convo-
lutional layer will be 512 × 7 × 7, which is fed to the pooling layer to reduce
the spatial dimension from 7 to size 1. However, this spatial reduction may leave
out some useful information, which may deteriorate the performance of the sys-
tem. Therefore, as suggested by [10], we have deployed scaled dot-product of
audio and visual feature vectors for each segment in order to leverage the audio
feature vectors to smoothly reduce the spatial dimensions of video feature vec-
tors. Then, we encode the temporal dynamics of the segments of the sequence
of visual feature vectors using Bi-directional LSTM with residual embedding.
Finally, the obtained feature vectors of visual modality are stacked to form a
matrix of visual feature vectors as shown by

Xv = (x1
v,x

2
v, ...,x

L
v ) ∈ R

dv×L (3)
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Fig. 1. Block Diagram of the Joint cross-attention model for A-V fusion.

4.2 Audio Network

With the advent of deep neural networks, speaker verification based on deep
feature vectors has shown significant improvement over the conventional i-vector
[7] based methods. One of the most widely used deep feature vector embeddings
is the x-vector paradigm [41], which uses time-delay neural network (TDNN) and
statistics pooling. Several variants of TDNN such as Extended TDNN (ETDNN)
[42] and Factored TDNN (FTDNN) [47] have been introduced to boost the
performance of the system. Recently, ECAPA-TDNN [9] has been introduced for
speaker verification, which has shown significant improvement by leveraging the
residual and squeeze-and-excitation (SE) components. So we have also explored
ECAPA-TDNN to obtain the deep feature vectors of the audio segments. In
order to exploit the temporal dynamics in the speech sequence, LSTMs have also
been explored for speaker embedding extraction [1,60]. Similar to that of visual
modality, we have also used Bi-directional LSTMs with residual embedding to
encode the obtained audio feature vectors. Finally, the audio feature vectors of
L video clips are stacked to obtain a matrix, shown as

Xa = (x1
a,x

2
a, ...,x

L
a ) ∈ R

da×L (4)

4.3 Joint Cross-Attentional AV-Fusion

Though audio-visual fusion can be achieved through unified multimodal training,
it was found that multimodal performance often declines over that of individual
modalities [49]. This has been attributed to a number of factors, such as differ-
ences in learning dynamics for audio and visual modalities [49], different noise
topologies, with some modality streams containing more or less information for
the task at hand, as well as specialized input representations [29]. Therefore, we
have obtained deep feature vectors for the individual audio and visual modali-
ties independently, which are then fed to the joint cross-attentional module for
audio-visual fusion.

Since multiple modalities convey more diverse information than a single
modality, effectively leveraging the intra-modal and inter-modal complementary
relationships among the audio and visual modalities plays a key role in effi-
cient audio-visual fusion. In this work, we have explored joint cross-attentional
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fusion to encode the intra-modal and inter-modal relationships simultaneously
in a joint framework. Specifically, the joint A-V feature representation, obtained
by concatenating the audio and visual features is also fed to the fusion module
along with the feature representations of individual modalities. By deploying
the joint representation, features of each modality attend to themselves, as well
as other modalities, thereby simultaneously capturing the semantic inter-modal
and intra-modal relationships among audio and visual modalities. Leveraging the
joint representation also helps in reducing the heterogeneity among the audio
and visual modalities, which further improves the performance of speaker ver-
ification. A block diagram of the proposed model is shown in Fig. 1. The joint
representation of audio-visual features, J , is obtained by concatenating the audio
and visual feature vectors:

J = [Xa;Xv] ∈ R
d×L (5)

where d = da + dv denotes the feature dimension of concatenated features.
The concatenated audio-visual feature representations (J) of the given video

sub-sequence (S) are now used to attend to the feature representations of indi-
vidual modalities Xa and Xv. The joint correlation matrix Ca across the audio
features Xa, and the combined audio-visual features J are given by:

Ca = tanh

(
XT

aW jaJ√
d

)
(6)

where W ja ∈ R
L×L represents learnable weight matrix across the audio and

combined audio-visual features, and T denotes transpose operation. Similarly,
the joint correlation matrix for visual features is given by:

Cv = tanh

(
XT

vW jvJ√
d

)
(7)

The joint correlation matrices Ca and Cv for audio and visual modalities
provide a semantic measure of relevance not only across the modalities but also
within the same modality. A higher correlation coefficient of the joint correlation
matrices Ca and Cv shows that the corresponding samples are strongly corre-
lated within the same modality as well as other modality. Therefore, the proposed
approach is able to efficiently leverage the complementary nature of audio and
visual modalities (i.e., inter-modal relationship) as well as intra-modal relation-
ships, thereby improving the performance of the system. After computing the
joint correlation matrices, the attention weights of audio and visual modalities
are estimated.

For the audio modality, the joint correlation matrix Ca and the corresponding
audio features Xa are combined using the learnable weight matrices W ca to
compute the attention weights of audio modality, which is given by

Ha = ReLU(XaW caCa) (8)
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whereW ca ∈ R
da×da andHa represents the attention maps of the audio modality.

Similarly, the attention maps (Hv) of visual modality are obtained as

Hv = ReLU(XvW cvCv) (9)

where W cv ∈ R
dv×dv denote the learnable weight matrices.

Then, the attention maps are used to compute the attended features of audio
and visual modalities as:

Xatt,a = HaW ha + Xa (10)

Xatt,v = HvW hv + Xv (11)

where W ha ∈ R
d×da and W hv ∈ R

d×dv denote the learnable weight matrices
for audio and visual modalities respectively.

The attended audio and visual features, Xatt,a and Xatt,v are further con-
catenated to obtain the A-V feature representation, which is given by:

X̂ = [Xatt,v;Xatt,a] (12)

The attended audio-visual feature vectors are fed to the Bi-directional LSTM in
order to capture the temporal dynamics of the attended joint audio-visual feature
representations. The segment-level audio-visual feature representations are in
turn fed to the attentive statistics pooling (ASP) [31] in order to obtain the sub-
sequence or utterance-level representation of the audio-visual feature vectors.
Finally, the embeddings of the final audio-visual feature representations are used
to obtain the scores, where the additive angular margin softmax (AAMSoftmax)
[8] loss function is used to optimize the parameters of the fusion model and ASP
module.

5 Experimental Methodology

5.1 Datasets

The proposed approach has been evaluated on the VoxCeleb1 dataset [28],
obtained from videos of YouTube interviews, captured in a large number of
challenging multi-speaker acoustic environments. The dataset contains 1,48,642
video clips from 1,251 speakers, which is gender-balanced with 55% of the speak-
ers being male. The speakers are selected from a wide range of different ethnic-
ities, accents, professions, and ages. The duration of the video clips ranges from
4 s to 145 s. In our experimental framework, we split the voxceleb1 development
set (comprised of videos from 1211 speakers) into training and validation sets.
We have randomly selected 1150 speakers for training and 61 speakers for val-
idation. We have also reported our results on the Vox1-O (Voxceleb1 Original)
test set for performance evaluation. This test set consists of 37720 trials from 40
speakers.



26 G. P. Rajasekhar and J. Alam

5.2 Evaluation Metric

In order to evaluate the performance of our proposed approach, we used equal
error rate (EER) as an evaluation metric, which has been widely used for speaker
verification in the literature [7,24]. It depicts the error rate when the False Accept
Rate (FAR) is equal to the False Reject Rate (FRR). So the lower the EER, the
higher the reliability of the system.

5.3 Implementation Details

For the visual modality, the facial images are taken from the images provided by
the organizers of the dataset. For regularizing the network, dropout is used with
p = 0.8 on the linear layers. The initial learning rate of the network was set to
be 1e − 2 is used for the Adam optimizer. Also, weight decay of 5e − 4 is used.
The batch size of the network is set to 400. Data augmentation is performed on
the training data by random cropping, which produces a scale-invariant model.
The number of epochs is set to be 50 and early stopping is used to obtain the
best weights of the network.

For training the audio network, 80-dimensional Mel-FilterBank (MFB) fea-
tures are extracted using an analysis window size of 25 ms over a frameshift
of 10 ms. The acoustic features are randomly augmented on-the-fly with either
MUSAN noise, speed perturbation with a rate between 0.95 and 1.05, or rever-
beration [39]. In addition, we use SpecAugment [17] for applying frequency and
time masking on the MFB features. The initial weights of the audio network are
initialized with values from the normal distribution and the network is trained
for a maximum of 100 epochs, and early stopping is used. The network is opti-
mized using Adam optimizer with the initial learning rate of 0.001 and the batch
size is fixed to be 400. In order to prevent the network from over-fitting, dropout
is used with p = 0.5 after the last linear layer. Also, weight decay of 5e − 4 is
used for all the experiments.

For the fusion network, we used hyperbolic tangent functions for the activa-
tion of cross-attention modules. The dimension of the extracted features of audio
modality is set to 192 and visual modality as 512. In the joint cross-attention
module, the initial weights of the joint cross-attention matrix are initialized with
the Xavier method [11] and the weights are updated using the Adam optimizer.
The initial learning rate is set to be 0.001 and batch size is fixed to be 100. Also,
a dropout of 0.5 is applied on the attended A-V features and weight decay of
5e − 4 is used for all the experiments.

6 Results and Discussion

6.1 Ablation Study

In order to analyze the performance of the proposed fusion model, we compare
the proposed fusion model with some of the widely-used fusion strategies for
speaker verification. One of the widely used fusion strategies is score-level fusion,
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where the scores of the individual modalities are obtained and fused together to
estimate the identity of a person. Another common approach for A-V fusion is
based on early fusion, where the deep features of audio and visual modalities are
concatenated immediately after being extracted, and the concatenated version
of the individual modalities is used to obtain the final scores. As we can observe
in the Table, the proposed fusion model consistently outperforms both the early
fusion and the score level (decision level) by leveraging the semantic intra-modal
and inter-modal relationships among the audio and visual modalities for speaker
verification.

In order to analyze the contribution of the LSTMs in improving the model-
ing of intra-modal relationships for both individual feature representations and
the final attended A-V feature representations, we have carried out a series of
experiments with and without Bi-directional LSTMs (BLSTM). The experimen-
tal results to analyze the impact of BLSTMs have been shown in Table 1 Ini-
tially, we conducted an experiment without using Bi-LSTMs with the proposed
fusion model. Then, we introduced Bi-LSTMs only for modeling the temporal
dynamics of individual feature representations. We can observe that the perfor-
mance of the proposed fusion model with the U-BLSTMs for individual feature
representations has been improved. Now, we introduce BLSTMs for modeling
the temporal dynamics of the final A-V attended feature representations. As
observed in Table 1, the performance of the proposed fusion model has been fur-
ther improved by introducing J-BLSTMs for modeling the temporal dynamics
of final A-V feature representations.

Table 1. Performance of various fusion strategies on the validation set.

Fusion Method EER

Feature Concatenation (Early Fusion) 2.489

Score-level Fusion (Decision-level) 2.521

Proposed Fusion (JCA) without BLSTMs 2.315

Proposed Fusion (JCA) with U-BLSTMs 2.209

Proposed Fusion (JCA) with U-BLSTMs and J-BLSTMs 2.173

6.2 Comparision to State-of-the-Art

In order to compare with state-of-the-art, we have used the recently proposed
A-V fusion model based on two-step multimodal deep cleansing [46]. We have
used their deep cleansing approach as a baseline and extended their approach
by introducing our proposed fusion model to obtain robust A-V feature repre-
sentations. The experimental results of the proposed approach in comparison
to that of [46] are shown in Table 2. We have reported the results for both the
validation set and the Vox1-O test partition of the Voxceleb1 dataset. In order
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to analyze the fusion performance of the proposed model, we have also reported
the results for the individual audio and visual modalities. We can observe that
the proposed fusion model clearly outperforms the performance of individual
modalities. We can also observe that by introducing the proposed fusion model,
the performance of the system has been improved better than that of [46].

Table 2. Performance of the proposed approach in comparison to state-of-the-art on
the validation set and Vox1-O set.

Fusion Method Validation Set Vox1-O Set

Face 3.720 3.779

Speech 2.553 2.529

Tao et al. [46] 2.476 2.4096

Proposed Fusion Model 2.125 2.214

7 Conclusion

In this paper, we present a joint cross-attentional A-V fusion model for speaker
verification in videos. Unlike prior approaches, we effectively leverage the intra-
modal and complementary inter-modal relationships among the audio and visual
modalities. In particular, we obtain the deep features of audio and visual modal-
ities from pre-trained networks, which are fed to the fusion model along with
the joint representation. Then semantic relationships among audio and visual
modalities are obtained based on the cross-correlation between the individual
feature representations and the joint A-V feature representation (concatenated
version of audio and visual features). The attention weights obtained from the
cross-correlation matrix are used to estimate the attended feature vectors of
audio and visual modalities. The modeling of intra-modal relationships in the
proposed system has been further improved by leveraging Bi-directional LSTMs
to model the temporal dynamics of both the individual feature representations
and the final attended A-V feature representations. Experiments have shown that
the proposed approach outperforms the state-of-the-art approaches for speaker
verification.
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Abstract. The COVID-19 pandemic has led to an increased use of
remote telephonic interviews, making it important to distinguish between
scripted and spontaneous speech in audio recordings. In this paper, we
propose a novel scheme for identifying read and spontaneous speech.
Our approach uses a pre-trained DeepSpeech audio-to-alphabet recog-
nition engine to generate a sequence of alphabets from the audio. From
these alphabets, we derive features that allow us to discriminate between
read and spontaneous speech. Our experimental results show that even
a small set of self-explanatory features can effectively classify the two
types of speech very effectively.

Keywords: Spoken speech analysis · Read and spontaneous speech ·
DeepSeech features

1 Introduction

The ability to automatically distinguish read speech1 from spontaneous speech
has several real-world applications. The pandemic introduced constraint on phys-
ical travels while there was no such constraint in terms of office work, especially
because of the new paradigm of work from home. As a result, people saw an
opportunity to work for an organization that was hitherto not on their radar
because of physical distance. The need to travel to work constraint removed,
all work places were an opportunity as a result there was a large movement of
people across organizations. The shift to remote work during the pandemic cre-
ated opportunities for both organizations to hire top talent and for individuals
to explore new job prospects. Any movement into an organization is preceded
by an interview and in the remote work scenario these were in the form of audio
or telephone-based interviews. Given the large volume of people who were criss-
crossing, several organizations used semi-automated methods to conduct inter-
views, especially to filter out the initial applicants. One of the critical aspect
that required monitoring was to determine if the candidate was responding to
the question spontaneously or was she reading from a prepared or scripted text.
1 Also called “prepared speech” or “scripted speech”.
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The need for an automatic identification of the candidate speech during inter-
view as read speech or spontaneous speech became necessary. In another use
case, the ability to distinguish read-speech and spontaneous-speech can have
applications in forensics to distinguish “asked to read” statement (or confession)
from spontaneous statement of a person being investigated. This can possibly
be useful to determine if the statement given by the person was given on their
own accord or was forced to give the statement.

There have been several approaches adopted by researcher in the past which
dwell into classification of read and spontaneous speech. Most of these approaches
have used deep and intricate analysis of the audio signal or language or both
to distinguish read and spontaneous speech. More recently, pivoting on fluency
in L2 language, [7] studies the essential statistical differences, based on data
collected, in pauses between read and spontaneous speech, for Turkish, Swahili,
Hausa and Arabic speakers of English. In [5], the authors describe method to rec-
ognize read and spontaneous speech in Zurich German (a specific dialect spoken
in Switzerland) language. The authors in [2] discuss the possibility of differen-
tiation between read and spontaneous speech by just looking at the intonation
or prosody. Read and spontaneous speech classification based on variance of
GMM supervectors has been studied in [1]. From a speaker role characterization
perspective, in [6] the authors use acoustic and linguistic features derived from
an automatic speech recognition system to characterize and detect spontaneous
speech. They demonstrate their approach on three classes of spontaneity labelled
French Broadcast News.

Two unrelated works reported in literature three decades apart influence the
novel approach proposed in this paper. The first one is an early work on under-
standing spontaneous speech [15]. It captures the essential differences between
read and spontaneous speech while trying to reason out why systems, like auto-
matic speech to text recognition, designed to work for read speech often fail to
perform well on spontaneous speech. They equate read speech to written text
and spontaneous speech to spoken speech and highlight some of the idiosyn-
crasies associated with spontaneous speech. Though the authors intent was to
outline strategies for speech recognition system trained for read speech to deal
with spontaneous spoken speech, it captures some crucial differences in read and
spoken speech which can be very helpful in building a classifier to distinguish
read and spontaneous speech. Though not directly related to read and sponta-
neous speech, the second influence is the work reported in [14] where they exploit
the pre-trained DeepSpeech speech-to-alphabet recognition engine to estimate
the intelligibility of dysarthric speech. This paper is influenced by the approach
adopted in [14] to identify the differences between read and spontaneous speech
as mentioned in [15]. More recently, [11] made use of the differences between spo-
ken language text and written language text, derived from spontaneous and read
speech respectively, to build a language model that enhances the performance
of a speech to text engine.

The main aim of this paper is to introduce a novel approach to identify fea-
tures that are not only self-explanatory but are also able to distinguish between
read and spontaneous speech. To the best of our knowledge, there is no known
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system to distinguish read and spontaneous speech in literature. Please note
that, for this reason, we are unable to compare the performance of the approach
proposed in this paper with any prior art. The essential idea is to exploit the
available deep pre-trained models to extract features, from speech, that can dis-
criminate between read speech from spontaneous speech. The rest of the paper
is organized as follow: In Sect. 2, we describe our approach through an example.
In Sect. 3, we present our experimental results and conclude in Sect. 4.

2 Our Approach

The problem of read and spontaneous speech classification can be stated as

Given a recorded audio sample, spoken by a single person, x(t), determine
automatically if x(t) was read or spoken spontaneously.

While the approach is simple and straightforward as seen in Fig. 1, the novelty is
in the feature extraction block that utilizes unconventional, yet explainable set of
features, that aid distinguish read and spontaneous speech. Additionally, these
features are easily obtained using DeepSpeech a pre-trained speech-to-alphabet
recognition engine [10].

Fig. 1. A high-level read and spontaneous speech classification scheme.

2.1 Speech-to-Alphabet (DeepSpeech)

Mozilla’s DeepSpeech [10] is an end-to-end deep learning model that converts
speech into alphabets based on the Connectionist Temporal Classification (CTC)
loss function. The 6-layer deep model is pre-trained on 1000 hours of speech from
the Librispeech corpus [12]. All the 6 layers, except the 4th, have feed-forward
dense units; the 4th layer itself has recurrent units.

A speech utterance x(t) is segmented into T frames, as is common in speech
processing, namely, xτ (t) ∀τ ∈ [0, T − 1]. In DeepSpeech, each frame is of dura-
tion 25 msec. Each frame xτ (t) is represented by 26 Mel Frequency Cepstral Coef-
ficients (MFCCs), denoted by fτ . Subsequently, the complete speech utterance
x(t) can be represented as {fτ}T−1

τ=0 . The input to DeepSpeech is 9 preceding and
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9 succeeding frames, namely {fτ−9, · · · ,f τ+9}. The output of the DeepSpeech
model is a probability distribution over an alphabet set A = (a, b, · · · , z, �,�, ′)
with |A| = 29. Note that there are three additional outputs, namely, �, �, and ′
corresponding to unknown, space and an apostrophe, respectively in A in addition
to the 26 known English alphabets2. The output at each frame, τ is

c∗
τ = max

∀k∈A
P ((cτ = k) | {fτ−9, · · · ,f τ , · · · ,f τ+9}) (1)

where c∗
τ ∈ A. It is important to note that a typical speech recognition engine

is assisted by a statistical language model (SLM or LM for short), which helps
in masking small acoustic mispronunciations. However, as seen in (1), there is
no role of LM. This, as we will see later, helps in our task of extracting features
that can assist distinguish read and spontaneous speech. As we mentioned earlier,
the use of DeepSpeech is motivated by its use for speech intelligibility estimation
work reported in [14]. Note that (a) DeepSpeech outputs an alphabet for every
frame of 25 msec, so the longer the duration of the audio utterance, the more
the number of output alphabets, (b) the output is always from the finite set A
based on Equation (1). Note that � can be treated as the word separator and
we refer to � token in DeepSpeech as an InActive alphabet and anything other
than that, namely, {A} − � as the Active alphabet.

2.2 Feature Extraction

An example of the raw output of DeepSpeech to an utterance x(t) =

/Declarationofavariableismerelyspecifyingthedata/

is ds(x(t)) =

� � � � � � � � � � � � � � � � � � � � � � � � � � d � e � � � �c � �a � �r � � � �i � � � �tiio �
n � � � �� � �o � f � �� � �a � ��r � e � �l � �i � � � aa � � � b � le � � � � � � � � �
� � �i � �ss � � � � � � � �m � � � e � � � r � e � � � �l � y � �s � � � �� � p � �e � c �
� � �i � � � �f � � � �y � �iing � �� � thhat � � � � � �e � � � � � t � �a � � � � � � � �

DeepSpeech raw output of an audio signal x(t) is a string of alphabets (∈
A). In this paper, we assume ds(x(t)) to represent the audio signal x(t) and
hence any signal processing required to extract features from the audio signal
translates to simple string or text processing. As seen from ds(x(t)), we can
easily extract several features using simple string processing scripts. For example,
the number of words in the spoken utterance can be identified by the number
of occurrences of �. We can count the total number of alphabets, the total
number of InActive and Active alphabets by processing the alphabet string.
Additionally, the knowledge of the duration of the audio x(t) means that we can
compute velocity-like features, for example, alphabets per second (aps) or words

2 A collection of letters {a, b, · · · , z}.
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per second (wps) etc. or number of InActive or Active alphabets per sec or
number of active average word length (awl) or alphabets per word and so on.

We hypothesize that ds(x(t)), as a representation of speech x(t), contains
sufficient information that can help distinguish between read and spontaneous
speech along the lines of [15]. This is motivated by the fact that given the same
information to be articulated by a speaker, read speech is much faster compared
to spontaneous speech, meaning the duration of the spontaneous speech is much
longer than the read speech. If we consider that spontaneous speech requires
thinking time between words, between sentences [15] etc. then the number of
InActive alphabets must be more in spontaneous speech compared to read
speech. Namely, for the same sentence, the output of DeepSpeech should having
more number of InActive alphabets compared to read speech.

Fig. 2. Word length (# of alphabets per word) for read and spontaneous speech.

2.3 Identifying Features

In the highly data-driven machine learning era, we opted to look for simple, yet
effective features that could help in our pursuit. We considered a short tech-
nical passage consisting of two sentences and 62 words, which we picked from
Wikipedia for our analysis and asked (a) the paragraph to be read as is (read
speech) and (b) the paragraph to be held as a reference and spoken in their
own words (≡ spontaneous). We recorded this on a laptop as a 16 kHz, 16 bit,
mono in .wav format. This read and spontaneous audio was processed by ds()
to produce a string of alphabets (∈ A). Figure 2 shows a histogram plot of the
number of alphabets in a word and their normalized frequency (area under the
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curve is 1). It can be clearly observed that, (a) there are more words (with same
number of alphabets3) in spontaneously spoken passage compared to the read
passage (the plot corresponding to spontaneous speech, in red is always above
the read speech) and (b) there are more lengthy words in spontaneous speech
(the spontaneous speech plot spreads beyond the read speech blue curve), there
are words of length 90 alphabets in spontaneous speech compared to < 60 alpha-
bets per word in read speech. This is in line with the observation that there are
more InActive alphabets in spontaneous speech.

We extracted a set of 5 meaningful features as mentioned in Table 1 for
both the read and spontaneous speech. Note that these measured features are
self-explanatory and so we do not describe them in detail. Clearly, there are
3 features (the duration (a), the number of alphabets (c), and the number of
Active alphabets (d)) that show promise to discriminate read and the sponta-
neous speech.

Table 1. Measured features from read and spontaneous speech for the same paragraph.
# denotes is the count, an integer.

Measured Values

SNo What Spontaneous Read
(a) Duration (sec) 47.62 29.67
(b) Number of Words (#) 69 72
(c) Number of Alphabets (#) 2382 1484
(d) Number of Active alphabets (#) 1915 951
(e) Number of InActive alphabets (#) 364 413
Derived Features
Ratio What Spontaneous Read
(c)/(b) Av word len (alphabets/word; awl) 34.52 20.61
(c)/(a) Speaking Rate (alphabets/sec; aps) 50.02 50.02
(b)/(a) Word Rate (wps) [f3] 1.45 2.43
(e)/(a) InActive aps [f2] 7.63 13.92
(d)/(b) Active awl [f1] 27.75 13.21

Based on the differences between read and spontaneous speech mentioned in
[15] we derive (see Table 1 Derived Features) features like average word length
(awl), speaking rate, word rate, InActive aps and Active awl, from the val-
ues directly measured from ds(x(t)). It can be observed that, while Active
average word length (Active awl) and InActive alphabets per sec (InActive
aps) features show promise to be able to discriminate read and spontaneous
speech, the speaking rate in terms of alphabets per sec (aps) is a feature that
does not allow us to discriminate between read and spontaneous speech, this is
3 We use letter, character and alphabet interchangeably.
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to be expected because as we mentioned earlier, the total number of alphabets
output by ds() is proportional to the duration of the utterance4. Clearly, the
Active and InActive alphabets play an important role in discriminating read
and spontaneous speech. As one would expect, there are a large number of �
(can be associated with pauses) in spontaneous speech compared to read speech.
Figure 3 shows the plot of the ratio of number of InActive alphabets to the num-
ber of alphabets in a word (arranged in the increasing order). It can be observed
that spontaneous speech has more InActive alphabets per word compared to
the read speech. Note that the curve corresponding to spontaneous speech, in
red, is always higher than the read speech (blue curve). This is expected, consid-
ering that there is a sizable amount of pause time in spontaneous speech, unlike
read speech. We can further observe that the means value of the ratio (number
of InActive alphabets to the number of alphabets) is higher for spontaneous
speech (0.76) compared to read speech (0.64) as seen in Fig. 3.

Fig. 3. Ratio of # InActive alphabets to the # of alphabets in a word (arranged in
the increasing order of ratio).

2.4 Proposed Classifier

As observed in the previous section, there exist features extracted from
DeepSpeech that are able to discriminate read and spontaneous speech. How-
ever, the measured features (Table 1 (a), (c), (d)) though able to discriminate
read and spontaneous speech are not useful because it requires a prior knowl-
edge of the passage or information spoken by the speaker. On the other hand,
4 One alphabet for every 25 msec.
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there are a set of derived features, which are ratios and hence independent of the
spoken passage. As seen in Table 1 some of these features are able to strongly
discriminate read and spontaneous speech. The three derived features that show
promise to discriminate read and spontaneous speech are

1. [f1] Active awl
(Active alphabets per word is higher for spontaneous speech)

2. [f2] InActive aps
(InActive alphabets per sec is lower for spontaneous speech)

3. [f3] wps
(Word Rate or Words per sec is lower for spontaneous speech)

Note that these features are independent of the duration of the audio utterance
and they do not depend on what was spoken and entirely rely on how the utterance
was spoken. This is important because any feature based on what was spoken
would have a direct dependency on the performance accuracy of the speech-to-
alphabet engine, in our case DeepSpeech. In that sense our approach does not
depend explicitly on the performance of the DeepSpeech and does not depend
on the linguistic content of the spoken passage. The process of classifying a given
utterance u(t) is simple5. We extract the features f1, f2, f3 from the ds(x(t)) for
a given spoken passage x(t) and compute a read score R using (2). We use (3)
to determine if x(t) is read speech or spontaneous speech.

R =
1

1 + exp−λ1(f1−τ1)
+

1
1 + expλ2(f2−τ2)

+
1

1 + exp−λ3(f3−τ3)
(2)

x(t) = Read Speech if R ≥ τR
= Spontaneous Speech if R < τR (3)

We empirically chose λ1,2,3 = 1, τ1 = 6, τ2 = 10, and τ3 = 1.75 based on
observations made in Table 1. And τR = 1.75, which is in the range R ∈ [0, 3].

3 Experimental Validation

The selection of the features to discriminate between spontaneous and read
speech is based on an intuitive understanding of the difference between read
and spontaneous speech as mentioned in [15] and verified through observation
of actual audio data (Table 1).

We collected audio data (150 min; spread over 7 different programs) broad-
cast by All India Radio [13] called air-rs-db which is available at [9]. This audio
data is the recording between a host and a guest and consists of both spontaneous
speech (guest) and read speech (host). We used a pre-trained speaker diarization
model [4,8] to segment the audio, which resulted in 1028 audio segments. We
discarded all audio segments below 2 sec so that there was sizable amount of
5 There is no need to train a conventional classifier.
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spoken information in any given audio segment; this resulted in a total of 657
audio segments. All experimental results are reported on this 657 audio segments
(see Fig. 4).

Fig. 4. Readability score (R) for 657 audio segments (> 2 sec) from air-rs-db.

For each of these 657 audio segments, f1, f2, f3 were computed and then using
(2) R was computed. Figure 4a shows the distribution of the readability score
R of the audio segments. Clearly a large number of audio segments (535) were
classified as spontaneous speech compared to 122, which was classified as read.
Figure 4b shows the scatter plot of R for the 657 audio segments as a function
of f1, f2, f3. The colour of the scatter plot represents the value of R. Figure 5
shows the classification of segmented audio into read speech (violet; R ≥ τR)
and spontaneous speech (yellow; R < τR).

We choose δ = 0.05 and selectively listen to some of the audio segments
(R > (τR + δ) and R < (τR − δ)) and found that almost all of the audio seg-
ments classified as spontaneous belong to the guest speaker (which is expected),
however, several instances of host speech was also classified as spontaneous. We
hypothesize, that radio hosts are trained to speak even written text to give a
feeling of spontaneity to the listener. We then looked at the 23 audio segments
which had R in the range [τR − δ, τR + δ] and hence in the neighbourhood of τR
which is more prone to classification errors. We observed that there were 12 and
11 read speech and spontaneous speech segments respectively. Of the 12 audio
segments classified as read speech, 4 audio segments were actually spontaneous
while of the 11 audio segments classified as spontaneous speech, 3 audio seg-
ments were actually read speech (see Table 2). It should be noted that, in the
neighbourhood of the τR, where the confusion is expected to be very high, the
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Fig. 5. 657 audio segments from air-rs-db classified as read speech (violet) and spon-
taneous speech (yellow). (Color figure online)

proposed classifier is able to correctly classify with an accuracy of ≈ 70% (16 of
the 23 audio segments correctly classified).

Table 2. Performance on 23 audio segments whose R ∈ [τR −δ, τR+δ]. 4 spontaneous
speech audio segments were classified as read speech and 3 read speech segments were
classified as spontaneous speech.

R ∈ Ground Truth
[τR − δ, τR + δ] Read Speech Spontaneous Speech

Read Speech 8 4
Spontaneous Speech 3 8

Very recently, we came across the Archive of L1 and L2 Scripted and Spon-
taneous Transcripts And Recordings (allsstar-db) corpus [3]. We picked up
speech data corresponding to 26 English speakers (14 Female and 12 Male).
Each speaker spoke a maximum of 8 utterances (4 spontaneous and 4 read) in
different settings. The 4 read speech were (a) DHR (20 formal sentences picked
from the Universal Declaration of Human Rights; average duration 106.2 s) ,
(b) HT2 (simple sentences; phonetically balanced which was created for Hearing
in Noise Test; average duration 100.5 s), (c) LPP (33 sentences picked from Le
Petit Prince, average duration 107.1 s) and (d) NWS (North Wind and the Sun
Passage, average duration 32.8 s); while the 4 spontaneous speech utterances
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were (a) QNA (Spontaneous speech about anything for 5 minutes; average dura-
tion 317.5 s), (b) ST2 (wordless pictures from “Bubble Bubble” used to elicit
spontaneous speech; average duration 88.8 s), (c) ST3 (wordless pictures from
“Just a Pig at Heart”; average duration 78.2 s), and (d) ST4 (wordless pictures
from “Bear’s New Clothes”; average duration 85.2 s).

Table 3. allsstar-db corpus details.

Gen SpkID R (DHR, HT2, LPP, NWS) S (QNA, ST2, ST3, ST4) (minutes)

F 49 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (13.47)
51 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (16.87)
56 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (19.29)
58 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (16.73)
60 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.32)
62 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.78)
63 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (19.42)
64 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (16.06)
65 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.70)
67 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (15.04)
68 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.91)
69 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (14.90)
71 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.87)
72 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (15.67)

M 50 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (14.28)
52 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (25.40)
53 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (13.27)
55 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (13.27)
57 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (19.26)
59 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (13.60)
61 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (14.37)
66 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (14.67)
70 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 8 (12.97)
131 4 (1, 1, 1, 1) 2 (1, 1, 0, 0) 6 (11.89)
132 4 (1, 1, 1, 1) 2 (1, 1, 0, 0) 6 (12.19)
133 4 (1, 1, 1, 1) 2 (1, 1, 0, 0) 6 (12.64)

Total 26 (Speakers) 104 (26, 26, 26, 26) 98 (26, 26, 23, 23) 202 (388.9)

In all there were 202 audio utterances of which 104 were read utterances and
98 were spontaneous spoken utterances. Note that in all there should have been
104 spontaneous utterances; but 2 spontaneous utterances each were missing
from 3 male participants. Table 3 shows the distribution of data from allsstar-
db. Experiments were carried out on these 202 audio utterances from 26 people.
We went through the process of passing through audio utterance through the
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DeepSpeech, followed by extraction of three features and computing of R as
mentioned in (2). The experimental results are shown as a confusion matrix in
Table 4. As can be observed, the performance of our proposed scheme is 88.12%.
Figure 6 shows the utterances in the feature space (f1, f2, f3) for allsstar-db.
The classification based on the approach mentioned earlier in this paper is shown
in Fig. 6 (a) the utterances classified as read and spontaneous have been marked
in yellow and violet respectively. Figure 6 (b) captures the utterances which
have been correctly recognised (represented in green). The read utterances mis-
recognized as spontaneous is shown in red (8 utterances) while the utterances
corresponding to spontaneous speech which have been recognized as read have
been represented in purple (16 utterances).

Table 4. Confusion Matrix. Performance Accuracy on allsstar-db 88.12%.

Ground Truth
Read Speech Spontaneous Speech

Read Speech 88 (84.62%) 8
Spontaneous Speech 16 90 (91.84%)

Fig. 6. Classification results on allsstar-db. (a) Yellow represents read speech while
violet corresponds to spontaneous speech and (b) Green shows the correctly recognized
utterances (88.12%) while red represents read speech recognized as spontaneous and
purple shows the utterances corresponding to spontaneous speech which have been
recognized as read. (Color figure online)

We analyzed further to understand the mis-recognized utterances. The
spontaneous utterances of speakers with ID 49, 56, 58, 60, 71(2), 57, and 59
were mis-recognized as read speech while read utterances with speakers ID
56, 58(2), 64(3), 69, 71(2), 50(2), 52, 55, 66(2), 133 were recognized as being spon-
taneous. As shown in Table 5 we observe that majority of the speakers were
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mis-recognized either as reading while they had spoken spontaneously (column
1) or as being spontaneous when they had actually read (column 2). Only speak-
ers with SpkID 56, 58 and 71 (column 3) were mis-recognized both ways, namely
their read speech was recognized as spontaneous and vice-versa.

Table 5. Mis-recognition based on Speaker ID. The number in parenthesis shows the
number of instances.

Spontaneous → Read Read → Spontaneous Read ↔ Spontaneous

Female 49(1), 60(1) 64(3), 69(1) 56(2), 58(3), 71(4)

Male 57(1), 59(1) 50(2), 52(1), 55(1), 66(2), 133(1) -

We observe that the speaker with ID 71 had R ∈ [1.63, 1.82]; we carefully
listened to all the utterances and found very less perceptual difference between
read and spontaneous utterances. While the read utterances of the speaker with
ID 66 had large silences between sentences (an indication of spontaneous speech)
which lead to almost all of the read utterances being recognized as spontaneous.

4 Conclusion

In this paper, we proposed a simple classifier to identify read and spontaneous
speech. The novelty of the classifier is in deriving a very small set of features,
indirectly from the audio segment. Most of the literature which directly or indi-
rectly address recognition of spontaneous speech have been done by analyzing
audio signal for determining speech specific properties like intonation, repeti-
tion of words, filler words, etc. We derived a small set of explainable features
from a string of alphabets derived from the output of the DeepSpeech speech-to-
alphabet recognition engine. The features are self-explanatory and capture the
essential difference between read and spontaneous speech as mentioned in [15].
The derived features are based on how the utterance was spoken and not on what
was spoken thereby making the features independent of the linguistic content
of the utterance. Experiments conducted on our own data-set (air-rs-db) and
publicly available allsstar-db shows the classifier to perform very well. The
main advantage of the proposed scheme is that the features are explainable and
are derived by processing the alphabet string output of ds(). It should be noted
that while we can categorize our approach as being devoid of deep model training
or learning; the dependency on DeepSpeech pre-trained deep architecture model
(as a black-box) cannot be ignored.
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Abstract. Speech technology has made significant advancement in the
last few decades. Recently it has also made in-roads into the households
of the people through products like virtual assistants and voice-controlled
devices. At the same time, in the shadows, and away from the eyes of
the people, increasingly speech technology has been used gainfully for
business tasks such as voice analytic and fraud detection in different
industries. If the speech signal needs to be used for down-stream tasks
such as developing a conversational voice bot, processing speech signals
through an automatic speech recognition (ASR) engine is often an impor-
tant and first step. Despite significant research in this space, typically the
performance of an ASR engine is far from being perfect for all the test
conditions it may encounter in the real world. The problem gets more
complex when speech data has code-switching. Another equally impor-
tant aspect while doing deployment of speech technology based products
is that it is rather difficult to know if the performance of an ASR engine
is adequate for its output to be used for a down-stream task. In this
paper, we present our study of how the performance of an ASR engine
developed for Hinglish (Hindi code switched with English) for the food
domain affects the performance of the final down-stream task of detect-
ing fraud patterns. In addition, we show how the performance of the final
task can be improved by using state-of-the-art natural language process-
ing (NLP) techniques like Bidirectional Encoder Representations from
Transformers (BERT). The end-to-end system (ASR engine for Hinglish
followed by NLP techniques) is successfully deployed in production for
fraud detection at Swiggy, one of the largest food delivery platforms in
India and the world.
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1 Introduction

Across the world, in the last decade, speech technology has been actively
deployed in consumer electronics such as mobile phones, virtual assistants and
voice-activated devices for the English speaking urban/metro population. How-
ever, deployment of speech technology based systems has been slow in emerging
markets such as India where English is not the language of the masses. For exam-
ple, in India there is still a large and varied rural and semi-urban population that
is currently not getting catered adequately by these systems. Similarly, in India
English frequently gets code-mixed with other Indian languages and there is sig-
nificant opportunity to develop speech technologies that can efficiently manage
code-mixed input in different business verticals, for instance, insurance, banking,
e-commerce etc. To cater to these segments and verticals effectively, speech tech-
nology must address challenges such as code-mixing, robust language support,
accurate speech recognition in diverse acoustic environments, and customization
for domain-specific terminology and workflows. By developing systems that can
manage these challenges, we not only can empower marginalized communities
and drive positive socio-economic impact, but also improve customer experience.

Today’s state-of-the-art automatic speech recognition (ASR) engines per-
form exceptionally well for languages and tasks for which there is plenty of
annotated speech data available. In fact, some of the ASR engines for English
have reached a performance level that is very close to that of a human perfor-
mance [15,18,21]. Does this mean that there are no more problems to be solved
in the area of ASR? Though this may be true that performance of an ASR
engine is reasonably good for a selected few languages (such as English) and
a few of the use cases (conversational telephone speech in relatively less noisy
environment, for example), the performance of an ASR engine for many low
resource languages [2,17] and more complex situations like code-switching [8,23]
is still far from being close to a human level performance. Although there are
many pre-trained ASR models available on hugging face [22], there are several
drawbacks of them which include limited language support, domain specificity
requiring fine-tuning, resource-intensive hardware requirements, and challenges
related to interpretability and explainability.

The second important thing about an ASR system is: though they are typ-
ically the first, fundamental and may be the most important step when speech
data needs to be processed for insights, they are not the only step in the over-
all journey of automating and solving a real world problem end-to-end [10,19].
For example, in a voice bot, after the speech gets converted to text by an ASR
engine, a natural language understanding (NLU) system is needed to under-
stand the underlying message embedded in the transcribed text, and generate
an appropriate response. Having said that, what should be the performance of
an ASR system so that the down-stream tasks can be done well is not so well
established and understood [9,12,20], and may vary on case-by-case basis.

Developing an ASR engine for food domain data in the Indian context, specif-
ically pertaining to Swiggy, presents unique challenges. Firstly, the food domain
involves a wide range of diverse and specialized vocabulary, including dish names,
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ingredients, restaurant-specific terms and spontaneous speech uttered by the
customer. Accurately recognizing and transcribing this domain-specific vocabu-
lary poses a significant hurdle. Additionally, the presence of background noise
and varying audio quality in real-world food ordering scenarios adversely affects
an ASR engine performance. Moreover, the code-mixing, regional diversity and
accents in the Indian context further degrades an ASR engine accuracy. Over-
coming these challenges requires domain-specific data collection, robust vocab-
ulary modeling and noise-robust ASR algorithms techniques for reliable and
efficient speech recognition.

In this paper first we analyse how the change in performance of an ASR engine
effects the performance of a down-stream task of detecting frauds by finding
fixed a-priori known patterns (key phrases) that may be present in the speech
signal. The second objective of this paper is to understand whether advance NLP
techniques which typically are developed (and work very well) for clean text can
improve the performance for this down-stream task despite the ASR text output
being very noisy.

Rest of the paper is organized as follows: In Sect. 2, we provide a high level
description of online food business delivery process at Swiggy and how the DEs
circumvent the system and commit fraud. In Sect. 3, we describe the automated
end-to-end systems (Rule-based as well as NLP driven) developed for detecting
fraud and database that is used for analysing the performance of these systems.
The results and our analysis of this work are presented in Sect. 4. In Sect. 5 we
conclude and highlight the main contributions of this paper.

2 Problem Statement

2.1 Online Food Delivery at Swiggy

Swiggy is India’s second largest and one of the world’s largest online food delivery
platform. Approximately hundred thousand restaurant partners (RPs) and two
hundred thousand delivery executives (DEs) cater to the needs of several million
Swiggy customers pan India. In pre-COVID period, every day, on an average,
close to a million orders were placed and delivered through our platform. Like
many other food delivery platforms, the way Swiggy platform operates is as
follows:

– A customer comes to the Swiggy platform using its Android or iOS app or
through its website (http://www.swiggy.com) and logins to her/his account.

– The current location of the customer gets detected automatically.
– The customer can search for the restaurants or the dishes in her/his locality

(to meet the service level agreement (SLA) of time, Swiggy allows its customer
to order from the restaurants that are within ’m’ kilometer radius from the
current location of the customer).

– The customer can choose the food items she/he wants to order. In an order,
the customer can choose the food items she/he wants to order from a single
restaurant only (a few exceptions are there where a customer is allowed to

http://www.swiggy.com
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choose food items from more than one restaurant in a single order). Since
every order is managed independently, once an order is placed, another order
can be placed immediately without waiting for the first order to be delivered.

– The customer confirms the order by making the payment. Certain customers
with high ratings are also allowed to choose cash on delivery (CoD) in which
case the payment is made to the DE in cash or by various payment apps (like
PhonePe, GooglePay and Paytm which use unified payments interface (UPI))
when the DE delivers the order to the customer at her/his premise.

– Apart from other sources of revenue, for every order successfully delivered
(not just placed) through its platform, Swiggy gets commission from the
restaurant whose order it was.

– If the order faces some problem in delivery because of an issue which is
directly or indirectly due to Swiggy’s platform and the SLA gets breached
(for example, the order getting delayed for reasons such as restaurant not
able to prepare food on time, restaurant got closed, food item got over at
the restaurant, DE met an accident, DE not able to find the address etc.), a
customer can cancel the order without any cancellation charges. When such
a cancellation happens, Swiggy doesn’t get any commission for that order.

2.2 Use Case: Offline Delivery Abuse

A few DEs of Swiggy try to con the system described above. These DE do the
following:

– Pick-up the order from the restaurant.
– Call the customer using the Swiggy DE app and inform that the order hasn’t

been placed successfully because of a technical problem faced by the platform.
Though the DEs can call the customer whose order they are serving using
the Swiggy DE app, they don’t have access to the customer’s phone number.

– Inform the customer that they can get the same food items by placing the
order manually with the restaurant, and deliver it to them on payment basis
(customer will have to pay the DE at the time of delivery).

– Advise the customer to cancel the order placed through the Swiggy platform.
Since the SLA has been breached, the platform allows the customer to cancel
the order without paying any cancellation charges.

Typically a customer may agree to this offline delivery arrangement outside
the platform since when he/she cancels the order at the platform, his/her money
gets reimbursed to him/her, and the same money he/she can give to the DE who
delivers the order.

In the above described arrangement, Swiggy looses its commission for that
order. Sometimes restaurants may also be involved in this con. If the restaurant
is also involved, it may give only a percentage of the originally committed com-
mission to the DE. At Swiggy we call this fraud as Offline Delivery Abuse.
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3 Systems Description and Database

3.1 Speech Data Recording System

Since the phone number of the customer whose order is being served by a DE
is not known to the DE, at least the first time when a DE wants to contact a
customer whose order he/she (the DE) is serving, he/she has no other option but
to call the customer through the app. All the calls made by a DE to a customer
through the app are recorded for quality and monitoring purpose.

Typically a DE may contact a customer whose order is being served for vari-
ous reasons. The reasons include, but are not limited to, confirming the address,
asking for direction, asking for the floor number, informing about unavailabil-
ity of an item in an order, informing about possibility in delay because of an
accident/traffic jam/rain etc.

In cases where a DE wants to do an Offline Delivery Abuse, the first call
the DE makes to the customer may typically contain some of the key phrases
described in Table 1. It is worth noting that many of these key phrases may
occur during a conversation for genuine reasons as well, which makes the problem
complex to solve. For example, the DE may ask for the customer’s phone number
in case where the battery of his/her phone is low and there is need to call the
customer using an alternate phone.

Table 1. Examples of some of the key phrases that may be used by the DE for
committing fraud.

Key phrase Brief explanation

Name of any of the UPI payment app An online payment system in India

Mobile Number Customer’s contact information

Technical issue DE may state some technical issue at Swiggy

because of which the order has not been placed

Cancel DE may ask the customer to cancel the order

3.2 Hinglish ASR System

India is a federal union comprising 28 states and 8 union territories. Each of
its major state may have its own language. It is very common that the mother
tongue of a person from a state could be the official language of that state.
Moreover, a significant percentage of Indians may be exposed to Hindi, one of
the languages spoken in many of the northern states. Apart from this, common
words from English such as car, courier, taxi, cancel, refund, technical etc have
permeated the day-to-day conversations of people. Considering this, there is
an inherent need for the Indian specific ASR engine to deal with code-mixing.
Currently we have considered developing only an Hindi-English (Hinglish) ASR
engine since Hinglish conversations constitute bulk of our interactions.
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The speech data from the Swiggy’s customers’ and agents’ interactions is
recorded for quality and monitoring purpose at Swiggy call center. In order to
train an Hinglish ASR engine, we took approximately 175 h of Hinglish speech
data from Swiggy’s call center. This data was divided such that the train set
and test set had approximately 155 h and 10 h of speech data, respectively. This
speech data was annotated by hiring an external partner and the quality of the
annotation was verified by the internal quality analyst team. The words (English
as well as Hindi) in the transcripts are transliterated to romanized form before
initializing the ASR training process.

ASR Version-1. In ASR, time delay neural network (TDNN) [13] has proven
to be an efficient network structure due to its strong ability in context modeling.
40-dimensional Mel-frequency cepstral coefficients (MFCCs) [5] without cepstral
truncation are used as input. The input features are spliced by concatenating the
“-2,1,0,1,2” frames. Speaker adaptation is utilized by appending 100-dimension
iVector with the MFCC input. Finally, the resulting 300-dimensional feature is
transformed by a 300-dimension linear discriminant analysis (LDA) and is used
as the model input. Truncated back propagation through time (BPTT) with 40
time steps is used in TDNN acoustic model training.

ASR Version-2. The ASR system is retrained using SpecAugment [11], a spec-
tral augmentation technique. It modifies the spectrogram by warping it in the
time direction, masking blocks of consecutive frequency channels, and masking
blocks of utterances in time. These augmentations have been chosen to help the
network to be robust against deformations in the time direction, partial loss of
frequency information and partial loss of small segments of speech of the input.

ASR Version-3. By leveraging large-scale unlabelled training data, Wav2Vec2
captures the intricacies of speech, enabling it to excel in real-world applica-
tions [1]. This state-of-the-art technology has the potential to revolutionize the
performance of ASR engines by making them more accurate and efficient. By
leveraging the Wav2vec2-XLSR multilingual pre-trained model [4], Wav2Vec2
becomes a versatile capability of bridging language barriers and supporting
speech recognition in different languages and dialects. Especially in low resource
settings, fine-tuning of Wav2vec2 architecture has proven to be successful [22]. In
our work, we trained Version-3 of the ASR engine by fine-tuning state-of-the-art
Wav2Vec2-XLSR with CTC loss.

The performance of all the ASR engines is evaluated in terms of word error
rate (WER) (Table 2).

3.3 Fraud Detection Systems

Figure 1 shows the overview of the proposed DE abuse detection framework.
In the proposed framework, the DE and customer calls are fetched from the
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Table 2. Performance of the three ASR engines on the 10 hour test set.

ASR Version % WER

ASR Version 1 (without augmentation) 54.42

ASR Version 2 (with augmentation) 50.34

ASR Version 3 35.50

recording database. The recordings are stored in stereo channel, and may include
ringtones, IVR prompts and the caller tunes of the customer. Hence, in the pre-
processing stage, the irrelevant portions are removed by observing the distribu-
tion of the short time energy components across the channels. This pre-processed
speech is fed to one of the ASR engines as per the experiment design. The text
output from the ASR engine is then fed to: (a) Rule based system and (b) the
NLP driven system, to predict a conversation as Fraud or Non-fraud.

Fig. 1. Overview of the proposed DE fraud detection system.

Rule Based, Aka, Regular Expression Based System. The rule-based
system is built to look for specific key phrases (some of them were mentioned in
Table 1) in the ASR text outputs, and label a conversation to fraud or non-fraud
as per the rules described next.
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– Rule-01: If the ASR output has atleast 4 unique fraud related keywords,
then the particular utterance is labelled as ‘Fraud/Abuse’ else it mapped as
‘Non-fraud/NoAbuse’. The choice of the threshold is chosen empirically by
observing the True positives and the True negatives wrt the ASR outputs for
the couple of months of speech data. This data had the Abuse and NoAbuse
labels provided by the Business team.

– Rule-02: If the ASR output recognises atleast 5 digits and 3 non-digits from
the list of fraud related keywords, then the audio call is mapped as Fraud
conversation else it is mapped as Non-fraud.

– Rule-03: In a conversation between the DE and the customer, the DE enquires
about the address, flat number, location etc and hence is more likely that
digits are spoken in such a scenario. As a result, the ASR output has the
presence of the digits. To circumvent this issue, we proposed a method to
distinguish a mobile number (Fraud pattern) with a non-mobile number (door
number, street number, order price etc.). In the Rule-03, there are three steps
to predict the ASR outputs as Fraud or Non-fraud: (a) selection of consecutive
digits in the ASR output, (b) fetching lengthy consecutive digit pattern, and
(c) applying Rule- 01 on the result of (b).

Two NLP methodologies were also explored for predicting fraud, and are
described next.

Machine Learning (ML) Based System. ASR output obtained was pro-
cessed to create a vocabulary of words using the TF-IDF values. Pre-processing
was done such that these words do not contain stop words and unigrams. Total
970 words were selected based on the TF-IDf weightage [7] corresponding to
the entire ASR outputs corpus. Selecting these 970 words, each ASR output is
transformed into 970 column values where each column represents the TF-IDF
weightage of corresponding word based on the ASR output of the Order ID
considered. The resultant sparse matrix was passed into an XG-Boost [3] classi-
fication algorithm where the hyper parameters were tuned using grid search.

Deep Learning (DL) Based System. Each ASR output was processed to
extract phrases which are most relevant to the entire ASR output. BERT [6]
based phrase extraction strategy was used here which is done in two steps. First,
pre-trained Distilbert [14] model available in hugging face was used to extract
the sentence embeddings of overall ASR output of each Order ID. As transformer
based models have a token limit, for ASR outputs exceeding the limit we splitted
the text into parts and mean pooling strategy was used to get the embedding.
The same model was used to get the sentence embeddings of all the top phrases
with n-gram range of three to five which are extracted using the TF-IDf strategy
mentioned previously. In the second step, top phrases corresponding to each
ASR output from the list of phrases are extracted using Maximal Marginal
Relevance approach [16]. In this approach input ASR embedding is compared
to the embeddings of all the phrases prepared using TF-IDf approach and then
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top phrases are extracted based on the cosine similarity and Maximal Marginal
Relevance. This approach ensures to maximize the diversity of the phrases.

Phrases extracted for each ASR output are concatenated with the actual ASR
output and then passed into stacked BiLSTM network. This approach is followed
to ensure that the BiLSTM layers can focus more on the relevant keywords of
ASR output as they will be present in both phrases and the actual text of ASR.
Four BiLSTM layers are stacked on top of each other and then passed into a
fully connected dense layer for the binary classification of fraud and non fraud.

3.4 Database

The speech data conversations between the delivery executive and the customer
for couple of months is taken for analysis of the DE fraud system. On a daily
basis, the Trust and Safety team at Swiggy manually listens to the call and gets
confirmation from the customer to label the DE as Fraud or Non-Fraud. We
have considered 1756 order ID’s and predicted the Fraud/Non-Fraud labels for
all the order ID’s for rule based system. Later, for developing the NLP driven
modelling approach, we considered 3069 order ID’s related data for training (the
NLP model) and 1219 order ID’s as test set.

4 Results and Analysis

4.1 Evaluation of Different Rule Based Systems

Table 3 shows the fraud detection performance by different rule based systems on
the output of ASR Version-1. It can be observed that the performance of Rule-
03 is much better as compared to that of Rule-02 and Rule-01. This is because
the Rule- 03 discriminates between the mobile number and the other category
of digits (order value, door number, street number, etc.). Rule-02 outperforms
Rule-01 since it considers two conditions to map the ASR output to Fraud/Non-
fraud.

Table 3. Evaluation of different rule based fraud detection systems in terms of precision
(P), recall (R) and F1 scores (F1) on the output of ASR Version-1.

Logic Class Support P R F1 % Acc

Rule-01 Fraud 686 0.57 0.85 0.68 0.69

Non-Fraud 1070 0.86 0.59 0.70

Rule-02 Fraud 686 0.58 0.86 0.69 0.70

Non-Fraud 1070 0.87 0.6 0.71

Rule-03 Fraud 686 0.6 0.85 0.70 0.72

Non-Fraud 1070 0.87 0.64 0.74
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Table 4 shows the fraud detection performance on the output of ASR Version-
2 for Rule-03. It can be seen that improving the ASR engine accuracy (Version-2)
improves the fraud detection rate.

Table 4. Evaluation of Rule-03 based fraud detection system in terms of precision (P),
recall (R) and F1 scores (F1) on the output of ASR Version-1 and Version-2.

System Category Support P R f1 %Acc

ASR Version-1 + Rule-03 Fraud 686 0.60 0.85 0.70 0.72

Non-Fraud 1070 0.87 0.64 0.74

ASR Version-2 + Rule-03 Fraud 686 0.64 0.89 0.74 0.75

Non-Fraud 1070 0.87 0.67 0.75

4.2 Comparing Rule Based System with ML and DL Based Systems

Table 5 compares the performance of the best rule based system (Rule-03) vis-
a-vis that of XGBoost, DL modelling and ensemble techniques. All the results
in Table 5 are on the output of ASR Version-2. It can be observed that the ML
and DL based systems outperform the Rule-03 based system. XGBoost model
being a boosted trees approach is able to capture the combinatorial patterns of
keywords that are part of the vocabulary prepared. DL based model trained on
the concatenated data of phrase extracted and the ASR output has slightly poor
performance as compared to that of the XGBoost model. When trained with
ensemble of XGBoost and DL model to understand if there are any additional
samples captured correctly, we observe that accuracy further improved to 0.86.

We created another blind test data with increased support values and
observed the impact of different ASR versions on XGBOOST based DE fraud

Table 5. Performance of different DE fraud detection systems on the output of ASR
Version-2.

System Category Support P R f1 %Acc

Rule-03 Fraud 612 0.68 0.61 0.64 0.66

Non-Fraud 607 0.64 0.71 0.68

DL Fraud 612 0.83 0.83 0.83 0.83

Non-Fraud 607 0.83 0.83 0.83

XGBoost Fraud 612 0.82 0.91 0.86 0.85

Non-Fraud 607 0.9 0.8 0.84

XGBoost + DL Fraud 612 0.83 0.9 0.86 0.86

Non-Fraud 607 0.89 0.81 0.85
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Table 6. Performance of DE fraud detection system on the output of different ASR
versions.

System Category Support P R f1 %Acc

ASR Version-1 Fraud 1318 0.8 0.77 0.79 0.61

Non-Fraud 1965 0.7 0.91 0.79

ASR Version-2 Fraud 1318 0.81 0.78 0.79 0.64

Non-Fraud 1965 0.7 0.92 0.8

ASR Version-3 Fraud 1318 0.87 0.64 0.74 0.71

Non-Fraud 1965 0.66 0.96 0.78

detector model. The new blind test set is to check model’s generalization.
Table 6 shows the performance of XGBOOST system trained with different ASR
versions. It can be observed from Table 6 that the ASR model trained with
Wav2Vec2 representations is able to identify the fraud related keywords more
accurately as compared to that of ASR Versions-1 and 2. As a result, the over-
all precision of DE fraud detection increased from 0.80 to 0.87. On top of it,
we observed that the recall on the Non-Fraud cases increased from 0.91 to 0.96
increased the confidence of Non-fraud scenarios. Due to this, the number of
manual investigation cases on non-fraud prediction reduced.

4.3 Business Impact

We developed a state-of-the-art ASR engine in the Hinglish language for the
food domain from scratch for Swiggy. As a result, the cost of converting speech
data to text in Swiggy is as low as INR 2–3 per hour. This cost is mainly
incurred due to the infrastructure setup on cloud platform where we save the
ASR model and process the offline calls in near real time. The proposed ML
based solution was able to catch approximately few hundred DEs per month
(with a TAT of a couple of hours) who had abused the system. For confidence
scores above 0.90, the system was so robust that approximately one third of
the DEs were terminated per month without any human intervention. Potential
savings for Swiggy at the current scale in the food vertical because of this system
are significant. Though not measured explicitly, this system must have directly
helped in improving customer experience as well.

5 Conclusion

This paper is about a practical application of ASR, the task of detecting fraud.
The setup used in this paper is that of Swiggy, a food delivery platform, and the
fraud use case is that of DEs abusing the platform. Since a DE needs to call a
customer for committing this fraud, and the call recordings are getting stored at
Swiggy’s call center, building an ASR driven system to detect this fraud was the
obvious choice. This paper analyzes two things: a) the effect of the performance
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of Hinglish ASR system on the task of fraud detection, and b) the performance
gains that can be achieved by using advanced ML/DL techniques. Improvement
in ASR accuracy by approximately 5% leads to an improvement in performance
of approximately 4% on the downstream task of fraud detection. The ML/DL
techniques lead to an improvement of 20% accuracy (absolute) vis-a-vis a rule
based system using regular expressions for matching. The above mentioned end-
to-end fraud based system is in production at Swiggy, and helping us detect and
stem fraud on day-to-day basis.
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Abstract. This paper presents a novel approach to addressing the
often-overlooked issue of pronunciation instruction in language learn-
ing through a Computer-Assisted Pronunciation Training (CAPT) sys-
tem. While traditional CAPT systems are based on Automatic Speech
Recognition (ASR) models trained on native speakers, we argue that this
approach results in low accuracy when applied to non-native speakers.
To address this limitation, we propose integrating advancements in ASR
and accent recognition technology to create a more tailored and effec-
tive system. Specifically, our innovation lies in incorporating an accent
recognition model into our mobile applications, allowing us to identify
learners’ first language (L1) backgrounds and subsequently provide per-
sonalized exercises and feedback. By doing so, we enable course content
creators to design exercises that are linguistically context-aware, and
we employ ASR technology to enhance the accuracy of speech detec-
tion and accelerate transcription generation during the content creation
phase. Furthermore, we make use of neural style transfer techniques to
adapt learners’ accents before comparing them to reference pronuncia-
tions. The evaluation scores are then generated using the Dynamic Time
Warping (DTW) algorithm. The key contribution of this paper lies in
demonstrating how the integration of ASR-based and accent-targeted
solutions can significantly enhance the effectiveness of CAPT systems.
This integrated approach offers learners a more precise and personalized
learning experience, thereby optimizing pronunciation training.

Keywords: CAPT · ASR · Accent recognition · Personalized feedback

1 Introduction

The study of pronunciation is an essential part of learning to speak a language.
However, it has often been a neglected area of focus, leading to a significant
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negative impact on the overall effectiveness of language education. From the
learner’s perspective, pronunciation exercises are often considered as tedious
and nonconstructive [8]; thus, contributing little to the measurable progress of
the learner in language proficiency. From the teacher’s perspective, studies on
speech comprehensibility and intelligibility known since the 1990s have been
partially contextualized in a discourse on the segmental and suprasegmental
aspects of language and on how pronunciation problems impede effective com-
munication [13,17,18].

Prosody teaching systems, by definition, focus on the suprasegmental fea-
tures, such as intonation and rhythm patterns, and ignore the segmental fea-
tures, such as the pronunciation of individual phonemes, e.g. consonant and
vowel sounds. To address this problem, Computer-Assisted Pronunciation Train-
ing (CAPT) environments integrate Automatic Speech Recognition (ASR) sys-
tems, which capture both suprasegmental and segmental pronunciation features
to “understand” the words and their component phonemes pronounced by the
learner. Although the application of ASR in language learning tools has gained
popularity in recent years, its primary limitation is that most ASR models are
trained predominantly on data from native speakers. Consequently, its accuracy
drops substantially when applied to non-native speakers, diminishing the effec-
tiveness of the feedback provided to learners [5]. This paper seeks to address this
gap in accuracy by integrating recent advances in accent recognition and apply-
ing transfer learning to state-of-the-art ASR models within a CAPT system.

We address an ongoing project on developing a CAPT system, originally
oriented toward English pronunciation learning, but which, nevertheless, has
demonstrated sufficient robustness and built-in flexibility to accommodate con-
tent creation and interface adjustment for instantiating the system for a variety
of target second languages (L2).

One of the key innovations presented in this paper is an approach to integrat-
ing the accent recognition and modification models into a mobile application,
the latter being the end-user component of our CAPT environment. The idea is
to “teach” the system to identify the first language (L1) background of a spe-
cific learner, thus creating grounds for personalization of pronunciation exercises.
The knowledge of the user’s L1 background can not only help to apply learner-
specific ASR models, leading to a significant improvement in phoneme detection
accuracy, but also allow pronunciation course content creators to deliver more
personalized teaching material. For that purpose, we introduce the ability to
include L1-tailored exercises into the course, powered by an integrated ASR
model for content metadata generation. The inclusion of an accent neutraliza-
tion model (by means of neural style transfer [21]) modifies the learner’s accent
to facilitate a more accurate comparison with reference pronunciation using the
Dynamic Time Warping (DTW) algorithm [23].

2 Background and Related Work

Computer-Assisted Language Learning (CALL) systems have undergone a
remarkable transformation, fueled by advances in computational technology and
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technology-aware pedagogy [20]. Early versions of CALL systems provided basic
drill-and-practice exercises, such as typical listen-and-repeat activities in lan-
guage laboratories; the limited interaction and feedback capabilities often led
to less than satisfactory learning outcomes. As CALL was applied to pronun-
ciation, platforms integrating specialized technologies like ASR were developed
to analyze and provide feedback on the pronunciation of learners. These CAPT
systems provide more effective and personalized learning experiences.

ASR technology has evolved significantly over the years [12]. Initial attempts
at ASR were based on simpler models and relied heavily on handcrafted features.
The emergence of deep learning has opened up a new period for ASR, resulting
in models that can learn more intricate and abstract representations from data.
Advances in applying transfer learning to ASR models for non-native speakers
further improved the applicability of ASR to a variety of tasks [25]. These mod-
els, trained on carefully curated datasets, provided a marked improvement in
performance for language learners with different native languages [27]. Datasets,
such as L2-ARCTIC [29], have played a pivotal role in this progression.

Accent recognition and classification is an expanding field in speech tech-
nology. The ability to identify and classify a speaker’s accent may have multi-
ple applications, ranging from personalized language learning to sociolinguis-
tic research [26]. Recognizing that each learner has a unique speech profile
influenced by their native language, researchers have developed methods to
adapt ASR models to individual accents, providing more accurate feedback on
pronunciation.

In the literature on language education, the mother tongue L1 has a dominant
influence on the accent of the target language L2. But in a broader sense, the
personal accent when learning and speaking some language could be significantly
influenced by environmental and other factors such as teacher and learning mate-
rials, friends and colleagues, country of living, and previously learned languages,
all contributing to varying degrees to the formation of an individual accent.

Accent modification [1] and voice conversion [16] have become another chal-
lenging area of study, focusing on the modification of a speaker’s accent to facili-
tate better comprehension and evaluation of speech. One pioneering technique in
this field is the use of neural style transfer to modify learners’ accents [22]. When
such modifications are applied to CAPT learner speech, they improve compar-
ison results with reference pronunciation [6]. This, in turn, leads to significant
improvements in pronunciation training, allowing learners to receive more accu-
rate feedback and better understand their pronunciation errors.

This study builds on the available technological and pedagogical advance-
ments to enhance the CAPT system in focus by utilizing ASR, accent recogni-
tion, and accent neutralization techniques to provide personalized pronunciation
feedback to CAPT system users [24].

3 StudyIntonation—CAPT Environment in Focus

This research aims at improving the current components of the existing multi-
modal multilingual CAPT environment StudyIntonation described in detail in
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Fig. 1. Multimodality in feedback production for different L2.

our previous works [4,15]. The system is a computer-assisted instructional envi-
ronment that aims to improve the pronunciation skills of learners, with a key
focus on prosodic elements, including intonation, stress, and rhythm. The sys-
tem uses a variety of digital signal processing techniques, such as speech activity
identification, pitch visualization modeling using pitch graphs, and evaluation of
pronunciation quality.

As shown in Fig. 1, the key interface of the end-user mobile application
enables learners to compare their pronunciation pitch graph with a reference
model pronunciation (recorded by native speakers). This pitch visualization is
accompanied by a number of feedback models that address different levels of
system multimodality and various learning styles. In the frame of instantiating
the system for a number of target L2 languages representing different language
groups (currently, English, Vietnamese, and Japanese), we experimented with
the following interface components aiming at tailoring the CAPT feedback to
language learners:

– Pitch quality score based on using DTW algorithms [21,23] (known as a
robust model to measure the distance between the graphs, which is tempo
and scale-invariant);

– Demonstrating a short contextualized video of the exercise (helpful for exer-
cises connected to real-life conversational scenarios);

– Stack of exercise variations (assuming that the same phrase can be trained
using a variety of context-dependent intonation patterns);

– Repeated exercise pronunciation patterns (specifically important for mora-
timed languages such as Japanese);
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– Music notation (helpful for learners with a musical background, especially to
represent the language rhythm and higher and lower pitches in mora-timed
languages);

– Extended IPA-transcription (with respect to rhythmic units and necessary
fragments of silence).

Figure 1 illustrates some of the above-mentioned multimodal feedback inter-
faces as implemented while instantiating the CAPT environment for different
target L2 languages in the process of its multilingual setup. Simultaneously, it
is underpinned by an interactive interface designed primarily for mobile devices,
tapping into the ubiquity and accessibility offered by today’s advanced technol-
ogy. The application provides a flexible and user-friendly interface designed with
learners’ needs in mind.

4 Enhancing Pitch Processing Pipeline with ASR
Algorithms

In our commitment to offering tailored feedback for learners from diverse L1
backgrounds, we are integrating accent recognition and ASR components into
our system. These additions are designed to significantly enhance the personal-
ization of our platform, ensuring a more targeted and effective learning experi-
ence for each individual.

Fig. 2. Workflow of the Course Editor Module.



64 V. Khaustova et al.

The key elements of our approach include components such as pitch process-
ing and automatic speech recognition, which are shown in Fig. 2. Pitch process-
ing utilizes the DTW algorithm to provide a tempo-invariant evaluation of the
learner’s performance. The changes we are implementing concern the neutraliza-
tion of the accent to produce a more relevant evaluation, as described below. By
integrating these different components, our system aims to provide comprehen-
sive and personalized feedback that addresses the specific needs and challenges
of each learner.

4.1 Automatic Speech Recognition Component

To achieve efficient processing and robust understanding of diverse accents,
we employ transfer learning techniques on an advanced multilingual XLS-R
model [2]. This model incorporates the self-supervised learning approach of
Wav2Vec2.0 [3] and its capability to learn rich representations from raw audio.
Its training on an extensive and varied set of languages enhances its ability
to generalize across a wide range of linguistic contexts. It learns contextualized
speech representations by randomly masking feature vectors before passing them
to a transformer network in the course of self-supervised pre-training. The model
is trained to predict the correct speech unit for masked parts of the audio while
also learning what the speech units should be. This allows us to capture the
nuanced variations of pronunciation across different accents.

To tailor the model to specific accents, we fine-tune the XLS-R model using
Connectionist Temporal Classification (CTC) [10] on speech recordings and cor-
responding transcriptions from the L2-ARCTIC dataset [29], which contains
English speech recordings from 24 non-native speakers of six different L1 back-
grounds: Arabic, Hindi, Korean, Mandarin, Spanish, and Vietnamese. We resam-
ple the audio from 44.1 kHz to the same sampling rate of 16 kHz that was used
to pretrain the XLS-R model. We leverage the power of PyTorch [19], an open-
source machine learning framework, in tandem with Hugging Face’s Transform-
ers library [28], a state-of-the-art natural language processing tool, that provides
Wav2Vec2FeatureExtractor to process the speech signal to the model’s input for-
mat, and Wav2VecCTCTokenizer to process the model’s output into text.

For the training stage, we implement a data collator that dynamically pads
training batches to the longest sample in the batch, and use a word error rate
(WER) metric, which is common in ASR, to compute the performance of the
model. We load a pretrained checkpoint of XLS-R from Hugging Face Hub, freeze
the feature extractor that consists of a stack of CNN layers, and add a linear
layer on top of the transformer block to classify each context representation
into a token class. For the training configuration and hyperparameter tuning,
we follow the recommendations from the XLS-R and Wav2Vec2 papers [2,3]
by employing the tri-state learning rate schedule: warm-up, constant stage, and
decay stage. This approach helps us to refine and optimize the model, making it
more attuned to the idiosyncrasies of different spoken accents, ultimately enhanc-
ing its precision and usability for our diverse range of learners. Furthermore, the
Transformers library allows us to efficiently execute our language models on
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mobile devices [9], thus ensuring the wide accessibility and seamless operation
of our system for users anywhere and anytime.

4.2 Accent Recognition Component

Building on the foundations laid in our previous research [14], the accent recog-
nition module forms a crucial part of our system. During the initial setup of the
application, the learner may read a phrase from the Speech Accent Archive [7],
so the application can discern the user’s native language.

Subsequent to the recording, the system’s analysis yields an accent classifica-
tion which is then presented to the user for verification. Upon user confirmation
of the identified accent, the system may suggest downloading the respective
fine-tuned ASR model that has been tailored specifically for that accent. This
fine-tuned model will facilitate more precise words and phoneme recognition,
enabling the system to provide more accurate and personalized feedback to the
learner. If the user decides not to record the phrase or select the L1 background
from the list, the generic ASR model is used.

This novel approach to incorporating accent recognition into the initial setup
process not only enhances the personalization of our system, but also signifi-
cantly improves the effectiveness of subsequent pronunciation training exercises.
It acknowledges the reality of linguistic diversity and responds by ensuring that
the application is adapted to the needs of each individual learner right from the
outset.

4.3 Course Editor Module Setup

The Course Editor Module (as shown in Fig. 2) is a purpose-built tool for edu-
cators, enabling them to create and structure pronunciation courses tailored to
their learners’ needs. These custom-designed courses are stored in the Course
Repository, where they become readily accessible for students to engage in per-
sonalized practice. Each course consists of lessons, and each lesson, in turn,
comprises a series of tasks (see Fig. 3).

In our quest to continually enhance the Course Editor and expand its capa-
bilities, we are introducing several key features to empower content creators in
developing more personalized and effective language learning courses.

Understanding the profound impact that a learner’s L1 can have on their
English pronunciation and intonation, we are equipping content creators with
the means to design specific exercises that cater to learners from a wide variety of
L1 backgrounds. This personalized teaching approach aims to tackle the unique
pronunciation hurdles each learner might face due to their L1 influence, paving
the way for more effective learning outcomes.

In addition, we are harnessing the power of ASR technology to streamline the
content creation process. This innovation automates the generation of transcrip-
tions for recorded tasks, significantly reducing the manual workload of content
creators. In case of inaccuracies in the automatically generated transcriptions,
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Fig. 3. Course structure.

creators have the flexibility to manually review, edit, and save the corrected
version, ensuring the quality and accuracy of the learning materials.

5 Mobile Application

Based on practical possibilities to incorporate the ASR and accent recognition
modules into the CAPT environment, we anticipate further extensions of the
mobile app interfaces to fit the workflow presented in Fig. 4.

We employ accent recognition and customized ASR models for non-native
speakers to help optimize the learning experience tailored to the specific needs
of non-native English speakers. This technology helps us to determine the most
suitable ASR model to use for each user. Typically, generic ASR models are
developed based on the pronunciation patterns of native speakers. However, non-
native speakers often exhibit unique pronunciation traits influenced by their L1.
The mobile application can use ASR-recognized transcription to highlight the
difference between the reference transcription and a recognized one from the
learner’s recording.

To address this, we refine open-source ASR models for improved accuracy
in handling non-native speakers, specifically focusing on those from the most
commonly represented L1 backgrounds among the users of the application. By
tuning these models to better recognize and understand the pronunciation quirks
of different L1 backgrounds, we ensure more accurate and personalized feedback
for our users.

One of the challenges in teaching suprasegmental pronunciation is to make
sure that the learner not only repeats the intonation correctly but also pro-
nounces the phonemes appropriately. For intonation, the user compares a visu-
alized pitch of their attempt with the reference pitch graph. ASR technology can
be deployed directly on the user’s mobile device, generating transcriptions of the
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Fig. 4. Workflow of the learning process in the mobile app.

user’s spoken utterances. Then, these transcriptions are compared to the refer-
ence pronunciation. Any phonemes that differ from the reference are highlighted
in red, offering a clear visual indication to the learner of areas where improve-
ment is needed. Figure 4 illustrates the visual feedback of the pitch graphs and
the evaluation score extended with the reference and the actual phonetic tran-
scription of the user speech.

Furthermore, accent recognition is employed not only in fine-tuning the ASR
but also in categorizing a user’s L1 accent. This allows for an even more personal-
ized learning experience, as the system can suggest targeted exercises and provide
custom-tailored feedback based on common pronunciation challenges associated
with specific L1 accents. By leveraging this technology, we are improving the
efficacy of our application, making it an even more powerful tool in the hands of
language learners. The courses that provide support for different L1 backgrounds
show additional content to practice the corresponding tasks.

We are currently developing a dynamic adaptation module for our system
that provides learners with personalized tasks based on their individual perfor-
mance. This performance is quantified through the use of the DTW evaluation
metric—a lower DTW score signifies a higher alignment between the learner’s
pronunciation and the reference pronunciation, thus indicating better perfor-
mance.

In cases where a significant discrepancy is detected between the student’s
pronunciation and the reference standard (indicated by a high DTW score), the
system could “intelligently” suggest some additional practice tasks. Such tasks,
provisionally added by content creators, are designed to help the learner improve
their pronunciation skills in a targeted manner, addressing the areas of difficulty
identified through the DTW evaluation. In this way, we aim to foster an adaptive
learning environment that tailors instruction to each individual learner’s needs,
optimizing their language learning journey.

In addition to the possibility of replaying their attempts, users may find
helpful an option to adjust the speed of playback. This feature gives learners the
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opportunity to slow down the audio, making it easier to dissect and understand
the intricate phonetic components of the language.

6 Discussion

Enhancing interactive features of a CAPT system, we adapt the learning envi-
ronment in a way to make it more friendly to users, since the learning process
is better tailored to match the individual pace and proficiency level of learners.
At the same time, we create more opportunities for teachers (course creators),
enabling the promotion of more efficient and learner-centric language acquisition.

Although this contribution is focused on accent-targeted models and L1-
specific ASR, it is important to note that these two are not the only feasible
ways to produce better personalized CAPT feedback for language learners.

Automatic recognition of the influence of the mother tongue on the target
language not only enables CAPT systems to tailor feedback and practice activi-
ties to the users but also does so in a discrete yet targeted manner. Accents are
often linked to stereotypes, prejudices, and cultural identity, so bypassing the
declaration of the influence of an accent helps avoid issues related to, inter alia,
privacy, identity, and self-esteem.

The training of ASR models on non-native speaker rather than traditional
native speaker datasets enables CAPT systems to move away from the one-
size-fits-all model in which all language learners, regardless of mother tongue or
language family, are treated the same, viz. as non-native speakers. However, the
transition toward targeting specific sets of learners by language family or mother
tongue signals a shift to personalized pronunciation training for learners with
different L1 backgrounds. We should note that applying transfer learning to the
XLS-R model using the L2-Arctic dataset, which contains phrases from out-of-
copyright texts from Project Gutenberg books, may decrease the performance
of the ASR model for everyday conversations. For that reason, we are working
on employing spoken language datasets, such as ICNALE [11].

Although accent recognition plays a valuable role, it is necessary to take
into account the complex linguistic landscape in which learners may be exposed
to multiple linguistic factors affecting their linguistic repertoire, including the
influence of L1 on the target language of the learner.

7 Conclusion

In this paper, we introduce an approach that integrates accent recognition and
customized ASR into a CAPT pipeline with the use of ASR-based accent recog-
nition and accent neutralization techniques, along with an approach to design
L1-specific exercises and utilizing ASR for transcription generation. A system
that incorporates such accent-reflected language-family-specific feedback adjust-
ments could be particularly beneficial for learners whose accents are more heavily
influenced by their mother tongue by providing them with implicit but targeted
hints on pronunciation improvement.
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In conclusion, it is important to note that our CAPT environment is mainly
aimed at creating better conditions for the evolution of learners’ conversational
skills by replicating modeled pronunciation rather than by focusing on the mis-
takes of the learners. From this point of view, adopting accent recognition tech-
niques to a CAPT system is considered a promising component to be used in
conjunction with other approaches towards better CAPT feedback customiza-
tion, including contextual feedback, enhanced visualization techniques, and mul-
timedia integration.

More experimental and analytical studies are required to evaluate and assess
the suggested models in pedagogical practices, including using independent tech-
niques to evaluate learners’ progress.
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Abstract. OpenASR21 evaluation was on 15 low resource languages
and 3 case sensitive languages. During the evaluation, participants got
significant reduction in word error rates (WER) with text downloaded
from the internet for only the case sensitive languages, since the devel-
opment and evaluation audio contained broadcast news. For the 15 low
resource languages, participants showed only small gains for some of
the languages. The reason is that the development and test set contain
dialog between two people, which is very different from the primarily
news texts and web pages available over the internet. Here, we show
that training text translated from other OpenASR21 languages reduces
the WER for many languages. During the evaluation, one team added
words to the lexicon using a 3-gram phone language model, but they do
not show what WER reduction they achieve. We show that adding new
words in the lexicon from public text is beneficial for languages where the
out-of-vocabulary rate is high, and outline conditions for reducing the
WER. Adding an attention layer to the TDNN (time delay neural net)
based voice activity detector reduced the WER for 17 out of the 18 lan-
guages. With all the improvements combined, we are getting lower word
error rate for the development set for three languages (Farsi, Kazakh
and Tamil) than the site that achieved the best error rate for all the
languages during the evaluation period.

Keywords: OpenASR21 · Low-resource · Speech recognition ·
Language modeling

1 Introduction

The OpenASR21 (Open Automatic Speech Recognition 2021) Challenge set out
to assess the state of the art of ASR technologies under low-resource language
constraints [11]. The task consisted of performing ASR on audio datasets in up
to 15 different low-resource languages and 3 languages with case sensitive scor-
ing, to produce the recognized text. Ten languages were carried over from the
OpenASR20 challenge [10], and five new languages were added. A case sensitive
scoring was also added for three of these languages: Kazakh, Swahili and Taga-
log. In case-sensitive scoring, words capitalized differently from the reference
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 73–86, 2023.
https://doi.org/10.1007/978-3-031-48312-7_6
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transcript will not count as a match. Case-sensitive scoring is used as a proxy
for evaluating ASR performance on proper nouns.

We took part in the constrained condition for all the 15 languages and the
3 languages with case sensitive scoring. In the constrained condition, only a 10-
hour audio Build dataset for that language can be used for training acoustic
models. Additional text data, either from the Build dataset or publicly avail-
able resources, can be used for training the language model in the constrained
condition. Any such additional training text must be specified in detail in the
system description. In the constrained condition, no pre-trained large models
were allowed.

A good overview of OpenASR20 is given in [10]. In OpenASR20, two teams
achieved very good results [1,17]. They used larger training text and lexicon
from Linguistic Data Consortium (LDC) corpora for training language models
(LM) and using a larger lexicon. These LMs and larger lexicon reduced the word
error rate (WER) significantly for each language.

For OpenASR21 see [11] for a good overview. The team from USTC/iFlytek
Research [19] achieved the lowest word error rate (WER) for all the 15 lan-
guages. Their WER was significantly lower than any other participant for all
the languages. For acoustic modeling, they used TTS to generate additional
audio for training either from public text or the Babel training text. This gave
them an additional 1.3% average WER reduction for the 15 languages. They
also interpolated language model (LM) from LDC text with LM from public
text (publicly available text downloaded from internet). This interpolated LM
gave them better results for 3 of the 7 languages. They also rescored the decoded
lattices with bidirectional LSTMP (LSTM with a recurrent projection layer) [14]
language model from public text. This LM was fine tuned with the LDC training
text before rescoring. Note that, the leading teams in the OpenASR21 evalua-
tion used hybrid DNN-HMM systems rather than end-to-end systems, since the
end-to-end systems perform poorly with only 10 h of audio.

In [18], they do not use any publicly available text for either decoding or for
rescoring with LSTM LM. They use a larger lexicon for the 15 languages and
3 case sensitive languages. They generate a 3-gram phone language model from
the lexicon, and then generate 12 million sequences from this LM, and keep 1
million most likely sequences not in the lexicon. Words corresponding to these
phone sequences are generated using G2P (grapheme to phoneme) methods to
augment the lexicon. But they do not show the benefit of using such a large
lexicon.

In [4], the authors use three different features (MFCCs, MFCCs+Conformer
embeddings, MFCCs + voice activity detector embeddings) to generate 3 differ-
ent acoustic models for later fusion. They also used publicly available text for
language modeling. Instead of generating separate LM from LDC and public text
and then interpolating the two [19], they first filter the public text with sentence
selection to match the sentences in the LDC training text, and then generate
an LM from the combined LDC + filtered public text. The filtered public text
is about the same size as the LDC text. This resulted in reduced WER (word
error rate) for many languages.
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However, the reduction in WER with the added public text was small. The
primary reason for this small reduction is that the public text comes mostly from
news and web pages, while OpenASR21 contains conversations between two peo-
ple. So the question is how can we add text corresponding to conversations. Here
we introduce a method to generate synthetic conversational text and augment
data for a language of interest, using a back-translation approach, and obtain
small reduction in WER for that language. Although back-translation has been
used to improve machine translation models [15], here it is used for the first time
to improve a monolingual model for ASR (to the best of our knowledge).

During the evaluation period, we had used a voice activity detector (VAD)
[4] to remove noise segments. This VAD, as outlined in Chime6 track2 speech
activity detection1 had 5 TDNN layers and 2 layers of statistics pooling [2] with
an added specAugment layer [8]. We propose to add an attention layer, similar
to the one outlined for ASR in [13]. The speech/non-speech segmentation with
this attention layer results in small reductions in WER for most languages. The
reason is that an attention layer provides longer term context and it improves
discrimination between segments with long duration. Silent and speech segments
fall in that category.

We also show that increasing the lexicon with new words from public text is
effective for languages where OOV (out of vocabulary) rate is high.

As the NIST scoring server for the evaluation set is closed, we only show
comparative results for the development set. Through all the improvements in
[4], we showed that we got lower WER for the eval set for Tamil than any
participant during the evaluation period. In this paper, we show that with all
the improvements combined, we get lower single decode WER for development
set for Farsi, Kazakh and Tamil than the best team during evaluation [19].

2 Dataset

In the constrained condition, for acoustic model training, we only used the 10-
hour Build data set provided by NIST for the language being processed, with
corresponding transcripts in UTF-8 encoding. Training and development lexicons
were also provided by NIST.

For the 13 languages with LDC packs (all the languages except for Farsi
and Somali), we used the expanded lexicon and text provided in those packs.
For example, the training text in the OpenASR21 build dataset varies from 66k
words for Kazakh to 126k words for Vietnamese, while the training text in the
LDC packs varies from 270k words for Kazakh to 989k words for Vietnamese.
Overall, the LDC training text is between 4 times and 8 times larger than the
text in the OpenASR21 build. The lexicon in the LDC packs is also much larger
than the lexicon in the OpenASR21 build. For example, the number of words for
Vietnamese in the OpenASR21 lexicon is 3.2k, while in the LDC lexicon there
are 6.4k words. For these reasons, training a language model from the training

1 https://chimechallenge.github.io/chime6/track2software.html.

https://chimechallenge.github.io/chime6/track2 software.html


76 V. Gupta and G. Boulianne

text and lexicon in the LDC packs reduces the word error rate significantly for
all the 13 languages with the LDC packs.

3 ASR Approach

Our system is a hybrid HMM-DNN based on WFSTs (Weighted Finite-State
Transducers) and trained with the Kaldi toolkit [12]. During the evaluation
period, we trained three different acoustic models for decoding the dev and eval
sets so that we could combine the multiple results after decoding [4]. In this
paper, we just use one set of acoustic models with 40-dim MFCC’s and 2-stream
TDNN-F architecture (for multi-stream architecture see [5]) for decoding the
development (dev) set (we cannot use the eval set since the scoring server at
NIST is closed). These models are the same as those used during evaluation.
The idea here is to test new algorithms to reduce WER using improved language
modeling, better voice activity detector models, and larger vocabulary.

3.1 Enhanced Voice Activity Detector

During the OpenASR21 evaluation [4], we used two voice activity detectors to
segment development and evaluation audio into speech/nonspeech segments: one
based on DNN-HMM architecture, and another based on TDNN architecture [9]
as outlined in Chime6 track2 speech activity detection2. This VAD TDNN has
40-dim MFCC features as input, followed by 3 TDNN layers, followed by 2 layers
of statistics pooling [2], followed by 2 TDNN layers. During the OpenASR21
evaluation, we showed that adding a specAugment layer after the input layer to
this VAD-TDNN results in lower WER for most of the languages [4]. Here we
show that by adding an attention layer [13], we can reduce the WER even more
for most of the languages. The attention layer is added after the 5th TDNN
layer (see Fig. 1). The attention layer has 12 heads, a value dimension of 60, key
dimension of 40, and the number of left and right inputs are 5 and 2 respectively.
The attention layer has a wider context (108 frames of left context and 69 frames
of right context) and it is able to improve speech/non-speech discrimination as
speech and non-speech segments are longer in duration. All the TDNN layers
have an output dimension of 256. Table 1 compares WER with/without the
attention layer in one back-to-back comparison. Except for Swahili, the WER
goes down for the other languages. So the attention layer consistently gives lower
WER. Overall, the WER is reduced on average by 0.3% absolute. The largest
WER reduction is for Cantonese and Georgian (0.7% absolute).

3.2 Enhanced Lexicon

We carried out many experiments to see if adding new words from publicly
downloaded text will reduce word error rates. Public text was heavily filtered

2 https://chimechallenge.github.io/chime6/track2software.html.

https://chimechallenge.github.io/chime6/track2 software.html


SR System for OpenASR21 Low Resource Languages 77

Fig. 1. VAD TDNN with attention. All the TDNN layers have a dimension of 256.

by sentence selection to be similar to the LDC training text [4], and the filtered
text was about the same size as the LDC text (see Language Model Sec. 3.3).
We added new words in this filtered public text to the lexicon. We tried adding
frequency one and frequency two words (words not in LDC lexicon occurring
at least 2 times in the public text) to the lexicon. To be consistent, we ran
all the decoding experiments in this paper with the same acoustic models: LF-
MMI (lattice free MMI) training followed by discriminative training of 2-stream
acoustic models with 40-dim MFCC [4].

One question is how do we add pronunciations for the new words? We know
that the training and test audio are very well transcribed, including the lex-
icon in the LDC build. The LSP (language specific peculiarities) file in the
LDC build contains details about dialects of speakers, any special handling of
spelling, character set used for orthographic transcription, romanization scheme,
word boundary detection, where the transcribers are from, etc. So the text is
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Table 1. WER for the dev set segmented with / without attention layer in VAD-
TDNN. CSS stands for case sensitive scoring. (No LSTM LM rescoring is done.)

Lang no att att Lang no att att

Amharic 38.0 37.7 Mongolian 48.0 47.9
Cantonese 47.3 46.6 Pashto 48.1 47.9
Farsi 52.6 52.4 Somali 59.2 58.9
Georgian 41.4 40.7 Swahili 36.4 36.5
Guarani 42.4 42.3 Tagalog 44.6 44.2
Javanese 53.3 53.0 Tamil 61.0 60.9
Kazakh 47.3 46.9 Kazakh css 53.2 52.8
Kurmanji 65.5 65.3 Swahili css 48.5 48.4
Vietnamese 48.6 48.0 tagalog css 47.8 47.4

probably quite consistent in transcription, and the words in the LDC lexicon
are probably transcribed in a consistent manner. So we did not want to change
the transcriptions in this lexicon. This lexicon is transcribed using X-SAMPA3

phoneme set. To this LDC lexicon, we added pronunciations for the new words
in X-SAMPA using two possible scenarios. In one scenario, we train a G2P [7]
(grapheme-to-phoneme) from the LDC lexicon (or OpenASR21 lexicon for Farsi
and Somali), and then transcribe the new words with this G2P. The second
scenario is to use existing G2P from LanguageNet [6] to transcribe the new
words. The advantage with LanguageNet is that there are finite state transduc-
ers (FSTs) trained for over 120 languages with a large amount of training data
for each language. The problem is that some OpenASR21 languages maybe miss-
ing (Farsi is missing from LanguageNet). Another problem with LanguageNet
is that words are transcribed in IPA symbols, while the OpenASR21 lexicon
is transcribed in X-SAMPA. To overcome this, we transcribed the LDC lexi-
con with the LanguageNet G2P to get a training lexicon with IPA symbols,
and then trained another G2P from it to convert IPA phone sequences into X-
SAMPA phone sequences. With this conversion capability, we transcribed new
words in IPA using languageNet G2P and then converted phoneme sequences in
IPA to phoneme sequences in X-SAMPA. So now we had two enhanced lexicons:
one from new words transcribed using G2P trained from LDC lexicon4, and one
from new words transcribed with LanguageNet G2P in IPA symbols and then
converted to X-SAMPA phone sequences.

We compared the two lexicon with new words added to the LDC lexicon on
Amharic and on Somali. The two lexicons gave very similar WER with a small
preference for G2P trained from LDC lexicon. So we used the G2P trained from
LDC lexicon for the rest of the languages.

3 https://en.wikipedia.org/wiki/X-SAMPA.
4 Note that in many languages, some new words had graphemes that do not occur in

the LDC lexicon, so we removed these new words before transcribing with G2P.

https://en.wikipedia.org/wiki/X-SAMPA
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Table 2 shows for each language the OOV (out-of-vocabulary) rate for the
development (dev) set, and the WER (word error rate) with/without the
enhanced vocabulary. The last column in Table 2 shows the vocabulary size
with/without enhancement. For Amharic, Cantonese and Guarani, we used
words occurring 2 times or more in the public text for adding to the exist-
ing LDC or OpenASR21 lexicon. For the rest of the languages, we added all
the new words occurring 1 time or more in the public text to the LDC or Ope-
nASR21 lexicon. From the table we see that the major benefit from adding the
new words in the lexicon is for languages where the OOV rate is high: Farsi,
Somalese, Kazakh css (case sensitive scoring), Swahili css, and Tagalog css. The
reason for high OOV rate for Farsi and Somali is that there is no LDC pack for
them, so the lexicon derived from the small training text is small. For the case
sensitive scoring languages also there is no LDC pack, so the training text is from
only 10 h of audio. But the OOV rate is higher also because words in training
text are capitalized where necessary, so many words are OOV if the correct case
does not occur in the lexicon.

The decoding scenario for Table 2 is that a 4-gram LM is computed with
SRILM toolkit from the LDC training text (where available) with/without the
enhanced lexicon. The WER shows decoding results with this LM (without
rescoring with LSTM LM).

As we can see from Table 2, decoding with larger lexicon results in WER
reduction for languages where OOV rate is high: Farsi, Somali, Kazakh CSS,
Swahili CSS, and Tagalog CSS. Why should the error rate go down for languages
with larger OOV rate and not for languages with small OOV rate, even though
the likelihood for OOVs in the language model is small (since they are assigned a
low unigram probability as they do not occur in the LDC text)? For large OOV
rate, the words in the enhanced lexicon may come up as top choice despite small
LM likelihoods and reduce WER. While for languages with low OOV rate, there
are many more new words not in the development set, and if these words show
up as top choice, then they will increase the WER. That is why the biggest gain
is for the case sensitive scoring (CSS) languages as their OOV rate is the highest
(between 17.8% and 23.7%), and the OOV rate reduction with enhanced lexicon
is the largest (between 7.6% and 9.7%), as shown in Table 2. Also, the audio for
case sensitive languages is from broadcast audio, and so there is a better match
between publicly available text and the training text.

3.3 Language Model

We will first outline what we have done in language modeling in the past [4] for
OpenASR21 evaluation, and then describe the new improvements. For language
modeling (LM) in the constrained condition, we could use any text publicly
available over the internet. For 13 of the 15 languages, we used the LDC IARPA
Babel language packs from 2016 to 2020 (there were no language packs for Farsi
and Somali). The larger LDC training text together with the larger lexicon
reduced the WER for all the languages. The LDC text is from conversational
speech, and it reduces WER for the dev set significantly as can be seen in [4,19].
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Table 2. OOV rate before and after enhancement, and WER for dev set for each
language without/with enhanced lexicon. The last column shows vocabulary size with-
out/with enhancement.

Lang OOV% no enh with enh vocab no enh/with enh

Amharic 2.0 / 0.7 37.7 38.4 36.9k / 46.5k
Cantonese 1.4 / 0 46.6 46.6 19.9k / 21.2k
Farsi 9.5 / 6.0 52.4 52.3 3.7k / 14.7k
Georgian 1.1 / 0 40.7 42.4 35.2k / 130.7k
Guarani 2.0 / 1.1 42.3 42.5 28.0k / 30.9k
Javanese 1.0 / 0.6 53.0 53.9 15.5k / 44.0k
Kazakh 0.5 / 0.3 46.9 48.4 22.3k / 71.4k
Kurmanji 1.1 / 0.2 65.3 65.6 14.4k / 63.5k
Mongolian 0.5 / 0.5 47.9 48.9 23.9k / 66.9k
Pashto 0.3 / 0 47.9 48.0 18.7k / 77.2k
Somali 9.4 / 7.4 58.9 58.8 9.6k / 29.3k
Swahili 3.7 / 0.7 36.5 37.7 25.2k / 56.9k
Tagalog 1.0/0.8 44.2 45.1 22.6k / 59.1k
Tamil 0.5 / 0.2 60.9 62.0 58.4k / 104.0k
Vietnamese 0.3 / 0.2 48.0 48.1 6.4k / 26.7k
Kazakh css 23.7/14.0 52.8 48.0 15.8k / 69.0k
Swahili css 18.6 / 10.9 48.4 46.3 11.3k / 58.1k
Tagalog css 17.8 / 10.2 47.4 43.9 11.2k / 59.2k

In [4], we also downloaded a significant amount of publicly available mono-
lingual texts from NewsCrawl5 and CommonCrawl6, but this text was primarily
from news and web sources, and not from conversational speech. So this text sig-
nificantly increased the perplexity on the development set for every language. We
had to resort to sentence selection [16] to use only sentences close to the training
text. Through strong sentence selection, we were able to reduce the overall WER
after LSTM LM rescoring for 8 of the 15 languages, and all the case sensitive scor-
ing languages (the audio for CSS languages is from broadcast news) [4].

The team with the lowest WER in the evaluation [19] did not filter the
downloaded text, but they interpolated the 4-gram LM from this downloaded
text with the 4-gram LM from the LDC training text using the SRILM toolkit7.
They were able to reduce WER for 3 of 7 languages after decoding with this
interpolated 4-gram LM.

So the real question is whether we can get additional conversational text that
can reduce the perplexity of most of the languages after 4-gram training? In this

5 https://www.aclweb.org/anthology/W19-5301.
6 https://data.statmt.org/cc-100/.
7 https://www.sri.com/platform/srilm/.

https://www.aclweb.org/anthology/W19-5301
https://data.statmt.org/cc-100/
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paper, we have experimented with Back-translation in order to get additional
independent conversation language model training text for each language. Back-
translation is used in machine translation [15] to generate synthetic data in a
language with scarce resources. Here, since all languages have conversational
speech between two speakers on cell phone, we translated the training text in
each language to the text in all the other languages. We then combined all
translations to a language of interest for generating a 4-gram language model
for that language.

For translation we used the Google translation interface8 in batch mode.
We were able to get translations for 14 of the 15 languages (Google translates
Mandarin but not Cantonese), thus augmenting LM training data 13-fold for
each of these 14 languages. To prepare transcription texts for translation, we
merged utterances from the different channel recordings by concatenating them
in chronological order, to recreate the full conversation. The transcribed text
does not have punctuation marks. We also removed silence and noise markers
from this text. At first we considered each utterance as a sentence, but trans-
lation results in English made more sense when we concatenated all utterances
of a conversation in a single document. Since punctuation marks are added dur-
ing translation, we used them to split the translated document back into short
utterances, then removed the punctuation marks, to make the text similar to
the training transcripts.

We have some examples in English (below) that we generated as spot checks
for languages. For example, from Vietnamese to English (before punctuation
removal):

hello, hello sister Kieu, oh baby, I haven’t eaten yet, have you scratched
there, how do you study and only study is normal? what is that dish? my
husband just let it go so slowly wear the pink shirt and wear it while it’s
okay oh my god what is it oh my god what is it my god what is it that
makes me laugh everyone studied at this time but didn’t go to school at
night, did you go to school tonight,

Similarly, translation from Guarani to English is shown below:

we’ll hear we can talk hello hello hello dear brother what’s up what’s
up brother what are you doing right my friend what’s the door i aka
dehkansándo yeah and here I’ll correct and you what are you doing yeah
correct what’ e here here I’m looking at the movies

Although we cannot actually confirm it, anecdotal evidence suggests that
Google translation uses English as the pivot language9. We can see that the
translation from one language to English is poor, and when English is trans-
lated back to another language, it may still be poorer. But we found that in
terms of language modeling, this text reduced perplexity more than using the

8 https://cloud.google.com/translation-hub.
9 https://www.teachyoubackwards.com/extras/pivot/.

https://cloud.google.com/translation-hub
https://www.teachyoubackwards.com/extras/pivot/
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downloaded news related text from the internet even after strong filtering. We
generated three 4-gram’s from three sources: LDC alone (LDC), translated text
from 13 languages combined (Trans), and the downloaded and filtered text from
the internet (Sel). We then generated two interpolated language models: LDC
interpolated with Trans (LDC·Trans), and LDC interpolated with Trans and
Sel (LDC·Trans·Sel). The “ ·” symbol is used here for interpolation. The optimal
interpolation weights are found by the iterative E-M (expectation-maximization
algorithm) estimation of SRILM. The perplexity and word error rate (WER) for
the three 4-grams is shown in Table 3. So for example, in Table 3, perplexity for
Amharic dev set with language model trained from LDC is 404, and the WER is
37.7%, perplexity with interpolated LDC·Trans is 394, and the WER is 37.6%,
while perplexity with the interpolated LDC·Trans·Sel is 393, and the WER is
37.6%. As can be seen from the Table, we were able to reduce WER for 10 of
the 14 languages.

Even though differences reported in Table 3 seem small, the test sets are large
samples, between 60K and 112K words for each language, so that confidence
intervals10 for these results range from ±0.20% to ±0.28%. The differences are
significant at a 95% level for Farsi, Pashto, Swahili and Vietnamese while for the
other languages the differences are not so significant.

Table 3. Perplexity (PPL) and word error rate (WER) for the dev set for each language
for 4-gram LMs from LDC, LDC·Trans, LDC·Trans·Sel. No LSTM LM rescoring is
done.

Lang LDC LDC·Trans LDC·Trans·Sel Interp. weights
PPL / WER PPL / WER PPL / WER LDC Trans Sel

Amharic 404 / 37.7% 394 / 37.6% 393 / 37.5% 0.885, 0.073, 0.042
Farsi 231 / 52.3% 221 / 52.0% 221 / 52.0% 0.823, 0.153, 0.024
Georgian 477 / 40.7% 466 / 40.6% 464 / 40.6% 0.884, 0.070, 0.046
Guarani 251 /42.3% 249 / 42.3% 249 / 42.2% 0.945, 0.036, 0.019
Javanese 271 / 53.0% 269 / 53.1% 269 / 53.2% 0.946, 0.039, 0.015
Kazakh 267 / 46.9% 257 /46.8% 257 / 46.7% 0.874, 0.097, 0.029
Kurmanji 174 / 65.3% 170 / 65.3% 170 / 65.3% 0.904, 0.096, n/a
Mongol 169 / 47.9% 166 / 47.8% 164 / 47.7% 0.897, 0.058, 0.045
Pashto 163 / 47.9% 162 / 47.5% 161 / 47.4% 0.931, 0.034, 0.035
Somali 279 / 58.8% 261 / 59.0% 261 / 59.0% 0.800, 0.179, 0.021
Swahili 319 / 36.5% 306 / 36.3% 305 / 36.2% 0.852, 0.094, 0.054
Tagalog 155 / 44.2% 152 / 44.5% 152 / 44.4% 0.899, 0.067, 0.034
Tamil 769 / 60.9% 765 / 60.8% 763 / 60.8% 0.951, 0.016, 0.033
Vietnam 144 / 48.0% 143 / 48.0% 140 / 47.8% 0.885, 0.013, 0.102

10 We use an 83% confidence interval computed with the Wilson score binomial interval,
so that non-overlapping intervals represent a 95% significant difference between the
two results [3].
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Due to the poor quality of the translation (language → English → another
language), the improvement with the translated text is small. However, if we
can somehow find two way conversations in English, then we should do much
better. It just happens that the switch board11 data, the call home12 data, and
the Fisher corpus13 is just that data. These corpus contain millions of words of
text. Maybe translating them may lead to appropriate conversational text that
can lead to significant reduction in WER. We can even filter this text to be close
to the conversations in the training text, and still have a significant amount of
additional training text left over. However, we have not exploited this avenue
yet.

The final issue is whether all the above improvements (voice activity detector,
enhanced lexicon, and translated text) result in significant reduction in WER
after LSTM LM rescoring compared to the previous results with LSTM LM
rescoring where LSTM LM was trained from LDC + public text or LDC text
alone [4]. What we found was that decoding with LDC·Trans·Sel LM followed
by rescoring with LSTM LM trained from LDC + translated + filtered public
text resulted in lowest WER for Amharic and Farsi. For Guarani and Kazakh,
decoding with LDC·Trans LM and rescoring with LSTM LM trained from LDC
+ filtered public text gave the lowest WER. For other languages, decoding with
LDC LM and rescoring with LDC + public text lead to the lowest WER for the
dev set. For the case sensitive languages, decoding with 4-gram LM from LDC +
public text with enhanced vocabulary, and rescoring with LSTM LM from LDC
+ public text resulted in the lowest WER. The best WER on dev set in [4] and
with all the improvements in this paper is shown in Table 4. For Kurmanji and
Swahili, there is no improvement because enhanced VAD, increased vocabulary,
translated text and filtered public text did not contribute to WER reduction.
So the conversational LDC text for these languages is probably quite different
from the text for other languages, and the translation maybe of poor quality. In
Table 4, we also compare our results on the dev set for single decode with those
of [19] (Table 1, column 1). We can see that we got lower WER for the dev set
for three languages: Farsi, Kazakh, and Tamil. For many other languages, our
WER for the dev set single decode is close to that in [19].

We also computed confidence intervals for our improvements in WER in
Table 4 in a similar manner as for Table 3. The results after the improvements
are 95% significant for 13 out of 18 languages14 (Amharic, Cantonese, Farsi,
Georgian, Kazakh, Pashto, Somali, Tagalog, Tamil, Vietnamese, Kazakh css,
Swahili css and Tagalog css). When we make a similar comparison of our best
WER with the WER in [19], our WER is better than or same as in [19] for 6
out of 15 languages (Farsi, Javanese, Kazakh, Pashto, Tagalog and Tamil) and
worse for 9 out of the 15 languages.

11 https://catalog.ldc.upenn.edu/LDC97S62.
12 https://catalog.ldc.upenn.edu/LDC97T14.
13 https://catalog.ldc.upenn.edu/LDC2004T19.
14 We assumed confidence intervals in the same range for Cantonese and the three

case-sensitive languages as the other languages since they have similar test sizes.

https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC97T14
https://catalog.ldc.upenn.edu/LDC2004T19
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We also tried to fine tune the LSTM LM language model with LDC training
text using a small learning rate. But in each case, we only achieved a 0.1%
reduction in WER. The major effect was whether LSTM LM was trained with
LDC + translated + filtered public text, or LDC + filtered public text. Another
important factor was whether the decoded lattices for rescoring with LSTM LM
were generated from LM trained with LDC alone, or from LDC·Trans·Sel, or
from LDC + public text with enhanced vocabulary (as described in the previous
paragraph).

Table 4. WER for the dev set before and after all the improvements in this paper.
CSS stands for case sensitive scoring. Numbers in bold show whether WER before or
after was significantly lower. Numbers in underline show that the WER in ref [19] was
significantly lower.

Lang before After from ref [19] Lang Before After from ref [19]

Amharic 37.2 36.1 35.0 Mongolian 46.4 46.3 45.4
Cantonese 45.6 45.0 42.3 Pashto 45.7 45.3 45.2
Farsi 51.7 50.8 52.4 Somali 58.6 57.4 55.9
Georgian 40.3 39.2 37.5 Swahili 34.6 34.7 32.3
Guarani 40.9 40.8 39.0 Tagalog 42.8 42.3 42.1
Javanese 52.0 51.9 51.9 Tamil 60.3 59.4 61.0
Kazakh 45.9 45.2 46.1 Kazakh css 51.9 46.0
Kurmanji 64.1 64.1 63.7 Swahili css 47.6 44.2
Vietnamese 47.0 46.3 43.9 Tagalog css 46.3 41.4

4 Conclusion

We participated in all the 15 low resource languages and the three languages
with case sensitive scoring in the OpenASR21 Challenge for the constrained
condition. In the past, use of downloaded public text has shown small reductions
in word error rate (WER) primarily due to mismatched domains (conversational
speech versus news sources). We show that we can achieve small reductions in
WER by translating training text from other languages in OpenASR21 to the
target language. The small improvement is possibly due to the quality of the
translation. Translation is the way to possibly improve the language models in
low resource languages for conversational speech, since a significant amount of
conversational text is available in English (for example, switchboard, call home,
Fisher corpus etc.).

We show that we can reduce the WER for a DNN-based voice activity
detector by adding an attention layer to the DNN architecture. We also show
that increasing the vocabulary for languages in OpenASR21 with high out-of-
vocabulary rate reduces the WER significantly.
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Overall, for 13 of 18 languages, we reduced the WER for the single decode of
the dev set when we combine the three enhancements. For Kazakh css by 5.9%
(absolute), for Tagalog css by 4.9%, for Swahili css by 3.4%, for Somali by 1.2%,
for Amharic and Georgian by 1.1%, for Farsi and Tamil by 0.9%, for Kazakh
and Vietnamese by 0.7%, for Cantonese by 0.6%. These WER reductions are
significant in the evaluation scenario.

Acknowledgments. The authors would like to thank Ministry of Economy and Inno-
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Abstract. This paper presents the results of experiments conducted during devel-
opment of an automatic speech recognition system for the low-resource Karelian
language (Livvi-Karelian dialect). The main issues addressed within this work are
related to acoustic modeling, viz. the treatment of long and short phonemes. There
are two approaches to modeling phonological duration in the so-called quantity
languages: representation of long and short phonemes as distinct units, and inter-
pretation of long phonemes as reduplicated. There is currently no consensus on
which strategy is the most promising. The Livvi-Karelian case is further compli-
cated by the fact that the phonology ofKarelianwas heavily influenced byRussian,
so that a direct transfer of the methods applied to other Balto-Finnic languages is
questionable. In the course of the study, experiments were conducted with both
approaches, showing that treating long phonemes as reduplicated outperforms the
approaches implying introduction of long and short counterparts in the phoneme
set. The usage of alternative transcriptions for words with long consonants further
improved the recognition accuracy. In addition, the present study contributes to
the application of DNN approaches to the tasks of language and acoustic model-
ing in low-resource languages. In the future works, it is planned to improve the
performance of the developed system with transfer techniques and advanced data
augmentation procedures.

Keywords: Low-Resource Languages · Automatic Speech Recognition ·
Livvi-Karelian · Phoneme Duration Modeling

1 Introduction

Automatic speech recognition (ASR) systems play an important role in various domains,
such as the development of voice assistants, speech-to-text applications and language
learning tools. For a variety of languages, however, the accurate modeling of phoneme
durations is crucial for ensuring high recognition accuracy, as the duration of phonemes
can carry important linguistic information. The aim of this paper is to investigate and
compare two distinct approaches for acoustic modeling in quantity languages (i.e., lan-
guages with phonemic distinction between long and short sounds): modeling long and
short phonemes as separate units versus representing long phonemes as a sequence of two
(or more) short phonemes. The research is conducted on the data from the low-resource
Karelian language (Livvi-Karelian dialect).
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Among themain tasks of this research are evaluating the accuracyofword recognition
(WERmetrics) when using separatemodels for long and short phonemes, and comparing
this approach with modeling long phonemes as reduplicated units.

In the following sections of the paper, a detailed description of the current approaches
to the problem is provided, the collected database and the experiments conducted are
presented. The obtained results, including the analysis of the advantages and limitations
of different approaches to modeling long and short phonemes in Livvi-Karelian ASR, is
discussed among other things. In the conclusion, the research findings and their practical
significance, as well as future work projects are outlined.

2 Related Work

2.1 Speech Recognition for Low-Resource Languages

Nowadays, there are twomain approaches to development of ASR systems: “traditional”
and end-to-end approaches. In the traditional approaches, ASR system is compound of
several components: acoustic model (AM), language model (LM), and Pronunciation
model (PM). The AM is responsible for mapping acoustic features of each frame to
phonetic units, specifically phonemes. The LM associates the phoneme sequence gen-
erated by the AM with the sentence having the highest probability. On the contrary, in
end-to-end ASR systems there is a single neural model transforming the speech signal
to sequence of words [1–3]. Although end-to-end is a state-of-the-art approach showing
better performance in terms of decoding speed, it typically requires large training data,
and its performance has not surpassed that of traditional models in low-resource speech
recognition tasks [4]. Thus, the end-to-end approach is not applicable to low-resource
languages, that is, languages for which little data (regarding natural language processing
tasks) exists by definition.

Currently, deep neural networks (DNNs) are extensively employed for training both
acoustic and language models in ASR systems. For acoustic modeling DNNs are often
combined with Hidden Markov Models (HMMs), thus forming hybrid DNN/HMM
model. This approach has gained popularity due to its high performance in various
applications. For instance, in [5], hybrid DNN/HMM acoustic models were employed
for a Sinhala language ASR system. The results demonstrated that these models out-
performed HMMs based on Gaussian Mixture Models (GMMs) by achieving a 7.48%
improvement in word error rate (WER) on the test dataset.

In another study [6], experimentswere conducted onmultilingual speech recognition,
focusing on low-resource languages includingNorthAmericanCree and Inuit languages.
The researchers investigated the use of factorized time delay neural networks (TDNN-
Fs) in hybrid DNN/HMM acoustic models. The findings indicated that this architecture
outperformed LSTM-based networks in terms ofWER. Similar conclusions were drawn
in [7] for the Somali language dataset.

Anumber of papers addressing languages of India has showneffectiveness ofTDNNs
in tasks related with low-resource ASRs. For example, the authors of [8] presented
research of the application of TDNNs, comparing them with bi-directional residual
memory networks (BRMN) and bi-directional LSTM. They reported WER of 13.92%,
14.71%, and 14.06% for Tamil, Telugu, and Gujarati, respectively, using the TDNN
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and BRMN systems. The authors employed a Kneser-Ney 3-g LM in their study. The
introduction of low-rank TDNN with skip connections resulted in an improvement of
0.6–1.1% over the baseline TDNN.

The paper [9] explored the phonetic characteristics relevant to enhancing ASR per-
formance in low-resource Indian languages. They proposed a multilingual TDNN sys-
tem based on phonetic information. The researchers used a speech corpus provided by
Microsoft to construct a system for Gujarati, which exhibited a gradual reduction in
WER from GMM (16.95%) to DNN (14.38%) and further to TDNN (12.7%) systems.

Language modeling for low-resource languages is typically performed by n-gram
models and recurrent neural network (RNN) based models, with n-gram being applied at
the decoding stage, andRNN-basedmodel being applied at theN-best or lattice rescoring
stage. For example, this approach was used in [10] for the Sesotho and Zulu languages.
The advantage of RNN-based LMs is that they can store the whole context preceding
the given word in contrast to feed-forward NNs and n-grams, which store a context of
restricted length. It was shown in a range of works, that these types of models have lower
perplexity and allows achieving lower WER [11, 12].

Phonemic vocabulary of anASR system is usually developed automatically by apply-
ing some rules converting a sequence of graphemes (letters) to a sequence of phonemic
symbolswhich represent the sounds of speech.When developingASR systems forBalto-
Finnic languages, such as Estonian and Finnish, it is important to consider such features
of these languages, as phoneme quantity distinctions. The next section provides the
reader with a notion of different approaches to phoneme quantity modeling in ASR for
Balto-Finnic languages, focusing on the Finnish and Estonian languages as illustrative
examples.

2.2 Approaches to Phoneme Duration Modeling

In Balto-Finnic languages both vowels and consonants exhibit short, long, and overlong
(Estonian) quantity degrees [13]. Often these languages are referred to as “quantity
languages” due to a significant role of phoneme quantity degrees (as well as other
prosodic features like stress and tone). For instance, the variation in the realization of
the vowel /a/ as short, long, or overlong in Estonian can result in different meanings
for words such as kalu (‘fish’, partitive plural), kaalu (‘weight’, genitive singular), and
kaa:lu (‘weight’, partitive singular).

Duration functions in a tool of encoding linguistic information in quantity languages.
While some languages, including English, use duration primarily for prosodic purposes
such as stress and boundary signaling, quantity languages utilize duration to distinguish
between lexical units (see the example above). Studies on various quantity languages
have shown that the durational ratios between short and long phonemes remain relatively
stable across different articulation rates, indicating their perceptual significance [14].
Absolute durations alone may not be sufficient to convey the quantity distinction, but
rather, durational ratios and other acoustic cues contribute to the perception of quantity
[15].

When modeling phoneme quantity, researchers typically do not treat different
quantity degree representations of the same phoneme type as separate phonological
units. Instead, they are represented as one or a sequence of two instances of the
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same phoneme [16]. The main reason for this approach is that the determination of
long/short and long/overlong quantity degrees goes beyond the characteristics of individ-
ual phoneme realizations. It depends on the prosodic variables of neighboring syllables
and the over-all syllable/word structure.

Another approach implies treating long/short long/overlong as independent
phonemes. For example, in [17] distinctive models for short and long variants of all
phones (except /j/) were developed for Estonian. However, the distinction between long
and overlong duration is argued to be difficult to model and thus was ignored in acoustic
modeling by the authors, being unnecessary in written word forms, as they are not visible
in orthography except for a few exceptions.

To model long and short durational ratios, a direct expansion of HMM by including
an explicit duration model was used in [18], resulting in what is known as hidden
semi-Markov models (HSMMs). Other approaches use forced alignment HMM for the
computation of duration features [19, 20]. Consequently, HMM states can be expanded
into sub-HMMs that share the same acoustic emission density, allowing for explicit
modeling of state durations. This modified model is referred to as the expanded state
HMM[21]. Unfortunately, both of these techniques tend to reduce recognition efficiency,
as stated in [22, 23].

During the current research the authors investigate the modeling of long sounds
by selecting appropriate phoneme set taking into account phoneme duration without
modification of HMM framework and topology for Livvi-Karelian ASR.

3 Karelian Text and Speech Corpus

Text and speech corpora are used for training ASR system. The text corpus used within
this study is based on the data obtained from publications and journals in Livvi-Karelian.
In addition, some texts were imported from the open corpus of Vepsian and Karelian
VepKar [24]. Another source for text data were transcripts of audio samples from the
training part of speech corpus (see below). The text corpus encompasses diverse styles
of speech, such as literary, reportage, and colloquial. A portion of the texts were initially
in.pdf format and required semi-automatic text recognition for further processing. All
texts were eventually made available in.txt format.

During the preparation of the corpus, the data underwent processing and normaliza-
tion procedures. This involved segmenting texts into sentences, and converting direct
and indirect speech clauses into independent sentences.

Further text modifications were made as well. All texts enclosed in brackets were
removed, capital letters were converted to lowercase, and punctuation marks were
removed. In earlier Karelian editions the grapheme “ü” can be found, and additional
work was made to substitute it with “y”. To ensure the integrity of the textual data, a
thorough assessment was conducted to identify duplicate sentences, as the texts were
obtained from different sources, so that the duplication of content was highly plausible.
The corpus encompassed approximately 5M word occurrences.

One way of speech corpus collection in scenarios involving low-resource languages,
established methodologies often involve the active participation of speakers (readers)
who read prepared utterances or a coherent text. Another effective approach for col-
lecting speech data entails utilizing freely accessible speech resources. In the present
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study, speech data was acquired from radio broadcasts in Livvi-Karelian. A total of 10
broadcasts were used, each broadcast structured in an interview format, featuring a min-
imum of two speakers (the interviewer and an interviewee). It should be noted that in
some broadcasts more than two speakers were present, and interviewers occasionally
participated in more than one broadcast. However, no interviewee took part in recording
sessions twice. Thus, the recorded speech corpus encompassed 15 speakers, comprising
6 men and 9 women.

The recorded speech data underwent transcription and segmentation (divided into
separate statements) procedures conducted by experts in Livvi-Karelian. One significant
problem encountered during annotation of texts was simultaneous speech issues, i.e.,
simultaneous speech from multiple speakers, with interruptions or overlapping. Manag-
ing speech overlaps is a complex task, and therefore, phrases containing simultaneous
speech of two speakers were excluded from the corpus.

Background noise constituted another factor that hindered the development of
the audio corpus. Despite utilizing studio quality recordings, of background noise
(music, sounds of turning pages, street noise) were detected. All recordings containing
background noise were ultimately removed from the database.

A notable feature of modern Karelian is code-switching [25]. In linguistics, this
term generally refers to the spontaneous transition from one language to another. The
processing of code-switching in speech recognition demands specialized approaches that
were not initially planned for implementation in the system’s development. Therefore,
all utterances featuring code-switching were excluded from the speech corpus as well.

Proper names present a distinct problem, as they are predominantly borrowed from
the Russian language and pronounced according to the Russian phonetic rules. Specif-
ically, stress patterns in names exhibit variability in line with Russian pronunciation.
While this problem has yet to be resolved, the most rational solution appears to be
compiling a separate dictionary specifically for proper names and transcribing them in
accordance with Russian phonetics.

After excluding spoiled segments, the resulting speech corpus amounted to a total
duration of more than 3 h (3,819 sentences). The corpus was randomly divided into
training and test sets, with 90% of the phrases assigned to the training set and 10% to
the test set.

Data augmentation served as an additional tool for expanding the speech data. In
this study, augmentation was exclusively applied to the training portion of the speech
corpus, utilizing the Sox toolkit [26]. A tempo perturbation augmentation technique
was applied to the speech data, the speech rate was varied using a randomly generated
coefficient from a uniform distribution ranging between 0.7 and 1.3 for each recording.
The augmented speech data was further combined with the authentic training data. As a
result, the overall duration of the training data increased from 3 h and 8 min to 6 h and
24 min.

4 Development of a Phonemic Vocabulary

Oneof the essential prerequisites for developing an automated speech recognition system
is the availability of a phonemic transcription dictionary containing words employed
by the system. For this purpose, it is necessary to determine a set of phonemes. The
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main problem arising when creating phoneme set for Karelian is how to treat long
sounds. During the current research several types of phoneme alphabet for Karelian
were investigated:

– without distinguishing the long sounds (v1);
– treating the long sounds as independent phonemes (v2);
– long vowels are treated as independent sounds, long consonants are treated as

reduplicated of the given sound (v3);
– long vowels, as well as long sonorants and fricative consonants are treated as inde-

pendent sounds, long plosive consonants are treated as reduplicated phonemes (v4).

It should be noted that in all variants of phoneme set, distinctions were made
between stressed and unstressed phonemes, additionally, the back row allophone of
the /i/ phoneme was considered as an independent phoneme (/i^/). As for consonants,
both palatalized and non-palatalized variants were distinguished. The lists of phonemes
used in phoneme sets are presented in Table 1. The transcriptions follow the Interna-
tional Phonetic Alphabet (IPA); additionally, the symbol /!/ indicates word stress, and
the symbol /’/ represents consonant palatalization. Symbol /:/ means long sound in these
phoneme set variants, which distinguish long phonemes as separate phonemes.

There are two main issues to be noted. Although not all phonemes in the standard
Livvi-Karelian have long counterparts, some Livvi-Karelian idioms (mainly, local vari-
ants) and borrowings from Russian exhibit long phonemes that are not present in the
system of the standard Livvi-Karelian. Due to their infrequent use, it is quite difficult
to train acoustic models for such “non-native” long sounds. As a consequence, separate
phonemes for these sounds were not introduced (for example, the word seemejärven
was transcribed as /s’ e! m’ e j ae r v’ e n/). However, when treating long sounds as
a sequence of two short phonemes, the “non-native” long phonemes were presented as
two separate phonemes (for example, subbotin was transcribed to /s u! b b o t’i n/).

The second issue is that in spontaneous speech durational ratios are often reduced,
and long soundsmay be pronounced as short ones. This is especially true for long Plosive
consonants that should be pronounced as two separate sounds, but the second sound is
often subject to elision. This is illustrated in Fig. 1 where examples of two realizations
of phoneme /k’/ in the word kaikkie are shown. In Fig. 1a this sound is realized as a
two-sound cluster, one can see repetition of closure and explosion on the waveform.
In Fig. 1b, the second sound is omitted and the long phone is realized as a short one.
Therefore, when creating phonemic transcriptions for words with long consonants and
when treating long sounds as reduplicated ones, two alternative transcriptions were
created, namely, a transcription with a reduplicated sound and a transcription with one
sound. For example, forword “kaikkie” two transcriptionswere generated: /k a! i k’ k’ i e/
and /k a! i k’ i e/.

All transcriptions for the vocabulary were created automatically using a software
module developed for grapheme-phoneme transformation for Livvi-Karelian. Due to the
inherent limitations of automatic recognition techniques for printedKarelian texts,words
that occurred only oncemost often turned out to be incorrectly recognized. Therefore, the
dictionary includes all words from the transcripts of the training part of speech corpus
and words from other sources that were attested at least twice. The final size of the
dictionary was 143.5 thousand words.
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Table 1. Types of phoneme sets.

Type of phoneme set Number of phonemes Type of phonemes Phoneme List

v1 53 Vowels Stressed /a!/, /o!/, /u!/, /i!/,
/i^!/, /e!/, /ae!/, /oe!/,
/y!/

Unstressed /a/, /o/, /u/, /i/, /i^/,
/e/, /ae/, /oe/, /y/

Consonants Sonorant /l/, /l’/, /m/, /m’/, /n/,
/n’/, /r/, /r’/, /j/

Fricative ch/, /ts/, /h/, /h’/, /f/,
/f’/, /s/, /s’/, /sh/, /z/,
/z’/, /zh/, /v/, /v’/

Plosive /b/, /b’/, /d/, /d’/, /g/,
/g’/, /k/, /k’/,/p/, /p’/,
/t/, /t’/

v2 90 Vowels Stressed v1 + /a:!/, /o:!/,
/u:!/, /i:!/, /i^:!/,
/ae:!/, /y:!/

Unstressed v1 + /a:/, /o:/, /u:/,
/i:/, /i^:/, /ae:/, /y:/

Consonants Sonorant v1 + /l:/, /l’:/, /m:/,
/m’:/, /n:/, /n’:/, /r:/,
/r’:/

Fricative v1 + /ch:/, /ts:/,
/h’:/, /s:/, /s’:/, /sh:/,
/v:/, /v’:/

Plosive v1 + /d’:/, /k:/,
/k’:/,/p:/, /p’:/, /t:/,
/t’:/

v3 67 Vowels Stressed v2

Unstressed v2

Consonants Sonorant v1

Fricative v1

Plosive v1

v4 83 Vowels Stressed v2

Unstressed v2

Consonants Sonorant v2

Fricative v2

Plosive v1
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Fig. 1. Examples of realization of long phoneme /k’/: a) the long sound is pronounced as two
sounds; b) the long sound is pronounced as one sound.

In the case of the Karelian language, generating automatic transcriptions represents
a relatively straightforward task. This arises from the fixed stress patterns in Karelian,
which consistently fall on the initial syllable, while vowel reduction is infrequent. As
a result, the automatic transcription process primarily deals with stress localization,
identifying dual graphemes as representations of long phonemes, and finding palatalized
consonants preceding front vowels.

5 Karelian ASR System

5.1 Acoustic Modeling

Training and testing of a Karelian ASR system was carried out using the Kaldi
toolkit [27]. The architecture of the system is shown in Fig. 2.

Hybrid DNN/HMMs acoustic models based on factorized time-delay neural network
(TDNN-F) were used. Mel-frequency cepstral coefficients (MFCCs) with additional
100-dimensional i-vector [28] were used as input features to the network.

The core structure of the DNN consisted of three TDNN-F blocks. The initial block
was made up of three TDNN-F layers, responsible for processing input vectors (time
context of {−1, 0, 1}). The next block was a single TDNN-F layer (no splicing). The
last block comprised ten TDNN-F layers (time context of {−3, 0, 3}). Each TDNN-F
layer had a dimension of 1024, with a bottleneck of 128.
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Fig. 2. The Karelian Speech Recognition System.

ARectifiedLinearUnit (ReLU) activation function andbatch normalization followed
each TDNN layers in TDNN blocks. Utilizing skip connections [29], the TDNN layers
incorporated the output of each layer (excluding the first layer) by concatenating it
with the output of the previous layers. After the TDNN-F layers, a linear layer with
a dimension of 256 was employed. The learning rate dynamically adjusted during the
training process, starting at 0.0005 and decreasing to 0.00005. The training process was
performed in 8 epochs.

5.2 Language Modeling

Both n-gram and LSTM-based LMs were developed, a linear interpolation of these
models was made as well. 3-g LM was trained using SRI Language Modeling Toolkit
(SRILM) [30]. This model was used at the decoding stage.

LSTM-based LM was trained with the use of TheanoLM toolkit [31]. Experiments
were conducted with models with 1, 2 and 3 LSTM layers, the size of LSTM layers was
512. In the models with 2 and 3 LSTM layers dropout at rate 0.5 between LSTM layers
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was applied. Optimization criteria was Nesterov Momentum. The initial learning rate
was equal to 1. The stopping criteria was “no-improvement”, which means that learning
rate is halved when validation set perplexity stops improving, and training is stopped
when the perplexity does not improve at all with the current learning rate [31]. The
maximum number of training epoch was 15.

6 Experiments on Karelian Speech Recognition

The results of experiments on Karelian speech recognition are presented in Table 2.
Experiments with different types of phoneme sets, as described above, were conducted.
When applying phoneme set v3, two types of phonemic transcriptions were applied:
those with alternative pronunciation variants for reduplicated consonants and those with
a single pronunciation variant. At the decoding stage 3-g LMwas applied, while LSTM-
based LM and interpolated models were used at the stage of 500-best list rescoring. In
the Table 2 the interpolation coefficient of 0 means that only 3-g LM was used (without
500-best list rescoring). In contrast, interpolation coefficient of 1.0 means that 500-best
list rescoring was performed using only LSTM LM.

Table 2. Results of Karelian Speech Recognition in Terms of WER, %

Type of phonemic transcription Interpolation coefficient for LSTM LM

0 0.5 0.6 0.7 0.8 0.9 1.0

v1 27.40 24.78 24.70 24.54 24.78 24.86 25.02

v2 26.29 23.63 23.51 23.55 23.43 23.31 23.51

v3 (without alternative transcriptions
for words with long sounds)

25.93 23.43 23.39 23.24 23.24 23.31 23.28

v3 (with alternative transcriptions for
words with long sounds)

25.57 23.04 22.80 22.88 23.08 23.39 23.67

v4 (with alternative transcriptions for
words with long plosive consonants)

25.69 23.67 23.47 23.67 23.87 24.03 24.31

As can be seen from the Table 2, phoneme set with reduplicated consonants (v3)
demonstrated better results than this treating long consonants as distinct phonemes (v2).
Additionally, the results obtained with this type of phoneme set were better than when
using only reduplicated phonemes for plosives. The usage of alternative transcriptions
for words with long consonants resulted in additional performance improvement. The
best speech recognition results were achieved after rescoring of 500-best list with LSTM
LM interpolatedwith 3-g LM.Application of LSTM-based LM interpolatedwith n-gram
LM with interpolation coefficient of 0.6 for N-best list rescoring resulted in 11% WER
relative reduction.
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7 Conclusions and Future Work

This paper presents an investigation of different approaches to acoustic modeling for a
Livvi-Karelian ASR, focusing on phoneme durations representation issues. Two main
approaches were compared within the study: modeling long and short phonemes as
separate units vs. representing long phonemes as a sequence of two (or more) short
phonemes. The experiments were conducted on a dataset collected by the authors of this
paper, and the main metric for evaluation of the results obtained was WER.

The results of experiments have shown, that treating long phonemes as reduplicated
units, specifically for plosive consonants, demonstrated superior performance over the
approach implying differentiation of long and short phonemes. The usage of alternative
transcriptions forwordswith long consonants further improved the recognition accuracy.

Additionally, different language modeling techniques, including n-gram and LSTM-
based models, were investigated. The experiments showed that incorporating LSTM-
based language models, especially when interpolated with n-gram models, significantly
reduced the WER and improved the overall performance of the developed ASR.

Overall, the idea of using hybrid DNN/HMMs AM with TDNN-Fs combined with
LSTM-based LM, demonstrated its effectiveness for processing low-resource languages.
The system achieved promising results in WER despite the relatively small amount of
training data.

Although the present research has provided positive results in the acoustic and lan-
guagemodeling approaches for low-resource speech recognition, there are several issues
to be addressed in future work that can potentially enhance the system’s performance:

• Data augmentation: in the experiments, tempo perturbation technique was applied
to data augmentation. However, exploring other augmentation techniques, such as
spectrogram modification or data generation, could improve the robustness of the
developed ASR.

• Incorporating prosodic features: Livvi-Karelian, being a quantity language, relies
not only on phoneme durations but also on other prosodic features like stress and
tone, to convey different semantical nuances. Future work can explore the embed-
ding of different prosodic models into the current system to process Livvi-Karelian
speech more accurately. Additionally, using more advanced techniques, such as hid-
den semi-Markov models, may result in better representation of phoneme durations
and improvement of recognition accuracy.

• Knowledge transfer from other (Balto-Finnic) languages: the techniques and
approaches used in this study canbe enhanced throughmodels developed for other lan-
guages sharing similar phonetic and prosodic characteristics. Investigating the appli-
cability of the data from other (Balto-Finnic) languages, viz. Languages with quantity
distinctions as well as the usage of pre-trained multilingual model can contribute to
the developed system.

By addressing these issues in future works, the authors of this paper are going to
contribute to the development of robust and accurate ASRs for low-resource languages.
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Abstract. Automatic speech recognition is a mature speech technology,
almost able to attend human label recognition performance conditioned
on the availability of sufficient labeled training data. However, the perfor-
mance of the system struggles to achieve deployable performance in the
under-resourced scenario. In such a scenario, most of the work suggests
traditional frameworks are preferable over state-of-the-art deep learning
frameworks. This work creates a dataset for the Lambani language of 6
hours duration, and attempts to develop an ASR system. The system
provides a character error rate (CER) of 39.1% and 24.1% using the
GMM-HMM framework and TDNN framework, respectively for Lam-
bani dataset. The language doesn’t have enough publicly available speech
and corresponding text transcription resources of its own. Motivating by
the same, this work uses the publicly available wav2vec2.0 (W2V) pre-
trained model (trained on 23 Indian languages’ unlabeled speech data)
and fine-tuned it with the labeled data of the Lambani language. After
that using the fine-tuned framework as a non-linear feature extractor,
the ASR task is performed with GMM-HMM and TDNN framework.
The proposed approach provides a relative improvement of 53.4% and
32.1% for the GMM-HMM and TDNN frameworks, respectively.

Keywords: Lambani · Wav2vec2.0 · GMM-HMM · TDNN · W2V
Features · MFCC

1 Introduction

Automatic speech recognition (ASR) system converts the spoken utterances to
the corresponding textual form. Generally building the state-of-art ASR systems
requires a large amount of transcribed speech data having speaker variability,
a pronunciation dictionary, and a large amount of text data for building the
language model. However, it is difficult to get such repositories for an under-
resourced language. On the other hand, to avoid the digital divide and encourage
people to use speech-based applications in their own language, it is essential
to develop ASR in such languages. Further, such technological intervention in
their own language encourages people to use their own language, instead of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 100–113, 2023.
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adopting to a resource-rich language. This may help in minimizing the conversion
of the resource scare language to the dead language. With this motivation, this
work initially attempts to create a dataset suitable for ASR development for the
Lambani language. Lambani is a spoken language, doesn’t have a written script,
and is spoken by the tribal community of Western and Southern parts of India.

Gaussian Mixture Model (GMM)-Hidden Markov Model(HMM) and Time
Delay Neural Network (TDNN) [13] are known to be the state-of-art classical
approaches for building a speech recognition system. As these approaches do
not require a high amount of data, these approaches may be suitable for under-
resourced settings [13]. To further improve the performance, the improvement
can be done in either of the three levels of the ASR framework, i.e. feature level,
modeling level, and decision/hypothesis level. Out of these, this work focuses on
the feature level to improve the ASR performance in under-resourced settings.

In wav2vec2.0 in the pretraining stage, the network is trained to predict the
masked sub-word units in order to learn about the contextual information [9–11].
In [5], they have shown that when such a learned wav2vec2.0 pre-trained model
is used for fine tuning on low-resourced settings it gives a decent performance.
Taking motivation from there, in our work, we are using a fine tuned W2V
model that has been trained on 23 Indian languages and 10, 000 hours of data
as a feature extractor. These extracted features are used for GMM-HMM and
TDNN training for low-resourced settings in order to get improved performance

The rest of the paper is organized as follows:- Section 2 gives a description
of how the lambani corpora was built. Section 3 shows the proposed framework
for this paper. Section 4 gives a brief description about the available resources.
Section 5 shows the results obtained using MFCC and speech representation
extracted from self-supervised wav2vec2.0 approach. Finally, Sect. 6 concludes
the report.

2 Building Lambani Corpora

2.1 Text Data Collection

Lambani is a language which has a spoken form, but written form of Lambani is
not available. So, the written form of Lambani had to be prepared with a lot of
manual effort and time. We had to make sure that the native Lambani speakers
could articulate the words easily. So, initially 1000 English sentences containing
a swadesh list [16] of words were prepared taking help from a Linguist. These are
4 to 10 word sentences. Examples of short and long sentences from the swadesh
list include “All kids want sweet” and “Before I went to her house I changed
my clothes”. An ASR system requires several hours of speech data to train. The
duration of the recording of the sentences containing Swadesh list of words vary
from 2 to 4 words. So, the number of sentences had to be increased following
the same procedure as discussed above. During the increment in the number
of sentences text had to be extracted from several sources. Major sources of
English sentences were NCERT and Wikipedia. Among the books published by
NCERT, we focused on English language textbooks meant for the students of
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the lower, middle, and higher secondary schools. For retrieving text, we used text
extractors written by us using the Python language. We used optical character
recognition to extract sentences from publicly available scanned versions of the
books on Lambani and languages using Adobe Reader’s API.

2.2 Text Processing

The text data extracted from various sources like NCERT, wikipedia quite often
contain incomplete sentences, semantically incorrect sentences, and long sen-
tences which are difficult to speak. Hence The following preprocessing steps
were applied to the raw text to improve the readability of the sentences.

– The passages of extracted text were processed to derive a set of sentences. The
sentences containing fewer than 3 words were eliminated. Sentences longer
than 10 words were removed as they will be difficult to utter for illiterate or
older tribal people.

– Incomplete sentences, syntactically or semantically incorrect sentences, and
sentences containing symbols and characters not present in the Roman script
were removed.

– Sentences containing words that may be too complex for a tribal person
to speak were discarded. Text containing controversial statements including
political statements was removed from the set of sentences.

The English sentences that successfully passed through the above-mentioned
preprocessing steps qualify to be a part of the sentence corpus. The selected
English sentences were converted to the Kannada language (contact language)
using the Kannada script as it was the formal language in the area. Then, those
Kannada sentences were translated to the Lambadi language using the Kannada
script by the Lambani native speakers. The Lambani text data in Kannada script
was preserved in digital format by writing them in a spreadsheet.

2.3 Speech Files Recording

These sentences collected as text data were spoken by multiple native Lambani
speakers which was recorded using Laptop. Graphical User Interface (GUI) was
designed to collect data through Laptop. The Lambani sentence is displayed on
the GUI. The recorded voice is replayed to assess its quality. If necessary, the
GUI offers a feature to re-record the current sentence. Every speaker will record
about one hour of data in seven sessions, which means almost 100 recordings per
session. The GUI which is used for ASR recording has been shown in Fig. 1

The entire process of data collection strategy can be summarized in the
flowchart 2

3 Related Work and Motivation

Efforts have been made to build speech recognition systems for under-resourced
languages. But, due to the lack of resources, it becomes very difficult to
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Fig. 1. GUI used for ASR recording

build such systems. Still, people have undergone research in this field apply-
ing various methodologies to overcome the challenges. Initially, ASR building
for under-resourced language started with cross-lingual adaptation [8] of the
Vietnamese language. They also tried to show the potential of cross-lingual
context-dependent and independent modeling in this task. The same paper shows
grapheme-based acoustic modeling when there is an absence of a pronunciation
dictionary. With grapheme based acoustic modeling the performance that they
have achieved using data-driven approach is an SLER of 43.9% and a WER of
50.6%.

In [18] they have shown that the performance obtained (36.5% accuracy)
from a 30 dimensional posterior features multi-layer perceptron is trained on 15
hrs of German and 16 hrs of Spanish which is adapted to 1 hr of English so
that several phonetic attributes of speech get covered from the out-of-language
data. Almost in a similar approach, people showed the importance of bottleneck
features and tandem features extracted from multi layer perceptron trained 15
hrs of German,16 hrs of Spanish trained on 1 hr of English (low-resource setting)
for low-resource large vocabulary continuous speech recognition task [19]. In [6]
they have explored multilingual information with KL-HMM when the available
data is less than 75 mins and showed how the accuracy of KL-HMM varies with
respect to other systems with increase in training data from 5 mins to 808 min.
[17] they have explored the performance using both longer acoustic units which
are syllables and shorter lexical and language modeling units i.e. morphemes.
They have decomposed the rare syllables (if the number is less than 17.9%) into
phones and trained the hybrid system. Importance of out-of-domain language
data to improve the performance of under-resourced speech recognisers is shown
in [7]. Here, they have shown that they are improving the performance using out-
of-domain data that using 81 hrs of Dutch data along with 3 hrs of Afrikaans
data they are achieving a improved phone accuracy of 68.8% with respect to
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Fig. 2. ASR corpus creation flowchart

the monolingual system which gives a phone accuracy of 60.6%. They have also
shown that KL-HMM is giving the best performance after acoustic model adap-
tation as compared to MLP, MLLR and MAP techniques. In [15] they have
discovered a new speech feature named Intrinsic Spectral Analysis (ISA) which
is performing better than FBANK,MFCC and PLP features. It gives a phone
error rate of 10.42% on a training and testing set of 10.7 hrs and 2.2 hrs of
Afrikaans language data. [2] shows that they have achieved best performance of
5.6%for Afrikaans language using multitask learning where they are learning the
triphone senones and trigrapheme senones of multiple phonemes and a universal
phone set and grapheme set which contains all the phones and graphemes of all
the under-resourced languages Afrikaans, Siswati and Sesotho. The entire liter-
ature review is summarized in Table 1. [4,20] showed that training pre-trained
weights helps to regularize and converge better rather than random initializa-
tion. Wav2vec2.0 is known to learn speech representations. So,in our work we
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Table 1. Literature review of speech recognition systems for under-resurced languages

Authors Language Dataset Techniques Performance

Viet-Bac Le et al. Vietnamese Training-14 hrs
Testing-408 sentences by 3 spkrs

Grapheme based AM SLER-43.9%
WER-50.6%

Context dependent
cross-lingual model adaptation

SLER-36.6%
WER-42.7%

Thomas S et al. English Training-15 hrs German,
16 hrs Spanish,
1 hr English
Testing-1.8 hrs

30D Multi-stream
cross-lingual posterior features

Accuracy-
36.5%

Thomas S et al. English Training-15 hrs German,
16 hrs Spanish,
1 hr English
Testing-1.8 hrs

DNN features WA-41%

Imseng et al. Afrikaans Training-81 hrs Dutch,
3hrs Afrikaans
Testing-50 mins

KL-HMM PA-68.8%

Tachbelie et al. Amharic Training-20 hrs
Testing-5K set from ATC 120K Corpus

Hybrid acoustic
units (phones and syllables)

WER-17.9%

Sahraeian et al. Afrikaans Training-10.7 hrs
Testing-2.2 hrs

Intrinsic spectral
analysis for SGMM

PER-10.2%

Dongpeng et al. Afrikaans Train-3.37 hrs Multitask learning of trigpaheme
senones and triphone senones

WER-5.6%

are trying to learn speech representation from multiple Indic languages and then
converge the weights accordingly to a particular language of an under-resourced
setting.

4 Proposed Framework

As discussed in the previous section, self-supervised learning representations give
better results as compared to hand-crafted features . So, MFCC is being replaced
by self-supervised speech representations in order to get better performance for
under-resource settings. For the build up of these framework we are adopting
the following strategies:-

4.1 Character Level Speech Recognition

In this work, kaldi recipes have been used for building frameworks for GMM-
HMM and TDNN. Generally, the GMM-HMM and TDNN recipes in kaldi [14]
take either word level transcription or phone level transcription as input for
training the model and give word level or phone level transcription as decoded
output. But in our case due to the absence of a lexicon for under-resourced
language Lambani we first built systems which take character level transcription
as input for building the trained model and gives character level transcription
as decoded output.

For, GMM-HMM framework we have used the TIMIT recipe. There we have
replaced the phone level transcription training and testing text files with charac-
ter level transcription in the data preparation stage. Initially, for speaker inde-
pendent GMM-HMM training MFCC features, Δ and ΔΔ were used. Here, the
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MFCCs were subject to cepstral mean variance normalization. But, for speaker
dependent case Feature space Maximum Likelihood Linear Regression (FMLLR)
features were used [3]. The frame shift and frame width are 10 ms and 25 ms
respectively. GMM-HMM acoustic model(AM) was trained using maximum like-
lihood(ML) condition. Along with these a bi-gram statistical language model
(LM) was used while decoding. The training and decoding strategies are shown
in the Fig. 3(a)

TDNN is good for modeling long-range temporal dependencies. In the case
of TDNN framework, Mini-Libispeech chain recipe in kaldi was followed which
uses a factorised TDNN network. In this case, 40 dimensional MFCC and 100
dimensional i-vector was used for every time step. A 13 A Lattice-Free (LF)
variant of the Maximum Mutual Information (MMI) criterion is used for chain
model training without frame-level cross-entropy pre-training. The training and
decoding strategy are shown in the Fig. 3(b)

Fig. 3. (a) GMM-HMM framework using MFCC (b) TDNN framework using MFCC

4.2 Wav2vec2.0 Feature Extraction

Before feature extraction wav2vec2.0 involves 2 steps namely pre training and
finetuning which are described as follows:-
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The pretraining network is shown in the Fig. 4. The latent representations (Z)
from raw speech are extracted using convolutional neural networks. The latent
representations are quantised to discrete units(Q) which act as targets during
the contrastive task. The latent representations are masked randomly and fed
to the transformer allowing the network to predict the context representation of
the masked regions. Q is compared with C using contrastive and diversity loss.
Multilingual pretrained model(CLSRIL-23) [5] which has been trained on 23
indian languages to learn the contextual speech representations has been used
here.

Fig. 4. Wav2vec2.0 pretrainig architechture

The CLSRIL-23 model has been fine tuned on both Mini-Librispeech and
Lambani dataset. The fine tuning framework is shown in Fig. 5. During fine
tuning as shown in the figure the network X is borrowed from pretraining archi-
tecture and a randomly initialized softmax linear layer is added on top of it
which is optimized using connectionist temporal classification (CTC). The size
of the linear layer is equal to the vocabulary size (V) of the language.

Fig. 5. Wav2vec2.0 finetuning framework

4.3 Modification of Features

CLSRIL-23 pre-trained model is finetuned and has been used as a feature
extractor in our proposed framework. In CLSRIL-23 base architecture of the
wav2vec2.0 framework is used which contains 12 transformer blocks with a model
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dimension of 768. Wav2vec2.0(W2V) features which are of 768 dimension is
extracted from the last layer of transformer encoder of the fine tuned model
with a frame shift of 20 ms and a frame size of 25 ms of the speech signal [10].
These features are used to train the GMM-HMM and TDNN framework in place
of MFCC and the rest of the procedure is kept intact. The blocks A and B are
the same as shown in Fig. 3(a) and 3(b), only the feature is replaced with W2V
features.

5 Database Settings

Two types of language datasets have been used for performing the experi-
ment, those are English and Lambani and the name of the datasets are Mini-
Librispeech and Lambani respectively.

The Mini-Librispeech dataset is a subset of the Librispeech data [12]. The
Mini-Librispeech dataset comes with transcribed training and testing sets named
as train-clean-5 and dev-clean-2 respectively. Train-clean-5 and dev-clean-2 con-
tain 5 hrs and 2 hrs of speech data. Speakers from the dev-clean-2 are chosen
randomly so that it sums up to 1hr of testing data. The training set of Mini-
Librispeech contains 12 males and 16 females speaker data i.e. 28 speakers data
in total, whereas the testing set contains 9 males and 3 females i.e. 12 speak-
ers in total. The speech file has 16 kHz sampling frequency and bit rate of 256
kbits/sec. The number of channels for each speech file is 1. There are 1519 utter-
ances and audio files in the training set and 534 utterances and audio files in the
testing set. That means there is one audio file corresponding to each utterance.

The Lambani dataset comes with raw audio files and its corresponding text
transcriptions along with the utterance ids. For each utterance there is only one
audio file corresponding to that particular utterance. Initially the sampling rate
of the speech files were 44.1 kHz which has been changed to 16 kHz which is
compatible for all the frameworks. The Lambani training dataset has 7 males
and 8 females speaker data which is 15 speakers data in total and the testing
data contains 2 females and 1 male speaker data which is 3 speakers data in
total. The speech file has a bit rate of 256k and the number of channels of each
audio file is 1. The total number of utterances and audio files in the testing set
are 770. Here, also there is one audio file corresponding to each utterance.

A summary of the entire dataset is shown in Table 2.

5.1 Experimental Results and Discussion

For GMM-HMM and TDNN based frameworks we have carried out all the exper-
iments using kaldi and for Wav2Vec2.0 we have carried out all the experiments
using vakyansh [1] toolkit. We have carried out the experiments with MFCC
features and the speech representations from Wav2Vec2.0 which we are calling
here as W2V features.The best experimental results are shown in the Table 3.
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Table 2. Specification of the dataset after preprocessing and organisation

Parameters Mini-Librispeech Lambani

Amount of training data 5 hrs 5 hrs

Amount of testing data 1hrs 1 hrs

No. of spkrs 28(12 males, 16 females) in taining set 12(9 males, 3 females)

15(7 males, 8 females) 3(2 males, 1 female)

Sampling rate 16 kHz 16 kHz

Bit rate 256k 256k

Channels 1 1

Utterances 1519 in training set 3390 in training set

534 in testing set 770 in testing set

No. of Audio files 1519 in training set 3390 in training set

534 in testing set 770 in testing set

Table 3. CER(%) for different frameworks with MFCC and W2V features

FRAMEWORKS FEATURES DATASET

Mini-Librispeech Lambani

GMM-HMM MFCC 38.5 39.1

W2V 18.2 18.2

TDNN MFCC 24.1 30.8

W2V 15.2 20.9

While using MFCC features for building acoustic models for character level
ASR systems using GMM-HMM and TDNN frameworks TIMIT recipe and Mini-
Librispeech chain recipe from kaldi were used respectively. i-vectors were used
in addition to MFCC in the TDNN framework. A bi-gram language model was
used while decoding which was built using the text of the entire training data.
IRSTLM toolkit was used to build the language model. 5 hours of transcribed
Mini-Libispeech and Lambani were used for training and building the acoustic
model for the GMM-HMM and TDNN framework.

So, here we can see that W2V features are performing better than the MFCC
features for both the frameworks. We have considered speaker adaptation while
carrying out the results of Mini-Librispeech but in the case of Lambani it wasn’t
considered.

Sample for a particular utterance of the decoded transcript for both Lambani
and Mini-Librispeech dataset is shown below .
TV stands for truth value
GHM stands predicted sequence for GMM-HMM using MFCC
TM stands predicted sequence for TDNN using MFCC
GHW stands predicted sequence for GMM-HMM using W2V features
TW stands predicted sequence for TDNN using W2V features.
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D stand for deletion
I stands for insertion
S stands for sustitution

Mini-Librispeech

TV: * s h e w a s i n d e e d a c l e v e r b i r d
GHM: T s h e w a s i n d e e d a c l A v e r P E r d
Eval: I S S S
GHW: W s h e w a s i n d e e d a c l e v e r b i r d
Eval: I
TM: * s h e w a s E n d e e d a c l I v e r b U r d
Eval: S S S
TW: * s h e w a s i n d e e d a c l e v e * b i r d
Eval: D

Lambani

Fig. 6. Lambani predicted text showing its alignment with ground truth

So, we can see that in case of Mini-Librispeech dataset we are getting the
least error in the decoded transcription for TDNN framework for W2V features
i.e. TW. GHW is also performing better than TM as it has 3 character errors
whereas TM has one character error. Among all these GHM is giving the worst
result with 4 character error as its performance is the poorest. Here, among
the predicted characters the characters which are inserted and substituted are
marked in capital letters.Hence the result is justified

As shown in Fig. 6 in the case of the Lambani dataset, GHW is giving the
best performance with only 6 character errors. GHM is the worst one with 11
errors. TM has 9 errors and TW has 8 errors so TM has better performance
than TW. Hence the result is verified.

6 Conclusion and Future Work

In this work, data collection strategy for an under-resourced language Lambani
has been shown. Character level speech recognition for under-resourced settings
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using GMM-HMM and TDNN has also been explored in this paper. The focus
was to show the significance of self-supervised speech representations extracted
from wav2vec2.0 for under-resourced settings. So, using the wav2vec2.0 app-
roach as a non-linear feature extractor we are getting a relative improvement
of 53.4% and 32.1% for GMM-HMM and TDNN frameworks respectively for
under-resourced language Lambani. In the Mini-Librispeech dataset, the rela-
tive improvement in the performances are 35.5% and 36.92% for GMM-HMM
and TDNN frameworks respectively. Similarly, as a part of future work, this
approach can be explored in case of other pretrained models and other deep
self-supervised learning methodologies can be explored as a feature extractor in
place of wav2vec2.0.
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Abstract. English End-to-end spoken keyword systems (KWS) with
limited keywords are commonly available in the literature. This paper
aims to study the existing various keyword techniques in the Indian
regional Bengali language under low-resource conditions. In this context,
we study several KWS techniques which are common in the English lan-
guage in Bengali namely: Conv1D, Conv2D+attention, Conv2D+multi
head attention, VGG, Dense-net, and Vision transformer (ViT). In addi-
tion, we also study the effect of voice-activity detection (VAD) on the
KWS under real-life scenarios especially when the speech signal could
contain the front and tail short pause or silence i.e. without proper seg-
mentation information even under clean conditions. Besides, we also con-
sider cross-lingual transfer learning for tuning the parameters of a pre-
trained state-of-the-art transformer model in English to Bengali. Finally,
Experimental results demonstrate that VAD significantly improves the
accuracy of the KWS detection system using both spectral features and
raw audio data. Among the different traditional approaches (without
transfer learning), the Densenet technique yields better system accu-
racy. Overall, cross-lingual transfer learning provides the highest KWS
detection than others.

Keywords: VAD · End-to-end DNN · Cross-lingual transfer-learning ·
KWS · Bengali

1 Introduction

With the immense advent of information and communication technology, access-
ing and disbursement of information in a more informal and easier way through
the medium of computer or mobile devices become very much necessary. Here
comes the need for a chatbot through which humans can converse with computers
in a natural way. So to converse with a computer, a computer needs to recognize
the query of a human, where automatic speech recognition (ASR) takes its place.
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But to run ASR frequently consumes high energy resulting in quick draining of
battery in small handheld devices like mobile phones. Hence the rising demand
for spoken dialog systems with the emergence of keyword spotting systems takes
place. Spoken keyword spotting (KWS) is the task of identifying presumed hits
of a text query, target keywords, and phrases in a reference audio file. Basically,
the spoken keyword spotting system involves searching for occurrences of certain
spoken words amidst a speech utterance. Besides the spoken dialog system, the
KWS system has many other applications like audio indexing, command control
devices, etc.

In the progress of technology, various DNN-based techniques have been pro-
posed to improve the performance of the KWS such as convolutional neural net-
works for one-dimensional (Conv1D) data [1] (raw speech signal is fed to train a
DNN to discriminate the desire keywords at the output layer), Visual Geometry
Group (VGG) [13], Vision transformer (ViT) [4] (feature extracted from speech
signal is fed to the DNN for discriminate the keys word at the output layers),
Dense Net [7] (speech features are provided to training the DNN), Feed-forward
neural network (FF-DNN), Conv2D+attention [12](feature vectors are input to
the DNN and a self-supervised attention mechanism is applied), Convolutional
neural networks for two-dimensional (Conv2D)+multi head attention [11] (sim-
ilar to the Conv2D + attention system, the only difference is that multi-head
attention is considered). Those techniques commonly explore the Google English
command database which consists of well-segmented speech signals (excluding
the front and trailing short pause) duration of around 1 seconds for a particular
keyword. However, in real scenarios speech collected through a microphone for
a particular keyword, is expected to have a short pause/silence at the begin-
ning and end of the recording even under a clean environment. The application
of ASR for the segmentation is time-consuming or computationally heavy for
handheld devices. On the other hand, the silence/short pause at the beginning
and ending is also not useful for the application. Besides Google speech command
dataset contains only 35 words whereas the Bengali dataset used in this study
contains 100 spoken keywords by 100 farmers. The keywords of Bengali con-
sist of agricultural commodity names spoken by farmers from different districts
of West Bengal, India. As the data has been collected from different regions of
West Bengal, dialectal variations of the Bengali language and speaker variability
have been kept in the dataset. Apart from that different issues related to tele-
phonic recording i.e. channel drop, different types of background noise such as
cross-talk, vehicle noise, etc. make the data very challenging to build the system
for KWS[3]. Some of the commodity names of the Bengali dataset are given in
Table 1.

Recently, various studies are seen in [6,9,15,17] which consider cross-lingual
transfer learning for emotion detection to explore the state-of-the-art transformer
based model which improves their system performance. The pre-trained model
is tuned toward the target downstream tasks (or language) in this approach.

The previous existing studies motivate us to propose exploring the various
KWS techniques of the English database on the low-resource non-English data
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Table 1. Sample Keywords of Commodity Names.

Commodity Name in ITRANS Equivalent IPA Corresponding English

aalu /a l u/ Potato

aam /a m/ Mango

bit’a /b i ú/ Beetroot

caal /tS a l/ Rice

bhind’i /bè i n ã i/ Lady’s finger

to study its effectiveness. As per our best knowledge, there is no such attempt
has been made to develop the KWS system in the Bengali language. Besides, we
have also studied the effect of VAD on the KWS especially when every audio file
can contain silence or noise at the beginning, middle, and end.

The contributions of the paper are in many folds: first the study of var-
ious recent traditional KWS techniques (trained from scratch) namely ViT,
Dense Net, Feedforward neural network, Conv2D, Conv2D+attention, and
Conv2D+multi head attention for the Bengali with limited data. Secondly, we
show the effect of voice activity detection on the KWS, which discards the low
energized/unwanted short pause/noninformative part for a given speech sig-
nal. Lastly, we consider cross-lingual transfer learning to tune the pre-trained
Hubert model in English to Bengali as a downstream task. We show that the
incorporation of VAD with the KWS system quite boosts the system perfor-
mance compared to the counterpart without VAD. Among the different tra-
ditional/conventional KWS, Dense-net is the best choice with trade-off model
parameters and system accuracy. Overall, Hubert pre-trained model with cross-
lingual transfer learning significantly boosts the KWS compared to the conven-
tional approaches and is useful for the KWS under limited training data.

The paper is organized as follows: Section 2 deals with methodology. Section 3
describes the experimental setup. Section 4 presents the results and discussion.
Finally, the paper is concluded in Sect. 5.

2 Methodology

In this section, we briefly present different KWS techniques in the following
subsections:

2.1 KWS-Conv1D with Raw Speech

This is an end-to-end KWS system based on 1D CNN analogous to [1] where the
sound classification is performed using raw audio/speech signals. In our case, 1
second of raw audio is fed to the DNN to discriminate the desired commodity
(keywords) names as keyword and a non-keyword at the output layer with the
cross-entropy-based objective function. Figure 1 illustrates the Conv1D architec-
ture for the KWS in Bengali language.
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Fig. 1. Bengali spoken KWS with Conv1D based neural network.

2.2 KWS-Conv2D + Attention

In this end-to-end KWS system, the mel-filter bank energy feature of the spo-
ken utterances is fed to the conv2D-based DNN with attention mechanism as
per [12] for classification of the spoken desired keywords and a non-keyword (a
class consisting of spoken words other than the desired keywords) at the output
layer. The system is graphically illustrated in Fig. 2. In the attention mechanism,
weightage (at) for each time-stamp/frame is calculated by mapping their hidden
layer representation ht[128×1] into a single score (βt) as

βt = vTtanh(Wht + b) (1)

at =
eβt

∑n
i=1 eβi

(2)

where v[1×128],W[128×128] and b[128×1] are the learn-able parameters. Next
output from the attention mechanism is obtained by the weightage combination
of each time-stamp/frame as

O =
n∑

i=1

atht (3)
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Fig. 2. Bengali spoken KWS using Conv2D based attention mechanism.

2.3 KWS-Conv2D + Multi Head

This system is analogous to the KWS-Conv2D + attention except for the atten-
tion mechanism, where the multi-head attention mechanism is considered as in
[11]. It is shown in [11] that spoken KWS with multi-head attention reduces
the classification error over the system without attention by 10% on Google
speech commands data sets V2[16]. In this approach, 4 heads have been used
and replaced the LSTM with GRU called MHAtt-RNN.

2.4 KWS-VGG

In this system, a DNN is trained as per [13], where the feature vector of the
speech signals is fed to the DNN to discriminate the desired keyword and non-
keyword at-the-output layer with a cross-entropy-based objective function. VGG
architecture is a type of convolutional neural network (CNN) that was originally
designed for image recognition but can also be applied to audio processing. VGG
architecture consists of several layers of convolutional filters, followed by max-
pooling layers, and then fully connected layers at the end. The convolutional
filters are used to extract features from the input signal, such as frequency,
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pitch, and energy. The max-pooling layers are used to reduce the dimensionality
and complexity of the features while preserving the most important information.
The fully connected layers are used to perform the final classification of the input
signal into different categories, such as keywords or background noise. One way
to use VGG architecture for audio KWS is to first convert the audio signal into a
spectrogram, which is a visual representation of the frequency and intensity of the
sound over time. Then, the spectrogram can be treated as an image and fed into
the VGG network. The network will learn to recognize patterns and features in
the spectrogram that correspond to different keywords or phrases. For example,
the network might learn that a certain shape or color in the spectrogram indicates
the presence of the word“Bing”. The network will then output a probability
score for each possible keyword or phrase, and the one with the highest score
will be selected as the final prediction. Another way to use VGG architecture
for audio KWS is to directly feed the raw audio signal into the network, without
converting it into a spectrogram. This requires modifying the network to accept
one-dimensional inputs instead of two-dimensional inputs. The network will then
learn to extract features from the raw audio signal directly, without relying on
pre-processing steps. This might result in faster and more accurate predictions,
as well as lower computational costs.

2.5 KWS-Dense-Net

In this case, the feature vector of the speech signal is fed to a dense-Net [7] for
discriminating the desired keywords and a non-keyword class at the output layer.
The Dense-Net architecture comprises a series of cascading convolutional filter
layers, succeeded by max-pooling layers, and ultimately culminating in fully con-
nected layers. These convolutional filters serve the vital role of feature extraction
from the input signal, encompassing key aspects such as frequency, pitch, and
energy. Meanwhile, the max-pooling layers play a pivotal role in diminishing fea-
ture dimensionality and intricacy, all the while retaining the salient information
of utmost significance. The fully connected layers are used to perform the final
classification of the input signal into different categories, such as keywords or
background noise.

2.6 KWS-ViT

This KWS system is as per [4], where the feature vector (mel filter bank energy)
of the speech signal is split into patches (say, frame) and projected onto the
embedded space. The embedded representation is then passed through posi-
tion embedding. Next, the embedded feature vectors are fed to a transformer
encoder. The output of the transformer encoder is average to calculate a single
vector and then finally passes to the MLP layer to discriminate the keywords.
ViT Transformer consists of several layers of self-attention modules, followed by
feed-forward layers, and then fully connected layers at the end. The self-attention
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modules are used to capture the long-range dependencies and contextual infor-
mation from the input signal, such as frequency, pitch, and energy. The feed-
forward layers are used to perform non-linear transformations on the features
while preserving the spatial resolution. The fully connected layers are used to
perform the final classification of the input signal into different categories.

2.7 Cross-Lingual Hubert Transfer Learning

In this approach, the pre-trained Hubert [8] trained on the 960h data from Lib-
rispeech are tuned with the Bengali data. The output layer is modified to the
number of classes as per the number of keyword (and non-keyword) classes in
our system. However, Hubert is usually pre-trained in a single language, such as
English, which limits its applicability to other languages or multilingual scenar-
ios. To address this challenge, cross-lingual Hubert transfer learning is adopted
to fine-tune Hubert on a small amount of labeled data from a different language
or task, and then the fine-tuned model is used to perform inference on the target
language or task. This way, the model can adapt to the new domain and lever-
age the cross-lingual similarities and transferable knowledge from the pre-trained
model.

3 Experiment Setup

All the data used in the experiments have been collected through the Interactive
Voice Response (IVR) system. The data collected through the above-mentioned
procedure are real environment data covering huge variations of the handset,
speaker’s age, gender, and last but not least different dialectal variations of
Bangla. All the speech data are named properly using the 16 alphanumerical
characters, for example, GLNSTDDSXXXXIYYY which comprise of G: Gen-
der, LN: Language, ST: State Name, DD: District, S: Session, XXXX: Speaker
Id, I: Sentence type and YYY: Utterance ID [2]. A guided call flow has been
designed in order to record speech data. Data has been collected mostly from
farmers all over West Bengal. Different types of recording environments such as
studios, offices, railway stations, markets, etc. have been kept in mind while col-
lecting data for the system. Altogether 197 agricultural commodities have been
recorded by 100 unique speakers of West Bengal. Among them, 100 commodity
names were considered as the target, and the rest for the non-keyword class. For
the system evaluation, the complete dataset is randomly partitioned into train-
ing (80%) and test (20%) for each run of the experiment. Five experiments are
conducted to access the overall system performance. Table 2 represents approxi-
mately the number of data available for the training and evaluation for each run
of experiments (Fig. 3).
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Table 2. Number of examples in the training and evaluation set.

# class Training Evaluation

Keyword 100 7988 2012

Non-keyword 1 7772 1928
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Fig. 3. Illustrates the number of examples (except the non-keyword) available per
keyword classes for training the Bengali spoken KWS system in experiment-1.

We include data augmentation during training which consists of random-time
shift (randomly shift audio to left/right, the maximum amount of sample shift
is kept 0.1 × samplingrate), time-stretches (of times series by a fixed rate, the
resample offset and resample values are considered respectively, 0.15 and 1) [5]
and mix babble noise(15, 10, 5, 0 dBs), reverberation Room impulse response
(RIP), MUSAN music and noise (15, 10, 8, 5 dBs). Kaldi toolkits [10] is used
for babble noise, RIP, MUSAN music, and noise augmentation. It gives approxi-
mately 236400 speech utterances for training DNNs in KWS for each experiment.
The training dataset is used for tuning the parameters of the pre-trained Hubert
system with transfer learning in KWS.

The DNN in the KWS (except Hubert-based) are trained from scratch with
the learning rate 0.001, the weight decaying value 0.0001, and the learning rate
decay by 0.1 after 20 epochs. All the DNNs are trained up to 60 epochs.

In the Hubert-based system, the two encoder layers are unfrozen to update
their parameters during the transfer learning. Other config parameters are kept
as conventional. As Hubert requires 16 kHz speech sampled signal as input,
therefore 8 kHz Bengali speech files are first upsampled 16 kHz. The upsam-
pled speech files are then passed through the VAD. The VAD output signals
are fixed length of 1 s (similarly to the other KWS) and feed to the Hubert. It
is better to note that the parameters in the respective DNN architecture are
calculated/optimized using the training data itself. Figure 4 illustrates the spec-
trogram of two keyword speech signals. It can be observed from Fig. 4 that there
is silence/short pause either at the end or at the beginning as well as in between.
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Pre-processing: rVAD [14] is applied on the speech signal to discard the low-
energized portion of the signal (i.e. silence, noise/short pauses in a speech signal).
Afterward, the 1 second duration of the processed signal (zero padding is done
in case of a shorter length of signal) is used for the feature extraction. Default
parameters are considered as per rVAD1.

Feature Extraction: For feature extraction, 40 dimensional mel filter bank
energy is extracted with 30ms hamming window at 10 ms frame rate. It gives
around 100 frame per speech file. This feature is then fed to the DNN for the
classification of keywords or non-keywords. No zero mean and unit variance
normalization is applied to the extracted feature.

4 Results and Discussions

In this section, we analyze the performance of different KWS systems in the
Bengali language. Table 3 shows the performance of various end-to-end Bengali
KWS systems for different techniques with or without VAD. It can be observed
from Table 3 that VAD significantly improves the accuracy of keyword detection.

Table 3. Compares the performance of Keyword identification accuracy (%) for various
techniques in the Bengali language with or without VAD.

Exp w/o Conv1D Conv2D Conv2D Dense ViT VGG

VAD -wav +atten + Multihead -Net

1 � 81.42 85.99 86.65 88.53 82.49 89.49

2 � 81.17 83.17 85.71 88.50 79.42 88.81

3 � 81.12 83.20 86.09 88.25 76.73 87.99

4 � 80.94 83.43 86.17 89.09 79.47 88.65

5 � 80.58 83.12 85.66 88.71 79.24 88.35

Average 81.04 83.78 86.06 88.62 79.47 88.66

1 × 49.59 53.71 54.31 52.36 50.86 58.38

2 × 49.09 54.80 53.76 53.22 50.03 55.89

3 × 50.18 54.87 53.98 52.74 49.85 57.59

4 × 50.03 54.80 53.78 52.18 50.99 49.42

5 × 50.28 55.76 54.09 53.60 51.27 56.19

Average 49.83 54.79 53.98 52.82 50.60 55.49

# of model

Parameters ≈ 31k ≈ 163k ≈ 196k ≈ 4.25M ≈ 5.37M ≈ 31.19M

To understand the reason why VAD significantly improves the performance
of KWS, we plot the spectrogram of two speech files shown in Fig. 4. From
1 https://github.com/zhenghuatan/rVAD.

https://github.com/zhenghuatan/rVAD
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Fig. 4, it can be noticed that low energize/irrelevant information (e.g. short-
pause) can exist either at the beginning, ending, middle, or a combination in
the spoken speech signal. Therefore, VAD helps the KWS by reducing unwanted
or irrelevant information (i.e. unvoiced (0)) from the spoken speech signal. This
leads to improved accuracy of the system compared to its counterpart without
VAD.

Fig. 4. Illustrates the spectrogram of two keywords - Aalu (Potato) and Aadaa (Gin-
ger).

Among the different KWS with VAD, Conv2D with multi-head shows higher
accuracy than the simple attention technique as multi-head projects the feature
onto different subspaces and so it is able to capture better relation among the
feature than the simple case. The KWS system using raw speech modeling i.e.
Conv1D-wav gives lower accuracy compared to the system using cepstral feature
Conv2D+atten or Conv2D+multihead. It could be due to the fact that the cep-
stral feature is able to capture more relevant information for the KWS. The ViT
technique achieves the lowest accuracy compared to the other methods. The fact
could be that the limited amount of training data is not sufficient for learning a
large number of model parameters in this modeling framework as pointed out in
[4]. The KWS performance of VGG and Dense-Net based system is similar to
each other. However, VGG consists of a huge number of model parameters than
the Dense-Net.

Now if we look at the number of model parameters among the techniques,
though VGG and Dense-net yields similar system accuracy. However, Dense-
net requires ≈ 7.33× fewer parameters than the VGG and so Dense-net is
computationally and disk space-wise more efficient. With a comparison between
Dense-net and Conv2D+multihead systems, Conv2D+multihead system model
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parameters are ≈ 21× less than the Dense-net. However, Dense-net gives abso-
lute 2% higher accuracy than the Conv2D+multihead. So with trade-off 2% sys-
tem accuracy, Conv2D+multihead can be preferred to the Dense-net. Indeed,
each system has its own advantages and disadvantages.

Table 4. Comparison the performance of Hubert-based KWS with the traditional
VGG and Dense-net techniques.

(a) Performance (in terms of % Accuracy) of the Bengali KWS system
using cross-lingual transfer learning of the Pre-trained Hubert model.

Model No of experiments Average

1 2 3 4 5

Fine-tunes Hubert 92.23 90.86 91.26 91.49 91.62 91.49

(parameters ≈ 14M)

(b) Comparison perform of VGG and Dense-net KWS with original (8
kHz) and upsampled 16 kHz version of speech signals.

Model Speech No of experiments Average

sampled 1 2 3 4 5

Dense-net 8 kHz 88.53 88.50 88.25 89.09 88.71 88.62

16 kHz 89.24 88.68 87.82 88.50 88.93 88.63

VGG 8 kHz 89.49 88.81 87.99 88.65 88.35 88.66

16 kHz 89.34 88.10 88.58 87.94 88.71 88.53

Table 4a presents the KWS performance for the system with cross-lingual
transfer learning of the pre-trained Hubert model. The system performances
are shown only for the VAD as in Table 3 found that VAD quite improves the
accuracy of KWS. From Table 4a, it can be seen that Hubert with cross-lingual
transfer learning yields more promising accuracy (absolutely around 3% higher
than VGG and Dense-net) than the traditional systems (presented in Table 3).
As expected, self-supervised speech presentation to vector and then use with
state-of-the-art transformer-based modeling in Hubert is very useful for many
downstream tasks, and a similar pattern is observed here for the KWS under
limited data conditions. In the context of model parameters, Hubert with transfer
learning system consists of ≈ 14M parameters which are respectively quite lower
and higher than the VGG and Dense-net. The hubert-based system uses the
upsampled 16 kHz speech files whereas the 8 kHz speech files are used by the
VGG and Dense-net. Therefore, we further perform experiments for the VGG
and Dense-net systems presented in Table 4b, where upsampled wav files are
considered. It can be noticed that the average performance of the KWS system
with VGG and Dense-net with upsampled data does not change. We also believe
that the performance of the traditional KWS systems: VGG, Dense-net, ViT,
etc. could be further improved with the cross-lingual transfer learning concept
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from the pre-trained model in the respective systems. However, we kept it for
the future direction.

5 Conclusion

In this paper, various spoken keyword systems (KWS) are studied for the Ben-
gali language under limited data conditions with or without voice activity detec-
tion in a common framework. In addition, the pre-trained Hubert model with
cross-lingual transfer learning was considered. We showed that VAD signifi-
cantly improves the KWS system accuracy and is useful for KWS. Among
the different traditional approaches, Dense-net is the best choice in trade-off
model parameters and system accuracy. Whereas, Hubert’s pre-trained model
with cross-lingual transfer learning further improves the KWS performance. As
future directions for this research, we propose investigating the performance of
spoken keyword systems in other languages, such as Assamese and Manipuri,
to explore their adaptability across diverse linguistic contexts. Additionally, we
suggest exploring advanced VAD techniques and the applications of the KWS
system in healthcare. By pursuing these avenues, we aim to extend the impact of
our research and contribute to the advancement of natural language processing
and speech technology for a wide range of languages and practical applications,
including those in the healthcare domain.
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Abstract. Language technology development is crucial for many down-
stream applications such as machine translation and language under-
standing. The lack of linguistic resources makes it challenging for tech-
nology development of under-resource languages. This paper aims at
developing linguistic tools for Lambamni, an under-resourced tribal lan-
guage of India through corpora creation, annotation, and transfer learn-
ing from contact language. Based on the annotated corpora, we develop
the Lambani language tagset and our investigation focused on various
methods for developing a Part-of-Speech (POS) tagger and also creat-
ing a morphology dictionary for Lambani. A total of eight BIS tagset
is found to be present for Lambani language. The experimental results
revealed that the statistical approach with GMM-HMM (Gaussian Mix-
ture Model - Hidden Markov Model) achieved POS tagging accuracy of
96% despite the limited dataset containing 6,893 sentences. This success
in a low-resource setting highlights the promising potential of GMM-
HMM in overcoming challenges posed by the scarcity of annotated data
in under-resourced languages. The experiments not only showcase the
effectiveness of the proposed methods for low-resource language process-
ing but also shed light on their applications and open new directions for
research in language revitalization and the development of digital tools
for zero-resource languages.

Keywords: Langauge technology development · Natural language
understanding · Lambani · POS tagger · Morphological analysis

1 Introduction

India is a linguistically diverse nation with over 22 officially recognized regional
languages [20] and multiple spoken languages. These languages belong to dif-
ferent language families having unique characteristics, including Indo-Aryan,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Dravidian, Austroa-Asiatic, Sino-Tibetan, and others [8]. While major Indian
languages such as Hindi, Kannada and Tamil have abundant linguistic tools and
resources [3,19,22,27], there are many widely spoken low-resource languages that
do not have written scripts and linguistic tools such as Lambani, Soliga [6] and
Mundari.

Technology plays a vital role in language preservation, offering digital tools
like audio and video recording devices, online archives, and language documenta-
tion software to record and archive endangered languages for future generations.
Language apps and online platforms further aid in language learning and revi-
talization efforts, providing accessible resources for those interested in studying
these languages.

Linguistic Resource (LR) for a language typically encompasses various com-
ponents that facilitate the development, study, and analysis of that particu-
lar language. These resources comprise corpora from diverse sources, lexicons,
grammar, phonetics and phonology resources, and morphological analysis tools.
Well-established Indian languages like Kannada and Hindi have abundant lin-
guistic resources, such as dictionaries, Part of Speech (POS) taggers, morpho-
logical tools, and datasets for Natural Language Processing (NLP) tasks while
low-resource languages do not have such facilities.

Globalization, urbanization, cultural assimilation, and limited inter-
generational transmission threaten many tribal languages. Endangered tribal
languages are more than mere communication tools; they are integral to the
identity, worldview, and cultural expression of indigenous communities. Protect-
ing endangered tribal languages is crucial to preserve and revitalize indigenous
communities’ unique linguistic and cultural heritage worldwide. These languages
hold valuable knowledge, history, and traditional practices passed down through
generations. Hence, efforts to protect and preserve these languages are essential
for the well-being of affected communities and for upholding the diverse richness
of human languages and cultures.

Preparing the language corpus for low or zero-resource languages is a chal-
lenging and time-consuming task. This is particularly true for languages like
Lambani, which lack their own script, making manual tagging a significant hurdle
in data annotation, and corpus preparation. In this paper, language preservation
activity of Lambani language through technological development is discussed.

The Lambani community, also known as the Banjara community, is cultur-
ally rich with a nomadic lifestyle and unique traditions [7,21,28]. They have a
fascinating history that spans different regions of India, primarily residing in
Karnataka, Andhra Pradesh, Telangana, Maharashtra, and Tamil Nadu. There
have been few efforts towards technology building for the Lambani language,
such as Machine translation [9], and Text to speech synthesis [10]. But to the
best of our knowledge, no literature was found regarding basic linguistic tools for
Lambani such as morphological analyzer and POS tagger. This works details the
effort to build a POS tagger and a Morphological analyser for Lambani language.
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The key contributions of this work are as follows:

– We address the problem of developing linguistic technologies for low-resource
languages.

– We create lexical corpora for Lambani language by collecting and translating
text from various sources.

– Tagset creation and analysis for Lambani language from the created lexical
corpora.

– Development of POS tagger for low-resource languages.
– Development of morphology dictionary from a given text corpora.

The rest of the paper is summarized as follows. A brief overview of earlier
works in related area is presented in Sect. 2. The proposed approach for Lambani
linguistic technology development is presented in Sect. 3. Section 4 details the
evaluation of the developed tools and Sect. 5 concludes the work.

2 Related Works

There have been substantial efforts for the development of linguistic tools
of Indian languages for various NLP applications. However, limited linguistic
resources, such as dictionaries and part-of-speech taggers, make it difficult to
develop high-quality NLP applications for under-resourced languages [29]. The
current approaches focus on the development of two broad categories of linguistic
tools: POS tagger [5,13,15] and morphological analyzer [4,12].

2.1 POS Tagger

POS tagger development works may be classified into (1) rule-based approaches
[2,4,12], (2) statistical approaches [13,15,24], and (3) deep learning-based
approaches [11,26]. Antony et al. [5] work on different POS taggers for Indo-
Aryan languages like Hindi, Bengali, and Panjab, while Merin et al. [14] discuss
various tagging methodologies for Dravidian languages such as Kannada, Tel-
ugu, Malayalam, and Tamil languages. Srivastava et al. [26] introduced a Deep
Learning (DL)-based unsupervised POS tagging method for Sanskrit, employ-
ing character-level n-grams. Deshmukh et al. [11] proposed a deep learning-
based POS tagger and a Bi-LSTM-based POS tagger, respectively, for Marathi
language. This paper works on developing POS tagger for Lambani languages
leveraging these extant techniques.

2.2 Morphological Analyzer

There has been considerable work on Morphological Analysers and generators for
Indian Languages. Antony et al. [4] proposed rule based morphological analyzer
for Kannada. Veen Dixit et al. [12] developed a rule-based spell checker for
Marathi Language. However, data scarcity of under-resource language makes it
challenging to develop morphological analyzers as they require diverse data to
capture language nuances [29].
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2.3 Lambani Lingustic Technology

Due to the lack of script, there has not been much written literature found in
the Lambani language. As a result, limited work has been carried out for devel-
opment of Lambani linguistic tools. To overcome the limitations of data scarcity,
researchers [29] propose text corpus creation for under-resource language through
the use of a contact language. Amartya et al. [9] worked on developing machine
translation methods to translate English text to Lambani for Lambani corpora
generation. Ashwini et al. [10] proposed the use of Text To Speech synthesis tools
for creating Lamabani dataset. This work extend the above works to generate
Lambani corpus through the use of Kannada as a contact language.

3 Proposed Approach

Data preprocessing

Translation to Contact language

Translation to Lambani language

Manual POS tagging

POS tagger creation Morphology dictionary creation

Evaluation with various metrics

Automatic Evaluation Manual Evaluation

Manual Evaluation

Data preprocessing

Translation to Contact language

Translation to Lambani language

Manual POS tagging

POS tagger creation Morphology dictionary creation

Evaluation with various metrics

Automatic Evaluation Manual Evaluation

Manual Evaluation

Data collection from sources

Fig. 1. Architectural overview of the system.

In this section we introduce our proposed system to develop linguistic tools for
Lambani. The architectural overview of the system is shown in Fig. 1. The overall
process consists of the following steps: (1) Data collection; (2) Data preprocessing;
(3) Translation to contact language; (4) Manual POS tagging; (5) POS tagger
creation; and (6) Morphology analysis. system undergo the following steps:

3.1 Data Collection

The main objective of this study is to create linguistic resources specifically for
Lambani. To overcome the limitation of data scarcity for Lambani language,



Linguistic Resource Development for Lambani Language 131

this step proposes the creation of Lambani language corpora through transfer
learning to use in language tool development. The entire data collection process
may be summarised in six steps:

– Gathering text from various sources: We utilise the Optical Charac-
ter Recognition (OCR) feature of Adobe Reader to extract sentences from
Lambani-based textbooks [7]. Additionally, we extract English texts from the
English subject of the National Council of Educational Research and Train-
ing (NCERT) textbooks [1]. Our focus lies specifically on English language
textbooks intended for lower and middle schools, encompassing classes I to
VI. Further, a linguist manually created 1000 sentences using the Swadesh
list [17]. This list comprises a set of basic English words that cover funda-
mental concepts of English grammar, such as pronouns or verbs.

– Preprocessing: The extracted text often contains a significant amount of
noise, posing challenges for accurate translation by native Lambani speakers.
To address this issue, the extracted texts are further subjected to the following
preprocessing methods to obtain a clean corpus.

• It is observed that native Lambani speakers generally communicate using
short simple sentences. So, sentences containing fewer than three words
and more than eight words are discarded to avoid lengthy sentences.

• Incomplete sentences provide noisy information and are removed.
• Manual checking of the text was carried out by a linguist to remove

syntactically or semantically incorrect sentences.
• Sentences containing symbols, URLs and unknown characters are

removed.
– Relevancy pruning: The sentences are ranked based on relevancy, where 1

is assigned to relevant sentences and 0 otherwise. For example, sentences con-
taining controversial statements including political statements were marked as
irrelevant since they are not used in conversations to carry out daily activities.
After the sentences have been ranked the relevant sentences are extracted, and
the rest of them are discarded. After this step, around 80% of the sentences
are retained out of the total 36,000 sentences.

– Translation to contact language: For this study, Lambani speakers from
northern Karnataka state are considered and they are fluent in both Kan-
nada and Lambani languages. So, Kannada is chosen as a contact lan-
guage. The English sentences are translated into Kannada by a bilingual
English-Kannada speaker. The translated text is validated by another bilin-
gual Kannada-English speaker.

– Contact language to Lambani Translation: The Kannada sentences are
manually translated to Lambni by a native Lambani speaker who is familiar
with Kannada. The translated sentences are written in the Kannada script.

– Quality checking and correction: The translated sentences are manually
checked and incorrect ones are rectified.

3.2 Developing Lambani Linguistic Resources (LLR)

The linguistic development efforts primarily revolve around creation of essential
resources such as a POS tagger and morphological dictionary. These resources
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would greatly assist in the development of computational tools for the Lambani
language.

Lambani POS Tagger. POS tagging is a valuable tool in natural language
processing (NLP) as it helps algorithms understand the grammatical structure
of sentences and disambiguate words with multiple meanings. It is commonly
used to determine the lexical categories and convey the semantics of each word
in a sentence. For example, let us take a look at the following sentences.
Sentence 1: I saw a bear in the forest.
Sentence 2: Please bear with me during this difficult time.
In these two sentences, even though the word “bear” is spelled and pronounced
the same, its meaning and POS tag differ based on the context. Sentence 1
refers to the animal “bear”, where “bear” is a noun. Sentence 2, however, uses
“bear” as a verb, indicating the act of enduring or tolerating. Understanding the
POS tag of the word “bear” in both of these sentences helps to disambiguate
the meaning. Accurate POS tagging is essential to enhance the performance of
these language-processing algorithms and enables the development of various
language-based applications.

Manual POS Tagging. As Lambani spoken in northern Karnataka uses Kan-
nada script to write, we propose using Kannada POS tagging rules as a founda-
tion to develop Lambani POS tagger. Utilising the expertise of native Lambani
speakers proficient in both English and Kannada, we conducted manual annota-
tions for POS tagging using the standards POS tagset developed by the Bureau
of Indian Standards (BIS) [18]. The POS knowledge of the created parallel text
corpus comprising English, Kannada, and Lambani is used to annotate the Lam-
bani text corpus. The manual annotation and evaluation by native Lambani
speakers ensure the reliability and accuracy of the POS tagging model, provid-
ing a strong foundation for further linguistic exploration and application. This
meticulous annotated corpus serves as a gold standard for subsequent analysis
and testing of the POS tagging model. Table 1 shows examples of Lambani POS
along with meaning of words in English.

Developing POS Tagger. We compare various methods for POS tagging
for developing Lambani POS tagger, including rule-based, Artificial Intelligence
(AI) based, Machine Learning (ML) based, and Deep Learning (DL) based
approaches. Rule-based methods for POS tagging involve manually creating
linguistic rules, but this is time-consuming, error-prone, and requires language
experts. An alternative rule-based approach uses a model to learn rules from
a training corpus, leading to AI-based methods. Artificial Intelligence methods
employ Hidden Markov Models (HMMs) to automate POS tagging, showing
good results. However, the trend is shifting towards Machine Learning (ML)
approaches like Naive Bayes, SVMs, and CRFs and Deep Learning (DL) based
approaches like Long Short-Term Memory (LSTM) networks, Gated Recurrent
Units (GRUs), Convolutional Neural Networks (CNNs) and Transformers. Both
these approaches aim to learn the patterns and relationships between words and
their corresponding POS tags.
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Table 1. Lambani tagset along with examples, English translation and transliteration.

HMM. Hidden Markov Model (HMM) is a stochastic technique used for POS
tagging that assigns tags to words based on the most frequent tag in the training
data. It follows a step-by-step procedure, extracting unique words, calculating
tag occurrence counts, and initializing emission and transmission matrices. These
matrices represent probabilities of word-tag observations and tag transitions.
The Viterbi algorithm is used to find the most probable sequence of POS tags.

RNN (Recurrent Neural Network). The paper aims leverage different con-
figurations of RNN and LSTM to build a POS tagger for Lambani language.
The model implementation involves two LSTM layers, each with 128 neurons,
and an output layer with Linear and Softmax components.

BERT. Additionally, the paper explores the use of pre-trained embeddings from
a fine-tuned BERT model trained on approximately 29K sentences. Pretrained
word or sentence embeddings have become essential in Natural Language Pro-
cessing. Transformer architectures use Masked Language Modeling (MLM) to
train the encoder on text corpora, providing embeddings for downstream tasks
like POS tagging. However, these models require large training datasets, which
can be challenging for low-resource languages like Lambani. To address this, we
will explore two approaches: using multilingual transformers trained on diverse
data and reducing the number of parameters to lower data requirements.

Creating Lambani Morphological Dictionary. Identifying root words and
affixes are crucial to understanding the fundamental meaning and lexical prop-
erties of a word. Table 2 shows examples of English, Hindi, and Lambani words
along with their respective root words, prefixes, and suffixes.
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Table 2. Examples of root forms and affixes of words in English, Hindi and Lambani.

The English word “unhappiness,” has the root word is “happy,” while the
prefix “un-” and the suffix “-ness” modify its meaning and grammatical func-
tion. Similarly, in the Hindi word (books), the root word is ,
represents “book” in English. The suffix indicates plurality, making the word
refer to multiple books. Moreover, a Lambani word, (pronounced
as “kaagadena”). The root word in this case is (pronounced as “kaa-
gada”) meaning “paper” in English. Additionally, the suffiix ( pronounced
as “een”) modifies the word’s significance.

Building Affix Lexicon. To handle the lexicon specific to the Lambani lan-
guage, we follow the following steps:

– Vocabulary construction: A vocabulary is constructed that contains all the
distinct word forms encountered in the corpus.

– Data cleaning: Non UTF-8 Kannada characters are removed. Additionally,
punctuations are also filtered.

– Stemming: As labelled dataset for stemming is not available, the unsuper-
vised Morphessor tool [25] is used for morphological segmentation to get the
stem/root words and affixes. The algorithm is based on a set of rules which
are applied iteratively until we get the base form of the word. Morphessor
uses dynamic programming based Viterbi algorithm to take cleaned vocabu-
lary as input and trains a model that segments words to get stem/root words
and affixes.

Table 3 examples of Lambani words along with their POS and morphological
affixes obtained after performing morphology analysis.

Table 3. Lambani dictionary after performing morphology analysis.
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4 Evaluation

4.1 Dataset Description

The description of the dataset is shown in Table 4. The dataset contains 29,358
sentences collected from various sources of Lambani text. Out of these, 6,893
sentences were manually tagged and divided into training and testing sets using
5-fold cross-validation.

Table 4. Data statistics.

Sl. No. Total number of sentences

Number of sentences collected 29,358

Number of manually POS tagged sentence 6,893

4.2 Distribution of POS Tags

The distribution of the POS tags is summarised in Table 5. Upon manual
labelling of 31640 words, it is inferred that Lambani has 8 part-of-speech tags
present, namely Adjective (JJ), Adverb (RB), Conjunction (CCD), Particle
(RPD), Noun (NN), Postposition (PSP), Pronoun (PRP) and Verb (VB). It
can be observed from Table 5 that we are getting the highest distribution of tags
in case of Verb (VB) followed by Noun (NN).

Table 5. Distribution of BIS POS tags in the dataset.

BIS POS Tag Count (Manual tagging) Count (GMM-HMM tagging)

Adjective (JJ) 2,743 2,458

Adverb (RB) 1,923 1,727

Conjunction (CCD) 254 296

Particle (RPD) 93 90

Noun (NN) 7,057 7,577

Postposition (PSP) 1,429 1,299

Pronoun (PRP) 6,729 6,496

Verb (VB) 11,412 11,662

4.3 Baseline

For evaluating the performance of POS tagging we use bi-directional RNN based
tagger as the baseline. RNN is useful for sequence labelling with variable length
inputs. The baseline is compared with BERT based and GMM-HMM based POS
tagger. During model training the maximum sequence length is kept at 150 for
both the RNN and BERT based models. The training batch size is kept at 32, and
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a beam size of 5 is adopted. The baseline model contains only 1 RNN layer with
an embedding dimension of 768. In case of BERT based models both the encoder
and decoder contain 6 layers. For the feed-forward neural network we have used
1024 inner states. Both the encoder and decoder contain 4 heads in each attention
layer block. The attention dropout and the dropout applied in the feed forward
network is kept constant at 0.1. Both the RNN and BERT are trained using the
Adam optimizer. Other than the straightforward RNN and BERT based models
we have also conducted experiments using DistilBERT [23] and MicroBERT [16].
DistilBERT uses the concept of knowledge distillation where a large and complex
model (BERT) is used to train a smaller and compact model by transferring its
knowledge to the smaller model. Whereas MicroBERT uses multitask learning
to reduce the model size. MicroBERT has only 1.29 million parameters, thereby
making it a better alternative to BERT. The model configurations to both these
models are kept unchanged as their default values.

4.4 Evaluation Metrics

To determine the performance of the proposed automatic POS tagger we adopt
accuracy, precision, recall and f1 score as the evaluation metrics. The metrics
are defined as follows:

– Precision is defined as the ratio of total number of correctly predicted POS
tags by total number of predicted tags.

– Recall is defined as the ratio of total number of correctly predicted POS by
the sum of correctly predicted tags and the number of missed tags.

– F1-score: Given precision and recall, F-score is defined as follows:

F1 − score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (1)

– Accuracy is defined as the ratio of the total number of correctly predicted
POS tags to the total number of tags in the dataset.

4.5 Results

Table 6. Result obtained on various models.

Models Accuracy Precision Recall F1-score

GMM-HMM 0.96 0.95 0.96 0.96

RNN 0.87 0.87 0.87 0.87

BERT+RNN (BRNN) 0.88 0.88 0.88 0.88

Distillbert (D) 0.86 0.86 0.86 0.86

Distillbert + RNN (DRNN) 0.88 0.88 0.88 0.88

Microbert (M) 0.84 0.84 0.84 0.84

Microbert + RNN (MRNN) 0.89 0.89 0.89 0.89
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In this section we report the experimental results based on accuracy, precision,
Recall and F1-score. Table 6 shows the performance comparison of POS tagging
of various methods adopted. The highest metrics compared with the baseline
model are highlighted as bold numbers.

POS Taggers Evaluation. We are getting an accuracy of 87% on our baseline
model. From Table 6 we can notice that we are getting the highest accuracy of
96% in the case of GMM-HMM which is almost 10% improvement in performance
over the baseline model. This may be due to the models ability to handle data
sparsity. GMM-HMM tries to learn the joint probability between the words and
its corresponding POS tags. Due to its probabilistic approach the model does not
assign zero probabilities to unseen word-POS combinations. Moreover, GMM-
HMM uses shared parameters across all the states in HMM. This reduces the
total number of parameters. In the case of Distillbert (D) we are getting an
accuracy of 86% which is an 1% reduction in performance over the baseline
model. We are getting the worst performance in the case of Microbert (M).
Although M has very few parameters, it is not able to map the POS tags with
its corresponding words.

From Table 6 it is quite evident that we are getting a performance improve-
ment when RNN is trained along with BERT models. If we compare between the
base BERT models and BERT models that use pre-trained embeddings, we are
getting significant improvement while using pre-trained embeddings. As BERT
is pre-trained on large amounts of data it was able to capture semantic rela-
tionships between various words. Moreover BERT uses contextual embeddings,
meaning the embedding of a word depends on the context of the sentence. The
BERT+RNN models are almost similar in performance except MRNN which is
giving a 1% improvement.

5 Conclusion and Future Work

This paper presents a seminal work to develop a linguistic resource for the under
resourced Lambani language. The work involves creating a lexical corpora, a POS
tagset, POS tagger, a lexicon dictionary and morphology analyzer for Lambani.
We adopt a transfer leaning approach of using parallel corpora in English and
Kannada along with Kannada linguistic rules for the work. Upon manual POS
tagging of 31640 words, it is observed that the Lambani tagset consists of eight
POS tags specified in the BIS tagset. Numerous experiments were conducted
to develop an accurate POS tagger that works well with low-resource corpora.
For POS tagging, the GMM-HMM approach outperforms the tested methods
and gives an accuracy of 96% for POS tagging task. The future efforts will
focus on expanding the manually collected parallel corpus in Lambani, both in
terms of its size and the amount of annotated POS tags. We will also focus
on other variations of BERT like multilingual BERT finetune on the Lambani
sentences. The development of a comprehensive Lambani dictionary and further
enhancements to the POS tagger will be pursued as well.



138 A. Dasare et al.

Acknowledgement. We would like to thank Prashant Bannulmath, Sunita Rathod,
Rajeshwari Naik and Sunil Rathod for helping us in developing the Lambani POS cor-
pus. The authors would also like to thank “Anatganak”, high-performance computation
(HPC) facility, IIT Dharwad, for enabling us to perform our experiments, and Ministry
of Electronics and Information Technology (MeitY), Govt. of India, for supporting us
through the “Speech to Speech translation for tribal languages” project.

References

1. National Council of Educational Research and Training. https://ncert.nic.in/
textbook.php

2. Aggarwal, N., Randhawa, A.K.: A survey on parts of speech tagging for Indian
languages. In: IJCA Proceedings on International Conference on Advancements in
Engineering and Technology, ICAET 2015, vol. 3, pp. 29–31 (2015)

3. Anand Kumar, M., Dhanalakshmi, V., Soman, K., Rajendran, S.: A sequence label-
ing approach to morphological analyzer for Tamil language. Int. J. Comput. Sci.
Eng. 2(06), 1944–1951 (2010)

4. Antony, P., Kumar, M.A., Soman, K.: Paradigm based morphological analyzer for
Kannada language using machine learning approach. Int. J. Adv. Comput. Sci.
Technol. (2010). ISSN 0973–6107

5. Antony, P., Soman, K.: Parts of speech tagging for Indian languages: a literature
survey. Int. J. Comput. Appl. 34(8), 0975–8887 (2011)

6. Boopathy, S.: Languages of Tamil Nadu: Lambadi, an Indo-Aryan dialect. Census
of India 1961, Tamil Nadu ix, part XII (1972)

7. Burman, J.R.: Ethnography of a Denotified Tribe: The Laman Banjara. Mittal
Publications (2010)

8. Chandramouli, C., General, R.: Census of India 2011. Provisional Population
Totals. Government of India, New Delhi, pp. 409–413 (2011)

9. Chowdhury, A., Deepak, K.T., Prasanna, S. M.: Machine translation for a very low-
resource language - layer freezing approach on transfer learning. In: Proceedings
of the Fifth Workshop on Technologies for Machine Translation of Low-Resource
Languages (LoResMT 2022), pp. 48–55. Association for Computational Linguistics,
Gyeongju (2022)

10. Dasare, A., Deepak, K.T., Prasanna, M., Samudra Vijaya, K.: Text to speech sys-
tem for lambani - a zero resource, tribal language of India. In: 2022 25th Conference
of the Oriental COCOSDA International Committee for the Co-ordination and
Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA),
pp. 1–6 (2022)

11. Dhumal Deshmukh, R., Kiwelekar, A.: Deep learning techniques for part of speech
tagging by natural language processing. In: 2020 2nd International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA), pp. 76–81 (2020)

12. Dixit, V., Dethe, S., Joshi, R.K.: Design and implementation of a morphology-
based spellchecker for Marathi, and Indian language. Arch. Control Sci. 15(3), 301
(2005)

13. Ekbal, A., Bandyopadhyay, S.: Part of speech tagging in Bengali using support
vector machine. In: 2008 International Conference on Information Technology, pp.
106–111 (2008)

14. Francis, M.: A comprehensive survey on parts of speech tagging approaches in
Dravidian languages. In: The IIER International Conference, Beijing, China, 26
July 2015 (2015)

https://ncert.nic.in/textbook.php
https://ncert.nic.in/textbook.php


Linguistic Resource Development for Lambani Language 139

15. Gadde, P., Yeleti, M.V.: Improving statistical POS tagging using linguistic feature
for Hindi and Telugu. In: ICON, pp. 1–8 (2008)

16. Gessler, L., Zeldes, A.: MicroBERT: effective training of low-resource monolingual
BERTs through parameter reduction and multitask learning. In: Proceedings of the
The 2nd Workshop on Multi-lingual Representation Learning (MRL), pp. 86–99.
Association for Computational Linguistics, Abu Dhabi (Hybrid) (2022)

17. Hymes, D.: Morris swadesh. Word 26(1), 119–138 (1970)
18. of Indian Standard, B.: Linguistic resources - pos tag set for Indian languages -

guidelines for designing tagsets and specification. https://tdil-dc.in/tdildcMain/
articles/134692DraftPOSTagstandard.pdf

19. Kumar, D., Singh, M., Shukla, S.: FST based morphological analyzer for Hindi
language. Int. J. Comput. Sci. 9 (2012)

20. Metry, K.: tribal languages in 8th schedule. AGPE Royal Gondwana Res. J. Hist.
Sci. Econ. Polit. Social Sci. 2(1), 19–30 (2020)

21. Naik, C., Naik, D.P.: Banjara stastical report Karnatka state, India (2012)
22. Prathibha, R., Padma, M.: Development of morpholoical analyzer for kannada

verbs. In: IET, pp. 22–27 (2013)
23. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)
24. Sarkar, K., Gayen, V.: A trigram HMM-based POS tagger for Indian languages.

In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of the Interna-
tional Conference on Frontiers of Intelligent Computing: Theory and Applications
(FICTA). AISC, vol. 199, pp. 205–212. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-35314-7 24

25. Smit, P., Virpioja, S., Grönroos, S.A., Kurimo, M.: Morfessor 2.0: toolkit for sta-
tistical morphological segmentation. In: Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 21–24. Association for Computational Linguistics, Gothenburg
(2014)

26. Srivastava, P., Chauhan, K., Aggarwal, D., Shukla, A., Dhar, J., Jain, V.P.: Deep
learning based unsupervised POS tagging for Sanskrit. In: Proceedings of the 2018
International Conference on Algorithms, Computing and Artificial Intelligence,
ACAI 2018. Association for Computing Machinery, New York (2018)

27. Sunitha, K.N., Kalyani, N.: A novel approach to improve rule based Telugu mor-
phological analyzer. In: 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), pp. 1649–1652 (2009)

28. Trail, R.L.: The grammar of Lamani. SIL of the University of Oklahoma (1970)
29. Yu, X., Vu, N.T., Kuhn, J.: Ensemble self-training for low-resource languages:

grapheme-to-phoneme conversion and morphological inflection. In: Proceedings
of the 17th SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pp. 70–78 (2020)

https://tdil-dc.in/tdildcMain/articles/134692DraftPOSTagstandard.pdf
https://tdil-dc.in/tdildcMain/articles/134692DraftPOSTagstandard.pdf
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-642-35314-7_24
https://doi.org/10.1007/978-3-642-35314-7_24


Studying the Effect of Frame-Level
Concatenation of GFCC and TS-MFCC
Features on Zero-Shot Children’s ASR

Ankita(B) , Shambhavi, and Syed Shahnawazuddin

National Institute of Technology Patna, Patna, Bihar, India
{ankita.ph21.ec,s.syed}@nitp.ac.in

Abstract. The work presented in this paper aims at enhancing
the recognition performance of zero-shot children’s speech recognition
task through frame-level concatenation of two complementary front-
end acoustic features. The acoustic features chosen are TANDEM-
STRAIGHT-based Mel-frequency cepstral coefficients (TS-MFCC) and
Gamma-tone frequency cepstral coefficients (GFCC). The GFCC model
the cochlear response of the human auditory system. The MFCC fea-
tures, on the other hand, model the human pitch perception. Therefore,
the GFCC and TS-MFCC features capture the acoustic information dif-
ferently and that too with very low correlation. Consequently, concate-
nation of TS-MFCC and GFCC feature vectors helps in modeling com-
plementary and a wider range of relevant acoustic information. This, in
turn, enhances the recognition performance significantly. The experimen-
tal evaluations presented in this paper show that a relative reduction of
nearly 12% is achieved by feature concatenation.

Keywords: Zero-shot children’s ASR · TS-MFCC · Feature
concatenation · GFCC

1 Introduction

Automatic speech recognition (ASR) is the technology that aides in converting
human speech into text. Cutting edge computational techniques such as highly
efficient deep learning algorithms [5–7,17,20] have boosted the research work in
this domain. As a result, ASR systems are employed in several applications such
as voice-based digital assistance, voice-to-text conversion for hands-free comput-
ing, voice commands to smart home devices, virtual agents, reading tutors, inter-
active voice response (IVR) systems, live captioning, language learning tools,
voice biometrics, automotives, entertainment and clinical note-taking.

To be effective and to generalize well for all kinds of users, ASR systems
are supposed to be speaker-independent. For that purpose, a large amount of
speech data is used for learning the statistical model parameters. Most of the
ASR systems are designed for adult population and hence use data from adult
speakers only. Therefore, such ASR systems have high recognition rates with
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respect to adult’s speech. However, their performance degrades substantially
when they are subjected to the children’s speech. Absence of speech data from the
child domain in the training set leads to acoustic mismatch between the training
and test conditions. This, in turn, results in severe degradation in recognition
performance [4,11,19]. This task of recognising children’s speech using statistical
models trained on adults’ speech is referred to as zero-shot children’s ASR.

The acoustic mismatch between the training and test data can be alleviated
by modifying children’s speech test set prior to decoding by using techniques like
prosody modification [26], formant scaling [9] and vocal-tract length normaliza-
tion [10,22]. However, those approaches require two-pass decoding in order to
optimally modify the test data which, in turn, results in increased computation
time. Resorting to out-of-domain data augmentation [8,23,24] as well as develop-
ing robust front-end features specifically for children’s speech can help overcome
the issue of increased computation time. One such acoustic features, suitable
for zero-shot children’s ASR is referred as TS-MFCC, was proposed in [25].
The TS-MFCC feature extraction process employs pitch-synchronous spectrum
estimation called TANDEM STRAIGHT (TS). This results in smoothed power
spectra that suppresses the ill-effects of pitch harmonics. The Mel-frequency
cepstral coefficients (MFCC) computed using the TANDEM-STRAIGHT power
spectra are reported to be very effective for zero-shot children’s ASR task.

In this study, we have revisited the TS-MFCC features and studied its effec-
tiveness in combination with another front-end acoustic feature called Gamma-
tone frequency cepstral coefficient (GFCC) [14]. The GFCC models the human
auditory system’s cochlear response whereas the MFCC models the human pitch
perception. Consequently, the two kinds of features capture and model the acous-
tic information present in the speech signal differently and that too with a very
low correlation. Therefore, it is expected that combining these two front-end
acoustic feature vectors will capture a broader range of relevant acoustic infor-
mation leading to improved recognition performance. Motivated by this fact, in
our present work, we have studied the effect of frame-level concatenation of TS-
MFCC and GFCC features for zero-shot children’s ASR task. The ASR system
trained on the concatenated feature vectors leads to significantly lower error
rates as demonstrated by the experimental evaluations presented later in this
paper.

The rest of the sections of this paper is organised as follows: In Sect. 2, the
proposed approach is described and the experimental evaluations demonstrating
the effectiveness of the proposed approach are presented in Sect. 3. Finally, the
paper is concluded in Sect. 4.

2 Proposed Approach

In this work, we have studied the effect of concatenating TS-MFCC and GFCC
features in order to enhance the recognition performance of zero-shot children’s
ASR task. The proposed feature concatenation approach is summarized in the
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block diagram shown in Fig. 1. It involves appending the coefficients of TS-
MFCC and GFCC feature vectors at the frame-level. The resultant feature vec-
tors are then used for the training purpose. In this section, we first describe the
two kinds of features in detail. Next, we discuss the motivation behind concate-
nating those two feature vectors.

Fig. 1. Block diagram outlining the proposed approach for frame-level concatenation
of TS-MFCC and GFCC features.

2.1 Overview of GFCC Features

Fig. 2. Block diagram illustrating the process of exctracting GFCC features.

We have borrowed the idea of using Gamma-tone frequency cepstral coefficients
[14,29] from other speech-related research fields where they have been success-
fully employed for speech recognition [2,21,27] and speaker identification [28].
However, it’s application in children’s speech recognition has not been explored
yet. The computation of the GFCC features is similar to that of the MFCC
extraction process. The speech signal is first analyzed into short-time frames.
The non-stationary speech signal is known to show stationary behaviour in such
short frames. This aides in the spectro-temporal signal analysis. Next, each of
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the frames is processed using a bank of Gamma-tone filters. The Gamma-tone
filters are derived by observing the psychophysical and physiological behaviour
of the auditory peripheral and hence serve as a standard model for Cochlear
filtering. As a consequence, Gamma-tone filtering helps in effectively capturing
acoustic information that is left out due to the use of Mel-filterbank.

The cochlea not only amplifies sound waves and converts them into neural
signals, but also decomposes complex acoustic waveform into simpler elements.
Thus, it acts as mechanical frequency analyzer where each position along the basi-
lar membrane corresponds to a particular frequency. The Gamma-tone filters are
designed as such to replicate this process. For this purpose, the magnitude or the
power spectrum of the signal is passed through a Gamma-tone filterbank. We
have used a bank of 40 filters spaced linearly on the equivalent rectangular band-
width (ERB) scale whose central frequency varies between 50 Hz and 8000 Hz.
The ERB is a psychoacoustic measure of the auditory filter width at each point
along cochlea. The frequency conversion from Hz to the ERB scale is given by:

ERB = A × log10(1 + 0.00437f) (1)

where, f is in Hz and A is given by:

A = 1000
ln(10)

24.7 × 4.37
(2)

Next, nonlinear cubic-root function is applied on the obtained time-frequency
representation to model human loudness perception. To reduce dimensionality
and de-correlate the resulting components, discrete cosine transform is applied.
The overall GFCC feature extraction process is summarized in Fig. 2.

2.2 Review of TS-MFCC Features

A periodic signal h(t) has a temporally stable power spectrum usually calculated
over a sum of two power spectra. To serve this purpose, a pair of time windows
are chosen such that they are separated for half of the fundamental period [13].
Let, h(t) has a Fourier transform H(ω) and assuming that only two harmonic
components of the fundamental frequency (ω0 = 2π

T0
) occupy the main lobe of

H(ω), then
h(t) = ejkω0t + αej(k+1)ω0t+β . (3)

where α and β represent real numbers. Taking Fourier transform of the above
equation (assuming k = 0 for simplicity):

H(ω) = δ(ω) + αejβδ(ω − ω0). (4)

The respective power spectra of the windowed test signal is then

P (ω, t) = |H(ω)|2 + α2|H(ω − ω0)|2 + 2αH(ω)H(ω − ω0) cos(ω0t + β). (5)

The third term in the above equation is time-dependent and represents the
temporal dependency in the spectrum estimation. It can be cancelled by taking
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an opposite polarity with a window at t + T0/2. The spectrum without any
temporal fluctuation i.e., the TANDEM spectrum T (ω, t) is now given as:

T (ω, t) =
1
2

{P (ω, t) + P (ω, t + T0/2)} . (6)

The TANDEM spectrum T (ω, t) results in smoothed vocal-tract response.
The suppression of pitch-harmonics through spectral smoothing due to TAN-
DEM STRAIGHT analysis was demonstrated in [25]. MFCC features extracted
after smoothing out the pitch-harmonics were noted to be effective in the context
of zero-shot children’s ASR task.

2.3 Motivation for Feature Concatenation

Fig. 3. Canonical correlation between TS-MFCC and GFCC features demonstrating
that the two kinds of feature vectors are highly uncorrelated.

As mentioned earlier, the contribution of this work is to explore the effect of
frame-level concatenation of two front-end features, i.e., TS-MFCC and GFCC
on zero-shot children’s ASR task. Due to inherent differences in the way the Mel-
and Gamma-tone filterbanks are designed and act on a frame of speech, the two
kinds of features capture and model complementary acoustic information. To
demonstrate that the two kinds of features model the speech data differently
and represent a wider range of acoustic attributes, canonical correlation analysis
(CCA) was performed on these two features. As evident from Fig. 3, the CCA
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results in low values (≤ 0.15) for most of the indexes. This, in turn, implies that
the TS-MFCC and GFCC features are highly uncorrelated. Hence, their frame-
level concatenation is expected to represent a wider range of acoustic attributes
as intended. Modeling those will, in turn, help in capturing the missing targeted
attributes more robustly and hence improve the recognition performance.

3 Experimental Evaluations

3.1 Database and Experimental Specification

For experimental evaluations, we have used two different British English speech
corpora, namely, WSJCAM0 [18] and PF STAR [1]. The motivation behind
using the said corpora is that the mismatches in the recording conditions and
the accent of the speakers are minimal. Furthermore, both WSJCAM0 and the
PF STAR databases contain read speech. In our study, the training set was
derived from WSJCAM0 and it consisted 15.5 h of speech data from 92 adult
speakers (39 females). In order to deal with the unavailability of speech data
from child domain, the acoustic attributes of adults’ speech training set were
modified to make them similar to that of children’s speech. For that purpose,
we up-scaled the pitch and formant frequencies as well as increased the dura-
tion of the adults’ speech [8,23]. In addition to that, adults’ speech was also
subjected to voice-conversion using a generative adversarial network (GAN) to
synthetically generate children’s like speech [24]. The pitch of the adults’ speech
training set was increased by a factor of 1.35 while the duration was increased by
a factor of 1.4 using the technique reported in [3]. The formant frequencies were
up-scaled by a factor of 0.08. For formant modification, the approach proposed
in [9] was used which employed scaling of the linear prediction coefficients [12].
These scaling factors were determined by performing experiments on a develop-
ment set described later. The modified data-sets were then pooled into training.
This out-of-domain augmentation approach helps in capturing the missing tar-
geted attributes of children’s speech. In addition to that, the overall duration of
the training data is increased which, in turn, helps in more robust estimation of
model parameters.

Children’s speech test set was derived from the PF STAR corpus and it
comprised of 1.1 hours of speech data from 60 speakers (28 females). The age
of the child speakers in this test set varied from 4 to 13 years. Furthermore, a
development set of children’s speech was also derived from the PF STAR corpus.
The development set consisted of 2.1 h of speech data from 63 speakers whose
age varied between 6 and 14 years. This set was used for determining the optimal
values for the tunable parameters. To gain better insight into the effect of feature
concatenation, the test set was split into two, based on the age of the speakers.
The first split consisted of nearly 0.6 h of data from children in the age group
4 to 8 years. The second split comprised of nearly 0.5 h of data from speakers
belonging to the ages 9 to 13 years. Further to that, another split was done based
on the gender of the speakers.
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The Kaldi toolkit was used to perform all the experiments [16]. However, front-
end speech parameterization was done using MATLAB. The TS-MFCC features
reported in [25] were used for front-end speech parameterization in the case of
baseline ASR system since those are observed to be more suitable than other
existing features in the context of children’s speech recognition task. Speech data
was analyzed through short-time frames using overlapping Hamming windows of
duration 25 ms with a frame-shift of 10 ms. A 40-channel log-Mel-filterbank was
used to compute the 13-dimensional base TS-MFCC feature vectors. The base
features were time-spliced with context size of ±4 frames and then projected to
a 40-dimensional subspace and de-correlated using linear discriminant analysis
(LDA) and maximum-likelihood linear transform (MLLT). For feature normal-
ization, cepstral mean and variance normalization (CMVN) as well as feature-
space maximum likelihood linear regression (fMLLR) were used. This helps in
imparting robustness towards speaker variations. In the case of the GFCC fea-
tures, frame-size and frame-overlap were chosen as 25 ms and 10 ms. The Gamma-
tone-filterbank consisted of 40 channels. Cubic-root function was used for non-
linear rectification prior to the application of DCT. The base features extracted
in this case were also 13-dimensional. LDA, MLLT, CMVN and fMLLR were then
applied in succession to obtain 40-dimensional feature vectors.

Hidden Markov models (HMM) were used for acoustic modeling. The obser-
vation probabilities for the HMM states were generated using Gaussian mixture
models (GMM) as well as time-delay neural network (TDNN) [15,30]. Cross-
word triphone models consisting of eight diagonal covariance components per
state were used for the GMM-HMM-based ASR system. Furthermore, decision
tree-based state tying was performed with the maximum number of senones being
fixed at 2000. Speaker-adaptive training employing fMLLR transforms was used
to optimize the final GMM-HMM system. The time-alignments generated using
this GMM-HMM-based ASR system were used for initializing the TDNN-HMM.
The lattice-free maximum mutual information (LF-MMI) criterion [17] was used
for training TDNN-HMM-based ASR system. The TDNN consisted of 13 hid-
den layers with 1024 nodes per layer. The initial and final learning rates were
set to 0.0005 and 0.00005, respectively. Prior to learning the TDNN parameters,
100-dimensional i -vectors were extracted and appended to the base acoustic fea-
ture vectors. The universal background model employed for extracting i -vectors
consisted of 512 Gaussian components.

A domain-specific 1.5k bi-gram language model (LM) was used while decod-
ing the children’s speech test set. This LM was trained on the transcripts of the
speech data from PF STAR corpus after excluding the utterances from the test
set. The employed LM had an out-of-vocabulary rate of 1.20% and a perplexity
of 95.8 for the children’s speech test set. The lexicon consisted of 1969 words
including pronunciation variations. The metric used for performance evaluation
are word error rate (WER) and character error rate (CER).

3.2 Results and Discussions

The WERs and CERs for the children’s speech test set with respect to an ASR
system trained on adults’ speech and its’ modified versions pooled into training
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Table 1. WERs and CERs for the children’s speech test set with respect to an ASR sys-
tems trained on augmented data. The recognition performances are given with respect
to the explored front-end features as well as their fame-level concatenation.

Front-end features Evaluation metrics

WER (%) CER (%)

TS-MFCC 10.01 7.20

GFCC 10.07 7.20

TS-MFCC + GFCC 8.86 6.29

are given in Table 1. The baseline ASR system is trained using TS-MFCC fea-
tures as already stated earlier. It is worth mentioning here that, a WER of 19.5%
is achieved if only adults’ speech is used for training. In other words, the WER
gets nearly halved when data augmentation is employed. The WER and CER for
GFCC features are almost the same as those obtained using TS-MFCC features.
However, on concatenating the two kinds of features, an absolute reduction in
WER by 1.15% over the baseline is obtained. Similarly, the absolute reduction
in CER is 0.91%. The relative changes in WER and CER over the baseline
are shown in Fig. 4. These, results statistically substantiate the efficacy of the
proposed approach in the context of zero-shot children’s ASR task.

Fig. 4. Age-group and gender-wise relative change in WERs and CERs over the respec-
tive baselines obtained by the concatenation of TS-MFCC and GFCC features.
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Table 2. Age-group as well as gender-specific WERs and CERs for children’s speech
with respect to an ASR systems trained on augmented data.

Front-end Features Speaker Group Evaluation metrics

WER (%) CER (%)

TS-MFCC Age-Gr.-I 15.08 11.34

Age-Gr.-II 6.71 4.36

Female 11.58 8.59

Male 8.86 6.16

GFCC Age-Gr.-I 15.93 12.03

Age-Gr.-II 6.09 3.91

Female 11.58 8.59

Male 8.76 6.16

TS-MFCC + GFCC Age-Gr.-I 13.39 10.00

Age-Gr.-II 5.82 3.82

Female 10.32 7.54

Male 7.63 5.20

Next, we performed another study to determine the age-group-specific and
gender-specific recognition performances. The age-group as well as gender-
specific WERs and CERs are given in Table 2. As evident for the tabulated
results, both TS-MFCC and GFCC give similar WER and CER values for each
of the speaker groups. However, when the two kinds of feature vectors are con-
catenated, there are significant reductions in WERs as well as CERs in each of
the case. The relative changes in WER and CER obtained over the respective
baselines are shown in Fig. 4. In each of the cases, the relative reduction is more
than 10%. These results show that the proposed approach is equally powerful
not only for Age-Gr.-I kids where the pitch is relatively very high but also for
the Age-Gr.-II children having relatively lower pitch values. Similarly, the gains
are similar for both male as well as female speakers. Its worth mentioning here
that, the pitch values for female speakers are somewhat higher than those for the
male children. Thus it can be concluded that the proposed feature concatenation
approach imparts pitch-robustness to the ASR system.

4 Conclusion

The work presented in this paper outlines our efforts towards enhancing the
recognition performance of zero-shot children’s ASR system. In this regard,
we have implemented frame-level concatenation of two complementary features
namely, TS-MFCC and GFCC. The TS-MFCC features employ Mel-filterbank
for spectral warping while Gamma-tone filterbank is used in the case of GFCC.
Consequently, the two kinds of features model speech data differently and with
very low correlation. Hence, on concatenating those at the frame-level helps in
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capturing a wider range of acoustic attributes. This, in turn, enhances the recog-
nition performance significantly. In our experimental setup, a relative reduction
in WER by nearly 12% over the baseline is obtained.
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Abstract. Text-to-speech (TTS) systems are an important component
in voice-based e-commerce applications. These applications include end-
to-end voice assistant and customer experience (CX) voice bot. Code-
mixed TTS is also relevant in these applications since the product names
are commonly described in English while the surrounding text is in a
regional language. In this work, we describe our approaches for produc-
tion quality code-mixed Hindi-English TTS systems built for e-commerce
applications. We propose a data-oriented approach by utilizing mono-
lingual data sets in individual languages. We leverage a transliteration
model to convert the Roman text into a common Devanagari script
and then combine both datasets for training. We show that such single
script bi-lingual training without any code-mixing works well for pure
code-mixed test sets. We further present an exhaustive evaluation of
single-speaker adaptation and multi-speaker training with Tacotron2 +
Waveglow setup to show that the former approach works better. These
approaches are also coupled with transfer learning and decoder-only fine-
tuning to improve performance. We compare these approaches with the
Google TTS and report a positive CMOS score of 0.02 with the proposed
transfer learning approach. We also perform low-resource voice adapta-
tion experiments to show that a new voice can be onboarded with just 3
hrs of data. This highlights the importance of our pre-trained models in
resource-constrained settings. This subjective evaluation is performed on
a large number of out-of-domain pure code-mixed sentences to demon-
strate the high quality of the systems.

Keywords: Code-mixed · Text-to-speech · Encoder-decoder models ·
Tacotron2 · Waveglow · Transfer learning

1 Introduction

Text to Speech (TTS) systems are widely used in voice-based applications [38].
These systems are used along with automatic speech recognition (ASR) [16] to
provide an end-to-end voice interface. It is also prominently used in e-commerce
applications like voice assistants, customer experience (CX) voice bots, and user
nudges to highlight a feature or product [15,20]. In this work, we describe the
approaches used to build the TTS system for e-commerce use cases.
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Fig. 1. Code-mixed text to speech synthesis.

In a country like India with high linguistic diversity along with English speak-
ing population ’code-mixing’ or ’code-switching’ is a common phenomenon. With
a large Hindi-speaking diaspora, Hindi-English code-mixing is prevalent in social
media and e-commerce platforms [26]. Moreover with product names and service
terminologies mostly described in English an e-commerce voice assistant with
Hindi as the primary language should support code-mixing as well. For exam-
ple, a Hindi sentence ”Mafi chahate hai, par aapke product Babolat Super Tape
X Five Protection Tape ko wapis nahi kiya jaa sakta hai” (We’re sorry, but your
product Babolat Super Tape X Five Protection Tape is non-returnable) contains
product name in English. We, therefore, focus on building a code-mixed TTS
system for e-commerce use cases.

Building a TTS system requires high-quality studio recordings for training
[27]. It is even difficult to build a code-mixed TTS due to a lack of appropri-
ate data sets, complex methods, and coverage issues. A common approach is
to create a mixed-script data set by detecting the language of each word and
then transliterating it into the corresponding script [31,35]. The mixed script is
preferred as the pronunciation of regional tokens is more accurate in the native
script. For Hindi-English code-mixed text, the Hindi words are in Devanagari
script whereas the English words are in Roman script. Each word is passed to the
corresponding language G2P (Grapheme to phoneme) system and the phoneme
representations are then passed to the model. An even naive approach is to use a
single English G2P model and map Hindi phones to the closest English phones.
However, utilizing separate G2P modules for two languages yields good results.
These multi-component systems are complex to build and also results in high
latency.

In this work, we propose a simple data-oriented approach for our use case.
Due to a lack of pure code-mixed data, the proposed solution utilizes individ-
ual monolingual (text, audio) pairs in Hindi and English. We use an in-house
high-quality transliteration system to convert the English data to a common
Devanagari script. The Hindi and English data are mixed to train a TTS model
converting Devanagari text to speech. Since the primary language of the end
application is Hindi we convert all the data to Devanagari script. We show that
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independent bi-lingual data sets without pure code-mixing work well for pure
code-mixed test sets. This approach is shown in Fig. 1. Although our primary
focus is Hindi and Devanagari script with high-quality transliteration systems
(English to any Indic Script) the idea can be easily extended to other languages.

For modeling, we implement a two-stage Tacotron2 + Waveglow architecture
[30,33]. The Tacotron2 model has been used for text-to-spectrogram conversion
and the Waveglow then converts the spectrogram into target audio samples.
While there are multiple options available for the spectrogram prediction net-
work and audio synthesis network we choose Tacotron2 + Waveglow as they
are competitive with other architectures and still popular in literature [1,10–12].
Moreover, there are single-stage end-to-end deep learning models available but
these are not considered in this work due to high data requirements. We also
present a comparative analysis of single-speaker and multi-speaker Tacotron2
configurations [14]. The single speaker is a standard setup where single-speaker
data is used to train the model. In the muti-speaker setup, we utilize speaker
embeddings extracted from an external pre-trained speaker verification model
to control the output speaker characteristics. A multi-speaker model allows for
zero-shot or few-shot voice adaptation and also has the advantage of cross-
speaker learning. These approaches are further augmented using pre-training
based transfer learning approach. We initially pre-train the single-speaker model
by pooling all the speakers together. This pre-trained model is adapted for target
speakers in single-speaker configuration and is also used to initialize the multi-
speaker model. We show that the single-speaker adaptation of the pre-trained
works the best. We observe that although a single multi-speaker model is capa-
ble of generating speech for multiple speakers it leads to a slight degradation
in the quality of output. These approaches are evaluated using subjective MOS
and CMOS scores on a completely out-of-domain test set from the CX domain
while the training data is from the Voice Bot and general domain.

2 Related Work

A host of TTS architectures have been proposed over time with a focus on speed
and quality. Recently, single-stage fully end-to-end architectures have been pro-
posed which directly convert text to audio samples. These models include VITS
[18], Wave-Tacotron [42], and JETS [24]. However, these models require a large
amount of data. The two-stage models (spectrogram generation + speech syn-
thesis) require comparatively less amount of data as the vocoder can be sepa-
rately trained with audio-only data. The popular spectrogram prediction net-
works include Tacotron2 [33], Transformer-TTS [23], FastSpeech2 [32], FastPitch
[22], and Glow-TTS [17]. There are a wide variety of vocoders to choose from like
Clarinet [28], Waveglow [30], MelGAN [21], HiFiGAN [19], StyleMelGAN [25],
and ParallelWaveGAN [44]. In terms of voice quality, there is no clear winner
among the models and models perform competitively on high-quality datasets.

These architectures have also been extended to multi-speakers by condition-
ing them on speaker embeddings. The speaker embeddings encode the speaker
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characteristics of the target audio. The speaker embeddings are either extracted
from an external speaker verification model [2,14] or learned jointly during TTS
training [29]. The external embeddings are based on d-vector [40] or x-vector
[37] systems. The pre-trained and learnable speaker embeddings were compared
in [6]. The per-trained embeddings were shown to perform superior performance
on FastSpeech 2 model. A similar comparison with the Tacotron model has
been performed in [8]. They perform zero-shot speaker adaption using differ-
ent speaker embeddings but still report a gap between similarity scores of seen
and unseen speakers. They observed that these models do not generalize well
to unseen speakers. A TTS system incorporating different emotions was studied
in [43]. They use global style tokens (GSTs) to encode the emotion information
add the tokens are jointly trained using emotion labels. Similarly, multi-speaker
systems using speaker embeddings are also built in [4,5,9].

Relatively less amount of work has been done in code-mixed TTS systems.
A preliminary approach for Hindi-English code-mixed TTS using mixed script
text was proposed in [34]. A language identification system was employed to
distinguish Romanized Hindi and English words followed by the transliteration
of Hindi words to the Devanagari script. They however used a common English
phone set for both Hindi and English words which might result in accent issues
for regional words. Further, different Grapheme to Phoneme (G2P) for English
words and regional words were utilized in [31,39]. A single mix-lingual G2P
model instead of two separate models were proposed in [3]. In [45], embed-
dings from an external cross-lingual language model were integrated into the
fronted of Tacotron2 model along with the original phone embeddings. The
cross-lingual language model encodes words of both languages into the same
space thus improving the performance of code-switched TTS. In this work, we
make use of a single script and a graphene-based Tacotron frontend thus elimi-
nating the need for such complex high latency modifications. The high quality
of the transliteration model also suppresses the pronunciation and accent issues.

3 Methodology

3.1 Code-Mixed TTS

The primary objective of this work is to build a Hindi-English code-mixed or
code-switched TTS. Ideally, we would require code-mixed recordings for training
such a system. However such recordings are rarely available in practice due to
the focus on a single language. To solve for the lack of datasets, we propose a
data-oriented approach and utilize monolingual data from the two languages. We
use the recordings for Hindi and English text from the same speaker. We propose
a single script transliteration-based approach to build a bilingual system. Since
the primary language of the end application is Hindi we convert the English
text to Devnagari script using an in-house Roman-to-Devanagari translitera-
tion model. The (English text, audio) and (Hindi text, audio) paired data with
all the text in the Devanagari script are simply used together to train a single
model. We show that this simple mixing works well even for the code-mixed data.
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Fig. 2. Model Architecture for single-speaker and multi-speaker configurations. The
multi-speaker model has an extra speaker embedding component extracted from a
pre-trained speaker verification model.

We compare Hindi-only training and dual-language training to show the effec-
tiveness of using dual languages. The system is evaluated on 500 strong code-
mixed examples from the out-of-domain Customer Experience (CX) domain.
We also evaluate the system on a 500 English-only product names test set to
showcase the English-speaking capabilities of the model.

3.2 Model Architecture

In this work, we use the Tacotron2 spectrogram prediction network and Wave-
glow vocoder for all our data-oriented experiments. We perform both single-
speaker and multi-speaker experiments. For the multi-speaker model, we simply
fuse the external x-vector speaker embeddings with the Tacotron model. The
model architecture is described in Fig. 2. In the next sub-sections, we describe
network architecture and the experimental setup.

Single-speaker Tacotron2. The Tacotron2 [33] is an auto-regressive encoder-
decoder model that maps text sequence to spectrogram sequence. We use char-
acters as input to the encoder and the architecture is the same as that described
in the original work. The encoder consists of three Conv layers followed by a
Bi-LSTM layer. The character embedding size, number of Conv filters, and Bi-
LSTM units is 512. The Conv filter size is 5× 1. The decoder is an auto-regressive
network conditioned on encoder output. It uses location-sensitive attention [7]
to compute the context vector. It consists of two uni-LSTM layers with 1024
units. The decoder also consists of a pre-net and post-net added before and after
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the uni-LSTM layers respectively. The pre-net consists of 2 feedforward layers
(256 units) and the post-net consists of 5 Conv layers (512 filters with a size of
5× 1). The output of the uni-LSTM is concatenated with the context vector and
is passed through two parallel dense layers to compute the stop token and tar-
get log-mel spectrogram. The spectrogram is further refined using the post-net
and a residual connection connects the output spectrogram to the output of the
post-net. The mean squared error (MSE) loss is used for training.

Multi-speaker Tacotron2. This model is the same as the single-speaker model
except for the addition of speaker embeddings. An x-vector system is used to
extract the speaker embeddings [36] from the corresponding audio sample. The
pre-trained model1 is based on a time-delay neural network (TDNN). It was
trained using the VoxCeleb speaker recognition dataset. The 512-dimensional
embeddings are subjected to LayerNorm followed by a dense layer of size 512.
The output of the dense layer is again passed through a LayerNorm and added
to each time step of the encoder output. The decoder is therefore conditioned on
the speaker embeddings as well in order to generate audio for the desired speaker.
The multi-speaker model again has two configurations as described below.

– Audio embedding: This is the regular configuration in which speaker
embedding for each audio is computed at run time and passed to the model.
The audios from a specific speaker are not explicitly distinguished. We observe
that this model shows some generalization to un-seen speakers however at
times fails to generate an end token on some audio samples during inference.

– Avg embedding: This configuration is similar to speaker selection where
each speaker is assigned a single speaker embedding which is the average of
speaker embedding from all the audios of the corresponding speaker. With
this configuration, we do not see the end token issue however this does not
work for unseen speakers.

Pre-training Strategies. We explore transfer learning from public LJSpeech
English data and all the available Hindi data from multiple speakers. We observe
that pre-training strategies are essential for building a high-quality model.
The following strategies are followed for both single-speaker and multi-speaker
models.

– English warmstart: The Tacotron2 model is initially trained on English
LJSpeech corpus with the input in Roman script. During target speaker fine-
tuning the character embedding layer has to be discarded since our experi-
ments are based on the Devanagari script.

– Mix-data warmstart: In this setup, we initialize the model with weights
from English training and then further train the entire model on a mixture
of all the speaker’s data in the Devanagari script. This model is not directly
useful since it is a single-speaker model trained with multi-speakers. This

1 https://huggingface.co/speechbrain/spkrec-xvect-voxceleb.

https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
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model will generate different speakers’ voices for different sentences and is
typically biased toward one specific speaker. However, a rich text encoder
obtained from this mixed training hence acts as a very good initialization for
target speaker adaptation.

Fine-Tuning Strategies. Based on the pre-training strategies we follow two
fine-tuning methods.

– Full fine-tuning: The english-warmstart models are subjected to full-
finetuning. This is required because of the mismatch in the script for the
English text and Devanagari text.

– Decoder only fine-tuning: The mix-warmstart models the encoder is
already trained on a large amount of Devanagari text. So we freeze the encoder
parameters and perform decoder-only fine-tuning. While we can perform full
finetuning with mix-warmstart model it gives slightly lower performance than
decoder-only finetuning.

We perform an ablation study with pre-training and fine-tuning methods to show
that mix-warmstart + decoder-only finetuning works the best.

Low-Resource Voice Adaptation. We perform low-resource voice adapta-
tion experiments in order to understand data requirements for onboarding a
new voice/speaker. We use the pre-trained models and perform single-speaker
adaptation using different low data configurations like 3 hrs, 5 hrs, and 10 hrs.
We observe that 3 hrs of data is sufficient to get a high-quality model with mix-
warmstart models. The experiments corresponding to 3 hrs of data are reported
in this work. Recently, a TTS system Vall-E [41] has shown extraordinary zero-
shot capabilities. However, this system uses a complex architecture and requires
60K hours of pre-training data making it infeasible in low-resource scenarios.
Our work uses data of order 15 h and therefore cannot be compared with such
system utilizing 60k hours of data.

Waveglow Vocoder. The waveglow [30] model converts mel-spectrogram into
audio samples. It is a flow-based generative model which generates audio sam-
ples by sampling from a distribution. It performs a series of invertible transforms
to convert examples sampled from zero mean and spherical Gaussian distribu-
tion into target audio samples. The transformation is also conditioned on mel-
spectrogram. The model minimizes the log-likelihood of the data.

The mel-spectrogram is computed using short time fourier transform
(STFT). It uses a frame length of 50 ms and a hop size of 12 ms. An 80-
channel Mel filter bank is used to transform STFT into Mel scale followed by
log compression.

3.3 Dataset Details

The datasets used in this work are described below.
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Table 1. Subjective MOS scores for different model configurations on code-mixed CX
test set.

TTS Type eng-warmstart
(full train)

mix-warmstart
(decoder only
train)

single speaker (Hindi only) 4.37 ± 0.78 4.36 ± 0.86

single speaker (Hindi + English) 4.58 ± 0.69 4.65 ± 0.56

multi-speaker (audio-embed, Hindi + English) 4.55 ± 0.64 4.65 ± 0.50

multi-speaker (avg-embed, Hindi + English) 4.44 ± 0.95 4.61 ± 0.7

– English LJSpeech Corpus: It is a publicly available single-speaker corpus
consisting of 13100 (text, audio) pairs [13]. The text is taken from 7 non-
fiction English books and the total size of the data is 24 h.

– Single-Speaker Data: This is an in-house studio recording from a female
speaker. The text for the recordings is taken from the Voice assistant domain
and general domain (Wikipedia-like sentences). The total size of the data is
15 hrs consisting of both English and Hindi text. Roughly 65% of the data is
Hindi and the rest is English. This speaker is also used for the evaluation of
all the models explored in this work. In order to perform low-resource voice
adaptation experiments we choose a random subset of 3 h from this data-set.

– Multi-Speaker Data: We further create a multi-speaker corpus using addi-
tional 4 speakers including 2 male and 2 female speakers. The text from
the above single-speaker data is used for recording. The size of data for each
speaker is approximately 15 h. These 4 speakers along with the above primary
speaker are used for multi-speaker training. The primary female speaker is
also chosen for testing the multi-speaker models. Since we use only 5 speak-
ers in multi-speaker training the generated samples are highly similar to the
original speaker. Hence similarity tests are not reported in this work. The
goal of this work is to create a high-quality primary speaker system and all
the evaluations are designed with this objective.

– Test datasets: We create two out-of-domain test sets for the evaluation of all
the models. These test sets are from customer experience (CX) and product
domains. The CX test set consists of customer queries and bot responses
with high Hindi-English code-mixing. The product test set consists of English
product names from e-Commerce listings. The size of both test sets is 500 text
examples. The audios were synthesized for these texts from the corresponding
model and used for MOS (Mean Opinion Scores) and CMOS (Comparative
MOS) evaluation. For CMOS evaluation, we use the output from out-of-the-
box Google speaker ‘hi-IN-Standard-A’ as the reference audio.
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Table 2. Subjective CMOS scores for different model configurations. All the rows
except for the last row corresponds to CX test set. The last row indicates numbers for
Product test set.

TTS Type eng-warmstart
(full train)

mix-warmstart
(decoder only
train)

single speaker (Hindi only) −0.47 −0.35

single speaker (Hindi + English) −0.45 0.02

multi-speaker (audio-embed, Hindi + English) −0.42 −0.3

multi-speaker (avg-embed, Hindi + English) −0.8 −0.14

single speaker (Hindi + English, Product test set) – 0.12

Table 3. MOS scores for low-resource voice adaptation experiments on target speaker

Training Strategy MOS

eng-warmstart + Target (3 h) 4.27 ± 0.95

mix-warmstart + Target (3 h) 4.54 ± 0.58

mix-warmstart + Target (frozen encoder, 3 h) 4.59 ± 0.68

mix-warmstart + Target (frozen encoder, 15 h) 4.65 ± 0.58

4 Results

In this work, we evaluate different single-speaker and multi-speaker TTS models
for code-mixed speech synthesis tasks. Independent Mean Opinion Scores (MOS)
and comparative CMOS scores are used to compare these models. These evalu-
ations are done by 50 trained individuals with each listener evaluating around
30 audios. The audios are presented in random order and specifically, during
CMOS the reference audio is randomly chosen. In MOS evaluation the listener
is asked to rate the audio on a 1–5 (with a gap of 0.5) scale. A score of 5 indi-
cates a naturally sounding voice with perfect pronunciation. The naturalness
and pronunciation are evaluated during MOS, the higher the score better the
system.

In the CMOS evaluation user listens to both audios from our TTS and Google
TTS. They provide a rating to the second audio in the (–2 to +2) range. Again
based on the naturalness and pronunciation of the second audio is given a +ve
rating if it is better than the first audio. A score of 0 indicates that both systems
are equally better. The speaker for the first and second audios are randomly
selected and scores are internally adjusted such that a +ve rating indicates our
speaker is better as compared to the Google speaker and a –ve rating indicates
vice versa. The reported MOS and CMOS scores are average of all the individual
scores. Standard practices are followed to avoid listener fatigue and bias.

All the models are evaluated in two configurations eng-warmstart and mix-
warmstart. The eng-warmstart indicates English data pre-training with full fine-
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Fig. 3. The Mel-spectrogram and attention alignment plot for a sample sentence using
config (a) Mixed [Hindi + English] Training (b) Hindi only training. The difference in
the resolution can be clearly seen at the start of the two spectrograms at the word
EMI.

tuning whereas mix-warmstart indicates mix data pre-training with decoder-only
finetuning. The MOS results are shown in Table 1 and the CMOS scores are
shown in Table 2. We show that (Hindi + English) training works better than
Hindi-only training via both MOS and CMOS scores. A sample spectrogram for
the two configurations is shown in Fig. 3.

The mix-warmstart configuration shows clear improvements over eng-
warmstart thus highlighting the importance of Devanagari-based pre-training.
While comparing multi-speaker and single-speaker models, the single-speaker
based adaptation works better. The difference is more prominent in compara-
tive CMOS score as compared to the MOS score. A positive CMOS score for the
single-speaker mix-pretrained model indicates that the system is slightly better
than the Google system on code-mixed test sets. Finally, while comparing the
two speaker embedding methods for multi-speaker models there is no clear win-
ner. The CMOS scores are in favor of avg-embed whereas MOS scores are in
favor of audio-embed. We personally felt that audio-embed systems are slightly
better. We also perform a CMOS evaluation of the best single-speaker system
on the English product names test set. A high +ve CMOS score indicates that
the dual data training is also helping the model beat the Google system.

The results of low-resource speaker adaptation are described in Table 3. We
observe that the mix-warmstart models can be adapted to a new speaker using
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just 3 h of data. We again use decoder-only fine-tuning in this setup. The degra-
dation in MOS scores is very less even after using just 1/5th of the original
data.

5 Conclusion

We present different approaches utilized to build a production-quality TTS sys-
tem for code-mixed e-commerce use cases. We propose a transliteration-based
approach to convert the dual language data into a common script and use it
for training. We show that this dual language training also works well for code-
mixed test sets. We compare different single-speaker and multi-speaker TTS
models using two different pre-training methods. We show the advantages of
transfer learning from the mix-pretraining setup. The multi-speaker models are
further evaluated in reference audio (audio-embed) and speaker selection (avg-
embed) configurations. The single-speaker model with mix-data pre-training per-
forms the best and it is also shown to perform better than the Google TTS on
code-mixed use cases. We also show that the mix-data pre-trained models with
decoder-only fine tuning can be adapted to a new voice with just 3 h of data.
This shows the importance of pre-trained models in a low-resource setting.
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Abstract. With the advancement of voice technology, there is a drastic
improvement in the realization of Text To Speech (TTS) systems. But
the lack of technological support and diversities in the low-resourced
Indian languages hinder the development of such systems for the Indian
population. SYSPIN is an initiative that aims to develop TTS corpora
and AI models in nine Indian languages. The primary motivation behind
this work is to set up an initiative to popularize the scope of voice tech-
nology for the Chhattisgarhi population. This paper presents 20 h of TTS
dataset of 2 speakers in Chhattisgarhi, a low-resourced Indian language
with 18 million native speakers. The paper also describes the baseline
TTS systems which achieve high subjective scores of 4.38 and 4.46 mean
opinion score (MOS) for each speaker.

Keywords: Low-Resourced Indian Dataset · Chhattisgarhi TTS
Corpus · End-to-End TTS Model · SYSPIN

1 Introduction

In India, a large number of low-income people, who face barriers of literacy, skills,
poverty, gender, and other socioeconomic biases, are unable to utilize digital tech-
nologies and corresponding services efficiently. So humanizing speech technology
helps these under-skilled populations to access the technologies and services in
their own language/ dialect through their own voice. But the advancements in
speech technology are yet to meet the requirements in many of the low-resourced
Indian languages that suffer from the unavailability of linguistic expertise and
resources. This increases the necessity for the development of corpora and var-
ious speech technology solutions to provide different voice-based user-friendly
applications.
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Chhattisgarh is the ninth largest state in India (around 30 million popula-
tion) with Chhattisgarhi and Hindi as the official languages. In all 33 districts,
Chhattisgarhi is more popular than Hindi. Apart from Chhattisgarh, Chhattis-
garhi is used in adjacent areas of Madhya Pradesh, Odisha, and Jharkhand [1].
As per the Linguistic Survey of India, Chhattisgarhi is considered an eastern
variant of Hindi and hence is not included as an official language in the Indian
constitution. According to the 2011 Linguistic Survey of India, 16.2 million peo-
ple use Chhattisgarhi as their mother tongue [2]. About 80% of the population
of the state is rural and the main livelihood of the villagers is agriculture and
agriculture-based small industry [3]. The Average Literacy rate in Chhattisgarh
for Urban regions was 84.05% in which female literacy stood at 73.39% [3]. Even
though many attempts have been made to introduce voice-based applications to
the Chhattisgarhi population, most of them ended up as either pilot studies or
specific to some applications due to the lack of data [4–9].

Even though many efforts have been made to develop TTS systems in low-
resource languages, no attempts were there on Chhattisgarhi [10–12]. SYSPIN1

is an initiative that aims at the development of a large TTS corpus for some low-
resource Indian languages including Chhattisgarhi. The proposed TTS dataset
mainly includes sentences from a few domains that are highly relevant for poor
farmers and the women population.

Through this work, we open source a part of the Chhattisgarhi TTS dataset
from the SYSPIN initiative for academics, start-ups, researchers, and developers
to spur innovation and academic activity in the development of regional voice
technologies in India. The proposed dataset includes around 5k sentences and
10 h of recordings from two Chhattisgarhi native voice artists- 1 male and 1
female. An end-to-end Chhattisgarhi TTS model has also been developed as a
baseline model.

The paper first presents the details of dataset collection in Sect. 2, from sen-
tence composition to recording. Section 3 deals with the analysis of the col-
lected dataset and Sect. 4 discusses the baseline model development. Finally, the
paper summarizes the development of an end-to-end Chhattisgarhi TTS model
in Sect. 5 with some future scopes to work.

2 Dataset Preparation

Unlike other high-resource languages like Hindi, online digital or printed texts
are not much available for low-resource languages. For those languages, creating
the text dataset itself is a challenging task. Figure 1 illustrates the process of
Chhattisgarhi TTS dataset preparation, which involves sentence preparation,
native voice artist selection, studio recording, and validation.

2.1 Sentence Preparation

Initially, a set of native composers have been selected after pilot validation and
were asked to compose sentences on the given topics. People who are able to
1 https://syspin.iisc.ac.in/.
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Fig. 1. Flowchart detailing the process of dataset preparation.

compose sentences in Chhattisgarhi (Raipur style) and who followed all the
guidelines provided were selected for the particular task. Separate sheets with
some topic lists and link to read more about the topics were given to each of the
selected composers. The topics for composition were mainly taken from domains
like agriculture, finance, education, food, politics, social, Indic, local, health-
care, technology, book continuous, sports, food, books, and websites. Books and
website domains include sentences mined from the available printed textbooks as
well as online sources. The sentences collected were again validated with another
set of validators to check the language style and usage. Programmatic checks on
the verified sentences ensure the absence of invalid characters and symbols.

Phonetically Rich Sentence Selection. While training the model, it is good
to ensure that the dataset will have all phone combinations in a balanced manner.
Before recording, a phonetically rich sub-dataset has been derived from all the
validated sentences. The dataset thus created is supposed to cover all major
domain vocabulary and phonetic combinations to function well in a practical
scenario.

2.2 Voice Artist Selection

We selected the best native Voice Artist (VA) (one male and one female) only
after doing a set of pilot checks. For the initial rounds of selection, each voice
artist was requested to record some Chhattisgarhi sentences through an app (to
keep the recording format uniform across all the speakers). The pilot checks
include programmatic checks, reading proficiency checks, voice quality checks,
and crowd-sourced perception checks by native speakers. Programmatic checks
mainly include speaking rate analysis.
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Fig. 2. Picture showing the recording studio setup.

2.3 Recording

After finalising the sentences and voice artists, the next phase of dataset prepa-
ration is recording. All the audio files were recorded in a studio setup designed by
Bhashini AI Solutions Pvt Ltd2 with a specification of 48kHz sampling frequency
and 24 bits per sample. The studio specification includes a studio microphone:
Neumann TLM-103, Audio Interface: UAD Apollo Twin X. Dimensions of the
recording room/voice booth is 10’3” x 5’9”. Other than the voice artist, there
will be 2 other people needed in the studio for recording- one sound engineer
and one recording validator.

The Chattisgarhi TTS dataset outsourced in this work is a raw dataset with-
out any audio-text validation. Even though the recorded audio files are expected
primarily to match their respective text, but have some mismatches.

3 Chhattisgarhi TTS Dataset Analysis

The proposed Chhattisgarhi TTS Dataset includes 10 h of recording from each
male and female voice artist. Table 1 summarizes the major details of the dataset
and Table 2 elaborates the distribution files across each domain for the female
and male voice artists. Figure 3a illustrates the word counts across different
domains for female and male voice artists. Similarly, Fig. 3b shows the distri-
bution of pitch across both speakers. Figure 4 presents the entire vocabulary
distribution across the male and female voice artists. It reveals the number of
words that are common across male and female voice artists. Similarly, Fig. 5b
and Fig. 5a indicate the distribution character length and duration of each file.

Despite the planning and efforts taken to develop an error-free corpus, while
inspecting we came across some errors. But the TTS corpus did not go through
a complete set of validation steps and, hence, contains different types of errors
(as revealed from ongoing validation) a couple of which are illustrated in Fig. 6.

2 https://www.bhashini.ai/.

https://www.bhashini.ai/
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Table 1. Dataset summary.

Item Female Male

Age group of VA 20–25 50–55

Native of VA Raipur Raipur

Extra langugaes known Hindi Hindi

Number of sentences 5148 4595

Duration 10.00 hr 10.00 hr

Average word length in a sentence 17.27 17.31

Average character length in a sentence 85.25 87.44

Vocabulary size 19872 16416

Table 2. Distribution of dataset across domains for the voice artists.

Female Male

Domain Duration(hr) # Files Domain Duration(hr) # Files

Healthcare 0.65 341 Healthcare 0.97 470

Books 3.17 1660 Food 1.81 824

Sports 1.68 968 General 0.58 267

Indic 0.75 381 Politics 0.61 295

Local 3.11 1398 Technology 2.26 1085

Others 0.65 968 Website 3.78 1654

Total 10.00 5148 Total 10.00 4595

Fig. 3. Word count and pitch analysis across voice artists.
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Fig. 4. Vocabulary distribution (all domains together) across the male and female voice
artists.

Fig. 5. Character length and duration distribution in the dataset against each voice
artist.

4 The Baseline: End-to-End Chhattisgarhi TTS Model

Separate TTS models are trained for both speakers. We use the VITS [13] model
architecture to train the models with the Coqui-ai TTS [14] toolkit. VITS is an
end-to-end TTS model capable of directly synthesising the speech waveform
without the use of an external vocoder. It is a generative model which uses vari-
ous formulations such as variational inference, normalising flows, and adversarial
training. Along with this, it also learns a stochastic duration prediction, trained
using an aligner in an unsupervised way. These specifications lead to various
loss functions at the different stages of the model, leading to high-quality speech
synthesis. We perform a subjective evaluation of the trained models with a
Mean Opinion Score (MOS). Here the quality of synthesized sentences is rated
with respect to reference natural sentences. Evaluators were asked to rate both
the synthesized and natural sentences. The evaluators will also listen to unseen
natural sentences, randomly mixed with the synthesized audio. A few files will
be repeated for each evaluator to identify scoring consistency.

This naturalness evaluation has been conducted on web application built with
React and deployed on Firebase. Figure 7 shows the screenshot of the web app
created for naturality check. For each speaker model, we synthesise 13 different
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Fig. 6. Sample errors found in the dataset.

Fig. 7. Sreenshot of the React web app shared with the validators.

unseen sentences. These 26 synthesised audio is then mixed with 4 unseen ground
truth audio, and these 30 files are given to manual validators to perform the
subjective evaluation. We used 53 native speakers of Chattisgrahi (15 females
and 38 males whose ages range from 20-68) to score all the files. The validators
rate on a scale of 1-5 as shown in Fig. 7, with 5 representing human-like speech.
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Table 3. Mean Opinion Score (MOS) is reported for both TTS models, for real as well
as generated samples. The standard deviation is shown in brackets.

TTS model MOS

Real Generated

Male TTS 4.73(0.62) 4.46(0.61)

Female TTS 4.77(0.52) 4.38(0.67)

The results are shown below in the Table 3. We observe that both models have
high MOS scores for generated audio, even with 10 h of data for training.

5 Conclusion

The paper summarizes the efforts taken to realize an end-to-end Chhattisgarhi
TTS model. A brief description of the dataset collection, starting from stage
1 of sentence composition to final recording by voice artists is also given in
the paper. Further, we have expanded on the details of the corpora, along with
training the TTS model. Models on both speakers have shown good performance
using the subjective evaluation of Mean Opinion Score with native speakers of
the language. In the nearby future, we will look into expanding this database
by adding new domains and then do data curation and open-source the biggest
Chhattisgarhi TTS dataset to the community.
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Abstract. RESPIN is a project that aims at the development of a
dialect-rich database and some user-friendly voice-technology applica-
tions in 9 Indian languages including Chhattisgarhi. The paper elabo-
rates on the entire process of such a low-resource database preparation
in a crowd-sourced manner. Through this work we have open-sourced
around 250 h of dialect-rich, domain-rich Chhattisgarhi ASR dataset to
popularize the scope of voice technology to the Chhattisgarh population.
The paper also describes the development of a base model with a WER
score of 11.58% on the test set.

Keywords: Low-Resourced Indian Database · Chhattisgarhi ASR
Corpus · Dialect-Rich ASR Corpus · RESPIN

1 Introduction

Interacting with electronic gadgets through one’s own voice is the easiest way
of communication. Advancements in voice technology help the common man to
interact with digital gadgets and gather information by just using their voice and
native language. The voice technology advancements will get wide acceptance
as they can benefit the population irrespective of their educational or regional
or financial or age or gender or health conditions. However, the development
of such speech-based technologies is constrained by the availability of data in
many Indian languages. Challenges still exist for low-resource languages where
the availability of both audio and text is limited [11]. This is further complicated
by the presence of multiple dialects of a language, which typically is the case for
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Indian languages. Regional/dialectal variations include variations in vocabulary,
pronunciation characteristics, and grammar. The diversities across dialects act
as a barrier to standardizing linguistic characteristics.

According to World Bank staff estimates based on the United Nations Pop-
ulation Division’s World Urbanization Prospects, 64% of the Indian population
is staying in rural regions with nearly 57.8% relying on agricultural households
[14]. Advancements in voice technology in Indian languages can potentially help
illiterate Indians to use many digital services. Speech recognition for Indian lan-
guages is less explored compared to English [13]. Collecting speech databases is
the fundamental and most crucial stage for the development of such voice tech-
nology systems. Even though there are some initiatives to collect Indian language
databases, they are covering only the standard dialect of each language which is
intended to serve the educated sector population. Studies [1,5] have found that
dialect regions need not have discrete boundaries. Rather, dialectal variations
gradually change over distance. To serve the uneducated, financially backward
rural population of India, there must be a massive data collection strategy to
cover all major dialects in a language.

Chhattisgarh is the ninth largest state in India with around 30 million popu-
lation. Chhattisgarhi and Hindi are the official languages of this state. In all 33
districts, Chhattisgarhi is more popular than Hindi. Apart from Chhattisgarh,
Chhattisgarhi speakers are concentrated in the Indian state of Chhattisgarh and
in adjacent areas of Madhya Pradesh, Odisha, and Jharkhand [7]. As per the Lin-
guistic Survey of India, Chhattisgarhi is considered an eastern variant of Hindi
and hence is not included as an official language in the Indian constitution.
According to the 2011 Linguistic Survey of India, 16.2 million people use Chhat-
tisgarhi as their mother tongue [8]. About 80% of the population of the state is
rural and the main livelihood of the villagers is agriculture and agriculture-based
small industry [6]. The Average Literacy rate in Chhattisgarh for Urban regions
was 84.05% in which female literacy stood at 73.39% [6]. Even though many
attempts have been made to introduce voice-based applications to the Chhat-
tisgarhi population, most of them ended up as either pilot studies or specific to
some applications due to the lack of data [2–4].

RESPIN1 is such an initiative that aims to develop a well-performing ASR
system in nine Indian languages. Based on the area and population statistics,
RESPIN tried to incorporate all major dialects in each of the selected languages.
Through this work, we open source a part of the dialect-rich Chhattisgarhi
ASR dataset from the RESPIN initiative for academics, start-ups, researchers,
and developers to spur innovation and academic activity in the development of
regional voice technologies in India. We have identified 5 major dialects in Chhat-
tisgarhi - Kedri (Central), Utti (Eastern), Budati/Khaltahi (Western), Bhandar
(Northern), and Rakshahun (Southern) Chhattisgarhi. Given that the Southern
dialect has a significantly smaller speaker population than the other dialects,
we chose to exclude it from the data collection process as listed in Table 1. The

1 https://respin.iisc.ac.in/.

https://respin.iisc.ac.in/
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Table 1. Dialect distribution of Chhattisgarhi.

# Dialect District State

D1 Central Bilaspur Chhattisgarh

D2 East Raigarh Chhattisgarh

D3 Western Kabirdham Chhattisgarh

D4 Northern Surguja Chhattisgarh

Fig. 1. Flowchart showing the process of database preparation.

paper elaborates on the process of database preparation in detail and describes
the development of the baseline model in the following sections.

2 Database Preparation

This section details the efforts taken to collect the so far biggest dialect-rich ASR
database in Chhattisgarhi. As Chhattisgarhi is a low-resourced Indian language
compared to other Indian languages like Hindi (121 h), Bengali (128 h), Tamil
(139 h), and Gujarati (64 h)2, the collection of dialect-rich, domain-specific sen-
tences from each district can be achieved only through composition/translation
tasks with the help of native people (Fig. 1).

2 https://data.ldcil.org/speech.

https://data.ldcil.org/speech
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2.1 Sentence Preparation

In order to collect sentences from each district with maximum vocabulary, we
listed different topics (keywords) and subtopics in each domain. Instead of asking
people to compose sentences from the agriculture (AGRI)/finance (FIN) domain,
topic preparation helps to ensure they reach out to all the related topics in each
domain. Topic preparation helped to increase the vocabulary with a variety of
sentences by reducing redundancy. Example topics of AGRI domain are peasant,
crop cultivation systems, livestock production systems, production. Similarly, an
example topic of FIN domain is National rural livelihood mission.

Native composers from each dialect were shortlisted after having some pilot
test rounds. The ones who were good at following the instructions and good
enough to compose in the native style were selected and provided with the top-
ics to compose sentences. Manual and programmatic checks were done on the
composed sentences to ensure that they are dialect rich as well as it contain only
valid characters. Based on these checks the final sentence list was prepared for
recording.

Common Sentence Preparation. To study the variance of language styles
across dialects, apart from the Generic Sentences-GS, we have collected some
common sentences across all dialects. Basically, those common sentences were
from agricultural and financial backgrounds and are termed as CA-Common
Agri and CB-Common Bank sentences in the database.

2.2 Recording

In order to collect the native recordings from the shortlisted regions with uniform
specifications, we have shared a dedicated app with the speakers in the respective
regions. As it is a crowd-sourced audio data collection strategy, we added some
questions to collect the metadata of the speakers too.

Being crowd-sourced, the audio dataset has some errors too like wrong meta-
data entries, noisy backgrounds, empty recordings, long silence in between, dif-
ferences in speaking rates, etc. These errors demanded the need for filtering out
the best files to release a part of the dialect-rich Chhattisgarhi ASR database.
Table 2 summarises the entire dataset that we have released as a part of this
work. As described in Table 2, we have around 458, 395, 375, and 456 speakers
from each dialect considered.

To capture the variability in speech, the same sentences were given to different
speakers in a region. So each sentence in a dialect will appear multiple times in
the corresponding audio database. Figure 2 shows the frequency distribution of
sentences in the database. The average frequency of sentences in the database
is 9, with 1 and 71 as the lower and upper-frequency boundaries. Domain-rich
sentences that are too generic are been recorded multiple times to capture the
variability among the maximum speakers. Table 3 shows the distribution of the
proposed dataset into train-test and dev.
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Table 2. Summary of the proposed dialect-rich Chhattisgarhi ASR corpus.

# #Sentences #Audio
Files

#Speakers
(roughly)

Duration (h) #Unique
words

D1 5084 42, 245 458 64.25 5909

D2 5037 36, 190 395 65.44 5266

D3 5109 25, 886 375 43.16 5757

D4 4769 44, 325 456 74.05 6305

Total 19999 148, 646 1684 246.9 23237

Fig. 2. Histogram of sentences across dialects in the database.

Table 3. Train-Test-Dev split-ups of proposed database for the baseline model.

Train Test Dev

Duration (hours) 239 4 4

# Unique speakers 1583 48 53

# Sentences 15226 2474 2299

# Utterances 143, 096 2828 2722

3 Chhattisgarhi ASR Dataset Analysis

As summarised in Table 3, the proposed Chhattisgarhi ASR Dataset includes
239:4:4 h of recordings for train, test, and dev set. Table 4 explains more char-
acteristics of the training dataset across each dialect. Figure 3 helps to study
the distribution of unique words across each dialect. As represented in those
Venn diagrams, we can claim that each dialect will have some unique words
compared to others. From Fig. 4a and Fig. 4b, it is clear that even though we
have a balanced number of sentences in both AGR and FIN domains across
all dialects, AGR domain sentences are more vocabulary rich compared to FIN
domain. Figure 5a shows the distribution of sentence duration across dialects
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Table 4. Split-up of sentences, utterances, and duration across dialects in the training
dataset.

# Sentences # Utterances Duration (h)

GS CA CB Total GS CA CB Total GS CA CB Total

D1 3777 29 27 3833 39646 641 530 40817 60.77 0.85 0.63 62.25

D2 3862 25 24 3911 33941 571 360 34872 62.27 0.69 0.45 63.41

D3 3782 30 29 3841 23475 543 351 24369 40.03 0.69 0.43 41.15

D4 3585 31 25 3641 41717 736 585 43038 70.19 1.04 0.81 72.04

Total 15226 143096 238.85

GS-Generic Sentences, CA-Common Agri and CB-Common Bank

with an average of 5.98 s. Similarly, Fig. 5b shows the distribution of words in a
sentence across each dialect, with an average of 15 words in a sentence.

4 Baseline Model

In this paper, as we were focusing much on releasing the dataset collected with
a baseline model, we never explored much in different model architectures. Our
primary focus was to present all the features of the newly collected low-resource
dataset to the research community with a baseline model to show the credibility
of the corpus for ASR tasks using TDNN (Table 5).

Table 5. Performance of the baseline ASR.

D1 D2 D3 D4 Overall

dev 11.80 11.13 11.43 14.63 12.20

test 12.27 9.88 10.42 13.66 11.58

Kaldi ASR toolkit [9] has been used to build an ASR model with time-delay
neural network (TDNN) architecture. The lattice-free maximum mutual infor-
mation (LF-MMI) objective function was used to train the model [10]. Most
of the parameters reported in the Kaldi example recipe were used with some
adjustments made for adapting it to the Chhattisgarhi corpus. The model archi-
tecture of TDNN-F 3 consists of 12 TDNN-F layers of dimension 1024 and a
linear bottleneck dimension of 128. For decoding purposes, several n-gram lan-
guage models with different combinations of n-grams were prepared using the

3 https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/chain2/tuning/
run tdnn 1i.sh.

https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/chain2/tuning/run_tdnn_1i.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/chain2/tuning/run_tdnn_1i.sh
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Fig. 3. Unique word distribution across different dialects.

SRILM toolkit [12]. The LM with the best perplexity on the dev set was chosen.
All unique sentences in the train set were used for training LM. It is to mention
that the phoneme-level lexicon used for these experiments was created manually
by the language experts.
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Fig. 4. Histogram analysis across the dialects and domains.

Fig. 5. Duration and word count analysis across the dialects.

5 Conclusion

In this paper, we described the collection of 250 hours of dialect-rich Chhattis-
garhi ASR database. The Chhattisgarhi data described in this paper is Phase
1 of data collected through the RESPIN project which aims to collect speech
and text data in nine Indian languages. The entire data has been collected in
a crowd-sourced manner, and the data is balanced across dialects and domains.
This will encourage the speech research community to explore different speech
recognition ideas with this Chhattisgarh dialect-rich ASR database.

As the emphasis was on the release of the dataset collected along with a
simple baseline model, we neither explored different model architectures nor
compared it with similar state-of-the-art systems. We are planning to explore
these in the near future. Further plans include the analysis of subword units
in the database and checking whether such units in neighbouring/similar lan-
guages can supplement certain categories, for which there are only fewer exam-
ples. Apart from these, other future goals include identifying different dialects
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of the Chhattisgarhi language and developing a language identification system
for Indian languages including Chhattisgarhi.
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Abstract. Voice conversion is the art of mimicking different speaker
voices and styles. In this paper, we present a cross-lingual speaker style
adaptation based on a multi-scale loss function, using a deep learning
framework for syntactically similar languages Kannada and Soliga, under
a low resource setup. The existing speaker adaptation methods usually
depend on monolingual data and cannot be directly adopted for cross-
lingual data. The proposed method calculates multi-scale reconstruction
loss on the generated mel-spectrogram with that of the original mel-
spectrogram and adopts its weights based on the loss function for vari-
ous scales. Extensive experimental results illustrate that the multi-scale
reconstruction resulted in a significant reduction of generator noise com-
pared to the baseline model and faithfully transfers Soliga speaker styles
to Kannada speakers while retaining the linguistic aspects of Soliga.

Keywords: Low resource cross-lingual speech synthesis · Spoken
language generation · Speaker adaptation · Voice conversion · Style
transfer

1 Introduction

Tribal languages aid us in understanding our origin, the roots we evolved from,
and human race capabilities. India has 22 official spoken languages and 1369
rationalized unofficial languages. About 197 languages of India are listed as
endangered by UNESCO [12], and any language spoken by a population less
than 10,000 people is considered a potentially endangered language by Govt of
India [3]. Many tribal languages of India do not have literary tradition [4]. One
such tribal language, Soliga is already on the verge of extinction as it has only a
population of fewer than 40,000 people [14], located in Karnataka state. If we do
not create digital platforms for languages to be used by respective communities,
these languages may vanish in less than a decade [7]
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Soliga language does not have a script, and to the best of our knowledge,
no literature is available in Soliga. Therefore it can be considered as a “zero
resource” language. Deep neural networks has been popularly used for TTS,
but all of these models need transcripts for each speech file to train the models
[10,15,17,19]. For zero-resource languages like Soliga, generating speech data
from the written transcript is tedious. But when unlabeled data is used in Speech-
to-speech based approaches [2,8], despite the significant improvement in the
synthesized audio quality, these approaches tend to miss the prosodic aspects
such as speech style, tone, volume, and pitch present in the sample of speech for
a given speaker. To train the model for prosodic aspects, we require hundreds
of hours of data [22] which is practically not feasible for low-resource languages,
especially when the population is as small as Soliga. Finding people to get speech
data is a huge time and effort-consuming process. However, cross-lingual style
transfer approaches can address the issue of generating speech resources for low-
resource languages. The generated speech utterances can be used for applications
such as direct speech-to-speech translation, automatic speech recognition, and
Speaker recognition and diarization. This can also serve as digital preservation
of indigenous tribal languages.

The process of generating a speech sample of a source speaker to a different
target speaker while retaining the linguistic content and speaker style character-
istics of a source speaker is called Speech style transfer. This paper introduces a
cross-lingual, speech-to-speech neural network to transfer the speech style across
Soliga and Kannada languages. This work will show the importance of multi-
scale reconstruction loss in a speech-style conversion task, thereby preventing
the training objective from halting in the local minima.

1.1 Neural Style Transfer

Neural style transfer was introduced for image generation [5]. Since the speech
waveform can also be represented in the form of an image in the frequency
domain(mel-spectrogram), the same techniques of image style transfer can be
applied to Speech data as well. This was shown by [21], in which the model syn-
thesized spoken image descriptions directly without using any text or phonemes.
Later using a similar approach of neural style transfer and GAN models, the
Speech style transfer technique was proposed [1], which is the baseline model
for our implementation. The baseline model uses L1-loss computed at the input
scale to penalize the reconstruction error between the same source and target
mel-spectrogram images. However, penalizing the network for the errors at each
scale of reconstruction may enable the decoder network to inject speaker-specific
style information in the mel-spectrogram image. The overall pipeline is shown
in Fig. 1.

The baseline model does not give an intelligible voice for different sources and
target languages. Therefore we introduced one more loss function called multi-
scale L1-loss. In computer vision models, it is proven that introducing multi-scale
loss significantly improved the accuracy of the image reconstruction [6]. For our
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mel-spectrogram image, we have adopted this multi-scale reconstruction tech-
nique to estimate the loss function along with existing baseline loss functions. In
the multi-scale approach, the combination of the individual losses at each scale
is the total loss in the decoder, as shown in Fig. 2. Multi-scale reconstruction of
the mel-spectrogram improves the performance of the discriminator. We exper-
imented with different scales and discovered that the down-scaling approach
works best for our model-detailed explanation in Sect. 3.1.

The overall pipeline is shown in Fig. 1, which is essentially carried out in
two steps. In the first step, from a given input language i.e. Soliga, the target
speaker’s(Kannada) mel-spectrogram is generated, using VAE-GAN network,
these spectrograms are fed to, the WaveNet-based vocoder to get the synthesized
speech in the time domain. This approach was used in image-to-image style
transfer model, and the same is adopted and applied to mel-spectrograms. We
retain the base model single encoder structure to generalize and to make it more
feasible for multiple target speakers. In this work, we introduce multi-scale loss
estimation for mel-spectrograms generation.

The proposed method does not require parallel bilingual data and phoneme
representation but only needs bilingual speech data without transcriptions to
train a generator model. We claim that this works well for low-resource data
for the same language, with different speaking styles. And also works well for
languages that share similar syntactic structures. The languages we have chosen
for style transfer and voice conversion have syntactically similar utterance pat-
terns and Soliga has kannada word influence [13]. The training is performed in
an end-to-end unsupervised manner without any transcript alignments between
the input samples.

The paper organization is as follows, Sect. 2 gives data preparation details,
Experimental details are given in Sect. 3, Sect. 4 presents Results and Discussion
and Sect. 5 discusses concluding remarks and future work.

2 Data Preparation

In order to create a speech database for the Soliga and Kannada languages,
we faced the challenge of Soliga being a zero-resource language with no written
literature available. To overcome this hurdle, we followed a two-step approach:
creating text sentences and recording these sentences with the help of a literate
Soliga speaker. The data preparation process involved the following steps:

2.1 Text Sentence Creation

To generate text sentences, we utilized a list of commonly used words in Indian
villages known as “swadesh” [20]. Using these words as a foundation, we con-
structed approximately 10,000 English sentences with lengths ranging from 3
to 15 words. These sentences served as the starting point for our data collec-
tion process. As Soliga resides in Karnataka, the contact language is Kannada,
and the English sentences were first translated into Kannada, and in the second
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step, these Kananda sentences were translated into Soliga. Since Soliga does not
have its own script, the translated Soliga sentences were written in the Kan-
nada script. This approach ensured that the Soliga speakers, who were more
comfortable with Kannada, could understand and read the sentences accurately.
Likewise, 5000 parallel translated sentences were prepared for data recording.

2.2 Speech Recording

In the next phase, we sought a female Soliga speaker with a clear voice and good
diction to perform studio-quality voice recordings. To facilitate the data collec-
tion process, we developed a user interface (UI) that allowed for the recording of
speech data while capturing relevant metadata about the speaker, including age,
gender, education, and qualifications. Additionally, the speakers were asked to
provide their consent for donating their voice for research purposes. The record-
ing sessions took place in a professional studio, with the speech data collected at
a sampling rate of 44 kHz to ensure high-quality recordings. The UI displayed
the sentences to be read by the speaker, providing an option to listen to each
recording and allowing for rerecording in case of any errors or mistakes. Using
this methodology, we collected approximately 5,000 utterances from both Kan-
nada and Soliga speakers, resulting in a total duration of about 5 h of recorded
speech data for each language.

Furthermore, to expand the number of speakers and incorporate different
styles for Soliga to Kannada voice conversion, we augmented our dataset with
publicly available Kannada male voice data obtained from sources such as
Openslr [16]. By incorporating a diverse range of speakers and styles, we aimed
to improve the robustness and flexibility of our model in performing Soliga to
Kannada voice conversion.

In summary, the data preparation process involved creating text sentences
using a list of common words, translating them into Kannada for Soliga speakers,
recording the sentences in a studio environment, and augmenting the dataset
with additional Kannada male voice data. These steps ensured the availability
of a comprehensive and diverse dataset for training our model.

3 Implementation

The Kannada speaker’s voice is converted from the Soliga speaker’s input signal
while keeping the Soliga speaker’s content and style intact. The representation
of the mel-spectrogram is created from the input speech signal. Once the spec-
trogram is generated, it can be treated as a greyscale image, we can employ
a neural style transfer model as mentioned in [11], and then the source mel-
spectrogram can be converted to the target mel-spectrogram using the style of
a target speaker. To convert this mel-spectrogram back into the time domain,
we used the WaveNet vocoder [23]

The neural style transfer model used in this research employs a combination
of encoder and decoder networks to achieve cross-lingual style transfer between
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Fig. 1. The style transfer flow between Soliga and Kannada.

Soliga and Kannada languages. The decoder network functions as a generator,
responsible for producing the target output speech. On the other hand, the
encoder network aims to preserve the linguistic details of the source speech while
eliminating speaker identity-related information.

In the proposed model, the encoder architecture remains unchanged from the
base paper. Its role is to generate a shared-latent space called “z” that captures
only the content of each sample while discarding the identity of the original
speaker. By extracting the content information, the encoder helps facilitate the
style transfer process. In our approach, we considered two generators, denoted
as G1 and G2, to accommodate the two speakers for the Kannada and Soliga
languages, respectively. Both G1 and G2 consist of the same layers as the encoder,
but in the opposite order. This arrangement allows the generators to combine
the input speech signal’s content and style with the target voice, generating the
mel-spectrogram of the target speech signal.

To improve the performance of the generator and address the issue of noisy
output encountered in the base paper, we introduced additional layers to the
generator architecture. Specifically, we incorporated two extra layers for down-
scaling and up-scaling experiments. Additionally, we included four more layers
for up-down-scaling of the generated mel-spectrogram. This modification enables
a more effective transformation of the style while maintaining the integrity of
the content. By comparing the generated mel-spectrogram with the original mel-
spectrogram, we calculate the multi-scale loss function, which serves as a measure
of the style transfer quality. The multi-scale loss function allows us to evaluate
the performance of the generator at different levels of abstraction, capturing
both local and global style transfer characteristics. In the context of transferring
style between Soliga and Kannada languages, the latent space for the two given
decoders is switched. This switch allows the generator to effectively capture the
style attributes specific to each language and incorporate them into the generated
target speech. The swapping of latent spaces facilitates the cross-lingual style
transfer process and ensures that the resulting speech aligns with the desired
linguistic and stylistic characteristics.
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Figure 1 illustrates the architecture and process flow of the proposed model,
highlighting the switching of latent spaces between the decoders for Soliga and
Kannada languages. By incorporating these modifications to the generator archi-
tecture and leveraging the switched latent spaces, our approach improves the
style transfer performance and yields more accurate and coherent results com-
pared to the base paper.

3.1 Multi-scale Loss Function Experiments

In this section, we describe the experiments conducted to evaluate the effective-
ness of the multi-scale loss functions in improving the performance of the baseline
model. In addition to the L1 loss used in the base paper, we introduced several
multi-scale loss functions, including up-scaling, down-scaling, and a combination
of up and down-scaling. The purpose of these experiments was to investigate
how different scaling operations applied to the generated mel-spectrograms can
impact the intelligibility and voice quality of the transferred speech. By analyz-
ing the results, we aimed to identify the most effective approach for enhancing
the performance of the baseline model.

In the first experiment, we applied a down-scaling operation to the generated
mel-spectrograms. This down-scaling process involved reducing the resolution of
the spectrogram while preserving its content and style information. The moti-
vation behind this experiment was to examine whether reducing the resolution
could lead to improved speech quality and intelligibility. Next, we conducted an
up-scaling experiment, where we increased the resolution of the generated mel-
spectrograms. This operation aimed to enhance the fine-grained details in the
transferred speech, potentially improving the overall quality and fidelity. Finally,
we combined the up-scaling and down-scaling operations in a single experiment.
This experiment sought to leverage the benefits of both scaling approaches simul-
taneously, allowing for a more comprehensive evaluation of their impact on the
transferred speech.

After analyzing the results of these experiments, we observed that the down-
scaling experiment yielded better intelligibility and voice quality compared to the
baseline model. The incorporation of the down-scaling multi-scale loss function
appeared to enhance the performance of the baseline model in terms of speech
quality. The down-scaling operation likely facilitated a more compact represen-
tation of the style and content information in the mel-spectrograms, resulting in
clearer and more intelligible speech. By reducing the resolution, the down-scaling
operation may have removed some unnecessary noise or artifacts present in the
baseline model’s output.

While the up-scaling and combined scaling experiments did not demonstrate
significant improvements over the baseline model, they provided valuable insights
into the effects of scaling operations on the style transfer process. These experi-
ments highlighted the importance of finding the right balance between preserv-
ing the content and style information and enhancing the finer details in the
transferred speech. Overall, the incorporation of a down-scaling multi-scale loss
function proved to be an effective enhancement to the baseline model, leading to
improved speech quality and intelligibility. This finding suggests that carefully
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Fig. 2. Loss Function for Down-scaling. Here E is Encoder, G is generator and D is
Discriminator

designed scaling operations can contribute to the success of neural style transfer
for speech synthesis applications.

In the following sections, we present detailed analyses and discussions of
the results obtained from these multi-scale loss function experiments, providing
insights into the strengths and limitations of each approach.

Loss of Down-Scale. To improve the efficiency of the discriminator, we added
two additional scales to its input by down-scaling the generator output to half
and quarter of the original size. We calculated the GAN Loss for each scale and
added them to the existing loss calculated from the original mel-spectrogram.

LGAN = W1 × LGAN1 + W2 × LGAN2 + W4 × LGAN4 (1)

Here the GAN Loss of original input is calculated

LGAN1 =
∑

i

ESi∼PSi
[log Di (Si)]

+
∑

i,j

E (Sj→i | zj ) [log (1 − Di (S(x) ]
(2)

The following equation calculates the loss of down-scaling the generator output
to half (n = 2) and quarter (n = 4) of the original size.

LGANn
=

∑

i

ESi∼PSi
[log Di (Si)]

+
∑

i,j

E (Sj→i | zj ) [log (1 − Di (S(x/n)) ]
(3)

Loss of Up-Scale. In this loss, we add two additional scales to its input by
up-scaling the generator output to double and quadrupling the original size. We
calculated the GAN Loss for each scale and added them to the existing loss
calculated from the original mel-spectrogram (Fig. 3).

LGAN = W1 × LGAN1 + W2 × LGAN2 + W4 × LGAN4 (4)
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Fig. 3. Loss Function for Down-scaling. Here E is Encoder, G is generator and D is
Discriminator

Fig. 4. Loss Function for Up and Down-scaling.

Here the GAN Loss of the original input is calculated,

LGAN1 =
∑

i

ESi∼PSi
[log Di (Si)]

+
∑

i,j

E (Sj→i | zj ) [log (1 − Di (S(x)) ]
(5)

The following equation calculates the loss of Up-scaling the generator output to
double (n = 2) and quadruple (n = 4) of the original size.

LGANn
=

∑

i

ESi∼PSi
[log Di (Si)]

+
∑

i,j

E (Sj→i | zj ) [log (1 − Di (S(nx)) ]
(6)

Combined Loss of Up-Scale and Down-Scale. In this case, for calculating
loss, the discriminator in a Generative Adversarial Network (GAN), we propose
a multi-scale loss approach. This approach involves adding four additional scales
to the input of the discriminator. We achieve this by down-sampling and up-
sampling the generator output to half and a quarter of the original size and
double and four times, respectively (Fig. 3).
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For each of these scales, we calculate the GAN Loss and add it to the existing
loss calculated from the original image. The multi-scale loss is calculated as
the weighted sum of these individual scale losses. The weight of each scale is
determined by its size relative to the original image.

LGAN =
5∑

i=1

Wi × LGANi
(7)

where Wi is the weight for each scale and LGAN1 is the GAN Loss for original
input from Eq. (1), LGAN2 , LGAN3 are the GAN Losses for Down-scale input
as shown in equation(3) and LGAN4 , LGAN5 are the GAN Losses for Up-scale
input as shown in Eq. (6).

The loss function employed by Variational Autoencoder (VAE) models aims
to minimize the dissimilarity between the encoded distribution of input data and
a prior distribution. This loss function comprises of two terms: the first one is the
Kullback-Leibler (KL) divergence between the encoded and prior distributions,
while the second term is the negative log-likelihood of the reconstructed input
data.

LV AE = λ4

∑

i

DKL (q (zi | Si) ‖ p (z))

−
∑

i

Ezi ∼ q ( zi |Si) [log pGi (Si | zi) ]
(8)

The loss function is used in models that aim to generate new content from
existing content. The first term in the equation is the KL divergence between the
distribution of the latent codes for the source and target mel-spectrograms. The
second term is the negative log-likelihood of the target mel-spectrogram given
the source mel-spectrogram and its corresponding latent code.

LCC = λ4

∑

i,j

DKL (q (zi | Si→j) ‖ p (z))

−
∑

i,j

Ezi ∼ q ( zj |Si→j) [log pGi (Si | zj) ]
(9)

Cycle consistency loss we have retained as it is from the baseline model. The
regularization parameters in the objective functions, use λ1 = 100, λ2 = 10,
λ3 = 10, and λ4 = e−3.The regularization parameters are given these values to
emphasize the loss from reconstruction in LV AE than the other loss terms.

We have experimented with different values of weights given to the multi-
scale loss function. The values w1 = 0.5, w2 = 0.25, and w3 = 0.25 gave better
results. We choose these values to give more weight to the original scale compared
to other scales. In addition, the WaveNet vocoder is trained independently using
the mel-spectrograms generated by both G1 and G2 as inputs, while the original
waveform of each speaker was used as the reference to compare the utterance
and style of the target.
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Table 1. Comparison of D and G loss for different models

Soliga-Kannada Style Transfer D Loss G Loss

Baseline-model 0.326 32.097
Down-scale model 0.268 24.658
Up-scale model 0.266 26.616
Up and Down-scale model 0.257 27.236

4 Results and Discussion

The loss reduction of our model compared to the baseline model is represented in
Table 1. The generator loss was calculated using the Kannada-Soliga dataset, in
both cases, our proposed method error is lesser than the baseline model as shown
in the Table 1. Though we have experimented with different loss functions, i.e. by
up-scaling and combining up-scaling and down-scaling, the generator gave less
error for the down-scaling experiment. This could be because error propagation
is high when you upscale the generated mel-spectrograms, the error gets added
to the up-scaled mel-spectrogram as well, and when you downscale the mel-
spectrogram the error will be reduced to down-scaled mel-spectrograms. The
samples of Soliga and Kannada style transfer can be found on Results page [18].

We have visualized the source speaker and target speaker-specific feature
embedding and found that the source features and style transferred features in
the target cluster together in latent space. That gives the overall performance of
our model in terms of the naturalness of the original and synthetic style aspects,
as shown in Fig. 5. “K” stands for Kannada, “S” for Soliga “S-K” stands for Soliga
sentence and style in the Kannada speaker’s voice., “K-S” Kannada sentence and
style in Soliga speaker’s voice. Essentially the feature embeddings of “S” and “K-
S” cluster together, and “K” and “S-K” should cluster together for good quality
style transfer. Compared to the baseline model all three models proposed have
better clustering of feature embeddings.

We have also conducted subjective evaluations on multi-scale models for intel-
ligibility and style transfer tasks, and Mean Opinion Score(MOS) was taken by
10 Soliga speakers and 10 Kannada speakers to assess the quality of synthesized
speech based on the parameters like intelligibility, style, and accent, on a scale of
1 to 5, where 1 being the poor quality and 5 being the best quality score. It was
found that the Downscale model outperformed the baseline model, as shown in
Table 2. This matches with down-scale Generator loss of Table 1.
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Fig. 5. Features embedding visualization for each speaker on the original and synthe-
sized speech [9]

Table 2. Comparison of Mean Opinion Score (MOS)

Kannada-Soliga MOS

Baseline-model 3.02
Upscale-model 3.32
Downscale-model 3.99
Up and down scale-model 3.50

5 Conclusion and Future Work

In this project, our main objective was to propose a technique for cross-lingual
speaker style transfer between Kannada and Soliga, two languages that share
similar syntax. We emphasized the significance of utilizing a multi-scale loss in
deep neural networks to enable the learning and incorporation of subject-specific
style into identity-independent feature embeddings. Through our experiments,
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we successfully demonstrated that the integration of multi-scale loss in deep
neural networks effectively reduced generator noise and facilitated the faithful
transfer of Soliga speaker styles to Kannada speakers, while preserving the orig-
inal speech’s content and style. Notably, our model exhibited promising results
in voice conversion between different genders. However, further improvements
are required to enhance voice conversion within the same gender.

In future research, there is an interesting avenue to explore regarding cross-
linguistic speech style transfer between low-resource tribal languages and Indic
languages. This area of study presents an opportunity to investigate the adapta-
tion of speech styles across language boundaries, particularly in the context
of languages with limited resources and the diverse landscape of Indic lan-
guages. By delving into this domain, researchers can uncover novel techniques
and approaches for facilitating the transfer of speech styles, which can have a
range of practical applications. For instance, it can contribute to the develop-
ment of speech-to-speech translation systems that seamlessly adapt speech styles,
enhance automatic speech recognition systems for low-resource languages, and
even improve speaker recognition and diarization technologies for diverse lin-
guistic communities.

Furthermore, exploring cross-linguistic speech style transfer in low-resource
contexts can provide insights into the challenges faced by endangered languages
and contribute to efforts aimed at their preservation and revitalization. It can
help bridge the gap between low-resource tribal languages and the broader
ecosystem of Indic languages, fostering better communication and understand-
ing.

Overall, the exploration of cross-linguistic speech style transfer between low-
resource tribal languages and Indic languages holds significant promise for future
research. It offers an opportunity to better understand the dynamics of speech
styles across languages, preserve endangered languages, and develop innovative
technologies to bridge linguistic divides.
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Abstract. Lambani is an under-resourced Indo-Aryan language spoken
by a nomadic tribe known as the ‘Banjara people’ across central and
southern India. Due to its contact with several major languages of India,
Lambani has been influenced both linguistically as well as culturally.
One of the major influences has been observed in its phonemic inventory.
This paper is a preliminary investigation into the acoustic characteris-
tics of vowels of the language. The paper analyses spectral and temporal
features of six Lambani vowels, viz./i,e,a,u,o,@/ spoken in the Bagalkot
district of Karnataka. The results obtained throw light on the distinctive-
ness of this variety. The paper then uses spectral and temporal features
to explore both machine learning and deep learning approaches to clas-
sify Lambani vowel perceptual space. Results show that Fully Connected
Dense Layer achieves better accuracy in classifying Lambani vowels.

Keywords: Lambani · Formant frequencies · Vowel classification

1 Introduction

Spoken language technologies support the preservation of diverse tribal lan-
guages and cultures. However, the limited resources typically available for such
tribal languages present numerous challenges. The current study is a preliminary
acoustic investigation into the vowel phonemes of the Lambani language spoken
in the state of Karnataka in India, by the Banjara people. The paper addition-
ally explores both machine learning and deep learning approaches to classify
Lambani vowel perceptual space. Automatic vowel perceptual space classifica-
tion will help in improving speech intelligibility for machines as well as humans.
Exploring vowel sound classification-related issues will help in building spoken
language technologies for under-resourced tribal languages.
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The Banjaras being originally nomadic, are scattered in several states of
Central and Southern India. As such, the influence of the other major Indian
languages that they have come into contact with has resulted in distinct varieties
depending on where it is spoken. There have been a few linguistic studies of the
language spoken by the Banjara people [2,4,10,12,18,21,22]. Apart from [12],
which is a recent work on the acoustic analysis of vowels of the variety spoken
in Telangana state, none have presented a phonetic description of the Lambani
phonemes as spoken in Karnataka. Therefore, this paper has stemmed out of a
need to provide a phonetic description of the Lambani phonemes as spoken in
the state of Karnataka.

It is to be noted that this study is primarily a part of an ongoing larger project
on speech-to-speech translation of low-resource tribal languages of two Indian
states, Karnataka being one of them. Hence the data extracted and used for the
present phonetic analysis consists of speech data that was collected keeping in
mind the original intent of the project. Despite the methodological limitations,
the authors believe that the current study is a step forward in the understand-
ing of a hitherto understudied tribal language. In the following subsections, we
introduce the Banjara community and the Lambani language. Section 2 discusses
the methodology adopted for the current study, Sect. 3 discusses the results of
the acoustic analysis and the classification tests, and finally, Sect. 4 concludes
the findings.

1.1 The Banjara People

Traditionally, the Banjara people were an extremely mobile tribe trading salt,
food grain, and other essential commodities on pack bullocks [5]. Even though
historically nomadic, most of these people have now settled down to farming
and various types of wage labor. In 2020, a PhD thesis on Lambani syntax
[22] reported that at present, they are hugely populated in Andhra Pradesh,
Telengana, Karnataka, and Maharashtra, as shown in Fig. 1. According to the
census report of 2011, the total population of Lambanis in Karnataka is 1,267,036
ecensus:2011. In other central India regions, their strength being comparatively
low, the native Banjaras have adopted the socio-cultural and linguistic habits of
the dominant people resulting in the erosion of their indigenous speech [10].

On the etymology of the name ‘Lambani’, [20] reports that the word is derived
from Sanskrit ‘Lavanah’(salt). Since they were involved in selling lavanah, the
people were originally called ‘Lavaniga’. Eventually, they come to be named
‘Lamani’ and later ‘Lambani’. However, the speech community has been called by
several other names in different parts of the country. These names include Ban-
jara(i), Vanjara, Vanachara, Gormati, Lambada(i), Lambani, Labhani, Lamani,
Laman Banjara, Boipara, Sugali, Sukali, and so on [22].

1.2 The Lambani Language

Lambani is described to be an Indo-Aryan language [10,21]. However, the lan-
guage is mixed to a greater or lesser extent, with the vernacular of the place
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Fig. 1. Banjara population in India, as reported in [22].

wherever the speakers dwell. As a result, Lambani varies in vocabulary and in
phonemic inventory from area to area. In Karnataka, Lambani comes in con-
tact with the Dravidian language, Kannada, which is also the official language
of the state. Regarding the vowels of Lambani, as spoken in the state of Kar-
nataka, [21]’s report on the language spoken in Gulbarga district, mentions the
presence of six distinct phonemes. Whereas [2]’s dissertation on the language
spoken in Bijapur district mentions five distinct vowels. Apart from these stud-
ies on the Karnataka variety, [4] grammar on the Tamil Nadu variety reports
the presence of seven vowels, and [12]’s acoustic description of vowels spoken in
Telangana state reports five vowels. Table 1 presents a summary of the Lambani
vowels reported so far. Wherever length differences are mentioned, the vowel is
reported with the diacritic /:/.

2 Methodology

2.1 Datalist and Vowel Tokens

As mentioned earlier, this study is primarily a part of an ongoing larger project
on speech-to-speech translation of low-resource tribal languages. Hence, the
vowel data for this study has been extracted from the recordings of Lambani
sentences that were majorly collected for the project and not exclusively for
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Table 1. Vowels in Lambani as reported in different studies.

Front Central Back

High High-mid Low-mid High Mid Low High High-mid

Gulbarga [21] i e @ a u o

Bijapur [2] i, i: e, e: a, a: u, u: o, o:

Tamil Nadu [4] i, i: e, e: E I a, a: u, u: o, o:

Telangana [12] i, i: E, E: a, a: u, u: o, o:

a phoneme analysis. The dataset consists of 950 Lambani sentences that were
created based on the Swadesh list [9]. The dataset contains a variety of gram-
matical constructions, in order to obtain as many phonemic combinations as
possible in the language. Since Lambani in Karnataka uses the Kannada script,
the sentences were written in the said script. They were rechecked and verified
by a native Lambani speaker and were then presented to the participants to
read out. The sentences were generated in a way such that they can capture the
‘colloquial’ utterance of the speaker. For linguistic analysis, IPA transcription
of the Lambani data list was done by trained linguists after rigorous listening
of the recordings. Short and long vowels were marked based on the Kannada
script, which distinguishes vowels according to length.

Initially, a total of 7920 vowel tokens, all from a single female speaker were
used for the study. These tokens were also used for automatic vowel classifica-
tion experiments. However, in the later stages of the analysis, data from another
female and two male speakers were included. Data from the three speakers con-
tributed to an additional 312 vowel tokens. Since this resulted in a gross imbal-
ance in speaker data, the total number of tokens from the initial participant
was reduced to 179. Hence, the acoustic and statistical analysis presented in this
paper is based on the final 491 vowel tokens. However, the 7920 tokens for the
automatic vowel classification experiments remain unchanged.

2.2 Speaker and Recording Procedure

Two female and two male native Lambani speakers participated in the data
collection for this study. The speakers belonged to Bagalkot district of Karnataka
and were selected based on the requirements of pronunciation, legibility, and
voice modulation for the speech-to-speech project. The recordings were carried
out in an enclosed environment inside a sound-proof studio using a MAONO AU-
903 cardioid microphone attached to an Acer laptop having a data collection
suite with Graphical User Interface (GUI). A database was created for easier
retrieval and storage. All recordings were done in .wav format having a sampling
frequency of 44100 kHz with a 16bit PCM format.
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2.3 Vowel Extraction

The Lambani speech data was segmented at the phoneme, word, and sentence
levels using Praat 6.2 [3]. For vowel segmentation, the onset of the vowel formant
was considered as the beginning of the vowel and the offset of the formant was
considered the vowel ending. The total eleven vowels identified and analyzed
for the current study are five short vowels /i,e,a,u,o/, their longer counterparts
/i:,e:,a:,u:,o:/ and the vowel /@/ (In all of the figures used in this study, the
vowel /@/ is represented as ‘Q’). The segmented phonemes, along with the time
indices, and in-text grid form, were saved separately. Another Praat script using
the Burg algorithm was used to estimate the first three formant frequencies (F1,
F2, and F3) in Hertz at the mid-20% of the vowel duration. The formant ceiling
was kept at 5500 Hz.

2.4 Acoustic and Statistical Analysis

Several studies have considered formant frequency as a reliable measure of vowel
quality in speech [7,14,15]. Hence, in order to investigate the vowel quality of
Lambani, the first three formants of the vowels were measured as described
in Sect. 2.3. Along with formant frequencies, duration, intensity, and F0 of the
vowels were also measured. Prior to further analysis, the data were checked for
outliers and recording errors. Formant frequencies were normalized using the
Lobanov method for speaker-intrinsic effects [16]. The normalized values of the
first two formants were then used to plot vowel group means with 1 standard
deviation ellipses on F1-F2 space for visual representation. While the positions
of the vowels in the vowel space are shown by the formant frequency means, the
ellipses show the standard deviation of their distribution within a vowel space.
All statistical analyses are conducted using the open-source RStudio platform
[19].

2.5 Vowel Classification

To classify Lambani vowel perceptual space, experiments with both machine
learning and deep learning approaches were conducted. Intensity (I0), duration
(D0), fundamental frequency (f0), and formant frequencies (f1,f2,f3) were used
as key features for the classification of vowel space. A general framework for a
machine learning-based classifier is shown in Fig. 2.

Assuming we have C classes and our feature vector consists of f = (f1, f2, f3,
f0, I0,D0) with 6 features, class representative feature vectors for Cth class is
given by f = (f1,c, f2,c, f3,c, f0,c, I0,c,D0,c). For a given set of class representa-
tive feature vector classifier will classify new instants. Popular machine learn-
ing algorithm-based classifiers like K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), and Random Forest Classifier were used for the classification.

– KNN is a simple efficient machine learning algorithm in classifying non-linear
data [11]. It is a non-parametric supervised learning algorithm that uses
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Fig. 2. Block Diagram of Classifier.

attributes from training data for classification. This method has been used
for classifying samples based on the nearest training samples in the feature
space. The main idea of KNN algorithm is to classify the samples based on
the majority class of its nearest neighbors. The current experiment uses the
value of K-neighbors = 11 and for measuring the distance from nearest neigh-
bors Euclidean distance is used. SVM is used to classify complex and random
data [6]. It works efficiently in cases of limited datasets and can be also used
to classify higher dimensional data.

– SVM goes on constructing a discriminative hyperplane to separate different
classes until an optimal hyperplane is found. It uses a support vector from
the hyperplane to data points to develop maximum width. Depending on the
dataset different kernels are used. Linear kernels are used for linearly separa-
ble datasets and the radial basis function is used for non-linearly separable
datasets. For our experiment, SVM with Radial basis function has been used.

– One of the powerful classifiers that provides a higher level of accuracy in
predicting outcomes is the Random Forest Classifier [8]. Training is done on
a group of decision classifiers with different random subsets of training data.
It gets the prediction from all individual trees to make a decision and one
who gets the most votes is predicted. It creates an uncorrelated forest which
is more accurate than any individual tree. Bootstrap samples are created by
subsampling through the replacement of original data and these predictions
are combined by the bootstrap aggregation algorithm.

Deep learning-based methods use Artificial Neural Network (ANN) to build a
classifier, and as the name suggests, it is inspired by the biological nervous system
[1]. ANN consists of parallel operating simple units trained in such a way that a
particular input is converted into a specific target. In our experiment, we have
used Single Layer Perceptron and Fully Connected Dense layer network with
reLU activation function for the dense layer and softmax activation function for
the output layer. The network is trained using rmsprop optimizer until it can
approximate a function that maps input vectors to specific output vectors by
minimizing categorical cross-entropy.
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3 Results

3.1 Acoustic Features

Duration. Table 2 presents the average duration of the Lambani vowels in mil-
liseconds. As observed, the length differences between the short and long vowels
are clearly evident in the table. As expected, the vowel /@/, being a mid-central
vowel has the shortest duration. One-way ANOVA with post-hoc Tukey tests
was conducted to check the vowels for statistical validation. Results showed sig-
nificant differences in duration between the Lambani vowels [F (480) = 30.06,
p<0.05]. Post-hoc Tukey tests revealed significant length differences in all short
and long vowel counterparts (p<0.05), except for the vowel pair /o-o:/ (p =
0.48).

Table 2. Lambani vowel duration measured in ms.

Vowel Av.dur(sd) Vowel Av.dur(sd)

/i/ 89 (31) /i:/ 109 (35)

/e/ 89 (26) /e:/ 101 (33)

/a/ 94 (33) /a:/ 112 (35)

/o/ 101 (31) /o:/ 110 (35)

/u/ 95 (37) /u:/ 127 (33)

/@/ 72 (33)

Intensity and F0. Table 3 presents the average intensity(in dB) and average
F0(in Hz) of the Lambani vowels for female and male speakers. As observed,
both intensity and F0 were found to be consistent for the Lambani vowels.

Table 3. Lambani vowel intensity measured in dB and f0 measured in Hz.

Female Male

Vowel Av.in Av.F0 Vowel Av.in Av.F0 Vowel Av.in Av.F0 Vowel Av.in Av.F0

/i/ 71 (4) 270 (50) /i:/ 75 (6) 277 (66) /i/ 74 (5) 181 (24) /i:/ 71 (4) 186 (23)

/e/ 74 (3) 253 (41) /e:/ 74 (3) 231 (8) /e/ 74 (2) 169 (16) /e:/ 75 (3) 176 (16)

/a/ 75 (4) 257 (39) /a:/ 76 (3) 224 (11) /a/ 76 (4) 183 (20) /a:/ 75 (4) 173 (15)

/o/ 71 (5) 240 (40) /o:/ 75 (3) 239 (31) /o/ 77 (5) 192 (24) /o:/ 74 (3) 179 (21)

/u/ 71 (5) 267 (45) /u:/ 73 (3) 279 (38) /u/ 73 (7) 172 (15) /u:/ 73 (-) 207 (-)

/@/ 73 (4) 253 (46) /@/ 75 (4) 177 (18)

Formant Frequencies. Table 4 presents the mean F1, F2, and F3 values of the
Lambani vowels in Hertz. The Lobanov normalized values of F1 and F2 are used
to plot these vowels in an F1-F2 space, as visually represented in Figs. 3 and 4 for
female and male speakers respectively. It is observed that all the six short vowels
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Table 4. Mean F1, F2 and F3 of Lambani vowels measured in Hz.

Female Male

Vowel F1 F2 F3 Vowel F1 F2 F3

/i/ 424 (39) 2691 (247) 3255 (294) /i/ 342 (33) 2257 (139) 2849 (223)

/i:/ 352 (53) 3070 (75) 3395 (142) /i:/ 354 (16) 2517 (127) 3184 (231)

/e/ 526 (61) 2497 (263) 3155 (276) /e/ 422 (50) 2192 (182) 2750 (229)

/e:/ 536 (67) 2535 (156) 3292 (171) /e:/ 439 (66) 2062 (176) 2711 (197)

/a/ 853 (155) 1668 (150) 2453 (402) /a/ 845 (112) 1495 (180) 2692 (153)

/a:/ 976 (83) 1723 (100) 2836 (237) /a:/ 781 (133) 1331 (176) 2690 (168)

/o/ 546 (38) 1296 (217) 3023 (367) /o/ 524 (73) 1057 (51) 2861 (104)

/o:/ 587 (72) 1202 (220) 2961 (356) /o:/ 523 (72) 1081 (103) 2851 (141)

/u/ 449 (46) 1102 (151) 2653 (798) /u/ 361 (26) 996 (65) 2715 (167)

/u:/ 411 (60) 1039 (151) 2563 (872) /u:/ 280 () 898 (-) 3067 (-)

/@/ 667 (98) 1729 (207) 2836 (539) /@/ 607 (67) 1442 (190) 2730 (131)

viz. /i,e,a,u,o,@/ occupy distinct positions in the vowel space for both male and
female speakers. The five long vowels /i:,e:,a:,u:,o:/ are also seen to occupy the
same positions as their shorter counterparts. In order to ascertain the statistical
validity of the vowel positions, one-way ANOVA and post-hoc Tukey tests were
conducted on F1 and F2 values. If both the corresponding F1 and F2 values of
the short and long counterparts do not show statistically significant differences
in the post-hoc tests, it is implied that the two vowels occupy the same position.
The post-hoc results of the five short and long vowel pairs are shown in Table 5.
Results show that F1 and F2 values of the short and long vowel counterparts
do not differ significantly, except for the pairs /i-i:/, /o-o:/ and /a-a:/ which
show significant differences (p<0.05) in F2 values in the case of female speakers.
However, F1 values for these pairs do not show any significant differences.

Table 5. Results of Tukey post-hoc tests for F1 and F2 conducted on Lambani vowels.

Female Male

Vowel pair p-value for F1 p-value for F2 Vowel pair p-value for F1 p-value for F2

/i-i:/ 0.74 (!) 0.00 (*) /i-i:/ 1.00 (!) 0.08 (!)

/e-e:/ 0.99 (!) 0.99 (!) /e-e:/ 0.96 (!) 0.96 (!)

/a-a:/ 0.34 (!) 0.03 (*) /a-a:/ 0.47 (!) 0.55 (!)

/o-o:/ 0.99 (!) 0.008 (*) /o-o:/ 0.99 (!) 0.99 (!)

/u-u:/ 0.99 (!) 0.99 (!) /u-u:/ 0.95 (!) 0.91 (!)
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Fig. 3. Normalized formant frequency plots for Lambani vowels with 1 standard devi-
ation ellipses produced by female speakers.

Fig. 4. Normalized formant frequency plots for Lambani vowels with 1 standard devi-
ation ellipses produced by male speakers.

3.2 Classification Accuracy

Feature vectors obtained from available 7920 vowel tokens were split into training
data and testing data to fit into the classifier. A total of 80% of extracted feature
vectors were used as training data and the remaining 20% of feature vectors were
used for testing. Hence, Training data consisted of 6,336 feature vectors each
having dimension 6 and one predictor label. Similarly, testing data consisted of
1,584 feature vectors each having dimension 6 and one predictor label. There are
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Fig. 5. T-SNE Plot.

11 different classes each corresponding to one vowel sound. T-SNE projection
[17] of Lambani vowel data is as shown in Fig. 5.

After fitting the training data into the feature classifier, test data was used
to check the accuracy of each classifier. Confusion matrices were prepared to
indicate the performance of the classification. The accuracy of classification can
be measured through the Eq. 1.

Accuracy =
TP

TP + TN
(1)

where TP = True Positive and TN = True Negative.
Experiments were conducted with 12 different Machine Learning and Deep

Learning-based classifiers. Accuracy for the top 5 best classifiers is as shown in
Table 6. The confusion matrix characterizes the performance of classifiers and
helps to understand if members of one class were confused with members of
another class by counting the number of true and false predictions. The confusion
matrices for different classifiers used in the experiments are shown in Fig. 6. For
representation purpose, numerical equivalents of vowels are used, as shown in
Table 7.

Results of the classification experiments show that Random Forest Classi-
fier gives better accuracy compared to KNN and SVM in the case of machine
learning-based approaches. In the case of deep learning-based methods, Fully
Connected Dense Layer outperforms Single Layer Perceptron. Overall, Fully
Connected Dense Layer achieves almost 5% better accuracy than all other clas-
sifiers used in the experiment. The accuracy can further be improved with more
amount of training data.
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Table 6. Accuracy for different classifiers.

Sl.No Classifier Accuracy

1 KNN 70.58

2 SVM 71.46

3 Random Forest 71.96

4 Single Layer Perceptron 71.46

5 Fully Connected Dense Layer 73.46

Table 7. Vowels and numerical equivalent for confusion matrix.

0=/a/ 1=/a:/ 2=/e/ 3=/@/ 4=/e:/ 5=/i/ 6=/i:/ 7=/o/ 8=/o:/ 9=/u/ 10=/u:/

Fig. 6. Confusion Matrices.
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4 Conclusion

This paper presented a preliminary acoustic description of vowels in Karnataka
Lambani, providing novel data on an under-resourced language of India. The
analyses establish the distinctiveness of the vowels in the case of both formant
frequencies and duration. The spectral and temporal features of vowels were then
used to classify the Lambani vowels using a number of machine learning and deep
learning-based approaches. It was observed that Fully Connected Dense Layer
achieved better accuracy compared to other classifiers.

For acoustic analysis, the present study uses data collected from only four
Lambani speakers as opposed to the ideal half a dozen speakers of each sex to
“satisfy modern standards of phonetic description;; [13]. Another methodological
limitation involves vowel context, as vowels can vary depending on their position
within the word or phrase. The authors acknowledge these limitations and plan
to collect and use data from a more significant number of speakers, as well
as in different contexts and syllable structures to provide a descriptive acoustic
analysis of the language. Nevertheless, as a preliminary investigation of an under-
resourced and under-researched language, the paper contributes to the growing
body of studies on vowels and dialect variation as well as is a step forward in
developing technology for the language.

Acknowledgment. This paper is part of an ongoing project ‘Speech-to-speech trans-
lation of low-resource tribal languages’ supported by the Ministry of Electronics and
Information Technology (MeitY), India. The authors thank Prof. K. Samudravijaya for
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Abstract. With the advent of deep learning, Text-to-Speech technology
has been revolutionized, and current state-of-the-art models are capable
of synthesizing almost human-like speech. Recent Text-to-Speech mod-
els use a sequence-to-sequence architecture that directly converts text
or phoneme sequence into low-level acoustic representation such as spec-
trogram. These end-to-end models need a large dataset for training, and
with conventional learning methodology, they need days of training to
generate intelligible and natural voice. ‘How to use a large dataset to
efficiently train a TTS model?’ has not been studied in the past. ‘Cur-
riculum learning’ has been proven to speed up the convergence of models
in other machine learning areas. For TTS task, the challenge in creating
curriculum is to establish the difficulty criteria for the training sam-
ples. In this paper, we have experimented with various scoring functions
based on text and acoustic features and achieved faster convergence of
the end-to-end TTS model. We found ’text-length’ or the number of
phonemes/characters in text to be a simple yet most effective measure of
difficulty for designing curriculum for Text-to-Speech task. Using text-
length based curriculum, we validated the faster convergence of TTS
model using three datasets of different languages.

Keywords: Speech synthesis · Text-to-speech · Curriculum learning ·
Tacotron

1 Introduction

Text-to-Speech (TTS) is the technology of automatic conversion of text into
speech waveform. TTS system aims to resemble, as closely as possible, a native
speaker of the language reading that text. A large number of techniques exist in
the literature for TTS [2,9,14,23], but the recent advancements in deep learning
has revolutionized the field. Today, end-to-end speech synthesis models such as
Tacotron [19], TransformerTTS [12], Fastspeech [18] are able to generate human-
like voices. These typically include sequence-to-sequence models that convert
sequence of characters/phonemes into linear or mel-spetrograms. The spectro-
grams are then used to generate audio waveforms using Griffin-Lim algortithm

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 208–221, 2023.
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or neural vocoders such as Wavenet [15], WaveGlow [16], MelGAN [10]. These
text-to-spectrograms converters and audio generator models are what comprise
an end-to-end TTS system.

However, training end-to-end TTS networks requires a sizable set of studio-
quality (text, audio) pairs. Training on huge corpus is slow and it takes days
of training to get intelligible and natural speech out of these systems. In this
paper, we try to answer: ‘How to train an end-to-end TTS model using a large
dataset such that it converges faster?’ To this end, we exploit curriculum learning
techniques.

1.1 Curriculum Learning and TTS

Introduced by Yoshua Benjio in [1], curriculum learning (CL) broadly involves
presenting the model with easy examples first and then gradually increasing
the level of difficulty of examples. This training strategy has been shown both
theoretically and empirically to accelerate the learning of deep learning models
in [1,7,22]. [21] provides an extensive survey of CL techniques applied in the
fields of computer vision, language processing, and speech recognition. Curricu-
lum learning has demonstrated its effectiveness in improving the generalization
capability and convergence rate of models from different domains. In the speech
domain, curriculum learning has been used for better generalization, but its use
for improving the convergence rate has not been explored. Specifically, curricu-
lum learning has been used for robust far-field speech recognition [17], speech
emotion recognition from crowd-sourced labels [13], and pre-training for end-to-
end speech translation [20].

At the time of this writing, there is only one paper [8] where CL has been
used to develop document-level neural TTS. In this paper, the input samples,
i.e. (text, audio) pairs are randomly combined to generate progressively longer
sentences in successive epochs of training. This curriculum has helped the model
to generalize better and generate speech of duration higher than that available
in the training set. The aim of the author in [8] has been to generalize the
TTS model to the document level, whereas, in our work, we have made an
attempt to use curriculum learning to speed up the convergence of the TTS
model. To generalize the TTS to larger text, ‘text-length’ becomes a natural
curriculum criterion, and accordingly, the author in [8] has supplemented the
dataset with large text lengths by joining (text, audio) samples. However, in
order to speed up the convergence of a TTS model, what criteria would be most
effective for sorting the given dataset? In this work, we have experimented with
different curriculum criteria and compared their effectiveness in speeding up
the convergence of the TTS model. The curriculum criteria we have used are
inspired by their success in other domains and we made the first attempt to use
these criteria for the TTS learning task. Using the best curriculum criterion,
we validated faster convergence of TTS model with three datasets of different
languages.
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2 Model and Datasets

Due to its popularity and simple yet powerful architecture, we have used
Tacotron-2 [19] as Text-to-Spectrogram model for our experiments. Tacotron-2
has LSTM based encoder-decoder architecture with location sensitive attention
[3]. It is autoregressive in nature and converts the sequence of characters into
mel-scale spectrogram, frame by frame. Specifically, we used Nvidia’s Pytorch
implementation of Tacotron2 as our TTS model and Griffin-Lim algorithm to
vocode the resulting spectrograms.

2.1 Three Datasets

We have used the following datasets to carry out experiments and consolidate
our findings.

English Dataset. For English, we have used LJ-Speech dataset. It is a publicly
available and most widely used dataset for training end-to-end TTS models. The
speaker is an American female who reads passages from non-fiction books. We
used 12500 utterances having a total duration of about 24 h as the training set
for our experiments. The audio ranged from 1 to 10 s in duration.

Hindi Dataset. To consolidate our findings, we did a few experiments with
our lab’s Hindi dataset of 12 h duration. The dataset consists of 11,156 audio
clips of a single female speaker. Audios are recorded at 16 kHz frequency and
vary in length from 1 to 7 s. For text, news data from various publications was
used along with school textbooks. The recording was done in 2019 with support
from Gnani.ai team.

Telugu Dataset. This final dataset used for our experiments is created by
our lab as a part of SYSPIN: SYnthesizing SPeech in INdian languages project:
syspin.iisc.ac.in. We took 10,820 utterances as training data for our experiments
which resulted in a total of 38 h of data. The text collected spanned across
multiple domains: finance, agriculture, politics, education, health and general.
The audios were uttered by a male native speaker of Telugu and the recording
was done with help of Bhashini.ai team in 2021.

2.2 Metrics for Evaluation

Speech synthesis models are generally evaluated using MOS score. For faster
turn-around time, we have extensively used objective measures to evaluate the
performance of models. We used the following measures: Mel Cepstral Dis-
tortion (MCD), Gross Pitch Error (GPE), F0 Frame Error rate (FFE) [6]
and AlignmenT Score (ATS). The synthesized mel-spectrograms and audios
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were compared with ground truth or recorded ones using MCD, GPE, and FFE,
and the monotonicity of generated alignment map was measured using ATS.
MCD computes the difference between the ground truth and generated spectro-
gram in cepstral domain. We use 13 MFCC coefficients and excluded 0th coeffi-
cient for MCD calculation as shown in Eq. 1 where Ct,k/ ˆCt,k is kth MFCC coef-
ficient of reference/synthesized spectrogram at frame index ‘t’, where 1 ≤ t ≤ T
with T being the total number of frames.

MCD =
10

√
2

ln 10
1
T

T−1∑

t=0

√√√√
13∑

k=1

(Ct,k − ˆCt,k)2 (1)

GPE and FFE are pitch-based measures as defined in Eq. 2 and 3. vt/ v̂t are voic-
ing decisions and pt/p̂t are pitch values at frame index t in reference/synthesized
audio. GPE measures the percentage of voiced frames that deviate by more than
20 percent in the pitch signal of the generated audio compared to the reference
audio.

GPE =
∑

t 1[|pt − p̂t| > 0.2pt]1vt1v̂t∑
t 1vt1v̂t

(2)

FFE measures the percentage of frames that either have a 20 percent pitch error
or a differing voicing decision between the synthesized and reference audio. F0
contours for audio are obtained using PRAAT software. Since synthesized and
ground truth sequences could be different in length, we used dynamic time warp-
ing with l2 distance as the distance measure to time align both mel-spectrograms
and pitch contours before comparing them for MCD, GPE and FFE computa-
tion.

FFE =
1
T

∑

t

(1[|pt − p̂t| > 0.2pt] + 1[vt �= v̂t]) (3)

For tracking the convergence of the model, we also use the AlignmenT Score
(ATS) of the generated spectrograms. This is defined as the normalized sum
of attention weights that lie in the diagonal region of the alignment matrix as
shown in Fig. 1. Here, slope Tq/Tv is used to find the diagonal, and the sum of
weights in the region ‘c’ distance away from the diagonal is calculated. We used
c=5 frames for our calculations and computed alignment score as shown in Eq. 4
where Tq is sum of all attention weights or equivalently generated spectrogram
length. ATS measures the sharpness and monotonicity of the attention maps. A
higher ATS score indicates model has learned the alignment well.

ATS =
∑

Attention weights within diagonal region

Tq
(4)

For final comparison, we also conducted Mean Opinion Score (MOS) test,
remotely through Google Form. The evaluators were presented with a few sen-
tences and corresponding audios generated by models trained using different
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Fig. 1. Computation of Alignment Score: Tq is the number of spectrogram frames, and
Tv is character length.

curricula. Different curriculum audios corresponding to the same text were kept
together, to bring out relative comparison. To avoid any bias, the order of differ-
ent curriculum audios was randomly shuffled for each sentence. Also, since some
audios may sound very similar, we did not want to burden listeners with hard
ranking. Instead, they were asked to rate each audio on a scale of 1 to 5 in terms
of naturalness to capture preferences at a finer level.

3 Curriculum Learning Criteria

To apply curriculum learning to any task we need to address two critical ques-
tions: how to rank the training examples, and how to modify the sampling pro-
cedure based on this ranking. Thus, depending on the application, we need to
define two functions: i) Scoring function [1], and ii) Pacing function [1]. To speed
up the learning for the TTS task, we experimented with the following scoring
functions to rank (text, audio) training examples.

3.1 Text-Length

In neural machine translation tasks, ‘text-length’ is shown to be an effective
measure of the difficulty of training samples. Since, an end-to-end TTS model
involves text encoding as that in a neural machine translator, we believed that
this intuitive measure of difficulty may be helpful for Text-to-Speech task as
well. Specifically, we computed text-length as number of characters in text input
of training sample. Being a text-based feature, ‘text-length’ can be computed
for the dataset even before the audio is recorded and thus, can be beneficial in
TTS deployment as discussed in Sect. 5.

3.2 Acoustic Feature

We also experimented with an acoustic feature and explored its use for speeding
up the convergence of a TTS model. Work done in data selection for TTS in
[4,5,11] suggests that utterances with low articulation and low F0 standard
deviation generate better-sounding samples when used to train a TTS model.
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Here, articulation is defined as shown in Eq. 5 where total energy is computed as
the sum of squares of audio samples, and average speaking rate is calculated as
the number of vowels divided by utterance length. We experimentally verified the
results of the data-selection study using our datasets and found that even an end-
to-end TTS model (Tacotron-2) generates more natural voice when trained on a
data subset with lower articulation and lower F0 standard deviation. This alludes
to the fact that the model learns better and faster if the training samples have
low values of articulation and F0 standard deviation. Thus, we constructed an
‘acoustic feature’ to select audios with low values of these features, as defined in
Eq. 6, and used this ‘acoustic feature’ as a measure of difficulty for implementing
CL for TTS.

articulation =
total energy

average speaking rate
(5)

acoustic feature = articulation ∗ F0 standard deviation (6)

3.3 Automatic Curriculum Learning

Conventional or pre-defined CL requires us to define the scoring function to
rank order the training samples. But, what may be easy for humans may not
be easy for the model. Thus, automatic curriculum learning was introduced
in which the ranking of samples is model-driven and not human knowledge-
driven. As automatic CL is proved to be more advantageous over pre-defined CL
in literature, we also experimented with this strategy. Specifically, we trained
our TTS model over the entire training corpus for 100 epochs and used this
partially trained model to generate mel-spectrograms for all training samples. We
then computed DTW-aligned mean squared error distance between synthesized
and ground truth mel-spectrograms. Using this distance, we rank-ordered the
training examples. The lower the distance, the easier the training sample.

4 Experiments and Results

We primarily used English dataset, LJ-Speech for obtaining the most appropriate
difficulty measure for TTS task. We then verified the results on two other data
sets: Hindi and Telugu.

4.1 Result on LJ-Speech Dataset

We began the experimentation with LJ-Speech dataset. For each scoring function
discussed in section-3, we implemented double step pacing function as follows:
i) We use easiest 8 h of data (as per the scoring function) and trained model for
10k iterations,
ii) Use easiest 15 h of data and trained model for 20k more iterations,
iii) Finally, entire 24 h corpus is used to train the model for further 30k iterations.
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As a baseline, we implemented random curriculum in which data subsets are
chosen randomly. Table 1 shows the performance of models after each step of
curriculum, i.e., after 10k, 30k and 60k iterations. For reference, we have also
included results of model trained on ‘full data’(entire 24 h corpus) at various
stages without any curriculum. We found that for acoustic-feature based curricu-
lum, GPE score which measures the naturalness of speech has reduced the most
in 10k iterations, but MCD score remains poor till 30k iterations. On the other
hand, we note that after both 10k and 30k iteration points, the MCD score cor-
responding to ’Text-length’ curriculum is the lowest. Also, the GPE score which
is poor for ‘Text-length’ after 10k, is significantly improved or reduced after 30k
iterations. ’Text-length’ seems to be more effective criterion than the acoustic
feature for faster convergence. ATS results favor automatic ‘DTW-MSE’ based
curriculum. The learning curves on validation data are shown in Fig. 2. Con-
sidering both the objective scores and learning curves, we find that curriculum
learning indeed benefits the convergence and model trains faster as compared
to the random curriculum. Especially, ‘Text-length’ and ‘DTW-MSE’ based CL
prove to be more beneficial. Although DTW-MSE gave the best results, it is an
automatic CL and we need to train the model on the complete dataset for imple-
menting this curriculum. On the other hand, ‘Text-length’ is an easily computed
pre-defined feature whose performance is competent with that of a dynamic
DTW-MSE feature-based curriculum. We found ‘Text-length’ to be the most
effective and efficient curriculum criteria for accelerated convergence. We thus
validate the efficacy of ‘Text-length’ based curriculum on two other datasets.

Table 1. Performance of models trained using different curricula after 10k/30k/60k
iterations. Bold entries correspond to best scoring curriculum.

Feature MCD GPE FFE ATS

Full-data(No CL) 50.75/32.77 /32.60 0.317/0.175 /0.198 0.211/0.121 /0.137 0.012/0.055 /0.075

Random 54.12/43.12 /32.29 0.343/0.228 /0.194 0.221/0.156 /0.141 0.009/0.010 /0.105

Text-length 49.57/31.90 /31.75 0.326/0.202 /0.196 0.231/0.145 /0.134 0.016/0.018 /0.037

Acoustic-feature 51.96/36.19 /32.85 0.269/0.250 /0.195 0.182/0.163 /0.132 0.014/0.032 /0.030

DTW-MSE 50.75/33.54 /31.67 0.290/0.186 /0.197 0.173/0.134 /0.134 0.017/0.0.056 /0.053

MOS Score Test: To subjectively evaluate the performance of ’text-length’
based curriculum versus random curriculum, we conducted MOS score test. For
this, we used models after second stage of double step pacing function experi-
ment, i.e. models trained for 30k iterations. For comparison, we also used model
trained using entire 23 h data for 30k iterations without curriculum. We synthe-
sized 10 sentences using each of three models, and used 30 synthesized audios for
the test. We ensured that the length of test sentences has wide enough range so
that ‘text-length’ curriculum based model trained on shorter sentences gets no
undue advantage. Total 46 listeners participated and average scores are shown in
Table 2. The results are in agreement with objective evaluation and ’text-length’



Curriculum Learning Based Approach for Faster Convergence of TTS Model 215

Fig. 2. Validation loss for different curricula: Text-length(top), acoustic
feature(bottom-left), DTW-MSE feature(bottom-right) on LJ-Speech.

feature based curriculum has obtained similar MOS score with 15 h data as that
of vanilla trained model on 23 h data. The MOS score obtained by random cur-
riculum is, however, very low as the speech synthesized was not very intelligible.
The leftmost column in Fig. 3 shows the alignment of a test sentence synthesized
by the three models. While ’text-length’ based model has achieved sharp mono-
tonic alignment, the alignment obtained from random curriculum trained model
still looks blur and hazy.

Table 2. MOS score results for different models trained for 30k iterations. ‘Max.
duration’ is total duration of data the model has seen till this stage of training.

Curriculum Max. duration MOS score

Full-data(No CL) 23 h 3.5455

Random 15 h 1.8286

Text-length 15 h 3.5956
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Fig. 3. Attention matrices generated by models trained using different curricula: LJ-
Speech (leftmost), Hindi (middle) and Telugu(rightmost).

4.2 Results on Hindi Dataset

We consolidated our results using a Hindi dataset with a total duration of 11.7 h.
We implemented ‘text-length’ based curriculum as follows:
i) We trained Tacotron-2 model for 20k iterations on 5 h easiest data,
ii) Then, followed by 20k iterations on 8 h of easiest data.

Figure 4 shows the validation loss curve and Table 3 shows the objective
evaluation results. We observed that the maximum gain of using curriculum
learning is observed in the initial phase of training as ‘text length’ curriculum-
based model shows the best performance in terms of all the objective metrics
after 15k iterations.

Fig. 4. Validation loss for Hindi(left) and Telugu(right) dataset.
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Table 3. Performance of different curriculum models on Hindi dataset. In score format
’x/y//z’, ’x/y’ represent the score after training model for 15k/20k iterations on 5 h
subset, ’z’ is the score after further training for 20k iterations with 8 h subsets.

Curriculum MCD GPE FFE ATS

Full-data 45.37/34.31 //32.27 0.133/0.088 //0.080 0.133/0.060 //0.063 0.036/0.083 //0.109

Random 48.57/35.41 //32.00 0.125/0.088 //0.063 0.117/0.084 //0.059 0.018/0.017 //0.017

Text-length 41.68/34.49 //32.46 0.113/0.091 //0.063 0.097/0.091 //0.060 0.050/0.053 //0.085

MOS Score Test: We also conducted MOS score test for Hindi dataset. Ten
sentences of varied lengths were synthesized by models trained for 20k iterations
on a) 5 h random subset, b) 5 h of shortest text-length subset, and c) full 11.7 h
of data. Total 79 responses were recorded and the average scores are reported
in Table 4. The middle column in Fig. 3 shows the alignment for a test sentence
synthesized by three models. The observations are in agreement with ATS &
MOS scores and it is visually clear that the attention of text length curriculum-
based model is sharper and better than that obtained by random curriculum
model.

Table 4. MOS score results for models trained for 20k iterations on different curricula
for Hindi dataset.

Curriculum Max. duration MOS score

Full-data(No CL) 11.7 h 3.8202

Random 5 h 1.9759

Text-length 5 h 3.2240

4.3 Results on Telugu Dataset

The total duration of Telugu dataset was 38 h. To experiment with text-length
based curriculum learning, we trained Tacotron-2 model for 20k iterations on
10 h easiest data, followed by 10k iterations on 15 h of easier data. Figure 4
shows that the validation loss of text-length based curriculum train remains
lower than random curriculum. Also, Table 5 shows that ‘Text-length’ based
curriculum achieves best objective scores, MCD & ATS after 10k/20k iterations,
again highlighting that model learns faster using this curriculum.

MOS Score Test: For Telugu dataset, we conducted MOS score test for two
stages of learning. MOS-1 and MOS-2 present the scores obtained after 1st and
2nd phase of training. Seven sentences for each stage were synthesized and pre-
sented to listeners. A total of 45 responses were collected and results are shown
in Table 6. ‘Full-data’ scores are reported after vanilla training the model for 20k
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and 30k iterations using the complete 38 h of data. MOS-1 is higher for vanilla
learning as compared to curriculum learning as data observed by curriculum
learning model is just about 10 h, as compared to 38 h in vanilla training model.
MOS-2 however, indicates that using just 39% of training data, i.e. 15 h data,
‘text-length’ CL based model achieved MOS score competent with that of vanilla
training model.

Table 5. Performance of different curriculum models on Telugu dataset; Here, in score
format x/y//z, x/y is the score after training for 10k/20k iterations on 10 h subset; z
is the score after further training for 10k iterations with 15 h subsets.

Curriculum MCD GPE FFE ATS

Full-data 40.59/32.13 //31.25 0.155/0.143 //0.126 0.104/0.082 //0.087 6.13e-5/0.012 //0.022

Random 37.83/36.71 //30.85 0.158/0.153 //0.133 0.093/0.091 //0.084 7.04e-5/4.04e-5 //9.48e-4

Text-length 34.40/33.52 //28.92 0.173/0.151 //0.134 0.104/0.084 //0.079 1.11e-4/3.93e-4 //1.98e-3

Table 6. Telugu dataset: MOS-1: model trained for 20k iterations on 10 h subset; MOS
score-2: model further trained on 15 h data for 10k iterations.

Curriculum MOS-1 (Max. data) MOS-2 (Max. data)

Full-data(No CL) 3.3932 (38 h) 3.6015 (38 h)

Random 2.0673 (10 h) 3.2118 (15 h)

Text-length 2.7138 (10 h) 3.5096 (15 h)

5 Discussion

By experimenting with multiple datasets, we found that, we are able to achieve
faster convergence using ‘text-length’ based curriculum as compared to random
curriculum. At the same time, ‘text-length’ based curriculum learning achieves
a similar MOS score as that of conventional learning using a significantly lesser
amount of data.

We want to highlight that ‘text-length’ based curriculum learning can provide
practical advantages while deploying a TTS system as follows. Conventional
TTS system involves text collection, and weeks of audio recording before it is
used to train a TTS model. Being a text-based measure, ‘text length’ can be
computed before the audio is recorded. Thus, we can begin the recording with
shorter/easier text, and use it to train the model. We can progressively increase
the length of the text to be recorded until the model has generalized and the
MOS score requirement is achieved. This enables us to achieve faster convergence
and record just the sufficient amount of data required to train a TTS model,
thus, reducing the cost of data creation.
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Fig. 5. Conventional TTS system deployment(top) and curriculum enabled TTS
deployment(bottom).

As shown in Fig. 5, a conventional TTS system involves text collection, audio
recording, and the laborious task of audio-text validation before it is used to train
a TTS model. While deploying TTS using a ’text-length’ based curriculum, we
can begin recording a small chunk of x hours of data, and then keep adding
y hours of data until the MOS requirement is achieved. Curriculum learning
gives us a criterion to record data in chunks so that we collect just the sufficient
amount of data needed to train the model. This also relieves the burden of
manual validation of unduly large amounts of data.

6 Conclusion and Future Scope

In this paper, we have established that ‘text-length’ is an appropriate difficulty
measure for curriculum learning in TTS task. We have demonstrated that ‘text-
length’ based curriculum learning helps speed up the convergence of a sequence-
to-sequence based Text-to-Speech model on three datasets.

We have worked with Tacotron-2 model which is most widely used text-
to-spectrogram model provided by Google, but the results can be extended to
other TTS models as well. Work can be done to check the effectiveness of the
proposed methods for other auto-regressive and non auto-regressive models for
spectrogram generation. Neural vocoder is crucial component of end-to-end TTS
system. Even though it does not need paired (text, audio) data for training; it
still needs a large amount of audio data and weeks of training to generate high-
quality voice. We can explore the use of acoustic feature-based or utterance
duration based curriculum learning for vocoders to speed up their training. In
this work, we have restricted ourselves to the fixed training schedule. As ’DTW-
MSE’ loss based curriculum gave positive results on LJSpeech data set, we can
work further in the direction of automatic curriculum learning for TTS. We can
optimize the training schedule or update it dynamically with the help of model
feedback. Finally, we have used simple and clean TTS datasets in our work. In
the future, the power of curriculum learning can be explored using other complex
datasets.
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Abstract. This paper presents a study on the rhythm in read speech for Deori
(L1), a Tibeto-Burman language and Assamese, an Indo-Aryan language (L2)
spoken by the Deori speakers in the state of Assam, India. This study aims to
explore and analyze the rhythmic patterns exhibited in read speech for Deori,
focusing on aspects such as syllable timing, and duration for both L1 and L2 read
speech. To analyze the speech rhythm, rhythm measures such as %V, nPVI, rPVI,
varco-V, varco-C, �V, and �C were calculated for the read speech. Regardless of
the rhythmic class of Deori (L1), the results on read speech showed that Assamese
(L2) are similar to Deori (L1) in terms of nPVI-V, rPVI-C, whereas it exhibits a
shift towards the mora-timed class in terms of %V and �C. This study provides
valuable insights into the complex interplay between L1 and L2 rhythm patterns.
These findings highlight the significance of considering factors such as speech rate
and prosodic structure when examining rhythmic differences in bilingual speech.

Keywords: Deori · Assamese (L2) · Rhythm · Speech Rate

1 Introduction

Deori is a Tibeto-Burman language spoken in the state of Assam, India. Deori, an endan-
gered language, is currently in a highly vulnerable state, considering it almost moribund.
However, a glimmer of hope emerges from a recent study where the research highlights
that some young children have been observed learning the Deori language, indicating a
potential avenue for extending its existence [1].

Since Deori is spoken in Assam, and almost the entire community is bilingual
their speech repertoire comprises their native language as their first language (L1) and
Assamese as their second language (L2). In this context, it is important to investigate
whether speakers who have an Indo-Aryan language with trochaic prominence as their
second language (L2) experience any impact on rhythm. This is particularly relevant
when these L2 speakers come from a linguistic background that includes a highly vul-
nerable language within the Tibeto-Burman language group, which exhibits an iambic
prominence pattern characterized by initial vowel lengthening [2]. This paper attempts to
study the rhythmic patterns inDeori (L1) and L2 (Assamese). Both of them are compared
with the previously analyzed prototypical stress, syllable and mora timed languages.
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Rhythm is a significant prosodic characteristic that plays a crucial role in the natural-
ness of speech. Traditionally, spoken languages have been divided into three rhythmic
categories, known as “stress-timed,” “syllable-timed,” and “mora-timed” [3–5]. The cat-
egorization is based on the concept of isochrony, which states that speech is divided into
relatively equal units of duration: syllables in syllable-timing languages such as French
and Italian, inter-stress intervals in stress-timing languages like English and German,
and mora intervals in mora-timing languages such as Japanese [6].

However, there is no reliable acoustic evidence that proves the presence of
isochronous units [7–9]. Isochrony is thus viewed as amore impressionistic trait that cor-
relates with particular phonological features such as syllable structure, vowel reduction,
and stress [7]. Recent research has shifted away from the primary focus on isochrony
in favor of a more detailed study of the variability in the durations of consonantal and
vocalic intervals for the acoustic perception of rhythmic distinctions. The standard devi-
ation of consonant duration (�C), percentage of vocalic duration (%V) [8], and pairwise
variability index (PVI) [9] for vocalic and consonant durations are all examples of such
measures. Speech rhythm is usually divided into rhythmic classes, with languages being
either stress-, syllable-, or mora-timed. So, the basic unit of rhythmic speech is either
the foot (e.g., English), syllable (e.g., French), or mora (e.g., Japanese).

Stress-timed languages have complex syllable structure and vowel reduction in con-
trast to syllable-timed and mora-timed, they have simple syllable structure and avoid
vowel reduction [7]. Temporal measurements, such as�C (standard deviation of conso-
nantal intervals), �V (standard deviation of vocalic intervals), and %V (percentage of
vocalic intervals in an utterance) were measured. Out of these three temporal measures,
the combination of %V and �C was considered to best fit for distinguishing rhythm
classes. The stressed-timed and syllable-timed languages cluster differently when %V
and �C are plotted on an x-y plane [8]. Speaking rate affects measurements like %V,
�V, and�C,making them less efficient in distinguishing rhythm classes. Thus, Pairwise
Variability Index (PVI) were proposed to decrease the effect of speaking rate. This app-
roach classifies languages based on durational variability of successive units of speech
and can reflect normalized (npvi) or raw (rpvi) values [9]. Whereas Varcos, were devel-
oped to minimize the effect of speech tempo [10]. It is important to mention that some
claims have been made in the literature suggesting that the existing rhythm metrics are
not capable of adequately classifying languages into distinct rhythmic classes [11].

In addition to rhythmic studies on native speech (L1), some studies have investigated
rhythmic patterns in non-native speech (L2), such as English as a second language for
Mandarin and Cantonese speakers with Mandarin or Cantonese as their first language
[12]. Studies also explored the influence of the first language (L1) on the second language
(L2) for Dutch, English, and Spanish speakers [13]. It is essential for computer-assisted
language learning systems to be able to recognize rhythmic patterns in non-native speech.
Some occurrences of rhythmic similarities between the L1 and L2 in non-native speech
lend credence to the hypothesis of L1 transfer effects. In other cases, non-native speech
shows rhythmic patterns nearly identical to either L1 or L2 [6].
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2 Methodology

This work investigates the rhythm of read speech of Deori speakers in Assam. Assamese
is the dominant language in Assam so, speakers of Deori are bilingual as they can speak
Assamese as L2 and to some extent English L3, especially the younger generation [1].
In this work, we investigated the difference in rhythm of the speakers of Deori (L1) and
Assamese (L2) reading the story “The North Wind and the Sun”. Conventional rhythm
measures, such as %V, nPVI, rPVI, varco-V, varcoC,�V and�C are calculated for read
speech.

2.1 Participants

A total of eight participants, all native speakers of Deori (L1) and also proficient in
Assamese (L2), took part in two production experiments. The age range of the partic-
ipants was between (21 to 36 years), consisting of four male and four female speakers
who recorded both languages. Each participant was asked to produce the story four
times, ensuring a natural speech rate and intonation pattern. The best three repetitions
produced by each speaker were considered for final analysis. The translated story com-
prises roughly 11 sentences for each language with varied syllable lengths (ranging
between 6 to 12 syllables per sentence). The recorded speech data were annotated at the
phoneme level in Praat 6.1.06 [14], delineating vocalic and consonantal intervals based
on auditory and acoustic cues according to standard segmentation criteria [15].

2.2 Materials

The English version of “The North Wind and the Sun” was translated into Deori and
Assamese [16]. Translation has been done by a native speaker of Deori language. Prior to
recording, the data sets were given to them to familiarize themselves with the sentences
and were allowed to rehearse a couple of times to avoid pauses and hesitations. Speakers
were instructed to read the sentences on a sheet at their own pace and as naturally as
they would in a conversation.

2.3 Procedure

After the data was recorded, it was annotated at the phoneme level in PRAAT [14].
The Correlatore program (version 2.3.4) [17] was used to extract different rhythmic
metrics, including Cmean, Vmean, %V, �C, �V, Varcos (Varco-V, Varco-C), and the
PVI (nPVI, rPVI) from the annotated speech data. The speaking rate also influences
rhythm measures. The speech rate is calculated in terms of the time taken syllables per
second and segments per second. The values of these matrices were plotted against each
other using the ggplot package (Figs. 1 and 2, for example) in the R software (version
4.2.2 (R Core Team, 2022) [18].
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3 Results

3.1 Syllable Structure of Deori

Deori typically employs the CV syllable type as the default or unmarked syllable type.
This aligns with the moraic theory of syllable weight. Deori follows a canonical syllable
structure of (C)V(C), where the onset (initial consonant) and coda (final consonant)
are optional [2]. This is also true for Assamese (L2) [19] as can be seen in Fig. 1 for
comparison.Deori syllables tend to resemble to French language.Deori (L1)CV- interval
shows 75.1% among other syllable types. Whereas Assamese (L2) CV intervals shows
65.5% in the entire passage.

Fig. 1. Syllable types ofDeori (L1) on the left andAssamese (L2) on the right of the read passages
in the story “The North Wind and the Sun”.

3.2 Correlation of Rhythm Metrics

Several rhythmmeasures have been demonstrated to be directly or indirectly proportional
to the rate of speech in the literature. It has been suggested that utterance length is another
aspect to which rhythm metrics are particularly sensitive. It has also been demonstrated
that the extent towhich these factors influence rhythmmeasures varies fromone language
to another. As can be seen in Figs. 2 and 3. Pearson correlation was calculated for each
text independently. The figures clearly show that the measurements’ correlation varies
by language. Rate of articulation, in terms of segments per second (sg/s), has a negative
correlation on (L1) and nPVI-V, �V. However, there is a robust inverse relationship
between Varco-C for both length and syllable per second as can be seen in Fig. 2. In the
case of Assamese (L2), the impact of rate of articulation is highly significant across all
seven rhythm measures investigated in this study. As seen in Fig. 3, segment/second is
negatively correlated with all the rhythm measures.

3.3 Rhythm Measures

Deori (L1) and Deori speaking Assamese (L2) rhythm results are presented in Table 1,
along with other languages [8]. This allows us to make direct comparisons to earlier
findings. And to compare the results with the previous findings, we plotted the values
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Fig. 2. Pearson correlation matrix of measures for Deori.

Fig. 3. Pearson correlation matrix of measures for Deori L2 (Assamese).

of %V and �C rhythm metrics of Deori (L1) and (L2). As we can see in Fig. 4, the
�C values for Deori (L1) are close to the other three syllable-timed languages (French,
Spanish and Catalan), which makes it clear that Deori should be categorized as syllable-
timed while Deori-speaking Assamese (L2), is more a mora-timed language which tends
to cluster with Japanese. Whereas in Fig. 5 we plot the values of nPVI-V and rPVI-C
with other languages [9]. The results are presented in Table 2. It can be seen that both
Deori (L1) and Assamese (L2) the nPVI-V is similar to that of Japanese, but rPVI-C for
Deori (L1) showing tendency of shifting towards syllable-timed language and can be
seen clustering with French.
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Fig. 4. �C and %V for Deori L1 and L2 speech with different languages [8].

Fig. 5. nPVI-V and rPVI-C for Deori L1 and L2 speech with different languages [9].
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Table 1. The values of Rhythm correlates for [British English, Polish, Dutch (Stressed-timed),
Spanish, French, Catalan (Syllable-timed) and Japanese (Mora-timed)] along with their standard
deviation as proposed by [8] are compared with the values for Deori (L1) and Deori Assamese
(L2).

Language %V(SD) �V(SD) �C(SD)

English 40.1 (5.4) 4.64 (1.25) 5.35 (1.63)

Polish 41.0 (3.4) 4.23 (0.67) 5.33 (1.18)

Dutch 42.3 (4.2) 3.11 (0.93) 5.37 (1.5)

Spanish 43.8 (4.0) 3.32 (1.0) 4.74 (0.85)

French 43.6 (4.5) 3.78 (1.21) 4.39 (0.74)

Catalan 45.6 (5.4) 3.68 (1.44) 4.52 (0.86)

Japanese 53.1 (3.4) 4.02 (0.58) 3.56 (0.74)

Deori 50.2 (5.7) 3.77 (1.64) 4.41 (0.75)

Deori (Assamese) 50.7 (5.8) 3.61 (1.2) 3.77 (0.8)

Table 2. The values of Rhythm correlates for [British English, Thai, Dutch, Polish (Stressed-
timed), Spanish, French, Catalan (Syllable-timed) and Japanese (Mora-timed)] as proposed by [9]
are compared with the values for Deori (L1) and Deori Assamese (L2).

Language %V nPVI-V rPVI-C �C �V

British English 41.1 57.2 64.1 56.7 46.6

Thai 52.2 65.8 56.5 46.1 74.8

Polish 42.3 46.6 79.1 71.4 44.9

Dutch 44.9 65.5 57.4 53.7 48.4

Spanish 50.8 29.7 57.7 47.5 20.7

Catalan 43.6 44.6 67.8 62.1 33.9

French 50.6 43.5 50.4 42.4 35.5

Japanese 45.5 40.9 62.5 55.5 53.0

Deori 50.2 42.5 51.1 44 37.7

Deori (Assamese) 50.7 40.1 43.6 37.7 36.1

4 Conclusion

We have analyzed the differences in rhythmic patterns of speech of Deori (L1) and
Assamese (L2) speakers who were raised speaking Deori as their first language. The
rhythmic patterns of read speech were evaluated using nine different rhythm measures.
In terms of rate-normalizedmeasures such as nPVI-Vand rPVI-Cvalues itwas found that
L2 speakers gave a rhythmic mode relatively comparable to Deori (L1), and in terms
of %V and �C values, Assamese (L2) tends to cluster with Mora timed languages,



Rhythm Measures and Language Endangerment: The Case of Deori 229

regardless of the rhythmic class of (Deori) L1 which tends to cluster with syllable-timed
languages viz., (French, Spanish) as can be seen in Fig. 4. This matches our subjective
auditory impression of L2 speech, in which the perceived rhythm may not fit neatly into
any of the rhythm class categories. Possible replacement metrics are needed, and the
link between rhythmic metrics and other measures of fluency and naturalness must be
explored.

Research conducted on Deori phonology reveals that it exhibits an iambic pattern,
with a notable lengthening of the second syllable [2]. In contrast, study on Assamese
indicates that it displays a trochaic pattern with a preference for heavy syllables [19].
These findings support our observations, considering the vulnerability of Deori and
the ongoing language shift observed among Deori speakers. Our research suggests that
Deori speakers can attain a high level of proficiency in bilingualism, despite their native
language being a Tibeto-Burman language with distinct characteristics such as iambic
prominence and remnants of tonal features.

The results of this study contribute to the understanding of rhythm in Tibeto- Burman
languages and provide a foundation for further research in the field. The findings show
that speakers with extensive language shift to a dominant L1 may be proficient in the
subtle feature of the rhythm properties of the L2. This again validates our concern
that language endangerment is a gradual process – it starts with gradual bilingualism,
extensive proficiency in the L2 and finally acquiring the L2 with great sophistication
leading to the complete replacement of the L2 with the L1.

Further, subjective listening tests will be conducted to analyze rhythmic patterns in
L1 (native language) and L2 (second language) speech to see if L2 speakers exhibit
significant deviations from the rhythmic patterns of their L1. These tests can reveal how
speakers, perceive the linguistic features of their native language. If these tests show
that individuals have difficulty perceiving or identifying these features, it may indicate
that the language is undergoing a shift, and are no longer fully attuned to its linguistic
nuances.
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Abstract. A phonetic transcription system provides pronunciation of words,
mostly in International Phonetic Alphabet (IPA) format. Phonetic transcription
is the visual representation of phones in the form of characters and symbols rep-
resented in the IPA format. This paper describes the development of an automatic
phonetic transcription system for an under-resourced Indian language, Konkani.
In this paper, we have proposed an automatic phonetic word transcription gener-
ation system based on a set of deterministic linguistic rules mainly derived from
the available work on Konkani literature. Some general rules, like Schwa deletion,
are also considered in the design process. Parallel 101 sentences with 397 unique
words have been used to test the accuracy of the system. Our system shows a
Word Error Rate (WER) of 60, whereas existing system had a WER of 92.5.

Keywords: Konkani · pronunciation · Phonetic transcription · Transcription
system · Konkani phonetic transcription · Phonetic

1 Introduction

Konkani is an Indo-Aryan language that belongs to the Indo-European family of lan-
guages1. More than 2.5 million people speak Konkani language. It is the official lan-
guage of the state of Goa in India and is spoken in the western coastal part of India,
including Goa, the Konkan region of Maharashtra, Karwar, Mangaluru, other coastal
areas of Karnataka, and parts of Kerala, Gujarat, Dadra & Nagar Haveli and Daman
& Diu. Konkani is one of the 22 scheduled languages included in the eighth schedule
of the Constitution of India2. Konkani and Marathi are often referred to as sister lan-
guages, as many words have similar formations and semantics with some variations.
The first known Konkani inscription dates back to 1187 CE3.

The work presented here is an attempt to create a resource which can be used for
Konkani language development. This paper describes the work of creating a phonetic
transcription system for Konkani, which can be considered as one of the important
component to develop an Automatic Speech Recognition (ASR) System and Text to
Speech (TTS) for any language, in this case, for Konakni language.

1 https://www.britannica.com/topic/Konkani-language.
2 https://www.mha.gov.in/sites/default/files/EighthSchedule 19052017.pdf.
3 https://g.co/arts/vyK6hbZbuupN15ru5.
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The paper is organised as follows:- Sect. 1 provides an introduction of the Konkani
language and presents the need for this work. The motivation of this work is briefed in
Sect. 2. Section 3 defines the problem statement, Sect. 4 presents the Discussions and
Methodology used; Finally, Sect. 6 Concludes the paper with future scope for improve-
ments.

2 Motivation

Konkani is a under-resourced language with very few resources available for R &
D. Also, there are hardly any applications for the Konkani language. In the recent
decade, efforts have been made to develop resources for Konkani, viz., Konkani Word-
net [3,4,11], ILCI Corpus [2], CIIL Corpus [7], SPTIL Project4, etc. However, an online
Konkani pronunciation dictionary has not been developed as yet. This motivated our
research group to create a Konkani phonetic transcription system, which may be bene-
ficial for future research work of TTS and ASR Systems for Konkani Language.

3 Problem Statement

The goal of the work presented in the paper is to design an Automatic phonetic tran-
scription system specific to the Konkani language. This phonetic transcription system
takes a Konkani text in written Devanagari form as input and produces phonetic tran-
scription in IPA. The transcriptions are rule-based one-to-one characters to phonemes
mapping and currently do not consider the context of the word.

4 Methodology and Datasets Used

4.1 Rules for Phonetic Mapping

The Devanagari character set for Konkani is taken from A Gold standard Konkani Raw
Text Corpus [8]. Tables 1, 2, and 3 show the mapping of Konkani characters with the
IPA symbols. Rules for phonetic transcription are identified using previous work, which
is reported by [1,5,9]. Some IPA mapping for the characters not reported through the
above work, has also been provided. Some rules are summarized and presented in a tab-
ular form. The Devanagari characters, approximate IPA notation, phonetic transcription
for the dictionary and UTF-8 code for the characters are also presented here. Table 4
provides approximate IPA symbols for Devanagari vowels and diphthongs. Konkani
has nine vowels out of which six vowels find place in the script whereas three do not.
The nine vowels of the language are: [1], [@], [a], [i], [e], [E], [u], [o], and [O]. The three
vowels that are a part of the vowel system of the language but do not have a unique
character representing them in the script are: [1], [E], and [O]. There are a few other
things that need to be noted with regards to the vowels system of the language:

4 http://sanskrit.jnu.ac.in/projects/sptools.jsp?proj=sptools.

http://sanskrit.jnu.ac.in/projects/sptools.jsp?proj=sptools
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– Vowel length is not phonemic in Konkani. Hence, one of the Devanagari charac-
ter representing vowel length contrast, namely [i/i:] and [u/u:] is redundant for the
language.

– Vowels from Sr. No. 16 in Table 4 are not found in the language.
– The vowel [r

˙
] occurs in Sanskrit loans only and specifically in proper nouns only.

It should be noted that some vowel phonemes in Konkani, like /@/ and /1/, have the
same written representation [5].

Before elaborating on the consonant inventory of the language, it would be worth men-
tioning that voicing and aspiration is phonemic in the language. Nasalization is phone-
mic in the language with the vowels displaying oral-nasal contrast in almost all posi-
tions. The language also has nasal consonant phonemes /m/, /n/, /ï/. Speaking about
the labial consonant phonemes, Konkani distinguishes between the voiceless /p/ and
the voiced /b/ as well as the aspirated /bH/ versus the voiced non-aspirated /b/. With the
exception of the voiceless aspirated labial consonant [ph], other consonants contrast in
voicing and aspiration. Scholars have claimed that [ph] did exist in the older stage of
the language but was replaced by the labio-dental fricative /f/ due to the large scale Por-
tuguese borrowings in the language. Examples of minimal pairs exhibiting differences
between labial sounds are given below:

– There is a contrast between the voiceless plosive /p/ and the voiced plosive /b/., e.g.
[paj] ’father-M.SG.’ [baj] ’endearment word for a girl child-N.SG.’

– The voiceless plosive /p/ also contrasts with the aspirated voiced plosive /bH/), e.g.
[pu:t] ’son-M.SG.’ [bHu:t] ’ghost-N.SG.’

Four dental phonemes /t”/, /t”h/, /d”/ and /d”H/ display voicing and aspiration contrast. Exam-
ples for these phonemes are given below:

– voiceless dental plosive /t”/ versus voiced dental plosive /d”/), e.g., [va:t”] ‘wick-F.SG.’;
‘candle-F.SG.) [va:d”] ‘dispute’, ‘argument’ (M-SG.)

– voiceless non-aspirated dental plosive /t”/ versus voiceless aspirated dental plosive
/t”h/, e.g., [t”aíi] ’clap-F.SG.’ [t”haíi] ‘small plate for eating-F.SG.’

– voiced non-aspirated dental plosive /d”/ versus voiced aspirated dental plosive (/d”H/),
e.g., [d”a:r] ‘door-N.SG.’ [d”Ha:r] ’sharp edge-F.SG.’

With respect to the place of articulation, all the above dental consonants contrast with
the retroflex consonant phonemes /ú/, /úh/, /ã/, and /ãH/ which also display voicing and
aspiration differences. The following pairs of words make this distinction explicit:

– voiceless retroflex plosive /ú/ versus voiced retroflex plosive /ã/, e.g., [va:ú]
‘way/path-F.SG.’ [va:ã] ‘growth-F.SG.’

– voiceless unaspirated retroflex plosive /ú/ versus voiceless aspirated retroflex plosive
/úh/ ), e.g., [pa:ú] ’A narrow water course-M.SG.’ [pa:úh] ’lesson-M.SG.

– voiceless aspirated versus voiced aspirated (/úh/ versus /ãH/) [úho:] ‘sound of crackers,
bullet, etc.’ [ãHo:] ‘loud noise of explosion, fall, etc.’

– Velar consonant phonemes in Konkani namely [k], [kh], [g], [gH] also display a con-
trast with respect to voicing and aspiration. Konkani also has the velar nasal [N].
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With respect to the place of articulation, all the above dental consonants contrast with
the retroflex consonant phonemes /ú/, /úh/, /ã/, and /ãH/ which also display voicing
and aspiration differences. The following pairs of words make this distinction explicit:

Konkani has dento-palatal affricates /
>
ts/, /

>
ds/ and /

>
dzH/ which contrast with the

palatal affricates /
>
tS/, /

>
tSh/, /

>
dZ/ and /

>
dZH/.

With the exception of the voiceless aspirated counterpart of the dental affricate /
>
ts/,

all others contrast with respect to place of articulation, voicing and aspiration. However,
the written form of the language (the Devanagari script) lacks separate characters for
showing the distinction between these sounds.
Minimal pairs exhibiting meaning differences for dento-palatal and palatal phonemes
are given below:

– Voiceless unaspirated dento-palatal affricate versus voiced unaspirated versus voiced
aspirated affricate (/

>
ts/ versus /

>
dz/ versus /

>
dzH/)[

>
ts@ã] ‘climb-IMP.2P.SG.’ [

>
dz@ã]

‘heavy-ADJ.’ [
>
dzH@ã] ‘fall-IMP.2P.SG.’ [

>
ts@r] ’graze-IMP.2P.SG.’ [

>
dz@r] ’if’ [

>
dzH@r]

’spring-F.SG.’
– Voiceless unaspirated palatal affricate versus voiced unaspirated palatal affricate (/

>
tS/

versus /
>
dZ/) [

>
tSar] ‘four’ [

>
dZar] ‘tired’,

– Voiceless unaspirated palatal affricate versus voiced aspirated palatal affricate (/
>
tS/

versus /
>
dZH/) [

>
tSElO] ’disciple-M.SG. [

>
dZHElO] ’small garland-M.SG.’

– Voiced unaspirated dento-palatal affricate versus voiced unaspirated palatal affricate
(/
>
dz/ versus /

>
dZ/ [

>
dzu:n]’mature-ADJ.’ [

>
dZu:n] ’(month of) June’

Konkani also has velar consonant phonemes /k/, /kh/, /g/, /gH/ which show contrast in
voicing and aspiration. Meaning differences arising from this opposition are shown
below:

– voiceless unaspirated velar versus voiceless aspirated velar (/k/ versus /kh/) ke:í
’banana tree-F.SG. khe:í ’sport/game-M.SG.’

– voiced unaspirated velar versus voiced aspirated velar (/g/ versus /gH/) [ga:j] ;cow-
F.SG.’ [gHa:j] ’wound-M.SG’

Konkani nasals - Konkani has three nasals - the bilabial nasal [m], the dental nasal [n]
and the retroflex nasal [ï]. These contrast with each other. The occurrence of the velar
nasal [N] and the palatal nasal [ñ] is predictable in that they occur as homorganic nasals
(as in [aNg] ’body-N.SG’, [p@ñ

>
tS] ’a member of the village council-M/F/N.’)

Contrasts between nasal phonemes is given below:
[ka:n] ’ear-M.SG.’ [ka:m] ’work-N.SG.’
[bHa:n] ’caution-N.SG.’ [bHaï] ’a large vessel of copper or iron-N.SG.’

There are four fricatives in the language- the labio-dental fricative [f], voiceless alveolar
fricative [s], postalveolar [S] and the voiceless glotal fricative [h]. Some words showing
contrast between these sounds are given below:

[fa:r] ’explosion-M.SG.’ [sa:r] ’extract-M.SG.’ [Sa:r] ’city-N.SG.’ [ha:r] ’python;
garland-M.SG.’
The retroflex fricative [ù] which is shown in the script, only occurs in the written form
as is confined to proper nouns only.
The language has the labio-dental approximant [V] and palatal approximant [j]. Contrast
between these is shown below:
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[Va:d”] ’argument-M.SG.’ [ja:d”] ’memory-F.SG.’
The language also contrasts between the dental lateral [l] and retroflex lateral [í]. The
following pair of words display this contrast.

[pa:l] ’lizard-F.SG.’ [pa:í] ’root of a tree-N.SG.’
The language also has the trill [r]. Although so1

me works refer to its place of articulation as dental, it seems to occur in alveo-
lar position in case of some words. Word pair contrasting this sound with the dental
approximant [l] is given below:

[ra:g] ’anger-M.SG.’ [la:g] ’cajolery; wooing-F.SG.’
The Devanagari script used for the language shows two more characters

and which are actually consonant clusters [kS] and [dn] respectively. The
major limitation of the script is that it does not have characters to show some important
contrasts that exist in the language and at times shows characters that are not relevant for
the language. A need for revising the script was proposed years back by some scholars

Table 1. Konkani vowels diphthongs and diacritic.

∗ Vowel length is not phonemic in Konkani.
# Orthographic rules provides only one Devanagari character to phone e and E
$ Orthographic rules provides only one Devanagari character to phone o and O.

Table 5, presents rules for the vowel diacritics.
In Table 6, transcription rules for Chandrabindu, Anusvara and Visarga are pre-

sented. Chandrabindu is used for the tatsama (Sanskrit borrowed) words.
In Table 7, rules for consonant transcription are presented. It should be noted that

the place of [ph] has been taken by labio-dental fricative [f], which is said to be an
effect of Portuguese borrowings into the language. Konkani language also has dental
and palatal affricates that are phonemic in the Konkani language but are written alike in
the writing system of the Konkani language. Nasalization and aspiration are phonemic
in Konkani.

4.2 Dataset Used

For the testing purpose, we created phonetic transcriptions for Konkani text available
from [6] which contains 74 sentences. We also created additional 27 transcriptions of
sentences to cover all the phones in the language. These data were used for testing the
proposed transcription system.
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Table 2. Konkani Consonant Set 1.

1 Phone [ts] and [tS] has single Devnagari representation .
2 Phone [dz] and [dZ] has single Devnagari representation .
3 Phone [dzH] and [dZH] has single Devanagari representation .
4 place of [ph] is taken by [f].

Table 3. Konkani Consonant set 2.

Fig. 1. Konkani Phonetic Transcription System Architecture.
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Table 4. Transcription rules for vowels and diphthongs.

Table 5. Transcription rules for Vowel Diacritics.

Table 6. Transcription rules for Ayogavaha.
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Table 7. Transcription rules for Consonants.

4.3 Methodology to Create Konkani Phonetic Transcription System and Result

The developed transcription system is a rule-based system and not considering the
context of the word. Figure 1 demonstrates the Konkani phonetic transcription system
architecture diagram. Various steps were followed in the creation of this phonetic tran-
scription system. Here, the Konkani Devanagari sentence is given as input to the system.
This sentence is further broken into tokens or words, and then these words/tokens are
broken down into characters for phonetic mapping. Python programming language is
used for the design of this system. Mapping from Devanagari to Unicode is done using
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rules provided in Tables 4, 5, 6 and 7 in this paper. After applying all the transcription
rules, we get the final transcription in IPA format.

4.4 Evaluation Metrics

To assess the performance of the phonetic transcription system evaluation metric used is
Word Error Rate (WER). WER is the percentage of the words not correctly identified by
transcription system from the ground-truth test data set. Word accuracy is calculated by
subtracting WER from 100 or it is equal to percentage of the words correctly identified
by phonetic transcription system from the from the ground-truth test data set.

5 Results and Discussion

This system exhibits a word accuracy of 40%, with WER of 60. Moreover, when the
same dataset is evaluated on the existing Devanagari to Phonetic transcription system
[10], it demonstrated a word accuracy of 7.50%. Thus our system performs much bet-
ter as compared to existing systems. However, there is still scope for improvement in
the current system. Errors in the system were mainly with regard to the mapping of
some characters to their respective phonemes. In this, the mapping of the character to
phonemes /e/ and /E/ was crucial. The character in the script did not show the closed
and open contrast between the phoneme pair. Similar is the case with regard to the back
vowels /o/ and O. The phonemes /@/ and /1/ also contributed to errors significantly.
Alike /@/ and /1/, these phonemes too have the same character in the script that
represents them. The error was also introduced because the phoneme @ does not get
omitted at all places. Identifying schwa deletion rules in depth might help improve the
transcription system’s performance.

6 Conclusion and Future Work

In this paper, we presented the Konkani pronunciation transcription system. This sys-
tem is developed by using the rule-based character to phonetic mapping to produce the
transcriptions in the International Phonetic Alphabet (IPA) format. This work can be
improved by identifying additional transcription rules. In future work, we shall focus
on improving the accuracy of the phonetic transcription system by adding more tran-
scription rules. Further, with improved accuracy, this system can lead to the creation of
a phonetic dictionary which shall act as an essential component for developing the TTS
and ASR system for the Konkani language. Also, building the complete ASR system is
possible by creating acoustic and language models.
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Abstract. Current state-of-the-art text-to-speech (TTS) systems
trained on read-speech have reduced issues with repetition or skipping of
words and can produce natural-sounding speech. However, E2E systems
have difficulty producing conversational speech, especially in generating
out-of-domain terms, and lack appropriate prosody.

This paper proposes a novel data augmentation approach to build
intelligible and expressive speech using FastSpeech2 (FS2). Two differ-
ent studies are performed. Conversational-style phrases/short interroga-
tive sentences are synthesized using a baseline FS2 system and a hidden
Markov model-based speech synthesis (HTS) system. Both systems are
trained on 8.5 h of read speech in Hindi. This results in DS1 (FS2) and
DH1 (HTS) synthetic datasets, respectively. Using DS1 and DH1, we
train FS2 models, namely S1 and H1. While S1 sounds natural, H1 is
more intelligible on OOD words. An attempt is made to further adapt
these systems with as little as 11 min of original prosodically-rich story
data from the same speaker to produce systems S2 and H2, respectively.
We evaluate three FS2-based models: Baseline FS2 (vanilla FS2), the
proposed models, S2, and H2. The subjective evaluation shows that sys-
tems S2 and H2 outperform the baseline FS2 system with an average
MOS of 4.16 and 4.42, respectively. Further, we observe that H2 is bet-
ter than S2 in terms of both MOS and intelligibility. We also do the
objective evaluation tests and analyze the synthesized speech based on
prosodic attributes to support our claim.

Keywords: Text-to-speech · Data-augmentation · Conversational ·
Expressive speech · HMM models · Prosody transfer · FastSpeech2

1 Introduction

End-to-End (E2E) text-to-speech (TTS) systems have become very popular
owing to their naturalness. Nevertheless, they still possess a limitation in requir-
ing a considerable amount of context-rich training data to enhance their intelli-
gibility on out-of-domain (OOD) words. Next, prosodic variation is an essential
component in the recognition of spoken communication [9]. These systems lack
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 243–257, 2023.
https://doi.org/10.1007/978-3-031-48312-7_20
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the ability to accurately render the expressiveness in the synthesized voice, which
can be critical for some tasks. The motivation for our work is as follows. A sce-
nario where an error-free conversational TTS system is essential is in the task of
dubbing educational classroom lectures from English [23] into Indian languages
[19]. The word order in Indian languages is distinctly different from that of
English; therefore, conversational prosodic transfer from English to an Indian
language is non-trivial. The source videos are technical lectures/extempore,
which use a conversational style of speech. So, expressiveness is essential in
TTS systems when it comes to lip-syncing lectures in other Indian languages,
isochronously. Conversational speech is characterized by an unplanned set of
words and abrupt sentence endings. The state-of-the-art (SOTA) E2E systems
like FastSpeech2 [30] that are trained on clean read speech do not scale for
conversational speech synthesis. Moreover, building monolingual conversational
speech synthesis systems using conversational corpora is quite challenging, owing
to disfluencies, significant syllable rate variation, and diverse prosody patterns.
These factors contribute to “buzziness” in the synthesized speech, making the
task more complex [22].

We address two issues in this paper: 1) the synthesized speech does not have
the prosodic style required for spontaneous speech. This may be because, unlike
the traditional parametric synthesis models, the current neural TTS systems do
not explicitly model the prosodic attributes.

2) Besides this, it has also been noted that current TTS models do not gen-
eralize well to unseen contexts, such as situations where they are trained on read
speech and applied to generate conversational speech. This is possibly due to the
fact that existing E2E systems are trained on limited domain-specific training
data, so they may be unable to pronounce words from an unseen domain cor-
rectly. Figure 1 shows examples of Hindi text which is translated from a technical
text in English. The highlighted words in the table are mispronounced by the
vanilla FastSpeech2 (FS2) trained on the Hindi read-speech corpus.

To overcome these issues, we present a novel methodology based on data
augmentation, which results in an intelligible and expressive TTS model. In
this work, we have used FastSpeech2 [30] as a baseline model for comparison.

Fig. 1. Different examples of conversational text structure.
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The proposed techniques described in this paper can be applied to the JETS
(Jointly Training FastSpeech2 and HiFi-GAN for End to End Text to Speech)
[17] and VITS (Variational Inference with adversarial learning for end-to-end
TTS) [12] frameworks as well. We have also tried training the VITS architec-
ture on our Hindi speech corpus, but we couldn’t see much improvement over
the FastSpeech2 synthesis output. Also, this model cannot disentangle prosody
information from speech [18], so we have not considered VITS in the evaluation.
The FastSpeech2 model proves to be a strong baseline system, with its ability to
predict pitch and energy information in addition to the mel-spectrogram from
the text transcription. This added capability allows the model to capture a wide
range of speech variations and nuances. We propose two approaches, each of
which involves training on read-speech data and usage of conversational style
multi-domain text as new training data, followed by fine-tuning. The training
overview is shown in Fig. 2. The use of a multi-domain text gives us the added
advantage of not only producing labeled context-rich training data but also
broadening the domain of the TTS system. The text comprises short conversa-
tional phrases and interrogative sentences. Both FS2 and Hidden Markov model
(HMM) based speech synthesis (HTS) systems have the ability to learn prosody
from the statistics of the training data by utilizing the pitch and energy infor-
mation from the ground truth. The findings of this work also indicate that the
inclusion of short conversational phrases in the synthetic training data enhances
the prosody modeling capability of TTS systems.

The novelty of the work is in the use of classical HMM-based [36] synthesis
to direct an E2E system. HTS can handle OOD words to a large extent due
to tree-based clustering. These systems explicitly model pitch variations using
a multi-space probability density function. Studies have also shown that HTS
systems, being statistical models, can be intelligibly trained on smaller amounts
of data [29].

Main Contributions: 1) We are able to build expressive TTS with only
conversational-style synthetic data and give the model an additive improvement
in prosody with a small amount of prosodic-rich data.
2) a scalable language and architecture-agnostic approach for building an expres-
sive TTS system.

The rest of the paper is organized as follows. Section 2 reviews the related lit-
erature. Section 3 presents the proposed system overview and approach. Section 4
discusses the analysis done on synthesized speech outputs using qualitative and
quantitative measures and presents the results of objective and subjective lis-
tening tests performed on the synthesized speech output of the trained systems.
Finally, Sect. 5 concludes the paper.

2 Related Work

Several studies have been conducted owing to the growing research interest in
expressive speech synthesis. Research in conversational speech synthesis has also
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led to various approaches towards either recording conversational speech corpora
or selectively utilizing existing conversational data.

In TTS applications, [11] generates a large number of synthetic utterances
using an auto-regressive (AR) model to improve the quality of non-AR TTS mod-
els. [7] uses embedding computed from trained global style tokens (GST) to build
multi-style TTS with a good prosodic variation. [24] investigates whether a data
mixing strategy can improve conversational prosody for a target voice based on
monologue data from audiobooks by adding real conversational data from pod-
casts. [10] uses synthetic data in the desired speaking style on top of the available
recordings generated by applying voice conversion. Further fine-tuning the model
on a small amount of expressive samples for the target speaker helps improve nat-
uralness and style inadequacy. [6] focuses on increasing the naturalness of TTS
systems on specific domains by adding domain-specific speech to their database.
[31] propose an ensemble approach that combines multiple prosody predictors to
achieve more accurate and natural-sounding speech. Trained on a diverse dataset
of expressive speech samples, the ensemble produces more expressive prosodic
patterns by combining predictions from various models.

Parallel efforts to use hybrid paradigms for TTS have also been explored. [20]
uses a hybrid approach combining HTS with the neural-network-based Waveglow
vocoder [27] using histogram equalization (HEQ) in a low resource setting for
improving the quality of speech output. Our work differs in its focus on achieving
the challenge of bringing both expressivity and intelligibility in the synthesized
speech by combining classical parametric and neural speech synthesis methods.

3 Proposed Approach

We investigate the data augmentation approach using multi-domain text. The
overview of our proposed system framework is depicted in Fig. 2. In this study, we
propose two TTS systems, namely: FS2 augmented (S1) and HTS augmented
TTS system (H1), to build conversational speech synthesis systems. Both the
proposed approaches consist of 3 stages: (i) Source model training, (ii) tar-
get model training (iii) Fine-tuning the model with as minimal as 11min of
expressive speech data to build proposed systems S2 and H2. The basic modules
involved in training the proposed TTS system are described as follows:

3.1 FS2-Based Data Augmentation

Figure 2(a) shows an overview of FS2-based data augmentation. Here, our source
model is the FS2 system, which we use to generate synthetic data. Earlier work
shows that prosodic phrase breaks can be identified for Indian languages quite
accurately if the training data is accurately marked with prosodic phrase marks
[26]. During the source model training on read-speech data, the text is manually
annotated with phrase breaks to facilitate the learning of the system to predict
the pitch for a complete phrase. A fundamental difference between read speech
and conversational speech lies in the fact that conversational speech is typically
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Fig. 2. Overview of the proposed method for building expressive TTS. We have trained
the FS2 model using data augmentation: (a) FS2-based data augmentation, (b) HMM-
based data augmentation, (c) Shows the training stages 2 and 3 and synthesis phases
of both the proposed TTS systems.

composed of short phrases or sentences that are concatenated without punctua-
tion and may have abrupt endings too. A baseline FS2 system attempts to predict
the prosody based on the characteristics learned from read speech, which is inad-
equate for conversational speech owing to its grammatical incorrectness. This is
especially evident in conversational speech in Indian languages, where utterances
can contain many phrases. Generally, in E2E and HTS systems, prosody at the
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Fig. 3. Pitch contour plotted for a test phrase when (a) it is synthesized as an isolated
sentence (b) it occurs in a long sentence.

beginning and end of phrases is learned accurately. Figure 3 and 4 depicts the
change in pitch contour and short-term energy when a short phrase is synthesized
in isolation and when synthesized as a part of a long sentence. From Fig. 3(a),
we can observe that, there is a rise in the pitch at the word ‘kya’ and at the end
of the question phrase “wave hoti kya hai?", shown in a red oval, whereas the
pitch is not modeled so correctly in Fig. 3(b). Similarly, significant fluctuations
are visible in the energy plot in Fig. 4(a) than in Fig. 4(b), leading to more stress
on words. We can infer that training the FS2 system at a phrase level can help
predict pitch better, consequently improving the prosody of synthesized speech.
Therefore, while building system S1 (Table 1) on FS2-generated synthetic speech
(DS1), we ensure that corresponding multi-domain training data encompasses
short conversational phrases and declarative and interrogative sentences.

3.2 HMM-Based Data Augmentation

Figure 2(b) overviews our HTS-based data augmentation. Here, the source model
is the HTS system, which we use to generate synthetic data. During training
on read-speech data, the same manually annotated text is passed to help the
HMM model learn the prosodic cues. Since HMMs explicitly model prosody,
we generate HTS synthetic speech dataset (DH1) corresponding to the multi-
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Fig. 4. Short-term energy plotted for a test phrase when (a) it is synthesized as an
isolated sentence (b) it occurs in a long sentence.

domain text. While training the FS2 model on this phrasal synthetic speech
dataset, the system learns to model the pitch at the start and end of phrases
better than what it would have learned with a speech dataset at a sentence level,
which is quite depicted in Fig. 3. There have also been some studies that report
that prosody modeling is better done at phrase level [26].

3.3 Multi-domain Text Data Collection

We crawled text from Kaggle [2] web source in Hindi for augmenting data. The
text data is carefully collected and contains short phrases from various domains
ranging from health, lifestyle, science, technology, and ordinary colloquial conver-
sations to interrogative and Yes-No questions. The intent of having such diversity
in text data is to train the TTS model with a lot of context information and to
enable the TTS model to learn various kinds of phonotactics. Totally we have
curated around 14,450 sentences (≈ 15 h) in Hindi. The average number of words
per sentence in multi-domain text ranges between 7 to 10.

3.4 HTS Training

To train the HTS model, the text is first transcribed in terms of its constituent
phones, which are represented using the common label set (CLS) representa-
tion [28]. The speech waveform is aligned at the phone level using a hybrid
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HMM-DNN approach. Having a precisely aligned speech database at the sylla-
ble/phone level is crucial for accurately mapping linguistic and acoustic units,
which is essential for developing high-quality TTS systems [3]. The HTS voice is
trained on context-dependent pentaphone units using the aligned speech data.
Since the HTS model first segments into phrases and performs embedded reesti-
mation at the syllable level (where syllable boundaries are obtained using signal
processing) for training, it produces accurate penta-phone models. Phone HMMs
are concatenated to obtain the utterance HMMs [4]. The duration model predicts
the number of frames reserved for each phone. The acoustic model predicts the
acoustic features for the required number of frames. The HTS engine internally
uses a Mel-generalized log spectrum approximation (MLSA) vocoder, which is
used to synthesize the utterances. Decision tree-based clustering is performed
during HTS training to account for unseen context based on a phonetic yes-no
question set, frequently encountered in the technical domain [34]. Thus, HTS
can broadly extrapolate to out-of-domain word scenarios.

3.5 Text-to-Speech System Training

Our TTS model consists of two main components: (1) a non-autoregressive FS2-
based acoustic model for converting input phoneme sequences into the mel-
spectrograms, frame by frame, and (2) a non-autoregressive HiFi-GAN vocoder
[13] that is capable of producing high-fidelity speech waveforms from mel-spectro
grams. Montreal Forced Aligner (MFA) [21] is used to obtain the alignments
between the utterances and the phoneme sequences. Figure 2(c) shows the train-
ing process of TTS with the proposed data augmentation. After training the
model on the synthetic dataset, we fine-tune the model on 11min of prosodically-
rich expressive speech with the same configurations for 50 more epochs.

4 Analysis of Synthesized Speech

Experiments are conducted in Hindi, which is an Indo-Aryan language, for both
male and female data. Studio-recorded Hindi male and female (8.5 h) datasets
from the open-source IndicTTS database [5] are considered. We use the HTK
[1] [35] and ESPnet toolkits [32] for building voices with default configurations.
A HiFi-GAN model is trained separately for Hindi male and female datasets
on this 8.5 h of read speech data. Table 1 summarizes various systems trained
for each dataset. The text in parentheses indicates the training data used. The
synthetic speech produced by baseline FS2, S2, and H2 systems is analyzed on
dubbed technical lectures in terms of prosodic parameters.

4.1 Qualitative Analysis

A set of Swayam lectures [25], comprising 347 sentences, is synthesized using
the baseline FS2 model (System 2) and our proposed systems S2 and H2. We
compare and analyze their pitch and energy distributions.
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Table 1. List of systems trained.

Systems TTS Models

System 1 HTS trained on read-speech (8.5 h)
System 2 (Baseline) FS2 trained on read speech (8.5 h)
System 3 FS2 trained on FS2 synthesized speech (15 h)(S1)
System 4 (Proposed 1) FS2 trained on FS2 synthesized speech, fine-tuned on

conversational speech (S2) (8.5 h + 11 min)
System 5 FS2 trained on HTS synthesized speech (15 h) (H1)
System 6 (Proposed 2) FS2 trained on HTS synthesized speech, fine-tuned on

conversational speech (H2) (8.5 h + 11 min)

Fig. 5. Pitch plotted for Hindi male synthesized speech on a lecture set and its corre-
sponding English conversational speech.

Pitch. Pitch is a crucial factor in determining the expressiveness of a sentence
[31]. From Figure 5, it is observed that there is a wide variation in the pitch
trajectory for a conversational speech taken from the lecture. Comparatively,
the proposed systems, S2 and H2, are able to capture the finer variations in the
pitch better than the FS2 baseline system. This clearly indicates the prosodic
richness of S2 and H2 over baseline. A further pitch improvement is noticed in
H2 than S2, indicating more closeness toward conversational speech.

Energy. Energy is another critical parameter in speech synthesis quality. The
changes in the energy of the speech signal can be used to indicate emphasis
on certain words. From Figure 6, we can clearly see a slight increase in the
amplitude level for the proposed systems, closer to that of conversational speech
in contrast to the baseline. On comparing S2 and H2, further improvement in
energy is noticed in system H2.
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Fig. 6. Energy plotted for Hindi male synthesized speech on a lecture set and its
corresponding English conversational speech.

4.2 Subjective Evaluation

Subjective evaluations are performed for the baseline FS2 and the proposed
models S2 and H2 for Hindi male and female voices. The comprehension mean
opinion score (CMOS) test is performed to assess the system’s performance in
terms of prosodic variation and intelligibility in the synthetic speech output.
Comprehension MOS [33] was proposed to evaluate whether a listener is able
to engage with synthetic speech of long durations. Contrast this with sentence-
based subjective evaluations. It is a subjective evaluation test that not only
assesses the quality of the speech but also checks whether the listener is able to
comprehend the content of the audio clearly. It is found in studies that prosodic
variations are better realized when long test utterances are presented in context
as it helps users to perceive the pitch variations distinctly [8] [15].

We synthesize a coherent paragraph having contextual dependency and then
quiz the listener based on the content to check the following: a) expressiveness
and b) clarity of the speech. The test includes questions based on the content.
30 native evaluators of Hindi, male, and female, were asked to listen and rate 4
paragraphs presented in random order. MOS is calculated based on the expres-
siveness of synthetic speech. Listeners were asked to rate the overall quality of
synthesized speech on a scale ranging from 1–5, with 1 being poor and 5 being
human-like. The intelligibility of the samples is calculated based on the listener’s
understandability score on a similar scale of 1–5. For the comprehension test,
4 paragraph questions with a mix of translated technical lectures and stories
synthesized in Hindi were considered. The comprehension score for each system
is obtained by calculating the percentage of correct answers in the evaluation
test. CMOS scores are presented in Table 2 and Table 3 for Hindi male and
female, respectively. Comparing results of the question: Rate the audio in terms
of expressiveness, we see that MOS scores are better for H2 than Baseline FS2
and S2, although intelligibility scores are similar for all 3 systems, although H2
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Table 2. Comprehensibility MOS scores for Hindi male TTS.

Systems Evaluated MOS Score Intelligibility Comprehension Score

Baseline FS2 3.525 ± 0.23 4.425 94.16 %
S2 4.25 ± 0.21 4.575 94.8 %
H2 4.45 ± 0.18 4.65 96.4 %

Table 3. Comprehensibility MOS scores for Hindi female TTS.

Systems Evaluated MOS Score Intelligibility Comprehension Score

Baseline FS2 3.45 ± 0.2 4.325 93.12 %
S2 4.075 ± 0.26 4.495 95.23 %
H2 4.395 ± 0.19 4.557 95.71 %

Fig. 7. Mean F0 comparison: baseline system vs. proposed systems.

performs slightly better. A p-test is performed to ensure the results are statisti-
cally significant, with both p-values <0.05.
A video lecture demo using the audios synthesized from baseline and the pro-
posed system can be found in this link1.

4.3 Objective Evaluation

Mean F0: Fundamental frequency (F0) is the most crucial prosody feature [16].
We have used mean F0 as one of the objective evaluation metrics to assess the
effectiveness of the proposed systems and how they influence the pitch profile

1 https://www.iitm.ac.in/donlab/preview/web_demo/index.html.

https://www.iitm.ac.in/donlab/preview/web_demo/index.html
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Table 4. Average increment in the mean and std deviation of F0 when the same text
is synthesized using System S2 and H2 vs. baseline TTS.

System System S2 System H2

Mean F0 change +12.94 +13.41
Std Dev F0 change +10.25 +14.45

System H2

System S2

Baseline
FS2

0 1 2 3 4 5 6 7 8 9

Fig. 8. MCD scores on synthesized utterances across baseline and proposed systems.

of the generated expressive audio with respect to the baseline FS2 system. To
calculate the mean F0, 20 synthetic utterances in Hindi male voice were synthe-
sized from the held-out unseen texts using the baseline FS2 and the proposed
systems S2 and H2. The mean pitch (F0) is extracted from each system’s utter-
ances, including the original conversational speech, and is plotted and compared
in Fig. 7.

We observe that mean F0 is higher and varies significantly (like in conversa-
tional speech) in both the proposed system’s utterances compared to the base-
line, even though all utterances were generated in the same speaker’s voice. The
average difference of mean F0 and standard deviation of F0 between proposed
and baseline systems are reported in Table 4.

MCD Score: Mel-cepstral distortion (MCD) [14] serves as a metric to quan-
tify the dissimilarity between two mel cepstral sequences. A smaller MCD score
indicates a high degree of similarity between the synthesized and natural speech,
indicating that the synthetic speech closely resembles the natural speech. 20
unseen Hindi sentences are synthesized using baseline FS2 and proposed TTS
systems S2 and H2 in the male voice. Each system’s generated utterances are
compared with respect to the corresponding utterances of original conversational
speech using dynamic time-warped MCD. The MCD scores for the systems are
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depicted in Fig. 8. Clearly, systems S2 and H2 scores seem to have less distor-
tion compared to their baseline counterpart, indicating a closer resemblance to
conversational speech.

5 Conclusion and Future Work

This work presents a language and architecture-agnostic approach to building
expressive TTS systems. Our proposed method explores FS2-based and HTS-
based data augmentation methods to build an intonation-based TTS system. We
have demonstrated that the model is able to learn expressiveness from synthetic
data and result in prosody transfer when coupled with a few minutes of expressive
speech data in Hindi. It means there is no requirement to rely on additional
conversational corpora for building conversational TTS systems. This makes our
proposed approach vastly scalable to other languages. We plan to extend this
work to Indo-Dravidian languages too. It’s worth noting that there exist other
techniques to introduce prosodic cues into the model, such as the pre-training of
the FastSpeech2 variance adapters, whereas our work can obtain a similar effect.
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Abstract. Direct speech-to-speech translation (DS2ST) is a process of
translating speech from one language to another without using a written
form of the language. Most of the works attempted for DS2ST utilized the
auxiliary network and knowledge from the written form of the language
directly or indirectly to improve the performance. This work proposes
a transformer-based sequence-to-sequence model to perform the DS2ST
task without an auxiliary network. Also, a comparative study is made
with a cascaded system. The experiments are performed with the Prab-
hupadavani dataset in two languages (Hindi and English). The result
shows that with our proposed DS2ST model, a BLEU score of 16.46 is
achieved without using any auxiliary information. We also augmented
the data with speed perturbation and improved the DS2ST performance
BLEU score to 18.58.

Keywords: Direct speech-to-speech translation (DS2ST) ·
Transformer network · Speech-to-speech translation (S2ST) · Data
augmentation

1 Introduction

Speech-to-speech translation (S2ST) is the process of translating the speech of
one to another spoken language. More than 40% of the languages of the world do
not have a written form of the language [1]. Developing translation technology for
such languages is a challenging task. The S2ST system for the languages which
have resources (E.g., text and audio dataset) is already explored in detail with
the help of the cascaded approach [3]. The traditional way to develop the S2ST
system is a cascaded approach. A cascaded S2ST system consists of three mod-
ules: Automatic speech translation (ASR), Machine translation (MT), and Text
to speech synthesis (TTS) [24]. ASR transforms the source language’s speech
into text. MT translates source language text (generated via ASR) into target-
language text. Finally, the target language text is transformed into the speech of
the target language using TTS. This approach has a few issues due to cascading
error propagation from one module to another. This technique utilizes the text
of both source and target languages to develop the S2ST system. Therefore,
building the S2ST system for languages without a written form (spoken-only
languages) is challenging [1].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Recently, researchers have started working to develop a direct speech-to-
speech translation (DS2ST) system for spoken-only languages [7,27]. Some
attempts have been made, such as implementing a sequence-to-sequence model
using a Long short-term memory (LSTM) network called Translatotron [4,11].
In the case of a true DS2ST system, the performance of the system was poor,
but with the help of an auxiliary network, it was better, where the written form
of the language information was utilized to improve the performance. The exten-
sion of the same work was done as Translatotron2 to address the over-generation
issues by conditioning the spectrogram synthesizer directly on the output from
the auxiliary target phoneme decoder [10]. With the auxiliary network, Tarans-
latotron2 improves the performance but would still require the target language’s
text. In these two works, a direct mapping is exploited between the source and
the target languages. Some more works were attempted by exploiting the map-
ping function between the discrete representations between the source and the
target language [16,18].

To develop speech technology, the availability of suitable datasets in sufficient
quantity is essential. Over the period of time, for the cascaded S2ST approaches,
sufficient data has been developed [3]. When it comes to the DS2ST system, the
nonavailability of data is severe and lagging significantly as it needs a parallel
speech dataset. The works attempted in the field of DS2ST, the synthetic data
generated using the TTS system is mostly used [12,14]. To overcome this data
scarcity, data augmentation could be a valid solution [5,22]. The augmentation
techniques can improve the speaker, gender, channel, and session variability in
the data artificially. This incorporates more diverse learning for deep learning
networks and improves the system’s performance by handling the acoustic vari-
ation properly encountered during speech translation. Data augmentation offers
a practical and effective solution to handle data scarcity and reduces data col-
lection efforts.

We can learn from the literature that most of the DS2ST systems attempted
without a written form of the language lag in performance compared to the cas-
caded approach [11]. So, a comparative study is needed between the cascaded and
the DS2ST systems to understand both systems’ best use cases and their pros
and cons. In this paper, we are exploring the transformer-based DS2ST system.
The 80-dimensional Mel filter bank features are extracted from the raw speech
and fed to the transformer-based encoder. The features of target spoken speech
are fed to the decoder to train the DS2ST system without using the language’s
written form, as shown in Fig. 1. Apart from the end-to-end DS2ST training, we
also experimented and analyzed the performance with one of the data augmenta-
tion techniques, speech perturbation, to resolve data scarcity. We augmented the
training and the validation dataset with different perturbation factors α. Aug-
mentation increased the dataset by four times compared to the original dataset.
We also developed the cascaded S2ST system to compare its performance with
the DS2ST system. The comparative analysis helps us to develop a more accu-
rate and efficient DS2ST system. The experiments show that the performance of
the DS2ST system improved significantly compared to the previously attempted
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systems, even without the use of the written form of the language. But compared
to the MT and cascaded system, it is still lagging. It gives us proof of concept
that with the help of advanced deep learning models and more speech data, the
task of the DS2ST may be achievable.

The rest of the paper is organised as follows: Sect. 2 describes the proposed
transformer-based DS2ST system, cascaded system and data augmentation using
speed perturbation. Section 3 details the experimental setup, results, and anal-
ysis while developing the systems. Finally, in Sect. 4 we conclude the work and
discuss the future direction.

2 Speech-to-Speech Translation System (S2ST)

Traditionally, the S2ST system can be implemented using the cascaded approach
where three modules, ASR, MT and TTS, concatenate together. Another one is
DS2ST approach, where the spoken speech of one language is translated directly
into another without the use of the written form of the language. In this section,
we are discussing these two approaches in detail.

2.1 Proposed Direct Speech-to-Speech Translation (DS2ST) Model

Recently, end-to-end speech translation got the attention to translate speech of
one language to another directly without using intermediate text. Attempted
works approached this problem in two ways. Firstly, by exploiting the direct
mapping function that exists between the speech of the source and the tar-
get spoken language. Secondly, by exploiting the mapping function that exists
between the discrete representation of the source and the target language speech.
In this work, a transformed-based sequence-to-sequence modeling has been uti-
lized instead of the LSTM architecture in [11] to speed up the model training
and performance.

Transformer Based Speech-to-Speech Translation. Similar to Speech −
Transformer for ASR, we developed a multi-head attention-based trans-
former architecture [8] for the DS2ST task. The model can be formulated as
a sequence-to-sequence model [26]. A sequence-to-sequence model converts an
input sequence, xi = {x1, x2, ....xt} into an output sequence, yi = {y1, y2, ....yT }
where in most of the cases, the sequences are different in lengths (t �= T ). In the
speech translation task, the input speech of the source language is translated
into the target language speech based on conditional probability. 80-dimensional
filter bank features are extracted from both the source as well as target speech to
feed into the transformer network. The encoder takes filter bank features of the
source language and the decoder takes features of the source language as input.
Finally, during inference, the speech in the target language is generated, as shown
in Fig. 1. A sequence-to-sequence model mathematically can be formulated as
follows:

et = encoder(xi, ht−1) (1)
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ct = attention(h, st−1) (2)

dt = decoder(yt−1, st−1, ct) (3)

where, et and dt are the output from the encoder and decoder, ct is the context
vector calculated by the attention mechanism.

Fig. 1. Transformer based speech-to-speech translation.

Encoder. The encoder takes the input sequence and creates a rich input repre-
sentation, such as embeddings. In this work, the 80-dimensional filter bank fea-
tures are extracted as input to the model. The input features are down-sampled
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to a quarter of its size by two 1D-CNN layers [15]. Down-sampling makes it
easier for the encoder layers to process the intact information with features and
reduces memory consumption. The encoder consists of 12 transformer layers
with 256− dimensional hidden units. Each multi-head attention block contains
eight heads in encoder layers. We have used 1024 dimensional inner states for
the feed-forward block followed by Layer-Norm.
Decoder . The decoder takes the output of the encoder (contextual information)
and generates an output sequence. In this work, the decoder of our model is
inspired by transformer TTS [17], which includes a pre-net and a post-net mod-
ule. The pre-net consists of two fully connected linear layers. The filter bank
features of the target speech are passed into the pre-net as input. The dimen-
sion of the pre-net module is set to 256, followed by two ReLU activations.
We have also experimented by increasing the dimension to 512. However, this
increases the training time instead of making any significant improvement. The
decoder consists of 6 layers, keeping the same hyper-parameters as the encoder.
To reconstruct the target spectrogram from the decoder, we use a 5−layer 1D-
CNN, similar to [23], also called the post-net. The decoder representation from
the post-net module is then fed to a vocoder, which converts it into target lan-
guage speech.

2.2 Cascaded Speech-to-Speech Translation

A cascaded S2ST is a system that translates spoken words from one language
into another with the help of the written form of the language. The process of
S2ST typically involves three modules: ASR, MT and TTS (Fig. 2).

Fig. 2. Cascaded framework of the Speech-to-Speech translation system.

Automatic Speech Recognition (ASR). ASR system recognizes and tran-
scribes the source language speech into the source language text [3]. Wav2Vec 2.0
is a state-of-the-art technique for ASR [6]. By leveraging a self-supervised app-
roach, Wav2Vec 2.0 can effectively learn and extract meaningful speech represen-
tations without relying on explicit linguistic supervision. This allows the model
to comprehend and identify basic speech elements or phonemes proficiently, even
when provided with unlabeled data. We have utilized the pre-trained Wav2Vec
2.0 model and fine-tuned the network weights concerning our dataset. To fine-
tune the ASR model, we have used the pertained Vakyansh open source model
(CSRIL-23), which is trained on around 10, 000 hours of speech collected in 23
Indict languages. The Prabhupadavani dataset consists of 70.5 hours of labeled
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speech data and is used for fine-tuning. A fully connected layer is added to the
top of the deep network to adapt the pre-trained model for the ASR task. This
additional layer was optimized using the connectionist temporal classification
(CTC) loss function, a commonly used loss function for sequence labeling tasks
in speech recognition. After fine-tuning the model, it achieves a word error rate
(WER) of 6.73 in the case of Hindi and 5.91 in the case of the English test
dataset.

Machine Translation (MT). MT translates the source language’s text into
the target language’s text [25]. An encoder-decoder transformer-based deep
learning network is employed for the MT task in this S2ST system. The trans-
former network utilizes self-attention and fully connected layers in the encoder
and decoder components. The encoder consists of twelve layers, incorporating
a multi-head self-attention module and a feed-forward network. Similarly, the
decoder consists of six layers, each comprising masked multi-head attention,
multi-head attention, and a feed-forward neural network. Transfer learning is
employed to enhance the model’s performance and adaptability. The training is
conducted with the help of Adam Optimizer. Each training batch had a maxi-
mum token size of 4096, allowing for efficient computational processing. Byte-
pair encoding (BPE) tokenization was applied to all the models, which helps
to create smaller dictionaries and enhances vocabulary handling capabilities.
By utilizing the transformer network architecture and BPE tokenization, the
MT module of the speech-to-speech translation system effectively translates the
transcribed text generated by the ASR module into the target language text.

Text-to-Speech Synthesis (TTS). The TTS system synthesizes the speech
in the target language from the text translated by the MT in the cascaded
S2ST system. To perform this task, the Glow-TTS has been adapted in this
work, which was initially proposed for image generation [12]. Using the flow-
based generative model, Glow-TTS generates the spectrogram (an intermediate
representation of the speech) for the given text. The model uses the invertible
convolution and affine coupling layers to learn the conditional distribution of
the mel-spectrogram. Also, it leverages the monotonic alignment search (MAS)
algorithm to ensure proper and effective alignment during training between the
speech and text. After the generation of the spectrogram from the text, a HiFI-
GAN vocoder is employed to synthesize it into the target language speech [12].
The vocoder incorporates a generative adversarial network (GAN) that gener-
ates high-quality speech. GAN consists of a discriminator and generator, trained
using an adversarial learning framework. The model uses a multi-resolution
structure, a high-resolution fine-grained feature generator, and a multi-scale
discriminator to improve the quality of synthesized speech significantly. This
ensures the retention of the acoustic and linguistic characteristics of the desired
synthesized speech.
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2.3 Data Augmentation

Data augmentation is a technique commonly used to increase the size and diver-
sity of a training dataset artificially. In this work, we have augmented the Prab-
hupadavani dataset using speed perturbation and investigated the improvement
in the performance of DS2ST.

Speed Perturbation. The speed perturbation modified the original speech by
resampling the audio signal in the time domain to change its speech rate and
duration [9]. If we denote the original audio signal as x(t) and the perturbation
factor as α, the resampled audio signal, y(t) can be obtained as follows:

y(t) = x(αt) (4)

This is equivalent to the following change in the frequency domain:

X(f) =
1
α

x(
1
α

f) (5)

where X(f) and 1
αx( 1

αf) stand for the respective Fourier transforms of x(t)
and y(t). In this way, modifications in speed lead to alterations in the spectral
envelope and audio duration.

3 Experiments and Results

In this section, we will discuss our experiments and analyze the results. Firstly,
we will discuss the dataset used throughout the experiments and then, with the
help of the evaluation matrices, we will analyze the results.

3.1 Data Description

Prabhupadavani dataset is the output of the multi-lingual subtitle generation
project of Vanimedia [2]. Under this project, 1080 audio mini-clips were trans-
lated, containing conversion, lectures, debates and interviews of swami Prab-
hupada (founder of an international community called the Society of Krishna
Consciousness (ISKCON)). The audio clips contain the conversation about Bha-
gavad Gita. The primary objective of the project is to translate the audio into
108 languages. Seven hundred dedicated people are working to achieve it. They
have to write the translated text according to the given audio clips and the
corresponding manually aligned English transcription. The dataset is manually
created, so the quality of the corresponding text is excellent. The current release
of the dataset consists of 26 languages. In this work, we have taken two languages,
Hindi and English, to perform our experiments [21]. For the English language
in the dataset, both audio and text are available, but only text is available for
Hindi. Table 1 illustrates a few examples of English transcription (source) and
the corresponding translations in Hindi from the Prabhupadavani dataset.
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Table 1. Some example sentences from Prabhupadavanis dataset

To perform the S2ST task, we have utilized the fine-tuned TTS described in
Sect. 2.2 to generate the Hindi speech from the available transcriptions. We have
also observed that the quality of the available source speech with the data in
English is noisy as it is recorded in a very open environment during conversation,
discussion and lectures. Between the conversion, multiple speaker’s voices, long
pauses, noise and many filler words are present. The mapping of such speech
with the TTS-generated speech is complicated. To overcome such issues during
DS2ST, we also generated the source English speech using TTS.

The dataset contains around 53, 398 utterances for each language. The train
set consists of 51, 301 utterances, while the test and dev sets contain 1, 048 and
1, 049 utterances, respectively. For further insights, see Table 2.

Table 2. Statistics of Prabhupadavani dataset in terms of number of sentences.

Language Train Dev Test Total

English 51301 1048 1049 53398

Hindi 51301 1048 1049 53398

3.2 Evaluation Metrics

The evaluation of our system involves assessing both the translation quality and
the speech quality of the generated output. We follow the setup outlined in
[11] to evaluate the translation quality by applying ASR to the speech output.
We compute BLEU scores by comparing the ASR-decoded text to the reference
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translations. We utilize an open-sourced Hndi ASR model for the ASR com-
ponent that combines Wav2Vec 2.0 pre-training with self-supervised techniques
[6]. This model is pre-trained on 23 Indian languages and fine-tuned on the
Prabhupadavani dataset. It achieves a Word Error Rate (WER) of 6.73 on the
TTS-generated test set. We normalize the reference text to ensure consistency
before computing the BLEU scores using SACREBLEU [20].

3.3 Experimental Set-Up

We have trained the proposed model on the Prabhupadvani corpus [21]. The 80-
dimensional Mel-filterbank is computed with 25ms of the window and 10ms of
overlap duration for the input speech. We have also applied spec augment [19].
The down-sampling task consists of two Conv1D layers with a kernel size of 5,
stride of 2 and 1024 channels. The encoder and decoder contain eight attention
layers with an embedding dimension of 256. We have trained the model for
3000 epochs using Adam optimizer [13] with β1 = 0.9 and β2 = 0.98. We have
also applied a label smoothing of 0.2 and a learning rate of 10−5. We have
used an inverse square root learning rate scheduler with 10k warm-up steps.
The attention dropout and the feed-forward dropout are kept constant at 0.1
throughout the network, while a dropout of 0.5 is applied in the decoder post-net
module.

3.4 Results and Discussion

We evaluated the performance of DS2ST and cascaded translation systems devel-
oped with Prabhupadavani datasets, which contain speech generated by the TTS
system in a male voice. We employed the SACREBLEU metric on ASR transcrip-
tions derived from the translated speech to assess the translation performance.
The text obtained from ASR transcriptions was converted to lowercase, exclud-
ing punctuation marks and apostrophes. It’s important to note that the BLEU
score is traditionally used for evaluating machine translation systems based on
reference translations. However, in this case, we used ASR as an intermediary
step to convert the translation speech to text, which introduces potential errors.
Consequently, the BLEU scores obtained from ASR transcriptions represent a
distorted estimate, providing a lower bound on the translation quality. To ensure
a fair comparison, we utilized an ASR model from Ekstep that was pre-trained
on the 23 languages and fine-tuned with the Prabhupada dataset. This ASR
model served as a common evaluation framework for all the models, including
the baseline models. Furthermore, to generate the audio waveforms from the
predicted mel-spectrograms, we employed the HiFi-GAN vocoder consistently
across all models. Overall, this evaluation methodology allowed us to objectively
compare the translation performance of different speech-to-speech translation
models using a standardized ASR model and estimate their translation quality.
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Objective Evaluation. In this work, we have performed four experiments.
Firstly, we have proposed a DS2ST system, and the system’s performance was
analyzed on Prabhupadavani’s unseen test dataset. We can see from the Table
3 that the system can translate English speech into Hindi without knowing the
language’s written form. The BLEU score we have achieved is 16.46 without any
auxiliary decoder, which was 0.4 in the case of the Translatotron model.

Table 3. Performance analysis of the DS2ST vs cascaded system.

Model BLEU

MT 37.31

Cascaded model 30.90

DS2ST without Aug 16.46

DS2ST with Aug 18.58

Secondly, we developed a cascaded system to compare the performance of
our proposed DS2ST system. From the Table 3, we see that in comparison to
the DS2ST system, cascaded leads with a high margin of BLEU score of 14.44.
The difference in the BLEU score indicates the difficulty in exploiting the map-
ping function without the written form of the language. Thirdly, we can see a
performance gap when we analyze the result of MT compared to the cascaded
system from the Table 3. This again indicates that when we are embedding the
ASR, generating the source and the target text degrades the performance by a
6.41 BLEU score. Finally, we have checked the data augmentation technique’s
capability in the DS2ST system. In this experiment, we have augmented the
data by four times with speed perturbation. Table 3 indicates the significant
improvement in performance by BLEU score 2.12.

Subjective Evaluation. In the subjective study, we conducted an intelligibil-
ity test to assess the performance of different translation models. We randomly
selected 20 translated utterances from each translation model under considera-
tion to ensure an unbiased evaluation. During the intelligibility test, the selected
utterances from different models were played randomly to the listeners. Each
listener was then asked to listen to each utterance once and write down the
sentence they heard based on their understanding.

To evaluate the performance, we compared the sentences written by each
listener with the ground truth, which consists of the correct original text sen-
tences. The percentage accuracy was calculated by determining the number of
words in the sentences that were accurately transcribed out of the total number
of words in the sentences played to the listeners. This process helps us to gauge
the intelligibility of the translations effectively and provides valuable insights
into the effectiveness of the various translation models under study.
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Table 4. Performance analysis with intelligibility score (IS) of the DS2ST vs cascaded
system.

Model %IS

Cascaded model 32.79

DS2ST without Aug 17.35

DS2ST with Aug 18.99

The findings from Table 4 indicate that human performance in the intelligi-
bility test aligns with the trends observed in the objective study. Furthermore, it
is noticeable that there is a slight discrepancy in the scores between the human
evaluation and the BLEU metric. This difference may be attributed to higher
human intelligibility and more comprehensive than the assessment provided by
automated metrics like BLEU.

4 Conclusion and Future Direction

In this work, we have developed a transformer-based DS2ST system. Exper-
iments are performed with the Prabhupadavani dataset, where we considered
English as the source language and Hindi as the target language. We also devel-
oped a cascaded S2ST system using the same dataset to compare the perfor-
mance. A comparative study is made between the DS2ST and the cascaded sys-
tem. The results show that the system’s performance has improved significantly
by the BLEU score of 16.60 compared to the earlier DS2ST system (Transla-
totron 0.4). At the same time, when we compare the performance between the
DS2ST and the cascaded system, the DS2ST system still lags significantly. Also,
by comparing the cascaded system with MT, we can see that cascading the ASR
degrades the system performance by a BLEU score of 6.60. From this, we can
conclude that, as of now, the performance of the DS2ST system is lagging com-
pared to the cascaded system, but it is possible to develop the DS2ST system
without the use of the written form of language with the advancement in deep
learning networks. In the future, we would like to explore other deep learning
models and also more data to further improve the performance of the DS2ST
system.
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Abstract. This paper investigates the suitability of different speech
features in measuring and monitoring speech quality in order to ful-
fil the expected level of human perceived quality of experience (QoE)
while using applications, such as Microsoft Skype, and Apple FaceTime
to name a few. To this end, two speech features, namely; line spec-
tral frequencies (LSF), and multi-resolution auditory model (MRAM)
are extracted from the speech signal after processing it through a voice
activity detector (VAD). A series of deep neural network (DNN)-based
objective no-reference speech quality models (SQMs) are then developed
employing a single speech feature and combining both speech features.
Two noisy speech datasets, namely; Supplement-23 and NOIZEUS-2240
are used for the experiment. Simulation results demonstrate that the
SQM developed using combined speech features results in a better speech
quality prediction as compared to the SQM developed using a single
speech feature, when tested with distinct types of speech degradations.

Keywords: DNN · QoE · Speech Feature · Speech Quality · VAD

1 Introduction

In the past few years, the working mode of people has changed due to the
COVID-19 pandemic. Most people prefer to work at a home-based office. Impor-
tant meetings and communications are carried out online using different applica-
tions, for instance, Google Meet, and Microsoft Skype to name a few. To perceive
a better quality of experience (QoE) [5] using these applications that are free
from any type of noise disruptions, one needs to measure and monitor real-time
speech quality. It can assist internet service providers to recognise the possible
impairments present in their speech processing systems and install QoE manage-
ment services to fulfil the desired QoE level of the end-user. In practice, a speech
quality model is required to measure speech quality. Moreover, in practice, only
noisy or degraded speech signals are available to measure speech quality. Hence,
it is named as no-reference speech quality model, which is a fast and practical
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method to measure speech quality objectively. On the contrary, traditionally,
the quality of speech is measured subjectively, where a group of people provides
their speech quality ratings after listening to the speech sample in a noise-free
room. This method of speech quality rating is referred to as absolute category
rating (ACR) [1]. However, this method is slow, time-consuming, and needs spe-
cific people who have no listening impairments. This work primarily focuses on
the development of an objective speech quality model that leverages meaningful
speech features to measure accurate speech quality.

There have been different objective speech quality models (SQMs) developed
in the literature. However, to develop an effective SQM, the extraction of mean-
ingful speech features is important. For instance, the classical P.563 [22], stan-
dardized by the International Telecommunication Union (ITU), uses the most
dominant speech feature among several speech features for its mapping to speech
quality. The ANIQUE+ [19] model employs the temporal envelope of the speech
signal. However, it is not open-access. The author in [9] constructs an artificial
reference model using the Gaussian mixture model (GMM) to compare noisy
speech. The deep and sub-band autoencoder speech features are used in [25] for
measuring speech quality. The model in [15] uses mean opinion score (MOS) as
a salient feature to develop a deep neural network (DNN) based speech qual-
ity model. The LCQA [4] model uses speech variance, spectral flatness, spectral
dynamics, and spectral centroid features. However, the performance of LCQA is
poor for the competing speaker type degradations.

Our motivation in this work is driven towards first extracting meaningful
speech features and then developing DNN-based SQMs which can result in a
better prediction of speech quality. Along this line, we extract two distinct fea-
tures from the voiced components of the speech signal, namely; line spectral
frequencies (LSF), and multi-resolution auditory model (MRAM). The voiced
components mainly contain speech activities and are obtained using a voice
activity detector (VAD). Then, we develop DNN-based SQMs employing a sin-
gle speech feature and combining both speech features in order to investigate
their suitability in measuring accurate speech quality.

The structure of the remaining paper is designed as: Sect. 2 discusses VAD,
feature extraction from speech samples, and the development of DNN-based
SQMs. Section 3 describes the experimental dataset. The evaluation methodol-
ogy is explained in Sect. 4. Section 5 discusses simulation results. Conclusion and
future work are presented in Sect. 6.

2 Background

This section discusses the VAD, the approach for extracting features from speech
samples, and the design of SQMs.

2.1 Voice Activity Detector

The author in [10] has shown that speech quality is measured poorly when
silences are present in the speech signal. In other words, silence does not play any
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significant role in speech quality measurement. As a result, in our experiment, we
use a VAD to segregate the silences and consider only voiced components of the
speech signal to extract speech features [16]. Notice that only voiced components
contain speech activities.

Along this line, we employ our designed weighted spectral centroid (WS)
VAD [14], which extracts spectral centroid features from each frame (15–30 ms)
of the speech signal. Then, it compares with a dynamic threshold to segregate
the silence and the voiced components. Under distinct non-stationary noises, WS
VAD has been shown to perform outstandingly. The complete mathematical for-
mulation of VAD can be seen in [14].

After obtaining the voiced components, we extract distinct speech features
from it, which is discussed further.

2.2 Feature Extraction

For developing DNN-based SQMs, extraction of meaning information from the
speech sample is required. To this end, LSF and MRAM features are extracted.

LSF: The spectral information of speech is encoded by LSF. LSF is calculated
from the linear predictor coefficients (LPC) [3]. A smaller amount of coefficients
is required by LSF to capture the formant structure effectively. Moreover, the
interpolation of LSF is better.

After processing the speech sample from WS VAD (see Sect. 2.1), the
obtained frame-wise (frame duration of 16 ms) voiced components are used to
compute the 10-dimensional (10-D) LSF feature. In general, LSF features are
acquired by computing mean, variance, skewness and kurtosis [22]. However,
only mean is used to obtain 10-D LSF as it is sufficient to represent spectral
information or spectral envelope of the speech sample.

MRAM: Time-frequency resolution of speech samples is constructed by
MRAM. After processing the speech sample from WS VAD (see Sect. 2.1), the
obtained frame-wise (frame duration of 16 ms) voiced components are used to
compute the 68-D MRAM feature using the following steps.

– Decomposition of speech energy into distinct critical band energies (CBE)
using wavelet packet decomposition [18].

– Incorporation of absolute hearing threshold using outer and middle ear
weights for the CBE.

– Exploitation of spectral spreading to each CBE.
– Exploitation of temporal smearing for temporal masking.
– Exploitation of power law compression [24] for effective subjective loudness.
– Computation of mean, variance, skewness and kurtosis [22] for 17 critical

bands.
– Exploitation of principal component analysis [23] to obtain 22-D MRAM as

it captures 99.9% speech energy.
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Fig. 1. Illustration of DNN-based SQM.

2.3 Speech Quality Model

We employ fully-connected DNN [21] to map the extracted features into speech
quality score (MOS). DNN is a universal function approximator and the complex
connection between extracted features and perceptual quality score can be learnt
by DNN effectively.

To this end, in this experiment, the measurement of speech quality is stated
as a regression task. Each extracted speech feature and combination of both
extracted speech features, respectively, are considered as the input of DNN. The
subjective MOS is the output of DNN. A simple illustration of DNN-based SQM
is depicted in Fig. 1.

3 Experimental Dataset

The noisy speech datasets used in our experiment are discussed in this section.

3.1 Supplement-23 Dataset

Supplement-23 dataset [2] consists of coded speech samples. Out of three exper-
iments performed by these samples for codec characterization test [7], only the
samples of experiment 1 and 3 which use ACR [1] test for measuring speech
quality, are used in our experiment. Experiment 1 consists of 3 sub-experiments,
namely; A, D, and O, each consisting of 176 samples. Experiment 3 consists of 4
sub-experiments, namely; A, C, D, and O, each consisting of 200 samples. This
results in 1328 (3 × 176 + 4 × 200) noisy samples. These samples are present at
distinct conditions of random noise, such as vehicle, street, and hoth at 20 dB
SNR, for the American English, French, Japanese, and Italian languages. They
are down-sampled from 22 kHz to 8 kHz (narrow-band). The average duration
of each sample is 8 s. The subjective speech quality rating is present for each
sample.
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3.2 NOIZEUS-2240 Dataset

This dataset comprises 20 clean IEEE English sentences, pronounced by 3 male
and 3 female speakers aged between 18–65 years. These clean samples are added
with 4 distinct noises, that is, babble, car, street, and train at two SNRs (5 dB
and 10 dB). The noise samples are acquired from the AURORA repository [11].
This results in 160 (20 × 4 × 2) noisy samples. These noisy samples are then
processed through 14 state-of-the-art speech enhancement algorithms [12]. It
enhances the quality of speech samples [17]. As a result, one can obtain 2240
(160 × 14) processed samples. Down-sampling is performed for samples from
25 kHz to 8 kHz (narrow-band). The average duration of each sample is 3 s. The
samples are present in .wav (16 bit PCM, mono). The author in [8] provided the
subjective speech quality rating of each sample.

4 Evaluation Methodology

To predict objective speech quality, Fig. 2 shows the experimental setup which
mainly comprises three scenarios. Under the first scenario, the degraded or noisy
samples are processed through our designed WS VAD (see Sect. 2.1) to obtain
voiced components. LSF features are then extracted for these voiced components.
These extracted features are the input to the DNN (see Fig. 1). The output of
DNN is the corresponding subjective quality rating. With these settings, we train
the DNN to predict objective speech quality. We represent this SQM model as
“SQMLSF”. Similarly, under the second scenario, the same procedure is followed
for DNN training by extracting the MRAM feature. We represent this SQM
model as “SQMMRAM”. However, under the third scenario, we follow the same
procedure for DNN training by extracting both LSF and MRAM features from
the degraded samples. We represent this SQM model as “SQMHybrid”.

For each scenario of DNN training, we split the total degraded samples (see
Sect. 3). The training samples comprise 70% of the total samples, and the test
samples comprise 30% of the total samples. Moreover, for the evaluation of each
SQM in terms of training and test accuracy, 5-fold cross-validation [6] is used.

Fig. 2. Experimental setup.
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Next, to investigate the association between the subjective quality rating
(MOS-LQS) and the predicted objective quality rating (MOS-LQO), we calcu-
late the Pearson’s correlation (ρp), Spearman’s correlation (ρs), and root mean
square error (RMSE) for all test samples employing each SQM. Suppose, there is
n number of samples. s1, s2, ..., sn; ŝ1, ŝ2, ..., ŝn; μs; μŝ, and di are the subjective
and predicted objective quality rating, respectively, their corresponding means
μ, and difference between their corresponding quality rating ranks. We compute
these measures as [13]:

ρp =
∑n

i=1(ŝi − μŝ)(si − μs)
√∑n

i=1(ŝi − μŝ)2(si − μs)2
. (1)

ρs = 1 − 6
∑n

i=1 d2i
n(n2 − 1)

. (2)

RMSE =

√
√
√
√ 1

n

n∑

i=1

(si − ŝi)2. (3)

5 Results and Discussions

The obtained results are presented and discussed in this section.

5.1 Experiment with Supplement-23 Dataset

Model Analysis of Each SQM: The objective speech quality is predicted by
training the DNN-based SQM using each extracted feature and combining both
extracted features, respectively. This results in three distinct DNN-based SQMs,
represented as SQMLSF, SQMMRAM, and SQMHybrid, respectively (see Fig. 2).
Tables 1, 2 and 3 show distinct parameters and hyper-parameters for each SQM
and the training and test accuracy in terms of mean square error (MSE) [26].
Moreover, depending on the dimension of the speech feature, each DNN-based
SQM requires a distinct number of neurons in its input layer. For instance, 10,
22, and 32 neurons are present in the input layer of SQMLSF, SQMMRAM, and
SQMHybrid, respectively.

Tables 1, 2 and 3 show that the training is satisfactory for each SQM, that
is, the training MSE and the test MSE are comparable, showing no overfitting.
Specifically, the training and test MSE of the SQMHybrid are less than the corre-
sponding values in SQMLSF and SQMMRAM. This signifies that the training of
each SQM is good and we can employ these SQMs to predict the speech quality
of test samples.

Performance Analysis of Each SQM: Table 4 presents the ρp, ρs, and RMSE
of each SQM. We can observe that the ρp, ρs, and RMSE of each SQM are signif-
icantly good. In particular, the ρp, and ρs of the SQMHybrid, where both speech
features are combined, are better as compared to the SQMLSF and SQMMRAM.
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Table 1. Model learning of the SQMLSF.

Input layer neurons 10

Hidden layers 4

Neurons in each hidden layer 256, 128, 64, 32

Activation function in each hidden layer ReLU

Batch normalization after 1st hidden layer default setting

Dropout after 2nd hidden layer 0.30

Output layer neurons 1

Output layer activation function ReLU

Optimizer Adam [20]

Learning rate 0.0001

Loss function MSE

Size of each batch 32

Training-Testing split 70:30

Training MSE 0.022484

Test MSE 0.025924

Table 2. Model learning of the SQMMRAM.

Input layer neurons 22

Remaining parameters and hyper-parameters are the same as in Table 1.

Training MSE 0.012294

Test MSE 0.026344

Table 3. Model learning of the SQMHybrid.

Input layer neurons 32 (10+22)

Remaining parameters and hyper-parameters are the same as in Table 1.

Training MSE 0.010224

Test MSE 0.01975

Table 4. Correlations and RMSE of each SQM.

Description of each scenario ρp ρs RMSE

Scenario 1: Degraded speech → VAD → SQMLSF → 0.691 0.691 0.161

MOS-LQO

Scenario 2: Degraded speech → VAD → SQMMRAM → 0.700 0.708 0.162

MOS-LQO

Scenario 3: Degraded speech → VAD → SQMHybrid → 0.774 0.778 0.140

MOS-LQO
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Moreover, the RMSE is also less for SQMHybrid. There is an improvement of
around 11% in both ρp and ρs, and a decrement of around 13% in RMSE under
Scenario 3 in contrast to Scenario 1. Similarly, there is an improvement of around
10% in both ρp and ρs, and a decrement of around 13% in RMSE under Sce-
nario 3 in contrast to Scenario 2. This signifies that the SQMHybrid developed by
combining both speech features (Scenario 3) is the most appropriate SQM for
capturing meaningful information from speech samples and predicting objective
speech quality.

5.2 Experiment with NOIZEUS-2240 Dataset

Model Analysis of Each SQM: The objective speech quality is predicted
by training the same DNN-based SQM (see Fig. 2) employing a single extracted
feature and combining both extracted features, respectively. Tables 5, 6 and 7
show distinct parameters and hyper-parameters for each SQM and the training
and test accuracy in terms of MSE.

Tables 5, 6 and 7 show that the training is satisfactory for each SQM, that
is, the training MSE and the test MSE are comparable, showing no overfitting.
Specifically, the training and test MSE of the SQMHybrid are less than the cor-
responding values in SQMLSF and SQMMRAM. This signifies that the training
of each SQM is good and we can employ these SQMs for predicting the speech
quality of test samples.

Table 5. Model learning of the SQMLSF.

Input layer neurons 10

Remaining parameters and hyper-parameters are the same as in Table 1.

Training MSE 0.015178

Test MSE 0.017361

Table 6. Model learning of the SQMMRAM.

Input layer neurons 22

Remaining parameters and hyper-parameters are the same as in Table 1.

Training MSE 0.009743

Test MSE 0.012279

Table 7. Model learning of the SQMHybrid.

Input layer neurons 32 (10+22)

Remaining parameters and hyper-parameters are the same as in Table 1.

Training MSE 0.008384

Test MSE 0.012099
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Table 8. Correlations and RMSE of each SQM.

Description of each scenario ρp ρs RMSE

Scenario 1: Degraded speech → VAD → SQMLSF → 0.612 0.609 0.131

MOS-LQO

Scenario 2: Degraded speech → VAD → SQMMRAM → 0.747 0.748 0.110

MOS-LQO

Scenario 3: Degraded speech → VAD → SQMHybrid → 0.764 0.761 0.109

MOS-LQO

Performance Analysis of Each SQM: Table 8 presents the ρp, ρs, and RMSE
of each SQM. We can observe that the ρp, ρs, and RMSE of each SQM are signif-
icantly good. In particular, the ρp, and ρs of the SQMHybrid, where both speech
features are combined, are better as compared to the SQMLSF and SQMMRAM.
Moreover, the RMSE is also less for SQMHybrid. There is an improvement of
around 20% in both ρp and ρs, and a decrement of around 17% in RMSE under
Scenario 3 in contrast to Scenario 1. Similarly, there is an improvement of around
20% in both ρp and ρs, and a decrement of around 1% in RMSE under Scenario 3
in contrast to Scenario 2. This again signifies that the SQMHybrid developed by
combining both speech features (Scenario 3) is the most appropriate SQM for
capturing meaningful information from speech samples and predicting objective
speech quality.

5.3 Scatter Plots

For visualizing the efficacy of a single speech feature and combined speech fea-
tures in order to develop a better SQM, the mean opinion score listening quality
objective (MOS-LQO) obtained using each SQM is compared with the corre-
sponding mean opinion score listening quality subjective (MOS-LQS). The com-
parison is made for the test speech samples of each dataset, as illustrated in
Fig. 3(a)–(c), and Fig. 4(a)–(c), respectively.

Fig. 3. Subjective and objective speech quality comparison for the test samples of
Supplement-23 dataset using: (a) SQMLSF, (b) SQMMRAM, and (c) SQMHybrid.
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Fig. 4. Subjective and objective speech quality comparison for the test samples of
NOIZEUS-2240 dataset using: (a) SQMLSF, (b) SQMMRAM, and (c) SQMHybrid.

Both scatter plots show that there is no proper distribution or spread of
speech samples towards the diagonal line while employing the SQM trained
with only the LSF feature, that is, SQMLSF, resulting in a poor correlation
(see Fig. 3(a) and Fig. 4(a)). However, there is a slight spread of speech samples
towards the diagonal line while employing the SQM trained with only the MRAM
feature, that is, SQMMRAM, resulting in an improved correlation (see Fig. 3(b)
and Fig. 4(b)). On the other hand, a very good distribution of speech samples can
be seen towards the diagonal line while employing the SQM trained with both
LSF and MRAM features, that is, SQMHybrid, resulting in a better correlation
(see Fig. 3(c) and Fig. 4(c)), as compared to SQMLSF and SQMMRAM. This again
reflects that the combination of both speech features results in a better SQM
for predicting speech quality as compared to the SQM which is developed using
a single speech feature.

6 Conclusion and Future Work

This paper examines deep learning-based SQMs in measuring accurate speech
quality under noisy surroundings as the noise degrades the speech quality. Along
this line, two features are extracted from the speech sample after processing it
through a VAD. DNN-based SQMs are then developed using a single feature and
combining both features. Simulation results show that the Hybrid SQM, which
is developed using both features, performs better in contrast to the SQM which
is developed using only a single feature. It also suggests that the combination of
both features contains meaningful information about the speech sample and is
beneficial for real-time speech quality measurement. Internet service providers
can easily deploy the Hybrid SQM for measuring and monitoring speech quality
in order to fulfil the expected QoE level of the end-user. In future, we aim to
examine highly complex speech features for developing SQMs. We also aim to
examine developed SQMs with noisy samples containing real-world noise and
noisy samples that comprise native speakers.

References

1. ITU-T recommendation P.800: Methods for subjective determination of transmis-
sion quality (1996)



Deep Learning Based Speech Quality Assessment Focusing on Noise Effects 281

2. ITU-T Coded-Speech Database. Series P, Supplement 23 (1998)
3. Alim, S.A., Rashid, N.K.A.: Some commonly used speech feature extraction algo-

rithms. In: IntechOpen (2018)
4. Bruhn, S., Grancharov, V., Kleijn, W.B.: Low-complexity, non-intrusive speech

quality assessment. US Patent 8,195,449 (2012)
5. Brunnström, K., Beker, S.A., De Moor, K., Dooms, A., Egger, S.: Qualinet white

paper on definitions of quality of experience (2013)
6. De Rooij, M., Weeda, W.: Cross-validation: a method every psychologist should

know. Adv. Methods Pract. Psychol. Sci. 3(2), 248–263 (2020)
7. Dubey, R.K., Kumar, A.: Non-intrusive speech quality assessment using several

combinations of auditory features. Int. J. Speech Technol. 16(1), 89–101 (2013)
8. Dubey, R.K., Kumar, A.: Comparison of subjective and objective speech qual-

ity assessment for different degradation/noise conditions. In: IEEE International
Conference on Signal Processing and Communication, pp. 261–266 (2015)

9. Falk, T.H., Xu, Q., Chan, W.Y.: Non-intrusive GMM-based speech quality mea-
surement. In: IEEE ICASSP, vol. 1, pp. 125–128 (2005)

10. Hines, A., Gillen, E., Harte, N.: Measuring and monitoring speech quality for voice
over IP with POLQA, ViSQOL and P.563. In: Interspeech, pp. 438–442 (2015)

11. Hirsch, H.G., Pearce, D.: The Aurora experimental framework for the performance
evaluation of speech recognition systems under noisy conditions. In: ASR2000-
Automatic Speech Recognition: Challenges for the New Millenium ISCA Tutorial
and Research Workshop (ITRW) (2000)

12. Hu, Y., Loizou, P.C.: Subjective comparison and evaluation of speech enhancement
algorithms. Speech Commun. 49(7–8), 588–601 (2007)

13. Jaiswal, R.: Influence of silence and noise filtering on speech quality monitoring. In:
11th IEEE International Conference on Speech Technology and Human-Computer
Dialogue (SpeD), pp. 109–113 (2021)

14. Jaiswal, R.: Performance analysis of voice activity detector in presence of non-
stationary noise. In: Proceedings of the 11th International Conference on Robotics,
Vision, Signal Processing and Power Applications. LNEE, vol. 829, pp. 59–65.
Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8129-5 10

15. Jaiswal, R., Dubey, R.K.: CAQoE: a novel no-reference context-aware speech qual-
ity prediction metric. ACM Trans. Multimedia Comput. Commun. Appl. 19(1s),
1–23 (2023)

16. Jaiswal, R., Hines, A.: The sound of silence: how traditional and deep learning
based VAD influences speech quality monitoring. In: 26th Irish Conference on
Artificial Intelligence and Cognitive Science (2018)

17. Jaiswal, R., Romero, D.: Implicit wiener filtering for speech enhancement in non-
stationary noise. In: 11th International Conference on Information Science and
Technology, pp. 39–47. IEEE (2021)

18. Karmakar, A., Kumar, A., Patney, R.: Design of optimal wavelet packet trees based
on auditory perception criterion. IEEE Signal Process. Lett. 14(4), 240–243 (2007)

19. Kim, D.S., Tarraf, A.: ANIQUE+: a new American National Standard for non-
intrusive estimation of narrow-band speech quality. Bell Labs Tech. J. 12(1), 221–
236 (2007)

20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations (ICLR) (2015)

21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

22. Malfait, L., et al.: The ITU-T standard for single-ended speech quality assessment.
IEEE Trans. Audio Speech Lang. Process. 14(6), 1924–1934 (2006)

https://doi.org/10.1007/978-981-16-8129-5_10


282 R. Jaiswal and A. Priya

23. Naik, G.R.: Advances in Principal Component Analysis: Research and Develop-
ment. Springer, Heidelberg (2017). https://doi.org/10.1007/978-981-10-6704-4

24. Schroeder, M.R.: Computer Speech: Recognition, Compression, Synthesis.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-03861-1

25. Soni, M.H., Patil, H.A.: Non-intrusive quality assessment of noise-suppressed
speech using unsupervised deep features. Speech Commun. 130, 27–44 (2021)

26. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal
fidelity measures. IEEE Signal Process. Maga. 26(1), 98–117 (2009)

https://doi.org/10.1007/978-981-10-6704-4
https://doi.org/10.1007/978-3-662-03861-1


Quantifying the Emotional Landscape
of Music with Three Dimensions

Kirtana Sunil Phatnani1(B) and Hemant A. Patil2

1 Fractal Analytics, Mumbai, Maharashtra, India
Kirtana.Phatnani@fractal.ai

2 Speech Research Lab, Dhirubhai Ambani Institute of Information and
Communication Technology, Gandhinagar, India

Hemant Patil@daiict.ac.in

Abstract. Music is a powerful art form that fosters a deep connection
between the listener and the sound. Yet, sentiment analysis alone is lim-
ited in capturing the breadth and depth of emotions conveyed in songs,
especially as individuals’ perceptions and interpretations of music vary
widely. Our goal is to offer a more immersive and meaningful experi-
ence for listeners by harnessing the emotional contagion elicited by each
song and gauging it through a multifaceted lens that considers identity,
setting, and sentiment metrics. By analyzing the lyrics of songs that
garnered similar Vader sentiment scores, we demonstrate that our inno-
vative approach not only captures the essence of each composition but
also uncovers nuanced differences in sentiment that escape traditional
sentiment analysis. The divergence between our methodology integrat-
ing first-person sentiment shows variation of sentiment scores from –0.32
to 0.65 across the 10 songs having sentiment of approximately 0.99 (based
on the traditional sentiment analysis method). Expanding the dataset to
47 positive songs and 48 negative songs from the Moody Lyrics dataset
[3], we observe a variance of approximately 0.22 in positive and 0.19 in the
negative songs (as compared to 0 in the traditional sentiment analysis),
underscoring the remarkable intricacies that our approach can reveal.
We also propose optimizing song recommendation using Reinforcement
Learning (RL) utilizing these dimensions as states, choice of music as
actions and accurate choice as reward. We propose this analysis can help
dive deeper into the potential of emotions in music impacting the society
as a whole.

Keywords: Music cognition · Temporal sentiment Analysis ·
Emotional Contagion · Lyrical Analysis

1 Introduction

The notion that music can elicit emotions was not thoroughly explored until the
debate between Kivy and Radford in 1993 [13]. Kivy claimed that music had
never made him feel sad, while Radford argued that it could. In the ensuing
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three decades, researchers from various disciplines, including psychology, neuro-
science, and computer science, have delved into the complex relationship between
music and emotion. Initially, psychologists struggled to fully grasp music percep-
tion due to its highly subconscious nature, [9] where only conscious perceptions
were evident. However, over time, the connection between music and emotions
became clearer. Juslin’s research was particularly instrumental in developing a
comprehensive understanding of musical emotions, which identified seven key
phenomena: brain stem reflex, rhythmic entertainment, emotional contagion,
evaluative conditioning, episodic memory, and mental visual imagery [15].

Brain stem reflex is an innate response to the intensity and progression of
sounds that we have developed through evolution [12]. On the other hand,
rhythmic entertainment involves the synchronization of our body’s physiolog-
ical rhythms, such as heart rate, with the rhythm of the music [25]. These two
phenomena occur at a physiological level without any intervention from the con-
scious mind. The predictability and regularity offered by rhythmic entertainment
have been found to aid in the therapy of individuals with Autism Spectrum
Disorder (ASD), as they struggle with uncertainty [24]. The repetition inher-
ent in music allows individuals with ASD to engage with it without cognitive
overload [23].

In addition, music is known to induce emotions in listeners through emo-
tional contagion, which refers to the transfer of emotions from the music to the
listener in a manner similar to the spread of a contagious disease [10,14]. This
phenomenon is linked to the activation of mirror neurons in the brain, which
are most active during face-to-face interactions such as concerts or music videos
[22]. However, emotional contagion can also be elicited through the lyrics of a
song, which allow the listener to relate to the expressions of the singer and the
emotions conveyed in the music [2].

Furthermore, music has the ability to trigger evaluative conditioning, which
is the association of certain events or emotions with specific musical stimuli.
This can lead to the recreation of those events or emotions in the listener’s mind
upon listening to the music again [11,28]. Episodic memory, on the other hand,
refers to the flashbacks or recollections that listeners experience when listening
to music, leading to strong emotional responses [21,26]. Finally, mental visual
imagery involves the use of vivid descriptions in music that can stimulate the
imagination and activate affect systems in the brain [19].

The different responses of our brain to music, such as emotional contagion,
evaluative conditioning, episodic memory, and mental visual imagery, all heavily
rely on our emotional reactions to music. To enable machines to select appropri-
ate music for us, it is essential to identify and understand the emotions evoked
by a musical piece. In this study, we propose a three-dimensional sentiment anal-
ysis to enhance the field of Music Emotion Recognition (MER). Additionally, we
argue that music is a vital medium of social mass communication, and under-
standing its emotional impact is crucial to understanding communication [4].



Quantifying the Emotional Landscape of Music with Three Dimensions 285

Every music episode, even if for the same piece of music, is different for the lis-
tener [13]. This is because music activates different mental imagery and meaning
to the experience depending on the present state of the listener. In instrumen-
tal music, the emotional contagion derived from music is much more subjective
owing to the memories people associate with the musical piece. Recent studies
report a high level understanding of the valence and arousal of soundscapes in
music [18]. Studies also offer the viewpoint of how common sounds present in our
environment and music share similar frequencies for same sentiments [17]. Juslin
also speaks about how the sentiment that may be evoked by listening to music
may be very much similar to the same sentiment produced through speech [13].
For lyrical music, the experience is relatively more objective and deeper due to
the deterministic nature of language. Hence, for the purpose of this paper we
delve deep into the lyrics contained in music.

This study aims to develop a novel approach to Music Emotion Recognition
(MER) by designing statistical reasoning of emotions that can have optimal
effects on our bodies. In doing so, we address some of the limitations of recent
approaches in the field, including:

– Most studies in the field of MER label an entire music piece with one emo-
tional label, without considering the hills and valleys of different emotions in
the musical piece [30].

– Many studies in music literature have proposed that the concepts of con-
sonance and dissonance are the fundamental principles of music and that
emotion recognition studies rely on these concepts [29]. However, as stated in
[16], recent studies have revealed that some cultures do not conform to this
standard when assessing the impact of music.

– Emotions from a lyrical music piece arise from the story between its charac-
ters, and hence, the emotional journey of each character and their relationship
is important in the musical journey.

Therefore, we propose an approach that takes into account the emotional
journey of each character in a lyrical music piece for MER. The rest of the paper
is organized as follows: Sect. 2 describes the statistical reasoning of emotions
and the dataset used. Section 3 presents results and analysis of the identity-wise
sentiment analysis. Section 4 proposes how a reinforcement learning algorithm
can be used to recommend songs using this analysis of sentiments. and Sect. 5
summarizes the paper with a conclusion.

2 Materials and Methods

From a human perspective, every sentence in a lyric offers a glimpse into an
event’s context. Such events can be positive, negative, or neutral. They might
occur in the past, present, or future. By considering tense, we gain an added layer
to assess the positioning of sentiments in time. After pinpointing these feelings
tied to time, we identify the characters or entities in the song. These entities
are distinguished by the pronouns they are associated with. To determine each
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entity, we look at the narrative framework of the song, where characters are
differentiated by pronouns like first, second, or third person, or relationship.
We also model relationship as a part of identifying identity as we find many
songs describe not only how the protagonist feels but also how the state of their
relationship with objects, places, people are. According to neuroscience, studies
show that during the dream state the brain attempts to model relationships
we have in our world [5]. Hence, relationships become a key facet to model.
To summarize, this study focuses on the three-dimensional sentiment extraction
of musical pieces using the dimensions of identity, emotion, and setting (time)
[20]. Figure 1 provides an overview of the three dimensions. After segmenting
the musical piece, we extract the final emotion for each identity, the identity’s
emotional journey.

Fig. 1. Each song is composed of multiple lines, each line is composed of identity, time,
and emotion.

Post segmenting the musical piece, we extract:

– Final emotion for that identity
– Journey of the identity from the past to the present and into the future and,
– Finally, we propose song recommendation using Reinforcement Learning (RL)

algorithm.

To segment into identity dimensions, we analyze sentences in the lyrics based
on the pronouns used. We extract the tense of the verb to identify when the
sentiment occurred. For sentiment analysis, we utilized Vader’s lexicon analysis
library in Python [7].

To track the emotional journey of a character in a song, we estimate its
weighted average using the recency heuristic [6]. We use the recency heuristic
because brain is an anticipating machine. Hence, it anticipates the future using
the memories of the present and the past [27]. We use the recency heuristic
because the time scale of emotions weighs future > present > past, which can
be thought of as synaptic weights re-adjusting from the past to present in order
to best predict the future. To that effect, we use the following formula to estimate
the final sentiment of each identity i:

fi =
w past ∗ pasti + w present ∗ presenti + w fut ∗ futi

w past + w present + w fut
(1)

where w fut= 1000, w present= 100, and w past= 10. We adopt a weight
scheme that emphasizes recent events over past ones, with the weights increasing
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in power from the past to the future. This enables us to assign more importance
to the most recent events. To determine the trajectory of the identity, we utilize
two deltas: d1 represents the difference between the present and past sentiment,
while d2 represents the difference between the future and present sentiment. We
calculate these differences for each identity i, taking into account the unequal
weighting of sentiments. To accomplish this, we assign weights from a geometric
progression with a common ratio of 1.5 and a starting value of 1. Thus, the past
has a weight of 1, the present a weight of 1.5, and the future a weight of 1.5
multiplied by 1.5. To normalize the values of d1i and d2i , we divide them by the
maximum possible value. Hence, we have:

d1i =
1.5 ∗ presenti − pasti

2.5
, (2)

d2i =
1.5 ∗ 1.5 ∗ futurei − 1.5 ∗ presenti

3.75
, (3)

where d1i and d2i = 0, when presenti = 0 and futurei = 0, respectively. To
classify a song as uplifting, from the possible combinations of d1i and d2i , when
it satisfies the following equation:

d1i + d2i > 0. (4)

Utilizing these measures, we can discern the range of emotions experienced
by each character and their emotional progression throughout the song. With
this information, we can classify whether the overall mood of the song is uplifting
or not. Our analysis in this study centers on the songs listed in Table 1.

Table 1. Details of Songs Used in this Study for Data Collection. After [1].

Song Title Singer

Memories Maroon 5

So Will I Ben Platt

Que Sera Sera Doris Day

Supermarket Flowers Edward Sheeran,

Tenerife Sea Edward Sheeran

Still Niall Horan

Flicker Niall Horan

Black and White Niall Horan

I See Fire Ed Sheeran

Saving Grace Kodaline

3 Results and Analysis

Analyzing the Table 2, we can further reinforce that the ”Sentiment” column
alone does not offer an exhaustive view of the intricate nature of the songs’
themes, narrative perspectives, and emotional fluctuations.
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Table 2. Identity-wise sentiment, delta 1 and delta 2 analysis.

Song Sentiment FP SP TP R FP SP TP R

d1 d2 d1 d2 d1 d2 d1 d2

Que Sera Sera 0.93 0.65 0 0 0.42 0.05 0.5 0 0 0 0 0 0

Memories 0.97 0.03 0.44 0 0.08 0.13 0 0 0 0 0 −0.33 −0.23

Black and White 1 0.27 0.61 0 0.6 −0.04 0.21 0 0 0 0 0.22 0.64

Tenerife Sea 0.99 −0.32 0.7 0 0.59 0 −0.42 0 0 0 0 0 0

Saving Grace −0.92 0.42 −0.35 0 0.25 0 0 −0.12 0 0 0 0 0.04

So Will I 0.97 0.24 −0.32 0 0.22 −0.13 0.05 0 0 0 0 −0.03 −0.05

Supermarket Flowers 1 0.64 0.31 0.61 0.53 0 0 0.06 0 0 0.61 0.21 0.64

Flicker 0.92 0.47 0.03 0.23 0.39 0 0.5 0 0 0 0 0.03 0

Still 0.92 −0.29 0.69 −0.01 0.4 0 −0.31 0 0 −0.07 −0.18 0 0

I See Fire −0.99 −0.17 0 −0.44 −0.08 −0.27 −0.34 0 0 0 0 0 −0.34

1. Diversity in Narrative Perspectives:
– Que Sera Sera and Memories have non-zero values in the First Person

(FP) and Second Person (SP) columns but zero in Third Person (TP),
indicating a diversity in narrative perspectives, which would be imper-
ceptible with only the ”Sentiment” column.

– Supermarket Flowers shows sentiment across all perspectives including
Relationship (R), indicating a multi-dimensional narrative not reflected
in a singular sentiment value.

2. Temporal Changes in Sentiments:
– Tenerife Sea and Still show negative delta values in SP and TP respec-

tively, hinting at the temporal development or regression in themes or
sentiments, unobservable with the overall sentiment value alone.

– I See Fire has negative delta values in FP, revealing a decline in sentiment
within the first-person perspective, providing more nuanced insights into
the song’s emotional trajectory.

3. Complex Emotional Structures:
– Black and White and Supermarket Flowers have varying sentiments

across FP, SP, TP, and R, indicating the presence of complex emotional
structures and differing thematic elements within the songs, unaccounted
for in the overall sentiment value.

– Saving Grace presents a negative overall sentiment value but displays pos-
itive sentiment in FP, underscoring the contrast and depth in emotional
elements within the song.

4. Varied Relationship Dynamics:
– Supermarket Flowers displays sentiments in the Relationship (R) column

along with changes in delta values, highlighting the varying dynamics in
relationships depicted in the song.

– The presence of non-zero delta values in the Relationship (R) column in
songs like Black and White illustrates changes in relationship dynamics
or themes over time, adding another layer to the interpretation of the
songs.
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5. Contrasting Sentiments:
– Songs like So Will I, Saving Grace and Still with overall positive and

negative ”Sentiment” values respectively, show contrasting sentiments in
individual perspectives (FP, SP, TP), showcasing the juxtaposition of
emotions and themes within the songs.

In our endeavor to refine and statistically substantiate our preliminary find-
ings, we meticulously broadened our dataset to encompass 100 songs from the
distinguished Moody Lyrics database [3]. The database was bisected into two seg-
ments, allocating 50 songs to both the positive and negative sentiment classes,
respectively. Through meticulous analysis and curation, we successfully procured
the lyrics for 47 songs categorized as Positive and 48 dubbed as Negative.

Following this enlargement of our data set, we deployed analogous analyti-
cal methodologies on these newly acquired classes and generated the results as
depicted in Table 1 and Table 2. Table 3 enumerates the top five songs with posi-
tive sentiment along with the respective artist, whereas Table 5 lists the top five
songs within the negative class.

Table 3. Positive Songs from Moody Lyrics Dataset(top 5 songs).

Artist Songs Sentiment

The Jackson 5 ABC 1

Kenny Lattimore And I Love Her 1

Megadeth Angry Again 1

Jordin Sparks Battlefield 1

J. Holiday Bed 1

Table 4. Positive Songs identity-wise sentiment (top 5 songs).

Song FP SP TP R

ABC 0.67 0 0 0.46

And I Love Her 0.74 0 0 0.58

Angry Again −0.32 0.77 0.36 −0.46

Battlefield −0.23 0.44 0 0.03

Bed 0.56 0.4 0 0.43

The Tables 3 and 5, give a glimpse into the list of songs used for the analysis.
Table 4 and Table 6 reveal intriguing insights into the variations and complexities
in emotional structures within the songs, enabling a nuanced appreciation of
the intricacies in lyrical content. Table 7 and 8 describe the temporal variations
across each identity in the songs. To further scrutinize the disparities in sentiment
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Table 5. Negative Songs from Moody Lyrics Dataset (top 5).

Artist Songs Sentiment

Cassandra Wilson A Day In The Life Of A Fool −1

Testament Apocalyptic City −1

High On Fire Bastard Samurai −1

All That Remains Become The Catalyst −1

Love Is All Bigger Bolder −1

Table 6. Negative Songs identity-wise sentiment (top 5 songs).

Song FP SP TP R

A Day In The Life Of A Fool −0.25 0 0 −0.18

Apocalyptic City −0.13 0 0 −0.22

Bastard Samurai 0 0 0 −0.46

Become The Catalyst 0.02 0 0 −0.27

Bigger Bolder −0.57 0 0 0.57

Table 7. Positive songs temporal-wise sentiment (top 5 songs).

Song FP SP TP R

d1 d2 d1 d2 d1 d2 d1 d2

ABC 0.06 0 0 0 0 0 0.27 0

And I Love Her 0.13 0 0 0 0 0 0.15 0

Angry Again −0.02 0 0.12 0 0.12 0 0.12 0

Battlefield 0.38 0 0 0 0 0 0.36 0

Bed 0.06 0 0.12 0 0 0 0.12 0

Table 8. Negative songs temporal-wise sentiment (top 5 songs).

Song FP SP TP R

d1 d2 d1 d2 d1 d2 d1 d2

A Day In The Life Of A Fool 0 −0.58 0 0 0 0 0.29 0

Apocalyptic City 0.05 0.03 0 0 0 0 −0.01 −0.12

Bastard Samurai 0 0 0 0 0 0 −0.14 −0.5

Become The Catalyst −0.2 −0.27 0 0 0 0 0.57 0.69

Bigger Bolder 0 0 0 0 0 0 −0.08 0
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elucidation between the Vader sentiment and our bespoke method, we delved
deeper into the comparative.

To further scrutinize the disparities in sentiment elucidation between the
Vader sentiment and our bespoke method, we delved deeper into the comparative
variances within songs described in Table 9.

Table 9. Variance in Vader sentiment analysis and the proposed emotional contagion
analysis.

Vader Sentiment Variance Emotional Contagion variance

Positive 0 0.22

Negative 0 0.19

the variance in sentiment for positive songs was identified to be 0.22, and
for negative songs, it was 0.19. This quantified variance underscores a pivotal
revelation; it illustrates the nuanced intricacies and the multiplicity of emotional
layers interwoven within each song. Such granularity and multifaceted insights
are pivotal, reflecting not just the diversity in emotional tones but also unmask-
ing the subtle, often overlooked, thematic elements inherent within the lyrical
compositions. In essence, this substantiates our assertion that a singular senti-
ment value might not adequately represent the myriad emotional textures and
thematic intricacies embedded within a song. It becomes imperative to integrate
a more refined and multifaceted analytical approach to genuinely comprehend
and interpret the multi-dimensional nature of songs, thereby offering a more
comprehensive and insightful exploration into the world of music and lyrics.

Conclusion

The detailed perspectives (FP, SP, TP), relationship dynamics (R), and their
changes over time (Delta Values) play a crucial role in understanding the multi-
faceted nature of the songs. The singular “Sentiment” column may oversimplify
the complex interplay of themes, emotions, and perspectives within each song,
necessitating a more granular approach for a comprehensive interpretation of
the songs’ lyrical content.

4 Discussion

Using the quantification of the qualitative aspects of music, we can employ rein-
forcement learning to optimize song selection for listeners. We propose that these
three metrics: identity sentiment, d1 and d2 across four identities: first person,
second person, third person and relationship, can be used to define states and be
mapped to a positive reward when the listener chooses to listen to a particular
song. We propose forming the Q − table based on serialization of the sentiment
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across these 12 columns, and updating the Q − table based on the respective
choice of the song with Eq. 5. We can utilize these dimensions as states, choice
of music as actions and accurate choice as reward. With the RL algorithm, we
can optimize the song selection based on where in the space does a particular
song lie and accordingly choose it for the listener.

Q[action][state] = Q[action][state] + (5)
(1/N [action][state] ∗ (R[action] − Q[action][state]))

5 Summary and Conclusions

Emotions are the fabric of our lives, allowing us to understand and navigate our
experiences. Music, in particular, is deeply intertwined with our emotions, and
we seek to uncover the emotional landscape of each musical piece through our
methodology. To identify emotional hills and valleys through each musical piece,
we identify three dimensions. The three dimensions consist of identity, setting,
and sentiment. Following this, we employ the recency heuristic to ascertain the
emotion of each identity, while also tracking the emotional trajectory of the song
by evaluating the weighted difference between present and past, and future and
present sentiments. Through this, we can determine if a song is uplifting for
a given identity. Post splitting, we elicit what is the emotion of each identity
using the recency heuristic. Additionally, we track the emotional trajectory of
the song by measuring the difference between the present and past, and the
present and future sentiment. Furthermore, this study has the potential to rev-
olutionize emotion recognition and regulation by utilizing uplifting music that
resonates with individual contexts. This can be utilizing our methodology for
music recommendation system based on RL and sentiment analysis Moreover,
the insights derived from this study can be applied to promote social good, such
as in Assistive Technology for Listening, where music therapy has shown remark-
able results in enhancing neural connections and providing relief to individuals
suffering from mental illnesses [8].

6 Future Research

In future endeavors, the deltas derived from this study are envisioned to be
instrumental in developing models for musical expectancy, shedding light on the
intricate dynamics of emotional anticipation within music. This approach will
unearth the various ways emotions are conveyed, interpreted, and internalized
in the realm of music, offering a richer perspective on the emotional nuances and
subtleties embedded within musical compositions.

To further enhance our understanding of music’s emotional landscape, we
plan to incorporate sophisticated data visualization techniques to delve deeper
into the phenomenon of emotional contagion as elicited by music. Utilizing these
techniques will render the multifaceted emotional interactions and resonances
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more discernible, offering detailed insights into the layers of emotions and their
transmission through musical expressions.

Moreover, we aspire to expand our analytical scope beyond the initial iden-
tities, encompassing all entities-objects, places, people, and other elements-that
humans forge relationships with. This broader perspective is crucial for portray-
ing a comprehensive representation of relational dynamics within music, which,
in turn, contributes to a more inclusive and elaborate exploration of the diverse
relational sentiments depicted in musical narratives.

Additionally, there’s a keen interest in exploring the roles and impacts of
metaphors and symbolism within musical pieces. By deciphering the metaphor-
ical and symbolic elements inherent in songs, we aim to uncover the deeper and
often concealed meanings, revealing the intricate layers of emotional expressions
and thematic profundities embedded within. Such an exploration will elucidate
how these literary elements augment the overall emotional atmosphere of a piece
and how they resonate with listeners, offering a more profound comprehension
of the sophisticated interplay between the musical content and the emotional
response it evokes.

In essence, our future research is aimed at fostering a holistic and detailed
understanding of the thematic and emotional aspects of music by exploring var-
ious identities, relationships, emotions, and literary devices within musical nar-
ratives. The adoption of advanced visualization and modeling techniques will
facilitate a meticulous examination of the emotional nuances and representa-
tions, thereby paving the way for enhanced insights into the intricate and diverse
world of musical expression.
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Abstract. Emotional Voice Conversion (EVC) is a method to convert
the emotional state of an utterance to another without changing the lin-
guistic information and speaker’s identity. Its application is enormous in
human-machine interaction, development of emotional Text-To-Speech
(TTS), etc. This study focuses on analyzing the characteristics of Man-
darin and English language for EVC between these languages. Prosodic
features, such as energy, fundamental or pitch frequency (F0), duration,
pauses/silences, and loudness are compared using several techniques,
such as narrowband spectrograms, Root Mean Square Energy (RMSE),
and Zero-Crossing Rate (ZCR). Teager Energy Operator (TEO) based
features are studied to analyze the energy profile of emotions. The Emo-
tional Speech Dataset (ESD) is used in this work. Experiments were
performed on 5 emotions, namely, anger, happiness, neutral, sad, and
surprise. Results showed that tonal language (i.e., Mandarin) has steep
and multiple fluctuations in F0 contour as it is pitch-dependent, as com-
pared to the stress-time language (English), which had less F0 fluctua-
tions, and is stable for the most duration of the sentence. Loudness and
silences are also different in the two languages. These findings may serve
as important cues for EVC task.

Keywords: Emotional Voice Conversion · Emotional Speech Database
(ESD) · Narrowband Spectrogram · Fundamental Frequency · Teager
Energy Operator

1 Introduction

Communication, “the mode for transferring, sharing, and receiving information”,
which is performed by either verbal, non-verbal or visual means. Language, “a
structured system of communication”, conveyed through speech (spoken), writ-
ing or signs. In this paper, we focus on the spoken aspect of language. In this era,
where population and technology is increasing rapidly, communication among
and between them is essential. Language plays its role well for human interac-
tion as well as for human-machine interaction. Moreover, language is the engine
of cultivation and human speech is its most powerful form.

Voice Transformation (VT) aims at changing one or more aspects of a speech
signal while preserving its linguistic information. Voice Conversion (VC) aims at
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 295–306, 2023.
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changing source speaker’s voice in such a way that, it sounds as if the target
speaker has spoken that sentence [7]. In this context, Emotional Voice Conversion
(EVC) aims to convert the emotional state of the utterance, while preserving
the linguistic and speaker information [14]. This paper focuses on analysis of
emotions in Mandarin vs. English in the context of EVC as it has significant
application in human-machine interaction [9], and aids at developing emotional
Text-To-Speech (TTS).

The earlier work on EVC dates back to around 2003 [5], where neutral speech
was converted to other emotions, such as joy, anger, happiness, etc. For emotion
recognition, one of the prominent features is prosodic feature extraction, which
includes tone, rhythm, intonation, energy, duration, fundamental frequency (F0),
and loudness parameters [10]. For this paper, we use prosodic features, such as
energy, loudness, F0 to compare the emotions produced in Mandarin and English
languages. This feature is selected as Mandarin is known to be a tonal language
and English is a stress-timed language and thus, prosodic features will aid in its
analysis [12].

In this paper, we analyze five emotions, namely, anger, happy, neutral, sad,
and surprise in English and Mandarin language using narrowband spectrograms,
F0, Root Mean Square Energy (RMSE) and Zero-Crossing Rate (ZCR) to inves-
tigate prosodic parameters that are essential and more significant for emotional
voice conversion between languages. Observations indicate that RMS and ZCR
values can be used for EVC between languages.

The rest of the paper is organized as follows: In Sect. 2, we discuss the
proposed work. Section 3 gives the details of the experimental setup. Section 4
presents the analysis of the results. Section 5 concludes the paper along with
potential future research directions.

2 Proposed Work

Several languages in Southeast Asia and Africa are tonal languages, where pitch
or F0 differences are used to differentiate meanings of words or to convey gram-
matical distinctions. In contrast, English is a stress-timed language, i.e., in this
language, the tone is used to convey an attitude or change a statement to a
question, however, it does not affect the meaning of individual words [1].

In the baseline paper [13], EVC was performed in the same language, i.e.,
English neutral was converted to English sad or happy. The analysis presented in
this paper is useful for conversion between languages and between emotions. In
this paper, we analyze the loudness parameter using RMSE, voiced and unvoiced
components using ZCR, and F0 and its harmonics using narrowband spectro-
grams.

2.1 Spectrographic Analysis

Spectrograms are a visual representation of acoustic signals with time (X-axis),
frequency (Y-axis), and amplitude measures in parameter representation. Pauses
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and harmonic components are also seen. In this paper, we study the narrowband
spectrograms (as they give good frequency resolution, i.e., show pitch source
harmonics as horizontal striations, useful for tonal language analysis), and F0

of English and Mandarin sentences spoken in 5 emotions, namely, anger, happy,
neutral, sad, and surprise. The energy distribution, pitch source harmonics, and
silences are compared. Figures 1 and 2 shows the F0 changes, plot, and spectro-
grams of female speakers uttering the same sentence in English and Mandarin,
respectively.

2.2 Root Mean Square (RMS) Energy

RMS for speech signal is a crucial acoustic cue for target speech perception [11].
It is the squared signal value (amplitude), averaged over time, and its square
root is calculated. In particular,

RMSt =

√
√
√
√1/K

(t+1)(K−1)
∑

n=t.K

|s(n)2|, (1)

where s(n)2 is the energy of nth sample, then we sum the energies of all the
samples at time t . To get the mean, it is then divided by frame size, K.

This feature has significant applications in audio segmentation and music
genre classification. In this paper, we plot the RMS values of audio to find
the loudness measure. Amplitude envelope (AE) can also be used to measure
loudness, however, RMS is preferred as it is less sensitive to outliers than the
AE. In addition, it gives us perceived loudness, i.e., the way our ear perceives
loudness. In Fig. 3, each plot depicts the RMS values of the same sentences
spoken in English (yellow colored) and Mandarin (Red colored) by 2 female (1
for English and 1 for Mandarin) speakers in 5 emotions, namely, anger, happy,
neutral, sad, and surprise, respectively.

2.3 Zero-Crossing Rate (ZCR)

ZCR is “the rate at which a signal changes from positive to zero to negative or
from negative to zero to positive”. Historically, it is known to have a correlation
with formants, thus, helpful for speech perception [6]. Its expressed as-

ZCRt = (1/2).
(t+1)(K−1)

∑

n=t.K

|sgn(s(n)) − sgn(s(n + 1)), (2)

where s(n) and s(n+1) represent the amplitude at sample n and its consecutive
amplitude sample, respectively.

It is an useful measure to recognize percussive (random ZCR) vs. pitched
sounds (stable ZCR) [4]. For this work, we use ZCR for monotonic pitch esti-
mation and for analyzing the voiced and unvoiced segments of audio signal [3].
Figure 4 shows the ZCR plot for 2 females (1 for English and 1 for Mandarin)
speaking the same sentence in both languages with 5 emotions, namely, anger,
happy, neutral, sad, and surprise, respectively.
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Fig. 1. Time-domain signal, narrowband spectrograms, F0 contour of English sentences
by female speakers in 5 emotions: (a) anger, (b) happy, (c) neutral, (d) sad, and (e)
surprise.
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Fig. 2. Time-domain signal, narrowband spectrograms, F0 contour of Mandarin sen-
tences by female speakers in 5 emotions: (a) anger, (b) happy, (c) neutral, (d) sad, and
(e) surprise.
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Fig. 3. RMS for Mandarin vs. English for a sentences in (a) anger, (b) happy, (c)
neutral, (d) sad, and (e) surprise by female speakers.
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Fig. 4. ZCR for Mandarin vs. English for a sentences in [a] anger, [b] happy, [c] neutral,
[d] sad, and [e] surprise by female speakers. The box at the beginning of the plot
indicates the whisper sound —h— in “he” uttered.

2.4 Teager Energy Operator (TEO)

Speech is produced by non-linear, vortex airflow interaction in the vocal tract.
A stressful situation affects the muscle tension of the speaker which results in
an alteration of the airflow during the production of the sound [2]. This is cap-
tured via TEO, in particular, Ψ{x(n)}= x2(n) − x(n + 1)x(n − 1), where Ψ{}
is the Teager Energy Operator (TEO), and x(n) is the discrete-time signal.
TEO features are extensively used in distinguishing genuine vs. replay speech
in spoofing. In this paper, we use TEO to analyze the glottal closure impact,
i.e., bumps within the glottal cycle are studied [8]. Figures 5 and 6 have the
TEO profile of a female speaker uttering the same sentence with 5 emotions in
English and Mandarin, respectively, with the X-axis representing frames and the
Y-axis, amplitude. Figures 5 and 6 show that the TEO gives a running estimate
of the signal’s energy w.r.t. time. Further, the TEO profile seems to vary across
emotions for a particular language (here, either Mandarin or English).
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Fig. 5. TEO profile of a female speaker uttering an English sentence in [a] anger, [b]
happy, [c] neutral, [d] sad, and [e] surprise.

3 Experimental Results

3.1 Dataset Used

In this paper, we have used a recently developed ESD dataset [13]. It consists
of 350 parallel utterances spoken by 10 native English (5 female and 5 male),
and 10 native Mandarin speakers (5 female and 5 male) speakers. The emotions
captured in it are - anger, happy, neutral, sad, and surprise, whose audio is
sampled at 16 kHz. This dataset is chosen as it is a relatively large-scale, multi-
speaker and publicly available dataset with good recording conditions [14], thus,
making the analysis relatively accurate.

3.2 Experimental Results

All the results mentioned are generalized results which were taken and compared
with atleast 5 sentences for each emotion, but for the paper readability, results
using only 1 sentence (from female speakers) are given. The analysis for male
speakers was similar to that of female speakers, but the distinction between emo-
tions was clearer for females than males. The detailed analysis of spectrograms
(shown in Figs. 1 and 2) is presented in Fig. 7. We infer that high energy con-
tents are seen in all 5 emotions of Mandarin speech and thus, indicating that
Mandarin speech is usually louder in comparison to English speech. A significant
difference seen in spectrograms is that all English sentences with 5 emotions had
energy components present only at the higher frequency at the end of a sentence,
which wasn’t seen in any spectrograms for Mandarin. The width between the
two consecutive horizontal striations in the narrowband spectrogram gives pitch
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Fig. 6. TEO profile of a female speaker uttering a Mandarin sentence in [a] anger, [b]
happy, [c] neutral, [d] sad, and [e] surprise.

(the way the auditory system perceives frequency) information, which is higher
in Mandarin than in English. The silences were seen more in Mandarin than in
English.

The study of F0 contour is represented in the form of a boxplot (which gives
the spread or variance of F0) in Fig. 8. It is noted that neutral emotion has the
least spread in both languages and the highest spread is seen in emotions; surprise
and anger in English and Mandarin speech, respectively. Almost no outliers are
seen for Mandarin speech, i.e., there is not much difference between the F0 values
as compared to English. Another distinction seen is that the median values for all
emotions in Mandarin are higher than that in English. These conclude that the
F0 contours are at higher frequencies, and with wide fluctuations for Mandarin
speech.

In the RMS plots (Fig. 3), it is observed that all the emotional sentences spo-
ken in Mandarin has significant fluctuations in peaks compared to the English
statements. Anger and surprise emotions have similar peaks in both the lan-
guages. Neutral and sad sentences in English have almost no variations in peaks.
Happy in Mandarin has broader peaks. These results state that Mandarin sen-
tences are perceived louder (as have more energy content, as seen from spectro-
grams) than the corresponding English sentences.
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Fig. 7. Analysis of narrowband spectrograms for English vs. Mandarin emotions.

The ZCR plots shown in Fig. 4, give the idea on percussive vs. pitched sounds.
We can consider two extreme cases of spectral energy density, i.e., the low fre-
quency and high frequency regions. It is observed that ZCR peaks are less in
lower frequency regions and high in higher frequency regions of spectrograms.
ZCR peaks of Mandarin are less than that of English as tonal sounds are pitch-
dependent and have voiced speech as compared to English, which has unvoiced
and whisper elements (beginning of the sentence, as shown in Fig. 4 for the sen-
tence analyzed, and thus, proving that ZCR peaks are high for unvoiced sounds
in comparison to their voiced counterpart).

The TEO plots in Figs. 5 and 6 show that Mandarin sentences have higher
energy profiles (peaks reach higher amplitudes) than English sentences. This is
because a higher pitch leads to higher loudness and thus, higher amplitude.
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Fig. 8. Boxplot of F0 contour of female speaker uttering an [a] English and [b] Mandarin
sentence in [1] anger, [2] happy, [3] neutral, [4] sad, and [5] surprise.

4 Summary and Conclusion

In this study, we analyze a tonal language (Mandarin), and a stress-timed lan-
guage (English) using prosodic features, such as energy, F0, loudness, and TEO-
based features. Our analysis indicate, Mandarin language has higher F0 fluctua-
tions due to variations in pitch, are louder, and have higher energy profiles than
English language. Therefore, for EVC, RMS, and ZCR features can be used to
maintain the speaker’s identity. It would be interesting to analyze how RMS
and ZCR features would work if, replaced with F0 in the baseline paper [13] for
EVC. The study presented in this paper may help in analyzing the confusion
matrices that are obtained from the SER task. Future work includes using these
results in classifiers for performing EVC in the same and in multi-languages and
developing more datasets w.r.t. EVC.
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Abstract. The main objective of the audio deepfake detection system
is to find out the artifacts within the input speech caused by the speech
synthesis or voice conversion process. Recent trends in deepfake detec-
tion is to employ deep learning architectures in an end-to-end fashion to
discriminate between bonafide and spoof speech signals. In deep learn-
ing, activation functions play an important role in deciding whether the
neuron’s input to the network is relevant or not in the process of predic-
tion/classification. In this work, we propose to employ a Multiple Para-
metric Exponential Linear Unit (MPELU) activation function with the
Residual Network (ResNet) architecture. The aim of the MPELU acti-
vation function is to generalize and unify the rectified and exponential
linear units. Furthermore, we adopt an Attention Rectified Linear Unit
(AReLU) which through the addition of element-wise sign-based atten-
tion mechanism with a ReLU module focuses on the enhancement of pos-
itive elements and a suppression of negative ones in a data-adaptive man-
ner. The proposed frameworks was experimented on the logical access
(LA) task of ASVSpoof2019 dataset, and outperformed the systems using
the standard non-learnable and learnable activation functions.

Keywords: Audio deepfake detection · Activation function ·
MPELU · AReLU · ASVSpoof2019 · Logical access · ResNet

1 Introduction

In the past decade, attributed to the widespread deployment of smart devices,
automatic speaker verification (ASV) has become an essential technology for
user authentication. The ASV system takes the users speech as input and deter-
mines whether the user is enrolled to the system or not. In recent years, with the
advent of deep learning, the capabilities of computing systems have been revolu-
tionized, which led to a dramatic improvement in the speech synthesis and voice
conversion technologies. As a result of which modern text-to-speech synthesis
(TTS) and voice conversion (VC) techniques are capable of generating realistic
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fakes of human voices, also denoted as audio deepfakes or spoofs or spoofing
attacks. Though there are many ethical applications of this technology there is a
risk for its malicious use, e.g., cloning of a target speaker’s voice for the purpose
of (i) spreading misinformation (ii) creating false evidence (iii) gaining illegiti-
mate access to/fooling an ASV system. Reliable detection of audio deepfakes or
spoofing attacks can help mitigate such risks and is therefore an active area of
research.

In order to countermeasure these audio deepfakes, various research were con-
ducted to discriminate the synthetic speech samples from the genuine (bona
fide) samples. The main objective for building a reliable voice spoofing counter-
measure or audio deepfake detection system is to detect the artifacts from the
synthetic speech spectrum. To achieve this, many attempts were made to exploit
the techniques which have shown stable performance in the speaker recognition
task. In the case of logical access (LA) spoofing detection task the most effective
countermeasures are the frame-level acoustic features extracted at 10 ms inter-
vals and designed to detect artifacts in the spoofed speech. Previously, the stan-
dard Gaussian Mixture Model (GMM) classifier in combination with frame-level
acoustic [1,2,24,25,27,33,34] or deep features [3] was the most widely adopted
spoofing detection approach [20,27,31,34]. But the recent trends in audio deep-
fake detection is to employ deep learning architectures in an end-to-end fashion
on the top of raw signal/hand-crafted features to distinguish genuine speech from
spoof speech signals [6,16,20–22,26,32,36,37]. Frequency masking-based on the
fly data augmentation with the ResNet network using large margin cosine loss
(LMCL) was introduced in [6]. In [37], one class softmax loss with ResNet18
architecture was proposed. Feature genuinization based light CNN system was
presented in [36]. In order to improve generalization of anti-spoofing systems
to unseen test data, several variants of softmax loss were also adopted [6,37].
Transfer learning approach with a ResNet has also been explored for spoofing
detection task [26]. Recently, graph neural networks (GNNs) and RawNet have
also been adopted as the backbone network in the deepfake detection task and
achieved satisfactory performances [5,12,30,32]. Although these end-to-end sys-
tems outperformed the classical statistical-based spoofing systems (e.g., GMM,
i-vector), their results suggest that there is still more room for improvement.

In neural network-based problem solving, the activation functions (AFs) play
a very important role as it introduces non-linearity in the network and helps to
learn abstract & discriminative features through nonlinear transformations [8].
As the selection of an activation function can affect the ability of the neural net-
work to extract relevant information from the input data, diverse variants of the
conventional rectified linear unit (ReLU) functions were proposed. For exam-
ple, in [4], a trainable attention-based activation was introduced to efficiently
focus on the relevant regions of the feature map. In [13], an investigative study
on the effect of various AFs was presented and proposed to employ the acti-
vation ensemble to exploit the complementary information propagated through
different activation functions.
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In this work, with a view to boost end-to-end detection performance by
effectively capturing the artifacts pertinent to the deepfakes within the given
speech spectrogram, we propose to adopt a multiple parametric exponential
linear unit (MPELU) activation function (AF), which aims to generalize and
unify the rectified and exponential linear units AFs.

To evaluate the performance of the proposed scheme, we carry out a set of
experiments using the ASVSpoof 2019 logical access dataset. The experimental
results show that the MPELU-based end-to-end system outperforms the other
variants of AF-based systems.

The contributions of this paper are as follows:

– We propose to employ MPELU for improving the performance of the end-to-
end deepfake detection system.

– We also adopt an attentive activation function, more specifically attention
rectified linear unit (AReLU), which by means of attention mechanism can
help the countermeasure system to focus on the features related to the spoof-
ing artifacts.

– We carry out an investigative study on the influence of different activation
functions in the deepfake countermeasure task.

– We compare the performance of the proposed MPELU-based end-to-end
system with other widely used AF-based end-to-end and conventional
approaches.

– Although MPELU activation function was first proposed for computer vision
application in [17], from the best of our knowledge, this is the first attempt
on using the MPELU in speech processing applications, more specifically, for
audio deepfake detection task.

2 Our Proposed System

2.1 End-to-End Deepfake Detection System

Most deep learning based spoofing detection systems employ deep neural archi-
tectures, such as Residual Network (ResNet), on top of hand-crafted/learned
features for capturing more discriminative local descriptors which are then
aggregated to generate final fixed dimensional utterance-level embeddings. The
embeddings are then fed into a classifier which decides whether the input audio
is a deepfake attack or genuine. Conventionally, a two-stage approach was pop-
ularly adopted, where the classifier (e.g., support vector machine (SVM)) and
the embedding extraction network are trained separately. Recently, in order to
mutually optimize the decision hyperplane and the embedding feature space,
various end-to-end approaches [6,16,20–22,26,32,36,37] were proposed in the
past few years, where the neural classifier is trained jointly with the embedding
extraction network.

The proposed model also adopts the end-to-end framework for voice anti-
spoofing as depicted in Fig. 1, which is composed of 2 networks: an embedding
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Fig. 1. The general architecture of the ResNet-based end-to-end deepfake detection
system.

network and a classification network. For the embedding network, we experi-
mented with one TDNN (Time Delay Neural Network)-based and two ResNet-
based architectures, which have shown competitive performance in the speaker
verification and image classification tasks:

– TDNN: also known as the x-vector architecture, which is composed of 5
TDNN layers. More information on the architecture can be found in [28].

– ResNet-18: It is an 18 layers deep convolutional network, which is composed
of 4 residual blocks.

– SE-ResNet-18: a variant of the ResNet-18, where a squeeze-and-excitation
(SE) block [11] is applied at the end of each non-identity branch of residual
block to significantly decrease the computational cost of the system. More
precisely, we utilize the SE-ResNet-18, which is an 18 layers deep convolu-
tional network composed of 4 residual blocks. Table 1 presents a more detailed
network architecture of SE-ResNet-18.

To aggregate the frame-level output of the ResNet, an attention statistics
pooling layer is incorporated where the weighted first and second order (i.e.,
standard deviation) moments are pooled together across the temporal dimension
[6,20–22,37] to obtain an utterance-level representation. The pooled statistics
are then fed into a neural classifier, which consists of a fully-connected layer and
a 2-dimensional softmax layer, where each softmax node represents the bona fide
and deepfake classes, respectively.

The end-to-end system is trained via one-class softmax objective, which can
be formulated as [37]:

LOCS = − 1
N

N∑

i=1

log(1 + ek(myi
−Ŵ0ω̂i)(−1)yi ) (1)

where k is the scale factor, ωi ∈ RD and yi ∈ {0, 1} are the D-dimensional
embedding vector and label of the ith sample respectively. N is the mini-batch
size and myi

defines the compactness margin for class label yi. The larger is the
margin, the more compact the embeddings will be. W0 is the weight vector of
our target class embeddings. Both Ŵ0 and ω̂i are normalizations of W0 and ωi

respectively.
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Table 1. The weight configuration of each layer in the SE-ResNet-18 end-to-end deep-
fake detection system. In this table, ResBlock indicates the Residual Block component
in Fig. 1 and L is the length of the 60-dimensional input feature (e.g., LFCC) sequence.

Layer SE-ResNet-18 Output

Input - 1 × 60 × L

2D-Conv 9 × 9, 16, stride (3, 1) 16 × 18 × L

ResBlock

⎡
⎢⎢⎢⎢⎣

2D-Conv 3 × 3, 64

2D-Conv 3 × 3, 64

FC 64 × 4

FC 4 × 64

⎤
⎥⎥⎥⎥⎦
× 2, stride 1 64 × 18 × L

ResBlock

⎡
⎢⎢⎢⎢⎣

2D-Conv 3 × 3, 128

2D-Conv 3 × 3, 128

FC 128 × 8

FC 8 × 128

⎤
⎥⎥⎥⎥⎦
× 2, stride 2 128 × 9 × L

2

ResBlock

⎡
⎢⎢⎢⎢⎣

2D-Conv 3 × 3, 256

2D-Conv 3 × 3, 256

FC 256 × 16

FC 16 × 256

⎤
⎥⎥⎥⎥⎦
× 2, stride 2 256 × 5 × L

4

ResBlock

⎡
⎢⎢⎢⎢⎣

2D-Conv 3 × 3, 512

2D-Conv 3 × 3, 512

FC 512 × 32

FC 32 × 512

⎤
⎥⎥⎥⎥⎦
× 2, stride 2 512 × 3 × L

8

2D-Conv 3 × 3, 256, stride 1 256 × 1 × L
8

Pooling attentive statistics pooling 512

FC 512 × 256 256

Softmax 256 × 2 2

2.2 Multiple Parametric Exponential Linear Unit

One of the most popular activation functions is Rectified Linear Unit (ReLU)
[23], which is a piecewise-linear function that outputs zero for all negative inputs.
The standard ReLU activation function is formulated as:

fReLU (xi) =

{
xi if xi > 0
0 otherwise,

(2)

where xi is the input value. Since ReLU sets the same value (e.g., zero) to all
negative inputs This prevents the network to learn from negative input repre-
sentations and in a more extreme case, causes certain network parameters to be
deactivated during training. To overcome this problem, various ReLU variants
were proposed, where most of them attempt to relax the non-linear output of
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the ReLU function. The ELU (exponential linear unit) is one such variant that
utilizes an exponential function for the negative value and, is formulated as:

fELU (xi) =

{
xi if xi > 0
r(exi − 1) otherwise,

(3)

where r is a fixed parameter.
In this work, we propose to employ a new activation function, denoted as

Multiple Parametric ELU (MPELU), for audio deepfake detection that covers
the solution space of both the rectified and exponential linear units. MPELU is
a generalization of ELU and is expressed mathematically as:

fMPELU (xi) =

{
xi if xi > 0
a(ebxi − 1)) otherwise,

(4)

where a and b are learnable (channel shared) parameters, b is constrained to
be greater than zero, and i is the index of input x. By tweaking the value of
b MPELU can switch between the rectified and exponential linear units. More
specifically, if b is set to a small number e.g., b = 0.01, the negative part of
MPELU approximates to a linear function. Conversely, if b takes a large value
e.g., b = 1.0, the negative part of MPELU is a non-linear function. As depicted in
Fig. 2, the other activation functions can be special cases of MPELU, for example,
with a = 0, MPELU is reduced to ReLU. If a = 25.6302 and b = 0.01, MPELU
approximates to Parametric ReLU (PReLU); When a = b = 1, MPELU becomes
ELU. We can see that the flexible form of MPELU makes it cover the solution
space of its special cases, allowing it to obtain more powerful representation.

2.3 Attention Rectified Linear Unit (AReLU)

AReLU is a variant of the ReLU function, which employs the attention mecha-
nism to boost the contribution of relevant input features while suppressing the
irrelevant ones [4]. More specifically, the AReLU is a combination of the stan-
dard ReLU and the element-wise sign-based attention (ELSA). Given input xi,
which is the ith element of feature X, the AReLU is fomulated as follows:

fAReLU (xi) =fReLU (xi) + gatt(xi, α, β) (5)

=

{
C(α)xi if xi < 0
(1 + σ(β))xi otherwise,

(6)

where α and β are learnable scaling parameters, C is the clamping operation
which restricts the value to [0.01, 0.99], and σ is the sigmoid function. While
the β parameter amplifies the positive elements, the α parameter suppresses the
negative elements. Unlike the standard ReLU which has a fixed scaling param-
eters, since the parameters of AReLU are learned in a data-adaptive fashion, it
can effectively learn and emphasize the salient elements (e.g., artifacts caused
by the spoofing) for deepfake countermeasure.
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Fig. 2. Special cases of the MPELU activation function for different values of a & b.
If we set a = 0, MPELU is reduced to ReLU, if a = 25.6302 and b = 0.01, MPELU
approximates to Parametric ReLU (PReLU) and MPELU becomes ELU when a = b =
1.

In order to enable the end-to-end spoofing detection system to efficiently
capture the artifacts within the input spectrogram, we used AReLU (or MPELU)
as the very first activation of the frame-level network, which is placed right
after the first 2D-Conv layer. Moreover, to ensure that the extracted embedding
reflects the relevant elements of the frame-level representations, we also used
AReLU (or MPELU) as the last activation of the frame-level network, which is
prior to the pooling layer. In our experiments, we have used shared AReLU (or
MPELU) parameters for the first and last layers.

3 Some Variants of ReLU Activation Function

In order to compare the performance of MPELU- amd AReLU-based end-to-end
deepfake detection systems we consider ReLU, ELU, several variants of ReLU
activation functions.

3.1 Leaky Rectified Linear Unit (LeakyReLU)

The LeakyReLU activation function modified the standard ReLU formulation by
introducing a small slope to the negative input. The formulation for LeakyReLU
is as follows [18]:

fLeakyReLU (xi) =

{
xi if xi > 0
γxi otherwise,

(7)

where γ is a fixed parameter. In this work, we set γ = 0.2.
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3.2 Learnable Leaky Rectified Linear Unit (LLeakyReLU)

The LLeakyReLU activation function is a variant of the LeakyReLU, but with
a learnable scaling parameter [19].

fLLeakyReLU (xi) =

{
hxi if xi > 0
0.1hxi otherwise,

(8)

where h is a learnable parameter.

3.3 Randomized Leaky Rectified Linear Units (RReLU)

The RReLU is defined similarly to the LeakyReLU as follows:

fRReLU (xi) =

{
xi if xi > 0
aixi otherwise,

(9)

where ai is randomly sampled from unif(l, u) while training, and l and u is
fixed parameters. When testing, the ai is set to the mean of unif(l, u), which is
l+u
2 . The initial value for l, and u were set to 0.125, 0.333, respectively in our

experiments.

3.4 Parametric Rectified Linear Unit (PReLU)

The PReLU activation function is formulated similarly to the LeakyReLU, but
uses a learnable parameter for the negative parameter. PReLU is expressed
mathematically as [9]:

fPReLU (xi) =

{
xi if xi > 0
ξixi otherwise,

(10)

where ξi is a learnable parameter. As an initial value, we set ξi = 0.25.

3.5 Parametric Exponential Linear Unit (PELU)

The PELU activation function is a variant of the ELU, but with learnable param-
eters [35].

fPELU (xi) =

{
k
v xi if xi > 0
k(e

xi
v − 1) otherwise,

(11)

where k and v are learnable parameters.

3.6 Scaled Exponential Linear Unit (SELU)

The SELU activation function is similar to ELU, that induce self-normalization
with a scaling factor [15].

fSELU (xi) = c ·
{

xi if xi > 0
d(exi − 1) otherwise,

(12)

where c and d are fixed parameters.
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3.7 Gaussian Error Linear Unit (GELU)

Unlike the activation functions mentioned above, the GELU is not based on
the ReLU formulation where different functions are applied to the positive and
degative input values. Instead, motivated by the success of stochastic regularizers
(e.g., layer noise, dropout [29]), GELU adopts the cumulative distribution func-
tion for Gaussian distribution, which is a non-convex, non-monotonic function
[10].

fGELU (xi) = xiΦ(xi) = 0.5xi(1 + tanh(

√
2
π

(xi + 0.44715x3
i ))) (13)

where tanh is the hyperbolic tangent function . Unlike the ReLU-based functions,
the GELU function has curvature at all points including the positive and negative
domain. The GELU can be thought of as a smoother ReLU.

4 Experiments

4.1 Dataset

For training and evaluating the experimented systems, the ASVspoof 2019 chal-
lenge dataset was used, which provides a common framework with a standard
corpus for conducting spoofing detection research on LA attacks. The LA dataset
includes bonafide and spoof speech signals generated using various state-of-the-
art voice conversion and speech synthesis algorithms. A summary of the LA
corpora in terms of training (Train), development (Dev) and evaluation (Eval)
partitions and number of recordings is presented in Table 2. The development and
evaluation subsets constitute the seen and unseen test sets in terms of spoofing
attacks. In our experiments, we have used the development subset as validation
set for tuning the parameters of the systems and evaluation subset as our test set
for reporting results. For more details about the corpora, the interested readers
are referred to [7].

Table 2. Summary of ASVspoof2019 logical Access (LA) corpora in terms of training
(Train), development (Dev) and evaluation (Eval) partitions and number of recordings.

Partition #Speakers #Recordings

Bona fide Spoof

Training 20 2,580 22,800

Development 20 2,548 22,296

Evaluation 67 7,355 63,882
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4.2 Experimental Setup

As local frame-level hand-crafted features we use 60-dimensional (including the
delta and double delta coefficients) linear frequency cepstral coefficients (LFCC)
extracted using 25ms analysis window over a frame shift of 10ms. No data aug-
mentation was performed in our experiments.

For training all the experimented systems, balanced mini-batches of size 64
samples were used. The ADAM optimizer was used with initial learning rate of
0.0003 and exponential learning rate decay with rate of 0.5 was applied [21,37].

For comparing the performance of different systems, the official evaluation
metrics of ASVspoof2019 challenge, equal error rate (EER) and minimum tan-
dem detection cost function (min-tDCF) [14], were used. The lower the values
of EER and min-tDCF the better performance is attained. The ASV scores
provided by the challenge organizer were used for computing min-tDCF.

4.3 Experimental Results

In the case of trainable activation functions, proper initialization of parameters
ensure the convergence of the model as well as the performance improvement.
In Table 3, we present the results of MPELU-based deepfake detection systems
for different initial values of parameters a & b. It is observed from Table 3 that
MPELU achieved optimal performance when the parameters were initialized
with a = 3 & b = 1.

Performance with Different Frame-Level Networks. In this experiment,
we compare the deepfake detection performance of the TDNN, ResNet-18 and
SE-ResNet-18-based end-to-end systems with ReLU activation. As presented in
Table 4, it could be seen that in all the experimented ReLU-based systems, the
SE-ResNet-18 architecture outperformed the TDNN & ResNet-18 frame-level
networks both in terms of EER & min-tDCF metrics. Again, from Table 4, it
is evident that the MPELU & AReLU achieved better performances than the
standard ReLU activation in terms of EER and min-tDCF. Especially in the SE-
ResNet-18 architecture, the usage of AReLU achieved a relative improvement of

Table 3. The experimental results of the SE-ResNet-18-based end-to-end systems with
MPELU activation function on the ASVSpoof2019 Logical Access evaluation set for
different initial values of parameters a & b. All results are reported in respect of EER
and min-tDCF evaluation metrics.

Initialization EER [%] min-tDCF

a = 0.25, b = 1 2.5154 0.0625

a = 2.5, b = 1 2.8114 0.0657

a = 3, b = 1 2.0957 0.0506

a = 4, b = 1 2.3394 0.0643



Audio DeepFake Detection 317

Table 4. The experimental results with ReLU activation function using TDNN,
ResNet-18 and SE-ResNet-18 frame-level networks. Comparison of ReLU-, MPELU-,
and AReLU activation functions-based deepfake detection performances employing SE-
ResNet-18 frame-level network. All results are reported on the ASVSpoof2019 Logical
Access (LA) evaluation set in terms of EER and min-tDCF.

Frame-level network Activation EER [%] min-tDCF

TDNN ReLU 5.6559 0.1315

ResNet-18 ReLU 3.1420 0.0735

SE-ResNet-18 ReLU 3.0589 0.0718

SE-ResNet-18 AReLU 2.3770 0.0586

SE-ResNet-18 MPELU 2.0957 0.0506

Table 5. The experimental results of the SE-ResNet-18-based end-to-end systems with
different activation functions on the ASVSpoof2019 Logical Access evaluation set with
regards to the EER and min-tDCF metrics.

Activation EER [%] min-tDCF

LFCC-GMM [7] 9.5700 0.2366

CQCC-GMM [7] 8.0900 0.2116

ReLU 2.9098 0.0763

LeakyReLU 2.7999 0.0696

RReLU 3.2104 0.0790

ELU 4.7026 0.0980

SELU 2.7045 0.0656

LLeakyReLU 2.4433 0.0536

PReLU 2.6515 0.0663

PELU 2.5407 0.0635

AReLU 2.3770 0.0586

MPELU 2.0957 0.0506

GELU 2.3525 0.0539

18.38% over the ReLU, in terms of min-tDCF. The MPELU activation demon-
strated the best spoofing countermeasure performance with a relative improve-
ment of 29.5% and 13.6% over the ReLU and AReLU activations, respectively
in terms of min-tDCF metric.

Since the performance of an audio deepfake detection system is highly depen-
dent on its ability to detect the artifacts within the speech spectrogram, we could
safely assume that the MPELU & AReLU can enable the countermeasure system
to focus more on the relevant features.
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Fig. 3. Shapes of different activation functions considered in this work.

Comparison to Other Activation Functions. In Fig. 3 we present a com-
parison of the shapes of other the activation functions with the proposed the
MPELU & AReLU for end-to-end deepfake detection task. As depicted in Fig. 3,
ReLU suppresses the negative inputs which may lead to a significant portion of
the neural network doing nothing. As a results, ReLU hinders the network to
learn relevant features from negative input representations. The other activa-
tions of Fig. 3, on the other hand, focuses on learning discriminative features not
only for positive but also negative input representations.

Table 5 shows the EER and min-tDCF results of the experimented systems
with MPELU, AReLU, other ReLU variants and GELU activations as described
in Sects. 2 and 3. As depicted in the results, it could be seen that 8 variants
of the ReLU (i.e., LeakyReLU, LLeakyReLU, PReLU, AReLU, PELU, SELU,
MPELU and GELU) were able to outperform the standard ReLU activation.
This indicates that utilizing the potential useful information from the negative
region of the inputs can help the network to focus more on the relevant features
regarding the spoofing detection task from the input feature. However, as seen
in the ELU and RReLU results, blindly exploiting the negative elements with
no knowledge on the dataset does not always guarantee superior performance.

Another interesting point to notice from the results is that the learnable acti-
vation functions (i.e., LLeakyReLU, PReLU, AReLU, PELU, MPELU) were gen-
erally able to perform better than the fixed activations (i.e., ReLU, LeakyReLU,
RReLU, ELU, SELU). This may be attributed to the fact that the learnable
activation functions are more capable of suppressing the nuisance features as
their scaling parameters are optimized in a data-adaptive fashion.

Among the learnable activations (i.e., LLeakyReLU, PReLU, AReLU, PELU,
MPELU), the MPELU achieved the best performance, which outperformed the
PReLU, PELU, AReLU and LLeakyReLU with a relative improvement of 23.7%,
20.3%, 13.7% and 5.6% respectively in terms of min-tDCF. Although the PReLU
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suppresses the negative elements similarly to the AReLU, it does not attempt
to amplify the relevant features. Therefore, the AReLU may be more suited to
focus on the artifacts caused by the spoofing process, as it can emphasize the
positive elements via learnable scaling parameter β.

However, interestingly, the 2nd best performance was achieved by the GELU
activation function, even outperforming all the considered learnable activation
functions except the MPELU. The GELU achieved a relative improvement of
19.15% over the standard ReLU in terms of EER. This indicates that the cur-
vature and non-monoticity of the GELU activation can allow the end-to-end
system to capture the complicated deepfake artifacts within the input speech
pattern.

5 Conclusion

The activation function plays a crucial role for learning representative features
in deep learning-based problem solving. In this paper, we proposed the use of
Multiple Parametric ELU (MPELU) & Attention ReLU (AReLU) activation
functions for the end-to-end deepfake countermeasure system. The MPELU,
with proper setting of the learnable parameters, can become the rectified or
exponential linear units and can combine their benefits. The AReLU, on the
other hand, with help of element-wise sign-based attention mechanism focuses
on the detection of the artifacts created by the deepfakes generation process while
suppressing the irrelevant features. In order to evaluate the proposed MPELU-
and AReLU-based end-to-end frameworks, we conducted several experiments
on the ASVSpoof2019 Challenge logical access dataset. Experimental results
showed that the MPELU, AReLU and GELU can bring benefits to the deepfake
detection performance and MPELU provided the best results over all considered
activation functions.
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Abstract. Automatic syllable stress detection is helpful in assessing
L2 learners’ pronunciation. In this work, for stress detection, we pro-
pose a representation learning framework by jointly optimizing VAE and
DNN. The obtained representations from the proposed VAE plus DNN
framework are compared with the implicit representations learned from
DNN-based stress detection. Further, we compare the obtained repre-
sentations from VAE plus DNN with those obtained from autoencoder
(AE) plus DNN, and sparse-autoencoder (SAE) plus DNN considering
with/without implicit representations from DNN. We perform the exper-
iments on the ISLE corpus consisting of English utterances from German
and Italian native speakers. We observe that the detection performance
with the learned representations from VAE plus DNN is significantly
better than that with the state-of-the-art method without any represen-
tation learning with the highest improvement of 2.2%, 5.1%, and 1.4%
under matched, combined, and cross scenarios, respectively.

Keywords: Syllable stress detection · Joint representation learning ·
Computer-assisted language learning

1 Introduction

The technological advancements showed their impact on teaching with the devel-
opment of different computer-assisted language learning (CALL) based modules
[3,14]. In recent years, applications related to CALL have shown benefits for sec-
ond language learning. The reasons for the benefits include, 1) flexibility in its
availability, 2) low cost of usage, and 3) ability to provide personalized learning
[24]. However, developing robust modules for CALL is a challenging task, mainly
due to the variabilities in L2 learners’ native languages and accents. One of the
many different aspects that the CALL applications have been focusing on is the
detection and diagnosis of prosodic errors such as stress/prominence and into-
nation [9,16,31] errors made by the L2 learners in their pronunciation. Syllable
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 322–334, 2023.
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stress plays a critical role in communication to convey the meaning and intent
of the message. Also, correct syllable stress placements in a word convey correct
pronunciation. In this work, we consider the problem of automatic syllable stress
detection which could be useful for downstream tasks such as CALL systems.

Syllable stress is referred to as the emphasis on a particular syllable in a word.
Stressed syllables appear more prominent than unstressed syllables. In [1,5,27],
it is stated that stress is mirrored through the changes in intensity, pitch, and
duration. In [7], it is defined that the stressed syllable can be longer in relative
duration and with greater physical intensity than the unstressed syllables but
pitch movement does not always contribute to stress. Also in the literature, there
is no strong agreement on the definition of stress in terms of acoustics for non-
native English learners. Aoyama et al. [1] hypothesized that Japanese speakers
rely more on differences in F0 compare to intensity and duration to indicate
stress in English. Because of the native language influence, the production and
perception of L2 will differ which in turn affects the acoustic parameters respon-
sible for stress perception [15]. It highlights the need for a clearer and more
consistent representation of stress.

Typically, automatic syllable stress detection has a feature extraction step
followed by a machine learning (ML) based classification step. In the literature,
various methods were proposed for better performance at both steps. At the
model level, different ML algorithms like support vector machines (SVM), deep
neural networks (DNN), convolutional neural networks (CNN), and attention
networks were used for stress detection. Johnson et al. [10] used five different
machine learning classifiers namely, neural networks, SVM, decision tree, bag-
ging, and boosting algorithms for automatic detection of Brazil’s prominence
syllables with seven sets of different acoustic features embedding with variations
in intensity, pitch, and duration. Arnold et al. [2] used random forests for promi-
nence detection in the German language. Tian et al. [30] used an attention-based
neural network and bidirectional LSTMs for stress detection problem using Mel
frequency cepstral coefficients (MFCCs), energy, and pitch features. Ruan et al.
[22] performed stress detection using a transformer network. Further, there were
attempts on non-native speech in French, Spanish, and Mandarin with SVM for
stress detection using acoustic and context-based features [4,8]. The above works
are based on different models and features. Also, there are works [27,31] that
focused only on feature level to extract the best features that can capture the
syllable prominence.

Neural networks are often seen as a black box and it is difficult to interpret the
kind of representation that the network is learning. Neural network architectures
like DNN, CNN, and LSTM involves complex, nonlinear, and structured depen-
dencies and they have been gaining popularity in different speech applications
with their better performance over traditional ML methods. In automatic clas-
sification tasks, these neural networks learn representations implicitly, referred
to as implicit representations, of the given input and map it to a specific class
by learning weights. Even though these networks are known for learning task-
specific implicit representations, they are sensitive to factors like variation and
entanglement [6] in the data which can’t be eliminated in real data scenarios.
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One of the ways to overcome these factors is by learning a good representation of
the data explicitly, prior to the classification task. To resolve this, AEs [23] were
proposed and used in several applications for learning representations explicitly
[28], referred to as explicit representations. But, AEs are not consistent in gen-
erating disentangled representation and regularized latent space. By addressing
these issues, variational autoencoders (VAE) [13] gained attention in the field
of computer vision [17] and speech processing applications [18,25] to learn the
disentangled explicit representation of the data.

Obtaining combined representations by incorporating both the explicit and
implicit representations through a single framework would benefit the stress detec-
tion task. However, to the best of our knowledge, there is no work that learns the
combined as well as the explicit representations from the acoustic features for the
stress detection task. To obtain combined (explicit and implicit) representations,
we propose to optimize VAE and DNN in a joint learning framework.

In this work, we analyze the representations in a task-specific manner using
acoustic and context-based features by modelling in two ways. First, we con-
sider a DNN which implicitly learns representation from state-of-the-art acoustic
and context-based features and performs classification. Second, we use the pro-
posed representation learning framework jointly with VAE and DNN to obtain
effective explicit and implicit representations for the stress detection task. Fur-
ther, we analyze the effectiveness of the jointly learned representations obtained
with VAEs compare to those obtained with other autoencoders namely, simple
autoencoder (AE), and sparse autoencoder (SAE). We perform experiments on
the ISLE corpus which consists of polysyllabic English words uttered by non-
native speakers of German, and Italian. We conduct the experiments in three
scenarios: 1) matched: train and test data are from the same language, 2) com-
bined: train data is from both the speakers’ but tested on each of them sepa-
rately, and 3) cross: trained with German and tested on Italian, and vice-versa.
The jointly learned representations from VAE outperform the state-of-the-art
method (without any representation learning) and implicit representations from
DNN for stress detection. We found an absolute improvement in the classifica-
tion accuracies by 2.2% & 1.2%, 5.1% & 1.1%, and 1.4% & 1.1% on German &
Italian under matched, combined, and cross scenarios, respectively.

Table 1. Details of train and test splits of GER and ITA showing the number of
stressed and unstressed syllables.

Train Test

#Stressed #Unstressed #Stressed #Unstressed

GER 3076 3905 2756 3492

ITA 4408 5854 2148 2754
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2 Database

For the experiments in this work, we consider ISLE [20] corpus. From this cor-
pus, we consider 7834 speech utterances from 46 non-native speakers learning
English where each speaker uttered 160 sentences following the work [31]. Out
of 46 speakers, 23 are German (GER), and 23 are Italian (ITA). The entire audio
was phonetically annotated by a team of five linguists to reflect the speakers’ pro-
nunciation. Using the automatic force alignment process, each utterance is pho-
netically aligned. We use P2TK [26], syllabification software to obtain syllable
transcriptions from the phone transcriptions. From the syllable transcriptions,
we obtain the aligned syllable boundaries using aligned phone boundaries. Sylla-
ble stress markings were also manually labeled while ensuring only one stressed
syllable for each word. Labelling resulted in a total of 48868 syllables as stressed
and 16693 syllables as unstressed. For the experiments, we consider data con-
taining all polysyllabic words which result 12388 stressed and 16005 unstressed
syllables. Train and test splits of both GER and ITA are done by balancing the
speakers’ nativity, age, sex, and proficiency [20]. Table 1 shows the details of the
train test splits considered in the experiments.

Fig. 1. Block diagrams of AE, SAE, and VAE.

3 Methodology

In this work, we consider VAE to learn the representations from the input fea-
tures for the stress detection task. The VAEs are part of the autoencoder family,
which includes AE, and SAE. In this section, we first briefly review AE, SAE,
and VAE networks and then describe the framework of joint learning with VAE
and DNN for syllable stress detection task.

3.1 Simple Autoencoder (AE):

Figure 1(a) illustrates the basic architecture of a simple autoencoder. It consists of
an encoder and a decoder. The encoder encodes the d dimensional input feature
vector X into a low dimensional latent vector and the decoder decodes the cor-
responding feature vector X̂ from the latent vector. The entire encoder-decoder
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architecture is trained on the loss function which encourages the model to recon-
struct the input from the latent vector at the output. Equation 1 shows the AE loss
function, which is the mean square error between the encoder input and decoder
output.

AE loss = (X − X̂)2 (1)

3.2 Sparse Autoencoder (SAE):

The autoencoders are usually prone to noise and learn more redundant informa-
tion. In order to overcome this, sparse autoencoders were proposed. The sparse
autoencoder architecture is the same as the autoencoder in Fig. 1(a) which has
an encoder and decoder network. However, the loss function varies from AEs to
SAEs. The SAE loss function includes a regularizer besides MSE loss in AE for
penalizing the redundant information learning. The regularizer penalizes unnec-
essary nodes and activates selective nodes in the hidden layers of the encoder and
decoder to avoid learning redundant information. Equation 2 shows the SAE loss
function, in which the regularizer cost can be Lp norm (p=1 or 2) or Kullback-
Leibler (KL) - divergence on the parameters of encoder and decoder networks.

SAE loss = (X − X̂)2 + regularizer (2)

3.3 Variational Autoencoder (VAE):

Figure 1(b) illustrates the architecture of VAE. In VAE, for a given input vector
X, unlike a fixed latent vector in AE and SAE encoder, qθ(z|X) encodes the input
feature vector to a latent vector space with a predefined random distribution
(p(z)), typically a Gaussian density function with the mean μ and standard
deviation σ. The decoder has two steps, the first step randomly samples the latent
vectors z from the encoded latent space distribution using a reparametrization
trick that uses unit normal Gaussian distribution, z = μ+ε·σ, where ε ∼ N (0, I).
The second step decodes the input feature vector X̂ from the latent vector z.
Equation 3 shows the loss function for VAE, which is defined considering two
objectives. 1) Reconstructing the input (MSE), 2) Constraining the latent space
to Gaussian distribution with KL-divergence. With this formulation, VAEs have
shown great success in the field of computer vision [11]. Further, these have
gained attention in speech processing analysis requiring latent representation
learning. Thus, we believe the learned representations from the VAE could be
robust for the stress detection task.

V AE loss = (X − X̂)2 + KL(qθ(z|X)||p(z)) (3)

3.4 Joint Learning with VAE and DNN

Figure 2 illustrates the block diagram of the joint learning with VAE and DNN
for syllable stress detection1. It has two flows, the first one is training flow
1 https://github.com/Prasanth-Sai-Boyina/Syllable stress detection.

https://github.com/Prasanth-Sai-Boyina/Syllable_stress_detection
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Fig. 2. Block diagram of joint learning approach.

and the second one is testing/inference flow. The two steps associated with the
first two blocks are common for both training and testing flows. The first step
obtains the syllable segments for a given speech utterance considering respective
syllable transcriptions and their aligned boundaries. The second step computes
input features for both training and testing. During training, we feed the input
features to the VAE to learn the latent representations. The representations are
learned by jointly training the VAE and the DNN classifier, which take latent
representation and input features together (shown in the figure with blue lines)
as input and stress markings (stressed and unstressed) as the output.

This joint training distinguishes our work from the typical training considered
in the VAE. Equation 4 shows the loss function for the joint learning approach,
which is defined considering two terms. 1) VAE loss consisting of MSE and
KL-divergence, 2) Cross entropy (CE) loss between the predicted label (Ŷ ) and
ground truth (Y ). λ1 and λ2 are the weight parameters. We hypothesize that
by jointly optimizing the loss functions of VAE and DNN, we can learn the
task-specific representations that would be robust for the detection task.

Joint loss = λ1(V AE loss) + λ2(CE(Y, Ŷ )) (4)

These representations consist of 1) representations that are explicit to DNN
i.e. the latent representations learned by VAE, and 2) representations that are
implicitly learned by DNN. Thus, we consider the proposed approach uses both
explicit and implicit representations for the detection task. On the other hand,
the learned latent representations are considered as explicit to the DNN when
VAE and DNN are jointly trained without the concatenation step shown in
Fig. 2.
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After training VAE and DNN jointly, we extract the latent representations
for the test data from the trained encoder, as shown in the inference block of
the figure. We then use latent representation along with the input features as
input (or only latent representation) to detect the syllable stress using DNN and
SVM classifiers separately. The detected stress markings are post-processed to
ensure that each polysyllabic word has only one stressed syllable following the
work proposed by Yarra et al. [32].

4 Experimental Setup

In this study, both GER and ITA speakers’ data is split into two non-overlapping
sets namely, train and test sets. For the train set, following the previous work
[31], we consider 1st-12th & 1st-13th speakers data and 13th-23rd & 14th-23rd
speakers data for test set respectively for GER, and ITA [9]. Table 1 presents the
details of syllable count in train and test conditions for both GER and ITA. We
consider the state-of-the-art 19-dim acoustic-based features along with 19-dim
binary features representing context dependencies following the work by Yarra et
al. [32]. We consider their method, which uses an SVM classifier in the detection
task as the baseline. We perform experiments in a 5-fold cross-validation setup
where the train set is equally split into five groups, and the number of stressed
and unstressed syllables are similar across five groups. In each fold, we use four
sets for training, and one set for validation following a round-robin fashion. We
normalize the training and testing set with the mean and standard deviation of
the vectors obtained from the training set.

Architecture Details: The approach that we consider for representation learn-
ing jointly with VAE and DNN and classification with DNN/SVM is referred to
as VAE+classifer (x + y; x represents the autoencoder used for learning task-
specific representations jointly with DNN, y represents the classifier in the test
time, either DNN or SVM that is used for classification with the learned represen-
tations from x). In the proposed approach, along with the VAE, we analyse the
latent representations learned with simple AE, and SAE jointly with DNN and
the corresponding networks are referred to as AE+classifer, and SAE+classifer,
respectively. The DNN model in each of these consists of 8 hidden layers. We
consider Relu [21] as activation function for the hidden layers and Adam [12] as
optimizer. Binary cross-entropy is the loss function in DNN. AE and SAE con-
sists of 2 hidden layers in encoder and decoder with Relu activation function. In
SAE, we use L1 regularizer in one of the hidden layers of encoder. VAE consists
of 1 hidden layer each in encoder and decoder with Relu activation function. All
the DNN, VAE, AE, and SAE parameters like number of layers, and number of
nodes in each layer are optimal and we choose them by maximizing the perfor-
mance on the validation set. The optimal values of the parameters λ1 and λ2 in
joint loss are found to be 0.53 and 0.47, respectively. For the SVM, we consider
radial basis kernel and the parameter C by optimizing on the validation set.
We consider an average of classification accuracies on the test set obtained from
five training folds as a performance metric. We perform experiments in three
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different scenarios. 1) matched: We train with GER & ITA train sets and test
on the GER & ITA test sets, respectively, 2) combined: We train with pooled
data of GER and ITA, and test on GER and ITA test sets separately, and 3)
cross: We train with GER(ITA) train set and test on ITA(GER) test set.

5 Results and Discussion

We analyze the learned representations – 1) both explicit and implicit, 2)
implicit, 3) explicit, with the accuracies shown in Table 2 and Fig. 4. Table 2
reports the average classification accuracies with (in brackets) and without post-
processing obtained from baseline, DNN, VAE+DNN, and VAE+SVM on GER
and ITA with acoustic (A) and acoustic plus context features (A+C) under
all three scenarios. The results with VAE+DNN indicates the effectiveness of
explicit and implicit representations combination. The results with DNN indi-
cate the effectiveness of implicit representations. The explicit representations are
analyzed with Fig. 4 by computing the accuracies without performing concate-
nation in Fig. 2 during testing/inference.

5.1 With Explicit and Implicit and Implicit Representations

Under Matched Scenario: From Table 2 under matched scenario, it is
observed that in all the cases the accuracies obtained from VAE+DNN higher
than those from baseline, DNN, and VAE+SVM with and without postprocess-
ing. The highest improvements are found to be 2.2% & 1.2% and 1.9% & 1.4% on
GER & ITA considering acoustic and acoustic plus context features, respectively.
This indicates the benefit of both explicit and implicit representation compared
to baseline (without any representations) and DNN (only with implicit repre-
sentations). Further, the higher accuracies with DNN over baseline indicate the
benefit of implicit representations. The higher accuracies with VAE+DNN com-
pared to VAE+SVM indicate the effectiveness of implicit representations from
DNN over SVM. The higher accuracies with the acoustic plus context features
compared to acoustic features with the representation learning approach are con-
sistent with the findings from the literature [27,29,32]. Altogether supports the
benefit of the representation learning in stress detection task.

Under Combined Scenario: The comparisons made under matched scenario
across baseline, DNN, VAE+DNN, and VAE+SVM are consistent under com-
bined scenario also. From the table, the highest accuracies in GER and ITA
are found in the combined scenario and those are 94.1% and 94.2%, respec-
tively, obtained from VAE+DNN considering acoustic plus context features
with postprocessing. Further, while comparing the accuracies between matched
and combined scenarios, the accuracies are higher under combined than those
under matched with VAE+DNN and DNN but not in all cases of baseline and
VAE+SVM. Both these together suggest that the combined scenario has an
advantage for the stress detection task compared to the matched scenario and
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Table 2. Classification accuracies with (without) postprocessing considering acoustic
(A) and acoustic plus context (A+C) features under three different scenarios.

Test
data

Train
scenario

SVM DNN VAE+DNN VAE+SVM

A A+C A A+C A A+C A A+C

GER Matched 83.5
(80.3)

92.3
(88.7)

84.6
(81.1)

92.6
(88.3)

85.7
(82.1)

93.5
(90.4)

84.5
(81.3)

92.4
(89.1)

Combined 83.2
(80.5)

89
(85.1)

84.1
(81.1)

92.7
(89.1)

85.4
(82)

94.1
(90.9)

84.6
(81.6)

92.3
(89.5)

Cross 80.5
(77.7)

88.2
(84.5)

80.2
(77.4)

88.3
(84.5)

80.9
(78.1)

89.6
(85.6)

80.7
(78.5)

87.5
(83.6)

ITA Matched 82.7
(80.5)

91.5
(88.2)

82.8
(81.1)

91.7
(87.7)

84.6
(82.3)

92.9
(89.5)

83.7
(81.4)

91.3
(88.4)

Combined 83.4
(81)

93
(89.8)

83.8
(81.6)

93.3
(89.2)

85.4
(82.6)

94.2
(90.6)

84.5
(82.2)

92.6
(89.7)

Cross 82.1
(79.3)

90.7
(86.6)

82.7
(79.4)

90.9
(86.2)

83.6
(80)

91.8
(86.8)

81.9
(79)

87.6
(84)

shows that VAE+DNN and DNN utilize the extra data in the stress detection
task whereas baseline and VAE+SVM failed to do so.

Under Cross Scenario: From Table 2, it is observed that there is a drop in
accuracies under cross scenario compared to those under matched scenario in
baseline, DNN, VAE+DNN, and VAE+SVM. This could be due to the mis-
match in the nativity. But the VAE+DNN is performing better over the base-
line, and DNN in GER, and ITA in all the cases considering both with and
without postprocessing. This indicates that the explicit and implicit representa-
tions learned with VAE+DNN could be independent of speakers’ nativity and
effective in learning the stress detection task-specific cues through the repre-
sentations. From all the above comparisons, the significant improvements with
the VAE+DNN over baseline, DNN, and VAE+SVM among all three scenar-
ios indicate the robustness of the explicit and implicit representations for stress
detection.

Fig. 3. t-SNE visualizations of learned representations under three approaches. • Class
0, • Class 1.
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5.2 With Explicit Representations

Representations can be learned through different types of autoencoders. In this
work, we consider VAE due to its effectiveness in learning representations. In
order to analyze the same, we also compute the accuracies with the repre-
sentations learned from other types – AE and SAE. We perform the analysis
considering only explicit representations (without concatenation in Fig. 2) and
comparing them with DNN and the baseline. The accuracies obtained from the
autoencoders’ (AE, SAE, and VAE) explicit representations and those from DNN
and the baseline have similar trend across both GER and ITA, so for better read-
ability, we present the accuracies averaged across GER and ITA.

Fig. 4. Comparison of average classification accuracies obtained from explicit repre-
sentations learned with AE, SAE, and VAE using classifier as SVM (first row) and
DNN (second row) separately.

Figure 4 presents the average classification accuracies considering acoustic,
and acoustic plus context features under all three scenarios with and without
postprocessing. Each bar height represents average classification accuracy. The
first and second rows correspond to the classification accuracies considering the
test classifier as SVM, and DNN, respectively. From the figure, we observe that
acoustic plus context features are significantly better than acoustic features with,
and without postprocessing. From the first row, where the classifier is SVM, it is
observed that classification with representation learning approaches (AE, SAE,
and VAE) are higher than the baseline in majority of the cases. And there
is an increasing trend in the performance among AE+SVM, SAE+SVM, and
VAE+SVM in 3 out of 4 cases except in the cross scenarios. This indicates that
the representations learned from VAE are comparable to and better than the
other autoencoder types. On the other hand, a similar trend among the autoen-
coders is not consistent in the second row, where the classifier is DNN. Fur-
ther, the accuracies with the DNN are higher than those with the AE+DNN,
SAE+DNN, and VAE+DNN. This suggests that the explicit representations
alone could be less effective compared to the implicit representations learned by



332 J. Mallela et al.

DNN. However, comparing Table 2 and Fig. 4, it is observed that the accuracies
with the VAE+DNN considering explicit and implicit representation are higher
than those with the DNN. Further, we observe that the accuracies with the
VAE+DNN are higher than those with the AE+DNN and SAE+DNN consid-
ering explicit and implicit representations. These together indicate the benefit
of the representations learned from VAE in the stress detection task considering
the proposed explicit and implicit representation-based approaches compare to
implicit, and explicit alone representations based approaches. The t-SNE [19]
visualizations shown in Fig. 3 suggest that the explicit and implicit based repre-
sentation learning approach is capable of discriminating the classes better.

6 Conclusion

In this work, we have considered a representation learning approach jointly with
VAE and DNN for automatic syllable stress detection task using acoustic and
context-based features. The learned representations include three sets of repre-
sentations namely, 1) implicit, 2) explicit, and 3) explicit and implicit. The pro-
posed joint learning approach learns both explicit and implicit representations.
Experiments with ISLE corpus showed that stress detection performance with
the proposed joint representation learning approach consistently performs better
than the baseline, and DNN (implicit) in both GER and ITA under matched,
combined, and cross-native scenarios. Further, representations learned from VAE
were found to be better than those of AE, and SAE. In the future, we would
like to investigate end-to-end based representation learning and self-supervised
based representations for syllable stress detection to overcome the difficulty in
manual labeling of stress markings.
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Abstract. In the time-frequency representation of a signal, the “rich-
ness” of information is given by the area of the Heisenberg’s Box, whose
value is determined by the Time-Bandwidth Product (TBP). The value
of TBP determines the extent of asymptotic behaviour in a signal and
also the characteristics of the stochastic (random) process that has pro-
duced the signal under consideration. A higher value of the TBP indicates
better aysmptoticity of the signal. In this paper, the authors have ana-
lyzed the behaviour of the decay factor of the impulse response of the
vocal tract system with the TBP. This is done by modelling voiced and
unvoiced speech as the convolution of the impulse response of the vocal
tract with a periodic impulse train and white Gaussian noise, respec-
tively. Furthermore, variation of TBP is analyzed for five male speakers
of the well-known TIMIT corpus. The outcome of effective bandwidth
and effective duration on TBP is also analyzed. Finally, instantaneous
frequency (IF) and group delay (GD) functions are estimated for asymp-
totic signals.

Keywords: Instantaneous Frequency · Group Delay Function ·
Asymptotic Signals · Heisenberg’s Uncertainty Principle · Heisenberg’s
Box

1 Introduction

The asymptotic behaviour of a signal is useful to determine its instantaneous fre-
quency from its group delay function and vice versa. Non-synthetic signals which
exist in realistic scenarios are non-stationary signals. Speech signals and chirp
signals have a time-varying frequency within a short interval of time. Therefore,
the study of their asymptoticity is important to determine the instantaneous
frequency and group delay functions for further analysis. One of the important
conditions for asymptoticity is to have a high value of the TBP [13]. A high
TBP indicates high uncertainty, as given by the Gabor-Heisenberg uncertainty
analysis described in Sect. 2.

Signal representation in the time-frequency domain is a two-variable function
of time and frequency [6]. Time-frequency representations, such as spectrograms
and Time-Frequency Distributions (TFDs), such as Wigner-Ville distribution,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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are well-known [7,14]. The TFDs (denoted by ρ(t, ω)), are within the limits
of the Heisenberg’s uncertainty principle in signal processing framework [15].
To investigate the time-frequency content of a signal, energy density jointly in
time and frequency is estimated using TFDs [20]. Therefore, we have a joint
distribution function in terms of t and ω.

To the best of the authors’ knowledge, speech signals, are highly non-
stationary (i.e., the output of a random process representing speech production
mechanism) and therefore, a high value of uncertainty is expected. This implies
that speech signals have good asymptotic behaviour, which can further be used
to determine the instantaneous frequency (IF) and group delay (GD) functions
by their invertibility property in the case of asymptotic signals [].

2 The Time-Bandwidth Product (TBP)

The concept of effective bandwidth as defined by Gabor is important [11]. The
duration of a signal x(t) can be defined by its standard deviation, σt. If σt is
small, we can say the duration of the signal is small. If σt is infinite, then the
signal is of very long duration, however, its energy, |x(t)|2, may be finite. Thus,
in order to find the mean, we consider |x(t)|2 as a probability density function
(pdf ). This explanation has the same analogy for the frequency domain. We can
define effective bandwidth (σω) as the second moment of |X(ω)|2 around ω = 0,
given that x(t) is a zero-mean (i.e., 〈ω〉 = 0) finite-energy signal. Therefore,

σω
2 =

∫
ω∈R

(ω − 〈ω〉)2
∣
∣
∣X(ω)

∣
∣
∣
2

dω. Since 〈ω〉 = 0,

σω
2 =

∫ ∞

−∞
ω2|X(ω)|2dω. (1)

The effective duration (σt) is given by:

σt
2 =

∫

t∈R

t2|x(t)|2dt. (2)

Due to the time-scaling property of the Fourier transform, expansion in the
time domain is equivalent to compression in the frequency domain [17]. Hence,
σ2

t σ2
ω = constant, where σ2

t σ2
ω is the TBP. Furthermore, the value of the TBP

is equal to the area of Heisenberg’s box [15]. It has been found that for most of
the practical signals, the value of TBP is constant with the definitions of σ2

ω and
σ2

t in (1) and (2), respectively. The TBP gives the “richness” of the information
content of such signals [3,13]. A subset of these types of signals are called as
asymptotic signals. A large value of the TBP is an important characteristic of
an asymptotic signal. For a signal to be asymptotic, the conditions are: σt and
σω should be finite, the value of TBP should be large, and the signal should
have finite energy. Therefore, the condition relating to TBP has to be checked
because the remaining conditions of asymptoticity are very well known to be
satisfied by a speech signal [9].
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Asymptotic signals hold an important property relating the IF and GD func-
tions. For a monocomponent signal (a signal with a single frequency component)
with a large value of TBP and having the IF function (ωi(t)) as a monotonic
function in time, ωi(t) approaches the GD function, τg(ω) [5]. However, most of
the practical signals (such as speech) are multicomponent in nature. They can
be decomposed into a finite number of monocomponent signals by suitable sub-
band filtering, and even if one of the subband signals shows asymptoticity, the
multi-component signal as a whole can be said to have an asymptotic behaviour
[3]. The definition of IF for an analytic signal xa(t) = a(t)ejφ(t) is given by:

ωi(t) =
dφ(t)

dt
. (3)

Clearly, the IF defined in (3) is a function of t only. However, the GD function is
given by τg(ω) = −d(θ(ω))

dω . The GD depends on the unwrapped phase spectrum
θ(ω), and it further depends on both a(t) and φ(t). This means that for IF and
GD to be the inverse of each other, there has to be some condition. In particular,
if TBP is large, the IF and GD functions are inverse of each other [4,9].

3 Asymptoticity via Heisenberg’s Uncertainty Principle

A signal can be seen as a wave function whose location is analogous to time
and its momentum is analogous to frequency. Thus, its TFD is within the limits
given by the uncertainty principle. The uncertainty principle in a signal analysis
states that if the effective bandwidth is σω, then the effective duration has to be
at least 1/σω, which leads to σ2

t σ2
ω ≥ 1

4 . The proof follows next.
The signal is assumed to be with zero-mean in time and zero-mean in fre-

quency. To make the mean equal to zero, the signal is translated in time and
frequency. Let the translated signal be denoted simply as x(t). Because of being
zero-mean, its effective bandwidth is

∫
ω2|X(ω)|2dω =

∫ |x′(t)|2dt, and the effec-
tive duration is

∫
t2|x(t)|2dt. And therefore, we have,

σt
2σω

2 =
∫

t2|x(t)|2dt ×
∫

|x′(t)|2dt. (4)

Now, applying the Cauchy-Schwartz inequality given in (5) on (4), we get (6).
∫

|f(t)|2dt ×
∫

|g(t)|2dt ≥ ∣
∣
∫

f∗(t)g(t)dt
∣
∣2. (5)

σt
2σω

2 ≥ ∣
∣
∫

tx∗(t)x′(t)dt
∣
∣2. (6)

Since x(t) can be expressed as A(t)ejϕ(t), the integrand in (6) can be solved as

tx∗(t)x′(t) = tA′(t)A(t) + jtϕ′(t)A2(t),

=
1
2

d

dt
(tA2(t)) − 1

2
A2(t) + jtϕ′(t)A(t).

(7)
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Therefore, substituting the above integrand in (6) gives σt
2σω

2 ≥ 1
4 +Covtω

2

where 1
4 + Cov2, and since Cov2 is always positive, it can be ignored. Hence,

we get σ2
t σ2

ω ≥ 1
4 . It should be noted that, the Cauchy-Schwartz inequality

|〈a, b〉| ≤ ||a||.||b|| for two vectors a and b, becomes an equality when a and b
are co-linear. This is the case for a Gaussian signal, where σ2

t σ2
ω becomes exactly

equal to 1
4 [15].

4 Experimental Analysis

In this section, we demonstrate the behaviour of TBP of synthetic speech signals
to analyze their asymptotic nature. In addition, we have experimentally analyzed
the individual effect of effective bandwidth and effective duration on the TBP.

4.1 Uncertainty vs. Decay Factor

Similar to the resonances of wind instruments, the human vocal tract system and
the airflow from the glottis can be modelled as a linear filter with resonance. The
resonant frequencies of the vocal tract system are called as formants [19] The
formant frequencies can be determined from the locations of the peaks in the
spectrum of a vocal tract system. It should be noted that not all peaks correspond
to vocal tract resonances, and formant frequency is not equal to the resonance
frequency of the vocal tract. The vocal tract system is modelled as a linear,
time-invariant, all-pole system, to estimate the formants. Mathematically, the
z-domain system function of the vocal tract system corresponding to the first
four formants can be expressed as:

H(z) =
4∏

i=1

Hi(z) where, (8)

Hi(z) =
b0

(1 − ciz−1)(1 − c∗
i z

−1)
, (9)

where b0 is the gain and cis denote the poles of the transfer function, where
|ci| < 1. Therefore, the impulse response of the ith digital 2nd order resonator,
corresponding to the ith formant, is given by hi[n] = b0ir

n
i sin[ωi[n+1]]

sin[ωi]
u[n], where

ri and wi represent the pole radius and pole angle, respectively. Since the vocal
tract system is considered to be linear and time-invariant, the speech signal
is modelled as convolution of the glottal excitation source with the impulse
response of the vocal tract system, as shown in Fig. 1. For voiced speech such as
vowels, the glottal excitation source signal is represented as a periodic train of
impulses, where the period of the train of impulses is called the (fundamental)
pitch period (T0) of the speaker [1,19].

From (8), the impulse response of the vocal tract system h(n) can be mod-
elled as a cascade system of four 2nd order resonators, such that the resonant
frequency of each individual resonator is a formant frequency [18,19]. There-
fore, the impulse response of the vocal tract system is expressed in terms of
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Fig. 1. Damped sinusoid convolved with (a) impulse-train and, (b) white Gaussian
noise, to get synthetic voiced and unvoiced speech, respectively.

Fig. 2. TBP trend for damped sinusoid convolved with impulse-train and white noise.

damped sinusoidal signal with a damping factor r, and for the stability in the z-
domain, |r| < 1. Since the vocal tract system is a stable system, there are energy
losses through the movement of articulators, such as the glottis, lips, and cheeks.
Therefore, the damping in the sinusoid provides a mechanism to model various
energy losses in the system (such as wall vibrations, viscosity, thermal, and lip
radiation) [10]. In this paper, we have shown how uncertainty varies with the
damping (decay) factor. Here, we have considered a decaying sinusoidal signal
convoluted with a sequence of impulses and also a decaying sinusoid convolved
with white noise, as shown in Fig. 1. It can be observed from Fig. 2 that as the
decay factor r increases, the uncertainty (TBP) also increases. This is justified
by the argument that a smaller decay factor of a sinusoid means that the signal
attains its steady-state behaviour sooner and, hence, it is relatively less uncer-
tain. However, if the decay factor is large, the signal is uncertain for a longer
duration of time. Here, the signal being more uncertain means that its TBP is
more.

We have visualized the TBP plot using Algorithm-7 for three cases- 1) decay-
ing sinusoid, 2) when decaying sinusoid is convoluted with an impulse train (rep-
resenting modelling of a synthetic voiced speech), and 3) when decaying sinusoid
is convolved with white noise (i.e., modelling of synthetic unvoiced speech). We
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Algorithm 1: TBP Computation
Input: Sampling frequency Fs = 16000Hz
Output: tbpgen

/* Pass the speech signal x through the filterbank */
1 window length = 20ms, window shift = 10ms

/* For each frame, do the following: */
2 for j ← 1 to number of frames do
3 vargen ← variance(Gen(j, :), meangen, tgen) ;
4 meanfreq ← mean(fft(Gen(l, :)), freq)/(2 ∗ pi) ;
5 varfreq ← variance(A, meanfreq, freq) ;
6 tbpgen ← vargen ∗ varfreq

7 return tbpgen

observed a jump in the uncertainty vs. decay factor plot from case-1 to case-2.
That is, we observed that the value of uncertainty for synthetically modelled
unvoiced speech is more than that of the synthetically modelled voiced speech.
This jump is primarily due to the change in the speech excitation source, i.e.,
more randomness is introduced when we convolve the damped sinusoid with
white noise, as compared to when the damped sinusoid is convolved with an
impulse-train signal.

Fig. 3. Waterfall plot of (a) time variance σ2
t , (b) frequency variance σ2

ω, and (c) TBP
of the phoneme ‘aa’ from the TIMIT dataset for all the 630 male speakers.

4.2 TBP for Speech Signals

The authors have carried out experiments on the TIMIT dataset for five speakers,
and the values of TBP for each vowel have been analyzed for each speaker as
shown in Fig. 4. Notably, in a naturally occurring signal, such as speech, the
uncertainty is very high as compared to the simulated signals, such as damped
sinusoid as was shown in Fig. 3. The behaviour of TBP of each vowel for each
speaker can be seen from the plot in Fig. 4. This behaviour can be used to
determine if there is any speaker-specific characteristic, and it is an open research
problem.

Figure 3 shows the waterfall plots for the vowel ‘aa’ across the speakers from
the TIMIT dataset for time variance, and frequency variance, respectively. A
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Fig. 4. Variation of TBP for vowels of five male speakers of the TIMIT dataset.

Fig. 5. (a) Speech signal corresponding to vowel ‘aa’ taken from the TIMIT corpus for
one speaker as input, (b) output of 500 Hz resonator, (c) instantaneous frequency of
the filtered signal, and (d) group delay function of the filtered signal.

Gabor filterbank was used to separate subband signals because of its optimal
resolution both in time and frequency-domains [15]. Here, 15 linearly-spaced
subband filters are used and for each of these subband signals thus obtained,
variances in time and frequency-domains are estimated to get the TBP. It can be
observed that the frequency variance is increasing very smoothly with an increase
in the centre frequency of the bandpass filter. However, the time variance is not
monotonically increasing with an increase in the center frequency of the bandpass
filter. It can also be observed that the value of the time variance is significantly
less than the value of the frequency variance. It shows that the contribution of
the frequency variance is much larger than the time variance in TBP of a speech
signal, thus, making speech asymptotic. We have then estimated the IF and GD
for a synthetic speech excitation source and also for the vowel ‘aa’ taken from the
TIMIT corpus for one male speaker [12]. For this, the signal is passed through a
500-Hz resonator (9), with poles at 0.922−0.382j and 0.922+0.382j. The value
of r is taken as 0.99. Figure 5 shows the IF and GD plots corresponding to vowel
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‘aa’ from the TIMIT corpus. Notably, it remains an open research problem to
express the inverse relationship between the GD and the IF functions of speech
signals.

5 Future Work and Conclusion

In this study, the asymptotic behaviour of speech is investigated by invoking
Heisenberg’s uncertainty principle in a signal processing framework to estimate
the area of Heisenberg’s box (i.e., TBP). It was observed that the asymp-
toticity of a signal increases with an increase in TBP. The TBP of synthetic
unvoiced speech is found to be greater than the TBP of synthetically modelled
voiced speech. Further analysis has also been done by extracting vowels from
the entire TIMIT corpus. The authors have analyzed the variation of the high
TBP obtained for 5 male speakers. It was observed that the effective bandwidth
contributes more to the high value of TBP. In the future, the distribution of
TBP values can be used to have a discriminatory boundary between speaker-
specific and speech-specific characteristics. Additional experiments on finding
the IF and GD of a speech signal have been done. However, a distinct relation
between the quantities is yet to be calculated and analyzed for a speech signal.
This analysis may lead to numerous interesting feature extraction techniques for
various Automatic Speech Recognition (ASR) system and Automatic Speaker
Verification (ASV) systems [2,8,16].
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Abstract. In this paper, we proposed a robust audio-visual keyword
spotting (AVKS) system. This system is developed using DNN (Deep
Neural Network) model with State Level Minimum Bayes Risk (sMBR)
criteria. The symbols of International Phonetic Alphabet (IPA) are used
for representing the speech sounds at phonetic level. Our proposed sys-
tem can recognize 34 phonemes, silence region and can also detect the
predefined keywords formed by these phonemes. Most of the audio-visual
keyword spotting system used Mel-frequency cepstral coefficient (MFCC)
as audio feature. This feature represents only the vocal-tract related
information but does not contain excitation source information. There-
fore, we explore the excitation source features as the supplementary infor-
mation in this work. The excitation source features extracted from glottal
flow derivative (GFD) and linear prediction (LP) residual through stan-
dard mel cepstral analysis are termed as Glottal Mel-Frequency Cep-
stral Coefficient (GMFCC) and Residual Mel-Frequency Cepstral Coef-
ficient (RMFCC) respectively. The GFD signal is generated using Iter-
ative Adaptive Inverse Filtering (IAIF) method whereas LP residual is
estimated by inverse filtering process. In our experimental analysis, we
observe that the performance of glottal based excitation feature is bet-
ter than LP residual based excitation source feature in keyword spotting
task. Hence, we consider the GMFCC features in development of our pro-
posed system. The AVKS system using MFCC and DCT (Discrete Cosine
Transform) based visual features extracted from mouth region provides
an average accuracy of 93.87%, whereas the inclusion of GMFCC fea-
ture improves the performance to 94.93%. The experimental observa-
tions show the benefit of excitation source information for audio-visual
keyword spotter under noisy condition.

Keywords: AVKS · Residual mel-frequency cepstral coefficient ·
Glottal mel-frequency cepstral coefficient · State level minimum bayes
risk

1 Introduction

Keyword spotting system enables to detect the specific words from the contin-
uous speech. This type of system can be used in many real time applications
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such as voice assistant, customer care service and smart speakers etc. How-
ever, such applications may not be working properly in noisy environment due
to quality degradation of speech sound. This creates the difficulty in detection
of keywords by the machine. To solve this problem, researchers use the visual
features as complementary information along with audio feature for spotting
the predefined keywords. This type of system is known as audio-visual keyword
spotting (AVKS) system [1]. In this work, we developed a phoneme based audio-
visual keyword spotting system. The MFCC audio feature is concatenated with
DCT based visual feature by using feature level fusion approach which is known
as early integration fusion [2]. As the rapid growth of machine learning tech-
niques and availability of high computational machines, researchers used various
neural networks approaches to improve the performance of keywords spotting
systems [3–5]. Therefore, we employed DNN (Deep Neural Network) classifier
for modeling the phonemes. We further improves the performance of the pro-
posed system by using State Level Minimum Bayes Risk (sMBR) criteria. The
main advantage of phoneme based audio-visual keyword spotter is that it can
detect any keywords formed by combination of phonemes.

Speech production can considered as a process in which the time-varying
vocal-tract system is excited by a time-varying excitation source [6]. Researchers
used the audio feature MFCC for representing the vocal-tract characteristics in
speech recognition tasks [7]. Some of speech sound units (phonemes) such as
(/b/ and /p/, /t/ and /d/) have same place of articulation and same manner
of articulation [8]. It means they are having similar vocal-tract characteristics.
Moreover, these phonemes have similar lips shape or lips movements while pro-
ducing the speech sounds [9]. Because of these similar vocal-tract characteristics
and similar lips movements, it may create confusion in phoneme recognition
and resulting inaccurate keyword detection from continuous speech. In this case,
the supplementary feature; the excitation source information may be helpful to
differentiate between similar sound units or phonemes by machine. The excita-
tion source signal can be represented by linear prediction (LP) residual [10,11]
or the glottal flow derivative (GFD) signal derived from speech signal. Several
GFD extraction methods have been reported in [12–18]. In a recent work [19],
the Iterative Adaptive Inverse Filtering (IAIF) approach is found effective for
deriving the excitation source information from speech signal. In this work, GFD
signal is computed by using IAIF algorithm and LP residual of speech signal is
estimated by using inverse filtering approach.

The rest of the paper is organized as follows: Sect. 2 mentions some research
works related to audio-visual keyword spotting task. Section 3 provides the
details information about the database used in system development. Section 4
describes about the development of DNN-sMBR based audio-visual Keyword
Spotting system. Experimental results analysis are discussed in Sect. 5. The con-
clusion of the paper is declared in Sect. 6.
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2 Related Work

Very few research has been done to detect the keywords audio-visually [1].
In [20], authors developed an HMM based audio-visual keyword spotting sys-
tem. The normalized histogram intensity of mouth region was used as visual
feature. The MFCC audio feature was combined with visual feature using fea-
ture level fusion approach. The objective of proposed keyword spotter was to
detect the 19 English keywords. The performance of this system was analyzed
at various SNR levels. The noisy audio speech signals were generated by adding
white noise. The audio-visual keyword spotter performed better than the audio
based keyword spotter at all SNR levels.

In another work [21], authors used the conventional HMM garbage model
in development of Mandarin based audio-visual keyword spotting system. They
proposed a visual feature named as discriminative local spatial-temporal descrip-
tor (disCLBP-TOP). The models built by acoustic feature MFCC and visual fea-
tures were combined by adaptive integration approach with appropriate weights.
A sigmoid function was used to generate these weights. The 30 Mandarin key-
words belong to 12 male and 8 female speakers were used for system performance
analysis. They also compared the performance between bimodal (audio-visual
keyword spotter) and unimodal (audio or visual based keyword spotter) using
white and babble noise added noisy speech signals.

In [1], authors presented a novel lip descriptor that comprise of both geomet-
ric features and appearance based features. The geometric features extracted
from lips region were combined with appearance based spatiotemporal features.
The audio features were extracted using mel cepstral analysis. Authors used
two-step strategy HMM based keyword spotting system to make system more
robust. At first stage, the acoustic and visual keyword with log-likelihoods were
generated. The decision fusion was applied in the second stage to generate the
final keyword. The OuluVS and PKU-AV database were used for experimental
results analysis.

Table 1. The reported AVKS systems and their results.

Method Accuracy (in %)

HMM based AVKS [20] 78

HMM-garbage based AVKS [21] 75.1

Two step strategy HMM based AVKS [1] 80.5

The results of the reported AVKS system are shown in Table 1. All of these
reported works used the MFCC as audio feature in development of AVKS sys-
tem. They were mainly focus on visual features to improve the system perfor-
mance. It is interesting to explore the excitation source based audio feature as
supplementary information for audio-visual keyword spotting task.
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3 Database Description

Our proposed system is developed using train data set of track 1 of the 2nd
‘CHiME’ Challenge audio database [25]. The utterance structure of this database
is shown below.

[command(4)] [color(4)] [preposition(4)] [letter(25)] [digit(10)] [adverb(4)]

The numerical value shown inside the bracket defines the number of differ-
ent commands, colors, prepositions, letters, digits and adverbs present in the
database. The commands are BIN, LAY, PLACE and SET. The different colors
available in the utterances are BLUE, GREEN, RED and WHITE. Prepositions
present in database are AT, BY, IN and WITH. The English alphabets from
A-Z excluding W and digits from 0 to 9 are also available in the database. The
words; AGAIN, NOW, PLEASE and SOON are the 4 adverbs utterances used
in this database. The database belongs to 34 speakers (18 male, 16 female) [25].

Clean audio speech material was taken from the Grid corpus [26]. The clean
audio speech were convolved with a set of binaural room impulse responses
((BRIRs) to simulate the speaker movements and reverberation. The background
noise recorded from the living room were mixed with the audio speech signals
to generate the noisy speech signals. These noisy speech signals were generated
at six different SNRs (−6 dB, −3 dB, 0 dB, 3dB, 6 dB and 9 dB).

The track 1 of the 2nd ‘CHiME’ database comprises of 3 data sets. They are
(1) training set (2) development set and (3) test set. Each speaker of training set
has 500 utterances. The development data set consists of 600 speech utterances
at each SNR level. Similarly test data set contain same number of utterances of
development data set. The speech signals were recorded with 16 bits and sampled
at 16 kHz. The video features are extracted from video data of Grid database.

4 Development of DNN-sMBR Based Audio-Visual
Keyword Spotting System

The processing steps involved in development of our proposed DNN-sMBR based
audio-visual keyword spotting system are (a) Data Preparation and Pronuncia-
tion dictionary (b) Feature Extraction (c) Modeling and (d) Keyword Decoder.

Data preparation is an important step required in development of this pro-
posed system. This processing step provides information about; (a) mapping of
each speaker ID to its corresponding utterances IDs (b) paths of audio speech
wav files along with their corresponding utterance IDs (c) assignment of each
utterance ID with corresponding speaker ID and (d) transcription of all the
utterances. Pronunciation dictionary contains the information about phonemes
present in the database used for system development, silence region information
and lexicon. The silence region is denoted by word ‘SIL’. In order to understand
the speech sounds in phonetic level, we analyze the mentioned 2nd ‘CHiME’
database properly and represent the phonemes by using International Phonetic
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Fig. 1. Training phase of proposed audio-visual keyword spotting system.

Fig. 2. Testing phase of proposed audio-visual keyword spotting system.

Alphabet (IPA) symbols. The IPA symbols and corresponding assigned ASCII
of these phonemes are listed in Table 2.

The MFCC features are extracted from the input audio speech using stan-
dard mel cepstral analysis approach. The glottal excitation source based feature;
GMFCC feature are derived from the GFD signal. These two features are con-
catenated to obtain a feature combination of vocal-tract and excitation source
information. The dimension of the GMFCC is considered same as the 13 dimen-
sional MFCC feature. Therefore, the total dimension of combined audio feature
is 26. Image frames are extracted from the input video, then landmark points
of mouth region are detected using Viola-Jones algorithm [27]. Discrete cosine
transform (DCT) coefficients of landmark points of gray scale mouth region
images are calculated to generate 63-dimensional visual features. In order to
maintain same number of frames for both audio and visual features, the DCT
coefficients are interpolated by using differential digital analyzer. Then the audio
and visual features are concatenated in frame-wise manner to acquire 89 dimen-
sional audio-visual features.

The block diagrams of training and testing phase of proposed audio-visual
keyword spotting system are shown in Figs. 1 and 2. An audio-visual based



Improvement of AVKS System Accuracy Using GMFCC Feature 349

Table 2. List of phoneme used in development of audio-visual keyword spotting system.

Sl. No Phoneme Name in ASCII Sl. No Phoneme Name in ASCII

1 b B 18 w W

2 S CH 19 y Y

3 d D 20 z Z

4 D DH 21 a: AA

5 f F 22 æ AE

6 g G 23 2 AH

7 Ã JH 24 O: AO

8 k K 25 @ AX

9 l L 26 E EX

10 m M 27 i IH

11 n N 28 i: IY

12 p P 29 u: UW

13 r R 30 aU AW

14 s S 31 aI AY

15 t T 32 eI EY

16 T TH 33 @U OW

17 v V 34 I@ IA

monophone GMM-HMM model is built using the audio-visual features, tran-
scriptions and pronunciation dictionary. Contextual information of neighbour-
ing phonemes that is front and back phoneme are not considered in monophone
model. The audio-visual features are aligned with corresponding reference tran-
scriptions using force alignment Viterbi algorithm. The monophone model is
further extended to triphone GMM-HMM model. In this context-dependent tri-
phone model, audio-visual features of neighbouring frames that is ± 3 frames
are spliced to capture the dynamic information. Then, the dimension of this
spliced audio-visual feature is reduced to 40 using Linear Discriminant Analysis
(LDA) [28]. A popular speaker normalization technique, Maximum Likelihood
Linear Transform is used to minimize the speakers variation. To make the pro-
posed system more robust and speaker independent; speaker adaptation training
(SAT) and feature-space Maximum Likelihood Linear Regression (fMLLR) [29]
are used. This type of model is generally known as tri3 GMM-HMM audio-visual
model. The pre-training of DNN is done by training the stack of Restricted
Boltzmann machine (RBMs) through Contrastive Divergence (CD) approach.
Updating of weights during the pre-training stage are used to initialize the DNN
parameters, it allows the discriminative fine-tuning and reduce over fitting. Dur-
ing fine-tuning of DNN, the parameters are updated in a layer-wise manner
by using back-propagation and Stochastic Gradient Descent (SGD) techniques.
The sequence discriminative training method “state-level minimum Bayes risk
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(sMBR)” [30] is employed to emphasize the state sequence with better frame
accuracy with respect to reference alignment. This model is represented as DNN-
sMBR model. The model consists of 6 hidden layers with sigmoid activation func-
tion and used 18 beam for decoding. Each layer of DNN has 2048 neurons. At
audio-visual keyword decoder stage, the system is ready to generate automatic
transcriptions and detect the keywords of unknown test utterances. The sys-
tem needs test input audio-visual feature, trained audio-visual model, language
model and pronunciation dictionary to generate automatic transcription.

5 Experimental Results and Discussion

Visual keyword spotting systems are developed using different modeling
approaches and compare their accuracies to select the best model for proposed
AVKS system. We also compare the performance of LP based excitation source
feature and glottal based excitation feature in context of keyword spotting task.
Then, the outperforming model and excitation source feature are used in devel-
opment of audio-visual keyword spotting system.

5.1 Visual Keywords Spotting System

Visual keyword spotting (VKS) is an automatic process of identifying the
query keywords present in the video sequences using visual features. The 63-
dimensional DCT coefficients visual features are extracted from mouth region
images. These image frames are obtained from videos data of Grid database.
The performance of the proposed visual keyword spotting system is evaluated
using different models; GMM-HMM, DNN, DNN-sMBR-1 and DNN-sMBR-5
with visual features. The DNN-sMBR-1 and DNN-sMBR-5 represent the DNN
model with state-level minimum Bayes risk (sMBR) criteria with 1 and 5 itera-
tions respectively.

Table 3. Performance comparison of models for visual digits keyword spotting system.

Model Accuracy (in %)

GMM-HMM 82.65

DNN 87.07

DNN-sMBR-1 88.27

DNN-sMBR-5 89.29

Digits are the most commonly used one time password (OTP) and input
command words in real time applications like customer care service or automatic
login system. Therefore, we consider the digits from zero to nine as the keywords
for both visual keyword spotting system as well as audio-visual keyword spot-
ting system. The development data set of Grid database is used for performance
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analysis of this visual keyword spotting system. From the experimental results
provided in Table 3, we notice that DNN based system gives better accuracy
than GMM-HMM based VKS system. The performance of DNN based system
increases when the sMBR criteria is applied. We also analyze the performance
of DNN-sMBR based system with different iterations, we observe the system
performance improves when the number of iterations of sMBR training increase
from 1 to 5. After 5th iteration, no further improvement in the system perfor-
mance. Therefore, we adopt DNN-sMBR model with 5 iterations in development
of proposed AVKS system.

5.2 Selection of Excitation Source Feature for Proposed AVKS
System

The excitation source features have been explored for phoneme recognition task.
The use of excitation source feature in speech recognition area is very limited as
compare to other application like speaker recognition task. Some of the works
related to excitation source features are reported in [7,22–24]. They extracted
the excitation source features from LP residual signal derived from speech signal.
These excitation source features were used for improving the performance of
phone recognizer. In this work, we explore the glottal based excitation source
feature (GMFCC) and compared to the LP residual based excitation source
feature (RMFCC).
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Fig. 3. Speech signal, GFD signal and LP residual of Alveolar Plosive sound units (a)
t and (b) d.

Some of sound units such as (/p/ and /b/), (/t/ and /d/), (/k/ and /g/)
are very confused among each other due to similar characteristics. We manually
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extract the phoneme /t/ portion from speech sound of English letter ‘T’ occur
in utterance (srwt1n.wav) using linguistic tool ‘Praat’. Similarly the phoneme
/d/ is extracted from sound ‘D’ present in utterance (lrwd1n.wav). The speech
signal, GFD signal and LP residual of these Alveolar plosive sound units are
shown in Fig. 3. The closeness between these Alveolar plosive sound units is
analyzed by plotting kernel density using GMFCC and RMFCC feature. Kernel
density estimation (KDE) method estimates the probability density function of
feature vectors using kernels as weights and smoothing the density function by
appropriate bandwidth. In this work, we used Gaussian kernel and bandwidth
equal to 1.8 for plotting the kernel density of Alveolar plosive sound units.

Fig. 4. The kernel density plot of Alveolar plosive sound units t and d using GMFCC
and RMFCC feature.

In Fig. 4, blue color lines represent kernel density plots for sound unit /d/ and
red color lines for phoneme /t/. The dotted lines belong to kernel density plots of
GMFCC features whereas the solid lines is for RMFCC features. The dotted lines
are less overlapping as compared to solid lines. This shows that GMFCC feature
has more discriminative ability than RMFCC feature to distinguish the similar
sound units like alveolar plosive. However, this type of analysis is a statistical
approach. We further evaluate the performance of GMFCC and RMFCC feature
in terms of keyword detection rate.

Table 4. Performance comparison of GMFCC and RMFCC at different SNR levels.

Feature −6 dB −3 dB 0 dB 3 dB Average

GMFCC 68.73 76.12 88.66 92.27 81.45

RMFCC 61.34 63.75 77.84 83.16 71.45

The average accuracy of DNN-sMBR-5 based keyword spotter using GMFCC
feature is 81.45% whereas RMFCC feature gives 71.45%. At all SNR levels,
the glottal based excitation source feature performs better than LP residual
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based excitation source feature for detecting keywords. The experimental results
available in Table 4 reveal that the GMFCC feature are robust than RMFCC
under noisy condition. Therefore, we consider this glottal based excitation source
feature in development of proposed AVKS system.

5.3 Performance Analysis of Proposed DNN-sMBR-5 Based
Keyword Spotting System

The accuracies of digits keyword spotting using vocal-tract feature (MFCC),
glottal based excitation source feature (GMFCC), visual feature (V) and their
combination are given in Table 5. At 3dB, the accuracy of keyword detection
using MFCC feature is more than GMFCC feature as well as visual feature.
However, the performance degraded from 0 dB to -6 dB due to background
noise present in utterances of test data set. Similar problem also affects the
performance of GMFCC feature as well.

Table 5. Accuracies of Digits keyword spotting system with different features and its
feature combination.

Feature −6 dB −3 dB 0 dB 3 dB Average

MFCC 76.80 84.71 92.96 95.25 87.43

GMFCC 68.73 76.12 88.66 92.27 81.45

V 89.29 89.29 89.29 89.29 89.29

MFCC + GMFCC 79.21 86.94 93.30 96.05 88.88

MFCC + V 92.00 93.81 94.19 95.50 93.87

GMFCC + V 91.07 92.44 92.44 93.64 92.40

MFCC + GMFCC + V 93.99 94.50 94.85 96.39 94.93

From experimental results analysis, we know that MFCC feature is better
than GMFCC for keyword spotting task. However, the combination of these
features perform better than individual feature; MFCC and GMFCC. At all SNR
levels, the accuracies of keyword spotting using MFCC feature are improved
by combining with GMFCC feature. This shows the glottal excitation source
features can be used as supplementary feature along with MFCC feature for
automatic transcription and keyword spotting under noisy environment. The
performance improvement in keyword spotting when added excitation source
information to vocal-tract information is because of confusion reduction between
similar phonemes.

The audio features can be corrupted by acoustic background noise, therefore
visual feature are combined together with them. The performance of audio-visual
keyword spotting system is not that much fluctuate as compare to audio-based
keyword spotting system. The audio-visual keyword spotting system performs
well at all SNR levels. We compare the performance of audio-visual keyword
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spotting systems developed by using (MFCC with visual feature), (GMFCC with
visual feature), and combination of MFCC with GMFCC and Visual feature.
The average accuracy of keywords spotting of these three audio-visual systems
are 93.87%, 92.40% and 94.93% respectively. The AVKS system develop using
MFCC along with visual feature gives better accuracy than system develop using
GMFCC and visual feature together. The best average accuracy of keyword
spotting is observed when MFCC, GMFCC and visual feature are combined
together. These experimental results reveal that glottal excitation source feature
is useful to use as supplementary information for audio-visual keyword spotting
system under noisy environment.

6 Conclusion

In this work, we explore a glottal based excitation source feature (GMFCC), par-
ticularly for detecting the audio-visual keywords under noisy background. This
glottal based excitation source feature is found more suitable than RMFCC fea-
ture for keyword spotting task. The performance of DNN based visual keyword
spotting system is improved by using ‘sMBR’ sequence discriminative training
with 5 iterations. This DNN model also works very well for audio-visual keyword
spotting system. The feature combination of MFCC and GMFCC gives better
accuracy than individual features; MFCC and GMFCC in keywords detection
task. The performance of these combined audio feature degraded under noisy
condition. To solve this issue, a robust visual feature is combined to audio fea-
tures. The AVKS system developed using MFCC and visual features is improved
by adding the glottal excitation source feature. In future work, the performance
of proposed system can be evaluated by using unseen speakers data.
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Abstract. The paper makes use of the annotated task-oriented corpus of Holo-
caust testimonies in Russian (ruOHQA) to train a question-answer neural network
model. We start from data preprocessing, present statistical analysis of the col-
lected corpus for approximately 1500 pairs of questions and answers and describe
its strengths and limitations. Also, we carry out experiments on automatic process-
ing of the ruOHQA corpus using pre-trained transformer-based neural network
models. Finally, we explore the capability of several models to generate sim-
plified high-quality answers to questions and compare their results. The kind of
research we present allows us to extract knowledge from oral history archives
more productively.

Keywords: Question Answering · Corpora · Visual History Archives

1 Introduction

Question Answering Systems (QAS) have become an important field of research in nat-
ural language processing combining such tasks as information extraction and machine
learning. QASs help to obtain answers to questions of interest asked in natural language
which may be essential for various specific research issues [1]. In our paper we concen-
trate on extracting answers to questions from oral history archives. Oral history preserves
historical records [2] in the form of an interview with people who witnessed historically
significant events.

Oral history data encompassesmultiple topics, oneofwhich isHolocaust testimonies.
The large amount of data includes The Visual History Archive of Holocaust testimonies
compiled by the USC Shoah Foundation [3] with over 7,000 multimedia recordings and
25 freely available interviewswithHolocaust survivors from theYadVashemFoundation
in Russian [4]. Our aim is to summarize facts and stories from the interviews provided by
the Yad Vashem Foundation. Our choice was made due to the fact that most of the video
interviews contain manually typed subtitles.We enable the analysis and interpretation of
these oral history archives by collecting tagged corpus for the presented records. It helps
to satisfy the stable interest in materials of such kind [5–7] by turning this large amount
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of data into a more attainable form as well as affects the accuracy of the forthcoming
QAS.

QASs perform at their best when they deal with structured knowledge bases [1].
Therefore, we gather the Question-Answer corpus ruOHQA and further use this dataset
to train neural networkmodels for the question answering task. The corpus contains over
1,500 automatically gathered entries, further manually aligned and labeled by experts.

2 Related Work

There are several efforts to build QASs able to retrieve information from visual history
data. The research [15] develops the dialogue system based on the international project
MALACH (Multilingual Access to Large Spoken Archives). The QAS for English and
Czech parts of the MALACH archive of Holocaust testimonies allows one to obtain
answers using spoken natural language queries.

The paper [6] presents the QAmodel formulating queries in a natural language. Due
to the colloquial form of speech in the researched mMQA corpus with 8914 entries of
questions and answers, the final accuracy turns out to be very limited. The experimental
results indicate that the further research on building QASs for oral history data remains
relevant.

We were inspired by the paper [15], thus, our motivation was to retrieve informa-
tion from oral history archives of Holocaust testimonies in Russian. To the best of our
knowledge, there are no similar QA datasets and QAS for Russian oral history archives
of such kind mentioned in the literature.

The main dataset used to solve the QA problem for Russian is SberQuAD [16] with
approximately 50,000 question-answer pairs, which are splitted on 45,3 k train, 5,04
validation and 23.9k test rows. This reading comprehension dataset contains Wikipedia
articles and questions to its segments posed by a group of crowdworkers. Each question
presupposes an answer from the corresponding reading passage, however, might remain
unanswered. The methodology used to create SberQuAD was similar to what was used
for the development of the English SQuAD corpus [17], and SQuAD 2.0 [18]. The struc-
ture of these datasets has shown the significance of including unanswerable questions
in the corpora.

We will follow the practice of earlier works published. Our tasks involve creating
the QA dataset and applying it to train the QAS.

3 Corpus Creation

Research on building QAS has always been constrained by the limited availability of
structured training data. Thus, collecting appropriate textual data and structuring it was
the first step required in our work.

3.1 Text Collection

We started our corpus creation from collecting video recordings of interviews with
Holocaust survivors from the Yad Vashem Foundation [4]. We decided to add into our
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corpus only recordings containing subtitles preprocessed by specialists of foundation.
Therewere 4 recordings among 25with automatic subtitles.We could not add them to the
corpus since speech recognition technology is the error prone process, consequently, the
quality of such subtitles might be low. As a result, we gathered 21 transcribed recordings
with the total duration of approximately 26 h. We extracted all the subtitles from each
recording. The total size of the unpreprocessed corpus reached 20200 unique pairs of
questions and answers.

To identify video recordings and subtitle files, we assigned them an individual iden-
tification code. Keeping all the video materials in order was also necessary to further
clarify the controversial points appearing during the corpus annotation. In particular, it
ensured that potential context gaps, such as interruptions by the interviewer during the
interviewee’s response, were not overlooked.

3.2 The Annotation

The first step of dataset annotation involved dividing the interviewer’s speech from one
of the narrator’s. The material in our unpreprocessed corpus already was in russian and
contained punctuation, which allowed us to conduct preliminary annotation by rules.
To extract the context of the expected replies, we followed the basic assumption that
an interrogative sentence might be followed by an answer. Thus, we created a new
corpus entry in case there was a question mark in a previous sentence. As a matter of
course, questions following one another and building an interviewer’s speech turned out
to be divided, thereby we encountered false answer selection: e.g. “Kak ee zvali? By
pomnite?”—“What was her name? Do you remember?”. It this example “Do you
remember?” was automatically extracted as the answer, although we clearly understand
that it is the question. Along with this, we mentioned that the false detection of questions
occurred as well. It happened when there were rhetorical questions or questions within
the context of a story in narrator’s answer speech: e.g. “i emy govop�t: “Clyxa�,ty
�togo mal�qika znaex�?” On govopit…”—“and they say to him: “Listen, do you
know this boy?” He says…”.

With help of initial automatic preprocessing we extracted 4228 pairs of question-
answer contexts with the preservation of the indexes from the subtitles. As might be
expected, many errors occurred due to the specifics of automatic preprocessing, which
does not take into account the peculiarities of the spoken form of the interviews and
peculiar coloring of the speeches caused by the age of the narrators. These features
made us decide to annotate the corpus manually using an expert assessment.

The next step of our work required dividing the corpus into parts equal in number
of entries further given to 4 experts to annotate manually. The experts had access to
all the materials and were required to act according to a unified set of instructions.
The manual annotation included the following tasks: correction of errors caused by
the automatic preprocessing and construction of the specialized format for our corpus
useful for forthcoming QA training purposes. In case question entries were inaccurately
assigned to the context of the answer or were not punctuated, we created new question
entries for them. Punctuation was maintained if necessary. The context of the answer
was cleared of possible interviewer’s remarks along with grammatical and orthographic
mistakes.
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As a result, wemanaged to annotate 1555 entries thatwere composed into theRussian
Oral History Question Answering dataset (ruOHQA). An example of the record with
translation into English is presented in Table 1. The same structure is followed in every
entry of the corpus.

Table 1. Corpus sample with translation.

id question answer context
279_297 Это уже в какое 

время года было?
Это было, уже я 
пошла в школу , это 
к сентябрю.

Это я тебе сейчас 
скажу ... Это было, 
уже я пошла в школу , 
это к сентябрю. Мы 
все лето, мы все 
время убегали от 
немцев. Нас даже там 
не высадили...

279_297 What time of year 
was this?

It was, I already went 
to school, this was by 
September.

I'll tell you now... It 
was, I already went to 
school, this was by 
September. We spent 
the whole summer, we 
ran away from the Ger-
mans all the time, they 
didn’t even drop us 
off…

A corpus entry consists of four columns. The first column has unique indexes of the
interrogative speech from the subtitles. The second column contains the interviewer’s
question to the narrator. The third column includes only direct answers to the inter-
viewer’s question. Finally, the fourth column contains the detailed context of the answer
provided by the narrator within their story during the interview.

4 Data Analysis

InTable 2we compare the ruOHQAdataset to the similarRussianQAcorpusSberQuAD.
A comprehensive description of all possible SberQuAD features is given in [16]. We
compare such parameters as the average question, answer and context length in both
QA corpora. As can be seen from Table 2, the average question length turns out to be
similar in both datasets, while the average answer length shows noticeable differences.
We explain the longer average length of answers in the ruOHQA corpus by the fact that
the narrators make their speech more extended and often less concise by going into the
details.
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Table 2. Statistics of the ruOHQA and SberQuAD datasets.

Dataset Total number of
samples

Avg. question
length (words)

Avg. answer
length (words)

Avg. context
length (words)

ruOHQA 1,555 7,076 5,444 22,858

SberQuAD 50,364 8,613 2,433 98,666

In order to analyze the content of the ruOHQA corpus, we counted 30 most common
tokens in its question and answer parts. We lemmatized words with the Python library
pymorphy2 [20] to conduct some preliminary processing. Further processing included
removing of stop words, namely prepositions and conjunctions. In this way, we were
able to extract only the tokens that were necessary to our query.

Finally, we obtained the token frequency graphs in Fig. 1 and Fig. 2 with nltk, the
natural language processing library in Python [21].

Fig. 1. Frequency distribution for 30 most common tokens in ruOHQA questions.

Figure 1 shows the most frequent lemmatized words counted in the question part of
the ruOHQA corpus. We identify words connected with Holocaust, e.g. ‘vo�na’ (war),
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‘pomnit�’ (remember), ‘evpe�’ (jew), with family or relatives, e.g. ‘mama’ (mom),
‘cectpa’ (sister) etc. We intentionally did not remove pronouns and interrogative words
in the questions’ frequency list before counting, as theymay also express an interviewer’s
appeal to narrators.

The solid curve in Fig. 2 represents the 30 most common lemmatized words found
in answers of the ruOHQA corpus. We notice similar tokens including verbs related
to memory, e.g. ‘znat�’ (to know), ‘pomnit�’ (to remember), nouns naming family
members, e.g. ‘mama’ (mom), ‘papa’ (dad), ‘babyxka’ (grandma) etc. An important
frequently usedword is ‘evpe�’ (jew). It shows us the nationality of narrators and remains
a core concept for specific topics discussed. Eventually, the frequency usage turns out to
be quite representative for the content in our corpus based on the interviews with Jewish
Holocaust survivors.

Fig. 2. Frequency distribution for 30 most common tokens in ruOHQA answers.

5 Experiments

Once we have the ruOHQA corpus ready for training our QAS, we start the experimental
setup of themodels. The initial step of experiments includedfine-tuning using our corpus.
We have selected the distilled versions of ruBERT models pretrained on informal texts
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from DeepPavlov [22] in the Huggingface framework [23]. Our choice has been made
based on several reasons: 1) the informal texts used for pretraining themodels correspond
to the dialogue structure of our ruOHQA dataset; 2) the distilled versions of the models
perform with relatively quick learning rate; 3) the performance of the distilled versions
keeps up with the full models [24]; 4) finally, the ruBERT models show the high level
of accuracy in automatic language processing tasks in Russian [25].

The ruOHQA dataset was divided into train and test subsets in the ratio of 0.7 to 0.3,
for training and evaluation of the resulting model respectively. Thus, we received 929
entries of the corpus for training the model and 399 entries for testing. The size of the
ruOHQA dataset is limited for the model to be trained only on it. Hence, we decided
to evaluate the accuracy of our results on the corpus SberQuAD that was specifically
collected to solve the QA problem for Russian. Finally, we trained our model on the
combination of the SberQuAD and ruOHQA corpora to see whether the results improve.

To evaluate the performance of each model we have chosen two main metrics used
for this task: F1 and Exact Match (EM) - and have implemented their realisation from
[17]. We calculated F1 and EM on test sets from SberQuAD and ruOHQA using the
transformers.metrics taken from the HuggingFace framework.

We used the same hyperparameter values as recommended in the HuggingFace
documentation [26]:

– learning rate: 2 * 10–5
– number of epochs: 3
– batch size: 16

Table 3. Evaluation of each pipeline’s performance on SberQuAD and ruOHQA with 5.040 and
399 samples respectively. We report the exact match (EM) and F1 metrics.

DS for training DS for test distilrubert-tiny-
cased-conversational

distilrubert-small-
cased-conversational

Distilrubert-base-
cased-conversational

F1 EM F1 EM F1 EM

SberQuAD SberQuAD 52.206 33.459 52.231 33.141 78.114 58.161

ruOHQA 54.581 26.202 30.843 56.925 63.234 38.795

SberQuAD+ruOHQA SberQuAD 50.557 32.324 49.914 32.196 78.160 58.503

ruOHQA 80.558 67.229 80.118 67.470 79.557 63.373

Table 3 compares the accuracy evaluation results for different combinations of train
sets and three versions of the distilrubert model. The significant boost in performance
appears after subjoining entries from the ruOHQA corpus to the SberQuAD dataset.
The best accuracy value of F1 metric (80.558) tested on the ruOHQA dataset was
achieved by the distilrubert-tiny-cased-conversational model trained on the combined
SberQuAD and ruOHQA dataset. The best EM result (67.470) was achieved by the
distilrubert-small-cased-conversational on the same dataset. However, we see signifi-
cant differences if we compare the rates obtained for SberQuAD and ruOHQA to the
lower accuracy results made only on the SberQuAD dataset. Such a high performance
on the combined dataset represents an interesting finding. We might presume that the
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distilrubert-tiny-cased-conversational and distilrubert-small-cased-conversational show
volatility when additional data is subjoined, consequently, models outperform the
distilrubert-base-cased-conversational model in values.

In view of those considerations, we can conclude that the distilrubert-base-cased-
conversational model fine-tuned on the combined SberQuAD and ruOHQA dataset can
be considered as the most stable and simultaneously showing decent results on both
datasets: 78.160 of F1 metric and 58.503 of EM.

Additionally, worth noticing is the fact that themodels trained only on the SberQuAD
dataset do not show high performance when tested on the ruOHQA set. We explain this
by significant differences in the data structure of the sets, since entries in the SberQuAD
corpus initially existed in written form while in the ruOHQA corpus they are compiled
from oral history archives, i.e. have conversational spoken form.

6 Conclusion

This article presents the results of training the QASmodels on ruOHQA and SberQuAD
datasets. The content of our collected corpus initially has an oral form and is largely
influenced by the emotional state and age of the respondents. Since trainingQAS requires
structured training data, the ruOHQA corpus was annotated not only automatically, but
also manually. In our paper, we described the method we followed to carry out the
tagging. In addition, we presented some statistical characteristics of the resulting dataset.

As a result of our research, a demonstration dataset containing answers, questions
and contexts based on interviews with Holocaust survivors was processed and published
as a HuggingFace Dataset [27].

We used our corpus in combination with the SberQuAD dataset to conduct some
experiments with three distilled ruBERT models. Incorporating of the ruOHQA dataset
positively influences evaluation results. The best gotten F1 equals 80.558% reached
by the distilrubert-tiny-cased-conversational model. However, our results showed that
the distilrubert-base-cased-conversational model turns out to be more stable reaching
appropriate F1 and EM scores at the same time. Moreover, it was found that results on
RuOH-test in some situations are slightly better than those on SberQuAD-test before
fine-tuning of tiny distied RuBERT, which will require deeper research. We are planning
to try other training setups, for example, comparing the current setup with pretraining
on SberQuAD and then fine tuning on ruOHQA, and also other state-of-the-art models,
such as ELECTRA, T5 and LLMs.

In our future research, we plan to expand the ruOHQA corpus by processing other
materials from oral history archives, e.g. the Shoah Foundation [3] containing about
7,000 video interviews with people who survived the Holocaust. These recordings in
Russian have no annotated text presented. Our further work for this reason may include
developing a speech recognition system.
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11. Psutka, J., Ircing, P., Psutka, J.V., Hajič, J., Byrne, W., Mírovský, J.: Automatic transcription
of Czech, Russian and Slovak spontaneous speech in the MALACH project. In: Eurospeech
2005, pp. 1349–1352. ISCA (2005). https://doi.org/10.21437/Interspeech.2005-489

12. Ramabhadran, B., Huang, J., Picheny, M.: Towards automatic transcription of large spoken
archives - English ASR for the MALACH project. In: ICASSP 2003, p. I (2003). https://doi.
org/10.1109/ICASSP.2003.1198756

13. Ramabhadran, B., et al.: USC-SFI MALACH interviews and transcripts English. In:
LDC2012S05. Web Download. Philadelphia: Linguistic Data Consortium (2012). https://
doi.org/10.35111/7zfn-a492

14. Psutka, J., Radová, V., Ircing, P., Matoušek, J., Müller, L.: USC-SFI MALACH inter-
views and transcripts Czech. In: LDC2014S04. Web Download. Linguistic Data Consortium,
Philadelphia (2014). https://doi.org/10.35111/v2nt-7j09

15. Chýlek, A., Šmídl, L., Švec, J.: Question-answering dialog system for large audiovisual
archives. In: Ekštein, K. (ed.) TSD 2019. LNCS, vol. 11697, pp. 385–397. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-27947-9_33

16. Efimov, P., Chertok, A., Boytsov, L., Braslavski, P.: SberQuAD – Russian reading compre-
hension dataset: description and analysis. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS,
vol. 12260, pp. 3–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_1

17. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine
comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, Austin, Texas, November, pp. 2383–2392. Association for
Computational Linguistics (2016). https://doi.org/10.48550/arXiv.1606.05250

18. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for
SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), Melbourne, Australia, pp. 784–789. Association for
Computational Linguistics (2018). https://doi.org/10.18653/v1/P18-2124

https://doi.org/10.4324/978131564076
https://sfi.usc.edu/
https://www.youtube.com/playlist?list=PLanQ0TFmIYBTV8sRAkSDWQLZNhbM-v1xp
https://doi.org/10.21437/Interspeech.2019-1907
https://doi.org/10.1007/978-3-030-87802-3_50
https://doi.org/10.1007/978-3-030-87802-3_12
https://malach.umiacs.umd.edu/
https://doi.org/10.1109/TSA.2004.828702
https://doi.org/10.1007/978-3-540-74628-7_45
https://doi.org/10.21437/Interspeech.2005-489
https://doi.org/10.1109/ICASSP.2003.1198756
https://doi.org/10.35111/7zfn-a492
https://doi.org/10.35111/v2nt-7j09
https://doi.org/10.1007/978-3-030-27947-9_33
https://doi.org/10.1007/978-3-030-58219-7_1
https://doi.org/10.48550/arXiv.1606.05250
https://doi.org/10.18653/v1/P18-2124


366 L. Bukreeva et al.

19. Pisarevskaya, D., Shavrina, T.: WikiOmnia: filtration and evaluation of the generated QA
corpus on the whole Russian Wikipedia. In: Proceedings of the 2nd Workshop on Natural
Language Generation, Evaluation, and Metrics (GEM), Abu Dhabi, United Arab Emirates
(Hybrid), pp. 125–135. Association for Computational Linguistics (2022). https://doi.org/10.
18653/v1/2022.gem-1.10

20. Morphological analyzer pymorphy2. https://pymorphy2.readthedocs.io
21. NLTK documentation. https://www.nltk.org
22. Kolesnikova, A., Kuratov, Y., Konovalov, V., Burtsev, M.: Knowledge distillation of Russian

language models with reduction of vocabulary. In: Proceedings of the International Confer-
ence «Dialogue 2022»,Moscow, 15–18 June 2022.Computational Linguistics and Intellectual
Technologies, vol. 21, pp. 295–310 (2022). https://www.dialog-21.ru/media/5770/kolesniko
vaaplusetal036.pdf. ISBN 978-5-7281-3205-9

23. Wolf, T., Debut, L., Sanh, V., et al.: Transformers: state-of-the-art natural language process-
ing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics
(2020). https://doi.org/10.18653/v1/2020.emnlp-demos.6

24. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter (2019). arXiv arXiv:1910.01108. https://arxiv.org/abs/1910.01108

25. Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for
Russian language, arXiv preprint (2019). arXiv:1905.07213. https://arxiv.org/abs/1905.07213

26. Question Answering, HuggingFace documentation. https://huggingface.co/docs/transform
ers/tasks/question_answering

27. RuOHQA dataset on HuggingFace. https://huggingface.co/datasets/Mihaj/ruohqa_demo

https://doi.org/10.18653/v1/2022.gem-1.10
https://pymorphy2.readthedocs.io
https://www.nltk.org
https://www.dialog-21.ru/media/5770/kolesnikovaaplusetal036.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1905.07213
https://arxiv.org/abs/1905.07213
https://huggingface.co/docs/transformers/tasks/question_answering
https://huggingface.co/datasets/Mihaj/ruohqa_demo


Decoding Asian Elephant Vocalisations:
Unravelling Call Types, Context-Specific

Behaviors, and Individual Identities

Seema Lokhandwala1(B) , Rohit Sinha1 , Sreeram Ganji2 ,
and Balakrishna Pailla2

1 Indian Institute of Technology Guwahati, Guwahati, India
{seema171655001,rsinha}@iitg.ac.in
2 Reliance Jio AICoE, Hyderabad, India

{ganji.sreeram,balakrishna.pailla}@ril.com

Abstract. This paper investigates the automatic classification of four
types of Asian elephant vocalizations (rumble, roar, trumpet, and chirp)
recorded in Kaziranga National Park. Apart from the call type classifi-
cation, the study explores individual identification and contextual anal-
ysis. Various classifiers using openSMILE features are developed to facil-
itate the classification process. The results demonstrate accurate clas-
sification of elephant call types and successful classification of context-
specific behavior and individual identity based on trumpet and chirp
calls, respectively. This study highlights the potential of acoustic anal-
ysis for understanding elephant communication and well-being, offering
insights into their context-specific behavior and individual identities.

Keywords: Bioacoustics · Animal behavior · Animal communication ·
Elephant communication

1 Introduction

Asian elephants (Elephas maximus) are social and widely distributed mammals,
relying on acoustic communication to navigate their complex social dynamics
and geographically dispersed locations [3,28]. Acoustic communication plays a
crucial role in various aspects of their lives, including, maintaining group cohe-
siveness, fostering cooperation, mating, and facilitating mother-infant interac-
tions [11,17,22].

The repertoire of vocalizations produced by Asian elephants is remarkably
diverse, encompassing a wide range of sounds that facilitate their communica-
tion. These vocalizations include low-frequency rumbles and growls, which can
propagate over long distances, allowing elephants to communicate effectively over
large areas [9,15]. Additionally, they are capable of producing high-frequency
trumpets, chirps, roars, and barks, showcasing their remarkable vocal versatility
in acoustic communication [14,22,25].
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However, despite the significance of elephant vocalizations, there is still lim-
ited research in the field of automatic classification of call types. Clemins et
al. conducted a study utilizing a hidden Markov model (HMM) for classifying
call types, which stands as one of the few studies in this domain. The authors
utilized mel-frequency cepstral coefficients, log energy, and spectrally derived
features to train HMM classifiers and reported an overall classification accuracy
of 79.7% [4]. However, there is a need for further investigations to address the
existing limitations and develop more refined and accurate call-type classifiers.

Recent research has found a connection between the acoustic structure of
elephant vocalizations and their arousal or motivational states. Berg et al. classi-
fied elephant calls into ten types, with respect to their corresponding behaviors.
High-frequency calls, like trumpets, were associated with emotionally charged
situations, while low-frequency calls like rumbles were prevalent in relaxed social
contexts [1]. The acoustic properties of elephant rumbles reflect individual emo-
tional arousal [23]. For example, rumbles occurring during socializing and agi-
tation exhibit increased fundamental frequencies and decreased duration [30].
Wesolek et al. found that post-nursing cessation rumbles had distinct acoustic
characteristics [29].

In a recent study, Stoeger et al. investigated African elephants (Loxodonta
africana) and their ability to produce various call types, including snorts, rum-
bles, and trumpets in response to verbal cues from trainers (mahouts). The study
revealed that rumbles produced during social interactions with conspecifics had
distinct acoustic characteristics compared to rumbles elicited by trainer cues [24].
Sharma et al. found that rumbles, but not trumpets, were modulated during dis-
turbances among wild Asian elephants [21]. Fuchs et al. observed trumpet calls
conveying individual identity information but no modulation between greeting
and disturbance contexts [7].

For a complete understanding of a species’ communication system, it is essen-
tial to comprehend the information conveyed by the various vocalizations in its
vocal repertoire. The use of vocalizations by a number of non-human mam-
malian species to communicate sex, caller identity, emotional state, and context
has been documented [13,19,20,26]. Caller identity is important in social species
in particular, and this has been observed in the majority of mammal and bird
species.

Individual anatomical and morphological variations in the sound-producing
structures, as well as internal factors and the physiology of sound production,
all affect vocal identity [26]. Soltis et al. [23] and Fuchs et al. [7] used discrimi-
nant functional analysis to study the individual identity of rumble and trumpet
vocalizations respectively, revealing distinctive acoustic characteristics associ-
ated with each call type. In the assessment of individual identity for trumpet
calls, the authors report a classification accuracy of 71.7% [7]. In the analysis
carried out Soltis et al., the accuracy of individual identity based on rumbles
stood at 60.0% [23]. In speaker recognition experiments carried out on rumble
calls, Clemins et al. report an individual identification accuracy of 82.5% [4].
Based on the findings from the aforementioned studies, we have been motivated
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to propose a framework and build models to classify call types followed by indi-
vidual identity and context-specific behavior.

The remainder of the article is structured as follows. Information on the ele-
phant vocalization data gathered for this study is described in Sect. 2. Section 3
describes the proposed framework for detecting call types, individual identi-
ties, and the broad nature of context-specific behaviors in the collected elephant
vocalization database. Section 4 discusses the findings of the study. Section 5
summarizes the conclusions drawn.

Fig. 1. Distribution of sexes and age groups among the studied subjects. (Sub refers
to sub-adult and Juv refers to juvenile).

2 Database

2.1 Subjects and Study Site

The Kaziranga National Park and Tiger Reserve (hereinafter referred to as
KNP), is a World Heritage Site in Assam (India), where the elephant vocal-
ization data was collected. KNP houses around 60 semi-captive Asian elephants
used for activities like patrolling, anti-poaching efforts, and tourism. Each ele-
phant has a mahout to meet their daily needs. These elephants socialize, bathe
together, play, freely browse in the forested area, and are accustomed to the
presence of humans. For this study, based on their locations within KNP, a total
of 25 elephants were selected with their ages spanning from less than 1 year to
60 years. They were categorized into four major age classes based on previous
reports [27]: calf (below 1 year), juvenile (1–5 years), sub-adult (5–15 years),
and adult (15 years and above). Figure 1 lists the sexes and age groups of the
individuals under study.
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2.2 Context-Specific Data Recording

The recording sessions were held throughout the field site, including the ele-
phants’ bathing areas, browsing areas, and places where they are tethered at
night. No manipulative experiments to elicit responses from the elephants were
carried out during these sessions. A round-robin approach was used during
these sessions, with an average of 4 h spent monitoring each subject. A mini-
mum of 15 min to an hour-long observation of their behavior per session was
recorded at an interval of 30 s. We categorized elephant behavior into several
broad categories, including locomotion, social interactions, handler interactions,
self-directed actions, foraging, comfort, and other behaviors [12,18].

In the study, close observation of elephant behavior allowed for interpretation
in the context of their social interactions. Based on this interpretation, three
specific context-specific behaviors were assigned: positive, negative, and neutral.

The positive context-specific behavior was assigned when elephants were
observed interacting with other non-dominant elephants. These interactions
involved socializing, playing, and engaging in behaviors such as physical con-
tact and moving toward each other.

The negative context-specific behavior was assigned when elephants inter-
acted with their mahouts (human caretakers) or other dominant individuals.
During these interactions, elephants exhibited specific behaviors such as head
bobbing and body swaying, which are commonly associated with stress or agi-
tation. Head bobbing refers to repetitive and rhythmic movements of the head,
while body swaying refers to rhythmic side-to-side movements of the body. These
interactions often occurred when elephants displayed signs of fear or distress,
such as retreating or showing avoidance behaviors.

Neutral context-specific behavior was assigned when individuals engaged
in contact calls without clearly displaying positive or negative context-specific
behavior. Contact calls are vocalizations made by elephants to communicate
with each other over long distances.

2.3 Collection and Categorization of Acoustic Data

The elephant vocalization data was recorded during the daytime from February
to April 2021. The data was recorded for a total of 47 d, yielding 103 h of acoustic
data. Behavior, caller’s identity, approximate recording distance, and context
were noted for each recorded vocalization. The vocalizations were collected with
a Sound Devices MixPre-3 II recorder connected to an Earthworks QTC-40 omni
condenser microphone with a frequency response of 3 Hz to 40 kHz, sampling
at a rate of 48 kHz, and a range of 5–100 meters. Nikon D5100 and a Cannon
1200-D digital single-lens reflex camera were used for video recordings.

Through field notes, auditory observation, and spectrogram analysis, all
vocalizations were identified. Based on the results of earlier studies, the vocaliza-
tions were divided into four main call types and combination calls [1,11,22]. A
total of 401 elephant calls, encompassing individuals of all age groups and sexes
were captured during our fieldwork. Detailed information about the dataset can
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Fig. 2. Relative contribution of individual elephant in the data used for call type
classification experiment.

be found in reference [10]. From this dataset, 226 calls, representing all call types,
were selected for developing call type classifiers. The selection was based on the
behavioral context and quality of the calls, as depicted in Fig. 2.

In order to conduct individual identification and context-specific behavior
experiments, two types of calls: trumpet and chirp, were chosen. The rumble
and roar call types were not selected due to the limited amount of data available
per individual for rumble and roar calls. For the individual identification exper-
iment, only the individuals who produced more than three calls were included.
On average, we obtained 12.5 chirp calls from two individuals and 7.5 trumpet
calls from eight individuals. Table 1 provides information regarding the num-
ber of calls used in chirp and trumpet call types for context-specific behavior
experiments.

3 Proposed Framework

A comprehensive framework for analyzing elephant acoustic data is represented
in Fig. 3. The process involves several key steps, starting with the segmentation
of elephant calls. Once the calls are segmented, relevant features are extracted
using advanced techniques. These features capture important acoustic charac-
teristics of the elephant vocalizations. Next, the study utilizes five independent
classifiers, each trained on the extracted features and associated with a specific
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label representing call type. Once the call type label is identified, we deployed
five independent classifiers, each trained on the extracted features and associ-
ated with a specific label representing individual elephant and context-specific
behavior for trumpet and chirp call types. Classification metrics are calculated to
evaluate the performance of the classifiers and assess the quality of the classifica-
tion results. Overall, this framework enables a systematic and effective analysis
of elephant acoustics data, providing valuable insights into call type, individual
identities, and behavioral patterns.

Table 1. Distribution of trumpet and chirp calls across three context-specific behaviors.

Context-specific behavior Number of calls

Chirp Trumpet

Positive 12 13

Neutral 5 22

Negative 8 25

3.1 Segmentation

The process of analyzing the acoustic recordings began with a visual examina-
tion using the PRAAT 6.2.03 software [2]. This involved opening the recordings
and carefully observing the waveforms and spectrograms. We referred to our
field notes and listened to the recordings to gather additional information about
the calls. Once the calls were identified within the raw data, they were pre-
cisely located, marking the start and end times of each call. To extract relevant
information, the calls were then trimmed, selecting the specific portions that
contained the calls of interest.

Fig. 3. A block diagram of the proposed framework. The modules within the dotted
box are replicated for the rest of the call types, indicating their similar functionality.
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Fig. 4. Spectrograms depicting four types of elephant calls: (a) rumble, (b) trumpet,
(c) chirp, and (d) roar. These visual representations highlight the unique characteristics
of the rumble calls, allowing for a clear classification.

3.2 Feature Extraction and Acoustic Analysis

Features were extracted using the Python-based open-source feature extraction
openSMILE toolkit [5]. The feature set is an acoustic parameter set for vari-
ous areas of automatic voice analysis. The feature set was extracted from the
openSMILE toolkit using an extended Geneva Minimalistic Acoustic Parame-
ter Set (eGeMAPS) which resulted in 25 low-level descriptors (LLDs) and 88
functionals were extracted. The 25 LLDs are made up of voicing features, spec-
tral features, cepstral features, and energy features. There are 88 functionals
produced after statistics like the variances, arithmetic mean, standard devia-
tions, and percentiles of the LLDs are calculated. These LLDs were obtained
from 25 ms frames and extracted every 10 ms. Only the 88 functionals served
as inputs for training individual classifiers associated with specific labels, rep-
resenting particular individuals, context-specific behaviors, or call types. The
spectrograms of rumbles, trumpet, and roar calls of elephants exhibited distinct
features, reflecting the unique acoustic characteristics of each call type. Rumbles
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displayed strong energy in the lower frequency range, spanning from infrasound
frequencies to several hundred Hertz, often with harmonic or quasi-harmonic pat-
terns and various modulation patterns. Trumpet calls were characterized by a
wide frequency range, showcasing broadband energy across the entire spectrum,
an initial transient or burst of energy, and potential harmonic structures. Roar
calls demonstrated a broadband distribution of energy with an emphasis on the
mid-frequency range, irregular or modulated patterns, and the presence of har-
monic structures or non-harmonic components. Chirp calls were characterized by
their unique temporal structure. In comparison to the other calls, they were sig-
nificantly shorter in duration, making them stand out noticeably. It’s important
to note that these spectrogram features can vary among individual elephants
and may be influenced by factors such as age, sex, and social context. Further
analysis utilizing advanced signal processing techniques can extract quantitative
features from spectrograms to facilitate classification and in-depth analysis.

3.3 Classifiers

To classify the elephant calls based on context-specific behaviors, call types, and
individual identification, three distinct models were developed, each utilizing
different criteria or feature sets. The models employed five different classification
algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, Multi-layer Perceptron (MLP), and Random Forest. SVM determined
an optimal hyperplane to separate data points of different classes, while KNN
classified new data based on the majority class of its nearest neighbors. Naive
Bayes calculated the probability of a data point belonging to a certain class based
on the assumption of feature independence. MLP, a type of artificial neural
network, learned complex relationships between inputs and outputs. Random
Forest combined multiple decision trees to make predictions.

For the small size of the database, a k-fold validation methodology, with
k set to 3, is employed to evaluate the classification performances of a model.
The subsets were created so that the sets of utterances within each of the three
subsets were mutually exclusive. Data from test utterances made up subsets
1, 2, and 3 respectively, with each subset accounting for 30% of the testing
set. This approach allowed for comprehensive evaluation and validation of the
performance of each of the models.

3.4 Evalution Metrics

In this study, Accuracy is used to determine how well the classification model
performed. It can be defined as,

Accuracy(%) = 100 × TP + TN

TP + FP + TN + FN
(1)

where TP stands for “true positives”, TN for “true negatives”, FP for “false
positives”, and FN for “false negatives”. The percentage accuracies for 3-fold of
the data are calculated and reported in Tables 2 and 3.
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4 Results and Discussion

4.1 Call Type Experiment

In the context of call type classification, the Random Forest model achieved the
highest accuracy of 82.7%, followed by the Naive Bayes model. The confusion
matrix for this experiment is presented in Fig. 5. Notably, rumbles were classified
with the highest accuracy at 100% due to their low-frequency nature, whereas
roars exhibited the lowest accuracy at 33%. One potential reason for this issue
is the limited availability of training data for the “roar” call type. For the call
type experiment, our findings are consistent with those reported by Clemins et
al. [4].

Table 2. The following table showcases the average accuracy of the five models for
call types.

Classification model Average Accuracy (%)

Support Vector Machine 65.0

K-Nearest Neighbors 64.5

Naive Bayes 72.6

Multi-layer Perceptron 61.0

Random Forest 82.7

To determine which features play an important role in this classification, fea-
ture importance was analyzed. The top five features identified were alphaRatioV-
sma3nz-stddevNorm, loudness-sma3-stddevNorm, loudnessPeaksPerSec, mfcc2-
sma3-stddevNorm, and F1bandwidth-sma3nz-amean. The first feature, alpha-
RatioV, represents the variation of the alpha ratio in an audio signal. This
ratio provides insights into the spectral balance of the signal. The second fea-
ture, loudness-stddevNorm, reflects the normalized standard deviation of the
signal’s loudness. The third feature, loudnessPeaksPerSec, denotes the number
of loudness peaks detected per second in the audio signal. These peaks represent
instances of significantly high amplitude, such as trumpet, chirp, and roar which
have higher frequency calls compared to rumble. Thus, loudness serves as a dis-
tinguishing factor in classifying these sounds, as evident from its inclusion in the
top features for such classification. The fourth feature, mfcc2-stddevNorm, char-
acterizes the second mel-frequency cepstral coefficient (MFCC), and is widely
employed in audio signal analysis for tasks such as speech recognition and speaker
identification. Finally, the fifth feature, F1bandwidth-sma3nz-amean refers to
the width or range of frequencies around the first formant peak, which is an
important component in speech analysis. The first formant represents the pri-
mary resonance frequency of the vocal tract during speech production.
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Fig. 5. Confusion matrix for call type experiment. (C-chirp, R-rumble, Ro-roar, T-
trumpet).

4.2 Context-Specific Behavior and Individual Identification
Experiment

For context-specific behavior and individual identification experiments, we uti-
lized trumpet and chirp calls as the primary data. In the case of context-specific
behavior classification, the Random Forest model achieved the highest accuracy
of 75%, followed by the Naive Bayes model. Similarly, for chirp calls in the case
of context-specific behavior classification, the Random Forest model achieved
the highest accuracy of 72.6%, followed by the Naive Bayes model. Compared
with earlier literature, Fuchs et al. observed trumpet calls in greeting and distur-
bance contexts, achieving a classification accuracy of 58.3%. In our own study,
we observed trumpet calls in three different contexts and achieved a higher clas-
sification accuracy of 75%.

In terms of individual identification experiments, the Random Forest model
is noted to outperform the others, achieving an accuracy of 91.6% for chirp calls
compared to 71.6% for trumpet calls. Chirp calls had higher accuracy for indi-
vidual identification because only data from two individuals were used, whereas
eight individuals’ data were used for trumpet calls. Compared with earlier liter-
ature, rumble, and trumpet calls were classified according to individual identity,
indicating that acoustic characteristics varied based on the individual identity of
the caller [7,23]. When specifically comparing trumpet calls, it is worth noting
that Fuchs et al. [7] reported a classification accuracy of 71.7% for six individual
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Table 3. The average accuracies of the five different models for context-specific behav-
ior (Context) and individual identification (Identity) experiments for trumpet and chirp
call types.

Classification model Average Accuracy (%)

Trumpet Chirp

Context Identity Context Identity

Support Vector Machine 54.9 43.3 48.6 83.7

K-Nearest Neighbors 48.3 46.6 51.8 79.6

Naive Bayes 58.3 58.3 64.3 87.9

Multi-layer Perceptron 53.3 46.6 43.9 68.0

Random Forest 75.0 71.6 72.6 91.6

elephants, whereas our study achieves a closely similar classification accuracy of
71.6% for a slightly larger sample size of eight individual elephants.

Overall, these models employ different approaches and algorithms to classify
elephant calls based on context-specific behaviors, call types, and individual
identification. The Random Forest model demonstrated strong performance in
classifying call types, context-specific behaviors, and individual identification.
These results highlight the strengths and weaknesses of each model in capturing
the underlying patterns in elephant calls for different classification tasks.

In the future, a detailed analysis needs to be conducted to determine which
features play a significant role in the analysis. The Asian elephant is a social
species which lives in matriarchal family groups [6,28]. They form social bonds
(relationships) with unrelated individuals in captivity and even provide reassur-
ance to distressed conspecifics [8,16]. Therefore, identifying the caller holds sig-
nificant value as it fosters support and enhances social interactions among indi-
viduals. Playback experiments are recommended in the future to determine how
well Asian elephants can identify and differentiate familiar conspecifics based on
their vocalizations.

5 Conclusion

In conclusion, this study developed a framework to classify call types and then
also demonstrated that the acoustic of elephant calls are context-specific, exhibit-
ing distinct characteristics in relation to different context-specific behavioral
states. Furthermore, the aim in the future is to develop an end-to-end architec-
ture that can not only classifies context-specific behavior in all elephant calls
but also recognize individual identity. This comprehensive understanding of ele-
phant communication, encompassing both context-specific behavioral states and
individual variations, contributes to a more nuanced comprehension of elephant
behavior and communication. These findings have potential implications for con-
servation efforts, captive elephant welfare, and advancing our understanding of
how elephants express themselves through vocalizations.
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Abstract. The task of developing an automatic speaker verification
(ASV) system for children’s speech is a challenging one due to a number
of reasons. The dearth of domain-specific data is one among them. The
challenge further intensifies with the introduction of short utterances of
speech, a relatively unexplored domain in the case of children’s ASV.
To circumvent the issue arising due to data scarcity, the work in this
paper extensively explores various in-domain and out-of-domain data
augmentation techniques. A data augmentation approach is proposed
that encompasses both in-domain and out-of-domain data augmenta-
tion techniques. The out-of-domain data used are from adult speakers
which are known to have acoustic attributes in stark contrast to child
speakers. Consequently, various techniques like prosody modification, for-
mant modification and voice-conversion are employed in order to modify
the adult acoustic features and render it acoustically similar to chil-
dren’s speech prior to augmentation. The in-domain data augmentation
approach, on the other hand, involved speed perturbation of children’s
speech. The proposed data augmentation approach helps not only in
increasing the amount of training data but also in effectively capturing
the missing target attributes which helps in boosting the verification per-
formance. A relative improvement of 43.91% in equal error rate (EER)
with respect to the baseline system is a testimony of it. Furthermore,
the commonly used Mel-frequency cepstral coefficients (MFCC) average
out the higher-frequency components due to the larger bandwidth of
the filter-bank. Therefore, effective preservation of higher-frequency con-
tents in children’s speech is another challenge which must be appropri-
ately tackled for the development of a reliable and robust children’stion
techniques and Feature Concatenation A ASV system. The feature con-
catenation of MFCC and IMFCC is carried out with the sole intention
of effectively preserving the higher-frequency contents in the children’s
speech data. The feature concatenation approach, when combined with
proposed data augmentation, helps in further improvement of the verifi-
cation performance and results in an overall relative reduction of 48.51%
for equal error rate.
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1 Introduction

The web of cybernated applications in this digital age has fascinated people
cutting across generations. In addition to the galore of positive aspects of cyber-
nated applications is its dreary face. It is also fraught with the dangers of losing
sensitive data and identity theft, if not accessed with caution. People access-
ing the online tools should be mindful of the cyber crimes and cyber frauds.
To address such an intimidating issue, the field of biometrics have witnessed a
meteoric rise in the recent past and is bound to remain at the center stage in
the times to come. Voice/ Speech signal is one such biometric, which falls under
the category of behavioral biometrics [6]. Even though the primary function of
speech signal is human communication, it also captures information about the
speaker’s identity, age, emotions, gender, geographical origin and health. Voice
biometrics or Automatic Speaker Verification (ASV) is a technology that uses
algorithms and machine learning techniques to verify the identity of a speaker
based on their speech characteristics. It is a biometric authentication method
that relies on the unique patterns and traits in an individual’s speech.

As compared to other competing biometrics, voice biometrics is increasingly
becoming popular because of its low cost, ease of use, faster authentication pro-
cess and higher level of security features [6]. But, the majority of the work
reported in the literature deal with the design and development of ASV systems
for adults. The fact that social networking websites and online learning tools
are a rage among children and teenagers, with over half of youngsters in the age
bracket of 6-15 obsessively indulging in internet and maintaining accounts on
social media websites [1], cannot be denied. The children who are oblivious of
the lurking perils in the usage of cyber related activities are the more vulnerable
lot as opposed to the adults. This calls for the need of a robust ASV system for
children. The literary works reported on building an ASV system for children
are not vast as compared to adults [20,23,27]. Motivated by this, the authors’
in this paper have focused their attention on developing robust ASV systems for
child speakers.

State-of-the-art ASV systems employ deep learning architectures that neces-
sitate estimation of a vast number of parameters. This, in turn, mandates a
substantial quantity of domain-specific data. The road along the development
of a reliable children’s ASV system has many hindrances. The majority of chil-
dren’s speech corpora are not readily accessible. Moreover, these are limited in
terms of data hours and the number of languages in which they are available.
Developing an ASV system for languages without any children’s speech corpus
(zero-resource condition) is very demanding. Even if a small quantity of chil-
dren’s speech data is available (low-resource condition), designing an effective
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ASV system for children using deep learning architectures is still a very chal-
lenging task. Some of the earlier works on children’s ASV have investigated the
effect of synthetically generating speech data and then pooling it for training in
order to circumvent the problem posed by low- and zero-resource conditions. It
has been reported that out-of-domain data augmentation and in-domain data
augmentation is effective in this regard [23]. The performance of an ASV system
for children is further dented when there is a reduction in the duration of the
speech utterances during testing, commonly termed as short-utterance situation.
Speech segments of duration 5-10 s are commonly termed as short-utterances in
the literary domain. The unavailability of sufficiently longer duration of speech
data can be tackled during training phase by some data augmentation tech-
niques. However, it is not feasible to do the same during the testing phase [13].
The works reported on children’s ASV hardly deal with such short utterances
scenario.

Taking cognizance of the above literary gap, the authors’ have explored the
role of both the in-domain as well as out-of-domain data augmentation tech-
niques in order to synthetically generate more speech data. The in-domain data
augmentation technique used in this paper includes the default three-way speed
perturbation of the original children’s speech using Kaldi pipeline. To address
the paucity of the domain-specific data, the impact of out-of-domain data aug-
mentation techniques in the light of short-utterance based children’s ASV sys-
tem is also explored in this paper. This includes (i) voice conversion (VC) of
adults’ speech data through a cycle-consistent generative adversarial network
(C-GAN) [7], (ii) prosody modification (PM) [21,22] of adults’ speech i.e., opti-
mally changing the pitch and duration of the speech data from adult speakers,
and (iii) up-scaling the formant frequencies (FM) [8,11] of adults’ speech data.
All the explored techniques not only help in increasing the amount of training
data but also in modifying the acoustic attributes of adult’s speech so that the
acoustic mismatch with child’s speech is minimal. The proposed combination
of in-domain and out-of-domain data augmentation technique is observed to be
highly effective as is demonstrated and validated in the experimental evaluation
section in this paper.

Besides data augmentation, this exploration also delves into the role of fea-
ture concatenation of two front end acoustic features namely the Mel-frequency
cepstral coefficients (MFCC) and the inverse-Mel-frequency cepstral coefficients
(IMFCC). In general, the Mel-frequency cepstral coefficients (MFCC) are the
most commonly used front-end acoustic features and have been popular ever
since its inception. They provide a compact and stable representation of the
vocal-tract of a speaker, which can capture speaker-specific characteristics. When
it comes to children’s speech, a significant amount of relevant information is
predominantly present in the high frequency region [2,19]. As resolution of Mel-
filter-bank decreases with increase in frequency, the performance of children’s
ASV system based solely on MFCC features will be sub-optimal. In order to effec-
tively preserve the higher-frequency contents in children’s speech, the other front
end acoustic feature explored in this paper is IMFCC. The IMFCC features are
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extracted using the inverse-Mel filter-banks. The inverse-Mel filter-banks is thus
supposed to have better frequency resolution in higher-frequency range while the
lower frequency components are down-sampled. As already highlighted, the use
of Mel-filter-bank down-samples the spectral information in the higher-frequency
range. The IMFCC due to its complementary nature of the filter-bank are sup-
posed to better capture the acoustic information in the higher-frequency regions
of children’s speech, which are otherwise disregarded by the MFCC features.
The feature fusion model of MFCC and IMFCC is thus expected to outperform
the traditional MFCC, leading to an enhanced performance of children’s ASV
system.

Fig. 1. Block diagram outlining the data augmentation and feature concatenation
approaches proposed in this work in order to enhance the verification performance
of a short-utterance-based children ASV system.

The aforementioned proposal of feature concatenation in addition to data
augmentation is outlined in Fig. 1 and well validated in the experimental results
section of the paper. The paper also illustrates the age-group wise as well as a
gender-wise analysis of the children’s ASV performance to unravel the effect of
data augmentation and feature concatenation. The approach assists in consider-
ably reducing the equal error rate (EER) as well as detection cost function (DCF)
as compared to our baseline system trained exclusively on children’s speech using
MFCC features. The ASV system developed in this work for experimental eval-
uations employ x -vector-based speaker representation along with probabilistic
linear discriminant analysis (PLDA) based scoring.

The rest of this paper is organized as follows: Sect. 2 deals with an exploration
of in-domain data augmentation and various out-of-domain data augmentation
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techniques. Section 3, talks about the authors’ motivation to delve into the scope
of feature concatenation for children’s ASV system. The experimental evalua-
tions exhibiting the efficacy of our proposed techniques are presented in Sect. 4.
Eventually, conclusion is drawn in Sect. 5.

2 Explored Data Augmentation Techniques

The state-of-the-art ASV system makes use of x -vectors-based speaker represen-
tation. For extracting x -vectors, a time-delay neural network (TDNN) [12,25,26]
is trained. Deep learning models such as a TDNN have an inherent complex-
ity owing to a number of hidden layers and hidden nodes per layer. They are
resource intensive and require massive amount of data. As already mentioned,
one of the hindrances in the development of a reliable ASV system for children
is the paucity of domain-specific data. Hence, training an x -vector extractor
on a limited amount of children’s speech will result in sub-optimal performance.
Data augmentation techniques offer a solution to these challenges. Data augmen-
tation involves applying various transformations to the original training data to
create new synthetic data samples. These synthetic samples are then used to aug-
ment the original data-set, thereby enhancing diversity of the captured acoustic
attributes, increasing the amount of training data and improving the trained
model’s generalization capabilities. Taking cognizance of these facts, in-domain
and out-of-domain data augmentation was performed to enhance the reliability
and robustness of the developed children’s ASV system.

2.1 Out-of-Domain Data Augmentation

Out-of-domain data augmentation refers to increasing the amount of train-
ing data by blending adults’ data with children’s speech. Since the acoustic
attributes of adults’ speech is in stark contrast to those of children, various
modifications are applied to adults’ speech so that the augmented data have
attributes similar to those of children’s speech.

The proposed out-of-domain data augmentation technique is pictorially out-
lined in Fig. 1. This augmentation technique involved using a limited quantity
of original adults’ speech. As noted earlier, we’ve used a variety of ways to
adequately alter the acoustic characteristics of adults’ speech. These are briefly
addressed in the following:

In the first method, voice conversion (VC) was applied to the adults’ speech
using a cycle-consistent generative adversarial network (C-GAN) [7]. To train the
C-GAN, about 10 minutes of speech samples from both adult and child speakers
were employed. As seen throughout the hearing tests, VC makes adult speech
utterances sound remarkably similar to kid speech. As a result, the problems with
acoustic mismatch are much reduced when the voice-converted data is pooled.

The second method was prosody modification applied to adult speech prior
to augmentation. It is commonly known that children’s speech has a higher
pitch and a slower speaking tempo [11,18]. As a result, the length of the speech
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data from the adult speakers was raised by 1.4 while the pitch was enhanced
by a factor of 1.35. These scaling variables were chosen based on past studies
that were published on children’s speech recognition [21]. The method described
in [16] was utilized to accomplish prosody modification (PM). Again, pooling
data that has been prosody-modified helps keep the acoustic mismatch under
control.

Compared to adult speakers, formant frequencies are greater in the case of
children [11,18]. As a result, the formant frequencies (FM) of adult speech sam-
ples were scaled-up by a factor of 0.08 in the third approach. The aforementioned
scaling factor was taken from previous publication [10]. Similar to VC and PM,
pooling the data of formant modified adults’ speech increases the training data
while substantially reducing acoustic mismatch.

All the modified versions of adults’ data were then pooled into training along
with the original adults’ data. A more reliable estimate of the model parameters
was achieved as a result of increasing the training data volume. Furthermore,
altering the acoustic characteristics makes sure that the established ASV system
does not become biased towards speakers who are adults.

2.2 In-Domain Data Augmentation

In-domain data augmentation refers to increasing the amount of children’s speech
available for training by synthetically generating more data from children’s
speech itself. In this regard speed perturbation technique was employed. The
in-domain data augmentation technique is also pictorially represented in Fig. 1.
Speed perturbation is one of the most well-known techniques for data aug-
mentation reported in the scientific literature. In this technique the speaking-rate
or speed is modified while preserving the linguistic content of the speech data.
For this, the default three-way speed perturbation Kaldi pipeline is utilized. The
speed of each of the utterances from children is modified simultaneously by a
factor of 1.1 and 0.9, respectively. The speed perturbed data is then mixed with
the unperturbed children’s speech before learning the x -vector based speaker
representation.

2.3 Proposed Data Augmentation

The authors’ in this paper propose a combination of the out-of-domain data
augmentation as well as in-domain data augmentation as discussed in the previ-
ous subsections individually. All the modified versions of adults’ and children’s
data are pooled into training along with original children’s and adults’ speech.
Consequently, the proposed data augmentation strategy addresses the challenges
of acoustic variability posed by intra-speaker and inter-speaker variability, lim-
ited amount of training data, and potential adversarial attacks. The proposed
data augmentation technique is pictorially summarized in Fig. 1. It is worth
mentioning here, that even though the aforementioned techniques of syntheti-
cally generating speech data are well acclaimed in literary works, their combined



386 S. Aziz and S. Shahnawazuddin

effectiveness in the context of children’s ASV systems for short utterances is rel-
atively uncharted.

3 Motivation for Exploring Feature Concatenation

As mentioned earlier, the MFCC features are one of the most popular and com-
monly used front-end acoustic features in the context of an ASV system. MFCCs
capture the spectral characteristics of speech signals and have proven to be
effective in representing speaker-specific information. During the MFCC feature
extraction process, the speech signal is first analyzed into overlapping frames
of short duration followed by the computation of short-time Fourier transform
(STFT). Next, spectral warping is done over a non-uniform frequency scale by
using triangular Mel-filterbank. Resultant power spectrum undergoes logarith-
mic compression followed by discrete cosine transform (DCT). Applying DCT
yields the real cepstrum (RC). The final feature vectors that are fed as input
while training any classifier are obtained by low-time liftering of real cepstrum.

As mentioned in the previous section, in the case of children, there is a con-
siderable amount of relevant spectral information in the higher-frequency region.
Children’s speech data are represented by a spectrogram in the bottom panel of
the Fig. 2, which exhibits substantial power even between 4 and 8 kHz. More-
over, the spectrogram of children’s speech fairly clearly illustrates the earlier
literary works’ assertion that the formant frequencies are higher in the case of
child speakers [5,9]. For a comparative study, Fig. 2 also includes the spectro-
grams for the speech data from adult male (top panel) and adult female (middle
panel).

Mel-scale warping is influenced by the findings of psycho-acoustics. It is based
on the premise that human perception of pitch is linear up to 1000 Hz and then
becomes non-linear for higher-frequencies [3]. The Mel-filter-bank provides bet-
ter resolution to speech signals in the low-frequency range, while its frequency
resolution deteriorates in the high-frequency range. The down-sampling of spec-
tral information in the high-frequency band is a snag when dealing with chil-
dren’s speech [5,18]. The quest for the preservation of higher-frequency contents
in children’s speech led us towards the exploration of another front-end acous-
tic feature, namely the Inverse-Mel-Frequency Cepstral Coefficient. The IMFCC
features are extracted by projecting the power spectra onto inverse-Mel-weighted
filter-banks. The inverse-Mel-filter-bank is realized simply by flipping around the
Mel-weighted filter-banks about the middle point of the frequency axis. The set
up of this filter-bank is such that the high-frequency region’s spectral informa-
tion is better resolved and thus the IMFCC features are supposed to possess the
acoustic attributes disregarded by the MFCC features. It is worth highlighting
that due to the inherent nature of inverse-Mel-filter-bank, the spectral informa-
tion in the lower frequency range of the children’s speech will be down-sampled.
Therefore, we have conceived the idea of concatenating the MFCC and IMFCC
feature vectors in order to effectively preserve both the low as well as high-
frequency components. The block diagram outlining the extraction process of
the concatenated MFCC and IMFCC features is shown in Fig. 3.
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Fig. 2. Spectrograms corresponding to speech data from adult male (top panel), adult
female (middle panel) and child (bottom panel) speaking the word HEED. The red
speckles are the contours denoting the variation in formant frequencies, while the blue
line denotes the pitch frequency variations.

Fig. 3. Block diagram outlining the process of extracting concatenated MFCC and
IMFCC features.
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Fig. 4. Canonical correlation analysis of MFCC and IMFCC feature concatenation
explored in the paper.

In order to substantiate the effect of feature concatenation, the canonical
correlation analysis (CCA) was carried out. The CCA plot in Fig. 4 shows that
the MFCC and IMFCC feature vectors are highly uncorrelated or less correlated
for most of the coefficients except the starting few coefficients. Therefore the
frame-level concatenation of MFCC and IMFCC features leads to capturing a
wider range of acoustic attributes. The inherently complementary configuration
of filter-banks employed in the extraction of MFCC and IMFCC features are the
main force behind this development. Thus, the CCA plot of MFCC and IMFCC
features upholds the complementary characteristic of IMFCC with respect to
MFCC which assists their feature fusion model in representing a broader range
of acoustic information in children’s speech.

4 Experimental Evaluations

4.1 Speech Corpora and Experimental Set-Up

Three different speech corpora were employed for the development and evalua-
tion of the speaker verification system in this paper. The CSLU kids corpus [24]
consisted of spontaneous and prompted speech comprising of 100 h of data from
1, 100 children with a total of 73, 100 utterances. This speech corpus was used
as the training set for the ASV system in this work. The CMU kids corpus [4]
dataset comprised 9.1 h of data from 76 children having 5, 180 utterances. It
served as our test data-set. A total of 423, 388 genuine trails and 26, 403, 832
impostor trails are present in this test set. The average duration of the data in
this corpus is 6 seconds. Therefore, evaluation on this set represents the short-
utterance case. Finally, the WSJCAM0 corpus [17] which is an adult speech
data-set was used for the out-of-domain data augmentation. This speech cor-
pus comprises 15.5 hours of data from 92 adult speakers having 7852 utterances.
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After performing several data modification techniques like voice conversion (VC),
prosody modification (PM) and formant modification (FM), a total of 63 hours
of synthetic data is available for training purpose with acoustic attributes similar
to those of children’s speech.

The Kaldi toolkit was used to create the entire ASV system configuration
and perform all the experiments [14]. As already stated earlier, two front-end
acoustic features, namely the MFCC and IMFCC are used to represent the
speech signal. Both these features were extracted using the Kaldi toolkit. Speech
data were passed through a first-order high pass filter, having pre-emphasis factor
of 0.97. To bring stationarity in the nature of speech signals, the speech signal is
examined separately in short time frames of 25 ms with an overlapping of 10 ms.
A 30-channel Mel-filter-bank was utilized for projecting the power spectrum into
Mel-scale, followed by the computation of the 30-dimensional MFCC features.
While, for the computation of the IMFCC features, a 30-channel inverse-Mel
filter-bank was employed for warping the power spectra to inverse-Mel-scale,
before computing the 30-dimensional IMFCC features.

For the extraction of highly discriminative speaker representations, a deep
neural network was utilized. These fixed dimensional speaker-embeddings called
as x -vectors are extracted from a time-delay neural network (TDNN) architec-
ture [26], comprising of 7 hidden layers and trained for 6 epochs. Using the gra-
dient descent algorithm, the network’s parameters were trained [15,26]. Finally,
each of the speech utterances is represented as a 512-dimensional x -vector.

4.2 Experimental Results

To keep a track on the performance of the aforementioned ASV system when
subjected to short utterances of children’s test data-set, an investigative study
was undertaken. The first set of experiments were carried out to gauge the effec-
tiveness of the explored/proposed data augmentation techniques on the perfor-
mance of the ASV system. The corresponding experimental results in terms of
EER and minDCF are displayed in Table 1. As evident from the table, the perfor-
mance evaluation metrics undergo successive improvement with the application
of subsequent explored data augmentation techniques. For instance, with the
application of out-of-domain data augmentation techniques the system records
a relative improvement of 33.57% in EER with respect to the system trained on
the child dat-set alone. Next, when the in-domain data augmentation technique
is put into action, the relative improvement in EER is 37.9%. Finally, as men-
tioned earlier, when the ASV system is trained using both the out-of-domain
data augmentation technique and the in-domain data augmentation technique,
which is the proposed data augmentation approach used in this paper, a stagger-
ing relative improvement of 43.91% with respect to the baseline system trained
solely on child data-set is achieved. Consequently, the EER for the employed
children’s ASV system comes down to a measly 12.31%, which talks volumes
about the effectiveness of the proposed data augmentation strategy.

The next round of experiments were carried out to assess the effectiveness
of the proposed frame-level concatenation of the two front-end acoustic features
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Table 1. EER and minDCF values for the short-utterances of children’s speech test
set demonstrating the effectiveness of out-of-domain, in-domain as well as the pro-
posed data augmentation technique. The out-of-domain data augmentation scheme
includes adult voice conversion (ADULT-VC), adult formant modification (ADULT-
FM), adult prosody modification (ADULT-PM). The in-domain data augmentation
scheme includes children’s speech speed perturbation (CHILD-SP).

Type of Data Augmentation Data used for training Evaluation Metrics
EER(%) minDCF

No Data Augmentation CHILD 21.95 0.9975
Out-of-Domain CHILD + ADULT + ADULT-FM 14.58 0.9233
Data Augmentation + ADULT-PM + ADULT-VC
In-Domain CHILD + CHILD-SP 13.63 0.9031
Data Augmentation
In-Domain + Out-of-Domain CHILD+CHILD-SP+ADULT+ADULT-FM 12.31 0.8464
Data Augmentation(PROPOSED) + ADULT-PM + ADULT-VC

in the light of the employed short-utterance-based children’s ASV system. The
result of the evaluation metrics (EER and minDCF) obtained when MFCC fea-
tures are concatenated with the IMFCC features for each frame of speech signal
are shown in Table 2. It is to be kept in mind that the proposed data aug-
mentation technique has been implemented prior to training the ASV system.
The EER and minDCF values obtained when MFCC features alone are used to
train the ASV system are also enlisted for comparison. Apparently, an absolute
improvement of 1.01% is attained by the frame-level concatenation of MFCC
and IMFCC features.

Table 2. EER and minDCF values for the short-utterance-based ASV system trained
on the data-set obtained using the proposed data augmentation technique demonstrat-
ing the effectiveness of feature concatenation.

Acoustic Evaluation metric
features EER (%) minDCF

MFCC 12.31 0.8464
MFCC + IMFCC 11.30 0.8351

For an exhaustive analysis of the proposed strategy, the effect on the perfor-
mance of the ASV system was monitored when subjected to an age-wise as well
as gender-wise split-up of children’s speech test set. For evaluating the effect of
age variation, the evaluation metric results are noted for the complete test set,
as well as with split-up of the test-set in two subgroups on the basis of age.
The corresponding values for EER and minDCF for this study are exhibited in
Table 3. Going by the results of the Table 3, it is quite evident that an ASV sys-
tem shows a degraded results for children in the lower age bracket as compared
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Table 3. Age group wise and gender-wise break up of EER and minimum DCF values
highlighting the significance of feature concatenation approaches.

Features Test-set EER (%) minDCF

MFCC Full test set 12.31 0.8464
6-7 14.63 0.9657
8-9 12.12 0.8481
Female 14.77 0.9113
Male 9.229 0.7495

MFCC+IMFCC Full test set 11.30 0.8351
6-7 13.61 0.9221
8-9 10.98 0.8273
Female 13.75 0.8982
Male 8.625 0.7311

to children in the higher age bracket or for the matter compared to children in
the complete test-set. This can be attributed to the fact that younger children
owing to their shorter vocal-track length have higher pitch frequency and for-
mant frequencies. Also evident from the Table 3 is that the ASV system when
trained exclusively on the MFCC features produce somewhat poorer results as
those down-sample the higher-frequency contents of children’s speech. On the
contrary, the ASV system trained on the concatenated acoustic features yields
superior results and this development can be attributed to the underlying fact
that the feature fusion of MFCC and IMFCC takes into consideration the spec-
tral information in the lower- as well as higher-frequency regions. Apart from the
age-wise grouping of test set comprising children’s short utterances, the effect of
gender-wise grouping on the performance of the employed ASV system was also
analyzed. The corresponding values for EER and minDCF for this study are also
given in Table 3. As noticeable from the table that the ASV system performance
drops when subjected to female speech test-set in contrast to the male children
or as opposed to children in the complete test-set. This deterioration is due to the
higher formant and pitch frequencies of female child in comparison to male child.
The gender-wise results in Table 3 again reiterates the superior performance of
the ASV system trained on the concatenated MFCC and IMFCC features as
against the system trained solely on MFCC features. Moving on from the qual-
itative analysis towards the quantitative analysis of the effect of the proposed
feature concatenation on the employed children’s ASV system. The EER for the
full test set registers a relative improvement of 8.20% when MFCC features are
concatenated with the IMFCC features. When the speech test-set is split on
the grounds of age variation, a relative reduction in EER for the age bracket
of 6-7 years is calculated as 6.97% when the proposed feature concatenation is
put into action. The corresponding relative improvement in EER for the age
bracket of 8-9 years is 9.40%. When the speech test-set is split on the grounds of
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gender, a relative reduction in EER for the girl child is calculated as 6.90% upon
frame-level concatenation of MFCC with the IMFCC features. Finally when the
employed ASV system is subjected to short-utterances from the speech test set
of the male child, it results in a relative reduction of 6.50% in EER.

5 Conclusion

Through the work in this paper, the authors’ have examined the challenges sur-
rounding the task of building a children’s speaker verification system and their
potential applications. Firstly, it was evident that the traditional speaker verifica-
tion techniques designed for adult speakers are not directly applicable to children
due to their physiological and psychological differences. The development of a
robust and reliable children ASV system requires abundance of domain-specific
data-set. Incorporating both in-domain and out-of-domain data augmentations
in the proposed data augmentation approach, the amount of training data was
increased, the diversity of the captured acoustic attributes was widened which
also led to an improvement in the trained model’s generalization capabilities,
while keeping the acoustic mismatch in check. A relative improvement of 43.91%
in equal error rate (EER) against the baseline system trained solely on the orig-
inal child data-set authenticates the potency of the proposed data augmentation
approach. Together with data augmentation, the effectiveness of frame-level con-
catenation of MFCC with the IMFCC features, is also analysed in this paper. The
complementary nature of filter-banks employed in the extraction of IMFCC and
MFCC features, helps in preserving spectral information in the higher-frequency
range. The ASV system incorporating both the proposed data augmentation
technique as well as feature concatenation culminates in an impressive overall
relative improvement of 48.51% for equal error rate.
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Abstract. Developing an automatic speaker verification (ASV) system
for children is extremely challenging due to the rarity of children’s speech
corpora. To deal with data scarcity, we have developed an out-of-domain
data augmentation technique in this work. For that purpose, we have
resorted to pitch scaling, formant modification, time-scale modification,
and voice-conversion of adults’ speech in order to render it acoustically
similar to children’s speech. The children’s speech along with the modi-
fied and original adults’ data are then pooled into training. Furthermore,
two complementary front-end features namely, Mel-frequency cepstral
coefficients (MFCC) and frequency-domain linear prediction (FDLP)
coefficients have been concatenated so as to simultaneously capture the
spectral as well as temporal envelopes. The feature concatenation app-
roach when combined with data augmentation helps in achieving an over-
all relative reduction of 50.2% in equal error rate.

Keywords: Automatic speaker verification · Feature concatenation ·
Frequency-domain linear prediction coefficients · Out-of-domain data
augmentation

1 Introduction

In the recent past, social networking websites and e-learning tools have become
all rage among people of every generation. In addition to being an important
source of information dissemination, these technological marvels are rife with the
dangers of losing sensitive data and identity theft. Those keeping cheek-by-jowl
with it, should be aware of these lurking perils. Even though such an intimidating
issue can victimize anyone, but children who are oblivious of the repercussions
following the loss of sensitive data and identity theft become more vulnera-
ble targets. To address such jeopardising issues, a number of security measures
are being deployed; an automatic speaker verification system is one such tool.
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Automatic speaker verification (ASV) addresses the authentication issue of the
claimed identity of a speaker. In this process, a speaker feeds in his/her data
and claims the identity of a particular person. The deployed ASV system then
digs into its stored templates/models and matches the stored template of the
claimed identity with the input speech sample. The ASV system then states the
claim to be genuine if the two samples match to a certain permissible degree;
else the speaker is declared an impostor.

Although the primary function of speech signal is human communication, it
also captures information about the speaker’s identity, age, emotions, gender,
geographical origin and health. An ASV system, exploits the speaker-specific
information embedded in speech in order to determine the identity of the speaker.
A lot of research and development has been done on automatic speaker recog-
nition/verification in order to determine the speaker identity with a minimum
error. Unfortunately, most of those works have focused on adult population. The
scientific studies which discuss building children’s ASV system are regrettably
sparse [17–19,21,22].

Building a state-of-the-art children’s ASV system is replete with several chal-
lenges. The lack of sizable domain-specific speech corpus which are freely avail-
able, act as a first hiccup. Further, children’s speech databases are available in
only a handful of languages spoken across the globe [22]. For the languages in
which children’s speech corpus is unavailable (zero-resource condition), devel-
oping an ASV system is quite a formidable task. Even if a limited amount of
children’s speech data is available (low-resource condition), developing a chil-
dren’s ASV system employing deep learning architectures is still very challeng-
ing. State-of-the-art ASV systems incorporate deep learning architectures that
require estimating a huge number of parameters. This, in turn, requires a large
amount of domain-specific data. To circumvent the low and zero-resource condi-
tions, a few earlier works on children’s ASV have studied the impact of synthet-
ically generating speech data and then pooling it into training. Out-of-domain
data augmentation has been reported to be effective in this regard [21]. Moti-
vated by this fact, we have also studied the role of out-of-domain data augmen-
tation in the context of children’s ASV tasks. In this regard, we have studied the
role of formant-modification-based data augmentation along with other exist-
ing augmentation methods. To the best of our knowledge, out-of-domain data
augmentation based on formant scaling has not been studied in the context of
low-resource children’s ASV task.

In addition to data augmentation, we have also explored the effectiveness
of concatenating two prominent front-end acoustic features, namely the Mel-
frequency cepstral coefficients (MFCC) and the frequency-domain linear predic-
tion (FDLP) coefficients. The MFCC are the most popular and the most widely
used acoustic features which capture the spectral envelope. On the other hand,
the FDLP features capture the temporal envelope of the speech signal. Ear-
lier works have shown that modeling the temporal envelope aids in enhancing
performance in several speech processing tasks, such as in the recognition of
reverberant speech [26], replay spoofing attack detection [27] and spoken term
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detection [7]. While a log Mel-filterbank was engaged for warping the spectrum
before extracting the MFCC features; FDLP feature extraction was carried out
using three different filter-banks: Mel-, bark- and linear-filter-banks. To the best
of the authors’ awareness, the potency of FDLP features in the context of chil-
dren’s ASV tasks is an unexplored territory. Therefore, on top of data aug-
mentation, we have also carried out frame-level concatenation of MFCC with
FDLP features derived from three different filter-banks, in order to simultane-
ously model the spectral as well as temporal envelopes. The demonstrations in
the later half of this paper reveal that the proposed frame-level concatenation
of the two complementary front-end acoustic features increases the class separa-
tion among the speakers. This, in turn, assists in considerably reducing the equal
error rate (EER) as well as the detection cost function (DCF) compared to our
baseline system trained exclusively on children’s speech using MFCC features.

The remainder of this paper is organized as follows: Sect. 2 describes the
proposed out-of-domain data augmentation techniques to cope with paucity of
domain specific data. In Sect. 3, we shed light on the role of feature concatenation
and the different filter-banks employed for the extraction of FDLP features. The
experimental evaluations illustrating the effectiveness of our proposed technique
finds place in Sect. 4. Ultimately, the conclusion in Sect. 5 wraps up the paper.

2 Out-of-Domain Data Augmentation

A state-of-the-art ASV system makes use of an x -vectors-based speaker represen-
tation. For extracting x -vectors, a time-delay neural network (TDNN) [8,23,24]
comprising a large number of hidden layers and hidden nodes per layer is trained.
As already mentioned, one of the hurdles in the development of a reliable ASV
system for children is the scarcity of domain-specific data. Hence, training an
x -vector-based ASV systems on a meagre amount of children’s speech, results
in a sub-optimal performance. Out-of-domain data augmentation techniques can
help mitigate this obstacle. Driven by this rationale, we have synthetically gener-
ated speech data, having acoustic attributes similar to those of children’s speech
using the available adults’ speech corpus. The synthetically generated data was
then pooled into training along with the children’s speech for learning the model
parameters. We have studied several ways by which data augmentation can be
carried out and those are briefly discussed in the following:

– In the first approach, the adults’ speech was subjected to voice conversion
(VC) using a cycle-consistent generative adversarial network (CGAN) [4].
Nearly 10min of speech data from each speaker group (adult and child speak-
ers) was used to train the CGAN. As a result of VC, adults’ speech utter-
ances sound very similar to children’s speech as noted during the listening
tests. Therefore, on pooling the voice-converted data, the issues of acoustic
mismatch reduce to a large extent.

– In the second approach, adults’ speech was subjected to pitch scaling prior
to augmentation. In this case, pitch of speech data from the adult speakers
was increased by a factor of 1.35. These scaling factors were determined from
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earlier reported works on children’s speech recognition. The speech utterances
from adult speakers were subjected to pitch modification so as to compensate
for the difference in the pitch of adult and child speakers [6,15]. In order to
perform pitch modification (PM), the technique reported in [12] was used.

– In case of child speakers, the formant frequencies are higher as well as average
phoneme duration is longer compared to adult speakers [6,15]. As a conse-
quence, the speaking-rate of children is slower as compared to adults’. These
stark differences in the acoustic characteristics between the child and adult
speakers paves way for our third and fourth approach of data augmentation.
In the third approach the speaking-rate of adults’ speech data was decreased
by a factor of 1.4 through time-scale modification (TSM) [12]. While in the
fourth approach, the formant frequencies (FM) of adults’ speech data are up-
scaled by a factor of 0.08. All the modified versions of adults’ speech data
were then pooled together with the children’s speech data and the unper-
turbed adult speech data. The mentioned scaling factors were adopted from
our earlier studies [5,20].

– Finally, the pooled data was then passed through the default three-way speed
perturbation Kaldi pipeline [10]. For each of the utterances, the speed is
modified simultaneously by a factor of 1.1 and 0.9, respectively. The perturbed
and unperturbed data were then mixed. Consequently, the amount of data
used for training was further increased by a factor of three.

Fig. 1. Block diagram summarizing the out-of-domain data augmentation technique
proposed in this paper.

These approaches account for the proposed data augmentation technique and
has been pictorially summarized in Fig. 1. It is worth mentioning here, that even
though the aforementioned techniques of synthetically generating speech data
are acclaimed in the literary works, their combined efficaciousness in the context
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of a children’s ASV systems are relatively uncharted. Among the approaches
discussed, VC, PM and TSM have been explored in the context of children’s
ASV task to some extent. However, the effect of FM has not been studied yet.
Moreover, the combined effectiveness of all the discussed approaches has also
not been studied.

3 Acoustic Feature Concatenation

In the section, the idea behind concatenating complementary front-end acoustic
features in order to enhance the performance of children’s ASV system is dis-
cussed. As already mentioned, the considered acoustic features are MFCC and
FDLP. Given the speech signal, first, we extract MFCC and FDLP features.
Next, for each of the short-time frames, the corresponding MFCC and FDLP
features are appended. The resulting feature vectors are then used as an input
to the x -vector extractor instead of MFCC features alone.

The MFCC features model the spectral envelope corresponding to each of the
short-time frames. However, the temporal structure is not effectively represented.
In order to address this deficiency, the velocity and acceleration coefficients
are generally appended to the base features. In recent times, time-splicing is
employed in the place of appending velocity (delta) or acceleration (delta-delta)
coefficients. FDLP features, on the other hand, capture the temporal envelope
by applying linear predictive coding on the spectra. Prior reported works have
shown that, effective modeling of the temporal peaks can aid in improving the
efficacy of several speech processing tasks [7,26,27]. Having cognizance of the
complementary nature of the two features, it is expected that frame-level con-
catenation of the two types of features will boost the performance of children’s
ASV task as well.

In order to examine the effect of feature concatenation, the following analy-
sis was carried out. Three child speakers were randomly chosen from the avail-
able speech corpus. Next, we collected the MFCC features corresponding to all
the speech utterances from those selected speakers. Finally, t-SNE plots were
derived using the selected MFCC features, wherein each speaker was treated as
one class. The t-SNE plot corresponding to this analysis is depicted in Fig. 2(a).
This study was then repeated by replacing the MFCC features with FDLP fea-
tures and again by frame-level concatenation of MFCC and FDLP features. The
corresponding t-SNE plots are shown in Fig. 2(b) and Fig. 2(c), respectively. As
evident from the t-SNE plots, the speaker clusters move further apart when
FDLP features are employed in place of MFCC features. In addition to that,
overlap among the speaker clusters significantly decreases when the two features
are concatenated. Therefore, the proposed idea of frame-level concatenation is
expected to enhance the discrimination among the speakers. The same has been
experimentally substantiated in this paper.

In the following subsections the two types of front-end features are succinctly
discussed for the sake of completeness. The discussion is in close adherence to
the works reported in [1,2], respectively.
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Fig. 2. t-SNE plots depicting the reduction of class overlap as a result of concatenating
MFCC and FDLP features.

3.1 Mel-Frequency Cepstral Coefficients (MFCC)

For extracting MFCC features, the speech signal is first high-pass filtered
through a pre-emphasis filter in order to emphasize the higher frequency compo-
nents. Next, each of the speech utterances are analyzed into short-time frames
using overlapping Hamming windows, followed by the computation of short-
time Fourier-transform. Spectral warping is then carried out using a set of non-
linearly spaced filters, called a Mel-filter-bank. Logarithmic compression of the
filtered power spectrum is then performed. The de-correlated real cepstrum is
then obtained by applying the discrete cosine transform. Finally, by low time
liftering of the real cepstrum, MFCC features are extracted.

3.2 Frequency Domain Linear Prediction (FDLP) Coefficients

Formants are the frequency peaks in the power spectrum of the speech data. Each
formant corresponds to a resonance in the vocal tract. These formants which are
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spectral structures convey vital linguistic details [1]. Still, this is only a partial
depiction of speech signals. Temporal structures are also believed to encompass
crucial information with regards to both the perception of natural sounds along
with sensing stop bursts in a speech signal. These temporal envelopes can be
obtained from frequency sub-bands of the signal using FDLP. Taking cue from
the duality feature of time-domain and frequency-domain properties of signals,
the temporal envelopes can be modeled through linear prediction analysis in
frequency domain.

The residual signal from time-domain linear prediction applied to a speech
signal contains the excitation source information of the signal. Thus, the spectral
envelope and the residual signal are anticipated to carry complementary infor-
mation. It is believed that the residual signal obtained from FDLP, carry com-
plementary characteristics to the temporal envelope obtained using the FDLP
process. As described in [27], this paper uses discrete cosine transform (DCT) to
convert the time-domain signal into the frequency-domain. The DCT is applied
to each long speech frame, and the DCT coefficients are grouped per sub-band,
following which a linear prediction analysis is conducted in the frequency-domain
on a per-subband basis. The all-pole magnitude response of the linear predictive
filter thus obtained is taken as the temporal envelope.

The FDLP feature extraction employed in the paper was carried out using
three different filter-banks: Mel-, bark- and linear-filter-banks. The brief detail
of each of these non-linear scales are summarized in the following: Mel-scale
filter-banks are a set of triangular filters with a peak response equal to unity
at the center frequency. The central frequency of each Mel-scale filter bank is
uniformly spaced till 1000 Hz and it follows a logarithmic scale thereafter. The
mapping from linear frequency scale (f in Hz) to the Mel-frequency scale (m) is
given by:

m = 2595 log10

(
1 +

f
700

)
(1)

The Bark scale provides an alternative perceptually motivated scale to the
Mel-scale. The basilar membrane (BM) which is an important part of the inner
ear performs the spectral analysis followed by speech intelligibility perception in
humans. Each point on the BM can be considered as a band pass filter having a
bandwidth equal to one critical bandwidth or one Bark. The bandwidth of several
auditory filters were empirically observed and used to formulate the Bark scale.
The transformation of linear frequency scale(f in Hz) into Bark-frequency scale
(B) [13,25] is given by:

B = 13 arctan
(
0.76f
1000

)
+ 3.5 arctan

(
f

7500

)2

(2)

The linear filter-bank’s resolution is alike for all the frequency components
of the spectral information. The linear-scale frequency of linear filter-bank may
prove to be beneficial for children’s ASV system as the filter-bank coefficients
cover all speech frequency ranges equally and considers them equally important.
Earlier works have shown that the higher-frequency components in children’s
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speech are richer in speaker-specific information. Hence, effectively preserving
those by the use of linear-filter-bank may improve the performance of an ASV
system.

4 Experimental Evaluation

4.1 Speech Corpora and Experimental Set-Up

Three different speech corpora were employed for the development and evalua-
tion of the speaker verification system in this paper. The CMU kids corpus [3]
consisted of a 9.1 hours of data from 76 children. This speech corpus was used
as the training set for the ASV system in this work. The PF-STAR kid cor-
pus dataset [16] comprised of 8.3 hours of data from 121 children. It served as
our test data-set. A total of 6, 664 genuine trails and 995420 impostor trails are
present in this test set. Finally, the WSJCAM0 corpus [14] which is an adult
speech data-set was used for the out-of-domain data augmentation. This speech
corpus comprises of 15.5 hours of data from 92 adult speakers.

The entire set-up for the ASV system was developed using kaldi toolkit [9]. As
already mentioned, we have experimented with two front-end acoustic features.
It must be pointed out that, the MFCC features were extracted using the Kaldi
toolkit while FDLP-based front-end speech parametrization was performed using
MATLAB. In the process to extract the MFCC features, speech data were first
high-pass filtered having pre-emphasis factor of 0.97. Each of the speech utter-
ances are divided into short-time frames using overlapping Hamming windows.
The duration of the Hamming windows was chosen to be 25 ms with a frame
shift of 10 ms. A 30-channel Mel-filter-bank was engaged for warping the linear
spectra to Mel-scale, before computing the 30-dimensional MFCC features. On
the other hand, FDLP feature extraction was accomplished using three different
types of filter-banks, namely mel-scale, bark-scale and linear-scale filter-bank.
The number of modulation components and cepstral components were 14 and
30, respectively. The frame length was chosen to be 25 ms with a frame shift of
10 ms, similar to that of MFCC specifications.

The x -vector extraction was performed using a time-delay neural network
(TDNN) architecture [24] comprising of 7 hidden layers trained for 6 epochs. The
parameters of the network was trained using gradient descent algorithm [11,24],
followed by a 512-dimensional x -vector extraction as the final step. The metrics
used for performance evaluation in this paper are equal error rate (EER) and
minimum decision cost function (minDCF).

4.2 Experimental Results

The EER and minDCF values for the children’s speech test-set with respect to
an ASV system trained on either children’s speech or a mix of children’s and
adults’ speech along with the modified adults’ speech are given in Table 1. As
evident from the table, the EER and minDCF undergo appreciable improvement
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Table 1. EER and minDCF values for the children’s speech test set demonstrat-
ing the effectiveness of out-of-domain data augmentation techniques. The MODIFIED
ADULT SPEECH in the out-of-domain data augmentation scheme includes adult voice
conversion (ADULT-VC), adult time-scale modification (ADULT-TSM), adult formant
modification (ADULT-FM) and adult pitch modification (ADULT-PM).

Data used for training Evaluation Metric
EER(%) minDCF

CHILD (Baseline) 4.235 0.6442
CHILD + ADULT 3.574 0.5432
CHILD + MODIFIED ADULT SPEECH 2.931 0.4565
CHILD + ADULT + MODIFIED 2.716 0.3655
ADULT SPEECH (PROPOSED)

with the implementation of the proposed data augmentation technique. A rel-
ative improvement of 35.86% with respect to the baseline ASV system trained
exclusively on child data-set is achieved when the proposed data augmentation
techniques is employed. This shows that the missing targeted attributes have
been well captured as the consequence of the proposed data augmentation. Con-
sequently, the developed ASV system generalizes better for the children’s speech.
The separate impact of the augmented data for different setups are also enlisted
in Table 1 for comparison with the data augmentation technique proposed in this
paper.

Next, the effectiveness of the proposed feature concatenation approach was
evaluated. The EER and minDCF values obtained when MFCC and FDLP fea-
tures were concatenated are given in Table 2 for the entire test-set. The EER
and minDCF values obtained when the ASV system is trained either using only
MFCC features or using only FDLP features are also enlisted for comparison.
Again, the proposed data augmentation technique has been employed prior to
training the ASV system. As evident from the Table 2, relevant improvements
are observed in the evaluation metrics when MFCC features are concatenated
with the FDLP features. The frame-level concatenation of the MFCC features
with the FDLP features extracted by the linear filter-bank out-classes all other
feature concatenation pairs and culminates in a significant relative improvement
of 22.34% in EER on the entire test-set.

Further, the effect on the performance of the ASV system was monitored
when subjected to gender-wise split-up of children’s speech test set. For evalu-
ating the effect of gender variation, the evaluation metric results are noted for
the complete test-set, as well as with split-up of the test-set in two subgroups
on the basis of gender. The corresponding values for EER and minDCF for this
study are exhibited in Table 3. Evident from the Table 3 is that the ASV system
trained on the concatenated acoustic features yields superior results and this
development can be attributed to the underlying fact that the feature fusion
of MFCC and FDLP features represent the spectral as well as the temporal
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Table 2. EER and minDCF values for the ASV system trained on the full data-set
obtained using the proposed data augmentation technique, demonstrating the effective-
ness of feature concatenation. This study was performed on x -vector-based children’s
ASV system.

Features Test-set EER (%) minDCF

MFCC Full 2.716 0.3655
FDLP_Linear Full 2.412 0.3588
MFCC + FDLP_Bark Full 2.395 0.3448
MFCC + FDLP_Mel Full 2.287 0.3631
MFCC + FDLP_Linear Full 2.109 0.3313

Table 3. EER and minimum DCF values highlighting the significance of feature con-
catenation approaches on the different test sets. This study was performed on x -vector-
based children’s ASV system.

Features Test-set EER (%) minDCF

MFCC Full test set 2.716 0.3655
Female 2.407 0.2560
Male 3.522 0.7470

MFCC + FDLP_Bark Full test set 2.395 0.3448
Female 2.148 0.2547
Male 2.831 0.7070

MFCC + FDLP_Mel Full test set 2.287 0.3631
Female 2.519 0.2785
Male 2.486 0.7100

MFCC + FDLP_Linear Full test set 2.109 0.3313
Female 2.111 0.2813
Male 2.624 0.6840

structure effectively. This reiterates that an enhanced children ASV performance
can be achieved by effectively modeling temporal envelope along with the spec-
tral envelope.

5 Conclusion

The work in this paper presents our endeavour towards the development of
a robust children’s ASV system. To address the inevitable problem of speech
data scarcity, we have proposed an out-of domain data augmentation technique
wherein the available adults’ speech was modified through techniques like voice
conversion, pitch scaling, duration modification and formant modification. All
the perturbed and unperturbed speech data were pooled together and the three-
way speed modification was performed on them. Consequently, the amount of
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training data was increased three-folds while keeping acoustic mismatch in check
to a large extent. Furthermore, we have also explored the effect of concatenating
MFCC and FDLP coefficients in order to simultaneously model the spectral
as well as temporal envelopes. The proposed data augmentation technique in
combination with frame-level concatenation of MFCC with the FDLP features
extracted through the linear filter-banks results in the most significant reduction
in EER and minDCF compared to the baseline. As a future extension of this
work, we would like to explore the performance of the children’s ASV system
with a larger amount of adults’ speech data.
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Abstract. Classification of normal vs. pathological infant cry is a
socially relevant and challenging problem. Many feature sets, such as
Mel Frequency Cepstral Coefficients (MFCC), Linear Frequency Cepstral
Coefficients (LFCC), and Constant Q Cepstral Coefficients (CQCC) have
been used for this task. However, an effective representation of the spec-
tral and pitch components of a spectrum together is not achieved leaving
scope for improvement. Also, the infant cry can be considered a melodic
sound implying that the fundamental frequency and timbre-based fea-
tures also carry vital information. This work proposes Constant Q Har-
monic Coefficients (CQHC), and Constant Q Pitch Coefficients (CQPC)
extracted by the decomposition of the Constant Q Transform (CQT)
spectrum for the infant cry classification. This work uses Convolutional
Neural Network (CNN) as the classifier along with traditional classifiers,
such as Gaussian Mixture Models (GMM) and Support Vector Machines
(SVM). The results using the CNN classifier are compared by consider-
ing the MFCC, LFCC, and CQCC feature sets as the baseline features.
The feature-level fusion of MFCC with log-CQHC and MFCC with log-
CQPC achieved a 5 -fold accuracy of 98.73% and 98.96% respectively,
surpassing the baseline MFCC. Furthermore, the fusion of MFCC with
log-CQHC and log-CQPC feature sets resulted in improved classifica-
tion accuracy of 3%, 4.7%, and 5.85% when compared with the baseline
MFCC, LFCC, and CQCC feature sets, respectively. Further, our inten-
sive experiments using three classifiers structures, namely, GMM, SVM,
and CNN indicate superior results using the proposed feature extraction
techniques.

Keywords: Infant cry classification · CQT · CQHC · CQPC ·
Feature-level fusion · Convolutional neural network · GMM · SVM

1 Introduction

Crying is the sole established means by which an infant communicates with par-
ents or caregivers. Hence, the cry of an infant carries information, such as emo-
tional needs, physical needs, or pathological needs. Even experienced mothers
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and caregivers often find it challenging to pinpoint the precise cause of an infant’s
crying. Infant cry research involves diverse fields, such as prosody engineering,
and neurology engineering. Normal vs. pathological infant cry classification is
one of those [13]. World Health Organization (WHO) predicts that the infant
mortality rate can be reduced by up to two-thirds if early diagnosis and treat-
ments are given during the first week of life [10]. In this context, a cry-based
recognition of infant was recently proposed by a collaborative research of Speech
Brain and Ubenwa Health [5]. Study reported in [9], reports Infant Identifica-
tion using Fingerprint I’D. To that effect, the classification of infant cries has
been proven to be a vital study. Acoustic analysis of the infant cry is found to
be useful for certain pathological conditions [12], where early detection of the
pathological cry aids in diagnosing pathology in time.

Early 1960s mark the beginning of infant cry research and analysis [23].
The study reported in [26], identified ten distinct cry modes to describe the
manner of variations of fundamental or pitch frequency (F0) and its harmonics
(kF0, k ∈ Z). However, this study was limited to the analysis of normal infant
cries and later extended to pathological infant cries, where dysphonation and
hyperphonation cry modes were found to be correlated with the pathological
cry [13]. These studies also used a narrowband spectrogram due to its capability
of capturing the variation in kF0, where formant structures are not clear due
to quasi-periodic sampling of the vocal tract spectrum by the distantly-spared
pitch source harmonics.

In the literature, studies using state-of-the-art feature sets, such as Mel Fre-
quency Cepstral Coefficients (MFCC) are also explored for infant cry classifica-
tion [1,15]. Nonetheless, the Short-Time Fourier Transform (STFT), employed
in Mel Frequency Cepstral Coefficients (MFCC), exhibits a consistent time-
frequency resolution across the entire time-frequency plane. Furthermore, it does
not maintain the property of form-invariance, as the analysis window utilized in
STFT is solely dependent on the time parameter. Constant-Q Transform (CQT)
was found to preserve the form-invariance property as the window used in CQT
is a function of both time and frequency. The MFCC captures the generalized
timbre features and the multi-dimensional timbre feature cannot be captured
using the Mel scale. Recently, there are many data-driven models used to obtain
the timbre-based features, however, implicit learning is tied to specific training
models and is not as explicit and interpretable as MFCCs, which are better at
the characterization of sound signals.

Infants possess a remarkable innate inclination for music, where melody con-
tour (i.e., F0 and its harmonics) is most prominent for them [25]. Perception
and memorization of melody and rhythm (i.e., prosody) start around the third
trimester of pregnancy [2]. To that effect, motivated by Brown’s original study on
CQT for enhanced note resolution in western music [3], a CQT-based study was
employed in [18] for infant cry classification. In this paper, we propose features
based on the decomposition of the CQT spectrum giving, Constant Q Harmonic
Coefficients (CQHC), and Constant Q Pitch Coefficients (CQPC) for the infant
cry classification task.
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The remainder of this paper is structured as follows: In Sect. 2, we introduce
our proposed work on CQHC and CQPC features, along with the details of
feature extraction. Section 3 provides insights into the database used and outlines
the experimental setup. Section 4 presents the experimental results and provides
an in-depth analysis of these findings. Lastly, Sect. 5 serves as the conclusion of
the paper and offers a glimpse into potential directions for future research.

2 Proposed Work

In this Section, we describe details of CQT and its decomposition to obtain
CQHC and CQPC feature sets. Figure 1 shows the functional block diagram of
the proposed Constant-Q Based Harmonic and Pitch Features for Infant Cry
Classification.

Fig. 1. Functional block diagram of the proposed Constant-Q Based Harmonic and
Pitch Features for Infant Cry Classification.

2.1 Constant-Q Transform (CQT)

This frequency transform exhibits a logarithmic resolution that aligns with the
tuning of Western music, where the octave is evenly divided into steps [3,4]. In
contrast to the discrete Fourier transform (DFT), which maintains a constant
window size for each frequency bin, the window size in the Constant-Q Transform
(CQT) decreases as the frequency increases, thanks to the constant quality factor
(Q), resulting in a logarithmic resolution [20].

Let x(n) be the discrete-time speech signal obtained with a sampling fre-
quency of Fs. The STFT of x(n) is given by [3]:

X(ω, τ) =
∞∑

n=−∞
x(n) · h(n, τ) · e−jωn, (1)

In this context, the symbol h(n, τ) signifies the analysis window, which is centred
at a specific time point τ . It’s important to note that this window function
depends exclusively on the time parameter τ . Now, if we denote z(n) as a frame
of the speech signal, we can express the N-point Discrete Fourier Transform
(DFT) for the kth spectral component of z(n) which is given by Z(k) as follows:

Z(k) =
N−1∑

n=0

z(n) · e−j( 2π
N )kn, (2)
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where k is the frequency bin index, and ωDFT = (2πk)/N . The CQT of a signal
z(n) is given as [20]:

ZCQT (k) =
1

N(k)

N(k)−1∑

n=0

z(n)h(n, k)e
−j

(
2π

N(k)Qn

)

, (3)

and ωCQT = (2πQn)/N(k), and h(n, k) represents the analysis window. It’s
important to note that this analysis window remains constant for each frequency
bin fk, but its length is determined by both n (time) and k (frequency), where
N(k) = Q(Fs/fk).

The quality factor (Q) can be defined as the ratio of the center frequency
to bandwidth, and it is calculated according to the formula provided in the
reference [3]:

∵ Q =
fk

Δfk
=

fk

fk+1 − fk
=

1
21/B − 1

, (4)

where B represents the number of bins per octave, and fk shows the frequency
of kth spectral component, which is given by:

fk = (2(k−1)/B)fmin, (5)

where fmin is the minimum frequency of the signal.

2.2 Constant-Q Harmonic Coefficients (CQHC)

The logarithmic resolution of the CQT allows the harmonics to form a constant
pattern in the frequency-domain, with their relative position remaining the same
w.r.t F0 [20]. As the harmonics are the spectral coefficients carrying the spectral
information of the signal, they can be used in the timbre characterization of
the signal, where timbre can be defined as the quality of the sound produced.
Given the pitch can be normalized, the locations of harmonics can be inferred,
and their energies be extracted leading to an efficient timbre feature set. The
pitch normalization is achieved considering the assumption that the CQT spec-
trum can be represented as a convolution between a pitch-normalized spectral
component, and energy-normalized pitch component as shown in Eq. (6) [20]. In
particular, from Eq. (3), the CQT spectrum can be written as:

Z = S ∗ P, (6)

where Z represents the CQT spectrum, S represents the pitch-normalized spec-
tral component, and P represents the energy-normalized pitch component. From
the property that the magnitude of the Fourier transform is shift-invariant, the
spectral component can be approximated by the magnitude Fourier transform
of the CQT spectrum. The IFFT of the above approximation gives the estimate
of the spectral component as stated in Eq. (7) [20]:

S = F−1(|F(Z)|), (7)
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where F−1(.) represents the inverse Fourier transform function. Given the octave
resolution considered for the calculation of CQT, we can obtain the locations of
harmonics in the spectral component, and then extract the harmonic coefficients.
The coefficients from the spectral component are obtained by [20]:

i = round(Orlog2(k)), (8)

CQHCk = S(i), (9)

where k takes the value between 1 and Nc, Or is the octave resolution, and
Nc is the number of desired coefficients. The CQHC captures the harmonics
information of the speech signal embedded in the CQT spectrum. In this work,
along with CQHC, additionally, logarithmic CQHC is also considered.

2.3 Constant-Q Pitch Coefficients (CQPC)

The decomposition of the CQT spectrum also results in an energy-normalized
pitch component. This means that the information embedded in the fundamental
frequency (F0), and the first few formants are stored through the pitch compo-
nent. The pitch component is calculated as [20]:

P = F−1(ejArg(F(Z)). (10)

Furthermore, the coefficients for the pitch component are obtained in a similar
manner shown in Eq. (8), and Eq. (10), where the spectral component is replaced
by the pitch component. Algorithm 1 specifies the pseudocode for the feature
extraction of CQHC and CQPC features. In addition, logarithm CQPC is also
considered.
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3 Experimental Setup

3.1 Datasets Used

This study utilizes the Baby Chillanto dataset, which was curated using record-
ings conducted by medical professionals and is a property of NIAOE-CONACYT
in Mexico [21]. Each infant cry signal was divided into one-second segments,
representing individual samples in our research. These cry segments were cate-
gorized into five groups, forming two sets for binary classification: healthy cry
(comprising normal, hungry, and pain cries, totalling 1049 cry samples) and
pathological cry (comprising asphyxia and deaf cries, totalling 1219 cry sam-
ples). All the samples are resampled to 22.05 kHz. An 80–20 split is followed
for training and testing. A random seed value is fixed in order to remove the
randomization across the train-test split. The cross-fold validation is included
in order to show the robustness of the classifier and feature set. The statistical
details of the dataset are shown in Table 1.

Table 1. Statistics of the Baby Chillanto dataset used. After [6,7,21].

Class Category # Utterances

Healthy Normal 507

Hungry 350

Pain 192

Pathology Asphyxia 340

Deaf 879

3.2 Classifiers Used

Convolutional Neural Network (CNN) Classifier. This work uses CNN
classifier, which is known to learn the spatial hierarchies from the data for clas-
sification. It is also known that infant cries contain major classification cues
across the spatial axis in the spectrograms. [19] shows the important informa-
tion embedded across the temporal axis of an infant cry. Table 2 shows a detailed
description of CNN architecture. The model is trained using stratified 5 -folds
cross-validation strategy with a seed value and a train and validation split of
80% and 20% using adam optimizer [27], binary cross-entropy as a loss func-
tion, and accuracy as the evaluation metric. The stratified method ensures the
distribution of data in each fold is similar to the distribution of the entire data.
The algorithm was tuned using grid search to select the best learning rate, and
batch size for 300 epochs. Two activation functions are used, namely, ReLu and
sigmoid. A ReLu activation is used in order to improve the learning speed while
reducing the computational cost [14], and the sigmoid activation is used at the
final layer for binary classification. A normalization layer was added along with
a dropout layer after each convolutional layer in order to avoid overfitting of
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CNN model. The learning rate used is 0.001 and a batch size of 128. The net-
works were implemented using the python library Keras v.2.24 [16] using the
TensorFlow-GPU v.1.14.0 backend.

Table 2. CNN Architecture.

Output Size Description

(20,130,1) CQHC

(20,130,16) convolution layer, 16 filters, BN, relu

(10,65,16) max-pooling, (2,2), dropout (0.25)

(10,65,32) convolution layer, 32 filters, BN, relu

(5,32,32) max-pooling, (2,2), dropout (0.25)

(5,32,64) convolution layer, 64 filters, BN, relu

(2,16,64) max-pooling, (2,2), dropout (0.25)

(2,16,16) convolution layer, 16 filters, BN, relu

(2,16,16) dropout (0.25)

(2,16,16) convolution layer, 16 filters, BN, relu

(2,16,16) dropout (0.25), followed by flattening

128 dense layer, relu

64 dense layer, relu

64 dropout (0.25)

1 dense, sigmoid

Traditional Classifiers. Experiments were also performed on traditional clas-
sifiers such as Gaussian Mixture Model (GMM) and Support Vector Machine
(SVM). 512 number of Gaussian mixtures were used to train the model on 5 -
fold cross-validation. Similarly, the SVM was trained on a 5 -fold using a linear
kernel. In this work, the focus will be on the results obtained using the CNN clas-
sifier and the traditional classifiers serve to support the discussions as the deep
learning classifier have the ability to capture complex relations present across
various features.

3.3 Baseline Features

In this work, three baseline features are considered, namely, Mel Frequency Cep-
stral Coefficients (MFCC), Linear Frequency Cepstral Coefficients (LFCC), and
Constant Q Cepstral Coefficients (CQCC). All these features are evaluated by
keeping a window size of 25 ms and a hop length of 10 ms, Fmin = 100 Hz, and
octave resolution of 14. All the features were extracted using librosa toolkit [17].
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4 Results and Analysis

4.1 Spectrographic Analysis

Figure 2 represents the CQT-gram analysis of normal vs. asphyxia vs. deaf cries.
From Panel III of Fig. 2, it can be observed that the pitch component of a normal
cry is found to have a continuous contour plot (F0 contour), however, it is seen
to be discontinuous for the pathological cry. Furthermore, it is observed that
the pitch component of pathology cries occurs at higher frequencies than the
pitch component of the normal infant cry. These observations make the pitch
component a vital differentiating factor for normal vs. pathology infant cry.
However, the CQPC component does not contain the formant information. Panel
II of Fig. 2 represents the spectral component of infant cries. For pathological
cries, the harmonic structures are found to be smeared when compared with the
normal infant cry. Due to the pitch normalization of the harmonics, the resolution
of the harmonic component decreases. This makes the harmonic component a
poor choice when considered alone.

4.2 Results Obtained for Baseline

The accuracy obtained using baseline features is reported in Table 3. It can be
seen that the maximum 5 -fold (test) accuracy of 96.95% (97.88%) is achieved
using the MFCC on the CNN classifier. Further, it can be seen that traditional
classifiers, such as GMM, and SVM resulted in a test accuracy of 99.16% and
86.21%, respectively, for the MFCC. The MFCC results in the highest accuracy
of all the baseline features across different classifiers because it contains general-
ized timbre information and pitch information [20]. It should also be noted that
the introduction of the Mel scale features is primarily aimed at the musical sig-
nals [20], in particular, the Mel scale is derived from psychophysical measurement
of just noticeable differences (JHD) pitch differences [22] and since the infant
cry can be considered as a melodic signal, the Mel scaled features outperforms
the linear scale-based features.

4.3 Results for CQT, CQHC, and CQPC

The CQT feature set using a CNN classifier resulted in an accuracy of 90.32%
as shown in Table 4. The CQHC and CQPC feature sets, which are obtained by
decomposing the CQT spectrum resulted in fold (test) accuracies of 80.85%
(82%) and 83.47% (85.18%), respectively. A similar trend of results can be
noticed using traditional classifiers, i.e., GMM and SVM. This result indicates
the importance of the pitch component for the infant cry classification, which
is captured by the CQPC feature set. This might be due to the fact that the
pathology cry contains irregular breathing patterns which are caused due to
affected vocal folds and it is known that the fundamental frequency (F0) is tied
to the rate of vocal fold vibration [11]. Hence, the F0 or the pitch component
contains distinguishing acoustic cues of the cry, which is vital for the classifi-
cation task of normal vs. pathology cry. This result also indicates the fact that
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Fig. 2. Panel I, Panel II, and Panel III depicts CQT-gram, Spectral Component, and
Pitch Component, respectively, for (a) normal cry, (b) asphyxia, and (c) deaf cries.
Best viewed in colour.

Table 3. Results for Baseline Features.

Features CNN Fold Acc. CNN Test Acc. GMM SVM

MFCC 96.95 97.88 99.16 86.21

LFCC 94.42 96.47 99.16 84.76

CQCC 93.27 93 95.44 83.12

infant cries exhibit rich melodic features i.e., variation of fundamental frequency
w.r.t time [24].

On the other hand, the CQHC feature set which is extracted by normalizing
the spectrum w.r.t F0 fails to perform when compared with the CQPC indicating
the timbre information alone does not carry distinguishing factors for the normal
and pathological infant cry. However, neither the harmonics component nor the
pitch component alone is resulting in accuracy higher than the CQT feature set.
These results can be supported by the spectrographic analysis performed in the
previous section. Furthermore, the effect of the logarithm applied to the feature
sets was investigated. The application of a log on any spectrum helps to increase
the resolution of the spectrum.
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It can be observed from Table 4 that the effect of the log is negligible in
the case of CQPC as the increase of resolution of the energy normalized pitch
component doesn’t add much information as compared to the spectral component
which contains the information of the harmonics, that is normalized to the low-
est frequency. Similar conclusions can be drawn from the results obtained using
traditional classifiers. The SVM is the least-performing classifier which might be
because of its inability to deal with mapping features that are not linearly separa-
ble in lower-dimensional feature space into linearly separable higher-dimensional
feature space, where they become linearly separable, which is nothing but the
Cover’s theorem on the separability of patterns [8].

Table 4. Accuracy of CQT, CQHC, and CQPC.

Feature CNN 5-Fold Accuracy CNN Test Accuracy GMM SVM

CQT 90.32 87.12 90.7 70.62

CQHC 80.85 82.00 85.77 64.49

CQPC 83.47 85.18 89.6 62.59

LOG CQHC 90.70 91.12 90.22 77.27

LOG CQPC 91.24 92.12 93.61 80.31

4.4 Effect of Feature-Level Fusion

This sub-Section discusses the results obtained from the feature-level fusion of
MFCC, CQHC, CQT, and CQPC feature sets. This fusion is the concatenation
of various feature sets extracted in different ways into a single feature set. The
fusion of CQHC and CQPC outperforms the CQT feature set indicating that
providing the pitch component separately results in a better performance. This
result states that feeding the F0 contour information separately along with har-
monic information results in a better accuracy as can be seen from Fig. 2. The
addition of log to the fusion of CQHC and CQPC performs comparable with
MFCC features and outperforms LFCC and CQCC features. MFCC manages
to capture generalized timbre information in it along with the pitch information
[20]. The infant cry can be considered a melodic sound due to the continuous
variations in the pitch of the cry. The timbre information provides the colour for
the melodic sounds. Hence, both CQHC and MFCC capture the timbre infor-
mation in a unique way.

The fusion of MFCC and log-CQHC features beat the baseline MFCC feature
set by fold (test) accuracies of 1.78% (1.41%). This indicates that the harmonic
features of the CQT spectrum carry additional information when compared with
the generalized harmonic features captured by MFCC. Furthermore, the feature-
level fusion of MFCC and log-CQPC feature set results in an improvement in
the fold (test) accuracy of 2.01% (1.6%) when compared with baseline MFCC
features indicating that the additional pitch information is important for the
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infant cry classification task. The fusion of MFCC with log-CQPC and the fusion
of MFCC with log-CQPC and log-CQHC managed to beat the baseline MFCC
resulting in an improvement of 3% (1.6%) in accuracy. This shows that the
CQHC consists of unique information obtained from the CQT spectrum, which
the MFCC fails to capture.

It also indicates the inability of the MFCC feature set to capture the pitch
component when compared to the CQPC feature set. Hence, the fusion of the
MFCC feature set with the CQT decomposed features (CQHC and CQPC)
resulted in a noticeable amount of increase in accuracy, which can also be
observed in traditional classifiers. The traditional classifiers, such as GMM and
CNN also beat the baseline feature MFCC when compared with the fusion of
MFCC with log-CQHC, log-CQPC by a margin of 0.65% and 6.26% (Table 5).

Table 5. Accuracy of Various Feature-Level Fusions.

Feature CNN 5-Fold Accuracy CNN Test Accurcy GMM SVM

CQHC+CQPC 91.92 94.17 93.26 70.66

LOG CQHC+ LOG CQPC 95.35 94.70 97.53 84.32

MFCC+LOG CQHC 98.73 99.29 99.34 89.91

MFCC+LOG CQPC 98.96 99.47 99.52 91.63

MFCC+LOG CQT 98.45 99.47 99.52 86.48

MFCC+LOG CQHC+LOG CQPC 99.12 99.47 99.81 92.47

4.5 Statistical Evaluation of Proposed Method

The statistical significance of results is shown using stratified k -fold cross-
validation to ensure similar data distribution in each fold. 5-fold CV is performed
50 times to get violin plots as shown in Fig. 3 (all the results are obtained using
GMM classifier), which shows relatively higher mean and median than the exist-
ing features for the proposed features. This states the statistical importance of
the proposed CQHC and CQPC feature sets.

Fig. 3. Analysis of statistical significance via violin plots for various feature sets using
GMM classifier.
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5 Summary and Conclusion

This study proposed CQHC and CQPC feature sets for the infant cry classifica-
tion task. The effect of the application of the log on the feature sets is studied.
The fusion of MFCC with log CQHC and log CQPC outperforms the baseline
MFCC by 3% and LFCC by 4.7% and CQCC by 5.85%, respectively. Further,
the study shows the importance of the fundamental frequency in normal vs.
pathology infant cry classification tasks. Similar trends in the results are observed
using traditional classifiers such as SVM and GMM. This work can be further
extended by testing the feature sets on various time-based deep learning-based
classifiers. Further in-depth analysis of CQHC and CQPC feature sets needs
to be done. However, deep learning models require a large amount of training
data, which is difficult to collect in the case of the infant cry dataset, more so, for
pathological infant cry and it is computationally expensive. Hence, data augmen-
tation of the infant cry can also be considered for future work. Further, this work
can be extended to another database to investigate the generalizability of results
and analyze the results for mismatched conditions of cross-database scenarios in
training and testing. This will also motivate to development of a new In-House
corpus for infant cry research. Furthermore, infant cries being private data (more
so pathological cases), the development of application programming interfaces
(APIs) along with real-time infant cry data acquisition remains another open
research problem. Furthermore, for practical applications, it is crucial to ensure
that the cry being analyzed is specifically recorded from the intended infant,
rather than, for instance, potentially including cries from other infants in the
same vicinity. To that effect, infant verification using a cry sample remains an
open research problem statement.
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Abstract. Early intervention and correct identification of the pathol-
ogy in infant cry is an important and socially relevant research problem,
as it can save the lives of many infants, and also improve the quality
of their life. This study proposes utilizing Web-scale Supervised Pre-
training for Speech Recognition (WSPSR), also known as Whisper, pre-
trained Encoder Module (WEM) for infant cry classification task. These
features are contrasted with the state-of-the-art Mel Frequency Cep-
stral Coefficients (MFCC) feature set, for the purpose of classifying nor-
mal vs. pathological infant cries. Additionally, we introduce a multi-class
classification approach for pathological infant cries using Convolutional
Neural Network (CNN), and Bidirectional Long Short-Term Memory
(Bi-LSTM) networks. Our study concludes that the combination of the
WEM with Deep Neural Networks (DNN) classifiers, such as CNN and
Bi-LSTM, outperforms the MFCC feature set by a significant margin.
In addition, a series of comprehensive experiments were conducted to
assess the noise robustness and the results indicate that WEM features
are relatively more robust compared to MFCC. The experiments were
performed utilizing a 10 -fold cross-validation on standard and statisti-
cally meaningful Baby Chilanto dataset, In-House DA-IICT Corpus, and
a combined dataset derived from these two datasets.

Keywords: Infant cry classification · Whisper encoder features ·
Noise robustness of whisper encoder features · CNN · Bi-LSTM

1 Introduction

Infants primarily communicate their needs and overall emotional well-being
through crying, making it a crucial aspect of their communication at an early
age. Unfortunately, millions of infants die every year due to preventable illnesses,
malnutrition, and diseases that could have been avoided with proper vaccina-
tion if being detected at an early stage. Some of the most common causes of
infant mortality include conditions, such as asthma, asphyxia, and Sudden Infant
Death Syndrome (SIDS) [13]. To clinically diagnose these illnesses, a variety of
measures, including pictures from head ultrasound (HUS), computed tomogra-
phy (CT), and magnetic resonance imaging (MRI) scans that indicate damaged
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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regions of the brain, are employed. Unfortunately, pathology identification is
time-consuming and expensive in many developing countries, which may have
an impact on the infant’s health because not all newborns have the luxury of
quick access to healthcare and support from pediatricians.

As an example, asphyxia, which is one of the disorders that can lead to
infant mortality, can be detected through visible signs, such as bluish and pale
limbs. However, by the time these visual symptoms appear, the infant may have
already sustained significant brain damage [12,13]. The degree of hearing loss,
duration of treatment, and the age at which the condition is detected can all
have an impact on the acoustic and perceptual characteristics of deaf infants’
cries. As a result, there is a growing need to create diagnostic aids that use
infant cries to help pediatricians identify the first symptoms of such illnesses
[11]. Researchers can get insights about numerous aspects of infant health and
development, such as discomfort, hunger, brain abnormalities, and emotional
and social development by analyzing and studying the acoustic properties since
this perception starts as early as the third trimester of pregnancy [4].

Although the use of signal processing techniques for infant cry analysis has
shown a promise, there are several challenges that need to be addressed. These
include a lack of sufficient pathological cry samples (i.e., data imbalance), diffi-
culties in extracting excitation source and vocal tract-related features, and the
issue of unbalanced data for classification. To overcome these challenges, recent
studies have focused on utilizing advanced signal processing and machine learn-
ing algorithms for the analysis and classification of infant cries [22]. The use
of Mel Frequency Cepstral Coefficients (MFCC), a state-of-the-art feature set,
has been gaining traction for infant cry classification tasks. In these studies,
Gaussian Mixture Models (GMM) have been commonly used as classifiers [2,9].
Furthermore, recent research on infant cry classification has focused on detect-
ing various types of pain, such as belly pain, burping, discomfort, hunger, and
tiredness, using traditional classifiers with MFCC features, however, there is less
work focusing on various pathological infant cry [17].

In order to address the above-stated issues, transfer learning-based methods
for infant cry classification tasks have been proposed in the literature [3,24].
This study proposes the use of the Whisper Encoder Module (WEM) features
for infant cry classification task. Multiple whisper models, such as tiny and
base, were compared using clean data. The performance of Whisper encoder-
based features was compared to baseline MFCC using CNN and Bi-LSTM as
DNN classifiers. Furthermore, since MFCC features are notoriously known to
be affected by signal degradation conditions, analysis of noise robustness of
proposed features was carried out by adding non-stationary noises at various
Signal-to-Noise Ratio (SNR) levels. Experimental results indicate that WEM
features outperform MFCC features for various noises at different SNR levels.
Also, it was observed that with decreasing SNR levels, the performance degrada-
tion for WEM features was much less as compared to MFCC. Accurate diagnosis
of the pathology is crucial in determining the early course of treatment, and it
is necessary to be able to achieve this even for a shorter duration of speech.
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Therefore, our study includes an analysis of latency periods and their compari-
son with MFCC features. To the best of the authors’ knowledge and beliefs, this
is the first work of its kind reported on the use of features generated from WEM
for infant cry classification. The contributions of this study are summarized as
follows:

– We propose an end-to-end pre-trained Whisper transformer encoder, using a
transfer learning approach for the task of normal vs. pathological infant cry
classification.

– Performance comparison between different whisper models with different num-
bers of layers and different numbers of trainable parameters.

– In practical applications, microphone conditions are often suboptimal, making
it essential for a system to be resilient to noise. Hence, this study incorporates
an assessment of the system’s performance in the presence of degraded signals
caused by noise.

– The precise identification of the pathology plays a critical role in determining
the early course of treatment. It is crucial to achieve accurate diagnoses even
when working with shorter speech durations. As a result, our study focuses
on analyzing latency periods and comparing them to state-of-the-art feature
sets to assess their effectiveness in this context.

The rest of the paper is organized as follows: Sect. 2 describes the differences
between different whisper models along with the underlying motivation behind
the training of a large weakly supervised corpus of audio data. Section 3 presents
details of the proposed WEM feature extraction pipeline, whereas Sect. 4 gives
details of the experimental setup. Section 5 presents experimental results, anal-
ysis, and discussion. Finally, Sect. 6 concludes the paper along with potential
future research directions.

2 Proposed Work

Whisper is an open-source pre-trained sequence-to-sequence Transformer model
on the lines of the model that is described in [23]. It was initially developed for
multilingual and multitask automated speech recognition (ASR) and was made
publicly available in September 2022 on GitHub at https://github.com/openai/
whisper. The name Whisper is derived from the acronym WSPSR, which stands
for Web-scale Supervised Pretraining for Speech Recognition [15]. Whisper
highlights the concept that training on a large and diverse supervised dataset,
and focusing on zero-shot transfer greatly improves the system’s robustness and
performance.

The Whisper model is trained on a massive dataset consisting of weakly
supervised audio paired with transcripts scraped from the Internet. This dataset
comprises 680,000 h of audio data, including 117,000 h in other languages, and
125,000 h of translations from other languages to English [15]. This approach
ensures that the model is trained on a highly diverse set of audio data, covering
a broad range of sounds from various environments, recording setups, speakers,

https://github.com/openai/whisper
https://github.com/openai/whisper
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and languages. The large and varied dataset helps the Whisper models generate
high-quality vector representations of audio signals, ensuring robustness and
enhancing their ability to generalize to different domains.

There are five different whisper models, each characterized by an escalating
number of encoder-decoder blocks and a varying count of trainable parameters.
These models are designated as tiny, base, small, medium, and large and their
detailed technical specifications can be referenced in [15]. The resulting output
features generated by Whisper’s Encoder-Decoder Models (WEM) have a fixed
dimension depending on the size of the model. Specifically, in our study, we used
Whisper’s tiny and base models, with the output feature dimensions at the end
of the encoder module fixed at 1 × 1500 × 384 and 1 × 1500 × 512, respectively.
The size of the output vectors scales proportionally with the size of the Whisper
model employed.

The authors hypothesize that the pre-trained Whisper model’s sequence-to-
sequence transformer encoder module effectively captures the sequential/melodic
structure in cries, which can provide discriminatory information for various
classes. We particularly chose this approach because Whisper’s highly diversified
training dataset takes advantage of the model’s ability to generalize to previously
unseen data and therby making the model more robust to signal degradation
conditions. Moreover, fine-tuning the pre-trained model for our specific task also
reduces training time while enhancing model performance.

3 Employed Pipeline and Its Workings

The pipeline used for this study is presented in Fig. 1. The first step involves
the pre-processing of the speech signal to prepare it for feeding to the WEM.
To achieve this, the input infant cry signal is first resampled to 16 kHz, and
then padded to a time duration length of 30 s to maintain uniformity. An 80 -
channel Log-Mel spectrogram is then computed using a window length of 25 ms
and a stride of 10 ms, and the resulting coefficients are normalized to values
between [−1, 1]. These values are then processed through two convolution lay-
ers of kernel size 3, using GELU as the activation function. Further, sinusoidal
embeddings are utilized to aid the Whisper encoder in learning the relative posi-
tions within the input, as outlined in [15]. The processed signal is then passed
through the Whisper encoder block, which produces a fixed-dimensional vector,
which encompasses the learned representations of the signal as its final hidden
state output. This output is then fed into a DNN classifier, which classifies the
infant cry signal into its respective classes.

Fig. 1. Functional block diagram of proposed WEM features in tandem with CNN
classifier.
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During the training phase, the weights of the Whisper encoder are kept
frozen, while only the DNN classifier’s weights are modified through the back-
propagation of errors. To ensure that WEM features are not biased w.r.t. DNN
architecture, we conducted experiments using CNN and Bi-LSTM Network as
classifiers [14,20]. Furthermore, the number of classes can be modified by adjust-
ing the number of units in the last dense layer, as shown in Fig. 1.

4 Experimental Setup

4.1 Datasets Used

– Baby Chillanto Database (Dataset D1): Baby Chillanto database used
for this work was originally developed by the recordings conducted by NIAOE-
CONACYT, Mexico [16,18]. Baby Chillanto Data Base is a collection of Mex-
ican cry samples from 98 babies. Six of them are from babies suffering from
asphyxia, another six from deafness, and the rest are from normal healthy
babies. The age of the babies were varying from 2 days upto 6 months. The
cry samples were recorded in a controlled environment where a closed room
was used and the only contamination in the sample was the noise from air con-
ditioning, which was digitally removed once the samples were pre-processed.
Each infant cry signal was resampled to achieve a common sampling frequency
of 16 kHz. Within the dataset, the healthy cry signals were categorized into
three distinct classes: normal, hungry, and pain, resulting in 1049 cry samples.
Conversely, Pathology cry signals include two categories, namely, asphyxia and
deaf resulting in 1219 cry samples. Consequently, our dataset encompassed a
grand total of 2268 samples.

– DA-IICT Infant Cry Database (Dataset D2): This cry database was
collected from the hospitals in India and is attributed to [6,7]. Each cry signal
of was uniformly resampled at 16 kHz. This dataset comprises a total of 793
samples of healthy cry samples and a total of 397 samples under Pathology
class, which encompasses Hypoxic Ischemic Encephalopathy (HIE) and Asthma
cries as subclass.

– Multiclass Pathological Database (Dataset D3): This database com-
prises all the cries under Pathology as parent class. It was meticulously
curated, taking into account pathologies present in both the D1 and D2
datasets, resulting in a total of 4 distinct classes. The subclasses within this
dataset include Asphyxia, Asthma, Deaf, and Hypoxic Ischemic Encephalopa-
thy (HIE). The number of cries in each subclass are 340, 182, 879, and 215,
respectively, totaling to 1616 sample cries under this dataset.

Table 1 shows the statistics of all the three datasets employed for different
experiments.



426 M. Charola et al.

Table 1. # Cry Utterances in All Datasets Considered. After [6,7,16].

Class → Healthy Pathology

Dataset ↓ Normal Hungry Pain Asphyxia Deaf Asthma HIE

D1 507 350 192 340 879 – –

D2 793 – – – – 215 182

D3 Not Applicable 340 879 215 182

4.2 Augmentation of Noisy Environment

The noisy data was augmented by superimposing various types of non-stationary
noises onto the clean data. Non-stationary noise refers to those unpredictable and
time-varying fluctuations in a signal that do not exhibit a consistent statistical
pattern. Such noises can distort the signal and make it more challenging to
identify and categorize. In our study, we specifically introduced two forms of
non-stationary noises namely, babble noise and roadway noise or vehicle noise
with different SNR levels of −5 dB, 0 dB, and 5 dB, respectively. Our primary
motivation for incorporating non-stationary noises was to ensure the reliability
and effectiveness to classify infant cries accurately in real-world scenarios.

4.3 Specifications of the Classifiers and Feature Set Used

In this study, the classification performance of WEM features is contrasted with
the state-of-the-art MFCC features [21]. The MFCCs were extracted from the
audio files at a fixed sample rate of 16 kHz, using a window length of 512 samples,
and a window shift of 256 samples. At the end, 13 -D MFCC features were
extracted along with their delta and double-delta features, resulting in a total
of 39 -D cepstral features.

Bi-LSTM: These networks are a type of Recurrent Neural Network (RNN) that
can process input sequences in both forward and backward directions, allow-
ing them to capture context from both the past and future. In this study, we
employed a Bi-LSTM model consisting of two layers, with each layer containing
32 units, and a dropout probability of 0.1 at the end of each layer. Finally, we
added a dense layer with 4 units and a softmax activation function as the out-
put layer. The authors hypothesize that Bi-LSTM will be able to capture the
discriminatory cues encompassed in the melodic structures in the cry samples
[4], which are encompassed by WEM.

CNN: CNN works by imitating how a human brain perceives an image and
hence, it was employed as one of the classifiers. The model consisted of two
convolutional layers, each with a kernel size of 3 × 3 [5]. To reduce the spa-
tial dimensionality, we incorporated a max-pooling layer of size 2× 2 after each
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convolutional layer. We also included spatial 2D dropout layers along with a
dropout probability of 0.225. The final layer of our model consisted of two Fully-
Connected (FC) layers, with ReLU and softmax activation functions, respec-
tively [1]. We employed the Adaptive Moment Estimation optimizer, commonly
known as Adam, with a learning rate of 0.001, and used categorical cross-entropy
as loss function [5,25]. The classifier was trained for 10 epochs for each fold.

5 Experimental Results

All the experiments in this study were performed using 10 -fold cross-validation
(CV). The reported accuracy is averaged over all the folds.

5.1 Effect of the Size of Whisper Model

In this study, we tested two Whisper models, specifically the ‘tiny’ and ‘base’
variants, using both the CNN and Bi-LSTM classifiers on all the three datasets,
namely, D1, D2, and D3. The results, as depicted in Fig. 2, clearly illustrate
that as the number of trainable parameters in the Whisper model increases, the
testing accuracy also rises. This consistent performance was observed across both
classifiers. Given the higher accuracy achieved, we decided to utilize Whisper’s
Base model for all subsequent experiments discussed in this paper.

Fig. 2. Performance comparison between tiny vs. base whisper models: Results for (a)
CNN, and (b) Bi-LSTM.

5.2 Results Under Clean Conditions

In this sub-Section, we present the results of our study on the binary clas-
sification of healthy vs. pathological cries using datasets D1 and D2, as well
as the multiple pathological class detection on dataset D3. The datasets were
clean and thus, free of any added noise. Table 2 presents the results obtained
for proposed WEM features and MFCC features. Our findings show that WEM
features outperform the baseline MFCC, and this can also be observed for both
the classifiers, indicating no classifier bias for better performance given by pro-
posed WEM features. This could be attributed to the fact that WEM is able
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to capture sequential information from signals and represent it in the form of
a fixed-dimensional vector. A study reported in [4] showed that infants have
melodic structures in their cries. Moreover, various pathologies have distinct cry
patterns and melodic structures, each with unique characteristics. This supports
our proposition that WEM features capture sequential information better than
the MFCC. Further, the performance of the Bi-LSTM classifier is found to be
comparable to that of the CNN classifier. Furtherore, the performace comparion
of MFCC feature set on Baby Chilanto dataset over existing studies is shown in
Table 3. It is conspicuous that our proposed methodology yield high performance
as compared to MFCC.

Table 2. Overall performance (in % Accuracy) of baselines and the proposed features
on the three datasets (clean condition).

Classifier ↓ Dataset → D1 D2 D3

CNN MFCC 95.72 88.31 97.46

Whisper 97.31 96.22 99.13

Bi-LSTM MFCC 97.17 95.88 98.02

Whisper 97.31 96.81 99.07

Table 3. Comparison of the proposed system over existing studies on the Baby Chi-
lanto dataset.

Source Features Classifier Accuracy (%)

[8] Spectrogram + Prosodic + Wave Hybrid-feature Multi-stage 95.10

[10] MFCC + Prosodic Neural Network 95.31

[13] MFCC SVM 85

[19] MFCC SVM 95.86

Proposed Whisper CNN 97.31

5.3 Effect of Signal Degradation Conditions

In this study, we introduced non-stationary noises at various Signal-to-Noise
Ratio (SNR) levels. Here we are disclosing the findings of our binary classifica-
tion experiments conducted on datasets D1 and D2, in addition to our multiclass
pathological classification study performed on dataset D3. The results are shown
in Fig. 3 shows that WEM features outperform MFCC for different SNR levels
and more so for both the classifiers and once again reinforcing the fact that there
is no classifier bias w.r.t. better performance of the proposed WEM features even
under signal degradation conditions. Here, we also find that the Bi-LSTM clas-
sifier performs similarly to the CNN classifier. Additionally, for both classifiers,
it’s evident that MFCC’s classification performance worsens more rapidly as the
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Signal-to-Noise Ratio (SNR) decreases. This highlights the strength of Whisper
encoder-based features when handling noisy conditions. The reason behind this
could be attributed to Whisper’s extensive pre-training on a vast dataset gath-
ered from the internet, which encompasses a wide range of audio environments,
microphone configurations, and various types and levels of background noise.
This explains the superior performance of WEM features as compared to MFCC
in noisy environments, which are closer to real-life scenarios.

Fig. 3. Analysis of noise robustness of WEM features. Panel-I shows the results on
CNN, whereas Panel-II shows the results on Bi-LSTM classifier. The dataset D1, D2,
and D3 are represented as (a), (b) and (c), respectively.

5.4 Analysis of Latency Period

The latency period refers to the minimal amount of speech duration required for
the classifier system to deliver acceptable % classification accuracy. The findings
shown in Fig. 4 clearly show the superiority of Whisper-Encoder features over the
state-of-the-art MFCC feature set. It is conspicuous that the whisper-based sys-
tem consistently achieves comparable results, even when confronted with shorter
speech instances, making it highly suitable for real-world applications character-
ized by shorter input speech durations. Moreover, its remarkable performance in
processing smaller speech signal. This characteristic is particularly valuable in
scenarios where computational resources are limited or constrained. By giving
excellent in such conditions, it is clear that WEM features are an ideal choice
for machines or systems with restricted computational capabilities.
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Fig. 4. Analysis of Latency Period for Multiclass Classification on Dataset D3.

5.5 Statistical Measures

Feature Space Visualization Using t-SNE Plots: The capability of multi-
class pathology classification is also validated through the use of t-SNE plots,
which were obtained by projecting WEM and MFCC features onto a 2-D space
for various pathological classes. Figure 5(a) and Fig. 5(b) depict the scatter plots
for WEM features and MFCC, respectively. The results displayed in Fig. 5 show
that the inter-class distance between the clusters of different classes is greater
for WEM features than the MFCC features. Further, the Whisper model can
clearly distinguish between two closely correlated classes, namely, Asphyxia and
HIE. On the other hand, MFCC fails to distinguish them indicating better class
discrimination power of proposed WEM features than MFCC.

Fig. 5. Scatter Plots Obtained using t-SNE Plot for 4 Pathologies (a) WEM features,
and (b) MFCC Features. Best viewed in colour.
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6 Summary and Conclusion

This study investigated the significance and robustness of novel WEM features
for infant cry classification in real-life scenarios. The proposed methodology
outperforms baseline MFCC in various evaluation scenarios, including differ-
ent datasets, noise types, and classifier structures. The authors hypothesize, this
might be due to the sequential capturing characteristic of the whisper model,
as infants are known to have melodic structures in cries. The proposed features
demonstrate robustness to noise and suitability for practical system deployment,
even for signal degradation conditions. Additionally, the proposed WEM features
perform better even for a shorter duration of speech segments, as indicated in
the latency period analysis, making them more suitable for practical purposes.
Further discrimination capability of proposed features was analyzed using t-SNE
plots. Our future work will be directed toward exploring different whisper models
(such as, small, medium, and large) and data augmentation to enhance perfor-
mance and relevance in analyzing and classifying various voiced pathologies and
augmented cries.

To the best of the authors’ knowledge and belief, the Baby Chilanto Dataset
is the only corpus available for research and thus, to evaluate the performance in
realistic hospital environments, it is important to develop a new In-House Cor-
pus for infant cry research. Furthermore, infant cry signal being a private data
(especially pathological cases), the development of an Application Programming
Interface (API) along with real-time data acquisition for infant cry classification
remains an open research question. In order to protect the privacy of such med-
ical data, employing the recent approach of federated learning to transmit the
parameters of the model (rather than the true data from edge devices, such as
mobile, sensor, etc.) to the cloud servers remains another open research question.
Additional research is required to assess the viability, effectiveness, and potential
limitations of utilizing federated learning as a means to safeguard the privacy of
medical data.

Acknowledgements. The authors are thankful to the Ministry of Electronics and
Information Technology (MeitY), New Delhi, Government of India, for sponsoring
the project, National Language Translation Mission (NLTM): BHASHINI with the
objective of Building Assistive Speech Technologies for the Challenged (Grant ID:
11(1)2022-HCC (TDIL)). They also thank the organizers, namely, the National Insti-
tute of Astrophysics and Optical Electronics, CONACYT Mexico for the statistically
meaningful Baby Chilanto Database.

References

1. Agarap, A.F.: Deep learning using rectified linear units (relu). CoRR
abs/1803.08375 (2018). http://arxiv.org/abs/1803.08375. Accessed 6 Feb 2023

2. Alaie, H.F., Abou-Abbas, L., Tadj, C.: Cry-based infant pathology classification
using GMMs. Speech Commun. 77, 28–52 (2016)

http://arxiv.org/abs/1803.08375


432 M. Charola et al.

3. Anjali, G., Sanjeev, S., Mounika, A., Suhas, G., Reddy, G.P., Kshiraja, Y.: Infant
cry classification using transfer learning. In: TENCON 2022, Seoul, South Korea,
pp. 1–7. IEEE (2022)
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Abstract. Speaker Verification (SV) is a task to verify the claimed iden-
tity of the claimant using his/her voice sample. Though there exists an
ample amount of research in SV technologies, the development concern-
ing a multilingual conversation is limited. In a country like India, almost
all the speakers are polyglot in nature. Consequently, the development of
a Multilingual SV (MSV) system on the data collected in the Indian sce-
nario is more challenging. With this motivation, the Indic-Multilingual
Speaker Verification (I-MSV) Challenge 2022 was designed to under-
stand and compare the state-of-the-art SV techniques. An overview of
the challenge and its outcomes is given here. For the challenge, approx-
imately 100 h of data spoken by 100 speakers were collected using 5
different sensors in 13 Indian languages. The data is divided into devel-
opment, training, and testing sets and has been made publicly available
for further research. The goal of this challenge is to make the SV system
robust to language and sensor variations between enrollment and testing.
In the challenge, participants were asked to develop the SV system in
two scenarios, viz. constrained and unconstrained. The best system in
the constrained and unconstrained scenario achieved a performance of
2.12% and 0.26% in terms of Equal Error Rate (EER), respectively.

Keywords: Multilingual · Multi-Sensor · Speaker Verification
Challenge

1 Introduction

Speaker Verification (SV) is the task of validating the identity of a speaker using
the voice sample of the claimant. The tremendous development in SV technol-
ogy in the last five decades has enabled the system to be deployed in various
application areas, starting from voice-based attendance systems to authentica-
tion for bank transactions [1]. However, the performance of the systems suffers
when multiple languages and sensors are involved during testing [9]. Hence, the
scalability of SV systems is limited considering such scenarios. The citizens of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 437–445, 2023.
https://doi.org/10.1007/978-3-031-48312-7_35
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India use approximately 122 major and 1599 other languages in their day-to-
day conversation. Most importantly, they are polyglot in nature. Therefore, the
flexibility in language and sensors during testing may restrict the reach of SV
technologies. With this motivation, the Indian Institute of Technology Guwa-
hati Multi Variability (IITG-MV) data was collected using five different sensors
from the people coming from different geographical locations of India having
variations in the native language, dialect, and accent [5].

In the literature, there exist few works on the development of SV in multi-
lingual and domain mismatch scenarios [9]. The reported works contribute to
the feature, model, and score level for minimizing the impact of language and
domain mismatch [9]. Most of the reported work uses either an in-house dataset
or publicly available data (mostly crawled from the public domain) for per-
forming their studies. The in-house data are limited by the number of speakers,
languages, and sensors. Though the publicly available data have a huge num-
ber of speakers, languages, and environmental variations, the unavailability of
appropriate annotations (mostly done with automatic algorithms) poses a chal-
lenge for an in-depth analysis [9]. The current challenge was planned with the
aim of resolving the above-mentioned issues by inviting the community to work
on the development of the language and sensor invariant speaker representation.

This work considers the conversation recordings of the IITG-MV phase-I
dataset. The dataset is divided into four parts, viz. (1) Development, (2) Enroll-
ment, (3) Public test set, and (4) Private test set. The development set consists
of speech utterances from 50 speakers recorded with all 5 sensors and in 13 lan-
guages. The enrollment set consists of utterances from the remaining 50 speakers,
spoken in English language and through a headset microphone. The public test
set consists of utterances from the 50 enrolled speaker in both matched and
mismatched sensors and languages. The private test set only consists of cross-
lingual and sensor utterances. Along with releasing the dataset, the challenge
was offered in the form of two sub-tasks, (1) constrained and (2) unconstrained.
The constrained sub-task restricts the participants to use only the provided data.
On the other hand, no such restrictions are there in the unconstrained sub-task.
The aim of the constrained sub-task here was to encourage the community to
develop the SV with limited training data. Conversely, the aim of the uncon-
strained sub-task was to observe the performance of SV technologies developed
with a sufficient amount of training data. The dataset is available at1. A base-
line system implemented with the X-vector framework for both constrained and
unconstrained sub-tasks was made available to the participants during the chal-
lenge (available at2). The performance of the baseline in public test data on both
the sub-tasks were 9.32% and 8.15%, respectively.

The rest of the paper is organized as follows: the challenge rules are described
in Sect. 2. The detailed description of the data preparation is described in Sect. 3.
Section 4 reports the procedure of baseline system development and the perfor-
mance measure used. A brief description of the top five systems along with their

1 https://doi.org/10.5281/zenodo.7681049.
2 https://github.com/jagabandhumishra/I-MSV-Baseline.

https://doi.org/10.5281/zenodo.7681049
https://github.com/jagabandhumishra/I-MSV-Baseline
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performance are described in Sect. 5. Finally, the summary and future directions
are reported in Sect. 6.

2 Challenge Rules

As mentioned in the earlier section, the challenge consisted of two sub-tasks, viz.
(1) constrained SV and (2) unconstrained SV.

– Constrained SV: Participants were not allowed to use speech data other
than the speech data released as a part of the constrained SV challenge for
the development of the SV system.

– Unconstrained SV: Participants were free to use any publicly available
speech data in addition to the audio data released as a part of unconstrained
SV.

The challenge was organized as a part of the 25th edition of the
O-COCOSDA-2022 conference along with the Asian-Multilingual Speaker Verifi-
cation (A-MSV) track. The participants were asked for registration. Upon agree-
ing to the data usage licenses agreement, the download link of the development,
enrollment, and public test sets were provided. Through a license agreement, the
participant teams agreed that they could use the data only for research purposes.
Moreover, the top five systems in both the sub-tasks would have to submit the
source code of their systems and a detailed report.

The public test set released during the time of registration had ground truth
information. The purpose here was to tune the system parameter using the public
test data. The participants were asked to upload their score files in a specific
format on the challenge portal. The corresponding performance was evaluated by
a back-end script and the results were uploaded to a online leader board. There
was no constraint on uploading and evaluating the score files on the public test
set. After around one month of the public test set release, the private test set was
released without ground truth information. The participant teams were asked to
submit their final results on the private test set within 24 h from the release of
the private test set. A maximum of three successful attempts were allowed for
each team for evaluating their system on the private test set.

3 Data Preparation

The IITG-MV speaker recognition dataset was recorded in four phases for deal-
ing with various speaker recognition applications, viz. speaker identification,
verification, and change detection, etc. [5]. Among the four phases, the phase-I
dataset is considered for this study. The IITG-MV-Phase-I dataset consists of
recordings from 100 speakers in reading and conversation mode. In both modes,
each speaker has given their speech data in two sessions. The duration of each
session is around 5–8 min. In addition, each speaker has given their data in two
languages, viz. English and favorite language. Favorite language mostly meant
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their mother tongue/native language and varied from person to person. Further-
more, all the speech utterances were recorded through five different sensors, viz.
H01, M01, M02, D01 and T01. The details of the dataset can be found at [5]. The
utterances belonging to the conversation mode were only considered here. The
total duration of the selected utterances is approximately 100 h. The selected
utterances are named as the I-MSV dataset. Further, the I-MSV dataset is seg-
regated into four parts, viz. development, enrollment, public test, and private
test.

3.1 Development Set

This partition consists of recordings from 50 speakers. The utterances from each
speaker are available in two languages, with two sessions, and with five sensors.
The approximate duration of the development set is 50 h.

3.2 Enrollment Set

This partition consists of recordings from 50 speakers that are disjoint from
the speakers used in the development set. The utterances belonging to both
the sessions with the English language and the Headset (H01) sensor are used
here. The first session utterances are completely used in this set. However, the
utterances from the second session are segmented into two parts. Half of them are
used in enrollment and the rest have been used in the public test set (to observe
the performance in matched sensor and language conditions). The approximate
duration of speech available for each speaker is 8–10 min.

3.3 Public Test Set

This set consists of the utterances from the second session recordings with three
sensors and cross-languages along with the matched utterances. The second ses-
sion utterances in the original IITG-MV-Phase-I dataset are segregated into two
parts. Half of them are reserved for the preparation of the private test set. After
that, each utterance is segmented into 10, 30, and 60 s utterances. The segments
are split into silence regions using the knowledge of Voice Activity Detection.
The segmented files were made available to the participants as the public test
set. The total number of utterances available in this partition is 5907.

3.4 Private Test Set

This set consists of the utterances from the second session recordings with four
sensors and cross-languages. This partition does not consist of matched sensors
and language utterances. The selected utterances are segmented into 10 s, 30 s,
and 60 s utterances and made available to the participants as the private test set.
The total number of utterances available in this partition is 9521. The partition
consists of cross-language utterances from 10 Indian languages.
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Table 1. Baseline results on I-MSV dataset, UC: unconstrained condition.

Model EER (%)

Overall Matched Condition

I-vector 13.72 4.61

X-vector 9.32 2.40

X-vector (UC) 8.15 0.82

4 Performance Measures and Baselines

This challenge employs the Equal Error Rate (EER) measure to compare the
performances of the different submissions with the baseline results. This section
briefly describes the method of computing the EER measure and reports the
baseline results on the I-MSV dataset. Let, NP and NN be the number of positive
and negative test samples in the data, respectively. The number of samples
out of a total of NP positive samples predicted as positive are termed as True
Positives (TP). On the other hand, the number of samples out of a total of NN

negative samples correctly predicted as negative are termed as True Negatives
(TN). Incorrectly predicted positive and negative samples are termed as False
Positives (FP) and False Negatives (FN), respectively. The prediction of a test
sample as positive or negative is based on a pre-determined threshold τ which
may be varied. The total number of TP, TN, FP, and FN for the whole test data
can be used to compute two measures, viz., False Acceptance Rate (FAR) and
False Rejection Rate (FRR). The FAR can be defined using Eq. 1.

FAR =
FP

FP + TN
(1)

Similarly, the FRR can be defined as in Eq. 2.

FRR =
FN

TP + FN
(2)

When τ is varied, different values of FAR and FRR can be obtained. Among all
the different τ used, a specific threshold τequal can be identified which provides
equal (or almost equal) values of FAR and FRR. The EER measure is computed
as the mean of FAR and FRR at τequal (Eq. 3).

EER =
1
2

(FAR + FRR) (3)

where, | FAR − FRR |→ 0.
The challenge organizers provided results on the I-MSV dataset using Kaldi-

based I-vector and X-vector systems as a baseline for comparison. The baseline
performances are reported in Table 1.
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Fig. 1. Illustrating the effect of (a) different duration, (b) different languages, and (c)
different sensors on the performance of submitted systems.
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5 Systems and Results

A total of 25 teams registered for the I-MSV 2022 challenge. Among these, 10
teams submitted their results for the public test set evaluation. For the pri-
vate test set evaluation, a total of 6 teams submitted their results and systems.
The attributes of the best 5 participating systems are summarised in the next
paragraph. Table 2 lists a brief summary of the top 5 systems.

Table 2. Summary of top 5 submissions to the challenge. FE:=Frontend, LF:=Loss
Function, BE:=Backend, C-SV:=Constrained-SV, UC-SV:=Unconstrained-SV.

Team FE LF BE EER (%)

C-SV UC-SV

T0 Rawnet3 Training: triplet margin loss;
Fine-tuning: AAM Loss +
K-Subcenter loss +
Inter-topK loss

Cosine similarity – 0.26

T1 ResNet with SE attention Softmax + Angular
Prototypical Loss

Model scoring (DNN,
Random Forest and Gradient
Boosting Trees)

– 0.36

T2 ECAPA-TDNN + SE-ResNet blocks Weight Transfer loss +
AAM-Softmax loss + L2 loss

Cosine similarity 2.12 0.63

T3 ECAPA-TDNN SE-ResNet blocks AAM Loss Cosine similarity 2.77 2.70

T4 ECAPA-TDNN + SE-ResNet blocks Large Margin Cosine Loss PLDA 2.97 2.97

The submission of T0 obtained the best EER of 0.26 on the private test set
using unconstrained training data. The best system of T0 used the Rawnet3
architecture [8] as their front-end system. They initially trained the model with
a Triplet Margin loss [11]. Subsequently, they fine-tuned their model with a
combination of Adaptive Angular Margin (AAM) K-Subcenter loss [3] and Inter-
TopK loss [13]. They performed the backend scoring using the cosine-similarity
measure and used adaptive score normalization.

The second best EER of 0.36 using unconstrained data was obtained by T1.
They used the ResNet-34 architecture proposed in [6] with Attentive Statistics
Pooling [10] for their front-end. They trained the model using a combination
of vanilla Softmax loss and Angular Prototypical loss [2]. They also proposed
a two-layer model scoring system composed of Fully-Connected Feed-Forward
layers, Random Forests and Gradient Boosting Trees.

The EER obtained by T2 on the constrained data scenario was 2.12. They
achieved an EER of 0.63 using unconstrained training data. They used com-
bination of ECAPA-TDNN [4] and ResNet-34 [6] with Squeeze-and-Excitation
(SE) attention as front-end models to obtain the best results in the constrained
data scenario. However, only the ResNet-34-SE network provided the best per-
formance in the unconstrained scenario. For the unconstrained scenario, they
fine-tuned the backbone model using a combination of Weight-Transfer loss [12],
AAM-Softmax loss and L2 loss. The backend scoring was performed using cosine
similarity measure.
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The T3 obtained an EER of 2.77 in the constrained scenario and EER of 2.70
in the unconstrained scenario. They used a similar front-end system as that of
T2 and trained it using the AAM loss. They also performed the backend scoring
using cosine similarity.

The EER obtained by T4 in the unconstrained scenario was 2.97. They
also employed a similar front-end architecture as that of T2 and used the Large
Margin Cosine loss for training. They performed the backend scoring using Prob-
abilistic Linear Discriminant Analysis (PLDA) [7].

6 Summary and Discussion

The results obtained by the submitted systems can be summarised along the fol-
lowing broad directions. First, the use of unconstrained training data is hugely
beneficial in performing SV in low-resource scenarios like the current challenge.
Second, automatic feature learning and end-to-end models can learn highly dis-
criminating features. Third, the choice of loss function for the front-end sys-
tem has a huge impact on the obtained performance of similar architectures.
Fourth, simple backend scoring like cosine similarity might be enough if the
learned speaker embedding is highly discriminating. Fifth, longer utterances
(refer Fig. 1(a)) are more helpful in identifying the speakers. Sixth, a change
in language (Fig. 1(b)) degrades the SV performance. However, it might also be
noted that such an observation may also be the result of an imbalance in the
number of utterances for the different languages in the I-MSV dataset. Seventh,
the change in sensor (Fig. 1(a)) has a huge impact on the performance of SV sys-
tems. More specifically, SV systems fare poorly when presented with telephone
channel recordings. In future, better SV systems may be developed by taking
into consideration the observations made in this challenge.
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Abstract. Performance of the pseudo-label (PL)-based self-supervised
training depends greatly on the quality of estimated PLs. Recent studies
have shown that label noise can remarkably impact downstream perfor-
mance. Recently, research has demonstrated that mixup regularization is
effective against noise memorization. In this work, we extend this previ-
ous study by exploring several recent forms of mixup, namely 2-step inter-
polation double mixup to enhance model robustness, mixup over speech
frames for better recognition at the frame-level, moment exchange mixup
to encourage utilization of moment information of speaker speech as they
can reveal speaker style, and virtual mixup training to regularize the
areas in-between training points to be locally-Lipschitz and enforce con-
sistent predictions. We analyze their effect on the generalization of some
state-of-the-art speaker verification (SV) systems and explore their com-
bination via different multi-task learning-based approaches. Our results
show that the proposed mixup formulations are aligned with the SV
task and that our proposed multi-task learning-based approach can be
beneficial to improve the performance and robustness of SV systems.

Keywords: Speaker verification · Mixup · Multi-task learning

1 Introduction

Speaker verification (SV) is the task of confirming, based on a speaker’s voice
characteristics, that the identity of a speaker is who they purport to be. In recent
years, it has become a key technology for personnel authentication in numerous
applications [17]. Typically, utterance-level fixed-dimensional embedding vectors
are extracted from the enrollment and test speech samples and then fed into a
scoring algorithm (e.g., cosine distance) to measure their similarity/likelihood of
being spoken by the same speaker. Classically, the i-vector framework has been
one of the most dominant approaches for speech embedding [12,20] thanks to its
ability to summarize the distributive patterns of the speech in an unsupervised
manner and with a relatively small amount of training data. It generates fixed-
sized compact vectors (i-vectors) that represent the speaker’s identity in a speech
utterance regardless of its length. In recent years, various other deep learning-
based architectures have been proposed to extract embedding vectors [2]. They
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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have shown better performance than i-vectors when a large amount of training
data is available, particularly with a sufficient number of speakers [31]. One
widely employed architecture is ECAPA-TDNN [14], which has achieved state-
of-the-art (SOTA) performance in text-independent speaker recognition. The
ECAPA-TDNN uses squeeze-and-excitation (SE), employs channel- and context-
dependent statistics pooling & multi-layer aggregation and applies self-attention
pooling to obtain an utterance-level embedding vector.

Most of the deep embedding models are trained in a fully supervised manner
and require large speaker-labeled datasets for training. However, well-annotated
datasets can be time-consuming and expensive, which has lead to an increased
interest in more affordable and larger but noisy/unlabeled datasets. One common
way to solve this issue for SV systems is to use clustering to generate Pseudo-
Labels (PLs) and train the speaker embedding network using these labels. More
recently, better-performing frameworks have started to appear which are based
on various SSL objectives [38] or two-stage progressive “clustering-classification”
learning [8,33]. The first stage consists of Self-Supervised Learning (SSL) train-
ing (e.g., contrastive loss) to train an encoder to generate speaker embeddings,
followed by a second stage of clustering those embeddings to produce PLs in
order to jointly train the encoder with a classifier in a supervised manner. The
two stages are repeated sequentially until no gains are obtained. Despite the
impressive performance of PL-based Self-Supervised SV (SSSV) schemes, down-
stream performance relies greatly on accurate PLs. Indeed, due to the memo-
rization effects [1], deep over-parameterized networks can easily overfit the noise
and corruptions in the training PLs which leads to performance degradation.
Indeed, PLs provided by the clustering algorithms are in general inaccurate and
contain noise due to the discrepancy between the clustering objective(s) and the
final SV task (speaker-identity ground truths). To mitigate these side effects, [15]
has recently employed mixup [41] as an efficient strategy to augment data by
interpolating different data samples alongside their labels, which leads to better
generalization to out-of-set samples. Using mixup at both the instance input-
level (i-mix) [21] and the latent space (l-mix) [19] of an autoencoder to create
new synthetic samples of new target identities, they have demonstrated that
mixup regularization is effective against noise memorization and leads to better
performance, especially for PLs that form less compact or not well-distanced
clusters.

In the same line of work, and following the same setup of [15,19], in this
paper, we explore four other variants of mixup that we find, by definition, are
naturally aligned with the SV task. Thus, can help to boost performance and
further regularize our models to mitigate the memorization of wrongly identi-
fied speaker labels. Our investigation includes 2-step interpolation double mixup
(DoubleMix) [7] to enhance model robustness, mixup over speech frames for bet-
ter recognition/verification at the frame-level, moment exchange mixup (MoEx)
to encourage utilization of moment information of speaker speech in order to
reveal speaker style, and virtual mixup training (VMT) [24] to regularize the
areas in-between training points to be locally-Lipschitz and enforce consistent
predictions without the need for any ground truth labels, simply via online vir-
tual soft-labels generated by the trained model itself.
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To this end, we adapt these mixup formulations to both i-mix and l-mix
SSSV embedding learning frameworks to produce robust embeddings which can
perform well on verifying out-of-set speakers. Our approach is also an investi-
gation attempt of which mixup formulations are helpful for the SV task, and
takes advantage of multi-task learning (MTL) in order to combine the benefits
of all our mixup strategies to enforce various inductive biases, improve sample
efficiency (especially beneficial for small datasets), further prevent memoriza-
tion of label noise, and enhance robustness at different levels by exploiting the
complementary information available.

The contributions of this paper are as follows:

– We study different recent SV-related mixup strategies, some for the first time
in the speech domain (e.g., DoubleMix and MoEx), and analyze their impact
on the robustness and generalization of some recent SOTA SSSV systems. Our
results show that the proposed mixup-based objectives are well aligned with
the SV task, and that forms of mixup that do not employ PLs are better at
mitigating label noise memorization.

– We provide a large study of different multi-task learning-based approaches
to combine our various mixup strategies and show that our approach can
often provide performance improvements and better generalization over the
baselines.

– We provide a thorough discussion of our approach (benefits, challenges, and
potential improvements) and several insights that could help future research
in the field of noise-robust algorithms and MTL-based speaker verification.

2 Background and Related Work

2.1 Label Noise

Methods employed to learn from noisy labels can, in general, be categorized into
two groups: approaches focusing on creating noise-robust algorithms to learn
directly from noisy labels [4,18,29] and label-cleansing approaches that aim to
remove or correct mislabeled data [5,32,35]. Our approach of employing several
mixup strategies in a MTL fashion for SV is an attempt to propose a noise-robust
self-supervised method that mitigates the effect of label noise, and generalizes
well beyond discrepancies in the PLs. To this end, we attempt to enforce other
inductive biases closely related to the SV task (our proposed mixup strategies)
and make use of the variety of complementary information that can potentially
be gained through the combination of the different tasks.

2.2 Instance-Mixup (i-Mix) for Speaker Verification

For an objective function Lpair(x, y), where x is the input data and y is the
corresponding PL, given two data instances (xi, yi) and (xj , yj), the i-mix loss
[21] is defined as follows:
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Li−mix
pair ((xi, yi), (xj , yj)) = Lpair(λxi + (1 − λ)xj , λyi + (1 − λ)yj),

= λLpair(λxi + (1 − λ)xj , yi) + (1 − λ)Lpair(λxi + (1 − λ)xj , yj).
(1)

where λ ∼ Beta(α, α) is a mixing coefficient from the Beta distribution. PLs are
one-hot vectors. The i-mix augmentation strategy aims to generate synthetic
training sample λxi + (1 − λ)xj with identity label λyi + (1 − λ)yj to improve
generalization of the self-supervised speaker-embedding network. Leveraging the
generated PLs, it can easily be applied to the SSSV system training process [19].
We also use additive angular margin softmax (AAMSoftmax) objective to train
our self-supervised speaker embedding network, which is formulated as follows:

LAAMSoftmax = − 1
N

∑N
i=1 log( e

s(cos(θyi,i+m))

K1
), (2)

where K1 = es(cos(θyi,i+m)) +
∑C

j=1,j �=i escosθj,i , N is the batch size, C is the
number of classes, yi corresponds to PL index, θj,i represents the angle between
the column vector of weight matrix Wj and the i-th embedding ωi, where both
Wj and ωi are normalized. The scale factor s = 30 is the radius of the repre-
sentation sphere, and m = 0.35 is a hyper-parameter for controlling the angular
margin. Then we can incorporate the i-mix strategy into the self-supervised
AAMSoftmax to boost generalization of our networks as follows:

Li−AAMSoftmax = −λ
1
N

N∑

i=1

log(
exp(s(cos(θyi,mix(i,r �=i) + m)))

KAAM
mix,i

)

− (1 − λ)
1
N

N∑

i=1

log(
exp(s(cos(θyr �=i,mix(i,r �=i) + m)))

KAAM
mix,r �=i

),

(3)

KAAM
mix,i = exp(s(cos(θyi,mix(i,r �=i) + m))) +

∑c
j=1,j �=i exp(s(cos(θyj ,mix(i,r �=i)))) (4)

where θyi,mix(i,r �=i) is the angle between the normalized Wj and ωmix(i,r �=i).
ωmix(i,r �=i) is an embedding extracted from mixed utterance λxi + (1 − λ)xr �=i,
where xr �=i is a random utterance excluding xi, and r is a random index.

2.3 Latent-Level Instance Mixup (l-Mix) for Speaker Verification

Although applying i-mix augmentation to the raw data has proven its strength
in generalization in SV, due to the nature of linear interpolation, the standard
i-mix strategy can only generate synthetic samples between the original samples.
Since such limitation may restrict the overall diversity of the synthetic samples
generated by the i-mix method, a latent-level i-mix (l-mix) was proposed [19].

In the l-mix framework, a variational autoencoder (VAE) is trained on Mel-
frequency cepstral coefficients (MFCC) features prior to training the embedding
network. Detailed information on the VAE used for l-mix can be found in [15,19].
Once the VAE has been trained, the VAE is used to perform mixup on the latent
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space, to generate new MFCC samples xl−mix. Analogous to i-mix, l-mix can be
applied to the self-supervised AAMSoftmax objective as follows:

Ll−AAMSoftmax = −λ
1
N

N∑

i=1

log(
exp(s(cos(θyi,l−mix(i,r �=i) + m)))

KAAM
l−mix,i

)

− (1 − λ)
1
N

N∑

i=1

log(
exp(s(cos(θyr �=i,l−mix(i,r �=i) + m)))

KAAM
l−mix,r �=i

),

(5)

KAAM
l−mix,i = exp(s(cos(θyi,l−mix(i,r �=i) + m))) +

∑c
j=1,j �=i exp(s(cos(θyj ,l−mix(i,r �=i)))). (6)

Attributed to the non-linear nature of the VAE, the resulting samples are
expected to be more diverse than the standard i-mix strategy.

3 Our Proposed Mixup Strategies

Mixup is a highly effective approach for data augmentation. Indeed, [41] has
shown that mixup not only reduces the memorization to adversarial samples,
but also performs better than Empirical Risk Minimization [34].

DoubleMix - This simple interpolation-based data augmentation approach [7]
has originally been proposed for text classification to enhance models’ robust-
ness by learning the “shifted” features in hidden space. It first leverages several
augmentations to generate perturbed samples for each training data (a first-step
mixup using coefficients from a Dirichlet distribution) and then uses the per-
turbed and original sample to carry out a second-step interpolation in the hid-
den space of neural models without the need for label mixing. Since we use sub-
optimal noisy PLs, we find DoubleMix to be a good candidate to help suppress
the effect of wrong-labels memorization during training as it does not require
PLs. As illustrated in Figs. 1a and 1b, we adapt it to both i-mix (input space)
and l-mix (latent space) setups for SSSV to generate more diverse augmented
samples which we believe would help to memorize less the specific augmenta-
tions used during training which induces better generalization and robustness.
We add a Jensen-Shannon divergence (JSD) regularization term to our training
objective to minimize the distance between the predicted distributions of the
original data porg and the perturbed variants pi−mix and pl−mix which stabilizes
the training process. Additionally, we constrain the mixing weight of the orig-
inal sample to be larger than the synthesized perturbed sample to balance the
trade-off between proper perturbations and the potential injected noise.

Frames-based mixup - We explore this idea where instead of interpolating
two entire MFCC inputs with a coefficient λ ∈ [0, 1], we select a percentage of
random frames (100 ∗ λ) from one MFCC sample and replace them with frames
from a second sample (selected randomly while respecting their order in the
second sample). We interpolate labels similarly to classical mixup. We believe
our frames-based mixup approach could help to further robustify our models
and boost attention at the local frame level.

Moment Exchange Mixup (MoEx) - We also explore MoEx [22] to encour-
age utilization of moment information of speaker speech as they can reveal the
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Fig. 1. The general frameworks for (a) our proposed double i-mix regularization strat-
egy. (b) our proposed latent space double i-mix (double l-mix).

style of a speaker. In fact, studies have shown that the moments (mean and
standard deviation) extracted from instance normalization and positional nor-
malization can roughly capture style and shape information of an image. Instead
of being discarded, in MoEx we replace the moments of the learned features of
one training image by those of another and also interpolate the target labels,
forcing the model to extract training recognition signals from the moments in
addition to the normalized features. By analogy, we use MoEx over the speakers’
speech frames to encourage the utilization of moment information during SV.

Virtual Mixup Training (VMT) - Inspired by VMT [24] which encourages
the model to behave linearly in-between training points, we additionally adapt
this regularization method to both i-mix and l-mix -based SV systems as an
additional unsupervised task. Indeed, VMT, which was originally applied to
unsupervised domain adaptation, helps to smooth the output distribution of
neural networks by constructing surrounding points of the unlabeled training
points and enforcing consistent predictions between the surrounding and training
points [36]. We compute the VMT loss by minimizing the JSD or cosine distance
between the generated speaker embeddings corresponding to every two mixed-
up samples (two input MFCC features) and the interpolation of their separate
embedding outputs respectively. As a result, VMT imposes local lipschitzness
to the areas in-between training samples which is a critical factor in successful
training of the cluster assumption [16]: if samples are in the same cluster, they
come from the same class. In particular, we believe this VMT task could help to
further mitigate the memorization of wrong PLs.

4 Multi-task Learning (MTL) over Mixup Variants

Leveraging several mixup strategies at the same time is not a trivial approach
to follow, and choosing which tasks to be learned jointly is hard to know in
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advance. Indeed, learning different tasks does bring difficulties as these tasks
may have conflicting needs [10]. To ensemble the aforementioned mixup strate-
gies together, we follow a Multi-task learning (MTL) training paradigm in which
each mixup objective is considered a different task. Thus, in addition to study-
ing these strategies separately, we also train them simultaneously using shared
representations with hard-parameters sharing to learn the common features and
semantics between these tasks, and combine/transfer their different inductive
biases to induce simpler and more generalizable hypotheses that can explain
all the tasks. Since these strategies are all closely related to the SV task, we
believe our approach could lead to better speaker embeddings and higher SV
performance as this could implicitly serve as a self-correcting method for wrong
PLs by guiding the model’s attention to only focus on the most salient features.
Besides, it has been found that hard parameter sharing between tasks greatly
reduces the risk of overfitting [3]. In particular, this holds the potential to reduce
the model’s ability to accommodate random noise during training. Among the
other advantages of our approach, we can cite the following: increased data effi-
ciency for each sample (crucial for small datasets), potentially faster learning
speed especially as our tasks are closely related, and reduced requirement for
large-scale data in the domain of SV. However, MTL can also introduce several
negative transfer challenges [30]: sometimes independent networks work better
than multi-task approaches due to optimization issues such as cross-task inter-
ference, one or more tasks dominating the training process, tasks learning at
different rates, or the limited representational capacity of a model. Indeed, [37]
found that the output dimension of the shared module in MTL plays a funda-
mental role: if the shared module is large enough, interference between tasks can
be avoided as each of them can be perfectly memorized in the shared module.

In this regard, our work provides an investigation of some MTL-based ideas
and their effectiveness to overcome noisy labels in order to generalize well to
out-of-set samples. Figure 2 depicts our proposed MTL framework. As pre-
sented in the figure, our approach follows a general architecture that consists
of a global, shared feature extractor or embedding network (ECAPA-TDNN
model) to generate utterance-level embeddings, followed by task-specific output
branches (fully-connected layers) or modules to make predictions for each task
[6]. The various task-specific loss objectives are combined into a single aggregated
loss function lossMTL which the model is trained to minimize.

5 Results and Discussion

To evaluate our proposed approaches, we conduct a set of experiments based on
the VoxCeleb2 dataset [9]. To train the embedding networks, we use the devel-
opment subset of VoxCeleb2, consisting of 1,092,009 utterances collected from
5,994 speakers. The evaluation is performed according to the original VoxCeleb1
trials list [26], which consists of 4,874 utterances spoken by 40 speakers.

For our SV systems, the acoustic features used in the experiments were 40-
dimensional MFCCs extracted at every 10 ms, using a 25 ms Hamming window
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Fig. 2. General process for our proposed MTL-based framework using various mixup
formulations. CE denotes the cross-entropy loss while JSD is the JS divergence. FC
denotes a specific fully-connected layer for each task except for VMT mixup. X, X’ are
two original MFCC inputs and ω vectors are the various utterance-level embeddings
manipulated throughout our training process.

via Kaldi toolkit [28]. We used waveform-level data augmentations including
additive noise and room impulse response (RIR) simulation [31]. In addition, for
the ECAPA-TDNN-based systems, we have also applied augmentation over the
extracted MFCCs feature, analogous to the specaugment scheme [27]. We gener-
ate 512-dim speaker embeddings and use cosine similarity for final verification.

We have set 5000 as the optimal number of clusters, which [19] found to
lead to the best results. Regarding our experiments, MTL is performed in 2
different ways: through multiple auxiliary tasks (addition of several auxiliary
losses) all optimized via a single shared model (ECAPA-TDNN), and through a
multi-head architecture (MHA) using multiple additional output headers (task-
specific linear layers) each dedicated to a different task [6]. The aim is to learn
speaker embeddings that encompass as many speaker characteristics as possi-
ble and that generalize well beyond the noisy PLs. Tables 1 and 21 provide the
results of our large range of experiments with the 5 variants of mixup performed
separately (added to the original i-mix or l-mix objective which employs normal
mixup), or through MTL whether in a MHA form or simply via summing the
auxiliary losses together. All experiments have been run for 7 days using a single
RTX2080Ti GPU, with a batch size of 200 MFCC samples for all objectives.

We study various combinations with different weight coefficients for the added
loss terms in order to control the strong regularization effect of the mixup-
based MTL approaches, and different values of parameter α used to sample
mixup-coefficient from a Beta distribution λ ∼ Beta(α, α), and (ω1, ..., ωN ) ∼
Dirichlet(α, ..., α) in the case of double i-mix and double l-mix. Unless cosine
distance is specified, double i-mix, double l-mix, and VMT objectives are opti-

1 N.A. denotes the combinations that are not applicable.
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Table 1. EER (%) performance comparison between the different studied systems
based on the i-mix and l-mix training frameworks, tested with alpha values in {0.5, 1}.
Systems are trained with pseudo-labels generated with AHC [11]. MHA denotes the
use of a multi-head architecture for MTL with a different output linear layer for each
task. Coef. refers to the weight coefficient of each loss function. The weights of i-mix
and l-mix main loss terms are always 1.

Labels/Model MHA double i-mix double l-mix frames mixup MoEx mixup VMT mixup i-mix (α=1) i-mix (α=0.5) l-mix (α=1) l-mix (α=0.5)

AHC (mean-std scaling) [15] ✗ ✗ ✗ ✗ ✗ ✗ 3.478 3.51 3.377 3.409
AHC (l2-Norm) ✗ ✗ ✗ ✗ ✗ ✗ 3.42 3.399 3.314 3.372

AHC (l2-Norm) Coef. 8 ✗ ✓ ✗ ✗ ✗ ✗ 5.265 4.798 4.798 5.525
Coef. 8 ✓ ✓ ✗ ✗ ✗ ✗ 5.127 4.878 4.862 4.851

Coef. 0.5 ✗ ✓ ✗ ✗ ✗ ✗ 3.839 3.828 4.093 4.008
Coef. 0.5 (Cos dist.) ✗ ✓ ✗ ✗ ✗ ✗ 4.051 3.993 3.855 3.897

Coef. 0.5 ✓ ✓ ✗ ✗ ✗ ✗ 4.093 4.003 4.024 3.95
Coef. 0.5 (Cos dist.) ✓ ✓ ✗ ✗ ✗ ✗ 3.855 3.876 4.3 3.977
Coef. 0.5 (Cos dist.) ✗ ✗ ✓ ✗ ✗ ✗ N.A N.A 10.811 3.886
Coef. 0.5 (Cos dist.) ✓ ✗ ✓ ✗ ✗ ✗ N.A N.A 4.125 4.125

Coef. 1 ✗ ✗ ✓ ✗ ✗ ✗ N.A N.A 3.971 3.934
Coef. 1 ✓ ✗ ✓ ✗ ✗ ✗ N.A N.A 4.024 4.035
Coef. 1 ✗ ✗ ✗ ✓ ✗ ✗ 4.088 4.051 4.014 4.067
Coef. 1 ✓ ✗ ✗ ✓ ✗ ✗ 4.014 4.019 4.316 3.998
Coef. 1 ✗ ✗ ✗ ✗ ✓ ✗ 4.114 4.046 4.04 3.961
Coef. 1 ✓ ✗ ✗ ✗ ✓ ✗ 3.913 3.94 4.03 3.966
Coef. 1 ✗ ✓ ✗ ✓ ✓ ✗ 4.008 3.924 4.146 3.971
Coef. 1 ✓ ✓ ✗ ✓ ✓ ✗ 5.223 3.993 4.486 3.908
Coef. 1 ✗ ✓ ✓ ✓ ✓ ✗ N.A N.A 3.94 3.855

Coef. 1 ✓ ✓ ✓ ✓ ✓ ✗ N.A N.A 3.993 3.849

Coef. 0.33 ✗ ✓ ✓ ✓ ✓ ✗ N.A N.A 3.987 3.966
Coef. 0.33 ✓ ✓ ✓ ✓ ✓ ✗ N.A N.A 4.046 4.014
Coef. 0.33 ✗ ✓ ✗ ✓ ✓ ✗ 3.987 4.035 N.A N.A
Coef. 0.33 ✓ ✓ ✗ ✓ ✓ ✗ 4.024 4.046 N.A N.A
Coef. 0.5 ✗ ✗ ✗ ✗ ✗ ✓ 4.231 3.971 N.A N.A

Coef. 0.5 (Cos dist.) ✗ ✗ ✗ ✗ ✗ ✓ 4.21 3.971 4.114 3.961
Coef. 0.5 ✗ ✗ ✓ ✗ ✗ ✓ N.A N.A 3.966 4.024

Coef. 0.5 (Cos dist.) ✗ ✗ ✓ ✗ ✗ ✓ N.A N.A 4.003 4.04
Coef. 0.5 ✗ ✓ ✗ ✗ ✗ ✓ 4.003 3.849 N.A N.A

Coef. 0.5 (Cos dist.) ✗ ✓ ✗ ✗ ✗ ✓ 3.77 3.807 N.A N.A

mized using JSD. Code will be made available online upon acceptance of the
paper. All systems in Table 1 are trained with PLs generated with Agglomer-
ative Hierarchical Clustering (AHC) [11] (trained on top of compact i-vectors
for efficiency reasons and to avoid high dimensionality of the MFCC acoustic
features) which has outperformed all other algorithms used to generate speaker
assignments in [15]. Unlike in the previous paper, and to avoid losing speaker
information, we normalize 400-dim i-vectors (used during clustering) indepen-
dently to unit l2-norm instead of mean and standard deviation scaling of i-vectors
along the features axis, which helps to further improve performance across all
systems in Table 1. Besides, in order to analyze the influence of sub-optimal PLs
on our MTL-based setup and study the behavior of our models trained with the
various proposed mixup-based objectives, in Table 2 we perform similar experi-
ments using the original ground-truth labels to suppress the effect of label noise.

Results overall show that our adopted ECAPA-TDNN-based embedding sys-
tems trained with AAMSoftmax objective [13] are robust and able to generalize
well, achieving comparable performance to the supervised baseline (see Table 2),
despite the multitude of objectives been optimized or the massive noise in the
PLs. Moreover, through our experiments, we could generally observe a more sta-
ble and steady improvement in validation performance when multiple objective
functions are employed (see our visualization plots of the training accuracy and
loss and the validation Equal Error Rate (EER) and Minimum Detection Cost
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Table 2. EER (%) performance comparison between the different studied systems
based on the i-mix and l-mix training frameworks, tested with alpha values in {0.5, 1}.
Systems are trained with ground-truth labels. MHA denotes the use of a multi-head
architecture for MTL with a different output linear layer for each task. Coef. refers to
the weight coefficient of each loss function. The weights of i-mix and l-mix main loss
terms are always 1.

Labels/Model MHA double i-mix double l-mix frames mixup MoEx mixup VMT mixup i-mix (α=1) i-mix (α=0.5) l-mix (α=1) l-mix (α=0.5)

True labels (Supervised baseline) ✗ ✗ ✗ ✗ ✗ ✗ 1.988 1.341 1.612 1.458

True labels Coef. 0.5 ✗ ✓ ✗ ✗ ✗ ✗ 1.925 1.538 1.787 1.474

Coef. 0.5 (Cos dist.) ✗ ✓ ✗ ✗ ✗ ✗ 1.766 1.554 N.A 1.665
Coef. 0.5 ✓ ✓ ✗ ✗ ✗ ✗ 3.982 1.58 1.723 1.617
Coef. 0.5 ✗ ✗ ✓ ✗ ✗ ✗ N.A N.A 1.872 1.575

Coef. 0.5 ✓ ✗ ✓ ✗ ✗ ✗ N.A N.A 1.718 1.691
Coef. 0.5 ✗ ✗ ✗ ✓ ✗ ✗ 1.744 1.612 1.84 1.617
Coef. 0.5 ✓ ✗ ✗ ✓ ✗ ✗ 1.75 1.644 1.824 1.66
Coef. 0.5 ✗ ✗ ✗ ✗ ✓ ✗ 1.739 1.511 1.829 1.543

Coef. 0.5 ✓ ✗ ✗ ✗ ✓ ✗ 1.914 1.623 1.835 1.638
Coef. 0.5 (Cos dist.) ✗ ✗ ✓ ✗ ✗ ✗ N.A N.A 1.744 1.723
Coef. 0.5 (Cos dist.) ✓ ✗ ✓ ✗ ✗ ✗ N.A N.A 1.824 1.543

Coef. 0.5 (Cos dist.) ✓ ✓ ✗ ✗ ✗ ✗ 3.977 1.697 N.A N.A
Coef. 0.5 ✗ ✗ ✗ ✗ ✗ ✓ 1.988 1.633 N.A N.A

Coef. 0.5 (Cos dist.) ✓ ✗ ✗ ✗ ✗ ✓ 1.798 1.633 1.914 1.697
Coef. 0.5 ✗ ✗ ✓ ✗ ✗ ✓ N.A N.A 1.978 1.638

Coef. 0.5 (Cos dist.) ✗ ✗ ✓ ✗ ✗ ✓ N.A N.A 1.962 N.A
Coef. 0.5 ✗ ✓ ✗ ✗ ✗ ✓ 1.856 1.569 N.A N.A

Coef. 0.5 (Cos dist.) ✗ ✓ ✗ ✗ ✗ ✓ 1.681 1.58 N.A N.A
Coef. 0.33 ✗ ✓ ✗ ✓ ✓ ✗ 1.845 1.66 N.A N.A
Coef. 0.33 ✓ ✓ ✗ ✓ ✓ ✗ 1.75 1.728 N.A N.A
Coef. 0.33 ✗ ✓ ✓ ✓ ✓ ✗ N.A N.A 1.851 1.644
Coef. 0.33 ✓ ✓ ✓ ✓ ✓ ✗ N.A N.A 1.707 1.681

(MinDCF) of all studied systems at https://github.com/fathana/multi_task_
learning_speaker_verification). In that case, MTL-based models start from a
worse validation performance point, but then converge quickly to their best EER
downstream performance (see Figs. 3a and 3b). Nevertheless, we can observe an
overall degradation in downstream validation performance when multiple loss
objectives were combined using AHC PLs, which shows that combining multiple
related mixup-based objectives might not always be beneficial. Indeed, regular-
ization induced by MTL to perform well on related tasks can be superior to
regularization that penalizes model complexity, and slight data-manifold or task
semantic shifts are sufficient to lead to adversarial competition of tasks [25]. We
also notice that our proposed double i-mix and double l-mix strategies seem to
slightly outperform all other forms of MTL-based mixup strategies, and that
combining them with VMT mixup helps to further improve performance. This

Fig. 3. Validation performance over time of the 4 types of our systems trained using
(a) AHC pseudo-labels and (b) ground-truth labels (MTL vs. baselines).

https://github.com/fathana/multi_task_learning_speaker_verification
https://github.com/fathana/multi_task_learning_speaker_verification
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Table 3. Results of some recent SOTA SSSV approaches in EER (%) compared to our
best MTL-based system. All models are based on ECAPA-TDNN.

SSL Objective EER (%)

MoBY [38] 8.2
InfoNCE [33] 7.36

MoCo [8] 7.3
ProtoNCE [38] 7.21

PCL [38] 7.11
MTL (Multi-objectives) (Ours) 3.77

can possibly be attributed to the fact that both double i-mix and double l-mix
objectives and VMT mixup do not employ PLs, and are solely based on the JSD
distance or cosine similarity between porg and pi−mix and pl−mix respectively. On
the contrary, MoEx and frames-mixup both rely on the noisy PLs which has the
potential to exacerbate their negative impact on performance. Moreover, Cosine
distance often leads to the best performance across the different systems which
can be explained by its use in the final verification decision. Besides, employ-
ing a Multi-head architecture (MHA) does not seem to have a clear advantage
in terms of performance over a single-head architecture, except for the case of
l-mix with parameter α = 0.5 and for the stability of validation performance
(check our visualizations). On the other hand, in Table 2 we could observe that
using true labels makes our MTL-based approach more advantageous by often
providing validation performance gains or comparable results to the baselines
that do not employ MTL. Figures 3a and 3b which compare the performance
over time of our best setups versus the baselines further confirm this observation
and show that validation performance is more stable and steady when using
true labels despite simultaneously optimizing multiple objectives (e.g., 6 total
objective functions combined in the case of our l-mix (α = 1) MTL-based sys-
tem). These observations highlight the fact that our MTL-based approach relies
on good quality PLs to provide competitive performance, and demonstrate that
our proposed mixup-based objectives are indeed aligned with the SV task, with
very little or no negative interference. Additionally, we can often observe comple-
mentary information gained through the combination of the different tasks (e.g.,
see EER performance gains in the i-mix (α = 1) system). We believe further fine-
tuning of the hyperparameters could lead to further gains in the other systems
as well. Interestingly, we can notice a clear degradation over time of MinDCF
and EER validation performance of the PLs-based baselines (starting from the
12th epoch), a phenomenon that was mitigated by our MTL-based systems that
better avoid overfitting. Figures also show that the MTL-based systems require
more training epochs to converge to their best performance. Given this obser-
vation, we have extended the training of our MTL-based systems until no gain
was observed.
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Furthermore, since PLs provided by clustering are in general inaccurate and
contain discrepancies between the clustering objective(s) and the final SV task,
this causes that mixup may not perform well [44] and using MTL does lead to
optimization conflicts between our regularizing mixup objectives and the main
PL-based training objective or i-mix and l-mix. Some other plausible explana-
tions for the slight performance degradation during MTL are the following: the
destructive interference between the different concurrent tasks especially as opti-
mization starts to happen sequentially across tasks (Hence the need for further
finetuning), the strong regularizing effect of MTL-based approaches compared
to other forms of regularization, or simply the need for more training of multi-
objective functions. All these reasons are worth further future investigation.

Comparison to Other Baselines. Table 3 shows a comparison of our approach
compared to recent SOTA SSSV approaches employing other SSL-based objec-
tives with the same ECAPA-TDNN model encoder. The results show clearly
that our approach outperforms all baselines and is on par with i-mix and l-mix.

Additional Advantages of Our Approach. Besides the aforementioned
advantages, we can cite other potential benefits of our proposed method: (1) Our
MTL-based framework could be particularly useful if learners operate in contin-
uously changing environments (e.g., domain shift). (2) Since MTL strengthens
adversarial robustness [23] , incorporating MoEx mixup that helps analyze the
style of a speaker and frames-based mixup that boosts attention at the local
frame-level, our approach can be particularly very promising against audio spoof-
ing during automatic SV [39] as works such as [43] have done. (3) Instead of using
large-scale datasets such is our Voxceleb use case, MTL can be useful when the
data is limited (small datasets), as it allows the model to leverage the informa-
tion shared across tasks to improve the generalization performance. (4) In cases
where only much worse PLs are available (hard parameter sharing has an order
N - where N is the number of tasks - smaller risk of overfitting the task-specific
parameters [3]). Thus, less risk of memorizing highly random PLs.

Future Improvements. We would like to leave the reader with some potential
future improvements to our framework: since multi-task networks often need to
be larger than their single-task counterpart [37], scaling up our model width to
better handle the different tasks is a promising avenue, use inter-tasks weights
by forcing gradients to have similar magnitudes (to avoid negative competi-
tion) or by employing task uncertainty, encourage similar gradient directions
between tasks [40] to avoid conflicting task gradients (using adversarial meth-
ods or by simply replacing gradient vectors), use MLP headers instead of single
linear layers at the end of the model’s output (this is to share fewer weights and
provide more specific parameters for each task to prevent negative transfer),
attention mechanisms can help to reduce negative transfer [42], use “soft param-
eter sharing” via l1-norm regularization between the specific weights of each task
to constrain them to be closer as is common in several MTL-based works [10].
Since tasks compete with each other, a final fine-tuning with only i-mix or l-mix
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might provide better performance. Finally, our models could benefit from further
fine-tuning of the different hyperparameters, and the investigation of additional
combinations of our proposed loss objectives.

6 Conclusion

In this paper, we have proposed a noise-robust self-supervised (SS) method for
speaker verification (SV) that can mitigate the effect of label noise and generalize
well beyond discrepancies in pseudo-labels generated by clustering algorithms.
Our approach leverages, for the first time in the speech domain, several recent
mixup strategies used to train SS speaker embedding systems in a multi-task
learning (MTL) fashion. These mixup forms are closely related to the SV task
and we show indeed that they are aligned with the SV task and can potentially
transfer well by providing performance gains. Our study analyzes their impact
on the robustness and generalization of some recent SOTA SSSV systems, and
provides an investigation of several MTL approaches to combine them. Finally,
we provide a discussion of the different issues and shortcomings of our approach
and insights to help guide future research in the field.
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Abstract. This work aims to identify dialects for Konkani language.
In this work, various state-of-the-art methods in language identification
are explored for the identification of dialects of the Konkani language.
The initial base model is constructed using fully connected neural net-
work which is trained on frame-level Mel-frequency cepstral coefficient
(MFCC) features. This base model trained on frame-level features is
then used for comparison with state-of-the-art models from language
identification task that are built for dialect identification (DID) that
use utterance-level embeddings, namely x-vector and u-vector. The x-
vector and u-vector based models are trained on segment-level features.
This work explores segment-level features namely phone-state bottle-
neck features (BNFs) and wav2vec features extracted from pretrained
feature extractors. The x-vector based model uses time delay neural net-
work (TDNN) for the extraction of an utterance-level embedding from
sequence of speech segments. A u-vector based model uses bidirectional
LSTM (BLSTM) to extract utterance-level embeddings from sequence
of speech segments. This work also proposes a novel transformer-based
model to extract utterance-level embedding from sequence of speech seg-
ments. Results show the effectiveness of the proposed methods for DID
of Konkani. It is observed that proposed transformer-based model out-
perform the other explored models. The results also show the superiority
of wav2vec features over the phone-state BNFs for DID task.
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1 Introduction

Dialect identification (DID) is an emerging research area which has gained a
lot of importance in recent times and has attracted many speech recognition
enthusiasts [2]. One of the main reasons for this development is that dialectal
cues have been found responsible for considerably deteriorating the performance
of automatic speech recognition systems [8]. Despite this not much work has
been carried out for DID, especially for Indian languages [18]. A dialect is noth-
ing but changes in speaking pattern and language vocabulary, grammar and
pronunciation observed in speakers belonging to a particular geographic area.
These changes are heavily dictated by factors like cultural backgrounds, social
status, economic status, education and so on. Among the various factors, the
most important factor is the geographic region [2]. If an effective dialect identi-
fication system is developed, it will give impetus to the improvement of speech
recognition systems as well as speech based interactive systems. The experience
of human-computer interaction will become more wholesome and rewarding [8]
because of the realistic behaviour that will be introduced into such systems.

This work focuses on DID for Indian languages. There are a few attempts to
dialect identification in Indian languages like Hindi and Kannada [3–6,9,13].
All these attempts focused on exploring the use of approaches to language
identification for DID. These involve use of frame-level and prosodic fea-
tures/representations [3,6,9,13], chroma features [5] as well as utterance-level
representation such as i-vector [4]. Further these works also considered the use
of different classification methods such as multiclass support vector machine
(SVM) [4], ensemble of SVMs [5,6], extreme random forests [3] and artificial
neural networks [9] for DID. A review on available literature on dialect identifi-
cation for Indian languages shows that the said problem is less explored.

The focus of this work is on DID for Konkani, an Indian language which is the
official and administrative language of the state of Goa [12]. As per our knowledge
this is a first attempt for DID in Konkani language. Konkani is mostly spoken
along the west coast of India involving the state of Goa, the Konkan region of the
state of Maharashtra, Udupi, Dakshina Kannada, and Uttara Kannada districts
of the state of Karnataka, along with several districts in the state of Kerala. The
main objective of this work is to identify the dialect of Konkani from a given
speech utterance.

In this work, we explore the effect of different state-of-the-art approaches to
spoken language identification for DID of Konkani language. In this work we ini-
tially propose to work on frame-level features, followed by frame-level features
over a longer context of several frames. Finally we explore segment-level fea-
tures and utterance-level embeddings. Frame-level Mel-frequency cepstral coeffi-
cient(MFCC) features are used to train a fully connected neural network (FCNN)
that serves as an initial base model. Next the frame-level MFCC features are
used to create contextualized features that involves concatenation of MFCC fea-
tures of 21 frames. These contextualized features are used to train an appropriate
FCNN model. These base models which are trained on frame-level features are
then used for comparison with DID models built using state-of-the-art language
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identification models, which use utterance-level embeddings such as x-vector [16]
and u-vector [11]. These models are based on utterance-level embeddings and
are trained using segment-level features. We propose to explore phone-state bot-
tleneck features (BNFs) [7] and wav2vec features [1,14,15] extracted from pre-
trained feature extractors as segment-level features. These sequence of segment-
level feature vectors are passed through time delay neural networks (TDNN) and
bi-directional LSTM (BLSTM) respectively to obtain x-vector and u-vector.

In the recent past transformers [19] are widely used to capture the depen-
dencies within the given input sequence and shown to work efficiently as com-
pared to that of BLSTM. Hence, we propose a novel transformer-based model to
extract u-vector from sequence of segment-level feature vectors. The proposed
model replaces the BLSTM layers in u-vector based DID system by a trans-
former encoder. The proposed model is an end-to-end encoder-decoder model.
The encoder uses multi-head attention to transform the sequence of segment-
level feature vectors. These transformed feature vectors are then combined using
attention based network to obtain u-vector. The decoder is a dense network
that classifies an utterance. The main contributions of this work are : (i) explor-
ing different state-of-the-art approaches of language identification for DID of
Konkani language , and (ii) transformer-based model to extract utterance-level
embedding and Konkani DID.

The rest of the paper is structured as follows: Sect. 2 of the paper discusses
the different approaches considered to build DID system. This section also dis-
cusses the proposed transformer-based DID system. The experimental studies
and results are presented in Sect. 3. Section 4 concludes the paper.

2 Dialect Identification System for Konkani

Typically a DID system contains feature extractor module in the front end,
followed by a module that encodes the DID specific embedding and dialect clas-
sifier. We first discuss the features considered for building DID systems. Later,
we discuss the proposed transformer-based dialect identification (DID) systems
along with state-of-the-art language identification approaches explored for DID
in Konkani language.

2.1 Features for DID

In this work, we explored both frame-level and segment-level features to build
DID for Konkani language. Overall, a speech utterance is represented as sequence
of feature vectors.

2.1.1 Frame-Level Features
We consider Mel-frequency cepstral coefficients (MFCC) as frame-level features
for spoken dialect identification. A frame size of 25 ms and a shift of 10 ms are
used for feature extraction from the speech signal of an utterance. Every frame
is represented using a 39-dimensional feature vector. Here, the first 12 features
are MFCC and 13th feature is log energy. The remaining 26 features are the
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delta and acceleration coefficients. Thus, a speech utterance is considered as a
sequence of 39-dimensional feature vectors.

2.1.2 Segment-Level Features
In this work, we explore contextualised MFCC, phone-state bottleneck features
(BNFs) and wav2vec features as different segment-level features.

Contextualised MFCC: These features are considered as segment-level fea-
tures as they cover several frames. Contextualized vectors are obtained by con-
catenating several 39-dimensional vectors in a sequence. In this work, for each
frame we have concatenated features of 10 previous frames and 10 future frames.
Thus, each vector is of dimension 819 that captures a context of 21 frames i.e.,
735 ms. Thus, a speech utterance is considered as a sequence of 819-dimensional
feature vectors.

Phone-State Bottleneck Features (BNFs): These features are also
segment-level features as they combine together the features of several frames
and help to capture contextual information. We use 80-dimensional phone-state
bottleneck features (BNFs) obtained using “BUT/Phonexia Bottleneck Feature
Extractor” (BUT-BNF extractor) [7] as the segment-level features. This BNF
extractor was originally trained with 3096 phone states from 17 languages as tar-
gets. Each of the extracted phone-state BNF vector covers a total context of 31
frames (i.e., 325 ms) of input speech. Successive phone-state BNFs are separated
by 10 ms. Since wide variety of languages (including Indian languages) are used
in the training, we assume that these extracted phone-state BNFs cover phonet-
ics of the language used in this work. Thus, a speech utterance is considered as
a sequence of 80-dimensional feature vectors.

Wav2vec Features: Wav2vec 2.0 is a framework that creates latent speech
representation from raw audio data using self-supervised learning [1,15]. The
extractor is pretrained for a different task and is then used to extract embed-
dings that are used as features for our DID task. The embeddings or latent
speech representations are referred to as wav2vec features. The model used for
extraction is pretrained on 53 different languages and gives feature vectors of
dimension 512 [14]. These features are also segment-level features as they com-
bine the features of several frames and help to capture contextual information.
Each of the extracted wav2vec feature vector covers a total context of 210 ms
of input speech. Thus, a speech utterance is considered as a sequence of 512-
dimensional feature vectors.

2.2 State-of-the-Art Language Identification Approaches Explored
for Konkani DID

In this work, we explore fully connected neural network (FCNN) based model
as baseline DID system. This model is built on frame-level and segment-level
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features. We also explore x-vector based DID system for both frame-level and
segment-level features. We explore u-vector based DID system using segment-
level features. We also propose a transformer-based DID system that uses
segment-level features.

2.2.1 Baseline DID System
We consider a FCNN with NI number of hidden layers followed by a statisti-
cal pooling layer and then a classification layer as a baseline system. Let H =
(h1,h2,...,ht,...,hT ), be the sequence of feature vectors obtained from the last
hidden layer by passing the input sequence of frame/segment-level feature vec-
tors through the hidden layers of the baseline system. Here, T represents number
of feature vectors in a sequence. The statistics pooling layer first computes the
mean (µ) and standard deviation (σ) of all last hidden layer outputs as follows.

µ = 1
T

∑T
t=1 ht

σ =
√

1
T

∑T
t=1(ht − µ)2

The utterance-level embedding is then obtained by concatenating the mean vec-
tor with the standard deviation, z = [µ�,σ�]�. This z-vector (obtained using
statistics pooling) is then fed to the classification layer for identifying the dialect.

2.2.2 X-Vector Based DID System
This system is an end-to-end system containing x-vector embedding extractor
followed by a classification layer [16,17]. Figure 1 shows the block diagram of the
x-vector based network. It contains a frame-level feature extractor at the front-
end to convert the speech into a sequence of frame-level or segment-level feature
vectors. The sequence of feature vectors is then analysed using a set of time
delay neural network (TDNN) layers. The TDNN units are fully feed-forward in
nature [16,17]. The TDNN layers in the x-vector network also consider a fixed
context at each time index “t”. Hence, the output of TDNN layers at a given time
index can be visualized as a compact representation of DID-specific contents in a
fixed-length chunk of size(NB number of feature vectors). The output of TDNN
layers (LID-senones) obtained over the entire speech sample are then processed
by an utterance-level embedding extractor.

The standard x-vector architecture uses a statistics pooling layer, which com-
putes mean and standard deviation of the output of TDNN layers, followed by
a dense layer to obtain the utterance-level embedding called x-vector [16]. The
x-vector is then fed to the output layer with softmax activation to predict the
dialect label.We denote this end-to-end network as x-vec-Net.

2.2.3 U-Vector Based DID System
Block diagram of the LID-seq-senones based u-vector representation for DID
is shown in Fig. 2. It is an end-to-end neural network, which contains a fea-
ture extractor block to extract an utterance-level embedding (represented as
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Fig. 1. Block diagram of x-vector based DID system (x-vec-Net).

u-vector in Fig. 2) and a dialect classifier block. The feature extractor block
contains a segment-level feature extractor at the front-end to convert the speech
into a sequence of segment-level feature vectors. A sequence of segment-level
feature vectors is then fed to the BLSTM layers, which analyses it by dividing
into fixed-size chunks (each containing NB number of segment-level feature vec-
tors). In other words, a sequence of NB number of phone-state BNF vectors are
grouped to form a fixed-size chunk, which acts as input to the BLSTM layers.
The activations obtained at the output of last BLSTM layer is considered as a
new intermediate representation. Since BLSTM network preserves the sequen-
tial information in the speech efficiently, these intermediate representations are
termed as LID sequential senones (LID-seq-senones). Each LID-seq-senone is a
compact representation of the given chunk (with NB number of segment-level
feature vectors) of speech sample. The sequence of LID-seq-senones obtained
for a given speech sample is then processed by an utterance-level embedding
extractor to produce the u-vector using attention-based strategy. The atten-
tion mechanism dynamically assigns the weights to LID-seq-senones depending
on their relevance in determining the dialect label. The u-vector is obtained as
weighted sum of LID-seq-senones [11]. This u-vector is then fed to the classifier
network for identifying the dialect. We denote this end-to-end DID network as
u-vec-Net.

In this work, we also propose to use an improved version of u-vector based
system for DID. It uses a bi-resolution processing-based approach [11] where, a
network processes the input at two different temporal resolutions using a set of
two embedding extractors, which allows them to encode dissimilar contents in
the speech. The outputs from these two-embedding extractors are then combined
into the final utterance-level embedding (denoted as u-vector). Such arrange-
ment allows the u-vector to gather the DID-specific contents in two different
ways leading to better generalization [11]. The block diagram of the bi-resolution
processing-based approach is given in Fig. 3. It is an end-to-end DID network
which contains a feature extractor block to extract an utterance-level embedding
(u-vector) of the input speech and a dialect classifier block. The feature extractor
block contains a segment-level feature extractor at the front-end, followed by a
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Fig. 2. Block diagram of u-vector based DID system (u-vec-Net).

set of two embedding extractors to provide two intermediate embeddings (repre-
sented as e1 and e2 in Fig. 3) of the speech, and an attention-based mechanism
to combine these two embeddings into a single utterance-level embedding called
u-vector. The architecture of both embedding extractors is identical, which is
shown in Fig. 2. Despite having identical architectures, these two embedding
extractors are designed to process the input sequence at two different tempo-
ral resolutions. Analysing the input at two different temporal resolutions allows
the embedding extractors to encode the DID-specific contents in two different
ways (due to its fast-changing nature) but encode similar information about the
domain/background (which remain constant). As a result, when same input is
fed to both embedding extractors, the embeddings e1 and e2 encode dissimilar
DID-specific contents. The outputs from the two embedding extractors (e1 and
e2) are then combined in the final utterance-level embedding called u-vector.
This u-vector is then directly fed to the dialect classifier to form an end-to-end
DID network as in Fig. 3. We denote this network as 2Arm-u-vec-Net.

Note that, unlike the u-vector in the simple u-vec-Net (given in Fig. 2) which
uses only one embedding extractor to process the input, the u-vector in the
2Arm-u-vec-Net (Fig. 3) contains the DID-specific information gathered in two
different ways. Since the two embedding extractors of the 2Arm-u-vec-Net are
designed to encode dissimilar contents in the input, the corresponding u-vector
should ideally carry more DID-specific information than its counterpart in the
simple u-vec-Net.

In the recent days transformers are shown to capture the dependencies within
the given input sequence better than BLSTM. Hence in the next section, we
propose a transformer-based approach to extract u-vectors.

2.3 Proposed Transformer-Based DID System

The block diagram of the proposed transformer-based DID system is given in
Fig. 4. It is an end-to-end DID network which contains a segment-level feature
extractor at the front-end to convert the input speech utterance into a sequence
of segment-level feature vectors. This is followed by a transformer network to
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Fig. 3. Block diagram of the bi-resolution processing based approach. Orange coloured
frames in sequence of segment-level features indicate the frames selected as input within
an analysis window. This network is denoted as 2Arm-u-vec-Net. (Color figure online)

encode the sequence of segment-level features into an utterance-level embedding
(u-vector) and classify to a dialect class. The proposed transformer network is
an encoder-decoder network where the encoder unit includes LID-seq-senone
generator followed by an utterance-level embedding extractor to transform the
sequence of segment-level feature vectors into an u-vector and the decoder part
is a dialect classifier, as shown in Fig. 4.

The LID-seq-senone generator is a multi-head attention network, which effi-
ciently learns the dependencies within a given sequence of segment-level feature
vectors in a chunk. It has Ne stacked encoder layers with Nh heads. As in [11], a
sequence of segment-level feature vectors is fed to the LID-seq-senone generator,
which analyses it by dividing into fixed-size chunks (each chunk containing NB

number of segment-level feature vectors). Each successive chunk is obtained with
the shift of one segment-level feature vector. In other words, a sequence of NB

number of segment-level feature vectors are grouped to form a fixed size chunk,
which acts as input to the stacked multi-head attention network and produces
a sequence of transformed NB number of segment-level feature vectors as out-
put. These transformed segment-level feature vectors of a given chunk are then
combined using attention mechanism to obtain a compact representation. Since
the network preserves the sequential information in the speech efficiently, we
continue to term these compact representation as LID-seq-senones. Each LID-
seq-senone is a compact representation of the given chunk (with NB number of



Exploring the Impact of Different Approaches for DID of Konkani 469

segment-level feature vectors) of speech sample. We then perform weighted sum
of the LID-seq-senones using attention mechanism to get the utterance-level
embedding (u-vector), which is then processed by the classifier to predict the
dialect. We denote this proposed end-to-end network as u-vec-transformer-Net.

Fig. 4. Proposed transformer-based DID system (u-vec-transformer-Net). Here × Ne

in LID-seq-senone generator indicate stacked Ne encoder layers, each with Nh heads.

In the next section we present the experimental study and performance of
each of the approaches in identifying dialect of Konkani.

3 Experimental Studies and Results

In this section, we study the effectiveness of the proposed transformer based DID
systems and compare it’s performance with the other explored methods. Before
that we present the details of the dataset considered for the studies.

3.1 Konkani Dataset

The dataset used for the experiment is a part of linguistic data consortium for
Indian languages (LDC-IL) Konkani raw speech corpus [12]. This contains var-
ious content types like “Contemporary Text (News)”, “Creative Text”, “Sen-
tences”, “Command and Control Words”, “Date”, “Place Names”, “Person
Names”, “Most Frequent Words”, etc. Since our task is to identify dialects,
which needs utterances with longer duration (at-least sentence level), we chose
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utterances from content type “Sentences”. The dataset contains information for
4 dialects of Konkani collected from 4 regions namely, North Goa, South Goa,
Sindhudurg and Karwar. The details of the data considered for our study is
given in Table 1. The details of the duration of speech utterances in each dialect
of Konkani are given in Table 2. In our study, 70% of the utterances from each
class are considered for training and remaining 30% of utterances from each class
are considered for testing. Both training and test set include good mix of male
and female voices with balanced duration.

Table 1. Details of Konkani dialect dataset.

Age Number of Dialect (region) wise distribution

group speech North Goa South Goa Karwari Sindhudurg

utterances Female Male Female Male Female Male Female Male

16 to 20 1648 349 225 350 324 250 100 50 0

21 to 50 7294 1621 899 1075 1323 1150 1026 25 175

50+ 3108 276 231 700 624 577 700 0 0

Total 12050 2246 1355 2125 2272 1977 1826 75 175

Table 2. Details of duration of utterances in Konkani dataset (in seconds).

Dialect Min Duration Max Duration Avg Duration

Karwari 1.6 16.9 4.7

North Goa 1.2 11.5 4.4

South Goa 1.7 16.7 4.9

Sindhudurg 1.9 10.2 4.8

3.2 Experimental Studies on Konkani DID

All DID systems in this work are evaluated using two different metrics: Accuracy
(%) and equal error rate (EER) (%). Accuracy is computed as the percentage
of test utterances correctly classified to the respective dialect class. The EER
(in %) is computed as EER = FAR+FRR

2 × 100 where, FAR is false acceptance
rate and FRR is false rejection rate. Lower the values of EER, better is the
performance.

3.2.1 Performance of Baseline DID System
We consider FCNN using MFCC and contextualised MFCC as baseline DID sys-
tems. We experimentally chose 3 hidden layer FCNN (here NI = 3) with 40, 200
and 50 rectified linear neurons in each of the 3 hidden layers. The performance
of the baseline DID systems is shown in the first two rows of the Table 3.
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3.2.2 Performance of X-Vector Based DID System
The x-vector based DID system (x-vec-Net) uses time delay neural network
(TDNN) architecture at the front-end, followed by a statistics pooling layer
and a classification network. Final dense classification layer has 4 (which equals
the number of dialects in the dataset) nodes. We experimentally consider NB ,
the number of feature vectors in a chunk, as 30. We built x-vector based DID
system using MFCC as frame-level feature and phone-state BNFs & wav2vec
features as segment-level features. Their performance is given in the 3rd, 4th and
5th rows of Table 3. It is observed that x-vector based DID systems performed
significantly better than the baseline DID systems. It is also seen that x-vec-Net
using segment-level features (phone-state BNF and wav2vec) performed better
than that of x-vec-Net built using frame-level features.

3.2.3 Performance of U-Vector Based DID System
We use two versions of u-vector based DID systems. The first version (u-vec-
Net) uses BLSTM architecture followed by an attention network as embedding
extractor to generate a u-vector. The second version (2Arm-u-vec-Net) uses a
set of two embedding extractors followed by an attention network to combine
the two embeddings and generate u-vector. The hyper-parameters of both the
networks such as number of layers and number of nodes in each layer of BLSTM,
the number of feature vectors in a chunk (NB) and number of nodes in a single
hidden layer based attention network are tuned experimentally. We experimen-
tally consider two BLSTM layers with 256 and 64 nodes respectively in first and
second layers, NB as 30 and 128 nodes in the attention network. We built u-vec-
Net and 2Arm-u-vec-Net using phone-state BNFs and wav2vec as segment-level
features. Their performance is given in the 6th, 7th, 8th and 9th rows of Table 3. It
is observed that u-vector based DID systems performed significantly better than
the baseline DID systems and x-vector based DID systems. It is also observed
that 2Arm-u-vec-Net performed better than that of u-vec-Net. This indicates
that 2-Arm-u-vec-Net capture more DID-specific information than that of u-
vec-Net.

3.2.4 Performance of Proposed Transformer Based DID System
We experimentally kept the number of encoder layers to 8 (here Ne = 8) and
number of heads to 8 (here Nh = 8) as well. We built u-vec-transformer-Net
using BNF and wav2vec as segment-level features. Their performance is given
in the 10th and 11th rows of Table 3. It is observed that transformer based DID
systems performed significantly better than all the models. This indicates that
transformer capture better dependencies in the input sequence than BLSTM.
Hence transformer-based u-vector representation capture better DID-specific
information than u-vec-Net and 2Arm-u-vec-Net. It is seen in Table 3 that in
all the models that build DID systems using segment-level features, models that
use wav2vec features are performing significantly better than the models that
use phone-state BNFs. In an attempt to reason the observed performance, we
repeated the language identification experiments of [10] done using phone-state
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BNFs with the wav2vec features. As an outcome of the experiment, we observed
that for language identification task models using phone-state BNFs and wav2vec
features both gave almost equal performance. This is possibly because phone-
state BNFs capture the phone state information specific to each language (as
some of the phone states are different for different languages). However, in the
Konkani dialect identification task, phone states related to each of the dialects
of Konkani are almost same. The wav2vec features are independent of phone
states. Hence, the utterance-level embeddings learnt from x-vec-net, u-vec-net,
2Arm-u-vec-net and u-vec-transformer-Net using wav2vec features are more dis-
criminative than that of utterance-level embeddings learnt using phone-state
BNFs as observed in Table 3.

Table 3. Performance in accuracy and EER (both given in %) of different explored
and proposed transformer-based DID for Konkani language.

Model Features Accuracy EER

FCNN MFCC 58.77% 34.21%

Contextualised MFCC 56.95% 35.67%

x-vec-Net MFCC 66.88% 31.23%

Phone-state BNF 70.58% 26.43%

wav2vec 72.19% 24.34%

u-vec-Net Phone-state BNF 73.32% 23.56%

wav2vec 76.42% 20.74%

2Arm-u-vec-Net Phone-state BNF 74.85% 22.56%

wav2vec 78.52% 19.69%

u-vec-transformer-Net Phone-state BNF 74.42% 22.78%

wav2vec 80.59% 17.89%

4 Conclusion

This work aimed at performing DID of Konkani language. Different state-of-
the-art language identification approaches are explored to build DID system for
Konkani language. A novel transformer-based DID system is also proposed in
this work. MFCC as a frame-level feature and phone-state based BNF & wav2vec
as segment-level feature are explored to build the DID systems. It is observed
that the proposed transformer-based DID system outperformed other state-of-
the art language identification systems explored for DID. It is also observed that
the DID systems built using wav2vec performed significantly better than that of
the DID systems built using phone-state based BNF.
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Abstract. State-of-the-art spoken language identification (LID) sys-
tems are sensitive to domain-mismatch between training and testing
samples, due to which, they often perform unsatisfactorily in unseen tar-
get domain conditions. In order to improve the performance in domain-
mismatched conditions, the LID system should be encouraged to learn
domain-invariant representation of the speech. In this paper, we propose
an adversarially trained hierarchical attention network for achieving this.
Specifically, the proposed method first uses a transformer-encoder which
uses attention mechanism at three different-levels to learn better rep-
resentations at segment-level, suprasegmental-level and utterance-level.
Such hierarchical attention mechanism allows the network to encode LID-
specific contents of the speech in a better way. The network is then
encouraged to learn domain-invariant representation of the speech using
adversarial multi-task learning (AMTL). Results obtained on unseen tar-
get domain conditions demonstrate the superiority of proposed approach
over state-of-the-art baselines.

Keywords: Spoken language identification (LID) ·
Domain-mismatch · Hierarchical attention · Adversarial multi-task
learning · Utterance-level embeddings · Indian languages

1 Introduction

An ideal spoken language identification (LID) system should accurately iden-
tify the language of the speech utterance irrespective of its duration and back-
ground conditions. Such accurate LID is useful in applications like multilingual
automatic speech recognition (ASR), interactive voice response (IVR) systems,
security and surveillance, archiving audio files, voice-based web search, etc. How-
ever, accurate identification of spoken language in real-world conditions is still a
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challenging task for state-of-the-art systems [3,6]. One main reason is domain-
mismatch which refers to the differences in background conditions, such as type
of speech (e.g., spontaneous versus read speech), type of emotion in the speech
(neutral versus emotional speech), type of pre-processing used (noise removal,
encoding, compression), type of channels/devices used etc., between the sam-
ples used for training and samples used for testing [4,8,21]. Domain-mismatch
is unavoidable in real-world scenarios, as the channel, speaker, background con-
ditions, etc., present in a real-world test sample cannot be predicted ahead of
time. In order to improve the performance of LID system in such unseen target
domain conditions, we should improve its generalization. This can be achieved by
learning LID-specific representation of the speech, which is invariant to domain-
specific conditions.

In order to analyse the LID-specific contents in the speech, state-of-the-art
LID systems use different type of frame-level features, such as Mel-frequency
cepstral coefficients, Mel-filterbank coefficients, bottleneck features, etc. While
all these features provide good representation at frame-level, they usually cover
very short duration of speech and lack long-term contextual information. Fur-
thermore, they provide a varying-length representation of the speech. Hence,
it is very common practice to compute an utterance-level representation of the
speech from these frame-level features before feeding to the classifier [14,19].
Such utterance-level embedding computation allows us to use simple classifiers
in the back-end of the LID system.

In the literature, several approaches have been proposed for computing the
utterance-level embedding from the frame-level features (sequence summarizing
[16], time delay neural networks (TDNN) based x-vector [19], etc.). Note that,
as these utterance-level embeddings are expected to compactly represent the
LID-specific contents in the speech, the approach used to obtain the utterance-
level embedding plays an important role in the performance of the system,
especially in domain-mismatched conditions. In general, systems using atten-
tion modeling are showing very promising results [11,15]. For example, empha-
sized channel attention, propagation, and aggregation based time delay neural
network (ECAPA-TDNN) [7], LID-seq-senone [14], etc., have shown superior
performance.

Motivated by these, in this paper, we propose to use a hierarchical atten-
tion based network to learn LID-specific representation of the speech. Unlike the
existing approaches (ECAPA-TDNN x-vector [7], bi-directional long short term
memory (BiLSTM) u-vector [14], etc.), the proposed approach applies attention
mechanism at three different levels which enable the system to efficiently encode
LID-specific contents at segment-level, suprasegmental-level and utterance-level.
For this purpose, we propose to use a transformer network which is an encoder-
decoder network. We propose to learn LID-specific representation of the speech,
using hierarchical attention, at the encoder part of the proposed transformer.
Specifically, we first use a stacked multi-head attention for exploiting the sequen-
tial relationship in the input segment-level features. Followed by this, we pro-
pose to use a separate attention module, which applies attention on the output
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of stacked multi-head attention unit, to obtain suprasegmental-level embeddings
(denoted as LID-seq-senones). A sequence of suprasegmental-level embeddings is
then processed by another attention module, to obtain the final utterance-level
embedding of the speech called u-vector. This u-vector is then given as input
to the decoder (language classifier) of the transformer to predict the language
label.

Apart from making utterance-level embeddings efficiently language dicrimi-
native, we should also incorporate domain-invariance into it so that the robust-
ness of the LID-network against domain-mismatch can be improved. For this,
there must be sufficient training samples with different domain conditions, but
collecting such kind of a training dataset is a difficult task. Hence, we need to
utilize the available training dataset in a best possible way. Adversarial multi-
task learning (AMTL) is one such way that has been used successfully to enforce
domain invariance in many applications like speech recognition [17], speaker ver-
ification/recognition [10,20], speech emotion recognition [2], etc. AMTL forces
the network to learn features invariant across domains by using training sam-
ples belonging to multiple domains that are available with their corresponding
domain labels. Hence, we also propose to add adversarial learning on top of
hierarchical attention mechanism in an end-to-end manner to obtain domain-
invariant utterance-level embeddings. Thus the decoder part of the proposed
transformer network include both language classifier and adversarial learning
based domain classifier.

The major contributions of this work are summarized as follows:

– Hierarchical attention based network to extract LID-specific utterance-level
embedding.

– Adversarially trained transformer network, a novel end-to-end structure to
extract domain-invariant utterance-level embedding.

– Extensive experimentation of adversarially trained state-of-the-art utterance-
level embeddings and comparison with proposed approach.

The later sections of this paper are organized as follows: In Sect. 2, we describe
our proposed adversarial integrated transformer based approach for robust spo-
ken language identification. A description of the databases used is given in
Sect. 3. In Sect. 4, details of various experiments and corresponding results are
given. It is further followed by conclusion in Sect. 5.

2 Proposed Approach for Domain Invariant LID-Specific
Utterance-Level Embeddings

We propose to implement adversarially trained hierarchical attention network
for designing domain-invariant utterance-level embeddings. The proposed end-
to-end network is a transformer-based network which has following modules: (i)
segment-level feature extractor, (ii) transformer encoder which acts as utterance-
level feature extractor and (iii) transformer decoder which includes both lan-
guage classifier and adversarial learning based domain classifier. Each module is
explained in the following sub-sections.
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2.1 Segment-Level Feature Extractor

In our work, we have used the phone-state bottleneck features (BNF) obtained
using a pretrained BNF extractor [18] as segment-level feature vectors. Specif-
ically, we use 80-dimensional BNF obtained using “BUT/Phonexia Bottleneck
Feature Extractor” (BUT-BNF extractor) [18] as the segment-level features. This
BNF extractor was originally trained with 3096 phone-states from 17 languages.
BUT-BNF extractor processes the input speech using frames of 25 ms length,
and having 10 ms shift. Each of the extracted phone-state BNF covers a total
context of 31 frames (325 ms) of input speech and successive phone-state BNFs
are separated by 10 ms. Thus, a speech utterance is represented as a sequence
of phone-state BNF vectors.

2.2 Transformer-Encoder Based Utterance-Level Feature Extractor

The transformer encoder transforms the input sequence of segment-level fea-
ture vectors into an utterance-level embedding. We propose to implement a
transformer-encoder as a hierarchical attention network which uses attention
mechanism at three levels. The proposed network provides improved performance
for domain-mismatch problem compared to the BiLSTM-based architecture, as it
efficiently encodes the language dependencies within the given input speech sam-
ple. Also, the attention mechanism at three hierarchical levels, enables the model
to focus on relevant language context at segment-level, suprasegmental-level and
utterance-level. The block diagram of the proposed hierarchical attention based
transformer encoder network is given in the Fig. 1.

Fig. 1. Hierarchical attention network block for extracting utterance-level embedding.
Here ×Ne in LID-seq-senone generator indicate stacked Ne number of multi-head atten-
tion units, each with Nh heads.

The input sequence of phone-state BNF vectors are divided into fixed-size
chunks, where each chunk includes sequence of Nb number of phone-state BNF
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vectors. Let Xi = (xi+1,xi+2, ...,xi+Nb
), where Xi ∈ R

Nb×80, be the ith chunk.
Each successive chunk is shifted by one phone-state BNF vector. Let Nh be the
number of such chunks. Every chunk Xi is passed onto the transformer encoder
(see Fig. 1). The first block in the transformer encoder is the LID-seq-senone
generator which include a stacked multi-head attention unit. There are Ne num-
ber of multi-head attention units are stacked. This stacked multi-head attention
unit transform each of the chunks, so that it capture the dependencies in the
sequence of phone-state BNFs in that chunk. Let X̃i = (x̃i+1, x̃i+2, ..., x̃i+Nb

),
where X̃i ∈ R

Nb×80, be the transformed form of the chunk Xi. We then propose
to use an attention mechanism to dynamically assign the weights to each of the
transformed phone-state BNF vectors in a chunk depending on their relevance in
determining the language label. The weighted sum of these transformed phone-
state BNF vectors in a chunk results into a suprasegmental feature vector. Since
multi-head attention unit preserves the sequential information in the speech effi-
ciently, we term this suprasegmental feature vector as LID sequential senone
(LID-seq-senone) [14]. Each LID-seq-senone is a compact representation of the
given chunk (with Nb number of phone-state BNF vectors) of speech sample.
Thus, each of the chunks of phone-state BNF vectors are transformed into a
LID-seq-senone.

Let H = (h1,h2, ...,hi, ...,hNh
) be the sequence of LID-seq-senones obtained

by passing the input chunks through LID-seq-senone generator unit of the trans-
former. Here, Nh represents number of chunks of speech which varies with the
duration of the speech utterance, and hi ∈ R

80 represents the ith LID-seq-
senone. As shown in Fig. 1, we again apply attention-based fusion, which dynam-
ically assigns the weights to each LID-seq-senones depending on their relevance
in determining the language label to finally get a fixed-length utterance-level
embedding called u-vector.

Note that the attention mechanisms used to obtain the suprasegmental repre-
sentation (LID-seq-senone) [14] and utterance-level representation uses an atten-
tion network, which contains a dense (fully connected) layer with Na number
of nodes followed by a layer with single node. Both layers have tanh activation
function. Note that, this attention network can also be viewed as a fully con-
nected neural network with 2 layers. More details on computation of u-vector
from LID-seq-senones using attention mechanism can be seen in [12].

2.3 Transformer Decoder

The u-vector, obtained using hierarchical attention based network in transformer
encoder, is then fed to the transformer decoder to predict the language label by
minimising the impact of domain-mismatch. Further, in order to reduce the
impact of domain-mismatch in attention based utterance level embedding, we
propose to train the transformer network jointly with adversarial multi-task
learning (AMTL) [17]. The utterance-level embedding (u-vector) extracted from
transformer-encoder includes domain information along with LID-specific infor-
mation which leads to domain-mismatch problem. In adversarial multi-task
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learning of multi-task networks in the transformer docoder, we use a multi-
condition dataset where a class label associated with primary task (LID) and a
class label associated with domain is given for each data point. This multi-task
network simultaneously executes language classification and domain classifica-
tion. It contains two output sub-networks, one for the primary task of language
classification and the other for the secondary task of domain classification. Each
output sub-network acts as a classifier to calculate posterior probabilities of
classes given the u-vector representation.

Fig. 2. Block diagram of the proposed transformer-network using AMTL for domain-
invariant spoken language identification.

The block diagram of the proposed transformer-network using AMTL for
domain-invariant spoken LID is given in Fig. 2. It is an end-to-end LID net-
work which contains a transformer encoder acting as an utterance-level feature
extractor block to extract an utterance-level embedding (represented as u-vector
in Fig. 1) of the input speech with parameters θF and a transformer decoder con-
taining language classifier block with parameters θC and domain classifier block
with parameters θD. We denote this network as u-vec-HA-AMTL-Net. In AMTL,
the u-vector is learned adversarially to the secondary task i.e., domain classi-
fication (and friendly to the primary task i.e., language classification), so that
domain-dependent information is purged from the u-vector as it is irrelevant for
the primary language classification task. During training, the parameters of the
transformer-based LID network θnet = {θF , θC , θD} are tuned such that the net-
work concentrates more on the LID-specific contents in the speech by ignoring
domain-specific contents.
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The cross-entropy loss functions for the primary task LC(θF , θC) and sec-
ondary task LD(θF , θD) are defined as

LC(θF , θC) = −
∑

i

log P (li|ui; θF , θC)

LD(θF , θD) = −
∑

i

log P (di|ui; θF , θD)

where, li and di respectively indicate the primary task label and secondary task
label for ith u-vector ui. Our aim is to minimize the primary task loss, so that
the parameters of both utterance-level embedding extractor and language classi-
fier are optimized. This ensures that u-vector learns LID-specific representation.
This is done in conventional classification training process. To bring domain-
invariance into the utterance-level embedding, adversarial learning is made by
adjusting θF to maximize the secondary task loss LD(θf , θD). This min-max
optimization is achieved using gradient reversal layer (GRL), which is added
in-front of secondary task classifier (as shown in Fig. 2). This transformer-based
LID network (u-vec-HA-AMTL-Net) is trained in an end-to-end fashion using
adversarial loss function as:

Lnet(θnet) = LC(θF , θC) − λLD(θF ,θD)

Due to this end-to-end adversarial training, the transformer encoder network
learns u-vector (using hierarchical attention) to discriminate between languages,
while ignoring domain-content in the input sample. These properties of the u-
vector after adversarial learning in turn improves its robustness to the real-world
domain-mismatch challenges.

3 Datasets Used in the Study

In this work, we consider three different Indian languages datasets, namely,
Open-Speech-EkStep dataset (denoted as Ekstep-DS), IIT-Mandi Read Speech
dataset (denoted as Readspeech-DS), and IIT-Mandi YouTube dataset
(YouTube-DS). Among these, Ekstep-DS and Readspeech-DS are used for train-
ing and validation of the models, and YouTube-DS is used only for testing.
All three datasets have 12 languages in common.

3.1 Open-Speech-EkStep Dataset (Ekstep-DS)

This is an open source dataset provided by Ekstep foundation, which was origi-
nally collected for building Vakyansh ASR toolkit [1]. It contains audio samples
collected from different online resources [5]. In our experiments, we use two
different subsets of this dataset. First subset contains audio samples collected
from different domains such as TV programs and YouTube videos on sports,
technology, religion, education, etc. We denote this subset as Ekstep-Multi-
Domain. The second subset simulates extremely low-resource conditions, where,
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we assume that we do not have training data from multiple domains. Specifically,
in all 12 languages we consider only audio samples from TV news broadcasts.
We denote this subset as Ekstep-TVnews. In both Ekstep-Multi-Domain and
Ekstep-TVnews, we collect approximately 5 h of speech in each language, which
are divided into train (80%) and validation (remaining 20%). Details about these
train and validation sets are given in Table 1.

Table 1. Details about the Open-Speech-EkStep dataset.

Language Ekstep-Multi-Domain Ekstep-TVnews

Train samples Test samples Total hours Train samples Test samples Total hours

Assamese 1310 527 5.118 1218 305 5.018

Bengali 1360 485 5.236 1528 382 4.990

English 1015 364 4.852 1632 408 5.082

Gujarati 1536 456 5.197 1267 317 4.990

Hindi 1410 415 5.075 1090 272 5.049

Kannada 1390 389 4.799 1314 329 5.00

Malayalam 1378 368 4.503 1516 379 5.003

Marathi 1236 289 4.235 1332 333 5.100

Odia 1365 323 4.874 1459 365 5.001

Punjabi 1216 542 4.915 1132 283 5.003

Tamil 1364 336 4.816 960 240 5.007

Telugu 1489 403 5.184 1358 339 5.003

3.2 IIT-Mandi Read Speech Dataset (Readspeech-DS)

This dataset contains audio files obtained from news broadcasts in All India
Radio (AIR) [13]. It contains samples recorded in studio environment, with good
quality microphones. Each language in this dataset contains around 5 h of speech
from at least 15 speakers. Like in the case of Ekstep-Multi-Domain and Ekstep-
TVnews, we divide this dataset also into train (80%) and validation (remaining
20%) sets. Details about these train and test sets are given in Table 2.
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Table 2. Details about the IIT-Mandi Read Speech dataset (Readspeech-DS).

Language Train samples Test samples Total hours

Assamese 1270 617 4.288

Bengali 1540 360 5.381

English 955 239 5.012

Gujarati 1475 360 5.127

Hindi 1601 360 5.462

Kannada 1473 371 4.689

Malayalam 1423 357 4.583

Marathi 983 246 5.043

Odia 1418 354 4.474

Punjabi 966 242 5.012

Tamil 983 246 5.018

Telugu 1574 386 4.989

3.3 IIT-Mandi YouTube Dataset (YouTube-DS)

Third dataset used in this study is the IIT-Mandi YouTube dataset (YouTube-
DS). This dataset contains audio samples from different YouTube videos from
multiple domains (teaching, personal interviews, vlogs, etc.) [13]. In each lan-
guage, it contains about 1 h of speech from at least 10 speakers. These samples
are collected using different types of recording devices with different real-world
background conditions. Hence, with respect to samples in Readspeech-DS and
Ekstep-TVnews, samples from YouTube-DS has significant domain-mismatch.
In this work, this dataset is used only for testing. Details about this dataset is
given in Table 3.

Table 3. Details about the IIT-Mandi YouTube dataset (YouTube-DS).

Language Num. of samples Total hours

Assamese 366 1.017

Bengali 361 0.997

English 304 1.228

Gujarati 362 1.003

Hindi 367 1.014

Kannada 363 1.005

Malayalam 362 1.006

Marathi 395 1.573

Odia 363 1.003

Punjabi 439 1.797

Tamil 328 1.389

Telugu 366 1.029
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4 Experiments and Results

In this section, we study the effectiveness of the proposed method. Performances
are given in accuracy (%) and the equal error rate (EER) (%) metric. Lower
values of EER indicates better performance.

We conduct the experiments in two different settings: i) training dataset with
extremely low domain-diversity (which represents low-resource conditions),
and ii) training dataset having reasonable domain-diversity.

4.1 Training Dataset with Extremely Low Domain-Diversity

In this case, we use the Ekstep-TVnews and Readspeech-DS as training datasets
and use YouTube-DS as the test set. Note that, as both Ekstep-TVnews and
Readspeech-DS contain samples from only news broadcasts (respectively from
different TV channels and All India Radio), samples from the YouTube-DS have
significant domain-mismatch with these two due to differences in channel, back-
ground conditions, type of speech, etc. Furthermore, as these domain conditions
are unseen by the LID systems during the training, the YouTube-DS forms an
unseen test set for the system trained on Ekstep-TVnews and Readspeech-
DS. The combined validation set from Ekstep-TVnews and Readspeech-DS is
considered as seen test set.

We first discuss the experiments conducted without AMTL, where, all sys-
tems are trained using only primary language classification loss. Later we discuss
the effectiveness of AMTL, where, all systems are trained using primary language
classification loss and secondary domain classification class.

4.1.1 Experiments on LID Systems Built Without AMTL. All systems
are trained using a combined training dataset, obtained by combining Ekstep-
TVnews and Readspeech-DS.

Experiments with Baseline LID Systems. We first give the performance
of two baseline systems. First baseline is the state-of-the-art x-vector based LID
system [9]. It contains a set of time-delay neural network (TDNN) layers in the
front-end feature extractor block. These TDNN layers operate in a hierarchi-
cal manner such that the subsequent layers cover more temporal context than
the preceding ones. The output of the last TDNN layer is then analyzed by a
statistics pooling layer, which computes its mean and standard deviation. These
concatenated mean and standard deviation form the utterance-level representa-
tion, which is then processed by a fully connected layer to get the utterance-level
embedding x-vector. The x-vector is then processed by the classifier to predict
the language label. We denote this LID system as x-vec-Net. The LID perfor-
mance of the x-vec-Net for seen and unseen domain is given in the first row of
Table 4.
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Second baseline is u-vector based LID system [14], which has compact LID-
seq-senones that are obtained using bidirectional long short-term memory (BiL-
STM) units based networks. Since BiLSTM network models the sequential infor-
mation in the input, the utterance-level embedding obtained from LID-seq-
senones encode the temporal relations in a given speech better than x-vector.
The LID-seq-senones are combined using attention-based mechanism to get the
utterance-level embedding u-vector. The u-vector is then processed by the classi-
fier to predict the language label. We denote this LID system as u-vec-Net. The
LID performance of the u-vec-Net for seen and unseen domain is given in the
second row of Table 4. It is seen that u-vec-Net performed significantly better
than x-vec-Net, as expected.

Experiments with Proposed Transformer-Based Hierarchical Atten-
tion Network. Here, we demonstrate the effectiveness of the proposed
transformer-based hierarchical attention network and compare it with two state-
of-the-art baseline LID systems. We use the transformer encoder architecture
whose structure is explained in Sect. 2.2 to extract the u-vector representa-
tion. However, we consider primary language classifier alone in the transformer
decoder. We denote this proposed LID system as u-vec-HA-Net. Here, we only
train primary language classifier of the system. We experimentally chose 8
stacked multi-head attention units (Ne = 8) with 8 heads (Nh = 8) in the
transformer encoder module. The number of nodes (Na) in the attention net-
works (used to obtain the suprasegmental representation LID-seq-senone and
utterance-level representation u-vector) is chosen experimentally as 128. The
LID performance of the u-vec-HA-Net for seen and unseen domain is given in
the third row of Table 4.

From the results in Table 4, it is seen that, all LID systems performed satis-
factorily on seen test set. As the seen test set contains similar domain conditions
as in the training set, the LID system did not face any difficulty in identifying the
language. However, all three systems performed poorly in unseen test set. This
reduction in performance shows the impact of domain-mismatch in real-world
conditions.

Among the three systems, the proposed u-vec-HA-Net performed significantly
better than the baselines. Unlike the baselines, the proposed u-vec-HA-Net uses
attention at three different levels, allowing the network to learn better represen-
tations at different levels. This leads to improved performance.

Table 4. Performance in accuracy and EER (both given in %) of proposed u-vec-HA-
Net and baseline LID systems trained on low domain-diversity dataset.

LID System Seen test set Unseen test set

Accuracy EER Accuracy EER

x-vec-Net 81.81 10.92 59.43 22.56

u-vec-Net 83.42 8.98 62.38 20.99

u-vec-HA-Net 85.99 7.55 67.69 18.09



486 U. Goswami et al.

4.1.2 Effect of AMTL on the Performance. Here, we study the effectiveness
of AMTL on the proposed approach as well as on the baseline LID systems. All
systems are trained using a combined training dataset, obtained by combining
Ekstep-TVnews and Readspeech-DS. Hence the number of domains considered
is 2. Note that, even though Ekstep-TVnews and Readspeech-DS contain sam-
ples from news broadcast, both have significant domain mismatch in terms of
background noise and manner of speech.

Here, the baseline (x-vector and u-vector based) LID systems are also trained
using AMTL where they include secondary domain classifier along with primary
language classifier. We term the baseline AMTL-based LID systems as x-vec-
AMTL-Net and u-vec-AMTL-Net. The LID performance of these baseline LID
systems for seen and unseen domain is given in the first and second rows of
Table 5.

The proposed transformer-based LID system is built by using the structure
explained in Sect. 2. Here, the transformer decoder uses both primary language
classifier and secondary domain classifier. All the hyperparameters are tuned
experimentally as discussed in the Subsect. 4.1.1. Results obtained for the pro-
posed u-vec-HA-AMTL-Net is given in the third row of Table 5.

It is seen that, inclusion of AMTL leads to slight improvement in all cases
as compared to that of Table 4. Since the AMTL forces the system to learn
a domain-invariant representation, systems trained with AMTL perform bet-
ter compared to their counterparts trained without AMTL. It is interesting to
observe that the performance of the proposed u-vec-HA-AMTL-Net is signifantly
better compared to that of the baseline LID systems (with and without AMTL)
even for unseen test set.

Table 5. Performance in accuracy and EER (both given in %) of proposed u-vec-HA-
AMTL-Net and baseline AMTL-based LID systems trained on low domain-diversity
dataset.

LID System Seen test set Unseen test set

Accuracy EER Accuracy EER

x-vec-AMTL-Net 84.66 8.46 64.62 19.70

u-vec-AMTL-Net 86.56 7.23 66.11 18.88

u-vec-HA-AMTL-Net 88.04 6.43 70.33 16.47

4.2 Training Dataset with Reasonable Domain-Diversity

Note that, the Ekstep-DS actually contains speech samples collected from multi-
ple domains. Hence, in this case, we replace the Ekstep-TVnews by Ekstep-Multi-
Domain for training the systems. This allows us to evaluate the performance
of LID system when a training dataset with better domain-diversity is avail-
able. Specifically, we use Ekstep-Multi-Domain and Readspeech-DS as training
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datasets, and use YouTube-DS as the unseen test set. All systems are trained
using a combined training dataset, obtained by combining Ekstep-Multi-Domain
and Readspeech-DS. The combined validation set from Ekstep-Multi-Domain
and Readspeech-DS is considered as seen test set. Here also, for the AMTL-
based LID systems the number of domains considered is 2.

Results obtained for proposed u-vec-HA-Net and baseline LID systems
(trained without AMTL) are given in the first three rows of Table 6. Results
obtained for proposed u-vec-HA-AMTL-Net and baseline AMTL-based LID sys-
tems are given in last three rows of Table 6. From the results, it is seen that, inclu-
sion of AMTL is not much useful in this case. As the training dataset contains
reasonable domain-diversity, all LID systems generalize very well and provide
better performance compared to their counterparts trained with low domain-
diversity (Table 4 and Table 5). However, among the three systems trained with
AMTL, the proposed u-vec-HA-AMTL-Net has given the best performance. This
again shows the superiority of the proposed approach.

Table 6. Performance in accuracy and EER (both given in %) of proposed transformer-
based LID systems (with and without AMTL) and baseline LID systems (with and
without AMTL) trained on reasonable domain-diversity dataset.

LID System Seen test set Unseen test set

Accuracy EER Accuracy EER

x-vec-Net 83.63 8.86 60.27 22.15

u-vec-Net 85.23 8.24 63.59 20.23

u-vec-HA-Net 87.47 6.88 68.48 17.76

x-vec-AMTL-Net 85.34 8.09 65.49 19.03

u-vec-AMTL-Net 87.56 6.86 66.92 17.96

u-vec-HA-AMTL-Net 89.57 6.12 71.68 15.52

5 Conclusions

In this paper, we proposed a method to extract LID-specific utterance-level
embeddings (u-vector) using hierarchical-attention based transformer-encoder
network which is trained using adversarial learning. These embeddings are
designed to capture the locally available language-specific information and ignor-
ing the domain-specific information by learning representations at three differ-
ent levels. Results obtained shows that these embeddings carry more language
discriminative information and domain-invariance compared to state-of-the-art
x-vector and u-vector embeddings.
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16. Pešán, J., Burget, L., Černockỳ, J.: Sequence summarizing neural networks for
spoken language recognition. In: Proceedings of interspeech 2016, pp. 3285–3288
(2016)

17. Shinohara, Y.: Adversarial multi-task learning of deep neural networks for robust
speech recognition. In: Interspeech, pp. 2369–2372. San Francisco, CA, USA (2016)

https://github.com/Open-Speech-EkStep
http://arxiv.org/abs/2203.16512


Adversarially Trained HAN for Domain-Invariant Spoken LID 489

18. Silnova, A., et al.: BUT/Phonexia bottleneck feature extractor. In: Odyssey, pp.
283–287 (2018)

19. Snyder, D., Garcia-Romero, D., McCree, A., Sell, G., Povey, D., Khudanpur, S.:
Spoken language recognition using x-vectors. In: Odyssey, vol. 2018, pp. 105–111
(2018)

20. Suthokumar, G., Sethu, V., Sriskandaraja, K., Ambikairajah, E.: Adversarial multi-
task learning for speaker normalization in replay detection. In: 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP 2020),
pp. 6609–6613. IEEE (2020)

21. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey.
IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4396–4415 (2023)



Ensemble of Incremental System
Enhancements for Robust Speaker

Diarization in Code-Switched Real-Life
Audios

Raj Gohil, Ramya Viswanathan, Saurabh Agrawal, C. M. Vikram,
Madhu R. Kamble(B), Kamini Sabu, M. Ali Basha Shaik,

and Krishna K. S Rajesh

Samsung R & D Institute Bangalore, Bangalore, India
{raj.gohil,r.vishwanath,saurabh.a,vikram.cm,madhu.r,

kamini.sabu,m.shaik,ks.rajesh}@samsung.com

Abstract. Identifying individual speaker utterances in overlapped
multi-speaker conversations pose a challenging problem in speaker
diarization, specifically under multi-lingual scenarios. Standard speech
diarization the system consists of a speech activity detector, a speaker-
embedding extractor followed by clustering. We improve each of these
components from the standard pipeline to enhance the speaker diariza-
tion in such complex cases. Our investigation focuses on addressing key
sub-aspects of the task like the presence of noise variations, utterance
duration variations, inclusion of enhanced ECAPA-TDNN embeddings
for robustness etc. Finally, we use the DOVER-LAP approach to combine
these system predictions so that complementary advantages of individual
systems are efficiently incorporated. Our best-proposed systems outper-
form the baseline by achieving DER of 27.7% and 28.6% on Phase-1 and
Phase-2 of Track-1 blind evaluation sets, respectively.

Keywords: Speaker diarization · ECAPA-TDNN · Spectral clustering

1 Introduction

In today’s digital world, most of our communications and meetings tend to be
online. In many applications like doctor visits, counsellor sessions, teacher-child
interactions and customer support calls, it is necessary to know the time dura-
tions where each of the two parties are conversing. Precise time durations are
one of the essential requirements in conversational scenarios to detect robust
end-point detection [11], to generate high-quality transcription using automatic
speech recognition [22] and to process using natural language understanding [24]
and speech-to-speech translation [26]. In these cases, it is also important to label
speech regions with the corresponding speakers to generate further enriched tran-
scriptions. The segmentation of audio recordings by speaker labels, known as
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speaker diarization, is the process of recognizing “who spoke when” [21]. Diariza-
tion is considered as a major task in conversational AI systems and has appli-
cations in the processing of telephone conversations, broadcast news, meetings,
clinical recordings, etc. [4,6,21].

An overview of speaker diarization system is shown in Fig. 1. It consists
of speech activity detector (SAD), speaker embedding extractor and clustering
technique.

Fig. 1. Overview of Speaker Diarization System.

Recently, deep learning techniques are being widely used for speech diariza-
tion tasks. [30] proposed a deep neural network (DNN) with fully-connected
hidden layers to classify all speakers in the training set, and then use bottle-
neck features as a speaker representation. Later, D-vectors were improved by a
long short-term memory (LSTM) [10] network with a triplet loss function [13].
An improved version of D-Vectors with TDNN architecture and a statistical
pooling layer was proposed in [6] and this work was further improved by gener-
ating robust speaker representations as X-Vectors in [28]. Emphasized Channel
Attention, Propagation and Aggregation Time delay Neural networks (ECAPA-
TDNN) were proposed [7], which is an enhanced structure based on X-Vectors’
network. The basic TDNN layers are replaced with 1D-Convolutional Layers [9]
and Res2Net-with-Squeeze-Excitation (SE-Res2Net) Blocks [9,12,14], while the
basic statistical pooling layer is replaced with an Attentive Statistical Pooling.
The ECAPA-TDNN system outperformed a strong X-Vectors baseline system as
experimented in both speaker verification task and speaker diarization task [6,7].
Although all these approaches tried to address speaker diarization in clean condi-
tions, however, challenges remain open under noisy and speech-overlapping con-
ditions. Recently, deep learning-based end-to-end speaker diarization approaches
are also proposed to solve the issue of overlapping speech [21].

Alternatively, most of the speaker diarization systems in the literature are
developed by considering monolingual recordings. When a speaker speaks in mul-
tiple languages then the diarization becomes more challenging than the mono-
lingual cases. In code-switched conversational speech, it is trivial that a single
speaker could speak in multiple languages [19]. In this case, diarization becomes
more complex as both the language and speaker compete during clustering [32].
The higher variance among the languages along with the speakers also poses
challenge for the speaker diarization task [32].
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In this paper, we propose a system for speaker diarization in multilingual
code-switched scenarios for Track-1 of the DISPLACE 2023 Challenge. We start
with the baseline architecture and improve each of its components as more robust
substitutes. We use Silero VAD for improving performance in noisy and reverber-
ant conditions. We validate the robustness of improved ECAPA-TDNN embed-
dings over X-vector variations for speaker diarization in the presence of multi-
lingual code-switched data. We also observe that speaker clustering works much
better than AHC for speaker diarization tasks. Observing that these incremental
system enhancements improve the overall system performance for individual key
aspects of the task, we combine these system outputs for final predictions on the
evaluation set.

The remainder of this paper is organized as follows. Section 2 describes the
Track-1 DISPLACE challenge dataset and the evaluation metric used during the
system development. In Sect. 3, the technical details of our system are discussed.
Experimental results and discussion are detailed in Sect. 4 along with case-by-
case analysis. Finally, Sect. 5 provides the main conclusions of this work along
with the future work directions.

2 DISPLACE Challenge Overview

In this section, we briefly describe the DIriazation of SPeaker and LAnguage in
Conversational Environments (DISPLACE) Challenge [2] details. The challenge
aims to detect and label all speaker or language segments automatically in each
conversation. It features two tracks: Track-1 focuses on speaker diarization in
multilingual scenarios, while Track-2 focuses on language diarization in multi-
speaker settings.

Track-1 aims to perform speaker diarization (“who spoke when”) in multi-
lingual conversational audio data, where the same speaker speaks in multiple
code-mixed and/or code-switched languages. On the other hand, track-2 aims
to perform language diarization (“which language was spoken when”) in multi-
speaker conversational audio data, where the same speaker speaks in multiple
languages within the same recording. We participated in the Track-1 speaker
diarization challenge.

2.1 Challenge Dataset

The development set provided by the challenge was recorded in far-field condi-
tions. The development and evaluation set consist of real-life multilingual, multi-
speaker conversations. Each conversation is around 30 to 60 min long involving
3 to 5 participants. The participants show good proficiency in Indian languages
along with English (though English is often observed to use the L1 accent).
The development and evaluation set consists of approximately 15.5 h (27 record-
ings) and 16 h (29 recordings) of multilingual conversations, respectively. The
evaluation was done in two phases, namely, Phase-1 and Phase-2. The Phase-1
evaluation set consists of a subset of the full evaluation set with 20 recordings
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spanning 11.5 h, and the Phase-2 evaluation set consisted of the full evaluation
set.

The data was collected using a close-talking microphone worn by each speaker
as well as a far-field microphone. The latter was provided to the participants for
working on the challenge, while the organizers marked the ground truth using
the close-talking microphone. The data contains natural code-mixing, code-
switching, a variety of language dialects, reverberation, far-field effects, speaker
overlaps, short turns, and short pauses.

The evaluation set features unseen languages as well. Participants were
encouraged to use any publicly available datasets for training and developing
the diarization systems.

2.2 Evaluation Metric

The performance metric is the diarization error rate (DER) calculated with
overlap (the speech segments with multiple speakers speaking simultaneously
are included during the evaluation) and without collar (tolerance around the
actual speaker boundaries). Only the speech-based speaker activity regions are
considered for evaluation. DER consists of three components: false alarm (FA),
missed detection (Miss), and speaker confusion, among which FA and Miss are
mostly caused by VAD errors. DER is defined as:

DER =
DFA + Dmiss + Derror

Dtotal
(1)

where, DFA is the total duration of wrongly detected non-speech, Dmiss refers to
the duration of wrongly detected speech, Derror refers to the duration of wrong
speaker labeling, while Dtotal refers to the total speech duration in the given
utterance.

3 Speaker Diarization System

This section explains the baseline system and the proposed system architectures
in detail.

3.1 Core System

The core of the speaker diarization baseline is largely similar to the Third
DIHARD Speech Diarization Challenge [23]. It uses basic components: speech
activity detection, front-end feature extraction, X-vector extraction, and PLDA
scoring followed by AHC. SAD is a TDNN model based on the Kaldi Aspire
recipe (“egs/aspire/s5”). The speech intervals detected by the SAD are split
into 1.5-sec windows with 0.25-sec shifts. For every window, 30-dimensional Mel
Frequency Cepstral Coefficients (MFCCs) are computed with 25 ms window
length and 10 ms hop. These are used to extract X-vectors at every 0.25 sec.
The network used for X-vector extraction is the BigDNN architecture reported
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in [31] instead of the DNN network used in [23]. The X-vectors are centred
and whitened every 3-sec using statistics estimated from the DISPLACE Dev
set part 1. These vectors are then grouped into different speaker clusters using
AHC (Agglomerative Hierarchical Clustering) and a similarity matrix produced
by scoring with a Gaussian PLDA (Probabilistic Linear Discriminant Analysis)
model. Finally, the speaker and non-speech labels are aligned temporally with the
utterance waveform. The labels are further refined using Variational Bayes Hid-
den Markov Model (VB-HMM) and as Universal Background model-Gaussian
Mixture Model (UBM-GMM). X-vector extractor as well as UBM-GMM and
total variability matrix used for resegmentation are trained on VoxCeleb I and
II [5,20] augmented with additive noise and reverberation.

3.2 Speech Activity Detection (SAD)

In our experiments, we investigate the use of TDNN-based SAD used in the
baseline system [23], Silero VAD [29] and LSTM-based VAD [25]. The open-
source Silero VAD [29] is trained on a large amount of data from over 100
languages and various background noises and reverberation conditions. It uses
CNNs and transformers. It has been known to perform better than conventional
VAD approaches in challenging noisy conditions both in terms of both precision
and recall [29]. The model is trained using 30 ms frames and can also handle
short frames without performance degradation.

Furthermore, we also evaluate our performance using the 2-layer LSTM
VAD [25] system that predicts speech or non-speech decisions at frame-level.
The system uses 20ms long frames to compute the input features: log energies
of six frequency bands in the range 80 Hz to 4 kHz. The decisions may indi-
cate some spurious unlikely short spurts of speech/silence. These are removed
through post-processing where every speech region is expected to be at least 100
ms and every silence region is expected to be at least 200 ms.

3.3 Speaker Embeddings

Besides the X-vector used in the baseline, we try a different variation of the
X-vector reported in [28] which is trained for the speaker verification task. In
particular, we use the improved ECAPA-TDNN embeddings inspired by our
previous work [6].

X-Vector. We used the X-vector described in the baseline system. This has
been trained on the Voxceleb dataset augmented with additive noise and rever-
beration. The RIR dataset from [15] has been used to generate reverberation
samples, while the additive noise sampled are taken from MUSAN [27], a corpus
of music, speech and noise. The X-vectors are 512-dimensional vector embed-
dings computed every 1.5-s segments with a shift of 0.25 s.
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VoxCeleb SID. We used Speaker Identification (SID) X-vector system in our
experiments. It uses a smaller DNN network than a regular X-vector specifically
trained for speaker recognition task [28]. The initial few layers use temporal
context such that every frame sees a total context of 15 frames. The features are
24-dimensional filter banks with a frame length of 25 ms, mean-normalized over
a sliding window of up to 3 s. The model is trained on VoxCeleb I and II [5,20]
datasets augmented with additive noise and reverberation from Room Impulse
Response and Noise Database [3] and MUSAN [27] datasets.

ECAPA-TDNN. We use the ECAPA-TDNN model inspired by our previ-
ous work [6] to extract enhanced speaker embeddings. It is an X-vector model
improved to include Res2 blocks and channel- and context-dependent attention
pooling. Multi-layer Feature Aggregation (MFA) is also used to merge com-
plementary information before the statistics pooling. It has been trained on
data with different augmentation strategies like waveform dropout, frequency
dropout, speech perturbation, reverberation, addition noise, and noise with
reverberation augmentation techniques. The data augmentation is applied on-
the-fly to every speech utterance during training. This helps us more variety of
data. The ECAPA-TDNN is trained using VoxCeleb I and VoxCeleb II [5,20]
database with Room Impulse Response and Noise Database [3] and MUSAN [27]
datasets used for the augmentation. 80-dimensional log Mel-filterbank energies
mean-normalized across an input segment forms the input to the ECAPA-TDNN
model. For every speech segment, 192-dimensional embeddings are extracted
with a sliding window of size 1.5 s. In this work, we empirically try different hop
sizes while computing the embeddings. Best performing hop sizes are 0.75 sec
and 0.25 sec, and we refer to them as ECAPA-TDNN-1 and ECAPA-TDNN-2,
respectively.

3.4 Clustering Algorithms

We tried different types of cluttering techniques in our experiments. In addition
to using AHC from baseline setup, we also tried spectral clustering from [17]
which has been shown to give high performance [6]. Spectral clustering is a graph-
based clustering technique that uses an affinity matrix calculated using the cosine
similarity metric. The affinity matrix is then enhanced and the Eigenvectors
are computed. The Eigen-values are thresholded to get the number of speaker
clusters k. The top Eigenvectors give the spectral embeddings which are more
separable and give quite distinct speaker clusters through k-means clustering.
We observed that AHC is better if there is hierarchy in the clusters while spectral
clustering is useful if the data has connected clusters that do not form a globe.

4 Results and Discussion

The challenge provided baseline results on development dataset. Even though
the challenge paper [1] reports DER to be 32.60%, we observe DER of 40.24%
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in our implementation. We treat the latter as the baseline for all comparisons
as indicated in Table 1. The baseline had UB-GMM and VB-HMM-based reseg-
mentation modules as optional elements. We try modifying this module by using
the default speaker shift probability as 0.45. The first two systems S1 and S2 in
Table 1 show that adding resegmentation helps improve the DER of the baseline
system. This holds not only for the baseline system but also for other systems
as can be seen in Table 1.

Table 1. Diarization error rate on development set for different combinations of SAD,
speaker embedding vectors and clustering methods.

System No System Description DER (%)

Baseline System

S1 BL SAD+X-vector+PLDA+AHC [1] 40.24

S2 BL SAD+X-vector+PLDA+AHC+VB-HMM 38.74

VAD variation

S3 Internal VAD+X-vector+PLDA+AHC 49.11

Replacing AHC with SC

S4 BL SAD+X-vector+SC 51.49

S5 BL SAD+X-vector+PLDA+SC 37.67

S6 BL SAD+X-vector+PLDA+SC+VB-HMM 35.99

Finetuned Model

S7 BL SAD+X-vector+PLDA+SC 31.08

Replacing X-vector with Voxceleb SID

S8 BL SAD+VoxCeleb SID (0.25) 45.29

S9 BL SAD+VoxCeleb SID (0.25)+VB-HMM 38.23

Previous Work

S10 Silero VAD+ECAPA-TDNN-1+SC [6] 39.29

S11 Silero VAD+ECAPA-TDNN-1+SC+VB-HMM 39.02

Towards Best System

S12 BL SAD+ECAPA-TDNN-1+SC 36.93

S13 BL SAD+ECAPA-TDNN-1+SC+VB-HMM 36.30

S14 BL SAD+ECAPA-TDNN-2+SC+VB-HMM 35.64

4.1 Enhancements Using Clustering Techniques

We replaced the PLDA and AHC modules with spectral clustering. However,
this gave poor performance compared to the baseline system. We observed that
the input to the spectral clustering algorithm needs to consist of well-separated
“connected components” [18] for robust clustering. As PLDA is expected to
perform the required vector discrimination, we included the PLDA block before
spectral clustering. The DER in Table 1 shows indeed a large improvement is
observed when applied spectral clustering on X-vector with PLDA vectors (S5)
than only X-vectors alone (S4).
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4.2 Investigating the Separability of Speaker Embeddings

We observed that the spectral clustering works well if the speaker embedding
vectors are well-separated, as shown in Sect. 4.1. We further explored different
versions of speaker embeddings for their noticeable level of separability across
speakers. As part of the analysis, we plot X-vector, X-vector with PLDA, Vox-
celeb SID and ECAPA-TDNN embeddings for audio in Fig. 2. The scatter plot
in Fig. 2a shows that speaker discrimination is not sufficient enough with X-
vectors. The PLDA scoring helps improve the speaker separation capability of
the X-vectors resulting in better discrimination among the multi-lingual speak-
ers as shown in Fig. 2c. The speaker distinction is the best using ECAPA-TDNN
without the need for PLDA as seen from Fig. 2c.

Fig. 2. Scatter plots of (a) X-vector, (b) X-vector+PLDA, and (c) ECAPA-TDNN
based enhanced embeddings after the U-map based dimensionality reduction. Red,
blue and green color indicate three different speakers in an utterance. (Color figure
online)

We were able to achieve 36.93% DER on Dev sets - a marginal improve-
ment compared to Baseline numbers, using ECAPA-TDNN with a TDNN-based
SAD system. We observe a further reduction in DER (S13 and S14) compared
to baseline (S1) along with VB-HMM rescoring. As seen from Table 1, all the
ECAPA-TDNN-based model performances are almost comparable with the X-
vector+PLDA+SC approach. This is in line with the observations from Fig. 2.
Furthermore, we observe from Table 1 that for the sliding window hop period,
p=0.25 gives better results than when p=0.75. This is because the short speaker
utterances like ‘yes’, ‘no’, ‘oh’, etc. can be easily accounted for with small hops.

4.3 Voice Activity Detection

As the DISPLACE challenge data was recorded in far-field conditions, we tried to
remove noise or reverberation from the utterances using a DNN pre-processing
model. This was followed by utterance segmentation into speech-only regions
using LSTM VAD trained on noise-augmented Librispeech data discussed in
Sect. 3.2.

In order to incorporate more data, we further tried replacing the TDNN based
VAD with Silero VAD as discussed in Sect. 3.2. We see that the use of Silero VAD
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reduces the DER compared to when baseline TDNN SAD is used. However, a
close analysis of failed cases indicates that the Silero VAD improves the perfor-
mance for the utterances with high noise and reverberation, while TDNN SAD
works best in the case of clean utterances. The development set did not contain
many noisy utterances which led to aggregate performance deterioration for S13.

4.4 Results on Dev and Eval Datasets

Results on the development set using various experiments are shown in Table 1.
Here, S7 is the finetuned version of the model S5. In general, overfitting happens
when the model performs better with very low error rates on test data set [16].
On the contrary, the DERs are higher on the development data set due to the
presence of largely divergent data conditions in this task. So, we finetuned the
weights of model S5 using the development set and created model S7. In prin-
ciple, it is not meaningful to measure the DER on the development set itself
using system S7. However, as the DER is still on the higher scale even after
the finetuning, we consider system S7 as one of the competing systems in our
experiments.

Performance Evaluation on Phase-1. We selected four models based on
development set results and observations, that is, S13, S14, S11 and S7. The
corresponding evaluation set results are shown in Table 2. We observed that the
Silero VAD proves to be more robust in the presence of noise variability and
works well with short window and hop sizes. Corresponding system S11, there-
fore, outperforms very short and noisy utterances. That is, if a speaker speaks
for a small time in a conversation, used ECAPA-TDNN embedding computed
with a small window hop size provides an advantage in helping more accurate
speaker change detection for system S14. We combine our four system’s outputs
for final submission, considering that each system has its characteristics which
help in specific aspects of the task. We performed the fusion based on the max-
imum voting criteria. The speaker label which appears more times for a given
frame is voted as the final speaker label. If none of the four systems claimed the
same speaker label, we retained the labels from S7 - the system performing best
on the development set. After fusion, the results improved further to achieve a
lower DER of 27.70% as shown in Table 2.

Table 2. Results of different combination SAD, speaker vectors and clustering methods
in DER (%) on eval phase 1 and phase 2 set.

System No Systems Dev Phase-1 Phase-2

S1 BL X-vector + PLDA + AHC [1] 40.24 39.60 32.50

S13 BL SAD+ECAPA-TDNN (p 0.75)+SC+VB-HMM 36.30 28.11 29.45

S14 BL SAD+ECAPA-TDNN (p 0.25)+SC+VB-HMM 35.64 29.67 28.85

S11 Silero SAD +ECAPA-TDNN (p 0.75)+SC+VB-HMM 39.02 32.41 28.86

S7 BL SAD+X-vector+PLDA+SC 31.08 31.84 29.87

S15 Fusion of S13, S14, S11 and S7 NA 27.67 28.7

S16 Fusion of S14, S11 and S7 NA 27.89 28.59
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Table 3. Individual DER results on the eval set for the individual audio files.

Audios → B015 B016 B020 B023 B027 B029 B035 B039 B051 B053 B054 M007 M008 M010 M017 M044 M047 M048 M050 M053

Sys ↓
S13 25.67 41.52 34.55 22.01 7.19 15.81 6.52 33.16 30.04 32.35 22.64 21.89 37.45 30.34 30.81 33.06 15.02 35.47 56.75 13.40

S14 25.60 41.94 34.75 23.94 7.32 15.76 6.45 33.25 29.96 32.33 23.20 30.30 37.37 30.18 30.69 34.70 30.55 35.44 62.32 16.54

S11 27.99 42.03 32.43 31.03 9.69 20.13 7.62 36.08 39.64 41.72 25.86 30.80 37.17 34.46 32.40 27.02 18.97 46.50 77.24 17.23

S7 41.75 48.65 38.53 22.01 7.19 27.48 19.82 33.33 34.08 34.21 22.64 23.57 38.97 50.44 32.61 33.06 15.02 37.90 56.75 13.40

Performance Evaluation on Phase-2. We decided to improve the fusion
technique further based on the DOVER approach [8] for the Phase-2 part of
the challenge. DOVER-LAP is a method to combine multiple diarization system
hypotheses while handling the overlap between multiple speakers. The DOVER-
LAP S15 and S16 systems were used to combine individual systems based on
empirically selected custom weights. These weights were calculated based on the
leave-one-out cross-validation performance on the development set.

4.5 Analysis After Phase-1 Evaluation

We performed a detailed analysis of the audio after the completion of the Phase-
1 evaluation. The individual file-wise results for Phase 1 Eval-set are shown in
Table 3. We observe that for a few files, the DER is relatively very less (e.g., file
B027), while for some others the DER is very high (e.g., file M050).

We observe the scatter plots for the files M007 and M050 as shown in Fig. 3.
For the M007 file the speakers are clearly distributed from each other which
results in less DER (as reported in Table 3). In particular, with X-vector embed-
dings the DER obtained is relatively less compared to ECAPA-TDNN embed-
dings that are reflected from Fig. 3a and Fig. 3b. In addition, we also observe
that the M050 recording is highly noisy. Figure 3c and 3d show the X-vector and
ECAPA-TDNN embeddings respectively for this recording. In both cases, the
speaker embeddings show a large overlap. Due to the noisy nature of speaker
embeddings and distance metrics, the quality of the affinity matrix degrades
affecting the spectral clustering, thereby leading to poor performance.

On the other hand, the audios B027 and B035, are near-field audios with
relatively less noise and reverberation. Further, the gender-related speaker tran-
sitions in these audios are generally well-defined. That is, even within the same
gender, different speakers have clearly distinct voices due to noticeable variations
in pitch and timber. However, these audios do not have overlapping speakers.
Each speaker speaks for a longer time as opposed to a short 2 to 3-sec dura-
tion. All these are helpful in getting better discrimination across embeddings of
different speakers and hence better speaker diarization.

As shown in Table 2, stand-alone system S7 performed better on the dev set
and did not perform well on the Eval set compared to other systems. Further
investigation shows that most of the audios from the Dev set are clean, while the
audios from the Eval set contain comparatively more noise under reverberation
conditions. This indicates the importance of domain mismatch not only in terms
of language and accent but also in terms of noise and reverberation as well.
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Fig. 3. Scatter plots of (a) X-vector+PLDA, and (b) ECAPA-TDNN embeddings for
M007 recording. Scatter plots of (c) X-vector+PLDA, and (d) ECAPA-TDNN embed-
dings for M050 recording. The U-map based dimensionality reduction is performed
before plotting scatter plots.

As shown in Table 3, we observe that all baseline VAD systems perform poorly
for the M044 audio, while system S11 using Silero VAD performs much better.
M044 audio is extremely noisy with very high pitch and loudness variations due
to frequent switching between near-field and far-field conditions. This condition
seems to have been captured well by Silero VAD compared to the baseline VAD.

5 Conclusion

In this paper, we built a system for Track-1 of the DISPLACE Challenge that
aims at speaker diarization in multilingual scenarios. The system is implemented
using different combinations of core sub-modules such as VAD, robust speaker
embeddings, and clustering methods. The best system is the combination of
different systems obtained using the DOVER-LAP fusion techniques. This rep-
resents a significant relative improvement over the baseline by 30.05% which led
us to the second position for both phase-1 and phase-2 of the DISPLACE chal-
lenge. Although there is still room for improvement, we do believe that these are
promising results. Our systems perform noticeably well with gender-specific tran-
sitions compared to same-gender conversations under multilingual and far-field
conditions. The mismatch in the Dev and Eval sets due to huge reverberation
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and noisy data made the task more challenging. The use of models trained on
large datasets helped with reducing the data mismatch under challenging acous-
tic conditions.
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Abstract. This work proposes the utilization of a self-supervised pre-
trained network for developing a Language Identification (LID) sys-
tem catering to low-resource Indian languages. The framework employed
is Wav2vec2.0-XLSR-53, pre-trained on 53k hours of unlabeled speech
data. The unsupervised training of the model enables it to learn the
acoustic patterns specific to a language. Given that languages share pho-
netic space, multi-lingual pre-training is instrumental in learning cross-
lingual information and building systems that cater to low-resource lan-
guages. Further fine-tuning with a limited amount of labeled data sig-
nificantly boosts the model’s accuracy. The results showcase a relative
improvement of 33.2% over the DNN-A (DNN with attention) model and
19.04% over Dense Resnets for the Language Identification task on the
IIITH-ILSC database using the proposed features (Shivang Gupta and
Kowshik Siva Sai Motepalli share first authorship).

Keywords: Language identification · Wav2vec2.0 · Self-attention
mechanism · Equal error rate

1 Introduction

The objective of a Language Identification (LID) system is to categorize spo-
ken language, upon being presented with a speech signal. Automated spo-
ken language identification serves as a preliminary step for numerous speech-
related applications, such as multi-lingual automatic speech recognition, speech-
to-speech translation, customer routing in call centers, etc. [11]. In the case of
code-switching, LID assumes an essential role as a fundamental component of
any speech-based application system.

Several techniques have been devised for language identification, catego-
rized broadly as explicit and implicit. Explicit LID systems typically involve
the conversion of speech to an intermediate representation such as phones, fol-
lowed by the extraction of features from this representation, which are then uti-
lized for LID. Conversely, implicit methods involve the direct feeding of speech
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into the model to identify the language identity [21]. This paper focuses on an
implicit Language Identification (LID) system utilizing wav2vec2.0-XLSR-53,
which directly encodes raw speech into feature vectors that are subsequently
used for LID.

DNN, DNN with attention, i-vector, LSTM, etc. have given good results
for LID task [4,10,20]. But these models require a significant amount of lan-
guage data for training. i-vector relies heavily on language data for training, and
their effectiveness is influenced by the data parameters like speaker variability.
Therefore, in low-resource language settings such as in India, where there are 22
official languages, regional dialects, and limited language data available, models
that can learn cross-lingual information tend to perform better.

Features extracted from the Joint Acoustic Model(JAM) of a multi-lingual
ASR trained using the LSTM-CTC framework along with a multi-head attention
block have shown significant improvement for LID task [16]. It not only captures
shared phonetic information across multiple languages but also learns long-range
temporal information. However, ASR building requires a significant amount of
labeled data, and getting labeled data is a bottleneck in low-resource languages.
For some languages, we do have audio data available from various sources like
films, videos, etc. but finding native speakers in the language for annotation is a
challenge. Hence self-supervised models such as wav2vec2.0 are utilized to learn
cross-lingual information from unlabeled data, which can then be fine-tuned
with a minimal amount of labeled data. Features extracted from wav2vec2.0 are
passed through the attention layer and then its performance is compared with
different other approaches for LID task.

The paper is organized as follows. Section 2 contains the related work on LID.
Section 3 describes the IIITH-ILSC database used. Sections 4 and 5 describes
the wav2vec2.0 architecture and the experimental setup. Section 6 describes the
experimental results of LID systems on the IIITH-ILSC database. Finally, the
paper is concluded in Sect. 7.

2 Related Work

Gaussian mixture model (GMM), GMM-universal background model(UBM)
[17], and i-vector model have been commonly used modeling techniques for devel-
oping LID systems. i-vector representation of speech summarizes information in
an utterance [9]. Deep Neural Networks are also used for LID systems [11,15].
DNN systems have shown good performance since they capture temporal infor-
mation quite efficiently. However, these models for LID are data-driven and
require a larger amount of data as well as more number of speakers, both of which
are insufficient in low-resource Indian languages. Earlier works used MFCC fea-
tures that captured short-range acoustic properties and used quantization blocks
to get discrete output which was then classified to represent the language iden-
tity of five Indian languages namely Hindi, Kannada, Malayalam, Telugu, and
Tamil [2]. Later, auto-associative neural networks (AANN) were used for LID,
which were trained on weighted LPCC (WLPCC) feature vectors to capture the
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distribution of spectral feature vectors and learn temporal dependencies in the
language [13]. Further LID task was performed using Hilbert envelope and phase
information of LP residual [14] on multilingual speech corpus, namely the Indian
Institute of Technology Kharagpur-multilingual Indian language speech corpus
(IITKGP-MLILSC) [12]. Various Deep Neural Networks like Deep Convolutional
Recurrent Neural Networks [3], Resnets, etc. have also been used for LID task.
Recently LID task for accented speech using various models like XLS-R-300M
wav2vec2.0, Resnet, and ConvNet on ASR output have also been evaluated [7].

3 Database

The IIITH-ILSC [15] database was considered for model evaluation. It comprises
103.5 h of speech data collected from 1150 speakers across 23 languages, including
22 official Indian languages and Indian English. It has 4.5 h of data for each
language. The corpus was pooled from various sources such as archives of Prasar
Bharati, All Indian Radio, TED-talks, conversational speech from broadcasts,
and speech recorded from students of IIITH, University of Hyderabad, Maulana
Azad National Urdu University-Hyderabad, National Institute of Technology-
Warangal, Goa University, Bodoland University, and the University of Jammu.
Each language in the database contains utterances from 50 speakers (25 male
and 25 female) with 5–10 min duration from each speaker. The database includes
speech samples from both clean and noisy environments, and all speech files are
in .wav format with a sampling rate of 16,000 samples/sec.

4 Methodology

4.1 Wav2Vec2.0

wav2vec2.0-XLSR-53 is a pre-trained model [1] trained on 53k hours of unlabeled
speech and on 53 different languages. It takes raw speech waveform as input, seg-
ments into frames and each frame is passed through multiple stacked CNN layers,
which give a latent representation z1....zt. Each zi vector represents the vector
for one time frame of the speech signal. These representations are masked and
then passed to the context network to get representation C = [c1....ct] . Context
network is a transformer encoder except that instead of using positional encod-
ing, it uses grouped convolution layer to learn relative positions. Masked z1....zt
are also passed through quantization block to get q1....qt vectors. Quantization
block is introduced since speech is continuous and data is unlabeled, therefore
there are no labeled speech units like phonemes, words, etc. Therefore it maps
input to some different set of speech units. To generate q1....qt, there are code
books(groups) from which codewords are taken and concatenated. 2 groups each
having 320 entries(codewords) are used. Each group maps the input vector to
a possible codeword by using a quantization matrix and then gumble softmax.
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Then codewords from each group of the codebook are concatenated and multi-
plied by quantization projection matrix to get q1....qt. The concatenated word
is a possible speech unit for each input vector we give to quantization module.

Fig. 1. Proposed architecture for Language identification.

Since there are 2 groups each containing 320 entries, thus it has 320*320
which is 102.4K possible speech units. Finally, the model is trained using con-
trastive learning. In contrastive learning for each masked position t, model tries
to identify the true representation of ct from a set say Qt which contains qt and
K distractors. K = 100 distractors are uniformly sampled from masked positions
other than at tth position of that same utterance. Contrastive loss is calculated
as

Lm = −log
exp(sim(ct, qt)/κ)

Σq̃∼Qt
exp(sim(ct, q̃)/κ)

where sim is cosine similarity , κ temperature in contrastive loss , Qt is set which
include qt and K distractors.

Fine-tuning on the pre-trained model is done on labeled data and is optimized
by minimizing the Connectionist Temporal Classification (CTC) loss.

Pre-trained wav2vec2.0-XLSR-53 model is taken, fine-tuned on the IIITH-
ILSC database, and used for the LID task. Architecture is shown in Fig. 1. The
context vectors c1....ct obtained from 14th layer of XLSR-53 is taken and fed to
the attention layer. In this layer following operations are done -
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– Self-attention

a = softmax (w2GELU(W1cT)) ∈ RT

o1 = ΣT
t=1 at ct

o2 =
√

ΣT
t=1 at(ct − μ)2/T

where μ = ΣT
t=1

ct
t , W1 ∈ RU , w2 ∈ RU and o1 is the weighted sum from

context vector based on attention vector a and o2 is weighted standard deviation.
o1 and o2 are concatenated and fed as a feature vector to the linear layer and

then its output is normalized via softmax. Output(Y) is the probability vector
where each Yi indicates the probability of input speech belonging to the ith
language.

5 Experimental Setup

5.1 Models

Resnet. A residual network is a feed-forward architecture in which for every
layer along with the forward path from the previous layer, there is also a residual
connection from the previous layer, and then the representation from forward and
residual connections are added. These networks have shown better performances
as they are more stable at larger depths [8,19]. DenseResNets are Resnets with
a forward path and residual path not just from previous layer but from all the
lower layers.

Stacked shifted delta cepstrum(SDC) features that capture longer temporal
information are used for Resnet and DenseResnet [8]. A 56 dimensional SDC vec-
tor is obtained by appending 7-dimensional MFCC features with 49 dimensional
SDC features [6]. For stacking, the temporal context of 2-1-2 is used which indi-
cates the concatenation of SDC features from the previous 2 frames, the current
frame and the next 2 frames. For a Resnet block, W1 weight matrix is taken that
maps the input feature vector to 1024 dimensional output, then Relu activation
is used, and then weight layer W2 that maps back the 1024 dimensional output
of W1 to a same dimensional final output vector as that of the original input. 4
blocks are used for Resnet while for DenseResnet 7 dense blocks are used. For
all blocks, a dropout factor of 0.1 is used.

Joint Acoustic Model. Joint acoustic model(JAM) of a multilingual ASR
is taken and is trained using LSTM-CTC framework. It is built on 6 Indian
languages namely Hindi, Marathi, Odia, Telugu, Tamil, and Gujarati. Data of
Telugu, Tamil and Gujarati are taken from Microsoft Data which is released
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as a part of Low Resource Speech Recognition Challenge for Indian languages-
Interspeech 2018, which has 50 h of data for each language. For Hindi, Marathi,
Odia speech data is taken from [5] collected from the individual local speakers in
a reading task. For Hindi, Marathi and Odia, 100 h of data is used for training.
The model is then fine-tuned on 3.5 hrs of data for each of these six languages
from the IIITH-ILSC database and then tested using 1 hr of data.

The combined data is converted to IT3 format using common phone set repre-
sentation [18] which provides shared space representation and helps the model to
learn cross-lingual information. For each acoustic vector(40-dimensional MFCC)
extracted from speech, a posterior phone probability is calculated from JAM and
then converted to scaled likelihood by dividing with phone prior probabilities to
give CTC feature. The dimension of this multilingual CTC feature is 75 (number
of unique phones in all six Indian languages using common phone set represen-
tation). These CTC features are then passed to attention layer and weighted
mean and weighted standard deviation are concatenated, passed through linear
layer and then softmax to predict the language identity.

Wav2Vec2.0. The wav2vec2.0-XLSR-53 pre-trained model is taken. The first
block is feature encoder. Feature encoder is fed with 320 dimensional input
which represents 20ms of audio sample which is sampled at 16 KHz frequency.
Input sample is standardized to zero mean and unit variance. After that it is
passed to convolution block which has 1d convolution layer, normalization layer
and gelu activation function. 7 such blocks are used which constant channel
size of 512, decreasing kernel width (10,3,3,3,3,2,2) and stride (5,2,2,2,2,2,2).
Output is 512 dimensional vector which is fed to the transformer block. It has
24 encoder blocks with model dimension 1,024, inner dimension 4,096 and 16
attention heads. A projection layer is added above transformer block to map out
the 1024 dimensional output from transformer block to 768 dimensional vector.
Before feeding feature encoder output to context network(tranformer encoder)
latent speech representation Z is masked by taking p = 0.065 random samples as
starting indices and then masking the next M = 5 frames. For the quantization
block, 512 dimensional input vector is fed to it which after quantization produces
a 768 dimensional output vector. Overall, the model has 300 million parameters.
The optimizer considered is adam optimizer with learning rate of 0.003.

Fine-Tuning with Labeled Data. wav2vec2.0 learns cross-lingual information
and is able to learn speech representation units that can capture the com-
mon phonetic information across multiple languages. For fine-tuning, an 80-
dimensional log Mel Spectrogram is considered. Window size of 30ms is chosen
with an overlap of 15 ms, which is finally flattened to 1D vector and fed to
the wav2ec2.0 model. Log mel Spectrogram is preferred over raw speech as dif-
ferent languages have different spectral features that are correctly captured by
mel spectrogram. As shown in Fig. 1. The attention, linear, and softmax layers
are stacked over the wav2vec encoder. Fine-tuning is done on the IIITH-ILSC
database. To improve the learning of the model for low-resource languages, the
database has been partitioned into three segments: 20 min, 2.5 h, and 12 h, with



Enhancing Language Identification in Indian Context 509

Table 1. LID test Accuracy (%) and EER for 23 languages setup varying the dataset.

Duration 20min 2.5 h 12 h

Accuracy 82.10 86.27 88.13

EER 13.18 11.56 10.14

each language having a nearly equal amount of labeled data with train, test split
ratio as 80:20. The duration of labeled data for each language in these segments
are approximately 1 min, 6 min, and 30 min, respectively. This approach aids in
addressing the possibility of LID training for low-resource languages and also
enhances the accuracy for high-resource languages.

Further audio samples are chopped to 6 s because attention cost is actually
O(n2) in sequence length, therefore using longer length explodes in complex-
ity/memory. Classifier is fed with this 6 s speech input which gives out a 23-
dimensional vector, where ith value represented the probability of the speech
input belonging to ith language. The language with the highest probability in
the vector is considered the final prediction. Table 1 depicts the EER of our
model on different dataset sizes.

6 Experimental Results

The performance of the proposed LID system is compared with state-of-the-art
LID systems on the IIITH-ILSC database. For comparison, an equal error rate
is used. It is the point in the Receiver Operating Characteristic(ROC) curve
where the false acceptance and false rejection rates are the same, hence lower
EER depicts higher accuracy. Table 2. presents the results of various LID sys-
tems. EER mentioned is the average EER of all 23 languages. The results were
compared with those obtained using i-vector, DNN, and DNN with attention.
In these, for feature representation 39 dimensional (13 static + delta + delta-
delta) Mel frequency cepstral features are used. Additionally, the performance
of our model was compared with that of the Multi-head attention (MHA) model
combined with DNN, ResNets, and DenseResNets with both MFCC and SDC
features. SDC features performed better as they captured language-related infor-
mation, hence it is observed that architectures that capture longer temporal
dependencies perform better for LID.

For Joint Acoustic Model(JAM), The system was tested on six Indian lan-
guages, namely Hindi, Marathi, Odia, Telugu, Tamil, and Gujarati. When it
is trained using combined data from all languages, it gives an average EER of
10.39. Although when JAM is trained monolingually it gives an EER of 24.21%,
17.43%, 25.81%, 17.90%, 17.33%, and 14.82% for Hindi, Marathi, Odia, Telugu,
Tamil, and Gujarati respectively. So multilingual training helps in learning cross-
lingual information and hence the combined accuracy of each language identi-
fication increases. Although multi-lingual training of JAM gives good results
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Table 2. Performance comparison of the proposed Wav2vec model LID system to the
other state-of-the-art works on the IIITH-ILSC database.

IIITH-ILSC

Study System EER

Ravi et al. [15] i-vector 17.77

DNN 17.99

DNN-A 15.18

Sequential model LSTM 12.82

MHA ResNets 12.34

DenseResNets 12.06

XLSR-53 pre-trained (14th layer) 15.56

Wav2vec2.0-XLSR-53 fine-tuned model 10.14

but it has to be trained on large amount of labeled data which is a barrier for
low-resource languages.

Residual and Dense Residual Networks were also explored using SDC features
and Adam optimizer. Resnet is tested using 4 and 9 blocks and also using 0-1-0,
1-1-1, 2-1-2, and 3-1-3 stacked SDC features and the best result was obtained
for 4 blocks and 2-1-2 features and learning rate of 0.001 for adam optimizer.
For Dense Resnet 7 and 9 blocks are tested and 7 blocks performed better with
2-1-2 stacked SDC feature and learning rate of 0.0001.

The pre-trained Wav2vec2.0-XLSR-53 model was investigated without fine-
tuning and coupled with multi-head attention system. Result shown in Table 2.
are features from 14th encoder layer of transformer in wav2vec2.0 architecture.
In terms of equal error rate, the trend shows a decrease in EER up to the 11th
encoder layer, followed by a nearly constant EER until the 18th layer, and then
a sharp increase. However, after fine-tuning, the features from the 24th layer
outperform the rest, as the EER continuously decreased.

Fine-tuned wav2vec2.0-XLSR-53 was evaluated in comparison to these archi-
tectures, with the use of only 12 h of total labeled data (roughly 30 min for each
language). The results of our model showed a substantial improvement in lan-
guage identification performance.

7 Conclusion

This study explores features from wav2vec2.0-XLSR-53 for Language Identifi-
cation task. By pre-training on multiple languages in a self-supervised manner,
the acoustic modeling and cross-lingual information learning were significantly
improved. This is particularly helpful for low-resource Indian languages that lack
labeled data. For low-resource languages like Maithili, Sindhi where other LID
systems like DNN-A gave an EER of around 28% EER, Resnets with MHA gave
around 25% EER, our proposed features gave around 15% EER. The reason
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for this is that the model acquired knowledge of the phonetic space common
to the languages, which aided in its ability to learn the acoustic properties of
a new language with minimal fine-tuning. Additionally, the use of self-attention
mechanism helps in learning long-range dependencies, further enhancing the per-
formance. Therefore, the results show that the Wav2vec2.0 model is also scalable
to other dialects and languages globally for the Language Identification task.
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Abstract. Voice OTP Authentication (VOA) provides authorization for
a speaker by validating the spoken One-Time Password(OTP) and the
speaker’s identity. Even though Speaker Recognition and Digit Recog-
nition techniques are fairly mature, the exploration in the direction
of the development of VOA systems is limited. This work proposes a
speaker and speech representation-based framework to develop the VOA
system. Our design uses ECAPA-TDNN based speaker representation
and wav2vec conformer-based digit representation to perform VOA. The
achieved performance of the speaker identification, OTP identification,
and the combined VOA system in the DigitUtter-IITDH dataset in terms
of identification accuracy are 96.75%, 83.25% and 78.92%, respectively.
Further, to deploy the VOA system on an edge device, we conduct a com-
prehensive performance analysis by deploying the proposed VOA system
from a high-end server class machine to an embedded edge device. Our
experimental results indicate that the average inference time for an OTP
Authentication using an edge device is 3.14 seconds, while it takes 0.05
seconds on the server class system.

Keywords: Voice OTP · Speaker Identification · Digit Recognition

1 Introduction

The proliferation of businesses across the world with remote work and dis-
tributed teams necessitates the development and deployment of remote authen-
tication systems [3,13]. Remote authentication systems allow users to access
their accounts and resources from anywhere with an active internet connec-
tion. Voice OTP Authentication (VOA) is one such system that provides
two-level authentication: (1) verifies the speaker’s identity and (2) verifies the
spoken OTP. Speaker Recognition (SR) and Digit Recognition (DR) are
matured speech technologies and provide acceptable performance in practical
deployments [3,17]. It also leverages the uniqueness of an individual’s voice,
making it difficult for unauthorized users to impersonate someone else. It is
particularly beneficial for users with disabilities or those with difficulty typing
or using traditional authentication methods. Hence, compared to other authen-
tication alternatives, the VOA system is preferable as a low-cost, easy-to-use
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 513–528, 2023.
https://doi.org/10.1007/978-3-031-48312-7_41
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solution. The VOA system can have a broad spectrum of applications and is
not limited to online banking, remote logins to workstations, attendance sys-
tems, etc. However, the work related to VOA is still at a nascent stage in the
literature.

In this work, we propose a VOA system framework, and Fig. 1 depicts a
practical use case of the same. In the proposed framework, the user requests the
authentication system to access his personal data. The authentication system
in turn, sends a request to the OTP generator module to generate a N digit
OTP, and the generated OTP is forwarded to the user. The user utters the
received OTP, and using the user’s utterance, the authentication system verifies
the speaker’s identity and deciphers the spoken OTP. Finally, if the identity
and spoken OTP are correct, the authentication system provides access to the
personal data and asks the user for another attempt if otherwise.

Fig. 1. Working of Voice OTP Authentication system.

In the early days, SR and DR were explored by proposing various feature
extraction and modelling techniques [5,13]. The feature-based techniques have
evolved over time by analyzing the production and perception mechanism of
the speech signal [11,13–15,18]. The Mel frequency cepstral coefficient
(MFCC), and perceptual linear prediction (PLP) have been proposed with
respect to the perception mechanism of speech [12,13] while the linear
prediction cepstral coefficient (LPCC), residual LPC, and residual
phase-based features have been proposed for the production mechanism of
speech [10,16,18]. Mostly, the formant (spectral resonances) locations
and their dynamics play an important role in identifying both speaker and
digit, hence parameterized in different ways [4,13]. Out of them, MFCC has
shown to be successful over the rest for both digit and Speaker Recognition
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tasks [4,13]. Further, the features are modelled using vector quantization
(VQ), Gaussian mixture model (GMM), and i-vector to perform the SI task
while GMM-hidden Markov model (GMM-HMM) is largely used [5,8,13] for digit
recognition. As acoustic features are sensitive to changes in acoustics in terms
of device and environment variation, these systems are always built in a con-
trolled scenario by constraining on the particular type of recording device and
environment.

Deep Learning has become ubiquitous with applications across various fields.
Recently, various Speaker Recognition techniques have been proposed using deep
learning frameworks. Some of the existing works in the literature are Deep
Neural Network–Hidden Markov Model (DNN-HMM) [17], Deepspeech2 [1],
wav2vec-transformer [2], and wav2vec-conformer models [7] used to perform
speech recognition task. Similarly, starting from the DNN-i-vector system, d-
vector, x-vector, and emphasized channel attention, propagation, and aggrega-
tion (ECAPA-TDNN) based x-vector approaches have been proposed to perform
the speaker identification task. The limitation of the traditional system design
to a particular recording device and environment is relaxed by the use of pre-
trained open-sourced task-specific deep learning models [2,3]. These models are
trained with large amounts of speech data to perform a particular task. Further,
these models achieve better performance for the SI task even when trained with
a small utterance duration. However, the DI task in a given language is almost
zero-shot. Motivated by these assumptions, the hypothesis is that the use of
speaker representation from the ECAPA-TDNN model (trained in VoxCeleb [9])
and digit representation from conformer-based wav2vec (W2V) model (fine-tuned
with Indian English [6]) can be helpful in developing the VOA system.

This work initially performs speaker identification (SI) with traditional
approaches by considering MFCC-VQ and MFCC-GMM frameworks and com-
pares the performance with the ECAPA TDNN-based speaker representation
framework. Further, this work proposes a framework for training the speaker rep-
resentation by generating utterances corresponding to the fixed OTP sequences.
We then use the conformer-based W2V model to decode the uttered OTP
sequence. We also augment this decoder with a rule-based wrapper algorithm
to improve the accuracy of the decoded output. We use the combination of the
output of the decoded OTP and the output of SI to evaluate the performance
of the VOA system. Furthermore, for studying the feasibility of deploying the
VOA system with different end devices, we consider the inference time as well
as the run-time memory requirements.

The rest of the paper is organized as follows: Sect. 2 discusses the motivation
for using the speaker and digit representation for designing the VOA system.
Section 3 details the database used in this work. Section 4 provides the details of
the proposed framework for the VOA system, while Sect. 5 discusses the experi-
mental results. Finally, Sect. 6 presents the summary and future work directions.
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2 Motivation for Using the Speaker and Digit
Representations

We begin with the t-Distributed Stochastic Neighbor Embedding (t-SNE) distri-
bution of the speaker and digit representations. The aim of this is to see whether
the speaker representations of each speaker form a different cluster. Similarly,
whether the digit representations of each digit form a different cluster. Figure 2
provides the t-SNE plots of speakers and digits representations.

Fig. 2. t-SNE Visualization of (a) Speaker representations and (b) digits representa-
tions.

For this t-SNE study, we use utterances from 10 speakers and 100 utterances
from each speaker. We consider any two random digits uttered by the speaker
to observe the speaker’s discrimination. Similarly, for each digit, we consider 10
utterances spoken by 10, different speakers to observe the digit discrimination. To
obtain the speaker’s representation for a given utterance, the filter bank features
are extracted from the speech signal by considering 25 msec as the frame size
and 10 msec as the frameshift. The filter bank features are then passed through
the ECAPA-TDNN model (trained in the Voxceleb data and available at1.)
to obtain the 192 dimensional speaker representations. The obtained speaker
representations for all the 10 speakers are projected in 2 dimension using t-SNE.
The two-dimensional vectors are depicted in Fig. 2(a). From the figure, we can
observe that the speaker representations are forming clusters with respect to the
speakers, and overlapping between them is significantly less. This motivates us
to use the ECAPA-TDNN-based speaker representations to perform the SI task.
Similarly, as the W2V model works on signal level, the speech utterances are
directly passed through the finetuned model (fine-tuned with 700 hours of Indian
English data and available at2) to obtain the speech representations in every 20
1 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa tdnn.
2 https://github.com/Open-Speech-EkStep/vakyansh-models.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa_tdnn
https://github.com/Open-Speech-EkStep/vakyansh-models
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msec. For a given digit utterance, the speech representations are statistically
pooled to obtain the digit representation. The digit representations for each
digit are also projected using t-SNE to a two-dimensional plane, and the same is
depicted in Fig. 2(b). From the figure, we can observe that similar to speakers’,
the digit representations also form distinct clusters, thus motivating us to use
the digit representations to perform the OTP identification task.

3 Details of the Datasets

In this work, we use two databases: (1) In-house data and (2) Kaggle MNIST
digit data to develop the VOA system. The dataset details are provided in the
following subsections and summarized in Table 1.

3.1 In-House Dataset

The dataset was collected from students at IIT Dharwad, consisting of contri-
butions from 50 speakers, with 47 being male and 3 being female speakers. The
average age of the speakers is 20. Each speaker is asked to give 4 sessions, and in
each session, speakers are asked to utter the digits 0 − 9 with a pause after each
digit. Further, after listening to the utterance, the speech belonging to each digit
is manually segregated. The collected data is referred to as DigitUtter-IITDH
dataset. The collected dataset is available at3DigitUtter-IITDH-dataset.

3.2 Kaggle MNIST Digit Dataset

The Kaggle MNIST Digit dataset is used as reference data to perform the initial
experiments4. This dataset comprises voice recordings of 60 speakers, out of
which 48 are male and 12 are female, all with an American accent. Each speaker
contributed 50 sessions dedicated to pronouncing the digits 0 to 9. Throughout
this work, we refer to this dataset as the Kaggle Data.

Table 1. Summary of Datasets.

Dataset In-house Data Kaggle Data

Speakers 50 60

Sessions 4 50

Digits 0–9 0–9

3 https://github.com/mcqueen444/DigitUtter-IITDH-dataset.
4 https://github.com/soerenab/AudioMNIST.

https://github.com/mcqueen444/DigitUtter-IITDH-dataset
https://github.com/soerenab/AudioMNIST
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4 Proposed Framework for the Voice OTP Authentication
System

The proposed VOA system consists of four modules (1) OTP Generation,
(2) Speaker Identification, (3) OTP Identification, and (4) Decision
Logic. Figure 3 presents the block diagram of the proposed VOA system. The
details of each module are provided in the following subsections.

Fig. 3. Block diagram for Voice OTP Authentication system. LR, SVM, and CD denote
Logistic Regression, Support Vector Machine, and Cosine Distance, respectively.

4.1 OTP Generation

In this work, OTPs with varying lengths of 1−4 digits were generated using both
DigitUtter-IITDH and Kaggle datasets. Using the DigitUtter-IITDH dataset, for
a fixed OTP length of N digits, all possible combinations (i.e. 10N ) are generated
as different OTPs. After that, the segregated digit-specific utterances are stitched
together to form OTP utterances. Figure 4 depicts the OTP utterance generation
process. The OTP utterances belonging to the first three sessions are used for
training, and the fourth session is used for testing. The number of generated
OTP utterances per speaker per session and the train test split is summarized
in Table 2. Further, while generating OTP utterances from the Kaggle data, to
make the number of training and testing utterances the same as the DigitUtter-
IITDH data, the digits are sampled randomly from the sessions 1−40 for training
and 41 − 50 for testing.
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Fig. 4. Working principle of OTP Generator.

Table 2. Summary of OTP datasets that are generated, N refers to the Number of
Digits in OTP.

Number of digits in the OTP (N) 1 2 3 4

Utterances per Speaker per Session 10 100 1000 10000

Total Training Utterances per Speaker 30 300 3000 30000

Total Testing Utterances per Speaker 10 100 1000 10000

4.2 Speaker Identification

After generating the OTP utterances, the speaker representations are extracted
from the ECAPA-TDNN model. The ECAPA-TDNN model takes the filter bank
features extracted from the speech signal (by considering 0.025 as the frame size
and 0.01 secs as the frameshift) as input and is trained to classify the speakers.
The model has several TDNN layers, a temporal pooling layer, and some fully
connected layers. The architecture details can be found in [9]. The TDNN
layers work on the frame level, the temporal pooling layer pools the frame-
level information of a given utterance to a fixed-dimension vector, and then the
fully connected layers work on the utterance level to classify the speaker. After
training, the classifier layer is detached from the network and is used as a speaker
representation extractor.

In this study, we use the ECAPA-TDNN model available in the NVIDIA
NeMo toolkit 5. The ECAPA-TDNN model is already pre-trained using the
development set of the VoxCeleb-1 and two datasets having 7205 speakers with
several thousands of hours of speech data. After obtaining the filter bank fea-
tures from each utterance, the filter bank features are used to extract the speaker
representations from the ECAPA-TDNN model. The extracted speaker repre-
sentations from the ECAPA-TDNN model are well known as x-vectors [9]. We
leverage the extracted x-vectors in two ways: (1) model-based and (2) model-free,
to perform the SI task. The model-based approach includes the training of classi-
fiers like Logistic Regression (LR) and Support Vector Machine (SVM), whereas
the model-free approach uses a simple Cosine Distance (CD) based comparison.

5 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa tdnn.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/ecapa_tdnn
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4.3 OTP Identification

The OTP Identification needs to be performed by decoding the OTP utter-
ances through an Automatic Speech Recognition(ASR) model trained in Indian
English. We use the W2V-based conformer model, trained and open-sourced by
the Vakyansh team [6] to perform the OTP decoding. The W2V model train-
ing is generally done in two stages: (1) pre-training and (2) fine-tuning. The
model is pre-trained using unlabeled speech data from 39 Indian languages of
approximately 35000 hours. The pre-trained network is then finetuned with 700
hours of labelled Indian English speech data. The fine-tuned model is available
at vakyansh-models.

This work uses the fine-tuned ASR model to decode the OTP utterances in
the testing phase of the framework. The decoder generally outputs the ortho-
graphic form of the numbers. Hence, a wrapper algorithm is designed to convert
them to numeric output. Further, in some cases, it is observed that instead of
“two”, “to” is decoded. The wrapper algorithm has also handled the same issue,
i.e., if any of the letters are missing in the decoding, the same is substituted
and converted to the corresponding numerical value. The wrapper algorithm is
explained in Algorithm 1.

The decoded OTP from the W2V-based conformer model is directly given as
input to the wrapper. Initially, the algorithm creates a dictionary D, storing all
possible sub-words for each digit. Each sub-word is paired with its corresponding
digit as the value. To construct D, the algorithm takes the alphabetical repre-
sentation of the digits 0–9 in a list T . It then iterates over each element in T
to generate all possible sub-words for each number, starting from a minimum
length of 2 letters. Sub-words with only one letter are not considered as they
cannot uniquely represent a digit. Once D is prepared, the decoded OTP words
are processed individually. The algorithm checks each word against the keys in
D to convert each digit to its original form. This process allows the algorithm
to decode the OTP successfully.

4.4 Decision Logic

In this module, the final decision is made for the VOA system by combining
the outputs given by the SI and the OTP Identification module. The identified
speaker and decoded OTP are verified with the claimant’s identity and generated
OTP. The system will accept the trial only if both decisions are positive. If any
one of the decisions is negative, the trial will be rejected.

5 Experimental Results and Discussions

In this section, we discuss the performance of the proposed system, along with
the time to identify the speaker as well as the decoding of the OTP (inference
time) and runtime memory consumption on various end devices.

We conducted several experiments to explore various aspects of the proposed
VOA system.

https://github.com/Open-Speech-EkStep/vakyansh-models.git
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Algorithm 1: Digit Recognition Wrapper
Input : transcription
Output: pred

1 T ← [”zero”, ”one”, ”two”, ”three”, ”four”, ”five”, ”six”, ”seven”, ”eight”, ”nine”];
2 D ← {} ; // dictionary for Substrings and digits

3 for i ← 0 to len(T) do
4 S ← T [i] ; // Current text
5 for L ← 2 to len(S) + 1 do
6 for start ← 0 to len(S) - L + 1 do
7 sub ← S[start : start+ L] ; // Substring

8 D[sub] ← i ; // Store
9 end

10 end
11 end

12 pred ← ′′ ; // Prediction string

13 for w ∈ transcription.split() do
14 if w ∈ D then
15 d ← D[w] ; // Retrieve digit

16 pred += str(d) ; // Append digit
17 end
18 end

1. We begin with experiments to quantify the gains of using x-vector represen-
tations over the traditional VQ and GMM-based framework to perform the
SI task.

2. We then perform extensive studies using the model-based approach by varying
the OTP length N and the number of training samples to understand its
impact on the SI performance

3. We then evaluate the performance of the VOA system by implementing it in
different end devices.

In this study, the following three different devices with varying performance
capabilities were selected to understand the performance variation and assess
the feasibility of practical deployment:

– Server: 24-Core Intel(R) Xeon(R) W-2265 CPU @ 3.50 GHz.
– Desktop: 8-Core Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz.
– Edge Device: 4-core ARM Cortex-A73 CPU @ 1.80 GHz and a 2-core
ARM Cortex-A53 CPU @ 1.90 GHz.

5.1 SI with X-vector-based Speaker Representation

The aim of the experiment is to showcase the significance of the x-vector-based
framework over the traditional VQ and GMM framework and quantify the
achievable performance gains. We use the in-house DigitUtter-IITDH dataset
to perform this set of experiments. From the dataset, we use the utterances from
the first 3 sessions to train the VQ and GMM classifier by extracting the MFCC
features from the speech signal (0.02 and 0.01 are the framesize and frameshift,
respectively). We swift through a range of cluster sizes by varying the number of
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clusters from 32 to 256 and found that the cluster size of 64 performs the best.
Thus, in our experiments, the VQ and GMM are trained with a cluster size of 64.
Similarly, we extract the x-vectors from the training utterances and then model
them using SVM and LR. We use the utterances belonging to the 4th session
for the testing. The obtained result in terms of identification accuracy is tabu-
lated in Table 3. From the table, it can be observed that the best performance
obtained using the x-vector framework is 100%, in contrast to the best perfor-
mance obtained in the traditional framework is 88%. This shows the significance
of the x-vector-based framework over traditional frameworks to perform the SI
task.

Table 3. Accuracy variation across various feature vectors.

Vectors Model Accuracy

MFCC VQ 80%

GMM 88%

x-vector SVM 100%

LR 98%

5.2 SI by Varying the OTP Length in both Training and Testing

This experiment aims to observe the variation in SI performance when varying
OTP length during training and testing. For this, we use the OTP utterances
generated from the first three sessions with a given OTP length N to extract the
x-vectors and then train the LR and SVM classifier. The OTP length varies from
one to four. We tabulate the obtained results with the LR classifier in Table 4
and with the SVM classifier in Table 5. From the tables, it can be observed that
irrespective of the classifier, the performance improves with an increase in the
OTP length. Further, it is also observed that the performance of the same OTP
length training and testing is comparatively better than the cross-OTP length
scenarios. We thus recommend using the same OTP length for both training and
testing.

Table 4. Logistic Regression (%)

Train \ Test 1 2 3 4

1 66.26 53.06 42.26 23.33

2 55.28 87.29 87.29 81.30

3 39.72 78.05 93.57 92.96

4 29.54 66.13 86.58 96.75

Table 5. SVM (%)

Train \ Test 1 2 3 4

1 29.34 27.67 31.39 22.74

2 56.29 86.09 83.07 67.15

3 41.92 79.70 93.99 93.94

4 27.94 65.33 85.71 96.40
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5.3 SI by Varying the Number of Training OTP Utterances

The aim of this experiment is to decide on the number of OTP utterances per
speaker required to perform the SI task. The possible OTP utterances increase
exponentially with an increase in the OTP length. Considering all the possi-
ble combinations will increase the enrollment time. Hence, we perform the SI
experiment for N = 4 by randomly selecting 3000, 6000 OTP utterances per
speaker from all possible OTP utterances and compared its performance with
that of using all possible OTP utterances (i.e. 30000 per speaker). We provide
the obtained performance in Table 6. Our results indicate that the performance
achieved by randomly considering 6000 OTP utterance per speaker from all the
possible 30000 OTP utterances is similar to the maximum achievable perfor-
mance.

Table 6. Impact of Training Data Size on the SI performance.

# Utterances per Speaker in
Train Data

LR Accuracy

3000 95.90%

6000 96.75%

30000 96.75%

5.4 SI with Model-Based and Model-Free Approach

We implement the SI task with model-based LR, SVM classifier, and model-free
CD approach using both In-house and Kaggle data. In the CD-based approach,
we extract the speaker-specific mean vectors and store them as a speaker rep-
resentation. During testing, the test x-vector is compared with all the speaker
representations using CD, and the speaker with the maximum cosine distance
obtained is declared as the identified speaker.

We provide the obtained performance in Table 7. From the table, it can be
observed that the LR with N = 4 performs better compared to the rest in
both in-house and Kaggle datasets. The best performance in the in-house data
is 96.75%, and with Kaggale data is 99.9%. The performance gap is due to the
differences in the speaker’s accent. Kaggle and Voxceleb have similar accents,
whereas, in In-house data, all the speakers have Indian accents. Further, when
using the model-free approach, the difference is even greater. The best perfor-
mance achieved in In-house data is 74.45%, while in Kaggle data, it is 99.91%.
Hence in the future, to further improve the performance of SI, the network should
be fine-tuned with the in-house training data.
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Table 7. Performance of SI

Model Name N In-house Data
Accuracy

Kaggle Data
Accuracy

SVM 1 2.00% 90.17%

2 80.64% 99.55%

3 94.01% 99.98%

4 95.91% 99.996%

LR 1 66.27% 92.17%

2 87.29% 99.68%

3 94.23% 99.97%

4 96.75% 99.99%

CD 1 53.87 % 91.83%

2 64.68% 99.06%

3 67.15% 99.72 %

4 74.45% 99.91%

Table 8. Performance of OI

Number of
Digits

Number of
samples

Accuracy

1 500 50.70%

2 5000 74.58%

3 5000 78.89%

4 5000 81.16%

5.5 OTP Identification

We use the In-house data to evaluate the performance of the OTP Identification
(OI) task. The total OTP utterances available with N = 1,2, 3 and 4 is 500,
5000, 50000 and 500000 (50×10N ), respectively. For evaluating the performance,
instead of considering all the OTP utterances, for N = 1, all 500 and for N = 2, 3
and 4 randomly picked 5000 utterances are considered. We tabulate the resulting
performance in Table 8. The OI task provides the best performance of 81.16%
in terms of identification accuracy for N = 4. Like SI, it is observed that, with
an increase in OTP length, the performance of the OI system also increases.

5.6 Performance Evaluation of VOA System

We evaluate the performance of SI and OI jointly with In-house DigitUtter-
IITDH dataset, calculating combined accuracy by intersecting their probabilities.
For SI, LR (model-based) and CD (model-free), we use the W2V conformer
model and wrapper algorithm to perform the OI task. The results, as shown in
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Table 9, reveal that the best accuracy achieved is 78.92% for model-based SI and
73.98% for model-free SI. The lower combined accuracy is due to the requirement
for both SI and OI tasks to be simultaneously correct for authentication. Further,
it can be observed from the table that the OI performance is inferior to the
performance achieved in the SI task. In the future, the performance may be
improved by finetuning the W2V conformer architecture with the training OTP
utterances.

Table 9. The accuracy of the integrated processes involving Speaker identification (SI)
and OTP Identification (OI). Note: OI is evaluated independently of LR and CD.

Model Number of
digits in test
Data

SI Accuracy OI Accuracy Combined
Accuracy

LR 1 66.26% 50.70% 32.87%

2 87.29% 74.58% 66.14%

3 93.58% 80.18% 75.89%

4 96.75% 83.25% 78.92%

CD 1 53.09% 50.70% 33.27%

2 64.69% 74.58% 61.10%

3 67.15% 80.18% 65.99%

4 74.45% 83.25% 73.98%

5.7 Memory Consumption Analysis

With the primary objective of implementing a VOA system on a device with
limited resources, our focus was on reducing both computation time and mem-
ory usage. To address memory consumption concerns, we performed a detailed
analysis of the runtime memory consumption of different steps in both tasks (SI
and OI).

We conduct a comprehensive analysis of memory consumption throughout
the VOA process. The modules that use larger amounts of memory are the
module importation, ECAPA TDNN model loading, extraction of embeddings
and vakyansh model loading (refer to Table 10). It is important to note that the
memory consumption results mentioned above are specific to our model, which
was trained and tested using data consisting of four-digit utterances. During the
VOA process, the actual prediction stage requires less than 3 MiB of memory.
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Table 10. Memory consumption at each step of the speaker verification process, CM,
MI are Cumulative memory, Memory Increment at that step respectively.

Step CM MI

Importing modules 520 – 525 MiB 520 – 525 MiB

Loading ECAPA TDNN model 1930 – 1940 MiB 1407 – 1417 MiB

Extracting embeddings 3626 – 3628 MiB 1695 – 1698 MiB

Loading trained model and predicting 3626 – 3628 MiB 0.2 – 0.4 MiB

Loading vakyansh 4338 – 4340 MiB 711 – 713 MiB

Transcription 4340 – 4342 MiB 2.6 – 2.9 MiB

5.8 Feasibility Exploration on Different Platforms

The main objective is to study the feasibility of implementing a VOA system on
low-resource devices. For this, a series of evaluations are performed to measure
the proposed model’s computational performance and memory usage on various
devices mentioned in Sect. 5.

Table 11. Performance and Computational Time Comparison on Devices Server-CPU
(SC), Laptop-CPU (LC), Odroid-N2 (OD) for Speaker Identification and OTP Identi-
fication with Logistic Regression (LR) and Cosine Distance (CD) methods.

# Digits LR CD

Accuracy(%) Time(s) Accuracy(%) Time(s)

SC LC OD SC LC OD SC LC OD SC LC OD

1 32.9 32.9 32.9 0.0519 0.5468 1.7357 33.3 33.3 33.3 0.0398 0.5284 1.5575

2 71.6 71.8 71.8 0.0555 0.7229 2.262 61.2 61.2 61.2 0.0424 0.9451 2.2203

3 85.4 85.4 85.4 0.0609 1.1859 2.759 63.4 63.4 63.4 0.4512 1.2341 2.9556

4 79 79 79 0.0593 1.3685 3.1377 70.6 70.6 70.6 0.0486 1.4675 3.0473

Table 11 presents the overall performance and computational time for both
SI and OI tasks across various devices. The time values mentioned here are the
average computational time taken by a particular model across the given OTPs
for a specific digit. Also, the results shown here are from analyzing only a small
number of OTP utterances. As seen, the accuracy scores for each device are
consistent with one another. This suggests both the SI and OI modules deliver
similar levels of accuracy across all the tested devices. Thus, this ensures the
model can be deployed on any of the devices.

As seen from table, the time to process a 4-digit OTP on the edge device is
≈ 3 s while on the server, it is 0.05 seconds and 1.4 seconds on the desktop. Even
though the edge device performs ≈ 50x slower than the server, with respect to
the device footprint, power requirement, and cost, the edge devices are preferable
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for practical deployment. In the future, the aim is to optimize the model such
that the computation time in the edge device can be improved.

6 Conclusion and Future Work

In summary, this work demonstrated the significance of speaker and digit rep-
resentations obtained from the ECAPA-TDNN and W2V-conformer model to
develop the VOA system. The SI component provides acceptable performance,
while the OI component provides a little bit inferior performance. To address
this limitation in the future, the models can be further fine-tuned with the In-
house training data. Further, it is also observed that except for a lag in inference
time, the performance of the VOA system is stable irrespective of the devices. In
the future, the aim is to optimize the VOA system for resource-constrained envi-
ronments and have a plan to integrate it into real-time applications like mobile
banking.
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Abstract. Native langauge identification involves identifying the
mother tongue of a person from an audio recording of their speech in
second language. Improving native language identification holds poten-
tial in advancing the development of more sophisticated human-computer
interfaces that rely on audio inputs. Automatic speech recognition sys-
tems show a downgrade in performance when used on non-native speech,
this can be mitigated by using L1 identification. Presently, the majority
of research efforts in L1 identification have concentrated on employing
Convolutional Neural Networks (CNNs) on audio spectrograms to pre-
dict the native language. With the emergence of Vision Transformers,
which have demonstrated exceptional performance in object identifica-
tion, we have adopted a modified version of the Vision Transformer model
to analyze audio spectrograms for L1 identification. This approach has
yielded promising outcomes on the NISP dataset which contains audio
recordings of English speech of 5 regional lannguages(Hindi, Tamil, Tel-
ugu, Kannada, Malayalam) of 345 speakers. The proposed model was
able to achieve an overall accuracy of 97.87% on the test dataset.

Keywords: Convolutional neural networks · End-to-end model · Mel
spectrogram · L1 identification · Vision transformer

1 Introduction

The identification of an individual’s native language (L1) can often be discerned
through the distinct characteristics present in their speech when using a sec-
ond language (L2). L1 identification, also known as native language identifica-
tion, exploits this phenomenon to predict an individual’s L1 based on the audio
recordings of their L2 speech.

L1 identification shares similarities with accent and dialect identification,
with similar models being employed for all three tasks. Enhancing the accuracy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Karpov et al. (Eds.): SPECOM 2023, LNAI 14339, pp. 529–538, 2023.
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of these classification models can significantly contribute to the development of
more precise audio-based human-computer interfaces.

This is due to the fact that a person’s L1 introduces specific speech features
into their L2 speech that are absent in native speakers of the L2 language. These
differences negatively impact the performance of the interface.

To address the challenge of L1 identification, various models have been
employed over the years to infer an individual’s L1. Early models included Gaus-
sian Mixture Models (GMMs), Hidden Markov Models (HMMs), and i-vector
based models. These were subsequently succeeded by Convolutional Networks
(CNNs) [12] and Recurrent Neural Networks (RNNs) [7]. These models have
exhibited satisfactory performance in accurately predicting an individual’s L1.

Recent advancements in L1 identification have closely followed the trends
established by models used in object classification within the field of Computer
Vision. Notably, Vision Transformers have recently achieved state-of-the-art per-
formance in various computer vision tasks. [1]

Drawing inspiration from these advancements, a recent proposal introduced
the Audio Spectrogram Transformer (AST) [2], which takes a spectrogram as
input and employs a pre-trained Vision Transformer (ViT) model. Other trans-
former based models [8,13,14] are also being used more widely in various speech
processing tasks and has yielded promising results.

In this paper a modified ViT architecture is proposed, which works on mel
spectogram, to identify a person’s L1 from l2 speech. Contribution of this paper
are:

1. To the best of our knowledge ViT is nowhere used for L1 identification, this
is the first time Vision Transformer is used to identify the native language of
speakers.

2. This paper also checks whether macro level or micro level features of speech
are important for identifying L1. Micro level features refer to features con-
strained to specific regions of the mel spectrogram, whereas macro level fea-
tures deal with the entire mel spectrogram.

The subsequent sections of the paper proceed in the following order: we delve
into the related work, followed by the end-to-end model description, experiments
conducted, presentation of results, and finally, the conclusion. Section 2 describes
the models proposed by other researchers for L1 identification. Section 3 provides
details about the model proposed by the author. Section 4 describes the exper-
imental setup of the author. Section 5 gives the results obtained by the author.
Section 6 is the conclusion section and details the findings of the authors.

2 Related Work

There have been multiple approaches which have been used for the purpose of
L1 identification over the years. One approach extracted MFCC features and
used GMM, GMM-UBM and i-vector classifiers on the data. [5] This approach
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when tested on a custom dataset which consisted of 3 south Indian languages
Kannada, Tamil, Telugu was able to achieve an overall accuracy of 93.3%.

Modified LeNet model, a type of convolutional neural network (CNN),
has also been used to directly identify L1 from L2 recordings using spectro-
grams. [4] The experiments were conducted using the Cambridge English Cor-
pus as dataset. The results showed an overall accuracy of 88.1% when only the
raw audio file was utilized. Other CNN models such as ResNet with attentive
pooling have also been used to predict L1. [12].

Hybrid model utilising both Deep Neural Networks(DNN) and Recurrent
Neural Network have also seen uses for this task. [7] One such model was trained
on the Native Language sub-challenge dataset from the ComParE Challenge [10].
This model first extracted short term and long term features from an audio clip.
The DNN part of the model focused on the long term features whereas the
RNN worked on short term features. This model was able to achieve an overall
accuracy of 52.48%.

Mel frequency cepstral coefficients (MFCC) and Convolutional Restricted
Boltzmann Machine (ConvRBM) can also be used for L1 prediction. One such
model used the Native Language sub-challenge dataset from [10] for the purpose
of training and evaluation and was able to achieve an accuracy of 40.2%. [9]
Another model combined MFCCs with long term and short term CNNs for
predictions. [6] This model was prepared use the NISP dataset which is the
same dataset this paper is going to use in its experiment. This model achieved
an overall acurracy of 79%.

Attention based models are also seeing a rise in usage with one such model
taking inspiration from the Listen, Attend and Spell (LAS) model, [11]. This
model took log mel filter bank features as inputs and provided probabilities for
L1 identification. The Native Language sub-challenge dataset from [10] served
as the corpus for experimentation. By combining multiple models, an overall
accuracy of 83.32% was achieved.

Vision Transformer based models are seeing a rise in usage in a variety
of speech processing tasks. But it has not yet been utilised for L1 identifica-
tion. [2] [3]

3 End-to-End Model

ViT was the first image classification model which was completely based on
attention mechanism and does not rely on using convolutions. ViT was able
to achieve state of the art performance on the ImageNet dataset, which is the
benchmark dataset for object classification. [1]

Figure 1 shows the proposed model which is a modified version of ViT. A
mel spectogram of size of 384× 384 pixels is fed to the model. This image is
divided into multiple subimages/patches of sizes 32× 32 pixels. These patches
are subsequently flattened into 1-D vector representations and passed through
the transformer module, resulting in a processing procedure similar to that of a
standard transformer.
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Fig. 1. Multi label L1 classification(Proposed architecture) from L2 English.

A multi-layer perceptron (MLP) head is used at the end to generate the
probabilities for each language. The output of the transformer is fed to MLP
as input which in turn outputs the probabilities for each label(Hindi, Kannada,
Malayalam, Telugu, Tamil).

To prioritize simplicity, the relative positions of the patches were not passed
to the proposed model. This decision was motivated by the relatively minor
impact of spatial structure on the determination of L1 identification results.
The model focuses on discerning distinctive features that distinctly characterize
the L1, with the relative order of these features being inconsequential.

For the purpose of recording the baseline performance, a 4 layered CNN
model, as shown in Fig. 2 anda pre-trained ResNet-18(an 18 layer CNN) is
chosen. Similar models but with more layers have been used in other studies for
purpose of L1 identification.

Fig. 2. Baseline CNN architecture.
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4 Experiments

4.1 Corpora

The dataset utilized in this study is the NISP dataset, which was collabora-
tively prepared by NITK and IISc. This dataset comprises audio recordings of
approximately 4-5 min from 345 speakers, encompassing both English and their
respective native languages.

Within this dataset, there are five native languages represented: Hindi, Tamil,
Telugu, Malayalam, and Kannada. Additionally, the dataset includes metadata
such as age, nativity, language spoken with friends, medium of instruction, gen-
der, and physical dimensions (height, weight, waist size, and shoulder size) for
each speaker.

However, for the purpose of this paper, most of the metadata and the audio
recordings of the speakers in their native languages have been disregarded.
Instead, the focus of this experiment lies in utilizing the English recordings of
the speakers and the information regarding their native language.

4.2 Experimental Setup

The experimental flow can be seen in Fig. 3.

Sampling. To ensure diversity in the dataset, a random selection process was
employed, resulting in the sampling of 1500 audio clips for each language within
the dataset. Subsequently, the chosen audio recordings were partitioned into
three distinct sets: training, validation, and test. The training dataset consisted
of 6000 clips, while the validation and testing sets comprised 750 clips each.

To leverage the parallel computing power of the GPU, each set was further
divided into multiple batches, with each batch containing 64 samples. This divi-
sion aimed to maximize the utilization of parallel processing capabilities.

Pre-processing. Each audio clip underwent padding or truncation to achieve a
uniform length of 6 s. Additionally, random time shifting was applied to introduce
variability to the clips. Finally, the clips were transformed into Mel spectrograms
using a window length of 1024 ms and a hop length of 512 ms.
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Fig. 3. The experimental flow.

In order to facilitate model compatibility, a label encoder was utilized to
convert the language names into integers, as models cannot directly process
strings.

Model Creation. A pre-trained Vision Transformer (ViT) model is used for
L1 identification in this experiment along with a baseline 4 layer CNN model.
Specifically, the ”vit-patch32-384” variant, trained on the ImageNet-21k dataset
and fine-tuned on the ImageNet dataset, was selected.

As the model expects images with a size of 384× 384, the generated spectro-
grams had to be resized accordingly to ensure compatibility. To adapt the model
for the task of L1 identification, the output categories were modified from the
original 10,000 to 5.

For the purpose of training the model, a free instance of P100 GPU with 16
gb VRAM and system with 15 gb of RAM was used on Kaggle.

Training. The model was trained for 70 epochs using the Adam optimizer,
with a scheduled learning rate (One Cycle LR) applied during training. The
performance of the model on both the training and validation datasets was
recorded during each epoch to facilitate the plotting of performance graphs,
providing a visual representation of the model’s training history.
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Evaluation. The accuracy of the model was evaluated on the test dataset, fol-
lowed by the creation of a confusion matrix to provide a more detailed assessment
of the model’s performance.

5 Result

Table 1 represents some other models, and datasets which have been used for L1
identification.

Table 1. Comparison with other models with respective datasets and accuracy.
Models Dataset Accuracy

Baseline NISP 89.6%

GMM [5] Custom 93.3%

LeNet [4] Cambridge English Corpus 88.1%

CNN with attentive pooling [12] ComParE challenge 86.05%

DNN +RNN [7] ComParE challenge 52.48%

MFCC with ConvRBM [9] ComParE challenge 40.2%

Modified LAS [11] ComParE challenge 79%

Proposed model NISP 97.87%

A simple CNN model was used as a baseline model. This CNN model showed
an accuracy of 88.3%, 88.36% and 89.6% on training, validation and testing
dataset respectively.

Th pre-trained ResNet-18 model show an accuracy of 99.8%, 96.7%, 96.8%
on training, validation, and testing datasets respectively. The performance of
Resnet-18 model can be seen in Fig. 4.

The overall accuracy of ViT model for training set was 99.8% and for valida-
tion set it was 98.9%. When the model’s performance was benchmarked against
test dataset its accuracy was found to be 97.87%. The comparison between the
two models during training can be seen in Fig. 5 and their performance after
training can be seen in Table 1.

The ViT based model showed a significant improvement over the baseline
CNN model. For the chosen dataset this is the best performance recorded so far
according to our knowledge.

The ViT model also does not show any major bias which can be observed
from the confusion matrix in Fig. 6. Only notable observations are that Hindi
was misclassified as Tamil 6 times and Kannada was misclassified as Hindi 4
times (Table 2).
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Fig. 4. ResNet-18 plot.

Table 2. Accuracies for the models on training, validation and test dataset.
Baseline Modified ViT(Proposed)

Training 88.3% 99.8%

Validation 88.36% 98.9%

Test 89.6% 97.87%

Fig. 5. Training and Validation Accuracies vs Epochs for the models.
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Fig. 6. Confusion Matrix for the ViT.

6 Conclusion

Proposed model showed great accuracy in predicting L1 from audio recordings
in L2 compared to the baseline CNN model consisting of 4 layers. It showed an
overall accuracy of 97.87% on test dataset compared to 89.6% showed by the
CNN model. This shows that pure attention based models without convolutional
layers are viable for L1 identification. Success of the ViT without passing addi-
tional information like the order of patches, also shows that micro features plays
a major role for predicting L1. Models which focus on micro features are likely
going to better perform for L1 identification.

We can also infer that other transformer based models for images which
are currently existing such as beit or other transformer-based models which are
created in future could also be used for this task.
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Abstract. This paper presents an automatic dialect identification in Ao
using modulation-based approach. Ao is a low-resource, Tibeto-Burman
tonal language spoken in Nagaland, a North-East state of India. This
work aims to investigate dialect-specific characteristics to build a more
robust DID system for classifying the three Ao dialects. In this direction,
modulation-based representation is explored. Considering Ao is a tone
language, the experiments were evaluated for 3 sec segment duration in
order to capture the temporal information of the modulation spectro-
gram. In addition, the log Mel spectrogram is used as the feature for
the baseline DID system. The proposed modulation spectrogram shows
a significant performance of ≈ 8% improvement in accuracy over the
baseline Ao DID system. Hence, the result indicates the effectiveness of
modulation-based representation in automatically identifying the three
dialects of Ao.

Keywords: Ao · Tonal Language · Under-Resource · Dialect
Identification · Modulation Spectrogram · CNN · Bi-GRU · Attention

1 Introduction

Adopting speech technologies is essential for a broad range of applications in
today’s technologically driven environment. Dialect Identification (DID) task is
one of the major fields in the speech research community due to its significance
in Automatic Speech Recognition (ASR) tasks [2]. The primary objective of a
DID system is identifying differences amongst dialects within the same language
family [2]. A dialect, in simple terms, is the speaker’s pronunciation and vocab-
ulary differences based on geographic location [4]. Variations in dialects may
also come from syntactic and morphological differences. For instance, dialectal
regions for the Arabic language are distributed over a large geographical area
[23]. Contrary to this, in the case of Naga languages, dialectal variations can be
observed within a small geographic area, sometimes even within the boundary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Table 1. Different tonal assignments in the word /m@ts@/ [27].

Minimal set Changki Mongsen Chungli Meanings

LH HL HL ‘kick’

/m@ts@/ LL HH HH ‘salt’

HL MM MM ‘saliva’

of a village. A DID task is to identify one dialect from the other; however, cap-
turing dialectal variations within a small region is extremely challenging [2]. The
language of interest in this paper, Ao, is an under-resourced language spoken in
the Northern part of Nagaland in the North-East region of India [9]. This work
attempts to automatically classify the Ao dialects using the modulation-based
approach.

Ao is a Tibeto-Burman language and is known to have three distinct dialects,
namely, Chungli, Mongsen, and Changki, differing in terms of prosodic and
phonemic properties [6,9]. It is a tone language with three distinct tones: High
(H), Mid (M), and Low (L) [6,27]. Although all three Ao dialects consist of
three tones, the tone assignment varies among the dialects, even with words of
the same meaning. For instance, Table 1 shows the different tonal assignments
across the three dialects of Ao. The word /m@ts@/ is a minimal set across the
dialects providing different meanings as the tone changes. However, the varia-
tion in tones is not systematic across the three Ao dialects [27]. The standard
variety of the language is the Chungli dialect among the three dialects of Ao.
As a result, all text materials are available only in the standard Chungli dialect.
In addition, the Changki and Mongsen speakers can also read and write in the
Chungli dialect. Consequently, as the textual resources are scarce in the lan-
guage, speech analysis and modeling-related work in the Ao dialects becomes a
formidable challenge.

1.1 Related Work

There are a number of works dedicated to DID systems built in major world
languages, such as Arabic, Mandarin Chinese, English and Spanish. Several
research studies have reported DID systems using hand-crafted features such
as Mel Frequency Cepstral Coefficient (MFCC), Shifted Delta Cepstral (SDC),
filter-banks, chroma-spectral shape, formants (F1-F3), and prosodic features like
F0, energy, intensity and duration using different Machine Learning (ML) and
Deep Learning (DL) models [1,5,11,14,15,19,20]. The aforementioned studies
were conducted in non-tonal languages such as Arabic, English, Spanish, Hindi,
Kannada, and North Sámi. Time-frequency representation such as Mel-Single
Frequency Filtering (SFF) spectrogram and Mel-Short Term Fourier Transform
(STFT) spectrogram was implemented using an ML classifier in the English
DID task [13]. At the same time, numerous works in dialect classification have
been attempted for tonal languages such as Chinese, Vietnamese, Punjabi, and
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Ao. Hand-crafted features like the tonal feature (F0), MFCC, SDC, Linear Pre-
diction Cepstral Coefficients (LPCC), Residual Mel Frequency Cepstral Coeffi-
cients (RMFCC), Mean Hilbert Envelope Coefficients (MHEC), filter-banks, and
prosodic features were used with different ML and DL classifiers [10,16,18,23–
28]. DID tasks with time-frequency representation have also been exploited in
Ao, a tone language with features such as the Log Mel Spectrogram (LMS), Inte-
grated Linear Prediction Residual Log Mel Spectrogram (ILPR-LMS), and Lin-
ear Prediction (LP)-gammatonegram using DL classifiers [21,22]. Most recently,
self-supervised speech models were used in DID tasks to classify the North Sámi
language [12].

1.2 Motivation

Based on the literature described in Subsect. 1.1, it is observed that there are
numerous works in DID using hand-crafted features for both non-tonal and tonal
languages. While there are a handful of works in DID with time-frequency rep-
resentation, most of which are in the Ao language. However, to the best of our
knowledge, frequency-frequency representation has not yet been explored in DID
tasks. Hence, a modulation-based representation in DID is proposed in this work.
As described in Magazine et al. [17], the long-term temporal characteristics of
the speech signal are captured with the modulation spectrogram. As Ao is a
tone language, there are variations in the tone assignment across the dialects,
specifically for a longer speech duration. As a result, a speech segment of 2 sec
from female speakers of each dialect was plotted in Fig. 1 with their correspond-
ing modulation spectrogram. The speech segment exhibits a sentence with the
same meaning but with lexical differences across the dialects. The modulation
spectrogram in Fig. 1 (b), (d), and (f) shows different patterns across the three
dialects, explicitly in the higher frequency regions. Motivated by the distinct
differences across the dialects, the modulation spectrogram is explored in this
work for dialect classification in Ao.

The contributions of this work are as follows:

1. DID task is attempted in an under-resourced language Ao, spoken in Naga-
land, India.

2. Modulation spectrogram, a frequency-frequency representation, is used to
classify the three Ao dialects.

The rest of the paper is arranged in the following: Sect. 2 gives a brief descrip-
tion of the speech corpus. The proposed Ao DID system is described in Sect. 3.
Experiments and results are discussed in Sect. 4. The work is finally concluded
in Sect. 5 with potential future directions.

2 Changki Mongsen Chungli-Ao Corpus

The current work is analyzed using the Changki Mongsen Chungli-Ao (CMC-
Ao) Corpus. The CMC-Ao corpus comprises 96 read passages with ≈ 6 hours
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Fig. 1. The distinguishable patterns present in the modulation spectrogram of the
three Ao dialects. Figure (a), (c), and (e) depicts the speech signal of the three dialects
with their corresponding modulation spectrogram representation in (b), (d), and (f).

of recordings for the three Ao dialects. Each speaker was provided to read a
brief narrative from the Bible, “The Parable of the prodigal son”. As the Bible
is available only in the standard dialect, the passage was translated for the
speakers of the Changki and Mongsen dialects. The speech was recorded in a
real-world environment using a TASCAM 2-channel digital recorder and a Shure
head-mounted microphone. In order to add session variability, the speakers were
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Fig. 2. Framework for Ao DID system.

asked to read the same passage in four sessions. The speech data was recorded
from 24 native speakers in total, consisting of 4 males and 4 females from each
dialect. All speakers spoke Ao as their first language, with English and Nagamese
(a creolized variety of the Assamese language) as second or third languages.

3 Proposed Ao DID System

This section describes the proposed Ao DID system. The present work uses the
optimized attention-based Convolutional Neural Network-Bidirectional Gated
Recurrent Unit (CNN-BiGRU) classifier as the architecture proposed in our
previous work [21]. Figure 2 shows the overall framework of the Ao DID system.
Initially, the input speech signal is pre-processed by resampling and applying
Z-score normalization. The pre-processed speech is then used to extract the
modulation-based features. Next, the features are fed to the classifier for the
three-class classification task.

3.1 Modulation Spectrogram

For the Ao DID system, the long-term temporal information captured by the
modulation spectrogram is believed to carry distinguishing characteristics in
classifying the three dialects. Figure 3 shows the generation procedure of the
modulation spectrogram. The modulation spectrogram is a two-dimensional rep-
resentation of a speech signal in terms of conventional frequency (f) and modu-
lation frequency (fmod). The modulation spectrogram S(f, fmod) of the speech
signal s(t) is obtained by performing two transformations. As seen in the figure,
frequency transformation is computed to the speech signal s(t) to obtain its
time-frequency representation S(t, f). Following that, the time-frequency S(t, f)
to frequency-frequency S(f, fmod) transformation is performed with the Fourier
Transform (FT). The modulation spectrogram is obtained using Eq. 1 that con-
sists of 161 feature dimensions.
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Calculation of spectro-temporal
representation

Speech
signal

s(t)

S (t,f)f (Hz)

0
0

|abs| FT

0
0

|abs| FT
|abs| FT

f (Hz) S(f,fmod)

t (s) fmod�(Hz)

Fig. 3. Generation of modulation spectrogram where |abs| represents the absolute
value, and FT represents the use of the Fourier Transform [3].

S(f, fmod) = FT |S(t, f)| (1)

For the detailed procedure of the modulation spectrogram extraction, the
reader is encouraged to refer to the original paper [3]. The modulation spectro-
gram is represented as Smds henceforth.

3.2 Attention-Based CNN-BiGRU Classifier

The optimized architecture presented in Fig. 4 is proposed in our previous study,
where hyper-parameter tuning was conducted for the convolutional layers, Bi-
GRU unit, and the dense node [21]. The architecture is incorporated with spatial
and temporal information, complemented with frequency-based attention for the
classification task. The convolutional layers are used to learn the spatial informa-
tion of the modulation spectrogram. The temporal context across the dialects is
captured using the Bi-GRU layer. Simultaneously, higher weights are assigned to
frequency bins with more discriminative information to classify dialects through
an attention mechanism along the conventional frequency direction. This work
is computed on 3 sec segment duration (≈ 298 frames) as the decision units for
classification.

The architecture comprises three 2D convolutional layers containing 32, 64,
and 128 kernels. With a stride of (2, 1), a kernel size of (3, 3) is employed. Each
convolutional layer’s output is batch-normalized before being fed through a Max-
pooling layer with a pool size of (2, 1). The output of the last convolutional layer
is then passed to the Bi-GRU layer with 128 units. In parallel, the input modu-
lation spectrogram is fed to the attention mechanism and its output is concate-
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Fig. 4. Optimized architecture for Ao DID system [21].

nated with the output of the Bi-GRU layer. Next, the concatenated output is fed
to the dense layer with 32 nodes. Lastly, in order to predict the class label, the
output of the dense layer is fed into the output layer (size=3). The output layer
employs Softmax activation, whereas the dense layer uses ReLU activation. In
order to train the model, a mini-batch size of 33 is used for 50 epochs. A dropout
of 0.4 is applied after the dense layer. Categorical cross-entropy loss is used to
train the model, and the optimizer’s initial learning rate is set to 0.0001.

4 Experiments and Results

This section discusses the experimental setup and results obtained in this work.
The sub-section immediately following this briefly describes the baseline method.
The subsequent sub-section describes the speech data augmentation carried out
in this work. Finally, the setup for the speaker-independent strategy is discussed,
followed by the classification results obtained.

4.1 Baseline Method

Log Mel Spectrogram (LMS) has been used previously in DID tasks [21,22].
The Mel spectrograms are generated using the Mel filter-bank, comprising 40
overlapping triangular filters. The Mel-spectrograms are subjected to a natural
logarithmic operation, and the result time-frequency representation is referred to
as Log Mel Spectrogram (Slms). This work uses the Slms as the baseline feature.

4.2 Speech Data Augmentation

A considerable amount of data are generally needed to compute the experiments
based on DL classifiers. Therefore, original speech data is augmented to avoid
overfitting the classification process and increase the CMC-Ao corpus. The fol-
lowing methods are used for speech data augmentation:
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1. Telephonic Speech:
A free software available on the International Telecommunication Union
(ITU) website called G.191 is used to convert the original speech into tele-
phonic speech [8]. A pipeline process is carried out to simulate the original
speech into telephone quality speech signal with reference to the ITU users
manual [7].

2. Reverberated Speech:
The publicly available Roomsim toolbox is used to augment the original
speech into two types of reverberated speech [29]. The generated reverber-
ated speech differs in configuration settings, such as the source and room
sensor.

After augmenting the original speech data, the CMC-Ao corpus yielded ≈ 24
hours of 384 passages across the three Ao dialects.

4.3 Classification Results

The usefulness of speech data augmentation is confirmed in our previous work
[21]. Accordingly, the training is done using the original and augmented speech,
while the original speech data is used for testing. The speech data is divided
into four non-overlapping folds for the experimental setup. The folds are dis-
tributed in a manner that every fold contains the speech data of 1 male and
1 female speakers. For every iteration, training uses three folds of the speech
data (including augmented data); the fourth remaining fold is used for testing.
To obtain the training and validation sets, the training set is divided into a
ratio of 70 : 30. Therefore, four distinct sets of train, validation, and test data
are obtained from four-folds. As a result, the train set speakers differ from the
test set speakers. Hence, the experiments are evaluated in a speaker-independent
strategy. The model is trained for 3 sec segment duration to use the temporal
context of the speech data.

Table 2 shows the classification performance for four-fold cross-validation
computed with 3 sec segment duration. The results are reported in terms of
mean (μ) and standard deviations (σ) for accuracy and F1-score. It is observed

Table 2. Classification performance of Ao dialects for 3 sec segment duration. Modu-
lation spectrogram and log mel spectrogram are represented by Smds and Slms, respec-
tively.

F1-score

Features
Accuracy

(μ ± σ)

Changki

(μ ± σ)

Mongsen

(μ ± σ)

Chungli

(μ ± σ)

Average

(μ ± σ)

Smds 62.80±9.79 71.06±7.64 57.71±16.87 54.63±10.77 61.13±10.52

Slms [21] 55.27±3.19 44.80±18.37 54.23±7.60 62.51±5.05 53.84±4.02

Smds+Slms 62.98±10.19 71.08±8.22 56.23±20.34 55.12±10.56 60.81±11.54
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from the table that the proposed feature Smds performs decently in classify-
ing the three Ao dialects. The classification accuracy of Smds is also significantly
higher than the baseline feature Slms that was reported in Tzudir et al. [21]. The
decent performance of the individual features encouraged us to explore them fur-
ther in combination. For the feature combination, the features are fused at score
level and computed as shown in Eq. 2.

Scomb = αSf1 + (1 − α)Sf2 (2)

Sf1 and Sf2 are the prediction scores from the two features, Smds and Slms.
The value of α weight varies from 0 − 1. Figure 5 shows the representation with
different α values. It is noticed from the plot that the best accuracy is achieved for
α = 0.9, giving higher weight to the proposed feature Smds. Hence, these results
substantiate the efficacy of the modulation-based representation by capturing
dialect-specific information in classifying the three Ao dialects.

Fig. 5. Alpha variation for the combined features reported in Table 2.

5 Discussion and Conclusion

This paper presents an automatic DID system in Ao using modulation-based rep-
resentation. Four cross-validations speaker-independent scheme was computed
to get the performances of the system. The result shows that the proposed fea-
ture captures distinguishing characteristics to classify the three dialects of Ao.
The proposed modulation spectrogram feature outperforms the baseline fea-
ture by about ≈ 8%. However, it is also seen that the performance of Smds

and Smds + Slms are comparable with higher α weight assigned to the pro-
posed feature. This shows that Slms does not capture complementary informa-
tion when fused with Smds. Therefore, in the future, the feature combination
of Smds will be evaluated with the source features such as ILPR-LMS (Silpr)
and LP-gammatonegram (SLP−gm) that was proposed in our prior work [21,22]
for an improved DID system. Another point to be noted is the high standard
deviation (σ) of Smds compared to Slms. As the experiment was computed in
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4 iterations, there were differences in the performances for every fold in Smds.
Therefore, speaker-wise analysis can be conducted in the future, where every
speaker will be subjected to a detailed analysis. Another possible extension is
using self-supervised speech models in DID tasks to classify the Ao dialects.
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Abstract. Using clustering algorithms to optimize speaker embedding
networks via pseudo-labels is a widely used practice to train self-
supervised speaker verification systems. Although pseudo-label-based
self-supervised training scheme showed outstanding performance, this
latter depends on high-quality pseudo-labels, and recent studies have
shown that label noise can remarkably impact downstream performance.
In this paper, we propose a general-purpose clustering algorithm called
CAMSAT that outperforms all other baselines used to cluster speaker
embeddings. Moreover, using the generated pseudo-labels to train our
speaker embedding systems allows us to further improve speaker verifi-
cation performance. CAMSAT is based on two principles: (1) Augmen-
tation Mix (AM) by mixing predictions of augmented samples to provide
a complementary supervisory signal for clustering and enforce symmetry
within augmentations and (2) Self-Augmented Training (SAT) to enforce
representation invariance and maximize the information-theoretic depen-
dency between samples and their predicted pseudo-labels. We provide
a thorough comparative analysis of the performance of our clustering
method compared to all baselines using a variety of clustering metrics
and perform an ablation study to analyze the contribution of each com-
ponent of our system.

Keywords: Speaker verification · Speaker embeddings · Clustering
algorithm · Pseudo-labels

1 Introduction

Speaker verification (SV) is the task of confirming, based on a speaker’s known
utterances, that the identity of a speaker is who they purport to be. In recent
years, it has become a key technology for personnel authentication in numerous
applications [27]. Typically, utterance-level fixed-dimensional embedding vectors
are extracted from the enrollment and test speech samples and then fed into a
scoring algorithm (e.g., cosine distance) to measure their similarity/likelihood of
being spoken by the same speaker.
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Classically, the i-vector framework has been one of the most dominant
approaches for speech embedding [12,35] thanks to its ability to summarize the
distributive patterns of the speech in an unsupervised manner and with a rel-
atively small amount of training data. It generates fixed-sized compact vectors
(i-vectors) that represent the speaker’s identity in a speech utterance regardless
of its length. In the past years, various deep learning-based architectures and
techniques have been proposed to extract embedding vectors [2,19,34]. They
have shown great performance when a large amount of training data is avail-
able, particularly with a sufficient number of speakers [53]. One widely employed
architecture for this purpose is ECAPA-TDNN [14], which has achieved state-
of-the-art (SOTA) performance in text-independent speaker recognition. The
ECAPA-TDNN uses squeeze-and-excitation (SE), employs channel- and context-
dependent statistics pooling & multi-layer aggregation and applies self-attention
pooling to obtain an utterance-level embedding vector.

Indeed, most of the deep embedding models are trained in a fully supervised
manner and require large speaker-labeled datasets for training. However, well-
annotated datasets can be expensive and time-consuming to prepare, which has
lead the research community to explore more affordable self-supervised learn-
ing techniques using larger unlabeled datasets. One common way to solve this
issue for SV systems is to use a one-stage “clustering-classification” scheme
[19,33,34] by employing clustering algorithms (e.g., K-means, agglomerative
hierarchical clustering, spectral clustering) or other SSL-based objectives (e.g.,
SimCLR, MoCo [62]) to generate Pseudo-Labels (PLs) and train the speaker
embedding network using these labels in a discriminative fashion. More recently,
better-performing ways have started to appear which are now widely adopted in
the SV domain. These frameworks are based on two-stage progressive/iterative
“clustering-classification” learning [47,55]. The first stage consists of SSL train-
ing (e.g., contrastive InfoNCE loss [55]) to train an encoder model to generate
speaker embeddings, followed by a second stage of clustering those embeddings
to produce pseudo-labels in order to jointly train the encoder with a classifier
in a supervised manner. The two stages are repeated sequentially until no gains
are obtained.

Despite the impressive performance of these PL-based Self-Supervised SV
schemes, clustering performance remains a bottleneck in all above approaches
[25,55] as downstream performance relies greatly on accurate PLs since these
are in general inaccurate and contain noise due to the discrepancy between the
clustering objective(s) and the final SV task (speaker-identity ground truths).
Besides, even with iterative clustering-classification paradigms, the erroneous
information from the wrong pseudo-labels keeps propagating iteratively, which
drops the final performance [40,55]. On the other hand, due to the memorization
effects [1], deep over-parameterized networks can easily overfit the noise and
corruptions in the training PLs which leads to performance degradation and
worse generalization. Thus, the need for better-performing clustering algorithms
to generate less noisy and more accurate pseudo-labels.
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In this paper, we propose a general-purpose clustering method called CAM-
SAT (Clustering based on Augmentation Mix and Self-Augmented Training)
which combines the benefits of the Information Maximizing Self-Augmented
Training (IMSAT) clustering framework [31], and the simple data augmentation
technique AUGMIX [29] used originally for image classifiers to improve their
robustness and uncertainty estimates under data shift. Indeed, IMSAT is a gen-
eral method for unsupervised discrete representation learning using deep models
to maximize the information-theoretic dependency between data and their pre-
dicted discrete representations and which encourages the predictions to remain
unchanged under data augmentation, while AUGMIX helps models generalize
to unforeseen corruptions in the data inputs by utilizing stochasticity and a
mix of diverse augmentations. For that it employs a Jensen-Shannon Divergence
(JSD) consistency loss to achieve better robustness and stability against data
perturbation. Instead of mixing augmented inputs for the sole goal of enforcing
smoother model responses via the JSD consistency loss, our method leverages
successfully this mix of augmentations at the predictions level as an additional
supervisory signal to better guide the cluster assignment for more robust, stable,
and better-performing data clustering.

The resulting algorithm is highly scalable, more robust to corruptions and
shifts in the data during online clustering, enforces consistent embeddings across
diverse perturbations through a JSD consistency loss, is simple to implement,
and adds limited computational overhead to IMSAT. Besides, CAMSAT allows
us to outperform all other clustering algorithms for speaker clustering, and to
achieve better speaker verification performance than all other SOTA SV base-
lines.

We believe our proposed clustering method can be considerably beneficial to
further optimize current self-supervised SV frameworks by replacing the simple
clustering methods been employed (e.g. k-means, spectral clustering). It can also
be used in speaker diarization frameworks to improve the clustering aspects of
speaker diarization methods where clustering is one of the important modules.
Finally, our proposed clustering approach is a general-purpose method and can
be applied to other problems and domains other than speech.

The contributions of this paper are as follows:

– We propose a new general-purpose clustering algorithm called CAMSAT
which combines the benefits of mutual information (MI) maximization of
IMSAT clustering framework and the regularization benefit of AUGMIX (mix
of augmentations at the predictions level) for better generalizability, robust-
ness, and stability of clustering under data shift for large-scale datasets or/and
a high number of clusters.

– Using a thorough comparative analysis via clustering metrics, we show that
our proposed clustering method achieves a very high performance outper-
forming a large set of baselines. Besides, using the generated pseudo-labels to
train our SV systems, we are able to outperform all other SV baselines.

– We perform an ablation study to analyze the contribution of the different
components of our proposed framework.
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2 Background and Related Work

Diverse methods for clustering have been proposed. For instance, classical mod-
els include K-means [28], Gaussian mixture model (GMM), variational GMM
[3], BIRCH [65], CURE [24], Agglomerative Hierarchical Clustering (AHC)
[11], Divisive Hierarchical Clustering (DHC) [45], and iterative quantization
[23]. However, these methods are not suitable to model nonlinear structures
of data and can only fit linear boundaries between data representations. Later
on, other methods such as spectral clustering [44,61], kernel-based clustering
[58,60], multi-exemplar clustering [57], or support vector clustering (SVC) [59]
have been proposed to model the non-linearity of data. Nevertheless, their scal-
ability to large datasets remains a difficult problem. Recently, the powerful rep-
resentative ability of deep neural networks has been leveraged to model the
non-linearity of complex data and to scale to large datasets. For instance, Deep
Embedded Clustering (DEC) [63] proposed to use deep models to simultane-
ously learn feature representations and cluster assignments, while DeepCWRN
[9] approach employs an autoencoder to simultaneously learn feature represen-
tations and embeddings suitable for clustering by encouraging the separation of
natural clusters in the embedding space. Besides, methods such as [15,32] are
proposed to model the data generation process by using deep generative models
with Gaussian mixture models as prior distributions. More recently, a different
approach called DeepDPM [50] proposed to use a split/merge framework, with
a novel loss and a dynamic architecture that adapts to the changing number of
clusters without the need for a predefined number of clusters.

While data augmentation remains a crucial component to regularize deep
neural networks for clustering and unsupervised representation learning in order
to model the invariance of learned representations [16], IMSAT imposes directly
this invariance on the learned representations. We try to leverage AUGMIX
augmentation technique at the output logits-level to enforce consistency predic-
tion against the various augmentations and variants of cluster instances in order
to further improve robustness and uncertainty estimates to previously unseen
data/clusters during clustering, particularly when datasets are very large. Com-
puting AUGMIX at the logits-level also allows us to leverage an additional com-
plementary supervisory signal that is beneficial for clustering (see the case of
AAMSoftmax). Closer to our idea of mixing predictions under different augmen-
tations for clustering is [38] which shows that simply ensembling classifier predic-
tions improves prediction calibration. Additionally, the pseudo-label method (or
label guessing), used as an explicit regularization method to combat label noise,
first computes the average of the model’s predicted class distributions across all
augmentations and then applies a temperature sharpening function to perform
entropy minimization of the label distribution.

3 Our Proposed Clustering Approach

Given a clustering model f to train with a predefined number of clusters C,
our CAMSAT approach imposes invariance to data augmentation on the out-
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put predictions of neural networks in an end-to-end fashion while maximizing
the information-theoretic dependency between samples and their predicted dis-
crete representations (cluster assignments). It minimizes the following LCAMSAT

objective:

LCAMSAT = Laug + LIMSAT + Lsymmetry,

= Laug + RSAT (θ, TV AT ) + λ(H(Y |X) − μH(Y )) + Lsymmetry.
(1)

where

Laug =
1
N

N∑

i=1

KL(paugri
i ||pi) (2)

with J = {aug1, ..., aug|J|} is the ensemble of available data augmentations and
ri ∈ {1, .., |J |} refers to a random augmentation from J , and

Lsymmetry =
1
N

N∑

i=1

1
|J |

∑

j∈{1,..,|J|}
KL(paugj

i ||pm
i ) (3)

KL(.||.) refers to the Kullback-Leibler divergence. pi = f(xi) ∈ R
1xC ,

p
augj

i = f(xaugj

i ), and pm
i = 1

|J|+1 [
∑

j∈{1,..,|J|} αjp
augj

i + pi] correspond to the
predictions of data sample xi, its augmented version x

augj

i , and a mixture of
predictions for all available x

augj

i respectively. N is the size of data (or mini-
batches) and αj ∈ [0, 1] is the weight (Dirichlet coefficient) corresponding to
x

augj

i .
Laug forces the predicted representations of augmented samples to be close

to those of the original data points by minimizing the KL-divergence between
both predictions. H(.) and H(.|.) are the marginal and conditional entropy,
respectively, and their difference represents the MI between sample input X
and label Y that we maximize. H(Y ) = h(pθ(y)) = h( 1

N

∑N
i=1 pθ(y|x)), and

H(Y |X) = 1
N

∑N
i=1 h(pθ(y|xi)), where pθ(y|x) is our probabilistic classifier mod-

eled by parameters θ of a deep network, and h(p(y)) = −∑
y′ p(y′) log p(y′) is

the entropy function.
Inspired from the Regularized Information Maximization method [37], and

based on SAT regularization, RSAT (θ;T ) = 1
N

∑N
n=1 RSAT (θ;xn, T (xn)) is a

loss term that allows the representations of the augmented samples to be fur-
ther pushed close to those of the original samples while also regularizing the
complexity of the network against local perturbations using Virtual Adversarial
Training (VAT) [42]. RSAT (θ;x, T (x)) = −∑C

c=1

∑1
yc=0 pθ̂(yc|x)logpθ(yc|T (x)).

Where pθ̂(yc|x) is the prediction of original data point x, and θ̂ are the cur-
rent parameters of the network. TV AT is the augmentation function using local
perturbations to enforce representation invariance with TV AT (x) = x + r and
r = arg max

r′
{RSAT (θ̂;x, x + r′); ‖r′‖2 ≤ ε} is an adversarial direction.

Hyper-parameters λ, μ ∈ R control the trade-offs between the complexity
regularization of the model (through RSAT ) and the MI maximization, and
between the two entropy terms, respectively. Basically, increasing the entropy



Self-supervised Speaker Verification 555

H(Y) amounts to encouraging the cluster sizes to be uniform and prevent col-
lapsing into only a small number of clusters, while on the other hand, minimizing
the conditional entropy H(Y |X) enables less ambiguous cluster assignments and
forces the classifier to be confident on the training samples [4]. For more details,
please refer to [31,42].

Furthermore, we incorporate Lsymmetry objective function to harness the
average/interpolation of different signals provided by the various augmented
views as an additional supervisory signal during clustering to regularize our clus-
tering model to produce consistent feature representations that will be labeled
identically irrespective of any transformation/perturbation, generalize better,
and generate more compact clusters. Besides, mixing augmentations allows us
to generate further diverse transformations at the latent predictions level, which
are important for inducing robustness and reducing the memorization of used
augmentations for training [22,56], which helps to leave space to preserve more
relevant discriminant information in the representations.

Indeed, inspired by the pseudo-label method [39], which was originally used
for semi-supervised learning, Lsymmetry computes the KL-divergence between
every data augmentation and the average mixture pm

i which allows us to enforce
representation smoothness and symmetry w.r.t data augmentations, and also to
conduct entropy minimization implicitly. In our case, and following the work of
[41], instead of directly averaging probabilities, the average is performed over log-
its, followed by softmax for better training and to prevent early information loss
during the mix of probabilities of augmentations. Finally, and very importantly,
our approach of bootstrapping/mixing predictions for clustering can be consid-
ered as a simple method to ensemble a majority vote among online pseudo-labels
corresponding to diverse augmented versions of the same sample.

4 Clustering Algorithms and Metrics

To study the performance of our method against other benchmarks, we explored
diverse clustering algorithms including widely used classical algorithms (GMM,
variational GMM [3], K-means [28], BIRCH [65], CURE [24], Agglomerative
Hierarchical Clustering (AHC) [11], Divisive Hierarchical Clustering (DHC)
[45]), and 4 recent deep learning-based clustering models (IMSAT [31], DEC
[63], DeepCWRN [9], SOM [36]), which allow us to generate diverse types of
PLs depending on the optimization objective. To this aim, we employ 400-dim
i-vectors as inputs to all of our clustering algorithms. The compact i-vectors,
which are unsupervised speaker representations, allow us here to perform clus-
tering in a more efficient way and to avoid high dimensionality of the MFCC
acoustic features.

Besides, in order to thoroughly analyze the quality of PLs from various per-
spectives and the relationship with the downstream equal error rate (EER) per-
formance, we use a list of 7 supervised metrics that are based on both the PLs and
true labels (Unsupervised Clustering Accuracy (ACC), Normalized Mutual Infor-
mation (NMI) [17], Adjusted MI (AMI) [64], Completeness score [51], Homo-
geneity score [51], Purity score, and Fowlkes-Mallows index (FMI) [21]). Among
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the criteria that these metrics assess, we can list the following: clustering accu-
racy and mutual information as measures of the consistency between the true
labels and the generated PLs, homogeneity, completeness, and purity of clus-
ters, and precision and recall. Additionally, we compute 3 unsupervised metrics
(Silhouette score [52], Calinski-Harabasz score (CHS) [5], and Davies-Bouldin
score (DBS) [10]) that are solely based on the generated PLs and the data sam-
ples, and which allow us to measure how compact or scattered are the clusters
(e.g., intra-class dispersion, between-cluster distances, nearest-cluster distance).
To compute these metrics, we use available implementations from the scikit-learn
toolkit. More details and discussion about the clustering metrics are available at
[19].

5 Results and Discussion

To evaluate the performance of our proposed clustering approach and the gen-
erated PLs for self-supervised speaker verification, we conducted a set of experi-
ments based on the VoxCeleb2 dataset [7]. To train the embedding networks, we
used the development subset of the VoxCeleb2 dataset, consisting of 1,092,009
utterances collected from 5,994 speakers. The evaluation was performed accord-
ing to the original VoxCeleb1 trials list [43], which consists of 4,874 utterances
spoken by 40 speakers. For our ECAPA-TDNN-based speaker verification sys-
tem, the acoustic features used in the experiments were 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) extracted at every 10 ms, using a 25
ms Hamming window via Kaldi toolkit [49]. To improve generalization, we also
use additive angular margin softmax (AAMSoftmax) objective to train our self-
supervised speaker embedding network (with scale factor s = 30 and angular
margin m = 0.1). Cosine similarity was used as a backend for verification scor-
ing between enrollment and test embeddings.

Following IMSAT setup, we use the same MLP-based d-S-S-C architecture,
where d = 400 and C are input and output dimensionality, respectively. S is the
width of the network. We use RELU for all the hidden activations, apply batch
normalization to hidden layers, and use softmax in the output layer. Regarding
optimization, we used the Momentum algorithm with an initial learning rate
of 0.01, a momentum of 0.9, and an exponential rate decay of 0.996. λ = 0.5,
μ = 3.5. Unless specified otherwise, we use by default a batch size of 10240
samples, C = 5000 as the number of clusters, S = 5200 neurons as the size of
each fully connected layer, and ran experiments for 100 epochs. Additionally,
our clustering benchmarks set 5000 as the default number of clusters, which [34]
found to lead to the best results (except SOM where the number was set to be
the size of the map 71*71 = 5041).

Moreover, we have used waveform-level data augmentations including addi-
tive noise and room impulse response (RIR) simulation [53]. In addition to the
waveform-level augmentations, for the ECAPA-TDNN-based systems, we have
also applied augmentation over the extracted MFCCs feature, analogous to the
specaugment scheme [46]. For clustering, and to avoid altering speaker identity,
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Table 1. A comparison study of our CAMSAT clustering compared to a large set of
clustering benchmarks (classical and deep-learning based models). Results are reported
in terms of Clustering performance (clustering metrics) and the corresponding EER
(%) downstream SV evaluation performance when using the generated pseudo-labels
to train our studied speaker verification system. S is the width of our MLP model and
C the number of clusters. l2Norm refers to normalizing inputs independently to unit
l2-norm instead of StandardScaler.

Model Clustering Metrics Speaker Verification

ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

Supervised (True Labels) 1.0 1.0 1.0 5994 1.0 1.0 1.0 1.0 −0.006 31.708 4.692 1.437

GMM (Full cov.) 0.45 0.631 0.747 5000 0.767 0.728 0.312 0.566 −0.015 39.266 4.673 5.143

GMM (Full cov., l2Norm) 0.504 0.678 0.789 5000 0.792 0.785 0.415 0.633 −0.015 41.568 5.114 5.429

GMM (Spherical cov.) 0.427 0.587 0.711 5000 0.739 0.685 0.22 0.539 −0.037 38.665 4.864 5.265

GMM (Diagonal cov.) 0.425 0.6 0.721 5000 0.748 0.696 0.23 0.539 −0.033 38.455 4.874 5.451

GMM (Tied cov.) 0.457 0.66 0.767 5000 0.788 0.747 0.317 0.574 −0.016 38.922 4.726 5.164

Bayesian GMM (γ=1e-5, μ=1) 0.45 0.629 0.746 5000 0.766 0.727 0.312 0.566 −0.015 39.257 4.673 5.143

Bayesian GMM 1 (l2Norm, γ = 1e−5, μ = 1) 0.504 0.678 0.789 5000 0.792 0.785 0.415 0.633 −0.015 41.57 5.115 5.159

Bayesian GMM 2 (γ = 100, μ = 0.01) 0.449 0.63 0.746 5000 0.766 0.727 0.311 0.566 −0.015 39.258 4.675 4.958

Divisive HC 0.097 0.204 0.477 5000 0.479 0.474 0.035 0.132 −0.06 18.044 9.068 13.531

KMeans 0.302 0.468 0.591 5000 0.645 0.546 0.194 0.311 −0.114 24.936 2.714 6.978

CURE 0.151 0.218 0.393 5000 0.466 0.34 0.011 0.216 −0.052 17.77 5.372 6.994

BIRCH 0.299 0.374 0.54 5000 0.725 0.43 0.013 0.353 −0.027 24.348 4.901 5.642

DEC 0.029 0.122 0.365 4911 0.386 0.345 0.007 0.036 −0.084 8.734 7.266 11.957

SOM 0.025 0.088 0.402 5041 0.404 0.4 0.01 0.037 −0.041 10.148 18.402 15.806

DeepCWRN 0.003 0.006 0.15 1008 0.179 0.129 0.001 0.003 −0.217 3.841 41.521 38.171

IMSAT 0.393 0.491 0.649 4987 0.668 0.63 0.297 0.426 −0.044 22.887 6.668 5.912

AHC 0.587 0.74 0.825 5000 0.841 0.81 0.311 0.684 −0.01 39.561 4.991 3.685

AHC (l2Norm) 0.602 0.756 0.838 5000 0.849 0.827 0.375 0.693 −0.034 39.638 5.147 3.621

CAMSAT (S: 30k) 0.614 0.746 0.829 4993 0.843 0.816 0.557 0.636 −0.033 1.001 25.239 3.812

CAMSAT (l2Norm, S: 20k) 0.655 0.812 0.874 4596 0.888 0.86 0.641 0.675 −0.105 0.999 26.561 3.065

CAMSAT (l2Norm, S: 20k, C: 10k) 0.709 0.83 0.889 6364 0.892 0.886 0.708 0.745 −0.141 1.0 21.656 3.134

we additionally added light Gaussian noise to all augmented i-vectors (with a
weighting factor of 0.2 to keep Gaussian noise low in inputs), used masking aug-
mentation by randomly replacing 5–10% of input vectors with 0, and a mix of
augmented inputs as an additional augmentation. Besides, inspired from tech-
niques of noise-based exploration in the domain of reinforcement learning [20,48]
that add noise into observations, actions, or even parameter space. In our case,
adding Gaussian noise to inputs helps the exploration of different clustering con-
figurations, which we believe, in addition to the entropy loss terms that implicitly
encourage exploration, helps to prevent early convergence to suboptimal cluster
assignments, that we observed earlier in our experiments.

In Table 1, we provide the results for a large variety of clustering benchmarks
compared to our CAMSAT method. According to the results, our approach out-
performs by far all other baselines in terms of all supervised and unsupervised
clustering metrics. For instance, we were able to boost unsupervised cluster-
ing accuracy from 60.2% and 39.3% corresponding to our strongest AHC base-
line and IMSAT to 70.9% (17.8% and 80.4% improvements respectively). Using
CAMSAT generated PLs to train our embedding system, also allowed us to boost
downstream SV EER performance from 3.621% to 3.065% (18% improvement).
Unlike in [18,19], to avoid losing speaker information, we normalize i-vectors
independently to unit l2-norm instead of mean and standard deviation scaling
of i-vectors along the features axis, which helps to further improve performance
across our systems and shows the importance of the type of data normalization.
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Table 2. An ablation study of our proposed CAMSAT clustering model. Noise refers
to adding light Gaussian noise to augmented inputs (with a weighting factor of 0.2
to keep Gaussian noise low in inputs). Masking augmentation replaces between 5 and
10% of input vectors with 0. Unless specified otherwise, we use by default a batch size
of 10240 samples, C = 5000 as the number of clusters, S = 5200 neurons as the size of
each fully connected layer in our MLP-based clustering models, and mean and standard
deviation scaling (StandardScaler) of i-vectors along the features axis. l2Norm refers
to normalizing i-vector inputs independently along the samples axis to unit l2-norm
instead of StandardScaler.

Model Clustering Metrics Speaker Verification

ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

IMSAT (no Laug, no Lsymmetry) 0.393 0.491 0.649 4987 0.668 0.63 0.297 0.426 -0.044 22.887 6.668 5.912

no Lsymmetry 0.466 0.586 0.713 4967 0.736 0.693 0.316 0.529 −0.096 1.001 24.407 5.276

no Lsymmetry, no RSAT 0.401 0.585 0.733 5000 0.73 0.736 0.34 0.488 −0.016 1.0 26.5 6.188

no Lsymmetry, no RSAT , C: 10k 0.319 0.544 0.732 9998 0.705 0.761 0.275 0.519 −0.059 1.0 18.814 6.792

no Lsymmetry, no RSAT , C: 15k 0.266 0.497 0.715 14798 0.68 0.754 0.22 0.502 −0.13 1.0 15.194 7.015

no Laug 0.498 0.646 0.765 4999 0.773 0.757 0.454 0.555 −0.051 1.001 25.671 5.329

no Laug, no mix of inputs augmentation 0.492 0.644 0.763 5000 0.772 0.755 0.446 0.551 −0.083 0.999 25.866 5.027

no Laug, dropout 0.473 0.664 0.783 5000 0.781 0.785 0.462 0.542 −0.015 1.0 25.558 5.488

no Laug, no BatchNorm 0.491 0.674 0.787 5000 0.789 0.785 0.487 0.552 −0.018 1.001 25.856 5.313

no Laug, only KL(pi||pm
i ) term in Lsymmetry 0.378 0.471 0.621 4957 0.654 0.591 0.197 0.417 −0.11 1.0 22.795 6.161

no Laug, mixture in the input space alone 0.414 0.496 0.652 4989 0.671 0.633 0.301 0.451 −0.1 1.001 23.924 5.488

no Laug, add another Lsymmetry version at the input level 0.428 0.624 0.757 5000 0.755 0.759 0.373 0.519 −0.017 0.999 25.697 5.541

CAMSAT 0.52 0.704 0.806 5000 0.809 0.803 0.48 0.602 −0.021 1.0 25.238 4.825

CAMSAT (S: 15k, C: 5994) 0.556 0.724 0.821 5994 0.821 0.822 0.524 0.644 −0.049 1.001 23.174 4.518

CAMSAT (S: 20k) 0.589 0.741 0.828 5000 0.836 0.821 0.559 0.639 −0.029 1.0 25.455 4.3

CAMSAT (l2Norm, Noise) 0.583 0.754 0.835 4923 0.848 0.823 0.552 0.636 −0.128 1.002 24.968 3.95

CAMSAT (l2Norm, S: 15k) 0.654 0.815 0.875 4664 0.891 0.86 0.643 0.673 −0.115 1.0 25.834 3.25

CAMSAT (l2Norm, S: 15k, C: 5994) 0.67 0.821 0.88 5238 0.893 0.867 0.662 0.692 −0.126 1.0 23.589 3.081

CAMSAT (Noise, Masking) 0.534 0.716 0.814 5000 0.817 0.81 0.493 0.614 −0.021 1.002 25.308 4.613

CAMSAT (Noise, Masking, S: 15k) 0.585 0.743 0.831 5000 0.835 0.826 0.559 0.642 −0.024 1.001 25.651 4.178

CAMSAT (Noise, Masking, S: 30k) 0.614 0.746 0.829 4993 0.843 0.816 0.557 0.636 −0.033 1.001 25.239 3.812

CAMSAT (l2Norm, Masking) 0.581 0.755 0.835 4907 0.849 0.822 0.544 0.632 −0.093 1.0 24.836 4.067

CAMSAT (l2Norm, Noise, Masking) 0.576 0.76 0.84 4993 0.85 0.83 0.544 0.633 −0.075 1.0 25.034 4.04

CAMSAT (l2Norm, Noise, Masking, S: 15k) 0.651 0.814 0.874 4665 0.89 0.859 0.639 0.67 −0.116 1.0 25.82 3.43

CAMSAT (l2Norm, Noise, Masking, S: 20k) 0.655 0.812 0.874 4596 0.888 0.86 0.641 0.675 −0.105 0.999 26.561 3.065

CAMSAT (l2Norm, Noise, Masking, S: 20k, C: 10k) 0.709 0.83 0.889 6364 0.892 0.886 0.708 0.745 −0.141 1.0 21.656 3.134

CAMSAT (l2Norm, Noise, Masking, S: 20k, C: 10k, 2xBatch size) 0.704 0.828 0.888 6424 0.891 0.884 0.703 0.74 −0.132 1.0 21.13 3.224

CAMSAT (l2Norm, Noise, Masking, S: 20k, C: 10k, Label smoothing) 0.707 0.83 0.889 6462 0.892 0.886 0.708 0.743 −0.141 0.999 21.24 3.203

CAMSAT (l2Norm, Noise, Masking, S: 20k, C: 5994) 0.669 0.816 0.878 5194 0.888 0.868 0.659 0.694 −0.122 1.0 24.627 3.309

CAMSAT (l2Norm, Noise, Masking, S: 30k) 0.656 0.801 0.867 4909 0.878 0.857 0.646 0.678 −0.1 0.999 25.923 3.33

CAMSAT (l2Norm, Noise, Masking, S: 45k) 0.638 0.776 0.851 4999 0.861 0.842 0.614 0.662 -0.09 0.999 26.241 3.462

Table 3. A study of our proposed CAMSAT clustering approach (no mixture weights,
small size model) employing various distance metrics for optimization. Performance
is reported in terms of clustering performance (clustering metrics) and the EER (%)
downstream performance when using the generated pseudo-labels to train our speaker
verification system.

Distance Metric Clustering Metrics Speaker Verification

ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

KL divergence 0.528 0.702 0.805 5000 0.809 0.801 0.485 0.608 −0.026 1.001 25.465 4.608

JS divergence 0.376 0.541 0.706 4994 0.702 0.71 0.317 0.441 −0.014 1.001 25.1 6.267

Cosine distance 0.308 0.411 0.612 4897 0.616 0.609 0.259 0.335 −0.095 1.002 25.198 6.4

L2 loss 0.251 0.385 0.564 4895 0.59 0.541 0.134 0.275 −0.132 0.998 23.428 8.754

AAMSoftmax [13] 0.314 0.524 0.676 4729 0.691 0.661 0.251 0.361 −0.119 1.001 24.811 9.046

Squared Earth Mover’s distance [30] 0.051 0.127 0.407 4996 0.416 0.399 0.014 0.063 −0.06 0.998 25.638 18.627

Sinkhorn distance [8] 0.018 0.052 0.331 4995 0.346 0.317 0.002 0.023 −0.083 1.001 23.661 12.275

Moreover, instead of using KL-divergence, in Table 3 we try to extend our
approach to use other types of distance metrics such as the squared earth mover’s
distance (or the Wasserstein distance) [30], Sinkhorn distance [8], cosine distance,
L2 loss, JS divergence. Results show that the KL divergence remains the best
distance metric to use in our framework. Interestingly, we additionally incor-
porate the AAMSoftmax [13] loss at the output of our CAMSAT architecture
and use the online generated pseudo-labels (stored at each epoch of the train-
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ing to train our clustering model progressively in a supervised fashion during
the following epoch). Following this approach, we were able to achieve pretty
decent results without the need for any external labels and only by using the
self-generated pseudo-labels of the clustering model itself. This successful train-
ing and the improvement of estimations over epochs also demonstrates that our
mix of predictions provides effective information and an important signal for
clustering that is able to progressively guide the clustering process to improve
performance (compared to using predictions of clean samples alone where train-
ing was not stable and we couldn’t even converge with the AAMSoftmax strong
objective).

Additionally, we performed a large-scale ablation study in Table 2 to ana-
lyze the contribution of all components and the influence of a set of factors:
batch size, model size, the predefined number of clusters, type of data normaliza-
tion (l2-Norm vs StandardScaler), label smoothing, our proposed augmentations,
dropout, etc. Results show that there is complementary information between all
loss terms in our CAMSAT objective and that each help to boost the performance
of the overall clustering framework. Performance degradation when performing
mixture in the input space alone or only using KL(pi||pm

i ) term in Lsymmetry also
demonstrates the importance of mixture in the logits space and the relevance of
the notion of symmetry within augmentations. In addition, we can also observe
that adversarial augmentations and our proposed augmentations are beneficial
for clustering, dropout and label smoothing do not seem to be helpful, and a
higher number of discovered clusters than ground truth tends to coincide with
worse Silhouette, CHS, and DBS scores, which leads to slightly worse SV per-
formance due to less compact and worse separated clusters. Results also show
that scaling model size helps to boost performance up to 20000 neurons width,
beyond which we didn’t observe any improvement, which can be explained by
the limited size of the VoxCeleb2 dataset. Besides, our experiments increasing
the predefined number of clusters to 10000 and 15000 show that Lsymmetry is
critical to recover/estimate the original 5994 ground truth number and that our
CAMSAT method recovers it almost perfectly without the need for any memory
queue of data samples or a prototypical memory bank [62]. On the contrary to
other SV approaches [47] and other clustering algorithms, our clustering method
shows constant stable performance, steady convergence, and is not sensitive to
the predefined number of clusters. Last but not least, we observe that beyond
some clustering performance, the marginal improvement in final downstream SV
performance becomes minimal and requires much more accurate PLs.

Finally, Table 4 shows a comparison of our approach for Self-Supervised SV
(SSSV) training using CAMSAT-based PLs compared to recent SOTA SSSV
approaches employing a variety of SSL objectives with the same ECAPA-TDNN
model encoder. The results show clearly that our approach outperforms all the
baselines, and suggest that further gains can be made by improving the clustering
modules of current self-supervised speaker recognition systems.
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Table 4. Some recent SOTA self-supervised speaker verification approaches in EER
(%) compared to our simple SV system trained with CAMSAT PLs. All models are
based on ECAPA-TDNN.

SSL Objective EER (%)

MoBY [62] 8.2

InfoNCE [55] 7.36

MoCo [6] 7.3

ProtoNCE [62] 7.21

PCL [62] 7.11

CA-DINO [26] 3.585

i-mix [18] 3.478

l-mix [18] 3.377

Iterative clustering [54] 3.09

CAMSAT (Ours) 3.065

Additional Advantages of Our CAMSAT Approach. Our approach is
simple, sticks to an easy MLP architecture to avoid additional complex modules
(e.g. autoencoders, overclustering, multiple outputs), and shows that improving
clustering has a lot of advantages in improving speaker verification systems, with-
out the need for complex and expensive multi-stage iterative clustering. More-
over, our method of maximizing MI while also imposing symmetry within aug-
mentations is also rigorously grounded in information theory, effortlessly avoids
degenerate solutions that other clustering methods are susceptible to, and has
more capability to produce calibrated predictions. Interestingly, our clustering
objective is also easily scalable since it does not depend on large batches of
negative samples or large similarity matrices as is the case for instance with con-
trastive learning. Thus, it can use much larger batch sizes and is more suitable
for large-scale datasets thanks to its robustness and stability against data shift.

Future Improvements. We would like to leave the reader with some potential
improvements to our framework that could be the subject of future work: using
compact i-vectors limits the upside performance of our clustering approach as
these embeddings already lack important speaker information. Therefore, using
higher-dimensional cepstral features such as MFCCs or even raw audio wave-
forms could present the model with richer information to mine (at the cost of
more computations). In particular, this could help to better capture discrimi-
native attributes from speech that are invariant to confounding low-level details
(e.g., pitch contour, background noise). In addition, we didn’t perform many
hyper-parameters optimization , therefore further finetuning and exploration of
other SOTA architectures could also be fruitful to improve performance.

6 Conclusion

In this paper, we propose a general-purpose clustering method called CAMSAT
based on two principles: (1) mixing predictions of augmented samples to provide
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a complementary supervisory signal for clustering and enforce symmetry within
augmentations and (2) Self-Augmented Training (SAT) to enforce representation
invariance and maximize the information-theoretic dependency between samples
and their predicted pseudo-labels. Our method is highly scalable and has better
generalization capability, is robust under data shift, more stable during train-
ing, has the ability to produce more calibrated predictions, and is better suited
for large-scale datasets or/and a high number of clusters. Our approach outper-
formed all other baselines used to cluster speaker embeddings. Moreover, using
the generated pseudo-labels to train our speaker embedding systems allowed
us to further improve speaker verification performance outperforming all other
recent speaker verification benchmarks.
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5. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-
Theory Methods 3(1), 1–27 (1974)

6. Cho, J., et al.: The jhu submission to voxsrc-21: Track 3. arXiv preprint
arXiv:2109.13425 (2021)

7. Chung, J.S., Nagrani, A., Zisserman, A.: Voxceleb2: deep speaker recognition. In:
INTERSPEECH (2018)

8. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In:
Advances in Neural Information Processing Systems 26 (2013)

9. Dahal, P.: Learning embedding space for clustering from deep representations. In:
2018 IEEE International Conference on Big Data (Big Data) (2018)

10. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 2, 224–227 (1979)

11. Day, W.H.E., et al.: Efficient algorithms for agglomerative hierarchical clustering
methods. J. Classif. 1, 7–24 (1984)

12. Dehak, N., et al.: Front-end factor analysis for speaker verification. IEEE Trans.
Audio Speech Lang. Process. 19, 788–798 (2011)

13. Deng, J., et al.: Arcface: additive angular margin loss for deep face recognition.
IEEE Trans. Pattern Anal. Mach. Intell. (2021)

14. Desplanques, B., et al.: ECAPA-TDNN: emphasized channel attention, propaga-
tion and aggregation in TDNN based speaker verification. In: Interspeech (2020)

http://arxiv.org/abs/2109.13425


562 A. Fathan and J. Alam

15. Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture vari-
ational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

16. Dosovitskiy, A., et al.: Discriminative unsupervised feature learning with convolu-
tional neural networks. NeurIPS your (2014)
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