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Abstract. As technology advances, our reliance on machines grows,
necessitating the development of effective approaches for Speech Emotion
Recognition (SER) to enhance human-machine interaction. This paper
introduces a novel feature extraction technique called Linear Frequency
Residual Cepstral Coefficients (LFRCC) for the SER task. To the best
of our knowledge and belief, this is the first attempt to employ LFRCC
for SER. Experimental evaluations were conducted on the widely used
EmoDB dataset, focusing on four emotions: anger, happiness, neutral-
ity, and sadness. Results demonstrated that the proposed LFRCC fea-
tures outperform state-of-the-art Mel Frequency Cepstral Coefficients
(MFCC) and Linear Frequency Cepstral Coefficients (LFCC) relatively
by a significant margin: 25.64 % and 10.26 %, respectively, when using
a residual neural network (ResNet); and 12.37 % and 4.67 %, respec-
tively when combined with the Time-Delay Neural Network (TDNN) as
classifier. Furthermore, the proposed LFRCC features exhibit a better
Equal Error Rate (EER) than the other two baseline methods. Addition-
ally, classifier-level and score-level fusion techniques were employed, and
the combination of MFCC and LFRCC at the score-level achieved the
highest accuracy of 94.87 % and the lowest EER of 3.625%. The bet-
ter performance of the proposed feature set may be due to its capability
to capture excitation source information via linearly-spaced subbands in
the cepstral domain.

Keywords: Speech emotion recognition · Narrowband spectrogram ·
Linear frequency residual cepstral coefficients (LFRCC) · EmoDB · LP
residual · Excitation source

1 Introduction

It is well known that our emotional state has a significant influence on our speech
patterns, such that identical utterances may be perceived differently based on the
associated emotion. With the development of technology and man’s reliance on
machines, reliable emotion detection is crucial for successful human-computer
interaction. This has led to the development of a new research field, namely,
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Speech Emotion Recognition (SER). Its applications include driver’s behavior
monitoring during autonomous driving, call center services, monitoring patients,
mental health issues detection, and better human-machine interaction.

A speech signal comprises two essential components with respect to its pro-
duction: the source, known as the excitation source, and the system, which rep-
resents the vocal tract system. In particular, the vocal tract is a natural physical
system with the attribute of inertia for being unable to change its state unless an
external source is applied. In practice, its primary excitation source is a glottal
activity & glottal vibration, but no vibration can also act as the driving force to
excite the vocal tract system to produce intelligible speech.

Various features, namely prosodic, source, and system features, have been
employed for SER in the existing literature. Notably, the prosodic and system-
based features have received the most attention in research studies. However,
exploring excitation source information in speech for SER is relatively limited,
as highlighted in [8]. This limitation serves as a motivation for the adoption of
Linear Frequency Residual Cepstral Coefficients (LFRCC) in this study.

In earlier studies, traditional machine learning algorithms, such as Gaussian
Mixture Models (GMMs) or Support Vector Machines (SVMs), were commonly
employed in SER [15]. GMMs effectively modeled speech feature distributions
and captured variations among different emotion classes, while SVMs were uti-
lized for their capacity to learn decision boundaries that can distinguish between
emotions [2].

As research progressed, more advanced classifiers, particularly neural
network-based models, gained popularity and became prominent due to their
ability to learn hierarchical and temporal representations from speech data auto-
matically [1,3]. In this study, we leverage the advantages of Residual Neural
Networks (ResNet) and Time Delay Neural Networks (TDNN) for SER tasks.
ResNet’s skip connections address the vanishing gradient problem, enabling
deeper networks, feature reuse, and efficient training with a reduced risk of over-
fitting [5]. TDNN, on the other hand, excels at modeling temporal dependen-
cies, handling variable-length inputs, offering efficiency and parallelization [12],
and exhibiting shift-invariance. These qualities motivated their selection for this
work.

In this work, we investigate the LFRCC features, which already had proved
effective for anti-spoofing [16] for speaker verification, i.e., to capture the char-
acteristics of natural vs. spoofed speech. Given the success of LFRCC in captur-
ing the acoustic characteristics of natural speech signals, this study investigates
its possible potential for SER tasks. We compare the proposed features with
the state-of-the-art Mel Frequency Cepstral Coefficients (MFCC) and Linear
Frequency Cepstral Coefficients (LFCC) features using deep learning models,
namely, ResNet and TDNN with Attention Statistics Pooling.

The rest of the paper is organized as follows: Sect. 2 presents details of Linear
Prediction. Section 3 provides the information for the extraction of the features.
Section 4 shows the experimental setup used for the study. Section 5 presents
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the experimental results and analysis. Finally, Sect. 6 concludes the paper along
with the potential future of research directions.

2 Linear Prediction

The initial application of the Linear Prediction (LP) method can be traced
back to speech coding applications, drawing inspiration from the fields of system
identification and control [10]. In LP analysis, the representation of each speech
sample involves a linear combination of past ’p’ speech samples. Here, ’p’ denotes
the order of linear prediction, and the weights associated with the combination
are referred to as Linear Prediction Coefficients (LPCs) [10]. Given the current
speech sample as s(n), the predicted sample can be expressed as follows:

ŝ(n) = −
p∑

k=1

aks(n − k), (1)

ak is the Linear Prediction Coefficient (LPC) coefficient. The LPCs (i.e., ak) are
utilized to predict the speech samples s(n) by ŝ(n), and the discrepancy between
the actual speech sample s(n) and the predicted sample ŝ(n) is termed as the
LP residual r(n), which can be expressed as follows:

r(n) = s(n) − ŝ(n) = s(n) +
p∑

k=1

aks(n − k). (2)

Specifically, our method applies all-pole inverse filtering to the speech signal
with the LP analysis. We have

A(z) = 1 +
p∑

k=1

akz
−k, (3)

H(z) =
G

1 +
∑p

k=1 akz−k
. (4)

In this context, the variable A(z) denotes an inverse filter associated with
an all-pole Linear Prediction (LP) filter H(z). This filter represents the system
information related to the vocal tract, while the term G is referred to as the gain
term in the LP model. It is worth noting that the system information is combined
with the excitation source information, and the LP residual effectively captures
this source information. In particular, it is known in the speech literature that LP
residual attains a peak at every Glottal Closure Instant (GCI). The LP residual
is subjected to cepstral-domain processing to extract the desired information.
This process enables the spectral envelope representation of the excitation source
signal, which is discussed in the next section.
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3 Linear Frequency Residual Cepstral Coefficients

Figure 1 illustrates the functional block diagram of the proposed feature set. The
input speech signal undergoes pre-emphasis filtering to balance the lower and
higher frequency components [16]. Subsequently, the signal is processed with the
steps mentioned in the LP block, resulting in the LP residual waveform, denoted
as r(n). The LP residual waveform is then divided into frames and subjected to
windowing, with a duration of 25 ms and a frame shift of 15 ms. In the next step,
the power spectrum is estimated for each frame of the LP residual and passed
through a filterbank consisting of 40 linearly-spaced triangular subband filters.
To obtain the desired LFRCC features with minimal distortion, the Discrete
Cosine Transform (DCT) and Cepstral Mean Normalization (CMN) techniques
are applied to the power spectrum. This sequence of operations yields the final
LFRCC features that capture relevant speech signal characteristics.

Fig. 1. Schematic block diagram of LFRCC feature extraction. After [16].

4 Experimental Setup

4.1 Dataset Used

To evaluate the effectiveness of excitation source-based features for SER, the
present research utilized the EmoDB dataset developed in 2005. EmoDB is a
German speech corpus comprising recordings from ten actors, comprising an
equal distribution of five male and five female speakers. These speakers were
asked to utter ten German phrases while being recorded under favorable con-
ditions. The dataset encompasses seven distinct emotions: anger, joy, neutral,
sadness, disgust, boredom, and fear [4] as shown in Table 1. The current study
narrowed the focus to four specific emotions: anger, happiness, neutrality, and
sadness. Additionally, one male speaker was reserved for the purpose of testing
in this investigation as per Leave One Speaker Out (LOSO) method.
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Table 1. Main Properties of the Speech Corpus in the Experiments (F - Female, M -
Male).

Database Speakers Emotions

German Emotional
Database (EmoDB)

10 (5M, 5F) 7 (anger, joy,
disgust, neutral,
sadness, boredom,
and fear)

4.2 Classifiers Used

In SER, neural network (NN) models are used extensively for their ability to
capture the non-linear relation present among speech signal samples [9]. This
work implements two deep learning models to classify emotions, whose details
are below.

Time Delay Neural Network (TDNN): The state-of-the-art TDNN archi-
tecture [12] has been chosen for experimentation. Table 2 provides a comprehen-
sive overview of this architecture’s layers. A dropout rate of 0.2 is applied at all
TDNN layers during training to enhance the model’s performance and prevent
overfitting. The categorical cross-entropy loss function is utilized for classification
tasks for training. Additionally, we used the attentive statistics pooling mecha-
nism, which incorporates both higher-order statistics and attention mechanisms
and has proven effective in capturing speaker-related information [11]. However,
its potential for capturing emotional information is also noteworthy. Consider-
ing the standard deviation vector, this pooling method can capture long-term
variability and the dynamic nature of emotions expressed over an utterance.

Furthermore, the attention mechanism enables the identification of speech
frames that are more important and informative for discriminating emotions.
This selective frame weighting and non-linear activation functions allow the
pooling method to capture the complex patterns and variations inherent in emo-
tional expressions. Ultimately, by aggregating frame-level features with higher
weights, the attentive statistics pooling method can create an utterance-level
representation that emphasizes emotional cues, making it a promising approach
for extracting and understanding emotional information from speech signals.

Residual Neural Network (ResNet): The ResNet model has already been
adopted for emotion recognition tasks [17]. The ResNet architecture used for this
experiment is shown in Table 3. The loss function we used during training was
categorical cross-entropy. The Resblock consists of two Conv1D layers; Batch
Normalization and ReLU activation follow each layer. The residual connections
in ResNet alleviate the vanishing gradient problem and improve the flow of gradi-
ent information during training [5]. This enables the network to learn emotional
cues more effectively and capture subtle patterns associated with different emo-
tions, thereby enhancing the network’s ability to discriminate between emotional
states.
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Table 2. TDNN Architecture.

Layer Kernel size Filter size Stride Output shapes

TDNN 5 64 1 (batch size, 64, 1)

TDNN 5 128 1 (batch size, 128, 1)

TDNN 7 128 1 (batch size, 128, 1)

TDNN 1 64 1 (batch size, 64, 1)

TDNN 1 64 1 (batch size, 64, 1)

Classic Attention – 64 – (batch size, 64, 1)

Linear 128 128 1 (batch size, 128)

Statistics pooling here

Linear 64 64 1 (batch size, 64)

Output – 4 – (batch size, number of classes = 4)

Table 3. ResNet Architecture.

Layer Details

Conv1 Input Channels: in channels
Output Channels: out channels
Kernel Size: 3
Stride: 1
Padding: 1

BN1 Type: BatchNorm1d

Res Block1 Input Channels: 64
Output Channels: 32

Res Block2 Input Channels: 32
Output Channels: 16

Res Block3 Input Channels: 16
Output Channels: 16

Avg Pool AdaptiveAvgPool1d

FC Input Channels: 16
Output: num of classes = 4

4.3 Baseline Considered

The state-of-the-art MFCC and LFCC features are used for comparing the pro-
posed features. Then 39 -D feature vector was formulated containing static, delta,
and double-delta parameters. The window length used was 25 ms, the number
of subband filters was 40, and the number of points used in the Fast Fourier
Transform (NFFT) was 512.
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5 Experimental Results

5.1 Spectrographic Analysis

Figures 3 and 4 present the spectrograms of the original signal and the LP resid-
ual signal for both a female and a male speaker uttering the same sentence. In
comparison to the spectrogram of the original signal, the LP residual spectro-
gram preserves certain details, such as the explicit representation of formants,
pitch harmonics (horizontal pitch striations in a narrowband spectrogram), and
overall spectral energy distribution. Further, since the LP residual is known
to be intelligible, we also expect to see formant structures in the LP residual
spectrogram. A notable observation shared across all emotions is the prominent
energy presence at higher frequencies in the LP residual spectrograms, as high-
lighted by the black boxes in Fig. 3 and Fig. 4. Moreover, the width between
the horizontal striations is found to be more significant for females due to their
higher fundamental frequency (F0) compared to males. Notably, anger exhibits
short pauses caused by irregular breathing (puffs) in contrast to neutral and
sad emotions, which feature longer pauses and low formant fluctuation due to
deeper breathing. A significant distinction between happy and angry emotions
lies in the distribution of high-energy content. In the case of happy emotions,
the large energy density is evenly spread throughout the utterance, gradually
diminishing towards the end. Conversely, anger emotions concentrate the large
energy density at higher frequencies, maintaining it consistently throughout the
utterance, as clearly depicted in the LP residual spectrogram. These observa-
tions were made by analyzing multiple sentences, one of which is represented in
Fig. 3 and Fig. 4.

5.2 Impact of LP Order

In the proposed method, the LFRCC feature set is obtained by varying the pre-
diction order (p) from 4 to 25 for a sampling frequency of 16 KHz, as depicted
in Fig. 5. The results indicate that the highest classification accuracy is achieved
using an LP order of 20. Remarkably, this optimal LP order remains consistent
regardless of the classifier employed. For both TDNN and ResNet, an LP order
of 20 yields relatively highest accuracy rates of 89.29 % and 87.17 %, respec-
tively (as illustrated in Fig. 5). Additionally, it is worth noting that the accuracy
of emotion classification tends to be higher for higher LP orders (16–25) than
for lower LP orders (4-15). This observation can be attributed to the fact that
higher LP orders allow for better capture of contextual information of emotional
aspects, especially concerning speech prosody, which is predominantly supraseg-
mental in nature and, thus, requires a longer duration of the speech signal.

5.3 Significance of Pitch Contour

Speech is a powerful form for expressing emotions, and the pitch or fundamen-
tal frequency (F0) contour plays a crucial role in conveying emotional informa-
tion [14]. It encompasses variations and patterns in pitch that provide valuable
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Fig. 2. Panel-I (a) pitch contour of original anger speech sample; Panel-II (a) pitch
contour of original happy speech sample; Panel-I (b) and Panel-II (b) shows pitch
contour of the LP residual for p=20; Panel-I (c) and Panel-II (c) shows pitch contour
of the LP residual for p=6.

cues about the speaker’s emotional state. We can gain initial insights into the
speaker’s emotional expression by analyzing the pitch level. Higher pitch lev-
els may indicate excitement or anger, while lower levels can suggest sadness or
calmness. It’s crucial to acknowledge that speaker-dependent variations exist,
owing to individual vocal characteristics and cultural influences that can give
rise to distinct emotional pitch patterns. Understanding the pitch contour allows
us to discern the emotional nuances present in speech signals. Our experiment
employed the YIN algorithm for pitch contour plotting. Notably, we opted not
to utilize overlapping frames in our analysis, considering that overlapping might
introduce complexity and potentially obscure the specific effects of LP orders
on pitch information. Figure 5 depicts the impact of LP order on speech and
compares the pitch contour plots of LP order 6 (lowest accuracy in Fig. 5) and
LP order 20 (highest accuracy in Fig. 5) for anger and happy emotion samples.
The encircled areas in Fig. 2 depict the differences in pitch information for the
two LP orders.

The pitch contour of the original emotional signals suggests significant pitch
variations, possibly due to changes in speech style and prosody. In contrast, the
pitch contour in the residual signal suggests that the LPC modeling successfully
captures and decreases the pitch-related variations compared to the original
speech signal, resulting in a more consistent and uniform plot. The increased
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Fig. 3. Spectrographic analysis for (a) original speech signal, and (b) the corresponding
LP residual. Panel I, Panel II, Panel III, and Panel IV represent the spectrograms of
a female speaker for the emotions anger, happy, sad, and neutral, respectively, for the
sentence “Das will sie am Mittwoch abgeben (She will hand it in on Wednesday)”.

Fig. 4. Spectrographic analysis for (a) original speech signal, and (b) the corresponding
LP residual. Panel I, Panel II, Panel III, and Panel IV represent the spectrograms of
a male speaker for the emotions anger, happy, sad, and neutral, respectively, for the
sentence “Das will sie am Mittwoch abgeben (She will hand it in on Wednesday)”.

Fig. 5. Effect of LP orders for LFRCC using TDNN and ResNet Classifiers.

number of peaks (encircled areas) in the pitch contour plot for LP order 20,
compared to LP order 6, indicates that the higher order LP model more accu-
rately captures finer pitch details. This finding enhances the credibility of the
results in Fig. 5. LP order 20 outperforms LP order 6 in accuracy, suggesting the
presence of more relevant and steadfast pitch information that contributes to its
superior performance.
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5.4 Results with Score-Level Fusion

To understand the complementary information captured by different features,
score-level fusion is performed using the following data fusion strategy. We will
try different α values between 0.0 and 1.0 with a step size of 0.1

LScore fused = αL(classifier)feature1 + (1 − α)L(classifier)feature2, (5)

In the equation, Lfeature1 is the raw score from the classifier of either MFCC
or LFCC given as input feature, while Lfeature2 represents the classifier raw score
for LFRCC. Figure 6 and Fig. 7 illustrate the accuracy, and Fig. 9 and Fig. 10
show the Equal Error Rate (EER) of the score-level fusion on ResNet and TDNN,
respectively. It is observed that MFCC and LFRCC give the best classification
accuracy of 94.87% and 87.18%, and the feature pair gives the lowest EER for
TDNN and ResNet classifiers, respectively, as observed in Fig. 9 and 10. MFCC
and LFRCC achieve the highest classification results because, in our opinion,
MFCC effectively captures spectral information in the lower frequency regions
of speech, while LFRCC captures excitation information in the higher frequency
regions. By combining these two feature sets, the major emotional content in
speech signals can be captured comprehensively.

Fig. 6. Score-level fusion of features using the ResNet classifier.

5.5 Results with Classifier-Level Fusion

LClassifier fused = αL(feature)Classifier1 + (1 − α)L(feature)Classifier2, (6)

Figure 8 depicts the classifier-level fusion. In this, raw scores from each clas-
sifier (TDNN and ResNet) are multiplied by the weight α, and then all the
weighted outputs are added together to obtain the final output, as shown in the
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Fig. 7. Score-level fusion of features using the TDNN classifier.

above equation (6). The final score is then used to determine the accuracy of the
classification. In short, we use the same feature as input to both classifiers and
combine their outputs to obtain a final score in classifier-level fusion, whereas,
in score-level fusion, classifiers remain the same while raw scores from differ-
ent feature sets are used. It is observed that the highest classification accuracy
obtained for MFCC is 76.92 %, LFCC is 84.62 %, and LFRCC is 87.18 %,
at the α values shown in Fig. 8, these are close to the outcomes of the single
TDNN classifier as visible in Table 4. This suggests that classifier characteris-
tics did not significantly enhance accuracy compared to score-level fusion, where
a substantial improvement was observed from the combination of MFCC and
LFRCC feature sets. This proves that the results obtained are not significantly
dependent on the classifier, thereby proving that the proposed LFRCC feature
set captures emotional information, at least not worse than MFCC or LFCC.

Fig. 8. Classifier-level fusion for single feature sets using the TDNN and the ResNet
classifiers.
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5.6 Performance of LFRCC on SER

Table 4 shows that the cepstral coefficients with linear filterbanks (i.e., LFCC)
result in better classification than the Mel filterbanks (i.e., MFCC), irrespective
of the classifiers used for SER. This suggests that LFCC can potentially capture
emotional information well in higher frequency regions compared to the MFCC
as the width of the triangular filters in MFCC increases with frequency, thus
ignoring fine spectral details. In particular, anger and happiness operate in higher
frequency regions (Sect. 5.1), which is captured better by LFCC due to the
constant difference between the width of subband filters in the filterbank.

The LFRCC feature set demonstrates superior performance compared to the
baseline MFCC and LFCC features, achieving a 25.64% and 10.26% abso-
lute improvement, respectively, with the ResNet and a 12.37 % and 4.67 %
improvement, in the case of TDNN (as shown in Table 4). Also, this improved
performance can be seen from lower EER for the case of LFRCC, obtaining
10.56%, 7.19% for ResNet and TDNN, respectively, as can be observed from
Table 4.

It is widely acknowledged that the lungs are crucial in providing the neces-
sary airflow, which acts as a power supply for speech production. Consequently,
changes in respiratory patterns directly impact the timing, duration, and over-
all rhythm of speech. As a result, respiratory patterns can influence emotional
expression in speech signals [6,7]. The LFRCC feature set effectively captures
this excitation source information (as discussed in Sect. 5.1). Specifically, the
section around the Glottal Closure Instants (GCI) in the LP residual signal
exhibits a high signal-to-noise ratio (SNR) due to periodic excitation. During
the Glottal Closure (GC) phase, the excitation source is completely isolated
from the vocal tract [9]. This region contains valuable information that cannot
be adequately captured by MFCC and LFCC, making LFRCC a compelling
choice for representing these features.
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Fig. 9. EER values for score level fusion on Resnet.
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Fig. 10. EER values for score-level fusion on TDNN.

Table 4. Classification Accuracy and EER.

Classifier Feature Accuracy (%) EER (%)

ResNet MFCC 61.54 33.32

LFCC 76.92 20.25

LFRCC 87.18 10.56

TDNN MFCC 76.92 18.84

LFCC 84.62 12.74

LFRCC 89.29 7.19

6 Summary and Conclusion

This study proposed an excitation source-based LFRCC feature set for emotion
recognition. The vocal tract system features, such as MFCC and LFCC, were
used for performance comparison. The objective was to exploit the complemen-
tary information in LP residual-based features, and they proved to perform much
better than the state-of-the-art spectral features, indicating that the proposed
features contain specific discriminative power to classify emotions. The signifi-
cance of using a linear filterbank over Mel filterbank was also observed. Pitch con-
tour and spectrogram analysis provide cues regarding optimal LP order selection
and relevant emotion-based information. Moreover, the results from classifier-
level fusion proved the efficiency of the proposed feature regardless of the clas-
sifier used. It is also known that breathing patterns are different for normal vs.
mentally disturbed patients and indicates the possible potential of emotional
recognition of mentally challenged individuals. As part of future research direc-
tions, exploring the incorporation of an average pitch level as a reference point
holds the potential to mitigate speaker-dependent variations and can improve
inferences from contour plots. Additionally, investigating the integration of this
feature set with advanced neural network architectures, such as DCNNs [3] and
autoencoders [13], presents a promising avenue for further research.
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