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Abstract Energy plantations have been gaining importance in the supply of biomass 
for energy purposes, due to their high yield in short timeframes. These forest systems 
also enable to reduce the pressure in other forest systems to provide biomass for 
energy, in particular those under protection and conservation status. This chapter 
reviews the state of the art of energy plantations and their yields. It addresses the 
selection of species, density, rotation, harvest cycles, site selection, management 
practices, harvesting, biomass yields, and their estimation. Overall, there is a wide set 
of species and management options that can be used in energy plantations. Similarly, 
there is a large variability in yields, that vary between and within species, due to site, 
density, rotation, harvest cycles, and management. Though there are many studies, 
further research is needed on yield optimisation, rotation length, harvest cycles, 
management practices, and harvesting. 
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1 Introduction 

Wood is considered one of the most important raw materials as it satisfies several 
human needs, among which is energy [1]. In the last decades, energy plantations 
have been gaining importance as a source of energy because of the energy crises, 
the concerns about the reduction of greenhouse gas emissions, the dependency on 
fossil fuels, the increase of carbon sequestration, and to release the pressure on 
other forests systems [1–8]. These forest systems date back to ancient times, but 
management practices have been improved to increase their yield [1, 9–11]. Their
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importance was recognised by the International Union of Forest Research Organi-
zations (IUFRO; http://www.iufro.org) through the creation of the research group 
1.03.00–Short-rotation forestry. 

Dickmann [1] identifies several terms for forest energy plantations: short-rotation 
woody crops (SRWC), short-rotation forestry (SRF), short-rotation coppice (SRC), 
short-rotation intensive culture, intensive culture of forest crops, intensive plantation 
culture, biomass plantation culture, bioenergy plantation culture, biofuels feedstock 
production system, energy forestry, short-rotation fiber production system, mini-
rotation forestry, silage sycamore, wood grass. The most frequently used terms are 
short-rotation woody crops (SRWC), short-rotation forestry (SRF), and short-rotation 
coppice (SRC). As no standard term has been defined in this chapter the term energy 
plantations will be used. 

The goals of this review are to provide insights into energy plantations from the 
selection of species or clones to harvest and yields. This chapter is divided in two 
sections. One that analyses the energy plantations, including the selection of species, 
initial density, rotation, harvest cycles, site selection, management practices, and 
harvesting (Sect. 2), and another that evaluates biomass yields (Sect. 3). 

2 Forest Energy Plantations 

Forest energy plantations are forest systems whose main goal, frequently the only 
one, is producing biomass for energy, and have specific spatial and temporal features 
[6, 12]. The plantations are composed of very fast or fast growing tree species, 
many times improved hybrids. These stands have frequently very high densities 
(from 1000 to more than 300,000 stems·ha−1), in coppice systems most of the times, 
with very short or short rotations (1–12 years), cutting cycles of 10 to 30 years, 
managed in clearcutting systems, where all aerial biomass is removed in each harvest, 
and are intensively managed. Their establishment and management (Fig. 1) include 
site selection, control of spontaneous vegetation, selection of planting techniques, 
fertilisation, control of pathogens, and irrigation [1, 13–24]. Planting design and 
management are frequently adapted to a fully mechanised system [25–27].

Biomass from forest energy plantations, when compared to other renewable 
energy sources, has several advantages: biomass is relatively easy to transport and 
store [28]; it has different uses, such as heating, electricity or biofuels [3, 28–30]; 
it is available worldwide [3, 13, 31, 32]; in a specific location its quantity can be 
increased through anticipated harvest in times of shortage or high prices of other 
fuels [28] or reduced through delayed harvest when its market price is low or other 
fuels have low prices [33]; it allows decentralisation of the energy systems [3, 28]; 
and it is suitable in regions with biomass availability and low population density 
[28, 34]. 

Forest energy plantations are considered economically viable when compared to 
other forest and agricultural productions at the management unit level. These forest 
systems have low risk and high economic viability. Its harvest flexibility (anticipated

http://www.iufro.org
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Fig. 1 Factors influencing 
the establishment and 
management of energy 
plantations

or delayed) promotes the reduction of risks, especially if included in agricultural crops 
portfolios; and it also provides ecosystem services without adding costs, especially in 
areas of intensive agriculture [2, 4, 5, 7, 35–37]. However, energy plantations can pose 
a risk when established in areas suited for agriculture, and therefore, it is recognised 
that they should be settled in set aside agricultural lands or marginal lands [3, 6, 
12, 13, 31–33, 38], enabling simultaneously rural development and environmental 
benefits [1, 2, 12, 39, 40]. These plantations can also be settled for phytoremediation 
purposes, i.e., using trees in energy plantation systems to remediate contaminated 
sites while using the biomass for energy [26, 41–45]. Forest energy plantations are 
well represented, for example, in Canada [46], China [47], United States of America 
[48, 49], and Europe, northern and central, and to a lesser extent in the southern 
[13, 31, 32]. 

Selection of the Species 

The selection of tree species for energy plantations encompasses a set of requirements 
that should be fulfilled [50–53]: biomass should have high specific energy and quality 
as fuel, high biomass production in dry weight, good resprouting ability, fast juvenile 
growth, narrow crowns or large size leaves in the upper crown, adaptability to a wide 
range of sites, and resistance to biotic and abiotic disturbances (Fig. 2a). Ideally, the 
species should have [3]: maximum possible production in dry matter per stand area
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Fig. 2 Species requirements for energy plantations a and ideal features for management and high 
yields b 

unit, production with low energy input (including nutrient requirements), low cost, 
and wood composition with the least possible contaminants (Fig. 2b). 

These requirements can be satisfied by a large set of species, characterised by a 
fast initial growth which enables them to outcompete other species for the available 
growing space. From the many species that can be used for energy plantations some 
of the referred in literature are presented in Table 1.

Due to their characteristics, i.e., fast or very fast growth, wide genetic base, easy 
propagation, short improvement cycles, easy vegetative reproduction, and ability to 
resprout, the aforementioned species are adapted to several climatic and soil condi-
tions. They have also the ability to improve soil quality and to have high productions 
[51–53, 101]. In European Union countries three genera are considered to have 
the largest potential for energy plantations, namely Populus spp., Salix spp., and 
Eucalyptus spp. [51–53, 101]. 

In energy plantations, hybrids are frequently used to improve several tree species 
traits such as survival rate, biomass productivity, resprouting ability, adaptation to a 
variety of environmental conditions, and resistance to pathogens. The hybrids can 
be developed through genetic improvement [26, 98] and/or biotechnology [102]. For 
example, clones of Populus spp. and Salix spp. can differ in what regards survival 
rate, growth, and woody properties due to site quality and/or planting density [103] 
or not [104]. Relevant are also the relations genotype-environment (e.g., [86, 105]). 

Density, Rotation, and Harvest Cycles 

In energy plantations density and rotation length are strictly linked as the main goal is 
to achieve the highest possible biomass production in the shortest possible time (e.g., 
[26, 56, 89, 106]). Sixto et al. [6] refer to three principles that are associated with 
the design and management of forest energy plantations: (a) Law of final constant 
yield that states that biomass yield increases with the increase of density up to an
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Table 1 Forest species used in energy plantations 

Genus/Specie References 

Acacia spp. [54, 55] 

Acer pseudoplatanus [56–59] 

Ailanthus spp. [55] 

Alnus spp [60–67], 

Bambusa spp. [68, 69] 

Betula spp. [58, 59] 

Casuarina spp. [55, 70] 

Eucalyptus spp. [1, 37, 50, 71–75] 

Fraxinus spp. [76] 

Gmelina arborea [77–79] 

Leucaena spp. [1, 55, 77] 

Liquidambar styraciflua [1, 80, 81] 

Paulownia spp. [82, 83] 

Pinus taeda [1, 84] 

Platanus occidentalis [57, 80, 81, 84–87] 

Platanus spp. [48] 

Populus spp [1, 38, 47, 50, 56, 58, 59, 63, 80, 86, 88–93] 

Prosopis spp. [94, 95] 

Robinia pseudoacacia [56, 96, 97] 

Salix spp. [1, 38, 50, 58, 59, 63, 92, 98] 

Swetenia mahogany [99] 

Tectona spp. [99, 100] 

Ulmus pumila [48] 

Yushane spp. [68]

upper threshold, above which it becomes independent of density. It can be used to 
determine the maximum number of stems per area unit; (b) The development of social 
classes in a stand, with dominant and dominated individuals competing among them. 
Harvest should be done before competition affects the growth of the individuals and 
the vitality of stumps; (c) Self-thinning law states that without mortality total biomass 
per area unit increases exponentially until canopy closure, after which stems tend to 
reduce growth. After canopy closure, some trees become dominated and eventually 
die unless there is a density reduction. Thus, canopy closure should be avoided. 

The three aforementioned principles are the basis for trials to determine both 
density and rotation length in energy plantations. A wide range of densities has been 
studied, from 1000 stems·ha−1 to 310 000 stems·ha−1 [12, 21, 48, 58, 59, 92, 98, 
101, 107–109]. Similarly, a large range of rotations has been studied, from 1 to 20 
years [12, 21, 38, 48, 58, 59, 92, 98, 101, 107–109].
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Fig. 3 Density versus 
rotation length 

According to Dickmann [1], there seems to be a dichotomy regarding density 
and rotation length that is also linked with the woody products and yields to be 
obtained. It should be taken into consideration the production per area versus per 
individual tree. Higher densities result in higher biomass per area unit but lower 
biomass per individual stem [103, 110]. Thus, energy plantations can be divided 
into (Fig. 3): (i) higher densities and shorter rotations, and (ii) lower densities and 
longer rotations. The former has densities ranging from 5 000 to 200 000 stems/ha, 
and rotations from 1 to 5 years. Their main goal is biomass for energy where the 
maximum conversion of solar energy is attained and the flexibility of the biomass as 
raw material is not important. This strategy is also used when phytoremediation or 
application of vegetation as a filter of soil contaminants is needed. The latter have 
densities ranging from 1000 to 2500 stems·ha−1, rotations from 8 to 12 years, and 
enables more flexibility in terms of woody products, small dimension timber, pulp 
and paper, and biomass for energy. Yet, a wide variety of combinations of densities 
and rotations can be found in the literature. Examples of stands of higher densities 
and shorter rotations are suggested by some authors [21, 26, 39, 86, 98, 101, 107, 
108, 111, 112], while stands of lower densities and longer rotations are suggested by 
other authors [37, 39, 58, 59, 74, 75, 109–111, 113–115]. 

Though there is a wide range of literature references focused on determining 
the optimal density, and rotation, the results are not always coincident. This is, at 
least partially, explained by the constraints related to the tree species, clone, site, 
and climate. It is well known in silviculture that the maximum volume (or biomass) 
is reached when the mean annual increment equals the current annual increment 
[10, 116–118]. Several authors have studied the rotation that maximised biomass 
production as a function of density (e.g., [92, 101, 106, 119]). For densities up to 
10 000 stems·ha−1 higher yields are attained at longer rotations (e.g., 4 years versus 
2 years) [101] while densities higher than 10 000 stems·ha−1 the higher yields are 
attained at shorter rotations [119]. The wider the spacing the higher the growing 
space for each individual, and the higher the dimensions of the individual stems. The 
reduction of biomass production seems to be related to biomass allocation due to full 
growing space occupancy and competition among individuals [62]. The reduction of 
the yield with the increase of rotation length for high densities seems to be related to 
self-thinning. Its effects result from the increase of competition between individuals 
and an overall reduction of growth and, consequently, of yield. Thus, the mitigation 
of the self-thinning effect on yield can be attained with shorter rotations [119]. It 
seems that for a density equal or higher to 10 000 stems·ha−1 rotations of 2-years
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length are better suited for maximising yield while for lower density longer rotations 
can be used [106]. 

Two other aspects should be considered: one is technical, and the other is the maxi-
mization of biomass per stem or per area unit. The rotation length can be influenced 
by technical aspects. On one hand, mechanical harvest equipment has a maximum 
threshold cutting diameter, which can reduce rotation length [26]. On the other hand, 
mechanical harvest is also described as problematic for high densities, in which case 
the option is to reduce density and increase rotation length [1]. The other aspect 
relates to the maximisation of production per stem or per area unit, i.e., fewer stems 
with larger dimensions or otherwise. In the former, products have a higher proportion 
of wood, and smaller of bark, leaves, and branches. This implies smaller densities, 
longer rotations, and products that can be used for energy, pulp and paper, or other 
small dimension timber products. Thus, the model of silviculture is more flexible in 
terms of products. As growth is concentrated in fewer trees, whenever competition is 
a limiting factor thinning or sprout selection could be considered as well as pruning 
for small dimension timber products, to increase quality [1, 117]. But this approach 
has the disadvantage of having lower densities and longer rotations [1, 19], resins, 
and other undesirable chemical components for the use of biomass for energy [19]. 
The energy plantations with higher densities and trees of small dimensions have the 
advantage of maximising the conversion of solar energy in biomass, which results in 
a yield of biomass oriented to bioenergy, but with less flexibility in terms of woody 
products [1, 107]. Other advantages are reducing the spontaneous vegetation [120] 
and not needing thinning, sprout selection, or pruning [1]. 

The harvest cycle, i.e., the number of harvests until the end of the production 
cycle, when there is the need to regenerate the stands, is constrained by stump vigour, 
stump mortality, and rotation. Stump vigour influences the stump’s ability to resprout 
as well as stool survival. The higher the stump vigour the higher the resprout ability 
and the stool survival. Thus, the higher the stump vigour the higher the potential 
yield. Stump mortality influences density and productivity. The lower mortality rates 
enhance higher productions [121]. Productivity is also affected by the successive 
rotations with a trend towards the increase from the first to second or third rotation, 
and a tendency towards yield decrease more or less accentuated, from the fourth 
rotation onwards. Yet, it also depends on the stump vigour, stump mortality, species, 
and site. In general, the harvest cycle’s length is determined by productivity. When 
productivity between successive harvests decrease it is considered that the end of 
the production cycle has been reached [122]. Several authors refer to cutting cycles 
between 10 and 30 years with 3 to 10 rotations [12, 17, 26, 56, 63, 123]. 

Site Selection and Management Practices 

In the establishment of any forest stand, and in particular of energy plantations, site 
selection (Fig. 4), which is related to the soil and climate [1, 3, 17], has a strong 
influence on the survival, growth, and yield. Overall, there is a trend toward higher
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yields on better quality sites [1, 26, 104]. But it is also dependent on the ecological 
traits of the species or clones. Thus, considering that a high yield is to be attained, soils 
should have adequate physical and chemical properties. The soil characteristics that 
enhance biomass production are soil moisture availability during the yearly growing 
season, nutrient availability, and aeration. The soils that should be avoided are those 
with drainage problems (either poorly or excessively drained), with pH too acid or 
too alkaline, degraded through erosion, saline, shallow, or infertile. Climate should 
also be considered in particular, the mean annual temperature, annual precipitation 
and precipitation during the growing season, frosts, and snow. Climate conditions 
should be within the ecological range of the species or clones, preferably close to 
their optimum for their growth. Steep slopes should be avoided if mechanisation is 
foreseen [1, 12, 19, 26]. 

One issue related to biomass for energy is the identification of the areas available 
for energy plantations. These areas can be determined following a methodology 
in four steps [17]: (1) selection of the species to be used and assessment of their 
ecological and cultural characteristics; (2) determination of the suitability of the 
sites, which refers to the selection of a set of data, frequently in a geographical

Fig. 4 Site characteristics suited and unsuited for energy plantations 
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information systems (GIS) environment, including soils, land morphology, climate, 
protected areas, administrative boundaries, a suite of assumptions and a subsequent 
set of operations that enable the identification of the areas where the selected species 
can be grown; (3) availability of land, which refers to the identification of the potential 
areas available, considering the existing restrictions, whether economic or social; (4) 
assignment of the land, which refers to the definition of a decision process that 
enables the determination of the areas where the energy plantations can be installed. 
The areas identified are dependent on the initial assumptions made. If only the optimal 
conditions that potentially originate the higher yields are considered, then the area 
estimation could be rather conservative [17]. 

Management practices include the control of spontaneous vegetation, planting 
techniques, initial development, control of pathogens, and irrigation (Fig. 5). The 
control of spontaneous vegetation enables the reduction of competition between the 
tree species or clones and other vegetation. It is especially relevant in the competition 
for light, water, and nutrients [19, 124]. It should be done during site preparation, as 
the control of herbaceous and shrub species is simpler and makes plantation opera-
tions easier. Several methods of control of spontaneous vegetation can be considered. 
Their selection should take into account a suite of factors that include the type of 
spontaneous vegetation, site, climate, and tree species or clones to be planted. It 
can be mechanical or chemical or even a combination of both [1, 26, 86, 124–126]. 
The control of spontaneous vegetation after each harvest might [127] or not [128] 
be necessary and is frequently chemical [129]. It is recommended when competi-
tion with spontaneous vegetation and/or production losses are expected, though care 
should be taken not to affect either the stumps or the sprouts [6, 26]. 

Regarding the selection of planting techniques, two main choices can be pointed 
out, namely plantation of cuttings or plantation of seedlings. Cuttings, i.e., unrooted 
hardwood cuttings for species that have a good ability to develop the root system 
and the aerial part, are frequently used with Salix spp. [1, 26, 130–132]. Seedlings, 
most of the times, with plants produced in containers whether from seed origin or

Fig. 5 Management practices 
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vegetative propagation [1], are used with for example Populus spp. or Eucalyptus 
spp. [1, 130–132], 

Energy plantations establishment should consider the spatial arrangement of 
the individuals, which is related to spacing and density. Regular spacing design 
is frequently used to promote better use of the growing space while at the same time 
enhancing its mechanical harvest. The spacing can be in single, double, or triple rows 
(Fig. 6) depending on the density. Typically, the distance between rows ranges from 
2.0 m to 3.0 m in the higher density and shorter rotation plantations and between 
4.0 m to 6.0 m in the lower density and longer rotation ones [12, 16, 75, 133]. In the 
single row design, the distance within the rows ranges from 0.5 m to 3.0 m [12, 16, 
75, 133]. In the double row design, the spacing between the double rows is between 
0.75 m and 1.50 m, and the distance within the rows ranges from 0.45 m to 0.80 m 
[12, 133, 134]. For the triple row design, the spacing between the triple rows is about 
0.6 m, and the distance within the rows of 0.6 m [135]. According to some authors 
[12, 136], long lines increase the efficiency of harvest. Also, the head and bound-
aries of the energy plantations should be wide enough for the machinery manoeuvres 
and to reduce to a minimum its turns [12]. Density and spatial arrangement affect 
competition between individuals. There is a trend towards lower competition in the 
square spacing when compared with the rectangular one [103]. 

Regarding the initial development of the plantation, two approaches can be 
followed [26, 107, 108]: (i) the plantation is harvested at about 1 year old to promote 
coppicing, which increases the density. The sprouts take advantage of the existing 
stump root system that promotes the growth rate and the increase of biomass produc-
tion; and (ii) the first harvest is done at the end of the rotation and the coppice derives 
from this first harvest. Before choosing one or the other, both costs and biomass 
production should be considered to increase the economic viability [6]. 

The need for fertilisation is determined by the site, especially by the site’s produc-
tive potential as it plays a key role in the intensive forest systems of biomass produc-
tion [6]. Because it is an expensive operation its necessity should be evaluated [1]. 
Some energy plantations’ studies reported that fertilisation did not increase yield 
when compared with not fertilised ones (e.g., [12, 130–132, 137–141]). This effect 
could be due to the high quality of the soils, as many are set aside agricultural lands

Fig. 6 Schematic representation of single, double and triple row energy plantation design (where 
a is the distance between rows, b distance within the row, c the distance between double rows, and 
d the distance between triple rows) 
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[6, 132]. Conversely, in other studies, fertilisation originated the increase in yield, due 
to the increase of the nutrients’ availability (e.g., [12, 131, 139, 141–143]). In others 
still, a negative effect of fertilisation was described, which was related to polluting 
mineral elements (e.g., salts) and/or antibiotics (e.g., [144–146]). A thorough revision 
of the effects of fertilisation on energy plantations can be found in Marron [147]. 

The assessment of soil and foliar nutrient levels should be considered to determine 
the need and quantity of fertiliser. If the nutrient’s concentrations are below their 
critical level then fertilisation should be done [1]. It can either be done by inorganic 
fertilisers [26, 86, 148], or organic fertilisers, residual waters, or intensive cattle 
grazing muds [98, 149–153]. In any case, a thorough evaluation of the soil’s physical, 
chemical, and biological (e.g., organic matter and amount of seeds of spontaneous 
vegetation) characteristics should be carried out before considering the application of 
fertilisers [26] as well as their application costs [6]. The distinction between the first 
and the other successive harvests should also be made. In successive harvests, the 
export of large amounts of nutrients from the site is expectable. Yet, leaf fall and its 
decomposition incorporate nutrients in the soil, though the reallocation of nutrients 
from leaves to woody organs varies between species. Thus, the decomposition of 
leaves incorporates larger or smaller amounts of nitrogen, phosphorous, potassium, 
calcium, and magnesium promoting the maintenance of soil fertility and, potentially, 
compensating for the removal of woody biomass [154]. When the exports are not 
compensated forest energy plantations might need to be fertilised [1, 22, 155]. 

The control of pathogens should be considered whenever outbreaks of pests or 
diseases occur. One of the ways to minimise the effect of pathogens is by using 
clones resistant to pests and diseases [156, 157] or increasing the genetic diversity 
[1, 158]. Alternatively, plant protection products (phytopharmaceuticals) can be used, 
in which case legislation should be followed [6] and the economic and environmental 
viability should be justified [1, 86, 159]. These products should only be applied as 
an answer to a specific problem when large damages are to be expected and not as a 
prophylactic treatment [6]. 

Irrigation in forestry is not frequent [10, 116–118, 160]. In many forest energy 
plantations, annual precipitation and its annual distribution along with soil water 
holding capacity are sufficient to cover the trees’ water needs. Irrigation should be 
considered when water stress is expected to occur, to avoid the reduction of biomass 
production or mortality [161–163]. The quantity of water to be used should be calcu-
lated as a function of the plantation evapotranspiration and cultural coefficient (i.e., 
water balance) to promote the best possible use of water [6, 164]. 

Harvesting 

The optimisation of harvesting is of the utmost importance [165], due to its share of 
costs and inputs. The harvesting costs correspond to about 45% of the total energy 
plantation costs [134]. Also, the energy input corresponds to up to 33% of the total
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input of energy [166], being the second largest (the first is fertilisation) fossil energy 
inputs in the system [167]. 

Several machinery existing on the market has been used to harvest energy planta-
tions. Moreover, to improve harvest efficiency other machinery has been developed 
(for detailed revision see [168]). In literature four main harvesting techniques are 
referred [136]: single pass cut-and-chip, double pass cut-and-store, single pass cut-
and-bale, and single pass cut-and-billet. The single pass cut-and-chip being the most 
flexible, can be used with different stand structures (species, ages, diameter, density, 
and stocking). The harvesting is done with a single pass making the operations simpler 
and reducing labour and machinery costs [169] because other cultural practices can 
be done with these machinery [170]. Furthermore, single tree harvesting productivity 
was improved by multiple tree harvesting with a system based on software [171]. 
In the double pass cut-and-store harvest system, the stems are cut and left to dry 
in a specific location after which are chipped, corresponding to two passes. When 
compared with the other systems its advantages are related to not needing biomass to 
be stored in a covered place; to the reduction of the losses due to microbial activity 
and emission of undesired gases during the storage of the chips; the reduction of the 
costs of transport because of the lower moisture content of the chips; forest chipper 
provides a high material effective capacity as well as a favourable particle size distri-
bution [172]. The two latter harvesting systems are much less representative than the 
former two. The cut-and-bale and cut-and-billet derive in different biomass formats 
than the single pass cut-and-chip and double pass cut-and-store, resulting in biomass 
bales, billets, and chips, respectively [136]. The most used and improved mechanical 
harvesting technique is single pass cut-and chip, followed by double pass cut-and 
store (for details see [136]). 

Species dormant season (winter in the northern hemisphere) is the best one for 
harvesting. The advantages are related to the recycling of leaf nutrients [154]. Addi-
tionally, cutting should leave stumps between 10 cm and 20 cm to preserve the buds 
and to maintain resprouting stump ability [173]. 

3 Biomass Yields in Energy Plantations 

Estimation of Biomass in Energy Plantations 

Biomass can be estimated by destructive or non-destructive methods (cf . chapter 
“Modelling Biomass”). The former can be done either through sampling, frequently 
used for modelling; or at the end of the rotation when trees in a certain area are 
harvested. The disadvantage of the latter is that it does not allow to make predictions. 
The non-destructive methods use allometric biomass functions and enable to predict 
yields. However, due to the specificities of these forest systems the numerous existing 
allometric equations, many developed for high forest systems, originate bias in the 
estimation of biomass. Thus, several authors developed allometric equations specific
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to energy plantations for tree species and/or clones. In literature was found a set of 
allometric equations for Populus spp. [39, 47, 59, 88, 91, 93, 108, 109, 113, 133, 
174], for Salix spp. ([26, 59, 62, 112, 175–178], and for Eucalyptus spp. [37, 74, 75, 
114, 179, 180]. 

Estimations of biomass of energy plantations have been done at the local or 
regional levels. Frequently growth and production models (which include allometric 
biomass functions) are used to generate several scenarios of management [130, 181– 
185]. At local level, the models are frequently based on the biomass allometric 
functions per species. Conversely, at broader scales, the models used in the estimation 
of biomass include usually several soil and climatic data variables, along with plant 
growth principles and management options, and also the interaction between the 
four factors. Bandaru et al. [186] classified climatic data sets in two categories: (i) 
collected from meteorological stations; and (ii) gridded weather data sets. The first 
is predominantly used at a local scale while the latter are used at a regional scale 
[187]. The gridded weather data can be obtained by (i) interpolation techniques 
of weather data and topographic characteristics or (ii) modelling and assimilation 
techniques [188]. A modified version of 3-PG for energy plantations with coppice 
management, 3-PG-Coppice model [183] was used by Bandaru et al. [186]. It requires 
four types of variables, namely weather, soil characteristics, plant growth parameters, 
and management regime. The main goal of the study was to analyse the effect of 
different weather data sets in the estimation of biomass from short rotation woody 
crops of hybrid Populus spp., using flux towers and four different high resolution 
gridded weather data at five different locations. The same authors refer that high 
resolution gridded weather data has some bias when compared with that of the flux 
towers [186]. This can be, at least partially, explained as modelling and assimilation 
techniques are not able to characterise in detail the climate that is affected by the 
topography and land use [186, 187, 189, 190]. Moreover, there seem to be smaller 
biases for the higher spatial resolutions [186, 188, 191, 192]. Bandaru et al. [186] also  
stress the importance of the bias determination on the weather as influences as well 
the biomass estimations. Other authors [28, 193] estimated the biomass for a short 
rotation coppice in a geographical information systems environment allowing the 
inclusion of climate and soil variables and the analysis of biomass spatial variability. 
The use of average yields to estimate biomass over a region results in bias on biomass 
potential, which might affect the planning of its use due to the variability of local 
conditions, species, and growth rates. Moreover, in the case of need, short term 
biomass potential yield can be increased by reducing coppices rotation lengths [28]. 

Biomass Yield of Energy Plantations 

Biomass yield is related to initial density, regime, rotation length, and cultural prac-
tices. The analysis will be focused on three genera Populus spp., Salix spp., and 
Eucalyptus spp. It was based on 33 literature references, corresponding to a total of 
415 trials (Table 2). Overall, there seems to be a trend towards higher densities for
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Salix spp., when compared to Populus spp. and Eucalyptus spp., whereas yield tends 
to be higher for Eucalyptus spp. than for the other two genera. Rotation length shows 
similar trends for all three genera. Yet, the variability is rather large (Fig. 7). This 
variability results from the interactions between species and/or clone traits, site, and 
management practices. The yield of the Eucalyptus spp., Populus spp., and Salix spp. 
varies between 1–63.8 t·ha−1·y−1,0.3–66 t·ha−1·y−1 and 0.3–27.5 t·ha−1·y−1; density 
varies between 2000–7142 stems·ha−1, 278–33,333 stemsha−1 and 6666–107,600 
stems·ha−1; and rotation length among 2–6 y, 1–12 y and 2–19 y, respectively.

For all genera, there is a yield increase from the first to the second rotation, due 
to the increase of density, i.e., each stump had more than one stool, for Eucalyptus 
[74], Populus [101, 109, 113, 133, 165, 174] and Salix [26]. However, other studies 
report a decrease in yield from the first to the second rotation for Populus [21, 108]. 
From the second to the third rotation some studies report an increase in yield for 
Eucalyptus [74] and Populus [101, 109, 113] while others account for its reduction 
for Populus [133, 165] and for Salix [26]. In the fourth rotation, it is observed a 
reduction of yield for all species [26, 74, 113]. 

There was no clear trend between density and production. This is probably related 
to the site quality and climate as well as the management practices. Yet, consid-
ering studies where several densities have been analysed it can be seen an increase 
in production with the increase of density. For example, for Salix, Schweier and 
Becker [178] reported for an initial density of 12,000 stems·ha−1 a yield of 6.8 
t·ha−1·y−1 and 9.7 t·ha−1·y−1, while for a density of 13,200 stems·ha−1 a yield of 
11.7 t·ha−1·y−1. This corresponds to an increase of 10% in the number of stems and 
an increase in yield of 72% and 20%, respectively. For Populus, in Italy, Di Matteo 
et al. [111] reported that an increase in initial density from 7140 stems·ha−1 to 10,360 
stems·ha−1 (an increase of circa 45%) resulted in an increase of yield, from 12.2 
t·ha−1·y−1 to 13.9 t·ha−1·y−1 (circa plus 14%). For Populus, in Germany, an increase 
of 10% in density (from 10,000 stems·ha−1 to 11,000 stems·ha−1) [199] attained an 
increase in yield between 27% and 86% (from 4.4 t·ha−1·y−1 and 5.9 t·ha−1·y−1to 5.6 
t·ha−1·y−1, and 8.2 t·ha−1·y−1, respectively). Yet, the same authors for the same initial 
density increase observed also a reduction of yield of—6.2% (from 5.9 t·ha−1·y−1to 
5.6 t·ha−1·y−1). In another study, for Populus, Oliveira at al. [39] tested eight 
different initial densities (6666 stems·ha−1, 10,000 stems·ha−1, 13,333 stems·ha−1, 
15,000 stems·ha−1, 17,316 stems·ha−1, 20,000 stems·ha−1, 25,000 stems·ha−1, and 
33,333 stems·ha−1) resulting in the increase of yield from the lowest initial density 
(6666 stems·ha−1) to the fourth lowest (15,000 stems·ha−1) when compared with 
the highest one (33,333 stems·ha−1) of 179.6%, 54.3%, 76.0%, and 24.7%, respec-
tively. The fifth and the seventh initial densities (17,316 stems·ha−1 and 25,000 
stems·ha−1) resulted in a reduction of yield of −38.8% and −13.2%, respectively, 
while for the sixth (20,000 stems·ha−1) a small increase of 8.3% was observed. These 
results underpin the variability in the yields, which are probably related to the site 
conditions, climate, and competition between individuals. 

It is known that some broadleaved species show considerable variability in their 
ability to coppice which is associated with their ability to produce sprouts from 
dormant or adventitious buds or ligno-tubers [117, 200, 201]. Sims et al. [74] observed
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Table 2 Energy plantations density, rotation, and cultural practices referred on literature (where C 
is control of spontaneous vegetation, F fertilisation, and I irrigation) 

Genus Country Density Rotation 
length 

Rotation 
number 

Cultural 
practices 

Number 
of trials 

Reference 

Eucalyptus Brazil 2380, 
7142 

2 1 F 4 [114] 

Eucalyptus Spain 2000 6 1 C,F 1 [37] 

Eucalyptus New 
Zeeland 

2200 3 1 C 19 [75] 

Eucalyptus New 
Zeeland 

2200 3 1,2,3,4,5 C 62 [74] 

Eucalyptus Australia 4000 3 1 F 2 [180] 

Populus UK 10,000 2,4 1,2 C 9 [101] 

Populus UK 10,000 3 1,2 C 32 [194] 

Populus Czech 
Republic 

2222 4 1,2,3,4 C,F,I 48 [113] 

Populus Italy 6666 3 2 – 7 [179] 

Populus Italy 7140, 
10,360 

3 1 C,F,I 2 [111] 

Populus Belgium 10,000 4 1–4 C 1 [195] 

Populus Italy 14,100 2 1,2,3 – 5 [165] 

Populus Canada 18,000 4 1 None 4 [98] 

Populus Belgium 10,000 3 1,2 C,F,I 3 [21] 

Populus Belgium 10,000 4 1 C,F,I 2 [108] 

Populus Belgium 10,000 3 2 None 17 [108] 

Populus Belgium 10,000 3 2 C 2 [107] 

Populus Belgium 10,000 4 2 None 6 [107] 

Populus Italy 5000 3 2 F 1 [196] 

Populus Italy 5000 3 2 F 1 [196] 

Populus Spain 6666, 
10,000, 
13,333, 
15,000, 
17,316, 
20,000, 
25,000, 
33,333 

3 1 F,I 8 [39] 

Populus Italy 5900 3, 10 1,2 C,F,I 52 [109] 

Populus France 15,625 2 1 C,F,I 2 [197] 

Populus UK 4444, 
10,000 

5 1 None 3 [63] 

Populus UK 10,000 5 1 – 1 [92]

(continued)
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Table 2 (continued)

Genus Country Density Rotation
length

Rotation
number

Cultural
practices

Number
of trials

Reference

Populus China 278, 
4000 

12 1 F 12 [103] 

Populus Spain 33,333 3 1 C,F,I 1 [198] 

Populus Italy 10,000 1, 2 1,2,3 – 10 [133] 

Populus Czech 
Republic 

2222, 
7407 

3 5,6 None 16 [123] 

Populus France 7272 3 1 C 4 [174] 

Populus Belgium 20,000 4 1 None 1 [58] 

Salix USA 107,600 3 – F, F,I 10 [175] 

Salix UK 10,000 3 1,2 C 32 [194] 

Salix Canada 17,000 3 1,2,3,4,5 C,F 5 [26]) 

Salix Finland 20,000 6, 11, 19 1 F 6 [112] 

Salix Canada 18,000 4 1 None 10 [98]) 

Salix UK 10,000 5 1 None 1 [63] 

Salix UK 10,000 5 1 – 1 [92] 

Salix Germany 14,800 3 1 – 5 [199] 

Salix Germany 13,200 2,3 1 C,I 6 [178] 

Salix Belgium 20,000 4 1 None 1 [58]

a wide variation in the ability to sprout of 19 Eucalyptus species and Dillen at al. [195] 
of 17 Populus clones. Furthermore, survival rates had considerable variations in both 
studies. As yield in energy plantations depends on density [75] the  Eucalyptus species 
with higher densities were those that reached the higher yields [74], regardless of the 
rotation. The higher yields in the coppice regime can also be explained by the faster 
growth of the sprouts as their initial development takes advantage of the existing 
stump root system, thus not experiencing the plantation stress that the seedlings have 
to surpass [117, 200–202]. It is also known that the ability of a stump to resprout 
after successive harvests tends to decline. One or several factors can contribute to this 
decline: stump mortality due to competition, root mortality, disease infection of the 
cut surfaces, nutrient depletion of the soil, and variation of the tree ratios root/shoot 
[74, 117, 200, 201]. Thus, the better suited species for energy plantations, under the 
coppice regime, are those that are able to maintain stumps and root systems with high 
vigour, to resprout vigorously, and have sprouts with high growth rates, enabling in 
this way to have stands of high densities and yields [74]. 

Overall, circa 19% of the studies had no information (7%) or was not made 
(12%) the control of spontaneous vegetation, fertilisation, and irrigation. From the 
remaining 81% of studies, control of spontaneous vegetation was used in about 
85% of the studies, fertilisation with or without control of spontaneous vegetation 
in 51%, and irrigation with or without spontaneous vegetation and fertilisation in



Energy Plantations 107

Fig. 7 Boxplots of yield, density, and rotation length

32%. The analysis per species revealed that for Eucalyptus spp., none of the trials 
was irrigated, in 60% control of spontaneous vegetation was done, in 36% control 
of spontaneous vegetation and fertilisation were used, and in 4% were fertilised. 
For Populus spp., 35% had control of spontaneous vegetation, 54% had control of 
spontaneous vegetation, fertilisation, and irrigation, 7% were fertilised and 4% were 
fertilised and irrigated. For Salix spp., in 61% control of spontaneous vegetation 
was made, 12% were fertilised, 12% were fertilised, and irrigated, 7% control of 
spontaneous vegetation, and fertilisation was made, and 7% control of spontaneous 
vegetation, and irrigation were used. 

The large variability of yields of the energy plantations seems to be related to 
soil fertility (physical, and chemical characteristics) [58, 59]. The decrease in yields 
was also associated with the decrease in rainfall (the lower the site quality, and 
rainfall the lower the yield) [108, 113]. Another source of variability in yields is 
related to different mortality, growth rates, and patterns of the species, and clones 
[74, 75, 107, 108, 174].



108 A. C. Gonçalves

4 Final Considerations 

Energy plantations have an important role in the biomass for energy availability 
and may release pressure on other forest systems to supply bioenergy (e.g., [2, 7]). 
Their advantages are related to their high yields [26], short rotations [12], worldwide 
availability [31], harvest flexibility through anticipated or delayed harvest [28, 33], 
and easy transportation, and storage [28]. 

The energy plantations are most frequently pure even-aged stands of high densi-
ties, and usually under coppice regime [1, 12, 21]. Many species can be used (cf . 
Table 1) although the most frequent, at least in Europe, are Populus spp., Salix spp., 
and Eucalyptus spp. [51, 53]. 

The selection of the site and management should be suited to the species or 
clones [1]. Soil and climate are of primordial importance to achieve high yields, and 
should be near the optimum of the ecological range of the species [12]. Manage-
ment practices range from planting to harvest and include the selection of density, 
[12], rotation [109], harvest cycle [110], spatial arrangement [133, 135], plantations 
techniques [1], control of spontaneous vegetation [86], fertilisation [147], irrigation 
[163], control of pests, and diseases [86], and harvesting [136]. A wide range of 
species and management options exist, and the suitability of the species or clones to 
the site and management practices is of primordial importance to the optimisation 
of the yield. 

Biomass estimation is frequently assessed with allometric functions. Due to the 
energy plantations’ specificities, the existing functions resulted in biased estimations, 
especially the functions developed for high forest, and long production cycles [113]. 
Thus, allometric functions were developed for energy plantations (e.g., [26, 174, 
179]). 

Moreover, yield has a trend towards the increase from the first to the second 
rotation, due to density increase; and a decrease from the third to the fourth rotation. 
Yet, the variability is high and contrasting results are found in the literature (cf . 
Sect. 3), which were related to site productivity and climate. 

Funding This work is funded by National Funds through FCT–Foundation for Science and 
Technology under the Project UIDB/05183/2020. 
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