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Abstract This chapter introduces and outlines the book “Forest Bioenergy: From 
Wood Production to Energy Use”, dedicated to biomass, currently the most 
commonly used renewable energy source, which contributes to 10% of the world-
wide energy supply. The majority of bioenergy comes from woody biomass, which 
is mainly converted into heat (mostly in households, followed by industries). Its 
conversion to power is also relevant, while the production of transport biofuels is 
a promising pathway. Modern bioenergy presents numerous advantages: it has a 
renewable, versatile, local and distributed nature; it helps increase energy security 
and meet the rising global energy demands; it easily substitutes for fossil fuels; 
and it presents potential environmental and economic benefits. Carbon sequestra-
tion and storage are among the several environmental services provided by forests. 
The amount of biomass they produce, and consequently, their bioenergy potential, 
is highly variable. Forest plantations provide the highest bioenergy yields per unit 
area, while in forest systems managed for other purposes, factors such as stand struc-
ture affect residual biomass generation. Assessing and monitoring biomass, along 
with determining bioenergy potentials, are essential tasks, often based on mathemat-
ical models that vary in complexity and span different spatial and temporal scales, 
frequently with associated cartography. 
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1 Introduction 

Forest bioenergy is a term used to describe the energy obtained directly or indirectly 
from biodegradable, renewable raw materials from woody shrub and tree species, 
excluding agricultural ones. The sources of forest bioenergy are diverse and include 
products, residues and waste, such as fuelwood, wood pellets, residues from forest-
based industries and post-consumer wood (cf. chapter “Sources and Distribution of 
Forest Biomass for Energy”). 

Forests have been providing mankind with fuels for heating and cooking for thou-
sands of years, and they are still the main energy source for millions of people who do 
not have access to clean fuels and technologies to satisfy their basic needs. As such, 
they provide an essential service to these populations but, in many circumstances, 
at a high cost. Severe negative impacts arise when biomass is used in a traditional 
way through the combustion of solid biomass in inefficient and polluting equipment. 
Indeed, emissions from inefficient biomass burning cause adverse health problems 
[1–5] and impact the climate [6–9]. Additionally, the traditional use of biomass leads 
to a large demand for wood fuels, puts pressure on forests, contributes to forest degra-
dation and has negative effects on gender equity [10–13] (cf. chapter “Biomass for 
Domestic Heat”). 

In contrast to the traditional use of biomass, modern biomass uses for energy 
are characterised by more efficient and cleaner technologies. On the condition that 
forest resources are obtained in a sustainable way and efficient, clean conversion 
technologies are employed, the use of forest biomass for bioenergy and biofuel 
production is a valuable and advantageous option to meet energy needs. Many high-
income countries, which had, to some extent, forgotten bioenergy during a large part 
of the last century, have renewed their interest in this form of energy, influenced in part 
by the environmental advantages of biomass over fossil fuels and its socioeconomic 
benefits. 

Biomass can help meet the increasing energy needs of the growing world popula-
tion. From 1971 to 2020, the world total energy supply increased by around 150%, 
from 230.5 EJ to 584.5 EJ (Fig. 1) [14]. In this period, the largest average annual 
growth rate came from nuclear energy (7.2%), followed by renewable energy sources 
(RES) (2.2%) and fossil fuels (1.8%). However, in the last decades, increased aware-
ness of the environmental problems caused by fossil fuels and the public perception 
of the risks of nuclear energy have led to a change in the growth rates of the energy 
supplied by the different energy sources, especially nuclear. From 2001 to 2020, the 
largest average annual growth rate in energy supply was associated with RES (2.5%), 
followed by fossil fuels (1.7%) and nuclear (0.2%).

Despite the relevance of renewable energy sources in general and biomass in 
particular, fossil fuels still dominate the global energy mix today. In 2020, they were 
the energy sources most used in the world (80%, Fig. 2). Crude oil and oil products 
accounted for 29.5% of the world total energy supply, closely followed by coal 
(27%), natural gas (24%) and renewable energy sources (15%), with biomass being 
the largest contributor among all the RES.
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Fig. 1 World total energy supply from 1971 to 2020 by energy source. (Data source [14, 15])

Fig. 2 Share of energy 
sources in the world total 
energy supply in 2020. (Data 
source [14, 16]) 
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The reasons for the dominance of fossil fuels are clear: they have a high energy 
density and are convenient to use. Coal, the most carbon-intensive fossil fuel, is still 
the main source of power production worldwide (cf. chapter “Biomass for Power 
Production and Cogeneration”). It is the fossil fuel with the largest and most evenly 
distributed reserves around the world and with a relatively low cost [17], even though, 
today, in most markets, renewable energy options are the most cost-effective new 
sources [18]. Coal is also an important energy source for energy-intensive industries, 
such as the iron and steel or cement industries (cf. chapter “Biomass for Industrial 
and District Heating”). On the other hand, oil products in liquid form are more
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energy-dense than coal and very appropriate for use as transport fuel, being, by 
far, the most used energy sources in this sector (>90% in 2020, [14]). Natural gas, 
the least carbon-emitting fossil fuel, is very versatile and plays a relevant role in 
power plants, buildings and industrial facilities (cf. chapters “Biomass for Domestic 
Heat” and “Biomass for Industrial and District Heating” and “Biomass for Power 
Production and Cogeneration”). 

In the last two centuries, the large-scale consumption of fossil fuels has allowed 
for a rapid growth in industrial and agricultural production, enormous technological 
advances and improvements in the living conditions of humans. However, it also has 
numerous severe impacts on the environment and public health [9, 19] and affects 
energy security [20, 21]. As a consequence, a rapid phaseout of fossil fuels is needed, 
and both energy efficiency and sustainable energy sources should be promoted. 

Biomass can substitute for fossil fuels relatively easily since it can be used 
and stored in similar ways to fossil fuels [22], therefore providing energy when 
needed (in power generation, biomass is an important complement to intermittent 
renewable energy sources like solar and wind, providing firm low-carbon electricity 
[23]). However, unlike fossil fuels, it is a renewable energy source when sustainably 
obtained, i.e., when the increment of biomass by plant regrowth is equal to or larger 
than the removal, so that it can be continuously available in large quantities. 

Furthermore, the versatile, local and distributed nature of biomass may help to 
reduce the dependency on imported oil or natural gas, which are much more concen-
trated geographically [24], and, even though the global international trade of bioen-
ergy will likely increase significantly, this does not necessarily lead to energy security 
concerns since multiple world regions can act as bioenergy suppliers [25]. 

Additionally, when modern, efficient and clean energy conversion technologies 
are used, sustainably produced forest biomass typically presents environmental bene-
fits in comparison to fossil fuels [26–31]. One of the benefits of forest bioenergy might 
be a contribution to climate change mitigation. This derives from (i) avoided fossil 
fuel use and (ii) greenhouse gas emission mitigation during biomass production, 
including soil carbon accumulation [32]. On the other hand, there are greenhouse 
gas emissions associated with fossil fuel use in the production, harvesting, transport 
and processing of biomass, and, in the case of the establishment of energy plantations, 
land use change and indirect land use change effects have also to be considered. 

If the forest biomass harvested for bioenergy is produced sustainably, it is arguably 
considered “carbon neutral”, i.e., it is assumed that the carbon exported from the 
stands and forests will be sequestered and stored during tree regrowth, thus resulting 
in the neutrality of the carbon cycle [33]. Overall, the use of biomass for energy 
releases carbon into the atmosphere that will be absorbed by tree growth [34], which, 
depending on the species and tree growth rates, will need shorter (young and/or fast-
growing species) or longer (old and/or slow-growing species) time [35, 36]. This is 
not, however, the only definition of carbon neutrality. The authors of a review study 
on carbon neutrality found eight different concepts for the term but no standard-
ised concept or definition of carbon neutrality [34]. Bioenergy is often justified and 
promoted on the basis of its inherent carbon neutral status, but carbon neutrality is not 
an inherent property of biomass; rather, it is a relative characteristic of a bioenergy
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product [34], depending, for example, on the fossil fuel being displaced, the energy 
conversion efficiency of the bioenergy pathway followed, the growth rate of forests, 
the frequency and intensity of biomass harvests, the initial forest carbon stock and 
the forest management practices used [37]. 

The carbon storage capacity of forests may be enhanced by biomass removal 
in certain circumstances. This is the case, for example, when biomass is exported 
from the forest to reduce the fuel load and prevent wildfires or when thinnings 
are performed (see chapter “Stand Structure and Biomass” for further information). 
Other ecological benefits of biomass removals include the control of invasive flora 
and fauna species to restore natural habitats [38]. 

Another advantage of bioenergy might be its economic attractiveness. The gener-
ation of bioheat by combustion is often cost-competitive with fossil fuels [39, 40]. 
Also, the generation of bioelectricity with low-cost residual biomass might be cheaper 
than fossil fuel options [41]. However, the cost-effectiveness of bioenergy depends 
on the specific application, and high costs are a barrier, for example, for the develop-
ment of many bioenergy options (e.g., advanced biofuels for transportation) or fuel 
switching (e.g., in high-temperature industrial applications or electricity generation) 
[41]. On the other hand, rural development, job creation or the promotion of social 
sustainability are often cited as advantages of bioenergy [39, 42–47]. 

Despite its many advantages, the use of biomass for energy is not without contro-
versy. Besides the already mentioned problems associated with the traditional uses 
of biomass, the overall sustainability of bioenergy is often questioned [32, 48–51]. 
Biomass in general, and forest biomass in particular, are limited resources that require 
land and water for their growth. Moreover, the energy efficiency of photosynthesis 
is very low (the most efficient trees do not exceed solar storage efficiencies of 1% 
[52]). Therefore, in this regard, biomass is not the most effective way to store solar 
energy. However, storing energy is not the only function of forests, and if sustainably 
managed, forests provide other important ecosystem services. For example, photo-
synthesis generates oxygen, which is essential to flora and fauna, and forest areas 
promote soil and water protection [53] (see chapter “Stand Structure and Biomass” 
for further information). 

To date, bioenergy is substantially sourced from residues and waste, but because 
their potential is limited, the supply of additional large quantities of biomass is 
dependent on energy plantations [49]. A large expansion of, especially agricul-
tural, energy plantations in some countries could increase human pressure on the 
terrestrial biosphere, threaten the ability of global ecosystems to provide essential 
ecosystem services, and might be associated with substantial ecological costs, such 
as soil degradation, biodiversity loss or nitrogen release [54]. Furthermore, large-
scale energy plantations, especially the agricultural ones, may potentially compete 
with food production, leading to significant socioeconomic effects [49]. However, if 
forest species plantations are grown specifically for energy on marginal lands [55] 
or on current agricultural land that can be diverted from food and feed production 
without further impairing food security [56], energy plantations can be a source 
of beneficial renewable energy. For example, Langeveld et al. [57] concluded that 
including large-scale short-rotation coppices in intensive, arable crop cultivations in
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homogeneous monocultural landscapes may have both positive and negative effects 
depending on the exact implementation. As referred to by Robertson et al. [32], prior 
land use has a significant effect on the benefits of energy plantations. The issue of 
bioenergy sustainability is, therefore, very complex, with several factors impacting 
the overall sustainability of bioenergy, among which are the location and scale of 
production, the type of feedstock and the conversion technology [58, 59]. 

2 Current Production and Consumption of Bioenergy 

In 2020, the world energy supply of biomass and waste was 57.5 EJ [14], which 
represented around 10% of the total energy supply (Fig. 2). Most of this contribution 
was modern bioenergy, but a substantial part was still traditional bioenergy used for 
cooking and heating with basic, inefficient and pollutant technologies [16]. On the 
other hand, the non-renewable fraction of municipal and industrial waste represented 
a relatively small fraction of the share of energy supply attributed to biomass and 
waste. 

Even if traditional bioenergy use is not considered renewable because of its 
severe negative impacts, modern biomass provided approximately half of the global 
renewable primary energy supply in 2020, making it the largest contributor among 
RES, followed by hydro. When accounting for traditional biomass use, biomass 
represented almost two-thirds of the world renewable energy supply. 

In the last 30 years, the share of bioenergy and waste in the world total energy 
supply has remained relatively stable (according to data from the International Energy 
Agency, IEA [14], the average share from 1990 to 2020 was 9.7%). Nevertheless, 
the energy supplied by these two energy sources in this period increased slightly less 
(56%) than the total energy supply (60%). 

The vast majority of global bioenergy and waste consumption is attributed to 
solid biomass. However, over the last three decades, there has been a diversification 
of bioenergy sources, with other forms gaining relevance (Figs. 3 and 4). This trend 
is particularly notable in Organisation for Economic Cooperation and Development 
(OECD) countries, as reported by the IEA [14].

The diversity of bioenergy sources (in solid, liquid or gaseous form) and available 
energy conversion technologies makes bioenergy very versatile. It is used to provide 
heat and power and as a transport fuel in a diversity of sectors of activity. Almost 
half of the biofuels and waste is used in the residential sector worldwide, but the 
industrial and energy sectors also consume a relevant share of biofuels and waste 
[14]. On the other hand, even though the transport sector represents a relatively small 
part of the world supply of biofuels and waste (7% in 2020 [14]), its relevance is also 
high since, presently, liquid biofuels dominate the renewable energy supply in this 
sector. Currently, these transportation fuels are essentially first-generation biofuels 
produced from food crops or vegetable oils [60]. 

Worldwide, the majority of solid biofuels, primarily consisting of forest biomass, 
are used in the residential sector (Fig. 5). However, the share of this sector has been
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Fig. 3 Share of the various sources in the biomass and waste energy supply in 2020 in the world. 
(Data source [16]) 
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Fig. 4 World total bioenergy and waste supply from 1990 to 2020 by energy source. (Data source 
[14])

declining over the last few decades. In 1990, residential use represented 70% of 
solid biofuel consumption, but by 2020, it had decreased to 53%. In both years, 
the industrial sector was the second largest consumer of solid biofuels, followed by 
“other transformation”, which includes charcoal production. The conversion of solid 
biomass into electricity in dedicated power plants has gained significance in the last 
30 years. In 1990, it accounted for only 1% of solid biofuel consumption, but by 
2020, it had increased to 8%. These power plants consumed around 70% more solid
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Fig. 5 Share of the various sectors in the consumption of solid biofuels in the world in a 1990 and 
b 2020. (Data source [14]) 

biomass in 2020 worldwide than the more efficient combined heat and power (CHP) 
plants. In the “others” category, the largest consumers of solid biofuels in 2020, in 
descending order, were commercial and public services, energy industry own use, 
agriculture and heat plants. In conclusion, to date, solid biofuels are mainly converted 
into heat and, to a lesser extent, electricity, while the production of transport biofuels 
from solid biomass is still not commercial and faces several challenges (cf. chapter 
“Forest Biomass as an Energy Resource”). 

In the group of OECD countries (Fig. 6), which accounted for 17% of the world 
solid biofuel use, the sector that consumed most of the solid biofuels in 2020 was 
industry (34%), closely followed by the residential sector (32%). As far as electricity 
production is concerned, CHP plants represent 15% of solid biofuel consumption, a 
higher share than the less efficient electricity-only plants (12%). Heat and charcoal 
production are included in the category “others”.

3 Forest Biomass as an Energy Source 

Of all the possible solid biofuel sources (e.g., firewood, forest residues, wood-based 
industry residues, post-consumer wood, agricultural residues, agro-industrial solid 
residues), forest biomass is, by far, the most used nowadays and, therefore, has a 
very important contribution to the world renewable energy share [61]. 

Forest trees, stands and forests are important to biomass (and carbon) sequestration 
and stocking [62] due to the longevity of trees [63], their large dimensions [64] and 
their worldwide distribution [65]. Stands and forests have provided for thousands 
of years a large set of products and services such as wood of several dimensions
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Fig. 6 Share of the various 
sectors in the consumption of 
solid biofuels in OECD 
countries in 2020. (Data 
source [14])
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(including woody products for energy), protection of soil and water, conservation 
of flora, fauna and habitats, many non-woody products (e.g., honey, mushrooms, 
medicinal plants), aesthetics, recreation and biomass and carbon storage [66, 67]. 

Biomass sequestration and storage present high variability (cf. chapter “Sources 
and Distribution of Forest Biomass for Energy”, Fig. 9). This results from the vari-
ability in species, stand structure and site (cf. chapter “Stand Structure and Biomass”). 
In general, biomass storage increases with age due to the increase in the dimension 
of trees [68], whereas sequestration decreases per unit of light intercepted due to 
the increase in respiration [35]. Thus, biomass and carbon sequestration are more 
efficient when trees are in the early stages of development, as growth rates are higher 
than in mature trees [36]. Yet, the biomass and carbon stocks are higher at late devel-
opment stages due to tree dimensions [64]. The dynamics of biomass sequestration 
in stands and forests are more complex than those of individual trees due to their 
dependence on species, stand structure, site, silvicultural system and silvicultural 
practices (cf. chapter “Stand Structure and Biomass”). This variability is reflected in 
the biomass partitioning. In general, in forest stands, biomass can be broadly divided 
into tree and soil (organic matter). Tree biomass can be further divided into live 
(above and below ground) and dead (above and below ground) biomass [69]. 

Forest biomass for energy purposes results from harvesting. Yet, differences in 
biomass yields, amounts of biomass harvested and exported and the share of biomass 
that can be used for timber and energy vary per species, stand structure, silvicul-
tural system, silvicultural practices, site, harvest equipment and market (e.g., [70, 
71]). In terms of biomass for energy, forest systems can be broadly divided into 
two groups: energy plantations (cf . chapter “Energy Plantations”), where all above 
ground biomass is harvested for energy [72] and forest systems oriented for timber 
production or agroforestry systems, where forest residues from cuts, thinnings and/ 
or prunings are used for energy [71, 73]. 

Energy plantations are intensively managed forest systems with the main goal of 
producing biomass for energy [72]. These forest systems use species or clones with 
high growth rates, thus high rates of biomass (and carbon) sequestration [74]; are 
frequently established in sites (soil and climate) near the optimum of the species
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traits in order to optimise their growth [72]; and are established in marginal lands or 
set aside agricultural lands in order to avoid competition with agricultural lands [75]. 
These forest systems give high yields, and are thus able to provide larger amounts of 
biomass per unit area and per time unit than the other forest systems [76] and release 
the pressure on other forest systems for bioenergy supply [77]. 

The main goals of forest systems oriented for timber production and agroforestry 
systems are the production of timber and other woody and non-woody products 
(e.g., cork, fruit, honey, medicinal plants) and services [78, 79], and forest residues 
may or may not be used for bioenergy [71, 73]. Forest residue quantities depend 
on several factors, such as the dimensions and quality of the woody products, forest 
system sustainability and harvesting. The dimensions of the woody products and their 
market prices constrain their use. In general, woody products of large dimensions 
and good quality are used for timber [80], which has a higher market price than forest 
residues [71]. 

The export of forest residues is related to the sustainability of the forest stands and 
their products. Forest residue exports always imply the export of biomass, carbon and 
nutrients and have impacts on hydrology and diversity [81]. Moreover, the sustain-
ability of forest systems is related to the biomass storage/export ratio [82]. Forest 
residues are generated during harvest (cut, thinning and/or pruning). Their removal, 
apart from the sustainability of the forest systems, is related to stand structure, func-
tion, topography, site, harvesting equipment, logistics and costs [83]. In general, in 
stand structures (cf. chapter “Stand Structure and Biomass”) that are more uniform 
and when the removal of wood is made mainly in one cut (pure even-aged stands 
under clearcut systems), the export of forest residues is facilitated due to their large 
amounts, higher recovery rates and lower costs than in stands with higher struc-
tural diversity (pure or mixed uneven-aged stands under selection or shelterwood 
systems and/or under protection or conservation status) [84–86]. Furthermore, site 
and topography may increase forest residue quantity, mainly due to damage during 
tree harvesting [83]. 

Restrictions to the collection of forest residues and subsequent energy use may 
exist, imposed, for example, by regulations in protected areas or difficulties in 
collecting biomass in areas with difficult accessibility (e.g., steep slopes) [87–90] 
or because of the dispersion of the residues in the stands. Additionally, losses in 
the collection, transport and use stages of the feedstock need to be considered [91– 
95]. Another issue that may reduce the availability of residual biomass for energy 
is the existence of other uses for biomass and, therefore, a competition between 
the same biomass resources [71, 80, 96–98]. The consideration of these restric-
tions and the conversion of feedstock mass to energy lead to the determination of 
the amount of available biomass energy, that is, the biomass energy content that is 
potentially available for energy production [71, 97, 99]. Several authors [100–105] 
also consider sustainability criteria for stands, forests and productions that constrict 
the available amount of biomass. Batidzirai et al. [106] reviewed the key factors 
and drivers affecting the determination of biomass availability for energy and anal-
ysed a selected set of country-based bioenergy potential studies. They conclude that 
generally not all the basic elements expected in an ideal bioenergy assessment are
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included in the analyses, that the methods used are not always harmonised, which 
leads to different energy potential results, and that studies have different levels of 
methodological transparency. It is recommended that the analyses include all key 
factors that are critical determinants of bioenergy potentials, employ high-resolution 
georeferenced data sets and account for potential feedback effects [106]. 

Biomass evaluation and monitoring have to be done in order to quantify woody 
products and forest residues. This evaluation is frequently done with mathemat-
ical models that vary in complexity and spatial and temporal scales (cf. chap-
ters “Modelling Biomass” and “Overview of the Biomass Models”), usually with 
associated cartography. 

The availability of forest biomass for energy has been estimated with mathematical 
models at both regional or local scales [87, 107–116] and national scales [96, 117– 
122]. Yet, the above ground biomass specificity, particularly in the tropics, makes 
accurate generalisations at regional or landscape levels difficult [123, 124]. More-
over, biomass is not static in space or time. Several disturbances, either management-
related or natural (cf. chapter “Stand Structure and Biomass”), can cause the reduction 
of biomass. In a review, natural disturbances (drought, fire, wind and bark beetle) 
were evaluated for their effect on biomass dynamics [125]. Although forest systems 
are quite resilient to disturbances, climate change can drive the systems to their 
turning point, especially if the regime of disturbances is outside its historical range 
of variation. The maintenance of the resilience of the stands and forests then requires 
proactive and reactive adaptive measures in the management of the forest systems 
[125]. Another study refers to the losses of biomass due to windstorms [126], while 
another evaluated the effect of wind and bark beetle disturbances on carbon seques-
tration based on a landscape model [127]. According to the simulations, the forest 
areas will be a carbon sink until the end of the twenty-first century [127]. However, 
climate change might result in a change in the disturbance regime, which might lead 
to a reduction in the ability of the forests to sequester carbon, and thus turning them 
from a carbon sink to a carbon source [127]. 

The assessment of energy potentials is challenging. Two main reasons were iden-
tified to justify the variability in the results of several studies on energy potentials 
for the same geographical region [116]: (i) the various energy potential concepts 
subjacent to the analyses and (ii) the spatial variability of the data used for their 
estimation. Harmonisation of data can be used to overcome this variability. Scara-
muzzino et al. [116] proposed a four-step harmonisation framework (Fig. 7): (1) 
identify the best-suited territorial unit, which should satisfy two conditions: (i) data 
must be reliable for the territorial unit or simple to calculate, and (ii) the territorial 
unit should be easily identified (e.g., NUT2, NUT3); (2) select the sources of renew-
able energy (e.g., forest residues, agricultural residues, livestock residues, waste) and 
review their potential (e.g., with data available from databases such as Eurostat, FAO 
and/or Copernicus Land Monitoring Service); (3) harmonise the indicators of the 
energy potential per unit area (e.g., PJ·km−2, PJ·inhab−1); (4) select and harmonise 
the non-energy territorial indicators due to the selected territorial unit (e.g., selection 
of topographic and climatic data and harmonisation with the median per territorial 
unit).
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Fig. 7 Four-step harmonisation framework for energy potential assessment studies 

The biomass evaluation and monitoring have been done, in particular for large 
areas, with geographical information systems (GIS) and with geographic decision 
support systems (DSS), resulting in the development of specific methodologies and 
techniques to identify and quantify the potential of biomass for energy purposes, 
namely for the installation of energy systems based on combustion [85, 114, 117, 
128–135] or gasification [45, 132, 133, 136] or for the production of biofuels [135, 
137–140]. The aforementioned methodologies were used to evaluate biomass in 
existing [84, 141–144] or potential [84, 87, 88, 112, 145, 146] forest areas, in both 
forests and farmland [114, 128, 131, 133] or specifically in forests for timber produc-
tion and other products and services [87, 108, 117, 147]. Some studies were focused 
on evaluating the economic viability of implementing biomass systems [121, 128, 
131, 146, 148]. 

When evaluating residual biomass, the residue production yields have to be known 
in order to relate them to the total available biomass (Fig. 8). These ratios, generally 
expressed in tonnes of residues per year and unit area, are dependent on species, 
stand structure and silvicultural operations and thus can have significant local and 
regional variation [87]. In some cases, they are expressed on an as-received basis, 
others on a dry basis [149, 150]. An alternative to explicitly reporting the residue 
production yields is to consider the percentage of the total mass of the tree that can 
be used for energy purposes [151].

Several maps of biomass have been produced [152–154]. The maps of biomass 
are dependent on the data input and the methods used. One important issue is the 
harmonisation of the input variables to reduce the uncertainties of the maps [152, 
154]. The variability of the species, stand structure, site and management results in a 
wide variability in biomass. This may increase the errors. For example, Avitabile 
and Camia [152] reported, for Europe, a trend towards overestimation in forest 
areas with low biomass (<100 Mg·ha−1) and underestimation for medium and high 
biomass (>100 Mg·ha−1). Furthermore, the errors increased from national spatial 
resolutions (29–40%) to higher spatial resolutions, 58–67% [152]. Moreover, care 
should be taken when analysing maps as uncertainties related to site and management 
change forest stand dynamics, development and yield, both positively and negatively 
[155]. Thus, it is recommended that the maps of biomass be complemented with the 
quantification of the uncertainties [154].
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Fig. 8 Flowchart for the evaluation of the areas to produce forest biomass residues. (adapted from 
[87])

The determination of the areas for energy plantations (cf . chapter “Energy Plan-
tations”) should consider the following restrictions [146]: (i) guarantee food produc-
tion; (ii) avoid losses of biodiversity; (iii) mitigate greenhouse gas emissions; (iv) 
minimise negative impacts on soils, water and air. This results in areas potentially 
available for energy plantations being those either set aside by agriculture or without 
suitability for agricultural crops, which are not under conservation or protection 
[146]. 

One issue related to biomass for energy is the identification of the areas avail-
able for energy plantations. These areas can be determined following a methodology 
in four steps [112]: (1) selection of the species to be used and assessment of their 
ecological and cultural characteristics; (2) determination of the suitability of the sites, 
which refers to the selection of a set of data, frequently in a geographical informa-
tion systems environment, including soils, land morphology, climate, protected areas 
and administrative boundaries and a suite of assumptions and a subsequent set of 
operations that enable the identification of the areas where the selected species can 
be grown; (3) determination of the availability of land, which refers to the identifi-
cation of the potential areas available, considering the existing restrictions, whether 
economic or social; (4) assignment of the land, which refers to the definition of a 
decision process that enables the determination of the areas where the energy plan-
tations can be installed (Fig. 9). The areas identified are dependent on the initial 
assumptions made. If only the optimal conditions that could potentially generate 
higher yields are considered, the area estimation could be rather conservative [112].
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Fig. 9 Flowchart for the selection of areas to install energy plantations. (adapted from [112]) 

4 Outline of the Book Chapters 

This book presents the state of the art of forest biomass production, assessment, char-
acterisation and conversion into heat and power. After the overview presented in this 
chapter, in chapter “Sources and Distribution of Forest Biomass for Energy”, forest 
biomass is defined and the different categories of forest biomass are characterised, 
starting with the forest biomass directly sourced from land use systems, passing 
through the residues of the wood-based industries and ending up in the residues and 
waste recovered from economic and social activities outside the forest sector. 

Forest stands are communities of trees with competitive and facilitation interac-
tions over a long timeframe. These interactions are dynamic in space and time and 
depend on stand structure, silvicultural systems and silvicultural practices, as well 
as species and site. In general, the biomass of a tree increases with age. Yet, the 
rate of biomass storage is dependent on the site (availability of growing space) and 
interactions between trees in a stand (competition versus facilitation). The dynamics 
of biomass at stand level are more complex to analyse as they are dependent not 
only on individual tree growth (and thus biomass storage) but also on the balance 
between live biomass and biomass exports. The intensity, frequency and quality of 
biomass exported influence the sustainability of the system. In chapter “Stand Struc-
ture and Biomass”, definitions and concepts of silviculture that allow the analysis 
and discussion of biomass dynamics and stand sustainability are introduced. The 
stand structure, silvicultural systems, silvicultural practices, biomass partitioning 
and dynamics, forest system sustainability and biomass yields, harvest and exports 
are analysed.
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Forest stands are the major sources of woody products, including biomass for 
energy. Energy plantations are forest stands designed to produce high quantities of 
biomass in short timeframes for bioenergy. These forest stands have the advantage, 
apart from producing large amounts of biomass for energy, of releasing the pressure 
on other forest stands to provide bioenergy. Chapter “Energy Plantations” charac-
terises the energy plantations in terms of species, density, rotation, harvest cycles, 
site selection, management practices, harvesting and yields. 

Biomass cannot be directly measured. The two basic methods for estimating 
biomass are the direct method, which is destructive, labour-intensive and expensive, 
and the indirect method, which uses mathematical functions. The use of models 
has the advantage of enabling the evaluation, monitoring and prediction of biomass 
in time and space. Yet, the models are dependent on species, site, tree biomass 
partitioning, stand structure and spatial and temporal scales. As a result, many models 
have been developed. Chapter “Modelling Biomass” reviews the data sets available 
for biomass modelling, the mathematical methods and techniques to fit the functions 
and the model uncertainties. 

Modelling biomass is a challenge due to the variability of tree allometry and stand 
structure, which has resulted in a high number of biomass functions. At tree level, 
diameter at breast height and height are the most frequently used explanatory vari-
ables. However, due to the variability in tree allometry, other explanatory variables 
have been used, such as development stage, site or tree social status. At the area level, 
many explanatory variables have been used, derived from forest inventory, remote 
sensing and ancillary. Moreover, many mathematical models have been utilised to 
fit the biomass functions. There has been a constant search for models that are 
able to accommodate the variability of biomass. Chapter “Overview of the Biomass 
Models” reviews the biomass models at tree and area levels, according to the data 
used (destructive, forest inventory, remote sensing and ancillary) and mathematical 
methods and techniques (from parametric to non-parametric). 

As far as the conversion of forest biomass to energy is concerned, in the last 
decades, the role of forest biomass for cooking and household heating has been 
losing importance and the energy uses of biomass have diversified. Today, different 
conversion technologies are commercially available or, if still in the research and 
development stage, considered promising. Chapter “Forest Biomass as an Energy 
Resource” presents an overview of the most relevant processing technologies for 
the conversion of forest biomass into energy and fuels, their applications and their 
readiness levels. Also important for the use and development of these technologies 
is the knowledge of the properties of biomass that are relevant for its conversion 
into energy and fuels. Chapter “Forest Biomass as an Energy Resource” provides an 
overview of the most relevant characteristics of forest biomass and reviews commonly 
used pre-treatment methods aimed at upgrading raw forest biomass into more suitable 
feedstocks for specific conversion technologies. 

Chapter “Forest Biomass as an Energy Resource” is followed by three chapters that 
describe in more detail the most common uses of forest biomass for energy and the 
associated technologies. The first of these chapters, chapter “Biomass for Domestic 
Heat”, is dedicated to residential heat production, which is where presently more solid
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biomass is consumed. Even though modern technologies should be promoted, the 
fact is that inefficient and polluting traditional technologies are still widely used, so 
chapter “Biomass for Domestic Heat” presents the available traditional technologies 
alongside the modern ones. The impacts of the traditional use of biomass are also 
reviewed, followed by the improvements to traditional technologies. 

Chapter “Biomass for Industrial and District Heating” focuses on the sector that 
globally consumes more energy nowadays: the industrial sector. After a brief descrip-
tion of how energy is consumed by the industry, the most important technologies used 
to produce process heat, which is the industrial end-use that requires more energy, 
are described. Since the energy conversion technologies used in industrial facilities 
are similar to those used in district heating plants, the chapter also describes district 
heating systems and the role of biomass for this use. 

Due to the relevance of process heat in industrial energy consumption, chapter 
“Biomass for Industrial and District Heating” only focuses on the production of heat. 
However, combined heat and power is also commonly generated in energy-intensive 
industrial facilities. CHP technologies are described in chapter “Biomass for Power 
Production and Cogeneration”, which is dedicated to electricity production with 
forest biomass. After a general description of the power sector, chapter “Biomass 
for Power Production and Cogeneration” describes the technologies commonly used 
to produce electricity from forest biomass in dedicated biomass plants and in co-
combustion plants. 

The last chapter of this book, chapter “Conclusions and Future Research Needs”, 
is dedicated to some conclusions and a description of possible future research. 

Funding This work was funded by National Funds through FCT—Foundation for Science and 
Technology, under the Project UIDB/05183/2020, through MED, and Project UIDB/50022/2020, 
through IDMEC, under LAETA. 
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34. Selivanov E, Cudlín P, Horáček P (2023) Carbon neutrality of forest biomass for bioenergy: 
a scoping review. IForest Biogeosci For 16:70–77. https://doi.org/10.3832/ifor4160-015 

35. Albaugh TJ, Albaugh JM, Fox TR et al (2016) Tamm review: light use efficiency and carbon 
storage in nutrient and water experiments on major forest plantation species. For Ecol Manag 
376:333–342. https://doi.org/10.1016/j.foreco.2016.05.031 

36. Ameray A, Bergeron Y, Valeria O et al (2021) Forest carbon management: a review of silvi-
cultural practices and management strategies across boreal, temperate and tropical forests. 
Curr For Rep 7:245–266. https://doi.org/10.1007/s40725-021-00151-w 

37. Agostini A, Giuntoli J, Boulamanti A (2014) Carbon accounting of forest bioenergy: conclu-
sions and recommendations from a critical literature review. Publications Office of the 
European Union, Luxembourg 

38. Schroeder LM (2008) Insect pests and forest biomass for energy. In: Röser D, Asikainen 
A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use pf forest biomass for energy. A 
Synthesis with Focus on the Balticand Nordic Region. Springer, Dordrecht, pp 109–128 

39. Bauen A, Berndes G, Junginger M, et al (2009) Bioenergy—a sustainable and reliable energy 
source. A review of status and prospects. IEA Bioenergy 

40. Lovegrove K, Alexander D, Bader R, et al (2019) Renewable energy options for industrial 
process heat. Australian Renewable Energy Agency, O’Connor 

41. IRENA (2020) Recycle: bioenergy. IRENA 
42. Wan M, Lähtinen K, Toppinen A, Toivio M (2012) Opportunities and challenges in the 

emerging bioenergy business: the case of the finnish sawmill industry. Int J For Eng 23:89–101. 
https://doi.org/10.1080/14942119.2012.10739965 

43. Martire S, Tuomasjukka D, Lindner M et al (2015) Sustainability impact assessment for local 
energy supplies’ development—the case of the alpine area of Lake Como, Italy. Biomass 
Bioenergy 83:60–76. https://doi.org/10.1016/j.biombioe.2015.08.020 

44. Berndes G, Abt B, Asikainen A, et al (2016) Forest biomass, carbon neutrality and climate 
change mitigation. European Forest Institute 

45. Cardoso J, Silva V, Eusébio D (2019) Techno-economic analysis of a biomass gasification 
power plant dealing with forestry residues blends for electricity production in Portugal. J 
Clean Prod 212:741–753. https://doi.org/10.1016/j.jclepro.2018.12.054 

46. Anca-Couce A, Hochenauer C, Scharler R (2021) Bioenergy technologies, uses, market and 
future trends with Austria as a case study. Renew Sustain Energy Rev 135:110237. https:// 
doi.org/10.1016/j.rser.2020.110237 

47. Locoh A, Thiffault É, Barnabé S (2022) Sustainability impact assessment of forest bioenergy 
value chains in Quebec (Canada)—a ToSIA approach. Energies 15:6676. https://doi.org/10. 
3390/en15186676 

48. Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and 
environment trilemma. Science 325:270–271. https://doi.org/10.1126/science.1177970 

49. Haberl H, Erb K-H, Krausmann F et al (2013) Bioenergy: how much can we expect for 2050? 
Environ Res Lett 8:031004. https://doi.org/10.1088/1748-9326/8/3/031004

https://doi.org/10.1111/gcbb.12276
https://doi.org/10.1002/ente.201901044
https://doi.org/10.1016/j.jece.2021.105415
https://doi.org/10.1126/science.aal2324
https://doi.org/10.1126/science.aal2324
https://doi.org/10.1016/S0960-8524(01)00119-5
https://doi.org/10.3832/ifor4160-015
https://doi.org/10.1016/j.foreco.2016.05.031
https://doi.org/10.1007/s40725-021-00151-w
https://doi.org/10.1080/14942119.2012.10739965
https://doi.org/10.1016/j.biombioe.2015.08.020
https://doi.org/10.1016/j.jclepro.2018.12.054
https://doi.org/10.1016/j.rser.2020.110237
https://doi.org/10.1016/j.rser.2020.110237
https://doi.org/10.3390/en15186676
https://doi.org/10.3390/en15186676
https://doi.org/10.1126/science.1177970
https://doi.org/10.1088/1748-9326/8/3/031004


Introduction to Forest Bioenergy 19

50. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass 
plantations under environmental and agricultural constraints. GCB Bioenergy 3:299–312. 
https://doi.org/10.1111/j.1757-1707.2010.01088.x 

51. Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Change Biol 26:274–286. 
https://doi.org/10.1111/gcb.14883 

52. Dogutan DK, Nocera DG (2019) Artificial photosynthesis at efficiencies greatly exceeding 
that of natural photosynthesis. Acc Chem Res 52:3143–3148. https://doi.org/10.1021/acs.acc 
ounts.9b00380 

53. Rodrigues AR, Botequim B, Tavares C et al (2020) Addressing soil protection concerns in 
forest ecosystem management under climate change. For Ecosyst 7:34. https://doi.org/10. 
1186/s40663-020-00247-y 

54. Krausmann F, Erb K-H, Gingrich S et al (2013) Global human appropriation of net primary 
production doubled in the 20th century. Proc Natl Acad Sci 110:10324–10329. https://doi. 
org/10.1073/pnas.1211349110 

55. Schweier J, Molina-Herrera S, Ghirardo A et al (2017) Environmental impacts of bioenergy 
wood production from poplar short-rotation coppice grown at a marginal agricultural site in 
Germany. GCB Bioenergy 9:1207–1221. https://doi.org/10.1111/gcbb.12423 

56. Kalt G, Mayer A, Theurl MC et al (2019) Natural climate solutions versus bioenergy: can 
carbon benefits of natural succession compete with bioenergy from short rotation coppice? 
GCB Bioenergy 11:1283–1297. https://doi.org/10.1111/gcbb.12626 

57. Langeveld H, Quist-Wessel F, Dimitriou I et al (2012) Assessing environmental impacts of 
short rotation coppice (SRC) expansion: model definition and preliminary results. BioEnergy 
Res 5:621–635. https://doi.org/10.1007/s12155-012-9235-x 

58. Röder M, Thiffault E, Martínez-Alonso C et al (2019) Understanding the timing and variation 
of greenhouse gas emissions of forest bioenergy systems. Biomass Bioenergy 121:99–114. 
https://doi.org/10.1016/j.biombioe.2018.12.019 

59. Welfle A, Röder M (2022) Mapping the sustainability of bioenergy to maximise benefits, 
mitigate risks and drive progress toward the sustainable development goals. Renew Energy 
191:493–509. https://doi.org/10.1016/j.renene.2022.03.150 

60. IEA (2022) Renewables 2022. Analysis and forecast to 2027. International Energy Agency, 
Paris 

61. WBA (2022) Global bioenergy statistics 2022. World Bioenergy Association, Stockholm 
62. Santoro M, Cartus O (2019) ESA biomass climate change initiative (Biomass_cci): global 

datasets of forest above-ground biomass for the year 2017, vol 1. Centre for Environmental 
Data Analysis 

63. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s 
forests. Science 333:988–993. https://doi.org/10.1126/science.1201609 

64. Urbano AR, Keeton WS (2017) Carbon dynamics and structural development in recovering 
secondary forests of the northeastern U.S. For Ecol Manag 392:21–35. https://doi.org/10. 
1016/j.foreco.2017.02.037 

65. van Asselen S, Verburg PH (2012) A land system representation for global assessments and 
land-use modeling. Glob Change Biol 18:3125–3148 

66. Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture. Applied 
forest ecology, 9th ed. John Wiley & Sons, Inc, New York 

67. Röser D, Asikainen A, Stupak I, Pasanen K (2008) Forest energy sources and potentials. In: 
Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use pf forest biomass 
for energy. A synthesis with focus on the Balticand Nordic Region. Springer, Dordrecht, pp 
9–28 

68. Chai RK, Andrus RA, Rodman K et al (2019) Stand dynamics and topographic setting influ-
ence changes in live tree biomass over a 34-year permanent plot record in a subalpine forest in 
the Colorado Front Range. Can J For Res 49:1256–1264. https://doi.org/10.1139/cjfr-2019-
0023 

69. Bradford JB, Fraver S, Milo AM et al (2012) Effects of multiple interacting disturbances and 
salvage logging on forest carbon stocks. For Ecol Manag 267:209–214. https://doi.org/10. 
1016/j.foreco.2011.12.010

https://doi.org/10.1111/j.1757-1707.2010.01088.x
https://doi.org/10.1111/gcb.14883
https://doi.org/10.1021/acs.accounts.9b00380
https://doi.org/10.1021/acs.accounts.9b00380
https://doi.org/10.1186/s40663-020-00247-y
https://doi.org/10.1186/s40663-020-00247-y
https://doi.org/10.1073/pnas.1211349110
https://doi.org/10.1073/pnas.1211349110
https://doi.org/10.1111/gcbb.12423
https://doi.org/10.1111/gcbb.12626
https://doi.org/10.1007/s12155-012-9235-x
https://doi.org/10.1016/j.biombioe.2018.12.019
https://doi.org/10.1016/j.renene.2022.03.150
https://doi.org/10.1126/science.1201609
https://doi.org/10.1016/j.foreco.2017.02.037
https://doi.org/10.1016/j.foreco.2017.02.037
https://doi.org/10.1139/cjfr-2019-0023
https://doi.org/10.1139/cjfr-2019-0023
https://doi.org/10.1016/j.foreco.2011.12.010
https://doi.org/10.1016/j.foreco.2011.12.010


20 I. Malico and A. C. Gonçalves

70. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future 
global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28. https://doi.org/10. 
1016/S0961-9534(02)00185-X 

71. Martire S, Castellani V, Sala S (2015) Carrying capacity assessment of forest resources: 
enhancing environmental sustainability in energy production at local scale. Resour Conserv 
Recycl 94:11–20. https://doi.org/10.1016/j.resconrec.2014.11.002 

72. Dickmann D (2006) Silviculture and biology of short-rotation woody crops in temperate 
regions: then and now. Biomass Bioenergy 30:696–705. https://doi.org/10.1016/j.biombioe. 
2005.02.008 

73. Egnell G, Paré D, Thiffault E, Lamers P (2016) Environmental sustainability aspects of forest 
biomass mobilisation. In: Thiffault E, Berndes G, Junginger M et al (eds) Mobilisation of 
forest bioenergy in the boreal and temperate biomes. Elsevier, London, pp 50–67 

74. Dimitriou I, Rutz D (2015) Sustainable short rotation coppice a handbook. WIP Renewable 
Energies, Munich 

75. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour 
Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3 

76. Guidi W, Pitre EF, Labrecque M (2013) Short-rotation coppice of willows for the production 
of biomass in Eastern Canada. In: Matovic MD (ed) Biomass now–sustainable growth and 
use. InTech, Rijeka, Croatia, pp 421–448 
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