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Abstract. Recently, there has been a growing interest in Physically
Unclonable Functions (PUFs). These electronic circuits possess several
key characteristics such as unpredictability and uniqueness that make
them particularly attractive for security applications. PUFs offer an
appealing solution for secure boot applications, providing a hardware-
based mechanism for generating unique cryptographic keys. These keys
can be used to encrypt the bootloader and operating system, thereby
enhancing security. In this paper, we propose an innovative, secure boot
scheme that leverages the functionality and characteristics of a PUF. Our
approach eliminates the need for physical storage of the encryption key
of the boot code, which enhances security and provides the possibility
of securely updating the firmware. We will present an architecture that
comprises essential components, along with a demo board on FPGA. The
demo board features a general-purpose 64-bit RISC-V-based system that
leverages the proposed PUF-based secure architecture, enabling secure
boot and firmware update functionalities.
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1 Introduction

In today’s digital age, security has become an increasingly critical concern for
individuals, organizations, and governments. With the growing complexity and
sophistication of cyber threats, it is crucial to implement robust security mea-
sures to protect computer systems and sensitive data. Secure boot technology is
one of such security measure that is integrated into modern computer systems
[5,7,10]. Its primary aim is to verify the digital signatures of the bootloader and
operating system before loading, ensuring that only trusted software is executed
during the boot process. This is achieved by creating a chain of trust that begins
with the system firmware and continues through the bootloader and operating
system [8]. If any of these components are compromised, the secure boot process
will fail, and the system will not boot, ensuring that only reliable software is
executed.
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Dedicated hardware can adopted to enhance the security of the chain of
trust [8,9] and the performance of the entire system [2,3]. Physically Unclonable
Functions (PUFs) are electronic circuits that have gained increasing interest
in recent years due to their unique properties, making them ideal for security
applications [11,12,14]. PUFs can generate unpredictable and unique responses
to input stimuli, which is advantageous for creating cryptographic keys that are
difficult to replicate or guess. The most attractive properties of a PUF, in fact,
are the unpredictability of its response and the uniqueness of the response to
each instance of the circuit. These properties result from the inherent variations
in the manufacturing process fabricating the circuit. The response generated
by the PUF can serve as a cryptographic key for encrypting the boot code,
firmware, and operating system. Furthermore, another advantage of using the
PUF response as a key is that it eliminates the need to preserve the secret key
within the device.

Our paper presents a novel approach for enhancing security during boot-
up, utilizing a security subsystem that leverages the functionality and unique
characteristics of a PUF. By implementing this approach, we aim to address
certain security concerns associated with secure boot, while also enabling secure
firmware updates when necessary or in the event of a successful attack on a chip.
This is crucial in preventing potential security breaches that could impact other
chips of the same type. The paper is organized as follows: Chap. 2 explains our
PUF-based secure boot concept and the hardware components needed to imple-
ment it. Chapter 3 presents a complete RISC-V-based system prototype com-
posed of a general-purpose subsystem enhanced by a secure subsystem equipped
with an FPGA-based Ring-Oscillator PUF to perform secure boot and secure
firmware updates. Chapter 4 will draw the conclusions of this work.

2 Proposed PUF-Based Secure Boot

One of the classical approaches to verify the authenticity and integrity of the boot
code is to include Original Equipment Manufacturer (OEM)-related information
in the system. For instance, the public key of the system owner can be used to
verify the ownership of the boot code at the startup; in this way, the owner’s
public key shall be embedded in a Read Only Memory (ROM), and it shall be
used at the startup of the system to verify the signature of the boot code that
has been previously signed with the corresponding private key. This approach
implies that all devices use the same public key. As reported in [1], ”storage
of the public key for the root of trust can be problematic; embedding it in
the on-SoC ROM implies that all devices use the same public key. This makes
them vulnerable to class-break attacks if the private key is stolen or successfully
reverse-engineered”. The same concept can be applied to symmetric keys in case
they are used to encrypt the boot code. Starting from these issues, the main
goals of our secure boot concept are:

– Avoid the physical storage of secret keys: this eliminates the possibility of
disclosure of secret keys stored in memories.
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– Unique secret key for each physical device: if the secret key of a device is
discovered, it cannot affect the security of the other devices as each key gen-
erated by the PUFs is unique.

– Possibility to modify OEM public key stored in the device: in case of disclosure
of the OEM private key, the OEM should be able to update its public key
stored in the device.

– Unpredictability of the secret keys for each physical device: this resolves issues
related to the trustiness of the electronic manufacturers and supply chain.

NVM
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VPK, FSB

Secure Environment Non-Secure Environment

resetSecure
ElementOTP

boot
addrSecure

Memory

PUF

Secure
API

update VPK-FSB

CPU
Peripherals
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Fig. 1. Concept architecture of the secure system. NVM is a Non-Volatile Memory.
OTP is a One-Time Programmable memory. VPK is the Vendor’s Public Key. FSB is
the First-Stage Bootloader of the CPU.

The system we propose is illustrated in Fig. 1, and it is composed of three
main parts:

– Secure Environment (S-Env): provides PUF-based encryption and authenti-
cation (hardware fingerprint) and can reset the Non-Secure part. We expect
the need of an OTP memory to store the PUF challenge plus auxiliary infor-
mation to retrieve the corresponding response (e.g. redundancy of correction
codes, if needed).

– Non-Secure Environment (NS-Env): is a standard CPU-based SoC whose boot
sequence is regulated by the Secure part.

– A Non-Volatile Memory (NVM): contains the encrypted Vendor Public Key
(VPK) and the encrypted First-Stage Bootloader (FSB) for the CPU.

The S-Env exposes the following Secure Application Program Interface
(SAPI) to the NS-Env, based on the status of the OTP memory:

– WriteNVM: this operation initializes the S-Env. It can be issued only if the
OTP memory is not written.

– UpdateNVM: the NS-Env can request an update of the NVM employing
Publick Key Authentication using the VPK. It can be issued only if the OTP
memory has been written.
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The boot sequence of the system depends on the S-Env status. As long as the
S-Env is not initialised (fresh OTP memory), the Secure Element (SE) copies
the content of the NVM into the Secure Memory (SMem) and wakes up the
CPU. No verification is performed in this procedure, and the boot is not secure.
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Vendor writes
plain VPK-FSB

into NVM

System Boot

(OTP is fresh)
SE copies NVM

into SMem
SE wakes up

the CPU

CPU issues a
WriteNVM operation

CPU writes
VPK-FSB into SMem

SE halts the CPU

SE saves the
BootChallenge into

the OTP

SE retrieves the BootKey from the PUF
using the BootChallenge

requested within the WriteNVM issue

SE reads the
VPK-FSB couple

from the SMem and
encrypts it with

the BootKey
System Shutdown

END

Vendor can ship
the system with
Secure-Boot
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SE stores the
encrypted VPK-FSB
couple into the NVM

Fig. 2. Secure environment initialisation procedure

Secure Environment Initialisation. The vendor of the system can initialise the
S-Env by performing the following procedure, illustrated in Fig. 2:

1. Vendor prepares the NVM with the VPK-FSB couple and a bootable code
executed by the CPU to perform the initialisation sequence.

2. At system boot, the SE will perform a non-secure boot sequence (the OTP
is fresh) by coping the NVM content at the boot address of the SMem and
waking up the CPU.

3. The code executed by the CPU prepares the SMem with the VPK-FSB couple
and the Boot Challenge (BC). The latter can be hard-coded into the initial-
isation code or determined at run-time. Then, the CPU issues a WriteNVM
request to the SE.

4. After halting the CPU, the SE retrieve the Boot Key (BK) from the PUF by
providing the BC.

5. The SE encrypts the VPK-FSB couple found in the SMem with the BK using
an encryption algorithm (e.g. Advanced Encryption Standard) and stores
it in the NVM with a hash digest used for integrity check during secure
boot. Depending on the computational capabilities of the SE, the vendor
may employ a Digital Signature Algorithm (DSA) or a Hash-based Message
Authentication Code (HMAC) to ensure the integrity and authenticity of the
FSB code.

6. Finally, the SE saves the BC into the OTP (with any other required param-
eters related to PUF implementation), and the S-Env can be considered ini-
tialised.
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7. From now, the WriteNVM operation cannot be issued any more, and the
vendor can ship the system with Secure-Boot enabled.
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Fig. 3. Flow diagram describing the secure-boot sequence

Secure Boot Sequence. When the S-Env is initialised, the boot sequence includes
the PUF-based verification of the NVM, illustrated in Fig. 3:

1. At system boot, the SE reads the BC from the OTP and retrieves the BK by
challenging the PUF.

2. The SE reads the encrypted VPK-FSB couple from the NVM, decrypts it with
the BK using an encryption algorithm (e.g. Advanced Encryption Standard)
and verifies its integrity and authenticity using DSA or HMAC.

3. Finally, the VPK and the FSB are copied into the SMem, and the CPU is
woken up.
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Fig. 4. Flow diagram for updating the NVM

Update NVM Sequence. During normal operation, the CPU can issue an
UpdateNVM operation to update the VPK or the FSB contained in the NVM,
as illustrated in Fig. 4:

1. While the system is running, the CPU prepares a new VPK-FSB couple and
signs it with the active private key.
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2. The CPU store the signed content into the SMem and issues the UpdateNVM
operation.

3. The SE halts the CPU and verifies the signature in the SMem using the active
VPK.

4. If successful, the SE encrypts the new VPK-FSB couple and stores it in the
NVM.

5. Finally, the CPU is woken up, and the new Secure Boot process is performed.

The proposed PUF-based Secure Boot procedure and SAPI avoid the physical
storage of secret keys and allow to have unpredictable and unique secret keys
for each physical device. In addition, the update sequence allows modifying the
OEM VPK in case of private-key class-break attacks to limit the number of
compromised devices.

3 Implementation on FPGA

To prototype the proposed PUF-based Secure Boot procedure, we implemented
a System-on-Chip (SoC) on a Xilinx ZCU106 FPGA Board that emulates the
architecture of Fig. 1.

SE

Secure Environment

RISC-V CPU
(CV32E40P)

Secure
Memory

RO-PUF JTAG
UART

Main
Memory

AXI4 Interconnect

Program
Memory

Host
PC

Non-Secure Env.

RISC-V CPU
(CVA6)

AXI4 Interconnect

OTP
Memory

SD

Fig. 5. SoC implemented on a Zynq Ultrascale+ FPGA.

As illustrated in Fig. 5, the system is divided into a Non-secure Environment
and a Secure Environment. The former (that emulates a general-purpose appli-
cation system) includes a RISC-V CPU (i.e., the CVA6 64-bit processor [13])
connected through an AXI4 interconnect to its Main Memory (DDR4 controller)
and the UART JTAG peripheral provided as Xilinx IPs. The latter implements
the SE using a smaller RISC-V CPU (i.e., the CV32E40P 32-bit processor [4])
with its Program Memory. On-chip memory is used to emulate the SMem shared
between the two environments and the OTP of Fig. 1. The VPK-FSB couple
is stored encrypted on the external SD memory (NVM in Fig. 1). The PUF we
implemented is a Ring Oscillator PUF (RO-PUF), generating a response of 325
bits using a challenge of 220 bits. To improve the reliability of the responses,
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the output is corrected using an Error Correcting Code (ECC) based on the
Reed-Muller code, and we used the VHDL implementation published in [6]. The
Red-Muller ECC needs a helper generated during the initialisation procedure and
stored on the OTP memory. To generate the AES-CBC-128 key, the SHA256
algorithm is applied to the PUF response and truncated to 128 bits. While to
ensure the integrity and authenticity of the VPK-FSB couple, the ECDSA-256
algorithm is used.

4 Conclusions

Our research paper presents a novel implementation of a Secure Boot process,
which leverages PUF technology to eliminate the requirement of storing secret
keys in physical storage. PUF technology enables the generation of unique and
unpredictable secret keys for each individual device. Furthermore, our updating
process streamlines the ability to modify VPK in order to mitigate the effect of
class-break attacks in case of disclosure of the vendor’s private key. As a proof-
of-concept, we implemented the proposed PUF-based Secure Boot procedure on
a Xilinx ZCU106 FPGA board, which includes a 32-bit RISC-V-based secure
environment exposing a Secure API for the 64-bit RISC-V application-class pro-
cessor.
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