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Abstract. Medical imaging is a critical component of clinical decision-
making, patient diagnosis, treatment planning, intervention, and therapy.
However, due to the shortage of qualified radiologists, there is an increas-
ing burden on healthcare practitioners, which underscores the need to
develop reliable automated methods. Despite the development of novel
computational techniques, interpreting medical images remains challeng-
ing due to noise and varying acquisition conditions. One promising solu-
tion to improve the reliability and accuracy of automated medical image
analysis is Interactive Machine Learning (IML), which integrates human
expertise into the model training process. Active learning (AL) is an
important IML technique that can iteratively query for informative sam-
ples to be labeled by humans, leading to more data-efficient learning. To
fully leverage the potential of active learning, however, it is crucial to
understand the optimal setup for different components of an AL system.
This paper presents an evaluation of the effectiveness of different com-
binations of data representation, model capacity, and query strategy for
active learning systems designed for medical image classification tasks.
The results of this evaluation show that employing raw image representa-
tions as input, in conjunction with a ResNet50 model and margin-based
queries, yields more reliable and accurate automated methods for medi-
cal image analysis.

Keywords: Human-in-the-loop (HITL) · Interactive Machine
Learning (IML) · Active Learning (AL)

1 Introduction

Medical imaging plays a crucial role in clinical decision-making, patient diag-
nosis, treatment planning, intervention, and therapy. However, the shortage of
skilled radiologists poses a significant challenge, placing a growing burden on
healthcare practitioners [10]. Consequently, there is an urgent requirement to
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Fig. 1. The basic Interactive Machine Learning (IML) framework

devise dependable automated techniques that can alleviate this strain and pro-
vide reliable solutions [42]. The field of Interactive Machine Learning (IML) has
gained significant attention in the medical field in recent years [2,8,22,25,41].
Training image-based machine learning models typically relies solely on auto-
mated processes to learn patterns and make predictions, offering no ability for
interaction from clinicians during this process [41]. In contrast, IML incorpo-
rates human input and feedback into the modelling process, resulting in more
effective models [2,25]. A typical IML workflow is presented in Fig. 1, where the
automated model training process is periodically interrupted by user interaction.
The user provides feedback to queries posed by the training process, and this
feedback is then incorporated into another round of automated model training.

Active learning (AL) is a powerful IML technique for data-efficient model
training [38]. By actively selecting informative instances to label, AL reduces the
annotation burden while maintaining, or even improving, model performance. In
the context of medical imaging, where labeled data is often scarce and costly to
obtain, AL holds significant potential to enhance the accuracy and efficiency of
diagnostic systems [38]. In this study, we aim to address the challenge of design-
ing optimal AL systems for medical image classification, specifically focusing on
three crucial aspects: data representation, model capacity, and query strategies.
Our research aims to establish reliable default options for building active learning
solutions.

To investigate the impact of model capacity, we consider three distinct models:
a high-capacity Resnet50 model, a medium-capacity shallow convolutional neu-
ral network (CNN), and a low-capacity random forest model. Through the explo-
ration of these diverse models, we seek to discern the influence of model capac-
ity on the active learning process. Additionally, we examine the utility of image
embeddings obtained from pre-trained models as an alternative to raw image
inputs for the low-capacity models. This offers potential improvements in compu-
tational efficiency but also effectiveness in the presence of limited labeled samples.
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Finally, we assess different query strategies to select informative instances
during the active learning process: random sampling, margin sampling, and least
confidence sampling. Through a comparative analysis of their performance, we
aim to identify the sampling strategy that optimally selects informative data
points for annotation, maximizing the efficiency of the active learning framework.

The experiments presented in this paper offer valuable insights into the effec-
tiveness of different combinations of AL scenarios for medical image classifica-
tion problems. This will be particularly useful to practitioners due to the lack
of labelled data, where typical hyper-parameter tuning techniques are not suit-
able. The reminder of the paper proceeds as follows: Section 2 discusses related
work; Sect. 3 provides a detailed explanation of the experimental setup; Sect. 4
discusses the experimental results; and finally Sect. 5 concludes the paper.

2 Related Work

Unlike typical machine learning algorithms that rely solely on large datasets,
Interactive Machine Learning (IML) [2,25] systems enable human interaction,
allowing users to provide feedback and guidance to improve the accuracy and rel-
evance of the models. The literature on IML includes algorithm development [23],
user interface design [17,18], and applications in diverse fields [1,16,31,47]. Impor-
tant IML methods include visual pattern mining [32], interactive anomaly detec-
tion [12,29], interactive information retrieval [26], and visual topic analysis [27].

Classification problems, in particular, can benefit from two pivotal IML
approaches: co-active learning [9] and active learning [13,38]. Co-active learn-
ing takes advantage of multiple perspectives and disagreement-based methods to
train multiple classifiers on different feature sets, capturing diverse views. The
classifiers’ disagreements are then identified, and clustering techniques based on
proximity to cluster centroids are employed for labeling instances [45]. Active
learning (AL) is an interactive approach that focuses on selecting the most infor-
mative instances from an unlabeled dataset for labeling. Typically, it involves
training a single classifier on a specific feature set. The goal is to minimize labeling
effort by selectively querying an oracle for labels on instances that are expected
to provide valuable information [38]. AL aims to improve model performance by
iteratively incorporating labeled data into the training process. This reduces the
“labelling bottleneck” [38] by allowing the model to actively query for the most
informative examples. There are three main approaches to active learning [10]:
stream-based sampling, membership query synthesis, and pool-based sampling.

Stream-based sampling [5,13,15,35] is employed when data arrives in a con-
tinuous stream, necessitating assessment to determine whether annotation is nec-
essary for each incoming data point. The main challenge in designing algorithms
for stream-based sampling is that they cannot take into account the overall dis-
tribution of the population [10,14]. Alternatively, membership query synthesis
[3] (MQS) involves generating synthetic data points rather than obtaining them
from a dataset [3,37,38]. Synthetic data can be strategically generated to maxi-
mize label informativeness from the oracle. Although MQS can be useful [28] it
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has been shown to be ineffective for image-based tasks due to the challenges in
generating synthetic query images [6,37].

Fig. 2. Pool-based active learning framework.

Pool-based sampling [24,30,38] is the most common AL scenario and is the
focus of this paper. Figure 2 shows a typical pool-based AL workflow that involves
an initial dataset of labeled data points and a large collection of unlabeled data
points, known as the pool dataset. First, the model is trained on the initial
dataset, then a selection method ranks the most informative instances from the
pool dataset for labeling by a human annotator, often called an oracle. The
newly labeled samples are re-introduced into the AL model for re-training. This
method is especially effective when used with batch-based training in deep learn-
ing approaches [11,30,33,38,46]. Pool-based AL can, however, be computation-
ally expensive as it requires repeated re-training of a model and generating new
predictions for the instances in the pool dataset at each iteration.

One way to assess the informativeness of instances in Active Learning is by
quantifying the uncertainty associated with predictions made for those instance
by a trained model. This is based on the assumption that data points with higher
uncertainty in their predictions hold more valuable information, making them
candidates for labeling and inclusion in the training set. To measure uncertainty
in a classification task, the machine learning model assigns confidence scores to
the predicted classes. Typically, the uncertainty in active learning is quantified
by calculating the sum of probabilities assigned to the classes with the lowest
confidence scores. This approach captures the uncertainty of the prediction, as
the sum of probabilities for the lowest confidence classes represents the overall
uncertainty [38]. When a model assigns high confidence scores to a specific class,
the prediction is considered more certain. Conversely, a lower sum of minimum
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class probabilities indicates higher uncertainty in the prediction [38]. Uncertainty
can be summarized as:

x∗LC = arg max
x

(1 − Pθ(ŷ|x)) (1)

where, ŷ represents the most probable label determined by argmax yPθ(y|x).
This formula depicts how uncertainty relates to the prediction made for a spe-

cific data point within the context of the data distribution. This method is com-
monly known as Least Confidence (LC) sampling and provides a way to rank the
uncertainty of samples within a distribution [10]. However, LC sampling has a lim-
itation as it solely focuses on the information associated with the most probable
label, disregarding information about the remaining label distribution [38].

A margin-based query is a method that addresses the limitations of Least-
Confidence queries and is particularly useful for AL for multi-class classification
problems [34,36,39]. The main idea is that it considers the difference between the
first and second most probable labels, resulting in a more accurate measure of the
model’s confidence in assigning a label. Margin based sampling is defined as:

x∗M = arg max
x

(Pθ(ŷ1|x) − Pθ(ŷ2|x)) (2)

where, ŷ1 and ŷ2 are the first and second most probable labels predicted by
a model. Consequently, the larger the separation between these two labels, the
more certain the model is in assigning a label.

Entropy [39] sampling is another query method that selects instances based on
the uncertainty of the model’s predictions. Entropy sampling can be defined as :

x∗EN = arg max
x

(
−

∑
yPθ(y|x) log Pθ(y|x)

)
(3)

where yi ranges across all possible annotations. Entropy is a measure of how
much uncertainty is present in the predicted class distribution. This means the
more uncertain a prediction is, the more information we can gain by including
the ground truth for that sample in the training set [10].

Alternatively, query-by-committee is a query strategy used to measure uncer-
tainty of unlabeled data by measuring the agreement between multiple models
performing the same task [24,38]. The premise of this method is that the more
disagreement found between predictions on the same data point, the higher the
level of uncertainty that data point has and is selected for labeling [24]. This
method comes at the cost of computational resources, as multiple models need
to be trained and maintained, and each of these needs to be updated in the
presence of newly selected training samples [10].

In this study, we focus on pool-based AL and its application to medical
images. We explore the effectiveness of different input representations, models of
different capacities, and different selection strategies. This comprehensive anal-
ysis of AL methods in the context of medical image classification contributes
to advancing the field of IML and has the potential to enhance diagnostic and
predictive capabilities in healthcare.
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3 Experimental Setup

This section provides an overview of the experimental design used in this paper,
with a particular emphasis on the datasets procured from the MedMNIST
collection.

3.1 Datasets and Pre-processing

One of the difficulties in studying machine learning applications in medical imag-
ing is obtaining adequately annotated datasets [4]. In the experiments described
in this paper we use publicly available, fully labelled datasets from the MedM-
NIST collection [44]:

– PneumoniaMNIST: 5,856 greyscale pediatric chest X-Ray images each with
a size of 28× 28 pixels with two classes (pneumonia: 1 and normal cases: 0).
Divided in a training set of 4,708 images and a test set of 624 images.

– BloodMNIST: 17,092 RGB images, each with a size of 28× 28 pixels. The
images are categorized into eight classes, representing individual normal cells
without any infection, hematologic, or oncologic disease. The dataset includes
a training set with 11,959 images and a test set with 3,421 images.

– DermaMNIST: Contains images of common pigmented skin lesions catego-
rized into seven different diseases. The images are represented as RGB and
have a size of 28× 28 pixels. The dataset consists of a training set with 7,007
images and a test set with 2,005 images.

– Organ3DMIST: Consists of 185 CT scans categorized into 11 body organ
classes. The images are 28× 28×28 pixels and represented in greyscale. The
training set contains 971 images, while the test set contains 610 images.

– FractureMNIST3D: Includes 1,267 images obtained from approximately 5,000
rib fractures found in 660 CT scans. The images are organized into four
clinical categories and are represented as 28× 28×28 greyscale images. The
training set consists of 1,027 images, and the testing set contains 240 images
(Fig. 3).

3.2 Experimental Design

The experiment aimed to assess the performance of pool-based AL using vari-
ous combinations of query strategies (random, margin, and Least-Confidence),
model representations (raw image and bottleneck features), and model capaci-
ties (random forest, 5-layer CNN, and ResNet50). The AL workflow began by
selecting an initial subset of labeled images consisting of 20 samples. Instead of
relying on human agents for labeling, a simulated approach was used to iter-
atively label images queried from the AL model (the MedMNIST datasets are
annotated, adhering to the standard practice in AL research). Over the course
of 240 iterations, we employed the chosen query strategy to identify four unla-
beled instances, add labels to them, and then integrated these instances into the
labeled pool of data. At each iteration the pool of labeled data was evaluated
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Fig. 3. Sample images from each of the five MedMNIST datasets used in these exper-
iments in this paper.

against the MedMNIST-defined test set [44]. Performance evaluation was based
on two metrics: the area under the learning curve (AULC) and accuracy (ACC)
after 100 iterations. The above process was repeated for each combination of
query strategy, model representation, and model capacity.

3.3 Image Representations

Image representations refer to the form of input data for machine learning mod-
els. In this experiment, two types of image representations were used. The first
type, bottleneck feature representation, is a compressed version of intermediate
outputs of a neural network. This representation offers a low dimensional repre-
sentation of the data while preserving the necessary information for classification.
In our experiments the bottleneck representations were extracted from the layer
immediately prior to the final output layer of a ResNet50 model pre-trained on
the Imagenet dataset1 were used.

The second image representation, raw image representation, simply uses the
original images as input to models. This representation contains all the informa-
tion present in the image, but it may be computationally expensive and require
a large amount of memory to process. For the medium and high capacity models
the raw images were resized to 224× 224 pixels.
1 ResNet50 model pre-trained on the Imagenet dataset. Available at: https://pytorch.

org/vision/main/models/generated/torchvision.models.resnet50.html.

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
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3.4 Model Capacities

The capacity of a machine learning model refers to its ability to learn and fit
training data [7]. A model with low capacity may underfit the training data
and fail to capture complex patterns, while a model with high capacity may
overfit and perform poorly on unseen data. We use models representative of low,
medium, and high capacity:

– Random forest (low capacity): This model was trained on the labelled
data available at each iteration and optimized using a grid search and 10-fold
cross-validation. The selected hyperparameters consisted of max depth = 16
and nestimators = 256.

– Shallow CNN (medium capacity): The shallow CNN model used in the
study consisted of two convolutional layers (with sizes of 32 and 64 respec-
tively, kernel sizes of 3 and ReLU activations); two max-pooling layers; and,
after flattening, a fully connected layer (of size 64 and ReLU activation) before
the output layer. To train this model cross-entropy loss and an SGD optimizer
were used with a learning rate of 0.01.

– ResNet50 (high capacity model): The ResNet50 model was pre-trained
on over a million images from the ImageNet database, making it capable of
generating rich feature representations for a wide range of images [20]. To
fine-tune the ResNet50 model, cross-entropy loss was used [21] with the SGD
optimizer [19,40].

To leverage the pre-trained weights of a ResNet50 model it is common prac-
tice to freeze some of the layers during training to prevent overfitting when
generalizing on a new dataset [43]. Freezing layers prevents the gradients from
being computed and backpropagated through the layers [43].

3.5 Query Strategies

Query strategies constitute a fundamental aspect of AL, serving the purpose of
selecting a subset of the most informative unlabeled data samples to improve the
model’s accuracy and minimize the number of samples that need to be labeled.
In this study three query strategies (random, margin and least-confidence) have
been implemented to determine the most suitable combination in the AL frame-
work. The random query method selects data points for labeling without consider-
ing their informativeness. In contrast, the margin query method prioritizes label-
ing data points that the model is most uncertain about, gauging uncertainty by
the difference between the two most probable classes [38]. Conversely, the least-
confidence method labels data points based on the model’s lowest confidence level,
determined by assessing the probability of the most probable class [34].

4 Results and Discussion

The objective of this study was to investigate which combination of model rep-
resentation, model capacity, and query strategy is the most effective when using
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active learning for medical image classification. The experiment involved two
types of image representations (bottleneck feature and raw image representa-
tions); three model architectures (Random Forrest (low capacity), a 5-layer CNN
(medium capacity) and a ResNet50 (high capacity)); and three query strate-
gies (random, margin, and least-confidence). The results of our experiments are
shown in Tables 1 and 2.

Table 1. Experimental results measured using the Area Under Learning Curve
(AULC). The best performing approach for each dataset is highlighted in bold.

Representation Model Query Strategy Pneumonia
MNIST

Blood
MNIST

Derma
MNIST

Organ
MNIST3D

Fracture
MNIST3D

Bottleneck Features Random Forest Random 0.8270 0.6399 0.6649 0.6529 0.4351

Margin 0.8295 0.7144 0.6783 0.6456 0.4109

Least-Confidence 0.8284 0.6341 0.6789 0.6531 0.4273

Raw Image ResNet50 Random 0.7960 0.9194 0.6892 0.9027 0.4329

Margin 0.8614 0.9302 0.6919 0.9211 0.4283

Least-Confidence 0.8452 0.9262 0.7134 0.9180 0.4542

Raw Image Shallow CNN Random 0.8213 0.7421 0.6562 0.7121 0.4098

Margin 0.7879 0.6571 0.6587 0.7558 0.3922

Least-Confidence 0.8333 0.7488 0.6602 0.7307 0.4073

Table 2. Experimental results measured using the Accuracy metric (ACC %). The
best performing approach for each dataset is highlighted in bold.

Representation Model Query Strategy Pneumonia
MNIST

Blood
MNIST

Derma
MNIST

Organ
MNIST3D

Fracture
MNIST3D

Bottleneck Features Random Forrest Random 83.02 62.76 65.97 68.03 40.83

Margin 84.13 73.66 68.07 68.52 39.58

Least-Confidence 83.33 61.36 67.98 68.53 42.08

Raw Image ResNet50 Random 79.81 93.74 69.02 87.51 43.75

Margin 87.82 96.66 72.15 93.12 40.41

Least-Confidence 86.70 96.14 72.76 92.89 45.00

Raw Image Shallow CNN Random 83.81 77.05 63.48 75.78 37.08

Margin 80.81 67.52 63.91 81.76 40.83

Least-Confidence 86.86 79.63 64.66 82.13 40.41

Benchmark ResNet50 85.70 95.60 73.1 85.70 49.40

Shallow CNN 83.20 79.42 68.54 81.93 40.12

These results show that the high capacity ResNet50 model using a raw image
representation and the margin or least-confidence query strategy achieved the
highest accuracy across all experiments. The AL model using bottleneck repre-
sentation and the low capacity RF model did not exceed the baseline accuracy
achieved by Yang et al. [44] (shown in the final rows of Table 2). The convergence
of this method is illustrated in Fig. 4.

Figure 5, depicts the high-capacity ResNet50 model using raw image repre-
sentations alongside three query strategies. The margin query strategy notably
converged faster at the 100th iteration. However, regardless of the strategy, each
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Fig. 4. Learning curves using bottleneck features and RF classifier applied to the
BloodMNIST dataset.

Fig. 5. Learning curves using the ResNet50 model and raw image representations for
the BloodMNIST dataset.

method performed well including the random query strategy. The results in Fig. 6
depicts the study using a 5-layer CNN with raw images. For this experiment the
least-confidence query method proved to be the most robust method. The large
discrepancy between each of the methods can be seen at the 100th iteration.
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Fig. 6. Learning curves using the medium capacity CNN and raw image representations
for the BloodMNIST dataset.

5 Conclusion

The studies presented in this paper was designed to explore the effectiveness
of pool-based AL processes for medical image classification. The investigation
considers input representations, model capacities, and selection strategies. The
results of the experiments performed using 5 medical imaging datasets demon-
strated that using raw image representations with a high capacity ResNet50
model was the most suitable approach across all experiments. Our findings
reveal that this combination consistently delivered superior performance when
employing the margin query strategy in the cases of PneumoniaMNIST, Blood-
MNIST, and OrganMNIST3D datasets. However, it’s worth noting that the
Least-Confidence query strategy exhibited stronger generalization capabilities
on the DermaMNIST and FractureMNIST3D datasets. This suggests that the
choice of query strategy should be contingent upon the specific image types and
anatomical regions.

Overall, the best AL approach requires significantly fewer labeled samples
compared to benchmark models and outperformed both ResNet50 and 5-layer
CNN models trained over 200 epochs on the entire training dataset, seen in
Table 2. Our findings emphasize the potential for efficient and precise classifi-
cation tasks, particularly in scenarios where obtaining labeled data is limited
or expensive. In future work, we intend to explore alternative query strategies
and assess the generalizability across a broader spectrum of medical imaging
modalities.
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