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Abstract. This work presents a novel approach for the fast prediction of future
positions of marine vessels utilizing a simple feed-forward artificial neural net-
work. It is shown that this simple network architecture with a single hidden layer,
containing three hidden neurons is capable of predicting the future position of
a maritime vessel with an accuracy of 99.26% . For this research a simulation
was developed, in order to generate enough track data needed to train the net-
work. The input data had to be converted from common polar coordinate system
used by navigators into Cartesian coordinates in order to increase the accuracy
of the predictions. The predictions are based on three previous observed posi-
tions and their corresponding observation times. It was shown that the accuracy
decreased linearly with an increasing noise level of the observations. If the noise
level exceeded a maximum noise level c of 20 m, the performance of the network
degraded beyond its practical use.
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1 Introduction

Target Motion Analysis (TMA) in the maritime context aims to make predictions about
the state of a signal-emitting object, known as the target, by considering its location,
bearing, and velocity based on past observations [1]. However, in practical applications,
the accuracy of time delaymeasurements is affected by noise. This noisemight be caused
by various factors, such as the cross-correlation function used to find a common signal
in a pair of sensors or environmental influences [2]. Another source of errors is false
readings or clutter. This clutter is usually assumed to be uniformly distributed over an
area A.

Figure 1 shows a typical scenario for the TMA problem, where Fig. 1a depicts
the ideal scenario, while Fig. 1b shows a real-world scenario with clutter and noise.
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a) ideal scenario b) real-world scenario with noise and clutter
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Fig. 1. Scenario for the Target Motion Analysis problem

An observer and a target are moving with constant speed and the target is detected at
unequally spaced time instances by the observer.

In the ideal scenario (Fig. 1a), Newtonian physics can be used to calculate the future
position, based on the current bearing, speed and location of an object. However, due
to the noise and clutter affected measurements, in a real-world scenario (Fig. 1b), the
prediction of the future position, more robust methods, such as Kalman filters [3, 4]
or Particle filters [5] are employed. More recently, artificial intelligence methods, like
LSTM[6] orAntColonyOptimisation [7]were successfully applied to theTMAproblem
achieving better accuracy than classical methods used for TMA [6]. Since it was proven
byHornik et al. [8, 9] that feed forward neural networks are capable of approximating any
given functionwith any required level of accuracy, this study tries to answer the question,
are simple feed-forward neural networks, in principle, capable of solving the TMA
problem? Training a feed-forward neuronal network usually requires a large amount of
linearly independent training examples. It is very difficult to acquire these amount of
real-world training data. Therefore, a simulation was developed, that generates target
tracks in a marine environment for training and evaluation.

2 Simulations

Asimulation toolwas developed,which generates target tracks in relation to the ownships
position. The parameters of the simulated targets are based on the limitations of real-
world targets like ships and boats.

Themain parameter used for track generation is the speed of the target. Themaximum
speed is based on generally known speeds of ships, boats, and otherwater vehicles. These
reach up to 90 km/h or 25 m/s. For each target a constant speed v was chosen randomly
from the interval:

{
v ∈ R|0m

s
≤ v ≤ 25

m

s

}
. (1)

Due to the problem at hand, it cannot be guaranteed that observations are equidis-
tant in the time domain. Therefore, the time between two observations t was selected
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randomly from the interval:

{t ∈ R|1s ≤ t ≤ 10 s}. (2)

In principal targets in different distances are of interest. However, due to physical
limitations of passive sonar systems measurements up to 6 km are assumed to be suffi-
ciently accurate under most conditions [10]. The initial distance r of the targets is chosen
randomly from the interval:

{r ∈ R|0m ≤ r ≤ 6000m}. (3)

The initial position of the targets are determined by the radius r and the bearing ϕ.
The bearing was also chosen randomly from the interval:

{
ϕ ∈ R| − 180◦ ≤ ϕ ≤ 180◦}. (4)

In order to test the reliability of the network, the simulation offers the possibility of
adding noise to the track data generated. In order to generate realistic error curves, the
added noise is randomly chosen from a Gaussian distribution with mean of zero and a
distance depending standard deviation. The track data generated by the simulation was
validated by human experts. Figure 2 shows a plot of 1,000 simulated target tracks. For
training the artificial feed-forward network, sets of 10,000 were used, as discussed in
the next section.

Fig. 2. Example of generated track data

3 Network Type and Architecture

It has been proved by Hornik, Stinchcombe and White that standard multilayer feedfor-
ward networks with one hidden layer using arbitrary squashing functions are capable of
approximating any measurable function from one finite dimensional space to another to
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any desired degree of accuracy [8, 9]. Here, a multilayer perceptron network with one
hidden layer, utilizing Sigmoid and ReLU activation functions were used and the topol-
ogy was determined empirically (Fig. 3). The training of the network was undertaken
with 70% of the data is for training while 30% of the data were used for testing.
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Fig. 3. Network topology

The three positions and the related observation times together with the prediction
time t3 is feed into the network in Cartesian coordinates. The output of the network is
the predicted target position at time t3 in Cartesian coordinates. In order to improve the
accuracy of the predictions, it was necessary to convert the given polar coordinates into
Cartesian coordinates. The number of hidden neurons was determined empirically. The
best results were achieved by using as few as three hidden units. This topology was then
used for the final evaluation as described in the next section.

4 Experimental Results and Discussion

Once the network was trained using 10,000 generated tracks, experiments were carried
out using noisy inputs in order to reflect the limitations of real-world sonar systems.

Due to the nature of the sonar system, the motion data of the targets is given in polar
coordinates. When using polar coordinates, a deviation in the angle has a higher impact
on the error than a similar deviation in the radius. Therefore, an accuracy metric, based
on the absolute distance d between two points given in polar coordinates is used in this
research:

d =
√(

r2t + r2p − (
2 · rt · rp · cos(ϕt − ϕp

)))
. (5)

where d represents the absolute distance between the true position and the predicted
position represented in polar coordinates.Here ri represents the radiuswhileϕi represents
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the angle of the polar coordinate i. The index t represents the true position, while the
index p represents the predicted position.

The accuracy acc is calculated using the maximum distance of 6,000 m as follows:

acc = 1 − d

6, 000m
. (6)

A distance d above 30 m, reflecting in an accuracy smaller than 0.995, is deemed
insufficient for practical applications.

The noisy inputs x
∧

were calculated according to:

x̂ = x + min(r(σ (d)), c). (7)

where x
∧

represents the noise affected positon, x denotes the real position, r(c) represents
the Gaussian random number with a standard deviation of r(σ (d)) depending on the
distance d. The constant c is used to limit the maximum noise level and is chosen from
the interval:

{c ∈ N|0, 20, . . . , 120}. (8)

• Experiments for all seven values of c, were carried out using 10,000 new generated
tracks each. The mean accuracy following Eq. (6) for the different noise levels c are
depicted in Fig. 4.
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Fig. 4. Experimental results

It can be seen from the figure that the average accuracy of the predictions without
noise was 99.26%. This is slightly worse than the target accuracy of 99.5% given for
practical applications. In addition, it can be seen that the accuracy decreases linearly with
increasing noise with an R2 value of 0.9979, whereas the standard deviation increases
following an exponential equation with an R2 value of 0.9888.
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5 Conclusions and Future Work

It was shown that a simple feed-forward network with a single hidden layer, containing
three hidden neurons is capable of predicting the future position of amaritime vessel. The
prediction for a variable chosen point in the future is based on three previous observed
positions and their corresponding observation times. The accuracy achieved in these early
experiments was near the accuracy required for real-world applications. It was shown
that the accuracy decreased linearly with an increasing noise level of the observations.
If the noise level exceeded a maximum noise level c of 20 m, the performance of the
network degraded beyond its practical use.

Also, the experiments did not include clutter, i.e. observations that do not originate
from the target. In futurework the influence of clutter on the predictionswill be examined.
In addition, the network will be fine-tuned using real-world data based on Automatic
Identification System (AIS) tracks of seagoing vessels. This will potentially increase the
accuracy of the network.
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