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Abstract. Alzheimer’s Disease (AD) is a progressive disease preceded by
Mild Cognitive Impairment (MCI). Early detection of AD is crucial for
making treatment decisions. However, most of the literature on computer-
assisted detection of AD focuses on classifying brain images into one
of three major categories: healthy, MCI, and AD; or categorizing MCI
patients into (1) progressive: those who progress from MCI to AD at a
future time, and (2) stable: those who stay as MCI and never progress to
AD. This misses the opportunity to accurately identify the trajectory of
progressive MCI patients. In this paper, we revisit the AD identification
task and re-frame it as an ordinal classification task to predict how close
a patient is to the severe AD stage. To this end, we construct an ordinal
dataset of progressive MCI patients with a prediction target that indicates
the time to progression to AD. We train a Siamese network (SN) model
to predict the time to onset of AD based on MRI brain images. We also
propose a Weighted variety of SN and compare its performance to a base-
line model. Our evaluations show that incorporating a weighting factor to
SN brings considerable performance gain. Moreover, we complement our
results with an interpretation of the learned embedding space of the SNs
using a model explainability technique.
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1 Introduction

Although it has been more than a century since Alois Alzheimer first described
the clinical characteristics of Alzheimer’s Disease (AD) [3,4], the disease still
eludes early detection. AD is the leading cause of dementia, accounting for 60%-
80% of all cases worldwide [20,34], and the number of patients effected is growing.
In 2015, Alzheimer’s Disease International (ADI) reported that over 46 million
people were estimated to have dementia worldwide and that this number was
expected to increase to 131.5 million by 2050 [29]. Since AD is a progressive
disease, computer assisted early identification of the disease may enable early
medical treatment to slow its progression.

Methods that require intensive expert input for feature collection, such as
Morphometry [13], and more automated solutions based on deep learning [5,8,24]
have been utilized in the computer assisted diagnosis of AD literature. These
automated detection methods usually classify patients as belonging to one of
three stages: Normal (patients exhibiting no signs of dementia and no memory
complaints), Mild Cognitive Impairment (MCI) (an intermediate state in which
a patient’s cognitive decline is greater than expected for their age, but does not
interfere with activities of their daily life), and full AD.

A participant’s progression from one of the stages to the next, however, can
take more than five years [30]. This can mean that when automated disease
classification systems based on these three levels are used, patients at a near
severe stage do not receive the required treatment because they are classified
as belonging to the pre-severe stage. This is illustrated in Fig. 1(a) for five par-
ticipants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study
[28]. Using the typical classification approach (See Fig. 1(b)), for example, even
though participant five is only a year away from progressing to the severe AD
stage, they would be classified as MCI in the year 2009. To address this issue
we focus on the clinical question “how far away is a progressive MCI patient
on their trajectory to AD?” To do this we propose an ordinal categorization
of brain images based on participants’ level of progression from MCI to AD as
shown in Fig. 1(c). Our approach adds ordinal labels to MRI scans of patients
with progressive MCI indicating how many years they are from progressing to
AD, and we construct a dataset of 444 MRI scans from 288 participants with
these labels and share a replication script.

In addition to constructing the dataset, we also develop a computer assisted
approach to identifying a participant’s (or more specifically, their MRI image’s)
progression level. Accurately identifying how far a patient is from progressing
to full AD is of paramount importance as this information may enable earlier
intervention with medical treatments [2]. Rather than using simple ordinal clas-
sification techniques, we use Siamese networks due to their ability to handle
the class imbalance in the employed dataset [21,33]. We use a Siamese network
architecture, and a novel Weighted Siamese network that uses a new loss func-
tion tailored to learning to predict input MRI image’s likelihood of progression.
Furthermore, we complement results of our Siamese network based method with
interpretations of the embedding space using an auxiliary model explanation
technique, T-distributed Stochastic Neighbor Embedding (t-SNE) [26]. t-SNE
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(a) Progression levels (b) Traditional data preparation

(c) Our approach

Fig. 1. (a) Progression levels of five sample MCI participants where each dot represents
an MRI image during an examination year. (b) shows the typical approach of organizing
images for identification of progressive MCI or classification of MCI and AD. The
images in the lower light orange section are categorized as MCI when preparing a
training dataset (this includes those images from patients nearing progression to AD—
near progression level 1.0). The images in the upper red section are categorized as
AD. In (c) our approach to organizing brain images is illustrated using a Viridis map.
Images are assigned ordinal progression levels ∈ [0.1, 0.9] based on their distance in
years from progressing to AD stage. (Color figure online)

condenses high dimensional embedding spaces learned by a Siamese network
into interpretable two or three dimensional spaces [9].

The main contributions of this paper are:

1. We provide a novel approach that interpolates ordinal categories between
existing MCI and AD categories of the ADNI dataset based on participants’
progression levels.

2. We apply the first Siamese network approach to predict interpolated progres-
sion levels of MCI patients.

3. We propose a simple and novel variety of triplet loss for Siamese networks
tailored to identifying progression levels of MCI patients.

4. Our experiments demonstrate that using our version of the triplet loss is
better at predicting progression level than the traditional triplet loss. Code
is shared online1.

1 https://github.com/Msgun/WeightedSiamese.

https://github.com/Msgun/WeightedSiamese
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2 Related Work

Before the emergence of deep learning, and in the absence of relevant large
datasets, computer-assisted identification of AD relied on computations that
require expensive expert involvement such as Morphometry [13]. However, the
release of longitudinal datasets, such as ADNI [28], inspired research on auto-
mated solutions that employed machine learning and deep learning methods for
the identification of AD.

Most of the approaches proposed for AD diagnosis perform a classification
among three recognized stages of the disease: Normal, MCI, and AD [23]. Some
examples in the literature distinguish between all three of the categories [36],
while others distinguish between just two: Normal and MCI [19], Normal and
AD [32], or MCI and AD [31].

Patients at the MCI stage have an increased risk of progressing to AD, espe-
cially for elderly patients [30]. For example, in the Canadian Cohort Study of
Cognitive Impairment and Related Dementia [17] 49 out of a cohort of 146 MCI
patients progressed to AD in a two-year follow-up. In general, while healthy
adult controls progress to AD annually at a maximum rate of 2%, MCI patients
progress at a rate of 10%-25% [15]. This necessitates research on identifying MCI
subjects at risk of progressing to AD. In a longitudinal study period, participants
diagnosed with MCI can be categorized into two categories: (1) Progressive MCI,
which represents participants who were diagnosed with MCI at some stage dur-
ing the study but were later diagnosed with AD, and (2) Stable MCI, patients
who stayed as MCI during the whole study period [16]. This excludes MCI par-
ticipants with chances of reverting back to healthy, since they were also reported
to have chances of progressing to AD [30]. There are some examples in the liter-
ature of using machine learning techniques such as random forest [27] and CNNs
[16] to classify between stable and progressive MCI. While feature extraction is
used prior to model training towards building relatively simpler models [23,35],
3D brain images are also deployed with 3D CNNs to reduce false positives [5,25].

The brain image classification task can also be transformed to ordinal classi-
fication to build regressor models. For example, four categories of AD: healthy,
stable MCI, progressive MCI, and AD were used as ordinal labels to build a multi-
variate ordinal regressor using MRI images in [14]. However, the output of these
models gives no indication of the likelihood of a patient to progress from one stage
to another. Furthermore, this does not provide prediction for interpolated inter-
category progression levels. Albright et al. (2019) [2] used a longitudinal clinical
data including ADAS13, which is a 13-item Alzheimer’s Disease Assessment Scale,
and Mini-Mental State Examination (MMSE) to train multi-layer perceptron and
recurrent networks for AD progression prediction. This work, however, uses no
imaging data and it has been shown that brain images play a key role in improving
diagnostic accuracy for Alzheimer’s disease [18].

Siamese networks, which use a distance-based similarity training approach
[10,12], have found applications in areas such as object tracking [7] and anomaly
detection [6]. Although it does not focus on AD detection, we found [22] to be
the closest approach to our proposed method in the literature. Li et al. [22]
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report that a Siamese network’s distance output could be translated to predict
disease positions on a severity scale. Although this approach takes the output
as severity scale without any prior training on disease severity, only deals with
existing disease stages, and does not interpolate ordinal categories within, it
does suggest Siamese networks as a promising approach for predicting ordinal
progression levels.

3 Approach

In this section, we describe the datasets (and how they are processed), model
architectures, model training and evaluation techniques used in our experiments,
as well as our proposed triplet loss for Siamese networks.

3.1 Dataset Preparation

The data used in the experiments described here was obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. ADNI was
launched in 2003, led by Principal Investigator Michael W. Weiner, MD (https://
adni.loni.usc.edu). For up-to-date information, see https://adni.loni.usc.edu/.

Table 1. Image distribution across progression levels, ρ.

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Number of images 4 4 6 10 24 56 172 273 467

From the ADNI dataset we identified MRI brain images of 1310 participants who
were diagnosed with MCI or AD. 288 participants had progressive MCI, 545 had
stable MCI, and the rest had AD. We used MRI images of the 288 progressive
MCI participants to train and evaluate our models. We labeled the progressive
MCI participants based on their progression levels towards AD, ρ ∈ [0.1, 1.0]
with a step size = 0.1, where for a single participant, P , min(ρ) = 0.1 represents
the first time P was diagnosed with MCI and P transitions to stage AD at
max(ρ) = 1.0. This transforms the binary MCI and AD labels to 10 ordinal
labels. An example of the data organization based on progression level is plotted
in Fig. 1. The distribution of the constructed ordinal regression levels is shown in
Table 1 (where ρ = 1.0 represents AD) where the imbalance between the different
labels is clear. Within the ADNI dataset, the maximum number of MRI scans
that the progressive MCI participants have had until they progressed to AD
(ρ = 1.0) is 9, which means that the smallest ρ is 0.2. We took advantage of
Siamese networks robustness to class imbalance to circumnavigate the imbalance
in the ordinal labels. By sub-sampling from the majority classes, we selected 444
3D MRI images (shape = 160× 192× 192) for the negative, anchor, and positive
datasets (each holding 148 images) required when training a Siamese network

https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://adni.loni.usc.edu/
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using triplet loss. We used 80% of the images for training and the rest for testing.
AD images were randomly separated to the anchor and positive dataset. We
ensure that there is no participant overlap between sets when performing the
data splitting between training and testing dataset, and between anchor and
positive dataset.

3.2 Weighted Siamese Network

Fig. 2. Weighted Siamese network. The text ResNet-50 here refers to the base lay-
ers of the ResNet-50 architecture which are trained from scratch for extracting image
embeddings, i.e. excluding the fully connected classifier layers. While we used 3D MRI
images for model training and evaluation, sagittal plane is used here only for visual-
ization purposes.

Siamese networks are usually trained using a triplet loss or its variants. While
a traditional triplet loss teaches a network that a negative instance is supposed
to be at a larger distance from the anchor than a positive instance, we propose
a Weighted triplet loss that teaches a network that instances, which can all be
considered to be in the negative category, are not at the same distance from
the anchor and that their distance depends on their progression level, ρ. So
that lower progression levels have larger distance from an anchor instance, we
transform ρ to a weighting coefficient α = 1.9 − ρ, excluding ρ = 1.0, as shown
in Fig. 3. The architecture of our proposed Weighted Siamese network is shown
in Fig. 2.
We used two different loss functions to train our Siamese networks. The first is
a traditional triplet loss, which we refer to as Unweighted Siamese:

Lu = max(dap − dan + margin, 0) (1)

where margin = 1.0, dap is the Euclidean distance between anchor and positive
embeddings, and dan is the distance between the embeddings of anchor and
negative instances.

The second loss is a newly proposed Weighted triplet loss—Weighted Siamese
which introduces a coefficient α ∈ [1.0, 1.8] to dan in Lu:

Lw = max(dap − αdan + margin, 0) (2)
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Fig. 3. Transforming progression level, ρ, to α.

3.3 Training and Evaluation

We implemented all of our experiments using TensorFlow [1] and Keras [11].
After comparing performance between different architectures and feature embed-
ding size, we chose to train a 3D ResNet-50 model from scratch by adding three
fully connected layers of sizes 64, 32, and 8 nodes with ReLu activations, taking
the last layer of size 8 as the embedding space. We used an Adam optimizer
with a decaying learning rate of 1e-3. We trained the model with five different
seeds for 150 epochs, which took an average of 122 min per a training run on an
NVIDIA RTX A5000 graphics card.

For model evaluation on training and testing datasets, we use both the
Unweighted Siamese and Weighted Siamese losses as well as Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). MAE and RMSE are
presented in Eqs. 3 and 4 respectively, for a test set of size N where yi and Yi

hold the predicted and ground truth values for instance i, respectively. We turn
the distance outputs of the Siamese networks into y by discretizing them into
equally spaced bins, where the number of bins equals the number of progression
levels.

MAE =
1
N

N∑

i=1

|yi − Yi| (3)

RMSE =

√√√√ 1
N

N∑

i=1

(yi − Yi)2 (4)

We make use of t-SNE to explain the 8 dimension embedding space learned by
the Weighted Siamese network by condensing it two dimensions. For presentation
purposes and in order to fit the t-SNE well, we drop underrepresented progres-
sion levels; while we dropped progression level 0.2 from the training dataset,
progression levels 0.2, 0.3, and 0.5 were removed from the testing dataset. The
t-SNE was fitted over a 1000 iterations using Euclidean distance metric with a
perplexity of 32 and 8 for the training and testing datasets, respectively.



398 M. T. Hagos et al.

(a) Training loss (b) Test loss

Fig. 4. Training and testing losses of the Weighted and Unweighted Siamese models.
The first 40 epochs are cropped out for easier visualization. Bars represent std. errors
over five runs.

4 Results and Discussion

In this section, we present training and testing losses, MAE and RMSE metrics
of evaluation, a plot showing comparison between predicted and ground-truth
progression levels, as well as interpretation of the results.

Training and testing losses over five runs of model training for both the
Unweighted and Weighted Siamese networks are shown in Fig. 4. While the aver-
age training and testing losses of the Weighted Siamese network are 2.92 and
2.79, the Unweighted Siamese achieves 10.02 and 17.53, respectively. We were
able to observe that the Unweighted Siamese network had a hard time learning
the progression levels of all the ordinal categories. However, our proposed app-
roach using Weighted loss was better at fitting to all the levels. We accredit this
to the effects of adding a weighing factor using ρ.

A plot of predicted vs. ground truth MCI to AD progression levels is pre-
sented in Fig. 5. Our proposed Weighted Siamese network outperforms the
Unweighted Siamese network at predicting progression levels(Fig. 5 and Table 2).

We observed that the simple modification of factoring the distance between
an embedding of anchor and negative instances by a function of the progression
level brought considerable performance gain in separating between the interpo-
lated categories between MCI and AD.

In Fig. 5, although the Weighted Siamese outperforms the Unweighted
Siamese, it also usually classifies the input test images with lower progression
levels as if they are on a higher progression levels. This would mean brain images

Table 2. Average MAE and RMSE over five runs.

Method MAE RMSE

Unweighted Siamese 2.30 2.94

Weighted Siamese 2.00 2.40
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(a) Weighted Siamese (b) Unweighted Siamese

Fig. 5. Predicted progression levels of test MRI images against ground truth levels.

of patients that are far away from progressing to AD would be identified as if
they are close to progressing. While it’s important to correctly identify these low
risk patients, we believe it’s better to report the patients at lower risk as high
risk and refer them for expert input than classifying high risk patients as low
risk.

An interpretation of the results of the proposed Weighted Siamese method
using t-SNE is displayed in Fig. 6. The clustering of the embedding of input
instances according to their progression levels, especially between the low-risk
and high-risk progression levels assures us that the results represent the ground
truth disease levels.

(a) Training instances (b) Test instances

Fig. 6. Visualization of t-SNE of the embedding spaces of training and test instances.
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5 Conclusion

Similarly to other image-based computer assisted diagnosis research work, the
AD identification literature is heavily populated by disease stage classification.
However, an interesting extra step can be taken to identify how far an input
brain image is from progressing to a more severe stage of AD. We present a
novel approach of interpolating ordinal categories in-between the MCI and AD
categories to prepare a training dataset. In addition, we proposed and imple-
mented a new Weighted loss term for Siamese networks that is tailored to such a
dataset. With our experiments, we show that our proposed approach surpassed
the performance of a model trained using a standard Unweighted loss term; and
we show how the predicted levels translate to the ground truth progression lev-
els by applying a model interpretability technique on the embedding space. We
believe our approach could easily be transferred to other areas of medical image
classification involving progressive diseases.

The diagnosis results taken in our study are bounded by the timeline of the
ADNI study—meaning, even though based on extracted information a partici-
pant may have MCI during an examination year and they may progress to AD
after some year(s), they could have had MCI before joining the ADNI study
and their progression to AD might have taken longer than what we have noted.
Future work should consider this limitation.
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