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Abstract. This paper proposes an innovative approach to improve residual arti-
facts in image-based parallel magnetic resonance imaging (MRI) reconstruction.
Despite its superior signal-to-noise ratio (SNR) over the conventional Sensitivity
Encoding (SENSE) method, SENSE is hindered by persisting residual artifacts,
causing it to be less effective in image-based parallel MRI reconstruction. We
propose a joint estimation of actual and virtual coil sensitivity maps, along with
the reconstructed image. Inspired by the principles of the Joint Sensitivity Encod-
ing (JSENSE) method, the proposed approach employs an iterative optimization
process via phase-constrained data of virtual conjugate coils, progressively refin-
ing these integral components to achieve superior image quality. Experimental
results show that the proposed method not only enhances MRI image quality by
suppressing residual artifacts but also paves the way for future research into the
potential of virtual conjugate coils in image-based MRI reconstruction. Different
from the phase-constrained data for enhancing k-space-based parallel MRI, the
method shows that the phase-constrained data also improve image-based parallel
MRI reconstruction.

Keywords: Magnetic Resonance Imaging · Virtual Conjugate Coil ·
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1 Introduction

Virtual Conjugate Coil (VCC) [1, 2] has undeniably brought about significant improve-
ments in the quality of parallel Magnetic Resonance Imaging (MRI) reconstructions
and deep network-based methods. Renowned techniques such as VCC-GRAPPA [2],
VCC-LORAKS [3], and VCC-ESPIRIT [4] along with newer approaches like virtual
coil augmentation for MR coil extrapolation via deep learning [11], have showcased
their efficacy in suppressing residual artifacts in reconstructed images and enhancing
the Signal-to-Noise Ratio (SNR).

Virtual Conjugate Coil Sensitivity Encoding (VCC-SENSE) [2], a technique that has
gained significant attention in the field, has demonstrated a superior SNRcompared to the
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conventional Sensitivity Encoding (SENSE) [5] approach. However, this approach is not
without its flaws. Residual artifacts, lingering remnants from the reconstruction process
that interfere with the interpretation of the final image, continue to persist in VCC-
SENSE reconstructions. This shortcoming has led toVCC being less studied in the realm
of image-based parallel MRI reconstruction compared to k-space-based reconstruction
[2–4].

In this context, it becomes imperative to devise innovative strategies that focus on
the reduction and potential elimination of these residual artifacts. In this paper, our
primary goal is to improve these residuals in SENSE reconstructions. Our approach
involves solving an iterative optimization problem, a strategy that has proven successful
in various computational tasks.Motivated by the principles of Joint Sensitivity Encoding
(JSENSE) [8], we propose a joint estimation of actual coil sensitivity maps, virtual coil
sensitivity maps, and the reconstructed image. This is not a straightforward approach, as
it involves iteratively enhancing and refining these three integral components to achieve
superior image quality. The coil sensitivity maps – both actual and virtual – along with
the image to be reconstructed, undergo a series of improvements, progressively refining
the final output.

The iterative optimization process offers a systematic and guided approach to
improve the quality of the reconstructed image. The idea is to start with an initial esti-
mation for each of the three components and iteratively refine them, with each iteration
offering an improvement over the last. The process continues until an optimal or near-
optimal solution is found. The joint estimation approach provides a mechanism for the
system to learn from the residuals, enabling it to correct and suppress these artifacts.
The suppression of these residuals can significantly improve the quality of the recon-
structed images. By addressing one of the major shortcomings of the SENSE-related
techniques, we aim to bring VCC to image-based MRI reconstruction and provide an
improved approach that balances both SNR and the minimization of residual artifacts.
In this paper, the first and the second sections of this paper present an introduction and
background. The proposed method is given in the third part. Experimental results and
conclusions are provided in the fourth and fifth sections.

2 Background

Joint Sensitivity Encoding (JSENSE) [8] is a magnetic resonance imaging (MRI) tech-
nique designed to overcome certain limitations of conventional SENSE [5] method,
which rely heavily on precise estimations of coil sensitivity maps for image recon-
struction. The conventional SENSE method can suffer from inaccuracies in these initial
estimates, leading to degraded image quality. JSENSE adopts an iterative approach opti-
mizing both coil sensitivity maps and the image concurrently. This innovative strategy
allows for the refinement of the actual coil image sensitivity profile during the image
reconstruction process, thus potentially yielding higher-quality images. Despite the com-
putational demands of this iterative process making JSENSE more resource-intensive
than conventional SENSE methods, ongoing research including the application of deep
learning methods is focused on enhancing the performance and efficiency of JSENSE,
particularly in situations where initial coil sensitivity profiles are inaccurate or change
during MRI scan.
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Efforts to improve calibration accuracy in MRI reconstruction have necessitated
mining valuable data within the restricted auto-calibration signal (ACS) lines, where a
notable strategy involves the application of the VCC concept. The VCC enhances encod-
ing power, effectively bolstering the reconstruction performance of numerous method-
ologies such as SENSE [2], GRAPPA [2], ESPIRiT [4], KerNL [6], iterative RAKI [9],
nonlinear GRAPPA [7], evenmulti-contrast data [10], and PROPELLER [13]. Addition-
ally, the VCC method introduces extra equations into the inverse reconstruction matrix
by incorporating additional phase information, augmenting the precision of the recon-
structed images. In the context of machine learning, VCC serves as an effective data
augmentation technique, contributing to the enhanced performance of learning models
[6]. However, while VCC improves the reconstruction quality, it results in increased
computational costs due to the doubling of channels in the k-space data used in the pro-
cess. For instance, a dataset involving a 32-coil k-space would necessitate a total of 64
coils for reconstruction, including the original 32 and an added 32 virtual coils, making
the procedure more computationally demanding.

3 Proposed Method

3.1 The Proposed Framework

The proposedmethodology framework is illustrated in Fig. 1. Phase-constrained data are
generated asVCC signals. Both physical coil data andVCCdata are used in JSENSE-like
iterative reconstruction.

Fig. 1. Framework of the proposed method. Phase-constrained data are incorporated into the
iterative reconstruction process, which is supported by JSENSE-like method.



Enhancing Image Reconstruction 409

3.2 Generating Phase-Constrained Data

In parallel MRI, one coil’s k-space data denotes the Fourier Transform (FT) of the
distribution of the spatial spins combined with the coil sensitivities. Furthermore, in
practical imaging, background phase effects caused by B0 field inhomogeneity, flow,
and pulse sequence also exist in the effective coil sensitivities. The coil k-space data can
be represented as [1]

Sj(p) = FT
(
ρ(x) · eiϕ(x) · Cj(x)

)
, (1)

where ρ(x) represents the spin distribution, eiϕ(x) denotes background phase,Cj(x) is the
coil sensitivities of the jth coil, p is the k-space data vector, and x represents the vector in
the image domain. The symmetric complex-conjugate k-space data can be represented
as [1]

S∗
j (p) = FT

[
ρ(x) · e−iϕ(x) · C∗

j (x)
]
, (2)

where ∗ is the complex-conjugate operator. Additional phase information is provided in
the VCC, although the magnitude sensitivities are the same between actual and virtual
coils.

Additional equations are added in the VCC-based reconstruction, and reconstructed
image quality is improved due to the additional encoding power from VCC. The explicit
knowledge of the background phase information is not required when VCC is com-
bined with GRAPPA reconstruction [1] for improving the quality. Encoding power is
significantly improved by using the phase variations in the complex coil sensitivities. On
the other hand, insufficient phase variations and inaccurate knowledge of spatial phase
information cause artifacts [1].

3.3 Iterative JSENSE Reconstruction Using VCC Data

The SENSE technique takes advantage of the spatial sensitivity variations of multiple
surface receiver coils. It’s a parallel imaging method that helps reduce scan times by
acquiring less k-space data, thus speeding up the imaging process. SENSE uses an
array of multiple receiver coils. Each of these coils has a different spatial sensitivity
pattern, which means they pick up signals with varying strength depending on their
position relative to the body. As a result, each coil can provide a unique “view” of the
body, which contains spatial encoding information in addition to the signal data. The
SENSE technique then uses these unique views to fill in the gaps in the undersampled
k-space data, thus allowing for a reduction in the number of phase-encoding steps and
consequently faster image acquisition. It is important to note that the accuracy of the
reconstructed image depends on the correct estimation of the coil sensitivity profiles.
Misestimation could lead to errors known as aliasing artifacts. For the SENSE imaging
formulation,

Ef = d, (3)
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where d represents the acquired k-space data from all actual coils, the encoding matrix
E contains the product of Fourier encoding with undersampled k-space and coil-specific
sensitivity modulation over the image, and f is the unknown image to be reconstructed.

For JSENSE, the imaging equation becomes

E(a)f = d, (4)

where a represents unknown actual coil sensitivities. In our study, we are introducing a
method where we propose a simultaneous estimation of actual coil sensitivity maps, vir-
tual coil sensitivity maps, and the reconstructed image. The traditional approach usually
treats these aspects independently, but our method acknowledges their interconnected
nature and leverages this relationship for a more accurate and effective reconstruction
process. By jointly estimating these factors, we can address challenges in MRI recon-
struction and improve the quality of the resultant image. In particular, the actual coil
sensitivity maps are key to accounting for the distinct signal reception profiles of differ-
ent coils. On the other hand, the virtual coil sensitivity maps introduce extra equations
to the inverse reconstruction matrix by incorporating additional phase information. Fur-
thermore, the reconstructed image integrates these considerations to result in improved
final output. Overall, our proposed method aims to enhance MRI image reconstruction
by comprehensively considering all the key contributing factors in a unified estimation
process. So, the image equation is

E
(
a, a

′)
f = d, (5)

where a
′
denotes the unknown virtual coil sensitivities. We apply iterative optimization

to solve the Eq. (5). In phase-constrained reconstruction, actual and virtual coils are har-
moniously combined. They are fed into the reconstruction procedures without separating
them, resulting in a unified input. This integrated approach is also maintained during
the iterative optimization process, where both coil types are jointly involved. Therefore,
the actual and virtual coils coexist throughout the iterations, contributing to the overall
solution.

Specifically, the cost function is alternatively minimized for
{[

a, a
′]

, f
}

= arg min
[a,a′],f

U
([

a, a
′]

, f
)
. (6)

In each computational cycle of the reconstruction process, the image that is being
restructured is integrated with actual and virtual coil sensitivity maps—computational
representations of the coil’s sensitivities. This integration results in two unique images,
an actual coil image and a virtual coil image, which facilitate a more accurate image
reconstruction. The coil sensitivitymaps are initially generated through a self-calibration
process, establishing a foundation for the iterations to improve the image. After all the
iterations are completed, a final reconstructed image is produced. This image is then
assessed for its clarity, detail, and fidelity compared to the original image. This evaluation
process gauges the effectiveness of the reconstruction process and identifies potential
enhancements for future iterations, with the final image demonstrating the success of
the applied method.
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4 Experimental Results

4.1 Datasets and Evaluation Metrics

Twodatasets are used to evaluate the reconstruction performance of the proposed random
feature method. The first dataset of axial brain images was acquired on a 3T scanner
(SIEMENS AG, Erlangen, German) with a 32-channel head coil using a 2D gradient
echo sequence (TE/TR = 2.29/100 ms, flip angle = 25°, matrix size = 256 × 256,
slice thickness = 3 mm, and FOV = 24 × 24 cm2). The second set of coronary brain
data was acquired using a 2D gradient echo sequence (slice thickness = 3.0 mm, matrix
size = 256 × 256, FOV = 24 × 24 cm2, and TE/TR = 2.29/100 ms). The k-space
data was subject to undersampling by a reduction factor, with the count of the ACS
lines is set as 32. The reconstruction algorithm was executed in MATLAB, a high-level
programming language developed by MathWorks based in Natick, Massachusetts. All
image reconstruction was carried out on a laptop equipped with an i7 processor and
32GB of RAM. Given that the proposed technique does not apply deep learning, there
was no requirement for a graphics processing unit (GPU).

In addition to the subjective evaluation, the suggested technique is also benchmarked
against alternativemethods employing twoquantifiable evaluation standards. These stan-
dards encompass the normalized mean square error (NMSE), which measures the mag-
nitude of error, and the structural similarity index measurement (SSIM), a method that
gauges image quality by comparing changes in structural information.

4.2 Reconstruction Results

For the first dataset of axial brain, k-space is undersampled with 32 ACS lines and
the outer reduction factor of 4. The fully sampled k-spaced data are inversely Fourier
transformed to image space and all coil images are combined to generate the final image.
Missing k-space data are recovered by CG-SENSE [12], JSENSE [8], and the proposed
JSENSE-VCCmethods.A region-of-interest (ROI) is extracted for comparing the details
of reconstructed images. In Fig. 2, it is seen that the proposed method can suppress
aliasing artifacts and noise in the reconstructed image. In contrast, CG-SENSE image
has typical aliasing artifacts and JSENSE also have artifacts and noise. The proposed
method has the closest appearance of image content to the reference image. In addition,
SSIM values are presented in Fig. 2. It is seen that the proposed JSENSE-VCC method
has the highest SSIM value 0.9303 in all three images reconstructed from undersampled
k-space data.

For the second dataset of the coronary brain, 32 ACS lines and the outer reduction
factors of 2, 4, and 8 are used to undersample k-space data, respectively. The fully
sampled k-spaced data are inversely Fourier transformed to image space and all coil
images are combined to generate the final image. Missing k-space data are recovered
by CG-SENSE, JSENSE, and the proposed JSENSE-VCC methods. A ROI is extracted
for comparing the details of reconstructed images. In Fig. 3, it is seen that the proposed
method can suppress aliasing artifacts and noise in the reconstructed image. CG-SENSE
image has typical aliasing artifacts and noise, and JSENSE reconstruction also has noise.
The proposedmethod has the closest appearance of image content to the reference image.
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Fig. 2. For the axial brain data, reconstruction performance comparison among the reference
image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC method. The reference image is
fully sampled. The proposed method can suppress aliasing artifacts in comparison to CG-SENSE.
In comparison to the conventional JSENSE, JSENSE-VCC can restore more details. The proposed
method has the highest SSIM value.

In addition, SSIM and NMSE values are presented in Fig. 3. It is seen that the proposed
JSENSE-VCC method has the highest SSIM value 0.9706 and the lowest NMSE value
0.003022 in all three images reconstructed from undersampled k-space data. Besides
the JSENSE-VCC, feature selection-based reconstruction [14], dual-interpolator-based
reconstruction [16], and broad learning reconstruction [15] may also be combined with
VCC concept for further improvement of performance.

Fig. 3. For the coronary brain data, reconstruction performance comparison (outer reduction
factor 4) among the reference image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC
method. The reference image is fully sampled. The proposedmethod can suppress aliasing artifacts
in comparison to CG-SENSE. In comparison to the conventional JSENSE, JSENSE-VCC can
restore more details. The proposed method has the highest SSIM and the lowest NMSE values.

To quantitatively evaluate the reconstruction performance, the undersampled k-space
data of the coronary brain are reconstructed by CG-SENSE, JSENSE, and JSENSE-
VCC, respectively. Quantitative results are shown in Table 1.

It is seen that the proposed JSENSE-VCC method has the highest SSIM values for
images reconstructed at the outer reduction factor 2, 4, and 8, respectively.



Enhancing Image Reconstruction 413

Table 1. Quantitative Metric Values for Evaluating Reconstruction Performance of Coronary
Brain Data.

R2 R4 R8

SSIM NMSE SSIM NMSE SSIM NMSE

CG-SENSE 0.943532 0.002597 0.941088 0.005265 0.794037 0.021442

JSENSE 0.963015 0.003143 0.955321 0.003393 0.829628 0.015490

JSENSE-VCC 0.971696 0.002107 0.970637 0.003022 0.921765 0.007200

5 Conclusion

In conclusion, the study presented an innovative approach to improve the quality of
image-based MRI reconstruction. Our methodology leverages an iterative optimization
process that jointly estimates actual and virtual coil sensitivity maps, along with the
image to be reconstructed. Each iteration refines these three components and enhances
the final output. The proposed method notably elevates the quality of reconstructed
images through suppressing residual artifacts. The results not only bolster the promise
of image-based MRI reconstruction but also highlight the potential of this approach in
improving both SNR and minimizing residual artifacts.
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