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Abstract. The problem of recovering the shape of a curve given partial
information about it is a fundamental problem in many applications in
visual computing. Which types of curves are fitted to a given input data
depends on the application and varies from piece-wise linear approxima-
tion to parametric splines. The choice of approximation method depends
on the context of the problem, the nature of the data, and the desired
level of accuracy and complexity.

In this paper we introduce SwarmCurves, a curve reconstruction
approach based on particle swarm optimization. For given input data
SwarmCurves offers a range of solutions, from linear polygons to ratio-
nal B-Splines with various degrees of freedom. The algorithm works on
dense, sparse or noisy, 2D or 3D input data. We demonstrate the perfor-
mance of SwarmCurves, on a number of examples.

Keywords: Curve Reconstruction · Evolutionary Optimization ·
B-Splines

1 Introduction

To recover the shape of a curve from data points is a challenging problem that
appears frequently in a wide range of applications such as computer-aided design,
virtual reality and computer graphics, data visualization and medical imaging.
Depending on the available information about the curve and the application,
qualitatively different approaches can be formulated in order to solve this prob-
lem.

Curve fitting aims to find a curve which best represents a given set of possi-
bly noisy or sparse data points. In most applications of computer graphics and
geometric modelling it refers to fitting low degree curves to input data. Curve
fitting is also used in data analysis, to identify trends and patterns in data [23].
It is closely related to curve approximation, which aims to reduce the amount
of data required to represent a curve, thereby reducing storage and processing
requirements. It involves fitting a mathematical function to an input curve or
data set. The goal of curve reconstruction is to derive a compact representation
for (possibly partial) data at high accuracy, while ensuring that the resulting
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curve is smooth and has no sharp corners or discontinuities. It aims at deriving
a smooth and visually appealing curve which is highly relevant in fields such as
geometric modelling and computer-aided design/manufacturing (CAD/CAM).
In this context B-Splines are the widely preferred approximating functions due
to their powerful mathematical properties and their wide support by CAD/CAM
systems. Curve reconstruction has become a fundamental tool in reverse engi-
neering, where dense data acquired from physical objects is converted to a digital
model of such objects [29].

A combined approach for fitting, approximating and reconstructing arbitrary
degree curves from ordered data is to our knowledge still an open problem.

In this paper we introduce SwarmCurves, a curve reconstruction approach
based on particle swarm optimisation, which is general and makes no assumption
other than the initial input be a set of ordered data points, 2D or 3D. The out-
put are a set of open or closed curves of arbitrary degree. SwarmCurves may
be applied in reverse engineering to reconstruct curves from very dense data
typically obtained from scanner devices. However, SwarmCurves can also
handle sparse and noisy data, which may be collected through other means, for
example in context of visual analytics, where curve fitting is used to identify
trends. SwarmCurves, does not require any additional pre- or post-processing
and offers various types of fitting solutions: from simple polygons to rational
B-Splines with various degrees of freedoms in form of control points. Swarm-
Curves performs well regardless of whether the data comes from curves which
are polynomial, rational or belong to any other family of functions and provides
solutions even for sparse input data. In the reported examples, the mean error
from the output curve to the input data points is usually below 0.35% of the
bounding box diagonal.

2 Related Work

Reconstructing smooth curves from point data has been a research topic for
decades and numerous approach have been put forward.

2.1 Curve Reconstruction

Curve fitting, approximation and reconstruction are closely related and solve
common problems in many fields of research [1,13,17,18].

To reconstruct smooth curves a common representation are NURBS [8] which
are given by C(t) =

∑n
j=1

Nj,d(t)ωjPj

Nj,d(t)ωj
, where Nj are the B-Spline functions of

degree d defined on a knot vector. The resulting B-Spline curve is smooth and
approximates its n control points Pj . Although knots can be distributed non-
uniformly over the parametric domain, they are often uniform in a modelling
context except for multiplicities where interpolation of the control polygon is
required.

Reconstructing B-Splines from input data was introduced by de Boor and
Rice [5], first for a fixed knot vector and later also for variable knot vectors [4].



SwarmCurves: Evolutionary Curve Reconstruction 345

The researchers proposed a least squares approximation method for approximat-
ing the control points for the spline curves and their knot vectors.

Park [25] presented an error-bound method for B-Spline curve approximation
to a given planar input curve. He focused both on accuracy control and data
reduction to derive a B-Spline curve with fewer control points while keeping the
distance between the given curve and the B-Spline curve smaller than a specified
tolerance. The fitting was achieved by first approximating a polygon to the data
and then fitting a B-Spline curve to the polygon.

Park and Lee [24] fitted B-Spline curves to a set of ordered points by selecting
points called dominant points to achieve a better curve approximation. They
adaptively refined a B-Spline curve by selecting fewer dominant points at flat
regions but more at complex regions. For the same number of control points,
their approach could generate a B-Spline curve with less deviation than previous
approaches.

In order to reconstruct cubic B-Spline curves Ebrahimi and Loghmani [6]
used the Broyden-Fletcher-Goldfarb-Shanno algorithm [3] to improve the non-
linear least squares optimization problem. As initialization for their optimization
method, they use a uniformly spaced knot vector and then solve a linear sys-
tem of equations for the initial control point positions. They optimised the fit
by inserting additional control points until the approximation error does not
decrease significantly in one iteration.

Recent approaches employ Neural Networks for curve reconstruction [15,19,
20,30,32]. Different input modalities have been used for neural networks, e.g.
Point clouds [15,30], depth images [20] and 2D images [32].

In the approach presented in this paper we assume the knot vector fixed
and focus on optimising the number of control points, their positions Pj and
their corresponding weights ωj . While for closed curves the knot vector is set
to be uniform, open curves are reconstructed using a clamped knot vector, so
that first and last control points are interpolated. We evaluate our algorithm by
comparing it to a number of examples typically used to assess the quality of the
reconstruction.

2.2 Evolutionary Algorithms for Curve and Surface Fitting

Evolutionary optimization has been used in many applications [2,7,11,14,21,28,
31,33], including curve fitting [9,13,27]. Various types of evolutionary optimisa-
tion methods exist.

Sun, Liu and Ge [28] are fitting B-Spline curves to a sampled pointset of the
outline of a ship using an adapted Hungry Predation Optimization Algorithm.
Galvez et al. [10] used a Genetic Algorithm for surface and curve reconstruction.
They encoded the parameter values in a genome and used the mean squared
error as an error measure for a found solution. They extended their approach
and used particle swarm optimisation to fit Bézier surfaces to 3D point clouds [9].

Particle Swarm Optimization (PSO) was first introduced by Kennedy and
Eberhart [16] in 1995. It uses an evolutionary approach to optimization in order
to eliminate the need for a derivative of the error function. With PSO a swarm
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Fig. 1. Particle Swarm Optimization Pipeline

of particles is initially uniformly distributed over the n-dimensional space of pos-
sible solutions. Additionally every particle has a velocity with which it travels
through this space. Every member of the swarm knows the best global solution
and the best solution reached by its local neighbors. Using this information,
every particle updates its position and its velocity. This is repeated until a stop-
ping criterion is met or a limit on the number of iterations is reached. For a
comprehensive overview on applications and current theory of PSO we refer the
reader to two recent survey papers in this field given by Houssein et al. [12] and
Shami et al. [26].

An application of PSO to the problem of curve fitting was proposed by Song
et al. [27]. The authors adapted the classical PSO algorithm in order to better
escape local minima. With this improved algorithm the researchers found paths
through partially obstructed workspaces using Bézier curves.

Iglesias et al. [13] introduced a method for B-Spline curve reconstruction
using a multilayer embedded bat algorithm (ME-BAT). This algorithm is mod-
elled after the behaviour and communication of bats and, similar to PSO tries
to find a globally optimal solution to a given problem. Contrary to our approach
the researchers fixed the number of control points before executing the algorithm
and do not state a method on how to find the optimal number of control points.

In this paper we propose SwarmCurves, a novel approached to fit polygons,
B-Splines, or rational B-Splines to an ordered set of points. SwarmCurves is
based on PSO, which is better able to solve floating point problems, compared
to genetic algorithms for example. SwarmCurves is able to reconstruct para-
metric curves of arbitrary degree and various number of control points. We can
handle noisy and sparse data.

3 Methodology

We employ the PSO to find the control points of a B-Spline curve which best
fits the input data. A single particle of the swarm consists of a list of ordered
control point positions in 3D, Pj = (xj , yj , zj). Each position is associated with
a velocity, which determines the distance and direction this control point will
move in the next iteration. A key element of any evolutionary approach is the
fitness of a solution. In context of curve reconstruction the fitness is related to the
distance between a given set of data points and the reconstructing B-Spline curve
C, computed with the set of control points derived by a single particle. If the data
points are sampled from a curve T , then the distance between the target curve
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Fig. 2. An example of a single output provided by SwarmCurves. Top: Input data
points (blue) are shown together with the reconstructed curve colored in the Euclidean
distance, where red indicates a close approximation. Below: The reconstructed control
polygon (red) is shown together with the control polygon of the original curve (blue).
From left to right the number of control points of the solution of the curve reconstruc-
tion is increasing, from 4 to 8 control points. The captions also list the error of the
solution. (Color figure online)

T that we want to reconstruct, and the B-Spline curve C, defined by a particle’s
set of control points, Pj , is defined by the error measure err(c) = davg(C, T ).
where davg() is the average Euclidean distance between the sampled curve C to
the sampled target curve T .

We restrict the reconstruction in our approach to a uniform knot distribution
for closed curves and place knot multiplicities at end points of open curves in
order to interpolate the first and last control point positions of the reconstructed
B-Splines curve.

A visualization of the PSO Pipeline can be seen in Fig. 1. The swarm is
initialized randomly with the number of particles specified by the user. Each
particle is initialized with a 3n-dimensional random position inside a bounding
box of normalized data points [−1, 1]. Then the local (one particle) and global
(over the whole swarm) best position and error are determined. The position
of each particle is denoted qlocal, the optimal position over the whole swarm as
qglobal. Then the iteration loop starts. With each iteration the velocity of each
particle is updated according to vi+1 = viψ +(qlocal − qi)rqφq +(qglobal − qi)rgφg

where vi is the current velocity, ψ is the inertia weight, qlocal is the best found
solution by the particle, qi is the current position of the particle, rq is a random
number in the interval [0, 1] and φq is the weight of influence for the local best
position. Further, qglobal is the globally best position of the swarm, rg is another
random number in the interval [0, 1] and φg is the weight of influence for the
global best position. The position is updated according to qi+1 = qi + vi+1.
Finally, the error of each particle is updated and the local and global best position
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Fig. 3. Reconstruction of randomly generated closed and open B-Spline curves of
degree 3. The top row is the target data points in blue and the reconstructed B-
Spline curve colored according to the Euclidean distance. Bottom row is the target
control polygon in blue and the output control polygon in red. Each caption lists the
number of control points of the target B-Spline curve/the number of control points
for the reconstructed B-Spline curve/the mean error/the execution time. (Color figure
online)

are re-evaluated. The iteration terminates if either the approximation error lies
below a predefined threshold or a predefined limit of iteration is reached.

With the start of the algorithm multiple swarms of particles are launched
independently, each swarm with a fixed number of control points. The user
can choose either the most accurate reconstruction or choose the reconstruc-
tion which provides the desired number of control points. Additionally, Swarm-
Curves can provide a number of different degree B-Splines simultaneously.
Which degree of smoothness is required for the reconstruction will depend on
the context of the application.

4 Results

In this section we present the results of the SwarmCurves reconstruction
algorithm. Although in the previous section the algorithm was described for a
setting in 3D, results are shown for 2D for easy visibility. We show results using
different benchmarks from related work that demonstrate different abilities of
our algorithm. All curves were normalized to fit inside the range of [−1, 1].
Multiple swarms of particles are launched for each example and each swarm has
an iteration limit (2000). Each swarm provides a range of solutions. The final
choice is either made by the system or by the user based on preferences. Out
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of the range of solutions, the user may be interested in e.g. the sparsest control
polygon or the closest approximation.

4.1 Reconstructing B-Splines from Point Data Sampled
from Arbitrary B-Spline Curves

Data sampled of closed and open B-Splines and rational B-Splines and non-
rational curves may be reconstructed using SwarmCurves. While for closed
curves the knot vector is set to be uniform, open curves are reconstructed using
a clamped knot vector, so that the first and last control points are interpolated.
All optimizations were run for 2000 iterations.

An example output of five SwarmCurves can be seen in Fig. 2. The result
shows the reconstruction of a B-Spline from data points sampled from a cubic
B-Spline originally derived using six control points. The best approximation is
given by SwarmCurves solution shown in Fig. 2(d).

Fig. 4. Results from reconstructing a benchmark curve (blue) [22] (a) and [13] (c),
with its corresponding control polygon (red) in (b) and (d). (Color figure online)

As is clear from the example shown in Fig. 2, the closest approximating
SwarmCurves do not necessarily have the same number of control points
as the target curve. This is also evident in Fig. 3, where we show further exam-
ples of SwarmCurves reconstructions of arbitrary closed and open B-Spline
curves (top) and their corresponding control polygons. Each reconstruction as
been selected for best accuracy from a selection of seven solutions using different
number of control points. Calculating a large number of SwarmCurves does
not slow down the reconstructions significantly, since all solutions are derived in
parallel.

Even more complex examples are shown in Fig. 4. Figure 4(a) shows the
SwarmCurves fitting of cubic B-Spline to a data point example taken from
a benchmark dataset proposed by Ohrhallinger et al. [22]. Although the overall
shape is approximated well, small details like the handle on the top lacks almost
entirely. This means that it is difficult for the algorithm to reconstruct rather
small features. Figure 4(b) shows a SwarmCurves fitting to the data sampled
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Fig. 5. Approximated circle segment. (a) and (c) show the curve segment (target curve,
blue) together with the SwarmCurves coloured wrt to Euclidean distance. (c) and (d)
are the target curve (blue) and control polygon of a fitted rational B-Spline. Captions
state the error of the reconstruction and the weight of the center vertex. (Color figure
online)

from the closed NURBS curve “Butterfly” presented as a benchmark by Igle-
sias et al. [13]. While the butterfly has been reconstructed closely, the control
polygon provided by SwarmCurves is not useful for further manipulation of
its shape by a designer. Both examples in Fig. 4 clearly show the limitations of
SwarmCurves.

SwarmCurves can also reconstruct conic sections as can be seen in Fig. 5,
where a curve segment has been approximated with a rational B-Spline. The
weights, ωj , of the rational B-Spline are optimised to fit a circle segment.

Fig. 6. (a) A degree five B-Spline curve in blue is reconstructed by a cubic B-Spline
curve in red. (b) The control polygon of the target curve (blue) is shown together
with the control polygon of the reconstruction. (c) A cubic B-Spline curve in blue is
approximated by a polygon in red. (d) The polygon approximation is compared to the
control polygon of the target curve. (Color figure online)

SwarmCurves also offer the possibility to choose the degree of the recon-
struct curve from a set of solutions. Figure 6(a) shows the reconstruction of a
cubic B-Spline from points sampled from a degree 5 B-Spline. Figure 6(b) shows



SwarmCurves: Evolutionary Curve Reconstruction 351

Fig. 7. Examples show the ability of our algorithm to fit curves (red) to noisy (a),(b)
and sparse data (c),(d). Standard deviation (σ) and reduction (in percentage) are stated
together with the mean error to the original curve (blue) without noise from which the
samples are taken. (Color figure online)

the result of fitting a polygon (linear B-Spline) to data sampled from a cubic
B-Spline.

4.2 Reconstructing B-Splines from Noisy or Sparse Data Points
Sampled from B-Splines

The robustness against noisy and sparse data is demonstrated in the Fig. 7.
The noisy data was generated by sampling from a B-Spline curve and adding a
Gaussian noise offset to the curve data in the normal direction. The Gaussian
distribution had a mean μ = 0 and standard deviation σ ∈ {0.04, 0.06}. The
cubic B-Spline curve from which the noisy data was created was reconstructed
reliably, although more control points where required for a good approximation.

The sparse data was created by randomly removing points from a densely
sampled curve until the desired reduction percentage is reached. As can be seen in
Fig. 7(c)-(d), the original cubic B-Spline curve was reconstructed even for sparse
data samples which was non-uniformly distributed along the original curve.

4.3 Reconstructing B-Splines from Point Data Sampled
from Non-parametric Curves

Sun, Liu and Ge [28] proposed a set of analytic curves for testing their B-Spline
fitting algorithm. The formulas can be seen in Eqs. 1 through 5, all curves were
normalized in the range of [−1,1]. The results of fitting B-Splines to those curves
using SwarmCurves can be seen in Fig. 8. The error distribution leads to the
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Fig. 8. The fitted curves to the benchmark curves from [28]. Top: the fitted curves
colored according to the Euclidean distance and the input point cloud in blue. Bottom
the fitted control polygon (red) and the input point cloud (blue). The captions list
the number of control points used in the fitting, the mean error of the result and the
execution time. All fitted curves are B-Splines. (Color figure online)

conclusion that the algorithm has more difficulty fitting a curve to segments with
higher curvature.

f1(2x) =
10x

(1 + 100x2)
(1)

f2(2(x + 1)π) = e−0.5x sin(5x) (2)

f3

(
x + 1

2

)

=
100

55e|10x−5| +
(10x − 5)5

27500
− 0.8 (3)

f4(2x) = 0.5 sin(x) + e−30x2
(4)

f5(2x) = 0.5 sin(2x) + e−36x2
+ 1 (5)

5 Conclusion and Future Work

We presented SwarmCurves, an algorithm based on Particle Swarm Optimiza-
tion that is able to reconstruct a range of B-Spline curves, from linear polygons
to rational B-Splines with various degrees of freedom, from ordered point sets.
The user may select a B-Spline curve from a list of different types and numbers
of control points and an error value of the reconstruction. We evaluated the
reconstruction capabilities by comparing the results to common benchmarks.
The algorithm works on dense, sparse or noisy, 2D or 3D input data. We demon-
strate the performance of SwarmCurves, on a number of examples.
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Table 1. A table showing the number of control points (cp) and error between the
original curve and the B-Spline reconstruction. Note, that for Equation (4) and (5)
SwarmCurves is able to derive a more accurate reconstruction despite using consid-
erable fewer control points as used by Sun et al. [28].

Eq (1) (2) (3) (4) (5)

Sun et al cp 57 81 44 50 41

err 6.32 · 10−7 2.31 · 10−6 7.5 · 10−5 1, 38 · 10−4 4.18 · 10−4

SwarmCurves cp 11 19 14 10 11

err 5.2 · 10−3 4.5 · 10−4 9.7 · 10−2 1.98 · 10−5 1.3 · 10−4

For future work SwarmCurves may be extended to support the optimi-
sation of non-uniform knot vectors during the reconstruction. This means that
the algorithm would be able to reconstruct even more features and sharper fea-
tures. Further, to reduce the time of reconstruction future version of Swarm-
Curves will be implement partially on the GPU.
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