
Store Locally, Prove Globally

Nadine Karsten and Uwe Nestmann(B)

Technische Universität Berlin, Berlin, Germany
{n.karsten,uwe.nestmann}@tu-berlin.de

Abstract. The use of message-passing process calculi for the verification
of distributed algorithms requires support for state-based reasoning that
goes beyond their traditional action-based style: knowledge about (local)
states is at best provided implicitly. Therefore, we propose a distributed
process calculus with locations, the units of distribution, which we equip
with explicit state information in the form of memories. On top, we
provide a simple formal model for location failure and failure detection
such that we can deal with the verification of fault-tolerant distributed
algorithms. We exhibit the use of our calculus by formalizing a simple
algorithm to solve Distributed Consensus and prove its correctness. The
proof exploits global invariants by direct access to the local memories.

1 Introduction

Distributed Algorithms. Traditionally [17], distributed algorithms are often
described by means of pseudo code for its local processes: sequences of state-
ments may manipulate local variables or trigger the exchange of messages with
other participating processes. The following code [23, 9] describes the intended
behavior of a single so-called participant i (one out of n) which is meant to solve
the problem of Distributed Consensus [17] in a system where processes may fail.

xi := input;
for r := 1 to n do { if r = i then broadcast xi;

if alive(pr) then xi := input from broadcast };
output xi;

An understanding of such a distributed algorithm requires to precisely fix the
underlying assumptions of the system model, e.g., the meaning of send (broad-
cast) and receive (input) actions in the context of failures. In the above algo-
rithm, an essential ingredient is the alive-test whose passing is subject to subtle
guarantees. In the following, we explain the intuition behind alive-tests in the
context of fault tolerance and the correctness of Distributed Consensus in more
detail.

Fault Tolerance. In the so-called fail-stop model of distributed systems, processes
may fail; and when they do so, they do not recover from this state. A failed
process does no longer contribute to the system evolution, i.e., it can neither
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Ábrahám et al. (Eds.): ICTAC 2023, LNCS 14446, pp. 351–369, 2023.
https://doi.org/10.1007/978-3-031-47963-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47963-2_21&domain=pdf
http://orcid.org/0000-0002-8520-5448
https://doi.org/10.1007/978-3-031-47963-2_21

352 N. Karsten and U. Nestmann

send nor receive messages. A process that does not fail in a run, is called correct
(in that run). Failure detection provides processes with the permission to suspect
other processes to have failed and, thus, to no longer wait for their messages to
arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that have failed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability
is expressed by means of temporal constraints on runs. For example, for the
above Consensus algorithm, a property called Weak Accuracy suffices: “Some
correct process is never suspected by any (correct) process”.

Correctness. Specifications for distributed algorithms typically consist of prop-
erties of some temporal logic flavor that capture the intended safety and liveness
guarantees. For Distributed Consensus, all participants shall agree on the deci-
sion for some value, while every participant starts with a private input value as
proposal. In the above algorithm, this input value is initially assigned to the local
variable xi, which may then be updated due to knowledge acquired by learning
about the values kept by other participants via communication. Three temporal
properties then capture in how far an algorithm works correctly. • Validity : Every
decision must be for some initial proposal. • Agreement : No two correct processes
decide differently. • Termination: Every correct process eventually decides. The
verification of these properties is dominated by state-based reasoning techniques,
often referring to global state invariants about the values that are memorized in
the respective local variables xi of every (alive) participant.

In the above example algorithm, each participant gets its turn to propose a
value in the role of the coordinator of “its” round. In every other round, each
participant is to adopt the value proposed by that round’s coordinator . . . unless
it cannot detect that it is still “alive”. The algorithm satisfies Termination, as
it runs a for-loop and never deadlocks. It satisfies Validity, as values are never
invented, but only passed on. It satisfies Agreement, as (at least) in the round of
the process that—by Weak Accuracy—is never suspected, every other process
will have to adopt this proposal. Afterwards, there is no way to decide otherwise.

Using Process Calculi. Process calculi provide a wealth of proof methods and
their syntactic nature allows for concise formal models that are nevertheless
close to executable code in programming languages. A great variety of process
calculi have been developed in the past, most of them for general purposes,
some of them rather domain-specific. In the above case, the domain prompts
two choices: (i) It is natural to employ distributed process calculi [12], where
so-called locations represent units of distribution, possibly subject to failure. (ii)
As message-passing models are prevalent for distributed systems, it is obvious to
also use message passing calculi, as opposed to distributed process calculi that
are based on the migration among and within so-called ambients [5].

Most of the existing process calculi (often descendants of CSP [13], CCS [19],
ACP [3], or the π-calculus family [20]), however, are based on notions of action,
thus essentially supporting just action-based reasoning. The main observations

Store Locally, Prove Globally 353

in the above-mentioned attempts to use process calculi to verify distributed
algorithms are that (i) even if action-based reasoning—often using bisimulation
techniques—is employed on the outside, it still heavily relies on state-based rea-
soning inside to construct the required bisimulations [9], and (ii) classical process
calculi do not at all support state-based reasoning. This was also the main prob-
lem in [22, 15], where the respective authors applied process calculus machinery
to the specification and verification of fault-tolerant algorithms that solve Dis-
tributed Consensus. In [24], the authors propose a method to systematically
(re)construct state information for the reachable global states of an example
Distributed Consensus algorithm (which was formalized in a tailor-made pro-
cess calculus) and to capture this information within a dedicated data structure
outside of the calculus. The lesson learned from [24] was that this method is too
tedious and highly error-prone; it simply did not scale. This is the motivation
to, instead of reconstructing implicit state information, make it explicit from the
outset and provide linguistic support and structure within the process calculus
itself. In this paper, we report on some of our recent results in this endeavor.

Our Approach. We use a reasonably standard and widespread notion of memory:
mappings from variables to values. In our calculus, processes are threads that
are associated with its local memories. Threads may declare variables and assign
the value of complex expressions to them, resulting in updates to their own
memory. Threads can be defined recursively, and they may run concurrently. In
a fault-tolerant scenario, locations are “named processes” such that failures can
be named. Parallel processes, together with “message in transit”, form networks.

In the operational semantics of our calculi, we let transitions operate between
structural equivalence classes (equipped with some convenient congruence prop-
erties) of states. In a fault-tolerant scenario, global configurations keep track
of failures and their detection. Executions of failure-aware networks, and their
reachable configurations, can be analyzed via induction on transition sequences.

Related Work. Next to the above-mentioned work [22, 15, 9] using process calculi,
we also used a state-machine approach [14], which suffers from the fact its global
view on algorithms slightly obfuscating the locality of behaviors.

There are only few other related approaches using process calculi. In several
contexts, process calculi have been equipped with notions of location or local-
ity [4, 12 ,5], but there they have different meaning; in particular, locations were
not equipped with memories. In calculi with reversibility (e.g., [7]), process-local
memories are used to store back-tracking information, i.e., a history of steps of
a process that led it to the current state, which can be exploited to undo these
steps in a causally consistent manner. Closest to our approach is the work of
Garavel [10] on LNT, which is a programming language in the spirit of LOTOS
that was developed to be easier to use for engineers [11]. Our treatment of write-
many variables, which is uncommon for most process calculi, was partly inspired
by them. However, the context of LOTOS/LNT is different from our distributed
world, as it mainly addresses concurrent algorithms without support for fault-
tolerance. More detailed comparisons are found later on in Sect. 3.

354 N. Karsten and U. Nestmann

Structure and Contributions. In Sect. 2, we introduce memories and expres-
sion evaluation. In Sect. 3, we define syntax and semantics of a novel calculus
of distributed processes that dispose of local memories. We provide a reason-
ably simple operational semantics for this calculus and discuss the impact of
α-conversion arising from the role of memories as binders for variables. In Sect.
4, we equip the calculus with awareness for locations and failures, which allows
for completely new ways to model messages in transit and to deal with failure
suspicions. In Sect. 5, we demonstrate the use of the calculus in a case study,
where the advantage of direct access to local memories of processes is appar-
ent. In Sect. 6, we summarize our contributions and conclude with a glimpse on
future work.

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X → V ∪ {�,⊥}, by which variables may be associated with
values or otherwise have the status of being just initialized (�) or undefined (⊥).
The set dom(M) � {x ∈ X | M(x) �= ⊥} denotes all variables defined in M .
Accordingly, M⊥ denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory M〈x 	→ w〉, where x is updated to map to w ∈ V ∪ {�},
behaves just like memory M unless we access the entry of the updated variable x:

M〈x 	→ w〉(y) �
{
w if x = y

M(y) if x �= y

Note that also the cases with M(y) ∈ {�,⊥} are properly covered.
We assume a set E of expressions e with V ∪ X ⊆ E . One may consider

arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
∣∣ x

∣∣ (e, . . . , e) ∣∣ f(e)
The intended application will decide the respective range of allowed expressions.

We define the set fv(e) of (free) variables of e inductively by fv(v) � ∅,
fv(x) � {x}, fv((e1, . . . , en)) �

⋃
i∈{1,...,n} fv(ei), and fv(f(e)) � fv(e).

We assume that expressions can be “reduced” to values by terminating com-
putations. As expressions e ∈ E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ⊆ dom(M). We let the function
fetchM : E → E ∪{⊥} for memory M replace the variables in fv(e) with their M -
value; if a variable is only initialized, the result will yield undefined (see Defini-
tion 3 in the Appendix). To model the evaluation of expressions that include func-
tion symbols f, we assume a homomorphic function eval(·) : E ∪ {⊥} → V∪ {⊥}

Store Locally, Prove Globally 355

to be employed after fetchM (e) has fetched from M—if possible—current val-
ues for the variables contained in e. The obvious idea then is that eval applies
the semantics of each application of the function symbol f. Thus, we define
evalM (e) � eval(fetchM (e)).

3 A Distributed Process Calculus with Local Memories

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one process to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as they
cannot happen at the same time. Causally evident, send actions must always
occur strictly before their corresponding receive action, which we model via a
representation of “messages in travel”. All local memory states together with all
messages in travel then provide us with the global state of a system.

In this section, we fix all of the these concepts as a calculus with two-level
syntax for threads and (networks of distributed) processes.

In our calculus, the standard issues of bindings of variables as well as the
notion of α-conversion inevitably pop up and get proper treatment. Note in
advance that this treatment is just necessary in order to provide a sound oper-
ational semantics for the calculus. When it comes to the use of the calculus for
verification, we better avoid the need for α-conversion during executions.

Syntax. We assume the set X of variables, the set V of values, and the set E of
expressions with X ∪ V ⊆ E . Let B = {t, f} be the set of booleans with B ⊆ V.
Let C ⊆ V denote the set of available channels where c ∈ E is a metavariable for
an expression that has to be evaluated to a channel c ∈ C.

We use � · � to denote multisets/bags and to denote their disjoint union.
The following figure defines the syntax of our calculus with local memories.

The right column represents designators for the respective syntactic categories.

O ::= ∅
∣∣ � c〈e〉 �

∣∣ O O outgoing bag
Æ ::= ∅

∣∣ � c〈v〉 �
∣∣ Æ Æ message aether AE

μ ::= varx
∣∣ 〈x := e〉

∣∣ c(x)
∣∣ O actions A

G ::= 0
∣∣ μ.T

∣∣ G + G guards G
T ::= G

∣∣ if e then T else T
∣∣ Ix1,...,xn

∣∣ T | T threads T

P ::= [M � T] processes P

N ::= P
∣∣ Æ

∣∣ N‖N networks N

The syntax defines two layers, threads (T) and networks (N).

356 N. Karsten and U. Nestmann

We first explain threads T , which assemble guards G, which in turn perform
actions μ. Action varx declares variable x, action 〈x := e〉 assigns (the value
of) expression e to variable x, action c(x) receives a value over a channel c to
store it in variable x; messages c〈e〉 that each send some payload e over some
channel c are collected in action O which resembles a multicast operation sending
a multiset of messages in one go. A guard G can be 0 which does nothing, an
action prefix μ.T , or an (external) choice G + G. Threads can be guards G,
conditionals if e then T else T , or refer to thread identifiers I ∈ I that are
equipped with a list of variables x1, . . . , xn for which they need access. We require
a defining equation Ix1,...,xn

def= G with fv(G) ⊆ {x1, . . . , xn} (see Definition 1)
for every used thread identifier. Threads may also run in parallel T | T .

A process [M � T] associates a memory M (introduced in Sect. 2) with a
thread T . Multisets Æ collect messages c〈v〉 in travel, where c and v ∈ V are
concrete channels and values, respectively, as determined by expression evalua-
tion. A network N is composed of parallel processes together with the message
aether.

Our calculus allows for concurrent threads within processes. This is often
required, because concurrent activities support a natural modeling principle for
node-local code of distributed algorithms. Unless restrictions are imposed, the
memory M is shared. For example, in process [M � T1 | T2], both T1 and T2

have access to the memory M and can manipulate its variables, i.e., both threads
can declare new variables and assign values to them. Thus, we get the usual and
well-known problems of potentially competing reads and writes, which we do
not intend to repeat in this paper. We also do not intend to discuss potential
solutions to race conditions. We do, however, intend to be precise about the
semantic implications of such an extension concerning variable bindings.

Binders. Our calculus contains two binders for variables. (i) The thread varx.T
acts as a binder for x with scope T . (ii) The process [M � T] acts as a binder for
the variables in dom(M) with scope T . As usual, we must carefully deal with
free and bound variables. This can be done in a mostly straightforward way.

Definition 1 (Bound and Free Variables). We define the functions bv/fv
on actions, threads and processes as follows. For actions:

bv(μ) �
{

{x} if μ = varx

∅ otherwise
fv(μ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{x} ∪ fv(e) if μ = 〈x := e〉
{x} ∪ fv(c) if μ = c(x)⋃

c〈e〉∈O fv((c, e)) if μ = O

∅ otherwise

For threads, the full version can be consulted as Definition 4 in the Appendix.
Here, we just point out the case for identifiers:

bv(Ix1,...,xn) � ∅ fv(Ix1,...,xn) � {x1, . . . , xn}

The other cases are defined homomorphically.

Store Locally, Prove Globally 357

For processes, the interpretation of memories as binders yields:

bv([M � T]) � bv(T) ∪ dom(M)
fv([M � T]) � fv(T) \ dom(M)

A variable x is called fresh w.r.t. process P if x /∈ bv(P)∪ fv(P). An occur-
rence of a variable is bound if it occurs within the scope of a binder for it. (Note
that varx.T is a binder for x, so the x in “varx” itself does not qualify as an
occurrence of x.) An occurrence of a variable is free if it is not bound.

For example, in thread (varx.T1 | 〈x := e〉.T2), variable x is both free and bound,
as x ∈ bv(varx.T1) and x ∈ fv(〈x := e〉.T2).

As usual, we may employ the concept of α-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =α T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to processes [M � T]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x ∈ dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M � (M�dom(M)\{x})〈y 	→ M(x)〉
by first removing the binding for x (M�dom(M)\{x}), then updating 〈y 	→ M(x)〉.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x ∈ dom(M) and y fresh for [M � T], we then define:

[M � T] =α [{y/x}M � {y/x}T]

The reflexive, symmetric and transitive closure of =α is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfies
congruence properties. For example, we define [M � T] =α [M � T ′] if T =α T ′.

Sanity Conventions. Processes shall provide sufficient knowledge about their local
variables. Therefore, a process P is called closed if fv(P) = ∅. It is practically useful
to always require closedness, as the intuitive meaning of an “open” process referring
to free variables would be rather dubious: Where should such variables, not bound
to their process, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its processes are closed.

For verification purposes, we use memories with the intention to access spe-
cifically-named local variables. Allowing the application of α-conversion during
the course of execution obviously defeats this purpose.1 Thus, we require that, in
any given application, variable names will be chosen such that there is no need
to refer to α-conversion when declaring new variables. One ingredient in this
respect is that we only permit defining equations Ix1,...,xn

def= G with bv(G) = ∅.
1 The same problem was observed by the authors of [8] when doing invariant proofs.

358 N. Karsten and U. Nestmann

Fig. 1. Structural Equivalence[s]

Fig. 2. Structure I

Definition 2 (Structural Equivalence). We define the equivalence ≡ for
threads (T), processes (P) and networks (N) by the rules in Fig. 1.2

For threads, we assume that both (G,+,0) and (T , |,0) are commutative
monoids. In addition, we include α-conversion by rule T-Alpha, while rule
T-Out gets rid of empty outgoing bags.

For processes, we also include α-conversion by rule P-Alpha, while rule
P-Mem simply embeds thread congruence.

For networks, we assume that (N , ‖, ∅) is a commutative monoid. Moreover,
rule N-Chem allows us to combine and separate multisets of traveling messages.

Let ≡�α denote structural equivalence in which rules T-Alpha and P-Alpha

are not allowed.

Note that the equivalence ≡ preserves the set of free variables and satisfies
some useful congruence properties, due to the inclusion of the rules T-Par and
N-Par. Note further that we will only consider closed processes in spite of rule
P-Mem leaving this aspect open.

Operational Semantics. We define the notion of execution of networks as an unla-
beled transition relation on N . As usual, we exploit the structural equivalence
relation ≡ via the rule Str in Fig. 2. Rule Par allows us to focus on the actions
of individual processes: these are captured by the rules in Fig. 3 and 4. Rules
Decl, Assign, and Rcv are memory-changing. Rules Snd, True, False, and
Ident are not memory-changing. Rules Snd and Rcv are global-state-changing.

2 For simplicity, we use the symbol ≡ with heavy overloading. The use of metavariables
and the respective context will act like an implicit typing scheme.

Store Locally, Prove Globally 359

Fig. 3. Local Memory-Changing Steps

Rule Decl declares a new variable for memory M , so x �∈ dom(M) is clear.
We also require x �∈ fv(T̂), as M〈x 	→ �〉 is a binder for x. Note that for closed
processes, x /∈ dom(M) implies x �∈ fv(T̂). Rule Assign evaluates expression e
and updates variable x in memory M , but only if it is already defined in M . It
is not allowed to reset the variable to ⊥ (undefined) or � (initialized).3

Rule Rcv defines the reception of message c〈v〉. Just like assignment, the
received value v updates variable x in memory M ; we only need to further check
whether expression c evaluates to channel c. Note, however, that reception may
overwrite previous values; this imperative style [10] distinguishes our approach
from the “classical” functional style of input, as in CCS [19].

Rule Snd selects one of the messages c〈e〉 in the outgoing bag O; it then
evaluates both c and e and checks whether they fit the requirement of resulting
in a channel c and a value v. In case of success, the message is removed from O
(where \ denotes multiset removal), and its evaluated counterpart c〈v〉 is placed
into the network as “message in travel”.4 Rule Ident describes the insertion of
threads via identifiers. The premises ensure that the variables x1, . . . , xn of I are
captured—as with dynamic scoping—by the associated memory M and that no
other variables are accessed from within the defined body G. The rules True

and False for evaluating conditionals are standard.

3 Our treatment of variables, the declaration and evaluation is similar to Garavel’s [10]
who argues that it is important to have variables not only be declared, but initialized.
Garavel [10] suggests to have a static semantics check whether uninitialized variables
would be used “too early”. We propose to have the eval()-function take care of this:
for uninitialized variables, it returns ⊥ and prevents the application of rule Assign.

4 In the spirit of asynchronous communication, a thread T shall not be blocked by O.T .
At least, it shall not be blocked by the non-availability of some matching receiver.
Here, the potential blocking is fully caused on the sending side, as the outgoing
messages must be evaluated, before the thread T may continue. We consider this OK.

360 N. Karsten and U. Nestmann

Fig. 4. Local Non-Memory-Changing Steps

Example. As we require processes to be closed, let x ∈ dom(M) for:

[M � varx.T1 | 〈x := e〉.T2]

With x ∈ bv(varx.T1) and x ∈ fv(〈x := e〉.T2), the occurrence of x in 〈x := e〉.T2

is bound by M , whereas varx.T1 declares x as a “private” variable with scope T1.5
Note how the premise of rule Decl ensures to require an α-conversion before
the variable can actually be declared.6

The following lemma states that α-conversion and transitions get along well.

Lemma 1 (Preservation). Let N be a legal network.
If N −→ N ′, then N ′ is legal.

Proof (Sketch). Variables are never removed from memories M . They can only
be changed via α-conversions, but then their bound occurrences in the associated
process will be changed accordingly. Otherwise, memories can only grow.

Variables that are bound within the scope of a declaration will remain bound
when rule (Decl) is applied, but then by the associated memory M .

5 LNT [10] uses var -environments to delimit the scope of variables. Semantically, LNT
introduces stores (similar to our memories) to keep track of associated values.

6 In [10], Garavel suggests to even “prohibit shared variables” and states that in
Occam [18] and LOTOS-successor LNT [11] “a parallel composition is considered to
be invalid if any of its branches may change the value of a variable used in another
branch”. While Occam tries to prevent this at run time, LNT “adds static semantic
constraints that forbid at compile time all (syntactically correct) behaviors involving
shared variables” [10]. Such considerations can be added on top of our formalization.

Store Locally, Prove Globally 361

Fig. 5. Failures

4 Location Failures and Their Detection

Syntax. We follow the approach of [21] and introduce a set L ⊆ V of location
names. In our calculus, we then let the processes [M � T] of Sect. 3 evolve into
locations �[M � T], where � ∈ L, so locations are simply located processes [12].
Conveniently, locations may also serve as a natural unit of failure.

We adapt the communication actions of Sect. 3 to become “location-aware”:

– Output c@l〈e〉 adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) ∈ L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions. Message in
travel, the elements of bags Æ, now take the form csrc→trg〈v〉, with src, trg ∈ L

indicating the source and target of the message.

Structural Equivalence. We adapt the rules of Definition 2 to the extended syn-
tax. The changes from processes to locations and the location-aware forms of
communication actions and the messages in transit are orthogonal to the rules.

Operational Semantics. In order to track the failures of locations, we again
follow [21] and identify a so-called trusted-immortal location trim that cannot fail
and will never be suspected. With this abstraction, it is almost trivial to model
systems that satisfy Weak Accuracy (see Sect. 1). We use global configurations
of the form F �trim N , in which (i) F ⊆ L indicates which locations have
failed (so far); (ii) trim is the dynamically determined trusted immortal; (iii)
N is a network running in the context of (i) and (ii). For Weak Accuracy, it is
required [21] that the very first transition of an execution randomly chooses the
trusted immortal from the set of available location names. Rule TrIm in Fig. 5
shows how we represent this behavior starting out from an initial configuration.
Rule Fail then allows any location to fail at any time, unless it has already
failed or is immortal. Note that, in case of a location failure, we allow that
the associated memory may still be inspected in spite of the location no longer
contributing.

Figure 6 embeds the steps of the (adapted) semantics of the location-free
calculus into the location-aware setting. Assuming that those steps now carry a
label @� (see Figs. 8 and 9), rule N-Step allows such steps only if their respon-
sible location � has not (yet) failed. Rule N-Susp relies on the label susp(k)@�

362 N. Karsten and U. Nestmann

Fig. 6. Located Steps

Fig. 7. Structure II

to govern suspicions: it indicates that (a thread at) location � would like suspect
location k to have failed. This is generously permitted, unless it applies to the
trusted location trim and unless the suspector itself has failed. As a consequence,
every run generated with these rules satisfies Weak Accuracy.

Figure 7 is the counterpart to Fig. 2, but now adapted to deal with location-
aware labels η ∈ {@�, susp(k)@� | �, k ∈ L}.

Figure 8 contains the location-aware variants of the rules in Fig. 3. Rules L-

Decl and L-Assign now take place in locations as opposed to just processes.
However, rule L-Rcv will now only allow a thread inside a location at � to receive
a message csrc→�〈v〉 if two conditions are satisfied: it must be explicitly addressed
to � and it also must originate from the expected source location at src.

Figure 9 contains the location-aware variants of the rules in Fig. 4. In addi-
tion, rule L-Susp allows a thread to ignore a reception by launching a suspicion
request for the intended source location of the sender. Rule L-Snd differs from
rule Snd of Fig. 4 mainly in the formation of the message in travel: now, mes-

Fig. 8. Located Memory-Changing Steps

Store Locally, Prove Globally 363

Fig. 9. Located Non-Memory-Changing Steps

sage c�→trg〈v〉 explicitly mentions its source � and target trg. Rules L-Ident,
L-True, and L-False now take place in locations as opposed to just processes.

Normalized Derivations. Due to the design of our semantics rules, every deriva-
tion of a transition on configurations F �trim N can be normalized. Either, the
root of the derivation tree is generated by one of the rules in Fig. 5; then nothing
else needs to be considered, as the premises do only depend on F and trim. Or,
the root is derived by one of the rules in Fig. 6. Then, the transition premise can
be always be derived with an application of rule L-Str of Fig. 7. Its purpose is
to rearrange the structure of N as well as the internals of its locations such that
rule L-Par can be applied (possibly multiple times). The goal is to identify a
single location �[M � T | T̂], possibly together with a suitable singleton “travel
bag” in order to enable the application of one of the rules in Figs. 8 and 9. An
application of rule L-Str can support this by shifting the identified location to
the left, if needed (by L-Rcv) together with a suitable message, and also shift
the intended thread T to the left inside this location.

5 Case Study: Distributed Consensus

In this section, we formalize the algorithm that we presented in the Introduction
within our distributed process calculus and prove that it correctly solves Dis-
tributed Consensus, i.e., that it satisfies Validity, Agreement and Termination.

As the algorithm uses booleans and natural numbers, we define our sets of
expressions and values accordingly: B ∪ N ⊆ V. We also need operations on
numbers and comparisons among them, so E shall include e1 + e2, e1 = e2,

364 N. Karsten and U. Nestmann

Fig. 10. Algorithm

e1 ≤ e2 for e1, e2 ∈ E . We assume that the evaluation function eval (see Sect. 2)
takes care for ill-formed and ill-typed cases by then yielding ⊥.

In addition, we use a single channel c for the message exchanges; as our
calculus fixes source and target location names in communication actions, it
will always be unambiguous for which round a message is intended by simply
identifying the sender as the respective coordinator of a round: C � {c} ⊆ V.
Likewise, we let L � {1, . . . , n} ⊆ N, as this is the convention provided by the
algorithm. On may (and should!) criticize the abuse of natural numbers for this
purpose, which intentionally confuses location names and round numbers, but in
order to remain as close to the pseudo code as possible, we follow this convention.

For the vector (input1, . . . , inputn) of initial proposals for the n participants,
the code in Fig. 10 represents the algorithm, as formalized in our calculus. We
instrument the code with tags ➊ . . . ➑ to refer to positions in the code. (Tag ➊
is used several times, but always with the same thread identifier).

Consensus(input1,...,inputn)
defines a network of locations, one for each partici-

pant � ∈ {1, . . . , n}. Each location is equipped with an initial memory, where we
directly set the four variables chan, x, r, output to their initial values. Note that
all participants dispose of the same channel vector. Note also that their initial
memories only potentially differ in their initial proposals. We could also use ded-
icated var -declarations and assignment steps; the effect would be the same, but
at the expense of 4 ∗ 2 ∗ n additional execution steps. Note that all locations are
closed, so the defined network Consensus(input1,...,inputn)

is legal.

Store Locally, Prove Globally 365

On each location, the same code is run, as represented by the thread definition
for Lchan,x,r,output

� . Note that the code does not include any variable declarations,
so no α-conversion will ever be needed during execution. The increment of the
round number (➋) together with the break condition (➌) simulate the for-loop
of the pseudo code. Apart from this deviation, the code only essentially differs
from its pseudo variant in that we do not need to check for “alive(pr)”, as in our
calculus suspicion is, except for the trusted immortal, always allowed (➏). Note
that the command broadcast xi is explicit in our code as multiple output (➎).
Here, we deviate from the pseudo code in that we have a coordinator not send a
message to itself and then wait for its reception; therefore, we use an if-then-else
instead of the two if-then constructs in the pseudo code. Finally, note that the
thread is completely sequential; there are no parallel threads.

The execution of the algorithm then starts from ∅ � Consensus(input1,...,inputn)
with no failed processes, and with a trusted immortal yet to be determined. By
the design of our semantics, every reachable configuration can be represented in
a standard form, up to structural congruence ≡�α, as follows:

∅ � Consensus(input1,...,inputn) 	−→+ F �trim Æ ‖
∏

�∈{1,...,n} �[M� � ✪� T�]

where we use
∏

�∈L �[M� � T�] for L ⊆ L as abbreviation for the parallel compo-
sition of locations �[M� � T�] modulo associativity and commutativity.

Therefore, for every reachable configuration, we can now simply inspect (i)
the messages in transit (Æ), (ii) the individual local states M� of all participants,
and (iii) the “program counters” ✪� (to be understood as a location-specific
metavariable) for all participants. Using this direct access, we can now state an
informative (global state) invariant. On the one hand, it is very close to the
intuitive reasoning that we sketched in Sect. 1. On the other hand, it is formal
and can be checked with precise reference to our operational semantics.

Lemma 2 (Invariant). Let (input1, . . . , inputn) be a valid vector of proposals.
Let Undecided � {input1, . . . , inputn}.

If ∅ � Consensus(input1,...,inputn) 	−→+ F �trim Æ ‖
∏

�∈{1,...,n} �[M� � ✪� T�],

then ∀� ∈ [1, n].(
M�(r) < trim → M�(x) ∈ Undecided∧
ctrim→�〈v〉 ∈ Æ → v = Mtrim(x)∧
M�(r) = trim ∧ � �= trim →

((
✪� ∈ {➌, ➍, ➏} → M�(x) ∈ Undecided

)
∧

(
✪� ∈ {➐, ➊, ➋} → M�(x) = Mtrim(x)

))
∧

M�(r) > trim → M�(x) = Mtrim(x)∧
c�→k〈v〉 ∈ Æ ∧ � > trim → v = Mtrim(x)∧
M�(r) > n ∧ ✪� = ➑ → M�(output) = M�(x)

)
Note that we use the convention of TLA+ on the use of conjunction lists [16],
in which the enlisted conjuncts internally have stronger operator precedence.

366 N. Karsten and U. Nestmann

The invariant of Lemma 2 points out that for every participant �, depending
on their respective round M�(r), the content of its current proposal M�(x) can
be constrained. Before round trim, not much can be guaranteed (conjunct 1), as
suspicions may be applied at will. However, within round trim, it is precisely the
passage of all non-coordinators from ➏ to ➊ that changes the situation (con-
juncts 2 and 3), as none of them may suspect the coordinator trim to have failed.
Afterwards, this value will be uniformly proposed by all later coordinators (con-
juncts 4 and 5). In the invariant, the statements on messages in Æ just strengthen
the statement in order to make the induction go through, as the information of
the decision value is passed on from locations to messages in transit, from where
they will be received by the target locations. Finally, note that if the conditions
of the constraints are met in a configuration, then this means that a participant
was non-failing for long enough in order to reach this state.

Proof (Sketch). We proceed by induction on the length of the sequence 	−→+

(note that this induction starts after the first step to determine trim). The invari-
ant is initially trivially satisfied, as all processes are in round 0 and Æ = ∅.

The induction step addresses

F �trim Æ ‖
∏

�∈{1,...,n} �[M� � ✪� T�]
	−→ F ′ �trim Æ′ ‖

∏
�∈{1,...,n} �[M ′

� � ✪′
� T ′

�]

for which we check all possibilities of deriving such a transition. Note that every
derivation that results from an application of the rules Fail (only changes F
to F ′), L-True, L-False, L-Ident, L-Susp (only change ✪� T� to ✪′

� T ′
�) will

keep the invariant valid, as they neither change Æ nor any of the M�. The changes
to the position must be checked, but are harmless (e.g., ➌ to ➍ to ➏, or ➊ to ➋).
Rule L-Decl will never be applied, as there are no variable declarations in the
code. Otherwise, we only have to deal with applications of the rules L-Assign,
L-Snd and L-Rcv, appearing in the following cases (in which � �∈ F):

1. participant � moving from ➋ to ➌: rule L-Assign

2. participant � moving from ➎ to (either again ➎ or) ➊: rule L-Snd

3. participant � moving from ➏ to ➊: rule L-Rcv

4. participant � moving from ➐ to ➑: rule L-Assign

As an example of case 2, consider � = trim with Mtrim(r) = trim for the first time
in position ➎. If the induction step applies L-Snd, then the message ctrim→j〈v〉
appearing in Æ is the first one originating from trim such that for the induction
step afterwards conjunct 2 must be checked. It is satisfied, as rule L-Snd will
use evalMtrim(x) = Mtrim(x) as the payload v for this message.

As another example, consider a non-coordinator � (�= trim) in just the round
M�(r) = trim in position ➏. By induction (conjunct 3, subconjunct 1), M�(x) ∈
Undecided. If the induction step applies L-Rcv, then the message ctrim→�〈v〉 ∈ Æ
must be available. After the step, participant � will be in position ➊, so the second
subconjunct of conjunct 3 must be satisfied. This holds, as conjunct 2 is true in
the hypothesis, because rule L-Rcv updates the memory with the received v.

Store Locally, Prove Globally 367

Note how this proof makes heavy use of the direct access to the values of
local variables M�(r) for the various � ∈ L at each reachable configuration of
an execution. After all, it is this possibility of access to local variables in our
calculus that makes the proof doable and thus satisfies the title of this paper.

Theorem 1. The algorithm of Fig. 10 solves Distributed Consensus.

Proof (Sketch). Termination holds, as the only potentially blocking operation
is in input position (➎). Participants may always suspect, though, unless they
wait for trim. In this case, there will eventually be a message, as trim cannot fail.

Validity holds, as the invariant never uses a value that is not in Undecided.
Agreement holds with conjunct 6 of the invariant and Termination.

6 Conclusion

We provide linguistic support for state-based reasoning in distributed process
calculi. We do so by equipping located processes, the units of distribution in
such calculi, with local memories. We develop syntax and operational semantics
for this calculus in two steps, starting with a fault-free version. We demonstrate
the applicability of our calculus on the formalization of a fault-tolerant algorithm
to solve Distributed Consensus. The correctness proof highlights the proximity
of our formalization with the widely-used intuitive correctness arguments.

We conjecture that our calculus (or slight extensions of it) is applicable to the
large class of fault-tolerant distributed algorithms, which use typical pseudo code
with global asynchronous message passing and reference to local variables, next
to simple control structures like loops and conditionals. It is rare in this domain
that (channel) name passing, as known from the (Applied) Pi Calculus [20, 1],
is needed in algorithms. We see, however, no problem at all to also include a
restriction operator in our calculus to govern the scope of channel names.

Further work consists of applying our approach to other Distributed Con-
sensus algorithms and mechanizing the reasoning about the invariant and the
correctness proof. In [14], we used state machines and checked their correctness
in Isabelle. We plan to develop a similar formalization of our calculus.

A Definitions

Definition 3 (Fetching Values for Variables in Memories).

fetchM (e) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e if e ∈ V

M(e) if e ∈ X ∧ M(e) ∈ V

(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)
f(fetchM (e′)) if e = f(e′)
⊥ else

368 N. Karsten and U. Nestmann

Definition 4 (Bound and Free Variables). We define the functions bv/fv
on threads as follows:

bv(0) � ∅
bv(μ.T) � bv(μ) ∪ bv(T)

bv(G1 + G2) � bv(G1) ∪ bv(G2)

bv(Ix1,...,xn) � ∅
bv(if e then T1 else T2) � bv(T1) ∪ bv(T2)

bv(T1 | T2) � bv(T1) ∪ bv(T2)

fv(0) � ∅
fv(μ.T) � (fv(μ) ∪ fv(T)) \ bv(μ)

fv(G1 + G2) � fv(G1) ∪ fv(G2)

fv(Ix1,...,xn) � {x1, . . . , xn}
fv(if e then T1 else T2) � fv(e) ∪ fv(T1) ∪ fv(T2)

fv(T1 | T2) � fv(T1) ∪ fv(T2)

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1–41 (2017)

2. ABZ—Rigorous State Based Methods. https://abz-conf.org/. A conference series
dedicated to the use of state-based formal methods

3. Bergstra, J., Klop, J.W.: Algebra of communicating processes with abstractions.
Theoret. Comput. Sci. 37(1), 77–121 (1985)

4. Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A theory of processes with
localities. Formal Aspects Comput. 6(2), 165–200 (1994)

5. Cardelli, L., Gordon, A.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

7. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

8. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV (2013). http://arxiv.org/abs/1312.7645. See also ESOP 2012

9. Francalanza, A., Hennessy, M.: A fault tolerance bisimulation proof for consensus
(extended abstract). In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 395–
410. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_27

10. Garavel, H.: Revisiting sequential composition in process calculi. J. Log. Algebraic
Methods Program. 84(6), 742–762 (2015)

https://abz-conf.org/
https://doi.org/10.1007/978-3-540-28644-8_19
http://arxiv.org/abs/1312.7645
https://doi.org/10.1007/978-3-540-71316-6_27

Store Locally, Prove Globally 369

11. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9_1

12. Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge
(2007)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

14. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-
rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33475-7_15

15. Kühnrich, M., Nestmann, U.: On process-algebraic proof methods for fault tolerant
distributed systems. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/-
FORTE -2009. LNCS, vol. 5522, pp. 198–212. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02138-1_13

16. Lamport, L.: Specifying Systems. Addison-Wesley Professional, Boston (2002)
17. Lamport, L., Lynch, N.: Distributed computing: models and methods. In: van

Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B: Formal Mod-
els and Semantics, chap. 18, pp. 1157–1199. Elsevier (1990)

18. May, D.: Occam. SIGPLAN Not. 18(4), 69–79 (1983). https://doi.org/10.1145/
948176.948183

19. Milner, R.: Communication and Concurrency. Prentice Hall, Hoboken (1989)
20. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)
21. Nestmann, U., Fuzzati, R.: Unreliable failure detectors via operational semantics.

In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 54–71. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-40965-6_5

22. Nestmann, U., Fuzzati, R., Merro, M.: Modeling consensus in a process calculus.
In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 399–414.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7_26

23. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge (1994)

24. Wagner, C., Nestmann, U.: States in process calculi. In: Borgström, J., Crafa, S.
(eds.) Proceedings of EXPRESS/SOS 2014. EPTCS, vol. 160, pp. 48–62 (2014).
https://doi.org/10.4204/EPTCS.160.6

https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1007/978-3-642-02138-1_13
https://doi.org/10.1007/978-3-642-02138-1_13
https://doi.org/10.1145/948176.948183
https://doi.org/10.1145/948176.948183
https://doi.org/10.1007/978-3-540-40965-6_5
https://doi.org/10.1007/978-3-540-45187-7_26
https://doi.org/10.4204/EPTCS.160.6

	Store Locally, Prove Globally
	1 Introduction
	2 Memories
	3 A Distributed Process Calculus with Local Memories
	4 Location Failures and Their Detection
	5 Case Study: Distributed Consensus
	6 Conclusion
	A Definitions
	References

