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Preface

This volume contains the papers presented at the 20th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2023) held during December 4–8, 2023 in
Lima, Peru.

The International Colloquia on Theoretical Aspects of Computing (ICTAC) is a
series of annual events founded in 2003 by the United Nations University International
Institute for Software Technology. Its purpose is to bring together practitioners and
researchers from academia, industry, and government to present research results and
exchange experience and ideas. Beyond these scholarly goals, another main purpose
is to promote cooperation in research and education between participants and their
institutions from developing and industrial regions.

ICTAC 2023 received 39 submissions (including 36 regular papers, two short papers,
and one tool paper) from authors in 27 different countries. All papers received at least
three single-blind reviews. Based on the reviews and extensive discussions, the Program
Committee decided to accept 22 papers. This volume contains the revised versions of
these 22 papers, which cover a wide variety of topics.

We were honored to have three distinguished guests as invited speakers. Marijn J.H.
Heule (Carnegie Mellon University, USA) presented exciting recent developments from
the area of SAT solving, Ana Cavalcanti (University of York, UK) talked about the
RoboStar framework to support the development of control software for robotics appli-
cations, and Pedro R. D’Argenio (National University of Cordoba, Argentina) discussed
optimal route synthesis in space delay-tolerant networks. Full papers for the first two
invited talks as well as an extended abstract for the third talk are included in this volume.

In addition, five tutorials were given at ICTAC 2023 by Shaukat Ali (Simula
Research Laboratory, Norway) and Mahsa Varshosaz (IT University of Copenhagen,
Denmark) on testing cyber-physical systems, Ina Schaefer (Karlsruhe IT, Germany)
and Maximilian Kodetzki (Karlsruhe IT, Germany) on a correct-by-construction app-
roach to programming using CorC, Maurice H. ter Beek (Istituto di Scienza e Tecnolo-
gie dell’Informazione, Italy) on formal methods and tools for software product lines,
Einar Broch Johnsen (University of Oslo, Norway) on semantically lifted digital twins,
and Martin Leucker (University of Lübeck, Germany) on automata learning with an
application to learn and verify recurrent neural networks.

ICTAC 2023 continued the tradition of previous ICTAC conferences in holding a
training school. The ICTAC 2023 Training School on Applied Formal Methods aimed
at introducing Master’s students, Ph.D. students, and early-stage researchers to some
important topics in theoretical aspects of computing. Christian Colombo (University of
Malta, Malta) gave a lecture on the theory and practice of runtime verification, Pedro R.
D’Argenio (National University of Cordoba, Argentina) on probabilistic model check-
ing, Ana Cavalcanti (University of York, UK) together with Ziggy Attala (University
of York, UK) and Jim Woodcock (University of York, UK) on software engineering
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in robotics, and Marijn J.H. Heule (Carnegie Mellon University, USA) on satisfiability
checking.

Many colleagues and friends contributed to making ICTAC 2023 a great event. First
of all, we thank all authors who submitted their work to ICTAC 2023. We thank also all
members of the Program Committee and the external reviewers for their excellent work,
providing timely, insightful, and constructive reviews.

We are grateful to our invited speakers for giving such inspiring talks, tutorials, and
lectures. We are indebted to the General Chairs, the Publicity Chairs, and the Training
School Chairs for their hard work to organize the conference and the school, and to
attract submissions. We also acknowledge our gratitude to the Steering Committee for
their constant support.

We are indebted to UTEC (University of Engineering and Technology, Lima - Peru)
for hosting the conference, and to EasyChair, which greatly simplified the assignment
and reviewing of the submissions as well as the production of the material for the pro-
ceedings. Finally, we thank Springer for their cooperation in publishing the proceedings
and sponsoring the Best Paper Award. We also thank FME (Formal Methods Europe)
and SIGSOFT (the ACM Special Interest Group on Software Engineering) for their
financial support to cover the costs of invited talks and tutorials at the conference and
the operational costs of the ICTAC 2023 Training School on Applied Formal Methods.

December 2023 Erika Ábrahám
Clemens Dubslaff

Silvia Lizeth Tapia Tarifa
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Optimal Route Synthesis in Space DTN
Using Markov Decision Processes

Pedro R. D’Argenio(B)

Universidad Nacional de Córdoba & CONICET, Córdoba, Argentina

pedro.dargenio@unc.edu.ar

Delay-tolerant networks (DTN) are time evolving networks which do not pro-
vide continuous and instantaneous end-to-end communication [5,9]. Instead, the
topological configuration of DTN changes continuously: connections are avail-
able only during some time intervals and thus the network may suffer from fre-
quent partitions and high delay. In this sense, the DTN paradigm is fundamental
to understand deep-space [3] and near-Earth communications [4]. A particular
characteristic of space networks is that, due to the orbital and periodic behavior
of the different agents (e.g. satellites and terrestrial or lunar stations), contact
times and durations between nodes can be accurately predicted. This type of
DTNs are called scheduled and expected contacts can be imprinted in a contact
plan that exhaustively describes the future network connectivity [10].

Scheduled routing algorithms such as the Contract Graph Routing (CGR)
assumes that the future topologies of the network are highly accurate and that
communication between nodes are perfect [1]. That is, it disregards transient or
permanent faults of nodes, antenna pointing inaccuracies or unexpected interfer-
ences. The likelihood of these communication failures can normally be quantified
a priori and hence included in the contact plan. Thus, the addition of this new
information gives rise to a new type of DTN called uncertain DTN [12,13].

The behavior of the contact plan with probability failures on contacts yields
a Markov decision process (MDP) where the non-determinism corresponds pre-
cisely to the routing decisions. With this model at hand, we have developed and
studied several off-line techniques for deriving optimal and near-optimal rout-
ing solutions that ensure maximum likelihood of end-to-end message delivery. In
particular, we have devised an analytical solution that exhaustively explores the
MDP very much like probabilistic model checking does. This technique, which we
called routing under uncertain contact plans (RUCoP), was reported in [13]. As
the exhaustive solution is memory and time demanding, we have also explored
in [6] simulation based techniques using lightweight scheduler sampling (LSS) [8]
which has been implemented in the modes statistical model checker [2] within
the Modest toolset [11]. We have also studied variations of these approaches
with communication redundancy in order to increase reliability by allowing a
network-wide bounded number of message copies. In addition, an exhaustive
comparison of these and existing techniques were reported in [7].

Supported by SeCyT-UNC 33620180100354CB (ARES) and EU Grant agreement ID:
101008233 (MISSION).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 P. R. D’Argenio

The objective of this presentation is to report this research as well as current
ongoing developments for multi-objective routing optimization on space DTN.
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Without Loss of Satisfaction

Marijn J. H. Heule

Carnegie Mellon University, Pittsburgh, PA, USA
marijn@cmu.edu

Abstract. The success of automated reasoning presents us with an in-
teresting peculiarity: while modern solving tools can handle gigantic real-
world instances, they often fail miserably on supposedly easy problems.
Their poor performance is frequently caused by using reasoning tech-
niques that can only learn logically implied facts. In recent years, a cou-
ple of new proof systems have been proposed to overcome this issue by
allowing to learn facts that are not logically implied, but preserve sat-
isfaction. Moreover, these systems are surprisingly strong, even without
the introduction of new definitions, which is a key feature of short proofs
presented in the proof-complexity literature.

We demonstrate the effectiveness of reasoning “without loss of satis-
faction” using three problems that are hard for automated-reasoning
approaches. First, we present short proofs of mutilated chessboard prob-
lems that are completely different than the classical argument. We can
produce these proofs automatically and they are understandable. Sec-
ond, our proofs of the chromatic number of Mycielski graphs show that
these proof systems can compactly express arguments that go beyond
symmetry breaking. Finally, we illustrate the impact on the proof size
using Ramsey number problems. Resolution proofs of Ramsey number
four consist of about a billion resolution steps. In contrast, our ”with-
out loss of satisfaction” proof uses just 38 steps. None of these proofs
introduce new variables.

1 Introduction

A commonly used proof method in mathematics is called “without loss of gen-
erality”. For example, given three objects, which are colored either red or blue,
we can assume without loss of generality that two of the three objects have the
same color. This proof method is very useful, but it is challenging to apply to
many representations that are suitable for automated reasoning: The objects
and colors tend to have specific names in these representations, which makes it
hard to detect that they are interchangeable. Moreover, in the popular resolution
proof system, this cannot be expressed at all. To overcome this issue we need
proof systems that facilitate similar reasoning capabilities.

Many relevant constraint satisfaction problems, from artificial intelligence to
combinatorics, explore large search spaces to determine the presence or absence
of a certain object. For these problems we are only interested in a single object or,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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equivalently, an assignment that satisfies all constraints. Existing learning tech-
niques shrink the search space by pruning parts that may contain no satisfying
assignments. The recent proof systems PR (Propagation Redundancy) [12] and
SR (Substitution Redundancy) [4] remove this limitation and facilitates pruning
parts that contain satisfying assignments. Note that this is only allowed if at
least one satisfying assignment remains. We therefore refer to this reasoning as
Without Loss of Satisfaction (WLoS): Any possible shrinking method is allowed
as long as satisfaction is preserved. This reasoning is only restricted in the fol-
lowing way: Validation of each step much be computable in polynomial time
using a certificate that demonstrates WLoS.

Solving satisfiability (SAT) problems is at the heart of many reasoning and
verification tasks throughout the computer industry. It is essential in electronic
design automation in the context of bounded model checking. In recent years,
SAT solving has been applied successfully to mathematics as well, including
solving Erdős’ Discrepancy Problem [19] and the Boolean Pythagorean Triples
Problem [16] and Keller’s conjecture [3]. The solutions of these problems received
global media coverage, mostly due to the enormous size of the proofs (up to
many terabytes), although this is actually not particularly interesting and mainly
shows that SAT techniques can scale. A shorter proof of these problems would
have been much more elegant. However, there is reason to believe that no short
proof exists for these problems in the resolution proof system, which is used
for reasoning in state-of-the-art SAT solvers. This is why we need to go beyond
resolution to find short proofs for these and many other hard problems. We
believe that WLoS reasoning can make a big difference here.

Conflict-Driven Clause Learning (CDCL) [21] is the most successful paradigm
for solving SAT problems. However, at its core, CDCL is based on the resolution
proof system, which means that the same limitations that apply to resolution
also apply to CDCL. There exist only exponentially large resolution proofs for
several seemingly easy problems [10, 26], implying that CDCL solvers require
exponential time to solve these problems. Our approach to break this exponen-
tial barrier is the Satisfaction-Driven Clause Learning (SDCL) paradigm [14],
which can automatically find short proofs for pigeonhole formulas in the PR
proof system [12]. SDCL extends CDCL by pruning the search space of truth as-
signments more aggressively. While a pure CDCL solver learns only clauses that
can be efficiently derived via resolution, an SDCL solver can also learn stronger
clauses. The initial approach to learn these clauses is based on the so-called pos-
itive reduct : Given a formula and an assignment, the positive reduct is a simple
propositional formula that encodes the question whether the assignment can be
safely pruned from the search space. To perform the pruning, the solver learns
the clause that blocks the partial assignment.Thus, while solving a single hard
formula, SDCL solves several simple formulas to improve overall efficiency.

In this paper, we demonstrate the potential of learning PR or SR clauses to
reduce the size of proofs. The focus is on three challenging problems for auto-
mated reasoning tools: mutilated chessboards, the chromatic number of Mycielski
graphs, and Ramsey numbers.
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2 Background

We briefly review background concepts: Boolean satisfiability, unit propagation,
clausal proof systems, and in particular the PR and SR proof systems.

Boolean satisfiability. For a Boolean variable x, there are two literals, the positive
literal, denoted by x, and the negative literal, denoted by x. A clause is a finite
disjunction of literals, and a conjunctive normal form (CNF) formula (or simply
formula) is a finite conjunction of clauses. A truth assignment for a CNF formula
F is a partial function τ that maps literals l in F to {t, f}. If τ(l) = v, then
τ(l) = ¬v, where ¬t = f and ¬f = t. An assignment can also be thought of as a
conjunction of literals. Furthermore, given an assignment τ :

– A clause C is satisfied by τ if τ(l) = t for some l ∈ C.

– A clause C is falsified by τ if τ(l) = f for all l ∈ C.

– A formula F is satisfied by τ if τ(C) = t for all C ∈ F .

– A formula F is falsified by τ if τ(C) = f for some C ∈ F .

The Boolean satisfiability problem (SAT in short) stands at the crossroads
of logic, mathematics, computer science and engineering and addresses the ques-
tion of whether a CNF formula contains at least one satisfying assignment (or
solution). A CNF formula with a satisfying assignment is called satisfiable, while
a CNF formula without satisfying assignments is called unsatisfiable.

As the first and best-known problem which was shown to be NP-complete [5],
SAT represents the theoretical cornerstone of the expectation that no efficient
algorithm can be made to solve hard combinatorial problems. However, during
the last two decades, the performance of tools designed to find solutions for
CNF formulas, called SAT solvers, has improved enormously. As a consequence,
many applications can now be solved efficiently by translating them into SAT,
either to obtain a solution using a SAT solver or to show no solution exists.
This approach has been highly successful in applications such as hardware and
software verification and solving hard-combinatorial problems.

Unit Propagation. We refer to the empty clause by ⊥ and to the satisfied clause
by ⊤. Given an assignment τ and a clause C, we define C |τ = ⊤ if τ satisfies
C; otherwise, C |τ denotes the result of removing from C all the literals falsified
by τ . For a formula F , we define F |τ = {C |τ | C ∈ F and C |τ ̸= ⊤}. Given
an assignment τ , the clause {x | τ(x) = f} ∪ {x | τ(x) = t} is the clause that
blocks τ . A unit clause is a clause with only one literal. The result of applying
the unit clause rule to a formula F is the formula F |l where (l) is a unit clause
in F . The iterated application of the unit clause rule to a formula F , until no
unit clauses are left, is called unit propagation. If unit propagation yields the
empty clause ⊥, we say that unit propagation applied to F derived a conflict.

Example 1. Given the formula F = (a ∨ b ∨ c) ∧ (a ∨ b) and the assignment a.
F |a = (b ∨ c) ∧ (b). Notice that F |a contains a unit clause, applying the unit
clause rule results in F |a b = c. Applying the unit clause rule again results in
the empty formula F |a b c = ⊤ (which is trivially satisfiable).
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Two formulas are logically equivalent if they are satisfied by the same assign-
ments. Two formulas are satisfiability equivalent if they are either both satisfiable
or both unsatisfiable. For a clause C = (l1∨· · ·∨lk), ¬C denotes the units clauses
(l1) ∧ · · · ∧ (lk). Furthermore, by F ⊢1 G we denote that for every clause C ∈ G,
unit propagation applied to F ∧ ¬C derives a conflict. If F ⊢1 G, we say that F
implies G via unit propagation.

Clausal Proof Systems. Here, we introduce a formal notion of clause redundancy
and demonstrate how it provides the basis for clausal proof systems.

Definition 1. A clause C is redundant w.r.t. a formula F if F and F ∪ {C}
are satisfiability equivalent.

For instance, the clause C = (x∨ y) is redundant w.r.t. F = (x∨ y) since F and
F ∪{C} are satisfiability equivalent (although they are not logically equivalent).
This notion of redundancy allows us to add redundant clauses to a formula
without loss of satisfaction. It also give rise to clausal proof systems.

Clause redundancy can also be expressed as an implication [13]:

Theorem 1. A clause C is redundant w.r.t. a formula F if there exists an
assignment τ such that F ∧ ¬C ⊨ (F ∧ C) |τ .

Since entailment (⊨) is not computable in polynomial time, we need to restrict
it in practice. The proof system PR, defined below, will use a natural restriction.

Definition 2. For n ∈ N a derivation of a formula Fn from a formula F0 is
a sequence of n triples (d1, C1, τ1), . . . , (dn, Cn, τn), where each clause Ci for
1 ≤ i ≤ n is redundant w.r.t. Fi−1 \ {Ci} with Fi = Fi−1 ∪ {Ci} if di = 0 and
Fi = Fi−1 \ {Ci} if di = 1. The assignment τi acts as (arbitrary) witness of the
redundancy of Ci w.r.t. Fi−1 and we call the number n of steps also the length
of the derivation. A derivation is a proof of refutation (or simply proof) of F0

if dn = 0 and Cn = ⊥. A derivation is a proof of satisfaction of F0 if Fn equals
the empty formula.

If there exists such a derivation of a formula F ′ from a formula F , then F and
F ′ are satisfiability equivalent. A refutation of a formula F , as defined above,
obviously certifies the unsatisfiability of F since any F ′ containing the empty
clause is unsatisfiable. Note that at this point these τi are still place-holders used
in refinements, i.e., in the PR proof system defined below (and other clausal proof
systems), where these τi are witnesses for the redundancy of Ci w.r.t. Fi−1. In
these specialized proof systems this redundancy can be checked efficiently, i.e.,
in polynomial time w.r.t. the size of Ci, Fi−1 and τi.

By specifying in detail which kind of redundant clauses—and corresponding
witnesses—one uses in a derivation, we obtain concrete proof systems. This is
usually done by defining an efficiently checkable syntactic criterion that guaran-
tees that clauses fulfilling this criterion are redundant.

Most clauses derived by SAT solvers are known as reverse unit propagation
(RUP) clauses: A clause C has RUP w.r.t. F if and only if F ⊢1 C, or equivalently
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if F ∧ ¬C ⊢1 ⊥. A RUP proof is a clausal proof in which each clause addition
step (di = 0) is RUP w.r.t. the current formula Fi. Notice that RUP derivations
do not use a witness. Also, RUP proofs cannot express any WLoS reasoning.

Example 2. Consider the formula F = (a∨b)∧(a∨b)∨(a∨b)∧(a∨b). Notice that
F implies (a) by unit propagation: in F ∧(a), clause (a∨b) becomes unit (b) and
now the assignment ¬a b falsifies clause (a ∨ b). Moreover, the RUP derivation
(0, (a), ∅), (0,⊥, ∅) is a proof of refutation of F .

The PR proof system. The addition of PR clauses (short for propagation-redundant
clauses, PR is defined below) to a formula can lead to short proofs for hard for-
mulas without the introduction of new variables. Although PR clauses are not
necessarily implied by the formula, their addition preserves satisfiability [12]. The
intuitive reason for this is that the addition of a PR clause prunes the search
space of possible assignments in such a way that there still remain assignments
under which the formula is as satisfiable as under the pruned assignments.

Definition 3. Let F be a formula and C a non-empty clause. Then, C is prop-
agation redundant (PR) with respect to F if there exists an assignment τ such
that F ∧ ¬C ⊢1 (F ∧ C) |τ .

The clause C can be seen as a constraint that “prunes” from the search space
all assignments that extend ¬C. Note again, that in our setting assignments are
in general partial functions. Since F ∧ ¬C implies (F ∧ C) |τ , every assignment
that satisfies F ∧¬C also satisfies (F ∧C) |τ . We refer to τ as the witness, since
it witnesses the propagation-redundancy of the clause. Consider the following
example:

Example 3. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = (x), and let τ = x z be an
assignment. Then, ¬C = x. Now, consider F ∧ ¬C, which simplifies to (y), and
(F ∧ C) |τ = (y). Clearly, unit propagation on F ∧ ¬C ∧ (y) derives a conflict.
Thus, F ∧ ¬C ⊢1 (F ∧ C) |τ and C is propagation redundant w.r.t. F .

Most known types of redundant clauses are PR clauses [12], including blocked
clauses [20], set-blocked clauses [18], resolution asymmetric tautologies, etc.

Given a formula F and a clause C, the problem to determine whether C
is a PR clause w.r.t. F is NP-complete [14]. However, one can efficiently check
whether C is a PR clause w.r.t. F using a given witnessing assignment τ as
F ∧¬C ⊢1 (F ∧C) |τ is computable in polynomial time (with τ being the smallest
assignment that falsifies C).

The SR proof system [4] generalizes PR by allowing τ to be a substitution
instead of just a truth assignment. This generalization can further reduce the size
of proofs. For example, it can compactly express symmetry-breaking in graph
existence problems without new variables. To the best of our knowledge, the is
not possible with PR.
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Fig. 1. Two equivalent placements of five dominos on a mutilated chessboard.

3 Mutilated chessboards

A well-known family of problems on which traditional reasoning approaches
fail are the mutilated chessboard problems. Given a chessboard of size n × n
from which two opposite corner squares have been removed (see Figure 1), a
mutilated chessboard problem asks if the remaining squares can be fully covered
with dominos (i.e., with stones that cover exactly two squares). The answer is no,
based on a simple argument: Assume to the contrary that a mutilated chessboard
can be fully covered with dominos. Then, since every domino covers exactly one
black square and one white square, the number of covered black squares must
equal the number of covered white squares. But the number of black squares
on a mutilated chessboard is different from the number of white squares since
opposite corner squares (of which two were removed) are of the same color.

Automated-reasoning methods on various representations have severe diffi-
culties finding this argument because they do not have colored squares, so they
need to come up with this abstraction themselves in order to use a similar ar-
gument. John McCarthy has called the mutilated chessboard problems a “tough
nut to crack” for automated reasoning [22], and it has been shown that these
problems admit only proofs of exponential size within the propositional resolu-
tion proof system [1,6].

However, the PR proof system facilitates a completely different but equally
short argument for solving mutilated chessboard problems [23]. The new argu-
ment rules out possible patterns for the dominos by generalizing—without loss
of satisfaction—from certain specific patterns that are similar to them.

The first pattern rules out every occurrence of two horizontal dominos on top
of each other. The reasoning is as follows: assume that we can cover a region such
that there exists two horizontal dominos on top of each other, then there exists
another cover the same region without two horizontal dominos on top of each
other. The latter can be arranged by replacing every pair of horizontal dominos
on top of each other by two vertical dominos next to each other that cover the
same space. Figure 1 shows this reasoning using the dominos with 1 and 2 dots.
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Let h1 and h2 be two variables that if assigned to true will place two dominos
on top of each other. Also, let v1 and v2 be two variables that if assigned to true
will place two vertical on next of each other on the same location. The PR clause
expressing the above reasoning is (h1 ∨ h2) with witness τ = h1 h2 v1 v2.

The second pattern is similar. Any assignment that has two vertical dominos
next to each other and a horizontal domino on top of that can be replaced by
two vertical dominos on top of each other and a horizontal domino below them.
This is illustrated in Figure 1 using the dominos with 3, 4, and 5 dots. In this
case the PR clauses have length 3 and a witness of 6 literals.

Blocking both patterns using PR clauses reduces the search space from expo-
nential to linear and a SAT solver can easily refute the remaining cases. The ar-
gument described above seems to be well suited for automated reasoning since we
discovered it when analyzing PR proofs that were found by our SDCL solver [15].
We argue that the key to automatically solving the mutilated chessboard prob-
lems and many other hard problems is not to simulate human thinking but to
equip computers with capabilities to find their own short arguments. Moreover,
this example demonstrates that automated-reasoning tools cannot only provide
us with simple yes/no answers but that they can also help us gain further insights
into the nature of a problem.

4 Mycielski graphs

Mycielski graphs are a family of triangle-free graphs with arbitrarily high chro-
matic number. For each Mycielski graph there is a short informal proof of this
chromatic number, yet finding proofs of it via automated reasoning techniques
has proved to be a challenging task.

Let G = (V,E) be a graph. The construction of Mycielski graph µ(G) is as
follows. We start with a graph G = (V,E). G is a subgraph of µ(G). For each
vertex vi ∈ V , add a new vertex ui that is connected to all the neighbors of vi
in G. Finally, add a vertex w that is connected to each ui.

Unless G has a triangle µ(G) does not have a triangle, and µ(G) has chro-
matic number one higher than G. We denote the chromatic number of G by
χ(G). Starting with M2 = K2 (the complete graph on 2 vertices) and applying
Mk = µ(Mk−1) repeatedly, we obtain triangle-free graphs with arbitrarily large
chromatic number. We call Mk the kth Mycielski graph. Since χ(M2) = 2 and µ
increases the chromatic number by one, we have χ(Mk) = k. Figure 2 shows the
graphs M2, M3, and M4.

Computing the chromatic number of Mycielski graphs is hard for automated-
reasoning tools. These graphs are also part of the graph coloring challenge
suite [17]. Most SAT solvers can determine χ(M6) ≥ 6 in about and hour, but
showing that χ(M7) ≥ 7 cannot be done in reasonable time [25]. The runtime
and proof size increase exponentially in k. However, there exist short, sublinear-
size PR proofs of χ(Mk) ≥ k [27] and finding a satisfying assignment showing
that χ(Mk) ≤ k is typically easy.
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M2

−−−→
µ

M3

−−−→
µ

M4

Fig. 2. The first few graphs in the sequence of Mycielski graphs.

The PR clauses forbid assignments where vertex vi gets color c, another color
c′ is given to vertex ui, while w does not have color c. The reason why we can
add these PR clauses is as follows: if there exists a satisfying assignment with
such a coloring, then there exists another satisfying assignment with vi and ui

both assigned color c, while w does not have color c. Figure 3 illustrates the
reasoning. This copies colors from vertex vi to ui. In turn, the solver can deduce
edges between vertices ui and uj if there exist edges in between vi and vj .

After adding these clauses for each ui and for all pairs of colors c and c′,
there exist short resolution proofs showing that χ(Mk) ≥ k. The PR clauses do
not use any new variables and the reasoning does not use a symmetry-breaking
argument.

vi vj

ui uj

w

−−−→
τ

vi vj

ui uj

w

Fig. 3. Schematic form of the argument for the PR inference. With c = Red and
c′ = Blue, the above diagram shows the transformation we can apply to a solution to
obtain another valid solution. A vertex colored black on the inside means that it does
not have the outer color, i.e. w has some color other than red. Unit propagation implies
that vj is not colored red.

5 Ramsey numbers

Ramsey Theory [7] involves patterns that cannot be avoided indefinitely, such
as avoiding arithmetic progressions while partitioning the natural numbers (Van
Der Waerden numbers), avoiding the sum of two elements while partitioning the
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natural numbers (Schur numbers), and avoiding cliques and co-cliques in graphs
(Ramsey numbers). All of these problems have been widely studied, but Ramsey
numbers generated the most interest.

Ramsey number R(r, b) is the size of the smallest graph such that any
red/blue edge-coloring contains either a red clique of size r or a blue clique of size
b. The largest known Ramsey numbers are R(3, 9) = 36 [9] and R(4, 5) = 25 [24].
With today’s computers it is relatively easy to compute Ramsey number four,
i.e., R(4, 4) = 18 [8]. One method to compute R(4, 4) = 18 is by using SAT
solvers. Translating the problem into SAT results in a CNF formula consisting
of

(
18
2

)
= 513 Boolean variables (i.e., the number of edges in the fully-connected

undirected graph with 18 vertices) and 2 ·
(
18
4

)
= 6120 clauses. The SAT solver

Kissat [2], arguably the most powerful SAT solver at the moment, cannot solve
this problem in a day without symmetry-breaking predicates. Earlier experi-
ments with CDCL solver suggested that the produced resolution proof has about
a billion resolution steps.

With symmetry breaking, computing the first four Ramsey numbers using
SAT is easy. The first and most important step of the symmetry breaking is
the sorting of the edges for the first vertex v1. Let ei,j denote whether the edge
between vertex i and j is blue. The sorted edges clauses are (e1,j ∨ e1,j+1) for
j ∈ {2 . . . , |V | − 1}. With the sorted edges, the argument for Ramsey number
three is short as shown in Figure 4: If we assume that the edge between v1 and
v4 is blue, then this must also be the case for the edges v1–v2 and v1–v3. This
forces a red triangle by unit propagation. If the edge v1–v4 is assigned to red, a
similar conflict emerges via unit propagation.

One can express this using PR clauses with new variables [11], but it is
unclear whether it can be done without new variables. In contrast, the sorted
edges clauses are SR clauses using witnesses that permute the variables. As a
consequence, we can express the argument described above for Ramsey number
three as a 7-clauses SR proof. In a similar fashion, one can construct a 38-clauses
SR proof for Ramsey number four. Recall that resolution proofs for this problem
are around a billion steps. This shows the enormous potential of SR to construct
short proofs.

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

Fig. 4. A fully connected graph with six vertices (left); if we color all edges either red
or blue, then without loss of generality we can color a claw (three edges connected
by the same vertex) blue (middle); and now avoiding a blue triangle, results in a red
triangle (right).
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Abstract. Verifying learning robotic systems is challenging. Existing
techniques and tools for verification of an artificial neural network (ANN)
are concerned with component-level properties. Here, we deal with robotic
systems whose control software uses ANN components, and with prop-
erties of that software that may depend on all components. Our focus is
on trained fully connected ReLU neural networks for control. We present
an approach to (1) modelling ANN components as part of behavioural
models for control software and (2) verification using traditional and
ANN-specific verification tools. We describe our results in the context of
RoboChart, a domain-specific modelling language for robotics with sup-
port for formal verification. We describe our modelling notation and a
strategy for automated proof using Isabelle and Marabou, for example.

Keywords: verification · CSP · theorem proving · Isabelle · Marabou

1 Introduction

Artificial neural networks (ANN) are effective, powerful, and widely used [19].
They have been proposed for use in control software for robotic systems, perform-
ing various tasks such as collision detection [1,2], and path finding [15]. When
ANN components are used instead of non-ML components, they can increase
time and space efficiency [19]. In addition, ANN-based systems are highly adapt-
able to new data and environments [7]. On the other hand, the behaviour of an
ANN is highly dependent on the training data used in its development. There
is, therefore, great interest in several forms of verification to ensure that an
ANN-based system satisfies key properties of concern.

Existing formal-verification work focuses on ANN components. The other
components are either considered informally to generate a specification [6,18],
or not at all. Here, we define a framework to model and verify the entire control
software; we refer to such properties as module-level properties.

Several domain-specific languages support model-based software engineering
in robotics [26]. Most, however, are not focused on verification. RoboChart [24]
is distinctive in its support for verification by model checking and theorem prov-
ing. Our framework uses a denotational process-algebraic semantics for ANN
components that integrates with the RoboChart semantics. We use it to enable
verification mechanised using Isabelle/UTP [9] and Marabou [21], for instance.
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The semantics of RoboChart is described in the CSP process algebra [31].
CSP enables verification via model checking [12], but is also a front-end to a
predicative alphabetised relational theory described using the Unifying Theories
of Programming [13] (UTP) for theorem proving.

We introduce novel ANN components in RoboChart, giving them a CSP
semantics. To support tractable verification, we model fully connected ReLU pre-
trained ANNs [27]. Our semantics, however, supports any activation function,
allowing additional tool integration. For proof, we use the UTP encoding of CSP.

In summary, our contributions are as follows. First, we describe a
(RoboChart) ANN component with formal semantics. Second, we present
an approach to verification that can be mechanised using Isabelle/UTP and
Marabou in combination. In a recent survey [4], we have found that Marabou
proved a collection of properties we identified twice as fast when compared with
13 other tools. To cater for numerical uncertainty, we use a new notion of con-
formance with a precision parameter defined in terms of refinement.

Next, in Sect. 2, we provide the background to our work. Section 3 presents
our ANN components in RoboChart. Section 4 describes a semantics, and Sect. 5
discusses verification. Section 6 concludes and considers related and future work.

2 Background

We introduce in this section two concepts essential to our work. Section 2.1 briefly
introduces ANNs, and Sect. 2.2 introduces CSP and UTP.

2.1 ANNs

An ANN is an abstraction of a nervous system of interconnected neurons: cells
with multiple forms and components in biological neural networks. Information is
stored at synapses: contact points between different neurons. The basic function
of a neuron is to receive several electrical signals from other neurons through
dendrites and then to produce an output signal to send to other neurons through
an axon. The neuron’s body determines the output signal sent by the axon.

ANN’s approximate biological neurons through nodes (artificial neurons),
graphically represented in Fig. 1. Dendrites are modelled by input channels from
other nodes. Synapses are modelled by assigning a separate weighting for each
node connection. The axon is modelled by a single output value from the nodes.
The cell body is modelled by a function assigned to each node, referred to as an
activation function, which models the output value decision-making.

In a deep neural network, nodes are arranged in layers. Each node is also
assigned a value referred to as a bias. The weights and the biases are parameters
of the ANN learnt from training data. Figure 2 shows the overall structure of an
ANN, with each line representing a connection from the left to the right layer.
The weights of each layer can be represented as a matrix, with one value for the
connection of a node in the layer to a node in the previous layer. The bias of a
layer can be represented as a vector, with a value for each node.
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Fig. 1. A basic biological neuron from [25] and a basic node from [30]; w represents
the synapses, the input connections represent the dendrites, f represents the cell body,
and the output connection represents the axon.

Fig. 2. An abstract neural network from [20].

We can consider an ANN as the definition of a function F : R
n → R

m

based on training data. (Any training process can be used.) Every node takes
the weighted sum of the outputs of nodes of the previous layer and applies a bias
and a non-linear activation function to this result. This work considers only the
ReLU activation function: f (x ) = max (0, x ).

The ReLU activation function is faster to train, easier to optimise, and per-
forms and generalises well [27]. ReLU is also piecewise linear, which can be viewed
as the composition of multiple linear functions. Piecewise linearity has positive
implications in implementation, optimisation and verification as opposed to fully
non-linear functions such as sigmoid or tanh. Furthermore, ReLU can eliminate
the vanishing gradient problem (preventing the weight from changing value), is
widely used, and can achieve state-of-the-art results [22].

2.2 CSP and UTP

Communicating Sequential Processes (CSP) [14] is a notation for modelling,
validating, and verifying reactive programs via refinement.

A CSP model describes a set of processes defining interaction patterns of a
mechanism. Processes interact with each other and their environment via atomic
and instantaneous events representing channel communications. The set of all
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Table 1. CSP Operators. Here, we use P and Q as metavariables to stand for processes,
cs to stand for a channel set, defining a set of events potentially based on channels,
e to stand for an event, i for an index, and T for a finite type. In addition, for the
replicated (iterated) operators, a(i) stands a set of events identified by an index, and
similarly, P(i) is a process identified by the index i .

Symbol Name Symbol Name

Skip Skip e → P Prefix

P | [cs] | Q Parallel Composition ‖ i : T • [a(i)]P(i) Replicated Parallel

P ||| Q Interleaving ||| i : T • P(i) Replicated Interleaving

PΘcsQ Exception P \ cs Hiding

events a process can engage in is named Σ [32]. We present the CSP operators
we use in Table 1; they are further described as we use them.

UTP is a semantic framework to describe concepts to give denotational
semantics to a wide range of computational paradigms. UTP is based on a pred-
icative alphabetised relational calculus. In UTP, a theory describes a semantic
domain, characterising relations by predicates with a given alphabet and satisfy-
ing given healthiness conditions. Theories can be combined to define the seman-
tics of richer languages. So, there is support to extend our work to consider
languages other than RoboChart that define reactive behaviours, but perhaps
also include notions of continuous time [9] and probability [38], for instance.

All UTP theories describe relations between observations of variables. The
change in an observation x is captured by the relation between the before value
of the observation (named x ) and its after value (named x ′).

We use the UTP theory of reactive contracts [10], which gives semantics to
state-rich CSP processes and has a large set of algebraic laws for verification.
The observational variables of this theory are st , st ′, ok , ok ′, wait , wait ′, tt ,
ref , and ref ′. The variables st and st ′ record the programming state of the
process: its variables. The Boolean variables ok and ok ′ record the process’s sta-
bility. The Boolean variables wait and wait ′ identify when the process is waiting
for interaction with the environment. So, ok ′ and ¬ wait ′ indicate termination.

The sequence tt describes the trace of events in the life of the process up to
the moment of observation: it is the difference between the trace of all events at
the moment of observation and the trace as it was at the initiation of the current
process. There is no tt ′ because tt is defined as tr ′ − tr , where tr and tr ′ record
the traces of the process. The set ref ′ records the events that the process cannot
perform when it next makes visible progress. This set is known as the process’s
refusals. A healthiness condition makes the value of ref irrelevant, as a process
cannot depend on what was being refused before it started.

Reactive contracts take the form [R1[tt , st ] � R2[tt , st , ref ′] | R3[tt , st , st ′] ].
The square brackets define the observational variables to which each predicate
can refer. The precondition, R1, describes conditions on the pre-state st and the
trace tt . The postcondition R3 describes a condition on the state st , the state
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update st ′, and the final value of tt . In addition, we have a third predicate R2,
which is called a pericondition. It captures the observations that can be made
of a process when in a quiescent but not final state, that is, when it awaits its
environment’s interaction. The pericondition defines a condition on the pre-state
st , the value of the trace tt , and which events are refused by referring to ref ′.

Here, in defining reactive contracts, we use operators E [t ,E ] and Φ[t ], which
are simplified versions of those in Def. 4.6 from [11], where we consider that
a CSP process does not have state variables. With E [t ,E ], we can construct
a pericondition stating that t has been observed and the events in E are not
refused. On the other hand, Φ[t ] constructs a postcondition, stating that the
final trace observed is characterised by t . Finally, we use {| c |} to denote the
set of all events for the channel c, communicating values according to type of c.

Next, we introduce our novel ANN components in RoboChart.

3 Modelling ANN Components in RoboChart

RoboChart is a diagrammatic modelling language that can be used to define
a simple component model and behaviour of control software for robotics. In
RoboChart, the overall software of is represented by a module block, which
identifies one or more controllers interacting with a robotic platform. The block
for a robotic platform specifies an abstraction of the hardware and its embedded
software via events and operations representing services provided by the robot
and used by the software. A controller block defines a thread of control, engaging
in events, calling platform operations, and communicating with other controllers.
One or more (parallel) state machines define the behaviour of a controller.

In our work, we extend RoboChart with a new form of controller defined by
an ANN block. In Fig. 3, we present a RoboChart module for a Segway robot
that includes an ANN component AnglePIDANN. This module, called Segway,
contains a robotic platform SegwayRP, a standard controller SegwayController,
and an ANN controller AnglePIDANN. SegwayRP has events representing data
provided by the segway sensors and operations to control movement via the
segway motors. SegwayController describes the behaviour of this system, defined
through three state machines: BalanceSTM, RotationPID and SpeedPID.

As shown in Fig. 3, the block SegwayController has three blocks that repre-
sent references to its state machines, which are omitted here, but are available
in [3]. SegwayController has a cyclic behaviour defined by BalanceSTM, which
updates the motor speeds using the outputs of the PID machines and of the
AnglePIDANN controller to keep the segway upright. In the original version of
this example, there is a third state machine AnglePID. In our version here, we
have an ANN instead, with the same interface. Just like AnglePID, the ANN
component AnglePIDANN accepts as input the events anewError and adiff and
communicates its output through the event angleOutputE.

The block for an ANN component (marked using the symbol ) has its
behaviour defined by the following parameters. First, we have the ANN’s input
and output sizes, representing the sizes of the vector the ANN is trained on
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Fig. 3. A parallel version of the Segway model with an ANN component. Legend: :

Module, : controller definition, : connection, : constant, : robotic platform

reference, : state machine reference, : ANN component.

for input and output. Next, we specify a parameter file that defines the layer
structure, giving, for each layer, the weights and bias, and the activation function.

An ANN controller operates as a slave component. It can communicate with
other controllers via events. The types of the events are restricted: they can either
contain one event for every input and output, providing a scalar representation of
the ANN, or precisely two events, capturing a vector representation for the inputs
and outputs. In our example, we define multiple events (that communicate scalar
values) to represent the inputs and output, as our ANN is low-dimensional. We
declare two input events anewError and adiff, as the Input Size of AnglePIDANN
is 2, and one output event angleOutputE, as the Output Size is 1.

The metamodel for our RoboChart extension is very simple; details are given
in [3]. Principally, we have a class ANNController to represent a controller defined
using an ANN. It defines the parameters of an ANN so that we have specifications
for the values of six properties: insize, the input size of the ANN; outsize, the
output size of the ANN; layerstructure, defining the size of each layer, and weights
and biases, defining the weights and biases of the ANN. RoboChart’s type system
is based on Z [34,37]. Hence, we can represent real numbers using the approach
in [29]. Although different layers of an ANN can use different functions, we
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assume all layers use just one function. Extending our work to consider additional
functions and different functions in different layers is straightforward.

The following section discusses the semantics of ANNControllers.

4 CSP Semantics

Our semantics defines constants to capture the metamodel. They are insize : N,
outsize : N, and layerstructure : seqN. In addition, layerNo : N and maxSize :
N record properties of layerstructure: its length, and its largest element. Finally,
we have weights : seq(seq(seq(Value))) and biases : seq(seq(Value)).

Value is a type that represents the data communicated by our ANN. This
is defined based on the types used in the ANN component in RoboChart. Some
examples of the types that can be used are floating-point, integer, or binary
values. If there are various ANN components, there is a definition of a type
Value for each of them. Equally, constants such as layerstructure, maxSize, and
the others mentioned here are defined for each component.

The semantics of an ANN component is a process presented in Fig. 4. It is
defined by parallel composition of processes representing nodes and layers.

We use two channels. The first layerRes : {0 . . layerNo}.{1 . .maxSize}.Value
is used to communicate with other processes in the RoboChart semantics and for
inter-layer communications. An event layerRes.l .n.v represents the communica-
tion of a value v to or from the process for the nth node in the process for the lth
layer. The channel nodeOut : {1 . . layerNo}.{1 . . maxSize}.{1 . . maxSize}.Value
is for intra-node communication; nodeOut .l .n.i .v refers to the layer, node and
value as for layerRes. The additional index value i identifies the node in the
following layer (of index l + 1) that receives this communication.

In our semantics, we treat inputs to the ANN process as events on the chan-
nel layerRes, with 0 as the first argument’s value. In this way, events layerRes.0
represent inputs to the ANN process from other components in the RoboChart
model. All other communications on layerRes represent results from layer pro-
cesses. Events layerRes.layerNo represent the outputs of the ANN.

Figure 4 presents the specification of a process ANN , defining the semantics
for an ANNController. It terminates (Skip) on the occurrence of a special event
end , as determined using the exception operator Θend . This is an event raised by
other controllers when all state machines terminate. An ANN does not terminate
in any other way, so termination is determined by the other controllers.

The operator P |[ cs ]|Q describes the process whose behaviour is defined by
those of P and Q , synchronising on all events in the set cs. Also, P \ cs defines
a process that behaves as P , but its events from the set cs are hidden. ANN
composes in parallel the processes HiddenLayers and OutputLayer , then repeats
via a recursive call. Since the OutputLayer communicates only with the last
hidden layer, these processes synchronise on the events layerRes.(layerNo − 1).

All events in ANNHiddenEvts are hidden. This includes all events (Σ), except
those of layerRes.0, representing inputs, layerRes.layerNo, representing outputs,
and end . These define the visible behaviour of an ANNController.
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Fig. 4. CSP ANN Semantics - General.

We define the process HiddenLayers via an iterated alphabetised parallel
composition (‖) over an index i for hidden layers ranging from 1 to layerNo −1.
For each i , the layer-process HiddenLayer(i , layerSize(i), layerSize(i − 1)) for
the ith layer is associated with the alphabet containing the set of events on
layerRes.(i − 1) and layerRes.i . In an iterated alphabetised parallelism, the
parallel processes synchronise on the intersection of their alphabets. So, a layer-
process HiddenLayers synchronises with the process for the previous layer on
layerRes.(i − 1) and the process for the following layer on layerRes.i . So, the
output events of each layer are used as the input events for the next layer.

The second argument layerSize(i) passed to a layer process is the value of
the i -th element of layerstructure, that is, the number of nodes in the i -th layer
if i is greater than 0, and insize when i is 0. Similarly, the third argument
layerSize(i − 1) concerns the layer i − 1. In our example, layerNo − 1 is 1, and
there is a single HiddenLayer process, instantiated with arguments 1, 1, and 2.
These are the values of insize and layerstructure(1) for the example.

HiddenLayer(l , s, inpSize) is also defined by an iterated alphabetised par-
allelism: over an index i ranging from 1 to s, to compose s node processes
Node(l , i , inpSize) interacting via events in {| layerRes.(layer − 1) |}. This set
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contains all events the previous layer’s node processes use for output because a
node process requires the outputs from all nodes in the previous layer.

The Node(l ,n, inpSize) process represents the nth node in the layer l , which
has inpSize inputs. We define Node(l ,n, inpSize) as the parallel composition of
interleaved NodeIn(l ,n, i) processes, with i ranging over 1 to inpSize, and a
Collator(l ,n, inpSize) process. Interleaved processes (|||) do not synchronise.

NodeIn(l ,n, i) captures a weight application to an input. A NodeIn pro-
cess receives inputs via layerRes.(l − 1).n and communicates its output through
nodeOut .l .n.i . The output of NodeIn(l ,n, i) is its input weighted by the con-
stant weight , which is given by the expression weights l n i . After engaging in
this output event, NodeIn terminates (Skip).

An input of a value x via a channel c can be specified in CSP using the
prefixing construct c?x → P , which defines the process that engages in an event
c.x and behaves like P . This process accepts inputs x over the channel c’s
type. The output prefix c!v → P is a process that outputs (synchronises) on
the specific event c.v and then behaves like P . Collator(l ,n, inpSize) sums all
values output by the NodeIn processes and applies the bias value, given by
biases l n. The output of Collator(l ,n, inpSize) on layerRes is the output of
the node process. The definition of Collator(l ,n, inpSize) uses a local recursive
process C (l ,n, i , sum); its extra argument is the accumulated sum of the outputs.
In the base case C (layer ,node, 0, sum), we have an output sum, with the bias
term applied, subject to the activation function ReLU . In the recursive case
C (layer ,node, i , sum), we get an input x via nodeOut .l .n.i , and a recursive call
whose arguments are a descending index i − 1, and the sum of x and sum.

Finally, the definition of OutputLayer is similar to that of HiddenLayer .
The visible events of an ANN process are used to define its connection to other

components of the RoboChart semantics and for defining termination. In our
example, these are the events layerRes.0, layerRes.2, and end . We rename the
visible events of our ANN semantics to match the CSP events used to represent
the events defined in the RoboChart model. For our example, as mentioned in
Sect. 3, these events are anewError, adiff, and angleOutputE.

The RoboChart semantics defines a CSP process for the module by compos-
ing processes for each controller, each state machine, and memory, holding values
for local variables. The semantics of an ANN component fits in the semantics
of a RoboChart module as that of a controller process. With this semantics, we
can prove the properties of the RoboChart module in terms of the events and
operations of the robotic platform rather than just the inputs of the ANN.

For a primary validation of our semantics, we have used a CSP model checker
to compare the semantics of the AnglePIDANN to that of the machine AnglePID
of the original version of the segway model. For the latter, we have used the
semantics automatically generated by the RoboChart tool1. We have used a
discretised neural network to make model checking feasible. In this setting, we
have been able to show refinement (in both directions) automatically. Further
validation has been provided by implementing our semantics in Java using the

1 Available at robostar.cs.york.ac.uk/robotool/.

https://robostar.cs.york.ac.uk/robotool/
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JCSP package [28]. This has enabled simulation and assertion-based reasoning
via JML in a setting where values are floating-point numbers.2

In general, however, we require a proof approach that caters for use of real
numbers. Next, we describe our proof approach based on UTP.

5 Automated Verification Using UTP

In this section, we define UTP reactive contracts that capture the semantics
of our ANN components presented in Sect. 4 and an approach to verification.
In Sect. 5.1, we describe a general pattern of UTP reactive contracts for ANN
components. In Sect. 5.2, we present a pattern for the semantics of standard
RoboChart controllers that we use as specification. Finally, in Sect. 5.3, we
present our notion of conformance for ANN components, a verification conditions
to prove properties combining Isabelle/UTP and Marabou, for example.

5.1 General Pattern

Definition 1 below provides a pattern for contracts corresponding to an opti-
mised version of the CSP process ANN in Fig. 4. The pattern is for the process
defining one iteration of the ANN : the parallelism between HiddenLayers and
OutputLayer . So, we consider one application of the ANN. With that, compo-
sitional reasoning allows us to make direct deductions about the overall ANN
process.

To optimise reasoning, we eliminate the interleavings that allow inputs and
outputs to be received and offered in any order, and internal computations among
and inside the layers to occur in any order. Our highly parallel semantics captures
the common use of parallelisation to optimise the performance of implementa-
tions of ANNs. We have proved, however, that the different interleavings produce
equivalent outputs once the internal events are hidden.

First, the model of the ANN is deterministic, and hiding the events repre-
senting the communications between the nodes (and the layers) introduces no
nondeterminism. This means that the internal order of computation (as sig-
nalled by the events) in the layers and their nodes is irrelevant. Second, if we
add a wrapper process that keeps that responsiveness for the inputs but feeds
them to ANN in a fixed order, the values and responsiveness of outputs are
maintained. With this, we have rigorous evidence that parallelisation is a valid
implementation strategy and that we can use a simpler model for reasoning.

For brevity, in Definition 1, the contract is defined using a sequence input
containing only the events representing inputs extracted from the trace tt . For-
mally, input = tt � {| layerRes.0 |}. (We use � for sequence filtering.)

2 All the artefacts related to this validation work are available at
github.com/UoY-RoboStar/robochart-ann-components/.

https://github.com/UoY-RoboStar/robochart-ann-components/
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Definition 1 (ANN Component General Contract).

GeneralANNContract =̂
[ truer
� #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]

∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

E [ front ◦ layeroutput(l ,n), { last ◦ layeroutput(l ,n) }]
| #input = insize ∧ Φ[layeroutput(layerNo, layerSize(layerNo))]
]

The pattern in Definition 1 is for contracts that require that the process does
not diverge: the precondition is truer . This is appropriate as no ANN diverges.

To define the pericondition and the postcondition, we specify the valid obser-
vations using the predicate operators E and Φ. The pericondition characterises
the stable intermediate states of the ANN where some or all inputs have been
received. We identify these states by considering the size of inputs. When some
of the inputs are available (#input < insize), the trace is input , and the next
input event layerRes.0.(#input + 1) is not refused.

When all inputs are available (#input = size), we specify the trace of
layerRes interactions up to where layerRes.l .n has occurred using a function
layeroutput(l ,n), where l and n are layer and node indices. In the pericondition,
we consider all layer indices l and all node indices n in l , from 1 to layerSize(l).
The function layeroutput(l ,n) encodes the specification of the ANN, in terms
of its structure, into a trace-based specification. For instance, for an ANN with
input size 2, with two nodes in its first layer, like in our example, if tt defines
the input sequence as 〈layerRes.0.1.1, layerRes.0.2.1〉, then layeroutput(1, 2)
is 〈layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.(1.75), layerRes.1.2.(1.80)〉. This
reflects the fact that the inputs are taken first, and then the output of each node
is the weighted sum of these inputs. Here, we consider all weights to be 0.5, the
bias value of the first node to be 0.75, and of the second node to be 0.8. The out-
put of the first node is captured by the event layerRes.1.1.(1.75), where the value
1.75 communicated is the result of the calculation ((1 ∗ 0.5) + (1 ∗ 0.5)) + 0.75;
the output 1.8 for the second node results from considering the bias 0.8.

With layeroutput(l ,n), we define the entire trace up to and including the
result of the calculation of the node n on the layer l , which is the last element
of layeroutput(l ,n). Therefore, the trace in the case #input = size, where all
inputs have been received, includes all elements in layeroutput(l ,n) but the last,
denoted using the front function. We define the set of accepted events as the
singleton containing the event last ◦ layeroutput(l ,n).

To specify the postcondition, we use layeroutput(layerNo, layerSize
(layerNo)) for when the trace for the last node (that of index layerSize(layerNo))
of the last layer (that of index layerNo) has occurred.
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For conciseness, we omit here the definition of layeroutput . It can be found
in [3], along with all other definitions and proofs omitted here.

Using laws of reactive contracts and the definition of the CSP operators [10],
we can prove that the pattern in Definition 1 captures the RoboChart ANN
semantics.

5.2 Cyclic Memoryless RoboChart Controllers

An ANN cannot implement reactive behaviour, where events are interspersed
according to environmental interactions. So, we consider specifications that
define a cyclic controller, whose events can be classified as inputs or outputs,
and whose control flow alternates between taking inputs and producing outputs,
never terminating and without memory across cycles. (This is the flow of sim-
ulations, for example.) For such controllers, the RoboChart semantics of one
iteration can be captured by a reactive design of a particular format. A reactive
design defines a relation via just a precondition and a postcondition, which, how-
ever, specifies both intermediate final observations. In other words, a reactive
design combines the pericondition and the postcondition in a single predicate.

In the case of the segway, as already mentioned, the inputs of the AnglePID
are anewError and adiff, and the output is angleOutputE as indicated by the con-
nections to the SegwayController (see Fig. 3). The reactive design for AnglePID
captures the behaviour of one iteration of the state machine: it receives inputs
anewError and adiff and produces an output via angleOutputE . It has precon-
dition truer and the following postcondition, where the local variables of the
RoboChart model are quantified and defined according to that model in terms
of constants P and D . (In spite of its name, AnglePID is a PD controller).

∃ currNewError , currDiff , currAngleOut : Value |
currAngleOut = P ∗ currNewError + D ∗ currDiff •

wait ′ ∧ ( (tt = 〈〉 ∧ anewError .currNewError /∈ ref ′) ∨
(tt = 〈anewError .currNewError〉 ∧ adiff .currDiff /∈ ref ′) ∨
(tt = 〈anewError .currNewError , adiff .in.currDiff 〉 ∧

angleOutputE .currAngleOut /∈ ref ′) )
∨
¬ wait ′ ∧ tt = 〈anewError .currNewError , adiff .currDiff ,

angleOutputE .currAngleOut〉

The postcondition comprises two parts: either the process is waiting on inter-
action (wait ′), or not (¬ wait ′). When wait ′ holds, there are three cases dis-
tinguished by the trace contribution tt : no input events have happened, just
anewError has been provided, or both anewError and adiff have been pro-
vided. In each case, the next event is not refused, that is, it does belong to ref ′.
When wait ′ is false, tt contains all inputs and the output. In this case, the value
of ref ′ is irrelevant and not specified, since the process has terminated.

The design for the AnglePID follows the pattern defined below for a cyclic
controller, where we consider inp and out to be the lists of input and output
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events. For every event, we have a quantified variable: x1 to x#inp for inputs, and
y1 to y#out for outputs. We also consider a predicate p to capture the permissible
values these variables can take, according to the RoboChart model.

Definition 2 (Cyclic RoboChart Controller Pattern).

Cyclic RC Controller =̂
[ truer
�
∃ x1, . . . , x#inp ; y1, . . . , y#out : Value | p •

wait ′ ∧ (∃ i : dom inp • tt = �/ j : 1..(i − 1) • 〈inp(j ).xj 〉 ∧
inp(i).xi /∈ ref ′)

∨
(∃ i : dom out • tt = �/n : dom inp • 〈inp(n).xn〉�

�/ j : 1 . . (i − 1) • 〈out(j ).yj 〉 ∧
out(i).yi /∈ ref ′)

∨
¬ wait ′ ∧
tt = �/ i : dom inp • 〈inp(i).xi〉 � �/ j : dom out • 〈out(j ).yj 〉

]

The reactive design for AnglePID is an instance of Cyclic RC Controller above,
where we have two inputs: x1 is currNewError and x2 is currDiff . The output
y1 is currAngleOut . So, dom inp is {1, 2}, and dom out is {1}. The predicate p
characterises values for the outputs in terms of local variables xi and yi .

In Definition 2, in the wait ′ case, we have a disjunction of two existential
quantifications. In the first, the quantification on i ranges over dom inp, and
we define a value for tt in terms of a distributed concatenation (�/), that is,
the concatenation of a sequence of sequences. The concatenation comprises sin-
gleton sequences 〈inp(j ).xj 〉, with j ranging over 1 . . (i − 1). These represent
all input events before the i -th input given by the event inp(i).xi . So we get
tt = 〈〉 for i = 1, or tt = 〈anewError .currNewError〉 for i = 2 and j = 1. For
the definition of ref ′, we specify that the input event inp(i).xi , which is either
anewError .currNewError or adiff .currDiff , is not refused. This corresponds to
the first two disjuncts in the wait ′ case of the postcondition for AnglePID.

The second quantification is on i from dom out , with tt formed of two dis-
tributed concatenations. The first is of sequences 〈inp(n).xn〉, like in the first
quantification, but now n ranges over the whole dom inp, so we get all input
events. The second is of sequences 〈out(j ).yj 〉, representing proper prefixes of
the sequences of all output events. Our example has one output, so this sequence
resolves to the empty trace. The refusal does not include the following output.
For our example, we accept out(i).yi , which is angleOutputE .currAngleOut .

In the terminating case, that is, ¬ wait ′, we define tt as the concatenation of
all input events followed by all output events. In our example, we get the trace
〈anewError .currNewError , adiff .currDiff , angleOutputE .currAngleOut〉.
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A reactive design that instantiates the pattern in Definition 2 defines one
iteration of a cyclic RoboChart controller. In the full model of the controller,
that design is the body of a loop with the weakest fixed-point semantics. Since
the precondition is truer , the weakest fixed-point operator transfers to the post-
condition [10].

Besides structural differences in the patterns in Definitions 1 and 2, we have
a substantial difference in how outputs are defined regarding the inputs. In an
ANN contract, the results are determined by a deterministic function based on
the parameters of an ANN. In the pattern for a cyclic controller, the inputs
and outputs are related by the predicate p. We can, for example, define even
nondeterministic behaviour with this predicate. Finally, the alphabet of events
in the patterns is different: one is based on the layerRes events and the other on
RoboChart application-specific events to represent inputs and outputs.

We next consider how to verify an ANN component against a cyclic controller.

5.3 Conformance

In our approach to verification, we take a RoboChart standard controller as the
specification for an ANN component. So, our goal is to prove that the ANN is
correct with respect to the RoboChart controller. ANN components, however,
contain numerical imprecision, so we allow an error tolerance on the values com-
municated by the output events of an ANN component. Formally, we define a
conformance relation Q conf (ε) P that holds if, and only if, Q is a refinement
of P , where the value of P ’s outputs can vary by at most ε as formalised below.

Definition 3 (Conformance Relation).

Q conf (ε) P ⇔
∃ s : seq Event ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox (ε) a •

P [s, (αP \ a)/tt , ref ′] � Q

We say that Q conf (ε) P if, and only if, Q is a refinement of P [s, αP \a/tt , ref ′],
that is, we accept P as a specification that restricts the trace s and the refusals
αP \a, instead of tt and ref ′, where s and a are approximations of tt and the set
a of acceptances as captured by relations seqapprox (ε) and setapprox (ε). Here,
αP is the set of events used in P , and \ is the set difference operator, so that
αP \ ref ′ is the set of events that P is not refusing, that is, its acceptances.
Moreover, s1 seqapprox (ε) s2 relates sequences s1 and s2 if, and only if, s1 differs
from s2 just in that its output values are within ε of those of s2. Similarly,
A1 setapprox (ε) A2 if, and only if, their input events are the same, but although
the output events are the same the communicated values differ by at most ε.

Our verification approach starts with an abstract RoboChart model. That
model can be refined using the structural rules of RoboChart justified by its
CSP semantics and refinement relation. (These rules are out of scope here, but
we refer to [23] for examples of the kinds of laws of interest.) In particular,
refinement may need to be used to derive the specification of a cyclic controller
for implementation using an ANN. In our example, we have used refinement
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to justify transformations to extract the AnglePID state machine out of the
SegwayController where it was originally and obtain the Segway module in Fig. 3.

With a refined model, we can identify a controller to be implemented by an
ANN and prove conformance according to conf (ε). The following result justifies
the joint use of refinement (nondeterminism reduction) and conf (ε).

Theorem 1. P � Q ∧ R conf (ε) Q ⇒ R conf (ε) P

This ensures that the ANN conforms to the original specification. So, the ANN
may have removed nondeterminism present in the original controller, and exhibit
some numeric imprecision bounded by ε, but that is all.

The following theorem identifies verification conditions that are sufficient
to prove conformance for instances of our patterns. In Theorem 3, we further
instantiate the verification conditions to consider conformance proofs using the
semantics of standard and ANN controllers in RoboChart.

Theorem 2. Q conf (ε) P provided

[Q2 ⇒ ∃ s : seqEvent ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox a •
P2[s, αP \ a/tt , ref ′]]

and

[Q3 ⇒ ∃ s : seq Event | tt seqapprox (ε) s • P3[s/tt ]]

where Q and P are instances of the patterns in Definitions 1 and 2.

In short, Theorem 2 gives two verification conditions that distribute conformance
over the pericondition and postcondition of Q . For any reactive contract RC ,
we use RC2 and RC3 to refer to its pericondition and to its postcondition. The
first verification condition requires the periconditions P2 and Q2 to be related by
conf (ε). The second condition makes the same requirement of the postconditions
P3 and Q3 and is simpler because postconditions do not restrict ref ′.

In the context of our work, the proof of conformance is in the following form.

(Q \ ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo] conf (ε) P (1)

Here, Q is a reactive contract that instantiates the pattern in Definition 1, and
P captures the semantics of a cyclic controller described using the pattern in
Definition 2. As said, our general contract for ANN components does not capture
the hiding in the CSP semantics (Fig. 4), so we add it to Q above. Moreover, the
pattern is concerned with layerRes events and the specification with RoboChart
events. So, we substitute layerRes.0 and layerRes.layerNo with the inputs and
outputs.

For our example, the conformance requirement is based on AnglePIDANN ,
the reactive contract for AnglePIDANN. Besides hiding the layerRes.1 events,
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we rename layerRes.0.1 and layerRes.0.2 to currNewError and layerRes.0.2 to
curradiff , and layerRes.2.1 to currangleOutput . With this, we can discharge the
verification conditions identified in Theorem 2 using Isabelle and the laws of
UTP to prove the properties of the segway. For instance, we have proved that
“when P is non-zero, other PID constants are 0, and values greater than or
equal to -maxAngle and less than or equal to maxAngle are communicated by the
event angle, the values set by setLeftMotorSpeed() and setRightMotorSpeed() are
equal to the value communicated by angle multiplied by P”, using the original
model of the segway with the AnglePID state machine. With our proof of (1),
we can obtain the same result for the version of the segway software that uses
AnglePIDANN, although we need to accept a tolerance for the values set.

For the particular case where the conformance that is being proved is of the
form (1) above, the following theorem maps both conditions to set reachability
conditions that can be discharged by ANN verification tools and, in particular, by
Marabou. The compromise is that while we can carry out proofs for any input
values in Isabelle, Marabou does not have facilities for dealing with universal
quantification over real-valued sets. So, we approximate the input range with
intervals and form properties based on these intervals.

Theorem 3.

¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , 〈x1, . ., xinsize〉)} ∩ {x : R | |x − yi | < ε} = ∅

⇒ [(Q2 \peri ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo] ⇒
∃ s : seq Event ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox (ε) a •

P2[s, (αP \ a)/tt , ref ′]]
∧
[(Q3 \post ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo] ⇒
∃ s | tt seqapprox (ε) s • P3[s/tt ]]

provided Q2 is an ANN’s pericondition, Q3 is its postcondition, P2 is a cyclic
RoboChart controller’s pericondition, P3 is its postcondition, and inp and out
are sequences of events with #inp = insize and #out = outsize.

Theorem 3 states that if we show that there is no combination of input and out-
put values for which there is an output yi whose error, as defined by comparison
to annoutput(layerNo, i , 〈x1, . ., xinsize〉), is greater than ε, then our verification
conditions are discharged. By requiring that the intersection between the sin-
gleton set {annoutput(layerNo, i , 〈x1, . ., xinsize〉)} and {x : R | |x − yi | � ε}
is empty, we require the output yi to be in range. The error refers to the dif-
ference between the ANN’s output annoutput(l ,n, 〈x1, . ., xinsize〉) and the cyclic
RoboChart controller’s output, captured by the variables yi and the predicate p.
The ANN’s output value is characterised using annoutput(l ,n, in), which deter-
mines the value communicated by the output event of the n-th node of layer l ,
given a sequence in of inputs to the ANN.

We provide an example below of the reachability conditions we obtain using
Theorem 3, based on our AnglePID example.
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Example 1. The antecedent of Theorem 3 for our example is the following ver-
ification condition. (Here, i takes just the value 1).

¬ ∃ currNewError , currDiff : Value •
∃ currAngleOut | currAngleOut = P ∗ currNewError + D ∗ currDiff •

{annoutput(layerNo, 1, 〈currNewError , currDiff 〉)} ∩
{x : R | |x − currAngleOut | < ε} = ∅

The verification condition can be encoded as a set of reachability conditions if
we define Value to be a set MValue defined in terms of a minimal value min
and a natural number c as:

⋃{n : 0 . . c • [min + n × c,min + (n + 1) × c] }.
Given these constants, we can obtain finite conditions to prove in Marabou if
we accept this limitation, as illustrated by the lemma below.

Lemma 1. The antecedent of Theorem 3 for AnglePIDANN is as follows.

¬ ∃n1,n2 : 0 . . c • ∃ currNewError , currDiff : R •
min + n1 × c � currNewError � min + (n1 + 1) × c ∧
min + n2 × c � currDiff � min + (n2 + 1) × c ∧
annoutput(layerNo, 1, 〈currNewError , currDiff 〉) �

(P ∗ (min + n1 × c) + D ∗ min + n2 × c) − ε
∨
min + n1 × c � currNewError � min + (n1 + 1) × c ∧
min + n2 × c � currDiff � min + (n2 + 1) × c ∧
annoutput(layerNo, 1, 〈currNewError , currDiff 〉) �

(P ∗ (min + (n1 + 1) × c) + D ∗ min + (n2 + 1) × c) + ε

This verification condition amounts to proving (c + 1) × (c + 1) conditions: one
for each value of n1 and n2. If any of these conditions fail, Marabou produces
a counterexample, where we identify the assignment of input variables xi that
causes the error. This tells us exactly where the failure is, and the ANN can be
retrained using this counterexample, using a similar approach to that in [7]. We
choose the value of ε based on the needs of the system. So, even though Marabou
cannot find a least upper bound for ε, in our work, this is not necessary.

Lemma 1’s constraints form a hyper-rectangle in the domain of an ANN,
and form a convex polytope, in inequality form, in the range. We can use these
sets to specify properties in other tools [33,35] as well as in Marabou as we have
done. In particular, we can use tools that are able to handle non-linear activation
functions, such as tanh and sigmoid, as well as ReLU.

6 Conclusions

As far as we know, we have proposed the first verification technique for robotic
software in which an ANN is viewed as a white-box component whose reliabil-
ity can and should be established. We guarantee properties, specified by state
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machines, of software that is implemented using instead trained, feed-forward,
fully connected ReLU ANNs of any size or shape.

We have defined an ANN as a controller-like component in RoboChart and
have validated the semantics via model checking using FDR [36], for discretised
versions of the ANN, and via simulation using JCSP [28]. We have also presented
a refinement-based method to prove ANN properties. We cater for an ANN
component’s numerical instability and provide a notion of conformance that can
be used to justify replacing an existing RoboChart controller with an ANN if
the error bound is accepted. We have identified sufficient verification conditions
to establish conformance and shown how to combine ANN-specific (Marabou)
and general theorem-proving tools (Isabelle) to discharge them. For illustration,
we have applied our technique to a PID controller.

The work by Brucker and Stell in [5] is closely related to ours: they use
Isabelle/HOL to verify the properties of feed-forward ANNs. They use their
framework to demonstrate the properties of image-classification networks not
considered here. Their goal, however, is component-level verification. It is feasible
to use their results instead of Marabou to automate our proofs using only Isabelle
and avoid input and output value restrictions.

Dupont et al. [8] define approximate notions of refinement for continuous sys-
tems. Their work considers two different views of conformance: upwards approx-
imation, where an approximated system is refined to an exact system, and down-
wards approximation, the inverse. Our approach uses upward approximation: we
refine an approximate system into an exact system. We, however, are concerned
with ANN outputs, not trajectories of a continuous system.

An immediate goal is to generalise the ANN components. Our metamodel
and semantics can easily accommodate several activation functions and can be
extended to cater for convolutional neural networks with minor changes. Various
tools and techniques remain applicable because the layer function is piecewise
linear. Recurrent neural networks require more changes; fewer techniques and
tools are available, although some are emerging [17].

Our second future goal is to define a toolchain of ANN-specific tools, so
that, instead of relying on discharging our proof obligations using just a single
tool, we have a collection of tools available. This requires techniques to reduce
the search space and prove properties using complete techniques. This toolchain
would allow us to verify more extensive and complex ANNs.

Finally, another future goal is to consider use of an ANN for perception,
where the availability of a specification is not immediate. Developing meaningful
specifications for such components is challenging, but there is a growing body of
relevant work to address this [16] that we plan to consider.
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33. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective

robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31, pp. 10802–10813. Curran Associates Inc. (2018)

34. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliff
(1992)

35. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

36. University of Oxford. FDR Manual, May 2020. Release 4.2.7.
dl.cocotec.io/fdr/fdr-manual.pdf. Accessed 31 May 2020

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-10181-1_10
https://doi.org/10.1007/978-3-319-67443-8_5
https://doi.org/10.1007/978-3-319-11900-7_17
http://arxiv.org/abs/1811.03378
https://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp-1.1-rc4/jcsp-doc/
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-3-030-30942-8_39
https://dl.cocotec.io/fdr/fdr-manual.pdf


Modelling and Verifying Robotic Software that Uses Neural Networks 35

37. Woodcock, J., Davies, J.: Using Z. Prentice Hall, Englewood Cliff (1996)
38. Ye, K., Foster, S., Woodcock, J.: Automated reasoning for probabilistic sequential

programs with theorem proving. In: Fahrenberg, U., Gehrke, M., Santocanale, L.,
Winter, M. (eds.) RAMiCS 2021. LNCS, vol. 13027, pp. 465–482. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88701-8 28

https://doi.org/10.1007/978-3-030-88701-8_28


A Game-Theoretic Approach
to Indistinguishability of Winning

Objectives as User Privacy

Rindo Nakanishi1(B), Yoshiaki Takata2, and Hiroyuki Seki1

1 Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa,
Nagoya 464-8601, Japan
{rindo,seki}@sqlab.jp

2 School of Informatics, Kochi University of Technology, Tosayamada, Kami City,
Kochi 782-8502, Japan

takata.yoshiaki@kochi-tech.ac.jp

Abstract. Game theory on graphs is a basic tool in computer science.
In this paper, we propose a new game-theoretic framework for studying
the privacy protection of a user who interactively uses a software ser-
vice. Our framework is based on the idea that an objective of a user
using software services should not be known to an adversary because
the objective is often closely related to personal information of the user.
We propose two new notions, O-indistinguishable strategy (O-IS) and
objective-indistinguishability equilibrium (OIE). For a given game and
a subset O of winning objectives (or objectives in short), a strategy of a
player is O-indistinguishable if an adversary cannot shrink O by exclud-
ing any objective from O as an impossible objective. A strategy profile,
which is a tuple of strategies of all players, is an OIE if the profile is
locally maximal in the sense that no player can expand her set of objec-
tives indistinguishable from her real objective from the viewpoint of an
adversary. We show that for a given multiplayer game with Muller objec-
tives, both of the existence of an O-IS and that of OIE are decidable.

Keywords: graph game · Muller objective · O-indistinguishable
strategy · objective-indistinguishability equilibrium

1 Introduction

Indistinguishability is a basic concept in security and privacy, meaning that any-
one who does not have the access right to secret information cannot distinguish
between a target secret data and other data. For example, a cryptographic proto-
col may be considered secure if the answer from an adversary who tries to attack
the protocol is indistinguishable from a random sequence [23]. In the database
community, k-anonymity has been frequently used as a criterion on privacy of a
user’s record in a database; a database is k-anonymous if we cannot distinguish
a target record from at least k − 1 records whose public attribute values are the
same as those of the target record [32].
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In this paper, we apply indistinguishability to defining and solving problems
on privacyof a user who interacts with other users and/or software tools. Our
basic framework is a multiplayer non-zero-sum game played on a game arena,
which is a finite directed graph with the initial vertex [6,8]. A game has been
used as the framework of reactive synthesis problem [21,27]. A play in a game
arena is an infinite string of vertices starting with the initial vertex and along
edges in the game arena. To determine the result (or payoff) of a play, a winning
objective Op is specified for each player p. If the play satisfies Op, then we say that
the player p wins in this play. Otherwise, the player p loses. A play is uniquely
determined when all players choose their own strategies in the game. A strategy
σ of a player p is called a winning strategy if the player p always wins by using
σ, i.e., any play consistent with the strategy σ satisfies her winning objective
regardless of the other players’ strategies. One of the main concerns in game
theory is to decide whether there is a winning strategy for a given player p and
if so, to construct a winning strategy for p. Note that there may be more than
one winning strategies for a player; she can choose any one among such winning
strategies. In the literatures, a winning objective is a priori given as a component
of a game. In this study, we regard a winning objective of a player is her private
information because objectives of a user of software services are closely related
to her private information. For example, users of e-commerce websites may select
products to purchase depending on their preference, income, health condition,
etc., which are related to private information of the users. Hence, it is natural
for a player to choose a winning strategy that maximizes the indistinguishability
of her winning objective from the viewpoint of an adversary who may observe
the play and recognize which players win the game. For a subset O of winning
objectives which a player p wants to be indistinguishable from one another,
we say that a strategy of p is O-indistinguishable if an adversary cannot make
O smaller as the candidate set of winning objectives. The paper discusses the
decidability of some problems related to O-indistinguishability.

Another important problem in game theory is to find a good combination of
strategies of all players, which provides a locally optimal play. A well-known cri-
terion is Nash equilibrium. A combination of strategies (called a strategy profile)
is a Nash equilibrium if any player losing the game in that strategy profile can-
not make herself a winner by changing her strategy alone. This paper introduces
objective-indistinguishability equilibrium (OIE) as a criterion of local optimality
of a strategy profile; a strategy profile is OIE if and only if no player can extend
the indistinguishable set of winning objectives by changing her strategy alone.
The paper also provides the decidability results on OIE.

Example 1. Figure 1 shows a 1-player game arena with a Büchi objective. The
player is a spy. Alice is her buddy. The player wants to communicate with Alice
many times and she does not want an adversary to find out that Alice is her
buddy. In this game, the objective of the player is to visit the accepting vertex
Alice infinitely often. Visiting a vertex corresponds to communicating with the
person written on that vertex.
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Alice

Bob Chris

Fig. 1. 1-player game arena with a Büchi objective

We assume that an adversary knows the game arena, the play and whether
the player wins. We also assume that an adversary knows the objective of the
player is a Büchi objective. We examine the following three strategies of the
player, all of which result in the player’s winning.

1. Always choose Alice as the next vertex, i.e., the play will be
Alice Alice Alice · · · . In this case, the player wins because she visits Alice
infinitely often. An adversary knows that at least Alice is an accepting vertex
because the player won and she visited only Alice infinitely often.

2. Choose Bob as the next vertex when the player is in Alice, and Alice when
the player is in Bob, i.e., the play will be Alice Bob Alice Bob · · · . In this case,
the player wins and an adversary knows that at least one of Alice and Bob is
an accepting vertex. Compared to the case 1, the vertex Bob is added to the
candidate set of accepting vertices.

3. Choose Bob as the next vertex when the player is in Alice, Chris when the
player is in Bob, and Alice when the player is in Chris, i.e., the play will be
Alice Bob Chris Alice · · · . In this case, the player wins and an adversary knows
that at least one of Alice, Bob and Chris is an accepting vertex. Compared to
the case 2, the vertex Chris is added to the candidate set of accepting vertices.

Related Work. There is a generalization of games where each player can only
know partial information on the game, which is called an imperfect information
game [2,5,7,11,12]. While the indistinguishability proposed in this paper shares
such restricted observation with imperfect information games, the large differ-
ence is that we consider an adversary who is not a player but an individual who
observes partial information on the game while players themselves may obtain
only partial information in imperfect information games.

Among a variety of privacy notions, k-anonymity is well-known. A database
D is k-anonymous [28,32] if for any record r in D, there are at least k−1 records
different from r such that the values of quasi-identifiers of r and these records
are the same. Here, a set of quasi-identifiers is a subset of attributes that can
‘almost’ identify the record such as {zip-code, birthday, income}. Hence, if D is
k-anonymous, an adversary knowing the quasi-identifiers of some user u cannot
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identify the record of u in D among the k records with the same values of the
quasi-identifiers. Methods for transforming a database to the one satisfying k-
anonymity have been investigated [4,9]. Refined notions have been proposed by
considering the statistical distribution of the attribute values [25,26].

However, these notions suffer from so called non-structured zero and mosaic
effect. Actually, it is known that there is no way of protecting perfect privacy
from an adversary who can use an arbitrary external information except the tar-
get privacy itself. The notion of ε-differential privacy where ε > 0 was proposed
to overcome the weakness of the classical notions of privacy. A query Q to a
database D is ε-differentially private (abbreviated as ε-DP) [17,19] if for any
person u, the probability that we can infer whether the information on u is con-
tained in D or not by observing the result of Q(D) is negligible (very small) in
terms of ε. (Also see [18,20].) As the privacy protection of individual information
used in data mining and machine learning is becoming a serious social problem
[30], methods of data publishing that guarantees ε-DP have been extensively
studied [1,3,22,29,30].

Quantitative information flow (abbreviated as QIF) [15,31] is another way
of formalizing privacy protection or information leakage. QIF of a program P is
the mutual information of the secret input X and the public output Y of the
program P in the sense of Shannon theory where the channel between X and Y
is a program which has logical semantics. Hence, QIF analysis uses not only the
calculation of probabilities but also program analysis [16].

We have mentioned a few well-known approaches to formally modeling pri-
vacy protection in software systems; however, these privacy notions, even QIF
that is based on the logical semantics of a program, share the assumption that
private information is a static value or a distribution of values. In contrast, our
approach assumes that privacy is a purpose of a user’s behavior. The protection
of this kind of privacy has not been studied to the best of our knowledge. In [24],
the following synthesis problem of privacy preserving systems is discussed: For
given multivalued LTL formulas representing secrets as well as an LTL formula
representing a specification, decide whether there is a reactive program that
satisfies the specification while keeping the values of the formulas representing
secrets unknown. The paper [24] treats the secrets as values as in the previous
studies, and the approach is very different from ours.

There are criteria other than Nash equilibrium for local optimality of strategy
profiles, namely, secure equilibrium (SE) [14] and doomsday equilibrium (DE)
[13]. For example, SE is a strategy profile such that no player can improve her
payoff or punish any other player without loss of her own payoff by changing
only her strategy. SE and DE are secure in the sense that no player is punished
by other player(s) and not directly related to user privacy.
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2 Preliminaries

Definition 1. A game arena is a tuple G = (P, V, (Vp)p∈P , v0, E), where P is
a finite set of players, V is a finite set of vertices, (Vp)p∈P is a partition of V ,
namely, Vi ∩ Vj = ∅ for all i �= j (i, j ∈ P ) and

⋃
p∈P Vp = V , v0 ∈ V is the

initial vertex, and E ⊆ V × V is a set of edges.

As defined later, a vertex in Vp is controlled by a player p, i.e., when a play is at a
vertex in Vp, the next vertex is selected by player p. This type of games is called
turn-based. There are other types of games, concurrent and stochastic games. In
a concurrent game [2], each vertex may be controlled by more than one (or all)
players. In a stochastic game [10,33,34], each vertex is controlled by a player
or a special entity nature who selects next nodes according to a probabilistic
distribution for next nodes given as a part of a game arena. Moreover, a strategy
of a player selects a next node stochastically. In this paper, we consider only
deterministic turn-based games.

Play and History. An infinite string of vertices v0v1v2 · · · (vi ∈ V, i ≥ 0) starting
from the initial vertex v0 is a play if (vi, vi+1) ∈ E for all i ≥ 0. A history is a
non-empty (finite) prefix of a play. The set of all plays is denoted by Play and
the set of all histories is denoted by Hist . We often write a history as hv where
h ∈ Hist ∪ {ε} and v ∈ V . For a player p ∈ P , let Histp = {hv ∈ Hist | v ∈ Vp}.
That is, Histp is the set of histories ending with a vertex controlled by player
p. For a play ρ = v0v1v2 · · · ∈ Play , we define Inf (ρ) = {v ∈ V | ∀i ≥ 0. ∃j ≥
i. vj = v}.

Strategy. For a player p ∈ P , a strategy of p is a function σp : Histp → V such
that (v, σp(hv)) ∈ E for all hv ∈ Histp. At a vertex v ∈ Vp, player p chooses
σp(hv) as the next vertex according to her strategy σp. Note that because the
domain of σp is Histp, the next vertex may depend on the whole history in
general. Let Σp

G denote the set of all strategies of p. A strategy profile is a tuple
σ = (σp)p∈P of strategies of all players, namely σp ∈ Σp

G for all p ∈ P . Let ΣG
denote the set of all strategy profiles. For a strategy profile σ ∈ ΣG and a strategy
σ′

p ∈ Σp
G of a player p ∈ P , let σ[p �→ σ′

p] denote the strategy profile obtained
from σ by replacing the strategy of p in σ with σ′

p. We define the function outG :
ΣG → Play as outG((σp)p∈P ) = v0v1v2 · · · where vi+1 = σp(v0 · · · vi) for all i ≥ 0
and for p ∈ P with vi ∈ Vp. We call the play outG(σ) the outcome of σ. We also
define the function outp

G : Σp
G → 2Play for each p ∈ P as outp

G(σp) = {v0v1v2 · · · ∈
Play | vi ∈ Vp ⇒ vi+1 = σp(v0 · · · vi) for all i ≥ 0}. A play ρ ∈ outp

G(σp) is called
a play consistent with the strategy σp of player p. By definition, for a strategy
profile σ = (σp)p∈P ∈ ΣG , it holds that

⋂
p∈P outp

G(σp) = {outG(σ)}.

Objective. In this paper, we assume that the result that a player obtains from a
play is either a winning or a losing. Since we are considering non-zero-sum games,
one player’s winning does not mean other players’ losing. Each player has her
own winning condition over plays, and we model the condition as a subset O of
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plays; i.e., the player wins if the play belongs to the subset O. We call the subset
O ⊆ Play the objective of that player. In this paper, we focus on the following
important classes of objectives:

Definition 2. Let U ⊆ V be a subset of vertices and F ⊆ 2V be a subset of
subsets of vertices. We will use U and F as finite representations for specifying
objectives as follows:

– Büchi objective: Büchi(U) = {ρ ∈ Play | Inf (ρ) ∩ U �= ∅}.
– Muller objective: Muller(F) = {ρ ∈ Play | Inf (ρ) ∈ F}.
Note that a Büchi objective defined in Definition 2 is also a Muller objective: For
any U ⊆ V , Büchi(U) = Muller({I ⊆ V | I ∩U �= ∅}). We define the description
length of a Muller objective Muller(F) for F ⊆ 2V is |V | · |F|, because each
element of F , which is a subset of V , can be represented by a bit vector of
length |V |.1 By Ω ⊆ 2Play , we refer to a certain class of objectives. For example,
Ω = { Büchi(U) | U ⊆ V } ⊆ 2Play is the class of Büchi objectives.

An objective profile is a tuple α = (Op)p∈P of objectives of all players, namely
Op ⊆ Play for all p ∈ P . For a strategy profile σ ∈ ΣG and an objective profile
α = (Op)p∈P , we define the set WinG(σ,α) ⊆ P of winners as WinG(σ,α) =
{p ∈ P | outG(σ) ∈ Op}. That is, a player p is a winner if and only if outG(σ)
belongs to the objective Op of p. If p ∈ WinG(σ,α), we also say that p wins
the game G with α (by the strategy profile σ). Note that it is possible that
there is no player who wins the game or all the players win the game. In this
sense, a game is non-zero-sum. We abbreviate Σp

G , ΣG , outp
G , outG and WinG as

Σp, Σ, outp, out and Win, respectively, if G is clear from the context.

Winning Strategy. For a game arena G, a player p ∈ P and an objective Op ⊆
Play , a strategy σp ∈ Σp of p such that outp(σp) ⊆ Op is called a winning
strategy of p for G and Op because if p takes σp as her strategy then she wins
against any combination of strategies of the other players. (Recall that outp(σp)
is the set of all plays consistent with σp.) For a game arena G and a player
p ∈ P , we define the set Winnablep

G of objectives permitting a winning strategy
as Winnablep

G = {O | ∃σp ∈ Σp
G . outp

G(σp) ⊆ O}. For a player p, O ∈ Winnablep
G

means that p has a winning strategy for G and O. We have the following theorem
on the existence of a winning strategy for a Muller objective.

Theorem 1. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and Op ⊆ Play be
a Muller objective of p ∈ P . Deciding whether there exists a winning strategy of
p for Op is P-complete.

Proof. Theorem 21 in [8] states that in a two player zero-sum game, deciding
whether there exists a winning strategy for a Muller objective is P-complete.
We can apply Theorem 21 to multiplayer non-zero-sum games by regarding a
multiplayer non-zero-sum game as a two player zero-sum game as follows: for a

1 Translating a representation of a Büchi objective into that of a Muller objective may
cause an exponential blowup in the description length.
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player p ∈ P in a multiplayer non-zero-sum game, we let the other player −p be
the coalition of the players q ∈ P \{p} whose objective is the complement of the
objective of p. �
Nash Equilibrium. For non-zero-sum multiplayer games, besides a winning strat-
egy of each player, we often use Nash equilibrium, defined below, as a criterion
for a strategy profile (a tuple of strategies of all players) to be locally opti-
mal. Let σ ∈ Σ be a strategy profile and α = (Op)p∈P be an objective profile.
A strategy profile σ is called a Nash equilibrium (NE) for α if it holds that
∀p ∈ P. ∀σp ∈ Σp. p ∈ Win(σ[p �→ σp],α) ⇒ p ∈ Win(σ,α). Intuitively, σ is a
NE if every player p cannot improve the result (from losing to winning) by chang-
ing her strategy alone. For a strategy profile σ ∈ Σ, we call a strategy σp ∈ Σp

such that p /∈ Win(σ,α)∧p ∈ Win(σ[p �→ σp],α) a profitable deviation of p from
σ. Hence, σ is a NE if and only if no player has a profitable deviation from σ.
Because p ∈ Win(σ,α) is equivalent to out(σ) ∈ Op, a strategy profile σ ∈ Σ is a
NE for α if and only if ∀p ∈ P. ∀σp ∈ Σp. out(σ[p �→ σp]) ∈ Op ⇒ out(σ) ∈ Op.
We write this condition as Nash(σ,α).

3 Multiple Nash Equilibrium

In this section, we define an extension of NE that is a single strategy profile
simultaneously satisfying the condition of NE for more than one objective pro-
files. We can prove that the existence of this extended NE is decidable (Theorem
2), and later we will reduce some problems to the existence checking of this type
of NE.

Definition 3. For a game arena G = (P, V, (Vp)p∈P , v0, E) and objective profiles
α1, . . . ,αn, a strategy profile σ ∈ Σ is called an (α1, . . . ,αn)-Nash equilibrium
if Nash(σ,αj) for all 1 ≤ j ≤ n.

An objective O ⊆ 2Play is prefix-independent if ρ ∈ O ⇔ hρ ∈ O for every
play ρ ∈ O and history h ∈ Hist . The objectives defined in Definition 2 are prefix-
independent because Inf (ρ) = Inf (hρ) for every play ρ and history h. For a game
arena G = (P, V, (Vp)p∈P , v0, E) and v ∈ V , let (G, v) = (P, V, (Vp)p∈P , v, E) be
the game arena obtained from G by replacing the initial vertex v0 of G with v.

For a game arena G = (P, V, (Vp)p∈P , v0, E) with an objective profile α =
(Op)p∈P , we define the game arena Gp = ({p,−p}, V, (Vp, Vp), v0, E) with the
objective profile (Op, Op) for each p ∈ P . The game arena Gp with the objective
profile (Op, Op) is a 2-player zero-sum game such that vertices and edges are
the same as G and the player −p is formed by the coalition of all the players in
P \ {p}. The following proposition is a variant of [8, Proposition 28] adjusted to
the settings of this paper.

Proposition 1. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and α =
(Op)p∈P be an objective profile such that Op is prefix-independent for all p. Then,
a play ρ = v0v1v2 · · · ∈ Play is the outcome of some NE σ ∈ Σ for α, i.e.,
ρ = out(σ), if and only if ∀p ∈ P. ∀i ≥ 0. (vi ∈ Vp ∧ Op ∈ Winnablep

(G,vi)
) ⇒

vivi+1vi+2 · · · ∈ Op.
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Proof. We prove the only-if part by contradiction. Assume that a play ρ =
v0v1v2 · · · ∈ Play is the outcome of a NE σ = (σp)p∈P ∈ Σ for α and there exist
p ∈ p and i ≥ 0 with vi ∈ Vp∧Op ∈ Winnablep

(G,vi)
such that vivi+1vi+2 · · · /∈ Op.

By the prefix-independence of Op, ρ = out(σ) = v0v1v2 · · · /∈ Op and thus
p /∈ WinG(σ,α). Since Op ∈ Winnablep

(G,vi)
, there exists a winning strategy τp

of p ∈ (G, vi). Let σ′
p be the strategy obtained from σp and τp as follows: Until

producing v0v1 · · · vi, σ′
p is the same as σp. From vi, σ′

p behaves as the same as τp.
Therefore, out(σ[p �→ σ′

p]) equals v0v1 · · · vi−1π for some play π of (G, vi), and
π ∈ Op because τp is a winning strategy of p in (G, vi). From prefix-independence
of Op it follows that out(σ[p �→ σ′

p]) ∈ Op. This contradicts the assumption that
σ is an NE.

We omit the opposite direction due to the space limitation. �
Corollary 1. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and αj = (Oj

p)p∈P

(1 ≤ j ≤ n) be objective profiles such that Oj
p ⊆ Play is prefix-independent for

all p ∈ P and 1 ≤ j ≤ n. Then, a play ρ = v0v1v2 · · · ∈ Play is the outcome of
some (α1, . . . ,αn)-NE σ ∈ Σ, i.e., ρ = out(σ), if and only if

∀p ∈ P. ∀i ≥ 0. 1 ≤ ∀j ≤ n.

(vi ∈ Vp ∧ Oj
p ∈ Winnablep

(G,vi)
) ⇒ vivi+1vi+2 · · · ∈ Oj

p.
(1)

Proof. If a play ρ = v0v1v2 · · · ∈ Play is the outcome of a (α1, . . . ,αn)-NE
σ ∈ Σ, then ρ satisfies ∀p ∈ P. ∀i ≥ 0. (vi ∈ Vp ∧ Oj

p ∈ Winnablep
(G,vi)

) ⇒
vivi+1vi+2 · · · ∈ Oj

p for all 1 ≤ j ≤ n by Proposition (1). Therefore, ρ satisfies
condition (1). If a play ρ = v0v1v2 · · · ∈ Play satisfies condition (1), then ρ
is the outcome of the strategy profile σ ∈ Σ that is an NE for all α1, . . . ,αn

by Proposition (1). Therefore, ρ is the outcome of the (α1, . . . ,αn)-NE σ by
Definition 3. �
Theorem 2. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and αj = (Oj

p)p∈P

(1 ≤ j ≤ n) be objective profiles over Muller objectives. Deciding whether there
exists an (α1, . . . ,αn)-NE is decidable.

Proof. By Corollary 1, there exists a (α1, . . . ,αn)-NE if and only if there exists
a play ρ = v0v1v2 · · · ∈ Play satisfying Condition (1). Algorithm 1 decides the
existence of a play satisfying Condition (1). In Algorithm 1, we call a game arena
GV ′ = ({1}, V ′, (V ′), v0, E′) satisfying V ′ ⊆ V, v0 ∈ V ′ and E′ = {(v, v′) ∈ E |
v, v′ ∈ V ′} a 1-player subgame arena of G (induced by V ′).

Showing the correctness of Algorithm 1 is straightforward. �

4 Indistinguishable Strategy and Related Equilibrium

In this section, we propose two new notions concerning on the privacy of a
player: indistinguishable strategy and objective-indistinguishability equilibrium.
We first define the set of possible objectives of a player in the viewpoint of an
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Algorithm 1.
Input: a game arena G = (P, V, (Vp)p∈P , v0, E) and objective profiles αj =

(Oj
p)p∈P (1 ≤ j ≤ n).

1: for all v ∈ V do
2: Let p ∈ P be the player such that v ∈ Vp.
3: Ov :=

⋂
O

j
p∈Winnable

p
(G,v),1≤j≤n

Oj
p.

4: end for
5: Nondeterministically select a set of vertices V ′ ⊆ V and construct a 1-player sub-

game arena GV ′ = ({1}, V ′, (V ′), v0, E′) of G.
6: OGV ′ :=

⋂
v∈V ′ Ov.

7: if Player 1 has a winning strategy σ1 ∈ Σ1
GV ′ for GV ′ and OGV ′ then

8: return Yes with σ1

9: else
10: return No
11: end if

adversary that can observe restricted information on a game, a play and its result
(i.e., which players win).

We assume that an adversary guesses objectives of players from the three
types of information: a play (p), a game arena (g) and a set of winners (w) of the
play. We use a word knw ∈ {pw, gw, pg, pgw} to represent a type of information
that an adversary can use. For example, an adversary guesses objectives from
a play and winners when knw = pw. In either case, we implicitly assume that
an adversary knows the set V of vertices of the game arena and the class Ω
of objectives of players. We do not consider the cases where knw is a singleton
by the following reason. An adversary cannot guess anything about objectives
when knw = g or knw = p. When knw = w, he only knows that the objective
of a winner is not empty and that of a loser is not the universal set. Let p ∈
P be a player and Op ⊆ Play be an objective of p. We define the function
Objp,Op

Ω,knw : Σ → 2Ω as follows, which maps a strategy profile σ ∈ Σ to the set of
objectives of p that an adversary guesses. Note that p ∈ Win(σ,α) is equivalent
to out(σ) ∈ Op and hence we let Objp,Op

Ω,knw have a parameter Op instead of α.

Objp,Op

Ω,pw(σ) = {O ⊆ V ω | (out(σ) ∈ O ∧ p ∈ Win(σ,α)) ∨
(out(σ) /∈ O ∧ p /∈ Win(σ,α))},

Objp,Op

Ω,gw(σ) = {O ∈ Ω | (p ∈ Win(σ,α) ∧ O �= ∅) ∨
(p /∈ Win(σ,α) ∧ O /∈ Winnablep)},

Objp,Op

Ω,pg(σ) = {O ∈ Ω | out(σ) ∈ O ∨ (out(σ) /∈ O ∧ O /∈ Winnablep)},

Objp,Op

Ω,pgw(σ) = {O ∈ Ω | (out(σ) ∈ O ∧ p ∈ Win(σ,α)) ∨
(out(σ) /∈ O ∧ p /∈ Win(σ,α) ∧ O /∈ Winnablep)},
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where α is any objective profile in which the objective of p is Op. (Note that for
a given σ whether p ∈ Win(σ,α) or not does not depend on objectives of the
players other than p and hence we can use an arbitrary α containing Op.)

The definitions of Objp,Op

Ω,knw are based on the following ideas. When knw =
pw, we assume that an adversary can observe the play and the set of winners but
he does not know the game arena. The adversary can infer that the play out(σ)
he observed belongs to the objective of a player p if the adversary knows that p
is a winner, and out(σ) does not belong to the objective of p if p is not a winner.
Note that the adversary does not know the real objective Op of player p. For the
adversary, any O ⊆ V ω satisfying out(σ) ∈ O is a candidate of the objective of
player p when p is a winner. Similarly, any O ⊆ V ω satisfying out(σ) �∈ O is a
candidate objective of p when p is not a winner. An adversary does not know
the game arena because knw = pw, that is, he does not know the set of edges in
the arena. Therefore, the candidate objective O cannot be restricted to a subset
of plays (i.e., infinite strings of vertices along the edges in the game arena), but
O can be an arbitrary set of infinite strings of the vertices consistent with the
information obtained by the adversary.

When knw = gw, an adversary cannot observe the play, but he knows the
game arena and can observe the set of winners. If p is a winner, the adversary
can infer that p has a strategy σp such that outp(σp) ∩ Op �= ∅. Because there
exists such a strategy σp for all Op other than ∅, he can remove only ∅ from
the set of candidates for p’s objective. On the other hand, if p is a loser, the
adversary can infer that p has no winning strategy for Op because we assume
that every player takes a winning strategy for her objective when one exists.
Therefore, when p loses, the adversary can narrow down the set of candidates
for p’s objective to the set of objectives without a winning strategy.

The definition where knw = pg can be interpreted in a similar way. Note that
we have Objp,Op

Ω,pgw(σ) = Objp,Op

Ω,pw(σ) ∩ Objp,Op

Ω,gw ∩ Objp,Op

Ω,pg .
Since p ∈ Win(σ,α) is equivalent to out(σ) ∈ Op as mentioned before, the

above definitions can be rephrased as follows:

Objp,Op

Ω,pw(σ) = {O ⊆ V ω | out(σ) ∈ (O ∩ Op) ∪ (O ∩ Op)},

Objp,Op

Ω,gw(σ) = {O ∈ Ω | (O ∈ Winnablep ⇒ out(σ) ∈ Op) ∧
(O = ∅ ⇒ out(σ) /∈ Op)},

Objp,Op

Ω,pg(σ) = {O ∈ Ω | O ∈ Winnablep ⇒ out(σ) ∈ O},

Objp,Op

Ω,pgw(σ) = {O ∈ Ω | out(σ) ∈ (O ∩ Op) ∪ (O ∩ Op) ∧
(O ∈ Winnablep ⇒ out(σ) ∈ O ∩ Op)}.

The reader may wonder why Op appears in this (alternative) definition in
spite of the assumption that the adversary does not know Op. The condition
out(σ) ∈ Op (or �∈ Op) only means that the adversary knows whether p is a
winner (or a loser) without knowing Op itself.

Example 2. Figure 2 shows a 1-player game arena G = ({1}, V, (V ), v0, E) where
V = {v0, v1, v2} and E = {(v0, v1), (v0, v2), (v1, v1), (v2, v2)}. We specify a Büchi
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objective by a set of accepting states, e.g., let 〈v1〉 denote Büchi({v1}) = {ρ ∈
V ω | Inf (ρ)∩{v1} �= ∅}. In this example, we assume the objective of player 1 is
〈〉 = ∅ ⊆ Play . Therefore, player 1 always loses regardless of her strategy. There
are only two strategies σ1 and σ2 of player 1. The strategy σ1 takes the vertex v1
as the next vertex at the initial vertex v0 and then keeps looping in v1. On the
other hand, the strategy σ2 takes v2 at v0 and then keeps looping in v2. Let σ1

be the strategy player 1 chooses. We have the play ρ = out(σ1) = v0v1v1v1 · · · .
We assume that an adversary knows that the objective of player 1 is a

Büchi objective. Then, for each type of information knw ∈ {pw, gw, pg, pgw},
Obj1,∅

Büchi,knw (σ1) becomes as follows:

– If knw = pw, then an adversary can deduce that v1 is not an accepting state
because he knows that Inf (v0v1v1 · · · ) = {v1} and player 1 loses. Therefore,
we have Obj1,∅

Büchi,pw(σ1) = {〈〉, 〈v0〉, 〈v2〉, 〈v0, v2〉}. Note that in this game
arena, there is no play passing v0 infinitely often, and thus 〈〉 and 〈v0〉 (resp.
〈v2〉 and 〈v0, v2〉) are equivalent actually. However, because an adversary does
not know the game arena when knw = pw, he should consider every infinite
string over V would be a play and thus 〈〉 and 〈v0〉 are different for him when
knw = pw. In the other cases where an adversary knows the game arena,
he also knows e.g. 〈〉 and 〈v0〉 are equivalent and thus he would consider
Ω = {〈〉, 〈v1〉, 〈v2〉, 〈v1, v2〉}.

– If knw = gw, then an adversary can deduce that neither v1 nor v2 is an accept-
ing state because player 1 loses in spite of the fact that there are strategies
that pass through v1 or v2 infinitely often. Therefore, Obj1,∅

Büchi,gw(σ1) = {〈〉}.
That is, an adversary can infer the complete information.

– If knw = pg, then an adversary can deduce that 〈v2〉 does not belong to
Obj1,∅

Büchi,pg(σ1) because player 1 did not take σ2 to pass through v2 infinitely
often. That is, if 〈v2〉 were the objective of player 1, then it meant she chose
losing strategy σ1 instead of winning strategy σ2, which is unlikely to happen.
Therefore, we have Obj1,∅

Büchi,pg(σ1) = {〈〉, 〈v1〉, 〈v1, v2〉}.
– If knw = pgw, we have

Obj1,∅
Büchi,pgw(σ1) =

⋂

knw∈{pw,gw,pg}
Obj1,∅

Büchi,knw (σ1) = {〈〉}.

O-indistinguishable strategy.

Definition 4. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena, σp ∈ Σp be a
strategy of p ∈ P , Ω ⊆ 2Play be one of the classes of objectives defined in
Definition 2, Op ∈ Ω be an objective of p and knw ∈ {pw, gw, pg, pgw} be a type
of information that an adversary can use. For any set O ⊆ 2Play of objectives
such that O ⊆ ⋂

σ∈Σ Objp,Op

Ω,knw (σ[p �→ σp]), we call σp an O-indistinguishable
strategy (O-IS) of p (for Op and knw).

Intuitively, when a player takes an O-IS as her strategy, an adversary cannot
narrow down the set of candidates of p’s objective from O by the following reason.
By definition, any objective O belonging to O also belongs to Objp,Op

Ω,knw (σ[p �→
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v0

v1 v2

Fig. 2. 1-player game arena with a Büchi
objective

v0

v1 v2

Fig. 3. 1-player game arena a with Büchi
objective

σp]) for the combination of σp and any strategies of the players other than p.
This means that such an objective O is possible as the objective of p from the
viewpoint of the adversary who can use a type of information specified by knw .
If an O-IS σp ∈ Σp is a winning strategy of p, then we call σp a winning O-IS
of p.

Example 3. Figure 3 shows a 1-player game arena G = ({1}, V, (V ), v0, E) where
V = {v0, v1, v2} and E = {(v0, v0), (v0, v1), (v1, v0), (v1, v2), (v2, v0)}. We use
the same notation of Büchi objectives as Example 2, and in this example the
objective of player 1 is 〈v0〉 ⊆ Play . We assume that an adversary knows that the
objective of player 1 is a Büchi objective. In this example, we focus on knw = pw.
We examine the following three strategies of player 1, all of which result in player
1’s winning.

– Let σ1 ∈ Σ1 be a strategy of player 1 such that out(σ1) = v0v0v0 · · · . Since
player 1 wins, an adversary can deduce that v0 must be an accepting state.
Therefore, Obj1,〈v0〉

Büchi,pw(σ1) = {〈v0〉, 〈v0, v1〉, 〈v0, v2〉, 〈v0, v1, v2〉}. For all O ⊆
Obj1,〈v0〉

Büchi,pw(σ1), σ1 is an O-IS (for 〈v0〉 and knw = pw).
– Let σ2 ∈ Σ1 be a strategy of player 1 such that out(σ1) = v0v1v0v1 · · · . In

a similar way as the above case, an adversary can deduce that v0 or v1 (or
both) must be an accepting state. Therefore, Obj1,〈v0〉

Büchi,pw(σ2) = {〈v0〉, 〈v1〉,
〈v0, v1〉, 〈v1, v2〉, 〈v2, v0〉, 〈v0, v1, v2〉}. For all O ⊆ Obj1,〈v0〉

Büchi,pw(σ2), σ2 is an
O-IS.

– Let σ3 ∈ Σ1 be a strategy of player 1 such that out(σ3) = v0v1v2v0v1v2 · · · .
In a similar way as the above cases, an adversary can deduce that
at least one of v0, v1, and v2 must be an accepting state. Therefore,
Obj1,〈v0〉

Büchi,pw(σ3) = {〈v0〉, 〈v1〉, 〈v2〉, 〈v0, v1〉, 〈v1, v2〉, 〈v2, v0〉, 〈v0, v1, v2〉}. For

all O ⊆ Obj1,〈v0〉
Büchi,pw(σ3), σ3 is an O-IS.

In the above example, Obj1,〈v0〉
Büchi,pw(σ1) ⊂ Obj1,〈v0〉

Büchi,pw(σ2) ⊂ Obj1,〈v0〉
Büchi,pw(σ3).

Hence, the strategy σ3 is the most favorable one for player 1 with regard to her
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v0

v1 v2

Fig. 4. 3-player game arena with Büchi objectives

privacy protection. This observation motivates us to introduce a new concept of
equilibrium defined below.

Objective-Indistinguishability Equilibrium.

Definition 5. Let (Op)p∈P be an objective profile and knw ∈ {pw, gw, pg, pgw}
be a type of information that an adversary can use. We call a strategy profile
σ ∈ Σ such that

∀p ∈ P. ∀σp ∈ Σp. Objp,Op

knw (σ[p �→ σp]) ⊆ Objp,Op

knw (σ) (2)

an objective-indistinguishability equilibrium (OIE) for knw.

If a strategy profile σ is an OIE for knw , no player can expand her Objp,Op

knw (σ)
by changing her strategy alone. For a strategy profile σ ∈ Σ, we call a strategy
σp ∈ Σp such that Objp,Op

Ω,knw (σ[p �→ σp]) �⊆ Objp,Op

Ω,knw (σ) a profitable deviation
for OIE. In this paper, we think that a set O1 ⊆ 2Play of objectives is less
indistinguishable than a set O2 ⊆ 2Play of objectives when O1 ⊂ O2, not when
|O1| < |O2| because the latter does not always imply that O1 is more informative
than O2. If an OIE σ is an NE as well, we call σ an objective-indistinguishability
Nash equilibrium (OINE). While an OIE is locally optimal with respect only to
indistinguishability, an OINE is locally optimal with respect to both indistin-
guishability and the result (winning or losing) of the game.

Example 4. Figure 4 shows a 3-player game arena G = (P, V, (Vp)p∈P , v0, E)
where P = {0, 1, 2}, V = {v0, v1, v2}, Vp = {vp} (p ∈ P ) and E = {(vi, vj) | i, j ∈
P, i �= j}. The objective of player p ∈ P is 〈vp〉, and hence the objective profile is
α = (〈v0〉, 〈v1〉, 〈v2〉). Let σp ∈ Σp (p ∈ P ) be the strategies defined as follows:
σ0(hv0) = v1, σ1(hv1) = v0, and σ2(hv2) = v0 for every h ∈ Hist ∪ {ε}. Let
σ = (σ1, σ2, σ3). It holds that out(σ) = v0v1v0v1 · · · and Win(σ,α) = {0, 1}.

– For knw = pw, σ is not an OIE because there exists a profitable
deviation σ′

1 ∈ Σ1 for OIE such that σ′
1(h) = v2 for all h ∈

Hist1. While out(σ) does not visit v2, player 1 can make the outcome
visit v2 infinitely often by changing her strategy from σ1 to σ′

1. As a
result, Obj1,〈v1〉

Büchi,pw(σ) = {〈v0〉, 〈v1〉, 〈v0, v1〉, 〈v1, v2〉, 〈v2, v0〉, 〈v0, v1, v2〉} and

Obj1,〈v1〉
Büchi,pw(σ[1 �→ σ′

1]) = Obj1,〈v1〉
Büchi,pw(σ) ∪ {〈v2〉}.
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– For knw = gw, σ is an OIE by the following reason: In general, when
knw = gw, by definition Objp,Op

Ω,gw(σ) = Ω \ {∅} if p wins and Objp,Op

Ω,gw(σ) =
Winnablep otherwise. (That is, an adversary cannot exclude any objective
other than ∅ from candidate objectives of player p when p wins, while
he can exclude objectives in Winnablep when p loses.) In this example,
Obj0,〈v0〉

Ω,gw (σ) = Obj1,〈v1〉
Ω,gw (σ) = Ω \ {∅} since players 0 and 1 are win-

ners. They have no profitable deviation for OIE, because each of them can-
not become a loser unless other players change their strategies and thus
Objp,〈vp〉

Ω,gw (σ[p �→ σ′
p]) (p ∈ {0, 1}) still equals Ω \ {∅} for any strategy

σ′
p (p ∈ {0, 1}). For player 2, Obj2,〈v2〉

Ω,gw (σ) = Winnable2 (= {〈〉, 〈v2〉}).2 She
also has no profitable deviation for OIE, because she cannot become a winner
unless player 0 or 1 changes their strategies and thus Obj2,〈v2〉

Ω,gw (σ[2 �→ σ′
2])

still equals Winnable2 for any her strategy σ′
2.

– For knw = pg, σ is not an OIE because for σ′
1 ∈ Σ1 defined

above, Obj1,〈v1〉
Büchi,pg(σ) = {〈〉, 〈v0〉, 〈v1〉, 〈v0, v1〉, 〈v1, v2〉, 〈v2, v0〉, 〈v0, v1, v2〉}

and Obj1,〈v1〉
Büchi,pg(σ[1 �→ σ′

1]) = Obj1,〈v1〉
Büchi,pg(σ) ∪ {〈v2〉}.

– For knw = pgw, σ is not an OIE because σ′
1 ∈ Σ1 is again a profitable

deviation for OIE.

5 Decidability Results

Theorem 3. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and α = (Op)p∈P

be an objective profile over Muller objectives. For a subset O ⊆ 2Play of Muller
objectives, whether there exists an O-IS of p for Op is decidable. Moreover, the
problem is decidable in polynomial time when knw = pg or when knw = gw and
O does not contain ∅.

Proof. First we consider the case where knw = pgw. We can show that a strategy
σp ∈ Σp is an O-IS of p for Op, i.e. O ⊆ ⋂

σ∈Σ Objp,Op
pgw (σ[p �→ σp]), if and only

if
outp(σp) ⊆

⋂

O∈O

(
(O ∩ Op) ∪ (O ∩ Op)

) ∩
⋂

O∈O∩Winnablep

(O ∩ Op). (3)

This can be shown as follows:3 Assume that O ⊆ ⋂
σ∈Σ Objp,Op

pgw (σ[p �→ σp]).
Then, every O ∈ O should belong to Objp,Op

pgw (σ[p �→ σp]) for every σ ∈ Σ.
Then by the definition of Objp,Op

pgw , every O ∈ O and every σ ∈ Σ should satisfy
out(σ[p �→ σp]) ∈ (O ∩Op)∪ (O ∩Op) and whenever O ∈ Winnablep, out(σ[p �→
2 In this example, player 2 can visit vi (i = 0, 1) infinitely often by choosing vi as the

next vertex at v2. Therefore, an objective such that v0 or v1 is an accepting state is
winnable and hence Winnable2 = Ω \ {〈〉, 〈v2〉}.

3 We have confirmed this equivalence using a proof assistant software Coq. The
proof script is available at https://github.com/ytakata69/proof-indistinguishable-
objectives.

https://github.com/ytakata69/proof-indistinguishable-objectives
https://github.com/ytakata69/proof-indistinguishable-objectives
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σp]) ∈ O ∩ Op. Because outp(σp) = {out(σ[p �→ σp]) | σ ∈ Σ}, we have the
containment in the above (3). The reverse direction can be proved similarly.

The above expression (3) means that σp is a winning strategy of p for the
objective equal to the right-hand side of the containment in this expression (3).
Because the class of Muller objectives is closed under Boolean operations, the
right-hand side of (3) is also a Muller objective. Since deciding the existence
of a winning strategy for a Muller objective is decidable as stated in Theorem
1, deciding the existence of an O-IS is also decidable. (In this computation,
deciding the existence of a winning strategy is used both for deciding whether
O ∈ Winnablep, i.e., O has a winning strategy, and for deciding whether the
right-hand side of (3) has a winning strategy.)

For the other cases, we can similarly show that σp ∈ Σp is an O-IS of p for
Op if and only if the following inclusions (4), (5), and (6) hold when knw =
pw, gw, pg, respectively:

outp(σp) ⊆
⋂

O∈O

(
(O ∩ Op) ∪ (O ∩ Op)

)
, (4)

outp(σp) ⊆
⋂

O∈O∩Winnablep

Op ∩
⋂

O∈O∩{∅}
Op, (5)

outp(σp) ⊆
⋂

O∈O∩Winnablep

O. (6)

Therefore in any cases, we can reduce the problem of deciding the existence of
an O-IS into the one deciding the existence of a winning strategy for a Muller
objective.

Since Muller(F1) ∩ Muller(F2) = Muller(F1 ∩ F2), the description lengths
of the right-hand sides of (6) and (5) with O not containing ∅ are not greater
than the sum of those of O and Op.4 Since deciding the existence of a winning
strategy for a Muller objective is solvable in polynomial time by Theorem 1,
deciding the existence of an O-IS when knw = pg or when knw = gw and O
does not contain ∅ is also solvable in polynomial time. �

When knw = pgw or pw, we cannot guarantee that deciding the existence of
an O-IS is solvable in polynomial time because the complementation of a Muller
objective in the right-hand sides of (3) and (4) may make the description length
of the resultant objective O(|V | · 2|V |) even when the description lengths of O
and α are small. Similarly, when knw = gw, O ∩Winnablep = ∅ and ∅ ∈ O, we
cannot guarantee that deciding the existence of an O-IS is solvable in polynomial
time because the right-hand side of (5) becomes Op.

Theorem 4. Let G = (P, V, (Vp)p∈P , v0, E) be a game arena and α = (Op)p∈P

be an objective profile over Muller objectives. For a subset O ⊆ 2Play of Muller
4 As an exception, if O∩Winnablep = ∅ (resp. O∩ (Winnablep ∪{∅}) = ∅), then the

right-hand side of (6) (resp. (5)) equals the set of all plays, which equals Muller(2V ).
In these cases, every strategy satisfies (5) and (6) and thus we can trivially decide
the existence of an O-IS.
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objectives, whether there exists a winning O-IS of p for Op is decidable in poly-
nomial time.

Proof. By definition, σp ∈ Σp is a winning strategy of p for Op if and only if
outp(σp) ⊆ Op. Therefore, by replacing the right-hand side of each of (3)–(6)
with the intersection of it and Op, we can decide the existence of a winning O-IS
in the same way as the proof of Theorem 3. Namely, σp is a winning O-IS of p
for Op if and only if

outp(σp) ⊆ Op ∩
⋂

O∈O
O (when knw = pgw or pw), (7)

outp(σp) ⊆ Op ∩
⋂

O∈O∩{∅}
Op (when knw = gw), (8)

outp(σp) ⊆ Op ∩
⋂

O∈O∩Winnablep

O (when knw = pg). (9)

When knw = pgw, pw or pg, since the right-hand sides of (7) and (9) do not
require complementation, the description lengths of them are not greater than
the sum of the description lengths of O and Op. When knw = gw, the right-hand
side of (8) is Op ∩Op = ∅ if ∅ ∈ O, and Op otherwise, and hence the description
length of it is not greater than the description length of Op. Therefore, in the
same way as the cases where knw = pg or knw = gw and ∅ /∈ O in Theorem 3,
deciding the existence of a winning O-IS is also solvable in polynomial time for
any knw ∈ {pw, gw, pg, pgw}. �
Theorem 5. For a game arena G and an objective profile α = (Op)p∈P over
Muller objectives, whether there exists an OIE for G and α is decidable.

Proof. Condition (2) in Definition 5 is equivalent to the following condition:

∀p ∈ P. ∀σp ∈ Σp. ∀O ∈ Ω. O ∈ Objp,Op

Ω,knw (σ[p �→ σp]) ⇒ O ∈ Objp,Op

Ω,knw (σ).
(10)

First we consider the case where knw = pgw. By the definition of Objp,Op

Ω,pgw,
Condition (10) for knw = pgw is equivalent to the following condition:

∀p ∈ P. ∀σp ∈ Σp. ∀O ∈ Ω.

if O ∈ Winnablep, then (out(σ[p 
→ σp]) ∈ O ∩ Op ⇒ out(σ) ∈ O ∩ Op);

otherwise,(out(σ[p 
→ σp]) ∈ (O ∩ Op) ∪ (O ∩ Op) ⇒ out(σ) ∈ (O ∩ Op) ∪ (O ∩ Op)).

(11)
For O ∈ O and p ∈ P , let RO

p be the objective defined as follows: If O ∈
Winnablep, RO

p = O ∩ Op. Otherwise, RO
p = (O ∩ Op) ∪ (O ∩ Op). Let αO =

(RO
p )p∈P be the objective profile consisting of these objectives. Then, Condition

(11) can be written as ∀O ∈ O. Nash(σ,αO). Therefore, this theorem holds by
Theorem 2.
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For the other cases, the implication inside the scope of the three universal
quantifiers in Condition (10) is equivalent to the following implications:

when knw = pw

out(σ[p �→ σp]) ∈ (O ∩ Op) ∪ (O ∩ Op) ⇒ out(σ) ∈ (O ∩ Op) ∪ (O ∩ Op),
when knw = gw

if O ∈ Winnablep, then out(σ[p �→ σp]) ∈ Op ⇒ out(σ) ∈ Op;

if O = ∅, then out(σ[p �→ σp]) ∈ Op ⇒ out(σ) ∈ Op,

when knw = pg

if O ∈ Winnablep, then out(σ[p �→ σp]) ∈ O ⇒ out(σ) ∈ O.

These conditions can be written as the combination of NE in the same way as the
case where knw = pgw. Therefore, this theorem also holds for knw ∈ {pw, gw, pg}
by Theorem 2. �
Theorem 6. For a game arena G and an objective profile α = (Op)p∈P over
Muller objectives, whether there exists an OINE for G and α is decidable.

Proof. By the proof of Theorem 5, an OINE σ ∈ Σ must satisfy the condition
∀O ∈ O. Nash(σ,αO). Moreover, σ must also satisfy Nash(σ,α) because σ is
a NE. Therefore, σ is an ((αO)O∈O,α)-NE and thus, this theorem holds by
Theorem 2. �

6 Conclusion

We proposed two new notions O-indistinguishable strategy (O-IS) and objective-
indistinguishability equilibrium (OIE). Then, we proved that whether there
exists an O-IS and an OIE over Muller objectives are both decidable. To prove
this, we defined an (α1, . . . ,αn)-Nash equilibrium as a strategy profile which
is simultaneously a nash equilibrium for all objective profiles α1, . . . ,αn. We
proved that whether there exists an (α1, . . . ,αn)-Nash equilibrium is decidable
in the full version of this paper.

In this paper, we assume that an adversary is not a player but an individual
who observes partial information on the game. He cannot directly affect the
outcome of the game by choosing next vertices. We can consider another setting
where an adversary is also a player. His objective is minimizing the set Objp,Op

Ω,knw

of candidate objectives of other players and he takes a strategy for achieving the
objective. Considering a framework on this setting, by extending the results
shown in this paper, is future work.
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Theor. Comput. Sci. 365, 67–82 (2006)

15. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comput. 206(2–4), 378–401 (2008)

16. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15, 321–371 (2007)

17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

18. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

19. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

http://arxiv.org/abs/2207.02596
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-62809-7_1
https://doi.org/10.1007/978-3-540-71703-4_18
https://doi.org/10.1007/11523468_71
https://doi.org/10.1007/978-3-642-16242-8_1
https://doi.org/10.1007/978-3-662-43951-7_10
https://doi.org/10.1007/978-3-662-43951-7_10
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14


54 R. Nakanishi et al.

20. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9, 3–4 (2013)

21. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 16

22. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

23. Goldreich, O.: Foundations of Cryptography, volume I: Basic Tools. Cambridge
University Press, Cambridge (2001)

24. Kupferman, O., Leshkowitz, O.: Synthesis of privacy-preserving systems. In:
FSTCS, pp. 42:1–21 (2022)

25. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and �-diversity. In: ICDE, pp. 106–115 (2007)

26. Machanavajjhala, A., Gehrke, J., Kifer, D.: �-diversity: privacy beyond k-
anonymity. In: ICDE, vol. 24 (2006). also in TKDD 1(1) (2007)

27. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM POPL, pp.
179–190 (1989)

28. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

29. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM CCS (2015)
30. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks

against machine learning models. In: IEEE Symposium Security and Privacy (2017)
31. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.

(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

32. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

33. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In:
Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78499-9 3

34. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in stochastic multi-
player games. Logical Methods Comput. Sci. 7(3) (2011)

https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-540-78499-9_3


Learning Attack Trees by Genetic
Algorithms

Florian Dorfhuber1,2(B), Julia Eisentraut1, and Jan Křet́ınský1,2
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Abstract. Attack trees are a graphical formalism for security assess-
ment. They are particularly valued for their explainability and high
accessibility without security or formal methods expertise. They can be
used, for instance, to quantify the global insecurity of a system aris-
ing from the unreliability of its parts, graphically explain security bot-
tlenecks, or identify additional vulnerabilities through their systematic
decomposition. However, in most cases, the main hindrance in the prac-
tical deployment is the need for a domain expert to construct the tree
manually or using further models. This paper demonstrates how to learn
attack trees from logs, i.e., sets of traces, typically stored abundantly
in many application domains. To this end, we design a genetic algo-
rithm and apply it to classes of trees with different expressive power.
Our experiments on real data show that comparably simple yet highly
accurate trees can be learned efficiently, even from small data sets.

1 Introduction

The security of real-world applications depends on various factors. Both physi-
cal aspects and the IT infrastructure play a crucial role. Additionally, all humans
who interact with the system need to use it securely. Consequently, rigorous threat
modeling should provide insights and formal arguments to system designers and
security experts as well as allow for easy communication of the findings to everyday
users and all stakeholders without computer-science background. Attack trees [36]
and their extensions [14,18,24,25] are valued for combining both aspects and, as
a result, have seen an increasing number of applications recently [9,22,34,35]. In
particular, to identify vulnerabilities earlier, modeling methodologies [38] often
include attack trees as recommended, e.g., by OWASP CISO AppSec Guide1, or
by NATO’s Improving Common Security Risk Analysis report [29].

Automated generation of attack trees has been recognized as the major
gap between the needs of practitioners and the current state-of-the-art tools [10]
since manual construction is tedious and error-prone. In recent years, some
approaches to overcome this issue have been provided. However, none of them
1 https://www.owasp.org/index.php/CISO AppSec Guide: Criteria for Managing

Application Security Risks.
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are automated, in particular, due to relying on (i) another system model to be
given [5,10,17,31,32,39] or (ii) a library of models or refinement rules [5,19,31–
33], which defers the workload rather than reduces it. All these approaches have
in common that they construct an attack tree representing exactly the attacks
given on input, not inferring other likely attacks but relying on the completeness
of their description.

In contrast, in this work, for the first time, we learn an attack tree from a
set of sequential descriptions (traces), regarding the attack tree as a classifier of
traces into successful and unsuccessful attacks. This has two advantages. Firstly,
traces can be obtained not only by running other existing system models or
by expert knowledge but also simply from logs of system behavior and attacks,
which are often abundantly collected in many application domains. Moreover,
these heterogeneous sources can also be combined, another valuable consequence
of our weak assumption. Secondly, we only require these traces to be labeled as
successful or unsuccessful attacks, but they do not need to be consistent or com-
plete. In real-world systems, this liberty is an essential property since (hopefully)
not every possible attack on the system has already been recorded, third-party
software might not allow inspecting all necessary details or experts might dis-
agree on possible attacks.

As the basis for our learning approach, we use genetic algorithms, random-
ized optimization algorithms inspired by the process of natural selection. Our
algorithm maintains a set of attack tree models and optimizes them over a fixed
number of generations. In each generation, models are altered (mutation) or
combined (crossover) into new models, using simple editing operations on trees.
Both our mutations and our crossovers only modify the structure of the attack
tree (e.g., exchanging subtrees containing the same basic events or switching the
position of basic events) but do not need any domain knowledge. Only the fittest
models among the new ones (w.r.t. a fitness function) are transferred to the next
generation. As the fitness function, we choose a weighted sum of the sensitivity
and the specificity of the prediction quality of our attack tree models.

To evaluate our approach, we use both synthetic and real data. To measure
the performance, we create sets of labeled traces from the attack trees and learn
trees from those traces. We provide experimental evidence of the following claims,
arguing for the usability of this first automatic approach, and observations giving
insights into the nature of the problem and the data:

– Sanity check: Our approach can learn models perfectly predicting attacks if
all successful attacks are given.

– Checking for overfitting: We run k-fold cross-validation to show that overfit-
ting is a minor problem for the algorithm.

– For comparison (given that there are no automatic competitors), we also
implement logistic regression to solve the task because it is known to perform
well on binary classification tasks; however, logistic regression does not pro-
vide any graphical model, which is our main aim. Regarding accuracy, our
genetic algorithms for attack trees are on par with logistic regression, and, in
contrast to the latter, our algorithm provides a simple graphical model .
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– The learned trees are essentially as simple as the original trees used to gen-
erate the traces. In particular, for attack trees, the learned ones are of the
same size. Note that this small size is crucial to ensure the explainability of
the automatically constructed model.

– We show that the number of generations is the most relevant hyper-parameter
regarding fitness.

– Interestingly, for our algorithm to learn accurate models, even a few traces of
successful attacks are sufficient.

In summary, the approach is the first to generate attack trees automatically.
The trees are very accurate, given our inputs are only sampled data. Moreover,
surprisingly and fortunately, it comes at no extra cost for the graphicality
compared to classification by logistic regression, where no graphical model is
produced. (An explanation of why decision trees are not suited for the task is
discussed in Subsect. 2.2).

Our contribution can be summarized as follows:

– We provide a genetic algorithm to learn attack trees and their extensions
from labeled sets of traces, the first to automatically generate these
graphical models. For comparison, we also implement logistic regression.

– In a series of detailed experiments, we show the feasibility of our approach,
also on real benchmarks from the military domain.

– We provide an implementation and visualization of all algorithms in a tool
that links to standard verification tools for attack trees. The output models
can be directly analyzed using tools such as ADTool [11] or displayed using
Graphviz2. This unleashes the power of the verification tools to attack tree
users, eliminating the manual step of model construction.

Organization. We present related work in Subsect. 1.1. In Sect. 2, we recall the
most important features of genetic algorithms and attack trees. We show how
to define mutations and crossovers to learn attack trees in Sect. 3 and evaluate
our algorithms in Sect. 4. Furthermore, we provide a real-world demonstration
on the KDD Cup 1999 dataset in Sect. 4.7. In Sect. 5, we conclude the paper and
present several ideas for future work.

1.1 Related Work

This section briefly presents the most recent literature on attack tree synthesis
and the use of genetic algorithms in attack model generation and security in
general. A recent overview on the analysis of attack trees using formal methods
can be found in [40]. We refer the interested reader to [23] for a broad overview on
different extensions of attack trees. A recent survey on using genetic algorithm
for multi-label classification can be found in [12].

2 https://graphviz.org/.

https://graphviz.org/
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Genetic Algorithms in Attack Model Generation and Security. Genetic
algorithms have seen some applications in security. To the best of our knowledge,
there is no approach to attack tree synthesis based on genetic algorithms. In this
section, we present the applications which are closest to our application. In [26],
the authors add an attacker profile (which can be seen as a set of constraints)
to the attack tree analysis. An attack is only successful in its setting if it satis-
fies all constraints of the attacker profile. The authors use a genetic algorithm
to simplify the search for attacks satisfying the attacker profile, but a system
designer constructs the attack tree itself. Similarly, genetic algorithms have been
used in [13] to find a strategy to reduce the system vulnerability with as little
cost as possible. Also, [21] uses genetic algorithms to approximate the maximum
outcome for the attacker on a given attack tree. On attack graphs [37], genetic
algorithms have been used to find minimum cut sets [2]. Another more prominent
application of genetic algorithms in security is the generation of intrusion detec-
tion systems [28,30]. While these approaches often also take a set of sequential
behavior descriptions as inputs, learning an understandable model plays a very
minor role.

Linard et al. [27] propose a genetic algorithm to generate fault trees. It also
uses data generated by a system with labels for system failure. This approach
performed well in a benchmark with up to 24 nodes. Their data sets use between
9000 and 230k data points. Recently, [20] expanded the idea to a multi-objective
approach. Compared to these publications, our algorithm needs less data with a
few successful attacks to perform the task. Also, the KDD example in Sect. 4.7
includes more than twice the number of basic events in the largest model used
in their experiments or a case study [6].

Generation of Attack Trees. We present the last decade of research on attack
tree synthesis.

In [15], Hong et al. present an approach to automatically construct attack
trees from a set of sequential descriptions of attacks. In the first step, an exhaus-
tive model as disjunction over all given traces is built. Consecutively, the model
is simplified by collapsing similar nodes without changing the logical meaning.
In contrast to [15], we use both successful and unsuccessful attacks as inputs,
which prevents our approach from overfitting to a certain extent. Hence, their
approach needs all successful attacks to build a complete model, while our algo-
rithm is likely to predict future attacks not explicitly given. In [39], Vigo et al.
provide a generation method to synthesize attack trees from processes speci-
fied in value-passing quality calculus (a derivation of π-calculus). The authors
define an attack as a set of channels an attacker needs to know to reach a cer-
tain location in the system. The attack specifications and the processes are then
translated to propositional logic formulae interpreted as attack trees.

In [31,32], Pinchinat et al. present an approach to sequential attack tree
synthesis from a library, a formal description of the system and an attack graph.
While the attack graph is automatically constructed from model checking, the
formal description consisting of a set of actions assigned to different abstraction
levels and a set of refinement rules of higher-level actions into combinations of
lower-level actions need to be specified by the system designer. Although reusing
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libraries is possible, it is necessary to specify them manually at some point. This
approach does not support the operator AND.

The synthesis approach presented in [17] by Ivanova et al. also transforms
a system model into an attack tree. The method requires a graph-based model
annotated with policies as input. We could not find a publicly available imple-
mentation. In [10], Gadyatskaya et al. present an approach to sequential attack
tree synthesis that requires a specification of the expected behavior (called
semantics) and a refinement specification as input3. Again, this approach does
not feature the operator AND. Both the semantics (in the form of series-parallel
graphs) and the refinement specifications are not automatically constructed
in [10].

The approach presented in [19] by Jhawar et al. requires an expert to interact
with the overall construction process of an attack tree to such an extent that
it cannot be considered an automated generation method in comparison to the
other approaches presented in this section. An attack tree, at least rudimentarily
describing attacks on a given system and annotations to the nodes in the form
of preconditions and postconditions need to be given to the approach. Using
the annotations, the attack tree can then be automatically refined using a given
library of annotated attack trees.

In [5], Bryans et al. give a synthesis approach for sequential attack trees
from a network model consisting of nodes and connectivity information and a
library of attack tree templates. Both the network model and the library are
constructed manually. In [33], Pinchinat et al. show that the complexity of the
synthesis problem for sequential attack trees equipped with trace semantics is
NP-complete. More specifically, their attack synthesis problem takes a trace and
a library (basically a set of context-free grammar rules) as input and decides
whether a sequential attack tree exists such that the given trace complies with
the semantics (and provides the attack tree, too). An implementation is provided.

With one exception, all approaches rely on a library of already built models
or another preexisting formal model of the system. The one approach uses all
possible successful attacks, which are not commonly available in secure systems.
We present a first approach to use a comparatively small amount of mostly
non-attack data without needing preexisting system knowledge.

2 Background

2.1 Attack Trees

Attack-defense trees (for example, see Fig. 1) are labeled trees that allow refining
major attack goals into smaller steps until no refinement is possible anymore.
The atomic steps are called basic events. Each inner node of the tree represents
a composed event. The operator attached to an inner node determines how its
children need to succeed for the composed event to succeed as well.

In Fig. 1, we present an attack tree that models an attack on an IoT device
from [3]. The attack tree represents the following attacks: The root represents

3 We interpret the refinement specification as library similar to [33].
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the goal of getting access to the IoT device and exploiting it. This goal is refined
using the operator SAND, which requires all its inputs (in this case another com-
posed event labeled with AND and the two basic events run malicious script and
exploit software vulnerability in IoT device) to succeed in the given order (here,
events need to succeed from left to right). The first input refines the intermediate
goal get access to IoT device again into smaller steps. AND and OR here are the
standard logical operations, i.e., AND represents a conjunctive and OR a disjunc-
tive refinement. Thus, the leftmost subtree of the root specifies that the basic
event get credentials needs to succeed for this subtree to succeed. Additionally,
either the basic events MAC address spoofing and finding a LAN access port or
the basic events breaking WPA keys and finding WLAN access to the IoT device
need to succeed.

Fig. 1. A sequential attack tree from [3] representing an attacked IoT device.

We define the set of all operators O = {AND,OR,NOT} and use Definition 1
of [14] restricted to those operations. Intuitively, the operators are the standard
logic operations. An attack-defense tree is a tuple ADT = (V,E, t), where (V,E)
form a tree with all leaves being basic events (BE) and all inner nodes being
gates. The gates are assigned their operator by the type function t.

A trace is a finite (ordered) sequence of basic events such that every basic
event occurs at most once. The signature of a node v of an attack-defense
tree ADT is the set of basic events that occur in the subtree rooted in v.

The level of detail introduced in this section is sufficient for the further devel-
opment of this paper.

2.2 Attack Trees vs Decision Trees

We use attack trees and their extensions over decision trees, as decision trees
are designed to generate high information gain and are thus likely to ignore
very rare events. This is a problem especially concerning imbalanced data sets,
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Table 1. The used hyperparameter in the algorithm with the abbreviations used in
the paper.

Abbreviation Description

ε Number of new random models per generation

PSize The size of the population preserved for the next generation

w1 Weight for sensitivity in the fitness function

mutr The ratio of mutations over crossovers

Act Number of actions (e.g., mutations) per model in a generation

Gen Number of generations until the algorithm terminates

trainr Training rate. The portion of all traces in the training set

which we expect to deal with. It may be for instance solvable with specific
sampling methods, but this step requires more work and is dependent on the
context [8]. In addition, the graphical representation of decision trees might not
be helpful for system designers to gain insights into the composition of successful
and unsuccessful attacks since leaves are annotated by the result of the attack
rather than the basic attack steps. Attack-defense trees allow synthesis based
on sub-goals, naturally starting with the simplest action. Further, while decision
trees can include information on time sequences, additional decision nodes are
required for every relevant order of events. This results in a potential blowup
of the model and a reduction in readability. Finally, attack-tree analysis can
easily use information on already happened events to update the likelihood of
successful attacks based on prior events. Thus, our models are valuable for the
real-time surveillance of systems.

3 Genetic Algorithm for Learning ADT

This section presents our approach to learning attack trees from traces using
genetic algorithms. In our genetic algorithm, the population of candidate solu-
tions consists of attack-defense trees. Each attack-defense tree consists of com-
posed and basic events, and the way they are linked are the chromosomes of the
candidate attack-defense trees. In this section, we first define the fitness func-
tion to evaluate the fitness of every individual in the population. Then, we define
mutation and crossovers. Note that the algorithm starts with completely random
models and introduces a number ε of new random models to each generation to
reduce the risk of premature convergence. An overview of all hyperparameters
is listed in Table 1.

3.1 Fitness Function

To evaluate the fitness, we check how many log traces our attack-defense trees
can correctly separate into successful or unsuccessful attacks. For a finite set X ,
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we denote its size by ‖X ‖. To this end, let ADT = (V,E, t) be an attack-defense
tree, Tr be a set of traces and c : Tr → {tt,ff} be a labeling function, which
assigns each trace its output value and ADT(tr) computes the label on a given
ADT, where tt represents a successful attack and ff an unsuccessful attack. A
straightforward definition of the fitness function using our labeled data set is the
prediction accuracy of the attack-defense tree.

However, we assume that successful traces are less common than unsuccessful
traces since, in a real-world application, one hopefully observes the system more
often in its normal behavior than after a successful attack. Using the prediction
accuracy as a fitness function in such a setting may result in an algorithm always
returning false having a good accuracy. Therefore, we use a multi-objective app-
roach including the sensitivity Sens and the specificity Spec of the prediction as
follows:

Sens(ADT) =
#Tr correctly labeled as tt

#Tr in test set labeled as tt
=

‖{tr ∈ Tr | ADT(tr) = tt ∧ c(tr) = tt}‖
‖{tr ∈ Tr | c(tr) = tt}‖

Spec(ADT) =
#Tr correctly labeled as ff

#Tr in test set labeled as ff
=

‖{tr ∈ Tr | ADT(tr) = ff ∧ c(tr) = ff}‖
‖{tr ∈ Tr | c(tr) = ff}‖

Let w1, w2 be weights such that 0 ≤ w1,w2 ≤ 1;w1+w2 = 1. Then, we define
the fitness function F for an attack-defense tree ADT as4

F(ADT) = w1 · Sens(ADT) + w2 · Spec(ADT).

This definition ensures F being smooth for

‖{tr ∈ Tr | c(tr) = ff}‖, ‖{tr ∈ Tr | c(tr) = tt}‖ ≥ 1

Additionally, we define the positive predictive value PPV as the probability
that for a trace tr and a prediction ADT(tr) = tt we actually have c(tr) = tt.

PPV(ADT) =
‖{tr ∈ Tr | ADT(tr) = tt = c(tr)}‖

‖{tr ∈ Tr | ADT(tr) = tt = c(tr) ∨ ADT(tr) = tt �= c(tr)}‖ .

If we report the fitness, the specificity, or the sensitivity, we use the result
of the test set for each model to report the mean μ ± standard deviation σ
according to their canonical definition for a set of models.

3.2 Mutations and Crossovers for Attack Trees

While mutations change labels of composed or basic events of the attack tree,
crossovers change the position of subtrees within the tree. In this section, we
restrict ourselves to attack trees, i.e., all inner nodes are either labeled with AND
or OR. Our input data consists of a set of traces Tr, and their corresponding value
is c : Tr → {tt,ff}. We consider the following expectable mutations:
4 There is no optimal combination for the weights. Hence, we explore different weights

and how they influence the overall fitness in Sect. 4.
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1. switch to switch the position of any two basic events
2. change the label of an inner node v from AND to OR or vice versa

While mutations can be applied at every node of an attack tree, we have to
ensure that crossovers do not violate the model’s integrity, i.e., after a crossover,
the model must still include every basic event exactly once. Thus, we only use
swapping of subtrees containing the same basic events as crossover operations.
Therefore, the amount of possible crossovers is smaller than that of mutations.
This can result in no possible crossover between two models (except the root),
especially in small models. In this case, the operation will be skipped.

3.3 Extension to Attack-Defense Trees

In contrast to many attack-defense tree models [24], we do not assign a player
to inner nodes. Hence, we also cannot and do not assign a different semantics to
these inner nodes based on the player controlling it.

To include defense actions in our learning approach, we only need to split the
set of basic events BE into two disjoint sets (a set of basic events BEA controlled
by the attacker and a set of basic events BED controlled by the defender such
that BE = BEA ∪̇ BED). Intuitively speaking, the borders of nodes in BED are
colored green, while elements in BEA have a red border. After learning the tree
using our approach, we assign each basic event its respective player. The learning
algorithm does not need to be changed; thus, the fitness does not change. Hence,
we only perform experiments on attack trees.

4 Experiments

This section evaluates our approach experimentally. Firstly, we demonstrate that
our algorithm is capable of synthesizing attack trees classifying all traces cor-
rectly for data sets containing all possible traces over a fixed set of basic events.
Secondly, we run k-fold cross-validation to show that the selection of traces for
the test and training sets does have a minor influence on the outcome. Thirdly,
we compare our approach to logistic regression which allows us to assess the
adequacy of our genetic algorithm in comparison to other learning approaches.
Fourthly, we explore how to choose the weight parameters for specificity and
sensitivity and how many successful traces are necessary to reach a high accu-
racy. Fifthly, we analyze different hyperparameter constellations to show their
relevance to the outcome. Finally, we use the algorithm on the real KDD-Cup
1999 data set to demonstrate, that it could already be deployed for real-world
systems. All experiments are executed on a machine with Intel R©Core TMi7
CPU and 15 GiB RAM running a VM image with 4 GiB RAM and one Core.5

If not stated otherwise, the algorithm can use the operators AND, OR and NOT.

5 The artifact can be found at https://doi.org/10.5281/zenodo.8352279.

https://doi.org/10.5281/zenodo.8352279
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4.1 Generating Input Datasets

Generating Data. Let ADT = (V,E, t) be an attack-defense tree over the set of
basic events BE. We generate traces of basic events randomly (without using any
informationof the structureof the tree)andthen, compute thevaluationof the trace
w.r.t. the attack-defense tree ADT(tr) to obtain the label function c : Tr → {tt,ff}.
A trace ends if all be were attempted or if the root of the tree evaluates to tt.

Each basic event can only occur once in a trace. Hence, for an ADT with
n basic events there are n!

(n−m)! traces of length m. So, there is a total of
∑n

m=1
n!

(n−m)! traces6.
Since the number of possible traces grows rapidly and in a real-world system,

we may also only have a limited amount of data available, we restrict ourselves
to a fixed number of traces in each experiment.

Splitting Data. Given a set of traces Tr and a corresponding labeling function c
the dataset is split into a training and a test set. Our algorithm only uses the
training set to learn an attack tree. The test set is used for the final evaluation
of the fitness of the learned model. The sets are split with the training rate trainr
preserving the ratio between tt and ff labeled traces.

4.2 Sanity Check: Perfect Fitting for Small Models

First, we demonstrate that our algorithm is potentially able to lead to an optimal
outcome w.r.t. the given fitness function Fc (see Subsect. 3.1).

Setup. We use 80 randomly generated models with nine nodes and five basic
events each. All inner nodes are labeled with either AND or OR (i.e. we restrict
ourselves to attack trees here). We use all existing traces for these models as
input for both training and testing. While this setup results in overfitting the
dataset, this is acceptable in this situation since we know there are no further
traces (not contained in the dataset). We use the following configuration for the
hyperparameters: number of generations Gen = 120, population size PSize =
140, mutation rate mutr = 0.8, and number of actions Act = 1. Act is set to 1 to
get an intuition on how many actions on the models are needed for the result.

Results. All models were learned with 100 % accuracy in the given generations
limit. The mean time until termination was 2.5 s.

Observation 1. Small models can be learned to 100% accuracy if all existing
traces are given as input.

The high number of iterations needed to achieve the goal suggests that the
genetic algorithm is able to learn the corresponding models, but may not be the
best choice to learn accurate attack-defense trees if the dataset is small enough
6 We already have about one million distinct traces with n = 9. However, this is only

an upper bound since we stop the traces as soon as the root turns tt.
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to apply exact solutions. This is due to the unsystematic search. For instance,
a mutation can simply undo the previous mutation, which will keep the better
model unchanged for the next generation. Thus, we are not guaranteed to make
progress during a generation.

4.3 Crossvalidation: No Overfitting of Models

Setup. To further validate the algorithm, we perform k-fold crossvalidation with
k = 10, i.e. training the model on nine of ten random subsets and validating it on
the remaining one. To check if the algorithm is over fitting the data, we used 35
attack trees and generated a training set of 800 traces on each. The experiment
used the following hyperparameters: number of generations Gen = 60, population
size PSize = 40, mutation rate mutr = 0.8, number of actions Act = 3.

Results. The cross validation showed only minor deviations between the folds
and the performance on the evaluation set, i.e. the left out fold. Overall the mean
of the standard deviation in Fitness over all datasets was 0.003 ± 0.002.

Observation 2. Our genetic algorithm is, in this setting, robust to overfitting
due to sampling.

4.4 Comparison to Logistic Regression

Attack trees can be seen as Boolean functions. Logistic Regression is a viable
competitor for learning Boolean functions since it is optimized to predict binary
endpoints from labeled data sets [16].

Setup. To be able to compare both approaches, we chose datasets consisting
of 1000 traces in a way that about 50 ± 1% of the traces are labeled with tt.
This was done to have a balanced relation in accuracy. Having 96% ff labeled
traces as in Subsect. 4.5 in these experiments leads to classifiers always returning
false having an accuracy of 96%, which does not provide any information on
attacks. Due to the high frequency of attacks, this setup is unlikely in a real-
world scenario. We use setups with fewer attacks in the following sections.

Creating equally sized sets of tt and ff labeled traces implies the necessity
to choose an attack tree with a mix of both operators since more nodes labeled
with AND reduce the quantity of possible tt labeled traces and nodes labeled with
OR cause the opposite. Thus, for these experiments, we selected only attack trees
of which the algorithm was able to produce enough traces for both labels.

The fitness function for our genetic algorithm was set to the overall accuracy
(i.e. Fc in Subsect. 3.1). We learned the logistic LR using R version 3.6.3 and
indicator variables for every basic event showing if the event is present in a
trace. In attack trees, the order of basic events does not matter. Hence, we only
allowed traces that could not be reordered in each other (i.e. no permutations).
Overall, we used 35 attack trees ranging from 31 to 53 nodes (and 16 to 26 basic
events). We used the following configuration for the hyperparameters: number
of generations Gen = 60, population size PSize = 40, mutation rate mutr = 0.8,
number of actions Act = 3 and training rate trainr = 0.8.
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(a) Genetic algorithm (Fitness 0.97)

p(X) =
1

1 + e−(−5.66869+X∗β) (1)

β−1 = ( 1.38 0.44 0.48 0.44 0.05 0.17

0.74 0.63 0.90 4.67 4.61 1.53 ) (2)

(b) Logistic regression (Fitness 0.95)

Fig. 2. The resulting models for the tree from [7]. The model in (a) was simplified
manually, by collapsing subsequent operators of the same kind into one. The equation
in (b) displays the corresponding logistic regression model.

Results. The accuracy is measured according to the fitness function Fc (see
Subsect. 3.1) for every single of the 35 models on the test set containing 200
traces and after training on 800 traces each.

Observation 3. Our genetic algorithm approach performs comparable to logis-
tic regression with a mean difference of only 0.04 (standard deviation 0.01) but,
in contrast, results in a graphical, interpretable model.

In more detail, our approach yielded a mean accuracy of 0.82 (with a standard
deviation 0.08), and the logistic regression produced 0.86±0.08 (mean±standard
deviation). We show a real-world example in Fig. 2. The slight inferiority of our
algorithm is due to logistic regression being optimized for this specific setting.
However, it is only a suitable competitor in this specific setting. An expansion to
non-binary labels, e.g. undecided for an unknown system status, would make a
comparison with multi-label classification algorithms necessary. Also, results will
differ in specific fields or data settings. Additionally, introducing time-dependent
features results in a massive increase in independent variables, which results in a
higher standard error and unstable results [16]. Furthermore, logistic regression
obviously does not directly create an attack tree, which is one main goal of this
paper. Decision trees as an alternative have been discussed in Subsect. 2.2.
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4.5 Learning Attack Trees

Here we analyze the performance of the genetic algorithm for attack trees (see
Subsect. 3.2).

Setup. We use 35 datasets as described in Subsect. 4.4 using subsets with differ-
ent ratios of traces labeled as unsuccessful to successful in our experiments. Our
goal is to estimate which proportion of traces labeled tt is needed to generate
fit models in real-world systems. More specifically, we create datasets with 1000
traces where 5, 10, 20, 40, 80, 160, 320, or 500 of the 1000 overall traces are
labeled tt. For each dataset, we experiment with weight w1 from 0.1 to 0.9 in
steps of size 0.1 (and set w2 = 1 − w1 accordingly). The other parameters are
equal to the last experiment, i.e. number of generations Gen = 60, population
size PSize = 40, mutation rate mutr = 0.8, number of actions Act = 3 and
training rate trainr = 0.8.

Results. We report the sensitivity and specificity of all final models on the test
set in a 3D-Plot7. Parts of the results are listed in Fig. 3.

Observation 4. Only about 4% of all traces in the dataset need to be successful
attacks to learn fit functions with a mean sensitivity of up to 95%, or specificity
of up to 99%.

The mean of sensitivity and specificity show a positive correlation to their
weights with Pearson’s correlation coefficient rPearson = 0.778 (p :< 0.001) and
rPearson = 0.887 (p :< 0.001) for sensitivity and specificity, respectively. Addi-
tionally, there is no significant correlation between sensitivity and the number
of tt traces with rPearson = 0.317 (p : 0.007), the same seems to be true for
specificity rPearson = −0.200 (p : 0.092). These results suggest that the impact
of choosing the weight is bigger than of choosing the number of successful attack
traces.

This seems promising for real-world scenarios since there may only be small
amount of successful attacks but an abundant amount of unsuccessful or incom-
plete ones to learn attack trees from. In terms of runtime, it took about 10–12
minutes for each execution of the algorithm on all models. The average execution
time for a single prompt was about 20–30 s. More information on runtimes can
be found at Subsect. 4.6.

Our results show that the weights of the sensitivity and the specificity need
to be chosen appropriately within the application scenario. A high-risk security
infrastructure might rely on a high sensitivity to spot all ongoing attacks. On the
other hand, a low specificity may lead to many false positives, especially, if we
have only a small number of attack traces. For instance, with 20 attack traces
(traces labeled tt), we have a sensitivity of 82.7% and specificity of 67.2% at
w1 = 0.7. Given this information, that means that there were 321 false positives
per 1000 traces and a positive predictive value PPV of about 4.9%. Hence, 95.1%

7 https://www.model.in.tum.de/∼kraemerj/upload/3dplots/.

https://www.model.in.tum.de/~kraemerj/upload/3dplots/
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Fig. 3. Sensitivity and specificity are depicted as mean with 95% confidence interval
depending on the weight w1 for sensitivity in the fitness function. n specifies the number
of successful attacks among the 1000 traces in the dataset.

of all predictions on our full dataset are false alarms. Favoring specificity with
w1 = 0.3 would result in a PPV of about 18.6%.

Therefore, we cannot give a general recommendation regarding the weight w1,
as it is highly dependent on the security needs and possible damages.

4.6 Hyperparameter Optimization

The previous sections were dedicated to optimizing the parameters of the
weight w and the number of attack traces n. In this section, we optimize the
parameters inherent to genetic algorithms: the number of generations Gen, the
population size PSize, the mutation rate mutr and the number of actions Act.

Setup. We learn attack trees from the 35 datasets from Subsect. 4.5 on a fixed
set of hyperparameters only changing one parameter at once. Each parameter
was set to multiple values while both sensitivity and specificity were recorded
as dependent variables. The base setting was n = 80, w1 = 0.5, Gen = 60,
PSize = 40, mutr = 0.8, Act = 3 and trainr = 0.8.

For line-searching Gen We used metadata provided by the previous experi-
ment Subsect. 4.5. It contains the fitness of each model after each generation.
Thus, we used 60 data points each. For search the PSize was altered in steps
of 10 between 10 and 100. The mutr was between 0.1 and 0.9 and increased in
steps of 0.1. Lastly, Act was checked in a range from 1 up to 10 increasing in
steps of 1.

We created a mixed linear model as described in [4]. This model is needed as
performance varies depending on the dataset and therefore, the different settings
cannot be treated as independent.

Results. Estimates for the mixed linear model after altering one parameter of
the standard setup are shown in Table 2. All given runtime Data below is with
regard to a full run over all 35 models. Except for the number of generations Gen
(and for specificity Spec on the number of actions Act), none of the results is
statistically significant, leading to:



Learning Attack Trees by Genetic Algorithms 69

Table 2. Slopes in the mixed linear model after altering one parameter of the standard
setup. Except for the estimates for the number of generations Gen and for the speci-
ficity Spec on the number of actions Act, none of the results is statistically significant
suggesting a low impact on algorithm performance.

Estimate for Sens Estimate for Spec

# Generations 0.002 (t : < 0.001) < 0.001 (t : < 0.001)

Population Size < 0.001 (t : 0.882) < 0.001 (t : 0.354)

Mutation Rate < 0.001 (t : 0.717) 0.014 (t : 0.560)

# Actions 0.004 (t : 0.268) < 0.001 (t : 0.955)

Observation 5. Choosing a sufficiently high number of generations suffices for
a good learning result in our experiments. The other hyperparameters only have
a minor impact on the fitness of the learned models.

4.7 Real-World Demonstration: KDD Cup 1999 Dataset

Finally, we validate our algorithm on the KDD Cup 1999 Dataset8 generated in
a simulated military network environment. In this dataset, every entry denotes
a summary of one single connection to a server, which is either an intrusion or
a normal connection. The dataset consists of 4.9 and 0.3 million entries in the
training and test set, respectively. Our goal is to learn an attack-defense tree
to distinguish intrusions from normal connections. Note in contrast to previous
experiments, no attack tree is used to generate the traces.

Setup. We interpret every column as a single event. However, some columns in
the dataset are continuous. Thus, we split the values at a given quantile q and
see every value equal or greater than it as an attempted event of this column.
Additionally, our algorithm currently only supports attack-defense trees using a
single root node. Hence, we change the different attack labels e.g. guess passwd
to one single label. The label is tt if any of the attack labels is tt otherwise
we interpret the trace as an unsuccessful attack. We use the hyperparameters
Gen = 100, PSize = 60, mutr = 0.8, Act = 3. Weight w1 and quantile q are
changed by 0.1 between 0.1 and 0.9 in every run. We then record the best
resulting model and the corresponding Sens and Spec.

Results. We present the results for the best models in Fig. 4. Please note that the
fallout is simply 1 − Spec. The point with the lowest Euclidean distance to the
optimum, i.e. (0, 1), is the combination of w1 = 0.9 and q = 0.4 with Sens = 0.968
and Spec = 0.994 on the test set. Interestingly, the high values of weight w1

produced the best result, although only 19.9% of the entries are normal. We
suspect this may be due to the higher stability of the specificity Spec reported

8 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 4. ROC-Curve of setups with w1 and q ranging between 0.1 and 0.9. 14 points
with Spec < 0.2 or Sens < 0.5 were removed for better readability. The best point uses
w1 = 0.9 and q = 0.4 resulting in Sens = 0.968 and Spec = 0.994.

in the earlier experiments. While the Performance of our model is similar to the
one reported by [1] using a decision-tree-based approach, our setup uses a less
complex set of labels than their approach does.

5 Conclusion and Future Work

We have presented the first algorithm to learn attack trees from sets of traces
labeled as successful or unsuccessful attacks. To this end, we have used genetic
algorithms. We consider this a step forward to bridging the gap between real-
world applications and their respective analysis since such traces are often col-
lected anyway in many application domains in the form of logs. Consequently,
the attack trees can be created automatically, eliminating the burden of manual
involvement of domain experts in other approaches. Our experiments have shown
that (i) the accuracy of our graphical models is comparable to (non-graphical)
logistic regression while (ii) producing small and straightforward graphical
models, and (iii) that only a small amount of attack traces among all traces
are necessary to learn accurate models. Additionally, the algorithm was able to
classify data from the preexisting KDD CUP 1999 data set with a performance
that is comparable with existing models but in contrast with no human inter-
vention required. Surprisingly, compared to the previous approaches on fault
trees, our algorithms seem to need far fewer traces to generate usable models.

Future Work. Our algorithm can be extended in various ways. Firstly, it would
be worthwhile to test whether including prior knowledge in generation 0 leads
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to fitter models. Secondly, one can experiment with richer sets of mutations and
crossovers to include domain knowledge or existing attack tree models. Thirdly,
including additional types of inner nodes could overcome the condition of a basic
event only occurring once per trace. Using more real-world data the choice of
hyperparameters could be better justified or tested with different tuners. Addi-
tionally, extensions to the algorithm like using multi-objective approaches for
fitness, may improve the performance. Setting a baseline for future solutions
with this algorithm may help compare this approach with options from other
fields e.g. SMT.
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Abstract. Secure multi-party computation using a physical deck of
cards, often called card-based cryptography, has been extensively stud-
ied during the past decade. Card-based protocols to compute various
Boolean functions have been developed. As each input bit is typically
encoded by two cards, computing an n-variable Boolean function requires
at least 2n cards. We are interested in optimal protocols that use exactly
2n cards. In particular, we focus on symmetric functions. In this paper,
we formulate the problem of developing 2n-card protocols to compute
n-variable symmetric Boolean functions by classifying all such functions
into several NPN-equivalence classes. We then summarize existing proto-
cols that can compute some representative functions from these classes,
and also solve some open problems in the cases n = 4, 5, 6, and 7. In
particular, we develop a protocol to compute a function kMod3, which
determines whether the sum of all inputs is congruent to k modulo 3
(k ∈ {0, 1, 2}).

Keywords: card-based cryptography · secure multi-party
computation · symmetric function

1 Introduction

Secure multi-party computation involves computing the output value of a partic-
ular function with inputs from different parties, while keeping the input values
secret. Secure multi-party computation using a physical deck of cards, often
called card-based cryptography, has been a subject of research since the five-card
trick was introduced by den Boer [1] in 1989. This area has gained interest from
researchers and has been extensively studied during the past decade [3].

Typically, each input bit is encoded by an order of a black card ♣ and
a red card ♥ ; a bit 0 is represented by a commitment ♣ ♥ , and bit 1 by a
commitment ♥ ♣ . The five-card trick can compute a logical AND function of
two input bits using five cards: two cards for a commitment of each bit, and one
additional helping card. Later, Mizuki et al. [6] showed that the two-variable
AND function can be computed with only four cards, using no helping card.

Besides the AND function, protocols to compute various other Boolean func-
tions have also been developed. As each input bit is encoded by two cards, com-
puting an n-variable Boolean function requires at least 2n cards. A challenging
work is to develop card-minimal protocols that use exactly 2n cards.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Ábrahám et al. (Eds.): ICTAC 2023, LNCS 14446, pp. 74–82, 2023.
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2 Symmetric Boolean Functions

We focus on symmetric functions where each party is treated equally. A Boolean
function f : {0, 1}n → {0, 1} is called symmetric if

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n))

for any x1, x2, ..., xn and any permutation (σ(1), σ(2), ..., σ(n)) of (1, 2, ..., n).
Note that for a symmetric Boolean function f , the value of f(x1, x2, ..., xn) only
depends on the sum

∑n
i=1 xi.

We denote an n-variable symmetric Boolean function by Sn
X for some X ⊆

{0, 1, ..., n}. A function Sn
X is defined by

Sn
X(x1, x2, ..., xn) =

{
1, if

∑n
i=1 xi ∈ X;

0, otherwise.

For example, a function x1 ∧ x2 ∧ ... ∧ xn is denoted by Sn
{n}, and a function

x1 ⊕ x2 ⊕ ... ⊕ xn is denoted by Sn
{1,3,5,...,2�n−1

2 �+1}.
In general, observe that if a function f is computable by some number of

cards, functions derived from f by (1) negating variables, (2) permuting vari-
ables, and (3) negating the output, are also computable by the same number
of cards. Hence, we can classify all n-variable symmetric Boolean functions into
several classes called Negation-Permutation-Negation (NPN)-equivalence classes
[10], where all functions in the same class can be computed by essentially the
same protocol, so it is sufficient to consider only one representative function from
each class. Note that Sn

X is always in the same class as Sn
{n−x|x∈X} (negating all

variables) and Sn
{1,2,...,n}−X (negating f).

3 Existing Protocols

In 2015, Nishida et al. [8] showed that any n-variable symmetric Boolean function
can be computed with 2n + 2 cards, providing an upper bound for the number
of required cards. However, we are mainly interested in 2n-card protocols.

3.1 Two Variables

For n = 2, all eight functions can be classified into three classes, as shown in
Table 1. A four-card XOR protocol was developed by Mizuki and Sone [7] in
2009, and a four-card AND protocol was developed by Mizuki et al. [6] in 2012.

A protocol is called committed-format if the output is encoded in the same
format as the inputs. While committed-format is a desirable property (so that
the output can be used as the input in other protocols), it has been proved [4]
that there is no four-card committed-format AND protocol with a guaranteed
finite number of shuffles1, so the protocol of Mizuki et al. [6] is the optimal one
in this sense.
1 The number of shuffles is defined to be the number of times we perform shuffling

operations described in Sect. 4.1.
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Table 1. Four-card protocols to compute symmetric two-variable functions

Function Name Protocol Committed? #Shuffles Other Functions in
the Same Class

S2
∅ Constant trivial S2

{0,1,2}
S2

{1} XOR Mizuki-Sone [7], 2009 yes 1 S2
{0,2}

S2
{2} AND Mizuki et al. [6], 2012 no 2 S2

{0}, S
2
{0,1}, S

2
{1,2}

Table 2. Six-card protocols to compute symmetric three-variable functions

Function Name Protocol Committed? #Shuffles Other Functions in the
Same Class

S3
∅ Constant trivial S3

{0,1,2,3}
S3

{1,3} XOR Mizuki-Sone [7], 2009 yes 2 S3
{0,2}

S3
{3} AND Mizuki [5], 2016 no 5 S3

{0}, S3
{0,1,2}, S3

{1,2,3}
Isuzugawa et al. [2], 2021 no 2

S3
{0,3} Equality Shinagawa-Mizuki [13], 2019 no 1 S3

{1,2}
Ruangwises-Itoh [9], 2021 yes 2

S3
{2,3} Majority Toyoda et al. [15], 2021 no 2 S3

{0,1}
S3

{1} 1Mod3 Shikata et al. [11], 2023 no 3 S3
{2}, S3

{0,1,3}, S3
{0,2,3}

3.2 Three Variables

For n = 3, all 16 functions can be classified into six classes, as shown in Table 2.
Several researchers independently developed protocols to compute different func-
tions. First, as the XOR protocol of Mizuki and Sone [7] is committed-format, it
can be repeatedly applied to any number of variables without requiring helping
cards. In 2016, Mizuki [5] developed a card-minimal protocol to compute the
AND function with any number of variables. Isuzugawa et al. [2] later improved
the performance of the three-variable AND protocol to use only two shuffles.

In 2019, Shinagawa and Mizuki [13] constructed a six-card protocol to com-
pute the equality function S3

{0,3} that uses only a single shuffle. Later, Ruang-
wises and Itoh [9] developed a card-minimal protocol for the same function (with
any number of variables) that uses more shuffles but is committed-format. They
also introduced a general technique to compute any n-variable doubly symmet-
ric2 Boolean function with 2n cards. In 2021, Toyoda et al. [15] proposed a
six-card protocol to compute the majority function S3

{2,3}.
Very recently, in 2023, Shikata et al. [11] introduced a six-card protocol to

compute any three-variable function Sn
X such that 0 ∈ X if and only if 3 ∈ X.

This solved the only remaining non-trivial class (the one containing S3
{1}) in the

case n = 3, finally making the problem settled for this case.

2 A doubly symmetric function is a function Sn
X such that x ∈ X if and only if

n − x ∈ X for every x ∈ {0, 1, ..., n}.
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3.3 Four Variables

Table 3. Eight-card protocols to compute symmetric four-variable functions (An aster-
isk denotes the expected number of shuffles in Las Vegas protocols).

Function Name Protocol Committed? #Shuffles Other Functions in the Same Class

S4
∅ Constant trivial S4

{0,1,2,3,4}
S4

{1,3} XOR Mizuki-Sone [7], 2009 yes 3 S4
{0,2,4}

S4
{4} AND Mizuki [5], 2016 no 5 S4

{0}, S
4
{0,1,2,3}, S4

{1,2,3,4}
S4

{0,4} Equality Ruangwises-Itoh [9], 2021 yes 3 S4
{1,2,3}

S4
{2} 2Mod3 no 3 S4

{0,1,3,4}
S4

{1} – Shikata et al. [11], 2023 no ≈7* S4
{3}, S

4
{0,1,2,4}, S4

{0,2,3,4}
S4

{1,2} – no ≈8* S4
{2,3}, S

4
{0,1,4}, S4

{0,3,4}
S4

{0,3} 0Mod3 Ours (Sect. 4) no 4 S4
{1,4}, S

4
{0,2,3}, S4

{1,2,4}
S4

{3,4} Majority open problem S4
{0,1}, S

4
{0,1,2}, S4

{2,3,4}
S4

{0,2} – S4
{2,4}, S

4
{0,1,3}, S4

{1,3,4}

For n = 4, all 32 functions can be classified into ten classes, as shown in
Table 3. The aforementioned XOR protocol [7], AND protocol [5], and equality
protocol [9] can compute respective functions with eight cards. Also, function
S3

{2} is doubly symmetric and thus can be computed by the technique of Ruang-
wises and Itoh [9].

Functions S3
{1} and S3

{1,2} can be computed with eight cards by protocols of
Shikata et al. [11]. However, their protocols are Las Vegas3.

The remaining three classes still lack a card-minimal protocol, leaving open
problems of whether there exist such protocols. In Sect. 4, we propose an eight-
card protocol to compute the 0Mod3 function S3

{0,3}, solving one of the three
open problems.

3.4 More Than Four Variables

In 2022, Shikata et al. [12] proved that there exists a 2n-card protocol to compute
any n-variable symmetric Boolean function for n ≥ 8. This limits the open
problems to only n = 5, 6, and 7, where there are 64, 128, and 256 functions
that can be classified into 20, 36, and 72 classes, respectively.

For n = 5, five non-trivial classes of functions can be computed by existing
protocols. Our protocol in Sect. 4 can compute the 0Mod3 function S5

{0,3}, leaving
13 non-trivial classes as open problems.

For n = 6, eight non-trivial classes of functions can be computed by existing
protocols. Our protocol in Sect. 4 can compute the 1Mod3 function S6

{1,4}, leaving
26 non-trivial classes as open problems.

3 A Las Vegas protocol is a protocol that does not guarantee a finite number of shuffles,
but has a finite expected number of shuffles.
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For n = 7, 12 non-trivial classes of functions can be computed by existing
protocols. Our protocol in Sect. 4 can compute the 0Mod3 function S7

{0,3,6},
leaving 58 non-trivial classes as open problems.

4 Our Protocol for kMod3 Function

For k ∈ {0, 1, 2}, the kMod3 function determines whether the sum of all inputs
is congruent to k modulo 3. Formally, it is defined by

kMod3(x1, x2, ..., xn) =

{
1, if

∑n
i=1 xi ≡ k (mod 3);

0, otherwise.

In this section, we will briefly describe the necessary subprotocols, then we
will introduce our kMod3 protocol that uses 2n cards for any n ≥ 3.

4.1 Preliminaries

We use two types of cards in our protocol: ♣ and ♥ . All cards have indistin-
guishable back sides. As per convention, we encoded 0 by a commitment ♣ ♥ ,
and 1 by a commitment ♥ ♣ .

All of the randomness in our protocol is generated by the following two shuf-
fling operations, which are jointly executed by all parties. (For other operations
that do not involve randomness, the operations can be executed by any party
while being observed by other parties).

Random Cut. Given a sequence S of n cards, a random cut shifts S by a
uniformly random cyclic shift unknown to all parties. It can be implemented by
letting all parties take turns to apply Hindu cuts (taking several card from the
bottom of the pile and putting them on the top) to S.

Random k-Section Cut. Given a sequence S of kn cards, a random k-section
cut [14] divides S into k blocks, each consisting of n consecutive cards, then
shifts the blocks by a uniformly random cyclic shift unknown to all parties. It
can be implemented by putting all cards in each block into an envelopes and
applying the random cut to the sequence of envelopes.

4.2 Encoding Integers in Z/3Z

For i ∈ {0, 1, 2}, define E♣
3 (i) to be a sequence of three cards, all of them being

♥ s except the (i + 1)-th card from the left being a ♣ , e.g. E♣
3 (1) is ♥ ♣ ♥ .

Conversely, define E♥
3 (i) to be a sequence of three cards, all of them being ♣ s

except the (i + 1)-th card from the left being a ♥ , e.g. E♥
3 (0) is ♥ ♣ ♣ .
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4.3 Adding Two Commitments in Z/3Z

Given two commitments of bits a, b ∈ {0, 1}, this subprotocol produces either
E♣

3 (a + b) or E♥
3 (a + b), each with probability 1/2, without using any helping

card. It was developed by Shikata et al. [12].

1. Arrange the commitments of a and b as a sequence in this order from left to
right.

2. Apply a random 2-section cut on the sequence. Then, apply a random cut on
the middle two cards.

3. Let (c1, c2, c3, c4) be the obtained sequence in this order from left to right.
Turn over c2.

– If it is a ♣ , then (c1, c3, c4) will be E♣
3 (a + b).

– If it is a ♥ , then (c4, c3, c1) will be E♥
3 (a + b).

4.4 Adding Two Integers in Z/3Z

Given two sequences E♣
3 (a) = (a0, a1, a2) and E♥

3 (b) = (b0, b1, b2), this subpro-
tocol produces a sequence E♣

3 (a + b mod 3) without using any helping card. It
was developed by Ruangwises and Itoh [9].

1. Rearrange the cards as a sequence (a0, b2, a1, b1, a2, b0).
2. Apply a random 3-section cut on the sequence, transforming it into (ar, b2−r,

ar+1, b1−r, ar+2, b−r) for a uniformly random r ∈ Z/3Z, where the indices are
taken modulo 3.

3. Rearrange the cards back as they were before. We now have two sequences
E♣

3 (a− r mod 3) = (ar, ar+1, ar+2) and E♥
3 (b+ r mod 3) = (b−r, b1−r, b2−r),

where the indices are taken modulo 3.
4. Turn over the sequence E♥

3 (b+r mod 3) to reveal s = b+r mod 3. Then, shift
the sequence E♣

3 (a − r) cyclically to the right by s positions, transforming it
into E♣

3 (a − r + s mod 3) = E♣
3 (a + b mod 3) as desired.

4.5 Main Protocol

We use an idea similar to the one in [11], but extends their idea further to the
case of n variable for any n ≥ 3.

1. Apply the subprotocol in Sect. 4.3 on the commitments of x1 and x2 to obtain
either E♣

3 (x1 + x2) or E♥
3 (x1 + x2).

2. If we get an E♣
3 (x1 + x2), use a free ♣ and the commitment of x3 to create

E♥
3 (x3). Then, apply the subprotocol in Sect. 4.4 on E♣

3 (x1+x2) and E♥
3 (x3)

to obtain E♣
3 (x1 + x2 + x3 mod 3). Conversely, if we get an E♥

3 (x1 + x2),
use a free ♥ and the commitment of x3 to create E♣

3 (x3). Then, apply the
subprotocol in Sect. 4.4 on E♣

3 (x3) and E♥
3 (x1 + x2) to obtain E♣

3 (x1 + x2 +
x3 mod 3).



80 S. Ruangwises

3. Use a free ♣ and the commitment of x4 to create E♥
3 (x4). Then, apply the

subprotocol in Sect. 4.4 on E♣
3 (x1 + x2 + x3) and E♥

3 (x4) to obtain E♣
3 (x1 +

x2 +x3 +x4 mod 3). Repeatedly perform this step for the rest of inputs until
we obtain E♣

3 (x1 + x2 + ... + xn mod 3).
4. Turn over the (k+1)-th leftmost card. If it is a ♣ , return 1; otherwise, return

0.

4.6 Proof of Correctness and Security

Our main protocol largely depends on the subprotocols in Sects. 4.3 and 4.4.
Proofs of correctness and security of these two subprotocols are shown in [12,
§3.1] and [9, §A.1], respectively. The proofs consist of drawing a structure
called KWH-tree, which iterates all possible states and their probabilities of
the sequence of cards after each operation. By observing the conditional prob-
ability of each state, one can verify that (1) the resulting sequence is always
correct, and (2) turning some cards face-up during the protocol does not reveal
any probabilistic information of the inputs.

Assuming the correctness and security of both subprotocols, it is easy to
show that our main protocol is also correct and secure.

In Step 1, the probability of getting E♣
3 (x1 +x2) or E♥

3 (x1 +x2) is 1/2 each,
regardless of the inputs [12, §3.1]. Therefore, one cannot deduct any information
of x1 and x2 upon getting E♣

3 (x1 + x2) or E♥
3 (x1 + x2).

Steps 2 and 3 are straightforward applications of the subprotocol in Sect. 4.4,
and thus are correct and secure.

In Step 4, the resulting sequence is E♣
3 (x1+x2+...+xn mod 3), which is either

♣ ♥ ♥ , ♥ ♣ ♥ , or ♥ ♥ ♣ . Turning over the (k + 1)-th leftmost card reveals
whether x1+x2+...+xn ≡ k (mod 3) (if the card is a ♣ , then x1+x2+...+xn ≡
k (mod 3); if the card is a ♥ , then x1 + x2 + ... + xn �≡ k (mod 3)) without
revealing any other information of the inputs. Hence, our main protocol is correct
and secure.

4.7 Analysis

Table 4. Properties of protocols to compute the kMod3 function

Protocol #Cards #Shuffles Committed?

Nishida et al. [8], 2015 2n + 2 O(n lg n) yes

Ruangwises-Itoh [9], 2021 2n + 2 n no

Ours 2n n no

Our protocol is the first card-minimal protocol for the kMod3 function. There
are several existing protocols that can compute the function using more than 2n
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cards, e.g. the protocol of Nishida et al. [8] which uses 2n+2 cards and O(n lg n)
shuffles, and the protocol of Ruangwises-Itoh [9] which uses 2n + 2 cards and n
shuffles. See Table 4. Therefore, our protocol is also optimal in terms of number
of shuffles.

For each n ≥ 3, our protocol can compute six functions (0Mod3, 1Mod3,
2Mod3, and their negations), which are from two different NPN-equivalence
classes (for n ≡ 0 (mod 3), 1Mod3 and 2Mod3 are in the same class; for n ≡
1 (mod 3), 0Mod3 and 1Mod3 are in the same class; for n ≡ 2 (mod 3), 0Mod3
and 2Mod3 are in the same class).

5 Future Work

We formulated the problem of developing 2n-card protocols to compute n-
variable symmetric Boolean functions, and also proposed protocols for some
classes of these functions. It remains an open problem to construct card-minimal
protocols, or to prove that none exists, for the remaining classes in the cases
n = 4, 5, 6, and 7.

Another possible consideration is the property of a protocol. For example,
if we restrict the protocols to be the ones with a guaranteed finite number of
shuffles, functions S4

{1} and S4
{1,2} still lack a card-minimal finite protocol, leaving

four classes unsolved in the case n = 4. Also, most of the existing protocols
are not committed-format. It is a challenging work to construct card-minimal
committed-format protocols to compute more functions, or to prove that none
exists for some functions, similar to the proof of non-existence of a four-card
committed-format finite AND protocol in [4].

Acknowledgement. The author would like to thank Daiki Miyahara for a valuable
discussion on this research.
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Abstract. Kleene algebras are one of the basic algebraic structures used
in computer science, involving iteration, or Kleene star. An important
subclass of Kleene algebras is formed by ∗-continuous ones. In his 2002
paper, Dexter Kozen pinpointed complexity of various logical theories
for Kleene algebras, both in the general and in the ∗-continuous case.
Those complexity results range from equational theories to Horn theo-
ries, or reasoning from hypotheses. In the middle, there are fragments
of Horn theories, with restrictions on hypotheses. For the case when the
hypotheses are commutativity conditions, i.e., commutation equations
for designated pairs of atoms, however, Kozen mentioned the complexity
result (Π0

1 -completeness) only for the ∗-continuous case, while the gen-
eral case remained an open question. This was the only gap in Kozen’s
table of results, and the present paper fills this gap. Namely, we prove
that reasoning from commutativity conditions on the class of all Kleene
algebras is Σ0

1 -complete. In particular, this problem is undecidable.

Keywords: Kleene algebra · commutativity conditions · algorithmic
complexity

1 Introduction

Kleene algebra is an abstract algebraic construction generalizing the algebra of
regular expressions which is widely used in programming. The most interesting
operation in Kleene algebras is iteration, or Kleene star. There are two ways of
defining iteration. The stronger one, called the ∗-continuous definition, is infini-
tary and defines Kleene star as the supremum of powers. The weaker definition
is an inductive-style one: iteration is defined as a least fixpoint.

While most of the natural examples of Kleene algebras, like the algebra of
regular languages or the algebra of binary relations, are ∗-continuous, the fixpoint
definition is much simpler from the algorithmic point of view. Namely, the logical
theories for generic (not necessarily ∗-continuous) Kleene algebras enjoy recursive
axiomatisation, and therefore are recursively enumerable. In contrast, theories
of ∗-continuous Kleene algebras typically allow only infinitary axiomatisations,
and their complexity can rise up to Π1

1 -completeness (see below).
Before formulating the result of the present paper, let us recall the basic

definitions.
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Definition 1. A Kleene algebra is an algebraic structure K = (K,+, ·, ∗, 0, 1),
where the following holds for any a, b, c ∈ K (as usual, we omit ·; the priority of
operations is, in ascending order, as follows: +, ·, ∗):

a + (b + c) = (a + b) + c a(b + c) = ab + ac

a + b = b + a (a + b)c = ac + bc

a + 0 = a + a = a 1 + aa∗ ≤ a∗

a(bc) = (ab)c 1 + a∗a ≤ a∗

1a = a1 = a if ab ≤ b, then a∗b ≤ b

0a = a0 = 0 if ba ≤ b, then ba∗ ≤ b

Here and further a ≤ b means a + b = b.

In other words, (K,+, ·, 0, 1) is an idempotent semiring and a∗ should be
simultaneously the least fixpoint of two operators: x �→ 1 + ax and x �→ 1 + xa.

We shall use the notation a+ (positive iteration) for aa∗. We shall also make
use of several well-known properties of Kleene algebra:

– transitivity: if a ≤ b and b ≤ c, then a ≤ c;
– monotonicity: if a ≤ b, then ac ≤ bc, ca ≤ cb, and a∗ ≤ b∗;
– semilattice structure: a + b is the smallest upper bound for {a, b}, that is,

a ≤ a + b, b ≤ a + b, and if a ≤ c and b ≤ c, then a + b ≤ c.

Definition 2. A Kleene algebra K is ∗-continuous, if

ba∗c = sup{banc | n ≥ 0}
for any a, b, c ∈ K.

Now let us define the logical language used for reasoning in Kleene algebras.
Terms are built in a standard way: starting from (a countable set of) variables and
constants 0 and 1, using two binary operations + and · and one unary operation ∗.

A particular case of a term is a word, which is built from variables using only
· (since · is an associative operation, we may ignore bracketing).

Throughout this paper, we shall use notational conventions which are close
to the ones used in [8]:

objects letters

elements of K a, b, c

variables p, q

words U, V, X, Y, Z

terms other capital letters

The letters used may also be decorated by super- or subscripts. Kozen [8] uses
small letters (x, y, s, t) for terms also. For clarification, we use capital letters
instead. In particular, U , V , X, Y , Z are reserved for words, and other capital
letters, like S and T (but not K, which has already been used before), denote
arbitrary terms.
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Atomic formulae (equations) are expressions of the form A = B, where A
and B are terms. Inequations of the form A ≤ B are regarded as shorthands for
A + B = B, that is, they are a particular case of atomic formulae.

As we wish to consider reasoning from hypotheses, we define Horn formulae
as expressions of the form H → A = B, where H is a finite set of atomic formulae.
An atomic formula may be also considered as a Horn formula, with H = ∅.

Validity (general truth) of a Horn formula on a class of Kleene algebras is
defined in a standard manner. Let us fix a Kleene algebra K and an interpre-
tation of variables on K, i.e., a function ν from the set of variables to K. The
interpretation is propagated to terms in a natural way (structural induction).

Definition 3. An atomic formula A = B is true under a given interpretation
on K, if the interpretations of A and B coincide.

The formal definition of the interpretation is given as follows. For each term A
we define its valuation ν̄(A) ∈ K by recursion on the structure of A: ν̄(x) = ν(x)
for each variable x, ν̄(0) = 0, ν̄(1) = 1, ν̄(A + B) = ν̄(A) + ν̄(B), ν̄(A · B) =
ν̄(A) · ν̄(B), ν̄(A∗) = (ν̄(A))∗. An atomic formula is true under on K under
interpretation ν if ν̄(A) = ν̄(B). This fact is denoted by K, ν � A = B.

Definition 4. A Horn formula H → A = B is valid on a given class of Kleene
algebras, if for each interpretation ν on an algebra K from this class, under
which all formulae from H are true, formula A = B is also true.

Symbolically: (∀K, ν) ((∀(C = D) ∈ H)K, ν � C = D) ⇒ K, ν � A = B.
We consider two classes of Kleene algebras: all Kleene algebras and ∗-conti-

nuous Kleene algebras. Complexity of reasoning from unrestricted hypotheses is
the complexity of the set of all Horn formulae which are valid on the given class
of Kleene algebras. This set is also called the Horn theory of the given class. One
may also impose restrictions on the sets of hypotheses, that is, consider only
Horn formulae with sets H of a given shape. This yields fragments of the Horn
theory, which potentially could have smaller complexity.

Kozen [9] gives the following complexity table for reasoning from hypotheses
(restricted or unrestricted) on the two classes of Kleene algebras. This table
summarises Kozen’s own and previously known results.

all
Kleene algebras

∗-continuous
Kleene algebras

no hypotheses (equational theory) pspace-complete

commutativity conditions:
hypotheses of the form pq = qp,
where p, q ∈ Var

� Π0
1 -complete

monoid equations:
hypotheses of the form U = V ,
where U, V ∈ Var∗

Σ0
1 -complete Π0

2 -complete

unrestricted hypotheses Σ0
1 -complete Π1

1 -complete
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Notice that the lowermost line can be extended from Horn theories to much
more powerful first-order theories, with arbitrary combinations of Boolean oper-
ations and quantifiers for elements of the algebra. Indeed, Definition 1 gives a
finite axiomatisation of this theory, which is sound and complete by Gödel’s
completeness theorem. This gives the Σ0

1 upper bound; the lower bound comes
from the Horn fragment. For the ∗-continuous case, a calculus with the ω-rule
may be provided, reflecting Definition 2. A general argument (see [13]) gives a
Π1

1 upper bound. The lower bound, again, comes from the Horn theory.
The cell marked with �, that is, complexity of reasoning on the class of all

Kleene algebras from commutativity conditions, was left in [9] as an open ques-
tion. The best known lower bound was expspace-hardness. This lower bound
follows from the corresponding result for commutative monoids [15], i.e., its proof
does not essentially use the Kleene star. The trivial upper bound for � is Σ0

1 .
In this paper, we solve � by proving undecidability:

Theorem 1. Reasoning from commutativity conditions on the class of all
Kleene algebras is Σ0

1 -complete.

The proof of Theorem 1, presented is this paper, follows roughly the same idea
as used an earlier article of the author [12]. That article considers action alge-
bras, which are Kleene algebras extended with residuals, defined by Pratt [18].
Kozen [7] posed the question of complexity for the equational theory of the class
of all action algebras. Buszkowski [2] proved Π0

1 -hardness for its ∗-continuous
(infinitary) variant. (The corresponding upper bound was proved by Palka [17].)

Buszkowski’s proof encoded the non-halting problem for Turing machines,
via totality of context-free grammars. Such an inverted (‘negative’) encoding
yields Π0

1 -hardness: a Turing machine M does not halt on input α if and only if
the corresponding encoding formula is generally true on all ∗-continuous action
algebras.

In [12], this construction is shifted from the ∗-continuous to the general case.
Namely, it happens that if machine M does not halt on α for a trivial reason,
by reaching a designated ‘capturing’ state c, from which it cannot move, then
a slightly modified version of Buszkowski’s encoding formula is generally true
already on the class of all action algebras, not necessarily ∗-continuous. Such
behavior of a machine is called trivial cycling, or c-looping.

Unfortunately, this is not an “if and only if” statement. However, the class
of pairs (M, α) for which the encoding formula is valid on all action algebras lies
between c-looping and non-halting. By a folklore fact, c-looping and halting are
recursively inseparable, which gives undecidability for this class, and therefore
for the equational theory of action algebras. A more fine-grained technique of
effective inseparability allows to pinpoint exact complexity: Σ0

1 -completeness,
and thus answer Kozen’s question.

The argument presented in this article follows the same lines. We start with
the Π0

1 -hardness proof for reasoning from commutativity conditions on the class
of ∗-continuous Kleene algebras, presented in [8]. This proof again encodes non-
halting of Turing machines, via non-solvability for Post’s Correspondence Prob-
lem. Again, a slight modification of the construction allows handling of c-looping:
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if machine M c-loops on input α, then the (modified) Horn formula is valid on
all Kleene algebras. This puts reasoning from commutativity conditions between
c-looping and non-halting, and the same arguments, as sketched above, give
Σ0

1 -completeness.
It is important to notice that the aforementioned undecidability results (both

for the general and the ∗-continuous case) hold only for reasoning from specific
commutativity conditions, that is, for “partially commutative” Kleene algebras.
The equational theory of commutative Kleene algebras (in which all possible
commutativity conditions are imposed) is the same for the general and for the
∗-continuous case. An axiomatisation of this theory was given by Redko [19].
This theory is decidable by Post’s theorem, as it belongs both to Σ0

1 and Π0
1 .

The complexity estimation for the equational theory of commutative Kleene
algebras was given by Haase and Hofman [6]: this theory is coNExp-complete
(thus, it is harder than its non-commutative counterpart).

Besides Kozen’s table of complexity results presented above, let us briefly
mention other closely related works. Cohen [3] proved decidability for reasoning
in Kleene algebras (including the ∗-continuous case) from hypotheses of specific
forms: A = 0 (where A is a term) and x ≤ 1 (where x is a variable). Kozen
et al. [10,11] handled the cases of hypotheses of the form 1 = U or x = U ,
where x ∈ Var and U ∈ Var∗. The decidability problem for derivability from
hypotheses of the form 1 = x1 + . . . + xn (xi ∈ Var) was posed as an open
question by Cohen [3], and it was solved positively by Doumane et al. [4]. We also
mention the work of Maarand and Uustalu [14], who established a derivability
results with commutativity conditions of a very specific form. This discussion of
related work shows that algorithmic problems closely related to reasoning from
(arbitrary) commutativity conditions often happen to be decidable, which makes
the undecidability result an interesting one.

This also suggests an area of future research: what other simple specific
forms of hypotheses will lead to undecidability, both in the general and in the
∗-continuous case? A more specific question is as follows: does there exist a
restriction on the set of hypotheses such that the corresponding fragment of
the Horn theory is undecidable in the ∗-continuous case and decidable in the
general one (or vice versa)? To the best of the author’s knowledge, the answer
is unknown.

2 Proof Idea

Before going into the details, let us explain the general ideas behind the proof
of Theorem 1. The interesting part is, of course, the lower bound.

Our starting point will be the proof of Π0
1 -hardness for the ∗-continuous

version of the problem in question:

Theorem 2 (E. Cohen, 1994, and others). Reasoning from commutativity
conditions on the class of ∗-continuous Kleene algebras is Π0

1 -hard.



88 S. L. Kuznetsov

We shall use the proof which Kozen attributes to unpublished work of Ernie
Cohen and which is presented in Kozen’s paper [8]. For other proofs, Kozen cites
Berstel [1] and Gibbons and Rytter [5].

This proof uses a negative encoding of Post’s Correspondence Problem
(PCP). Namely, validity of the Horn formula constructed from a given PCP
instance is equivalent to the fact that the PCP does not have a solution.

The construction starts with a fixed set of commutativity conditions H and
a term T . Then, for each PCP Π, a term SΠ is constructed, such that Π does
not have a solution if and only if the Horn formula H → SΠ ≤ T is valid on the
class of ∗-continuous Kleene algebras.

Instances of Post’s Correspondence Problem, in turn, encode arbitrary Turing
computations (see, e.g., Sipser’s textbook [21, § 5.2]). For a Turing machine M
and its input value α there exists a PCP Π(M, α) such that M halts on input
x if and only if Π(M, α) has a solution. In the further constructions, we shall
dive into the details of Turing machine executions (pinpointing the c-looping
case). For this reason, we cannot use the well-known undecidability result for
PCP as a black box, and have to explicitly discuss the reduction from Turing
computations to PCP solutions.

Combining these two encodings, one obtains the following argument for The-
orem 2. For a Turing machine M and its input value α, the following statements
are equivalent:

1. Machine M does not halt on α.
2. PCP Π(M, α) does not have a solution.
3. Horn formula H → SΠ(M,α) ≤ T is valid on the class of ∗-continuous Kleene

algebras.

Next, we adapt this argument to prove Theorem 1. This modification uses
the same idea as used earlier in [12]. In that article, Buszkowski’s [2] proof of
Π0

1 -hardness of infinitary action logic (the equational theory of residuated ∗-con-
tinuous Kleene algebras) was modified to prove Σ0

1 -hardness of action logic (the
equational theory of all action algebras [18], i.e., residuated Kleene algebras).

We show that the weaker logic of reasoning from commutativity conditions
on all (not necessarily ∗-continuous) Kleene algebras is still capable of encoding
certain trivial kinds of non-halting of Turing machines. We suppose that each
Turing machine has a special ‘capturing’ state c with the following property. If
the machine reaches state c, it stays in this state forever. Thus, c is not a final
state, and, moreover, reaching c guarantees non-halting. We shall denote this
trivial case of non-halting as c-looping.1

Let us emphasize the fact that the capturing state c, together with the rules
which guarantee that the machine gets stuck when it reaches c, is fixed in the
definition of the machine. The only thing which depends on runtime is whether
the machine reaches this state or not.

1 Such a specific term is used in order to avoid confusion with other sorts of looping or
cyclic behaviour, e.g., getting stuck at a state other than c or going into non-trivial
infinite loops.
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After a modification of the encoding, namely, replacing T with its variation ˜TM

(which takes care of c-looping),2 we manage to prove the following implications
(Lemma 5 and Lemma 6 below):

1. If machine M c-loops on input α, then H → SΠ(M,α) ≤ ˜TM is valid on the class
of all Kleene algebras.

2. If H → SΠ(M,α) ≤ ˜TM is valid on the class of ∗-continuous Kleene algebras,
then M does not halt on α.

Notice that there is a gap: the first statement talks about c-looping and arbi-
trary Kleene algebras, while the second one considers arbitrary non-halting and
only ∗-continuous Kleene algebras. Thus, these two statements do not consti-
tute an equivalence which would give a direct reduction of c-looping of M on α
to validity of H → SΠ(M,α) ≤ ˜TM on all Kleene algebras.

However, the desired undecidability result is obtained using the notion
of inseparability. Namely, the sets {(M, α) | M c-loops on α} and {(M, α) |
M halts on α} are recursively inseparable (an accurate proof of that is given
in [12], see Proposition 8 below, but the fact itself is folklore), that is, there
is no decidable set which includes the first set and is disjoint with the second
one. As one can easily see from the statements above, the set

{(M, α) | H → SΠ(M,α) ≤ ˜TM is valid on all Kleene algebras}

is such a separating set. Therefore, it is undecidable, whence so is reasoning from
commutativity conditions on the class of all Kleene algebras. A more fine-grained
technique of effective inseparability shows that it is in fact Σ0

1 -complete.
In the next two sections, we give a detailed presentation of the argument

sketched above.

3 Encoding of Looping

In this section, we shall prove the principal technical lemmata on the encoding of
c-looping (resp., non-halting) of Turing machines using commutativity conditions
on all (resp., ∗-continuous) Kleene algebras. The proof of Theorem 1 is given in
the next section.

Let us recall the definition of an instance of Post’s Correspondence Problem
(PCP). A PCP Π is a finite set of pairs of words over a given alphabet, denoted
in the following way

[

X1

Y1

]

, . . . ,

[

Xk

Yk

]

.

A solution of Π is a word X such that there exist numbers i1, . . . , im ∈ {1, . . . , k},
where m > 0, such that X = Xi1 . . . Xim = Yi1 . . . Yim .

2 For technical reasons, now the right-hand side also depends on the machine being
encoded.
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As noticed above, a standard construction yields Π(M, α), the PCP which
represents a Turing machine M together with its input value α. Let us recall this
construction, following [21], with necessary modifications.

Throughout this paper, we consider only deterministic Turing machines. We
define a Turing machine as a tuple M = (Q, Γ,Δ, q0, qF , c). Here Q is the set of
states, q0 is the initial state and qF is the final accepting state. For simplicity,
we do not add a rejecting state: unsuccessful executions could either be infinite
or abort when a command cannot be executed (see below). As usual, Γ is the
tape alphabet of the machine, and Δ is the set of commands. The sets Q, Γ ,
and Δ are disjoint.

We do not designate a special input alphabet: any letter from the tape alpha-
bet may be used in the input word. The tape alphabet Γ includes a specific
‘blank’ symbol , which is added when the machine reaches the right end of the
tape to extend it. Extending the tape to the left is disallowed.

Commands of M are of the form (q, a, r, b, d), where q, r ∈ Q, a, b ∈ Γ , and
d ∈ {R,L,N} (‘right,’ ‘left,’ or ‘no move’). For each pair (q, a), where q 
= qF ,
there exists exactly one command of this form (determinism). For q = qF there
is no such command. Command (q, a, r, b, d) means the following: being in state
q and observing letter a on the tape, change the state to r, replace a with b, and
perform one step in direction d.

Commands for state q = c are required to be the following: (c, a, c, a,N) for
each a ∈ Γ . This guarantees that c is the capturing state.

We distinguish three possible behaviours of M on a given input α:

– M halts on input α, that is, it reaches state qF ;
– M c-loops on input α, that is, it reaches the capturing state c and stays in this

state forever; this is a special case of non-halting;
– M does not halt on input α for another reason: either it goes into infinite

computation, but not at state c, or crashes by trying to execute a command
with d = L while observing the leftmost cell of the tape.

Now we recall the construction [21, § 5.2] of Π(M, α), which is the PCP cor-
responding to the execution of machine M on input α.3 Consider an extended
alphabet Σ = Q ∪ Γ ∪ {#, 	, �}. Extra symbols #, 	, � will be used for delimit-
ing purposes.

The configuration of M when it is in state q, with word a1 . . . an on the tape,
and observing letter ai, is encoded by the following string:

κ = 	a1	a2 . . . 	ai−1	q	ai . . . 	an.

Next, we define the halting protocol of M on the input word α, denoted by
π(M, α). The halting protocol is the complete transcript of execution of M on
input α, starting from the initial configuration and ending in a final one. Thus,
π(M, α) should encode the sequence of configurations κ1, . . . ,κm, where:

3 Sipser [21] uses a two-step construction, which first defines an MPCP (“modified
PCP”) and then transforming it into a PCP. We construct the PCP directly.
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1. κ1 is the code of the initial configuration: if the input word α is a1 . . . an,
then κ1 = 	q0	a1 . . . 	an;

2. each κi+1 is the code of the configuration which immediately follows κi in
the execution process of M;

3. κm encodes a final configuration, i.e., the state in κm is qF .

The configurations in π(M, α) are separated by 	# delimiters; the end of the
protocol is marked by the combination 	#�.

For technical reasons, however, it will be necessary to perform “garbage col-
lection” at the end of the protocol, so that the last element in the configuration
sequence is just 	qF , with no symbols in the tape. This is obtained by adding
“pseudo-configurations” of the form described below (informally: allowing qF to
absorb the tape symbols). Let κm = 	a1	a2 . . . 	ai−1	qF 	ai . . . 	an. Then we
introduce the following pseudo-configurations:

λk = 	a1 . . . 	ai−k	qF 	ai . . . 	an for k = 2, . . . , i;
μk = 	qF 	ai+k . . . 	an for k = 1, . . . , (n − i + 1).

In particular, λi = 	qF 	ai . . . 	an and μn−i+1 = 	qF .
Using this notation, we define the halting protocol as the following string:

π(M, α) = 	#κ1	# . . . 	#κm	#λ2	# . . . 	#λi	#μ1	# . . . 	#μn−i+1	#	#	�,

(Recall that μn−i+1 = 	qF .) Note that the halting protocol, if it exists, is unique.
Indeed, for the real computation phase, the sequence κ1, . . . , κm is unique due
to determinism. The garbage collection phase, λ2, . . . , μn−i+1, is also performed
in a deterministic manner: first absorb all letters to the left of qF , then all letters
to the right. Since there is no command starting from qF , the start of the garbage
collection phase is also determined uniquely.

In the case where M runs infinitely long on input α, we shall use the notion
of infinite protocol, defined as follows:

	#κ1	#κ2	# . . . 	#κk . . .

The infinite protocol is an infinitary word (ω-word), and we shall consider finite
words which are prefixes of the infinite protocol.

Now let us define the PCP Π(M, α) as a PCP including the following pairs:

1. the initial pair:
[

	#
	#κ1	#	

]

2. for each command (q, a, r, b, R) ∈ Δ and each c ∈ Σ, the following pairs:
[

	q	a	c

b	r	c	

]

and

[

	q	a	#
b	r	 	#	

]
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3. for each command (q, a, r, b, L) ∈ Δ and each c ∈ Σ, the following pair:
[

	c	q	a

r	c	b	

]

4. for each command (q, a, r, b,N) ∈ Δ,4

[

	q	a

r	b	

]

5. for every a ∈ Γ , the following pair:
[

	a

a	

]

6. the pair
[

	#
#	

]

7. for every a ∈ Γ , the following garbage collection pairs:5

[

	a	qF

qF 	

]

and

[

	#	qF 	a

#	qF 	

]

8. the final pairs:
[

	qF 	#	#
#	

]

and

[

	�
�

]

The main property of this construction is formulated in the following propo-
sition (see [21, proof of Thm. 5.15]):

Proposition 3. Let M be a Turing machine and let α ∈ Γ ∗ be its input value.
Then the PCP Π(M, α), as constructed above, has the following properties.

1. If M does not halt on input α, then Π(M, α) has no solution.
2. If M halts on input α, then Π(M, α) has a solution. Moreover, in this case

solutions of Π(M, α) are exactly concatenations of several (one or more) copies
of π(M, α).

3. Each word in Π(M, α) is non-empty.

4 Sipser [21] does not use ‘no move’ commands, but we need them for the capturing
state.

5 The second type of pairs includes #, which guarantees that the μ-phase of garbage
collection is started only when there are no letters to the left of qF .
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In particular, as the capturing state c may never appear in a halting protocol
of M, no solution of Π(M, α) includes c as a letter.

In order to make the construction closer to Kozen’s presentation [8], we shall
transform Π(M, α) into a PCP over a 2-letter alphabet Σ2 = {p, q}. This is done
by replacing each symbol a from Σ by a binary string â of a fixed length, namely
2log2 |Σ|� + 4. This is done in the following way. First, we encode a as a ‘byte’
(binary string) b1 . . . bk, where k = log2 |Σ|� and b1, . . . , bk ∈ {p, q}. Next, let

â = ppqb1qb2 . . . qbkqq.

The homomorphic image of a word γ ∈ Σ∗ under this translation will be denoted
by γ̂. It is easy to see that solutions of the new PCP, which we shall denote by
Π̂(M, x), are in one-to-one correspondence with solutions of Π(M, x), given by the
function ·̂ : Σ∗ → Σ∗

2 .
In particular, the translation of letter c ∈ Q ⊆ Σ is a binary word ĉ ∈ Σ∗

2 .
It is important to notice that ĉ is a ‘forbidden word’ for Π̂(M, x), due to the
following lemma:

Lemma 1. A word γ ∈ Σ∗ includes c (as a letter) if and only if its translation
γ̂ ∈ Σ∗

2 includes ĉ (as a subword).

Proof. The “only if” direction is trivial. The “if” direction is a bit trickier, and
this is the reason why we could not have used just a standard binary encoding
of letters. Let γ = a1 . . . an and let γ̂ = â1 . . . ân include ĉ. We claim that ĉ is âi

for some i. Indeed, ĉ starts with pp, and the only place where this combination
may appear in γ̂ is at the beginning of one of the âi’s. Hence, c = ai is a letter
of γ.

This gives the following corollary: no solution of Π̂(M, α) may include ĉ as a
subword. Indeed, if ĉ is a subword of a solution, then c is a letter of a solution
of the original PCP Π(M, α). By Proposition 3, item 2, this means that then c
appears in the halting protocol of M on α. The latter is impossible, since c is the
capturing state of M.

Now let us recall Cohen’s construction for Theorem 2, as presented by Ko-
zen [8]. We consider the following alphabets: Σ2 = {p, q}, Σ′

2 = {p′, q′}, Σ4 =
Σ2 ∪ Σ′

2. For a word Y ∈ Σ∗
2 , by Y ′ we denote its image in Σ′

2
∗ under the

following homomorphism: p �→ p′, q �→ q′.
Let Π̂(M, α) be the following PCP:

[

X1

Y1

]

, . . . ,

[

Xk

Yk

]

.

(Here Xi, Yi are words over Σ2.)
The following (fixed) set of commutativity conditions will be used:

H = {pp′ = p′p, pq′ = q′p, qp′ = p′q, qq′ = q′q}
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and the following two terms S = SΠ̂(M,α) and T are defined:

S = (X1Y
′
1 + X2Y

′
2 + . . . + XkY ′

k)+,

T = (pp′ + qq′)∗((p + q)+ + (p′ + q′)+ + (pq′ + qp′)(p + q + p′ + q′)∗).

The informal idea behind this construction is as follows. Thanks to commu-
tativity conditions from H, the order matters only for letters from the same
alphabet (Σ2 or Σ′

2). Thus, each word from the combined alphabet Σ4 can be
separated as XY ′, where X,Y ∈ Σ2. The term S generates all such pairs of
words X and Y , which can be obtained using our PCP (X on the top, Y on the
bottom). In particular, it will include XX ′, if X is a solution of the PCP. The
term T , conversely, is used to avoid pairs of this form, generating only pairs XY ′

such that X 
= Y . This means that solvability of the PCP invalidates S ≤ T (in
the presence of H), and the other way round: if the PCP has no solution, then
H → S ≤ T is generally true.

In order to handle c-looping, we modify the definition of T and obtain a new
term ˜T = ˜TM in the following way:

˜T = (pp′ + qq′)∗((p + q)+ + (p′ + q′)+ + (pq′ + qp′ + ĉ)(p + q + p′ + q′)∗).

In the proof of Theorem 2, the main lemma states that H → S ≤ T is valid
on all ∗-continuous Kleene algebras if and only if M does not halt on input α [8].
Notice that by distributivity

˜T = T + (pp′ + qq′)∗ ĉ (p + q + p′ + q′)∗,

therefore ˜T ≥ T . This means that the modified Horn formula, H → S ≤ ˜T , is
weaker than H → S ≤ T .

Therefore, we have to modify both directions of the main lemma of Theo-
rem 2.

1. We shall prove (Lemma 6 below) that M does not halt on α already if the
weaker Horn formula H → S ≤ ˜T is valid on all ∗-continuous Kleene algebras.

2. We shall prove (Lemma 5) that if M c-loops on α, then H → S ≤ ˜T is valid
on all Kleene algebras, not only ∗-continuous ones.

Before going further, let us prove a technical lemma, which is called the “long
rule” in [12]:

Lemma 4. If H → A ≤ B, H → A2 ≤ B, . . . , H → An ≤ B, and H →
AnA+ ≤ B are valid on all Kleene algebras, then so is H → A+ ≤ B. (cf. [12,
Lemma 3])

Proof. Induction on n. For n = 0 the statement is trivial. For induction step,
we use the equality A+ = A + AA+, which is valid on all Kleene algebras. By
monotonicity, we get AnA+ = An+1 + An+1A+. Thus, given H → An+1 ≤ B
and H → An+1A+ ≤ B, we get H → AnA+ ≤ B. Together with H → A ≤ B,
. . . , H → An ≤ B, this yields H → A+ ≤ B by induction.
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Now we are ready to prove the main lemmata.

Lemma 5. If M c-loops on input α, then H → S ≤ ˜T is valid on all Kleene
algebras.

Proof. Let M c-loop on α. Consider the infinite protocol of this computation,
after translating to the binary alphabet Σ2, and let n be the length of a prefix of
this protocol which already contains ĉ. Indeed, since M c-loops, its computation
at some point reaches the capturing state c.

Since S is of the form A+, we may use Lemma 4. Now it is sufficient to prove
validity of H → Am ≤ B for m ∈ {1, . . . , n} and of H → AnA+ ≤ B.

Let us start with the first one, and establish a stronger, since T ≤ ˜T , Horn
formula:

H → (X1Y
′
1 + . . . + XkY ′

k)m ≤ T.

In order to establish this, by distributivity, it is sufficient to prove that H entails
the following atomic formulae:

Xi1Y
′
i1Xi2Y

′
i2 . . . XimY ′

im ≤ T

for all i1, . . . , im ∈ {1, . . . , k}.
Let X = Xi1 . . . Xim and Y ′ = Y ′

i1
. . . Y ′

im
. By commutativity conditions from

H, we may replace Xi1Y
′
i1

Xi2Y
′
i2

. . . XimY ′
im

with XY ′. Now we have to prove
XY ′ ≤ T .

We know that Π̂(M, α) has no solution, because M does not halt on α. In
particular, this means, for given i1, . . . , im, that X 
= Y (as words over Σ2).

This may happen in one of the following two cases:

1. for some j, the j-th letter of X is p and the j-th letter of Y is q, or vice versa
(X and Y disagree at position j);

2. Y is a proper prefix of X, or vice versa.

Using commutativity conditions from H, let us rearrange letters in XY ′ such
that letters from Σ2 interleave with letters from Σ′

2 (e.g., pp′qq′pq′ . . .). If X and
Y have different length, then in the end we have a tail of letters only from Σ2

or from Σ′
2. Denote the resulting word by Z.

For the first case, let j be the smallest position with the given property.
Then Z falls under the regular expression (pp′ + qq′)∗(pq′ + qp′)(p+ q +p′ + q′)∗.
Therefore, H entails Z ≤ T on the class of all Kleene algebras. More precisely,
we can prove Z ≤ (pp′ + qq′)j−1(pq′ + qp′)(p + q + p′ + q′)� for some �, and then
use monotonicity and the fact that An ≤ A∗ is true in all Kleene algebras.

The second case is similar: if � is the length of Y , which is a proper prefix of
X, we get Z ≤ (pp′ + qq′)�(p + q)+ ≤ T . The case where X is a proper prefix of
Y is analogous.

This argument is essentially the same as the one from the proof of Theorem 2.
The more interesting Horn formula is

H → (X1Y
′
1 + . . . + XkY ′

k)n(X1Y
′
1 + . . . + XkY ′

k)+ ≤ ˜T ,
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where c-looping comes into play. Again, it is sufficient to establish

H → Xi1Y
′
i1 . . . XinY ′

in(X1Y
′
1 + . . . + XkY ′

k)+ ≤ ˜T

for arbitrary i1, . . . , in ∈ {1, . . . , k}. Let us replace, using H, Xi1Y
′
i1

. . . XinY ′
in

with XY ′, where X = Xi1 . . . Xin and Y ′ = Y ′
i1

. . . Y ′
in

.
Now we have the following two cases:

1. X and Y disagree at a position j;
2. X includes the ‘forbidden word’ ĉ as a subword.

Indeed, the first situation happens when X is not even a prefix of the infinite
protocol of M on α. If it is, however, it should include ĉ, because all Xi’s are
non-empty, and therefore the length of X is greater or equal to n.

Let j be either the smallest number of a position where X and Y disagree,
or the position of the first letter of ĉ in X.

In both situations, we derive (rearranging letters in XY ′)

H → XY ′ ≤ (pp′ + qq′)j−1(pq′ + qp′ + ĉ)(p + q + p′ + q′)∗.

Recalling that X1Y
′
1 + . . . + XkY ′

k ≤ (p + q + p′ + q′)∗, we get

H → XY ′(X1Y
′
1+. . .+XkY ′

k)+ ≤ (pp′+qq′)j−1(pq′+qp′+ĉ)(p+q+p′+q′)∗ ≤ ˜T ,

which is the desired goal. (Here we have used A∗(A∗)+ ≤ A∗, which is generally
true in Kleene algebras, and monotonicity.)

Lemma 6. If H → S ≤ ˜T is valid on ∗-continuous Kleene algebras, then M does
not halt on α.

Proof. Suppose the contrary: let M halt on α. Let us construct a ∗-continuous
Kleene algebra which falsifies H → S ≤ ˜T .6

We take K = P(Σ∗
1 × Σ′

2
∗) = P({(U, V ′) | U, V ∈ Σ∗

2}). For a, b ∈ K let

ab = {(U1U2, V
′
1V ′

2) | (U1, V
′
1) ∈ a, (U2, V

′
2) ∈ b}

a + b = a ∪ b

a∗ = {(U1 . . . Un, V ′
1 . . . V ′

n) | (U1, V
′
1), . . . , (Un, V ′

n) ∈ a}
0 = ∅

1 = {(ε, ε)}

It is easy to see that K = (K,+, ·, ∗, 0, 1) is a ∗-continuous Kleene algebra.
Let us interpret variables p, q, p′, q′ as {(p, ε)}, {(q, ε)}, {(ε, p′)}, {(ε, q′)}

respectively. This interpretation obeys the set of conditions H.
Each pair (U, V ′) in the interpretation of ˜T has at least one of the following

properties:
6 Our construction is based on language algebras, which differs from the one from [8],

where relational algebra is used.
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1. U 
= V (they have either different length, or different letters at the same
position);

2. U includes ĉ as a subword.

Since M halts on α (as we have supposed), Π(M, α) has a solution X0, which
is the halting protocol of M on α (Proposition 3). Since c is a ‘capturing’ state,
it cannot appear in a terminating computation. Therefore, as shown above
(Lemma 1), ĉ is not a subword of X0.

The interpretation of S includes every pair of the form (X,X ′) where X is a
solution of Π(M, α). In particular, this set includes (X0,X

′
0). This pair is neither

of the form of the form (U, V ′) with U 
= V , nor does X0 include ĉ is a subword.
Hence, (X0,X

′
0) does not belong to the interpretation of ˜T .

Therefore, S ≤ ˜T is false under the given interpretation. Since this intepre-
tation satisfies H, this falsifies H → S ≤ ˜T

4 Effective Inseparability Argument

Proving undecidability of reasoning from commutativity conditions (and even
from the fixed set H of those) is now simple and performed as sketched in
Sect. 2. The set

K = {(M, α) | H → SΠ(M,α) ≤ ˜TM is valid on all Kleene algebras}
includes the set L = {(M, α) | M c-loops on α} and is disjoint with H = {(M, α) |
M halts on α}. Indeed, L ⊆ K by Lemma 5 and K ∩ H = ∅ by Lemma 6.

Since these two sets are known to be recursively inseparable, K is undecid-
able, and therefore so is the problem of reasoning from H on all Kleene algebras.

Theorem 1, however, claims more than just undecidability: we need to prove
Σ0

1 -completeness. This is done by using a more fine-grained technique of effective
inseparability (cf. [12,22]). Let us recall the basic definitions and results. By Wu

we denote the recursively enumerable set of index u (i.e., enumerated by a Turing
machine whose code is u).

Definition 5. Two sets of natural numbers, A and B, are effectively insepara-
ble, if they are disjoint and there exists a partial computable function f of two
arguments such that if A ⊆ Wu, B ⊆ Wv, and Wu and Wv are disjoint, then
f(u, v) is defined and f(u, v) /∈ Wu ∪ Wv.

The informal idea is that f provides a constructive counterexample to any
attempt to separate A and B by a decidable set. By Post’s theorem, a decidable
set is an enumerable set Wu whose complement is also an enumerable set Wv,
thus Wu ∪ Wv is N. The element f(u, v) witnesses that this is not the case.

Proposition 7. If two sets are effectively inseparable, and both are recursively
enumerable, then they are both Σ0

1 -complete.

This statement is an easy corollary of a theorem by Myhill [16], see [20,
Exercise 11-14] or [12, Corollary 2].
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Proposition 8. The sets L and H (where we tacitly encode pairs (M, α) as
natural numbers) are effectively inseparable.

This fact is folklore, see [20, Exercise 7-55d] or [12, Proposition 3].

Proposition 9. If A and B are effectively inseparable, A ′ ⊇ A and A ′ ∩B =
∅, then A ′ and B are also effectively inseparable.

This is also folklore.

Proof. Take the same function f . Let A ′ ⊆ Wu and B ⊆ Wv. Indeed, we have
also A ⊆ Wu, and therefore f(u, v) /∈ Wu ∪ Wv.

Now everything is ready to prove Theorem 1. Indeed, L ⊆ K , K ∩H = ∅.
By Proposition 8, L and H are effectively inseparable. By Proposition 9, so
are K and H . By Proposition 7, K is Σ0

1 -complete. This yields Σ0
1 -hardness

of reasoning from H on the class of all Kleene algebras. The upper Σ0
1 bound

follows from a finitary axiomatisation.
This finishes the proof of Theorem 1, and thus fills the only cell left empty

in Kozen’s complexity table [9].
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Abstract. Numerous proof methods have been proposed to establish
language properties such as type soundness, confluence, strong normal-
ization, and others. However, literature does not provide a study of the
complexity of carrying out these proof methods.

This paper provides an investigation on the complexity of carrying out
the “syntactic approach” to type soundness (progress theorem and type
preservation theorem) for a class of functional languages, and character-
izes the complexity of its proofs as a function of the number of expression
constructors, number of typing rules, reduction rules, and other common
quantities of operational semantics. Although we do not claim to provide
the complexity of this approach, this paper provides the first example of
complexity analysis of a programming language proof method.

Keywords: Type soundness · Complexity analysis · Functional
languages

1 Introduction

Language verification is an important part of the development of programming
languages. Once we have created a programming language, there are many ques-
tions that are interesting to investigate: Is the language type sound? Is it strongly
normalizing? Is it free of data races? Since the very beginning of programming
language theory, numerous proof methods have been developed in order to estab-
lish these and other language properties.

Some proof methods are lengthy to carry out and such lengthiness may
depend on the specifics of the operational semantics at hand such as the number
of type constructors, the number of reduction rules, as well as other semantics
quantities. However, literature does not provide a study of the complexity of car-
rying out programming language proof methods. In this paper, we provide an
example of such complexity analysis for the “syntactic approach” to type sound-
ness [27] for a class of functional languages. Type soundness is one of the most
important properties in programming languages theory [13,21]. Milner proposed
this property in order to establish (an aspect of) the correctness of program-
ming languages [18]. Wright and Felleisen have developed a syntactic approach
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Fig. 1. Part of a proof for the progress theorem

to type soundness [27], which Harper has later adapted in its well-known formu-
lation that is based on the progress theorem and type preservation theorem [13].
Since then, proving type soundness with this method has become widespread in
research papers, an essential part of programming languages theory, and a staple
element of courses such as Software Foundations1 and others [13,16,21].

What is the complexity of carrying out this proof method? To give an idea of
what we mean: Since there is a canonical form lemma for each type constructor
of the language at hand, we expect its complexity to be at least Θ(|Type |) where
|Type | denotes the number of productions of the grammar Type of types.

The motivation for analyzing the complexity of proof methods is largely theo-
retical. However, detecting lengthy proof methods inspires researchers to develop
better proofs. Comparing the complexity of proof methods is also interesting. For
example, in the future we would like to compare the complexity of the method of
Volpano et al. for noninterference [26] to that of Pottier and Simonet’s [22], which
reduces this property to type soundness as proved with the syntactic approach.

Our Approach: Analysis of Language-parametrized Proofs. In prior work [8],
we have proposed an approach to express language-parametrized proofs, that is,
proofs that can be applied to classes of languages rather than one single language.
To make an example, consider the progress theorem. The proof that resolves the
progress theorem for head e (head of a list) is analogous to that of fst e (first of
a pair) and several other operations. Fig 1 shows the beginning of such a proof
in Line 1-5. For a language with head, this proof continues as in column (a). For
a language with fst, this proof continues as in column (b). However, whether
the operation is head or fst a pattern applies nonetheless and [8] develops a
domain-specific language called Lang-n-Prove for expressing such patterns.
For example, Lang-n-Prove can generate Line 6 of both column (a) and (b)
with code that expresses “if the operation at hand is an elimination form of
type constructor c, apply the canonical form for type c”. Having computed c,
Lang-n-Prove can also generate Line 7-8 for (a) and Line 7 for (b) with code

1 https://softwarefoundations.cis.upenn.edu/.

https://softwarefoundations.cis.upenn.edu/
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that expresses “for all values of c, appeal to the existence of a reduction rule”.
(The canonical forms of lists are the empty list and cons-constructor, while there
is only the canonical form for building pairs for the product type.)

Lang-n-Prove has been used in [8] to express the syntactic approach to
type soundness, and in particular it provides language-parametrized proofs for
the canonical form lemmas, the progress theorem, and the type preservation
theorem (though substitution lemmas must be manually provided) for a class of
languages that is described in [8] as pure harmonious functional languages with
derived operators and error handlers. (We describe these languages in Sect. 2.)
This class includes common types and operators such as pairs, option types,
sum types, universal and recursive types, exceptions, list operations such as
map, filter, range and reverse, as well as others.

In this paper, we study the complexity of the language-parametrized proofs
of [8]. These algorithms may be regarded as a pseudocode version of the syntac-
tic approach to type soundness when applied to our intended class of functional
languages. We characterize the complexity of these proofs as a function of the
number of expression constructors, number of typing rules, reduction rules, and
other common quantities of operational semantics. Our concluding section com-
fortably summarizes our findings in a table for our readers (Sect. 8, Fig. 7). It is
to notice that [8] does not provide a proof for the substitution lemmas, which
are used only in the type preservation theorem in our context. Therefore, the
complexity that we offer for type preservation is parametrized by the complex-
ity of substitution lemmas that is left unspecified. Why do we not fill the gap
of [8] here and provide language-parametrized proofs for substitution lemmas?
Such lemmas are strongly dependent on the representation of binders (de Bruijn
indices, higher-order abstract syntax, locally nameless, and so on). We believe
that a subsequent paper should specifically address the language-parametrized
proofs for all these binding approaches and the study of their complexity.

Threat to Validity. To recall, our question is: What is the complexity of carrying
out the syntactic approach to type soundness for our intended class of functional
languages? We certainly acknowledge that it is in the eye of the beholder to
reckon whether the algorithms in [8] describe this proof method accurately. We
do not claim to answer this question definitely, hence “Towards” in our title,
which stresses that this paper offers a first example of this kind of analysis.

The paper is organized as follows. Section 2 reviews the main elements of
operational semantics and provides some definitions that we will use in our
complexity analysis. Section 3 provides our analysis of canonical form lemmas.
Section 4 analyzes the progress theorem. Section 5 analyzes the type preservation
theorem. Section 6 discusses some limitations of our analysis. Section 7 discusses
related work and Sect. 8 concludes the paper.
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2 Operational Semantics and Complexity Definitions

We begin with a review of operational semantics. Figure 2 shows a λ-calculus
with lists, pairs, let-declarations, an error and a (simple) try error handler. We
call this language fl (as in “functional language”).

A language has a grammar and an inference rule system. The latter defines
relations such as a typing relation and a reduction relation. A grammar consists
of a series of grammar rules, each of which defines a syntactic category, such
as Type and Expression. Each syntactic category has a metavariable, such as
T and e in Fig. 2, and a series of grammar productions, such as Int, T → T ,
and List T of Type. The elements that can be derived by a grammar are terms,
ranged over by t. Terms can contain metavariables. Terms can use unary binding
(X)t [6], denoting that the variable X is bound in t, and the capture-avoiding
substitution t[t/X]. As Lang-n-Prove needs to access terms uniformly, terms
are handled in abstract syntax tree, for example we have (× T1 T2) rather than
T1 × T2. Each inference rule has a series of formulae called premises and one
formula called conclusion. For example, Γ � e1 : T1 → T2 and Γ � e2 : T1 are
premises of rule (t-app), and Γ � e1 e2 : T2 is its conclusion. Inference rules
whose conclusion can derive a �-formula are called typing rules, whereas those
that derive a −→-formula are called reduction rules. fl makes use of evaluation
contexts, which define which arguments of an operator can be evaluated. Error
contexts specify in which contexts the occurrence of the error can be detected
so that the overall computation can fail.

Some Definitions for Complexity Analysis. The following definitions will be use-
ful in our analysis. Given a language definition, |cname | is the number of gram-
mar productions of the syntactic category cname of the language. For example,
|Type | = 4 and |Expression| = 13 for fl. Notation |rel | denotes the number of
inference rules whose conclusion derives a formula for the relation rel . For exam-
ple, | � | = 13 and | −→ | = 10 for fl. We also define |rules| = | −→ | + | � |.
Notation max-arity(cname) denotes the maximum number of arguments that
a single constructor has in cname. For example, max-arity(Expression) = 2
because cons, abstraction (with arguments T and (x)e), application, pairs, let,
and try have two arguments and that is the maximum.

We make the following assumption: The maximum number of arguments
of operators is small and negligible compared to other quantities such as the
number of rules, expressions, and so on. For fl, for example, we have that
max-arity(Expression) = 2 while | � | = 13. Then, we remove max-arity-terms
in our calculations in terms such as (max-arity(Expression) ∗ | � |) as | � | is
dominant but we still keep max-arity-terms when they have a higher order, as
in (max-arity(Expression)2∗|�|). This assumption occurs pervasively in practice
and simplifies our calculations.

We shall see that the type preservation proof needs to detect whether a sub-
stitution is used in the targets of reduction rules. That is, we need to traverse
the nodes of the abstract syntax tree of e′ of e −→ e′ to see whether a substi-
tution occurs. This complexity needs to be taken into account. We then define
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Fig. 2. Language definition of fl. (Integers only serve as base values.)

nodesInTargets as the maximum number of nodes of the abstract syntax tree of
the targets of reduction rules. For example, nodesInTargets = 5 in fl because
the target e[v/x] of the β-reduction rule has 5 nodes (top-level constructor for
the substitution operation and children e, v, and a variable-node with x as its
only child) and that is the maximum.

Our Intended Class of Functional Languages. The language-parametrized proofs
of [8] do not apply to every language. Their application is limited to a restricted
class of languages that [8] describes as 1) pure functional, i.e., computation solely
proceeds by rewriting expressions (and therefore there is no state), 2) harmonious
[11,19], i.e., operators can be classified in elimination forms (application, head,
fst and snd in fl) and introduction forms (n, λ, nil, cons and pairs), and
3) to which we can add derived operators (such as let), an error and error
handlers. (The work in [8] considers the presence of one error only or none.) These
characteristics entail some constraints on language definitions. For example, the
reduction relation must be e −→ e′ and we handle the usual typing relation
Γ � e : T with a standard type environment (map from variables to types).
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Other constraints apply but due to lack of space we cannot review them and
we refer the reader to the paragraph “What Languages Do We Target in This
Paper?” of Sect. 2 of [8], and the paragraph “Limitations” of Sect. 9 of that paper.
The following constraints are not explicitly stated in [8] and we use them:

– Grammar productions are “skeletons” or metavariables. We define skeleton
as a constructor name applied to metavariables as its arguments. For exam-
ple, (e e) is a skeleton in Expression. In inference rules, a term is a skeleton
whenever its metavariables are also distinct, as (e1 e2) in (t-app).

– There is exactly one typing rule per constructor of Expression, which applies
to a skeleton. This also entails that |Expression| = |� | holds for our languages.

This prevents languages from having terms such as (e1 (cons e2 e3)) as
grammar productions of, say, Expression, or as subjects of typing rules. (They
would not make inductive reasoning immediately available.) These restrictions
also make some operations simpler. For example, given a term (op e1 e2) from
Expression, and given a typing rule, we have a quick means to check whether the
latter is a typing rule of that expression. Indeed, since both the expression and
the subject of the typing rule are skeletons, it is sufficient to check that their
top-level constructor name is equal. We will make use of these considerations
during our analysis. Our readers are invited to see that fl of Fig. 2 adheres to
the constraints stated above and that these characteristics are, indeed, quite
common in functional languages. (Languages that do not respect them may still
be type sound but the language-parametrized proofs of [8] would not prove that.)

3 Analysis of Canonical Form Lemmas

Lang-n-Prove provides a proof language for expressing proofs. We do not
repeat its syntax from [8] and we shall describe its relevant parts as we encounter
them. All the language-parametrized proofs that we analyze in this paper are
presented and described in [8] and we shall review them before their complexity
analysis. We refer our readers to [8] for their original description. Language-
parametrized proofs are algorithms for generating proofs when a language defi-
nition is given as input. Therefore, we shall use phrases such as “Line n generates
such lemma” and “Line n emits such a formula” in our analysis.

Figure 3 shows the language-parametrized proof for canonical form lemmas
of [8]. These lemmas establish the shape of values for types. Line 1 generates
a lemma for each type constructor in the grammar of types. Therefore, the
overall complexity is that of Line 2-11 multiplied by |Type |. Line 2-4 generate
the statement of one canonical form lemma. We have highlighted some parts of
Fig. 3 with colors. The figure also shows some examples of statements, which use
those colors to indicate which instructions have generated them.

Intuition on how Fig. 3 generates one statement follows. (Review of [8].) The
variable ty is a type from the grammar of types. As ty may contain variables (as
List T or × T1 T2), we universally quantify these variables with ∀vars(ty). We
generate a series of or-formulae with

∨
. Each formula says that e can be one



106 M. Cimini

Fig. 3. Language-parametrized proof of [8] for canonical form lemmas

of the values of ty. We compute all the values of ty with valuesOf(ty). These
values may contain variables (as 〈v1, v2〉) and we existentially quantify them
with ∃vars(v). Furthermore, some of these variables must be values themselves
(as v1 and v2 of 〈v1, v2〉) and so we create and-formulae with

∧
that state that

they are values.
Complexity analysis follows. The complexity of generating one statement is

the sum of the complexity of 1) ∀vars(ty), 2) valuesOf(ty), 3) ∃vars(v), repeated
for as many values of ty, that is, O(|Value |) times, and 4) valueArgs(v) repeated
O(|Value |) times for the same reason. Notice that Line 2 emits “∀e”, which is
O(1). Generally speaking, emitting fixed parts of formulae and proofs is O(1)
and we shall omit including the lines that do just that from our calculations.

In ∀vars(ty), we have that ty is a skeleton from Type (top-level construc-
tor applied to metavariables). Its arguments are the variables to quantify over.
Therefore, the complexity of ∀vars(ty) is max-arity(Type). The valuesOf(ty)
expression iterates over the terms v in the grammar Value in O(|Value |). For each,
we return the output of its typing rule by scanning the typing rules in O(| � |),
and checking if its conclusion applies to v. This latter check is O(1) because we
can simply compare two top-level constructors thanks to the fact that the two
are skeletons. Therefore, the complexity of valuesOf(ty) is O(|Value | ∗ | � |).
The complexity of ∃vars(v) is analogous to ∀vars(·) and is O(max-arity(Value)).
In valueArgs(v), v is a skeleton from Value and so we scan its arguments in
O(max-arity(Value)) to check whether they are a value variable in O(1). The
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complexity of one lemma statement is then the sum of:

O(max-arity(Type)) ∀vars(ty)
O(|Value | ∗ |�|) valuesOf(ty)
O(|Value | ∗ max-arity(Value)) ∃vars(v)., O(|Value |) times
O(|Value | ∗ max-arity(Value)) valueArgs(v), O(|Value |) times
That is O(|Value | ∗ |�|).

Intuition on how Fig. 3 generates one proof follows. (Review of [8].) intros
introduces the proviso of the theorem, and case performs a case analysis on a
given hypothesis. The case analysis of Line 5 is on how the expression has been
typed. Line 6 iterates over expression forms (except object vars x, by default).
For each, we compute the type assigned by its typing rule with ofType(e).
It is helpful to make examples with canonical-form-list to see this proof. For
example, ofType(nil) = List T because of (t-nil) of Fig. 2. In this case,
nil succeeds the condition ty = ofType(e) at Line 7. nil also succeeds the
condition e in Value at Line 8, which checks that nil is derived by the gram-
mar Value. We then conclude the proof case with search. The search instruc-
tion denotes that we have everything we need to prove the current goal. At
this point, search concludes the proof because nil must be in the or-formula
built by the statement of the lemma. Another example is (cons e1 e2). Line 7
succeeds because ofType(cons e1 e2) = List T but Line 8 does not because
(cons e1 e2) in Value does not hold since Value contains (cons v1 v2), instead.
The condition (cons e1 e2) may be Value at Line 9 succeeds, however, as it checks
that cons is among the grammar productions of Value. In this case, we do a case
analysis on ValHyp, which says that (cons e1 e2) is a value and therefore must
be (cons v1 v2). Then, we conclude with search. Another example is (head e).
We have ofType(head e) = T because of (t-head), and so it is not List T .
However, Line 7 succeeds because of isVar, which checks that T is a metavari-
able. The other conditions do not succeed and we end up in the else-branch
at Line 10. This is a case analysis on how head is a value, but head is not a
value and so this proof case is discharged by contradiction. Another example is
expression n with ofType(n) = Int. None of the conditions of Line 7 succeed
and we end up in the else-branch at Line 11. noOp does not generate any proof.
Indeed, the lemma says Main : � e : List T and a case analysis on it does not
even propose the case for n.

Complexity analysis follows. The complexity for generating one proof is the
sum of the complexity of the operations above. The ofType(e) operation scans
the typing rules in O(| � |) and detects whether the typing rule applies to the
selected e in O(1) (because it compares top-level constructors, thanks to having
two skeletons). Equality “=” of Line 7 is shallow and compares the top-level
constructors of the two terms in input in O(1). (We use a different notation
with =, may be, and in than in [8].) isVar is O(1), as well. The e in Value test
scans all the productions of the grammar Value in O(|Value |) and for each it
checks their equality to e. This time around also the arguments are compared
because, we recall, this is the check that rejects (cons e1 e2) for not matching
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(cons v1 v2). This is done in O(max-arity(Value)). The e may be Value test is
similar to e in Value except that it matches only top-level constructors in O(1).

The complexity of generating one proof is therefore:

O(|Expression|) ∗ (but recall from Section 2 that |Expression| = |� |)
( O(|� |) ofType(e)
+ O(|Value | ∗ max-arity(Value)) e in Value
+ O(|Value |) ) e may be Value.

As |Expr.| = |� |, this is O(|� | ∗ (|� | + |Value |)) = O(|� |2 + (|Value | ∗ |�|)),
which is simply O(|� |2).

The overall complexity is: For each type, statement + proof, given below.

O(|Type | ∗ (|Value | ∗ |�| + |� |2)) = O(|Type | ∗ |�|2).
The intuition behind this complexity is that there is a lemma for each type

constructor (hence |Type | ∗ . . .), each of which requires a case analysis of the
typing rules (hence a first ∗ |�|), but then each of these cases entails operations
such as ofType(e) that, too, iterate over the typing rules (hence another ∗ |�|).

Fig. 4. Language-parametrized proof of [8] for the progress theorem

4 Analysis of the Progress Theorem

The proof of the progress theorem is divided into two parts. The first part is
the main theorem. Figure 4 shows its language-parametrized proof of [8]. The
formula “e progresses” holds whenever e is a value, e is an error, or e −→ e′, for
some e′. (We use a different notation for it and for �-formulae than in [8].)

4.1 Analysis of the Main Theorem

Intuition on the proof of the progress theorem in Fig. 4 follows. (Review of [8].)
The proof is by induction. Line 2 shows that sometimes instructions are pre-
fixed with a name. This name is used to store the formulae that are derived
after performing that instruction. For example, Typ : induction on Main stores
derived formulae as hypotheses Typ0 , Typ1 , and so on. (Example for head e:
after induction, Typ0 is the premise Γ � e : List T of (t-head) of Fig. 2). The
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proof continues as follows. For each operator, we invoke the inductive hypothe-
sis to derive that its evaluated arguments “progress”. Then, an operator-specific
progress theorem concludes the proof. To make an example, consider the appli-
cation (e1 e2). The inductive hypothesis derives that both e1 and e2 “progress”,
then the theorem progress-app of Fig. 5 proves that the whole (e1 e2) “progresses”.
(backchain applies the lemma to conclude the proof.)

Complexity analysis follows. The complexity of the main theorem in Fig. 4
is characterized by Line 4 repeated |Expression| times. The contextualArgs(e)
operation computes the evaluated arguments of the operator of e by scanning
the grammar EvalCtx in O(|EvalCtx|). For each grammar production, we match
its top-level operator with that of e in O(1). Then, we scan the arguments
in O(max-arity(EvalCtx)) to find E, that is, the position that is contextual.
Then, contextualArgs returns a list of indexes. The number of positions that
are returned by contextualArgs(e) is O(max-arity(EvalCtx)). Therefore, the
apply at Line 4 is emitted (in O(1)) O(max-arity(EvalCtx)) times.

The complexity of the proof of the progress theorem is the following.
O(|Expression| ∗ ((|EvalCtx| ∗ max-arity(EvalCtx)) + max-arity(EvalCtx))),

which is O(|Expression| ∗ |EvalCtx|).
The intuition behind this complexity is that for each expression constructor

we have to call the inductive hypothesis on all its contextual arguments before
applying the finishing lemma, and computing the contextual arguments for an
expression constructor entails scanning the grammar EvalCtx (hence ∗ |EvalCtx|).

4.2 Analysis of Operator-Specific Progress Theorems

Figure 5 shows the language-parametrized proof for operator-specific progress
theorems of [8]. Line 1 generates a proof for each expression constructor. There-
fore, the complexity of this proof is that of Line 2-16 multiplied by |Expression|.

Intuition on how Fig. 5 generates one statement follows. (Review of [8].)
The expression selected by the iteration at Line 1 may contain variables, which
we universally quantify with ∀vars(e). The ⇒ operation creates a premise for
each evaluated argument. We compute them with evaluationOrder(e), which
is similar to contextualArgs(e) except that it returns indexes in the order of
evaluation. We create premises such as e1 progresses and e2 progresses using
getArg(e, i), which returns the i-th argument of e as in getArg((e1 e2), 0) = e1.

Complexity analysis follows. The complexity for generating one statement
is the sum of 1) ∀vars(e), 2) evaluationOrder(e), and 3) getArg(e, i) repeated
for as many evaluated arguments of e, that is, O(max-arity(EvalCtx)) times.
As discussed in Sect. 3, ∀vars(e) is O(max-arity(Expression)). The operation
getArg(e, i) accesses the argument in array-style and is O(1). We explain
evaluationOrder(e) with an example similar to that of [8], which cites [10] for
using this method. Consider an operator op with five arguments, (op e e e e e),
and let us evaluate its arguments from right to left. evaluationOrder(e) scans
the grammar EvalCtx of evaluation contexts and creates the graph {(0 
→ 1), (0 
→
2), (0 
→ 3), (0 
→ 4), (1 
→ 2), (1 
→ 3), (1 
→ 4), (2 
→ 3), (2 
→ 4), (3 
→ 4)}, which
summarizes the arguments’ dependencies. For each evaluation context, the graph
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Fig. 5. Language-parametrized proof of [8] for operator-specific progress theorems

contains pairs from the position of E to each of the v positions. For example,
the evaluation context (op e E v v v) creates the pairs (1 
→ 2), (1 
→ 3), and
(1 
→ 4) of that graph. Scanning EvalCtx is O(|EvalCtx |) and generating the
pairs is O(max-arity(EvalCtx)) for each context because we scan the arguments
in search of E and v. Afterwards, evaluationOrder computes the topologi-
cal sort of this graph, which returns the arguments in their evaluation order,
which is [4, 3, 2, 1, 0] in the example above. The complexity of topological sort is
O(|V | + |E|). Here, the set of vertices V is the number of evaluated arguments
of an operator, that is, |V | = O(max-arity(EvalCtx)). The number of edges (set
E) is the number of pairs like the ones above ({(0 
→ 1), (0 
→ 2), (0 
→ 3), . . .}),
which are constrained by the fact that [8] imposes that contexts have no cir-
cular dependencies. Therefore, the first evaluated argument does not depend
on other arguments. The second evaluated argument depends at most on the
first. The third evaluated argument depends at most on the first and the sec-
ond, and so on. The number of pairs in E is then at most 1 + 2 + 3 + . . . + k
for an operator with k evaluated arguments. The maximum value for k is
max-arity(EvalCtx). This summation can be described with the Gaussian for-
mula |E| = 1/2∗(max-arity(EvalCtx))∗(max-arity(EvalCtx)+1), which is essen-
tially O(max-arity(EvalCtx)2). Then O(|V | + |E|) is O(max-arity(EvalCtx)2).
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The complexity for generating one theorem statement is the sum of:

O(max-arity(Expression)) ∀vars(e)
O(1) ∗ O(max-arity(EvalCtx)) getArg(e, i), for each element of ⇒
O(max-arity(EvalCtx)2) evaluationOrder(e)
That is O(max-arity(EvalCtx)2).

Intuition on how Fig. 5 generates one proof follows. (Review of [8].) In our
setting, an operator can be an elimination form, an introduction form, an error,
an error handler or a derived operator. We review the explanation of [8] insofar
elimination forms is concerned because it is the worst case scenario. We refer
our readers to [8] for the other cases.

Line 5 performs case analyses on the progress premises in the order of eval-
uation. To see why, let us consider an elimination form with three arguments
arg1 , arg2 , and arg3 that are evaluated from left to right. A case analysis on
the progress of arg1 creates a tree of proof cases with three children: 1) it is a
value, 2) it is an error, and 3) it takes a step. Then, it operates in case 1) from
which we do a case analysis on the progress of arg2 . This creates a subtree in
case 1) of arg1 with its three cases for arg2 . Then, it operates in case 1) of arg2
from which we do a case analysis for arg3 , which creates a subtree in case 1)
of arg2 with its three cases for arg3 . (Fig. 11 of [8] shows this type of tree. Due
to lack of space, we could not draw a tree here.) After all the case analyses, we
operate in the proof case 1) of the last evaluated argument, that is, all evaluated
arguments are values in this case. Therefore, the elimination form has a chance
to apply a reduction rule, as the needed arguments have been evaluated. We
apply the canonical form lemma at Line 8. To invoke the correct lemma, we
need the type that the elimination form eliminates. (If it is head we need List,
if it is fst we need ×, and so on). We compute this type with getArgType(e, 0).
Without loss of generality, [8] fixes that the principal argument [13], i.e., the
argument that resolves the behavior of an elimination form, is the first, hence
index 0. The getArgType(e, 0) operation retrieves the type of the first argument
of the elimination form according to its typing rule. For example, according to
(t-head), the type of e in (head e) is List. Next, Line 9 opens a proof case
for each canonical form of such type. For each, we appeal to the existence of
a reduction rule (with search at Line 10). This concludes case 1) of the last
evaluated argument, say, arg3 above. Then, the remaining cases are 2) for arg3 ,
for which we appeal to the existence of an error context with search, and 3) for
arg3 , for which we appeal to the existence of an evaluation context with search.
Concluding this subtree completes case 1) for arg2 , for which cases 2) and 3)
remains to be proved with the same searchs. Line 11 generalizes and emits two
searchs for each evaluated argument to prove cases 2) and 3) for each of them.

Complexity Analysis. The complexity of generating one proof is given by the
sum of 1) evaluationOrder(e), 2) valuesOf, 3) isEliminationForm(e), 4)
getArgType(e, 0), 5) emitting “search” O(|Value|) times at Line 10, and 6) emit-
ting “search. search” O(max-arity(EvalCtx)) times at Line 11. As we have
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already discussed 1) and 2), we discuss the rest. In isEliminationForm(e), e is
from Expression and is a skeleton, say, of an operator op. We scan all the reduc-
tion rules that define a step for op in O(| −→ |). (Checking that the top-level
operator of a source of a reduction rule is op is O(1)). For each of these rules we
check that the principal argument is in Value. As previously discussed, this check
is O(|Value| ∗ max-arity(Value)). The getArgType(e, 0) operation retrieves the
typing rule of e in O(| � |). Then, it retrieves the first premise and returns the
output type of this premise. These are O(1) array-style accesses.

The complexity for generating one theorem proof is then the sum of:

O(max-arity(EvalCtx)2) evaluationOrder(e)
O(|−→| ∗ |Value| ∗ max-arity(Value)) isEliminationForm(e)
O(|� |) getArgType(e, 0)
O(|Value| ∗ |�|) valuesOf(ty)
O(|Value|) search iterated at Line 10
O(max-arity(EvalCtx)) search. search iterated at Line 11.

That is O(max-arity(EvalCtx)2 + (|−→| ∗ |Value|) + (|Value| ∗ | � |)), which
is O(max-arity(EvalCtx)2 + (|rules| ∗ |Value|)).

The overall complexity is: For each expression, statement + proof:

(We mention the term max-arity(EvalCtx)2 only once)
O(|Expression | ∗ (max-arity(EvalCtx)2 + (|rules| ∗ |Value|)))
= O((|Expression | ∗ max-arity(EvalCtx)2) + (|Expr. | ∗ |rules| ∗ |Value|)).
The intuition behind this complexity is that for each expression constructor

we need to compute the evaluation order of its evaluated arguments with a
topological sort (hence |Expression | ∗ max-arity(EvalCtx)2). Furthermore, to
carry out the proof, each expression constructor needs us to perform operations
with two nested loops that iterate over the rules and over the values (hence
|Expression | ∗ |rules| ∗ |Value|). For example, isEliminationForm(e) iterates over
the reduction rules, besides the values, and valuesOf(ty) iterates over the typing
rules, besides the values.

5 Analysis of the Type Preservation Theorem

Figure 6 shows the language-parametrized proof for the type preservation theo-
rem of [8]. This theorem establishes that, for each step e −→ e′, the type of e
and the type of e′ coincide. (We use a different notation for −→-formulae than
in [8].) Line 1 creates the statement of the theorem in O(1).

Intuition on how Fig. 6 generates the proof follows. (Review of [8].) The proof
is by induction on � e : T . For each expression e, we perform a case analysis on
the reduction steps that e can take (Line 4). This case analysis fails for values,
proving the case by contradiction. Otherwise, all the steps of e are proved in the
following order: (1) the reduction steps that are specific of e are handled at Line
5 and 6, (2) contextual steps (such as head e −→ head e′ when e −→ e′) are
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Fig. 6. Language-parametrized proof of [8] for the type preservation theorem

handled at Line 7, and (3) the error steps (such as head error −→ error) are
handled at Line 8 and 9. The cases of contextual steps (2) are proved thanks to
the inductive hypothesis. Error steps (3) are proved by appealing to the lemma
error-types-all : ∀err, T1, T2. � err : T1 ⇒ � err : T2 whose proof is trivial and
can be simply emitted in O(1). (Appendix B of [8] shows this trivial proof.
Notice that [8] imposes that the error must be typed at any type.) Case (3) also
goes differently for error handlers when the error occurs as principal argument
(i = 0 at Line 8). Such a case is handled as case (1) rather than (3). Case (1)
distinguishes two cases: (i) Line 5 handles rules such as let x = v in e −→ e[v/x]
which fire for every value, and (ii) Line 6 handles the rules for elimination forms
such as head (cons v1 v2) −→ v1, which pattern-match the principal argument.
As (i) and (ii) are similar cases, we cover (ii) in some detail and refer our readers
to [8] for case (i). The case analysis spawn by the induction at Line 2 provides the
type of the arguments of head and so gives the type of (cons v1 v2) as List T at
hypothesis Typ0 (i.e., the principal argument, which is always the first argument
by convention). However, we do not have yet the types of v1 and v2, therefore
we perform a case analysis on Typ0 to acquire them and to type check the
target v1 to see if it has the same type of the source. (Although other rules like
the β-reduction rule would need to apply a substitution lemma, the types of
all the metavariables of the source are known after the case analysis on Typ0 .)
This schema applies to all elimination forms of our setting. The stepsWithPM(e)
operation returns the targets of all the reduction rules of type (ii) (such as v1
above). The stepsWithoutPM(e) operation of Line 5 returns the targets of the
reduction rules of type (i) (such as e[v/x] above). Notice that Line 5 and 6 also
detect occurrences of substitutions in targets with containsSubst(tg), so that
a substitution lemma can be applied. This case is left unspecified as �.

Complexity Analysis. The complexity of carrying out this proof is characterized
by the iteration over all expressions at Line 3. Therefore, the overall complexity
is that of Line 4-9 multiplied by |Expression |. We notice that stepsWithoutPM(e)
and stepsWithPM(e) perform the same test (which we describe shortly) and thus
have the same complexity. We then analyze Line 6 only among 5 and 6. We also
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notice that Line 8-9 have worst complexity than Line 7. Therefore the complex-
ity of Line 4-9 is characterized by Line 6 and Line 8-9. Line 6: stepsWithPM(e)
scans all the reduction rules in O(| −→ |) and checks if the rule is for the top-
level constructor of e in O(1) and whether its principal argument is a com-
plex value in O(1), i.e., built itself with a top-level constructor. Line 6 iterates
over the targets provided by stepsWithPM(e), that is, O(| −→ |) times. The
containsSubst(tg) operation traverses the term tg to detect the use of sub-
stitution in O(nodesInTargets) (defined in Sect. 2). The worst case scenario is
when containsSubst(tg) succeeds and code for applying a substitution lemma is
needed. As [8] does not provide these lemmas, we leave their complexity unspec-
ified and denote it with C(Subst). The complexity of Line 6 is then O(|−→|) +
O(|−→|∗(nodesInTargets+C(Subst))). Line 8-9 depend on contextualArgs(e)
and isErrorHandler(e). We have analyzed contextualArgs(e) in Sect. 4.1.
The complexity of isErrorHandler(e) is that of isEliminationForm(e), which
we have analyzed in Sect. 4.2, except that it scans the grammar Error rather
than Value and is therefore O(| −→ | ∗ max-arity(Error)). Then, Line 8-9 is
O(max-arity(EvalCtx) + (max-arity(EvalCtx) ∗ |−→| ∗ max-arity(Error))).

The overall complexity for the type preservation theorem is:

O(|Expression|) ∗
( O(|−→| ∗ (nodesInTargets+ C(Subst))) Line 6
+ O(max-arity(EvalCtx) ∗ |−→| ∗ max-arity(Error)) ) Line 8 and 9

That is O((nodesInTargets+ C(Subst)) ∗ |−→| ∗ |Expression|).
The intuition behind this complexity is that for each expression constructor

we have to extract its reduction rules by iterating over all the reduction rules.
For each of these rules, the dominant complexity is that of detecting the presence
of substitution and use substitution lemmas.

6 Limitations of Our Analysis

Our analysis presents some limitations that we would like to discuss.
This paper focuses on complexity upper bounds only. It would be interesting,

instead, to explore lower bounds as they may provide useful insights into the way
the proofs that we have addressed are carried out.

Proofs are λ-terms in several type theories and proof assistants, and λ-terms
do have a notion of size. We did not attempt to connect such a size with the
complexity given in this paper. It would be interesting to explore that venue.

This paper does not address the space complexity of carrying out proofs. It
would be interesting to do so. A subtle scenario may occur when proofs require to
evaluate λ-terms, which may lead to unexpected space costs [1]. However, those
cases do not occur in the proofs of this paper because we never fully evaluate λ-
terms. The closest task to evaluating λ-terms occurs within the progress theorem
but such a task is limited to derive one step from an expression. Furthermore,
such derivations act on inference rules with a simple form, as the reduction rules
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of our intended class of functional languages do not have any premises or they
have at most one recursive call on a subexpression (see Fig. 2, for an example).

We have handled the complexity of search as constant time. Alternatively, we
could include the complexity of performing search. We can explain the difference
between the two approaches with an example outside of the realm of language
proofs. Let us suppose that a proof case concludes with search because 1∗2∗3 =
6. A high-level view on the proof method being analyzed would say that we
simply appeal to the fact that the two numbers are equal. In this case, the work
to carry out this proof case is minimal and is O(1). A low-level view would
instead include the complexity of multiplication. We have opted for the former
view but we acknowledge that the latter view is a valid alternative.

Works such as [10] checks whether language definitions belong to our intended
class and whether they have all in order so that type soundness is guaranteed to
hold. Once this property is established there would not be a need for generating a
proof. Most of the checks of [10] have also been implemented in [9] in the form of
database queries. It would be interesting to study the complexity of performing
the checks of these works.

7 Related Work

Automated Proving of Type Soundness. The proof language of Lang-n-Prove is
inspired by that of the Abella proof assistant [4]. In addition to express language-
parametrized proofs, the Lang-n-Prove tool also takes a language definition as
input and generates machine-checked proofs in Abella. The work in [8] reports
that Lang-n-Prove has been applied to a plethora of functional languages with
common types and operations. (See Sect. 9 of [8] for a list of these languages.)
That paper also reports generating, for all these languages, the mechanized proof
that fully machine checks type soundness when the correct code for substitution
lemmas is provided. (We believe that this provides some evidence that the algo-
rithms of [8] capture the intended proof method with some accuracy.)

There are other works that automate type soundness. For example, Veritas
[12] gives theorems as input to a first-order automated prover and, for some
functional languages, Twelf [20] can prove these theorems at once with high
automation in higher-order logic programming. However, these works do not
aim at describing the syntactic approach to type soundness. In some sense,
the complexity of mechanizing type soundness is different from that of a proof
method because mechanized proofs can be short thanks to proof automation.
The complexity of Veritas and Twelf ultimately depends on the complexity of
automated theorem provers and of logic programming machinery, which does
not inform about the complexity of the syntactic approach of type soundness.

Complexity of Type Sound Interpreters. The intrinsic typing approach [7] lever-
ages on the meta-theoretic properties of a type theory. In this approach, an
interpreter is written in such a way that if it type checks then the language
is guaranteed to be type sound. This approach has been applied extensively
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[2,3,14,23,25]. The complexity of type checking may be known for several type
theories. This may be a means to establish a bound on the complexity of certi-
fying type soundness. However, such a bound is general to all sorts of programs
that can be written within the type theory at hand and does not provide the
specific complexity of the syntactic approach to type soundness.

Similarly, Implicit Computational Complexity [5,15,17] is a remarkable
research area on the cost analysis of reductions in λ-calculi and type theories.
However, such work does not characterize the complexity in terms of language
elements such as the number of expression constructors, number of typing rules,
reduction rules, and other common operational semantics quantities of a lan-
guage being implemented within them, which is instead the goal of this paper.

8 Conclusion

Our question was: What is the complexity of carrying out the syntactic approach
to type soundness for our intended class of functional languages? We have ana-
lyzed the complexity of the language-parametrized proofs of [8], which algorith-
mically describe such approach and have been applied to a plethora of functional
languages in that prior work.

Figure 7 summarizes our analysis. We refrain to claim to have answered the
question above definitely, as it is in the eye of the beholder to reckon whether the
algorithms in [8] describe this proof method accurately. Nonetheless, this paper
offers an example of analysis that strives to tackle this question.

In the future, we would like to address the limitations that we have discussed
in Sect. 6. We also plan on systematically developing language-parametrized
proofs of substitution lemmas for the major approaches to binders (de Bruijn

Fig. 7. Summary of our complexity analysis. “Op.” abbreviates “Operator-specific”.
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indices, locally nameless, and higher-order abstract syntax, among others) and
studying their complexity. We also would like to extend the proofs of [8] to work
in the presence of subtyping. Finally, we would like to address noninterference
as we have mentioned in Sect. 1, and also develop a language-parametrized proof
of strong normalization based on Tait’s method with logical relations [24].
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Abstract. We propose a framework for expressing and analyzing the
Quality of Service (QoS) of message-passing systems using a chore-
ographic model that consists of g-choreographies and Communicating
Finite State machines (CFSMs). The following are our three main con-
tributions: (I) an extension of CFSMs with non-functional contracts to
specify quantitative constraints of local computations, (II) a dynamic
temporal logic capable of expressing QoS, properties of systems rela-
tive to the g-choreography that specifies the communication protocol,
(III) the semi-decidability of our logic which enables a bounded model-
checking approach to verify QoS property of communicating systems.

1 Introduction

Over the past two decades, software has steadily changed from monolithic appli-
cations to distributed cooperating components. Choreographic approaches are
gaining momentum in industry (e.g. [1–3,5]) which, increasingly, conceives appli-
cations as components interacting over existing communication infrastructures.
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Among other models, choreographies stand out for a neat separation of con-
cerns: choreographic models abstract away local computations from communi-
cations among participants. In fact, since their introduction [6], choreographies
advocate for a separation between a global view and a local view of communi-
cation. The former is a high-level description of (distributed) interactions. The
latter view is a description of each component in isolation. This is the distinctive
feature of choreographies that we exploit here to reason about quantitative prop-
erties of applications. The basic idea is to specify the values of quality attributes
of local states of components and then aggregate those attributes along runs
involving communications. A simple example can illustrate this. Suppose that a
component A sends another component B a message m and we want to consider
two quality attributes: monetary cost (c) and memory consumption (mem). This
behaviour can be abstracted away with the finite-state machines below

behaviour of A:
q0

{c ≤ 5,mem = 0}
q1

{5 ≤ c ≤ 10, mem < 3}
AB!m

behaviour of B:
q0

′

{c = 0,mem = 0}
q′
1

{10 ≤ mem ≤ 50, c = 0.01 · mem}
AB?m (1)

where AB!m and AB?m respectively denote the output and input communica-
tion actions, and each state is decorated with a specification predicating over
the quality attributes in the local states of A and B. For instance, both A and B
allocate no memory in their initial states, computation in A may cost up to five
monetary units before executing the output, and B has no cost since it’s just
waiting to execute the input (c = 0). Likewise, after the communication actions,
the local computations of A and B are specified by the formulae associated to
states q1 and q′

1.
The interaction between A and B depends on the communication infrastruc-

ture; e.g., asynchronous message-passing yields a run like

π :
s0 s1 s2

AB!m AB?m

where first the message is sent by A and then it is eventually received by B.
We are interested in analyzing quality properties that admit a measure-

ment, thus assuming that the QoS attributes are quantitative. These proper-
ties encompass both quantitative attributes at the application level as well as
resource consumption metrics. For instance, we could be interested in analyzing
the monetary cost or the number of messages retrieved in a messaging system;
but we could also be interested in analyzing its memory usage or CPU time.
It’s important to emphasize that our framework is designed to be agnostic and
adaptable, allowing for the consideration of any quantifiable attribute, regard-
less of its specific nature. Furthermore, our framework is specifically designed to
enable analysis of how quantitative properties of local computations influence
the system-wide properties. Hence, we envisage the quality constraints as con-
tracts that the local computations of components should honour. For instance,
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the specifications in (1) tell the cost of local computations in A and B, they do
not predicate on the QoS of the communication infrastructure.

Once these quality constraints on local computations are fixed, natural ques-
tions to ask are e.g., “is the memory consumption of B along run π within a
given range?” or “is the overall ry cost below a given threshold?”. Answers to
such questions require checking that the aggregation of the values of the quality
attributes along the run π entails the properties. Interestingly, how to aggregate
those values depends on the quality attributes. For instance, the aggregation
of memory consumption can be computed by taking the maximum, while the
aggregation of monetary cost can be computed as the sum. We work under
the hypothesis that developers have no control over communication infrastruc-
ture. More precisely, QoS aspects related to how communications are realised
are not under the control of applications’ designers. Instead, designers have con-
trol over local computations, thus suggesting that QoS constraints are naturally
associated to states of components. Indeed, we rely on behavioural types (such
as [9–13]) which abstract away low level details.

Contributions. We propose a framework for the design and analysis of QoS-aware
distributed systems, enabled by the following technical contributions:

Models for QoS attributes. Section 4 presents a straightforward extension
of communicating finite-state machines (CFSMs [14]; reviewed in Sect. 3) to
express QoS aspects of components. Basically, we assign to each state of
CFSMs a QoS specification as in (1). We adopt real-closed fields (RCFs,
cf. Sect. 3) to abstractly represent QoS values; besides being a complete and
decidable abstract formalisation of the first-order theory of the real numbers,
RCFs are instrumental for a smooth definition of our framework.

A dynamic temporal logic for QoS. Section 5 introduces a logic, dubbed QL,
to express QoS properties. Taking inspiration from Propositional Dynamic
Linear Temporal Logic (DLTL) [15], QL indexes temporal modalities with
global choreographies [16] (g-choreographies, Sect. 3), a model of global views
of choregraphies, in order to predicate over QoS properties of the whole sys-
tem. This is a distinct characteristic of QL that we comment in Sect. 2.

A semi-decision procedure for QL. Section 6 proves QL to be semi-decidable
by providing a k-bounded semi-decision procedure and relying on the decid-
ability of the theory of real-closed fields [17] to check QoS constraints in
atomic formulae. A distinctive aspect of the procedure is that it can be used
as a bounded model-checking procedure of QL formulae.

Section 7 draws some conclusions and points out some further lines of research.

2 Related Work

The relevance of the problem addressed here has been already highlighted by
other researchers [7,8]. There is a vast literature on QoS, spanning a wide range
of contexts and methods [18,19]. This paper can be positioned in the category
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of general application-level QoS. The combination of RCFs and our behavioural
types aims to capture essential aspects for applications’ quantitative analysis
while striving for generality. In this vein, a proof-of-concept methodology based
on behavioural types has been proposed in [20] for client-server systems. To the
best of our knowledge, our is the first work blending behavioural types with QoS
and offering a decision procedure for multiparty protocols.

In order to abstractly capture QoS (instead of focusing on specific attributes)
we adopt RCFs. Other abstract models of QoS such as quantales [21] or c-
semirings [22–24] have been proposed. We opted for RCFs due to their inherent
decidability, which is crucial for ensuring the decidability of our logic. Moreover,
RCFs offer practical advantages as they can be readily employed in modern SMT
(satisfiability modulo theories) solvers [39, Chapter 33].

Theory presentations over QoS attributes are used in [25] to enable the auto-
matic analysis of QoS properties with a specification language that only considers
convex polytopes; this restriction is not present in our language. Also, the app-
roach in [25] can be thought as “monolithic”, in the sense that specifications are
given considering the system as a black box. We instead assign QoS contracts
to states of components and then aggregate them in order to analyze properties
along executions of the behavior emerging from interactions.

The use of choreographic methods for non-functional analysis yields other
advantages. For instance, QoS contracts of components are derived from global
specifications [7]. These contracts can then be used for run-time prediction, adap-
tive composition, or compliance checking, similarly to what is done in [8]. This
top-down approach can be transferred to behavioural types as well similarly to
what has been done in [11,26] for qualitative properties. The framework proposed
in [27] uses CFSMs as a dynamic binding mechanism of services but only consid-
ers the communicational aspects of the software component. Such a framework
could be extended to include QoS attributes as well by leveraging the results
presented in this paper.

Our QL logic takes inspiration from dynamic linear temporal logic
(DLTL) [15] which blends trace semantics (akin linear temporal logic [28]) and
regular expressions over a set of atomic actions (akin programs in propositional
dynamic logic [29]). Intuitively a key difference is that, unlike DLTL, QL does
not predicate about the behaviour of sequential programs; rather QL describes
properties of asynchronous message-passing systems. This requires a modifica-
tion of the syntax of DLTL; in fact, the syntax of QL is essentially the same
of DLTL barred for the indexes of modalities, which become choreographies of
interactions. This straightforward modification has deep impact on the semantics
which requires a complete redefinition (see Sect. 5 for further details). Another
key difference is that, while DLTL is propositional, QL’s atomic formulae are first
order formulae on QoS attributes. As a consequence, not only QL can express
usual temporal properties, such as safety and liveness ones, but temporal prop-
erties constraining the value of QoS attributes. These points of comparison with
DLTL apply in the same way to a similar logic called linear dynamic logic (LDL),
introduced first in [30] and later formalized for finite traces in [31].
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3 Preliminaries

This section surveys background material underpinning our work. We first
describe the protocol used as a running example, then we review our choreo-
graphic model and we briefly recall real-closed fields.

A Running Example. Through the paper we will use a (simplified variant) of
the POP protocol [32]. This protocol allows mail clients to access a remote mail-
box and retrieve e-mails. In the POP protocol a client starts the communication
by sending a message of type helo to a POP server (note that protocol specifica-
tions are oblivious of messages’ payload).1 The server replies with the number
of unread messages in the mailbox using a message of type int. At this point the
client can either halt the protocol or read one of the e-mails. These options are
selected by sending a message of type quit or of type read respectively. In the
former case, the server acknowledges with a message of type bye and the protocol
ends. In the latter case, the server sends the client the number of bytes of the
current unread message in a message of type size. Next, the client has again a
choice between quitting the protocol (as before) or receiving the email (selected
in the read message) by sending the server a message of type retr. In the latter
case the server sends the email with a message of type msg, the client answers
with a message of type ack and the reading process starts again.

A Choreographic Model. We use global choreographies [16] to specify the
global view of communicating systems whose local view are rendered as commu-
nicating finite state machines [14].

Hereafter, we fix a set P of participants and a set M of (types of) messages
such that P ∩ M = ∅. We start by surveying the definition of g-choreographies.

Definition 1 (Global choreographies [16]). A global choreography over P
and M ( g-choreography for short) is a term G that can be derived in

G ::= 0
∣
∣ A−→B : m

∣
∣ G;G′ ∣

∣ G | G′ ∣
∣ G + G′ ∣

∣ G∗

where A,B ∈ P, A �= B and m ∈ M.

Intuitively, a g-choreography specifies the communication protocol of partici-
pants. The basic g-choreography is the empty one 0, which specifies that no com-
munications should happen. An interaction A−→B : m specifies that participants
A and B (are expected to) exchange a message of type m; it is worth remarking
that we assume asynchronous communication where the sender A does not wait
for B to consume m to continue its execution. Moreover, g-choreographies can
be composed sequentially (G;G′), in parallel (G | G′), and in non-deterministic

1 Our framework can handle multiparty protocols; however, our examples are two-
party for simplicity. Also, we stick to the types of messages as carefully described in
the protocol specifications [32].



124 C. G. L. Pombo et al.

choices (G + G′); we assume that 0 is the neutral element of ; , | , and + .
Note that, due to asynchrony in the communication, in a sequential composi-
tion G;G′, outputs in G′ can occur before G is fully executed; for instance, the
distributed execution of A−→B : m;C−→B : m′ allows the output from C to happen
before the one from A. Finally, a g-choreography may be iterated (G∗).

Example 1 (A g-choreography for POP). Our running example can be expressed
as the g-choreography Gpop = C−→S : helo;Gstart + Gquit where

Gstart = S−→C : int; (Gread + Gread;Gretr)
∗;Gquit Gread = C−→S : read;S−→C : size

Gretr = C−→S : retr;S−→C : msg;C−→S : ack Gquit = C−→S : quit;S−→C : bye

( ; takes precedence over + ). �
The participants of a communicating system interact through channels bor-

rowed from the set C = { (A,B) ∈ P × P ∣
∣ A �= B }. A channel (A,B) ∈ C (writ-

ten AB for short) allows A to asynchronously send messages to B through an
unbounded FIFO buffer associated to AB. The set of communication actions is
L = L!∪L? where L! = {AB!m

∣
∣ AB ∈ C and m ∈ M} and L? = {AB?m

∣
∣ AB ∈

C and m ∈ M} are respectively the set of output and input actions. The lan-
guage L[G] of a g-choreography G is essentially the set of all possible sequences in
L compatible with the causal relation induced by G. Since L[G] is prefix-closed,
we write L̂[G] for the set of sequences in L[G] that are not proper prefixes of any
other sequence in L[G]. The technical definition of L[G], immaterial here, can be
found in [16]. We will adapt CFSM [14] to model the QoS-aware local view of a
system.

Definition 2 (Communicating systems [14]). A communicating finite-state
machine (CFSM) is a finite transition system M = (Q, q0,→) where

– Q is a finite set of states with q0 ∈ Q the initial state, and
– → ⊆ Q × L × Q; we write q

�−→ q′ for (q, �, q′) ∈→.

For AB!m ∈ L (resp. AB?m ∈ L), let sbj(AB!m) = A (resp. sbj(AB?m) = B).
Given A ∈ P, M is A-local if sbj(�) = A for each q

�−→ q′. A (communicating)
system is a map S = (MA)A∈P assigning a A-local CFSM MA to each A ∈ P.

Example 2 (Communicating system for POP). The following CFSM exhibits a
behaviour of a POP client compatible with the protocol in Example 1 because
its executions yield a subset of the client’s execution specified there.

C S!helo S C?int C S!read S C?size C S!retr S C?msg

C S!ack
C S!quit C S!quit

C S!quit

S C?bye

For a POP server, being a two-party protocol, we can use a dual CFSM
obtained by replacing send actions with corresponding receive actions and vice
versa. �
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The asynchronous communication between participants is formalised by a
labelled transition system (LTS) tracking the (local) state of each CFSM and
the content of each buffer (i.e. communication channel) in the system. A con-
figuration of a communicating system S is a pair s = 〈q ; b〉 where q and b
respectively map participants to states and channels to sequences of messages;
state q(A) keeps track of the state of the machine MA and buffer b(AB) yields
the messages sent from A to B and not yet consumed. The initial configuration
s0 is the one where, for all A ∈ P, q(A) is the initial state of the corresponding
CFSM and b(AB) is the empty sequence for all AB ∈ C.

A configuration s′ = 〈q′ ; b′〉 is reachable from another configuration s =
〈q ; b〉 by firing a transition �, written s �=⇒s′, if there is a message m ∈ M such
that either (1) or (2) below holds:

1. � = AB!m with q(A)
�−→A q′ and

a. q′ = q[A �→ q′]
b. b′ = b[AB �→ b(AB).m]

2. � = AB?m with q(B)
�−→B q′ and

a. q′ = q[B �→ q′] and
b. b = b′[AB �→ m.b′(AB)].

Condition (1) puts m on channel AB, while (2) gets m from channel AB. In
both cases, any machine or buffer not involved in the transition is left unchanged
in the new configuration s′.

Example 3 (Semantics of CFSMs). For the run π of the communicating system
in (1) (cf. Sect. 1) we have, for i ∈ {0, 1, 2}, si = 〈qi ; bi〉, where q0 = {A �→
q0,B �→ q0

′}, b0 = {AB �→ ε,BA �→ ε}, q1 = {A �→ q1,B �→ q0
′}, b1 = {AB �→

m,BA �→ ε}, and q2 = {A �→ q1,B �→ q′
1}, b2 = b0. �

Let S be a communicating system. A sequence π = (si, �i, si+1)i∈I where I is an
initial segment of natural numbers (i.e., i − 1 ∈ I for each 0 < i ∈ I) is a run of
S if si

�i=⇒si+1 is a transition of S for all i ∈ I. The set of runs of S is denoted
as Δ∞

S and the set of runs of length k is denoted as Δk
S . Note that Δ∞

S may
contain runs of infinite length, the set of finite runs of S is the union of all Δk

S

and will be denoted as ΔS . Given a run π, we define L[π] to be the sequence
of labels (�i)i∈I . The language of S is the set L[S] = {L[π]

∣
∣ π ∈ Δ∞

S }. Finally,
prf : Δ∞

S → 2ΔS maps each run π ∈ Δ∞
S to its set of finite prefixes. As usual,

for all π ∈ Δ∞
S , the empty prefix ε belongs to prf (π). For convenience, we will

occasionally write s0
�0=⇒s1 . . . sn

�n=⇒sn+1 for finite sequences.

Real-Closed Fields. Real numbers are natural candidates to express quantita-
tive attributes of a software artifact. We adopt real-closed fields (RCFs), which
is the formalisation of the first-order theory of the real numbers, as a foundation
for QoS values. Let Σfield denote the first-order signature 〈{0, 1}, {+, ·}, {<}〉.
An ordered field is a first-order theory presentation 〈Σfield, Γfield〉, where Γfield

consists of the field axioms as well as the axioms defining < as a strict total
order relation. Real-closed fields are ordered fields whose non-empty subsets all
have a supremum. Tarski’s axiomatization of real-closed fields, denoted here as



126 C. G. L. Pombo et al.

〈ΣRCF, ΓRCF〉, was introduced in [17]. Tarski further demonstrated the existence
of a decision procedure for this first-order theory of real numbers in [17, Thm. 37].
Thus, the main reason for selecting RCFs as the foundation for QoS lies in the
fact that first-order theories extending them using elementary operations are
decidable, providing effective means for analysis.

4 Quality of Service of Communicating Systems

In this section we extend CFSMs with QoS specifications in order to express
QoS contracts of components in message-passing systems. Basically, each state
of CFSMs is assigned a QoS contract specifying the usage of computational
resources. We formalise QoS contracts as QoS specifications which are theory
presentations over the RCFs, noted as 〈Σ,Γ 〉, paired up with aggregation opera-
tors, noted as ⊕a, to define how each QoS attribute accumulates along a commu-
nicating system. These aggregation operators will be essential to formally define
the notion of aggregation along a run, as shown later in Example 9.

Definition 3. A QoS specification 〈Σ,Γ 〉 is a (first-order) theory presentation
extending 〈ΣRCF, ΓRCF〉 as follows:

1. Σ = 〈{0, 1} ∪ Q, {+, ·} ∪ {⊕a}a∈Q, {<}〉, where Q is a finite set of constant
symbols (other that 0 and 1) representing the quantitative attributes (from
now on referred to as QoS attributes) and, for each a ∈ Q, ⊕a is an associative
algebraic binary operator and

2. Γ = ΓRCF∪Γ ′, being Γ ′ a finite set of first-order formulae formalising specific
constraints over the QoS attributes in Q.

The class of QoS specifications will be denoted as C(Q).

In order to preserve decidability of QoS properties, we only consider
QoS specifications involving additional constant symbols representing the QoS
attributes of components. Aggregation operators are required to be algebraic
because the extension of the theory must be kept in the first-order fragment
(uninterpreted function or predicate symbols must be avoided to preserve decid-
ability). It is worth noticing that aggregation operators strongly depend on the
nature of each specific attribute; for example, natural aggregation operators for
memory and time are the maximum function and sum respectively.

Example 4 (QoS specification). With reference to Example 2, possible quanti-
tative attributes of interest in an implementation of POP are Q = {t, c,m}
representing CPU t ime, monetary cost, and memory usage, respectively. Then a
QoS specification that characterises low computational costs, where no internal
process consumes significant amount of resources, can be written according to
Definition 3 as follows:

Σ = 〈{0, 1} ∪ {t, c,m}, {+, ·} ∪ {⊕t,⊕c,⊕m}, {<}〉
Γ = ΓRCF ∪ Γ ′

Low

where ⊕t = +, ⊕c = +, ⊕m = max , and Γ ′
Low = {t ≤ .01, c ≤ .01,m ≤ .01} �
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From now on, we fix a set of constant symbols Q which we omit from the set
of QoS specifications, that will be referred to just as C. It is worth noting that,
when Q is fixed, a QoS specification 〈Σ,ΓRCF ∪ Γ ′〉, is completely determined
by Γ ′. Therefore, we can unabiguously refer to a QoS specification using its set
of formulas Γ ′. Thus, the QoS specification in Example 4 is Γ ′

Low.

Example 5 (QoS for POP). The following QoS specifications formalise the costs
associated to different activities in the POP protocol of Example 2.

Γ ′
Chk = {t ≤ 5, c = 0.5,m = 0}

Γ ′
Mem = {1 ≤ t ≤ 6, c = 0,m ≤ 64}

Γ ′
DB = {t ≤ 3 =⇒ (∃x)(0.5 ≤ x ≤ 1 ∧ c = t · x), t > 3 =⇒ c = 10,m ≤ 5}

Basically, Γ ′
Chk formalizes the costs associated to the activity of integrity check-

ing a message, Γ ′
Mem to the activity of a server receiving a message, and Γ ′

DB

to establishing that the monetary cost is fixed if the insertion takes more than
three time-units and it is a fraction of the execution time, otherwise. �

We now extend communicating systems (cf. Sect. 3) with QoS-specifications.

Definition 4 (QoS-extended CFSMs). A QoS-extended CFSM is a tuple
MQoS = 〈M,F, qos〉 where:

– M = 〈Q, q0,→〉 is a CFSM,
– F ⊆ Q is a set of final states of M , and
– qos : Q → C maps states of M to QoS specifications.

A QoS-extended communicating system SQoS is a map (MQoS
A )A∈P assigning

an A-local QoS-extended CFSM MQoS
A to each A ∈ P. A configuration 〈q ; b〉

of SQoS is a final configuration if q(A) ∈ FA for every A ∈ P.

Example 6 (QoS-extended CFSMs). An extended CFSM of the POP client in
Example 2 with the QoS specifications of Example 5 is as follows:

Γ ′
Low

Γ ′
Low Γ ′

DB Γ ′
Low Γ ′

DB Γ ′
Mem Γ ′

Chk

C S!helo S C?int C S!read S C?size C S!retr S C?msg

Γ ′
Low Γ ′

Low

C S!ack
C S!quit

C S!quit

C S!quit

S C?bye

where the filled state is the only final state. Each state is assigned a QoS spec-
ification given in Example 5 according to the following idea. States where the
client performs negligible computations are assigned the QoS specification Γ ′

Low.
The remaining states are assigned QoS specifications as follows. The local states
where C performs a database insertion (right after receiving an int or size mes-
sage) and those where C accesses the memory (right before receiving an unread
e-mail) are constrained respectively by Γ ′

DB and Γ ′
Mem; finally, Γ ′

Chk constrains
the states where C performs an integrity check (right after receiving an unread
e-mail). �
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Notice that Definition 4 requires every state of a CFSM to be assigned a
QoS specification. However, in most cases, most states will have the same QoS
specification, as it is the case of Γ ′

Low in Example 6; typically one only has to
identify the QoS costs specific to few states.

The semantics of QoS-extended communicating systems is defined in the
same way as the semantics of communicating systems. This is a consequence of
the fact that QoS specifications do not have any effect on communications.

5 QL: A Dynamic Logic for QoS

To describe QoS properties we introduce QL, a logical language akin DLTL.

Definition 5 (QoS formulae). The QoS logic QL consists of the smallest set
of formulae that can be obtained from the following grammar:

Φ ::= � ∣
∣ ψ

∣
∣ ¬Φ

∣
∣ Φ ∨ Φ

∣
∣ Φ UGΦ

where ψ is a formula in a theory presentation in C, and G is a g-choreography
over P and M (see Definition 1).

Atomic formulae express constraints over quantitative attributes. Akin DLTL,
properties of runs are linear temporal formulae where the until operator is
indexed with a global choreography G. In essence, the role of G is to restrict the
set of runs to be considered for the satisfiability of the until. Global choreogra-
phies are suitable for this purpose because they are a declarative and compact
way of characterizing the behaviour of asynchronous message-passing systems.
The possibility modality 〈G〉Φ is defined as �UGΦ and the necessity modality
[G]Φ is defined (dually) as ¬〈G〉¬Φ. Finally, propositional connectives ∧ and
=⇒ are defined as usual.

The following example shows how to express non-functional properties of
specific runs of the system in QL.

Example 7 (QoS properties of POP protocol). We can use the g-choreographies
and the QL formula below to state that, unless the cost is zero for the first three
e-mails read, the cost is bounded by 10 times the CPU time, and the memory
consumption is bounded by 5. We define

Φ ≡ [G3](c > 0) =⇒ [G3;Gmsg
∗]

(

(c ≤ t · 10) ∧ (m ≤ 5)
)

where
G3 = C−→S : helo;S−→C : int;Gmsg;Gmsg;Gmsg and

Gmsg = C−→S : read;S−→C : size;C−→S : retr;S−→C : msg;S−→C : ack

Intuitively, for Φ to hold, either the first three message retrievals must have
zero cost in any run of the system, or on every subsequent message retrieval, the
total cost and memory consumption fall within the specified bounds. �

A QL formula (like Φ in Example 7) can be used in quantitative analyses
by aggregating the values of the QoS attributes along the runs of the system.
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More precisely, given a run π, our interpretation is that, for each transition
si

�i=⇒si+1 of π, the obligations stated in the QoS specification of si are met after
aggregating QoS information along π from state s0 up to state si. Therefore, a
central notion in our framework is that of aggregation function. Given a QoS-
extended communicating system S, an aggregation function aggS : ΔS → C
yields a QoS specification capturing the cumulative QoS attributes along a run
π ∈ ΔS by “summing-up” QoS specifications of participants’ local states.

Example 8 (Aggregation). Recall the run π (1) from Sect. 1:

q0

{c ≤ 5, m = 0}
A: q1

{5 ≤ c ≤ 10, m < 3}
AB!m

q0
′

{c = 0, m = 0}
B: q′

1

{10 ≤ m ≤ 50, c = 0.01 · m}
AB?m

s0π: s1 s2
AB!m AB?m

Let cq
A (resp. cq

B) denote the value of the QoS attribute c in the state q of
participant A (resp. B) and likewise for the attribute m. After π, we expect
max {mq0

A ,mq1
A ,m

q′
0

B ,m
q′
1

B } and cq0
A +cq1

A +c
q′
0

B +c
q′
1

B to respectively be the memory
consumption and the overall monetary cost in s2. This boils down to aggregate
the QoS attributes c and m using the maximization and addition operations,
respectively. �

Essentially, the aggregation in this case is obtained by (1) instantiating the
QoS specification associated to the local state of participants (this is done by
renaming attributes as in Example 8); and (2) adding an equation combining all
the instances of QoS specifications. The following formula captures this intuition
and exemplifies one way in which the aggregation function could be defined.

Example 9 (Aggregation). Let S = (〈MA, qosA〉)A∈P , we define the aggregation
function aggS : ΔS → C to be aggS(π) = f(π) ∪ g(π) where

f(π) =
⋃

A∈P
0≤i≤n

qosA(qi(A))qi(A)
A and g(ε) =

{

a =

(
aà

A∈P
a
q0(A)
A

)

∣
∣ a ∈ Q

}

g(π) =

⎧

⎪⎨

⎪⎩

a =

⎛

⎜
⎝

aà

0≤i<n
A=sbj(�i)

a
qi(A)
A

⎞

⎟
⎠ ⊕a

(
aà

A∈P
a
qn(A)
A

)

∣
∣ a ∈ Q

⎫

⎪⎬

⎪⎭

if π �= ε

where π = 〈q0 ; b0〉 �0=⇒ . . .
�n−1===⇒〈qn ; bn〉 ∈ ΔS , and Πq

A = {ψq
A

∣
∣ ψ ∈ Π} for a

set of QL formulae Π, and ψq
A is obtained by replacing each QoS attribute c

with the symbol cq
A in the atomic formula ψ. The intuition is that f(π) collects

all the QoS specifications of the local states of the participants along the run
π, and g(π) uses the aggregation operators to calculate the aggregated values of
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the QoS attributes in the run π. If we apply this aggregation function to the run
π in Example 8, we obtain the following:

f(π) = {cq0
A ≤ 5,mq0

A = 0} ∪ {5 ≤ cq1
A ≤ 10, mq1

A < 3}
∪ {cq0

′
B = 0,mq0

′
B = 0} ∪ {10 ≤ m

q′
1

B ≤ 50, c
q′
1

B = 0.01 · m
q′
1

B }
g(π) =

{

m = max {mq0
A ,mq1

A ,m
q′
0

B ,m
q′
1

B }, c = cq0
A + cq1

A + c
q′
0

B + c
q′
1

B

}

�

It is important to emphasize that, in our conception, an aggregation function
relies on a run of the system as its input. This run inherently encompasses a
specific sequential ordering of the actions carried out by the participants. The
aggregation operators max and + used in Example 8 follow this interpration. As
will become clear in Definition 6, this interpretation is sufficient for the purposes
of this paper, since it enables QL to specify temporal QoS properties about runs
of the system. However, one might be interested in a different kind of aggregation
that is aware of local states that are executed in parallel. This may require some
care and possibly to exploit truly-concurrent models, such as pomsets; this is
left for future work.

The semantics of our logic is defined in terms of QoS-extended communicat-
ing systems.

Definition 6 (QL semantics). Given a QoS-extended communicating system
S, an S-model for a QoS property Φ is a pair 〈π, π′〉, where π ∈ Δ∞

S contains
a final configuration (see Definition 4) and π′ ∈ prf (π) up to such configuration
such that 〈π, π′〉 |=S Φ where the relation |=S is defined as follows:

〈π, π′〉 |=S Φ iff aggS(π′) �RCF Φ if Φ is an atomic formula
〈π, π′〉 |=S ¬Φ iff 〈π, π′〉 |=S Φ does not hold

〈π, π′〉 |=S Φ1 ∨ Φ2 iff 〈π, π′〉 |=S Φ1 or 〈π, π′〉 |=S Φ2

〈π, π′〉 |=S Φ1 UG Φ2 iff there exists π′′such that L[π′′] ∈ L̂[G],
π′π′′ ∈ prf (π) up to a final configuration in π,
〈π, π′π′′〉 |=S Φ2 and, for all π′′′ ∈ prf (π′′),
if π′′′ �= π′′ then 〈π, π′π′′′〉 |=S Φ1.

A QoS property Φ is satisfiable in S if there exists a run π ∈ Δ∞
S such that

〈π, ε〉 |=S Φ, and it is valid (denoted as |=S Φ) if, for all runs π ∈ Δ∞
S that

contain a final configuration, 〈π, ε〉 |=S Φ.

Negation and disjunction are handled in the standard way. The definition of the
until operator is similar to the standard operator: Φ2 must hold at some point
in the future, i.e., π′π′′ and Φ1 must hold up to that point; the key difference
is that the satisfaction of Φ2 is restricted to runs where the extension π′′ is in
L̂[G]. Finally, atomic formulae are handled by obtaining the aggregated QoS of
the accumulated run π′ and using the entailment relation of RCFs.
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6 A Semidecision Procedure for QL
We now establish the semi-decidability of QL by presenting a k-bounded semide-
cision procedure relying on three algorithms: qSat, qModels, and qUntil. The
qSat algorithm is the main algorithm of the procedure and determines whether
a given formula is satisfiable in a given system. It relies on qModels to check if
there is a run that satisfies the formula which, in turn, uses qUntil to handle
the U operator. Let us start by looking at qSat defined as:

1 qSat(Φ, S, k):
2 i = 0
3 while i ≤ k do
4 foreach π ∈ Δi

S do
5 if the last configuration of π is final and qModels(Φ, S, π, ε) then
6 return true

7 i = i + 1

8 return false

Basically, qSat enumerates all the runs of S up to a given bound k and checks
whether any of them satisfies Φ (recall that Δi

S is the set of all runs of S with
length i). Let us now focus on the algorithm qModels:

1 qModels(Φ, S, π, π′):
2 switch Φ do
3 case � do
4 return true
5 case ψ do
6 return whether aggS(π′) 	RCF ψ
7 case ¬Φ1 do
8 return not qModels(Φ1, S, π, π′)
9 case Φ1 ∨ Φ2 do

10 return qModels(Φ1, S, π, π′) or qModels(Φ2, S, π, π′)
11 case Φ1 UG Φ2 do
12 return qUntil(Φ1,G, Φ2, S, π, π′, ε)

Following Definition 6, qModels recursively inspects the QL formula. It invokes
qUntil to handle the U operator and the decision procedure of the theory of
real-closed fields to check the atomic formulae. Let us now look at the algorithm
qUntil:

1 qUntil(Φ1,G, Φ2, S, π, π′, π′′):
2 if L[π′′] ∈ L̂[G] and qModels(Φ2, S, π, π′π′′) then
3 return true

4 else if not qModels(Φ1, S, π, π′π′′) then
5 return false
6 else

7 Let �=⇒ q be the transition such that π′π′′ �=⇒ q ∈ prf (π)

(takes the first transition in π if π′π′′ = ε,
and it is not defined if π′π′′ = π)

8 if π′π′′ = π or L[π′′ �=⇒ q] �∈ L[G] then
9 return false

10 else

11 return qUntil(Φ1,G, Φ2, S, π, π′, π′′ �=⇒ q)

This procedure takes care of searching for a witness of the existential in the
semantics of U by starting in the current prefix π′ and following the transitions
of π. According to Definition 6, qUntil searches for a witness of the existential
part of U . It takes as parameters the complete run π, the prefix π′ at which the
U is being evaluated, and the current extension π′′ that is used to search for
the witness. If π′′ is enough to reach a verdict, the algorithm returns true or
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false accordingly (Lines 3 and 5). Otherwise, it tries to extend π′′ by borrowing
the next transition of π (Line 7). If such extension exists and is a candidate for
being in the language of G, the algorithm recursively calls itself with the extended
prefix (Line 11). Hereafter, we fix a QoS-extended communicating system S.

Theorem 1 (qSat is sound and k-bounded complete). Given a QoS for-
mula Φ ∈ QL and a bound k, qSat(Φ, S, k) returns true iff there exists π ∈ Δi

S

such that 〈π, ε〉 |=S Φ, for some i ≤ k.

The soundness of qSat immediately follows from the soundness of qModels

(established in Lemma 1 below) which, in turn, relies on the soundness and
completeness of qUntil (cf. Lemmas 2 and 3, respectively). This guarantees
that the call to qModels in Line 5 of qSat returns true iff the run π satisfies Φ.
Note that qSat is not guaranteed to be complete due to the bound k.

Lemma 1 (qModels is sound and complete). Given a QoS formula Φ ∈ QL
and runs π, π′ ∈ ΔS, where π′ ∈ prf (π), qModels(Φ, S, π, π′) returns true iff
〈π, π′〉 |=S Φ.

Proof. By structural induction on Φ. If Φ is �, the result follows trivially. If Φ
is an atomic formula, the algorithm computes the aggregation over the run π′

(Line 6) and invokes the decision procedure of RCFs to check whether aggS(π′)
entails Φ in the theory of real closed fields. If Φ is Φ1∨Φ2, the algorithm perform
two recursive calls and returns true iff either 〈π, π′〉 |=S Φ1 or 〈π, π′〉 |=S Φ2. If Φ
is Φ1 UG Φ2, the algorithm returns true iff qUntil(Φ1,G, Φ2, S, π, π′, ε) returns
true. By Lemmas 2 and 3 this is equivalent to 〈π, π′〉 |=S Φ1 UG Φ2. ��

We now prove the soundness and completeness of qUntil.

Lemma 2 (qUntil is sound). Given a QoS formula Φ1, Φ2 ∈ QL, a g-
choreography G, and runs π, π′, π′′ such that

a) π′π′′ ∈ prf (π) and π ∈ ΔS, and
b) for all π′′′ ∈ prf (π′′), if π′′′ �= π′′ then 〈π, π′π′′′〉 |=S Φ1

if qUntil(Φ1,G, Φ2, S, π, π′, π′′) returns true then 〈π, π′〉 |=S Φ1 UG Φ2.

Proof. The call to qUntil(Φ1,G, Φ2, S, π, π′, π′′) either reaches Lines 3 or it
reaches Line 11 and the recursive call returns true. In the first case, we know
L[π′′] ∈ L̂[G] and that qModels(Φ2, S, π, π′π′′) returned true. By Lemma 1 it
follows that 〈π, π′π′′〉 |=S Φ2. Together with hypotheses a) and b) the conditions
of the semantics of the formula Φ1 UG Φ2 (see Definition 6) are met. In the case of
reaching Line 11 we know the recursive call qUntil(Φ1,G, Φ2, S, π, π′, π′′ �=⇒ q)
returned true. Conditions a) and b) applied to the input of the recursive call
holds because of the way transition �=⇒ q was chosen and the fact that condition
on Line 4 returned false. Therefore, we can take the output of the recursive call to
satisfy Lemma 2 as an inductive hypothesis and conclude 〈π, π′〉 |=S Φ1 UG Φ2.

��
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Lemma 3 (qUntil is complete). Given a QoS formula Φ1, Φ2 ∈ QL, a g-
choreography G, and runs π, π′, π′′ such that

a) π′π′′ ∈ prf (π) and π ∈ ΔS, and
b) for all π′′′ ∈ prf (π′′), if π′′′ �= π′′ then either L[π′′′] �∈ L̂[G] or 〈π, π′π′′′〉 �S Φ2

if qUntil(Φ1,G, Φ2, S, π, π′, π′′) returns false then 〈π, π′〉 �S Φ1 UG Φ2

Proof. The call to qUntil(Φ1,G, Φ2, S, π, π′, π′′) reaches either Line 5, Line 9 or
it reaches Line 11 and the recursive call returns false. In all cases, by condition b)
we know that no prefix of π′′ could be witness of the existential in the semantics
of Φ1 UG Φ2 (see Definition 6) because it would need to both be in L̂[G] and
satisfy Φ2. Run π′′ itself cannot be the witness for the same reasons due to the
fact that condition in Line 2 was not met. Which means either L[π′′] �∈ L̂[G] or
qModels(Φ2, S, π, π′π′′) returned false, therefore, using Lemma 1, either L[π′′] �∈
L̂[G] or 〈π, π′π′′〉 �S Φ2. The only remaining possibility is for the witness to be
a π	 such that π′′ ∈ prf (π	) and π	 �= π′′. In the case of reaching Line 5, we
know that qModels(Φ1, S, π, π′π′′) returned false. By Lemma 1 it follows that
〈π, π′π′′〉 �S Φ1. Therefore, extension π	 couldn’t be a witness for the existential
in the semantics of Φ1 UG Φ2. In the case of reaching Line 9, candidate extension
π	 does not exist or it is not in L̂[G]. In the case of reaching Line 11, we know
that qUntil(Φ1,G, Φ2, S, π, π′, π′′ �=⇒ q) returned false. Notice that conditions
a) and b) applied to the input of the recursive calls holds because of the way
transition �=⇒ q was chosen and that condition in Line 2 was not met. Therefore,
we can take the output of the recursive calls to satisfy Lemma 3 as an inductive
hypothesis and conclude that 〈π, π′〉 � Φ1 UG Φ2. ��
Notice that the proof for Lemma 1 uses Lemma 3 and Lemma 2, and that the
proofs for Lemma 3 and Lemma 2 use Lemma 1. This does not undermine the
soundness of the proofs because the lemmas are always (inductively) applied on
smaller QL formulas. Now that the soundness and completeness of qModels and
qUntil is established, it remains to show their termination. Termination follows
from the fact that both the number of logical operators in Φ and the number of
transitions in π are finite. The first guarantees qModels eventually reaches a base
case and the second guarantees qUntil eventually reaches a base case. Finally,
the base case in qModels, computing aggregation and checking entailment in the
theory of real closed fields, terminates due to the decidability of RCFs [17].

6.1 A Bounded Model-Checking Approach for QL
Previous results allow for a straightforward bounded model-checking approach
for QL. Like for other model-checking procedures for a language that admits
negation, qSat can be used to check validity of a QL formula in a system
S by checking the satisfiability of the negated formula. This constitutes a
counterexample-finding procedure for QL. The caveat is that qSat is a k-
bounded semidecision procedure rather than a decision procedure. However,
restricting to QL−, namely QL formulae that do not contain the ∗ operator
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in their choregraphies, we can find finite models of satisfiable formulae of QL−

(cf. Theorem 2).

Theorem 2 (Finite model property of QL−). Given a QoS formula Φ ∈
QL−, and runs π ∈ Δ∞

S , π′ ∈ ΔS such that π′ ∈ prf (π). If 〈π, π′〉 |=S Φ then
there exists a finite run π− ∈ ΔS such that π− ∈ prf (π) and 〈π−, π′〉 |=S Φ.

Proof. By structural induction on Φ. If Φ is � or an atomic formula, take π− =
π′. If Φ is Φ1 ∨ Φ2, we have that either 〈π, π′〉 |=S Φ1 or 〈π, π′〉 |=S Φ2. By
inductive hypothesis, either 〈π−

1 , π′〉 |=S Φ1 or 〈π−
2 , π′〉 |=S Φ2 for some finite

π−
1 , π−

2 ∈ prf (π). Therefore, either 〈π−
1 , π′〉 |=S Φ1 ∨ Φ2 or 〈π−

2 , π′〉 |=S Φ1 ∨ Φ2.
If Φ is Φ1 UG Φ2, by Definition 6 we have there exists π′′ such that L[π′′] ∈

L[G], π′π′′ ∈ prf (π) up to a final configuration with 〈π, π′π′′〉 |=S Φ2, and for
all π′′′ ∈ prf (π′′), if π′′′ �= π′′ then 〈π, π′π′′′〉 |=S Φ1. If we apply the inductive
hypothesis to Φ1 and Φ2, we have there exists π′′ such that L[π′′] ∈ L[G], π′π′′ ∈
prf (π) up to a final configuration with 〈π−

2 , π′π′′〉 |=S Φ2 for some π−
2 ∈ ΔS such

that π−
2 ∈ prf (π), and for all π′′′ ∈ prf (π′′), if π′′′ �= π′′ then 〈π−

1 , π′π′′′〉 |=S Φ1

for some π−
1 ∈ ΔS such that π−

1 ∈ prf (π). Notice that since G is ∗-free, run
π′′ in the language L[G] is necessarily finite and so is the number of quantified
runs π′′′. Therefore, the number of runs π−

1 involved in the previous statement
is finite, and there is a maximum among their lengths, so we can take π− as
the longest between π−

2 and runs π−
1 . Since π−

2 and all the π−
1 are prefixes of π,

then they will also be prefixes of π−, and therefore we have the conditions to
conclude 〈π−, π′〉 |=S Φ1 UG Φ2.

If the outermost operator in Φ is ¬, we need to consider al the possible cases
for the immediate subformula of Φ. If Φ is ¬ψ with ψ atomic formula, we have
that 〈π, π′〉 �S ψ. Take π− ∈ prf (π) an extension of π′ whose last configuration
is final. If Φ is ¬(Φ1 ∨ Φ2), we have that 〈π, π′〉 �S Φ1 ∨ Φ2. It follows that
〈π, π′〉 �S Φ1 and 〈π, π′〉 �S Φ2. By inductive hypothesis, there exists π−

1 ∈ ΔS

such that π−
1 ∈ prf (π) and 〈π−

1 , π′〉 �S Φ1 and there exists π−
2 ∈ ΔS such that

π−
2 ∈ prf (π) and 〈π−

2 , π′〉 �S Φ2. It is enough to take π− as the longest between
π−
1 and π−

2 . If Φ is ¬(Φ1 UG Φ2), we have that 〈π, π′〉 �S Φ1 UG Φ2. Therefore, for
all π′′ such that π′π′′ ∈ prf (π) up to a final configuration of π, if L[π′′] ∈ L[G],
and 〈π, π′π′′〉 |=S Φ2, then there exists π′′′ ∈ prf (π′′), with π′′′ �= π′′ such that
〈π, π′π′′′〉 |=S ¬Φ1. If we apply the inductive hypothesis to Φ2 and ¬Φ1, we
have that for all π′′ such that π′π′′ ∈ prf (π) up to a final configuration of π,
if L[π′′] ∈ L[G], and 〈π−

2 , π′π′′〉 |=S Φ2 for some π−
2 ∈ ΔS with π−

2 ∈ prf (π),
then there exists π′′′ ∈ prf (π′′), with π′′′ �= π′′ such that 〈π−

1 , π′π′′′〉 |=S ¬Φ1 for
some π−

1 ∈ ΔS with π−
1 ∈ prf (π). Notice that since G is ∗-free, any run in the

language L[G] is necessarily finite. Therefore, there is a maximum among the
lengths of the runs π−

2 , and we can take π− as the longest between π−
2 and π−

1 .

��
The proof of Theoream 2 hints that the length of the run π− constitutes

a suitable bound for qSat; which would turn qSat into a decision procedure
for QL− if one could compute such bound. Searching for counterexamples of
an arbitrary formula Φ ∈ QL up to a bounded number of unfoldings of ∗ is
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equivalent to searching for counterexamples in a formula Φ̂ in QL− where each
∗ has been replaced by a finite number of unfoldings. Which means that the
bounded procedure for searching models of formulae in QL− could be used to
search for counterexamples of formulae in QL. Notice that qSat can be easily
extended to return the run that satisfies the formula, if there is one. Such run
can be used to identify the source of QoS formula violations when qSat is used
as a counterexample-finding procedure.

7 Conclusions

We presented a framework for the design and analysis of QoS-aware distributed
message-passing systems using choreographies and a general model of QoS. We
tackle this problem by: 1) abstractly representing QoS attributes as symbols
denoting real values, whose behaviour is completely captured by a decidable
RCFs theory, 2) extending the choreographic model of CFSM by associating
QoS specifications to each state of the machine, 3) introducing QL, a logic
based on DLTL, for expressing QoS properties with a straightforward satisfaction
relation based on runs of communicating systems, and 4) giving a semi-decision
procedure for QL and defining a fragment QL− that allowed us to give a bounded
model-checking procedure for the full logic. A prototype implementation of our
procedure is under development. It relies on the SMT solver Z3 [33] for the
satisfiability of the QoS constraints in atomic formulae and on ChorGram [34,35]
for the semantics of g-choreographies and CFSMs. An interesting by-product of
our framework is that it could be used for the monitoring of local computations
to check at run-time if they stay in the constraint of QoS specifications. If static
guarantees on QoS specifications are not possible, run-time monitors can be
easily attained by adapting techniques for monitor generation from behavioural
types [36,37].

We identify two further main future research directions. On the one hand,
there is the theoretical question of whether QL is decidable or not. In this
respect, the similarity of QL with DLTL (cf. Sect. 2) hints towards an affirma-
tive answer suggesting that the problem can be translated to checking emptyness
of Büchi automata [38] corresponding to QL formulae. However, the decidability
of QL is not so easy to attain. In general, a communicating system may yield an
infinite state space due to many reasons so satisfaction might not be possible in
a finite number of steps. For instance, due to potentially infinite instantiations
of QoS attributes or that no final configuration might be reachable. On the other
hand, the usability of the framework could be improved through two extensions
of QL and a less demanding way of modeling QoS-extended communicating
systems. The first extension of QL are selective aggregation, enabling the aggre-
gation of QoS attributes only for some specific states of runs. This can be done by
extending the grammar of g-choreographies given in Definition 1 with an extra
production of the shape G ::= · · · ∣

∣ �G�, “bracketing” the part of the chore-
ography relevant for the aggregation. Notice that the run still has to match the
whole choreography. A second extension of QL is the introduction of wildcards



136 C. G. L. Pombo et al.

as a mechanism to “ignore” a subchoreography. Syntactically, it can be repre-
sented by, once again, extending the grammar given in Definition 1 with an extra
production, with shape G ::= · · · ∣

∣ , where is interpreted as a wildcard and
plays the role of matching any possible g-choreography. In this case, the shape
of the part of the run that matches the wildcard is disregarded but attributes
are aggregated along the whole run. Finally, a less demanding way of modeling
QoS-extended systems could be achieved by extending g-choreographies with
QoS specifications annotating specific interactions and extending the projection
of g-choregraphies into CFSMs taking into account such annotations.
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38. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Method, and Philosophy of Sci-
ence, pp. 1–11. Stanford University, Stanford University Press, Stanford (1962)

39. Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
2nd edn. IOS Press, Amsterdam (2021)

https://bitbucket.org/eMgssi/chorgram/src/master/
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-030-47361-7_6


Interactive Matching Logic Proofs in Coq

Jan Tušil1,3(B) , Péter Bereczky2 , and Dániel Horpácsi2

1 Masaryk University, Brno, Czech Republic
jan.tusil@mail.muni.cz

2 Eötvös Loránd University, Budapest, Hungary
berpeti@inf.elte.hu, daniel-h@elte.hu

3 Runtime Verification Inc., Chicago, USA

Abstract. Matching logic (ML) is a formalism for specifying and rea-
soning about mathematical structures by means of patterns and pattern
matching. Previously, it has been used to capture a number of other log-
ics, e.g., separation logic with recursive definitions and linear temporal
logic. ML has also been formalized in the Coq Proof Assistant, and the
soundness of its Hilbert-style proof system has been mechanized.

However, using a Hilbert-style system for interactive reasoning is
challenging—even more so in ML, which lacks a general deduction theo-
rem. Therefore, we propose a single-conclusion sequent calculus for ML
that is more amenable to interactive proving. Based on this sequent cal-
culus, we implement a proof mode for interactive reasoning in ML, which
significantly simplifies the construction of ML proofs in Coq. The proof
mode is a mechanism for displaying intermediate proof states and an
extensible set of proof tactics that implement the rules of the sequent
calculus. We evaluate our proof mode on a collection of examples, show-
ing a substantial improvement in proof script size and readability.

Keywords: Matching logic · Sequent calculus · Coq · Interactive
reasoning

1 Introduction

Matching logic [11,27] (ML) is a simple but expressive logic designed mainly for
reasoning about programs and programming language semantics. It can capture
reasoning in first-order logic (FOL) [27], in modal μ-calculus and reachability
logic [13], and serves as the logical foundation of the K framework [9]. Matching
logic’s Hilbert-style proofs can be checked using a simple checker [9].

Although K is based on matching logic, it does not provide support for gen-
eral ML reasoning. For program verification, K implements automated reasoning
based on reachability logic [28] and its ML embedding [13]. When verification
engineers need some lemmas to finish a proof, they prove them on paper and add
them as trusted lemmas to the specification. Since these lemmas are essentially
ML theorems, they could be proven using a proof assistant, and the resulting
proof objects could be combined with the ones generated by K.
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Recently, matching logic has been formalized [4] in Coq [29]. This implemen-
tation covers the syntax, semantics, and Hilbert-style proof system of ML, with
a mechanized proof of soundness. Furthermore, the formalization enables users
to define their own ML theories and formally reason about their models, as well
as about provability. Therefore, the Coq embedding of the proof system of ML
can be used to formalize and check paper-based proofs.

Yet using this system (or any Hilbert-style proof system in general [2]) is not
intuitive for constructing proofs by humans. In addition, the fact that a general
deduction theorem does not hold in ML [14] further complicates reasoning with
the Hilbert-style system. For example, the proof of ϕ → ϕ in a Hilbert system
(which contains axioms of propositional logic) is presented in Fig. 1a. In contrast,
using a sequent calculus [2], the same theorem can be proved more naturally just
in two steps (as in Fig. 1b).

(P2) :
(ϕ → ((ϕ → ϕ) → ϕ)) →

((ϕ → (ϕ → ϕ)) → (ϕ → ϕ))
(1)

(P1) : ϕ → ((ϕ → ϕ) → ϕ) (2)
(MP) on 1, 2 : (ϕ → (ϕ → ϕ)) → (ϕ → ϕ) (3)

(P1) : ϕ → (ϕ → ϕ) (4)
(MP) on 3, 4 : ϕ → ϕ (5)

(a) Hilbert-style proof of ϕ → ϕ

hyp
ϕ � ϕ � →� ϕ → ϕ

(b) Proof of ϕ → ϕ
using a sequent calcu-
lus

Fig. 1. Proofs of ϕ → ϕ

Therefore we propose a sequent calculus for ML (focusing on the first-order
fragment), on which we re-base the proof mode (called MLPM) of [4]; we also
significantly extend MLPM, and highlight some details on its implementation.
MLPM provides a number of high-level proof tactics for ML that mirror the
behavior of similarly-named Coq tactics, while it is also responsible for displaying
the proof state in a readable way1. Moreover, proofs written with MLPM are also
(automatically) converted to proofs in the original proof system of ML. Usually,
the converted proof is larger than a hand-crafted Hilbert-style proof of the same
theorem, but the proof script written with our proof mode is significantly smaller.

Contributions. In this paper we make the following contributions:

– a sound sequent calculus for the first-order fragment of ML with equality;
– a principled implementation [1] of a Coq proof mode for ML (MLPM) utilizing

a shallow embedding of the sequent calculus on top of the mechanized Hilbert-
style proof system2;

1 This is done without modifications to Coq. In particular, MLPM is not a Coq plugin.
2 We expand on the preliminary implementation reported in [4].
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– an evaluation of MLPM, showing a significant reduction of proof script size
(in comparison to a direct use of the embedded Hilbert-style proof system).

The paper is structured as follows. Section 2 introduces matching logic; Sect. 3
describes the proposed sequent calculus; Sect. 4 discusses how the calculus was
implemented as the core of MLPM; Sect. 5 contains an evaluation of MLPM;
Sect. 6 summarizes related work; and Sect. 7 concludes.

2 Matching Logic

Matching logic is being actively studied [10,15,30] and used for expressing pro-
gramming language semantics [9,21]. In this paper we use the applicative variant
of ML [11] (as formalized in [4]). This section summarises its syntax, semantics,
and proof system. Some results in the literature we refer to were proved for a dif-
ferent variant of ML [13,14]: these were adapted to the applicative variant either
by us or by the authors of [4]. We annotate the definitions, lemmas, theorems
with references to the corresponding code parts in the formalization.

2.1 Matching Logic Syntax

Definition 1 ([1, Signature.v, Pattern.v]).
A signature is a triple (EV, SV, Σ), where

– EV is a countably infinite set of element variables, denoted x, y, . . . ;
– SV is a countably infinite set of set variables, denoted X, Y , . . . ;
– Σ is a countable set of (constant) symbols, denoted σ, f , g, . . . .

EV , SV , and Σ are pairwise disjoint. When EV and SV are understood from
the context, we use Σ to denote the whole signature. Given a signature Σ, the set
of matching logic formulas (aka patterns) is inductively defined by the grammar

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x . ϕ | μX . ϕ where ϕ is positive in X.

The syntax elements are, in order, element and set variables, symbols, application
of patterns (left-associative), bottom, implication (right-associative), existential
quantification, and least fixpoint binder. Other connectives of FOL are defined
as notations in the usual way. We use the notation ϕ[ψ/x] for capture-avoiding
substitution, and let FV (ϕ) denote the set of free (element or set) variables of ϕ.

Definition 2 ([1, PatternContext.v, ApplicationContext.v]).
A (pattern) context C is a pattern with a distinguished variable denoted by �.
We denote by C[ψ] the substitution of � with ψ in C. We call a context C$ an
application context if from the root of C$ to � there are only applications; that
is, if C is constructed with one of the following rules:

– C$ is � itself, called the identity context; or
– C$ ≡ C$

1 ϕ, where C$
1 is an application context; or

– C$ ≡ ϕC$
2 , where C$

2 is an application context.

We extend the notation FV (ϕ) for contexts (C) and list of patterns (Δ): FV (C)
denotes the set of free variables of the context C, while FV (Δ) denotes the union
of FV (ϕ) for all ϕ ∈ Δ.

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Signature.v#L33
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Pattern.v#L19
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/PatternContext.v#L22
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ApplicationContext.v#L21
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2.2 Matching Logic Semantics

Here we give some intuition to the semantics of matching logic; we refer to [11]
for more details. Intuitively, matching logic has a pattern matching semantics -
a pattern (formula) is interpreted as the (often singleton) set of model elements
that match the pattern in the given valuation. For example, when using matching
logic to reason about a small-step semantics of a programming language as done
in the K framework [9], the pattern

state (incr i) (map i x)

will, in the right model and the valuation ρ, match exactly the program state
consisting of the program incr i (that is to be executed) and a memory that
maps the program variable i (represented by a symbol i ∈ Σ) to the value ρ(x)
(where x ∈ EV ). Formally, a Σ-model is a triple M = (M, ·M , {σM}σ∈Σ) where:

– M is a nonempty carrier set;
– _ ·M _ : M × M → P(M) is a binary application function, where P(M)

denotes the powerset of M ;
– σM ⊆ M is the interpretation of σ, for each σ ∈ Σ.

Application from the model is extended to any subsets of the model in the
pointwise manner: application of two sets is defined as the union of application
of pairs from the Cartesian product of the two sets: A ·M B :=

⋃
(a,b)∈A×B a ·M b.

Then, the semantics |ϕ1 ϕ2|ρ of matching logic application ϕ1 ϕ2 is defined using
this pointwise extension, to be |ϕ1|ρ ·M |ϕ2|ρ. In practice, ϕ1 is often either a
symbol (which is interpreted exactly as prescribed by the model), or a symbol
applied to other patterns (as e.g., map i in (map i x)). However, one can also
write patterns such as even (3 ∨ 4), which is equivalent to (even 3) ∨ (even 4),
and (even∨odd) 3, equivalent to (even 3)∨ (odd 3) (where even, odd are symbols
from the signature). Boolean connectives are interpreted as the corresponding
set operations; e.g., conjunction as intersection, negation as complement, bottom
as an empty set. Variables (element and set) are interpreted as prescribed by the
valuation, to (in the case of element variable, singleton) sets of model elements.

2.3 Definedness, Totality, Equality

One can define a construct called definedness - a symbol 	_
 that, when applied
to a pattern ϕ (usually written as 	ϕ
), matches either all model elements (if ϕ
is defined - i.e., matches something) or none (if ϕ matches nothing). Patterns
that match all elements or none are known as predicate patterns. One can also
define the dual of definedness, called totality (�ϕ� def= ¬	¬ϕ
) which is a predi-
cate pattern and matches all model elements iff ϕ matches them all (otherwise
matches none). Equality can be defined using totality (ϕ1 = ϕ2

def= �ϕ1 ↔ ϕ2�),
and has the property that the pattern ϕ1 = ϕ2 is predicate matched by all model
elements iff ϕ1 and ϕ2 are matched by the same model elements. Definedness,
totality, and equality are axiomatized by a (finite) theory ΓDEF, which we treat
as a black box in this paper; we refer an interested reader to [27] for an in-depth
description.
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Table 1. Hilbert-style proof system for matching logic ([1, ProofSystem.v])

FOL reasoning

(P1) ϕ → (ψ → ϕ) (P2) (ϕ → (ψ → ξ)) →
(ϕ → ψ) → (ϕ → ξ)

(P3) ((ϕ → ⊥) → ⊥) → ϕ (MP)
ϕ ϕ → ψ

ψ

(∃-Quan) ϕ[y/x] → ∃x . ϕ (∃-Gen)
ϕ → ψ

if x �∈ FV (ψ)
(∃x . ϕ) → ψ

Frame reasoning

(Prop⊥) C$[⊥] → ⊥ (Prop∨) C$[ϕ ∨ ψ] → C$[ϕ] ∨ C$[ψ]

(Prop∃) C$[∃x . ϕ] → ∃x . C$[ϕ]

if x /∈ FV (C$)
(Framing)

ϕ → ψ

C$[ϕ] → C$[ψ]

Fixpoint reasoning

(Subst)
ϕ

ϕ[ψ/X]
(Pre-Fixp) ϕ[(μX . ϕ)/X] → μX . ϕ

(KT)
ϕ[ψ/X] → ψ

(μX . ϕ) → ψ

Technical rules

(Existence) ∃x . x (Singleton) ¬(C$
1 [x ∧ ϕ] ∧ C$

2 [x ∧ ¬ϕ])

2.4 The Hilbert-Style Proof System

We present the Hilbert-style proof system of matching logic [11] in Table 1 and
denote it with �H. The proof rules can be divided into four categories:

– FOL reasoning contains standard Hilbert-style proof as in FOL. In
(∃-Quan), only element variables are substituted, not arbitrary patterns.

– Frame reasoning consists of three propagation rules and a framing rule
that allow one to propagate formal reasoning through an application context.
(These rules are equivalent3 to the ones in [4].)

– Fixpoint reasoning contains fixpoint rules as in modal μ-calculi [7];
– Technical rules which are important for various results in [14].

We denote the provability relation with Γ �H ϕ and highlight a meta-theorem
mechanized in [4] that allows one to replace equivalent patterns in any context.

Lemma 1 ([1, ProofMode/Misc.v: prf_equiv_congruence]).
Γ �H ϕ1 ↔ ϕ2 implies Γ �H C[ϕ1] ↔ C[ϕ2]

A FOL-style deduction theorem does not hold in ML [13], but the following
variant (which uses totality) holds.

3 [1, ProofMode/Misc.v: Prop_bot_ctx, Framing, prf_prop_ex_iff, prf_prop_or_iff].

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofSystem.v#L26
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v#L1825
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v#L462
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v#L493
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v#L773
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Misc.v#L625


144 J. Tušil et al.

Theorem 1 ([1, Definedness_ProofSystem.v: deduction_theorem_noKT]). Let
ΓDEF ⊆ Γ. If a proof of Γ ∪ {ψ} �H ϕ does not use (∃-Gen) and (Subst) with
FV (ψ) and does not use (KT), then Γ �H �ψ� → ϕ.

As in [13], Thoerem 1 is used together with Lemma 1 (recall ϕ1 = ϕ2
def= �ϕ1 ↔

ϕ2� from Sect. 2.3) to prove Lemma 2.

Lemma 2 ([1, Definedness_ProofSystem.v: equality_elimination_basic_ar]).
For any pattern context C in which � does not appear inside any μ binders,

Γ �H (ϕ1 = ϕ2) → (C[ϕ1] ↔ C[ϕ2]), assuming that ΓDEF ⊆ Γ.

This lemma justifies the (=�) rule of our sequent calculus (Sect. 3), which forms
the basis of the mlRewriteBy proof mode tactic (Sect. 4).

3 A Single-Conclusion Sequent Calculus

As noted already in [2], Hilbert-style proof systems are not particularly intuitive
for constructing proofs. Therefore, we define an alternative, single-conclusion
sequent calculus �S , which we mechanize to implement an intuitive, interactive
prover for matching logic. This calculus is inspired by the family of sequent natu-
ral deduction calculi [6,25], and is shown to be equivalent to �H (using Gentzen’s
definition of equivalence [2]). Before presenting the calculus, we introduce the
notion of proof constraint used by our formalization of Theorem 1.

3.1 Proof Constraints

The deduction theorem (Theorem 1) has three essential side conditions that
constrain the rules usable in the proof of the premise. Unlike the Hilbert-style
proof system �H, the proposed sequent calculus allows these conditions to be
checked without inspecting the proof. In particular, we trace the availability of
proof rules by using the notion of proof constraints. This allows us to rephrase the
deduction theorem such that it only checks the constraint instead of inspecting
the proof. We define the syntax of constraints and tie them to proofs as follows.

Definition 3 ([1, ProofInfo.v: ProofInfo]). The set C of proof constraints
(or simply constraints) is defined by C def= P(EV ) × P(SV ) × {true, false}. The
notations ceg, csub, and ckt are used for the first, second, and third components,
respectively, of a constraint c ∈ C. We let �C

def= (EV, SV, true) and ⊥C
def=

(∅, ∅, false).

Definition 4 ([1, ProofInfo.v: ProofInfoMeaning]). A proof p of �H satisfies
a constraint c ∈ C, if
– every x ∈ EV used in some (∃-Gen) step in p satisfies x ∈ ceg;
– every X ∈ SV used in some (Subst) step in p satisfies X ∈ csub;
– if (KT) was used in p, then ckt is true.

We write Γ �c
H ϕ to mean that ϕ has a proof from Γ in �H that satisfies c.

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Theories/Definedness_ProofSystem.v#L768
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Theories/Definedness_ProofSystem.v#L1671
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofInfo.v#L464
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofInfo.v#L483
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Γ �c
H ψ

Inherit
Γ �c [] �S ψ

Γ �c′ Δ �S ψ c′ 
 c
Relax�

Γ �c Δ �S ψ

(a) Technical inference rules

Γ �c Δ1, Δ2 �S ψ
Weaken

Γ �c Δ1, ϕ, Δ2 �S ψ

Γ �c Δ1 �S ϕ Γ �c Δ1, ϕ, Δ2 �S ψ
Cut

Γ �c Δ1, Δ2 �S ψ

(b) Structural inference rules

Fig. 2. Technical and structural inference rules

Next, we define the ordering � between proof constraints component-wise.

Definition 5 ([1, ProofInfo.v: ProofInfoLe]).
c1 � c2

def= ceg1 ⊆ ceg2 ∧ csub1 ⊆ csub2 ∧ (ckt1 =⇒ ckt2 )

Naturally, a constraint of a ML proof can be relaxed.

Lemma 3 ([1, ProofInfo.v: ProofInfoLe_ProofLe]). If c1 � c2, then any proof
satisfying c1 also satisfies c2.

3.2 Sequents

Now we define single-conclusion sequents and introduce the calculus �S .

Definition 6 ([1, ProofMode/Basics.v: MLGoal]). A sequent is a quadruple
Γ �c Δ �S ψ, where

– Γ is a (possibly infinite) set of ML patterns, called a theory;
– Δ is a finite (comma-separated) list of ML patterns, called antecedent or

local context;
– ψ is a ML pattern, called succedent or conclusion;
– c is a proof constraint from the set C.
We reuse the standard notations for the antecedents [2,6], except for the empty
antecedent denoted by []; we also use lists instead of sets (for technical reasons).
We also introduce the notation of Γ �S ψ, which means Γ ��C [] �S ψ. We use
the notion of inference rules and derivability in the usual way [2]. We define the
rules of �S in the following figures:

– Figure 2 contains (a) technical inference rules and for relaxing proof con-
straints and a fallback mechanism for reasoning outside the explicitly sup-
ported fragment, and (b) structural inference rules.

– Figure 3 contains the inference rules needed to carry out reasoning in the
first-order fragment of matching logic. These rules are similar to the rules in
other calculi for first-order logic [2,6,17].

– Figure 4 contains rules related to definedness and equality.

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Basics.v#L148
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Basics.v#L169
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L1089
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L773
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofInfo.v#L474
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofInfo.v#L504
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Basics.v#L78
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Hyp
Γ �c Δ1, ϕ, Δ2 �S ϕ

(� ⊥)
Γ �c Δ1, ⊥, Δ2 �S ψ

Γ �c Δ1, Δ2 �S ϕ1 Γ �c Δ1, ϕ2, Δ2 �S ψ
(→�)

Γ �c Δ1, ϕ1 → ϕ2, Δ2 �S ψ

Γ �c Δ, ϕ �S ψ
(�→)

Γ �c Δ �S ϕ → ψ

Γ �c Δ1, ϕ1, ϕ2, Δ2 �S ψ
(∧ �)

Γ �c Δ1, ϕ1 ∧ ϕ2, Δ2 �S ψ

Γ �c Δ �S ψ1 Γ �c Δ �S ψ2
(� ∧)

Γ �c Δ �S ψ1 ∧ ψ2

Γ �c Δ1, ϕ1, Δ2 �S ψ Γ �c Δ1, ϕ2, Δ2 �S ψ
(∨ �)

Γ �c Δ1, ϕ1 ∨ ϕ2, Δ2 �S ψ

Γ �c Δ �S ψ1
(� ∨L)

Γ �c Δ �S ψ1 ∨ ψ2

Γ �c Δ �S ψ2
(� ∨R)

Γ �c Δ �S ψ1 ∨ ψ2

Γ �c Δ1, ϕ[y/x], Δ2 �S ψ
(∀ �)

Γ �c Δ1, ∀x. ϕ, Δ2 �S ψ

Γ �c Δ �S ψ[y/x] y ∈ ceg y /∈ FV (Δ, ∀x. ψ)
(� ∀)

Γ �c Δ �S ∀x. ψ

Γ �c Δ1, ϕ[y/x], Δ2 �S ψ y ∈ ceg y /∈ FV (Δ, ∃x. ϕ, ψ)
(∃ �)

Γ �c Δ1, ∃x. ϕ, Δ2 �S ψ

Γ �c Δ �S ψ[y/x]
(� ∃)

Γ �c Δ �S ∃x. ψ

Fig. 3. Inference rules for first-order reasoning

A discussion of the proof rules follows. We use Inherit of Fig. 2 to lift proofs
from �H into �S . This rule increases the usability of the system, since existing
proofs in �H do not need to be repeated in �S . Moreover, it ensures relative
completeness of �S (Lemma 5). Currently4, this rule provides the only way for
fixpoint or frame reasoning in �S : perform the reasoning in �H and then lift it.
Rules Weaken and Cut are standard in sequent calculi [2]; they are used for
removing and adding patterns from and to the antecedent. The rule Relax�
corresponds to Lemma 3. Rules Cut, Weaken, and Hyp can be use to derive
the usual Interchange rule [2] which changes the order of the patterns in the
antecedent.

Figure 3 contains the usual introduction and elimination rules of sequent
calculi [2,6]. The rules in Figs. 2 and 3 do not assume anything about the theory
Γ; for the rules in Fig. 4, we assume that ΓDEF ⊆ Γ. We use mu_free(C) to
denote the fact that � does not occur inside any μ binders in C. Deduction
captures a variant of the deduction theorem for matching logic, while (�=) and
(=�) capture the axioms of the theory of equality [18].

4 We plan to extend �S with fixpoint and frame reasoning capabilities in the future.

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L94
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L94
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L555
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Basics.v#L347
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L2175
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L2659
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L1449
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L1823
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v#L1824
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Firstorder.v#L1017
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Firstorder.v#L899
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Firstorder.v#L1111
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Firstorder.v#L1038
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Γ ∪ {ϕ} �c Δ �S ψ ceg ∩ FV (ϕ) = ∅ csub ∩ FV (ϕ) = ∅ ckt = false
Deduction

Γ ��C ϕ�, Δ �S ψ

(�=)
Γ ��C Δ �S ψ = ψ

Γ ��C Δ1, ϕ1 = ϕ2, Δ2 �S C[ϕ2] mu_free(C)
(=�)

Γ ��C Δ1, ϕ1 = ϕ2, Δ2 �S C[ϕ1]

Fig. 4. Deduction; and rules about equality. These rules assume that ΓDEF ⊆ Γ.

3.3 Meta-properties of �S

We proved the equivalence between �H and �S . Unlike in [2], in our interpre-
tation of the sequent, the patterns in the antecedent are not connected with
conjunction, but they form a chain of implications leading to the conclusion.
We opted for this approach because unlike conjunction, implication is a primi-
tive construct in matching logic and in �H, and is thus easier to reason about.
Specifically, we prove the following lemma.

Lemma 4 (Correspondence).

Γ �c ϕ1, . . . , ϕk �S ψ ⇐⇒ Γ �c
H ϕ1 → . . . → ϕk → ψ

Proof. For the =⇒ direction, we refer to the formalization [1, ProofMode subdi-
rectory] and Sect. 4. One can also follow the references from Figs. 2, 2b, 3 and
4. To prove the other (⇐=) direction, we can first use Inherit and then (�→)
k times.

Thus, we obtain the equivalence of the two systems.

Lemma 5 (Equivalence of �S and �H). The relation �S is sound and com-
plete with respect to �H, meaning that Γ �S ψ ⇐⇒ Γ �H ψ.

Proof. Completeness follows from the Inherit proof rule, soundness from
Lemma 4.

Combining Lemma 4 and the soundness of the �H [4], we obtain:

Theorem 2 (Soundness of �S). The sequent calculus �S is sound with respect
to the semantics of matching logic described in [4].

We can strengthen our completeness claim about the first-order fragment.

Theorem 3 (Completeness of the first-order fragment of �S). All the
axioms and inference rules in the first-order section of Table 1 are derivable in
�S using only the rules in Fig. 2b (i.e., excluding Inherit and Relax�) and
Fig. 3.

Proof. Formalized in [1, Tests/TEST_ProofMode_relative_completeness.v] as a
collection of lemmas.

One novelty of �S is in the notion of proof constraints, which provide a formal
and compositional way to treat and ensure the side-conditions of Theorem 1. We

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Theories/Definedness_ProofSystem.v#L768
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Theories/Definedness_ProofSystem.v#L4764
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Theories/Definedness_ProofSystem.v#L4764
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Tests/TEST_ProofMode_relative_completeness.v
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explain this in more detail in Sect. 4.3. Moreover, �S is compatible with �H due
to Inherit.

Another well-known question is whether �S admits cut elimination. For now,
we have not investigated this question; however, it is of future interest.

4 Implementation of the Proof Mode

In this section we describe the Coq proof mode for matching logic (MLPM) which
we made available as [1]. The core of MLPM consists of a shallow embedding
of �S into �H, which itself is deeply embedded in Coq. Therefore, we start
with a brief review of the embedding of �H in Coq as described in [4]. Next,
we introduce our running example, on which we illustrate various concepts of
MLPM. We conclude the section with a discussion on the architecture of MLPM.

4.1 Matching Logic Proof System in Coq

We base our work on the mechanization of matching logic described in [4], where
the authors develop a deep embedding of ML patterns, models, and a Hilbert-style
proof system equivalent5 to �H, into Coq. There, a locally nameless encoding [8]
of binders is used, which means that bound variables are represented by indices
(that is, natural numbers) and free variables by names (typically strings); addi-
tionally, a well-formedness predicate is used to filter out representations that
do not correspond to any pattern. Reasoning about well-formedness of patterns
presents a difficulty from the usability point of view, since most rules of the
embedded proof system require the involved patterns to be well-formed. We
discuss two ways in which we overcome this difficulty in Sect. 4.4.

The price we pay for using a deeply embedded proof system [4] is that we
cannot easily reuse Coq’s handling of propositional and first-order connectives.
However, we argue that a deep embedding of the matching logic from [4] is
appropriate for our purposes. First, the calculus contains a rule for elimination
of equality (=�), which is based on its Hilbert-style counterpart from [12]. This
rule relies on the deduction theorem of matching logic, which is proved by induc-
tion on the structure of the input proof—which is easier to do when one treats
proofs as deeply-embedded, inductively-defined data. Another advantage of a
deep embedding is that it will allow us to extract proofs from Coq using its
built-in extraction mechanism, as we plan to do in the future.

4.2 Example Interactive Proof

We demonstrate various aspects of MLPM on Fig. 5. The frames represent Coq’s
proof state; everything below the full line is Coq goal ; everything above the full
line is Coq context (which we omit in all cases but the first one). When inside
MLPM, the Coq goal corresponds to a sequent (Definition 6). The goal is divided

5 The application context of the framing rules are decomposed into two separate rules
in [4].
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Fig. 5. An example interactive ML proof. The notation φ^{evar:n�→ ψ} means
φ with substituted pattern ψ for the de Bruijn index n representing a bound
variable; =ml denotes the ML equality (Sect. 2.4). The notations all, $ , and
denote universal quantification, application and conjunction, respectively.
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by the � symbol and a dashed line into three parts: the matching logic theory
Γ, which is a (possibly infinite) set of patterns; the local context, which is a
list of named hypotheses; and the conclusion. For example, the goal after proof
step (* 1 *) corresponds to the sequent Γ ��C (∀y.φ2 = φ1) ∧ p (φ1[x/y]) �S
∃y.(p φ2). In this example, the proof constraint is �C throughout the execution
of the whole proof script, and is therefore automatically hidden. However, it is
checked at step (* 5 *) when rewriting using equality (as in the rule (=�)); the
proof step would fail if the constraint were too strict.

We use automation for discharging freshness (non-occurrence of a variable in
a pattern) proof obligations; similarly, we use the tactic wf_auto2 for discharging
well-formedness proof obligations generated when applying certain lemmas (such
as evar_open_closed). However, most MLPM tactics do not require proving well-
formedness, as well-formedness is preserved by the tactics.

All the names of MLPM tactics have the prefix ml and resemble names of Coq
tactics with similar behavior. Tactics outside MLPM (not having the ml prefix)
are used to further simplify the goal and to discharge technical proof obligations.
We refer an interested reader to the proof mode tutorial6 of the formalization [1].

4.3 Proof Constraints

When using Theorem 1 on paper, one has to be careful not to forget checking
the theorem’s side conditions. When using it in Coq, the proof assistant auto-
matically generates the corresponding proof obligations. But how to prove such
obligations? Since we have formalized the concepts in the side-conditions of the
deduction theorem as computable, bool-valued predicates on the type of match-
ing logic proofs, one can try to discharge the obligations by simple computation.

However, we quickly ran into issues when using this approach. First, for larger
proofs, the computation can be slow. Second, this approach is not compositional:
when a theorem T is applied after using the deduction theorem, its proof has to
be examined despite the possibility that it has already been examined before—
and with this approach, subproofs do not “remember” whether they have been
examined or not. Third, we usually do not work with concrete theorems about
concrete patterns, but with meta-theorems that are parameterized by patterns.
This means that some function or theorem applications that occur in matching
logic proofs cannot be fully reduced to constructor terms. Typically, the symbolic
computation gets stuck on a dependent pattern matching.

Therefore we resort to a different approach. In our development, we annotate
every theorem of �H, including its proofs rules, with a proof constraint7 as in
Sect. 3.1, which represents an overapproximation of the proof rules used in the
proof of the theorem. Annotated theorems carry with them a Coq proof ensuring
that the ML proof satisfies the constraint. The formalization of Theorem 1 then
consumes such annotated proofs, and is then used to prove the soundness of
(=�).
6 examples/02_proofmode/theories/tutorial.v.
7 In the implementation we allow only (co-)finite sets of variables for the components

of a constraint.

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/examples/02_proofmode/theories/tutorial.v
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Fig. 6. The architecture of (� ∧) ([1, ProofMode/Propositional.v]).

Fig. 7. A coercion from sequents to �H ([1, ProofMode/Basics.v]). The
fold_right _ _ _ part represents the chain of implications of Lemma 4.

4.4 Architecture of the Proof Mode

Conceptually, we recognize three layers in which MLPM is organized: (1) anno-
tated admissible rules of �H, (2) proof state transforming theorems, and (3)
user-facing tactics. Typically, the tactics of layer (3) apply theorems of layer (2),
which are based on layer (1) theorems, which are proved using already existing
tactics of layer (3). For example, consider the mlSplitAnd tactic (Fig. 6), which
implements the (� ∧) rule. In layer (1), we have the lemma prf_conj_split
(Fig. 6a), which is proved by induction on l and repeated applications of (�→),
Hyp, Weaken, and Cut (which are already defined at that point in the devel-
opment). In layer (2), we have the lemma MLGoal_splitAnd (Fig. 6b), which
is proved using prf_conj_split. Here, mkMLGoal is the constructor of the type
MLGoal representing sequents, and is coerced by a function named of_MLGoal
(Fig. 7) to a corresponding (in the sense of Lemma 4) proof obligation about
�H. The lemma MLGoal_splitAnd thus justifies the soundness of the rule (� ∧)
by transforming �H proofs corresponding to premises of the rule to a �H proof
corresponding to its conclusion. This way, we do not have one global theorem of
soundness of �S ; rather, rules of �S are justified by the corresponding lemmas
from layer (2). This design allows us to implement the rules incrementally.

Figure 6 also illustrates another aspect of MLPM: its goals are shallowly
embedded into Coq goals. The tactic mlSplitAnd, when invoked, generates two
Coq goals, with a single MLPM goal (i.e., sequent) in each of them. This means
that we reuse Coq’s infrastructure for managing goals; that is, goal selectors,
shelving, etc. Overall, our layered architecture with the coercion from the type
of the sequent resembles that of Iris Proof Mode [20].

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Propositional.v
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/ProofMode/Basics.v#L101
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Table 2. Results of first-order examples

�H MLPM 1 MLPM 2 Ltac
Proof size 103 2129 6279 -

Steps 34 10 4 4
Length 1212 224 65 31

Subproofs 43 1 0 0
Patterns 36 1 0 0

(a) Results of Example 6

�H FOL MLPM MLPM Ltac
Proof size 488 574 1696 -

Steps 6 6 6 5
Length 810 244 138 75

Subproofs 18 3 0 0
Patterns 5 1 0 0

(b) Results of Example 7

5 Evaluation

In this section we evaluate MLPM using a number of example patterns and their
proofs. We use the following goals as our case study:

Γ �⊥C
H ϕ → ψ → ϕ ∧ ψ (6)

Γ ��C
H (∃x. ϕ1 ∧ ϕ2) → ∃x. ϕ1 (7)

Γ ��C
H ϕ2 ϕ3 ↔ ϕ4 implies Γ ��C

H ϕ1 ϕ2 ϕ3 → ϕ1 ϕ4 (8)

Γ ��C
H (∀x. ϕ2 = ϕ1 ∧ pϕ1) → (∃x. pϕ2) (9)

From our experience, these examples are representative of the kind of subgoals
one needs to solve in practice. Examples 6 and 8 also demonstrate how hand-
crafted �H-proofs can exploit the structure of the particular patterns. We proved
these theorems in multiple different ways, and compared the results with respect
the following aspects:

– Proof size: the number of proof rules (of �H) used in the resulting proof.
– Steps: the number of high-level steps used in the proof script, which does

not include solving technical side conditions (e.g., well-formedness, freshness
proof of variables). These steps include the use of MLPM tactics, application
of existing theorems, or proof rules.

– Length: the total character count of the proof script (not considering leading
white-spaces, comments).

– Subproofs: the number of subproofs that are explicitly written in the script
to solve constraints about well-formedness, variable freshness, and replacing
equal patterns (unfolding definitions, simplifying substitutions).

– Patterns: the number of matching logic patterns that have been manually
specified as parameters during the proof.

5.1 First-Order Proofs

First, we present the details about the propositional proof of Example 6 in
Table 2a [1, Evaluation/Propositional.v]. This theorem corresponds to (� ∧)
in our sequent calculus. We proved this theorem in three different ways, and we
also inspected the same proof in Coq formalized as Prop-based statements:

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Evaluation/Propositional.v
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Table 3. Results of Example 8

(Framing) Congruence MLPM Ltac

Proof size 534 6005 42889 –
Steps 4 4 3 4
Length 132 418 59 81
Subproofs 3 10 0 0
Patterns 1 1 0 0

– �H: only rules of �H and lemmas proved with �H were used;
– MLPM 1: MLPM was used without the tactic mlSplitAnd;
– MLPM 2: there was no restriction on the used MLPM tactics;
– Ltac: a proof of the same propositional statement embedded in Coq’s logic,

proved using Coq’s own tactic language Ltac.

The use of MLPM results in smaller proof script (comparable to the equivalent
Ltac proof) with fewer proof steps and fewer side conditions remaining to be
proved manually. The user only rarely needs to write matching logic patterns.
The downside of using MLPM is that the generated proof terms are larger.

Example 7 in Table 2b [1, Evaluation/Firstorder.v] requires reasoning about
quantifiers. The �H and Ltac columns have the same meaning as in Table 2a;
FOL MLPM is MLPM without propositional tactics (only tactics manipulat-
ing quantifiers were used); MLPM is full MLPM. The situation is similar as in
Table 2a. The number of the proof steps is the same in all three proofs, since
helper lemmas were used in the �H proofs. Interestingly, the first-order tactics
of MLPM increase the size of the generated proof term only slightly. This is
because the first-order rules of �S (on which the first-order MLPM tactics are
based) are more direct consequences of the first-order �H proof rules ((∃-Quan)
and (∃-Gen)) than the propositional ones of the propositional rules.

5.2 Rewriting-Based Proofs

Table 3 shows results of three proofs of Example 8 [1, Evaluation/Rewrite.v],
which is focused on the use of mlRewrite. The individual proofs are:

– (Framing): (Framing) was used directly in the proof;
– Congruence: the congruence lemma (Lemma 1) was used;
– MLPM: no restriction on MLPM tactics (the mlRewrite tactic was used); and
– Ltac: the corresponding Coq proof, written with Ltac.

Using Lemma 1 directly results in more complex proof scripts and larger proof
terms than using (Framing); on the other hand, (Framing) can be used only
for application contexts without other connectives. In the Congruence case,
Lemma 1 was used manually with explicitly specified context C := ϕ1 x (with
a fresh name x), while in the MLPM case, the mlRewrite tactic applied Lemma

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Evaluation/Firstorder.v
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Evaluation/Rewrite.v
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Table 4. Results of Example 9 (same as in Figure 5)

�H proof MLPM proof

Proof size 10650557 10653299
Steps 10 7
Length 926 252
Subproofs 35 4
Patterns 1 1

1 with C automatically inferred as ϕ1 x → ϕ1 ϕ4. Again, the MLPM proof is
shorter than the manual ones. Interestingly, it is even shorter than the Ltac
proof, because the latter one has to explicitly use the axiom of propositional
extensionality to turn the assumed equivalence into equality.

5.3 Complex Proofs

For a complex proof, we present the data for our running example (Fig. 5) in
Table 4 [1, Evaluation/Complex.v]. With the hand-crafted �H proof we followed
the same proof strategy as in the MLPM case, using formalized Hilbert-style
theorems. Therefore, the resulting proof terms have very similar size. However,
when using MLPM, the proof script is smaller, with fewer subproofs. We also
proved the following theorems using MLPM, thus demonstrating its ability to
handle real-world examples. These theorems correspond to the FOL-style (� ∃)
and (∀ �), where the condition ∃y. ψ = y ensures that ψ represents a term.

Theorem 4 (Functional substitution [1, Evaluation/Complex.v]).
If ΓDEF ⊆ Γ, and ϕ does not contain μ binders, then

Γ ��C
H ϕ[ψ/x] ∧ (∃y. ψ = y) → ∃x.ϕ, and Γ ��C

H ∀x.ϕ ∧ (∃y. ψ = y) → ϕ[ψ/x]

6 Related Work

In general, reasoning with a Hilbert system differs from how proofs are explained
in practice [2]. To bridge this gap between Hilbert proofs and mathematical
deduction, Gentzen developed new formal calculi (natural deduction and sequent
calculus) [2] that are equivalent to the Hilbert system. Afterward, many different
versions of these calculi emerged; among these, we highlight [6,17] that contain
single-conclusion sequent calculi on which we based our system for matching
logic.

When implementing interactive reasoning for a logic, one has basically two
options: either to write a standalone tool for it (e.g., in [6] Bornat and Sufrin
implement a proof calculator), or to embed their logic to an existing proof assis-
tant and develop a “proof mode” for the logic, as is the example of Iris Proof
Mode [20] for a variant of concurrent separation logic. Other works from this

https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Evaluation/Complex.v
https://github.com/harp-project/AML-Formalization/blob/v1.0.15/matching-logic/src/Evaluation/Complex.v
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second category include, for example, [26,31] for (focused) linear logic, [16] for
linear temporal logic, [5] for differential dynamic logic, and [3,19,22] for vari-
ous separation logic dialects. The main difference between [20] and our work is,
besides the fact that the target logic is different, that our work is based on a
deep embedding of the target logic, as explained in Sect. 4. However, the work
on Iris Proof Mode was a major source of inspiration for us.

Various proof systems of propositional logics have been formalized in [24].
A Metamath-based [23] formalization of �H together with an interactive theorem
prover for ML is given in [9]. There, the authors also work with ΓDEF; however,
they do not prove (Lemma 2) but rather assume it. We believe that this is
because in their shallow embedding, Theorem 1 (on which Lemma 2 depends) is
not expressible.

7 Conclusion

Deep embedding of expressive domain logic in proof assistants for interactive
proof construction is a challenging engineering problem; nevertheless, it comes
with benefits: deep embedding allows one to do induction on the syntax and the
proofs, supporting, amongst others, proof extraction and proving meta-theorems.
On the other hand, proving object-level theorems becomes more tedious because
the proof assistant’s capabilities are not directly applicable to reasoning about
object-level judgements. We argue that this can be observed as an opportunity
for creating a custom-made proof mode for the embedded logic, theoretically
backed by a sound alternative proof calculus.

In this paper, we introduced a sequent calculus for matching logic, for now
focusing on its first-order fragment, and we proved that on this fragment,
the sequent calculus is sound and complete w.r.t. the existing Hilbert system.
Sequents in our approach are annotated with proof constraints that can be
checked—statically, without traversing the proof—by proof-transforming func-
tions (such as the deduction theorem, Theorem 1). Proofs in our sequent calculus
can be translated into the Hilbert system, and unlike other approaches in the
literature, the translation does not rely on the existence of a general deduction
theorem for the logic. Lastly, we described a shallow embedding of the calculus
into a matching logic formalization in Coq; the shallow embedding serves as the
core of a practical and extensible proof mode for matching logic. The use of this
proof mode significantly eases interactive development of matching logic proofs:
proofs are shorter and easier to comprehend than the corresponding hand-crafted
Hilbert-style proofs. The work presented here improves on the preliminary work
of [4] by (1) adding a support for first-order reasoning, (2) extending the list of
user-facing tactics, (3) giving a proof-theoretical foundation to the proof mode
by means of the sequent calculus, and (4) giving the notion of proof constraints
to aid the use of the deduction theorem.

Acknowledgements. We warmly thank Runtime Verification Inc. for their generous
funding support.
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Abstract. Nowadays, the main advances in computational power are
due to parallelism. However, most parallel languages have been designed
with a focus on processors and threads. This makes dealing with data
and memory in programs hard, which distances the implementation from
its original algorithm. We propose a new paradigm for parallel program-
ming, the data-autonomous paradigm, where computation is performed
by autonomous data elements. Programs in this paradigm are focused on
making the data collaborate in a highly parallel fashion. We furthermore
present AuDaLa, the first data autonomous programming language, and
include an operational semantics. Programming in AuDaLa is very nat-
ural, as illustrated by examples, albeit in a style very different from
sequential and contemporary parallel programming.

Keywords: Data-Autonomous · Programming Language ·
Operational Semantics

1 Introduction

As increasing the speed of sequential processing becomes more difficult [28],
exploiting parallelism has become one of the main means of obtaining further per-
formance improvements in computing. Thus, languages and frameworks aimed at
parallel programming play an increasingly important role in computation. Many
existing parallel languages use a task-parallel or a data-parallel paradigm [14].

Task-parallelism mostly focuses on the computation carried out by individual
threads, scheduling tasks to threads depending on which threads are idle. In
data-parallelism, threads execute the same function but are distributed over the
data, thus performing a parallel computation on the collection of all data.

In a shared memory setting, programs in both paradigms require careful
design of memory layout, memory access and movement of data to facilitate the
threads used by the program. Examples of this are the use of barriers and data
access based on thread id’s, as well as access protocols. Not only is extensive
data movement costly and hinders some performance optimizations [20,22], the
memory handling necessary throughout the entire program due to the focus on
threads only widens the gap between algorithms and implementation as noted
by for instance Leiserson et al. [28]. Therefore, to promote memory locality and
more algorithmic code, a new data-focused paradigm is in order.
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Fig. 1. Approximate placement of related work on an axis from process-focused (left)
to data-focused (right) paradigms.

In this paper, we propose the new data-autonomous paradigm, where data
elements not only locally store data and references, but also execute their own
computations. Computations are always carried out in parallel by all data ele-
ments; this is governed by a schedule. Data elements can cooperate through
stored references. The paradigm completely abstracts away from processors and
memory and is fully focused on data, compared to task- and data-parallelism
(see Fig. 1).

This provides several benefits. First, it results in a separation of concerns:
code concerning data structures, algorithms and orchestration is properly sepa-
rated. Furthermore, parallelism is encouraged by always running computations
concurrently on groups of data elements. Finally, the paradigm promotes a
bottom-up design process, from data structure to computations to schedule.

Contributions. As a first step towards developing the data-autonomous
paradigm, we present AuDaLa (Autonomous Data Language), the first data-
autonomous programming language. In AuDaLa, structs, steps and a schedule
are responsible for data, computation and orchestration, respectively. We illus-
trate our thought process behind AuDaLa by means of a motivating example.
We introduce AuDaLa programs for a few standard problems. Compared to pro-
grams taken from literature, our AuDaLa programs require less memory man-
agement and clearly separate data flow and orchestration.

In this work, we focus on providing a solid theoretical foundation of AuDaLa.
Thus, we completely formalise AuDaLa’s behaviour in an operational semantics,
enabled by its compact syntax. Though we have a prototype compiler of AuDaLa
to CUDA, discussing it is out of the scope of this paper.

Overview. We first present a motivating example and show the concepts of
AuDaLa in Sect. 2. We then give the syntax of AuDaLa in Sect. 3 and a semantics
in Sect. 4. We discuss more examples in Sect. 5. Lastly, we review related work
in Sect. 6 and conclude in Sect. 7.
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2 Concepts and Motivating Example

In this section, we first discuss the concepts of AuDaLa, and subsequently we
design a program for the prefix sum problem in AuDaLa as a motivating example.

AuDaLa has three main components: structs, steps and a schedule. The rela-
tion between these components is shown in Fig. 2. Structs are data type defini-
tions from which data elements are instantiated during runtime. They contain
the name of the data type and the parameters available to data elements of
that type. See Listing 1.3 for an example of a struct definition. When starting
an AuDaLa program, every struct gets a special null -instance, a data element
representing the undefined instance of that struct. The parameters of this null -
instance cannot be changed, but they otherwise function like normal data ele-
ments. A null -instance can be used for initialisation (since it already exists when
launching the program) or as special value, for example to indicate the end of a
list.

Each struct contains zero or more steps, which represent operations a data
element instantiated from that struct can do. A step contains simple, algorithmic
code, consisting of conditions and assignments, without loops. This makes steps
easy to reason about. Within a step, it is possible to access the parameters of
the surrounding struct and also to follow references stored in those parameters.
Since these access patterns are known at compile-time, we can increase memory
locality by grouping struct instances in a suitable manner.

The schedule prescribes an execution order on the steps. It contains step
references and fixpoint operators (Fix ). The occurrences of step references and
fixpoint operators are separated by synchronization barriers (‘<’). Execution
only proceeds past a barrier when all computations that precede the barrier have
concluded. Whenever a step occurs in the schedule, it is executed in parallel by
all data elements which contain that step, although it is also possible to invoke a
step for data elements of a specific type. AuDaLa programs are thus inherently
parallel.

We do not make assumptions about a global execution order of statements
executed in parallel. In particular, code is not executed by multiple struct
instances in lock-step. Furthermore, we allow the occurrence of data races within
one step, see also Sect. 5. Thus, barriers (and implicit barriers, see below) are
the main method of synchronisation.

Iterative behaviour is achieved through a fixpoint operator, which executes
its body repeatedly until an iteration occurs in which no data is changed. At this
point, a fixpoint is reached and the schedule continues past the fixpoint operator.
Between the iterations of a fixpoint, there is an implicit synchronisation barrier.
For an example schedule, see Listing 1.4.

To give an example of these components in action, we consider the prefix sum
problem: given a sequence of integers x1, . . . , xn, we compute for each position
1 ≤ k ≤ n the sum Σk

i=1xi. We have included OpenCL and CUDA implemen-
tations of the problem that previously occurred in the literature [13,24], see
Listings 1.1 and 1.2. Here, we omit the initialization to focus on the kernels.
Both kernels require synchronization barriers in their algorithmic code, as well
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Fig. 2. The three main components of an AuDaLa program.

as an offset variable to check which data needs to be operated on, against which
the thread ids need to be checked multiple times per execution.

1 kernel void koggeStone(const local T ∗in, local T ∗out) {
2 out[tid] = in[tid];
3 barrier();
4 for (unsigned offset = 1; offset < n; offset ∗= 2){
5 T temp;
6 if (tid ≥ offset) temp = out[tid offset];
7 barrier();
8 if (tid ≥ offset) out[tid] = temp ⊕ out[tid];
9 barrier();

10 }}

Listing 1.1. OpenCL kernel for Prefix Sum (from [13])

1 __global__ void scan(float ∗g_odata, float ∗g_idata, int n){
2 extern __shared__ float temp[];
3 int thid = threadIdx.x;
4 int pout = 0, pin = 1;
5 temp[pout∗n + thid] = (thid > 0) ? g_idata[thid1] : 0;
6 __syncthreads();
7 for (int offset = 1; offset < n; offset ∗= 2){
8 pout = 1 pout; // swap double buffer indices
9 pin = 1 pout;

10 if (thid >= offset)
11 temp[pout∗n+thid] += temp[pin∗n+thid offset];
12 else
13 temp[pout∗n+thid] = temp[pin∗n+thid]
14 __syncthreads();
15 }
16 g_odata[thid] = temp[pout∗n+thid];
17 }

Listing 1.2. CUDA kernel for Prefix Sum (or Scan) (from [24])

To design a corresponding AuDaLa program, we follow the design structure
suggested in Fig. 2. As before, we omit the initialization. In the prefix sum prob-
lem, the input is a sequence of integers. We model an element of this sequence
with a struct Position containing a value val . We also give every Position a
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reference to the preceding Position, contained in parameter prev, as seen in List-
ing 1.3. This is needed to compute the prefix sum. The value of prev for the first
position in the list is set to null , referencing the null -Position. This null -instance
has the values 0 for val and null for prev .

1 struct Position(val : Int, prev : Position){ [...] }

Listing 1.3. Partial AuDaLa code for the structs for Prefix Sum

In Listing 1.4 the steps read and write of the Position struct are shown. These
steps are based on the method for computing prefix sum in parallel shown in
Fig. 3, which was introduced by Hillis and Steele [27]. Every Position first reads
prev.prev and prev.val from their predecessor in the step read, and after synchro-
nisation, every position updates their prev to prev.prev and their val to prev.val
in the step write. As the scope of local variables in AuDaLa does not exceed a
step, the use of additional parameters auxprev and auxval in the read step is
required to recover the value in the write step. The steps do not need an offset
variable like the CUDA and OpenCL kernels, as Positions which reached the
beginning of the list have a null -instance as predecessor and can still execute
the steps.

Fig. 3. Execution of Prefix Sum on a small list. The left side of a list element holds the
parameter val, while the right side holds the parameter auxval. The parameter prev is
shown as unmarked black arrows, while the parameter auxprev is shown as unmarked
grey arrows.
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1 struct Position(val : Int, prev : Position, auxval : Int, auxprev : Position){
2 read { /∗step definition∗/
3 auxval := prev.val ;
4 auxprev := prev.prev ;
5 }
6 write { /∗step definition∗/
7 val := val + auxval ;
8 prev := auxprev ;
9 }}

10

11 Fix(read < write) /∗schedule∗/

Listing 1.4. AuDaLa code for Prefix Sum with steps and a schedule

For our program schedule, we want to repeat read and then write until all Posi-
tions have reached the beginning of the list, which results in the schedule as
shown in Listing 1.4. Eventually, all Positions will have null as their predecessor
and no parameters will change further, causing the fixpoint to terminate.

As illustrated by Listing 1.4 and by Fig. 2, AuDaLa has a high separation of
concerns: structs model data and their attributes, steps contain the algorithmic
code and the schedule contains the execution. This approach requires no syn-
chronization barriers in the user code for the steps, no variables to find the right
indices for memory access and no offset variables to avoid going out of bounds.

3 Syntax

In this section, we highlight the most important parts of the concrete syntax
of AuDaLa. In the definitions below, non-terminals are indicated with 〈−〉 and
symbols with quotes; the empty word is ε. The non-terminal Id describes iden-
tifiers, and the non-terminal Type describes type names, which are either Int,
Nat (natural number), Bool, String or an identifier (the name of a struct).

An AuDaLa Program consists of a list of definitions of structs and a schedule:

〈Program〉 ::= 〈Defs〉 〈Sched〉
〈Defs〉 ::= 〈Struct〉 | 〈Struct〉 〈Defs〉

A struct definition gives the struct a type name (Id), a list of parameters (Pars)
and a number of steps (Steps):

〈Struct〉 ::= ‘struct’ 〈Id〉 ‘(’ 〈Pars〉 ‘)’ ‘{’ 〈Steps〉 ‘}’,
〈Pars〉 ::= 〈Par〉〈ParList〉 | ε

〈ParList〉 ::= ‘,’ 〈Par〉〈ParList〉 | ε

〈Par〉 ::= 〈Id〉 ‘:’ 〈Type〉

Steps are defined with a step name (Id) and a list of statements:

〈Steps〉 ::= 〈Id〉 ‘{’ 〈Stats〉 ‘}’ 〈Steps〉 | ε

〈Stats〉 ::= 〈Stat〉 〈Stats〉 | ε



164 T. T. P. Franken et al.

A statement adheres to the following syntax:

〈Stat〉 ::= ‘if’ 〈Exp〉 ‘then’ ‘{’ 〈Stats〉 ‘}’ if-then statement
| 〈Type〉 〈Id〉 ‘:=’ 〈Exp〉 ‘;’ variable assignment
| 〈Var〉 ‘:=’ 〈Exp〉 ‘;’ variable update
| 〈Id〉 ‘(’ 〈Exps〉 ‘)’ ‘;’ constructor statement

The Id in the variable assignment is a variable name. The constructor statement
spawns a new data element of the type determined by Id, with parameter values
determined by the expressions Exps. The syntax of Exps is similar to that of Pars,
using ExpList and Exp. The syntax for a single expression Exp is as follows:

〈Exp〉 ::= 〈Exp〉 〈BOp〉 〈Exp〉 binary operator expression
| ‘(’ 〈Exp〉 ‘)’ brackets
| ‘!’ 〈Exp〉 negation
| 〈Id〉 ‘(’ 〈Exps〉 ‘)’ constructor expression
| 〈Var〉 variable expression
| 〈Literal〉 literal expression
| ‘null’ null expression
| ‘this’ this expression

A variable reference follows the syntax:

〈Var〉 ::= 〈Id〉 ‘.’〈Var〉 | 〈Id〉,

where in the first case the Id is the name of a struct. Through the first case, one
can access the parameters of parameters. For example, prev.prev.val would have
been valid AuDaLa in Listing 1.4, and would access the value of the Position
before the previous Position of the current Position.

Lastly, the schedule consists of the variants as given in the following syntax:

〈Sched〉 ::= 〈Id〉 step execution
| 〈Id〉 ‘.’ 〈Id〉 typed step execution
| 〈Sched〉 ‘<’ 〈Sched〉 barrier composition
| ‘Fix’ ‘(’ 〈Sched〉 ‘)’ fixpoint calculation

The Id in the step execution is a step name. In the typed step execution, the first
Id is a type name, while the second is a step name. The typed step execution is
used to schedule a step executed by only one specific struct type.

On top of this concrete syntax, we adopt a number of additional requirements
for an AuDaLa program to be well-formed. First of all, we have a number of usual
sanity requirements, including ‘identifiers may not be keywords’, ‘a step name is
declared at most once within each struct definition’, ‘names of local variables do
not overlap with parameter names of the surrounding struct definition’, ‘local
variables are not accessed from outside their surrounding struct definition’, and
‘local variables are not used before they are declared in a step’. Furthermore,
we also assume common rules for well-typedness, so that binary operators are
applied to the right types, the types in assignments and variable declarations
are equal and constructor calls use the right type of arguments.
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4 Semantics

In this section, we present the semantics of AuDaLa. Here, we regularly use lists.
List concatenation is denoted with a semicolon, and we identify a singleton list
with its only element. The empty list is denoted ε. Schedules are expressed as a
list, e.g. the schedule A < Fix (B) is expressed as A;Fix (B).

We define updates for functions as follows. Given a function f : A → B and
a ∈ A and b ∈ B, then f [a �→ b](a) = b and f [a �→ b](x) = f(x) for all x �= a.
We lift this operation to sets of updates: f [{a1 �→ b1, a2 �→ b2, . . . }] = f [a1 �→
b1][a2 �→ b2] . . . . Since the order of applying updates is relevant, this is only well-
defined if the left-hand sides a1, a2, . . . are pairwise distinct. If B contains tuples,
that is, B = B1 × . . . × Bn, we can also update a single element of a tuple: if
f(a) = 〈b1, . . . , bn〉, then we define f [a, i �→ b](a) = 〈b1, . . . , bi−1, b, bi+1, . . . , bn〉
and f [a, i �→ b](x) = f(x) for all x �= a.

We assume the existence of a parser and typechecker for the concrete syntax.
Henceforth, we work on an abstract syntax tree (AST) produced by running the
parser and typechecker on a program. We thus do not concern ourselves with
operator precedence and parentheses, and we assume that polymorphic elements
such as null and 42 are labelled with the right type for their context, viz., nullT
is the expression null of type T .

We have a number of sets containing AST elements: ID is the set of all identi-
fiers, LT is the set of all literals, SC is the set of all schedules, ST is the set of all
statements, E contains all expressions and O contains all syntactic binary opera-
tors. The set containing all syntactic types is T = {Nat, Int, Bool, String}∪ID .

In our semantics, labels reference concrete instances of structs (as opposed
to struct definitions). We assume some sufficiently large set L containing these
labels. We also have the semantic types N, Z, B and String corresponding to the
natural numbers, the integers, the booleans and the set of all strings, respectively.
All semantic values are collected in V = L ∪ N ∪ Z ∪ B ∪ String . The semantic
value of a literal g ∈ LT is val(g).

In addition, we assume for every struct type sL the existence of a null-label
�0sL ∈ L, so that we can provide a default value for each syntactical type with
the function defaultVal : T → V, defined as:

defaultVal(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if T = Nat or T = Int
false if T = Bool
ε if T = String
�0T if T ∈ ID

.

We define the set of all null -labels to be L0, with L0 ⊂ L.
To facilitate conciseness in our operational semantics, we break down state-

ments and expressions into commands: atomic actions in the semantics.

Definition 1 (Commands). A command c is constructed according to the fol-
lowing grammar:

c ::=push(val) | rd(v) | wr(v) | cons(v) | if(C) | not | op(o)
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where val ∈ V ∪ {this} is a semantic value or this, a special value, v ∈ ID is
an identifier, C is a list of commands, and o ∈ O is an operator. The set of all
commands is C.

Intuitively, this is the semantic equivalent to the syntactic this-expression.
The precise effect of each command is discussed later in this section when the
inference rules are given. Statements and expressions are compiled into a list of
commands according to the following recursive interpretation function:

Definition 2 (Interpretation function). Let v, v1, . . . , vn ∈ ID be variables,
a, a1, . . . , am ∈ E expressions, g ∈ LT a literal, sL ∈ ID a struct type, s ∈ ST a
statement, S ∈ ST ∗ a list of statements, T ∈ T a type and op ∈ O an operator
from the syntax. Let the list v1; ...; vn be the list of n variables from v1 to vn.
We define the interpretation function �·� : ST ∗ ∪ E → C∗ transforming a list of
statements into a list of commands:

�g� = push(val(g))
�this� = push(this)

�nullT � = push(defaultVal(T ))
�v1; . . . ; vn� = push(this); rd(v1); . . . ; rd(vn)

�!a� = �a�;not
�a1 op a2� = �a1�; �a2�;op(op)

�if a then{S}� = �a�; if(�S�)
�T, v := a� = �v := a�

�v1; . . . ; vn; v := a� = �a�; �v1; . . . ; vn�;wr(v)
�sL(a1; . . . ; am)� = �a1�; . . . ; �am�; cons(sL)

�ε� = ε

�s;S� = �s�; �S�

During the runtime of a program, multiple instances of a struct definition
may exist simultaneously. We refer to these as struct instances.

Definition 3 (Struct instance). A struct instance is a tuple 〈sL, γ, χ, ξ〉
where:

– sL ∈ ID is the type of the struct,
– γ ∈ C∗ is a list of commands that are to be executed,
– χ ∈ V∗ is a stack that stores values during the evaluation of an expression,
– ξ : ID → V is an environment that stores the values of local variables as well

as parameters.

We define S as the set of all possible struct instances.

A state of a program is the combination of a schedule that remains to be
executed, a collection with all the struct instances that currently exist and a
stack of Boolean values that are required to determine whether a fixpoint has
been reached. Note that every label can refer to at most one distinct struct
instance.
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Definition 4 (State). A state is a tuple 〈Sc, σ, sχ〉, where:

– Sc ∈ SC is a schedule expressed as a list,
– σ : L → S ∪ {⊥} is a struct environment,
– sχ ∈ B

∗ is a stability stack.

The set of all states is defined as SG = SC × (L → S ∪ {⊥}) × B
∗.

With a notion of states and struct instances, we define null-instances:

Definition 5 (Null-instances). Let St = 〈Sc, σ, sχ〉 ∈ SG be a state. Then
the set of null-instances in state St is defined as {σ(�) | σ(�) �= ⊥ ∧ � ∈ L0}.

Thus, each struct instance that is labelled with a null -label is a null -instance.
Henceforth, we fix an AuDaLa program P and define SLP ⊆ ID to be the

set of all struct types defined in P. The initial variable environment for a struct
instance of type sL is ξ0sL, defined as ξ0sL(p) = defaultVal(T ) for all p ∈ Par sL
where T is the type of p and Par sL refers to the parameters of sL. For other
variables v ∈ ID , ξ0sL(v) is left arbitrary. Recall that ScP is the schedule defined
in P.

The initial state of a graph machine program depends on which program
is going to be executed (The state space does not depend on the program, cf.
Definition 4):

Definition 6 (Initial state). The initial state of P is P0
P = 〈ScP , σ0

P , ε〉,
where σ0

P(�
0
sL) = 〈sL, ε, ε, ξ0sL〉 for all sL ∈ SLP and σ0

P(�) = ⊥ for all other
labels.

Intuitively, this definition states that the initial state of a program P consists
of the schedule as found in the program, a struct environment filled with null -
instances for every struct type declared in P and an empty stack.

We proceed by defining the transition relation ⇒ by means of inference rules.
There are rules that define the execution of commands and rules for the execution
of a schedule. We start with the former. Command push(v) pushes value v on
the stack χ, and push(this) pushes the label of the structure instance on χ:

(ComPush)
σ(�) = 〈sL,push(val); γ, χ, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ; val , ξ〉], sχ〉

(ComPushThis)
σ(�) = 〈sL,push(this); γ, χ, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ; �, ξ〉], sχ〉
The command rd(v) reads the value of variable v from environment ξ′ of �′ and
places it onto the stack:

(ComRd)

σ(�) = 〈sL, rd(v); γ, χ; �′, ξ〉
σ(�′) = 〈sL′, γ′, χ′, ξ′〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ; ξ′(v), ξ〉], sχ〉



168 T. T. P. Franken et al.

For normal struct instances, wr(v) takes a label �′ and a value val from the stack
and writes this to ξ′(v), the environment of the struct instance corresponding to
�′. If v is a parameter and writing val changes its value, then any surrounding
fixpoint in the schedule becomes unstable. In that case, we set the auxiliary
value su (for stability update) to false and clear the stability stack by setting it
to sχ1 ∧ su; . . . ; sχ|sχ| ∧ su. Note that this leaves the stack unchanged if su is
true. Below, in the update “ [�′, 4 �→ ξ′[v �→ val ]]”, recall that f [a, i �→ b] denotes
the update of a function that returns a tuple.

(ComWr)

σ(�) = 〈sL,wr(v); γ, χ; val ; �′, ξ〉
σ(�′) = 〈sL′, γ′, χ′, ξ′〉
�′ /∈ L0 ∨ v /∈ Par sL′

su = (v /∈ Par sL′ ∨ ξ′(v) = val)

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ, ξ〉][�′, 4 �→ ξ′[v �→ val ]],
sχ1 ∧ su; . . . ; sχ|sχ| ∧ su〉

The next rule skips the write if the target is a parameter of a null -instance,
which ensures that the parameters of a null -instance cannot be changed:

(ComWrNSkip)

σ(�) = 〈sL,wr(v); γ, χ; val ; �′, ξ〉
σ(�′) = 〈sL′, γ′, χ′, ξ′〉
�′ ∈ L0 ∧ v ∈ Par sL′

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ, ξ〉], sχ〉

A not command negates the top value of the stack χ:

(ComNot)
σ(�) = 〈sL,not; γ, χ; b, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ;¬b, ξ〉], sχ〉

An op(o) command applies the semantic equivalent ◦ ∈ {=, �=,≤,≥, <,>,
∗, /,%,+,−, ^,∧,∨} of the syntactic operator o ∈ O to the two values at the top
of χ, of which the result is put on top of the stack:

(ComOp)
σ(�) = 〈sL,op(o); γ, χ; a; b, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ; (a ◦ b), ξ〉], sχ〉

Let sL′ be the type of a struct with n parameters. The command cons(sL′)
creates a new struct instance of type sL′ in the struct environment σ with a
fresh label �′, and initializes the parameters to the top n values of the stack:

(ComCons)

σ(�) = 〈sL, cons(sL′); γ, χ; p1; . . . ; pn, ξ〉
Par sL′ = par1; ...; parn

σ(�′) = ⊥
〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[{� �→ 〈sL, γ, χ; �′, ξ〉,

�′ �→ 〈sL′, ε, ε, ξ0sL′ [{par1 �→ p1, . . . , parn �→ pn}]〉}], false |sχ|〉
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The command if(C) with C ∈ C∗ adds commands C to the start of γ if the top
value of the stack is true. If the top value is false, the command does nothing:

(ComIfT)
σ(�) = 〈sL, if(C); γ, χ; true, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, C; γ, χ, ξ〉], sχ〉

(ComIfF)
σ(�) = 〈sL, if(C); γ, χ; false, ξ〉

〈Sc, σ, sχ〉 ⇒ 〈Sc, σ[� �→ 〈sL, γ, χ, ξ〉], sχ〉
In the remaining rules, let Done(σ) = ∀�.(σ(�) = ⊥ ∨ ∃sL, χ, ξ.σ(�) =

〈sL, ε, χ, ξ〉), and let F1 be a (possibly empty) schedule. The predicate Done(σ)
holds when all commands have been executed in all struct instances in σ.

We can initiate steps globally and locally. The global step initiation converts
all statements in a step to commands for any structure instance that has that
step and adds the commands to γ. Let SF

sL be the statements in a step with
name F in a struct instance with type sL. Note that the schedule is expressed as
a list in the operational semantics, and is therefore separated by ‘;’ as opposed
to ‘<’.

(InitG)
Done(σ)

〈F ;F1, σ, sχ〉 ⇒
〈F1, σ[{� �→ 〈sL�, �S

F
sL�

�, ε, ξ�〉 | σ(�) = 〈sL�, γ�, χ�, ξ�〉}], sχ〉

The local step initiation converts the step to commands and adds those com-
mands to γ only for struct instances of a specified struct x:

(InitL)
Done(σ)

〈x.F ;F1, σ, sχ〉 ⇒
〈F1, σ[{� �→ 〈x, �SF

x �, ε, ξ�〉 | σ(�) = 〈x, γ�, χ�, ξ�〉}], sχ〉

Fixpoints are initiated when first encountered:

(FixInit)
Done(σ)

〈Fix (F );F1, σ, sχ〉 ⇒ 〈F ; aFix (F );F1, σ, sχ; true〉

The symbol aFix is a semantic symbol used to denote a fixpoint which has been
initiated. When an initiated fixpoint is encountered again, the stability stack is
used to determine whether the body should be executed again:

(FixIter)
Done(σ)

〈aFix (F );F1, σ, sχ; false〉 ⇒ 〈F ; aFix (F );F1, σ, sχ; true〉

(FixTerm)
Done(σ)

〈aFix (F );F1, σ, sχ; true〉 ⇒ 〈F1, σ, sχ〉

With these rules, we give an operational semantics for AuDaLa:

Definition 7 (Operational semantics). The semantics of P is the graph
�P� = 〈SG ,⇒, P 0

P〉, where SG is the set of all states (Definition 4), ⇒ is the
transition relation as given above and P 0

P is the initial state of P (Definition 6).
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5 Standard Algorithms

In this section, we provide more intuition on how AuDaLa works in practice by
means of two example AuDaLa programs. The first creates a spanning tree and
the second is a sorting program.

5.1 Creating a Spanning Tree

Given a connected directed graph G = (V,E) and a root node u ∈ V , we can
create a spanning tree of G rooted in u using breadth-first search. In this tree,
for every node v, the path from u to v is a shortest path in G. We do this by
incrementally adding nodes from G with a higher distance to u to the spanning
tree.

1 struct Node(dist : Int, in: Edge){}
2

3 struct Edge(s: Node, t: Node){
4 linkEdge{
5 if s.dist != 1 && t.dist == 1 then {
6 t.in := this;
7 }}
8 handleEdge {
9 if t.in != null then {

10 if t.in == this then {
11 t.dist := s.dist + 1;
12 }
13 if t.in != this then {
14 s := null;
15 t := null;
16 }}}}
17

18 Fix(linkEdge < handleEdge)

Listing 1.5. AuDaLa code for creating a spanning tree

We first sketch our approach. In the ith BFS iteration, the algorithm adds
all edges (s, t) to the tree such that the distance from u to s is i − 1 and the
distance from u to t is still unknown. If multiple such edges lead to the same t,
the algorithm uses a data race to determine which edge is chosen. As any edge
will suffice, this data race is benign. The distance from u to t is then set to i and
we continue with the next iteration. The program runs with O(|V | + |E|) data
elements in O(d) time, where d is the diameter of the graph.

Contained in Listing 1.5 is an AuDaLa program that implements this app-
roach. The program defines the struct Node (line 1) with parameters dist, to
store the distance from root node u, and in, a reference to its incoming spanning
tree edge. The struct Edge (line 3) has a source s and a target t.

During initialization, the input should be a directed graph, with a root Node
u with dist 0 and with the dist parameter of the other Nodes set to −1. For
every Node, the parameter in should be null.
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Both steps in the program belong to Edge. The first step, linkEdge, first
determines whether an Edge e from Node s to Node t is at the frontier of the
tree in line 5. This is the case when s is in the tree, but t is not. If so, e nominates
itself as the Edge connecting t to the tree, t.in (line 6). This is a data race won
by only one edge for t, the edge which applies the semantic rule ComWr last.
In the second step, handleEdge, if the nomination for t has finished (line 9) and
e has won the nomination (line 10), e will update t’s distance to the root. If e
has lost, it will remove itself from the graph, here coded as setting the source
and target parameters to null in lines 13 to 16.

To create a full spanning tree, this must be executed until all Nodes have a
positive dist and all Edges are either t.in for their target Node t or have null as
their source and target. To this end, the schedule (line 18) contains a fixpoint,
in which Edges first nominate themselves and then update the distances of new
Nodes. This fixpoint terminates, as Edges in the spanning tree will continuously
update their targets with the same information and Edges which lost their nom-
ination will not get past the first conditions of the two steps, causing the data
elements to stabilize after all Nodes have received a distance from u. Initializa-
tion steps should be placed at the start of the shown schedule. An execution of
the program on a small graph is shown in Fig. 4, where the edges and nodes of
the graph are modelled by their respective structs.

Fig. 4. Execution of Listing 1.5 on a small graph. Every Edge newly considered in the
current step is grey. Considered Edges stay considered, but stable. The dotted arrows
denote the possible new values for t.in of a target node t. Note that the Edge from c
to d wins the data race to the reference d.in.
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5.2 Sorting

1 struct ListElem(val : Int, next : ListElem, newNext : ListElem, comp: ListElem){
2 compareElement {
3 if comp != null then {
4 if (comp.val > val && (comp.val < newNext.val || newNext == null))

then
5 {newNext := comp;}
6 comp := comp.next ;
7 }}
8 reorder {
9 next := newNext ;

10 }}
11

12 Fix(compareElement) < reorder

Listing 1.6. AuDaLa code for sorting

A concise example of an AuDaLa program for sorting a linked list of n elements
can be found in Listing 1.6. In it, the elements of the list traverse the list together,
during which each element e is looking for its successor in the sorted list. After
the traversal, the successor element is saved and the link is updated to the
saved element. This reorders the sorted list. See Fig. 5 for a visualization of an
execution. The program runs in O(n) time with n data elements. We can achieve
a time complexity of O(log n) by implementing Cole’s algorithm [16] in AuDaLa,
but that is outside the scope for this paper.

The program defines the struct ListElem, modeling the nodes of the list, with
parameters val, next, a reference to the next ListElem, newNext, a reference to
the ListElem that should come next in the sorted list, and comp, a reference to
the current ListElem newNext is compared to. The initialization needs to make
sure that every element has a distinct value, and that in every element, comp is
set to the first element of the list and newNext is set to null .

To facilitate our strategy we give our ListElem two steps, one to check an
element in the list called compareElement and one to reorder the list at the end
called reorder. With the step compareElement, an element checks whether the
element to which the comp reference leads is a better next element than the
current element saved in newNext (line 4) and updates newNext if that is the
case. Afterwards, the comp reference is updated to the next element in the list
(line 6). With the reorder step, an element replaces their old next reference with
newNext (line 9).

To have the program execute our strategy, we call a fixpoint on compareEle-
ment, such that every element checks all elements in the list. After that is done,
the schedule tells the elements to reorder (line 12).
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Fig. 5. Execution of Listing 1.6 on a small list. The parameters next, newNext and
comp are shown as black, grey and dashed unmarked arrows respectively, and the null-
references for newNext and comp are not shown. The nodes corresponding to ListElems
contain the value of parameter val.

6 Related Work

Conceptually, our work is related to the Parallel Pointer Machine (PPM) [23],
which models memory as a graph that is traversed by processors. In AuDaLa,
on the other hand, processors are implicit and data is the main focus.

The concept of cooperating data elements is present in the Chemical Abstract
Machine [8], based on the Γ -language [5,6]. In the data-autonomous paradigm
these components are coordinated by a schedule as opposed to the Chemical
Abstract Machine, where the data elements float around freely. By extension,
AuDaLa is related to the Γ -Calculus Parallel Programming Framework [18].

The data-autonomous paradigm shares the same focus on data as message
passing languages like Active Pebbles [40], ParCel-2 [11] and AL-1 [29], but differs
in using shared variables instead of synchronisation and messages. It also does
not allow the use of data as passive elements, like in the messages of MPI [15].

The specialist-parallel approach [12] models a problem as a network of rela-
tively autonomous nodes which perform one specified task. In comparison, the
data-autonomous paradigm defines their specialists around data instead of tasks
and data elements perform multiple or no tasks depending on their steps.

In AuDaLa, the relations between data elements can be viewed as a graph,
which is also the case for graph based languages, such as DDG [37], a scheduling
language, and GraphGrind [36], a graph partitioning language. The Connection
Machine [26] uses a graph-based hardware architecture for parallel computation.
Similarly, the way data is expressed in Legion [7] and OP2 [31] is similar to
AuDaLa. However, these two languages work top down from a main process
that calls functions on data, which is unlike the data-autonomous paradigm.

Since the data-autonomous paradigm extends data-parallelism (see Fig. 1),
AuDaLa shares concepts with other data-parallel languages like CUDA [19,24]
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and OpenCL [13]. It has the most in common with object-oriented approaches to
data-parallelism, like the POOL family of languages [1], languages in which small
elements do parallel computations based on their neighbours, like ReLaCS [34],
PPC [30], Chestnut [35] and the ParCel languages [11,39], and actor languages.

Actor languages, like Ly [38], ParCel-1 [39], PObC++ [32] and A-NETL [4],
treat objects as independent, collaborating actors, in a similar way as how the
data-autonomous paradigm treats data. Often, these languages use the mes-
sage passing model to cooperate, which AuDaLa does not. Of those who do
not, OpenABL [17] uses agents similar to data elements, but gives the agents
to functions instead of functions to agents. Active Object languages [9,10] do
give their objects functions, which is very closely related to data elements. The
execution of functions in these objects however, is fully asynchronous: objects
can activate other objects by calling methods in them for them to execute. This
is less structured than in AuDaLa, in which the functions to be executed are
defined in the schedule. As a result, AuDaLa does not use futures, unlike most
active object languages.

The use of a schedule in the data-autonomous paradigm relates AuDaLa
to some more functional data-parallel languages as well, like Halide [33], which
uses a schedule as well, and even Futhark [25], in which the manipulation of
an array has some similarity to calling a step in AuDaLa. The schedule can be
considered as a coordination language [2] for the paradigm and AuDaLa, but is
fully integrated and required for both to function. It also does not need to create
channels between components, like for example Reo [3].

Similar to our motivation, ICE [21], which is a framework for implement-
ing PRAM algorithms, sets the goal of bridging the gap between algorithms
and implementation. However, as ICE is based on a PRAM, it is not data
autonomous.

7 Conclusion

In this paper, we presented the data-autonomous paradigm and introduced it
by means of the Autonomous Data Language, by giving examples of standard
algorithms and discussing the syntax and semantics.

In the future, we will extend these foundations in multiple directions. First,
we plan to perform an extensive practical evaluation of AuDaLa. Currently, we
have prototypes of a sequential interpreter and a compiler to CUDA (for parallel
execution on GPUs). Using these, we will investigate methods for efficient paral-
lel execution of AuDaLa programs. Based on these experiences we may further
extend the language and semantics, for example by introducing variants of the
fixpoint operator.

On the theoretical side, one immediate avenue of research is to determine the
expressivity of the language, which we have started to investigate. We also plan
on creating formal analysis methods for AuDaLa programs, including methods
for finding data races in AuDaLa programs and methods for proving functional
correctness. For finding the data-races, we have already laid the groundwork in
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the operational semantics. We may also investigate how extensions to the current
semantics impact the design of the envisioned formal analyses.
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reviewers for their feedback.
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Abstract. The increased complexity of high-consequence digital system
designs with intricate interactions between numerous components has
placed a greater need on ensuring that the design satisfies its intended
requirements. This digital assurance can only come about through rig-
orous mathematical analysis of the design. This manuscript provides a
detailed description of a formal language semantics that can be used
for modeling and verification of systems. We use Event-B to build a
formalized semantics that supports the construction of triggered enable
statecharts with a run-to-completion scheduling. Rodin has previously
been used to develop and analyse models using this semantics.

Keywords: Run-To-Completion · statecharts · Formal Semantics ·
SCXML · Event-B

1 Introduction

Motivation. Statechart notations, with event-triggered, ’run-to-completion’
semantics [5,6,10], provide an intuitive and visual modelling interface with which
engineers can design and communicate. SCXML [15] is an example of such a
statechart notation. Formal refinement, as in Event-B [1], provides a safe way
to abstract important properties and introduce details in a manageable way.
Hence we have proposed the introduction of refinement into SCXML in previ-
ous work [11–13]. These case studies presented examples of systems modeled
using this proposed semantics. The focus then was on illustrating the incremen-
tal model construction process, the support of a divide and conquer approach
for the verification of model properties leveraging refinement rules as defined
in Event-B, and the translation from SCXML to Event-B. In order to define
our proposals for refinement in SCXML more precisely, we first need to for-
mally specify the semantics of SCXML itself. In this paper, we focus on the
formalization of SCXML semantics using Event-B. SCXML can be viewed as
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2 superimposed behaviours: a) the underlying behaviour of how the statechart
is structured and how it changes its active state and b) the run-to-completion
schedule that dictates the order in which enabled transitions should be fired.
We approach the formalization by addressing these issues as separate Event-B
models and then compose them using the CamilleX extension [9] to obtain the
complete formalization of the SCXML semantics.

Contribution. Our contributions are as follows.

– We provide a formalization of the run-to-completion semantics of SCXML
statecharts in Event-B. Although we refer to SCXML as an example, we
believe that it is typical of other similar statechart notations and we have not
relied on specific SCXML definitions.

– The work illustrates how Event-B with its automatic proof obligation genera-
tors and theorem provers can be used to define formal semantics of notations.
Here we explain the Event-B models and outline the more interesting proofs
that required manual intervention.

– The work also illustrates how the composition feature of CamilleX can be used
to structure such semantics definitions into more manageable sub-issues.

As far as we know, this is the first tool-supported semantics model for SCXML
statecharts supporting features such as parallel regions.

Structure. In Sect. 2, we provide a high-level description of statecharts, and the
run-to-completion execution model, as well as, the Event-B modeling method
used to formalized the semantics of our triggered statechart modeling language.
Section 3 introduces a turnstile running example which will be used in subse-
quent sections to illustrate the construction and analysis of a system using our
formalized semantics. We develop the semantics model of the run-to-completion
statecharts in three separate steps: (1) first, we model the semantics the untrig-
gered statecharts (Sect. 4); and (2) we then specify the run-to-completion trig-
gering mechanism (Sect. 5); and (3) we compose the two individual semantics
models to construct the triggered statechart semantics (Sect. 6). A summary of
our findings and concluding remarks are discussed in Sect. 7.

2 Background

2.1 Statecharts

Statecharts have been used for visual representation in the specification and
design of complex systems for several decades. Different statechart formaliza-
tions exist depending on the features supported and specific characteristics of
the modeled systems [4–6]. These diagrams provide a compact representation for
modeling hierarchy, concurrency and communication in a systems design. Stat-
echarts were originally developed to address unbounded modeling complexity in
other state diagrams.
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2.2 Run-to-Completion and SCXML

State Chart eXtensible Markup Language (SCXML) [3,15] is a general-purpose
event-based statemachine language that combines concepts from Call Control
eXtensible Markup Language (CCXML) and Harel State Tables. Harel State
Tables are included in the Unified Modeling Language (UML). The concrete
syntax for SCXML is based on XML. Hence, SCXML is an XML notation for
UML style statemachines extended with an action language that is intended
for call control features in voice applications. SCXML uses a run-to-completion
semantics, also known as macro-step/micro-step semantics. This means that
trigger events may be needed to enable transitions. Trigger events are queued
when they are raised, and then one is de-queued and consumed by firing all the
transitions that it enables, followed by any (un-triggered) transitions that then
become enabled due to the change of state caused by the initial transition firing.
This is repeated until no transitions are enabled, and then the next trigger is
de-queued and consumed. There are two kinds of triggers: internal triggers are
raised by transitions and external triggers are raised non-deterministically by
the environment. An external trigger may only be consumed when the internal
trigger queue has been emptied. This means that an external trigger is only
consumed when no transition can be taken without doing so.

2.3 Event-B

Event-B [1] is a formal method used to design and model software systems, of
which certain properties must hold, such as safety properties. This method is
useful in modelling safety-critical systems, using mathematical proofs to show
consistency of models in adhering to its specification. Models consist of con-
structs known as machines and contexts. A context is the static part of a model,
such as carrier sets (which are conceptually similar to types), constants, and
axioms. Axioms are properties of carrier sets and constants which always hold.
A context can extend one or more contexts by adding more carrier sets, con-
stants and axioms. The following listing shows the context for a simple systems
with two states.

1 context c
2 constants SA SB
3 sets states
4 axioms@def−states: partition(states, {SA}, {SB})

Machines describe the dynamic part of the model, that is, how the state
of the model changes. The state is represented by the current values of the
variables, which may change values as the state changes. Invariants are declared
in the machine, stating properties of variables which should always be true,
regardless of the state. Events in the machine describe state changes. Events
can have parameters and guards (predicates on variables and event parameters);
the guard must hold true for event execution. Each event has a set of actions
which happen simultaneously, changing the values of the variables, and hence
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the state. Every machine has an initialisation event which sets initial variable
values. The listing below shows a machine example with a single variable st.

1 machinem, sees c
2 variables st // state
3 invariants@typeof−st: st ∈ {SA, SB}
4 events
5 event INITIALISATION
6 then @init−st: st := SA
7 end
8 event t1
9 where @source: st= SA // event t1 guard

10 then @target−st: st := SB // event t1 action
11 end

Contexts can be extended and machines can be refined to introduce details of the
formal model gradually. Event extensions enable refinement of abstract events,
the refined event will implicitly have all the parameters, guards and actions of
the abstract event. We utilise context and event extension in this paper. An
important set of proof obligations are invariant preservation. They are gener-
ated and required to be discharged to show that no event can potentially change
the state to one which breaks any invariant, a potentially unsafe state. Event-
B is supported by the extensible Rodin platform [2]. Extensions of Event-B
and Rodin such as CamilleX [9] facilitate development of complex systems by
allowing composition of existing models, and the reuse of modelling and prov-
ing efforts. This model composition capability enables machine inclusion with
refinement and correct-by-construction proofs [7]. For example, when machine
A includes another machine B, A will inherit all the invariants and discharged
proofs of B (without the need for reproving). A can only modify the state vari-
ables of B by “synchronizing” with B’s events. Direct modification of B’s variables
in A will introduce inconsistencies that result in unprovable proof obligations.

3 Turnstile Example

A turnstile is used to illustrate the construction of a system model under the
developed semantics. Figure 1 shows the statechart diagram for the turnstile.
The system has two sub-components that manage the operations performed by
the gate and card reader in the turnstile. These components are represented by
the GATE and CARD_READER parallel regions, respectively.

The model has two external triggers (OnOff, and CardIn), which are signals
provided by the environment under which the system operates. In addition, there
are internal triggers (CardOk, Unblock, Block, and Reset) that are raised by the
components in the system. Transitions from source to target state are guarded by
the specified conditions (i.e., [Unblock], Unblock trigger is in the queue). Actions
associated with a specific transition are expressed as \raise Trigger, which result
in adding the trigger to the queue. In the current model some of the internal
triggers are raised non-deterministically (e.g. CardOk, CardError), as the details



182 K. V. Morris Wright et al.

Fig. 1. Design model for a turnstile system

of the actual mechanisms responsible for the generation of the signal are not fully
specified. Even in the presence of this non-determinism the system must satisfy
certain requirements. Refinement of the abstract model presented in Fig. 1 can
be used to incorporate implementation details. For example, a nested statechart
could be added to the READING state to specify the process by which the
aforementioned triggers are raised. This manuscript focuses on formalizing the
modeling language semantics for triggered statecharts of this form, and leaves
the extensions required for refinement proofs to a future publication.

4 Formalization of Untriggered Statecharts

In this section, we formalize the syntactic elements and semantics of untriggered
statecharts. This includes finding sufficient conditions for well-defined untrig-
gered statecharts to guarantee consistent semantic behaviour of such models.
The main ideas for our formalization are (1) to use the Event-B contexts to cap-
ture the syntactic elements of the model with axioms ensuring that the model
is well-defined (Sect. 4.1), and (2) to use the Event-B machines to capture the
semantics of the models (Sect. 4.2).

4.1 Formalization of the Untriggered Statechart Syntactic Elements

As the syntactic elements of untriggered statecharts are fairly complex, we
develop them gradually, together with their well-definedness conditions, using
Event-B context extension in the following steps.

1. Model the tree-structure of the states
2. Model the parallel regions
3. Model the transformations between states
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Tree-Structure States. The structure of the states of a statechart is represented
by the following constants; states (the set of all states), root (the implicit root
state), container (the relationship between a child state and its parent container),
leaves (the set of leaf states). These constants satisfy an axiom stating that they
form a tree-shaped structure (here �→ is the notation for specifying tuples).

states �→ root �→ container �→ leaves ∈Tree

Where, Tree is a constant, defined using transitive closure, that formalizes the
definition of tree-shaped structures. An important derived property of a tree-
shaped structured (proved as a theorem) is needed to allow us to prove properties
by induction.

Theorem 1 (Tree induction from root). Consider a property P. If

1. The root satisfies P, and
2. for every non-root state s, if the container of s, i.e., container(s), satisfies P,

then s also satisfies P,

then every state in the tree satisfies P.

Example 1 (Turnstile Example. Tree-shaped Structure States). Formally, we have
the following definitions.

1 // All states of the turnstile examples
2 partition(states, {root}, {OFF}, {ON}, {BLOCKED}, {UNBLOCKED}, {TIMEOUT},
3 {READY}, {READING}, {ACCEPT})
4 // The container relationship between states
5 container= {OFF �→ root,ON �→ root,BLOCKED �→ON,UNBLOCKED �→ON,
6 TIMEOUT �→ON, READY �→ON, READING �→ON,ACCEPT �→ON}
7 // leaf states
8 leaves= {BLOCKED,UNBLOCKED,TIMEOUT, READY, READING,ACCEPT,OFF}

The partition operator defines an enumerated set, states, where all the ele-
ments are explicitly given.

Regions. Untriggered statecharts support the parallel composition of two or
more nested statechart regions. That is a single state of a statechart may repre-
sent several sub components and associate with each component a corresponding
region. In the turnsile example, the container state ON has two regions GATE
and CARD_READER. We formalizes the notion of regions as partitions of the
set of non-root states by using the following axioms to constrain the constant
regions.

Axiom 1 (Regions are subsets of states). Each region is a subset of the
statechart’s states. (Here P is the notation for powerset.)

@region_type: regions⊆ P(states)

Axiom 2 (Regions are disjoint). Every pair of distinct regions does not
share any states.
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@region_disjoint: ∀r1, r2 · r1 ∈ regions ∧ r2 ∈ regions ∧ r1 �= r2⇒ r1 ∩ r2= ∅

Axiom 3 (Regions cover non-root states). Every non-root state belongs to
a region.

@region_complete: union(regions)= states {root}

Axiom 4 (Region has a unique container). Every region has a unique con-
tainer state. Here container[region] is the image of the relation container applying
to region.

@region_same_parent: ∀ region · region ∈ regions⇒
(∃parent · container[region]= {parent})

Example 2 (Turnstile Example. Regions). Formally, we have three regions as
follows.

1 regions= { {ON,OFF}, // TURNSTILE region
2 {BLOCKED,UNBLOCKED,TIMEOUT}, // GATE region
3 {READY, READING,ACCEPT} // CARD_READER region
4 }

Note that states ON and OFF implicitly form a region without any sibling parallel
region.

Transformations. Unlike the common definitions of transitions, which map a
source state to a target state, we define transformations, which give an hierarchical
view of the set of all simultaneously enabled transitions of the system, from
one enabling state configuration to the next configuration. There are different
types of transformation including forking (starting from a state and ending in
one or more states in different parallel regions), joining (starting from two or
more states in different parallel regions and ending in a state), parallel (updating
parallel regions at the same time), and any combination of these types. To model
all transformation types, we formalize each transformation by three sets of states.

– enabling: A transformation is enabled (i.e., can be executed) if its (non-empty)
set of enabling states are active.

– exiting: The (possibly empty) set of states that the transformation will exit
upon execution.

– entering: The (possibly empty) set of states the transformation will enter upon
execution.

Formally, these notions are formalized as constants as follows.

1 enabling∈ transformations→ P1(states)
2 exiting∈ transformations→ P(states)
3 entering∈ transformations→ P(states)

Example 3 (Turnstile Example. Transformation). We give the enabling, exiting,
and entering states of the following example transformations.
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– Consider the transformation from the BLOCKED state to the UNBLOCKED
state, we call this BLOCKED_2_UNBLOCKED. We have

1 enabling(BLOCKED_2_UNBLOCKED)= {BLOCKED}
2 exiting(BLOCKED_2_UNBLOCKED)= {BLOCKED}
3 entering(BLOCKED_2_UNBLOCKED)= {UNBLOCKED}

– Consider the transformation from the OFF state to the ON state, we call this
OFF_2_ON. Notice that the transformation will take into account also the
transition from the initial states within the two sub-statecharts (regions). As
a result, we have

1 enabling(OFF_2_ON)= {OFF}
2 exiting(OFF_2_ON)= {OFF}
3 entering(OFF_2_ON)= {ON,BLOCKED, READY}

– Consider the transformation from the ON state to the OFF state, we call
this ON_2_OFF. Notice that the transformation will take into account the
non-deterministic exit from the two sub-statecharts (regions). As a result, we
have

1 enabling(ON_2_OFF)= {ON}
2 exiting(ON_2_OFF)= {ON,BLOCKED,UNBLOCKED,TIMEOUT, READY,

READING,ACCEPT}
3 entering(ON_2_OFF)= {OFF}

There are several additional constraints (well-definedness conditions) relating
the enabling, exiting, and entering states for a transformation. We identified
some of the constraints directly. For instance, the following axioms related to
exiting states.

Axiom 5 (Exiting a contained region). If the container of a region is an
exiting state, there must be an exiting state within that region. Here container[r],
is the image of the relation container applying to region r.

1 @exiting−contained_region:
2 ∀trf, s, r · trf ∈ transformations ∧ s ∈ exiting(trf) ∧ r ∈ regions ∧ container[r]= {s}
3 ⇒ exiting(trf) ∩ r 	= ∅

Axiom 6 (Exiting one or all states in a region). If a region r has an
exiting state s then either s is the unique exiting state or all the states in r are
exiting states.

1 @exiting−either_one_or_all_in_a_region:
2 ∀trf, s, r · trf ∈ transformations ∧ s ∈ exiting(trf) ∧ r ∈ regions ∧ s ∈ r
3 ⇒ exiting(trf) ∩ r= {s} ∨ r ⊆ exiting(trf)

The following axioms linking exiting and enabling states was “discovered”
during the proof of the invariant preservation proof obligations (see Theorem 3).
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Axiom 7 (Exiting a unique enabling state in a region). Given a region
r and an exiting state s in r, if r has states other than s, s must be the unique
enabling state in r.
1 @exiting−unique_enabling_state_in_a_region:
2 ∀trf, s, r · trf ∈ transformations ∧ r ∈ regions ∧ exiting(trf) ∩ r= {s} ∧ r 	= {s}
3 ⇒ enabling(trf) ∩ r= {s}

Axiom 8 (Enabling state is the unique exiting state). Given a region r
with some exiting state, an enabling state s in r, s must the unique exiting state
in r.
1 @enabling−unique_exiting_state_in_a_region:
2 ∀trf, s, r · trf ∈ transformations ∧ s ∈ enabling(trf) ∧
3 exiting(trf) ∩ r 	= ∅ ∧ r ∈ regions ∧ s ∈ r ⇒ exiting(trf) ∩ r= {s}

The following axiom relates entering with enabling and exiting states. It is
also discovered during the proof of the invariant preservation proof obligations
(see Theorem 3).

Axiom 9 (Transformation stays within a state). If a transformation
enters a region r but not the container of r (called c), then c is not an exiting
state and there is an enabling state which is a descendant of c. Here, cl(container)
denote the transitive closure of container relationship, hence the inverse of that
(i.e., cl(container)∼ is the descendant relationship between states.
1 @entering−stay_within_state:
2 ∀trf, r, c · trf ∈ transformations ∧ r ∈ regions ∧ container[r]= {c} ∧
3 entering(trf) ∩ r 	= ∅ ∧ entering(trf) ∩ container[r]= ∅

4 ⇒ enabling(trf) ∩ cl(container)∼[{c}] 	= ∅ ∧ c /∈ exiting(trf)

4.2 Formalization of the Untriggered Statechart Semantics

Given an untriggered statechart (characterized by the tree-shape structured
states, the regions, and the transformation), the semantics of the statechart
is characterized by the set of active states during its execution. For instance,
consider the turnstile example in Fig. 1, initially, the turnstile has one active
state, namely OFF, i.e., the set of active states is {OFF}

– A transformation OFF_2_ON (from OFF to ON) will change the set of active
states to {ON,BLOCKED, READY}.

– A transformation BLOCKED_2_UNBLOCKED will change the set of active
states to {ON,UNBLOCKED, READY}.

– A transformation ON_2_OFF changes the set of active states to {OFF}.

We can now formalize the semantics of the untriggered statechart in a
machine using a single variable active satisfying active⊆ states . The system’s
functionality is encoded through one event called transformation that captures
how the design transitions from one configuration to the next. Essentially vari-
able active provides a discrete characterization of the information and event
transformation represents the operation of the system under analysis.
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1 event transformation
2 any trfwhere
3 @typeof−trf: trf∈ transformations
4 @active−enabling: enabling(trf)⊆ active
5 then
6 @update−active: active := (active \ exiting(trf)) ∪ entering(trf)
7 end

Guard @active−enabling ensures that the chosen transformation trf is enabled
and action @update−active first removes the trf’s exiting states then adds trf’s
entering states. Notice that this action also allows a transformation to exit a
state and re-enter that state.

An important aspect for the semantics of statecharts is that it can only
transform amongst valid configurations. For example, we want to ensure that
the turnstile statechart is never in the configuration where both ON and OFF
states are active or in a state where BLOCKED is active, but ON is not active. The
following constraints on active specify the valid configuration for a statechart,
which we encode as 4 invariants for the machine.

Invariant 1 (Container active). If a non-root state is active then its con-
tainer is also active.

@container_active: ∀ s · s ∈ active \ root⇒ container(s) ∈ active

Invariant 2 (Content active). If a container state is active then one of its
sub-state must be active.

@content_active: ∀ s · s ∈ ran(container) ∧ s ∈ active⇒
container∼[{s}] ∩ active �= ∅

where ran(container) is the range of the container relation

Invariant 3 (Unique active state within a region). There can be at most
one active state in a region.

@active−region−unique: ∀r, s · r ∈ regions ∧ s ∈ r ∩ active⇒ r ∩ active⊆ {s}

Invariant 4 (Parallel regions are inactive/active at the same time).
All parallel regions are inactive (hence active) at the same time.

@active−region−parallel: ∀r1, r2 · r1 ∈ regions ∧ r2 ∈ regions ∧
container[r1]= container[r2] ∧ r1 ∩ active= ∅ ⇒ r2 ∩ active= ∅

As a consequence of Invariant 1, we can prove the following machine theorem.
Note that all proofs related to this work were discharged semi-automatically
within Rodin using the Proving Perspective. We present the general structure
of a selected subset of these proofs.

Theorem 2 (Ancestors active). If a state s is active then all ancestors of s
are also active.
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@ancestor_active: ∀ s · s ∈ active⇒ cl(container)[s] ⊆ active

Proof. The proof of the theorem relying on Invariant 1 and the inductive nature
of transitive closure. We omit the details here.

We have to prove that event transformation maintains the invariants relying
on the well-definedness constraints that we have put as axioms.

Preservation of Invariant @active_container . The proof obligation for
ensuring that invariant @active_container is maintained by event @transformation
after simplification can be stated as the following theorem.

Theorem 3 (Event transformation maintains @active_container ). Given
a non-root state s such that either (1) s is active but non-exiting state, or (2) s
is an entering state, then either (G1) container(s) is active but non-exiting state,
or (G2) container(s) is an entering state.

Proof. Since s is a non-root state, there exists a region r containing s (follows
from Axiom 3 @region_complete). We continue the proof by considering Cases 1
and Case 2.

Case 1 (s is active but non-exiting state). We discharge (G1) by proving that
(G1-1) container(s) is an active state, and (G1-2) container(s) is a non-exiting
state.

– Proof of (G1-1). According to Invariant 1 (@container_active), since s is an
active state, container(s) is an active state.

– Proof of (G1-2). We proceed by considering if r contains any exiting states.
• Case 1.1 ( r does not contain any exiting states) Using the contraposition

of Axiom 5, we can conclude that container(s) (which is also the container
of the region r) must not be an exiting state, which conclude the proof of
(G1-2).

• Case 1.2 ( r contains some exiting states) The proof continue as follows.
∗ According
to Axiom 8 (@enabling−unique_exiting_state_in_a_region), s can-
not be an enabling state since s is a non-exiting state.
∗ We prove this by contradiction, i.e., assuming that container(s) is
an exiting state.

· According to Axiom 5 (@exiting−contained_region ), there must
be an exiting state in the region r since the state containing r (in
this case container(s)) is an exiting state, let us call this state x.
· According
to Axiom 6 (@exiting−either_one_or_all_in_a_region, either x
is the unique exiting state in r or all states in r are exiting states.
· Since s is a non-exiting state, x must be r’s unique exiting state.
· From Axiom 7 (@exiting−unique_enabling_state_in_a_region),
x is the unique enabling state in r.
· According to guard @active−enabling of transformation, x (being
an enabling state) must be an active state.
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· We now have two distinct active states x and s in r, which con-
tradicts Invariant 3 (@active−region−unique).

Case 2 (s is an entering state). In this case, we proceed with the proof by
assuming that (G2) does not hold (i.e., container(s) is not a container state) and
prove (G1).

– According to Axiom 9, the transformation entering region r but not the con-
tainer of r (i.e., container(s)), hence container(s) is not an exiting state and
has a enabling descendant state, let us call this x.

– According to guard @active−enabling of transformation, x (being an enabling
state) must be an active state.

– According to Theorem 2, container(s) (being an ancestor of x) must be an
active state.

– We therefore have container(s) is active but non-exiting state (G1).

��
We omit the proof of the preservation of other Invariants 2, 3, and 4 due to

limited space. The proofs are done within the Rodin tool utilising several axioms
and the tree induction theorem (Theorem 1). Details can be found in [8].

5 Formalization of the Run-to-Completion Schedule

Similar to the previous section, the formalization is done using an Event-B con-
text to capture the syntactic elements (Sect. 5.1) and an Event-B machine to
model the semantics (Sect. 5.2).

5.1 Formalization of the Run-to-completion Syntactic Elements

To define run to completion execution we first specify the syntactic elements
involved. Triggers are partitioned into either internal or external triggers. We
define the internal and external trigger queues as sequences of internal and exter-
nal triggers respectively. Sequences and their allowed operations (e.g. append
trigger, head of sequence) are constructively defined via a series of theorems and
axioms which are omitted here.

Figure 2 shows the state machine for the run-to-completion schedule. From
the Ready to de-queue state, an internal or (if internal queue is empty) external
trigger is de-queued from the corresponding queues and the system moves to
the Firing Triggered state. A trigger step that consumes the dequeued trigger
is then fired and the system moves to the Firing Untriggered state. From this
state, untriggered steps can be fired repeatedly or the system moves back to the
Ready to de-queue state. Both triggered and untriggered steps can raise more
internal triggers, which will need to be handled in the future runs.

The context defining the syntactic elements for a run to completion is shown
in Listing 1. An important notion for the run to completion schedule are steps.
A triggered step is taken when an internal/external trigger is consumed and a
non-deterministic number of untriggered steps may be taken subsequently. We
will show how these steps relate to triggered/untriggered transitions later.
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Fig. 2. State diagram for run to completion scheduling

1 context r2c_ctx extends r2c_c0_2_dequeue
2 sets Steps
3 constants InternalTriggers ExternalTriggers Triggers StepTrigger StepRaised
4 axioms
5 @typeof_IT: InternalTriggers⊆ InternalTriggerType
6 @typeof_XT: ExternalTriggers⊆ ExternalTriggerType
7 @def_T:Triggers= InternalTriggers ∪ ExternalTriggers
8 @typeof_StepTrigger: StepTrigger∈ Steps �→Triggers
9 @typeof_StepRaised: StepRaised∈ Steps→ Seq(InternalTriggers)

10 end

Listing 1. Context for Run-to-Completion Semantics

Here StepTrigger (as a partial function) defines the required trigger for a Step (if
any), and StepRaised defines the sequence of internal triggers that will be raised
for a step (including an empty sequence). Steps that do not have any required
trigger will be untriggered steps.

5.2 Formalization of the Run-to-Completion Semantics

Given the syntactic elements defined earlier, the machine defining the seman-
tics for the run-to-completion schedule models the trigger queues in the system
according to Fig. 2. The dynamic status of the run-to-completion schedule is
represented by the variables int_q, ext_q, dt (dequeue trigger), and completed
with the following invariants.

1 @int_q: int_q∈ Seq(InternalTriggers)
2 @ext_q: ext_q∈ Seq(ExternalTriggers)
3 @dequeue_trigger: dt∈DeQueueType
4 @dequeue_triggerwd: dt⊆ InternalTriggers ∪ ExternalTriggers
5 @firingTriggered: dt 	= ∅ ⇒ completed=FALSE
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Where int_q and ext_q represent the sequences of internal and external triggers
that need to be handled, dt keeps track of the trigger that has been removed
from the queues (de-queue) to be consumed by a TriggeredStep. Note that dt is
a singleton set of trigger when the system is in the Firing Triggered state and
empty otherwise (this is also the definition of DeQueueType). Finally, variable
completed (denoted as UC in Fig. 2) is TRUE indicates that the system is in the
Ready to de-queue state.

1 event dequeueInternalTrigger
2 any triggerwhere
3 @grd1: completed=TRUE
4 @grd2: int_q 	= ∅

5 @grd3: trigger= Seq_head(int_q)
6 then
7 @act1: dt := {trigger}
8 @act2: int_q := Seq_tail(int_q)
9 @act3: completed := FALSE

10 end

1 event dequeueExternalTrigger
2 any triggerwhere
3 @grd1: completed=TRUE
4 @grd2: ext_q 	= ∅

5 @grd3: trigger= Seq_head(ext_q)
6 @grd4: int_q= ∅

7 then
8 @act1: dt := {trigger}
9 @act2: ext_q := Seq_tail(ext_q)

10 @act3: completed := FALSE
11 end

Starting from the Ready to de-queue state (where completed=TRUE), the system
will de-queue an internal/external trigger if there are any. Note that an external
trigger is only de-queued when the internal queue is empty. The system then
moves to the Firing triggered state (where completed= FALSE and dt is not
empty).

The behaviour of the TriggeredStep and UntriggeredStep are formalized by
the corresponding events as follows. Both events can raise a sequence of internal
triggers which is concatenated to the the internal queue.

1 event triggeredStep
2 any Stepwhere
3 @grd1: Step∈ dom(StepTrigger)
4 @grd2: StepTrigger(Step)∈ dt
5 then
6 @act1: dt := dt \ {StepTrigger(Step)}
7 @act2: int_q := Seq_concat(int_q �→

StepRaised(Step))
8 end

1 event untriggeredStep
2 any Stepwhere
3 @grd1: Step∈ Steps \ dom(StepTrigger)
4 @grd2: dt= ∅

5 then
6 @act1: int_q := Seq_concat(int_q �→

StepRaised(Step))
7 end

While the internal triggers are raised through steps, external triggers can be
raised non-deterministically by event raiseExternalTrigger and appended to the
external queue. Note that at this stage (without the statemachine), there is a
non-determinism between untriggeredStep and completion. When we combine the
untriggered statechart and the run-to-completion schedule in the next section,
we will distinguish the two cases.
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1 event raiseExternalTrigger
2 any triggerwhere
3 @grd1: trigger∈ ExternalTriggers
4 then
5 @act1: ext_q := Seq_append(ext_q �→

trigger)
6 end

1 event completion
2 where
3 @grd1: dt= ∅

4 @grd2: completed= FALSE
5 then
6 @act1: completed :=TRUE
7 end

The model of the run-to-completion schedule maintains its invariants
straightforwardly (relying on operations of sequence manipulation).

6 Formalization of Triggered Statecharts

The triggered statecharts are a unified statechart model representation based
on SCXML [15]. To formalize the complete semantics we compose the previous
two models, of the untriggered statechart (Sects. 4) and of the run-to-completion
schedule (Sect. 5). The composition is performed by, using the inclusion mecha-
nism built into the CamilleX extension [9] of the Rodin platform.

6.1 Triggered Statechart Syntactic Elements

Since a triggered statechart is a combination of an untriggered one and a run-to-
completion schedule, the former is a syntactic extension of the latter (Listing 2).
We introduce some syntactic elements connecting the sub-context together.
Namely, relationships linking untriggered statechart transformations and run-
to-completion steps, to form transitions.

1 context tstc_ctx extends r2c_ctx utstc_ctx
2 constants transitions discardSteps
3 axioms
4 @typeof−transitions: transitions∈ transformations�� Steps \ discardSteps
5 @discardSteps−Triggers: discardSteps� StepTrigger∈ discardSteps��Triggers
6 @discardSteps−Raised: StepRaised[discardSteps]= { ∅ }
7 end

Listing 2. Context for Triggered Statechart

At the same time, when we combine the two sub-models, we need to ensure
an important aspect of triggered statecharts which is their responsiveness. In
particular, if a trigger (internal or external) is de-queued, but no enabled trans-
formation that can consume the trigger, we need to ensure that the system can
still progress. More precisely, the system will need to discard the problematic
trigger in order to continue. Constants discardSteps are introduced to capture
the special steps that discarding triggers.

Axiom @typeof−transitions specifies that transitions is a one-to-one correspon-
dence between transformations and non-discarding steps (�� is the symbol for
bijective functions). Axioms @discardSteps−Triggers and @discardSteps−Raised
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ensure that there is a discard step for every trigger and the discard steps do
not raise any trigger (� is the symbol for domain restriction, [..] is a relational
image, and { ∅ } the singleton set of the empty set).

6.2 Triggered Statechart Semantics

The semantics of a triggered statechart is captured by a machine that includes
both the untriggered statechart and the run-to-completion schedule. We also use
prefixing mechanism, e.g., includes r2c as r2c, so that all modelling elements of
the included machine are prefixed accordingly.

The following events are lifted from the run-to-completion machine (un-
changed): raiseExternalTrigger, dequeueExternalTrigger, dequeueInternalTrigger.
Essentially, they only concern the management of trigger queues and do not relate
to the statechart’s status.

1 event triggeredTransition
2 synchronises r2c.triggeredStep
3 synchronises utstc.transformation
4 where
5 @grd1: transitions(utstc_trf)=

r2c_Step
6 end

1 event untriggeredTransition
2 synchronises r2c.untriggeredStep
3 synchronises utstc.transformation
4 where
5 @grd1: transitions(utstc_trf)=

r2c_Step
6 end

Events to model the transitions (triggeredTransition and untriggeredTransition)
synchronises with the events from the untriggered statechart and the run-to-
complete schedule. The additional guard of the events ensure that the chosen
transformation (from the untriggered statechart) and the step (from the run-to-
completion model) corresponds with each other.

As discussed before, we need to introduce the events to discard triggers
discardTrigger (in the case where triggeredTransition is not available). This con-
dition is formalized as discardTrigger’s grd3. We also strengthen the guard
of completion to ensure that the system will complete a run only when
untriggeredTransition is not available (see completion’s grd1).

1 event discardTriggered
2 any trigger
3 synchronises r2c.triggeredStep
4 where
5 @grd1: r2c_Step∈ discardSteps
6 @grd2: trigger= StepTrigger(r2c_Step)
7 @grd3: ∀trf · transitions(trf)∈

StepTrigger∼[{trigger}]⇒ ¬enabling
(trf)⊆ utstc_active

8 end

1 event completion
2 synchronises r2c.completion
3 where
4 @grd1:
5 ∀ r2c_Step · r2c_Step∈ Steps \

dom(StepTrigger)
6 ⇒
7 ¬ (enabling(transitions∼(r2c_Step))

⊆ utstc_active)
8 end

The use of composition as supported by the inclusion mechanism in Rodin
results in the triggered statechart semantics inheriting the invariants from
the sub-machines without the need to prove them as they are correct-by-
construction.
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7 Conclusions

We formalize the semantics of SCXML run-to-completion statecharts using
Event-B. We formalize the syntactic elements using Event-B contexts and
dynamic semantics using Event-B machines. The semantics model is built in
a compositional fashion: the semantics of (untriggered) statecharts and run-to-
completion schedule is developed independently and composed to create the
SCXML statechart’s semantics model. This approach allows us to reduce the
complexity of the consistency reasoning by focusing on different parts of the
models. The combined model inherits the consistency of the sub-models by con-
struction.

In order to ensure the consistency of the semantics, several well-definedness
conditions on the syntactic elements have been identified. They are encoded
as axioms in the formal models. These well-definedness conditions can be used
as the specification of a validation tool to ensure the consistency of SCXML
models. Given the semantic models are consistent, any instantiation will inherit
this consistency without the need for reproving. For instance, the model of the
turnstile example can have consistency about the active states and the triggering
mechanism. Often, these consistency checks make up the majority of the proof
obligations, only a small number are related to the specific model properties.

We plan to extend this work to formalize the semantics of refinement as
described in [11,12]. In particular, we will formalize the syntactic constraints
that ensure consistent refinement of SCXML statecharts, proving the consistency
of the refinement rules, e.g., in [13]. The consistency of the semantic models
focuses on safety properties, expressed as invariants. Furthermore, we model
some of the syntactic elements in our formal models at a fairly abstract level, e.g.,
the notion of enabling, exiting, entering states for transformation. Our abstract
semantics supports the majority of typical statechart features such as transitions,
hierarchical structure, clustering, concurency, start and stop states. We do not
cover history or timeout mechanisms. Our composition approach means that our
untriggered statechart semantics, which is common to most statechart notations,
can be reused regardless of their triggering semantics (or lack thereof). E.g. UML-
B [14] is untriggered. Furthermore, since SCXML is based on the widely used
Harel statechart semantics [5], our run to completion semantics can also be used
for such notations and where notations deviate in their run semantics (e.g. [4]),
we at least encapsulate the extent of re-work required.

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D2791.
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Abstract. This paper provides foundations for strong (that is, possibly
under abstraction) call-by-value evaluation for the λ-calculus. Recently,
Accattoli et al. proposed a form of call-by-value strong evaluation for
the λ-calculus, the external strategy, and proved it reasonable for time.
Here, we study the external strategy using a semantical tool, namely
Ehrhard’s call-by-value multi types, a variant of intersection types. We
show that the external strategy terminates exactly when a term is typable
with so-called shrinking multi types, mimicking similar results for strong
call-by-name. Additionally, the external strategy is normalizing in the
untyped setting, that is, it reaches the normal form whenever it exists.

We also consider the call-by-extended-value approach to strong evalu-
ation shown reasonable for time by Biernacka et al. The two approaches
turn out to not be equivalent: terms may be externally divergent but
terminating for call-by-extended-value.

1 Introduction

Plotkin’s call-by-value λ-calculus λv [40] is at the heart of programming lan-
guages such as OCaml and proof assistants such as Coq. In the study of program-
ming languages, call-by-value (shortened to CbV) evaluation is usually weak, that
is, it does not reduce under abstractions, and terms are assumed to be closed, i.e.,
without free variables. These constraints give rise to an elegant framework—we
call it Closed CbV, following Accattoli and Guerrieri [5].

Plotkin did not present the CbV λ-calculus λv with these restrictions, and
properties such as confluence also hold without the restrictions. As soon as open
terms are allowed, however, or evaluation is strong (that is, it can reduce under
abstractions), the calculus behaves badly at the semantical level. There are at
least two issues, first pointed out by Paolini and Ronchi Della Rocca [38,39,41].

1. False normal forms: some terms are contextually equivalent to the looping
term Ω := (λx.xx)(λx.xx) and yet they are normal in Plotkin’s setting.

2. Failing of denotational soundness/adequacy beyond the closed case: denota-
tional models are usually both sound (that is, denotations are stable by reduc-
tion: if t → u then �t� = �u�) and adequate (that is, the denotation �t� is
non-empty if and only if the evaluation of t terminates) only for Closed CbV;
at least one of the two properties fails in the open/strong case.
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Extensions of Plotkin’s Call-by-Value. A number of calculi extending Plotkin’s λv

have been proposed. A first line of work studies a related and yet different issue
of λv, namely the equational incompleteness with respect to continuation-passing
translations, pointed out by Plotkin himself in [40]. This issue was solved with
categorical tools by Moggi [37], which led to a number of studies, among others
[21,24,30,34,42,43], that introduced many proposals of improved calculi for CbV.

A second and more recent line of work, due to Accattoli, Guerrieri, and
coauthors, addresses the problem of open terms and strong evaluation directly
[1,2,5–8,11,17,29]. It builds on the work of Paolini and Ronchi Della Rocca and
on tools and techniques coming from the theory of Girard’s linear logic [26].

In [5], they compare four different extensions of Plotkin’s calculus in the
framework of weak evaluation with possibly open terms. Their result is that the
four calculi are all termination equivalent : t terminates in one of these extensions
if and only if terminates in the other ones. In particular, in these extensions the
issue of false normal forms is solved because all terms contextually equivalent to
Ω do diverge, in contrast to what happens in Plotkin’s calculus λv. The notion
of termination shared by the four calculi is then referred to as Open CbV in [5].

One of the aims of this paper is identifying an analogous notion of termi-
nation for strong CbV evaluation. Perhaps surprisingly, indeed, the termination
equivalent calculi of Open CbV do not agree on what such a notion should be.

Two Relevant Extensions. Two Open CbV calculi are relevant here. The first one
is a call-by-extended-values λ-calculus where the restriction on β-redexes by value
is weakened to β-redexes having as argument an extended, more general notion
of value. First used as a nameless technical tool by Paolini and Ronchi Della
Rocca [39,41], then rediscovered by Accattoli and Sacerdoti Coen [12] to study
cost models, it has some similarities with a calculus introduced by Grégoire and
Leroy [27] to study a CbV abstract machine for Coq. In [12], extended values
are called fireballs (a pun on fire-able) and the calculus is called fireball calculus.

The second extension is the value substitution calculus (shortened to VSC)
due to Accattoli and Paolini and related to linear logic proof nets [1,11]. It was
introduced to overcome some of the semantical problems of Plotkin’s setting,
and it is a flexible tool, used in particular to relate the four extensions in [5].

Beyond False Normal Forms. In later works [6,8], Accattoli and Guerrieri show
that the termination equivalence of Open CbV does not necessarily solve the
other semantical issue of Open CbV, namely the failing of denotational sound-
ness/adequacy beyond the closed case. On the one hand, they show that the
fireball calculus is adequate but not sound with respect to Ehrhard’s CbV rela-
tional model [25], a paradigmatic model arising from the theory of linear logic
and handily presented as a multi types system (a variant of intersection types).
On the other hand, they show that the open VSC is both adequate and sound
with respect to that model, suggesting that it is a better setting for Open CbV.

Strong Call-by-Value. The strong case has received less attention. In particular,
it is not even clear what is the right notion of termination. The recent literature
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contains two proposals of strong CbV evaluation, which have been carefully
studied from the point of views of abstract machines and reasonable cost models,
but not from a semantical point of view. The first one is the strong fireball
calculus, for which abstract machines have been recently designed in 2020 [14]
and 2021 [15] by Biernacka et al., the latter being reasonable for time (defined
as the number of β-steps). The second proposal is the strong VSC, and more
precisely the external strategy of the strong VSC, introduced in 2021 by Accattoli
et al. [2], together with a reasonable machine implementing it.

The works [15] and [2] have been developed independently and at the same
time, by two distinct groups, who cite each other. They state that both imple-
ment Strong CbV, but they fail to notice that they implement different notions of
termination, raising the question of what exactly should be considered as Strong
CbV. As we point out here, indeed, some terms are normalizing in the strong
fireball calculus but have no normal form with respect to the external strategy.

Strong Call-by-Value and Multi Types. To clarify the situation, we here explore the
semantic perspective provided by CbV multi types. For such types, typability coin-
cides with termination of open CbV evaluation, as shown by Accattoli and Guer-
rieri [6,8,28], so they do not directly model strong evaluation. A similar mismatch
happens in call-by-name (CbN for short), where terms typable with multi types
coincide with the head (rather than strong) terminating ones. It is well known,
however, that the restriction to shrinking types (that have no negative occurrences
of the empty multiset) does model strong evaluation: in CbN, terms typable with
shrinking types coincide with the leftmost(-outermost) terminating ones, and the
leftmost strategy is a normalizing strategy of Strong CbN. Such a use of shrink-
ingness is standard in the theory of intersection and multi types, see Krivine [32],
de Carvalho [19], Kesner and Ventura [31], Bucciarelli et al. [16].

Here, we adapt to CbV the shrinking technique as presented by Accattoli et
al. for CbN multi types in [4], where the shrinking terminology is also introduced.
Our main result is the characterization of external termination via shrinking
types: a term t is typable with shrinking CbV multi types if and only if the
external strategy terminates on t. Technically, the result is a smooth adaptation
of the technique in [4]. Smoothness is here a plus, as it shows that the external
strategy is the notion of Strong CbV termination naturally validated by CbV
multi types, without ad-hoc stretchings of the technique.

Untyped Normalization Theorem. In an untyped setting, not every term nor-
malizes (think of Ω) and in the strong case some terms have both reductions
that normalize and reductions that diverge, for instance (λx.y)(λz.Ω). Thus, it
is important to have a strategy that reaches a normal form whenever possible,
i.e., that is normalizing in an untyped setting. The canonical evaluation strategy
in Strong CbN is leftmost reduction and its key property is precisely that it is
normalizing. A further contribution of the paper is an untyped normalization
theorem for the external strategy in the Strong VSC, obtained as an easy corol-
lary of the study via multi types. Such a result gives to the external strategy the
same solid status of the leftmost strategy in CbN, and completes the picture.



Strong Call-by-Value and Multi Types 199

No Tight Bounds. Multi types can be used to extract tight bounds on the length
of evaluations and the size of normal forms. Here, we only study termination, not
tight bounds, even if in the technical report [9] we also developed the enriched
results with tight bounds. A first reason is that the characterization of external
termination and the untyped normalization theorem we focus on here do not need
the bounds. A second reason is that the enriched results are considerably more
technical, while here we aim at a slightly weaker but more accessible treatment.

Proofs. Omitted proofs are in [10], the long version of this paper.

2 Technical Preliminaries

Basic Rewriting Notions. For a relation R on a set of terms, R∗ is its reflexive-
transitive closure. Given a relation →r, an r-evaluation (or simply evaluation if
unambiguous) d is a finite sequence of terms (ti)0≤i≤n (for some n ≥ 0) such
that ti →r ti+1 for all 1 ≤ i < n, and we write d : t →∗

r u if t0 = t and tn = u.
The length n of d is noted |d|, and |d|a is the number of a-steps (i.e. the number
of ti →a ti+1 for some 1 ≤ i ≤ n) in d, for a given subrelation →a of →r.

A term t is r-normal if there is no u such that t →r u. An evaluation d : t →∗
r u

is r-normalizing if u is r-normal. A term t is weakly r-normalizing if there is a
r-normalizing evaluation d : t →∗

r u; and t is strongly r-normalizing if there no
infinite sequence (ti)i∈N such that t0 = t and ti →r ti+1 for all i ∈ N. Clearly,
strong r-normalization implies weak r-normalization.

The Diamond Property. Following Dal Lago and Martini [22], we say that a
relation →r is diamond if u1 r← t →r u2 and u1 �= u2 imply u1 →r s r← u2 for
some s. Terminology in the literature is inconsistent: Terese [44, Exercise 1.3.18]
dubs this property CR1, and defines the diamond more restrictively, without
requiring u1 �= u2 in the hypothesis: u1 and u2 have to join even if u1 = u2.

Dal Lago and Martini show that if →r is diamond then:
1. →r is confluent, that is, u1

∗
r ← t →∗

r u2 implies u1 →∗
r s ∗

r ← u2 for some s;
2. all r-evaluations with the same start and r-normal end terms have the same

length (i.e. if d : t →∗
r u and d′ : t →∗

r u with u r-normal, then |d| = |d′|);
3. t is weakly r-normalizing if and only if it is strongly r-normalizing.

Properties 2 and 3 are called length invariance and uniform normalization,
respectively. Basically, the diamond captures a more liberal form of determinism.

Contextual Equivalence. The standard of reference for program equivalences is
contextual equivalence, that can be defined abstractly as follows.
Definition 1 (Contextual Preorder and Equivalence). Given a language
of terms T with its associated notion of contexts C and an operational semantics
given as a rewriting relation →, we define the associated contextual preorder �C

and contextual equivalence �C as follows:
– t �C t′ if C〈t〉 weakly →-normalizing implies C〈t′〉 weakly →-normalizing for

all contexts C such that C〈t〉 and C〈t′〉 are closed terms.
– �C is the equivalence relation induced by �C: t �C t′ ⇐⇒ t �C t′ and t′ �C t.
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Fig. 1. Our presentation of Plotkin’s calculus λv.

3 Call-by-Value and Call-by-Fireball

The call-by-value λ-calculus λv was introduced by Plotkin [40] in 1975 as the
restriction of the λ-calculus where β-redexes can be fired only when their argu-
ment is a value, and values are defined as variables and abstractions.

Our Presentation of CbV. In Fig. 1, we present λv adopting three specific choices,
departing from Plotkin’s presentation [40] in inessential details. Firstly, Plotkin
also considers constants in the term syntax, with their own reduction rules, which
are left unspecified. For simplicity, in our presentation there are no constants.

Secondly, for Plotkin values are variables and abstractions, while here values
are only abstractions, as it is the case in the papers about Strong CbV motivat-
ing our study [12,14,15]. As stressed by Accattoli and Guerrieri [8], removing
variables from values provides a better inductive description of normal forms in
the open/strong case, without affecting properties such as termination or con-
fluence. For further quantitative benefits, see Accattoli and Sacerdoti Coen [13].
In our paper, variables are not values, but all our results could be restated by
considering them as values.

Thirdly, Plotkin defines both a multi-step non-deterministic (and confluent)
evaluation relation reducing redexes everywhere in the term, and a single-step
deterministic reduction (proceeding left-to-right) that is weak, that is, it does not
reduce under abstractions. We instead adopt the somewhat halfway approach by
Dal Lago and Martini [22]: our →βv

is single-step, weak but non-deterministic.
The idea is that it can evaluate the left and right sub-term of an application in
any order (that is, the left sub-term is not forced to be evaluated first as Plotkin
does), because (in the weak case) the obtained reduction relation has the dia-
mond property (definition in Sect. 2), a relaxed form of determinism. Thus, the
obtained notion of reduction slightly generalizes Plotkin’s single-step reduction
without changing whether a term terminates or not. The non-deterministic ver-
sion is obtained via the notion of evaluation context E defined in Fig. 1.

Problem with Open Terms. It is well known that Plotkin’s framework works well
only as long as terms are closed. The problem with open terms is that there
are false normal forms such as Ωl := (λx.δ)(yy)δ (where δ := λx.xx is the
duplicator) which are βv-normal, because yy is not a value (and cannot become
one), but are semantically divergent. Such a divergence can be formalized in
various ways, perhaps the simplest of which is that Ωl is contextually equivalent
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Fig. 2. The fireball calculus λfire.

(definition in Sect. 2) to the diverging term Ω := δδ. This problem was first
pointed out by Paolini and Ronchi Della Rocca [38,39,41]. It is discussed at
length by Accattoli and Guerrieri [5], who analyze various ways of extending
Plotkin’s calculus to solve the issue, that is, as to make false normal forms such
as Ωl diverge without simply switching to CbN (which, intuitively, amounts to
diverge on (λx.y)Ω as done by CbV but not by CbN), and show their equivalence
with respect to termination, referring to them collectively as Open CbV.

The Fireball Calculus. The simplest presentation of Open CbV is probably the
fireball calculus, defined in Fig. 2. The idea is that the values of the CbV λ-
calculus are generalised to fireballs (a pun on fire-able terms), by adding inert
terms, which contain in particular variables. Actually fireballs and inert terms
are defined by mutual induction (in Fig. 2). For instance, λx.t is a fireball as a
value, while x, y(λx.x), xy and z(λx.x)(zz)(λy.t) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name. Essentially,
they are the neutral terms of Open CbV.

Dynamically, β-redexes can also be fired if their argument is an inert term,
via →βi

. Evaluation is weak, as evaluation contexts do not go under abstractions.
Note that Ωl given above now diverges: Ωl = (λx.δ)(yy)δ →βi

δδ →βv
. . .

Two relevant properties of the fireball calculus are that its reduction is non-
deterministic but diamond and that a term is a normal form if and only if it is
a fireball, a property called harmony by Accattoli and Guerrieri [5].

Issues with the Fireball Calculus. In later works [6,8], Accattoli and Guerrieri
show that, despite the termination equivalence of the various formalisms for
Open CbV, they can behave quite differently with respect to semantical notions.
In particular, they show that the fireball calculus does not behave well with
respect to Ehrhard’s multi types [25], which are a notion of type inducing a
paradigmatic denotational model of the λ-calculus, the relational model, linked
to linear logic. Technically, they show that multi types do not satisfy subject
reduction with respect to the fireball calculus. The issue can be illustrated with-
out multi types, and amounts to the fact that the fireball calculus allows one
to erase and duplicate inert terms. The erasure is particularly problematic. We
reformulate here the problem in terms of contextual equivalence, to stress that
the issue concerns the fireball calculus independently of multi types.
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An expected property of any calculus is what we call here contextual stability,
that is, the fact that its operational semantics → is included in its contextual
equivalence �C—in symbols: if t →∗ u then t �C u. In the fireball calculus,
contextual stability fails. Consider t := (λx.I)(yy), where I := λz.z is the identity
combinator, and note that t →βi

I because yy is an inert term. Now, consider
the closing context C := (λy.〈·〉)δ and note that C〈I〉 = (λy.I)δ →βv

I, while

C〈t〉 = (λy.((λx.I)(yy)))δ →βv
(λx.I)(δδ) →βv

(λx.I)(δδ) →βv
. . .

That is, t →βi
I but t ��C I because C〈t〉 diverges while C〈I〉 terminates.

To overcome false normal forms such as Ωl, one has to work around redexes
having inert terms has arguments. But substituting inert terms (thus sometimes
erasing them) as done by the fireball calculus is a brute force solution. At the open
level, it does not alter termination but it deteriorates semantics properties of the
calculus such as contextual stability or the relationship with multi types. The
alternative presentation of Open CbV given by the value substitution calculus
[11], discussed in the next section, does not suffer of these shortcomings.

Issues with the Strong Fireball Calculus. The strong evaluation strategy by Bier-
nacka et al. [14,15] is a deterministic version of the fireball calculus (namely
proceeding right-to-left) extended to evaluate under abstractions. We omit the
actual definition of its extension under abstractions because it is non-trivial and
the issue we want to point out can be explained without detailing them.

At the open level, the issue with the fireball calculus is about the seman-
tics, but not about termination. The semantical issue of the open level, however,
induces a termination issue at the strong level. Indeed, the strong fireball calcu-
lus suffers of a phenomenon similar to the one of false normal forms, even if no
redexes are stuck. Consider the term u := (λx.I)(y(λz.Ω)). In the fireball calcu-
lus, one has u →βi

I because y(λz.Ω) is an inert term. That is, u terminates on a
strong normal form, namely I. Instead, u is semantically divergent at the strong
level, as it was the case for Ωl in Plotkin’s calculus. Intuitively, the inert sub-
term y(λz.Ω) should be somehow kept, instead of being erased, and evaluated
strongly, which would lead to divergence because of the Ω under abstraction.

The non-trivial point is how to bring evidence that this is what should happen
in a good definition of strong CbV evaluation. One way to see that something is
wrong with the strong fireball calculus is to observe that the step u →βi

I provides
another breaking of contextual stability. This is detailed in the Appendix of [10],
because although interesting it does not involve strong evaluation.

Better evidence is developed along the paper. We adopt the value substitution
calculus (VSC) and the external strategy by Accattoli et al. [2] for which t is
divergent. Then, we show that, when refining Ehrhard’s CbV multi types [25] by
adding the machinery for characterizing termination of strong evaluation, one
obtains that t above is not typable. That is, t is also semantically diverging.
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4 Value Substitution Calculus

Here we present the value substitution calculus (VSC for short) introduced by
Accattoli and Paolini [11], and recall some properties. The operational semantics
shall be different from the fireball calculus of the previous section, but we shall
nonetheless exploit the concept of fireball to describe its normal forms.

Terms. The VSC is a CbV λ-calculus extended with let-expressions, similarly to
Moggi’s CbV calculus [36,37]. We do however write a let-expression let x = u in t
as a more compact explicit substitution t[x�u] (ES for short), which binds x in
t. Moreover, our let/ES does not fix an order of evaluation between t and u, in
contrast to many papers in the literature (e.g. Sabry and Wadler [43] or Levy et
al. [33]) where u is evaluated first. The grammars follow:

Values v ::= λx.t Terms t, u, s ::= x | v | tu | t[x�u]

The set of free variables of term t is denoted by fv(t) and terms are identified
up to α-renaming of bound variables. We use t{x�u} for the capture-avoiding
substitution of u for each free occurrence of the variable x in t.

Contexts. All along the paper, we use (many notions of) contexts, i.e. terms with
exactly one hole, noted 〈·〉. For now, we need general contexts and the notion of
substitution contexts L, which are simply lists of ES. The grammars are:

(General) Contexts C ::= 〈·〉 | Ct | tC | λx.C | C[x�t] | t[x�C]
Substitution Contexts L ::= 〈·〉 | L[x�t]

Plugging a term t in a context C is noted C〈t〉, possibly capturing variables,
for instance (λx.λy.〈·〉)〈xy〉 = λx.λy.xy (while (λx.λy.z){z�xy} = λx′.λy′.xy).
An answer is a term of shape L〈v〉.

Reduction Rules. The reduction rules of VSC are slightly unusual as they use
contexts both to allow one to reduce redexes located in sub-terms, which is
standard, and to define the redexes themselves, which is less standard—this
kind of rule is called at a distance. The rewriting rules in fact mimic exactly cut-
elimination on proof nets, via Girard’s CbV translation (A ⇒ B)v = !(Av � Bv)
[26] of intuitionistic logic into linear logic, see Accattoli [1].

There are two rewrite rules. Their root cases (that is, before context closure)
follow (the terminology is inherited from linear logic):

Multiplicative root rule L〈λx.t〉u →m L〈t[x�u]〉
Exponential root rule t[x�L〈v〉] →e L〈t{x�v}〉

Both root rules are at a distance in that they involve a substitution context L,
and L does not capture the free variables of u in →m (resp. of t in →e). We shall
consider two variants of the VSC, the open and the strong version. They differ
only in the choice of evaluation contexts for the root rewrite rules.
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The Open VSC. We first focus on the open fragment of the VSC, where rewriting
is forbidden under abstraction and terms are possibly open (but not necessarily).
This fragment has a nice inductive description of its normal forms, called fireballs
and inert terms as they are the lifting to the VSC of the respective notions from
the fireball calculus. Open contexts and rules are defined as follows.

Open contexts O ::= 〈·〉 | Ot | tO | O[x�t] | t[x�O]
Open rewrite rules: t →a t′

O〈t〉 →oa O〈t′〉(a ∈ {m, e})
Open reduction :
→o :=→om ∪ →oe

Proposition 1 (Properties of open reduction [8]).

1. Open reduction →o is diamond.
2. A term is o-normal if and only if it is a fireball, where fireballs (and inert

terms) are defined by:

Inert terms i, i′ ::= x | if | i[x�i′] Fireballs f ::= v | i | f [x�i]

Plotkin vs VSC. The open fragment of the VSC is enough to discuss the relation-
ship with Plotkin’s CbV λ-calculus as defined in the previous section. Plotkin’s
calculus can be easily simulated in the VSC. Indeed, if (λx.t)v →βv

t{x�v} then
(λx.t)v →m t[x�v] →e t{x�v}.

There is no sensible way, instead, to simulate VSC into Plotkin’s calculus.
Indeed, VSC is a proper extension of Plotkin’s: false normal forms of Plotkin’s
calculus such as Ωl = (λx.δ)(yy)δ and Ωr := δ((λx.δ)(yy)) are divergent in VSC:

Ωl →om δ[x�yy]δ →om (xx)[x�δ][x�yy] →oe (δδ)[x�yy] →om . . .

Ωr →om δδ[x�yy] →om (xx)[x�δ[x�yy]] →oe (δδ)[x�yy] →om . . .

Note that divergence of Ωl crucially uses distance on →m (in the second step),
while divergence of Ωr crucially uses distance on →e (in the third step).

VSC and Contextual Equivalence. Pleasantly, Plotkin’s calculus and the VSC
induce the same notion of contextual equivalence on λ-terms without ES, since
contextual equivalence is defined with respect to contexts that close terms, see
Accattoli and Guerrieri [8]. Moreover, the Open VSC is contextually stable.

Proposition 2 (Contextual stability [3]). The Open VSC is contextually sta-
ble, that is, if t →∗

o u then t �C u.

The Strong VSC. The Strong VSC is obtained by allowing rewriting rules every-
where, including under abstractions, via a closure by general contexts.

Strong rewrite rules: t →a t′

C〈t〉 →a C〈t′〉(a ∈ {m, e})
Strong reduction:

→vsc := →m ∪ →e

Unlike the previous cases, →vsc is not diamond: consider all the vsc-evaluations
of (xx)[x�λy.II], with I := λz.z.



Strong Call-by-Value and Multi Types 205

Proposition 3 (Properties of strong reduction [8,11]).

1. The reduction →vsc is confluent.
2. A term is vsc-normal if and only if it is a strong fireball, where strong fireballs

(and strong inert terms, strong values) are:

Strong inert terms is ::= x | isfs | is[x�i′s] Strong values vs ::= λx.fs
Strong fireballs fs ::= is | vs | fs[x�is]

The notions of strong inert terms and strong fireballs are a generalization of inert
terms and fireballs, respectively, by simply iterating the construction under all
abstractions. Note that they are similar to normal forms of the (CbN) λ-calculus,
but they can have ESs containing strong inert terms.

5 The External Strategy

In this section, we define Accattoli et al.’s (strong) external strategy [2], that
shall be studied via multi types in Sect. 8. Its role is analogous to the leftmost-
outermost strategy of the λ-calculus. A notable difference, however, is that the
external strategy is itself non-deterministic, but in a harmless way, because it is
diamond. The idea is the same used for Plotkin’s calculus, that is, allowing one
to reduce sub-terms of applications (and ES) in any order. In a strong setting,
however, it is a bit trickier to enforce it.

We need a few notions. Firstly, rigid terms, i.e. the variation over inert terms
where the arguments of the head variable can be whatever term:

Rigid terms r, r′ ::= x | rt | r[x�r′]

Every (strong) inert term is a rigid term, but the converse does not hold—
consider y(δI), which is rigid but not inert.

Secondly, we need evaluation contexts for the external strategy →x, which is
defined on top of open evaluation. The base case is given by the open rewriting
rules (themselves defined via a closure by open contexts, see Sect. 4), which are
then closed by external contexts, defined mutually with rigid contexts:

External contexts X ::= 〈·〉 | λx.X | t[x�R] | X[x�r] | R
Rigid contexts R ::= rX | Rt | R[x�r] | r[x�R]

External rewrite rules: t →oa t′

X〈t〉 →xa X〈t′〉(a ∈ {m, e})
External reduction:

→x :=→xm ∪ →xe

Clearly, →x � →vsc. The strategy diverges on y(λz.Ω) (as yλz.〈·〉 is a rigid—thus
external—context) and normalizes the potentially diverging term (λx.y)(λz.Ω)
→∗

x y, because values can be erased even if they diverge under abstraction.
Key example: the external strategy diverges on the term t = (λx.I)(y(λz.Ω))

of Sect. 3 on which the strong fireball calculus terminates, showing that the two
strong settings have different notions of termination. Indeed, t →xm I[x�y(λz.Ω)]
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and then the external strategy diverges because y(λz.Ω) cannot be erased and
Ω occurs in the external evaluation context I[x�y(λz.〈·〉)].

The grammars of external and rigid contexts allow evaluation to enter only
inside non-applied abstractions, e.g. (λx.(II))v �→x (λx.(y[y�I]))v. This is a
sort of outside-in order which is neither left-to-right nor right-to-left—we have
both (II)(II) →xm (y[y�I])(II) and (II)(II) →xm (II)(y[y�I])—since open con-
texts do not impose an order on applications. As just showed, the strategy
is non-deterministic: another example is given by t = x(λy.(II))[x�x(II)] →xm

x(λy.z[z�I])[x�x(II)], and t →xm x(λy.(II))[x�x(z[z�I])]. Such a behavior how-
ever is only a relaxed form of determinism, as it satisfies the diamond property.

Proposition 4 (Properties of external reduction →x [2]).

1. External reduction →x is diamond.
2. Fullness: let t be a VSC term, t is x-normal if and only if t is vsc-normal.

6 Multi Types by Value

We present here the system of CbV multi types that we shall use to characterize
the termination of the external strategy in Sect. 8. The system was introduced by
Ehrhard [25] for Plotkin’s CbV λ-calculus, as the CbV version of de Carvalho’s
multi types system for CbN [18,19]. Both systems can be seen as presentations of
the relational semantics of linear logic restricted to the CbV/CbN interpretation
of the λ-calculus. The CbV multi type system is also used in [3,6,8,17,23,28].

Multi Types. There are two layers of types, linear and multi types:

Linear types A,B ::= G | M � N
Multi types M,N ::= [A1, . . . ,An] n ∈ N

where G is an unspecified ground type and [A1, . . . ,An] is our notation for finite
multisets. The empty multi type [ ] obtained by taking n = 0 is also denoted by
0. When CbV multi types are used to study weak evaluation, they are usually
presented without the ground type G, as one can use 0 as base case for types.
For studying strong evaluation, however, G is mandatory, as we shall see.

A multi type [A1, . . . ,An] has to be intended as a conjunction A1 ∧· · ·∧An of
linear types A1, . . . ,An, for a commutative, associative, non-idempotent conjunc-
tion ∧ (morally a tensor ⊗), of neutral element 0. Note however that [A] �= A.

The intuition is that a linear type corresponds to a single use of a term t,
and that t is typed with a multiset M of n linear types if it is going to be used
(at most) n times. The meaning of using a term (once) is not easy to define
precisely. Roughly, it means that if t is part of a larger term u, then a copy of
t shall end up in evaluation position during the evaluation of u. More precisely,
the copy shall end up in evaluation position where it is applied to some terms.

The derivation rules for the multi types system are in Fig. 3 (explanation
follows). The rules are the same as in Ehrhard [25], up to their extension to ESs.

Judgments have shape Γ � t :M or Γ � t :A where t is a term, M is a multi
type, A is a linear type, and Γ is a type context, that is, a total function from
variables to multi types such that dom(Γ ) := {x | Γ (x) �= 0} is finite.
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Fig. 3. Call-by-value multi type system. In rule many, vt is a theoretical value, i.e. a
variable or an abstraction, and I is a finite set.

Technicalities About Types. The type context Γ is empty if dom(Γ ) = ∅. Multi-
set sum � is extended to type contexts point-wise, i.e. (Γ �Δ)(x) := Γ (x)�Δ(x)
for each variable x. This notion is extended to a finite family of type contexts as
expected, in particular

⊎
i∈J Γi is the empty type context if J = ∅. A type context

Γ is denoted by x1 :M1, . . . , xn :Mn (for some n ∈ N) if dom(Γ ) ⊆ {x1, . . . , xn}
and Γ (xi) = Mi for all 1 ≤ i ≤ n. Given two type contexts Γ and Δ such that
dom(Γ ) ∩ dom(Δ) = ∅, the type context Γ,Δ is defined by (Γ,Δ)(x) := Γ (x) if
x ∈ dom(Γ ), (Γ,Δ)(x) := Δ(x) if x ∈ dom(Δ), and (Γ,Δ)(x) := 0 otherwise.
Note that Γ, x :0 = Γ , where we implicitly assume x /∈ dom(Γ ).

We write Φ � Γ � t :M if Φ is a (type) derivation (i.e. a tree constructed using
the rules in Fig. 3) with conclusion the multi judgment Γ � t :M. In particular,
we write Φ �� t :M when Γ is empty. We write Φ � t if Φ � Γ � t :M for some
type context Γ and some multi type M.

We need a notion of size of type derivations, which shall be used as the
termination measure for typable terms.

Definition 2 (Derivation size). Let Φ be a type derivation. The size |Φ| of Φ
is the number of rule occurrences in Φ except for rule many.

Multisets and Rule many. Rule many plays a crucial role, as it is the only rule
introducing multisets on the right-hand side of judgments: it takes as premises a
finite multiset of derivations of linear types for a term vt, and glues them together
giving a judgment with the finite multiset of linear types to vt. The term vt is
a theoretical value vt, that is, a variable or an abstraction—the terminology
is taken from Accattoli and Sacerdoti Coen [13]. Rule many is the multi types
analogous of the promotion rule of linear logic, which, in the CbV representation
of the λ-calculus, is indeed used for typing abstractions and variables. Note that
in particular all abstractions are typable with 0 via a many rule with no premises.

Subject Reduction and Expansion. The first properties of the type system that
we show are subject reduction and expansion, which hold for every VSC step,
not only external ones. They rely on a substitution lemma (and its inverse for
subject expansion) in the Appendix of [10].

Proposition 5 (Qualitative subjects). Let t →vsc t′.

1. Reduction: if Φ � Γ � t :M then there is Φ′ � Γ � t′ :M such that |Φ| ≥ |Φ′|.
2. Expansion: if Φ′ � Γ � t′ :M then there is a derivation Φ � Γ � t :M.
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Note that subject reduction (Proposition 5.1) says also that the derivation
size cannot increase after a reduction step. It does not say that it decreases at
every step because, for instance, if λx.t →vsc λx.t′ and λx.t is typed using a
empty many rule (i.e. with 0 premises), which is a derivation of size 0, then also
λx.t′ is typed using a empty many rule, of size 0. Hence, not all typable terms
terminate for strong/external evaluation, as for instance λx.Ω is typable (with
0).

There are two ways to strengthen subject reduction without changing the
type system and recover termination: restricting either the reductions to not
take place under abstraction, which is what we shall do in the next section for
the open case, or the kind of types taken into account (roughly, as to limit the
use of 0), which is what shall guarantee termination for the external strategy.

7 Multi Types for Open CbV

Here we recall the qualitative part of the relationship between CbV multi types
and Open CbV studied by Accattoli and Guerrieri in [8], where they develop also
a quantitative study not used here. The reason to recall their result is twofold.
Firstly, the external case relies on the open one. Secondly, the open case provides
the blueprint for the strong case, allowing us to stress similarities and differences.

The result is that the open evaluation →o of t terminates if and only if t is
typable. Since →o does not reduce under abstractions, every abstraction is o-
normal and indeed typable, for instance with 0. As an example, note that λx.Ω
is typable with 0 (rule many with 0 premises), though Ω is not.

Correctness. Open correctness establishes that all typable terms are o-
normalizing and it is proved by showing that the size of type derivation decreases
with every o-step. Open correctness is proved following a standard scheme,
namely proving a quantitative version of open subject reduction, stating that
every →o step preserves types and decreases the general size of a derivation.

Proposition 6 (Open quantitative subject reduction). Let Φ � Γ � t :M
be a derivation. If t →o t′ then there is Φ′ � Γ � t′ :M with |Φ| > |Φ′|.

The size of derivations decreases after any →o step, thus proving →o-
termination for typable terms. Clearly, the size provides a bound to the number
of steps.

Theorem 1 (Open correctness). Let Φ � t be a derivation. Then there is a
o-normalizing evaluation d : t →∗

o f with |d| ≤ |Φ|.

Completeness. Open completeness establishes that every o-normalizing term is
typable. Again, the proof technique is standard: a lemma states that every o-
normal form is typable, and subject expansion (Proposition 5.2) allows us to
pull back typability along →o steps. The lemma about open normal forms says
that they are all typable with 0 and relies on a stronger statement about inert
terms: they can be assigned whatever multi type M, by tuning the type context
Γ accordingly.
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Fig. 4. Right and left (shrinking) types.

Lemma 1 (Typability of open normal forms).

1. Inert: for every inert term i and multi type M, there exists a type context Γ
and a derivation Φ � Γ � i :M.

2. Fireball: for every fireball f there exists a type context Γ and a derivation
Φ � Γ � f :0.

Theorem 2 (Open completeness). Let d : t →∗
o f be an o-normalizing eval-

uation. Then there is a derivation Φ � Γ � t :0.

8 Shrinking Multi Types for the External Strategy

In this section, we restrict the set of judgments as to characterize the typable
terms that terminate with respect to the external strategy. The restriction is
obtained by adapting to CbV the shrinking technique for CbN multi types in
Accattoli et al. [4]. At the end of the section, we also obtain the untyped nor-
malization theorem for the external strategy.

The definition of shrinking judgments is standard and not due to [4], see
for instance Krivine’s book [32], but the proof technique that we shall use is
due to [4] and it is different from others in the literature [16,19,31,32]. Its key
ingredient is the isolation of a key property of rigid terms (Lemma 2 below).

The Need for Shrinking. As already pointed out at the end of Sect. 6, some terms
that diverge with strong evaluation are typable. We have that Ω itself is not
typable, but λy.Ω is typable with 0 (via a many rule with 0 premises). It might
seem that the problem is being typable with 0, but also x(λy.Ω) is externally
divergent and can be typed by assigning [0 � M] to x (any M works). In this
case the problem is that, since 0 is on the left of �, the argument is meant to be
erased, but x cannot actually erase it. This is a problem typical of strong settings,
as it occurs also in Strong CbN. The solution is to restrict to type derivations
satisfying a predicate that forbids types where 0 plays these dangerous tricks; in
particular a ground type G �= 0 is needed. This is unavoidable and standard, see
[4,32]. Following [4], the predicate is here called shrinkingness because it ensures
that the size of type derivations shrinks at each →x step (see Prop. 7 below).

Defining Shrinking. The definition of shrinking forbids the empty multiset 0
on the left of some type arrows �. We actually need two notions of shrinking
types, left and right. Intuitively, it is because the typing rule λ shifts a type
from the left-hand side of a judgment to the left of � on the right-hand side of
a judgment. Formally, left and right shrinking (multi or linear) types are defined
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in Fig. 4 (we omit shrinking when referring to left or right types, for brevity),
by mutual induction. The key point is that right multi types cannot be empty
(note n ≥ 1), thus 0 is forbidden on the left of top � for left linear types.

The notions extend to type contexts and to derivations as follows:

– A type context x1 :M1, . . . , xn :Mn is left if each Mi is left;
– A derivation Φ � Γ � t :M is shrinking if Γ is left and M is right.

Examples: [G] is both left and right (this fact shall play a role below), while 0 is
left but not right, and [0 � [G]] is right but not left.

Key Property of Left Shrinking. Shrinkingness is a predicate of derivations
depending only on their final judgment. For proving properties of shrinking
derivations, we have to analyze how shrinking propagates to sub-derivations,
to apply the i.h. in proofs. The following lemma is specific to left shrinkingness,
on which the propagation of shrinkingness then builds. It says that for specific
terms—typable rigid terms—left shrinkingess spreads from the type context to
the right-hand multi type in a judgment. It is the key property of the proof
technique.

Lemma 2 (Spreading of left shrinkingness on judgments). Let Φ � Γ �
r :M be a derivation and r be a rigid term. If Γ is left then M is left.

Correctness. Shrinking correctness establishes that all typable terms with a
shrinking derivation are externally normalizing. We follow the same pattern as
for the open case, but the proof of subject reduction is trickier—this is the deli-
cate point of the proof technique by Accattoli et al. [4]. It crucially uses the key
property of left shrinking for rigid terms above (Lemma 2), and it also requires
an auxiliary statement with a weaker hypothesis for the induction to go through.

Proposition 7 (Shrinking quantitative subject reduction for →x).

1. Auxiliary statement: Let Γ be a left context. Suppose that Φ � Γ � t :M and
that if t is a answer then M is right. If t →x t′ then there is a derivation
Φ′ � Γ � t′ :M with |Φ| > |Φ′|.

2. Actual statement: Let Φ � Γ � t :M be a shrinking derivation. If t →x t′ then
there is a derivation Φ′ � Γ � t′ :M with |Φ| > |Φ′|.

Proof. Note that the auxiliary statement is stronger, because every shrinking
derivation (defined as having Γ left and M right) satisfies it: if t is not an answer
then M can be whatever, in particular it can be right. For the auxiliary statement,
we give two cases, the one motivating the use of the auxiliary statement and one
showing the use of the key property for rigid terms. The other cases are in the
Appendix of [10]. The proof is by induction on the external context X such that
t = X〈u〉 →x X〈u′〉 = t′ with u →o u′. The two cases:

– Rigid context applied to term, i.e. X = Rs. Then, t = X〈u〉 = R〈u〉s →x

R〈u′〉s = X〈u′〉 = t′ with u →o u′. The derivation Φ has the following shape:
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Φ =
Ψ � Δ � R〈u〉 : [N � M] Θ � Σ � s :N

@
Δ � Σ � R〈u〉s :M

where Γ = Δ � Σ is left by hypothesis, and then so is Δ. By i.h. (as R〈u〉
is not an answer), there is a derivation Ψ ′ � Δ � R〈u′〉 : [N � M] with
|Ψ ′| < |Ψ |. We can then build the following derivation:

Φ′ =
Ψ ′ � Δ � R〈u′〉 : [N � M] Θ � Σ � s :N

@
Δ � Σ � R〈u′〉s :M

where Γ = Δ � Σ and |Φ′| = |Ψ ′| + |Θ| + 1 < |Ψ | + |Θ| + 1 = |Φ|. Note that
in this case we have no hypothesis on N, thus on [N � M], which is why we
need a weaker statement in order to use the i.h.

– Rigid term applied to external context, i.e. X = rX ′. Then, t = X〈u〉 =
rX ′〈u〉 →x rX ′〈u′〉 = X〈u′〉 = t′ with u →o u′. The derivation Φ is:

Φ =
Ψ � Δ � r : [N � M] Θ � Σ � X ′〈u〉 :N

@
Δ � Σ � rX ′〈u〉 :M

where Γ = Δ�Σ is left by hypothesis, and then so are Δ and Σ. According to
spreading of left shrinkingness applied to Ψ (Lemma 2, which can be applied
because r is a rigid term), [N � M] is a left multi type and hence N is a right
multi type. Thus, the i.h. applied to Θ gives a derivation Θ′ � Σ � X ′〈u′〉 :N
with |Θ′| < |Θ|. We then build the following derivation:

Φ′ =
Ψ � Δ � r : [N � M] Θ′ � Σ � X ′〈u′〉 :N

@
Δ � Σ � rX ′〈u′〉 :M

where Γ = Δ � Σ and |Φ′| = |Ψ | + |Θ′| + 1 < |Ψ | + |Θ| + 1 = |Φ|. ��
Theorem 3 (Shrinking correctness for →x). Let Φ � t be a shrinking
derivation. Then there is a x-normalizing evaluation d : t →∗

x fs with |d| ≤ |Φ|.
Shrinking correctness for →x shows that the term t = (λx.I)(y(λz.Ω)) diverging
for →x but normalizing for the strong fireball calculus is not typable, otherwise
it would →x-terminate. That is, it shows that t is semantically diverging.

Completeness. Shrinking completeness is proven as in the open case, using a
lemma about the shrinking typability of strong fireballs. Note that the lemma
now has an existential quantification on the type M of strong fireballs, while
in the open case the type was simply 0; here 0 would not work, because it is
not right. Note also the part about inert terms, stating that M is left : it is not
a mistake, it can be seen as an instance of the key properties of rigid terms
(Lemma 2, inert terms are rigid), and it gives shrinking derivations when M is
instantiated with, say, [G], which is both left an right.

Lemma 3 (Shrinking typability of normal forms).
1. Inert: for every strong inert term is and left multi type M, there exists a left

type context Γ and a derivation Φ � Γ � is :M.
2. Fireball: for every strong fireball fs there is a shrinking derivation Φ � fs.

Theorem 4 (Shrinking completeness for →x). Let d : t →∗
x fs be a x-

normalizing evaluation. Then there is a shrinking derivation Φ � t.
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Untyped Normalization Theorem. By exploiting an elegant proof technique used
by de Carvalho et al. [20] and Mazza et al. [35], we obtain an untyped normal-
ization theorem for the external strategy of the VSC, as a corollary of our study
of multi types. The key points are subject expansion (Prop. 5.2) for the whole
reduction →vsc, instead that just for the external strategy, and the fact that
shrinkingness is a predicate of derivations depending only on their conclusion.

Theorem 5 (Untyped normalization for →x). If there is a vsc-normalizing
evaluation d : t →∗

vsc fs, then t →∗
x fs.

Proof. Shrinking typability of normal forms (Lemma 3) gives a shrinking deriva-
tion Φ � Γ � fs :M. Subject expansion (Prop. 5.2) iterated along t →∗

vsc fs gives
a shrinking derivation Ψ � Γ � t :M. By shrinking correctness (Thm. 3), t →∗

x f ′
s

for a strong fireball f ′
s . By confluence of the VSC (Prop. 3.1), fs = f ′

s . ��

Relational Semantics. Multi types induce a denotational model, the relational
semantics, interpreting a term as the set of its derivable judgments [6,8,18,19,
25,28]. Here we focus on the semantics induced by shrinking derivations. Let t
be a term and let x = (x1, . . . , xn) be a list of pairwise distinct variables with
n ≥ 0 and fv(t) ⊆ {x1, . . . , xn}: the shrinking semantics �t��x of t for x is defined
by �t��x := {((N1, . . . ,Nn),M) | ∃ shrinking Φ � x1 :N1, . . . , xn :Nn � t :M}.

Subject reduction and expansion (Proposition 5) guarantee that �t��x is sound
for →vsc: if t →vsc u then �t��x = �u��x. Shrinking correctness (Theorem 3) and
completeness (Theorem 4), along with untyped normalization (Theorem 5), guar-
antee adequacy for this semantics, i.e., they give a semantic characterization of
normalization in Strong VSC: t is weakly vsc-normalizing if and only if �t��x �= ∅.

9 Conclusions

This paper studies call-by-value strong evaluation defined as the external strat-
egy →x of the value substitution calculus (VSC). Such a strategy is analyzed
using the semantical tool of Ehrhard’s multi types, declined in their shrinking
variant as it is standard for studying strong evaluation. The main contributions
are that →x-normalizing terms are exactly those typable with shrinking call-by-
value multi types, plus an untyped normalization theorem for →x in the strong
VSC. These results mimic faithfully similar results for strong call-by-name.

These contributions are developed to validate the external strategy as the
good notion of termination for strong call-by-value, in contrast to the other non-
equivalent proposal in the literature given by the strong fireball calculus, which
we show to terminate on some terms on which the external strategy diverges.

We conjecture that all x-normalizing terms are also normalizing in the strong
fireball calculus, but a proof is likely to be very technical.
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Abstract. The intersection non-emptiness problem of regular languages
is one of the most classical and fundamental decision problems in formal
language theory, which plays an important role in many areas. Because of
its wide applications, the efficiency of the algorithms becomes particularly
crucial. In practice, it is quite common that automata have large numbers
of states, therefore the explicit construction of automata may incur sig-
nificant costs in terms of both time and space, significantly impacting the
performance of the related programs. To overcome this challenge, in this
paper, we present four efficient algorithms for checking the intersection
of regular expressions without the need for automata construction. Our
algorithms employ lazy evaluation strategies to simulate intersection non-
emptiness checking on automata to avoid constructing automata. They
also use automata with fewer states to reduce the state complexity. We
conducted experiments and compared our results with seven state-of-the-
art tools. The results show significant advantages of our algorithms over
existing methods in terms of efficiency and accuracy.

Keywords: Regular Expressions · Intersection Non-emptiness
Problem · Online Algorithms

1 Introduction

The intersection non-emptiness problem of regular languages is one of the most
classical and fundamental decision problems in formal language theory. The
problem has a wide range of applications and has been extensively studied by
researchers. Given a set of m regular expressions E1, . . ., Em defined over the
alphabet Σ, the problem is to determine whether

⋂m
i=1 L(Ei) �= ∅, where ∅

denotes the empty set. In other words, it decides whether there exists a common
word in all languages. The algorithms for solving this problem play an impor-
tant role in various fields such as SMT (Satisfiability Modulo Theories) solvers,
model checking tools, artificial intelligence [35], data privacy [24], and ReDoS
(Regular expression Denial of Service) vulnerability detection [32]. For instance,
SMT string solvers like Z3seq [39], CVC4 [33], and OSTRICH [21] use these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Ábrahám et al. (Eds.): ICTAC 2023, LNCS 14446, pp. 216–235, 2023.
https://doi.org/10.1007/978-3-031-47963-2_14
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Fig. 1. The classical process for determining
⋂2

i=1 L(Ei) �= ∅ for E1 = (a(b + ε))∗ and
E2 = (ab)∗.

algorithms to solve regular membership queries. Similarly, model checking tools
like Mona [25] use these algorithms to verify hardware and software systems.

The classical process of determining the intersection non-emptiness of two
regular expressions is illustrated in Fig. 1, which can be solved in polyno-
mial time [27]. The key steps include (1) compiling the expressions into finite
automata, (2) constructing the intersection automaton from the compiled
automata by the cross product algorithm [38], and (3) performing non-emptiness
testing on the intersection automaton. For this example, the path colored in
green in Fig. 1(c) shows an accepting path in the intersection automaton, indi-
cating that the intersection exists between E1 and E2, so the process returns
true. The above process can be naturally extended to determine the intersection
non-emptiness of multiple regular expressions, still in polynomial time [37,42].
When taking the number k of the regular expressions and the maximum number
of states n in the automata from those expressions as parameters, this prob-
lem is fixed-parameter tractable [40]. For an unbounded number of inputs, this
problem is PSPACE-complete [29].

Computing the intersection non-emptiness of regular expressions is a com-
mon task in various applications, making efficient algorithms particularly impor-
tant. The aforementioned classical process is based on automata. However, the
above algorithm may incur significant costs in terms of both time and space dur-
ing automata construction1, since in practice it is quite common for automata
to have large numbers of states. In particular, the states of the intersection
automaton grow rapidly: for two automata with Q1 and Q2 states respectively,
the intersection automaton will have Q1 ∗ Q2 states. Indeed in our experiments
(see Sect. 5), the automata-based algorithms (i.e. Z3-Trau [1], OSTRICH [21]

1 Consisting of both compiling regular expressions into finite automata and construct-
ing the intersection automaton.
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and Brics library [36]) are not sufficiently capable to solve the problem within
20 s. Our key observation is that explicit construction of automata for deter-
mining the intersection non-emptiness of regular expressions can significantly
impact the performance of related programs, even acting as a bottleneck. For
instance, we conducted an experiment with ReDoSHunter [32], which uses the
Brics automaton library [36] for automata construction, on regular expressions
from the corpus library [15], and the result reveals that intersection checking
based on automaton construction occupies 59.26% of the runtime and causes
the maximum memory usage of the entire program. In addition, the program
often crashes due to the timeout of the intersection checking. This shows the
necessity of not constructing the whole automaton explicitly when optimizing
program performance.

To address this issue, we use lazy evaluation strategies to simulate intersec-
tion non-emptiness checking on automata to avoid constructing automata. It is
well known that looking for a reason to fail or finding a reachable path is easy to
spot. Also, the number of states in an automaton has a direct impact on the size
of the solution space of the intersection non-emptiness problem [26,45]. Thus
our algorithms simulate finite automata with fewer states [8,18] to reduce the
state complexity of the intersection automata.

Specifically, in this paper, we present four intersection non-emptiness detec-
tion algorithms. The first type utilizes the positions of characters in the expres-
sions. In detail, the first algorithm is based on the position sets [22], which can be
used to compute transition tables of the position automata [46], resulting in the
Pos intersect algorithm. Building on Pos intersect, we further utilize the
equivalence relation ≡f (detailed in Sect. 3) to obtain the Follow intersect
algorithm, which simulates intersection non-emptiness search on the follow
automata [28], effectively reducing the size of the solution space. The second
type of algorithms employ derivatives: Based on c-continuation, we propose the
CCon intersect algorithm for simulating intersection non-emptiness search on
the Mccon(E)/=c

automaton. The time and space complexity of c-continuation
is lower than partial derivative [13], but the solution space of the algorithm is
larger than that of the equation automaton [2]. To reduce the solution space,
we develop another algorithm, Equa intersect, based on the equivalence rela-
tion ≡c (see Sect. 4), which effectively simulates the intersection non-emptiness
search on the equation automata.

To validate the efficiency and effectiveness of our algorithms, we compared
them to seven state-of-the-art tools which takes regular expressions as input.
Our experiments demonstrate that our four algorithms have significant advan-
tages over existing methods in solving the intersection non-emptiness problem of
regular expressions. In particular, our approach outperforms the competition in
terms of speed and accuracy, highlighting the effectiveness of our methodology.
In addition, we have observed the potential for the extensibility of these algo-
rithms (as detailed in Sect. 7): such as the output of a witness for intersection
non-emptiness, the addition of extended features in real-world regular expres-
sions, and the use of heuristic search or conflict-driven strategies to optimize
these algorithms.
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2 Preliminaries

In this section, we briefly recall the necessary definitions in regular languages
and automata theory, for further details, we suggest referring to [44].

2.1 Regular Expressions and Deterministic Regular Expressions

Let Σ be an alphabet and Σ∗ the set of all possible words over Σ; |Σ| denotes
the size of Σ, ε denotes the empty word. A language over Σ is a subset of Σ∗. A
regular expression over Σ is either ∅, ε or a ∈ Σ, or is the union E1 + E2, the
concatenation E1E2, or the Kleene star E∗

1 for regular expressions E1 and E2. ∅

denotes the empty set. The regular language defined by E is denoted by L(E).
The size of a regular expression E is denoted by |E| and represents the number
of symbols and operators (excluding parentheses) in E when written in postfix.
The alphabetic width of E, denoted by ‖E‖, is the number of symbols occurring
in E. ΣE denotes the symbols occurring in E, i.e., the minimal alphabet of E.

We define nullable(E) = true if ε ∈ L(E), and false otherwise. We mark
symbols in E with numerical subscripts to obtain a linearized regular expression
E# over Σ# such that all marked symbols in E# occur no more than once.
For example, let E = (a + b)(a∗ + ba∗ + b∗), a linearized regular expression is
E# = (a1 + b2)(a∗

3 + b4a
∗
5 + b∗

6). The reverse of marking, i.e., dropping off the
subscripts, is denoted by E�, then we have (E#)� = E. We extend the notations
for sets of symbols, words and automata in an obvious way.

Deterministic (one-unambiguous) regular expressions were first proposed and
formalized by Brüggemann-Klein and Wood [7].

Definition 1. A regular expression E is deterministic if and only if for all words
uxv, uyw ∈ L(E#) s.t. |x| = |y| = 1, if x �= y then x� �= y�. A regular language
is deterministic if it is denoted by some deterministic expression.

For example, b∗a(b∗a)∗ is deterministic, while its semantically equivalent reg-
ular expression (a + b)∗a is not deterministic. Deterministic regular languages
are a proper subclass of the regular languages [7].

2.2 Position Automaton and Star Normal Form

A deterministic finite automaton (DFA) is a quintuple M = (Q,Σ, δ, s, F ), where
Q is the finite set of states, Σ is the alphabet, δ ⊆ Q × Σ → Q is the state
transition function, s ∈ Q is the starting (or initial) state, and F ⊆ Q is the
set of final states. A non-deterministic automaton (NFA) is a quintuple M =
(Q,Σ, δ, s, F ) where Q, Σ, s, and F are defined in exactly the same way as
a DFA, except that δ ⊆ Q × Σ → 2Q is the state transition function where
2Q denotes the power set of Q. L(M) denotes the language accepted by the
automaton M .

Let ≡ ⊆ Q × Q be an equivalence relation. For q ∈ Q, [q]≡ denotes the
equivalence class of q w.r.t. ≡ and, for S ⊆ Q, S/≡ denotes the quotient set
S/≡ = {[q]≡ | q ∈ S}. We say that ≡ is right invariant w.r.t. M if and only if:
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1. ≡ ⊆ (Q – F )2 ∪ F 2,
2. ∀p, q ∈ Q, a ∈ A, if p ≡ q, then δ(p, a)/≡ = δ(q, a)/≡.

If ≡ is right invariant, then the quotient automaton M/≡ is constructed
as M/≡ = (Q/≡, Σ, δ≡, [s0]≡, F/≡), where δ≡ = {([p]≡, a, [q]≡) | (p, a, q) ∈ δ};
Notice that L(M/≡) = L(M). Given two automata M1 = (Q1, Σ, δ1, s1, F1) and
M2 = (Q2, Σ, δ2, s2, F2), denote M1 � M2 if M1 and M2 are isomorphic, i.e. (1).
|Q1| = |Q2|; (2). there exists a bijective function f : Q1 → Q2, such that if there
exists a transition q = δ1(p, a) in M1, there exists a transition f(q) = δ2(f(p), a)
in M2; and (3). q ∈ F1 ⇔ f(q) ∈ F2.

For a regular expression E over Σ and a symbol a ∈ Σ, we define the following
sets:

first(E) = {b | bw ∈ L(E), b ∈ Σ,w ∈ Σ∗} (1)
last(E) = {b | wb ∈ L(E), b ∈ Σ,w ∈ Σ∗} (2)

follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ} (3)

Independently introduced by Glushkov [22] and McNaughton and
Yamada [34], the position automaton is considered as the natural presentation
of a regular expression [3]. Until now, the deterministic position automaton still
serves as the major matching model of Hyperscan [41] and BVA-Scan [30] with
extensions. Here we follow [6] and define “the Glushkov NFA” as the position
automaton.

Definition 2. The position automaton Mpos(E) of a regular expression E is
defined by a 5-tuple (Qpos, Σ, δpos, spos, Fpos) where

Qpos = Σ# ∪ {spos},
spos = 0,
δpos(spos, a) = {x | x ∈ first(E#), x� = a}, for a ∈ Σ,
δpos(x, a) = {y | y ∈ follow(E#, x), y� = a}, for x ∈ Σ# and a ∈ Σ,

Fpos =
{

last(E#) ∪ {spos}, if nullable(E) = true,
last(E#), otherwise.

We assume that 0 is a symbol that is not in ΣE# . From the definition we
have follow(E#, 0) = first(E#). We also define last0(E#), which is last(E#) if
nullable(E)=false, and last(E#)∪{0} otherwise. We denote pos0(E)=Σ#∪{0}.
The construction of the position automaton defined above is improved to
quadratic time in the size of the expression [6,14,46]. Among these works,
Brüggemann-Klein [6] gave a linear-time algorithm to transform an arbitrary
regular expression E into star normal form.

Definition 3. A regular expression E is in star normal form E•, if for each
starred subexpression H∗ of E, the following conditions hold:

follow(H#, a) ∩ first(H#) = ∅, for a ∈ last(H#),
nullable(H) = false.

For example, given E = (a∗b∗)∗, E can be transformed into the semantically
equivalent star normal form E• = (a + b)∗.

Furthermore, from [6] we have:
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Proposition 1. For a deterministic regular expression E, the position automa-
ton Mpos(E) can be computed in linear time and Mpos(E) is deterministic.

2.3 Derivatives of Regular Expressions

J. Brzozowski [10] introduced the notion of derivatives of regular expressions. The
number of Brzozowski’s (total) derivatives may not be finite. When considering
similarity of associativity, commutativity and idempotence of +, the number of
Brzozowski’s derivatives can still be exponential in the worst case upon arbitrary
regular expressions, e.g. on (a + b)∗a(a + b)k, where k is a positive integer. But
for deterministic regular languages, the number of Brzozowski’s derivatives has
a linear upper bound on the size of the regular expressions [16].

Antimirov [2] generalized Brzozowski’s results and introduced the partial
derivatives to construct an NFA - the partial derivative automaton, or the equa-
tion automaton.

Definition 4. Given a regular expression E and a symbol a, the partial deriva-
tive w.r.t. a, denoted by ∂a(E), is defined inductively as follows:

∂a(∅) = ∂a(ε) = ∅, (1)

∂a(b) =
{

ε, if b = a,
∅, otherwise,

(2)

∂a(F + G) = ∂a(F ) ∪ ∂a(G), (3)

∂a(FG) =
{

∂a(F )G, if nullable(F ) = false,
∂a(F )G ∪ ∂a(G), otherwise,

(4)

∂a(F ∗) = ∂a(F )F ∗. (5)

The partial derivative w.r.t. a word is computed by: ∂ε(E) = {E}, ∂wa(E) =⋃

p∈∂w(E)

∂a(p). Denote PD(E) as
⋃

w∈Σ∗
∂w(E) and we have the definition of the

equation automaton as follows:

Definition 5. The equation automaton Me(E) of a regular expression E is
defined by a 5-tuple (Qe, Σ, δe, se, Fe), where

Qe = PD(E),
δe(q, a) = ∂a(q), for q ∈ Qe and a ∈ Σ,
se = E,
Fe = {q ∈ PD(E) | ε ∈ L(q)}.

It was proved in [2] that the size of PD(E) is less than or equal to ‖E‖ + 1.
It is known that the equation automaton Me(E) is isomorphic to a quotient of
the position automaton Mpos(E) [13,20,28].

3 Position-Based Algorithms

In [9], the authors proposed novel position and c-continuation constructions of
regular expressions extended with intersection operators. In [19], the authors
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proposed an ME1-directed search algorithm on position automata that avoids
the explicit construction of complement automata to check inclusion between
deterministic regular expressions. These inspired us to develop intersection non-
emptiness checking algorithms based on the first, follow, and last sets defined in
Sect. 2 without explicit construction of automata. We first propose an algorithm
based on simulating the construction of position automata, and further optimize
it with another type of automata, the follow automata [28].

Algorithm 1: Pos intersect

Input: two regular expressions E1 and E2.
Output: true if L(E1) ∩ L(E2) �= ∅ or false otherwise.

1 Pos intersect :: (Expression E1, Expression E2) → Boolean
2 begin
3 E•

1 ← snf(E1); E•
2 ← snf(E2);

4 E#
1 ← linearize(E•

1 ); E#
2 ← linearize(E•

2 );

5 if nullable(E#
1 ) = true ∧ nullable(E#

2 ) = true then
6 return true;

7 else

8 if last(E�
1) ∩ last(E�

2) = ∅ then
9 return false;

10 else

11 return Pos recur(first(E#
1 ), first(E#

2 ), {(spos1 , spos2)});

12 Pos recur :: (Set v1, Set v2, Set Q) → Boolean
13 begin

14 if v�
1 ∩ v�

2 = ∅ then
15 return false;

16 forall the p1 ∈ v1 ∧ p2 ∈ v2 ∧ p�
1 = p�

2 do

17 if p1 ∈ last(E#
1 ) ∧ p2 ∈ last(E#

2 ) then
18 return true;

19 if (p1, p2) /∈ Q then

20 return Pos recur(follow(E#
1 , p1), follow(E#

2 , p2), Q ∪ {(p1, p2)});

21 else
22 return false;

The algorithm Pos intersect is listed in Algorithm 1, which simulates inter-
section non-emptiness checking on the position automata. The algorithm first
turns regular expressions into star normal form and linearizes them. Then in line
5 and line 8, it checks the nullability and the intersection non-emptiness of their
last sets as heuristics to bail out the algorithm earlier, i.e. if both expressions are
nullable, then ε is in the intersection, and if all of the last characters between
both languages are disjointed, then from Definition 2 we know the final state
sets of the position automata of the expressions are disjoint, so the intersection
is empty. Next in line 11, it starts the recursive searching procedure with the
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first sets and the tuple of both the starting states as initial inputs. In the recur-
sive function (from line 12 to line 23), the set v1 and v2 are position sets which
implies the transition of the position automata and Q is introduced to store the
position tuples visited, i.e. states of the intersection of the position automata.
The function first performs an intersection non-emptiness check on the symbols
of input sets, thus deciding the next positions to search, effectively cumulating
transitions that have the same symbols from both the current states in the posi-
tion automata. For every tuple of positions (p1, p2) from v1 and v2 that represent
the same symbol (i.e., p�

1 = p�
2), it checks if both of them are in the last sets in

each expression respectively. If so it returns true. Otherwise, if the position tuple
has been reached before, it returns false, otherwise, it memorizes the tuple into
the set Q and continues the search with the follow sets of positions, simulating
a transition from this state to a next state in both position automata.

Theorem 1. Given two regular expressions E1 and E2, Pos intersect returns
true if and only if L(E1) ∩ L(E2) �= ∅.2

Next, we show how the follow automaton [28] can be integrated into Algorithm 1
as an optimization. Ilie and Yu proposed a new quadratic algorithm to con-
struct ε-free NFAs from regular expressions named follow automaton, denoted
as Mf (E). The authors proposed a novel constructive method based on removal
of ε transitions from a small ε-automaton similar to Thompson’s automaton [34].
We refer to [28] for details of the construction.

Definition 6. The follow automaton Mf (E) of a regular expression E is defined
by a 5-tuple (Qf , Σ, δf , sf , Ff ) where3

Qf = {(follow(E#, x), x∈ last0(E#))}, for x ∈ pos0(E),
δf (x, a) = {(follow(E#, y), y ∈ last0(E#)) | y ∈ follow(E#, x), y� = a}, for

x ∈ pos0(E) and a ∈ Σ,
sf = (first(E#), 0 ∈ last0(E#)),
Ff = {(follow(E#, x), true) | x ∈ last0(E#)}.

We define the right invariant equivalence relation ≡f⊆ Q2
pos [28]:

Definition 7. Given two states a1 and a2 in Qpos, we have:

a1 ≡f a2 ⇐⇒
{

a1 ∈ last0(E#) ⇔ a2 ∈ last0(E#),
follow(E#, a1) = follow(E#, a2).

(1)

Proposition 2. (See [28]). Mf (E) � Mpos(E)/≡f
.

Since the follow automaton is a quotient of its position automaton, then
simulating the follow automaton instead of the position automaton in Algo-
rithm 1 can reduce the size of the solution space. This motivated us to

2 Due to space limitation, the details of proofs are shown in our complete version in
https://github.com/SuperMaxine/ICTAC2023.

3 We refer readers to [8] for a similar definition.

https://github.com/SuperMaxine/ICTAC2023
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Fig. 2. The solution spaces and the accepting paths of Pos intersect and
Follow intersect in deciding the non-emptiness of τ1 ∩ τ2.

develop a new algorithm Follow intersect. Specifically, we adapt Algorithm 1
to using the equivalence relation ≡f , which is mainly achieved by substitut-
ing the function in line 11 to Pos recur(first(E#

1 ), first(E#
2 ), {(first(E#

1 ), 0 ∈
last0(E1)), (first(E

#
2 ), 0 ∈ last0(E2)))}), the condition in line 19 to

((follow(E#
1 , p1), p1 ∈ last0(E1)), (follow(E#

2 , p2), p2 ∈ last0(E2))) /∈ Q and
the condition in line 20 to Pos recur(follow(E#

1 , p1), follow(E#
2 , p2), Q ∪

{((follow(E#
1 , p1), p1 ∈ last0(E1)), (follow(E#

2 , p2), p2 ∈ last0(E2)))})= true. After
the substitution, Algorithm 1 starts recursive search with first sets as in Defi-
nition 6 and selects the positions whose symbols are identical, combines them
pairwise and checks if they are in both last0 sets, i.e. indicating the final states
of follow automata, if not, check if their follow sets and the Boolean value of
whether they are in the last0 sets are reached before, if not, memorize them
into Q and continue to check their follow sets, simulating a transition from the
current state to the next state in both follow automata. Overall the search space
of the checking algorithm is reduced to simulating the search procedure on the
states of the product automaton of two follow automata.

We illustrate our algorithms with two regular expressions τ1 = (a∗b∗)∗abb and
τ2 = (a + b)(a∗ + ba∗ + b∗)∗. After being converted into star normal form and
linearized, we have τ#

1 = (a1+b2)∗a3b4b5 and τ#
2 = (a1+b2)(a3+b4a

∗
5+b6)∗. The

search spaces and the accepting paths of Pos intersect and Follow intersect
for τ#

1 ∩ τ#
2 are shown in Fig. 2, where the solution space of Follow intersect

is smaller than that of Pos intersect.

Theorem 2. Given two regular expressions E1 and E2, Follow intersect
returns true if and only if L(E1) ∩ L(E2) �= ∅.

Complexity. The computation of the intersection of two position sets can
be done in time O(‖E1‖ + ‖E2‖) with the help of an auxiliary hash table
of follow set has O(‖E1‖). The identification of condition (p1, p2) /∈ Q
takes time O(‖E1‖‖E2‖), since the set of position tuples Q has a size of
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O(‖E1‖‖E2‖). This condition is checked ‖E1‖‖E2‖ times the worst time. Then
Pos intersect have time complexity of O(‖E1‖2‖E2‖2) and space complex-
ity of O(‖E1‖‖E2‖). For the case of Follow intersect, the intersection of two
position sets is computed the same as above. The identification of condition
((follow(E#

1 , p1), p1 ∈ last0(E1)), (follow(E#
2 , p2), p2 ∈ last0(E2))) /∈ Q takes time

O(‖E1‖ + ‖E2‖)‖E1‖‖E2‖) since the set of follow set tuple Q has a size of
O(‖E1‖ + ‖E2‖)‖E1‖‖E2‖). This condition is checked ‖E1‖‖E2‖ times. Then
we have the overall time complexity of O((‖E1‖ + ‖E2‖)‖E1‖2‖E2‖2) and space
complexity of O((‖E1‖ + ‖E2‖)‖E1‖‖E2‖). For a deterministic regular expres-
sion E, the size of position sets has a upper bound of |ΣE |, thus the time com-
plexity of Pos intersect is O((|ΣE1 ∩ ΣE2 |)(‖E1‖ + ‖E2‖)‖E1‖‖E2‖) and the
space complexity is O(‖E1‖‖E2‖). For Follow intersect, the time complexity
is O((|ΣE1 | + |ΣE2 |)|ΣE1 ∩ ΣE2 |(‖E1‖ + ‖E2‖)‖E1‖‖E2‖) and space complexity
is O((|ΣE1 | + |ΣE2 |)‖E1‖‖E2‖).

4 C-Continuation-Based Algorithms

The notion of continuation is developed by Berry and Sethi [3], by Champarnaud
and Ziadi [13], by Ilie and Yu [28], and by Chen and Yu [20]. In [21], the author
gave a novel construction of derivatives on deterministic regular expressions and
proved its linear cardinality. However when arbitrary regular expressions are
considered, exponential search space of the algorithm is inevitable. To avoid the
exponential blow-up, we exploit the notion of c-continuation proposed in [13] to
check the intersection non-emptiness of two regular expressions.

Definition 8. Given a regular expression E and a symbol a, the c-derivative
w.r.t. a, denoted by da(E), is defined inductively as follows [13]:

da(∅) = da(ε) = ∅, (1)

da(b) =
{

ε, if b = a,
∅, otherwise,

(2)

da(F + G) =
{

da(F ), if da(F ) �= ∅,
da(G), otherwise,

(3)

da(FG) =

⎧
⎨

⎩

da(F )G, if da(F ) �= ∅,
da(G), if da(F ) �= ∅ ∧ nullable(F ) = true,
∅, otherwise,

(4)

da(F ∗) = da(F )F ∗. (5)

The c-derivative w.r.t. a word is computed by: dε(E) = E, dwa = da(dw(E)),
for a ∈ Σ and w ∈ Σ∗.

Lemma 1. (see [13]). For a linearized regular expression E#, for every symbol
a and every word u, the c-derivative dua(E#) w.r.t the word ua is either ∅ or
unique.
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Definition 9. Given a linearized regular expression E# and a symbol a ∈ ΣE,
the c-continuation of E# w.r.t. a, denoted as ca(E#), is defined inductively as
follows:

ca(a) = ε (1)

ca(F + G) =
{

ca(F ), if ca(F ) �= ∅,
ca(G), otherwise,

(2)

ca(FG) =
{

ca(F )G, if ca(F ) �= ∅,
ca(G), otherwise,

(3)

ca(F ∗) = ca(F )F ∗. (4)

Notice that different from Definition 8, c-continuations are defined on linearized
regular expressions and non-null. Also we let c0(E#) = dε(E#) = E#.

Proposition 3. If E is a regular expression in star normal form, then ca(E#)
is in star normal form, for each a in Σ#.

The proof is a straightforward induction on the structure of ca(E#).
Here, given two states a1 and a2 in Qpos, we can define the following equiv-

alence relations =c,≡c⊆ Q2
pos:

a1 =c a2 ⇐⇒ ca1(E
#) = ca2(E

#) (1)
a1 ≡c a2 ⇐⇒ ca1(E

#)� = ca2(E
#)� (2)

It has been shown both =c and ≡c are right-invariant w.r.t. Mpos(E) [13].
Using the definition of c-continuation, the c-continuation automaton Mccon(E)
can be constructed, and we have the following lemma [13].

Lemma 2. For a regular expression E, Mccon(E) and Mpos(E) are identical.

Definition 10. Automaton Mccon(E)/=c
of a regular expression E is defined

by a 5-tuple (Qccon, Σ, δccon, sccon, Fccon) where
Qccon = {cx(E#) | x ∈ Σ# ∪ {0}},
δccon(cx(E#), a) = {dy(cx(E#)) | y� = a}, for x ∈ Σ# ∪ {0} and a ∈ Σ,
sccon = c0(E#),
Fccon = {cx(E#) | nullable(cx(E#)) = true}.

Proposition 4. For a deterministic regular expression E, Mccon(E)/=c
is

deterministic.

We have the following relations between Mccon(E)/=c
(E) and Mpos(E).

Lemma 3. (See [13]). For any a ∈ ΣE, the following relations hold:
first(ca(E#)) = follow(E#, a) and a ∈ last0(E#) ⇐⇒ nullable(ca(E#)) = true.
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Algorithm 2: CCon intersect

Input: two regular expressions E1 and E2.
Output: true if L(E1) ∩ L(E2) �= ∅ or false otherwise.

1 CCon intersect :: (Expression E1, Expression E2) → Boolean
2 begin
3 E•

1 ← snf(E1); E•
2 ← snf(E2);

4 E#
1 ← linearize(E•

1 ); E#
2 ← linearize(E•

2 );

5 if nullable(E#
1 ) = true ∧ nullable(E#

2 ) = true then
6 return true;

7 else

8 if last(E�
1) ∩ last(E�

2) = ∅ then
9 return false;

10 else

11 return CCon recur(E#
1 , E#

2 , {(E#
1 , E#

2 )});

12 CCon recur :: (Expression r#1 , Expression r#2 , Set C) → Boolean
13 begin

14 if first(r�
1) ∩ first(r�

2) = ∅ then
15 return false;

16 forall the a1 ∈ first(r#1 ) ∧ a2 ∈ first(r#2 ) ∧ a�
1 = a�

2 do

17 c1 ← ca1(r
#
1 ); c2 ← ca2(r

#
2 );

18 if nullable(c1) = true ∧ nullable(c2) = true then
19 return true;

20 if (c1, c2) /∈ C then
21 return CCon recur(c1, c2, C ∪ {(c1, c2)});

22 else
23 return false;

While the preprocessing procedure of Algorithm 2 before the recursive search
follows the same technique as Algorithm 1, the recursive function starts the
search with the linearized expressions and a tuple of them as inputs. The lin-
earized expressions correspond to elements in CC(E1) and CC(E2), then the
tuples are states of Mccon(E1)/=c

∩ Mccon(E2)/=c
, which starts from (E#

1 , E#
2 )

as in Definition 10, E# is a starting state of Mccon(E)/=c
. The recursive search

performs an intersection non-emptiness check on the symbols of first sets corre-
spondingly. For a1 and a2 in first sets of each expressions that have the same
symbol, i.e. a�

1 = a�
2, we calculate c-continuations of the input expressions w.r.t

the positions and check the nullability of their c-continuations as from Definition
10, a nullable c-continuation corresponds to a final state. If the c-continuations
are not nullable simultaneously, we first check if this c-continuation tuple is
reached before, we terminate this branch, if not, we memorize the tuple into a
set C as a reached state in the intersection automaton and continue the search
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Fig. 3. The solution spaces and the accepting paths of CCon intersect and
Equa intersect in deciding the non-emptiness of τ1 ∩ τ2.

with these c-continuations simulating a transition of the identical symbol from
positions used for calculating those c-continuations in both Mccon(E)/=c

.

Theorem 3. Given two regular expressions E1 and E2, CCon intersect
returns true if and only if L(E1) ∩ L(E2) �= ∅.

Proposition 5. (See [13]). =c ⊆ ≡c.

This reveals Mccon(E)/≡c
is a quotient of Mccon(E)/=c

, and also we have:

Proposition 6. (See [13]). Me(E) � Mccon(E)/≡c
.

From the fact above we know equation automaton is a quotient of its c-
continuation automaton. We can improve Algorithm 2 by substituting the code
in line 11 with return CCon recur(E#

1 , E#
2 , {(E�

1, E
�
2)}), line 20 with condition

(c�
1, c

�
2) /∈ C and line 21 with CCon recur(c1, c2, C ∪{(c�

1, c
�
2)}) = true. And algo-

rithm Equa intersect is obtained. By dropping the labels in c-continuations,
each expression in the tuples stored in C corresponds to states in Mccon(E)/≡c

,
the search space of the checking algorithm is reduced to simulating the search
procedure on the states of the product automaton of two Mccon(E)/≡c

.

Theorem 4. Given two regular expressions E1 and E2, Equa intersect
returns true if and only if L(E1) ∩ L(E2) �= ∅.

Recall our example in Sect. 3, after the same preprocessing procedures.
We have τ#

1 and τ#
2 . The solution spaces and the accepting paths of

CCon intersect and Equa intersect are shown in Fig. 3. Notice the solution
space of CCon inter-sect and Equa intersect are identical for this example,
since for both τ•

1 and τ•
2 , =c=≡c, see Sect. 5 for more discussions.

Complexity. The computation of the first sets of c-continuations takes an
O(‖E1‖2|E1| + ‖E2‖2|E2|) time and O(‖E1‖2 + ‖E2‖2) space complexity. The
calculation of the intersection of two position sets can be done in linear time.
The computation of c-continuations of both expressions costs O(‖E1‖|E1|2 +
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‖E2‖|E2|2) time and space [13]. Computation of nullable on the resulted c-
continuations costs O(|E1|2 + |E2|2) time and O(‖E1‖ + ‖E2‖) space as in
the worst case, the size of a c-continuation of E is |E|2 [23]. The identifi-
cation of condition (c1, c2) /∈ C takes O(‖E1‖|E1|2 + ‖E2‖|E2|2) time, and
O(‖E1‖|E1|2 + ‖E2‖|E2|2) space is required for representation of the list C of c-
continuation tuples. Finally we have the time complexity of CCon intersect:
O((‖E1‖|E1|2 + ‖E2‖|E2|2) × (‖E1‖2|E1| + ‖E2‖2|E2|)) and the space com-
plexity: O(|E1|2‖E1‖ + |E2|2‖E2‖). In the case of deterministic regular expres-
sions, the time complexity of CCon intersect is O((‖E1‖|E1|2 + |‖E2‖||E2|2) ×
(|ΣE1 |‖E1‖|E1| + |ΣE2 |‖E2‖|E2|)) and space complexity is O(|E1|2‖E1‖ +
|E2|2‖E2‖) because the first sets of c-continuation has an O(|ΣE |) size. The time
and space complexity of Equa intersect is exactly the same, since computing
� on c-continuations requires linear time and no additional space.

5 Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of our algo-
rithms on regular expression datasets. In the following, Pos intersect,
Follow intersect, CCon intersect and Equa intersect are abbreviated as
PO, FO, CC and EQ respectively.

Benchmarks. SRE is a dataset of standard regular expressions randomly gen-
erated on alphabets of 1 ≤ |Σ| ≤ 10 and symbol occurrence ranges from 1 to
1000 with step 10. For every step of symbol occurrences, we generate an expres-
sion as E1. And generate 100 expressions as E2 whose symbol occurrence ranges
from 1 to 1000 with step 10, giving a total of 10000 pairs of expressions.

DRE is a dataset of 27129 pairs of deterministic regular expressions used
in practical applications in [17], which are collected and normalized from XSD,
DTD and Relax NG schema files. DRE is evaluated for deterministic inputs that
can help in reducing the complexity of our algorithms.

Baselines. To evaluate the effectiveness and efficiency of our algorithms, we
selected seven tools which take regular expressions as input for comparison:
Z3str3 [5], Z3-Trau [1], Z3seq [39], Ostrich [21], CVC4 [33], Z3str3RE [4] and
Brics library [36], since our algorithms avoid explicit automata construction.

Configurations. We implemented a prototype of our algorithms in Ocaml. Our
experiments were run on a machine with 3.40GHz Intel i7-6700 8 CPU and 8G
RAM, running Ubuntu 20. All baselines were configured in the settings reported
in their original documents. A timeout of 20 s is used.

Efficiency and Effectiveness. In the following tables, True Positive denotes E1

and E2 intersect and the algorithm reported true. True Negative denotes E1 and
E2 do not intersect and the algorithm reported false. False Positive denotes E1

and E2 do not intersect but the algorithm reported true. False Negative denotes
E1 and E2 do not intersect but the algorithm reported true. Unknown is the sum
of “unknown” responses, which can be resulted from when non-termination in
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Table 1. Detailed results for the SRE benchmark.

Z3-Trau OSTRICH Brics Z3seq CVC4 Z3str3 Z3str3RE PO FO CC EQ

True Positive 2 1 553 3486 1581 3740 4095 4642 4642 4642 4642

True Negative 386 38 35 2747 5288 137 1481 5358 5358 5358 5358

False Positive 0 0 0 0 0 0 0 0 0 0 0

False Negative 36 0 0 0 0 0 0 0 0 0 0

Program Crash 37 0 4489 0 0 9 0 0 0 0 0

Unknown 0 36 0 0 396 0 0 0 0 0 0

Timeout 9539 9925 4923 3767 3131 5727 4423 0 0 0 0

Time(s) 192353 199863 137076 95236 98283 126844 103611 157 171 340 348

Table 2. Detailed results for the DRE benchmark.

Z3-Trau OSTRICH Brics Z3seq CVC4 Z3str3 Z3str3RE PO FO CC EQ

True Positive 972 11 12347 18536 12982 14226 14891 19252 19252 19252 19252

True Negative 484 108 703 1241 6995 889 1235 7877 7877 7877 7877

False Positive 0 0 0 0 0 0 0 0 0 0 0

False Negative 288 0 0 0 0 0 0 0 0 0 0

Program Crash 103 0 0 0 0 9 0 0 0 0 0

Unknown 0 4302 0 0 348 0 0 0 0 0

Timeout 25282 22708 14079 7352 7152 11657 11003 0 0 0 0

Time(s) 518433 501129 283230 182877 185641 260525 263633 98.8 98.6 99.4 99.0

Fig. 4. Plots showing cumulative results for each benchmark.

their algorithms is detected or a resource limit is met. Program Crash denotes
the sum of crashes. Timeout denotes the sum of reaching the time limit and
Time is the total runtime of each algorithm. The best results achieved by the
algorithms are shown in bold. In the cactus plots, algorithms that are further to
the right and closer to the bottom of the plot have better performance.

As shown in Fig. 4(a) and 4(b), all the other tools have an extra cost from
initializing of solvers/Java virtual machine etc., as also observed in [39].

The results for the SRE benchmark are shown in Table 1 and Fig. 4(a). All
of our algorithms solved all of the instances correctly. Including timeouts, the
fastest algorithm PO achieves a speedup of 606x over Z3seq, 626x over CVC4,
659x over Z3str3RE, 807x over Z3str3, 873x over Brics, 1225x over Z3-Trau, and
1273x over OSTRICH. The differences among curves of our algorithms are minor
compared to the performance of the baselines on Fig. 4(a) and 4(b), thus close
to coincide.
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The results for the DRE benchmark are shown in Table 2 and Fig. 4(b). All
of our algorithms solved all of the instances correctly and 7152 instances were
uniquely solved by ours. Including timeouts, the fastest algorithm FO achieves
a speedup of 1855x over Z3seq, 1883x over CVC4, 2642x over Z3str3, 2673x over
Z3str3RE, 2873x over Brics, 5082x over OSTRICH and 5257x over Z3-Trau. The
experimental results reveal that our algorithms are more efficient for determin-
istic regular expressions, since at line 16 of all our algorithms, the position tuple
corresponding to a symbol is always unique for deterministic regular expressions.

Discussion. Z3-Trau [1] is based on Z3, which depends on parametric
flat automata to handle string constraints, with both under- and over-
approximations. The evaluation of Z3-Trau exposed 324 soundness errors and
140 crashes on our datasets. Similar observations are also revealed in lit-
erature [4,39]. OSTRICH [21] is a string solver implementing a transducer
model and handling regular language intersection via cross product algorithm
based on [36]. OSTRICH reported 4338 “unknown” responses in our bench-
marks. Brics library [36] offers Boolean operation function interfaces which con-
vert regular expressions into Thompson Automata [34] and perform product
construction to handle regular expression intersection non-emptiness problem.
Brics library reported 4489 program crashes caused by stack overflow errors in
our benchmarks. Experimentally we found these three tools based on explicit
automata construction are inefficient in solving regular expression intersection
non-emptiness. Z3seq [39] is a hybrid solver which reasons on sequences of char-
acters serving as the default string solver in current Z3. For regular language
constraints, Z3seq uses symbolic Boolean derivatives based on Brzozowski’s [10]
and Antimirov’s [2] derivatives without explicitly constructing symbolic Boolean
finite automata. The decision procedure of CVC4 [33] for regular expression
constraints extends Antimirov’s partial derivatives [2] similar to [11]. We found
CVC4’s implementation of firstChars function is overapproximated when han-
dling intersection between regular expressions, which partially explains their
performance in our experiments. Experimentally derivative-based solvers show
advantages over the other tools, however outperformed by our algorithms: we
utilized derivatives in a different manner from the derivative-based solvers—
firstly our algorithms are based on linearization technique, also we simulate
cross product on derivatives instead of integrating intersection operation into
derivatives. Z3str3 [5] handles Boolean combinations of regular expressions with
reduction to word equations. On our benchmarks, Z3str3 reported unknown
and crashes on 762 instances. Z3str3RE [4] is based on Z3str3 with the length-
aware automata-based algorithm and heuristics. In the experiments we found
Z3str3RE’s optimizations and bug-fixes to Z3str3 are effective, however the cost
from the intersection of automata has an adverse impact on its efficiency com-
pared to our algorithms.

Relations Among Algorithms. To investigate the relation among our algo-
rithms, relations among automata are necessary. From [12,18], we have:

Lemma 4. For regular expressions in star normal form, =c⊆≡f⊆≡c.
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In [26], authors showed mn states are sufficient and necessary for an NFA to
accept the intersection of an m-state NFA and an n-state NFA in the worst
case. According to the commutativity of intersection, denote ordering M1 � M2

iff automaton M1 has more or equal states than automaton M2, then we can
conclude:

Theorem 5. For regular expressions E1, . . . , Em in star normal form, we have:

m⋂

i=1

Mpos(Ei) �
m⋂

i=1

Mccon(Ei)/=c
�

m⋂

i=1

Mf (Ei) �
m⋂

i=1

Me(Ei). (2)

From the theorem above, we can easily deduce the relations among the worst
case search space of our algorithms. For our example in Sect. 3, from Fig. 2 and
3 we know the solution space of FO, CC and EQ are identical and smaller
than that of PO, because for τ•

1 and τ•
2 , =c=≡f=≡c, which is a special case

of Lemma 4. Besides, Fig. 4(c) shows the average time of our algorithms to
solve an instance in all our benchmarks, where PO is the fastest and EQ is the
slowest. Though the worst case complexity of our algorithms are much higher
than the theoretical quadratic lower-bound, they perform better than explicit
automata-based algorithms [1,21] in practice. We also observed the efficiency
of PO and FO is higher than that of c-continuation-based algorithms. This is
due to a position tuple (of PO) having constant size (recall in Sect. 1 when the
number of input expressions is fixed as two) and position set tuples (of FO)
having linear sizes while partial derivatives or c-continuations has sizes at worst-
case quadratic [2,13,23]. This fact reveals smaller cost in the identification of
states can significantly accelerate regular expression intersection non-emptiness
checking algorithms. In general, FO is recommended for smaller solution space
and average case performance.

Summary. Overall, all our algorithms outperform all baselines in both effec-
tiveness and efficiency in solving intersection non-emptiness problems for regular
expressions.

6 Related Work

Apart from tools mentioned in Sect. 5, the other related work is listed as follows.
Mona [25] is a model checking tool using algorithms based on finite automata
to check satisfiability of input monadic second order logic formulas. JAltIm-
pact [43] reduces finite automata intersection non-emptiness problem into check-
ing emptiness for alternating finite automata. VATA tree automata library [31]
deploys antichains and simulation based inclusion checking among input tree
automata. VATA can also be used to check intersection non-emptiness between
tree automata. No Experimental comparison is made with tools taking automata
or logic formulas as input since our algorithms directly check intersection non-
emptiness between regular expressions without explicitly constructing automata.
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7 Concluding Remarks

In this paper, we have given four algorithms based on online automata construc-
tion simulation to solve the intersection non-emptiness problem of regular expres-
sions, which are compared against seven state-of-the-art tools over synthetic and
real-world datasets. Overall we show that our algorithms outperformed all of the
tools mentioned above.

Our algorithms also show high extension prospects: algorithms can be inte-
grated into string solvers and be easily modified to output random witnesses of
intersection non-emptiness to handle get-model constraints instead of only check-
ing non-emptiness, add mechanisms for extended features in real-world regular
expressions such as character classes, matching precedence and capturing groups,
and introduce heuristics to find a locally optimal choice or conflict-driven strate-
gies to backtrack non-chronologically and learn which state tuples are redundant
to be recorded during the searching procedure for improving practical perfor-
mance.
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Abstract. We consider global models of communicating agents specified
as transition systems labelled by interactions in which multiple senders
and receivers can participate. A realisation of such a model is a set of
local transition systems—one per agent—which are executed concurrently
using synchronous communication. Our core challenge is how to check
whether a global model is realisable and, if it is, how to synthesise a reali-
sation. We identify and compare two variants to realise global interaction
models, both relying on bisimulation equivalence. Then we investigate, for
both variants, realisability conditions to be checked on global models. We
propose a synthesis method for the construction of realisations by group-
ing locally indistinguishable states. The paper is accompanied by a tool
that implements realisability checks and synthesises realisations.

1 Introduction

We deal with the development of systems of collaborating computing entities
which interact by message exchange, like communicating component systems,
multi-agent systems (MAS), collective adaptive systems (CAS), groupware sys-
tems, multi-party sessions, etc. Such systems are often presented by a set of
components whose local behaviour is formally described by labelled transition
systems (LTS) or process expressions. Their interaction behaviour is then cap-
tured by (synchronous or asynchronous) parallel composition of the local models.

Before designing such local models it is, however, safer to first model the inter-
action behaviour of the components from a global perspective. This led to the
investigation of various forms of global models, like global (session) types [8,13,
23,24], global choreographies [35] and global languages [2]; also message sequence
charts [20] and UML interaction diagrams [15,30] serve this purpose.

An important question is, of course, whether a global model M is indeed
realisable by a system S = (Mi)i∈I of local component models Mi (where I
ranges over a set of component names). Possible solutions are investigated for
global languages in [2] and, for global session types, in various papers (cf., e.g.,
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[8,13,23,24]) by imposing syntactic restrictions on global types. These
approaches use projections to generate local models from global ones.

A different idea is to provide, instead of a global model, a requirements
specification Sp describing properties of the desired global interaction behaviour
by means of some logical formalism like in [9,21,22]. Then local models Mi are
constructed from scratch and their (synchronous) composition ⊗(Mi)i∈I must
be proven to satisfy the requirements of Sp.

From Requirements to Realisations. We combine the advantages of logical
specifications and global models for interaction-based systems by using both in
a stepwise manner. Our development method is summarised in Fig. 1.

Fig. 1. Workflow for the development of interaction-based systems

We start by providing a (system) signature Σ = (I, M), which determines
finite sets I of component names and M of message names. Σ induces the set
Γ (Σ) of (global) Σ-interactions of the form out→ in :m where out and in are
disjoint sets of component names (such that out∪in �= ∅) and m ∈ M . The multi-
interaction out→ in :m expresses that all components of out send message m to all
components of in such that all send and receive events occur simultaneously. Since
usually not all interactions in Γ (Σ) are desired in an application context (one
may wish, e.g., to consider only binary or multicast communication) we consider
pairs (Σ, Γ ) where Γ ⊆ Γ (Σ) is a user-defined interaction set which restricts the
set of all Σ-interactions to admissible ones. For logical specifications of global
interaction behaviour, we propose an action-based logic following a dynamic-
logic style which has been successfully applied for specifying ensembles (cf.,
e.g., [22]). The logic uses the usual diamond and box modalities of dynamic logic
(〈α〉 ϕ and [α] ϕ, resp.) which range over (structured) interactions α built over Γ
by sequential composition, choice and iteration. A global interaction-behaviour
specification is then a triple Sp = (Σ, Γ,Ax), where Ax is a set of formulas, called
axioms, expressing requirements for the global interaction behaviour (e.g., safety
and liveness properties and/or desired and forbidden interaction scenarios).

Given a (global) requirements specification Sp = (Σ, Γ,Ax), we construct a
global model M for the system’s intended interaction behaviour. To formalise
such models we use global LTS whose transitions are labelled by interactions
according to Γ . If only binary interactions are admitted a global LTS is a chore-
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ography automaton as in [1]. Of course, we must check that the constructed
global LTS M satisfies the requirements of the specification Sp, i.e. M |= Ax.

The central part of our work concerns the realisation (decomposition) of a
global LTS M in terms of a (possibly distributed) system of interacting compo-
nents whose individual behaviour is modelled by local LTS. First we must deter-
mine, for each component name i ∈ I, which local actions component i should
provide. To do so, any interaction in which i participates must be mapped to an
appropriate local action for component i. We study two variants. The first fol-
lows approaches to multi-party session types and choreography languages where
the names of the communication partners are kept in local actions. For instance,
a binary interaction i → j :m leads to a local output action i j !m for i and a
local input action i j ?m for j. In approaches to component-based development,
however, transitions describing local behaviour are often labelled just by mes-
sage names accompanied by information whether it is an output or an input of
a component. This makes components better reusable and supports interface-
based design [3,4,17,26,28]. In this case, a binary interaction i → j :m leads to
a local output action !m for i and a local input action ?m for j. In this paper,
we generalise both localisation styles to deal with multi-interactions and call the
former “rich local actions” and the latter “poor local actions”. From a software
designer’s point of view the poor localisation style better supports the principle
of loose coupling, whereas the rich style better avoids undesired synchronisations.

Once a localisation style x ∈ {r, p} is chosen (r for “rich” and p for “poor”)
one can proceed with the actual construction of a realisation of M in terms
of a system presented by a family S = (Mx

i )i∈I of local LTS. We say that M
is realisable (with localisation style x) if such a system exists such that M is
bisimilar (denoted by ∼) to the synchronous composition ⊗x

Γ (Mx
i )i∈I of all Mx

i

taking into account the interactions Γ and the localisation style x. Hence, our
realisation notion is generic w.r.t. Γ and parametrised by the chosen localisation
style. We show that realisability with poor local actions implies realisability
with rich local actions (Theorem 1) but the converse does not hold (Example
3). Since our realisability notion is based on bisimilarity we can deal with non-
deterministic behaviour, differently from language-based approaches like [2,13].

Race Example. We illustrate our methodology outlined so far by developing
a (small) system, called Race, which is meant to model the competition of two
runner components R1 and R2 under the control of a third component Ctrl.
To start, we provide a signature ΣRace = (IRace, MRace) with component names
IRace = {R1,R2,Ctrl} and message names MRace = {start, finish}. The idea is that
the controller starts the two runners simultaneously, while each runner signals
individually to the controller when it has finished its run. Therefore, we use the
interaction set on the left of Fig. 2. We do not model the actual running of a
runner component, which would be an internal action (cf. [7]).
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Fig. 2. Interaction set ΓRace (left) and global LTS MRace (right); we write Ctrl for {Ctrl}
and similarly for R1, R2.

We require that no runner should finish before starting and that any started
runner should be able to finish running. This will be expressed by dynamic logic
formulas to be detailed in the requirements specification SpRace in Example 1.

Next we construct the global LTS MRace shown on the right of Fig. 2, which
models the required interaction behaviour of the system so that the requirements
of the specification are satisfied. The system starts in the initial (global) state 0,
where the controller starts both runners at once. Each runner separately sends a
finish signal to the controller (in arbitrary order). After that a new run can start.

Finally, we want to realise the system by three local LTS such that their com-
position is bisimilar to the global LTS MRace. We distinguish the two variants.

Rich Local Actions. From ΓRace we derive the following sets of rich local
actions:

Λr
Ctrl =

{
Ctrl {R1,R2} !start , R1Ctrl?finish , R2Ctrl?finish

}
,

Λr
R1 =

{
Ctrl {R1,R2}?start , R1Ctrl !finish

}
, and

Λr
R2 =

{
Ctrl {R1,R2}?start , R2Ctrl !finish

}
.

For each i ∈ {Ctrl,R1,R2}, we use the local LTS Mr
i in the upper row

of Table 1 to build the system Sr
Race = {Mr

Ctrl, Mr
R1, Mr

R2} with rich local actions.
One can prove that the “rich” composition (Definition 4) of the three LTS by
synchronisation w.r.t. ΓRace is bisimilar (even isomorphic) to MRace; i.e., we have
found a realisation with rich local actions.

Table 1. Local LTS for each localisation style and for each component
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Poor Local Actions. In this case, we derive from ΓRace the following sets of
poor local actions, where information on communication partners is omitted:

Λp
Ctrl = {!start, ?finish} and Λp

R1 = Λp
R2 = {?start, !finish}.

For each i ∈ {Ctrl,R1,R2}, we use the local LTS Mp
i in the lower row of Table 1

to build the system Sp
Race = {Mp

Ctrl, Mp
R1, Mp

R2} with poor local actions. Also
the “poor” composition (Definition 7) of the three LTS by synchronisation w.r.t.
ΓRace is bisimilar (even isomorphic) to MRace.

Checking Realisability, Local Quotients, and System Synthesis. So far,
we considered the case in which the realisation of a global interaction model M is
“invented”. However, there might be no realisation of M and it would be better
to know this as soon as possible to align the global model. Next, we consider the
following two important issues and proceed as shown in Fig. 3.

1. How to check whether a given global LTS M is realisable (rich/poor case)?
2. If it is, how can we build/synthesise a concrete realisation S (rich/poor case)?

Fig. 3. Approach to check realisability and system synthesis

To tackle the first question we propose, similarly to [14], to find a family
≡ = (≡i)i∈I of equivalence relations on the global state space Q of M such
that, for each component name i ∈ I and states q, q′ ∈ Q, q ≡i q′ expresses that
q and q′ are not distinguishable from the viewpoint of i. This suggests that q
and q′, though globally different, can be locally interpreted as the same states.
In particular, it is required that any two states q and q′ which are related by
a global transition q

out→ in :m−−−−−−−→M q′ should be indistinguishable for any i ∈ I
which does not participate in the interaction, i.e. i /∈ out ∪ in. On the basis of
a given I-equivalence ≡, we formulate realisability conditions RC(M, ≡)r and
RC(M, ≡)p for both localisation styles. We show that in the rich and in the poor
case our condition is sufficient for realisability (cf. Theorems 2 and 3).

In both cases, the principle idea how to synthesise a realisation is the same.
Given a family (≡i)i∈I of I-equivalences for which the realisability condition
holds, we construct, for each i ∈ I, a local quotient (M/ ≡i)r/p by identifying
global states (in M) which are i-equivalent. Thus we get the desired system
(which might still benefit from minimisations w.r.t. bisimilarity).

Note that the I-equivalences found for satisfying the realisability condition
in the rich case may not be the same as in the poor case and thus also the local
quotients may show different behaviour. Moreover, the technique of building
local quotients differs from projections used in the field of multi-party session
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types, since projections are partial operations depending on syntactic conditions
(cf., e.g., [8]). A less syntactic and more expressive approach is proposed in [25].

As an example, recall the global LTS MRace shown in Fig. 2 (right). The three
local LTS with rich local actions shown in the upper row of Table 1 are, up to
renaming of states, local quotients of MRace. To construct the local quotient for
R1, global states 0 and 2 are identified, as well as states 1 and 3 (and symmet-
rically for the local quotient for R2). For Ctrl, no proper identification is applied
(cf. Example 4 for details). Also the three local LTS with poor local actions in
the lower row of Table 1 are, up to renaming of states, local quotients of MRace.
In this case, however, to construct the local quotient for Ctrl, two global states
of MRace are identified, namely states 2 and 3 (cf. Example 6 for details).

Contributions and Related Work

1. We propose a rigorous discipline for developing interaction-based systems
following a step-wise development method from dynamic-logic requirements
specifications over global models of interaction down to systems of (possi-
bly distributed) components. Thus our approach supplements approaches to
realisations of global behaviour descriptions (in the form of global languages,
e.g. [2], or global session types, e.g. [23]), by an abstract logical layer.

2. Our approach is driven by specified sets of multi-interactions supporting any
kind of synchronous communication between multiple senders and multiple
receivers. To the best of our knowledge, realisations of global models with
arbitrary multi-interactions have not yet been studied in the literature.

3. Our correctness notion for realisation of global models by systems of commu-
nicating local components is based on bisimulation, thus letting us deal with
non-determinism and going beyond language-based approaches like [2,13].
Bisimulation also fits well with global requirements specifications since
dynamic logic formulas are invariant under bisimulation and therefore hold
in any realisation of a global model of a global specification.

4. For constructing realisations we consider two localisation styles (rich and poor
local actions) and analyse their relationship. This is a novel result.

5. A global interaction model may, in general, not be realisable. We provide
conditions for realisability with respect to both localisation styles. Our con-
ditions are related to the work in [14] which, however, does not deal with
multi-interactions and uses a stronger condition ensuring realisation up to
isomorphism of LTS; cf. our discussion in Sect. 5.1.

6. For realisable global models, we construct realisations in terms of systems of
local quotients. Similar quotient constructions have been used in the proofs
of [14], but not for multi-interactions and for different localisation styles. The
technique of building local quotients differs from projections used in the field
of multi-party session types, since projections are partial operations depend-
ing on syntactic conditions (cf., e.g., [8]). In our approach, no restrictions on
the form of global models are assumed. However, it must be said that the
syntactic restrictions used for global types guarantee some kind of communi-
cation properties of a resulting system which we do not consider.

7. We developed a prototypical tool Ceta which checks realisability conditions
and, if they are satisfied, generates local quotients and hence realisations.
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Outline. After some formal preliminaries in Sect. 2, we show how to specify
requirements for global models of interaction in Sect. 3 and how to realise the
latter in Sect. 4. The conditions that guarantee realisability are studied in Sect. 5.
In Sect. 6, we present a tool that implements our analyses. It is available at
https://lmf.di.uminho.pt/ceta and all examples of the paper are predefined in
the tool, like MRace �, including a hyperlink to open the tool with the specific
example. Section 7 wraps up the paper. A companion report [6] includes all proofs
of our results, more details of the tool, and a few additional examples.

2 Formal Preliminaries

LTS and Bisimulation. Let A be a finite set of actions. A labelled transition
system (LTS) over A is a tuple L = (Q, q0,A, T ) such that Q is a finite set of
states, q0 ∈ Q is the initial state, and T ⊆ Q × A × Q is a transition relation.
Note that we consider finite-state LTS, which makes the realisability conditions
presented later decidable. We write q

a−→L q′ to denote (q, a, q′) ∈ T . A state
q ∈ Q is reachable if there exists a finite sequence of transitions from initial
state q0 to q.

Let Li = (Qi, qi,0,A, Ti) be two LTS (for i = 1, 2) over the same action set A.
A bisimulation relation between L1 and L2 is a relation B ⊆ Q1 × Q2 such that
for all (q1, q2) ∈ B and for all a ∈ A the following holds:

1. if q1
a−→L1 q′

1 then there exist q′
2 ∈ Q2 and q2

a−→L2 q′
2 such that (q′

1, q′
2) ∈ B;

2. if q2
a−→L2 q′

2 then there exist q′
1 ∈ Q1 and q1

a−→L1 q′
1 such that (q′

1, q′
2) ∈ B.

L1 and L2 are bisimilar, denoted by L1 ∼ L2, if there exists a bisimulation
relation B between L1 and L2 such that (q1,0, q2,0) ∈ B.

Dynamic Logic. We use (test-free) propositional dynamic logic (PDL) [19] to
formulate behavioural properties. Let A be a finite set of (atomic) actions. Let
the grammar α := a | α; α | α+α | α∗, with a∈A, sequential composition ; , non-
deterministic choice +, and iteration ∗, define the set Act(A) of structured actions
over A. If A = {a1, . . . , an}, we write some for structured action a1 + · · · + an.
We may also refer to all actions of A but one, say a, and express this by −a.

The set Frm(A) of A-formulas is defined by the grammar

ϕ := true | ¬ϕ | ϕ ∨ ϕ | 〈α〉 ϕ (formulas)

where α ∈ Act(A). Formula 〈α〉 ϕ expresses that at the current state it is possible
to execute α such that ϕ holds in the next state.

Abbreviations. We use the usual abbreviations like false, ϕ ∧ ϕ′, ϕ → ϕ′,
and the modal box operator [α] ϕ which stands for ¬ 〈α〉 ¬ϕ and expresses that
whenever in the current state α is executed, then ϕ holds afterwards.

For the interpretation of formulas we use LTS. Let L = (Q, q0,A, T ) be an
LTS over A. First we extend the transition relation of L to structured actions:

https://lmf.di.uminho.pt/ceta
http://lmf.di.uminho.pt/ceta/?Race %28simple%29
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q
α1;α2−−−−→L q′ if there exists q̂ ∈ Q such that q

α1−→L q̂ and q̂
α2−→L q′;

q
α1+α2−−−−→L q′ if q

α1−→L q′ or q
α2−→L q′; and

q
α∗
−−→L q′ if q = q′ or there exists q̂ ∈ Q such that q

α−→L q̂ and q̂
α∗
−−→L q′.

The satisfaction of a formula ϕ ∈ Frm(A) by L at a state q ∈ Q, denoted by
L, q |= ϕ, is inductively defined as follows:

L, q |= true;
L, q |= ¬ϕ if not L, q |= ϕ;
L, q |= ϕ1 ∨ ϕ2 if L, q |= ϕ1 or L, q |= ϕ2; and
L, q |= 〈α〉 ϕ if there exists q′ ∈ Q such that q

α−→L q′ and L, q′ |= ϕ.
L satisfies a formula ϕ ∈ Frm(A), denoted by L |= ϕ, if L, q0 |= ϕ. Hence,

for the satisfaction of a formula by an LTS the non-reachable states are irrel-
evant (deviating from the classical semantics of PDL [19]). We can express
safety properties, like [some∗] ϕ, and some kinds of liveness properties like, e.g.,
[some∗] 〈some∗; a〉 ϕ.

Satisfaction of formulas in PDL is invariant under bisimulation [10]: Let
L1, L2 be two LTS over A. If L ∼ L′ then, for any ϕ ∈ Frm(A), L |= ϕ iff
L′ |= ϕ.

3 SpecifyingRequirements forGlobalModels of Interaction

We focus on the stepwise development of systems whose components interact
by synchronous message exchange. We support “multi-interactions”, in which
several senders and receivers may participate in a communication. Our starting
point are signatures Σ =(I, M), where I is a finite set of component names (also
called participants) and M is a finite set of message names. Any signature Σ
induces a set Γ (Σ) of (global) Σ-interactions defined by

Γ (Σ) = {out→ in :m | out, in ⊆ I, out ∪ in �= ∅,m ∈ M}.

An interaction out→ in :m expresses that all components whose name occurs
in out send a message named m to all components whose name occurs in in.
Such interactions involving arbitrarily many senders and receivers are also called
multi-interactions. They will be interpreted by synchronous (handshake) com-
munication. As a shorthand notation we write i for {i}. Special cases are binary
interactions between two components i, j, denoted by i → j :m, or multicast com-
munication with one sender i and a group in of receivers, denoted by i → in :m.

Usually not all Σ-interactions are meaningful for a certain application. There-
fore our approach will be driven by user-definable interaction sets Γ ⊆ Γ (Σ).

General Assumption. In the sequel, we assume that (Σ, Γ ) denotes a system
signature Σ = (I, M) together with an interaction set Γ . When we talk about a
signature we always mean a system signature.

We propose to use interactions as atomic actions in dynamic logic formulas for
specifying desired and forbidden interaction properties from a global perspective.
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Definition 1 (global Sp). A global interaction behaviour specification is a
triple Sp = (Σ, Γ,Ax) where Ax ⊆ Frm(Γ ) is a set of Γ -formulas, called axioms.

Example 1. A requirements specification for the interaction behaviour of the
Race system is given by SpRace = (ΣRace, ΓRace,AxRace) where ΣRace and ΓRace
are defined in Sect. 1 and AxRace consists of the following two dynamic logic
formulas expressing the two informal requirements described in Sect. 1.

1. “No runner should finish before it has been started by the controller”.[(
− (Ctrl→ {R1,R2} : start)

)∗
;

(
R1→Ctrl : finish +
R2→Ctrl : finish

)]
false

2. “For any started runner it should be possible to finish its run”.
[
some∗;Ctrl→ {R1,R2} : start

] (〈some∗;R1→Ctrl : finish〉 true ∧
〈some∗;R2→Ctrl : finish〉 true

)
�

Given a specification Sp, the goal of our next step is to model the global
interaction behaviour of the intended system in accordance with Sp. For this
purpose we use LTS with interactions from Γ on the transitions.

Definition 2 (global LTS). A global LTS over (Σ, Γ ) is defined as an LTS
M = (Q, q0, Γ, T ) over Γ .

To check that a global LTS satisfies the axioms of a specification, we may
use the mCRL2 toolset [12] and, as explained in [7], the translation of LTS to
process expressions as well as the translation of our dynamic logic formulas to
the syntax used by mCRL2. For instance, the global LTS MRace provided for
the race example in Sect. 1 satisfies the axioms of the specification SpRace above.

4 Realisations of Global Models of Interaction

A crucial step in our development method concerns the realisation of a global
interaction model in terms of a system of (possibly distributed) components
modelled by local LTS (cf. Fig. 1). In this section, we formally define what we
mean by a realisation. For modelling local components we must first determine,
for each component name i ∈ I, which are the local actions that component i is
supposed to support. We study two variants obeying different localisation styles
and leading to different instantiations of our realisability notion.

4.1 Realisations Using Rich Local Actions

It is common in approaches to global (session) types and choreography languages
to preserve the names of communication partners when moving from global
interactions to local actions. In [2], e.g., a binary interaction i → j :m leads to a
local output action i j !m for i and a local input action i j ?m for j. We generalise
this approach to multi-interactions and call the resulting local actions rich.
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Definition 3 (rich local actions and local LTS). For each i ∈ I, the set of
rich local i-actions derived from Γ is Λr

i(Γ ) = Λr
i,out(Γ ) ∪ Λr

i,in(Γ ) where

Λr
i,out(Γ ) = {out in !m | ∃ (out→ in :m) ∈ Γ such that i ∈ out} and

Λr
i,in(Γ ) = {out in?m | ∃ (out→ in :m) ∈ Γ such that i ∈ in}.

A local LTS for i with rich local actions is an LTS Mr
i = (Qi, qi,0, Λr

i(Γ ), Ti).

A system over (Σ, Γ ) with rich local actions is a family Sr = (Mr
i)i∈I of local

LTS Mr
i over Λr

i(Γ ) for i ∈ I. The behaviour of such a system is modelled
by the synchronous Γ -composition of its components Mr

i (i ∈ I) where for all
interactions (out→ in :m) ∈ Γ a global transition exists (in a composed state)
if for all i ∈ out (i ∈ in, resp.) there is a transition in Mr

i with the local action
out in !m (out in?m, resp.) leaving the current local state of Mr

i.

Definition 4 (synchronous Γ -composition with rich local actions). Let
(Mr

i)i∈I be a family of local LTS Mr
i = (Qi, qi,0, Λr

i(Γ ), Ti) with rich local actions.
The synchronous Γ -composition of (Mr

i)i∈I with rich local actions is the global
LTS, denoted by ⊗r

Γ (Mr
i)i∈I , over (Σ, Γ ) with initial state (qi,0)i∈I and with

(product) states (qi)i∈I (with qi ∈ Qi for all i ∈ I) and transitions generated
from the initial state by the following rule:

(out→ in :m) ∈ Γ ∀i ∈ out : qi
out in !m−−−−−→Mr

i
q′

i ∀i ∈ in : qi
out in?m−−−−−→M

i
q′

i

(qi)i∈I
out → in :m−−−−−−−→⊗r

Γ
(Mr

i
)i∈I

(q′
i)i∈I where q′

i = qi for all i ∈ I \ (out ∪ in)

Definition 5 (realisability with rich local actions). Let M be a global
LTS over (Σ, Γ ). A system S = (Mr

i)i∈I over (Σ, Γ ) with rich local actions is a
(rich) realisation of M, if M ∼ ⊗r

Γ (Mr
i)i∈I are bisimilar. M is realisable with

rich local actions if such a realisation exists.

Our realisability notion relies on bisimulation. Thus we are able to deal with
non-determinism. In particular, according to the invariance of dynamic logic
under bisimulation (cf. Sect. 2), we know that global models and their realisations
satisfy the same formulas. Hence, once a global model of a global specification is
provided, any realisation will be correct with respect to the global specification.

Example 2. Consider a non-deterministic example with two participants,
a Person and a Coin, and tossing the Coin by the Person is mod-
elled as a non-deterministic action that leads to either head or tail
(cf. [29]). Formally, ΣToss = ({Coin,Person}, {toss, head, tail}) and ΓToss =
{Person→Coin : toss,Coin→Person : head,Coin→Person : tail}. The global LTS
MToss � and one of its realisations by the two LTS Mr

Person andMr
Coin (with rich

local actions) are shown in Table 2. Although MToss ∼ ⊗r
ΓToss

{Mr
Person, Mr

Coin}
there would be no bisimulation when considering a deterministic version for both
Person and Coin. �

http://lmf.di.uminho.pt/ceta/?Toss
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Table 2. Non-deterministic toss of a Coin by a Person

Global MToss � Local Mr
Person Local Mr

Coin

4.2 Realisations Using Poor Local Actions

We now consider a variant where we omit the communication partners when we
move from a global interaction (out→ in :m) ∈ Γ to local actions. In this case
only the message name m is kept together with output information !m for i ∈ out
and input information ?m for i ∈ in. This complies with the idea of component
automata used in teams [4,5,7] and many other approaches to component-based
design (e.g., I/O automata [28] and interface automata [17]). We call the resulting
local actions “poor” since they do not specify communication partners.

Definition 6 (poor local actions and local LTS). For each i ∈ I, the set of
poor local i-actions derived from Γ is given by Λp

i (Γ )=Λp
i,out(Γ )∪Λp

i,in(Γ ) where

Λp
i,out(Γ ) = {!m | ∃ (out→ in :m) ∈ Γ such that i ∈ out} and

Λp
i,in(Γ ) = {?m | ∃ (out→ in :m) ∈ Γ such that i ∈ in}.

A local LTS for i with poor local actions is an LTS Mp
i = (Qi, qi,0, Λp

i (Γ ), Ti)
over Λp

i (Γ ).

The notion of a system with poor local actions is defined completely
analogously to the rich case in Sect. 4.1. Γ -composition with poor local actions
needs, however, special care since for matching local actions only the message
name and input/output information is relevant.

Definition 7 (synchronous Γ -composition with poor local actions).
Let (Mp

i )i∈I be a family of local LTS Mp
i = (Qi, qi,0, Λp

i (Γ ), Ti) with poor local
actions. The synchronous Γ -composition of (Mp

i )i∈I with poor local actions is
the global LTS, denoted by ⊗p

Γ (Mp
i )i∈I , over (Σ, Γ ) with initial state (qi,0)i∈I

and with (product) states (qi)i∈I (such that qi ∈ Qi for all i ∈ I) and transitions
generated from the initial state by the following rule:

(out→ in :m) ∈ Γ (∀i ∈ out : qi
!m−→Mp

i
q′

i) (∀i ∈ in : qi
?m−−→Mp

i
q′

i)

(qi)i∈I
out→ in :m−−−−−−−→⊗p

Γ
(Mp

i
)i∈I

(q′
i)i∈I where q′

i = qi for all i ∈ I \ (out ∪ in)

The notion of realisability with poor local actions is defined completely
analogously to the rich case (cf. Definition 5) replacing “rich (r)” by “poor (p)”.

An obvious question is whether realisability with respect to the two different
localisation styles can be formally compared. This is indeed the case.

http://lmf.di.uminho.pt/ceta/?Toss
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Theorem 1 (poor realisation implies rich realisation). Let M be a global
LTS over (Σ, Γ ) which is realisable by a system Sp = (Mp

i )i∈I with poor local
actions. Then there exists a system Sr = (Mr

i)i∈I with rich local actions which
is a realisation of M.

The converse of Theorem 1 is not true, as demonstrated by the next example.

Example 3 We consider a variant of the global LTS MRace � (Fig. 2) where the
transitions 1 R2→ Ctrl : finish−−−−−−−−−→ 3 R1 →Ctrl : finish−−−−−−−−−→ 0 are removed, enforcing R1 to fin-
ish before R2. Let us call the resulting LTS M′

Race
�. Moreover, consider the

variant of the local controller Mr
Ctrl (upper row of Table 1, left) where the local

transitions 1 R2Ctrl?finish−−−−−−−→ 3 R1Ctrl?finish−−−−−−−→ 0 are removed and call it M′r
Ctrl. Now

let S ′r = {M′r
Ctrl, Mr

R1, Mr
R2} be the system with rich local actions (where Mr

R1
and Mr

R2 are shown in the upper row of Table 1, middle and right). It is easy
to check that S ′r is a realisation of M′

Race with rich local actions, since M′
Race is

even isomorphic to the (rich) ΓRace-composition of {M′r
Ctrl, Mr

R1, Mr
R2}.

The situation is different if we consider the poor case with controller Mp
Ctrl

(lower row of Table 1, left) which accepts two times in a row a “finish” signal
but, due to the poor local actions, cannot fix an acceptance order. The only
candidate for a realisation with poor local actions is then the system S ′p =
{Mp

Ctrl, Mp
R1, Mp

R2} consisting of the local LTS with poor local actions shown in
the lower row of Table 1. Obviously, the ΓRace-composition of these local LTS with
poor actions does allow a sequence of transitions 1 R2 → Ctrl : finish−−−−−−−−−→ 3 R1 →Ctrl : finish−−−−−−−−−→
0 and therefore cannot be bisimilar to M′

Race. �

5 Realisability Conditions

In general a global LTS may not be realisable. Therefore we are interested in
(i) conditions that guarantee realisability and (ii) techniques to synthesise real-
isations from a global LTS M. The notion of I-equivalence provides a helpful
tool. The basic idea is to consider the source and target states of a global tran-
sition q

out → in :m−−−−−−−→M q′ to be indistinguishable for a component i ∈ I if i does
not participate in the interaction, i.e. i /∈ out∪ in (cf. also [14] and the discussion
below).

Definition 8 (I-equivalence). Let M = (Q, q0, Γ, T ) be a global LTS over
(Σ, Γ ). An I-equivalence over M is a family ≡ = (≡i)i∈I of equivalence relations
≡i ⊆ Q × Q (reflexive, symmetric, and transitive) such that q ≡i q′ holds when-
ever there exists a transition q

out → in :m−−−−−−−→M q′ with i /∈ out ∪ in. The equivalence
class of a state q ∈ Q w.r.t. ≡i is the set [q]≡i

= {q′ ∈ Q | q′ ≡i q}.

5.1 Condition for Realisability Using Rich Local Actions

First, we will formulate our realisability condition for the case of rich local
actions. We consider a global LTS M over (Σ, Γ ). Our goal is to find an I-
equivalence (≡i)i∈I over M such that for each interaction (out→ in :m) ∈ Γ the

http://lmf.di.uminho.pt/ceta/?Race %28simple%29
http://lmf.di.uminho.pt/ceta/?Race %28R1-first%29
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following holds. Assume, for simplicity, that out ∪ in = {1, . . . , n}. Whenever
there is a combination q1, . . . , qn of n (not necessarily different) global states
together with a global “glue” state g, i.e. for each j ∈ out ∪ in, qj ≡j g, then
we expect: if out→ in :m is enabled in each global state q1, . . . , qn then each
j ∈ out ∪ in should also able to participate in out→ in :m when the global state
is g, since j cannot distinguish g from qj . Thus the global interaction out→ in :m
should be enabled in g and preserve I-equivalences.

Definition 9 (realisability condition (rich case)). Let M be a global LTS
over (Σ, Γ ). The realisability condition RC (M)r for M with respect to rich local
actions says that there exists an I-equivalence ≡ = (≡i)i∈I over M such that the
following property RC (M, ≡)r holds.

For all γ = (out→ in :m) ∈ Γ with out ∪ in = {k1, . . . , kn} we have:

∀
(

q1
γ−→M q′

1 · · · qn
γ−→M q′

n

g ∈ ⋂n
j=1[qj ]≡kj

)

∃g′ :
(

g
γ−−→M g′

g′ ∈ ⋂n
j=1[q′

j ]≡kj

)

Theorem 2 will provide a constructive argument why condition RC (M)r
ensures realisability with rich local actions. Local quotients are crucial for this.

Definition 10 (local quotients with rich local actions). Let M =
(Q,q0,Γ,T ) be a global LTS over (Σ, Γ ) and ≡ = (≡i)i∈I an I-equivalence over
M. For each i ∈ I the local i-quotient of M with rich local actions is the LTS
(M/≡i)r = (Q/≡i, [q0]≡i

, Λr
i(Γ ), (T/≡i)r) where

– Q/≡i = {[q]≡i
| q ∈ Q},

– (T/≡i)r is the least set of transitions generated by the following rules:

q
out → in :m−−−−−−−→M q′ i ∈ out

[q]≡i

out in !m−−−−−→(M/≡i)r [q′]≡i

q
out → in :m−−−−−−−→M q′ i ∈ in

[q]≡i

out in?m−−−−−→(M/≡i)r [q′]≡i

Note that [q]≡i

out in !m−−−−−→(M/≡i)r [q′]≡i
implies that there exist q̂ ∈ [q]≡i

, q̂′ ∈
[q′]≡i

and a transition q̂
out→ in :m−−−−−−−→M q̂′ with i ∈ out (and similarly for out in?m).

Theorem 2. Let M be a global LTS over (Σ, Γ ) and let ≡ = (≡i)i∈I be an
I-equivalence over M. If RC (M, ≡)r holds, then M ∼ ⊗r

Γ ((M/≡i)r)i∈I .

Example 4.
Consider the global LTS MRace � (Fig. 2). We show that RC(MRace)r holds
and how to construct, following Theorem 2, a realisation of MRace. More con-
cretely, we take the family of equivalences ≡ = (≡i)i∈{Ctrl,R1,R2} that obeys
RC(MRace, ≡)r (see below) and partitions the state space Q as follows: Q/≡Ctrl =
{{0}, {1}, {2}, {3}}, Q/≡R1 = {{0, 2}, {1, 3}}, and Q/≡R2 = {{0, 3}, {1, 2}}.

http://lmf.di.uminho.pt/ceta/?Race %28simple%29
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Using these equivalences, the local quotients for R1 and R2 are as follows:

The local quotient for Ctrl is isomorphic to MRace but with local labels. Thus
we have obtained a system which is a realisation with rich local actions of MRace.
The local quotients coincide, up to renaming of states, with the local LTS used
in the system Sr

Race considered in Sect. 1.
Now, we illustrate how to verify RC(MRace, ≡)r using, as an example, the

interaction γ = R1→Ctrl : finish which appears twice in MRace: t12 = (1 γ−→
2) and t30 = (3 γ−→ 0). There are two participants involved: R1 and Ctrl.
Hence we need to consider four combinations: (t12, t12), (t12, t30), (t30, t12), and
(t30, t30). For example, using the combination (t30, t12), we compute the glue
[3]≡R1 ∩ [1]≡Ctrl = {1}. Then, trivially, there exists a transition 1 γ−→ 2, and
2 ∈ [0]≡R1 ∩ [2]≡Ctrl . The same can be shown for all the glues found for the
other three combinations. �

In general it may happen that a global LTS M does not satisfy RC (M)r but
nevertheless is realisable. We can prove that RC (M)r is a necessary condition
to obtain a realisation which is related to a global model by a functional bisim-
ulation. More interesting, however, would be to weaken RC (M)r such that it
becomes necessary for realisability with respect to arbitrary bisimulations. This
is an open and challenging question.

Example 5. Consider the signature Σ = (I, M) with I = {a, b, c}, M = {m} and
the set Γ = {a→ b :m, c→ b :m, c→ a :m} of Σ-interactions. The global LTS M
in Table 3 (left) is realisable by the system Sr = {Mr

a, Mr
b, Mr

c}. To see this, we
compute the Γ -composition M′ = ⊗r

Γ {Mr
a, Mr

b, Mr
c} shown in Table 3 (right).

Obviously M is bisimilar to M′ and hence M is realisable. However, M does
not satisfy the realisability condition RC (M)r.

We prove this by contradiction. Assume that ≡ = {≡a, ≡b, ≡c} is an I-
equivalence such that RC (M, ≡)r holds. Now consider the interaction a→ b :m,
the global state 0 of M and the transition 0 a → b :m−−−−−→M 1. Obviously, 0 ≡a 1

Table 3. Global LTS M not satisfying RC (M)r but with realisation S r =
{Mr

a, Mr
b, Mr

c} where M′ = ⊗r{Mr
a, Mr

b, Mr
c}

Global M � Local Mr
a Local Mr

b Local Mr
c Composed M′

http://lmf.di.uminho.pt/ceta/?ab+cb+ca
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and 0 ≡b 1 must hold since there is the transition 0 c → b :m−−−−−→M 1 where a does
not participate and the transition 0 c → a :m−−−−−→M 1 where b does not participate.
So we can take 1 as a glue state between the global states q1 = 0 and q2 = 0.
Then we consider the transition 0 a → b :m−−−−−→M 1 one time for q1 and one time for
q2. Since we have assumed RC (M, ≡)r, there must be a transition 1 a → b :m−−−−−→M′

leaving the glue state which is, however, not the case. Contradiction! Note that
nevertheless the bisimilar global LTS M′ does satisfy RC (M′)r. The example
can be checked at M � and M′ �. �

Discussion. Our realisability condition RC (M)r, based on the notion of an I-
equivalence (≡i)i∈I , is strongly related to a condition for implementability in [14,
Theorem 3.1]. In fact, RC (M)r can be seen as a generalisation of [14] since we
consider multi-interactions with distinguished sets of senders and receivers and
also specifications for admissible interactions represented by Γ . Thus we get a
generic realisability notion based on Γ -composition rather than full synchronisa-
tion. Moreover, our condition ensures realisability modulo bisimulation instead
of isomorphism. Technically, implementability with respect to isomorphism is
achieved in [14, Theorem 3.1] by requiring that whenever two global states q
and q′ are i-equivalent, i.e. (q ≡i q′), for all i ∈ I, then q = q′. We do not use
this assumption and thus can get realisations modulo bisimilarity which do not
realise a global LTS up to isomorphism (cf. [6, Example 8]). Note that [14, The-
orem 6.2] also provides a proposal to deal with implementability modulo bisim-
ulation under the assumption of “deterministic product transition systems”. In
the next section, we study a realisability condition for the case of poor local
actions, which deviates significantly from [14].

5.2 Condition for Realisability Using Poor Local Actions

We return to the question of how to check realisability, now in the case of poor
local actions. The notion of I-equivalence is again the key. Note, however, that
the computation of an appropriate I-equivalence may differ from the rich case.

The realisability condition below is stronger than the one for rich local
actions in Definition 9. Intuitively, the reason is that local LTS with poor
local actions have, in general, more choices for synchronisation and therefore
a global LTS must support these choices in order to be realisable. For each inter-
action (out→ in :m) ∈ Γ , we require in more cases the enabledness in a glue
state g. More concretely, out→ in :m must be enabled in g already when in the
j-equivalent states, say qj , component j is able to output/input message m inde-
pendently of the communication partners named in out ∪ in, since those would
anyway not be known from a poor local action. This is formally reflected by
considering the interactions γ1, . . . , γn in the next definition.

Definition 11 (realisability condition (poor case)). Let M be a global
LTS over (Σ, Γ ). The realisability condition RC (M)p for M with respect to
poor local actions says that there exists an I-equivalence (≡i)i∈I over M such
that the following property RC (M, (≡i)i∈I)p holds.

http://lmf.di.uminho.pt/ceta/?ab+cb+ca
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For all γ = (out→ in :m) ∈ Γ with participants out∪in = {k1, . . . , kn} we get:

∀

⎛

⎜
⎜
⎝

γ1 = (out1 → in1 :m) ∈ Γ
k1 ∈ (out1 ∩ out) ∪ (in1 ∩ in)

· · ·
γn = (outn → inn :m) ∈ Γ

kn ∈ (outn ∩ out) ∪ (inn ∩ in)

⎞

⎟
⎟
⎠ ∀

⎛

⎜
⎜
⎝

q1
γ1−→M q′

1
· · ·

qn
γn−−→M q′

n

g ∈ ⋂n

j=1[qj ]≡kj

⎞

⎟
⎟
⎠ ∃g′ :

(
g

γ−−→M g′

g′ ∈ ⋂n

j=1[q′
j ]≡kj

)

To prove that the condition RC (M)p indeed guarantees realisability with
poor local actions, the idea is again to consider local quotients. Their construc-
tion is, however, different from the rich case.

Definition 12 (local quotients with poor local actions). Let M =
(Q,q0,Γ,T ) be a global LTS over (Σ, Γ ) and ≡ = (≡i)i∈I an I-equivalence over
M. For each i ∈ I the local i-quotient of M with poor local actions is the LTS
(M/≡i)p = (Q/≡i, [q0]≡i

, Λp
i (Γ ), (T/≡i)p) where

– Q/≡i = {[q]≡i
| q ∈ Q},

– (T/≡i)p is the least set of transitions generated by the following rules:

q
out→in:m−−−−−−→M q′ i ∈ out
[q]≡i

!m−→(M/≡i)p [q′]≡i

q
out→in:m−−−−−−→M q′ i ∈ in

[q]≡i

?m−−→(M/≡i)p [q′]≡i

Theorem 3. Let M be a global LTS over (Σ, Γ ) and let ≡ = (≡i)i∈I be an
I-equivalence over M. If RC (M, ≡)p holds then M ∼ ⊗p

Γ ((M/≡i)p)i∈I .

Example 6. Consider the global LTS MRace � (Fig. 2). We show RC(MRace)p
holds and how, following Theorem 3, a realisation of MRace with poor local
actions can be constructed. The situation differs from the rich case in Exam-
ple 4, since the equivalence for Ctrl must be chosen differently. We use
the family of equivalences ≡ = (≡i)i∈{Ctrl,R1,R2} that obeys RC(MRace, ≡)p
(see below) and partitions the state space Q as follows: Q/≡Ctrl =
{{0}, {1}, {2, 3}}, Q/≡R1 = {{0, 2}, {1, 3}}, and Q/≡R2 = {{0, 3}, {1, 2}}. Using
these equivalences, the local quotients for Ctrl, R1 and R2 are as follows:

Thus we have obtained a system which is a realisation with poor local actions
of MRace. The local quotients coincide, up to renaming of states, with the local
LTS used in the system Sp

Race considered in Sect. 1.
Now, we illustrate how to verify RC(MRace, ≡)r using, as an example, the

interaction R1→Ctrl : finish. We have 1 R1 →Ctrl : finish−−−−−−−−−→MRace 2. We also have
1 R2→ Ctrl : finish−−−−−−−−−→MRace 3 (we must consider the interaction R2→Ctrl : finish as well

http://lmf.di.uminho.pt/ceta/?Race %28simple%29
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since we are in the poor case). Taking 1 as a (trivial) glue state, we thus have,
as required, the existence of 1 R1 →Ctrl : finish−−−−−−−−−→MRace 2 but also it is required that
2 ≡Ctrl 3 must hold which is the case. Note that we wouldn’t have succeeded
here if we would have taken the identity for ≡Ctrl as done for the rich case. �

6 Tool Support: Ceta

We developed a supporting prototypical tool Ceta (Choreographic Extended
Team Automata) to analyse global specifications and produce visualisations
of state machines. It is open-source, available at https://github.com/arcalab/
choreo/tree/ceta, and executable by browsing to https://lmf.di.uminho.pt/ceta.

Fig. 4. Screenshots of the Ceta tool (http://lmf.di.uminho.pt/ceta)

Ceta starts with a web browser, opening a static webpage that uses our com-
piled JavaScript built with the Caos framework [32] (cf. screenshot in Fig. 4). The
user input is a global protocol described in a choreographic language, resembling
regular expressions of interactions. A set of examples with descriptions is also
included, covering the examples presented in this paper. The analyses include
graphical views of: (i) the global LTS; (ii) local LTS’s with rich actions; and

https://github.com/arcalab/choreo/tree/ceta
https://github.com/arcalab/choreo/tree/ceta
https://lmf.di.uminho.pt/ceta
http://lmf.di.uminho.pt/ceta
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(iii) local LTS’s with poor actions. Other widgets provide further insights, such
as the composition of the local LTS’s, the intermediate equivalence classes for
both the rich and poor case, the synchronous composition of local LTS’s, and
bisimulations between the global prototol and composed systems. Readable error
messages are provided when the realisability conditions do not hold.

7 Conclusion

We have proposed a rigorous discipline for developing interaction-based systems.
At the heart of our methodology lies the realisation of a global interaction model,
i.e. its decomposition into a set of (possibly distributed) components with syn-
chronous communication. We have investigated realisability conditions for two
different localisation styles (rich and poor local actions) and techniques to syn-
thesise realisations. Our approach is generic with respect to the choice of admis-
sible interaction sets which may contain arbitrary interactions between multiple
senders and receivers but may also be restricted, e.g., to various forms of com-
munication, like multicast or peer-to-peer communication. Due to the generic
nature of our notion of an interaction set, our results can be instantiated by
different concrete coordination formalisms. For instance, synchronisation type
specifications used in the framework of (extended) team automata [5] as well as
interactions used in BIP [11] can be represented by interaction sets. Our results
should then be directly applicable, to extend the team automata framework as
well as BIP by global LTS and to generate distributed component systems for
them on the basis of our realisation conditions.

In future research, we plan to (i) integrate the treatment of internal actions
using weak bisimulation equivalence for the realisation notions; (ii) consider com-
munication properties (like receptiveness and responsiveness, cf. [5]) when sys-
tems are generated from global models; (iii) study open global models (systems)
and their composition; and (iv) investigate realisability conditions in the context
of asynchronous communication. Moreover, we are still looking for a weaker ver-
sion of our realisability condition for synchronous systems making it necessary
for arbitrary (also non-functional) bisimulations.

Furthermore, we intend to investigate the relation with work in the literature
on the decomposition of related formalisms like (Petri net or algebraic) processes
into (indecomposable) components [27,31] used to parallelise (verification of)
concurrent systems [16,18] or obtain better (optimised) implementations [33,34].
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Abstract. Developing critical components, such as mission controllers
or embedded systems, is a challenging task. Reactive synthesis is a tech-
nique to automatically produce correct controllers. Given a high-level
specification written in LTL, reactive synthesis consists of computing a
system that satisfies the specification as long as the environment respects
the assumptions. Unfortunately, LTL synthesis suffers from high compu-
tational complexity which precludes its use for many large cases.

A promising approach to improve synthesis scalability consists of
decomposing a safety specification into a smaller specifications, that can
be processed independently and composed into a solution for the orig-
inal specification. Previous decomposition methods focus on identifying
independent parts of the specification whose systems are combined via
simultaneous execution.

In this work, we propose a novel decomposition algorithm based on
modes, which consists on decomposing a complex safety specification into
smaller problems whose solution is then composed sequentially (instead
of simultaneously). The input to our algorithm is the original specifica-
tion and the description of the modes. We show how to generate sub-
specifications automatically and we prove that if all sub-problems are
realizable then the full specification is realizable. Moreover, we show how
to construct a system for the original specification from sub-systems for
the decomposed specifications. We finally illustrate the feasibility of our
approach with multiple cases studies using off-the-self synthesis tools to
process the obtained sub-problems.

1 Introduction

Reactive synthesis [11] is the problem of constructing a reactive system auto-
matically from a high-level description of its desired behavior. A reactive system
interacts continuously with an uncontrollable external environment [12]. The
specification describes both the assumptions that the environment is supposed
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to follow and the goal that the system must satisfy. Reactive synthesis guaran-
tees that every execution of the system synthesized satisfies the specification as
long as the environment respects the assumptions.

Linear-Time Temporal Logic (LTL) [47] is a widely used formalism in veri-
fication [44] and synthesis [48] of reactive systems. Reactive synthesis can pro-
duce controllers which are essential for various applications, including hardware
design [6] and control of autonomous robotic systems [17,36].

Many reactive synthesis tools have been developed in recent years [19,25] in
spite of the high complexity of the synthesis problem. Reactive synthesis for full
LTL is 2EXPTIME-complete [48], so LTL fragments with better complexity have
been identified. For example, GR(1)—general reactivity with rank 1—enjoys an
efficient (polynomial) symbolic synthesis algorithm [6]. Even though GR(1) can
express the safety fragment of LTL considered in this paper, translating our
specifications into GR(1) involves at least an exponential blow-up in the worst
case [32]. Better scalable algorithms for reactive synthesis are still required [38].

Model checking, which consists on deciding whether a given system satisfies
the specification, is an easier problem than synthesis. Compositional approaches
to model checking break down the analysis into smaller sub-tasks, which signifi-
cantly improve the performance. Similarly, in this paper we aim to improve the
scalability of reactive synthesis introducing a novel decomposition approach that
breaks down the original specification into multiple sub-specifications.

There are theoretical compositional approaches [21,39], and implementations
that handle large conjunctions [4,13,46]. For instance, Lisa [4] has successfully
scaled synthesis to significant conjunctions of LTL formulas over finite traces
(a.k.a. LTLf [14]). Lisa is further extended to handling prominent disjunctions
in Lydia [13]. These modular synthesis approaches rely heavily on the decomposi-
tion of the specification into simultaneous sub-specifications [24]. However, when
sub-specifications share multiple variables, these approaches typically return the
exact original specification, failing to generate smaller decompositions.

We tackle this difficulty by introducing a novel decomposition algorithm for
safety LTL specifications. We chose the safety fragment of LTL [40,52] because
it is a fundamental requirement language in many safety-critical applications.
Extending our approach to larger temporal fragments of LTL is future work.

To break down a specification we use the concept of mode. A mode is a sub-
set of the states in which the system can be during its execution which is of
particular relevance for the designer of the system. At any given point in the
execution, the system is in a single mode, and during an execution the system can
transition between modes. In requirement design, the intention of modes is often
explicitly expressed by the requirement engineers as a high-level state machine.
Using LTL reactive synthesis these modes are boiled down into additional LTL
requirements, which are then processed with the rest of the specification. In this
paper, we propose to exploit modes to decompose the specification into multiple
synthesis sub-problems.

Most previous decomposition methods [24,33] break specifications into inde-
pendent simultaneous sub-specifications whose corresponding games are solved
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independently and the system strategies composed easily. In contrast, we pro-
pose sequential games, one for each mode. For each mode decomposition, we
restrict the conditions under which each mode can “jump” into another mode
based on the initial conditions of the arriving mode. From the point of local
analysis of the game that corresponds to a mode, jumping into another mode
is permanently winning. We show in this paper that our decomposition app-
roach is sound—meaning that given a specification, system modes and initial
conditions—if all the sub-specifications generated are realizable, then the original
specification is realizable. Moreover, we show a synthesis method that efficiently
constructs a system for the full specification from systems synthesized for the
sub-specifications. An additional advantage of our method is that the automaton
that encodes the solution is structured according to the modes proposed, so it
is simpler to understand by the user.

Related Work. The problem of reactive synthesis from temporal logic speci-
fications has been studied for many years [2,6,20,48]. Given its high complex-
ity (2EXPTIME-complete [48]) easier fragments of LTL have been studied. For
example, reactive synthesis for GR(1) specifications can be solved in polynomial
time [6]. Safety-LTL has attracted significant interest due to its algorithmic sim-
plicity compared to general LTL synthesis [53], but the construction of deter-
ministic safety automaton presents a performance bottleneck for large formulas.

For the model-checking problem, compositional approaches improve the scal-
ability significantly [50], even for large formulas. Remarkably, these approaches
break down the analysis into smaller sub-tasks [48]. For model-checking, Dureja
and Rozier [18] propose to analyze dependencies between properties to reduce
the number of model-checking tasks. Recently, Finkbeiner et al. [24] adapt this
idea to synthesis, where the dependency analysis is based on controllable vari-
ables, which makes the decomposition impossible when the requirements that
form the specification share many system (controlled) variables. We propose an
alternative approach for dependency analysis in the context of system specifica-
tion, by leveraging the concept of mode to break down a specification into smaller
components. This approach is a common practice in Requirements Engineering
(RE ) [27,28] where specifications typically contain a high-level state machine
description (where states are called modes) and most requirements are specific
to each mode. Furthermore, this approach finds widespread application in var-
ious industries, employing languages such as EARS [45] and NASA’s FRET
language [26]. Recently, a notion of context is introduced by Mallozi et al [43] in
their recent work on assume-guarantee contracts. Unlike modes, contexts depend
solely on the environment and are not part of the elicitation process or the system
specification.

Software Cost Reduction (SCR) [27,28,31] is a well-establish technique that
structures specifications around mode classes and modes. A mode class refers
to internally controlled variables that maintain state information with a set of
possible values known as modes.
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We use modes here provided by the user to accelerate synthesis, exploiting
that in RE modes are comonly provided by the engineer during system specifica-
tion. Recently, Balachander et al. [3] proposed a method to assist the synthesis
process by providing a sketch of the desired Mealy machine, which can help to
produce a system that better aligns with the engineer’s intentions. This approach
is currently still only effective for small systems, as it requires the synthesis of
the system followed by the generation of example traces to guide the search for
a reasonable solution. In contrast our interest is in the decomposition of the
synthesis process in multiple synthesis sub-tasks.

Other compositional synthesis approaches aim to incrementally add require-
ments to a system specification during its design [39]. On the other hand, [23]
and [24] rely extensively on dropping assumptions, which can restrict the ability
to decompose complex real-world specifications.

2 Motivating Example

We illustrate the main ideas of our decomposition technique using the following
running example of a counter machine (CM ) with a reset. The system must
count the number of ticks produced by an external agent, unless the reset is
signaled—also by the environment—in which case the count is restarted. When
the count reaches a specific limit, the count has to be restarted as well and an
output variable is used to indicate that the bound has been reached. Figure 1
shows a specification for this system with a bound of 20. This example is written
in TLSF (see [34]), a well-established specification language for reactive synthe-
sis, which is widely used as a standard language for the synthesis competition,
SYNTCOMP [1]. Even for this simple specification, all state-of-the-art synthesis
tools from the synthesis competition SYNTCOMP [1], including Strix [46], are
unable to produce a system that satisfies CM .

Recent decomposition techniques [24,33] construct a dependency graph con-
sidering controllable variable relationships, but fail to decompose this speci-
fication due to the mutual dependencies among output variables. Our tech-
nique breaks down this specification into smaller sub-specifications, grouping
the counter machine for those states with counter value 1 and 2 in a mode,
states with counter 3 and 4 in a second mode, etc., as follows:

Smaller controllers are synthesized independently, which can be easily combined
to satisfy the original specification Fig. 1. In the example, we group the states
in pairs for better readability, but it is possible to use larger sizes. In fact, for
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N = 20 the optimal decomposition considers modes that group four values of
the counter (see Sect. 5). The synthesis for each mode is efficient because in a
given mode we can ignore those requirements that involve valuations that belong
to other modes, leading to smaller specifications.

Fig. 1. Counter machine specification.

Fig. 2. Counter-Machine projection.
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In this work, we refer to these partitions of the state space as modes. In
requirements engineering (RE ) it is common practice to enrich reactive LTL
specifications with a state transition system based on modes, which are also
used to describe many constraints that only apply to specific modes.

Software cost reduction (SCR) uses modes in specifications and has been
successfully applied in requirements for safety-critical systems, such as an air-
craft’s operational flight program [31], a submarine’s communication system [30],
nuclear power plant [51], among others [5,35]. SCR has also been used in the
development of human-centric decision systems [29], and event-based transition
systems derived from goal-oriented requirements models [41].

Despite the long-standing use of modes in SCR, state-of-the-art reactive syn-
thesis tools have not fully utilized this concept. The approach that we introduce
in this paper exploits mode descriptions to decompose specifications significantly
reducing synthesis time. For instance, when decomposing our motivating exam-
ple CM using modes, we were able to achieve 90% reduction in the specifica-
tion size, measured as the number of clauses and the length of the specification
(see Sect. 5). Figure 2 shows the projections with a bound N = 4 for mode
m1 = (counter0 ∨ counter1). In each sub-specification, we introduce new vari-
ables (controlled by the system). These variables encode mode transitions using
jump variables. When the system transitions to a new mode, the current sub-
specification automatically wins the ongoing game, encoded by the done variable
A new game will start in the arriving mode. Furthermore, the system can only
jump to new modes if the arriving mode is prepared, i.e., if its initial conditions—
as indicated by the sϕ variables—can satisfy the pending obligations. The
semantics of these variables is further explained in the next section.

In this work, we assume that the initial conditions are also provided man-
ually as part of the mode decomposition. While modes are common practice
in requirement specification, having to manually provide initial conditions is
the major current technical drawback of our approach. We will study in the
future how to generate these initial conditions automatically. In summary, our
algorithm receives the original specification S, a set of modes and their corre-
sponding initial conditions. Then, it generates a sub-specification for each mode
and discharges these to an off-the-self synthesis tool to decide their realizability.
If all the sub-specifications are realizable, the systems obtained are then com-
posed into a single system for the original specification, which also shares the
structure of the mode decomposition.

3 Preliminaries

We consider a finite set of AP of atomic propositions. Since we are interested in
reactive systems where there is an ongoing interaction between a system and its
environment, we split AP into those propositions controlled by the environment
X and those controlled by the system Y, so X ∪ Y = AP and X ∩ Y = ∅. The
alphabet induced by the atomic propositions is Σ = 2AP. We use Σ∗ for the set
of finite words over Σ and Σω for the set of infinite words over Σ. Given σ ∈ Σω
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and i ∈ N, σ(i) represents the element of σ at position i, and σi represents the
word σ′ that results by removing the prefix σ(0) . . . σ(i − 1) from σ, that is σ′

s.t. σ′(j) = σ(j − 1) for j ≥ i. Given u ∈ Σ∗ and v ∈ Σω, uv represents the
ω-word that results from concatenating u and v. We use LTL [44,47] to describe
specifications. The syntax of LTL is the following:

ϕ ::= true
∣
∣ a

∣
∣ ϕ ∨ ϕ

∣
∣ ¬ϕ

∣
∣ϕ

∣
∣ ϕ U ϕ

∣
∣ϕ

where a ∈ AP, and ∨, ∧ and ¬ are the usual Boolean disjunction, conjunction
and negation, and  is the next temporal operator (a common derived operator
is false= ¬true). A formula with no temporal operator is called a Boolean
formula, or predicate. We say ϕ is in negation normal form (NNF), whenever all
negation operators in ϕ are pushed only in front of atoms using dualities. The
semantics of LTL associate traces σ ∈ Σω with formulae as follows:

σ � true always holds
σ � a iff a ∈ σ(0)
σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2

σ � ¬ϕ iff σ 	� ϕ
σ � ϕ iff σ1 � ϕ
σ � ϕ1 U ϕ2 iff for some i ≥ 0 σi � ϕ2, and for all 0 ≤ j < i, σj � ϕ1

σ � ϕ iff for all i ≥ 0 σi � ϕ

A Syntactic Fragment for Safety. A useful fragment of LTL is LTLX where
formulas only contain  as a temporal operator. In this work, we focus on a
fragment of LTL we called GX0:

α → (β ∧ ψ)

where α, β and ψ are in LTLX .
This fragment can only express safety properties [10,44] and includes a large

fragment of all safety properties expressible in LTL. This format is supported
by tools like Strix [46] and is convenient for our reactive problem specification.

Definition 1 (Reactive Specification). A reactive specification S = (A,G)
is given by A = (Ie, ϕe) and G = (Is, ϕs) (all LTLX formulas), where Ie and Is

are the initial conditions of the environment and the system, and ϕe and ϕs are
called assumptions and guarantees. The meaning of S is the GX0 formula:

(Ie → (Is ∧(ϕe → ϕs)))

In TLSF Ie and Is are represented as INITIALLY and PRESET, resp.

Reactive Synthesis. Consider a specification ϕ over AP = X ∪ Y. A trace
σ is formed by the environment and the system choosing in turn valuations
for their propositions. The specification ϕ is realizable with respect to (X ,Y)
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if there exists a strategy g : (2X )+ → 2Y such that for an arbitrary infinite
sequence X = X0,X1,X2, . . . ∈ (2X )ω, ϕ is true in the infinite trace ρ = (X0 ∪
g(X0)), (X1 ∪ g(X0,X1)), (X2 ∪ g(X0,X1,X2)), . . . A play ρ is winning (for the
system) if ρ � ϕ.

Realizability is the decision problem of whether a specification has a winning
strategy, and synthesis is the problem of computing one wining system (strategy).
Both problems can be solved in double-exponential time for an arbitrary LTL
formula [48]. If there is no winning strategy for the system, the specification is
called unrealizable. In this scenario, the environment has at least one strategy
to falsify ϕ for every possible strategy of the system. Reactive safety synthesis
considers reactive synthesis for safety formulas.

We encode system strategies using a deterministic Mealy machine W =
(Q, s, δ, L) where Q is the set of states, s is the initial state, δ : Q × 2X → Q
is the transition function that given valuations of the environment variables it
produces a successor state and L : Q × 2X → 2Y is the output labeling that
given valuations of the environment it produces valuations of the system. The
strategy g encoded by a machine W : (Q, s, δ, L) is as follows:

– if e ∈ 2X , then g(e) = L(s, e)
– if u ∈ (2X )+ and e ∈ 2X then g(ue) = L(δ∗(s, u), e) where δ∗ is the usual

extension of δ to (2X )∗.

It is well known that if a specification is realizable then there is Mealy machine
encoding a winning strategy for the system.

4 Mode Based Synthesis

We present now our mode-based solution to reactive safety synthesis. The start-
ing point is a reactive specification as a GX0 formula written in TLSF. We define
a mode m as a predicate over X ∪ Y, that is m ∈ 2X∪Y . A mode captures a
set of states of the system during its execution. Given a trace σ = s0, s1, . . ., if
si � m we say that m is the active mode at time i. In this paper, we consider
mutually exclusive modes, so only one mode can be active at a given point in
time. As part of the specification of synthesis problems the requirement engineer
describes the modes M = {m1, . . . ,mn}, partially expressing the intentions of
the structure of the intended system. A set of modes M = {m1,m2, . . . ,mn} is
legal if it partitions the set of variable valuations, that is:

– Disjointness: for all i 	= j, (mi →¬mj) is valid.
– Completeness:

∨

i mi is valid.

Within a trace σ there may be instants during execution there are transitions
between modes. We will refer to the modes involved in this transition as related
modes. Formally:

Definition 2 (Related Modes). Consider a trace σ = σ(0)σ(1)σ(2) . . . and
two modes m1,m2 ∈ M . We say that m1 and m2 as related, denoted as m1 ≺ m2

if, at some point i: (σ(i) � m1) and (σ(i + 1) � m2).
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Fig. 3. Overview of MoBy

A key element of our approach is to enrich the specification of the synthesis
sub-problem corresponding to mode mi forbidding the system to jump to another
mode mj unless the initial condition of mode j satisfying the pending “obliga-
tions” at the time of jumping. To formally capture obligations we introduce fresh
variables for future sub-formulas that appear in the specification.

Definition 3 (Obligation Variables). For each sub-formula ψ in the spec-
ification, we introduce a fresh variables sψ to encodes that the system is obliged
to satisfy ψ.

These variables will be controlled by the system and their dynamics will be
captured by sψ → ψ introduced in every mode (unless the system leaves
the mode, which will be allowed only if the arriving system satisfy ψ). These
variables are similar to temporal testers [49] and allow a simple treatment of
obligations that are left pending after a mode jump. We also introduce variables
jumpj which will encode (in the game and sub-specification corresponding to
mode mi) whether the system decides to jump to mode mj (see Algorithm 2
below).

4.1 Mode Based Decomposition

We present now the MoBy algorithm, which decomposes a reactive specification S
into a set of (smaller) specifications Π = {S1, . . . , Sn}, using the provided system
modes M = {m1, . . . ,mn} and initial mode-conditions I = {I1, . . . , In}. Figure 3
shows an overview of MoBy. Particularly, MoBy receives a specification together
with modes and one initial condition per mode. The algorithm decompose the
specification into smaller sub-specifications one per mode.

The main result is that the decomposition that MoBy performs guarantees
that if each projection Si ∈ Π is realizable then the original specification is
also realizable, and that the systems synthesized independently for each sub-
specification can be combined into an implementation for the original specifica-
tion S (See Lemma 1 and Corollary 1).

We first introduce some useful notation before presenting the main algorithm.
We denote by ϕ[φ\ψ] the formula that is obtained by replacing in ϕ occurrences
of φ by ψ. We assume that all formulas have been converted to NNF, where 
operators have been pushed to the atoms. It is easy to see that a formula in
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NNF is a Boolean combination of sub-formulas of the form ip where p ∈ AP
and sub-formulas ψ that do not contain any temporal operator. We use some
auxiliary functions:

– The first function is ASF(ϕ), which returns the set of sub-formulas ψ of ϕ
such that (1) ψ does not contain  (2) ψ is either ϕ or the father formula of
ψ contains . We call these formulas maximal next-free sub-formulas of ϕ.

– The second function is NSF(ϕ), which returns the set of sub-formulas ψ such
that (1) the root symbol of ψ is  and (2) either ψ is ϕ, or the father of ψ
does not start with . It is easy to see that all formulas returned by NSF
are of the form ip for i > 0, and indeed are the sub-formulas of the form
ip not contain in other formulas other sub-formulas of these forms. We call
these formulas the maximal next sub-formulas of ϕ.

For example, let ϕ = p → (q ∧ r), which is in NNF. ASF(ϕ) = {r}, as
r is the only formula that does not contain  but its father formula does.
NSF(ϕ) = {p,q}. We also use the following auxiliary functions:

– Simpl(ϕ), which performs simple Boolean simplifications, including true ∧
ϕ → ϕ, false ∧ ϕ → false, true ∨ ϕ → true, false ∨ ϕ → ϕ, etc.

– RmNext, which takes a formula of the form iϕ and returns i−1ϕ.
– Var, which takes a formula of the form iϕ and returns the obligation vari-

able siϕ. This function also accepts a proposition p ∈ AP in which case it
returns p itself.

The output of Simpl(ϕ) is either true or false, or a formula that does not contain
true or false at all. The simplification performed by Simpl is particularly useful

Algorithm 1. Simplify (remove)
1: function RmModes(ϕ, m)
2: for each f ∈ ASF(ϕ) do
3: if (m → f) is valid then
4: ϕ ← ϕ[f\True]
5: if (m →¬f) is valid then
6: ϕ ← ϕ[f\False]
7: return Simpl(ϕ)

simplifying (false → ψ) to true, because
given a requirement of the form C → D,
if C is simplified to false in a given mode
then C → D will be simplified to true ignor-
ing all sub-formulas within D. We introduce
RmModes(ϕ,m) on the left, which given a
mode m and a formula ϕ simplifies ϕ under
the assumption that the current state sat-
isfies m, that is, specializes ϕ for mode m.

Example 1. Consider m1 : (counter1 ∧¬counter2), and ϕ1 : ¬counter2 →
¬trigger and ϕ2 : (counter1 ∧ ¬reset) → (counter2 ∨ reset). Then,

RmModes(ϕ1,m1) = ¬trigger
RmModes(ϕ2,m1) = ¬reset → (counter2 ∨ reset)

Finally, Var(ψ) = sψ.

4.2 The Mode-Base Projection Algorithm MoBy

As mentioned before our algorithm takes as a input a reactive specification S an
indexed set M = {m1, . . . ,mn} of modes and an indexed set I = {I1, . . . , In} of
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initial conditions, one for each mode. We first add to each Ii the predicate ¬done,
to encode that in its initial state a sub-system that solves the game for mode mi

has not jumped to another mode yet. For each mode mi, MoBy specializes all
guarantee formulas calling RmModes, and then adds additional requirements
for the obligation variables and to control when the system can exit the mode.
Algorithm 2 presents MoBy in pseudo-code.

Line 5 simplifies all requirements specifically for mode mi, that is, it will only
focus on solving all requirements for states that satisfy mi. Line 7 starts the goals
for mode i establishing that unless the system has jumped to another mode, the
mode predicate mi must hold in mode i. Lines 8 to 10 substitute all temporal
formulas in the requirements with their obligation variables, establishing that
all requirements must hold unless the system has left the mode. Lines 11 to 12
establish the semantics of obligation variables, forcing their temporal behavior
as long as the system stays within the mode (¬done). Lines 13 to 15 precludes
the system to jump to another mode mj if mj cannot fulfill pending promises.
Lines 16 to 18 establish that once the system has jumped the game is considered
finished, and that the system is only finished jumping to some other mode.
Finally, line 19 limits to jump to at most one mode.

Algorithm 2. MoBy: Mode-Based Projections.
1: Inputs: S : (A, G), M : {m1, . . . , mn}, I : {I1, . . . , In}.
2: Outputs: Pr = [Π1, . . . , Πn].
3: function ComputeProjection(S, M, I)
4: for each mode index i ∈ {1 . . . n} do
5: G′ ← Reduce(G, mi)
6: Oblig ← NSF(G′)
7: Gi = {¬done → mi}
8: for each requirement ψ ∈ G′ do
9: ψ′ ← replace f for Var(f) in ψ (for all f ∈ Oblig)

10: Gi.add((¬done) → ψ′)

11: for each obligation subformula f ∈ Oblig do
12: Gi.add((¬done ∧ Var(f)) → Var(RmNext(f)))
13: for each mode j �= i such that mi ≺ mj and for every f ∈ Oblig do
14: if (Ij → RmNext(f)) is not valid then
15: Gi.add(jumpj → ¬Var(f))
16: Gi.add(done → done)
17: Gi.add( (

∨
j jumpj) → done)

18: Gi.add((¬ ∨
j jumpj) → (¬done → ¬done))

19: Gi.add(
∧

j �=k jumpj → ¬jumpk)
20: Pr[i] ← (A, Gi)

21: return Pr
22: function Reduce(Φ, m)
23: return {RmModes(ϕ, m) | ϕ ∈ Φ}



Efficient Reactive Synthesis Using Mode Decomposition 267

Example 2. We apply MoBy to the example in Fig. 1 for N = 2, with three
modes M = {m1 : {counter0},m2 : {counter1},m3 : {counter2}}. The initial
conditions only establish the variable of the mode is satisfied I1 = m1, I2 =
m2, I3 = m3 (only forcing ¬done as well). The MoBy algorithm computes the
following projections:

INPUTS reset; start;
ASSUMPTIONS G !(reset && start); INITIALLY (!reset && !start) || reset
[Projection_1]
OUTPUTS counter_0; trigger; sϕ; jump2; done
GUARANTEES
G (!done → (counter_0))
G (!done → (reset → X counter_0));
G (!done → (start → sϕ));
G (!done → ((sϕ && !done) → X FALSE));
G (!done → (!trigger));
G (done → X done);
G (jump2 → X done);
G (!jump2 → (!done → X !done));

[Projection_2]
OUTPUTS counter_1; trigger; jump1, jump3 sϕ; sϕ1;
GUARANTEES
G !done → (counter_1)
G !done → (reset → sϕ);
G !done → (sϕ && !done → X FALSE);
G !done → (!reset → sϕ1);
G !done → (sϕ1 && !done → X FALSE);
G !done → (!trigger);
G ((sϕ || sϕ1) → X done);
G jump1 → !sϕ1;
G jump3 → !sϕ;
G (!(sϕ || sϕ1) → (!done → X !done));

[Projection_3]
OUTPUTS counter_2; trigger; jump1; sϕ jump1
GUARANTEES
G (!done → (counter_2))
G (!done → (reset → sϕ))
G (!done → (sϕ && !done → X FALSE));
G (!done → (counter_2 → sϕ));
G (!done → (trigger));
G (jump1 → X done);
G (!jump1 → (!done → X !done));
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4.3 Composing Solutions

After decomposing S into a set of projections Pr = {Π1, . . . , Πn} using MoBy,
Algorithm 3 composes winning strategies for the system obtained for each mode
into a single winning strategy for the original specification S.

Lemma 1 (Composition’s correctness). Let M = {m1, . . . ,mn} and
I = {I1, . . . , In} be a set of valid mode descriptions for a specification S,
and let St = {W1, . . . ,Wn} be a set of winning strategies for each projection
p ∈ Pr = {Π1, . . . , Πn} Then, the composed winning strategy W obtained using
Algorithm 3 is a winning strategy for S.

Proof. Let S be a specification, M = {m1,m2, . . . ,mn} and I = {I1, . . . , In}
a mode description. Also, let’s consider Pr = {Π1, . . . , Πn} be the projection
generated by Algorithm 2. We assume that all sub-specifications are realizable.
Let St = {W1, . . . ,Wn} be winning strategies for each of the sub-specifications
and let W : (Q, s, δ, L) be the strategy for the original specifications generated
by Algorithm 3. We will show now that W is a winning strategy. The essence of
the proof is to show that if a mode mj starts at position i and the system follows
W , this corresponds to follow Wj . In turn, this guarantees that Pr[j] holds until
the next mode is entered (or ad infinitum if no mode change happens), which
guarantees that S holds within the segment after the new mode enters in its
initial state. By induction, the result follows.

By contradiction, assume that W is not winning and let ρ ∈ 2X∪Y be a play
that is played according to W that is loosing for the system. In other words,
there is position i such that ρi violates some requirement in S. Let i be the first
such position. Let mj be the mode at position i and let i′ < i be the position
at which mj is the mode at position i′ and either i′ = 0 or the mode at position
i′ − 1 is not mj .

Algorithm 3. Composition of Winning Strategies
1: Input: A winning strategy Wi = (Qi, si, δi, Li) for each projection pi ∈ Pr.
2: Output: A composed winning strategy W = (Q, s, δ, L).
3: function Compose(W1, . . . , Wn)
4: Q ← ⋃n

i=1 Qi

5: s ← s1
6: δ ← ∅
7: for each mode index i ∈ {1 . . . n} do
8: (Qi, si, δi, Li) ← Wi

9: for each (q, a) ∈ Qi × 2X do
10: L(q, a) ← Li(q, a)
11: if δi(s, a) � jumpj for some j then
12: δ(q, a) ← sj

13: else � jumpj /∈ δi(q, a) for any j
14: δ(q, a) ← δi(q, a)

15: return W : (Q, s, δ, L)
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– If i′ = 0, between 0 and i, W coincides with Wj . Therefore, since Wj is winning
Π[j] must hold at i, which implies that S holds at i, which is contradiction.

– Consider now the case where i′ −1 is not mj , but some other mode ml. Then,
since in ml is winning Wl, it holds that Pr[l] holds at i′ − 1 so, in particular
all pending obligations are implied by Ij . Therefore, the suffix trace ρi′

is
winning for Wj . Again, it follows that S holds at i, which is a contradiction.

Hence, the lemma holds. ��
The following corollary follows immediately.

Corollary 1 (Semi-Realizability). Given a specification S, a set M of valid
system modes and a set I of initial conditions. If all projections generated by
MoBy are realizable, then S is also realizable.

5 Empirical Evaluation

We implemented MoBy in the Java programming language using the well-known
Owl library [37] to manipulate LTL specifications. MoBy integrates the LTL sat-
isfiability checker Polsat [42], a portfolio consisting of four LTL solvers that run
in parallel. To perform all realizability checks, we discharge each sub-specification
to Strix [46]. All experiments in this section were run on a cluster equipped with
a Xeon processor with a clock speed of 2.6GHz, 16 GB of RAM, and running
the GNU/Linux operating system.

We report in this section an empirical evaluation of MoBy. We aim to empir-
ically evaluate the following research questions:

– RQ1: How effective is MoBy in decomposing mode-based specifications?
– RQ2: Does MoBy complement state of the art synthesis tools?
– RQ3: Can MoBy be used to improve the synthesis time?

To address them, we analyzed specifications from published literature, eval-
uation of RE tools, and case studies on SCR specification and analysis:

Fig. 4. Assumptions (A), Guarantees (G), Modes, Variables
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Fig. 5. Comparision between MoBy and Monolithic
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– our counter machine running example CM with varying bounds.
– Minepump: A mine pump controller [7,9,15,41], which manages a pump with

sensors that detect high water levels and methane presence.
– Thermostat(n): A thermostat [22] that monitors a room temperature controls

the heater and tracks heating duration.
– Lift(n): A simple elevator controller for n floors [1].
– Cruise(n): A cruise control system [35] which is in charge of maintaining the

car speed on the occurrence of any event.
– Sis(n): A safety injection system [16], responsible for partially controlling a

nuclear power plant by monitoring water pressure in a cooling subsystem.
– AltLayer(n): A communicating state machine model [8].

Figure 4 shows the number of input/output variables, assumptions (A), guar-
antees (G), and the number of modes for each case.

Fig. 6. Speed of MoBy vs monolithic synthesis. The figure above shows the time taken
by a monolithic synthesis tool and the time taken by MoBy. The figure below normalizes
the monolithic time to 100 for those that did not reach Timeout.
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Experimental Results. To address RQ1 we compare the size of the origi-
nal specification with the size of each projection measured by the number of
clauses and the formula length. To determine the formula’s length, we adopt
the methodologies outlined in [7,9]. Additionally, we compared the running time
required for synthesizing the original specification with the time taken for each
projection, note that we report the aggregated time taken to synthesize the sys-
tems for each projection, when they can be solved independently and in parallel
to potentially improve efficiency. The summarized results can be found in Fig. 5.
We also provide additional insights in Fig. 6, which highlights the significance of
MoBy in enhancing the synthesis time.

Our analysis demonstrates that MoBy successfully decomposes 100% of the
specifications in our corpus, which indicates that MoBy is effective in handling
complex specifications. Furthermore, MoBy consistently operates within the 25-
min timeout limit in all cases. In contrast, other relevant simultaneous decom-
position methods [23,24] failed to decompose any of the specifications in our
benchmark. This can be attributed to the intricate interdependencies between
variables in our requirements, as elaborated in Sect. 1. This observation not only
supports the effectiveness of MoBy but also validates RQ2.

Expanding on the impact of MoBy, our results show an average reduction of
64% in specification size and a 65% reduction in the number of clauses. These
reductions underscore the advantages of employing MoBy in synthesizing imple-
mentations for LTL specifications that are beyond the capabilities of monolithic
synthesizers. Additionally, MoBy’s ability to achieve faster synthesis times for
feasible specifications positions it as a compelling alternative to state-of-the-art
synthesis tools. This suggests the validity of RQ3.

6 Conclusion and Future Work

We presented mode based decomposition for reactive synthesis. As far as we
know, this is the first approach that exploits modes to improve synthesis scal-
ability. Our method takes an LTL specification, along with a set of modes rep-
resenting different stages of execution, and a set of initial conditions for each
mode. Our method computes projection for each mode ensuring that if all of
them are realizable, then the original specification is also realizable.

We performed an empirical evaluation of an implementation of MoBy on sev-
eral specifications from the literature. Our evaluation shows that MoBy success-
fully synthesizes implementations efficiently, including cases for which monolithic
synthesis fails. These results indicate that MoBy is effective for decomposing
specifications and can be used alongside other decomposition tools.

Even though modes are natural in RE, the need to specify initial conditions
is the major drawback of our technique. We are currently investigating how to
automatically compute the initial conditions, using SAT based exploration. We
are also investigating the assessment of the quality of the specifications generated
using MoBy.
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Abstract. We introduce a mathematical framework for retrosynthetic
analysis, an important research method in synthetic chemistry. Our app-
roach represents molecules and their interaction using string diagrams
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to model features currently not available in automated retrosynthesis
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1 Introduction

A chemical reaction can be understood as a rule which tells us what the outcome
molecules (or molecule-like objects, such as ions) are when several molecules are
put together. If, moreover, the reaction records the precise proportions of the
molecules as well as the conditions for the reaction to take place (temperature,
pressure, concentration, presence of a solvent etc.), it can be seen as a precise
scientific prediction, whose truth or falsity can be tested in a lab, making the
reaction reproducible. Producing complicated molecules, as required e.g. by the
pharmaceutical industry, requires, in general, a chain of several consecutive reac-
tions in precisely specified conditions. The general task of synthetic chemistry
is to come up with reproducible reaction chains to generate previously unknown
molecules (with some desired properties) [39]. Successfully achieving a given
synthetic task requires both understanding of the chemical mechanisms and the
empirical knowledge of existing reactions. Both of these are increasingly sup-
ported by computational methods [34]: rule-based and dynamical models are
used to suggest potential reaction mechanisms, while database search is used to
look for existing reactions that would apply in the context of interest [35]. The
key desiderata for such tools are tunability and specificity. Tunability endows
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a synthetic chemist with tools to specify a set of goals (e.g. adding or remov-
ing a functional group1), while by specificity we mean maximising yield and
minimising side products.

In this paper, we focus on the area of synthetic chemistry known as retrosyn-
thesis [16,35,38]. While reaction prediction asks what reactions will occur and
what outcomes will be obtained when some molecules are allowed to interact,
retrosynthesis goes backwards: it starts with a target molecule that we wish
to produce, and it proceeds in the “reverse” direction by asking what potential
reactants would produce the target molecule. While many automated tools for
retrosynthesis exist (see e.g. [10,13,14,19,25,26,36]), there is no uniform math-
ematical framework in which the suggested algorithms could be analysed, com-
pared or combined. The primary contribution of this paper is to provide such a
framework. By formalising the methodology at this level of mathematical gen-
erality, we are able to provide insights into how to incorporate features that the
current automated retrosynthesis tools lack: these include modelling chirality,
the reaction environment, and the protection-deprotection steps (see for exam-
ple [20]), which are all highly relevant to practical applications. Our formalism,
therefore, paves the way for new automated retrosynthesis tools, accounting for
the aforementioned features.

Mathematically, our approach is phrased in the algebraic formalism of string
diagrams, and most specifically uses layered props. Layered props were originally
introduced, in [27], as models for systems that have several interdependent levels
of description. In the context of chemistry, the description levels play a threefold
role: first, each level represents a reaction environment, second, the morphisms
in different levels are taking care of different synthetic tasks, and third, the
rules that are available in a given level reflect the structure that is deemed
relevant for the next retrosynthetic step. The latter can be seen as a kind of
coarse-graining, where by deliberately restricting to a subset of all available
information, we reveal some essential features about the system. Additionally,
organising retrosynthetic rules into levels allows us to include conditions that
certain parts of a molecule are to be kept intact. While the presentation here
is self-contained and, in particular, does not assume a background on layered
props, we emphasise that our approach is principled in the sense that many
choices we make are suggested by this more general framework. We point such
choices out when we feel the intuition that comes from layered props is helpful
for understanding the formalism presented in the present work.

The rest of the paper is structured as follows. In Sect. 2, we give a brief
overview of the methodology of retrosynthetic analysis, as well as of the exist-
ing tools for automating it. Section 3 recalls the conceptual and mathematical
ideas behind layered props. The entirety of Sect. 4 is devoted to constructing
the labelled graphs that we use to represent molecular entities: these will be
the objects of the monoidal categories we introduce in Sects. 6 and 7. Section 5
formalises retrosynthetic disconnection rules, while Sect. 6 formalises reactions.
The culmination of the paper is the layered prop defined in Sect. 7, where we

1 Part of a molecule that is known to be responsible for certain chemical function.
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also describe how to reason about retrosynthesis within it. In Sect. 8 we sketch
the prospects of future work.

2 Retrosynthetic Analysis

Retrosynthetic analysis starts with a target molecule we wish to produce but
do not know how. The aim is to “reduce” the target molecule to known (com-
mercially available) outcome molecules in such a way that when the outcome
molecules react, the target molecule is obtained as a product. This is done by
(formally) partitioning the target molecule into functional parts referred to as
synthons, and finding actually existing molecules that are chemically equivalent
to the synthons; these are referred to as synthetic equivalents [11,17,39]. If no
synthetic equivalents can be found that actually exist, the partitioning step can
be repeated, this time using the synthetic equivalents themselves as the target
molecules, and the process can continue until either known molecules are found,
or a maximum number of steps is reached and the search is stopped. Note that
the synthons themselves do not refer to any molecule as such, but are rather
a convenient formal notation for parts of a molecule. For this reason, passing
from synthons to synthetic equivalents is a non-trivial step involving intelligent
guesswork and chemical know-how of how the synthons would react if they were
independent chemical entities.

Fig. 1. A retrosynthetic sequence

Clayden, Warren and Greeves [11] give the example in Fig. 1 when intro-
ducing retrosynthesis. Here the molecule on the left-hand side is the target, the
resulting two parts with the symbol α are the synthons. We use the symbol α
to indicate where the cut has been made, and hence which atoms have unpaired
electrons. Replacing the symbols α in the synthons with Cl and H, we obtain the
candidate synthetic equivalents shown one step further to the right. Assuming
existence of the reaction scheme r shown at the top, it can be shown that there
is a reaction starting from the synthetic equivalents and ending with the target.
This is the simplest possible instance of a retrosynthetic sequence. In general,
the interesting sequences are much longer, and, importantly, contain information
under what conditions the reactions will take place.
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Existing Tools. Many tools for automatic retrosynthesis have been successfully
developed starting from the 1960s [10,14,25,26,36]. They can be divided into
two classes [35]: template-based [21,40] and template-free [26,33]. Template-based
tools contain a rule database (the template), which is either manually encoded
or automatically extracted. Given a molecule represented as a graph, the model
checks whether any rules are applicable to it by going through the database
and comparing the conditions of applying the rule to the subgraphs of the
molecule [35]. Choosing the order in which the rules from the template and
the subgraphs are tried are part of the model design. Template-free tools, on
the other hand, are data-driven and treat the retrosynthetic rule application as
a translation between graphs or their representations as strings: the suggested
transforms are based on learning from known transforms, avoiding the need for
a database of rules [35,36].

While successful retrosynthesic sequences have been predicted by the com-
putational retrosynthesis tools, they lack a rigorous mathematical foundation,
which makes them difficult to compare, combine or modify. Other common draw-
backs of the existing approaches include not including the reaction conditions or
all cases of chirality as part of the reaction template [26,35], as well as the fact
that the existing models are unlikely to suggest protection-deprotection steps.
Additionally, the template-free tools based on machine learning techniques some-
times produce output that does not correspond to molecules in any obvious way,
and tend to reproduce the biases present in the literature or a data set [35].

For successful prediction, the reaction conditions are, of course, crucial. These
include such factors as temperature and pressure, the presence of a solvent (a
compound which takes part in the reaction and whose supply is essentially
unbounded), the presence of a reagent (a compound without which the reac-
tion would not occur, but which is not the main focus or the target), as well
as the presence of a catalyst (a compound which increases the rate at which
the reaction occurs, but is itself unaltered by the reaction). The above factors
can change the outcome of a reaction dramatically [15,30]. There have indeed
been several attempts to include reaction conditions into the forward reaction
prediction models [22,28,29,37]. However, the search space in retrosynthesis is
already so large that adding another search criterion should be done with cau-
tion. A major challenge for predicting reaction conditions is that they tend to
be reported incompletely or inconsistently in the reaction databases [12].

Chirality (mirror-image asymmetery) of a molecule can alter its chemical
and physiological properties, and hence constitutes a major part of chemical
information pertaining to a molecule. While template-based methods have been
able to successfully suggest reactions involving chirality (e.g. [14]), the template-
free models have difficulties handling it [26]. This further emphasises usefulness
of a framework which is able to handle both template-based and template-free
models.

The protection-deprotection steps are needed when more than one functional
group of a molecule A would react with a molecule B. To ensure the desired
reaction, the undesired functional group of A is first “protected” by adding a
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molecule X, which guarantees that the reaction product will react with B in
the required way. Finally, the protected group is “deprotected”, producing the
desired outcome of B reacting with the correct functional group of A. So, instead
of having a direct reaction A+B → C (which would not happen, or would happen
imperfectly, due to a “competing” functional group), the reaction chain is:

(1) A+X → A′ (protection), (2) A′ +B → C ′, (3) C ′ +Y → C (deprotection).

The trouble with the protection-deprotection steps is that they temporarily make
the molecule larger, which means that an algorithm whose aim is to make a
molecule smaller will not suggest them.

3 Layered Props

Layered props were introduced in [27] as categorical models for diagram-
matic reasoning about systems with several levels of description. They have
been employed to account for partial explanations and semantic analysis
in the context of electrical circuit theory, chemistry, and concurrency. For-
mally, a layered prop is essentially a functor Ω : P → StrMon from
a poset P to the category of strict monoidal categories, together with a
right adjoint for each monoidal functor in the image of Ω. Given ω ∈ P ,
we denote a morphism σ : a → b in Ω(ω) by the box on the right.

σaω b ω

We think of σ as a process with an input a and an output b hap-
pening in the context ω. Note, however, that these diagrams
are not merely a convenient piece of notation that capture
our intuition: they are a completely formal syntax of string diagrams, describing
morphisms in a certain subcategory of pointed profunctors [27].

The monoidal categories in the image of Ω are thought of as languages
describing the same system at different levels of granularity, and the functors are
seen as translations between the languages. Given ω ≤ τ in P , let us write f :=
Ω(ω ≤ τ). Then, for each a ∈ Ω(ω) we have the morphisms drawn on the right.

ω τ

�f

a fa

ωτ

�f

afa

The reason for having morphisms in both directions is that
we want to be able to “undo” the action of a translation while
preserving a linear reasoning flow. The two morphisms will
not, in general, be inverse to each other: rather, they form
an adjoint pair. This corresponds to the intuition that some
information is gained by performing the translation, and that
the translation in the reverse direction is our best guess, or an
approximation, not a one-to-one correspondence.

There are two ways to compose morphisms in parallel in a layered prop:
internally within a monoidal category Ω(ω) using its own monoidal product
(composition inside a context), and externally using the Cartesian monoidal
structure of StrMon (doing several processes in different contexts in parallel).
We represent the latter by stacking the boxes on top of each other. Additional
morphisms of a layered prop ensure that the internal and the external monoidal
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structures interact in a coherent way. Finally, a layered prop comes with “deduc-
tion rules” (2-cells) which allow transforming one process into another one. We
refer the reader to [27] for the details.

In this work, the processes in context will be the retrosynthetic disconnection
rules (Sect. 5) and the chemical reactions (Sect. 6). The context describes the
reaction environment as well as the level of granularity at which the synthesis is
happening (i.e. what kinds of disconnection rules are available). The objects in
the monoidal categories are given by molecular entities and their parts: this is
the subject of the next section.

4 Chemical Graphs

We define a chemical graph as a labelled graph whose edge labels indicate the
bond type (covalent, ionic), and whose vertex labels are either atoms, charges
or unpaired electrons (Definitions 1 and 2). In order to account for chirality, we
add spatial information to chemical graphs, making it an oriented (pre-)chemical
graph (Definition 5).

Oriented chemical graphs form the objects of the layered props we suggest
as a framework for synthetic chemistry. The morphisms of these layered prop
correspond to retrosynthetic disconnection rules and chemical reactions; this is
the topic of the next two sections.

Let us define the set of atoms as containing the symbol for each main-group
element of the periodic table: At := {H,C,O, P, . . . }. Define the function v :
At � {+,−, α} → N as taking each element symbol to its valence2, and define
v(−) = v(+) = v(α) = 1, where + and − stand for positive and negative charge,
while α denotes an unpaired electron. Let Lab := {0, 1, 2, 3, 4, i} denote the set
of edge labels, where the integers stand for a covalent bond, and i for an ionic
bond. We further define maps cov, ion : Lab → N: for cov, assign to each edge
label 0, 1, 2, 3, and 4 the corresponding natural number and let i �→ 0, while
for ion, let 0, 1, 2, 3, 4 �→ 0 and i �→ 1. Finally, let us fix a countable set VN of
vertex names; we usually denote the elements of VN by lowercase Latin letters
u, v, w, . . . .

Definition 1 (Pre-chemical graph). A pre-chemical graph is a triple (V, τ,
m), where V ⊆ VN is a finite set of vertices, τ : V → At�{+,−, α} is a vertex
labelling function, and m : V ×V → Lab is an edge labelling function satisfying
m(v, v) = 0 and m(v, w) = m(w, v) for all v, w ∈ V .

Thus, a pre-chemical graph is irreflexive (we interpet the edge label 0 as no edge)
and symmetric, and each of its vertices is labelled with an atom, a charge or a
placeholder variable α. Given a pre-chemical graph A, we write (VA, τA,mA)
for its vertex set and the labelling functions. Further, we define the following
special subsets of vertices: (1) α-vertices α(A) := τ−1(α), (2) chemical vertices

2 This is a bit of a naive model, as valence is, in general, context-sensitive. We leave
accounting for this to future work.
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Chem(A) := VA\α(A), (3) charged vertices Crg(A) := τ−1({+,−}), and (4) neu-
tral vertices Neu(A) := VA\Crg(A).

Note that the collection of pre-chemical graphs has a partial monoid structure
given by the disjoint union of labelled graphs, provided that the vertex sets are
disjoint.

Definition 2 (Chemical graph). A chemical graph (V, τ,m) is a pre-chemical
graph satisfying the following additional conditions:

1. for all v ∈ V , we have
∑

u∈V cov (m(u, v)) = vτ(v),
2. for all v, w ∈ V with τ(v) = α and m(v, w) = 1, then τ(w) ∈ At � {−},
3. if v, w ∈ V such that τ(v) ∈ {+,−} and m(v, w) = 1, then τ(w) ∈ At � {α},
4. if m(v, w) = i, then

(a) τ(v), τ(w) ∈ {+,−} and τ(v) �= τ(w),
(b) for a, b ∈ V with m(v, a) = m(w, b) = 1, we have τ(a), τ(b) ∈ At,
(c) if for some w′ ∈ V we have m(v, w′) = i, then w = w′.

Condition 1 says that the sum of each row or column in the adjacency matrix
formed by the integers cov (m(u, v)) gives the valence of the (label of) corre-
sponding vertex. Conditions 2 and 3 say that a vertex labelled by α, + or −
has to be connected to an atom, with the exception that the vertices labelled
α and − are allowed to be connected to each other instead of atoms. Finally,
conditions 4a–4c say that an edge with label i only connects vertices labelled
with opposite charges (+ and −) that are themselves connected to atoms, such
that each charge-labelled vertex is connected to at most one other such vertex.

A synthon is a chemical graph which is moreover connected. The collection
of chemical graphs is, therefore, generated by the disjoint unions of synthons. A
molecular graph is a chemical graph with no α-vertices. A molecular entity is a
connected molecular graph.

When drawing a chemical graph, we simply replace the vertices by their
labels, unless the precise vertex names play a role. We adopt the usual chemical
notation for n-ary bonds by drawing them as n parallel lines. The ionic bonds
are drawn as dashed lines.

Example 1. We give examples of a synthon on the left, and two moleculear enti-
ties on the right: a molecule (ethenone) and an ion (carbonate anion).

C

α

C

H

O

α

α

C

H

C

H

O

C

O

−
O O

−

Chirality. Next, we introduce (rudimentary) spatial information into (pre-)
chemical graphs. The idea is to record for each triple of atoms whether they
are on the same line or not, and similarly, for each quadruple of atoms whether
they are in the same plane or not.
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Definition 3 (Triangle relation). Let S be a set. We call a ternary relation
P ⊆ S ×S ×S a triangle relation if the following hold for all elements A, B and
C of S: (1) ABB /∈ P, and (2) if P(ABC) and p(ABC) is any permutation of
the three elements, then P(p(ABC)).

Definition 4 (Tetrahedron relation). Let S be a set, and let P be a fixed
triangle relation on S. We call a quaternary relation T ⊆ S × S × S × S a
tetrahedron relation if the following hold for all elements A, B, C and D of S:
(1) if T (ABCD), then P(ABC), and (2) if T (ABCD) and p(ABCD) is any
even permutation of the four elements, then T (p(ABCD)).

Unpacking the above definitions, a triangle relation is closed under the action
of the symmetric group S3 such that any three elements it relates are pairwise
distinct, and a tetrahedron relation is closed under the action of the alternating
group A4 such that if it relates some four elements, then the first three are
related by some (fixed) triangle relation (this, inter alia, implies that any related
elements are pairwise distinct, and their any 3-element subset is related by the
fixed triangle relation).

Fig. 2. Observer
looking at the edge
AC from B sees D
on their right.

The intuition is that the triangle and tetrahedron rela-
tions capture the spatial relations of (not) being on the
same line or plane: P(ABC) stands for A, B and C not
being on the same line, that is, determining a triangle;
similarly, T (ABCD) stands for A, B, C and D not being
in the same plane, that is, determining a tetrahedron. The
tetrahedron is moreover oriented: T (ABCD) does not,
in general, imply T (DABC). We visualise T (ABCD) in
Fig. 2 by placing an “observer” at B who is looking at the
edge AC such that A is above C for them. Then D is on
the right for this observer. Placing an observer in the same
way in a situation where T (DABC) (which is equivalent
to T (CBAD)), they now see D on their left.

Remark 1. We chose not to include the orientation of the
triangle, which amounts to the choice of S3 over A3 in the definition of a triangle
relation (Definition 3). This is because we assume that our molecules float freely
in space (e.g. in a solution), so that there is no two-dimensional orientation.

Definition 5 (Oriented pre-chemical graph). An oriented pre-chemical
graph is a tuple (V, τ,m,P, T ) where (V, τ,m) is a pre-chemical graph, P is a
triangle relation on V and T is a tetrahedron relation on V with respect to P,
such that for all a, b, c ∈ V we have: (1) if τ(a) ∈ {+,−}, then abc /∈ P, and (2)
if P(abc), then a, b and c are in the same connected component.

An oriented chemical graph is an oriented pre-chemical graph, which is also a
chemical graph. From now on, we adopt the convention that every pre-chemical
graph is oriented: if the triangle and tetrahedron relations are not specified, we
take them to be empty (meaning there are no constraints on the configuration).
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Definition 6 (Preservation and reflection of orientation). Let (M,PM ,
TM ) and (N,PN , TN ) be oriented pre-chemical graphs, and let f : M → N be
a labelled graph isomorphism (an isomorphism on vertices which preserves the
labelling). We say that f preserves orientation (or is orientation-preserving) if
for all vertices A, B, C and D of M we have: (1) PM (ABC) if and only if
PN (fA, fB, fC), and (2) TM (ABCD) if and only if TN (fA, fB, fC, fD).

Similarly, we say that f reflects orientation (or is orientation-reflecting) if
for all vertices A, B, C and D of M we have: (1) PM (ABC) if and only if
PN (fA, fB, fC), and (2) TM (ABCD) if and only if TN (fD, fA, fB, fC).

Definition 7 (Chirality). We say that two pre-chemical graphs are chiral
if there is an orientation-reflecting isomorphism, but no orientation-preserving
isomorphism between them.

Example 2. Consider 2-butanol, whose molecular structure we draw in two dif-
ferent ways at the left of Fig. 3. Here we adopt the usual chemical convention for
drawing spatial structure: a dashed wedge indicates that the bond points “into
the page”, and a solid wedge indicates that the bond points “out of the page”.
In this case, we choose to include the names of the vertices for some labels as
superscripts. The spatial structure is formalised by defining the tetrahedron rela-
tion for the graph on the left-hand side as the closure under the action of A4

of T (1234), and for the one on the right-hand side as (the closure of) T (4123).
In both cases, the triangle relation is dictated by the tetrahedron relation, so
that any three-element subset of {1, 2, 3, 4} is in the triangle relation. Now the
identity map (on labelled graphs) reflects orientation. It is furthermore not hard
to see that every isomorphism restricts to the identity on the vertices labelled
with superscripts, so that there is no orientation-preserving isomorphism. Thus
the two molecules are chiral according to Definition 7.

By slightly modifying the structures, we obtain two configurations of isopen-
tane, drawn at the right of Fig. 3. However, in this case we can find an orientation-
preserving isomorphism (namely the one that swaps vertices 2 and 4), so that
the molecules are not chiral.

Fig. 3. Left: two configurations of 2-butanol. Right: two configurations of isopentane.
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Example 3. Example 2 with 2-butanol demonstrated how to capture central chi-
rality using Definition 7. In this example, we consider 1, 3-dichloroallene as an
example of axial chirality. We draw two versions, as before:

The tetrahedron relation is generated by T (1234) and T (6123) for both
molecules (note, however, that the vertices 4 and 6 have different labels). Now
the isomorphism which swaps vertices 4 and 6 and is identity on all other vertices
is orientation-reflecting, but not orientation-preserving. The only other isomor-
phism is 1 �→ 4, 2 �→ 5, 3 �→ 6, 4 �→ 3, 5 �→ 2, 6 �→ 1, which does not preserve
orientation. Thus the two molecules are indeed chiral.

5 Disconnection Rules

The backbone of retrosynthetic analysis are the disconnection rules that par-
tition the target molecule into smaller parts. Formally, a disconnection rule is
a partial endofunction on the set of chemical graphs. We define three classes
of disconnection rules, all of which have a clear chemical significance: electron
detachment (Definition 8), ionic bond breaking (Definition 9) and covalent bond
breaking (Definition 10). These rules are chosen since they are used in the cur-
rent retrosynthesis practice (e.g. [11,39]). However, once the reverse “connection”
rules are added, we also conjecture that the rules are complete in the sense that
every reaction (Definition 12) can be decomposed into a sequence of disconnec-
tion rules.

Definition 8 (Electron detachment). Let u, v, a, b ∈ VN be pairwise dis-
tinct vertex names. We define the electron detachment disconnection rule Euv

ab

as follows:

– a chemical graph A = (V, τ,m,P, T ) is in the domain of Euv
ab if (1) u, v ∈ V ,

(2) a, b /∈ V , (3) τ(u) ∈ At, (4) τ(v) = α, and (5) m(u, v) = 1,
– the chemical graph Euv

ab (A) = (V ∪{a, b}, τE ,mE ,PE , T E) is defined by letting
τE(a) = +, τE(b) = − and letting τE agree with τ otherwise; further, define
mE(u, v) = mE(a, b) = 0, mE(u, a) = mE(v, b) = 1 and let mE agree with
m otherwise; the relations PE and T E are defined by restricting P and T to
V \{v}.

Example 4. The effect of the electron detachment is to detach an electron from
a synthon, thus leaving it with a positive charge:

αvHu Euv
ab

+aHu

αv−b

.

Definition 9 (Ionic bond breaking). Let u, v ∈ VN be distinct vertex
names. We define the ionic bond breaking disconnection rule Iuv as follows:
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– a chemical graph A = (V, τ,m,P, T ) is in the domain of Iuv if (1) u, v ∈ V ,
(2) τ(u) = +, (3) τ(v) = −, and (4) m(u, v) = i,

– the chemical graph Iuv(A) = (V, τ,mI ,PI , T I) is defined by letting mI(u, v) =
0, and letting mI agree with m on all other vertices; for the triangle and
tetrahedron relations, define PI(x, y, z) if and only if P(x, y, z) and x, y
and z are in the same connected component of Iuv(A), and similarly, define
T I(x, y, z, w) if and only if T (x, y, z, w) and x, y, z and w are in the same
connected component of Iuv(A).

Example 5. The effect of an ionic bond breaking is to remove an ionic bond
between two specified charges:

N

H

H

H H

+

N

H

H

H H

+u

C O

−v

O

O
−

N

H

H

H H

+u

N

H

H

H H

+

C O

−v

O

O
−

Iuv .

Definition 10 (Covalent bond breaking). Let u, v, a, b ∈ VN be pairwise
distinct vertex names. We define the covalent bond breaking disconnection rule
Cuv

ab as follows:

– a chemical graph A = (V, τ,m,P, T ) is in the domain of Cuv
ab if (1) u, v ∈ V ,

(2) a, b /∈ V , (3) τ(u), τ(v) ∈ At � {−}, and (4) m(u, v) ∈ {1, 2, 3, 4},
– the chemical graph Cuv

ab (A) = (V ∪{a, b}, τC ,mC ,PC , T C) is defined by letting
τC(a) = τC(b) = α and letting τC agree with τ on all other vertices; further,
let mC(u, v) = m(u, v) − 1, mC(u, a) = mC(v, b) = 1 and let mC agree with
m on all other vertices; the triangle and tetrahedron relations are defined
similarly to Definition 9 this time with respect to the connected components
of Cuv

ab (A).

Example 6. The effect of a covalent bond breaking is to reduce the number of
electron pairs in a covalent bond by one. For a single bond this results in removing
the bond altogether. We give two examples of this below:

C

H

Cu

H

Ov C

H

H

Cu

Ov

αa

αb

Cuv
ab Cv

Hu

C

H

O Cuv
ab

Cv

αb

C

H

O

αa Hu

Observe that each disconnection rule defined above is injective (as a partial
function), and hence has an inverse partial function.

6 Reactions

After a disconnection rule has been applied and candidate synthetic equiva-
lents have been found, the next step in a retrosynthetic analysis is to find an
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existing reaction that would transform the (hypothetical) synthetic equivalents
to the target compound. In this section, we give one possible formalisation of
chemical reactions using double pushout rewriting. Our approach is very similar,
and inspired by, that of Andersen, Flamm, Merkle and Stadler [3], with some
important differences, such as having more strict requirements on the graphs
representing molecular entities, and allowing for the placeholder variable α.

Definition 11 (Morphism of pre-chemical graphs). A morphism of pre-
chemical graphs f : A → B is a function f : VA → VB such that its restriction
to the chemical vertices f |Chem(A) is injective, and for all v, u ∈ VA we have (1)
if v ∈ Chem(A), then τB(fv) = τA(v), (2) if v ∈ α(A), then τB(fv) ∈ At � {α},
(3) if v, u ∈ Chem(A) and mA(v, u) �= 0, then mB(fv, fu) = mA(v, u), and (4)
if v ∈ α(A) and cov(mA(v, u)) �= 0, then

cov(mB(fv, fu)) =
∑

w∈f−1f(v),z∈f−1f(u)

cov(mA(w, z)).

Let us denote by PChem the category of pre-chemical graphs and their mor-
phisms. This category has a partial monoidal structure given by the disjoint
union: we can take the disjoint union of two morphisms provided that their
domains as well as the codomains do not share vertex names. When the graphs
are considered up to vertex renaming (as we shall do in the next section), this
becomes an honest (strict) monoidal category.

The same reaction patterns are present in many individual reactions. A con-
venient way to represent this are spans whose left and right legs encode the
preconditions for a reaction to occur and the effect of the reaction (outcome),
respectively, while the centre denotes those parts that are unchanged.

Definition 12 (Reaction scheme). A reaction scheme is a span A
f←− K

g−→
B in the category of pre-chemical graphs, whose boundaries A and B are chemical
graphs with the same net charge, such that

– f : VK → VA and g : VK → VB are injective,
– f and g are surjective on neutral vertices: if a ∈ Neu(A) and b ∈ Neu(B),

then there are k, j ∈ VK such that f(k) = a and g(j) = b,
– f and g preserve all vertex labels: τAf = τK = τBg,
– all vertices of K are neutral: Neu(K) = VK ,
– the span is terminal with respect to spans with the above properties.

Example 7. The rule shown below appears in the equation describing glucose
phosphorylation. It is a reaction scheme in the sense of Definition 12. We denote
the morphisms by vertex superscripts: the vertex in the domain is mapped to
the vertex in the codomain with the same superscript.

+ + +

α3

O2

H1

P4

O5

α6

O7

O8
H1

P4

O5

O2α3
α6

−

−

−

+
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O2

H1
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O7

O8

O7

O8

−
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Definition 13 (Matching). A matching is a morphism f : A → C in PChem
whose domain and codomain are both chemical graphs, such that for all u, v ∈
Chem(A) we have mC(fu, fv) = mA(u, v).

Proposition 1. Given a matching and a reaction scheme as below left (all mor-
phisms are in PChem), there exist unique up to an isomorphism pre-chemical
graphs D and E such that the diagram can be completed to the one on the right,
where both squares are pushouts.

A K B

C

f g

m

A K B

C

f g

m

D E
f ′ g′

m′ m′′

Moreover, E is in fact a chemical graph, and if α(C) = ∅, then also α(E) = ∅.

Definition 14. A reaction is a span C ← D → E in PChem such that C
and D are molecular graphs, there exist a reaction scheme and a matching as in
Proposition 1 such that the diagram can be completed to a double pushout.

Proposition 2. The data of a reaction (V, τ,m) → (V ′, τ ′,m′) can be equiv-
alently presented as a tuple (U,U ′, b, i) where U ⊆ V and U ′ ⊆ V ′ are sub-
sets with equal net charge, b : Neu(U) → Neu(U ′) is a labelled bijection, and
i : V \U → V ′\U ′ is an isomorphism of pre-chemical graphs.

We denote by React the category whose objects are molecular graphs and whose
morphisms are the reactions. The composition of (U,U ′, b, i) : A → B and
(W,W ′, c, j) : B → C is given by (U∪b−1(W )∪i−1(W ), j(U ′\W )∪W ′, jb∗c, ji) :
A → C, where jb ∗ c is defined by a �→ cb(a) if a ∈ b−1(W ), by a �→ ci(a) if
a ∈ i−1(W ) and by a �→ jb(a) if a ∈ U\b−1(W ).

7 Retrosynthesis in Layered Props

The main object of interest of this paper is the layered prop whose layers all
share the same set of objects: namely, the chemical graphs up to a labelled
graph isomorphism. The morphisms of a layer are either matchings, disconnec-
tion rules or reactions, parameterised by environmental molecules (these can act
as solvents, reagents or catalysts). These layers are the main building blocks of
our formulation of retrosynthesis.

Given a finite set M of molecular entities, let us enumerate the molecular
entities in M as M1, . . . ,Mk. Given a list natural numbers n = (n1, . . . , nk), we
denote the resulting molecular graph n1M1 + · · · + nkMk by (Vn, τn,mn). We
define three classes of symmetric monoidal categories parameterised by M as
follows. The objects for all categories are the (equivalence classes of) chemical
graphs, and the morphisms A → B are given below:
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M -Match: a morphism (m, b) : A → B is given by a matching m : A → B
together with a labelled injection b : b1M1+ · · ·+ bkMk → B such that im (m)∪
im (b) = B, and im (m) ∩ im (b) = m(α(A)) ∩ Chem(B); the composite A

m,b−−→
B

n,c−−→ C is given by nm : A → C and nb+c : (b1+c1)M1+· · ·+(bk+ck)Mk → C.

M -React: a generating morphism is a reaction n1M1 + · · · + nkMk + A
r−→ B;

given another reaction m1M1 + · · · + mkMk + B
s−→ C, the composite A → C is

given by

s ◦ (r + idm1M1+···+mkMk
) : (n1 + m1)M1 + · · · + (nk + mk)Mk + A → C.

M -Disc: for every disconnection rule duvab such that duvab (n1M1+· · ·+nkMk+A) =
B, there are generating morphisms duvab : A → B and d̄uvab : B → A, subject to the
following equations: (1) d̄uvab duvab = idA and duvab d̄uvab = idB , (2) duvabhwz

xy = hwz
xy duvab

whenever both sides are defined, and (3) du,v + idC = du,v for every chemical
graph C.

The idea is that the set M models the reaction environment: the parametric
definitions above capture the intuition that there is an unbounded supply of
these molecules in the environment.

In order to interpret sequences of disconnection rules as reactions, we need
to restrict to those sequences whose domain and codomain are both molecu-
lar entities: we thus write M -DiscMol for the full subcategory of M -Disc on
molecular entities. If M = ∅, we may omit the prefix. There are the following
identity-on-object functors between the above parameterised categories:

M -Match

M -ReactM -Disc

M -DiscMol

D R , (1)

together with an inclusion functor for each of the three classes of categories
whenever M ⊆ N . Given a morphism (m, b) : A → B in M -Match, the mor-
phism D(m, b) ∈ M -Disc is given by first completely disconnecting (Vb, τb,mb),
and then “patching” the resulting bits to A to obtain B. The exact construction
is somewhat technical, so we present it in the appendix. The functor R arises by
noticing that every disconnection rule duvab : A → B gives rise to a pre-chemical
graph isomorphism A\{u, v} → B\{u, v, a, b} and a labelled bijection between
the chemical vertices in {u, v} and {u, v, a, b}. Thus, a sequence of disconnection
rules between molecular entities gives rise to a reaction.

Definition 15 (Retrosynthetic step). A retrosynthetic step consists of

– a molecular graphs T and B, called the target, and the byproduct,
– a finite set of molecular entities M ⊆ M, called the environment,
– a chemical graph S, whose connected components are called the synthons,
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– a molecular graph E, whose components are called the synthetic equivalents,
– morphisms d ∈ Disc(T, S), m ∈ M -Match(S,E), r ∈ M -React(E, T + B).

Proposition 3. The data of a retrosynthetic step are equivalent to existence of
the following morphism (1-cell) in the layered prop generated by the diagram (1):

∅-Disc � M -Match �D � M -React

d m r
T S E

T

�D

M -Disc M -Disc

�R

B

.

The morphism in the above proposition should be compared to the informal
diagram in Fig. 1. The immediate advantage of presenting a retrosynthetic step
as a morphism in a layered prop is that it illuminates how the different parts of
the definition fit together in a highly procedural manner. Equally importantly,
this presentation is fully compositional: one can imagine performing several steps
in parallel, or dividing the tasks of finding the relevant morphisms (e.g. between
different computers). Moreover, one can reason about different components of
the step while preserving a precise mathematical interpretation (so long as one
sticks to the rewrites (2-cells) of the layered prop).

Definition 16 (Retrosynthetic sequence). A retrosynthetic sequence for a
target molecular entity T is a sequence of morphisms r1 ∈ M1-React(E1, T +
B0), r2 ∈ M2-React(E2, E1+B1), . . . , rn ∈ M1-React(En, En−1+Bn−1) such
that the domain of ri is a connected subgraph the codomain of ri+1:

Mn-React

rn
En

En−1

· · ·

M1-React

r1
E1

M2-React

r2
E2

E1 T

B0B1Bn−1

.

Thus a retrosynthetic sequence is a chain of reactions, together with reaction
environments, such that the products of one reaction can be used as the reactants
for the next one, so that the reactions can occur one after another (assuming that
the products can be extracted from the reaction environment, or one environment
transformed into another one). In the formulation of a generic retrosynthesis
procedure below, we shall additionally require that each reaction in the sequence
comes from “erasing” everything but the rightmost cell in a retrosynthetic step.

We are now ready to formulate step-by-step retrosynthetic analysis. The
procedure is a high-level mathematical description that, we suggest, is flexible
enough to capture all instances of retrosynthetic algorithms. As a consequence, it
can have various computational implementations. Let T be some fixed molecular
entity. We initialise by setting i = 0 and E0 := T .

1. Choose a subset D of disconnection rules,
2. Provide at least one of the following:

(a) a finite set of reaction schemes S,
(b) a function F from molecular graphs to finite sets of molecular graphs,
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3. Search for a retrosynthetic step with d ∈ ∅-Disc(Ei, S), m ∈
M -Match(S,E), and r ∈ M -React(E,Ei + Bi) such that all disconnection
rules in d and D(m) are in D, and we have at least one of the following:
(a) there is an s ∈ S such that the reaction r is an instance of s,
(b) Ei + Bi ∈ F(E);
if successful, set Ei+1 := E, Mi+1 := M , ri+1 := r and proceed to Step 4; if
unsuccessful, stop,

4. Check if the molecular entities in Ei+1 are known (commercially available):
if yes, terminate; if no, increment i �→ i + 1 and return to Step 1.

Note how our framework is able to incorporate both template-based and
template-free retrosynthesis, corresponding to the choices between (a) and (b)
in Step 2: the set S is the template, while the function F can be a previously
trained algorithm, or other unstructured empirical model of reactions. We can
also consider hybrid models by providing both S and F.

We take the output retrosynthetic sequence to always come with a specified
reaction environment for each reaction. Currently existing tools rarely provide
this information (mostly for complexity reasons), and hence, in our framework,
correspond to the set M always being empty in Step 3.

Steps 1 and 2 both require making some choices. Two approaches to reduce
the number of choices, as well as the search space in Step 3, have been proposed
in the automated retrosynthesis literature: to use molecular similarity [14], or
machine learning [26]. Chemical similarity can be used to determine which dis-
connection rules, reactions and environment molecules are actually tried: e.g. in
Step 1, disconnection rules that appear in syntheses of molecules similar to T
can be prioritised.

Ideally, each unsuccessful attempt to construct a retrosynthetic step in Step
3 should return some information on why the step failed: e.g. if the codomain
of a reaction fails to contain Ei, then the output should be the codomain and
a measure of how far it is from Ei. Similarly, if several reactions are found in
Step 3, some of which result in products O that do not contain Ei, the step
should suggest minimal alterations to E such that these reactions do not occur.
This can be seen as a deprotection step: the idea is that in the next iteration the
algorithm will attempt to construct (by now a fairly complicated) E, but now
there is a guarantee this is worth the computational effort, as this prevents the
unwanted reactions from occurring (protection step). Passing such information
between the layers would take the full advantage of the layered prop formalism.

8 Discussion and Future Work

The main conceptual contributions of formulating retrosynthesis in layered props
are the explicit mathematical descriptions of retrosynthetic steps (Definition 15)
and sequences (Definition 16), which allows for a precise formulation of the
entire process, as well as of more fine-grained concepts. While in the current
article we showed how to account for the available disconnection rules, reactions
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and environmental molecules, the general formalism of layered props immedi-
ately suggests how to account for other environmental factors (e.g. temperature
and pressure). Namely, these should be represented as posets which control the
morphisms that are available between the chemical compounds. One idea for
accounting for the available energy is via the disconnection rules: the higher
the number of bonds that we are able to break in one step, the more energy is
required to be present in the environment.

Apart from modelling retrosynthesis, another potential use of the reaction
contexts is to capture context-dependent chemical similarity. While molecular
similarity is a major research topic in computational chemistry [6], the current
approaches are based on comparing the molecular structure (connectivity, num-
ber of rings etc.) of two compounds, and is therefore bound to ignore the reac-
tion environment. Other advantages of our framework are representation of the
protection-deprotection steps, and hard-wiring of chirality into the formalism.

At the level of the formalism, the next step is to model translations between
the reaction environments as functors of the form M -React → N -React. This
would allow presenting a retrosynthetic sequence as a single, connected diagram,
closely corresponding to actions to be taken in a lab. Similarly, we note that
the informal algorithmic description in Sect. 7 could be presented internally in
a layered prop: Steps 1 and 2 amount to choosing subcategories of Disc and
React.

A theoretical issue that should be addressed in future work is the precise rela-
tion between reactions and disconnection rules. As was mentioned when intro-
ducing the disconnection rules, we believe that any reaction can be decomposed
into a sequence of disconnection rules. This amounts to proving that the trans-
lation functor R is full, hence giving a completeness result for reactions with
respect to the disconnection rules. In this way, the reactions can be seen as pro-
viding semantics for the disconnection rules. This also has a practical significance
from the point of view of algorithm design: it would show that all computations,
in principle, could be done with just using the disconnection rules.

On the practical side, the crucial next step is to take existing retrosynthesis
algorithms and encode them in our framework. This requires implementing the
morphisms of the layered prop in the previous section in some software. As the
morphisms are represented by string diagrams, one approach is to use proof for-
malisation software specific to string diagrams and their equational reasoning,
such as [32]. Alternatively, these morphisms could be coded into a programming
language like python or Julia. The latter is especially promising, as there is a com-
munity writing category-theoretic modules for it [1]. As a lower level description,
the disconnection rules and the reactions presented could be encoded in some
graph rewriting language, such as Kappa [5,18,23,24], which is used to model
systems of interacting agents, or MØD [2,4,5,31], which represents molecules as
labelled graphs and generating rules for chemical transformations as spans of
graphs (akin to this work). In order to formally represent reactions as discon-
nection rules, we need to rewrite string diagrams, the theory for which has been
developed in a recent series of articles [7–9].
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1 EPITA Research Laboratory (LRE), Paris, France
uli@lrde.epita.fr

2 University of Warsaw, Warsaw, Poland

Abstract. In this paper we develop the language theory of higher-
dimensional automata (HDAs). Regular languages of HDAs are sets
of finite interval partially ordered multisets (pomsets) with interfaces
(iiPoms). We first show a pumping lemma which allows us to expose a
class of non-regular languages. We also give an example of a regular lan-
guage with unbounded ambiguity. Concerning decision and closure prop-
erties, we show that inclusion of regular languages is decidable (hence is
emptiness), and that intersections of regular languages are again regular.
On the other hand, complements of regular languages are not regular. We
introduce a width-bounded complement and show that width-bounded
complements of regular languages are again regular.

1 Introduction

Higher-dimensional automata (HDAs), introduced by Pratt and van Glabbeek
[16,18], are a general geometric model for non-interleaving concurrency which
subsumes, for example, event structures and Petri nets [19]. HDAs of dimension
one are standard automata, whereas HDAs of dimension two are isomorphic to
asynchronous transition systems [2,11,17]. As an example, Fig. 1 shows Petri net
and HDA models for a system with two events, labelled a and b. The Petri net
and HDA on the left side model the (mutually exclusive) interleaving of a and b
as either a.b or b.a; those to the right model concurrent execution of a and b. In
the HDA, this independence is indicated by a filled-in square.

Fig. 1. Petri net and HDA models distinguishing interleaving (left) from non-
interleaving (right) concurrency. Left: models for a.b + b.a; right: models for a ‖ b.
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Recent work defines languages of HDAs [4], which are sets of partially ordered
multisets with interfaces (ipomsets) [6] that are closed under subsumptions.
Follow-up papers introduce a language theory for HDAs, showing a Kleene the-
orem [5], which makes a connection between rational and regular ipomset lan-
guages (those accepted by finite HDAs), and a Myhill-Nerode theorem [8] stating
that regular languages are precisely those that have finite prefix quotient. Here
we continue to develop this nascent higher-dimensional automata theory.

Our first contribution, in Sect. 4, is a pumping lemma for HDAs, based on
the fact that if an ipomset accepted by an HDA is long enough, then there is
a cycle in the path that accepts it. As an application we can expose a class of
non-regular ipomset languages. We also show that regular languages are closed
under intersection, both using the Myhill-Nerode theorem and an explicit prod-
uct construction.

The paper [8] introduces deterministic HDAs and shows that not all HDAs
are determinizable. As a weaker notion in-between determinism and non-
determinism, one may ask whether all regular languages may be recognized by
finitely ambiguous HDAs, i.e., HDAs in which there is an upper bound for the
number of accepting paths on any ipomset. We show that the answer to this
question is negative and that there are regular languages of unbounded ambigu-
ity.

In Sect. 5 we introduce a translation from HDAs to ordinary finite automata
over an alphabet of discrete ipomsets, called ST-automata. The translation for-
gets some of the structure of the HDA, and we leave open the question if, and
in what sense, it would be invertible. Nevertheless, this translation allows us to
show that inclusion of regular ipomset languages is decidable. This immediately
implies that emptiness is decidable; universality is trivial given that the universal
language is not regular.

Finally, in Sect. 6, we are interested in a notion of complement. This immedi-
ately raises two problems: first, complements of ipomset languages are generally
not closed under subsumption; second, the complement of the empty language,
which is regular, is the universal language, which is non-regular. The first prob-
lem is solved by taking subsumption closure, turning complement into a pseu-
docomplement in the sense of lattice theory.

As to the second problem, we can show that complements of regular languages
are non-regular. Yet if we restrict the width of our languages, i.e., the number of
events which may occur concurrently, then the so-defined width-bounded com-
plement has good properties: it is still a pseudocomplement; its skeletal elements
(the ones for which double complement is identity) have an easy characterisa-
tion; and finally width-bounded complements of regular languages are again reg-
ular. The proof of that last property again uses ST-automata and the fact that
the induced translation from ipomset languages to word languages over discrete
ipomsets has good algebraic properties. We note that width-bounded languages
and (pseudo)complements are found in other works on concurrent languages, for
example [9,14,15].
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Another goal of this work was to obtain the above results using automata-
theoretic means as opposed to category-theoretic or topological ones. Indeed we
do not use presheaves, track objects, cylinders, or any other of the categorical
or topological constructions employed in [5,8]. Categorical reasoning would have
simplified proofs in several places, and we do make note of this in several foot-
notes, but no background in category theory or algebraic topology is necessary
to understand this paper.

To sum up, our main contributions to higher-dimensional automata theory
are as follows:

– a pumping lemma (Lemma 11);
– regular languages of unbounded ambiguity (Proposition 16);
– closure of regular languages under intersection (Proposition 15);
– closure of regular languages under width-bounded complement (Theorem 33);
– decidability of inclusion of regular languages (Theorem 22).

Due to space constraints, some proofs had to be omitted from this paper. These
can be found in the long version [1].

2 Pomsets with Interfaces

HDAs model systems in which (labelled) events have duration and may happen
concurrently. Notably, as seen in the introduction, concurrency of events is a
more general notion than interleaving. Every event has an interval in time during
which it is active: it starts at some point in time, then remains active until
it terminates, and never appears again. Events may be concurrent, in which
case their activity intervals overlap: one of the two events starts before the
other terminates. Executions are thus isomorphism classes of partially ordered
intervals. For reasons of compositionality we also consider executions in which
events may be active already at the beginning or remain active at the end.

Any time point of an execution defines a concurrency list (or conclist) of
currently active events. The relative position of any two concurrent events on
such lists does not change during passage of time; this equips events of an exe-
cution with a partial order which we call event order. The temporal order of
non-concurrent events (one of two events terminating before the other starts)
introduces another partial order which we call precedence. An execution is, then,
a collection of labelled events together with two partial orders.

To make the above precise, let Σ be a finite alphabet. We define three notions,
in increasing order of generality:

– A concurrency list, or conclist, U = (U, ���U , λU ) consists of a finite set
U , a strict total order ���U ⊆ U × U (the event order),1 and a labelling
λU : U → Σ.

1 A strict partial order is a relation which is irreflexive and transitive; a strict total
order is a relation which is irreflexive, transitive, and total. We may omit the “strict”.
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Fig. 2. Activity intervals of events (top) and corresponding ipomsets (bottom),
cf. Example 1. Full arrows indicate precedence order; dashed arrows indicate event
order; bullets indicate interfaces.

– A partially ordered multiset, or pomset, P = (P,<P , ���P , λP ) consists of a
finite set P , two strict partial orders <P , ���P ⊆ P×P (precedence and event
order), and a labelling λP : P → Σ, such that for each x �= y in P , at least
one of x <P y, y <P x, x ���P y, or y ���P x holds.

– A pomset with interfaces, or ipomset, (P,<P , ���P , SP , TP , λP ) consists of
a pomset (P,<P , ���P , λP ) together with subsets SP , TP ⊆ P (source and
target interfaces) such that elements of SP are <P -minimal and those of TP

are <P -maximal.

We will omit the subscripts U and P whenever possible.
Conclists may be regarded as pomsets with empty precedence (discrete pom-

sets); the last condition above enforces that ��� is then total. Pomsets are ipom-
sets with empty interfaces, and in any ipomset P , the substructures induced
by SP and TP are conclists. Note that different events of ipomsets may carry
the same label; in particular we do not exclude autoconcurrency. Figure 2 shows
some simple examples. Source and target events are marked by “•” at the left or
right side, and if the event order is not shown, we assume that it goes downwards.

An ipomset P is interval if <P is an interval order [10], that is, if it admits an
interval representation given by functions b and e from P to real numbers such
that b(x) ≤ e(x) for all x ∈ P and x <P y iff e(x) < b(y) for all x, y ∈ P . Given
that our ipomsets represent activity intervals of events, any of the ipomsets
we will encounter will be interval, and we omit the qualification “interval”. We
emphasise that this is not a restriction, but rather induced by the semantics, see
also [21]. We let iiPoms denote the set of (interval) ipomsets.

Ipomsets may be refined by shortening activity intervals, potentially remov-
ing concurrency and expanding precedence. The inverse to refinement is called
subsumption and defined as follows. For ipomsets P and Q we say that Q sub-
sumes P and write P � Q if there is a bijection f : P → Q for which

(1) f(SP ) = SQ, f(TP ) = TQ, and λQ ◦ f = λP ;
(2) f(x) <Q f(y) implies x <P y;
(3) x �<P y, y �<P x and x ���P y imply f(x) ���Q f(y).

That is, f respects interfaces and labels, reflects precedence, and preserves essen-
tial event order. (Event order is essential for concurrent events, but by transi-
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Fig. 3. Gluing and parallel composition of ipomsets.

tivity, it also appears between non-concurrent events. Subsumptions ignore such
non-essential event order.) This definition adapts the one of [12] to event orders
and interfaces. Intuitively, P has more order and less concurrency than Q.

Example 1. In Fig. 2 there is a sequence of subsumptions from left to right:

•acb �
[ •a

�����
b

c

�����

]
� [ •a→b

c ] �
[ •a

b
c

]

An event e1 is smaller than e2 in the precedence order if e1 is terminated before
e2 is started; e1 is smaller than e2 in the event order if they are concurrent and
e1 is above e2 in the respective conclist.

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for
which items (2) and (3) above are strengthened to

(2
′
) f(x) <Q f(y) iff x <P y;

(3
′
) x �<P y and y �<P x imply that x ���P y iff f(x) ���Q f(y).

Due to the requirement that all elements are ordered by < or ���, there is at most
one isomorphism between any two ipomsets. Hence we may switch freely between
ipomsets and their isomorphism classes. We will also call these equivalence classes
ipomsets and often conflate equality and isomorphism.

Compositions. The standard serial and parallel compositions of pomsets [12]
extend to ipomsets. The parallel composition of ipomsets P and Q is P ‖ Q =
(P 
Q,<, ���, S, T, λ), where P 
Q denotes disjoint union and

– x < y if x <P y or x <Q y;
– x ��� y if x ���P y, x ���Q y, or x ∈ P and y ∈ Q;
– S = SP ∪ SQ and T = TP ∪ TQ;
– λ(x) = λP (x) if x ∈ P and λ(x) = λQ(x) if x ∈ Q.

Note that parallel composition of ipomsets is generally not commutative, see [6]
or Example 28 below for details.

Serial composition generalises to a gluing composition which continues inter-
face events across compositions and is defined as follows. Let P and Q be ipom-
sets such that TP = SQ, x ���P y iff x ���Q y for all x, y ∈ TP = SQ, and the
restrictions λP �TP

= λQ�SQ
, then P ∗Q = (P ∪Q,<, ���, SP , TQ, λ), where
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Fig. 4. Ipomset of size 3.5 and two of its step decompositions.

– x < y if x <P y, x <Q y, or x ∈ P − TP and y ∈ Q− SQ;2

– ��� is the transitive closure of ���P ∪ ���Q;
– λ(x) = λP (x) if x ∈ P and λ(x) = λQ(x) if x ∈ Q.

Gluing is, thus, only defined if the targets of P are equal to the sources of Q as
conclists. If we would not conflate equality and isomorphism, we would have to
define the carrier set of P ∗ Q to be the disjoint union of P and Q quotiented
out by the unique isomorphism TP → SQ. We will often omit the “∗” in gluing
compositions. Figure 3 shows some examples.

An ipomset P is a word (with interfaces) if <P is total. Conversely, P is
discrete if <P is empty (hence ���P is total). Conclists are discrete ipomsets
without interfaces. The relation � is a partial order on iiPoms with minimal
elements words and maximal elements discrete ipomsets. Further, gluing and
parallel compositions respect �.

Special Ipomsets. A starter is a discrete ipomset U with TU = U , a terminator
one with SU = U . The intuition is that a starter does nothing but start the
events in A = U − SU , and a terminator terminates the events in B = U − TU .
These will be so important later that we introduce special notation, writing A↑U
and U↓B for the above. Starter A↑U is elementary if A is a singleton, similarly
for U↓B . Discrete ipomsets U with SU = TU = U are identities for the gluing
composition and written idU . Note that idU = ∅↑U = U↓∅.

The width wid(P ) of an ipomset P is the cardinality of a maximal <-
antichain. For k ≥ 0, we let iiPoms≤k ⊆ iiPoms denote the set of ipomsets
of width at most k. The size of an ipomset P is size(P ) = |P | − 1

2 (|SP |+ |TP |).
Identities are exactly the ipomsets of size 0. Elementary starters and terminators
are exactly the ipomsets of size 1

2 .
Any ipomset can be decomposed as a gluing of starters and terminators [6],

see also [13]. Such a presentation we call a step decomposition. If starters and
terminators are alternating, the step decomposition is called sparse; if they are
all elementary, then it is dense.

Example 2. Figure 4 illustrates two step decompositions. The sparse one first
starts c and d, then terminates a, starts b, and terminates b, c and d together.
The dense one first starts c, then starts d, terminates a, starts b, and finally
terminates b, d, and c in order.

Lemma 3 ([8]). Every ipomset P has a unique sparse step decomposition.
2 We use “−” for set difference instead of the perhaps more common “\”.
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Dense step decompositions are generally not unique, but they all have the
same length.

Lemma 4. Every dense step decomposition of ipomset P has length 2 size(P ).

Rational Languages. For A ⊆ iiPoms we let

A↓ = {P ∈ iiPoms | ∃Q ∈ A : P � Q}.

Note that (A ∪ B)↓ = A↓ ∪ B↓ for all A,B ⊆ iiPoms, but for intersection this
does not hold. For example it may happen that A ∩B = ∅ but A↓ ∩B↓ �= ∅. A
language is a subset L ⊆ iiPoms for which L↓ = L. The set of all languages is
denoted L ⊆ 2iiPoms.

The width of a language L is wid(L) = sup{wid(P ) | P ∈ L}. For k ≥ 0 and
L ∈ L , denote L≤k = {P ∈ L | wid(P ) ≤ k}. L is k-dimensional if L = L≤k.
We let L≤k = L ∩ iiPoms≤k denote the set of k-dimensional languages.

The singleton ipomsets are [a] [•a], [a•] and [•a•], for all a ∈ Σ. The rational
operations ∪, ∗, ‖ and (Kleene plus) + for languages are defined as follows.

L ∗M = {P ∗Q | P ∈ L, Q ∈ M, TP = SQ}↓,
L ‖ M = {P ‖ Q | P ∈ L, Q ∈ M}↓,

L+ =
⋃

n≥1
Ln, for L1 = L,Ln+1 = L ∗ Ln.

The class of rational languages is the smallest subset of L that contains
{∅, {ε}, {[a]}, {[•a]}, {[a•]}, {[•a•]} | a ∈ Σ

}

(ε denotes the empty ipomset) and is closed under the rational operations.

Lemma 5 ([5]). Any rational language has finite width.

It immediately follows that the universal language iiPoms is not rational.
The prefix quotient of a language L ∈ L by an ipomset P is P\L = {Q ∈

iiPoms | PQ ∈ L}. Similarly, the suffix quotient of L by P is L/P = {Q ∈
iiPoms | QP ∈ L}. Denoting

suff(L) = {P\L | P ∈ iiPoms}, pref(L) = {L/P | P ∈ iiPoms},

we may now state the central result of [8].

Theorem 6 ([8]). A language L ∈ L is rational iff suff(L) is finite, iff pref(L)
is finite.

3 Higher-Dimensional Automata

An HDA is a collection of cells which are connected by face maps. Each cell
contains a conclist of events which are active in it, and the face maps may
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Fig. 5. A two-dimensional HDA X on Σ = {a, b}, see Example 7.

terminate some events (upper faces) or “unstart” some events (lower faces), i.e.,
map a cell to another in which the indicated events are not yet active.

To make this precise, let � denote the set of conclists. A precubical set

X = (X, ev, {δ0A,U , δ1A,U | U ∈ �, A ⊆ U})
consists of a set of cells X together with a function ev : X → �. For a conclist U
we write X[U ] = {x ∈ X | ev(x) = U} for the cells of type U . Further, for every
U ∈ � and A ⊆ U there are face maps δ0A, δ1A : X[U ] → X[U −A] which satisfy
δν
Aδμ

B = δμ
Bδν

A for A∩B = ∅ and ν, μ ∈ {0, 1}. The upper face maps δ1A transform
a cell x into one in which the events in A have terminated, whereas the lower face
maps δ0A transform x into a cell where the events in A have not yet started. The
precubical identity above expresses the fact that these transformations commute
for disjoint sets of events.

A higher-dimensional automaton (HDA) X = (X,⊥X ,�X) is a precubi-
cal set together with subsets ⊥X ,�X ⊆ X of start and accept cells. While
HDAs may have an infinite number of cells, we will mostly be interested in
finite HDAs. Thus, in the following we will omit the word “finite” and will be
explicit when talking about infinite HDAs. The dimension of an HDA X is
dim(X) = sup{|ev(x)| | x ∈ X} ∈ N ∪ {∞}.3

A standard automaton is the same as a one-dimensional HDA X with the
property that for all x ∈ ⊥X ∪ �X , ev(x) = ∅: cells in X[∅] are states, cells
in X[{a}] for a ∈ Σ are a-labelled transitions, and face maps δ0{a} and δ1{a}
attach source and target states to transitions. In contrast to ordinary automata
we allow start and accept transitions instead of merely states, so languages of
one-dimensional HDAs may contain words with interfaces.

Example 7. Figure 5 shows a two-dimensional HDA as a combinatorial object
(left) and in a geometric realisation (right). It consists of nine cells: the corner
cells X0 = {x, y, v, w} in which no event is active (for all z ∈ X0, ev(z) = ∅), the
transition cells X1 = {g, h, f, e} in which one event is active (ev(f) = ev(e) = a
and ev(g) = ev(h) = b), and the square cell q where ev(q) = [ a

b ].
3 Precubical sets are presheaves over a category on objects �, and then HDAs form a

category with the induced morphisms, see [5].
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The arrows between the cells on the left representation correspond to the
face maps connecting them. For example, the upper face map δ1ab maps q to
y because the latter is the cell in which the active events a and b of q have
been terminated. On the right, face maps are used to glue cells together, so that
for example δ1ab(q) is glued to the top right of q. In this and other geometric
realisations, when we have two concurrent events a and b with a ��� b, we will
draw a horizontally and b vertically.

Regular Languages. Computations of HDAs are paths, i.e., sequences α =
(x0, φ1, x1, . . . , xn−1, φn, xn) consisting of cells xi of X and symbols φi which
indicate face map types: for every i ∈ {1, . . . , n}, (xi−1, φi, xi) is either

– (δ0A(xi),↗A, xi) for A ⊆ ev(xi) (an upstep)
– or (xi−1,↘A, δ1A(xi−1)) for A ⊆ ev(xi−1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps. Both types of steps may be
empty, and ↗∅ = ↘∅.

The source and target of α as above are src(α) = x0 and tgt(α) = xn. The
set of all paths in X starting at Y ⊆ X and terminating in Z ⊆ X is denoted by
Path(X)Z

Y . A path α is accepting if src(α) ∈ ⊥X and tgt(α) ∈ �X . Paths α and
β may be concatenated if tgt(α) = src(β). Their concatenation is written α ∗ β
or simply αβ.

Path equivalence is the congruence � generated by (z ↗A y ↗B x) �
(z ↗A∪B x), (x ↘A y ↘B z) � (x ↘A∪B z), and γαδ � γβδ whenever α � β.
Intuitively, this relation allows to assemble subsequent upsteps or downsteps into
one bigger step. A path is sparse if its upsteps and downsteps are alternating, so
that no more such assembling may take place. Every equivalence class of paths
contains a unique sparse path.

The observable content or event ipomset ev(α) of a path α is defined recur-
sively as follows:

– if α = (x), then ev(α) = idev(x);
– if α = (y ↗A x), then ev(α) = A↑ev(x);
– if α = (x ↘A y), then ev(α) = ev(x)↓A;
– if α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

Note that upsteps in α correspond to starters in ev(α) and downsteps correspond
to terminators. Path equivalence α � β implies ev(α) = ev(β) [5]. Further, if
α = α1 ∗ · · · ∗ αn is a sparse path, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn) is a sparse
step decomposition.

The language of an HDA X is L(X) = {ev(α) | α accepting path in X}.4

Example 8. The HDA X of Fig. 5 admits several accepting paths with target h,
for example v ↗ab q ↘a h. This is a sparse path and equivalent to the non-
sparse paths v ↗a e ↗b q ↘a h and v ↗b g ↗a q ↘a h. Their event ipomset
4 Every ipomset P may be converted into a track object �P , see [5], which is an HDA

with the property that for any HDA X, P ∈ L(X) iff there is a morphism �P → X.
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is [ a
b• ]. In addition, since g is both a start and accept cell, we have also g and

v ↗b g as accepting paths, with event ipomsets •b• and b•, respectively. We have
L(X) = {b•, •b•, [ a

b• ] , [ a
•b• ] , [ a

b ] , [ a
•b ]}↓.

Lemma 9. Let X be an HDA, P ∈ L(X) and P = P1 ∗ · · · ∗ Pn be any decom-
position (not necessarily a step decomposition). Then there exists an accepting
path α = α1 ∗ · · · ∗ αn in X such that ev(αi) = Pi for all i. If P = P1 ∗ · · · ∗ Pn

is a sparse step decomposition, then α = α1 ∗ · · · ∗ αn is sparse.

Languages of HDAs are sets of (interval) ipomsets which are closed under
subsumption [5], i.e., languages in our sense. A language is regular if it is the
language of a finite HDA.

Theorem 10 ([5]). A language is regular iff it is rational.

4 Regular and Non-regular Languages

Pumping Lemma. The next lemma is similar to the pumping lemma for word
languages.

Lemma 11. Let L be a regular language. There exists k ∈ N such that for any
P ∈ L, any decomposition P = Q1 ∗ · · · ∗Qn with n > k and any 0 ≤ m ≤ n− k
there exist i, j such that m ≤ i < j ≤ m + k and Q1 ∗ · · · ∗ Qi ∗ (Qi+1 ∗ · · · ∗
Qj)+ ∗Qj+1 ∗ · · · ∗Qn ⊆ L.

Proof. Let X be an HDA accepting L and k > |X|. By Lemma 9 there exists an
accepting path α = α1 ∗ · · · ∗ αn such that ev(αi) = Qi for all i, and ev(α) = P .
Denote xi = tgt(αi) = src(αi+1). Amongst the cells xm, . . . , xm+k there are
at least two equal, say xi = xj , m ≤ i < j ≤ m + k. As a consequence,
src(αi+1) = tgt(αj), and for every r ≥ 1

α1 ∗ · · · ∗ αi ∗ (αi+1 ∗ · · · ∗ αj)r ∗ αj+1 ∗ · · · ∗ αn

is an accepting path that recognises Q1∗· · ·∗Qi∗(Qi+1∗· · ·∗Qj)r∗Qj+1∗· · ·∗Qn. �

Corollary 12. Let L be a regular language. There exists k ∈ N such that any
P ∈ L with size(P ) > k can be decomposed into P = Q1 ∗Q2 ∗Q3 such that Q2

is not an identity and Q1 ∗Q+
2 ∗Q3 ⊆ L.

The proof follows by applying Lemma 11 to a dense step decomposition
P = Q1 ∗ · · · ∗Q2 size(P ), cf. Lemma 4. We may now expose a language which is
not regular.

Proposition 13. The language L = {[ a
a ]n ∗ an | n ≥ 1}↓ is not regular.

Note that the restriction L≤1 = (aaa)+ is regular, showing that regularity
of languages may not be decided by restricting to their one-dimensional parts.
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Proof (Proof of Proposition 13). We give two proofs. The first uses Theorem 6:
for every k ≥ 1, [ a

a ]k \L = {[ a
a ]n ∗ an+k | n ≥ 0}↓, and these are different for

different k, so suff(L) is infinite.
The second proof uses Lemma 11. Assume L to be regular, let k be the

constant from the lemma, and take P = [ a
a ]k ∗ ak = Q1 ∗ · · · ∗ Qk ∗ Qk+1,

where Q1 = · · · = Qk = [ a
a ] and Qk+1 = ak. For m = 0 we obtain that

[ a
a ]k+(j−i)r

ak ∈ L for all r and some j − i > 0: a contradiction. �

We may strengthen the above result to show that regularity of languages

may not be decided by restricting to their k-dimensional parts for any k ≥ 1.
For a ∈ Σ let a‖1 = a and a‖k = a ‖ a‖k−1 for k ≥ 2: the k-fold parallel product
of a with itself. Now let k ≥ 1 and

L =
{
(a‖k+1)n ∗ Pn

∣∣ n ≥ 0, P ∈ {a‖k+1}↓ − {a‖k+1}}↓.
The idea is to remove from the right-hand part of the expression precisely the
only ipomset of width k + 1. Using the same arguments as above one can show
that L is not regular, but L≤k = (({a‖k+1}↓ − {a‖k+1})2)+ is.

Yet the k-restriction of any regular language remains regular:

Proposition 14. Let k ≥ 0. If L ∈ L is regular, then so is L≤k.

Intersection. By definition, the regular languages are closed under union, parallel
composition, gluing composition, and Kleene plus. Here we show that they are
also closed under intersection. (For complement this is more complicated, as we
will see later.)

Proposition 15. The regular languages are closed under ∩.

Proof. We again give two proofs, one algebraic using Theorem 6 and another,
constructive proof using Theorem 10. For the first proof, let L1 and L2 be regular,
then suff(L1) and suff(L2) are both finite. Now

suff(L1 ∩ L2) = {P\(L1 ∩ L2) | P ∈ iiPoms}
=

{{Q ∈ iiPoms | PQ ∈ L1 ∩ L2}
∣∣ P ∈ iiPoms

}
=

{{Q ∈ iiPoms | PQ ∈ L1} ∩ {Q ∈ iiPoms | PQ ∈ L2}
∣∣ P ∈ iiPoms

}
= {P\L1 ∩ P\L2 | P ∈ iiPoms}
⊆ {M1 ∩M2

∣∣ M1 ∈ suff(L1), M2 ∈ suff(L2)}
which is thus finite.

For the second, constructive proof, let X1 and X2 be HDAs. We construct
an HDA X with L(X) = L(X1) ∩ L(X2):5

X = {(x1, x2) ∈ X1 ×X2 | ev1(x1) = ev2(x2)}, δν
A(x1, x2) = (δν

A(x1), δν
A(x2)),

ev((x1, x2)) = ev1(x1) = ev2(x2), ⊥ = ⊥1 ×⊥2, � = �1 ×�2.

5 This is the product in the category of HDAs. Using track objects, the lemma follows
immediately.
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For the inclusion L(X) ⊆ L(X1)∩L(X2), any accepting path α in X projects
to accepting paths β in X1 and γ in X2, and then ev(β) = ev(γ) = ev(α). For the
reverse inclusion, we need to be slightly more careful to ensure that accepting
paths in X1 and X2 may be assembled to an accepting path in X.

Let P ∈ L(X1)∩ L(X2) and P = P1 ∗ · · · ∗Pn the sparse step decomposition.
Let β = β1 ∗ · · · ∗ βn and γ = γ1 ∗ · · · ∗ γn be sparse accepting paths for P in X1

and X2, respectively, such that ev(αi) = ev(βi) = Pi for all i, cf. Lemma 9.
Let i ∈ {1, . . . , n} and assume that Pi = A↑U is a starter, then βi =

(δ0Ax1,↗A, x1) and γi = (δ0Ax2,↗A, x2) for x1 ∈ X1 and x2 ∈ X2 such that
ev(x1) = ev(x2) = U . Hence we may define a step αi = (δ0A(x1, x2),↗A

, (x1, x2)) in X. If Pi is a terminator, the argument is similar. By construc-
tion, tgt(αi) = src(αi+1), so the steps αi assemble to an accepting path
α = α1 ∗ · · · ∗ αn ∈ Path(X)	

⊥, and ev(α) = P . �


Ambiguity. It is shown in [8] that not all languages are determinizable, that is,
there exist regular languages which cannot be recognised by deterministic HDAs.
We have not introduced deterministic HDAs here and will not need them in what
follows, instead we prove a strengthening of that result. Say that an HDA X is
k-ambiguous, for k ≥ 1, if every P ∈ L(X) is the event ipomset of at most k
sparse accepting paths in X. (Deterministic HDAs are 1-ambiguous.) A language
L is said to be of bounded ambiguity if it is recognised by a k-ambiguous HDA
for some k.

Proposition 16. The regular language L = ([ a
b ] cd + ab [ c

d ])+ is of unbounded
ambiguity.

5 ST-Automata

We define a variant of a construction from [5] which translates HDAs into finite
automata over an alphabet of starters and terminators. This will be useful for
showing properties of HDA languages. Let Ω = {A↑U,U↓A | U ∈ �, A ⊆ U}
be the (infinite) set of starters and terminators over Σ and, for any k ≥ 0,
Ω≤k = Ω ∩ iiPoms≤k. Note that the sets Ω≤k are all finite.

Let X be an HDA and k ≥ dim(X). The STk-automaton pertaining to X is
the finite automaton Gk(X) = (Ω≤k, Q, I, F,E) with Q = X ∪ {x⊥ | x ∈ ⊥X},
I = {x⊥ | x ∈ ⊥X}, F = �X , and

E = {(δ0A(x), A↑U, x) | x ∈ X[U ], A ⊆ U} ∪ {(x⊥, idU , x) | x ∈ ⊥X ∩X[U ]}
∪ {(x,U↓A, δ1A(x)) | x ∈ X[U ], A ⊆ U}.

We add extra copies of start cells in Gk(X) in order to avoid runs on the empty
word ε. Note that only the alphabet of Gk(X) changes for different k.

In what follows, we consider languages of nonempty words over Ω, which we
denote by W etc. and the class of such languages by W . Further, W(A) denotes
the set of words accepted by a finite automaton A.
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Fig. 6. HDA of Fig. 5 and its ST-automaton (identity loops not displayed).

Example 17. Figure 6 displays the ST-automaton G2(X) pertaining to the HDA
X in Fig. 5, with the identity loops (z, idev(z), z) for all states z omitted. Notice
that the transitions between a cell and its lower face are opposite to the face
maps in X. Further, this example illustrates the necessity to duplicate ini-
tial states: without that, the empty word would be accepted by G2(X), while
the empty ipomset is not in L(X) (see Example 8). We have W(G2(X)) =
{id∅b•, •b•, id∅ [ a•

b• ] [ •a
•b• ] , •b• [ a•

•b• ] [ •a
•b• ] , . . . }.

Define functions Φ : L → W and Ψ : W → L by

Φ(L) = {P1 · · ·Pn ∈ Ω∗ | P1 ∗ · · · ∗ Pn ∈ L, n ≥ 1, ∀i : Pi ∈ Ω},
Ψ(W ) = {P1 ∗ · · · ∗ Pn ∈ iiPoms | P1 · · ·Pn ∈ W, n ≥ 1, ∀i : TPi

= SPi+1}↓.

Φ translates ipomsets into concatenations of their step decompositions, and Ψ
translates words of composable starters and terminators into their ipomset com-
position (and takes subsumption closure). Hence Φ creates “coherent” words,
i.e., nonempty concatenations of starters and terminators with matching inter-
faces. Conversely, Ψ disregards all words which are not coherent in that sense.
Every ipomset is mapped by Φ to infinitely many words over Ω (because ipom-
sets idU ∈ Ω are not units in W ). This will not be a problem for us later. It is
clear that Ψ(Φ(L)) = L for all L ∈ L , since every ipomset has a step decom-
position. For the other composition, neither Φ(Ψ(W )) ⊆ W nor W ⊆ Φ(Ψ(W ))
hold:

Example 18. If W = {a• •b} (the word language containing the concatenation of
a• and •b), then Ψ(W ) = ∅ and thus Φ(Ψ(W )) = ∅ �⊇ W . If W = {[ a•

b• ][ •a
•b ]},

then Ψ(W ) = {[ a
b ] , ab, ba} and Φ(Ψ(W )) �⊆ W .

Lemma 19. Φ respects boolean operations: for all L1, L2 ∈ L , Φ(L1 ∩ L2) =
Φ(L1)∩Φ(L2) and Φ(L1∪L2) = Φ(L1)∪Φ(L2). Ψ respects regular operations: for
all W1,W2 ∈ W , Ψ(W1 ∪W2) = Ψ(W1) ∪ Ψ(W2), Ψ(W1W2) = Ψ(W1) ∗ Ψ(W2),
and Ψ(W+

1 ) = Ψ(W1)+.
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Φ does not respect concatenations: only inclusion Φ(L ∗ L′) ⊆ Φ(L) ∗ Φ(L′)
holds, given that Φ(L)∗Φ(L′) also may contain words in Ω∗ that are not compos-
able in iiPoms. Ψ does not respect intersections, given that (A∩B)↓ = A↓ ∩B↓
does not always hold.

Let Id = {idU | U ∈ �} ⊆ Ω and, for any k ≥ 0, Id≤k = Id ∩ iiPoms≤k ⊆ Ωk.
Then Id≤k Ω∗

≤k ⊆ Ω∗
≤k (which is a regular word language) denotes the set of all

words starting with an identity.

Lemma 20. For any HDA X and k ≥ dim(X), W(Gk(X)) = Φ(L(X)) ∩
Id≤k Ω∗

≤k.

Proof. There is a one-to-one correspondence between the accepting paths in X
and Gk(X):

α = (x0, φ1, x1, φ2, . . . , φn, xn) �→ (
(x0)⊥ → x0

ψ1−−→ x1
ψ2−−→ · · · ψn−−→ xn

)
= ω

where ψi is the starter or terminator corresponding to the step φi. If
P0P1 · · ·Pn ∈ W(Gk(X)), then there is an accepting path ω such that P0 =
idev(x0) and Pi = ev(xi−1, ϕi, xi). The corresponding path α in X is accepting.
Hence P0∗P1∗· · ·∗Pn = P1∗· · ·∗Pn = ev(α) ∈ L(X), and P0P1 · · ·Pn ∈ Φ(L(X)).
Further, P0 is an identity, which shows the inclusion ⊆.

Now let P0P1 · · ·Pn ∈ Φ(L(X)) ∩ Id≤k Ω∗
≤k. Thus P0 is an identity and P0 ∗

P1 ∗ · · · ∗ Pn ∈ L(X). Using Lemma 9 we conclude that the exists an accepting
path α = β1 ∗ · · · ∗ βn in X such that ev(βi) = Pi. The path ω corresponding to
α recognises P0P1 · · ·Pn, which shows the inclusion ⊇. �

Lemma 21. Let k ≥ 0. For all L1, L2 ∈ L≤k, L1 ⊆ L2 iff Φ(L1) ∩ Id≤k Ω∗

≤k ⊆
Φ(L2) ∩ Id≤k Ω∗

≤k.

Proof. The forward implication is immediate from Lemma 19. Now if L1 �⊆ L2,
then also Φ(L1) ∩ Id≤k Ω∗

≤k �⊆ Φ(L2) ∩ Id≤k Ω∗
≤k, since every ipomset admits a

step decomposition starting with an identity. �

Theorem 22. Inclusion of regular languages is decidable.

Proof. Let L1 and L2 be regular and recognised respectively by X1 and X2, and
let k = max(dim(X1),dim(X2)). By Lemmas 20 and 21,

L1 ⊆ L2 ⇐⇒ Φ(L1) ∩ Id≤k Ω∗
≤k ⊆ Φ(L2) ∩ Id≤k Ω∗

≤k

⇐⇒ W(Gk(X1)) ⊆ W(Gk(X2)).

Given that these are finite automata, the latter inclusion is decidable. �


6 Complement

The complement of a language L ⊆ iiPoms, i.e., iiPoms − L, is generally not
down-closed and thus not a language. If we define L = (iiPoms − L)↓, then L
is a language, but a pseudocomplement rather than a complement: because of
down-closure, L∩L = ∅ is now false in general. The following additional problem
poses itself.
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Fig. 7. HDA X which accepts language L of Example 28 and the two generating
ipomsets in L.

Proposition 23. If L is regular, then L has infinite width, hence is not regular.

Proof. By Lemma 5, wid(L) is finite. For any k > wid(L), iiPoms − L contains
all ipomsets of width k, hence {wid(P ) | P ∈ L} is unbounded. �


To remedy this problem, we introduce a width-bounded version of (pseudo)
complement. We fix an integer k ≥ 0 for the rest of the section.

Definition 24. The k-bounded complement of L ∈ L is Lk = (iiPoms≤k −L)↓.
Lemma 25. Let L and M be languages.

1. L0 = {id∅} − L.
2. L ⊆ M implies Mk ⊆ Lk.

3. Lkk ⊆ L≤k ⊆ L.
4. Lk = L≤k

k

Proposition 26. For any k ≥ 0, · k is a pseudocomplement on the lattice
(L≤k,⊇), that is, for any L,M ∈ L≤k, L ∪M = iiPomsk iff Lk ⊆ M .

Proof. Let L,M ∈ L≤k such that L ∪M = iiPomsk and P ∈ Lk. There exists
Q ∈ iiPoms≤k such that P � Q and Q �∈ L. Thus, Q ∈ M and since M is closed
by subsumption, P ∈ M .

Conversely, let L,M ∈ L≤k such that Lk ⊆ M and P ∈ iiPoms≤k−M . Then

P ∈ Mk, and we have that Mk ⊆ Lkk ⊆ L by Lemma 25(3). Thus, P ∈ L and
then L ∪M = iiPomsk. �


The pseudocomplement property immediately gets us the following.

Corollary 27. Let k ≥ 0 and L,M ∈ L≤k. Then L ∪ Lk = iiPoms≤k, Lkkk

=

Lk, L ∩Mk = Lk ∪ Mk, L ∪Mk ⊆ Lk ∩ Mk, and L ∪Mkk
= Lkk ∪ Mkk

.
Further, Lk = ∅ iff L = iiPoms≤k.

For k = 0 and k = 1, k is a complement on iiPoms≤k, but for k ≥ 2 it is

not: in general, neither L = Lkk
, L ∩ Lk = ∅, nor L ∪Mk = Lk ∩Mk hold:
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Example 28. Let A = {P ∈ iiPoms≤2 | abc � P}, L = {[ a→b
c ] , [ c

a→b ]}↓ and
M = (A − L)↓. The HDA X in Fig. 7 accepts L. Notice that due to the non-
commutativity of parallel composition (because of event order), X consists of
two parts, one a “transposition” of the other. The left part accepts [ a→b

c ], while
the right part accepts [ c

a→b ].
Now abc � [ a→c

b ] which is not in L, so that abc ∈ L2. Similarly, abc � [ a→b
c ] /∈

M , so abc ∈ M2. Thus, abc ∈ L2 ∩M2. On the other hand, for any P such that
wid(P ) ≤ 2 and abc � P , we have P ∈ L ∪M = A↓. Hence abc /∈ L ∪M2.

Finally, L3 contains every ipomset of width 3, hence L3 = iiPoms≤3, so that
L ∩ L3 = L �= ∅ and L33 = ∅ �= L. This may be generalised to the fact that
Lkk

= ∅ as soon as wid(L) < k.

We say that L ∈ L is k-skeletal if L = Lkk
. Let Sk be the set of all k-skeletal

languages. We characterise Sk in the following. By Lkkk

= Lk (Corollary 27),
Sk = {Lk | L ∈ L }, i.e., Sk is the image of L under k. (This is a general
property of pseudocomplements.)

Define Mk = {P ∈ iiPoms≤k | ∀Q ∈ iiPoms≤k : Q �= P =⇒ P �� Q}, the
set of all �-maximal elements of iiPoms≤k. In particular, Mk↓ = iiPoms≤k. Note
that P ∈ Mk does not imply wid(P ) = k: for example, [ a

b ] ∈ M3.

Lemma 29. For any L ∈ L , Lk = (Mk − L)↓.
Proof. We have

Q ∈ Lk ⇐⇒ ∃P ∈ (iiPoms≤k − L) : Q � P

⇐⇒ ∃P ∈ (iiPoms≤k − L) ∩Mk : Q � P

⇐⇒ ∃P ∈ Mk − L : Q � P ⇐⇒ Q ∈ (Mk − L)↓.
�


Corollary 30. Let L ∈ L and k ≥ 0, then Lk = iiPoms≤k iff L ∩Mk = ∅.
Proposition 31. Sk = {A↓ | A ⊆ Mk}.
Proof. Inclusion ⊆ follows from Lemma 29. For the other direction, A ⊆ Mk

implies

A↓ kk
= (Mk −A↓)↓k = (Mk −A)↓k = (Mk − (Mk −A))↓ = A↓.

�

If A �= B ⊆ Mk, then also A↓ �= B↓, since all elements of Mk are �-maximal.

As a consequence, Sk and the powerset P(Mk) are isomorphic lattices, hence Sk

is a distributive lattice with join L∨M = L∪M and meet L∧M = (L∩M∩Mk)↓.
Corollary 32. For L,M ∈ L , Lk = Mk iff L ∩Mk = M ∩Mk.

We can now show that bounded complement preserves regularity.
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Theorem 33. If L ∈ L is regular, then for all k ≥ 0 so is Lk.

Proof. By Proposition 14, L≤k is regular. Let X be an HDA such that
L(X) = L≤k and k = dim(X). The Ω≤k-language Id≤k Ω∗

≤k ∩ Φ(L(X)) is reg-
ular by Lemma 20, hence so is Id≤k Ω∗

≤k − Φ(L(X)). Ψ preserves regularity, so
Ψ(Id≤k Ω∗

≤k−Φ(L(X))) is a regular ipomset language. Now for P ∈ iiPoms≤k we
have

P ∈ Ψ(Id≤k Ω∗
≤k − Φ(L≤k))

⇐⇒ ∃Q ! P,∃Q0Q1 · · ·Qn ∈ Id≤k Ω∗
≤k − Φ(L≤k) : Q = Q0 ∗Q1 ∗ · · · ∗Qn

⇐⇒ ∃Q0Q1 · · ·Qn ∈ Id≤k Ω∗
≤k : P � Q0 ∗Q1 ∗ · · · ∗Qn �∈ L≤k

⇐⇒ P ∈ L≤k
k,

hence L≤k
k = Ψ(Id≤k Ω∗

≤k − Φ(L≤k)). Lemma 25(4) allows us to conclude. �

Corollary 34. iiPoms≤k is regular for every k ≥ 0.

7 Conclusion and Further Work

We have advanced the theory of higher-dimensional automata (HDAs) along
several lines: we have shown a pumping lemma, exposed a regular language
of unbounded ambiguity, introduced width-bounded complement, shown that
regular languages are closed under intersection and width-bounded complement,
and shown that inclusion of regular languages is decidable.

A question which is still open is if it is decidable whether a regular language
is deterministic or of bounded ambiguity and, related to that, whether HDAs
are learnable. On a more general level, two things which are missing are a Büchi-
type theorem on a logical characterisation of regular languages and a notion of
recognizability. The latter is complicated by the fact that ipomsets do not form
a monoid but rather a 2-category with lax tensor [6].

Even more generally, a theory of weighted and/or timed HDAs would be
called for, with a corresponding Kleene-Schützenberger theorem. For timed
HDAs, some initial work is available in [3]. For weighted HDAs, the convolu-
tion algebras of [7] provide a useful framework.

Acknowledgement. We are in debt to Emily Clement, Thomas Colcombet, Chris-
tian Johansen, Georg Struth, and Safa Zouari for numerous discussions regarding the
subjects of this paper. Any errors, however, are exclusively ours.
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Abstract. Generalized metric spaces are obtained by weakening the
requirements (e.g., symmetry) on the distance function and by allow-
ing it to take values in structures (e.g., quantales) that are more general
than the set of non-negative real numbers. Quantale-valued metric spaces
have gained prominence due to their use in quantitative reasoning on pro-
grams/systems, and for defining various notions of behavioral metrics.

We investigate imprecision and robustness in the framework of
quantale-valued metric spaces, when the quantale is continuous. In par-
ticular, we study the relation between the robust topology, which cap-
tures robustness of analyses, and the Hausdorff-Smyth hemi-metric. To
this end, we define a preorder-enriched monad PS , called the Hausdorff-
Smyth monad, and when Q is a continuous quantale and X is a Q-metric
space, we relate the topology induced by the metric on PS(X) with the
robust topology on the powerset P(X) defined in terms of the metric on X.

Keywords: Quantale · Robustness · Monad · Topology · Enriched
category

Introduction

In the 1970s, Lawvere [21] proposed viewing metric spaces as small categories
enriched over the monoidal category R+, whose objects are the extended non-
negative real numbers, where there is an arrow x→ y if and only if x ≥ y, and +
and 0 provide the monoidal structure. In this way, one recovers most notions and
results about metric spaces as instances of those about enriched categories [19].

Enrichment over arbitrary monoidal categories, however, is unnecessarily gen-
eral for studying metric phenomena. Indeed, the base of enrichment for Lawvere’s
metric spaces belongs to the class of small (co)complete posetal categories, where
the tensor commutes with colimits. These categories are called quantales and
small categories enriched over a quantale Q are dubbed Q-metric spaces. Quan-
tales are a useful compromise between arbitrary monoidal categories and the
specific case of R+ [5,10,16]. Beside a substantial simplification of the theory,
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restricting to quantales allows to use well-known order-theoretic notions which
do not have obvious counterparts in arbitrary monoidal categories, but are cru-
cial to relating Q-metric spaces to other structures such as topological spaces.

Quantale-valued metric spaces are also increasingly used for quantitative rea-
soning on programs/systems, and for defining various notions of behavioral met-
rics [3,8,11,12,26,28]. The use of quantitative methods is important in coping
with the uncertainty/imprecision that arises in the analysis of, e.g., probabilis-
tic programs or systems interacting with physical processes. In these contexts,
quantales provide a flexible framework which allows choosing the most suitable
notion of distance for the specific analysis one is interested in.

Quantales arise naturally also in analysis of algorithms, namely, costs are
values in certain quantales (see Example 2), but researchers in this area usually
consider only subsets of these quantales and their partial order.

Motivations. The notions of imprecision and robustness are relevant in the
context of software tools for analysis of hybrid/continuous systems. These
tools manipulate (formal descriptions of) mathematical models. A mathematical
model is usually a simplified description of the system (and its environment),
with the requirement that the simplification should be safe, i.e., if the analy-
sis says that the model satisfies a property, then the system also satisfies that
property. Usually, safe simplification is achieved by injecting non-determinism
in the model (non-determinism is useful also to model known unknowns in the
environment and don’t care in the model). For hybrid/continuous systems there
is another issue: imprecision in observations. In fact, predictions based on a
mathematical model and observations on a real system can be compared only
up to the precision of measurements on the real system. We say that an analysis
is robust when it can cope with small amounts of imprecision in the model, i.e.,
if a robust analysis says that a model M has a property, then it says so also
for models that have a bit more non-determinism than M . Working with met-
ric spaces makes it possible to define imprecision formally and to quantify the
amount of non-determinism added to a model.

Following [23], given a metric space X, we can identify analyses with mono-
tonic maps on the complete lattice P(X) of subsets of X ordered by reverse
inclusion.1 However, even when imprecision is made arbitrarily small, two sub-
sets with the same closure are indistinguishable. Therefore, analyses should be
considered over the complete lattice C(X) of closed subsets, rather than that
of arbitrary subsets, and should cope with small amounts of imprecision in the
input. Formally, this property was defined as continuity with respect to the robust
topology [22, Def. A.1] on C(X). This yields a functor from metric spaces to T0-
topological spaces, which maps a metric on X to the robust topology on C(X).
An anonymous referee suggested that the robust topology might be related to
the Hausdorff-Smyth hemi-metric in [14, Proposition 1], and thus the functor
from metric spaces to topological spaces might be replaced with an endofunctor
on hemi-metric spaces (aka, Lawvere’s metric spaces).

1 The category of complete lattices and monotonic maps is the framework proposed
in [6] for abstract interpretations.
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Contributions. This paper studies the link between the robust topology and the
Hausdorff-Smyth hemi-metric—as suggested by an anonymous referee of [9]—
and in doing so, addresses also more general issues, namely:

1. The notion of imprecision and the definition of robust topology are generalized
to Q-metric spaces when Q is a continuous quantale, and the results in [23]
are extended to this wider setting (see Sect. 4.1).

2. Indistinguishability is investigated in the context of Po-enriched categories2
and the notion of separated object is introduced. In Sect. 5, we prove that,
under certain conditions, every Po-enriched monad can be transformed into
one that factors through the full sub-category of separated objects. The con-
ditions that allow this transformation hold in many Po-enriched categories,
such as that of Q-metric spaces and that of topological spaces.

3. The Hausdorff-Smyth Po-enriched monad PS is defined on the category of
Q-metric spaces, with Q an arbitrary quantale (see Sect. 6). When Q is a
continuous quantale, the topology induced by the metric on PS(X) is shown
to coincide with a topology on P(X), called *-robust, defined in terms of
the metric on X. In general, the *-robust topology is included in the robust
topology, but they coincide when Q is linear and non-trivial (e.g., R+).

Although we apply the construction in Sect. 5 only to the monad defined in
Sect. 6, it is applicable to other monads definable on Q-metric spaces (see Sect. 7)
or on other Po-enriched categories.

Summary. The rest of the paper is organized as follows:

– Section 1 contains the basic notation and mathematical preliminaries.
– Section 2 introduces the category Qnt of quantales and lax-monoidal maps,

and states some properties of continuous quantales.
– Section 3 defines the Po-enriched categoryMetQ of Q-metric spaces and short

maps for a quantale Q, and gives some of its properties.
– Section 4 introduces two topologies associated with a Q-metric space when Q

is continuous, and characterizes the open and closed subsets.
– Section 5 defines separated objects in a Po-enriched category A , and shows

that, under certain assumptions on A satisfied by MetQ, every Po-enriched
monad on A can be transformed (in an optimal way) into one that factors
through the full sub-category of separated objects.

– Section 6 defines the Hausdorff-Smyth distance dS and a related Po-enriched
monad on MetQ, characterizes the preorder induced by dS and, when Q is
continuous, also the topology induced by dS .

– Section 7 contains an overview of related work and some concluding remarks.

Proofs are omitted due to page limit, but they can be found in the extended
version of the paper [7].

2 Po denotes the category of preorders and monotonic maps.
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1 Mathematical Preliminaries

In this section, we present the basic mathematical notation used throughout
the paper. We assume basic familiarity with order theory [15]. We write �S to
denote the join (aka lub) of a set S, and write �S to denote the meet (aka glb)
of S. Binary join and meet of two elements x and y are written as x � y and
x � y, respectively. We write ⊥ and � to denote the bottom and top element of
a partial order Q, respectively, when they exist.

We also assume basic familiarity with category theory [4]. In this article:

– Set denotes the category of sets and functions (alias maps).
– Po denotes the category of preorders and monotonic maps.
– Po0 denotes the full (reflective) sub-category of Po consisting of posets.
– Top denotes the category of topological spaces and continuous maps.
– Top

0
denotes the full (reflective) sub-category of Top consisting of T0-spaces.

All categories above have small limits and colimits. Set , Po and Po0 have
also exponentials, thus they are examples of symmetric monoidal closed cate-
gories [19]. Po and Top (and their sub-categories) can be viewed as Po-enriched
categories [19], e.g., the hom-set Po(X,Y ) of monotonic maps from X to Y can
be equipped with the pointwise preorder induced by the preorder Y .

Other categories introduced in subsequent sections are Po-enriched, and
this additional structure is relevant when defining adjunctions and equivalences
between two objects of a Po-enriched category.

Definition 1. (Adjunction). Given a pair of maps X Yf
g in a

Po-enriched category A , we say that they form:

1. an adjunction (notation f � g) �⇐⇒ f ◦ g ≤ idY and idX ≤ g ◦ f , in which
f and g are called left- and right-adjoint, respectively.

2. an equivalence �⇐⇒ idY ≤ f ◦ g ≤ idY and idX ≤ g ◦ f ≤ idX .

We use ‘∈’ for set membership (e.g., x ∈ X), but we use ‘:’ for membership of
function types (e.g., f : X → Y ) and to denote objects and arrows in categories
(e.g., X : Top and f : Top(X,Y )). The powerset of a set X is denoted by P(X).
Subset inclusion is denoted by ⊆, whereas strict (proper) subset inclusion is
denoted by ⊂. The finite powerset (i.e., the set of finite subsets) of X is denoted
by Pf (X), and A ⊆f B denotes that A is a finite subset of B.

We denote with ω the set of natural numbers, and identify a natural number
with the set of its predecessors, i.e., 0 = ∅ and n = {0, . . . , n− 1}, for any n ≥ 1.

2 Quantales

Conceptually, a quantale [2,24,25] is a degenerate case of monoidal category [19],
in the same way that a partial order is a degenerate case of category.
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Definition 2. (Quantale). A quantale (Q,�,⊗) is a complete lattice (Q,�)
with a monoid structure (Q,⊗, u) satisfying the following distributive laws:

x⊗ (�S) = �{x⊗ y | y ∈ S} and (�S)⊗ x = �{y ⊗ x | y ∈ S},

for any x ∈ Q and S ⊆ Q. A quantale is trivial when ⊥ = u (which implies
that ∀x ∈ Q. ⊥ = x), affine when u = �, linear when � is a linear order, and
commutative when ⊗ is commutative (in this case the two distributive laws
are inter-derivable). A frame3 is a quantale where ⊗ = � (thus, necessarily
commutative and affine).

The complete lattice (Q,�) amounts to a complete and cocomplete category,
while the distributivity laws imply that:

– ⊗ is monotonic. Thus, (Q,⊗, u) makes (Q,�) a (strict) monoidal category.
– ⊗ (viewed as a functor) preserves colimits, in particular ⊥⊗ x = ⊥ = x⊗⊥.

These properties imply that the functors x ⊗ − and − ⊗ y, have right-adjoints
x\− and −/y, i.e., x⊗ y � z ⇐⇒ y � x\z and x⊗ y � z ⇐⇒ x � z/y, called
left- and right-residual, respectively. In commutative quantales (i.e., degenerate
examples of symmetric monoidal closed categories) x\z = z/x is denoted as [x, z]
and is given by [x, z] = �{y | x⊗ y � z}.
Example 1. We present some examples of quantales. The first four examples
describe linear, commutative and affine quantales (some are frames). The last
two items (excepts in degenerate cases) give non-linear, non-commutative and
non-affine quantale. The construction Q/u always returns an affine quantale
and preserves the linearity and commutative properties, while

∏
j∈J Qj and QP

preserve the affine and commutative properties.

1. The quantale R+ of [21] is the set of non-negative real numbers extended
with ∞, with x � y

�⇐⇒ x ≥ y and x ⊗ y
�= x + y. Therefore, �S = inf S,

�S = supS, ⊥ =∞, u = � = 0, [x, z] = z − x if x ≤ z else 0.
2. R� is similar to R+, but x ⊗ y

�= x � y = max(x, y). Thus, R� is a frame,
u = 0, [x, z] = z if x ≤ z else 0 (�, ⊥, �S, and �S are the same as in R+).

3. N+ is the sub-quantale of R+ whose carrier is the set of natural numbers
extended with ∞. N� is the sub-frame of R� with the same carrier as N+.

4. Σ is the sub-quantale of R+ whose carrier is {0,∞}. Σ is a frame.
5. Q/u is the sub-quantale of Q whose carrier is {x ∈ Q | x � u}. Thus, u is the

top element of Q/u.
6.

∏
j∈J Qj is the product of the quantales Qj , with � and ⊗ defined pointwise.

7. QP is the quantale of monotonic maps from the poset P to the quantale Q,
with � and ⊗ defined pointwise.

8. (P(M),⊆,⊗) is the quantale (actually a boolean algebra) of subsets of the
monoid (M, ·, e), with u = {e} and A⊗B

�= {a · b | a ∈ A, b ∈ B}.
3 Alternative names for frame are locale and Heyting algebra, see [18].
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9. (P(X2),⊆,⊗) is the quantale (boolean algebra) of relations on the set X,
with u = {(x, x) | x ∈ X} and:

R⊗ S
�= {(x, z) | ∃y ∈ X.(x, y) ∈ R, (y, z) ∈ S}.

Example 2. We consider some quantales arising in the analysis of algorithms. We
identify algorithms with multi-tape deterministic Turing Machines (TM), which
accept/reject strings written in a finite input alphabet A. In this context, one is
interested in quantale-valued cost functions X → Q, rather than distances.

– The size s(w) of an input w for a TM is a value in the quantale N+, namely
the length of the string w. In particular, the size of an infinite string is ∞,
and the size of the concatenation of two strings is the sum of their sizes.

– The time (i.e., the number of steps) taken by a TM on a specific input w is
again a value in N+. In particular, a TM failing to terminate on w takes time
∞, and the time taken for executing sequentially two TMs on w is the sum
of the times taken by each TM (plus a linear overhead for copying w on two
separate tapes, so that the two TMs work on disjoint sets of tapes).

The time complexity associated to a TM typically depends on the input (or its
size), thus it cannot be a cost in N+. Such cost should be drawn from a quantale
reflecting this dependency, namely a higher-order quantale.4 We now describe
some of such quantales from the most precise to the most abstract.

1. The most precise quantale is N
A∗
+ (i.e., the product of A∗ copies of N+). A

t ∈ N
A∗
+ maps each finite input w ∈ A∗ to the time taken by a TM on w.

2. A first abstraction is to replace t ∈ N
A∗
+ with T ∈ N

ω
+, where T (n) is the best

upper-bound for the time taken by a TM on inputs of size n, i.e., T (n) =
max{t(w) | s(w) = n}.

3. In practice (by the linear speed-up theorem), time complexity is given in
O-notation, i.e., T ∈ N

ω
+ is replaced with the subset O(T ) of Nω

+ such that
T ′ ∈ O(T ) ⇐⇒ ∀n ≥ n0.T

′(n) ≤ C ∗ T (n) for some n0 and C in ω.
If we replace N

ω
+ with the partial order LO of O-classes O(T ) ordered by

reverse inclusion, we get a distributive lattice (i.e., binary meets distribute
over finite joins, and conversely): the top is O(0), the bottom is O(∞), the
join O(T1)�O(T2) is O(T1)∩O(T2) = O(T1�T2) = O(min(T1, T2)), the meet
O(T1) �O(T2) is O(T1 � T2) = O(max(T1, T2)) = O(T1 + T2).
The lattice LO is distributive, because the complete lattice underlying N

ω
+ is

distributive, but it is not a frame (as it fails to have arbitrary joins). However,
there is a general construction, see [18, page 69], which turns a distributive
lattice L into the free frame I(L) over L. More precisely, I(L) is the poset of
ideals in L ordered by inclusion, and the embedding x �→↓ x from L to I(L)
preserves finite meets and joins.

4. A simpler way to obtain a frame is to take the subset of LO consisting of the
O(nk) with k ∈ [0,∞]. This linear frame is isomorphic to N�, namely k ∈ N�
corresponds to O(nk).

4 This resembles higher-order distances used to compare functional programs [8,26].
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There are several notions of morphism between quantales, we consider those
corresponding to lax and strict monoidal functors.

Definition 3. A monotonic map h : Q→ Q′ between quantales is called:

– lax-monoidal �⇐⇒ u′ �′ h(u) and ∀x, y ∈ Q.h(x)⊗′ h(y) � h(x⊗ y);
– strict-monoidal �⇐⇒ u′ = h(u) and ∀x, y ∈ Q.h(x)⊗′ h(y) = h(x⊗ y).

Qnt denotes the Po0-enriched category of quantales and lax-monoidal maps,
where Qnt (Q,Q′) has the pointwise order induced by the order on Q′.

We give some examples of monotonic maps between quantales.

Example 3. In the following diagram we write for lax- and
for strict-monoidal maps, 1 for the trivial quantale (with only one element ∗),
!Q for the unique map from Q to 1, and f � g for “f is left-adjoint to g”:

1 Q Q/u Σ
�Q

�
!Q

g

�
f

g′

�
f ′

N+ R+ R�
i
�
c

id

– �Q maps ∗ to �;
– f is the inclusion of Q/u into Q, and g maps x to x � u;
– f ′ maps ⊥ to ⊥ and � to �, and g′ maps � to � and x � � to ⊥;
– i is the inclusion, c(x) = �x� is integer round up, and id is the identity.

The frames for measuring the time complexity of TMs (see Example 2) are
related by obvious monoidal maps going from the more precise to the more
abstract frame:

N
A∗
+ N

ω
+ I(LO) N�

f g h

– f maps t ∈ N
A∗
+ to T ∈ N

ω
+ such that T (n) = max{t(w) | s(w) = n};

– g maps T ∈ N
ω
+ to the principal ideal ↓ O(T ) ∈ I(LO);

– h maps X ∈ I(LO) to n ∈ N� such that n = min{k | ∀A ∈ X.A ⊆ O(nk)}.

2.1 Continuous Quantales

To reinterpret in quantale-valued metric spaces the common ε-δ definition of
continuous maps, and relate such spaces to topological spaces, we restrict to
continuous quantales, i.e., quantales whose underlying lattices are continuous.
Note that linear quantales are always continuous. We recall the definition of a
continuous lattice and related notions. More details may be found in [1,13,15].

Definition 4. Given a complete lattice (Q,�) and x, y ∈ Q, we say that:

1. D ⊆ Q is directed �⇐⇒ ∀x, y ∈ D.∃z ∈ D.x � z and y � z .
2. x is way-below y (notation x �Q y, or x � y when Q is clear from the

context) �⇐⇒ for any directed subset D of Q, y � �D =⇒ ∃d ∈ D.x � d.
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3. x is compact �⇐⇒ x� x.

We write ↓↓y for {x ∈ Q | x� y}, and Q0 for the set of compact elements in Q.

The following are some basic properties of the way-below relation.

Proposition 1. In any complete lattice (Q,�), and for all x, x0, x1 ∈ Q:

1. x0 � x1 =⇒ x0 � x1.
2. x′

0 � x0 � x1 � x′
1 =⇒ x′

0 � x′
1.

3. ⊥ � x.
4. ↓↓x is directed. In particular, x0, x1 � x =⇒ x0 � x1 � x.

Definition 5 (Continuous Lattice). Given a complete lattice Q, we say that:

1. Q is continuous �⇐⇒ ∀x ∈ Q.x = �↓↓x.

2. B ⊆ Q is a base for Q
�⇐⇒ ∀x ∈ X.B ∩ ↓↓x is directed and x = �(B ∩ ↓↓x).

3. Q is ω-continuous �⇐⇒ Q has a countable base.
4. Q is algebraic �⇐⇒ Q0 is a base for Q.

A complete lattice Q is continuous exactly when it has a base. Any base for
Q must includes Q0. The set Q0 is a base only when Q is algebraic and the
bottom element ⊥ is always compact. Continuous lattices enjoy the following
interpolation property (see [1, Lemma 2.2.15]):

Lemma 1. For any continuous lattice Q and q1, q2 ∈ Q, q1 � q2 =⇒ ∃q ∈
Q.q1 � q � q2.

Continuous quantales enjoy a further interpolation property:

Lemma 2. In every continuous quantale, q1 � q2 =⇒ ∃q � u.q1 � q2 ⊗ q
and q1 � q2 =⇒ ∃q � u.q1 � q ⊗ q2.

Example 4. The quantales in Example 1 have the following properties:

– N+, N�, and Σ are ω-algebraic. More precisely, all elements in these quantales
are compact, and x� y ⇐⇒ x ≥ y (or equivalently x � y).

– R+ and R� are ω-continuous, e.g., the set of rational numbers with ∞ is a
base, x� y ⇐⇒ (x =∞∨ x > y), and ∞ is the only compact element.

– P(M) and P(X2) are algebraic, the sets of compact elements are Pf (M) for
P(M) and Pf (X2) for P(X2), and A � B ⇐⇒ A ⊆f B.

Continuous lattices (and quantales) have the following closure properties:

Proposition 2. Continuous (algebraic) lattices are closed under small products.
ω-continuous lattices are closed under countable products.

We conclude by observing that linear quantales are always continuous.

Proposition 3. Every linear quantale is continuous.
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3 Quantale-Valued Metric Spaces

In [21], Lawvere views metric spaces as R+-enriched categories, and shows that
several definitions and results on metric spaces are derivable from general results
on V -enriched categories, where V is a symmetric monoidal closed category
(see [19]). We replace R+ with a quantale Q, and consider the Po-enriched
category of Q-metric spaces and short maps, whose objects are Q-enriched small
categories and whose arrows are Q-enriched functors.

Definition 6 (MetQ). Given a quantale Q, the Po-enriched category MetQ of
Q-metric spaces and short maps is given by:

objects are pairs (X, d) with d : X2 → Q satisfying d(x, y) ⊗ d(y, z) � d(x, z)
and u � d(x, x); d induces on X the d-preorder x ≤d y

�⇐⇒ u � d(x, y).
arrows in MetQ((X, d), (X ′, d′)) are f : X → X ′ satisfying ∀x, y ∈ X.d(x, y) �

d′(f(x), f(y)) with hom-preorder f ≤ f ′ �⇐⇒ ∀x ∈ X.f(x) ≤d′ f ′(x).

An arrow f : MetQ((X, d), (X ′, d′)) is said to be an isometry when ∀x, y ∈
X.d(x, y) = d′(f(x), f(y)).

In comparison with the properties of a standard metric d, we have that:

– the triangular inequality d(x, z) ≤ d(x, y)+d(y, z) becomes d(x, y)⊗d(y, z) �
d(x, z). Note that, in R+, the order � is ≥, and ⊗ = +;

– d(x, y) = 0 ⇐⇒ x = y is replaced by the weaker property u � d(x, x), which
corresponds to d(x, x) = 0. Note that in R+, we have u = 0 = �;

– symmetry d(x, y) = d(y, x) is unusual in (enriched) category theory.

In the absence of symmetry, separation, i.e., d(x, y) = 0 =⇒ x = y, should
be recast as (d(x, y) = 0 ∧ d(y, x) = 0) =⇒ x = y, which in a quantale setting
becomes (u � d(x, y) ∧ u � d(y, x)) =⇒ x = y. The objects with this property
are exactly the (X, d) such that the preorder ≤d is a poset. Section 5 gives a
more abstract definition of separated object in a Po-enriched category.

Example 5. We relate MetQ for some quantales Q to more familiar categories:

1. R�-metric spaces generalize ultrametric spaces, i.e., spaces where the metric
satisfies d(x, z) ≤ max(d(x, y), d(y, z)).

2. MetΣ is (isomorphic to) the Po-enriched category Po of preorders and mono-
tonic maps, and the separated objects of MetΣ are the posets.

3. Met 1 is the category Set of sets and functions, with the chaotic preorder on
Set (X,Y ), i.e., f ≤ g for every f, g;Set (X,Y ), and the separated objects of
Met 1 are the sets with at most one element.

We summarize some properties of MetQ, which ignore the Po-enrichment,
proved in [19] for a generic complete and cocomplete symmetric monoidal closed
category in place of a quantale Q.

Proposition 4. For any quantale Q, the category MetQ has small products,
small sums, equalizers and coequalizers.
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Lax-monoidal maps induce Po-enriched functors.

Definition 7. Given a lax monoidal map h : Qnt (P,Q), the Po-enriched func-
tor h : MetP →MetQ is such that h(X, d) �= (X,h ◦ d) and is the identity on
arrows.

4 Topologies on Q-Metric Spaces

When Q is a continuous quantale, one can establish a relation betweenMetQ and
Top, thereby generalizing the open ball topology induced by a standard metric.
In general, to a Q-metric d on X one can associate at least two topologies on X.
When Q is ω-continuous—a restriction desirable from a computational viewpoint
(see [27])—convergence can be defined in terms of sequences.

Definition 8. Given a continuous quantale Q and (X, d) : MetQ, the open
ball with center x ∈ X and radius δ � u is B(x, δ) �= {y ∈ X | δ � d(x, y)}.
The open ball topology τd is the topology generated by the family of open balls.

One can define also the dual open ball Bo(x, δ) �= {y ∈ X | δ � d(y, x)},
and the corresponding dual open ball topology τo

d .

When d is symmetric, i.e., d(x, y) = d(y, x), the two notions of open ball
agree. In the rest of this section, we focus on open balls only, but the results
hold mutatis mutandis also for the dual notion. The following proposition implies
that open balls form a base for τd, i.e., every open in τd is a union of open balls.

Proposition 5. Open balls satisfy the following properties:

1. x ∈ B(x, δ).
2. δ � δ′ =⇒ B(x, δ′) ⊆ B(x, δ).
3. y ∈ B(x, δ) =⇒ ∃δ′ � u.B(y, δ′) ⊆ B(x, δ).
4. y ∈ B(x1, δ1) ∩B(x2, δ2) =⇒ ∃δ′ � u. B(y, δ′) ⊆ B(x1, δ1) ∩B(x2, δ2).

We show that, for continuous quantales, continuity with respect to the open
ball topology can be recast in terms of the usual epsilon-delta formulation:

Lemma 3. If (X, d) :MetQ, with Q continuous, and O ⊆ X, then O ∈ τd ⇐⇒

∀x ∈ O.∃δ � u.B(x, δ) ⊆ O. (1)

The following result characterizes the closed subsets for the topology τd.
Informally, the closure of a subset A can be described as the set of points from
which one can reach a point in A within any arbitrarily small distance.

Lemma 4. If (X, d) : MetQ, with Q continuous, and A ∈ P(X), then the
closure of A in the topological space (X, τd) is given by:

A = {y ∈ X | ∀δ � u.∃x ∈ A.δ � d(y, x)}. (2)
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Theorem 1. Given a continuous quantale Qi and an object (Xi, di) : MetQi

for each i ∈ {1, 2}, if f : X1 → X2, then f : Top((X1, τd1), (X2, τd2)) ⇐⇒
∀x ∈ X1.∀ε � u2.∃δ � u1.f(B(x, δ)) ⊆ B(f(x), ε). (3)

The above characterization of continuous maps suggests a variant of Top in
which the objects are Q-metric spaces (for some continuous quantale Q) instead
of topological spaces, while the rest is unchanged (see [5]):
Definition 9. The Po-enriched category Met c of metric spaces and continuous
maps is given by:
objects are the triples (X, d,Q) with Q continuous quantale and (X, d) :MetQ;
arrows in Met c((X, d,Q), (X ′, d′, Q′)) are f : Top((X, τd), (X ′, τd′)), or equiv-

alently f : X → X ′ satisfying ∀x ∈ X.∀ε � u′.∃δ � u.f(B(x, δ)) ⊆
B(f(x), ε).

Similarly, one can define the sub-category Metu of Met c with the same objects,
but whose arrows are the uniformly continuous maps, i.e., f : X → X ′ satisfying
∀ε � u′.∃δ � u.∀x ∈ X.f(B(x, δ)) ⊆ B(f(x), ε).

4.1 Imprecision and Robustness

We extend the notions of imprecision and robustness, that in [22,23] are defined
for standard metric spaces, to Q-metric spaces for a continuous quantale Q5.
Since a Q-metric may fail to be symmetric, we must consider the “direction” along
which the distance is measured. In particular, in the presence of imprecision,
two subsets are indistinguishable when they have the same closure in the dual
topology τo

d , rather than in the topology τd (Proposition 7). This difference
cannot be appreciated when d is symmetric, because the two topologies coincide.

Definition 10. Given a Q-metric space (X, d), with Q continuous, the notions
introduced in [23, Definition 1] can be recast as follows:

1. BR(A, δ) �= {y ∈ X | ∃x ∈ A.δ � d(x, y)} = ∪x∈AB(x, δ) ⊆ X is the set of
points belonging to A ⊆ X with precision greater than δ � u.6

2. Aδ
�= BR(A, δ)

o ⊆ X is the δ-flattening of A ⊆ X with δ � u, where A
o

is
the closure of A in τo

d (see Lemma 4).

Proposition 6. The subsets BR(A, δ) have the following properties:
1. A ⊆ BR(A, δ) ⊆ BR(A′, δ′) when A ⊆ A′ ⊆ X and δ′ � δ � u.
2. BR(BR(A, δ1), δ2) ⊆ BR(A, δ) when δ1, δ2 � u and δ � δ1 ⊗ δ2[� δi].
3. A

o
= ∩δ�uBR(A, δ) for every A ⊆ X.

4. BR(A
o
, δ) = BR(A, δ) for every A ⊆ X and δ � u, i.e., A and A

o
are

indistinguishable in the presence of imprecision.
5. BR(A, δ) ⊆ Aδ ⊆ BR(A, δ′) when A ⊆ X and δ′ � δ � u.

Example 6. Consider the Q-metric space (X, d), where Q = X = R+ and
d(x, y) �= y − x if x ≤ y else 0. If A = [a, b] and δ ∈ (0,+∞), then A = [a,+∞],
A

◦
= [0, b], and BR(A

o
, δ) = BR(A, δ) = [0, b + δ), as depicted in Fig. 1.

5 It is possible to relax the assumption of continuity of Q along the lines of [5].
6 The terminology used in [23] is “with imprecision less than δ”.
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Fig. 1. Graphic recast of Example 6.

We can generalize to this wider setting also the definition of robust topology
in [22, Definition A.1]. We define such topology on P(X), rather than on the
set of closed subsets in the topology τo

d , since the restriction to the set of closed
subsets amounts to replacing a topological space with an equivalent separated
topological space (see Sect. 5).

Definition 11. Given a Q-metric space (X, d), with Q continuous, the robust
topology τd,R on P(X) is given by:

U ∈ τd,R
�⇐⇒ ∀A ∈ U.∃δ � u.P(BR(A, δ)) ⊆ U.

Finally, we characterize the specialization preorder ≤τd,R induced by the robust
topology τd,R on P(X). As a consequence, we have that two subsets are indis-
tinguishable in τd,R exactly when they have the same closure in τo

d .

Proposition 7. Let (X, d) be a Q-metric space with Q continuous, and A,B ⊆
X. Then, we have A ≤τd,R B ⇐⇒ B ⊆ A

o
.

5 Separation in Preorder-Enriched Categories

Structures like preorders and topologies have a notion of indistinguishability
between elements. Informally, in such structures, separation can be understood
as the property requiring that indistinguishable elements are equal.

In this section, we define and study this notion in the setting of Po-enriched
categories. We also show that the definition of separation in this abstract setting
subsumes many set-theoretic definitions within specific categories, in particular
the category of Q-metric spaces.

Definition 12 (Separation). Given a Po-enriched category A , we say that:

1. f, g ∈ A(X,Y ) are equivalent (notation f ∼ g) �⇐⇒ f ≤ g ∧ g ≤ f .
2. the hom-preorder A(X,Y ) is separated �⇐⇒ it is a poset.
3. the object Y ∈ A is separated �⇐⇒ A(X,Y ) is separated for every X ∈ A .
4. A is separated �⇐⇒ Y is separated for every Y ∈ A , i.e., A is Po0-enriched.
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Remark 1. The definition of “A(X,Y ) is separated” can be recast in terms of
equivalence, i.e., f ∼ g =⇒ f = g, for every f, g : A(X,Y ). There is a similar
recast also for the definition of “A is separated”, i.e., f ∼ g =⇒ f = g,
for every pair (f, g) of parallel arrows in A . In some Po-enriched categories,
separated objects have a set-theoretic characterization that does not refer to
arrows:

1. In Po, separated objects are posets.
2. In Top, separated objects are T0-spaces.
3. In MetQ, separated objects are separated Q-metric spaces (see Sect. 3).

Recall from [19] that a Po-enriched functor F : A > B is full&faithful
(notation F : A ⊂ > B) when the maps FX,Y : A(X,Y ) → B(FX,FY ) are
iso in Po, and a Po-enriched sub-category A of B is full when the Po-enriched
inclusion functor is full&faithful.

Definition 13. If A is a Po-enriched category, then A0 denotes the full sub-
category of separated objects in A .

If every object in A is separated, then A0 is equal to A . A weaker property
is that every object in A is equivalent (in the sense of Definition 1) to one in
A0. This weaker property holds in Po, Top, and MetQ.

Proposition 8. In MetQ, every object is equivalent to a separated one.

If every object in A is equivalent to a separated one, then every Po-enriched
endofunctor on A can be transformed into one that factors through A0. This
transformer lifts to the category of Po-enriched monads on A .

Definition 14. Given a Po-enriched category A , we denote by Mon(A) the
category of Po-enriched monads on A and monad maps, i.e.

objects: Po-enriched monads on A , i.e., triples M̂ = (M,η,−∗), where:
– M is a function on the objects of A ,
– η is a family of arrows ηX : A(X,MX) for X : A ,
– −∗ is a family of monotonic maps A(X,MY ) → A(MX,MY ) between

hom-preorders for X,Y : A ,
and satisfy the equations:

η∗
X = idMX , f∗ ◦ ηX = f , g∗ ◦ f∗ = (g∗ ◦ f)∗. (4)

arrows: θ from M̂ to M̂ ′ are families of maps θX : A(MX,M ′X) for X : A
satisfying the equations:

θX ◦ ηX = η′
X , θY ◦ f∗ = (θY ◦ f)∗

′ ◦ θX . (5)

A basic monad transformer on Mon(A) is a pair (T, in), where T is function
on the objects of Mon(A) and in is a family of monad maps inM̂ from M̂ to TM̂ .
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Remark 2. The category Mon(A) can be made Po-enriched. The enrichment
is relevant for defining equivalence of monads. For our purposes, however, it
suffices to relate (by a monad map) a generic Po-enriched monad on A to one
that factors through A0.

We use the simplest form of monad transformer among those in the taxonomy
of [17], i.e., basic transformer. However, the monad transformer described in the
following theorem can be shown to be a monoidal transformer.

Theorem 2. If A is a Po-enriched category and (rX : X → RX | X : A) is a
family of arrows in A such that:

RX : A0 and (rX , sX) is an equivalence for some sX : RX → X, (6)

then (T, in) defined below is a monad transformer on Mon(A):

– T is the function mapping M̂ = (M,η,−∗) to TM̂ = (M ′, η′,−∗′
), where

• M ′X �= R(MX)
• η′

X
�= rMX ◦ ηX : A(X,M ′X)

• if f : A(X,M ′Y ), then f∗′ �= rMY ◦ (sMY ◦ f)∗ ◦ sMX : A(M ′X,M ′Y ).
– in is the family of monad maps such that inM̂,X

�= rMX : A(MX,M ′X).

Moreover, the definition of T is independent of the choice of sX .

6 The Hausdorff-Smyth Monad

In this section, we introduce a Po-enriched monad PS on MetQ, related to the
Hausdorff-Smyth hemi-metric in [14], which extends the powerset monad P on
Set to Q-metric spaces. By applying the monad transformer T defined in Sect. 5,
one obtains a separated version of PS , which amounts to partitioning P(X) into
equivalence classes, for which we define canonical representatives. Finally, we
investigate the relation between PS and the robust topology in Definition 11.

Recall that the monad (P, η,−∗) on Set is given by ηX : Set (X,P(X)) and
−∗ : Set (X,P(X ′))→ Set (P(X),P(X ′)), where:

η(x) = {x},
f∗(A) =

⋃

x∈A

f(x).

Definition 15 (The PS monad). Let PS be the function on Q-metric spaces
such that PS(X, d) = (P(X), dS), where dS : P(X)2 → Q is given by:

dS(A,B) = �y∈B �x∈A d(x, y).

The rest of the monad structure for PS, i.e., the unit η and the Kleisli extension
−∗, is inherited from that for P. In particular, η(X,d) = ηX .



Robustness in Metric Spaces over Continuous Quantales 327

We now prove that what we have defined is a Po-enriched monad on MetQ.

Proposition 9. The triple (PS , η,−∗) is a Po-enriched monad on MetQ, i.e.

1. (P(X), dS) :MetQ, i.e., u � dS(A,A) and dS(A,B)⊗ dS(B,C) � dS(A,C).
2. η :MetQ(X,PS(X)).
3. f :MetQ(X,PS(X ′)) implies f∗ :MetQ(PS(X),PS(X ′)).
4. f ≤ g in MetQ(X,PS(X ′)) implies f∗ ≤ g∗ in MetQ(PS(X),PS(X ′)).

Moreover, (PS , η,−∗) satisfies the equations (4) for a monad.

The Hausdorff-Smyth metric dS induces a preorder ≤dS
and an equivalence

∼dS
on P(X). In the following, we define the canonical representative for the

equivalence class of A ⊆ X with respect to ∼dS
, called the *-closure of A, which

turns out to be the biggest subset of X in the equivalence class.

Definition 16. Given a Q-metric space (X, d), we define:

1. d(A, y) �= �x∈Ad(x, y) ∈ Q the *-distance from A ⊆ X to y ∈ X.
2. Ã

�= {y ∈ X | u � d(A, y)} the *-closure of A ⊆ X.

Proposition 10. For every Q-metric space (X, d) the following properties hold:

1. dS(A,B) = �y∈Bd(A, y) and d(A, y) = dS(A, {y}).
2. A ≤dS

B ⇐⇒ B ⊆ Ã.
3. A ∼dS

B ⇐⇒ Ã = B̃.

6.1 Hausdorff-Smyth and *-Robust Topology

We give a characterization of the topology τdS
on P(X) using a topology τd,S

defined by analogy with the robust topology τd,R of Sect. 4.1. In summary, we
have that τdS

= τd,S ⊆ τd,R when Q is continuous, and τd,S = τd,R when Q is
linear and non-trivial.

Definition 17. Given a Q-metric space (X, d), with Q continuous, we define
the topology τd,S on P(X):

1. BS(A, δ) �= {y ∈ X | δ � d(A, y)} ⊆ X is the set of points belonging to
A ⊆ X with *-precision greater than δ � u.

2. the *-robust topology τd,S on P(X) is given by:
U ∈ τd,S

�⇐⇒ ∀A ∈ U.∃δ � u.P(BS(A, δ)) ⊆ U .

Lemma 5. The subsets BS(A, δ) have the following properties:

1. BR(A, δ) ⊆ BS(A, δ) ⊆ BS(A′, δ′) when A ⊆ A′ ⊆ X and δ′ � δ � u.
2. δ � dS(A,BS(A, δ)) for every A ⊆ X and δ � u.

Proposition 11. For every Q-metric space (X, d) with Q continuous:

τdS
= τd,S ⊆ τd,R.
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Lemma 6. For every (X, d) : MetQ with Q continuous, A ⊆ X, y ∈ X, and
δ ∈ Q:

δ � d(A, y) ⇐⇒ ∃A0 ⊆f A.δ � d(A0, y).

Moreover, if Q is linear and ⊥ != δ, then:

δ � d(A, y) ⇐⇒ ∃x ∈ A.δ � d(x, y).

Proposition 12. If Q is a linear non-trivial quantale, then τd,R = τd,S.

Remark 3. Propositions 12 and 7 ensure that, when Q is linear and non-trivial,
by applying the monad transformer T of Sect. 5, we get a monad mapping a
Q-metric space (X, d) to the separated Q-metric space of closed subsets of X
with respect to the dual topology τo

d with the Hausdorff-Smyth metric. In this
way, we recover the setting of [23] as a special case.

Example 7. When the quantale Q is not linear, the robust topology τd,R can
be strictly finer than the *-robust topology τd,S . For instance, consider the Q-
metric space (X, d), in which Q = R+ × R+, X = R

2, and the distance is
given by d((x, y), (x′, y′)) = (|x − x′|, |y − y′|). Let δ0

�= (1, 1) and note that
u = (0, 0). Take A

�= {(0, 2), (2, 0)} ⊆ R
2, p

�= (2, 2) ∈ R
2, and consider the

set O
�=

⋃
δ0�δ′�u P(BR(A, δ′)). The set O is in τd,R, but it is not open in the

*-robust topology τd,S . The reason is that d(A, p) = (0, 0) = u. Hence, for any
δ � u, the set BS(A, δ) must contain p. But, the point p is not included in any
set in O, because ∀p′ ∈ A. (1, 1) !� d(p′, p).

7 Concluding Remarks

Related work. Flagg and Kopperman define V -continuity spaces [10, Def 3.1]
and V -domains, with V a value quantale [10, Def 2.9], i.e., the dual V o of V is
(in our terminology) a commutative affine quantale, whose underlying complete
lattice is completely distributive—hence, by [1, Thm. 7.1.1], continuous—and
satisfies additional properties formulated using a stronger variant ≪ of the
way-below relation �, called the totally-below relation, namely p ≪ q iff for
any A ⊆ Q, if q � �A, then ∃a ∈ A.p � a (in contrast with the definition of
�, the set A is not required to be directed). Thus, a V -continuity space (X, d)
is what we call a V o-metric space, while a V -domain is a separated V o-metric
space satisfying further properties. The metric dU in [10, Sec 6] corresponds to
our dS , and [10, Thm 6.1] characterizes those B such that dU (A,B) = 0 as the
subsets of the closure of A in the topology τo

d , under the stronger assumption
that V is a value quantale. The upper powerdomain U(X) defined in [10, Sec
6] is almost the separated object equivalent to PS(X), as its carrier consists of
the closed subsets in the topology τo

d , except the empty one.
Although not every topology is induced by a classical metric, Kopperman [20]

showed that all topologies come from generalized metrics. Cook and Weiss [5]
present a more nuanced discussion of this fact, with constructions that avoid
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the shortcomings of Kopperman’s original construction. Their focus, however,
is on comparing various topologies that arise from a given generalized metric,
i.e., those generated by open sets, closed sets, interior, and exterior systems.
Although the four topologies coincide in classical metric spaces, they may be
different in quantale valued metric spaces. In particular, they consider three
conditions on a quantale, which are named Kuratowski, Sierpiński, and trian-
gularity conditions [5, Def. 3]. When a commutative affine quantale Q satisfies
these three conditions, it can be shown that all the four topologies coincide for
the metric spaces valued in Q. Cook and Weiss [5] use the totally-below relation
≪, which is included in the way-below relation �. Under the three conditions
they impose on quantales, one can show that for every δ � u there exists δ′ ≪ u
such that δ � δ′. Therefore, the topology generated by open balls with radius
δ′ ≪ u coincide with that generated by the open balls with radius δ � u.

The main drawback of value quantales and the quantales considered in [5] is
that they are not closed under product, which is crucial for multi-dimensional
quantitative analyses. On the other hand, a continuous quantale Q may not
satisfy the Kuratowski condition, and therefore the four topologies considered
in [5] for a Q-metric space may not coincide. Specifically, dS(A, {x}) = u may
not entail that x is in the closure of A under the open ball topology.

Future Work. The results of the current article may be regarded as the first steps
towards a framework for robustness analysis with respect to perturbations that
are measured using generalized metrics. As such, more remains to be done for
development of the framework. Our future work will include study of effective
structures on Q-metric spaces.

In [14], Goubault-Larrecq defines the Hausdorff-Hoare and the Hutchinson
hemi-metrics. We plan to investigate if they scale-up to Po-enriched monads (or
endofunctors) on the category of Q-metric spaces, and in this case apply to them
the monad transformer defined in Sect. 5.

We also plan to study the impact of imprecision on probability distributions
on (Q-)metric spaces, i.e., to which extent they are indistinguishable in the pres-
ence of imprecision, by applying our monad transformer to probability monads.
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Abstract. A question we can ask of multi-agent systems is whether the
agents’ collective interaction satisfies particular goals or specifications,
which can be either individual or collective. When a collaborative goal is
not reached, or a specification is violated, a pertinent question is whether
any agent is to blame. This paper considers a two-agent synchronous
setting and a formal language to specify when agents’ collaboration is
required. We take a deontic approach and use obligations, permissions,
and prohibitions to capture notions of non-interference between agents.
We also handle reparations, allowing violations to be corrected or com-
pensated. We give trace semantics to our logic, and use it to define blame
assignment for violations. We give an automaton construction for the
logic, which we use as the base for model checking and blame analysis.
We also further provide quantitative semantics that is able to compare
different interactions in terms of the required reparations.

1 Introduction

Interaction between agents can be adversarial, where each agent pursues its own
set of individual goals, or cooperative where the agents collaborate to achieve
a collective goal. Verification techniques can help us detect whether such goals
may be achieved. Agents may also interfere or not cooperate, at which point the
failure to achieve a goal could be attributed to some agent. In this paper, we
develop a deontic logic allowing us to specify the anticipated interaction of two
agents in the presence of such aspects.

A deontic logic [16,21] includes norms as first-class concepts, with obligations,
permissions, and prohibitions as basic norms. These concepts are crucial in legal
documents and contractual relationships, where the agents are the parties to a
contract.1 Norms are parameterised by actions/events or propositions and are
used to specify what ought to be, or the parties ought to do.

In this paper, interaction or cooperation of the agents is modelled as the inter-
play of the individual actions performed by each agent, leading to the concept

1 We use party and agent interchangeably throughout.
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of cooperative actions. Cooperative actions could be synchronous, i.e., actions
at each time point of each agent are meant to describe the possible cooperation,
or asynchronous, meaning that actions for cooperation may happen a different
time points.2 We choose synchrony as an abstraction to simplify the concept of
cooperation and non-interference between parties. We also study only the setting
with two rather than many parties. As such, we are concerned with two-party
synchronous systems, leaving extensions as future work.

We re-purpose and extend the syntax of a deontic language from literature [3,
4] into a new deontic logic with denotational semantics appropriate for this two-
party setting. Our semantics depends on two notions of informative satisfaction
or violation, which talk about the exact point in time a contract is satisfied or
violated. Other features of the logic include the ability to make contracts trigger
on matching a regular language, requiring the satisfaction of a contract while one
is still within the prefix language of a regular language, and a recursion operator
to allow the definition of persistent contracts and repetition.

We extend the semantics with a notion of blame assignment, to identify
which party is responsible for a certain violation. We further use this to define
quantitative semantics that counts the number of violations caused by a certain
party, which can be used to compare different traces or behaviour of a party.

We give an exponential automata construction for the logic, transforming
a contract specification into an automaton capable of identifying satisfaction,
and violation as specified in our semantics. We also provide a model checking
algorithm, which is quadratic in the size of the contract automaton, hence expo-
nential in the size of the contract. We re-use this construction for blame analysis,
but leave analysis for the quantitative semantics for future work.

The paper organisation follows. Section 2 lays out preliminaries, Sect. 3
presents our logic, and Sect. 4 presents algorithms for model checking and blame
analysis through automata constructions. Related work is considered in Sect. 5,
and we conclude in Sect. 6.

2 Preliminaries

We write N∞ for N ∪ {∞}. Given a finite alphabet Σ, we write Σ0, and Σ1 for
re-labellings of Σ with party identifiers 0 and 1, and Σ0,1 for Σ0 ∪ Σ1. We use
P [x/y] to refer to the syntactic replacement of x in P with y, where P can be an
automaton (x and y are states), or a specification (x and y are syntactic objects
in the language). We write (∗, s) to refer to all state pairs with s in the second
position, and similarly for (s, ∗).

Traces. For i ∈ N, j ∈ N∞, and an infinite trace w over sets of actions from
a finite alphabet Σ, we denote the trace between positions i and j by w[i..j],
including the values at both positions. If j < i then w[i..j] is the empty trace.
When j = ∞ then w[i..j] is the suffix of w from i. We write w[i] for w[i...i], and
w · w′ for concatenation of w and w′, which is only defined for a finite word w.

2 Observe similarities with synchronous and asynchronous communication.
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Given two traces w,w′ over 2Σ , we define stepwise intersection: (w �w′)[i] def=
w[i] ∩ w′[i], union (w � w′)[i] def= w[i] ∪ w′[i], and union with party labelling:
(w �0

1 w′)[i] def= w[i] ∪0
1 w′[i], where E ∪0

1 E′ def= {a0 | a ∈ E} ∪ {a1 | a ∈ E′}, i.e.
the left actions are labeled by 0 and the right actions by 1. This gives a trace
in Σ0,1. For instance, given w = 〈{a}, {b}, {c, d}〉 and w′ = 〈{a}, {e}, {d, e}〉, we
have that w[2]∩w′[2] = {c, d}∩{d, e} = {d} and w[2]�0

1w′[2] = {c, d}�0
1{d, e} =

{c0, d0, d1, e1}.
Given two traces w0 and w1, over 2Σ , we write wj

i for the pair
(w0[i..j], w1[i..j]). wj

i is said to be an interaction, and when j ∈ N a finite
interaction. Sometimes we abuse notation and treat wj

i as a trace in Σ0,1, since
it can be projected into such a trace through �0

1.

Automata. A tuple A = 〈Σ,Q, q0,Rej,→〉 is an automaton, where Σ is a
finite alphabet, S is a finite set of states, s0 ∈ S is the initial state, Rej ⊆ S is
a set of rejecting states, and →∈ S × 2Σ → (2S \ ∅) is the transition function
(→∈ S × 2Σ → S when the automaton is deterministic). The language L(A) of
automaton A is the set of infinite traces with no prefix reaching a rejecting state.
The rejecting language RL(A) of automaton A is the set of infinite traces with
a prefix reaching a rejecting state. We write RLs(A) for the rejecting language
through a specific rejecting state s ∈ Rej.

The synchronous product of automata A and B over the same alphabet Σ,
denoted by A‖B, is the automaton: (Σ,SA ×SB , (s0A , s0B ), (RejA ×SB)∪(SA ×
RejB),→) where → is the minimal relation such that: for any E ⊆ Σ, if s1

E−→A

s′
1 and s2

E−→B s′
2 then (s1, s2)

E−→ (s′
1, s

′
2).

The relaxed synchronous product of automata A and B over the same alpha-
bet Σ, denoted by A‖rB includes A‖B but allows moving independently when
there is no match: if s1

E−→A s′
1 and �s′

2 ·s2 E−→B s′
2, then (s1, s2)

E−→ (s′
1, s2); and

symmetrically.

Moore Machines. A Moore machine is a 5-tuple M = (S, s0, ΣI , ΣO, δ, λ)
where S is a finite set of states, s0 ∈ S is the initial state, ΣI and ΣO are
respectively the finite set of input and output actions, δ : S × 2ΣI → 2S is a
transition function that maps each state and inputs to a next state, and λ : S →
2ΣO is an output function that maps each state to a set of outputs.

The product of a Moore machine M1 over input alphabet ΣI and output
alphabet ΣO, and Moore machine M2 with flipped input and output alphabets
is the automaton: M1 ⊗ M2

def= (ΣI ∪ ΣO, S1 × S2, (s01 , s02), ∅,→) where → is
the minimal relation such that: for any states s1 ∈ S1 and s2 ∈ S2, where

s1
λ2(s2)−−−−→ s′

1 and s2
λ1(s1)−−−−→ s′

2 then (s1, s2)
λ1(s1)∪λ2(s2)−−−−−−−−−→ (s′

1, s
′
2).

Regular Expressions. We use standard syntax for regular expressions. We
treat as atomic boolean combinations of actions from Σ0,1. The operators are
standard: choice, re + re (match either); sequence, re; re (match the first then
the second) and the Kleene plus, re+ (match a non-zero finite amount of times in
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sequence). The language of a regular expression re is a set of finite traces: L(re) ⊆
(2Σ0,1)∗. We abuse notation and write wj

i ∈ L(re) for w0[i...j]�0
1w1[i...j] ∈ L(re).

We restrict attention to the tight language of a regular expression, containing
matching finite traces that have no matching strict prefix: TL(re) def= {wj

i ∈
L(re) | �k : k < j ∧ wk

i ∈ L(re)}. The prefix closure of the tight language is the
set of finite prefixes of the tight language up to a match: cl(re) def= {wk

i | ∃j :
wj

i ∈ TL(re)∧ i ≤ k < j}. We define the complement of the prefix closure as the
set of finite traces that do not tightly match the regular expression but whose
maximal strict prefix is in the closure of the expression: cl(re) def= {wj

i | (wj−1
i ∈

cl(re) ∧ wj
i �∈ cl(re) ∧ wj

i �∈ TL(re))}.
We denote by A(re, s0, s�, s×) the deterministic finite automaton corre-

sponding to regular expression re, with s0, and s× respectively as the initial

and rejecting states and, s� as a sink state, s.t. ∀wj
i ∈ TL(re) : s0

w j
i=⇒ s�,

∀wj
i ∈ cl(re) : ∃s : s0

w j
i=⇒ s ∧ s �= s� ∧ s �= s×, and ∀wj

i ∈ cl(re) : s0
w j

i=⇒ s×.

3 A Deontic Logic for Collaboration

In this section, we present the syntax and semantics of cDL, a deontic logic able
to express the extent to which parties should cooperate and non-interfere.

Definition 3.1 (cDL Syntax). A cDL contract C is given by the following
grammar, given an alphabet Σ, regular expressions re, a set of variables X, and
party labels p from {0, 1}:

a ∈ Σ0 ∪ Σ1

N := Op(a) | Fp(a) | Pp(a) | � |⊥
C := N | C ∧ C | C;C | C � C |

〈re〉C | re

�

C | X | recX.C

Our setting is that of two-party systems, with one party indexed with 0 and
the other with 1. As the basic atoms of the language, we have norms. These
norms are labeled by the party that is the main subject of the norm, and the
action that is normed: Op(a) denotes an obligation for party p to achieve a;
Fp(a) denotes a prohibition for party p from achieving a, and Pp(a) denotes a
permission/right for party p to achieve a.

We call cDL specifications contracts. Contracts include norms, the atomic
satisfied (�), and the transgressed (⊥) contract. Contracts can be conjuncts (∧)
and sequentially composed (;). A contract may repair the violation of another
(C � C ′ means that C ′ is the reparation applied when C is violated).

Contracts can be triggered when a regular expression matches tightly (〈re〉C).
A regular expression can also guard

�

a contract C, such that an unrecoverable
mismatch with it removes the need to continue complying with C in (re

�

C).
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We allow recursive definitions of contracts (rec X.C), where X ∈ X, with
some restrictions. First, we do not allow a contract to have two recursive sub-
contracts using the same variable name. Secondly, we have some syntactic restric-
tions on the contract C appearing inside of the recursion: C’s top-level oper-
ator is always a sequence, or a regular expression trigger contract, with X
only appearing once and on the right-hand side of a sequence, i.e., the expres-
sion must be tail recursive. We also require an additional restriction for recur-
sion with the reparation operator: the reparation has to either not be the last
operation before X or the whole recursion should be guarded with re

�

, the
reason behind it is to avoid the procrastination dilemma [14]. For example,
rec X.〈re〉((C � C ′);X) and re

�

(rec X.C � X) are valid, unlike rec X.X,
rec X.C; (C ′ ∧X), rec X.〈re〉((C;X);C ′), and rec X.C � X. Moreover, a recur-
sion variable X ∈ X must always be bound when it appears in a contract.

In our setting, we want to be able to talk about collaborative actions (actions
that require both parties to be achieved successfully) and non-interference
between the parties (a party not being allowed to interfere with the other party
carrying out a certain action). We model both of these using a notion of syn-
chronicity. We will later represent parties as Moore machines; here we talk just
about their traces.

We assume two traces over 2Σ , one for each party: w0 and w1. A party’s
trace is a record of which actions were enabled (or attempted) by that party.
The step-wise intersection of these traces, w0 � w1, is the trace of successful
actions. Restricting attention to the successful actions misses information about
attempts that were not successful. Instead, we give semantics over pairs of party
traces, an interaction, rather than over w0 � w1, allowing us to localise interfer-
ence. This setting allows us to model both collaboration and non-interference
between the parties in the same way. If the parties are required to collaborate
on an action, then they must both propose it (obligation). If instead, the parties
should ensure an action is not successful, then at least one of them must not
enable it (prohibition). If a party is required to not interfere with another party’s
action, then they must also enable it (permission). We refer to actions of one
party variously as proposed, attempted, or enabled by that party. We consider an
example specification in our language.

Example 3.1. Consider two possibly distinct robots, 0 and 1, working on a fac-
tory floor, with their main goal being to cooperate in placing incoming packages
on shelves. Each robot has sensors to identify when a new package is in the
queue (detectProd), and they must lift the package together (lift), and place it on
a shelf (putOnShelf). Between iterations of this process, the robots are individ-
ually allowed to go to their charging ports (charge0 or charge1). If a robot does
not help in lifting, it is given another chance:
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Fig. 1. Informative semantics rules over a finite interaction wj
i .

3.1 Informative Semantics

The semantics of our language is defined on an interaction, i.e. a pair of traces
w0 and w1, restricting our view to a slice with a minimal position i and maximal
one j. For the remainder of this paper, we will refer to this interaction with wj

i .
In Fig. 1, we introduce the semantic relations for informative satisfaction

(|=s) and violation (|=v). These capture the moment of satisfaction and viola-
tion of a contract in a finite interaction. We use this to later define when an
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infinite interaction models a contract. In Fig. 1 we also capture with �?, when
the interaction slice neither informatively satisfies nor violates the contract.

We give some intuition and mention interesting features of the semantics.
Note how we only allow the status of atomic contracts to be informatively decided
in one time-step (when i = j), given they only talk about one action. When it
comes to the trigger contract, our goal is to confirm its fulfillment only when
we no longer closely align with the specified trigger language. Alternatively, we
consider it satisfied if we’ve matched it previously and subsequently maintained
compliance with the contract. Conversely, we would classify a violation if we
achieved a close match but then deviated from the contract’s terms. Regarding
the regular expression guard, we have two scenarios for evaluating satisfaction.
First, we ensure satisfaction when either we have precisely matched the language
or have taken actions preventing any future matching of the guard, with no prior
violations or the guarded contract. Second, we verify satisfaction when there’s
still a possibility of a precise match of the guard, and the guarded contract
has already been satisfied. In contrast, a violation occurs when there remains
a chance for a precise match in the future of the guard, and a violation of the
sub-contract occurs.

The definitions for conjunction and sequence are relatively simple. Note that
for conjunction we take the maximum index at which both contracts have been
satisfied. Sequence and reparation are similar, except in reparation we only con-
tinue in the second contract if the first is violated, while we violate it if both
contracts end up being violated. For recursion, we simply re-write variable X as
needed to determine satisfaction or violation.

Example 3.2. Note how the semantics ensure that, given traces w0 and w1

such that w0[0] = w1[1] = {charge0, charge1} then w0
0 |=s permitCharge, i.e.

both robots try to charge and allow each other to charge. But if further w0[1..3] =
〈{detectProd}, {lift}, {lift}〉 and w1[1..3] = 〈{}, {}.{}〉, then w3

0 |=v CollabRobot,
since robot 0 attempted a lift but robot 1 declined helping in lifting.

Then, we show that if a contract is informatively satisfied (violated), then any
suffix or prefix of the interaction cannot also be informatively satisfied (violated):

Lemma 3.1 (Unique satisfaction and violation). If there exists j and k
such that wj

i |=s C and wk
i |=s C, then j = k. Similarly, if there exists j and k

such that wj
i |=v C and wk

i |=v C then j = k.

Proof (sketch). For the atomic contracts, this is clear. By structural induction,
the result follows for conjunction, sequence, and reparation. For the trigger oper-
ations, the definition of TL ensures the result. For recursion, note how given a
finite interaction there is always a finite amount of times the recursion can be
unfolded (with an upper bound of j − i) so that we can determine satisfaction
or violation in finite time.

If an interaction is not informative for satisfaction, it is not necessarily infor-
mative for violation, and vice-versa. But we can show that if there is a point of
informative satisfaction then there is no point of informative violation.
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Lemma 3.2 (Disjoint satisfaction and violation). Informative satisfaction
and violation are disjoint: there are no j, k s.t. wj

i |=s C and wk
i |=v C.

Proof (sketch). The proof follows easily by induction on the structure of C.

We can then give semantics to infinite interactions.

Definition 3.2 (Models). For an infinite interaction w∞
0 , and a cDL contract

C, we say w∞
0 models a contract C, denoted by w∞

0 � C, when there is no prefix
of the interaction that informatively violates C: w∞

0 � C
def= �k ∈ N · wk

0 |=v C.

Fig. 2. Blame semantics rules over a finite interaction wj
i

3.2 Blame Assignment

We are not interested only in whether a contract is satisfied or violated, but also
on causation and responsibility [9,10,12]. Here we give a relation that identifies
when a party is responsible for a violation at a certain point in an interaction.
Blame assignment could be specified following multiple criteria, we assign blame
when an agent neglects to perform an action it is obliged to do or that another
agent is obliged to do (passive blame), or for attempting to do an action it is
forbidden from doing (active blame). The blame is forward looking where we
identify the earliest cause of violation. Furthermore, we are only interested in
causation and not on more advanced features such as “moral responsibility” or
“intentionality”. The blame semantics is only defined as a violation by party p
relation as in |=p

v. This semantics is defined in Fig. 2.
For blame assignment, the labeling of norms with parties is crucial. Here we

give meaning to these labels in terms of who is the main subject of the norm in
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question. For example, consider that O0(a) can be violated in three ways: either
(i) both parties do not attempt a, (ii) party 0 does not attempt a but party
1 does, or (iii) party 0 attempts a but party 1 does not. Our interpretation is
that since party 0 is the main subject of the obligation, party 0 is blamed when
it does not attempt a (cases (i) and (ii)), but party 1 is blamed when it does
not attempt a (case (iii)). The intuition is that by not attempting a, party 0
violated the contract, thus relieving party 1 of any obligation to cooperate or
non-interfere (given party 0 knows there is no hope for the norm to be satisfied
if they do not attempt a). We use similar interpretations for the other norms.

Another crucial observation is that violations of a contract are not necessarily
caused by a party. For example, the violated contract ⊥ cannot be satisfied.
Moreover, norms can conflict, e.g., Op(a)∧ Fp(a). Conflicts are not immediately
obvious without some analysis, e.g., 〈re〉Op(a)∧ 〈re′〉Fp(a) (where there is some
interaction for which re and re′ tightly match at the same time). We provide
machinery to talk about conflicts, to avoid unsound blaming, by characterising
two contracts to be conflicting when there is no way to satisfy them together.

Definition 3.3 (Conflicts). Two contracts C and C ′ are in conflict after a
finite interaction wj

i if at that point their conjunction has not been informa-
tively satisfied or violated yet, but all possible further steps lead to its violation:
conflict(C,C ′,wj

i )
def= �w′ : w′j

i = wj
i ∧ w′j+1

i �|=v C ∧ C ′.

Another instance of a conflict can be observed between C1 = O0(a);F1(c)
and C2 = O0(b) � O0(c) at the second position. This can be demonstrated with
a trace of length one, 〈a0; a1〉, where the obligation to achieve c for party 0 and
the prohibition to achieve c for party 1 have to be enforced simultaneously.

Example 3.3. Recall the violating example in Example. 3.2, where robot 1
declines in helping lifing, twice. Clearly in that case w3

0 |=1
v collabRobot . How-

ever, if robot 0 did not attempt a lift in position 3 (i.e., to attempt to satisfy the
reparation), the blame would be on the other agent.

From the definition of blame it easily follows that a party is blamed for a
violation only when there is a violation:

Proposition 3.1. If a party p is blamed for the violation of C then C has been
violated: ∃p · wj

i |=p
v C implies wj

i |=v C.

Proof. Note how each case of |=p
v implies its counterpart in |=v.

But the opposite is not true:

Proposition 3.2. A contract may be violated but both parties be blameless:
wj

i |=v C does not imply ∃p · wj
i |=p

v C.

Proof. Consider their definitions on ⊥, and given conjunction and the presence
of conflicts.
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Proposition 3.3 (Satisfaction implies no blame). Satisfaction of contract
C means that no party will get blamed: wj

i |=s C implies �p · wj
i |=p

v C

Proof. Assume the contrary, i.e. that C is satisfied but party p is blamed. By
Proposition 3.1 then there is a violation, but Lemma 3.2 implies we cannot both
have a satisfaction or violation.

Observation 3.1. For any contract C /⊥ defined on cDL free of ⊥ and free of
conflicts, the violation of a contract C /⊥ leads to blame.

Observation 3.2 (Double blame). Double blame in cDL for both parties p
and 1−p is possible. Consider C = Op(a)∧Op(b). Violation of the left-hand side
by p and the violation of the right-hand side by 1 − p can happen at the same
time.

3.3 Quantitative Semantics

While it is possible to assign blame to one party for violating a contract, other
qualitative metrics can provide additional information about the violation. These
metrics can determine the number of violations caused by each party, as well as
the level of satisfaction with the contract. To assess responsibility for contract
violations, we introduce the notion of a mistake score, ρ, for each party, enabling
us to calculate a responsibility degree. It is important to note that our language
permits reparations, whereby violations can be corrected in the next time step.
However, interactions that are satisfied with reparations are not considered ideal.
We present quantitative semantics to compare satisfying interactions based on
the number of repaired violations a party incurs. We define relations that track
the number of repaired violations attributed to each party with a mistake score,
ρ, written

p

s
for informative satisfaction and

p

v
for informative violation of

the contract. We can also keep track of the number of violations when the trace
is not informative through

p

?
. Figure 3 provides a definition of this semantics.

Note this definition intersects the previous semantic definitions, and due to space
constraints, we do not re-expand that further. The addition is that we are disam-
biguating some cases to identify when to add to the score to identify a violation
caused by p. For example, see the definition of

p

v
for a norm.

Example 3.4. Consider again Example 3.1, and consider the finite interaction
(〈{charge0}, {detectProd}, {}, {lift}〉 and 〈{charge0}, {}, {lift}, {lift}〉. Note how
this will lead to robot 0 being given a score of one since on the third step there
is a violation that is repaired subsequently.

Lemma 3.3 (Soundness and completeness). The quantitative semantics is
sound and complete with regard to the informative semantics: wj

i |=γ C ⇐⇒
∃ρ1, ρ2 : wj

i , ρ1
p

v
C and wj

i , ρ2
1−p

v
with γ ∈ {s, v, ?}.

Proof (sketch). By induction on the quantitative semantics and informative
semantics.
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Fig. 3. Quantitative semantics rules over a finite interaction wj
i .
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Lemma 3.4 (Fairness of the Quantitative semantics). The quantitative
semantic is fair, meaning that if the score of a player p is ρ then p is to be
blamed for non-fulfilling ρ norms of the contract: wj

i , ρ
p

γ
C =⇒ ∃N1 . . . Nρ ∈

subcontracts(C) : wj
i

p

γ
Ni with γ ∈ {s, v, ?}, where subcontracts(C) is a mul-

tiset containing the subcontracts of C, up to how often they appear.

Proof (sketch). We prove, this by structural induction, noting that the score
only increases when p is blamed for the violation of a norm, while the inductive
case easily follows from the inductive hypothesis.

4 Analysis

In this section, we define an automata-theoretic approach to analyzing cDL
contracts, through a construction to a safety automaton. We use this for model
checking and blame analysis, but leave the application for quantitative analysis
for future work.

4.1 Contracts to Automata

We give a construction from cDL contracts to automata that recognize inter-
actions that are informative for satisfaction or violation. For brevity, we keep
the definition of the automata symbolic, with transitions tagged by propositions
over party actions, representing a set of concrete transitions. The automaton is
over the alphabet Σ0,1 since it requires information about the parties.

Definition 4.1. The deterministic automaton of contract C is:

aut(C) def= 〈Σ0,1, S, s0, {sB},→〉.
We define → through the below function τ(C, s0, sG, sB , {}) that computes a set
of transitions, given a contract, an initial state (s0), a state denoting satisfaction
(sG), a state denoting violation (sB), and a partial function V from recursion
variables (X) to states, characterised by (with s as a fresh state):

τ(�, s0, sG, sB , V ) def= {s0
true−−−→ sG}

τ(⊥, s0, sG, sB , V ) def= {s0
true−−−→ sB}

τ(Op(a), s0, sG, sB , V ) def= {s0
ap∧a1−p−−−−−→ sG, s0

¬(ap∧a1−p)−−−−−−−−→ sB}
τ(Fp(a), s0, sG, sB , V ) def= {s0

¬(ap∧a1−p)−−−−−−−−→ sG, s0
ap∧a1−p−−−−−→ sB}

τ(Pp(a), s0, sG, sB , V ) def= {s0
ap =⇒ a1−p−−−−−−−−→ sG, s0

¬(ap =⇒ a1−p)−−−−−−−−−−→ sB}
τ(〈re〉C, s0, sG, sB , V ) def= A(re, s0, s, sG) ∪ τ(C, s, sG, sB , V )

τ(re

�

C, s0, sG, sB , V ) def= (A(re, s0, sG, sG)‖τ(C, s0, sG, sB , V ))
[(sG, ∗)/sG][(∗, sB)/sB ][(∗, sG)/sG]



344 K. Kharraz et al.

τ(C ∧ C ′, s0, sG, sB , V ) def= (τ(C, s0, sG, sB , V )‖rτ(C ′, s0, sG, sB , V ))
[(sG, sG)/sG][(sB , ∗)/sB ][(∗, sB)/sB ]

τ(C;C ′, s0, sG, sB , V ) def= τ(C, s0, s, sB , V ) ∪ τ(C ′, s, sG, sB , V )

τ(C � C ′, s0, sG, sB , V ) def= τ(C, s0, sG, s, V ) ∪ τ(C ′, s, sG, sB , V )

τ(X, s0, sG, sB , V ) def= {sG
ε−→ V (X)}

τ(recX.C, s0, sG, sB , V ) def= τ(C, s0, sG, sB , V [X �→ s0])

We define →′ as τ(C, s0, sG, sB , {}) without all transitions outgoing from sG

and SB, and define →def=→′ ∪{sB
true−−→ sB} ∪ {sG

true−−−→ sG}, where S is the set
of states used in →. We assume the ε-transitions are removed using standard
methods.

We give some intuition for the construction. The transitions for the atomic
contracts follow quite clearly from their semantics. For the trigger contracts, we
use a fresh state s to connect the automaton for the regular expression, with
that of the contract, ensuring the latter is only entered when the former tightly
matches. For the guard contract, we instead synchronously compose (‖) both
automata (i.e., intersect their languages), getting a set of transitions. Here we
also relabel tuples of states to single states. Recall we use (∗, s) to match any
pair, where the second term is s, and similarly for (s, ∗). Through the sequence
of re-labellings, we ensure: first that reaching sG in the acceptance of the first
means; (2) reaching sB in the second means violation; and (3) if the previous
two situations are not the case, reaching sG in the second means acceptance.

For conjunction, instead of using the synchronous product, we use the relaxed
variant (‖r), since the contracts may require traces of different lengths for sat-
isfaction. This relaxed product allows the ‘longer’ contract to continue after the
status of the other is determined. For sequence, we use the fresh state s to move
between the automata, once the first contract has been satisfied. For repara-
tion this is similar, except we move between the contracts at the moment the
first is violated. For recursion, we simply loop back to the initial state of the
recursed contract with an ε-transition once the corresponding recursion variable
is encountered.

Note how analyzing states without viable transitions, after applying τ , can
be used for conflict analysis of cDL contracts. For example, when there is a
conflict, e.g., Op(a)∧Fp(a), there will be a state with all outgoing transitions to
sB .

Theorem 4.1 (Correctness). An infinite interaction is a model of C, iff it
never reaches a rejecting state in aut(C):
∀w∞

0 · w∞
0 |= C ⇐⇒ w0 �0

1 w1 ∈ L(aut(C)).

Proof (sketch). For the atomic contracts, the correspondence should be clear. By
structural induction on the rest: triggering, sequence, and reparation should also
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be clear from the definition. For conjunction, the relaxed synchronous product
makes sure the contract not yet satisfied continues being executed, as required,
while the replacements ensure large nestings of conjunctions do not lead to large
tuples of accepting or rejecting states. For

�

, using the synchronous product
ensures the path ends when either is satisfied/violated, as required.

Corollary 4.1. An infinite interaction is not a model of C, iff it reaches a

rejecting state in aut(C): ∀(w0, w1) �|= C ⇐⇒ ∃j ∈ N · s0
(w0
0

1w1)[0...j]
=========⇒ sB.

Proof (sketch). Follows from Theorem. 4.1 and completeness (up to rejection)
of aut(C).

Complexity From the translation note that without regular expressions the
number of states and transitions is linear in the number of sub-clauses and oper-
ators in the contract, but is exponential in the presence of regular expressions.3

4.2 Model Checking

We represent the behaviour of each party as a Moore machine (M0, and M1). For
party 0, the input alphabet is Σ1 and the output alphabet is Σ0, and vice-versa
for party 1. We characterise their composed behaviour by using the product of
the two dual Moore machines: M0 ⊗ M1, getting an automaton over Σ0 ∪ Σ1.

We can then compose this automaton that represents the interactive
behaviour of the parties with the contract’s automaton, (M0 ⊗ M1)‖aut(C).
Then, if no rejecting state is reachable in this automaton, the composed party’s
behaviour respects the contract.

Theorem 4.2 (Model Checking Soundness and Completeness). ∅ =
RL((M0 ⊗ M1)‖aut(C)) iff �w∞

0 : w0 �0
1 w1 ∈ L(M0 ⊗ M1) ∧ w∞

0 |=v C.

Proof. Consider that ‖ computes the intersection of the languages, while Theo-
rem 4.1 states that L(aut(C)) contains exactly the traces satisfying C (modulo a
simple technical procedure to move between labelled traces and pairs of traces).
Then it follows easily that RL((M0 ⊗ M1)‖aut(C)) is empty only when there is
no trace in (M0 ⊗ M1) that leads to a rejecting state in aut(C). The same logic
can be taken in the other direction. ��

4.3 Blame Assignment

For the blame assignment, we can modify the automaton construction by adding
two other violating states: s0B and s1B, and adjust the transitions for the basic
norms accordingly.

3 For example, a contract recX.�; (O0(a)∧ P1(b));X has size 8 (note normed actions
are not counted).
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Definition 4.2. The deterministic blame automaton of contract C is:

blAut(C) def= 〈Σ0,1, S, s0, {sB , s0B , s1B , (s0B , s1B)},→〉

We define → through the function τ(C, s0, sG, s0B , s1B , V ) that computes a set
of transitions, as in Definition 4.1 but now assigning blame by transitioning to
the appropriate state. We focus on a subset of the rules, given limited space,
where there are substantial changes4:

τ(Op(a), s0, sG, s0B , s1B , V ) def= {s0
ap∧a1−p−−−−−→ sG, s0

¬ap−−→ sp
B , s0

ap∧¬a1−p−−−−−−→ s1−p
B }

τ(Fp(a), s0, sG, s0B , s1B , V ) def= {s0
¬(ap∧a1−p)−−−−−−−−→ sG, s0

ap∧a1−p−−−−−→ sp
B}

τ(Pp(a), s0, sG, s0B , s1B , V ) def= {s0
ap =⇒ a1−p−−−−−−−−→ sG, s0

ap∧¬a1−p−−−−−−→ s1−p
B }

τ(C � C ′, s0, sG, s0B , s1B , V ) def= τ(C, s0, sG, s0, s1, V )

∪ τ(C ′, s0, sG, s0B , V ) ∪ τ(C ′, s1, sG, s1B , V )

Given →′= τ(C, s0, sG, sB , {}), → is defined as →′ with the following trans-
formations, in order: (1) any tuple of states containing both s0B and s1B is rela-
belled as (s0B , s1B); (2) any tuple of states containing s0B (s1B) is relabelled as
s0B (s1B); (3) any state for which all outgoing transitions go to a bad state are
redirected to sB; (4) any tuple of states containing sG is relabelled as sG; and
(5) all bad states and sG become sink states. S is the set of states used in →.
We assume the ε-transitions are removed using standard methods.

Note how this automata simply refines the bad states of the original automata
construction, by assigning blame for the violation of norms through a transition
to an appropriate new state. While the post-processing (see (3)), allows violations
caused by conflicts to go instead to state sB , where no party is blamed.

Then we prove correspondence with the blame semantics:

Theorem 4.3 (Blame Analysis Soundness and Completeness). Where
RLp, for p ∈ {0, 1}, is the rejecting language of the automaton through states
that pass through sp

B or the tuple state (s0B , s1B):
∅ = RLp((M0 ⊗ M1)‖blAut(C)) iff �w0, w1 ∈ (2Σ)∗ : w0 �0

1 w1 ∈ L(M0 ⊗
M1) ∧ (w0, w1) |=p

v C.

Proof. This follows from a slight modification of Corollary 4.1 (since here we
just refine the bad states of aut(C)) with the replacement of sB by party-tagged
bad states, and from a similar argument to Theorem 4.2.
4 The missing rules essentially mirror the previous construction with the added states,

and the different domains.



Synchronous Agents, Verification, and Blame—A Deontic View 347

This automaton can be used for model checking as before, but it can also
answer queries about who is to blame.

Example 4.1. We illustrate in Fig. 4 an example of two Moore machines repre-
senting the behaviour of two parties (Figs. 4a and 4b). Note these are determin-
istic, therefore their composition (Fig. 4) is just a trace. Note the same theory
applies even when the Moore machines are non-deterministic. In Figs. 4d and 4e
we show the automaton and blame automaton for the contract recX.(O1(c) �
O0(b);X). Our model checking procedure (without blame) will compose Fig. 4
and Fig. 4d, and identify that the trace reaches the bad state. Consider that
the reparation consisting of an obligation to perform an action b was not satis-
fied. Similarly (not shown here) blame automaton would blame party 1 for the
violation.

Fig. 4. Example of the model checking approach.
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5 Related Work

Multi-agent systems. Several logics can express properties about multi-agent
systems. For example, ATL can express the existence of a strategy for one or more
agents to enforce a certain specification [2], while strategy logic makes strategies
first-class objects [7]. Checking for the existence of strategies is in 2EXPTIME.
Our logic is not concerned with the existence of strategies, but with analyzing
the party strategies to ensure they respect a contract. So, our approach is more
comparable to LTL than to game-based logic, limited to (co-)safety properties
and with a notion of norms that allows us to talk about blame natively.

Concerning blame, [11] considers the notion of blameworthiness. They use
structural equations to represent agents, but the approach is not temporal, and
each agent performs only one action. Work in this area (e.g., [9,11,13]) tends to
be in a different setting than ours.

They consider the cost of actions and agents’ beliefs about the probability
of their actions not achieving the expected outcome. Instead, we assume all
the parties have knowledge of the contract, and we take an automata-theoretic
approach. Moreover, our blame derives from the norms, whereas other work
depends on a notion of causality [8].

The work [1] extends STIT logic with notions of responsibility, allowing rea-
soning about blameworthiness and praiseworthiness. This, and other similar
work (e.g., [15]) is more related to our work and even has a richer notion of
blame. However, we give an automata-based model checking procedure.

Deontic logics. Deontic logics have been used in a multi-agent setting before.
For example, [6] define deontic notions in terms of ATL, allowing reasoning like
an obligation holds for an agent iff they have a strategy to carry it out. These
approaches (e.g., [6,17,20]) focus on obligations and neglect both reparations
and our view of permissions as rights. Some approaches (e.g., [17,19]) however
do perform model checking for a deontic logic in a multi-agent system setting.
The work most similar to ours is that of contract automata [5], wherein a contract
is represented as a Kripke structure (with states tagged by norms), two parties
as automata, and permissions with a similar rights-based view. However, it takes
a purely operational approach, and lacks a notion of blame.

Our language is an extension and combination of the deontic languages pre-
sented in [3,4,18], combining action attempts, a right-based view of permission,
a two-party setting, and regular expressions as conditions.

Besides maintaining all these, we give denotational trace semantics, and pro-
vide blame and model checking algorithms.

6 Conclusions

In this paper we have introduced a deontic logic for reasoning about a two-party
synchronous setting. This logic allows one to define constraints on when parties
should support or non-interfere with the carrying out of a certain action or pro-
tocol. Using a pair of party traces, we can talk about attempts and success to
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perform collaborative actions. We consider automata constructions describing
both the set of all satisfying and violating sequences. Given the behavior of the
agents in the form of suitable automata, we have also provided algorithms for
model checking and for blame assignment. To differentiate between satisfying a
formula in the expected manner or by fullfilling the exceptional case, we intro-
duce a quantitative semantics. This allows ordering satisfying traces depending
on how often they use these exceptions.

This work may be extended in many directions. First, we could consider asyn-
chronous interaction, distinguishing between sending and receiving. The syntax
and semantics can also be extended easily to handle multi-party agents rather
than just a two-party setting. Different quantitative semantics could be given,
for example considering the costs of actions to reason when it is better to pay
a fine rather than to behave as expected. We plan to study how to synthesise
strategies for the different parties, for instance to ensure the optimal behaviour
of agents.
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Abstract. The use of message-passing process calculi for the verification
of distributed algorithms requires support for state-based reasoning that
goes beyond their traditional action-based style: knowledge about (local)
states is at best provided implicitly. Therefore, we propose a distributed
process calculus with locations, the units of distribution, which we equip
with explicit state information in the form of memories. On top, we
provide a simple formal model for location failure and failure detection
such that we can deal with the verification of fault-tolerant distributed
algorithms. We exhibit the use of our calculus by formalizing a simple
algorithm to solve Distributed Consensus and prove its correctness. The
proof exploits global invariants by direct access to the local memories.

1 Introduction

Distributed Algorithms. Traditionally [17], distributed algorithms are often
described by means of pseudo code for its local processes: sequences of state-
ments may manipulate local variables or trigger the exchange of messages with
other participating processes. The following code [23, 9] describes the intended
behavior of a single so-called participant i (one out of n) which is meant to solve
the problem of Distributed Consensus [17] in a system where processes may fail.

xi := input;
for r := 1 to n do { if r = i then broadcast xi;

if alive(pr) then xi := input from broadcast };
output xi;

An understanding of such a distributed algorithm requires to precisely fix the
underlying assumptions of the system model, e.g., the meaning of send (broad-
cast) and receive (input) actions in the context of failures. In the above algo-
rithm, an essential ingredient is the alive-test whose passing is subject to subtle
guarantees. In the following, we explain the intuition behind alive-tests in the
context of fault tolerance and the correctness of Distributed Consensus in more
detail.

Fault Tolerance. In the so-called fail-stop model of distributed systems, processes
may fail; and when they do so, they do not recover from this state. A failed
process does no longer contribute to the system evolution, i.e., it can neither
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send nor receive messages. A process that does not fail in a run, is called correct
(in that run). Failure detection provides processes with the permission to suspect
other processes to have failed and, thus, to no longer wait for their messages to
arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that have failed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability
is expressed by means of temporal constraints on runs. For example, for the
above Consensus algorithm, a property called Weak Accuracy suffices: “Some
correct process is never suspected by any (correct) process”.

Correctness. Specifications for distributed algorithms typically consist of prop-
erties of some temporal logic flavor that capture the intended safety and liveness
guarantees. For Distributed Consensus, all participants shall agree on the deci-
sion for some value, while every participant starts with a private input value as
proposal. In the above algorithm, this input value is initially assigned to the local
variable xi, which may then be updated due to knowledge acquired by learning
about the values kept by other participants via communication. Three temporal
properties then capture in how far an algorithm works correctly. • Validity : Every
decision must be for some initial proposal. • Agreement : No two correct processes
decide differently. • Termination: Every correct process eventually decides. The
verification of these properties is dominated by state-based reasoning techniques,
often referring to global state invariants about the values that are memorized in
the respective local variables xi of every (alive) participant.

In the above example algorithm, each participant gets its turn to propose a
value in the role of the coordinator of “its” round. In every other round, each
participant is to adopt the value proposed by that round’s coordinator . . . unless
it cannot detect that it is still “alive”. The algorithm satisfies Termination, as
it runs a for-loop and never deadlocks. It satisfies Validity, as values are never
invented, but only passed on. It satisfies Agreement, as (at least) in the round of
the process that—by Weak Accuracy—is never suspected, every other process
will have to adopt this proposal. Afterwards, there is no way to decide otherwise.

Using Process Calculi. Process calculi provide a wealth of proof methods and
their syntactic nature allows for concise formal models that are nevertheless
close to executable code in programming languages. A great variety of process
calculi have been developed in the past, most of them for general purposes,
some of them rather domain-specific. In the above case, the domain prompts
two choices: (i) It is natural to employ distributed process calculi [12], where
so-called locations represent units of distribution, possibly subject to failure. (ii)
As message-passing models are prevalent for distributed systems, it is obvious to
also use message passing calculi, as opposed to distributed process calculi that
are based on the migration among and within so-called ambients [5].

Most of the existing process calculi (often descendants of CSP [13], CCS [19],
ACP [3], or the π-calculus family [20]), however, are based on notions of action,
thus essentially supporting just action-based reasoning. The main observations
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in the above-mentioned attempts to use process calculi to verify distributed
algorithms are that (i) even if action-based reasoning—often using bisimulation
techniques—is employed on the outside, it still heavily relies on state-based rea-
soning inside to construct the required bisimulations [9], and (ii) classical process
calculi do not at all support state-based reasoning. This was also the main prob-
lem in [22, 15], where the respective authors applied process calculus machinery
to the specification and verification of fault-tolerant algorithms that solve Dis-
tributed Consensus. In [24], the authors propose a method to systematically
(re)construct state information for the reachable global states of an example
Distributed Consensus algorithm (which was formalized in a tailor-made pro-
cess calculus) and to capture this information within a dedicated data structure
outside of the calculus. The lesson learned from [24] was that this method is too
tedious and highly error-prone; it simply did not scale. This is the motivation
to, instead of reconstructing implicit state information, make it explicit from the
outset and provide linguistic support and structure within the process calculus
itself. In this paper, we report on some of our recent results in this endeavor.

Our Approach. We use a reasonably standard and widespread notion of memory:
mappings from variables to values. In our calculus, processes are threads that
are associated with its local memories. Threads may declare variables and assign
the value of complex expressions to them, resulting in updates to their own
memory. Threads can be defined recursively, and they may run concurrently. In
a fault-tolerant scenario, locations are “named processes” such that failures can
be named. Parallel processes, together with “message in transit”, form networks.

In the operational semantics of our calculi, we let transitions operate between
structural equivalence classes (equipped with some convenient congruence prop-
erties) of states. In a fault-tolerant scenario, global configurations keep track
of failures and their detection. Executions of failure-aware networks, and their
reachable configurations, can be analyzed via induction on transition sequences.

Related Work. Next to the above-mentioned work [22, 15, 9] using process calculi,
we also used a state-machine approach [14], which suffers from the fact its global
view on algorithms slightly obfuscating the locality of behaviors.

There are only few other related approaches using process calculi. In several
contexts, process calculi have been equipped with notions of location or local-
ity [4, 12 ,5], but there they have different meaning; in particular, locations were
not equipped with memories. In calculi with reversibility (e.g., [7]), process-local
memories are used to store back-tracking information, i.e., a history of steps of
a process that led it to the current state, which can be exploited to undo these
steps in a causally consistent manner. Closest to our approach is the work of
Garavel [10] on LNT, which is a programming language in the spirit of LOTOS
that was developed to be easier to use for engineers [11]. Our treatment of write-
many variables, which is uncommon for most process calculi, was partly inspired
by them. However, the context of LOTOS/LNT is different from our distributed
world, as it mainly addresses concurrent algorithms without support for fault-
tolerance. More detailed comparisons are found later on in Sect. 3.
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Structure and Contributions. In Sect. 2, we introduce memories and expres-
sion evaluation. In Sect. 3, we define syntax and semantics of a novel calculus
of distributed processes that dispose of local memories. We provide a reason-
ably simple operational semantics for this calculus and discuss the impact of
α-conversion arising from the role of memories as binders for variables. In Sect.
4, we equip the calculus with awareness for locations and failures, which allows
for completely new ways to model messages in transit and to deal with failure
suspicions. In Sect. 5, we demonstrate the use of the calculus in a case study,
where the advantage of direct access to local memories of processes is appar-
ent. In Sect. 6, we summarize our contributions and conclude with a glimpse on
future work.

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X → V ∪ {�,⊥}, by which variables may be associated with
values or otherwise have the status of being just initialized (�) or undefined (⊥).
The set dom(M) � {x ∈ X | M(x) �= ⊥} denotes all variables defined in M .
Accordingly, M⊥ denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory M〈x 	→ w〉, where x is updated to map to w ∈ V ∪ {�},
behaves just like memory M unless we access the entry of the updated variable x:

M〈x 	→ w〉(y) �
{
w if x = y

M(y) if x �= y

Note that also the cases with M(y) ∈ {�,⊥} are properly covered.
We assume a set E of expressions e with V ∪ X ⊆ E . One may consider

arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
∣∣ x

∣∣ (e, . . . , e) ∣∣ f(e)
The intended application will decide the respective range of allowed expressions.

We define the set fv(e) of (free) variables of e inductively by fv(v) � ∅,
fv(x) � {x}, fv((e1, . . . , en)) �

⋃
i∈{1,...,n} fv(ei), and fv(f(e)) � fv(e).

We assume that expressions can be “reduced” to values by terminating com-
putations. As expressions e ∈ E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ⊆ dom(M). We let the function
fetchM : E → E ∪{⊥} for memory M replace the variables in fv(e) with their M -
value; if a variable is only initialized, the result will yield undefined (see Defini-
tion 3 in the Appendix). To model the evaluation of expressions that include func-
tion symbols f, we assume a homomorphic function eval(·) : E ∪ {⊥} → V∪ {⊥}
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to be employed after fetchM (e) has fetched from M—if possible—current val-
ues for the variables contained in e. The obvious idea then is that eval applies
the semantics of each application of the function symbol f. Thus, we define
evalM (e) � eval(fetchM (e)).

3 A Distributed Process Calculus with Local Memories

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one process to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as they
cannot happen at the same time. Causally evident, send actions must always
occur strictly before their corresponding receive action, which we model via a
representation of “messages in travel”. All local memory states together with all
messages in travel then provide us with the global state of a system.

In this section, we fix all of the these concepts as a calculus with two-level
syntax for threads and (networks of distributed) processes.

In our calculus, the standard issues of bindings of variables as well as the
notion of α-conversion inevitably pop up and get proper treatment. Note in
advance that this treatment is just necessary in order to provide a sound oper-
ational semantics for the calculus. When it comes to the use of the calculus for
verification, we better avoid the need for α-conversion during executions.

Syntax. We assume the set X of variables, the set V of values, and the set E of
expressions with X ∪ V ⊆ E . Let B = {t, f} be the set of booleans with B ⊆ V.
Let C ⊆ V denote the set of available channels where c ∈ E is a metavariable for
an expression that has to be evaluated to a channel c ∈ C.

We use � · � to denote multisets/bags and  to denote their disjoint union.
The following figure defines the syntax of our calculus with local memories.

The right column represents designators for the respective syntactic categories.

O ::= ∅
∣∣ � c〈e〉 �

∣∣ O  O outgoing bag
Æ ::= ∅

∣∣ � c〈v〉 �
∣∣ Æ  Æ message aether AE

μ ::= varx
∣∣ 〈x := e〉

∣∣ c(x)
∣∣ O actions A

G ::= 0
∣∣ μ.T

∣∣ G + G guards G
T ::= G

∣∣ if e then T else T
∣∣ Ix1,...,xn

∣∣ T | T threads T

P ::= [M � T ] processes P

N ::= P
∣∣ Æ

∣∣ N‖N networks N

The syntax defines two layers, threads (T ) and networks (N ).
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We first explain threads T , which assemble guards G, which in turn perform
actions μ. Action varx declares variable x, action 〈x := e〉 assigns (the value
of) expression e to variable x, action c(x) receives a value over a channel c to
store it in variable x; messages c〈e〉 that each send some payload e over some
channel c are collected in action O which resembles a multicast operation sending
a multiset of messages in one go. A guard G can be 0 which does nothing, an
action prefix μ.T , or an (external) choice G + G. Threads can be guards G,
conditionals if e then T else T , or refer to thread identifiers I ∈ I that are
equipped with a list of variables x1, . . . , xn for which they need access. We require
a defining equation Ix1,...,xn

def= G with fv(G) ⊆ {x1, . . . , xn} (see Definition 1)
for every used thread identifier. Threads may also run in parallel T | T .

A process [M � T ] associates a memory M (introduced in Sect. 2) with a
thread T . Multisets Æ collect messages c〈v〉 in travel, where c and v ∈ V are
concrete channels and values, respectively, as determined by expression evalua-
tion. A network N is composed of parallel processes together with the message
aether.

Our calculus allows for concurrent threads within processes. This is often
required, because concurrent activities support a natural modeling principle for
node-local code of distributed algorithms. Unless restrictions are imposed, the
memory M is shared. For example, in process [ M � T1 | T2 ], both T1 and T2

have access to the memory M and can manipulate its variables, i.e., both threads
can declare new variables and assign values to them. Thus, we get the usual and
well-known problems of potentially competing reads and writes, which we do
not intend to repeat in this paper. We also do not intend to discuss potential
solutions to race conditions. We do, however, intend to be precise about the
semantic implications of such an extension concerning variable bindings.

Binders. Our calculus contains two binders for variables. (i) The thread varx.T
acts as a binder for x with scope T . (ii) The process [M � T ] acts as a binder for
the variables in dom(M) with scope T . As usual, we must carefully deal with
free and bound variables. This can be done in a mostly straightforward way.

Definition 1 (Bound and Free Variables). We define the functions bv/fv
on actions, threads and processes as follows. For actions:

bv(μ) �
{

{x} if μ = varx

∅ otherwise
fv(μ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{x} ∪ fv(e) if μ = 〈x := e〉
{x} ∪ fv(c) if μ = c(x)⋃

c〈e〉∈O fv((c, e)) if μ = O

∅ otherwise

For threads, the full version can be consulted as Definition 4 in the Appendix.
Here, we just point out the case for identifiers:

bv(Ix1,...,xn) � ∅ fv(Ix1,...,xn) � {x1, . . . , xn}

The other cases are defined homomorphically.
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For processes, the interpretation of memories as binders yields:

bv([M � T ]) � bv(T ) ∪ dom(M)
fv([M � T ]) � fv(T ) \ dom(M)

A variable x is called fresh w.r.t. process P if x /∈ bv(P )∪ fv(P ). An occur-
rence of a variable is bound if it occurs within the scope of a binder for it. (Note
that varx.T is a binder for x, so the x in “varx” itself does not qualify as an
occurrence of x.) An occurrence of a variable is free if it is not bound.

For example, in thread ( varx.T1 | 〈x := e〉.T2 ), variable x is both free and bound,
as x ∈ bv(varx.T1) and x ∈ fv(〈x := e〉.T2).

As usual, we may employ the concept of α-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =α T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to processes [M � T ]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x ∈ dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M � (M�dom(M)\{x})〈y 	→ M(x)〉
by first removing the binding for x (M�dom(M)\{x}), then updating 〈y 	→ M(x)〉.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x ∈ dom(M) and y fresh for [M � T ], we then define:

[M � T ] =α [ {y/x}M � {y/x}T ]

The reflexive, symmetric and transitive closure of =α is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfies
congruence properties. For example, we define [M � T ] =α [M � T ′] if T =α T ′.

Sanity Conventions. Processes shall provide sufficient knowledge about their local
variables. Therefore, a process P is called closed if fv(P ) = ∅. It is practically useful
to always require closedness, as the intuitive meaning of an “open” process referring
to free variables would be rather dubious: Where should such variables, not bound
to their process, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its processes are closed.

For verification purposes, we use memories with the intention to access spe-
cifically-named local variables. Allowing the application of α-conversion during
the course of execution obviously defeats this purpose.1 Thus, we require that, in
any given application, variable names will be chosen such that there is no need
to refer to α-conversion when declaring new variables. One ingredient in this
respect is that we only permit defining equations Ix1,...,xn

def= G with bv(G) = ∅.
1 The same problem was observed by the authors of [8] when doing invariant proofs.
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Fig. 1. Structural Equivalence[s]

Fig. 2. Structure I

Definition 2 (Structural Equivalence). We define the equivalence ≡ for
threads (T ), processes (P) and networks (N ) by the rules in Fig. 1.2

For threads, we assume that both (G,+,0) and (T , |,0) are commutative
monoids. In addition, we include α-conversion by rule T-Alpha, while rule
T-Out gets rid of empty outgoing bags.

For processes, we also include α-conversion by rule P-Alpha, while rule
P-Mem simply embeds thread congruence.

For networks, we assume that (N , ‖, ∅) is a commutative monoid. Moreover,
rule N-Chem allows us to combine and separate multisets of traveling messages.

Let ≡�α denote structural equivalence in which rules T-Alpha and P-Alpha

are not allowed.

Note that the equivalence ≡ preserves the set of free variables and satisfies
some useful congruence properties, due to the inclusion of the rules T-Par and
N-Par. Note further that we will only consider closed processes in spite of rule
P-Mem leaving this aspect open.

Operational Semantics. We define the notion of execution of networks as an unla-
beled transition relation on N . As usual, we exploit the structural equivalence
relation ≡ via the rule Str in Fig. 2. Rule Par allows us to focus on the actions
of individual processes: these are captured by the rules in Fig. 3 and 4. Rules
Decl, Assign, and Rcv are memory-changing. Rules Snd, True, False, and
Ident are not memory-changing. Rules Snd and Rcv are global-state-changing.

2 For simplicity, we use the symbol ≡ with heavy overloading. The use of metavariables
and the respective context will act like an implicit typing scheme.
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Fig. 3. Local Memory-Changing Steps

Rule Decl declares a new variable for memory M , so x �∈ dom(M) is clear.
We also require x �∈ fv(T̂ ), as M〈x 	→ �〉 is a binder for x. Note that for closed
processes, x /∈ dom(M) implies x �∈ fv(T̂ ). Rule Assign evaluates expression e
and updates variable x in memory M , but only if it is already defined in M . It
is not allowed to reset the variable to ⊥ (undefined) or � (initialized).3

Rule Rcv defines the reception of message c〈v〉. Just like assignment, the
received value v updates variable x in memory M ; we only need to further check
whether expression c evaluates to channel c. Note, however, that reception may
overwrite previous values; this imperative style [10] distinguishes our approach
from the “classical” functional style of input, as in CCS [19].

Rule Snd selects one of the messages c〈e〉 in the outgoing bag O; it then
evaluates both c and e and checks whether they fit the requirement of resulting
in a channel c and a value v. In case of success, the message is removed from O
(where \ denotes multiset removal), and its evaluated counterpart c〈v〉 is placed
into the network as “message in travel”.4 Rule Ident describes the insertion of
threads via identifiers. The premises ensure that the variables x1, . . . , xn of I are
captured—as with dynamic scoping—by the associated memory M and that no
other variables are accessed from within the defined body G. The rules True

and False for evaluating conditionals are standard.

3 Our treatment of variables, the declaration and evaluation is similar to Garavel’s [10]
who argues that it is important to have variables not only be declared, but initialized.
Garavel [10] suggests to have a static semantics check whether uninitialized variables
would be used “too early”. We propose to have the eval()-function take care of this:
for uninitialized variables, it returns ⊥ and prevents the application of rule Assign.

4 In the spirit of asynchronous communication, a thread T shall not be blocked by O.T .
At least, it shall not be blocked by the non-availability of some matching receiver.
Here, the potential blocking is fully caused on the sending side, as the outgoing
messages must be evaluated, before the thread T may continue. We consider this OK.
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Fig. 4. Local Non-Memory-Changing Steps

Example. As we require processes to be closed, let x ∈ dom(M) for:

[ M � varx.T1 | 〈x := e〉.T2 ]

With x ∈ bv(varx.T1) and x ∈ fv(〈x := e〉.T2), the occurrence of x in 〈x := e〉.T2

is bound by M , whereas varx.T1 declares x as a “private” variable with scope T1.5
Note how the premise of rule Decl ensures to require an α-conversion before
the variable can actually be declared.6

The following lemma states that α-conversion and transitions get along well.

Lemma 1 (Preservation). Let N be a legal network.
If N −→ N ′, then N ′ is legal.

Proof (Sketch). Variables are never removed from memories M . They can only
be changed via α-conversions, but then their bound occurrences in the associated
process will be changed accordingly. Otherwise, memories can only grow.

Variables that are bound within the scope of a declaration will remain bound
when rule (Decl) is applied, but then by the associated memory M .

5 LNT [10] uses var -environments to delimit the scope of variables. Semantically, LNT
introduces stores (similar to our memories) to keep track of associated values.

6 In [10], Garavel suggests to even “prohibit shared variables” and states that in
Occam [18] and LOTOS-successor LNT [11] “a parallel composition is considered to
be invalid if any of its branches may change the value of a variable used in another
branch”. While Occam tries to prevent this at run time, LNT “adds static semantic
constraints that forbid at compile time all (syntactically correct) behaviors involving
shared variables” [10]. Such considerations can be added on top of our formalization.
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Fig. 5. Failures

4 Location Failures and Their Detection

Syntax. We follow the approach of [21] and introduce a set L ⊆ V of location
names. In our calculus, we then let the processes [M � T ] of Sect. 3 evolve into
locations �[M � T ], where � ∈ L, so locations are simply located processes [12].
Conveniently, locations may also serve as a natural unit of failure.

We adapt the communication actions of Sect. 3 to become “location-aware”:

– Output c@l〈e〉 adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) ∈ L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions. Message in
travel, the elements of bags Æ, now take the form csrc→trg〈v〉, with src, trg ∈ L

indicating the source and target of the message.

Structural Equivalence. We adapt the rules of Definition 2 to the extended syn-
tax. The changes from processes to locations and the location-aware forms of
communication actions and the messages in transit are orthogonal to the rules.

Operational Semantics. In order to track the failures of locations, we again
follow [21] and identify a so-called trusted-immortal location trim that cannot fail
and will never be suspected. With this abstraction, it is almost trivial to model
systems that satisfy Weak Accuracy (see Sect. 1). We use global configurations
of the form F �trim N , in which (i) F ⊆ L indicates which locations have
failed (so far); (ii) trim is the dynamically determined trusted immortal; (iii)
N is a network running in the context of (i) and (ii). For Weak Accuracy, it is
required [21] that the very first transition of an execution randomly chooses the
trusted immortal from the set of available location names. Rule TrIm in Fig. 5
shows how we represent this behavior starting out from an initial configuration.
Rule Fail then allows any location to fail at any time, unless it has already
failed or is immortal. Note that, in case of a location failure, we allow that
the associated memory may still be inspected in spite of the location no longer
contributing.

Figure 6 embeds the steps of the (adapted) semantics of the location-free
calculus into the location-aware setting. Assuming that those steps now carry a
label @� (see Figs. 8 and 9), rule N-Step allows such steps only if their respon-
sible location � has not (yet) failed. Rule N-Susp relies on the label susp(k)@�
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Fig. 6. Located Steps

Fig. 7. Structure II

to govern suspicions: it indicates that (a thread at) location � would like suspect
location k to have failed. This is generously permitted, unless it applies to the
trusted location trim and unless the suspector itself has failed. As a consequence,
every run generated with these rules satisfies Weak Accuracy.

Figure 7 is the counterpart to Fig. 2, but now adapted to deal with location-
aware labels η ∈ {@�, susp(k)@� | �, k ∈ L}.

Figure 8 contains the location-aware variants of the rules in Fig. 3. Rules L-

Decl and L-Assign now take place in locations as opposed to just processes.
However, rule L-Rcv will now only allow a thread inside a location at � to receive
a message csrc→�〈v〉 if two conditions are satisfied: it must be explicitly addressed
to � and it also must originate from the expected source location at src.

Figure 9 contains the location-aware variants of the rules in Fig. 4. In addi-
tion, rule L-Susp allows a thread to ignore a reception by launching a suspicion
request for the intended source location of the sender. Rule L-Snd differs from
rule Snd of Fig. 4 mainly in the formation of the message in travel: now, mes-

Fig. 8. Located Memory-Changing Steps
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Fig. 9. Located Non-Memory-Changing Steps

sage c�→trg〈v〉 explicitly mentions its source � and target trg. Rules L-Ident,
L-True, and L-False now take place in locations as opposed to just processes.

Normalized Derivations. Due to the design of our semantics rules, every deriva-
tion of a transition on configurations F �trim N can be normalized. Either, the
root of the derivation tree is generated by one of the rules in Fig. 5; then nothing
else needs to be considered, as the premises do only depend on F and trim. Or,
the root is derived by one of the rules in Fig. 6. Then, the transition premise can
be always be derived with an application of rule L-Str of Fig. 7. Its purpose is
to rearrange the structure of N as well as the internals of its locations such that
rule L-Par can be applied (possibly multiple times). The goal is to identify a
single location �[ M � T | T̂ ], possibly together with a suitable singleton “travel
bag” in order to enable the application of one of the rules in Figs. 8 and 9. An
application of rule L-Str can support this by shifting the identified location to
the left, if needed (by L-Rcv) together with a suitable message, and also shift
the intended thread T to the left inside this location.

5 Case Study: Distributed Consensus

In this section, we formalize the algorithm that we presented in the Introduction
within our distributed process calculus and prove that it correctly solves Dis-
tributed Consensus, i.e., that it satisfies Validity, Agreement and Termination.

As the algorithm uses booleans and natural numbers, we define our sets of
expressions and values accordingly: B ∪ N ⊆ V. We also need operations on
numbers and comparisons among them, so E shall include e1 + e2, e1 = e2,
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Fig. 10. Algorithm

e1 ≤ e2 for e1, e2 ∈ E . We assume that the evaluation function eval (see Sect. 2)
takes care for ill-formed and ill-typed cases by then yielding ⊥.

In addition, we use a single channel c for the message exchanges; as our
calculus fixes source and target location names in communication actions, it
will always be unambiguous for which round a message is intended by simply
identifying the sender as the respective coordinator of a round: C � {c} ⊆ V.
Likewise, we let L � {1, . . . , n} ⊆ N, as this is the convention provided by the
algorithm. On may (and should!) criticize the abuse of natural numbers for this
purpose, which intentionally confuses location names and round numbers, but in
order to remain as close to the pseudo code as possible, we follow this convention.

For the vector (input1, . . . , inputn) of initial proposals for the n participants,
the code in Fig. 10 represents the algorithm, as formalized in our calculus. We
instrument the code with tags ➊ . . . ➑ to refer to positions in the code. (Tag ➊
is used several times, but always with the same thread identifier).

Consensus(input1,...,inputn)
defines a network of locations, one for each partici-

pant � ∈ {1, . . . , n}. Each location is equipped with an initial memory, where we
directly set the four variables chan, x, r, output to their initial values. Note that
all participants dispose of the same channel vector. Note also that their initial
memories only potentially differ in their initial proposals. We could also use ded-
icated var -declarations and assignment steps; the effect would be the same, but
at the expense of 4 ∗ 2 ∗ n additional execution steps. Note that all locations are
closed, so the defined network Consensus(input1,...,inputn)

is legal.
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On each location, the same code is run, as represented by the thread definition
for Lchan,x,r,output

� . Note that the code does not include any variable declarations,
so no α-conversion will ever be needed during execution. The increment of the
round number (➋) together with the break condition (➌) simulate the for-loop
of the pseudo code. Apart from this deviation, the code only essentially differs
from its pseudo variant in that we do not need to check for “alive(pr)”, as in our
calculus suspicion is, except for the trusted immortal, always allowed (➏). Note
that the command broadcast xi is explicit in our code as multiple output (➎).
Here, we deviate from the pseudo code in that we have a coordinator not send a
message to itself and then wait for its reception; therefore, we use an if-then-else
instead of the two if-then constructs in the pseudo code. Finally, note that the
thread is completely sequential; there are no parallel threads.

The execution of the algorithm then starts from ∅ � Consensus(input1,...,inputn)
with no failed processes, and with a trusted immortal yet to be determined. By
the design of our semantics, every reachable configuration can be represented in
a standard form, up to structural congruence ≡�α, as follows:

∅ � Consensus(input1,...,inputn) 	−→+ F �trim Æ ‖
∏

�∈{1,...,n} �[ M� � ✪� T� ]

where we use
∏

�∈L �[M� � T�] for L ⊆ L as abbreviation for the parallel compo-
sition of locations �[M� � T�] modulo associativity and commutativity.

Therefore, for every reachable configuration, we can now simply inspect (i)
the messages in transit (Æ), (ii) the individual local states M� of all participants,
and (iii) the “program counters” ✪� (to be understood as a location-specific
metavariable) for all participants. Using this direct access, we can now state an
informative (global state) invariant. On the one hand, it is very close to the
intuitive reasoning that we sketched in Sect. 1. On the other hand, it is formal
and can be checked with precise reference to our operational semantics.

Lemma 2 (Invariant). Let (input1, . . . , inputn) be a valid vector of proposals.
Let Undecided � {input1, . . . , inputn}.

If ∅ � Consensus(input1,...,inputn) 	−→+ F �trim Æ ‖
∏

�∈{1,...,n} �[ M� � ✪� T� ],

then ∀� ∈ [1, n].(
M�(r) < trim → M�(x) ∈ Undecided∧
ctrim→�〈v〉 ∈ Æ → v = Mtrim(x)∧
M�(r) = trim ∧ � �= trim →

( (
✪� ∈ {➌, ➍, ➏} → M�(x) ∈ Undecided

)
∧

(
✪� ∈ {➐, ➊, ➋} → M�(x) = Mtrim(x)

))
∧

M�(r) > trim → M�(x) = Mtrim(x)∧
c�→k〈v〉 ∈ Æ ∧ � > trim → v = Mtrim(x)∧
M�(r) > n ∧ ✪� = ➑ → M�(output) = M�(x)

)
Note that we use the convention of TLA+ on the use of conjunction lists [16],
in which the enlisted conjuncts internally have stronger operator precedence.
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The invariant of Lemma 2 points out that for every participant �, depending
on their respective round M�(r), the content of its current proposal M�(x) can
be constrained. Before round trim, not much can be guaranteed (conjunct 1), as
suspicions may be applied at will. However, within round trim, it is precisely the
passage of all non-coordinators from ➏ to ➊ that changes the situation (con-
juncts 2 and 3), as none of them may suspect the coordinator trim to have failed.
Afterwards, this value will be uniformly proposed by all later coordinators (con-
juncts 4 and 5). In the invariant, the statements on messages in Æ just strengthen
the statement in order to make the induction go through, as the information of
the decision value is passed on from locations to messages in transit, from where
they will be received by the target locations. Finally, note that if the conditions
of the constraints are met in a configuration, then this means that a participant
was non-failing for long enough in order to reach this state.

Proof (Sketch). We proceed by induction on the length of the sequence 	−→+

(note that this induction starts after the first step to determine trim). The invari-
ant is initially trivially satisfied, as all processes are in round 0 and Æ = ∅.

The induction step addresses

F �trim Æ ‖
∏

�∈{1,...,n} �[ M� � ✪� T� ]
	−→ F ′ �trim Æ′ ‖

∏
�∈{1,...,n} �[ M ′

� � ✪′
� T ′

� ]

for which we check all possibilities of deriving such a transition. Note that every
derivation that results from an application of the rules Fail (only changes F
to F ′), L-True, L-False, L-Ident, L-Susp (only change ✪� T� to ✪′

� T ′
�) will

keep the invariant valid, as they neither change Æ nor any of the M�. The changes
to the position must be checked, but are harmless (e.g., ➌ to ➍ to ➏, or ➊ to ➋).
Rule L-Decl will never be applied, as there are no variable declarations in the
code. Otherwise, we only have to deal with applications of the rules L-Assign,
L-Snd and L-Rcv, appearing in the following cases (in which � �∈ F ):

1. participant � moving from ➋ to ➌: rule L-Assign

2. participant � moving from ➎ to (either again ➎ or) ➊: rule L-Snd

3. participant � moving from ➏ to ➊: rule L-Rcv

4. participant � moving from ➐ to ➑: rule L-Assign

As an example of case 2, consider � = trim with Mtrim(r) = trim for the first time
in position ➎. If the induction step applies L-Snd, then the message ctrim→j〈v〉
appearing in Æ is the first one originating from trim such that for the induction
step afterwards conjunct 2 must be checked. It is satisfied, as rule L-Snd will
use evalMtrim(x) = Mtrim(x) as the payload v for this message.

As another example, consider a non-coordinator � (�= trim) in just the round
M�(r) = trim in position ➏. By induction (conjunct 3, subconjunct 1), M�(x) ∈
Undecided. If the induction step applies L-Rcv, then the message ctrim→�〈v〉 ∈ Æ
must be available. After the step, participant � will be in position ➊, so the second
subconjunct of conjunct 3 must be satisfied. This holds, as conjunct 2 is true in
the hypothesis, because rule L-Rcv updates the memory with the received v.
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Note how this proof makes heavy use of the direct access to the values of
local variables M�(r) for the various � ∈ L at each reachable configuration of
an execution. After all, it is this possibility of access to local variables in our
calculus that makes the proof doable and thus satisfies the title of this paper.

Theorem 1. The algorithm of Fig. 10 solves Distributed Consensus.

Proof (Sketch). Termination holds, as the only potentially blocking operation
is in input position (➎). Participants may always suspect, though, unless they
wait for trim. In this case, there will eventually be a message, as trim cannot fail.

Validity holds, as the invariant never uses a value that is not in Undecided.
Agreement holds with conjunct 6 of the invariant and Termination.

6 Conclusion

We provide linguistic support for state-based reasoning in distributed process
calculi. We do so by equipping located processes, the units of distribution in
such calculi, with local memories. We develop syntax and operational semantics
for this calculus in two steps, starting with a fault-free version. We demonstrate
the applicability of our calculus on the formalization of a fault-tolerant algorithm
to solve Distributed Consensus. The correctness proof highlights the proximity
of our formalization with the widely-used intuitive correctness arguments.

We conjecture that our calculus (or slight extensions of it) is applicable to the
large class of fault-tolerant distributed algorithms, which use typical pseudo code
with global asynchronous message passing and reference to local variables, next
to simple control structures like loops and conditionals. It is rare in this domain
that (channel) name passing, as known from the (Applied) Pi Calculus [20, 1],
is needed in algorithms. We see, however, no problem at all to also include a
restriction operator in our calculus to govern the scope of channel names.

Further work consists of applying our approach to other Distributed Con-
sensus algorithms and mechanizing the reasoning about the invariant and the
correctness proof. In [14], we used state machines and checked their correctness
in Isabelle. We plan to develop a similar formalization of our calculus.

A Definitions

Definition 3 (Fetching Values for Variables in Memories).

fetchM (e) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e if e ∈ V

M(e) if e ∈ X ∧ M(e) ∈ V

(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)
f(fetchM (e′)) if e = f(e′)
⊥ else
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Definition 4 (Bound and Free Variables). We define the functions bv/fv
on threads as follows:

bv(0) � ∅
bv(μ.T ) � bv(μ) ∪ bv(T )

bv(G1 + G2) � bv(G1) ∪ bv(G2)

bv(Ix1,...,xn) � ∅
bv(if e then T1 else T2) � bv(T1) ∪ bv(T2)

bv(T1 | T2) � bv(T1) ∪ bv(T2)

fv(0) � ∅
fv(μ.T ) � (fv(μ) ∪ fv(T )) \ bv(μ)

fv(G1 + G2) � fv(G1) ∪ fv(G2)

fv(Ix1,...,xn) � {x1, . . . , xn}
fv(if e then T1 else T2) � fv(e) ∪ fv(T1) ∪ fv(T2)

fv(T1 | T2) � fv(T1) ∪ fv(T2)
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Abstract. Symbolic execution is a technique to systematically explore
all possible paths through a program. This technique can be formally
explained by means of small-step transition systems that update sym-
bolic states and compute a precondition corresponding to the taken exe-
cution path (called the path condition). To enable swift and robust com-
positional reasoning, this paper defines a denotational semantics for sym-
bolic execution. We prove the correspondence between the denotational
semantics and both the small-step execution semantics and a concrete
semantics. The denotational semantics is a function defined piecewise
using a partitioning of the input space. Each part of the input space is
a path condition obtained from symbolic execution, and the semantics
of this part is the corresponding symbolic substitution interpreted as a
function on the initial state space. Correctness and completeness of sym-
bolic execution is encapsulated in a graceful identity of functions. We
provide mechanizations in Coq for our main results.

Keywords: Formal methods · Programming semantics · Denotational
semantics · Symbolic execution

1 Introduction

Major successes in program analysis, particularly for debugging, test case gen-
eration, and verification, have been achieved by symbolic execution [2–6,8–10]: a
powerful simulation technique in which symbolic states represent a wide range of
concrete program states. It has only recently been formalized and proven correct
[2] with respect to a concrete operational semantics.

With symbolic execution, program states associate program variables to sym-
bolic expressions rather than concrete values. Assignments in the program can
then be understood as updating the symbolic state through substitutions σ.
When encountering control-flow statements guarded by Boolean expressions, no
concrete choice can be made. Instead, the transition system modeling symbolic
execution branches in both possible directions (theoretically using nondetermin-
ism, in practice exploring both branches), and updates its own state by storing
the Boolean guard under substitution. It thus generates the path condition φ: an
aggregation of all Boolean control-flow guards under substitution. If a program
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Ábrahám et al. (Eds.): ICTAC 2023, LNCS 14446, pp. 370–387, 2023.
https://doi.org/10.1007/978-3-031-47963-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47963-2_22&domain=pdf
http://orcid.org/0009-0007-9712-3224
http://orcid.org/0009-0007-1957-4409
http://orcid.org/0000-0001-5382-3949
https://doi.org/10.1007/978-3-031-47963-2_22


Denotational Semantics for Symbolic Execution 371

p has a finite trace in the symbolic execution system that ends in a symbolic
state (σ, φ), then the final state of a concrete execution of p on an initial state
satisfying φ can also be obtained by performing the substitution σ on that initial
state. Thus, symbolic execution is really a way to partition program behavior
into different branches, where behavior of the branch is tracked by the symbolic
substitution σ, and the path conditions φ are preconditions specifying the branch
that is taken.

Symbolic execution is a compelling technique for verification purposes: given
a postcondition ψ and a terminated symbolic execution (σ, φ) of a program p,
the formula φ ∧ σ ψ is a precondition for ψ. The path condition φ ensures that
program behavior corresponds to σ, and applying σ to the postcondition ψ –
this is done variable-wise – is a way of inverting program behavior correspond-
ing to σ on the set specified by ψ—this inversion is made formal later in (3).
Ranging over the (possibly infinite) set of terminated symbolic executions, tak-
ing the disjunction of all the formulae φ ∧ σ ψ yields the weakest precondition
in disjunctive normal form.

All this and more can be reasoned about more effectively when symbolic
execution is equipped with a denotational semantics, which is the goal of this
work. To this end, two seemingly obvious, yet crucial observations are in order:

– The symbolic substitutions σ are syntactic objects representing functions that
denotationally transform concrete initial states (cf. (1) in Sect. 4).

– The path conditions φ are syntactic objects representing subsets of the initial
state space, and form a subpartition for it. For programs that terminate on
all inputs, the path conditions form a partition of the input space.

It is well-understood that syntactically performing a substitution within a substi-
tution means to do function composition. This means that symbolic execution
traces can be denotationally composed by performing nested substitutions. A
natural question to ask now is: what happens to the path condition when we
compose symbolic execution traces?

Example. As a simple example, consider a program1 that stipulates the behavior
of the absolute value function for real numbers:

pabs ≡ if (x<0) { x := -x; } else { Skip; }

Symbolically executing a program is usually done starting from the initial con-
figuration (σ0,�): the identity substitution σ0 along with the path condition
� (true) specifying the entire input space. The program pabs above has two
symbolic executions, both terminating. One of these executions is

(pabs, σ0,�) � (x:=-x, σ0,� ∧ x < 0) � (Skip, (x �→ −x),� ∧ x < 0)

where Skip is the terminated program. The first step analyzes the if statement,
in this case picks the true branch, and updates the path condition accordingly
1 Symbolic execution may seem to be a trivial exercise for this simple program, but

note that, as programs grow, it is highly effective in several areas of program analysis.



372 E. Voogd et al.

with the conjunct x < 0. The second step analyzes the assignment x:= − x and
updates the substitution accordingly. Hence, we have (pabs, σ0,�) ∗� (Skip, σ, φ)
where σ and φ are as above, and ∗� is a reflexive-transitive closure.

Suppose now that we have analyzed two programs p and q and obtained

(p, σ0,�) ∗� (Skip, σp, φp) and (q, σ0,�) ∗� (Skip, σq, φq)

It is not straightforward from the usual small-step symbolic operational seman-
tics how these two traces compose to the sequenced program p � q. This is because
the second execution does not continue from the configuration where the first
one left off; it used the usual initial configuration. One would expect to obtain a
symbolic trace

(p � q, σ0,�) ∗� (Skip, σ, φ)

where σ is σp within σq (syntactically), meaning σq after σp when interpreted as
functions. Regarding the path condition, one will expect to obtain φ = φp∧σp φq

(i.e., σp applied to all the variables occurring in φq), since executing p yields φp,
and executing q yields φq, but this time we started from σp instead of σ0.

Contribution. These and similar facts regarding compositionality of symbolic
execution traces are not easily proven using small-step transition systems. In this
paper, we introduce denotational semantics for symbolic execution to support
such compositional reasoning. Historically, denotational semantics have been
very effective for compositional reasoning, enabling swift and potent reasoning
about programs. Our experience in reasoning about symbolic execution for, e.g.,
concurrent or probabilistic programs [19], has shown us that this novel view of
symbolic execution is fruitful and, for some proofs, even necessary. Example 6 in
Sect. 4 illustrates how compositionality of sequencing in symbolic execution can
be applied using our denotational semantics.

This new denotational semantics for symbolic execution formalizes the ideas
described above: symbolic substitutions σ are interpreted as functions |σ| on the
initial state space, and the collection of path conditions φ are interpreted as a
partition of the initial state space where execution terminates. The denotational
semantics (presented in Definition 1) then selects the right partition φi of the ini-
tial state space, and picks the corresponding function |σi|. This selection process
is informally denoted by

⊕
in the pictorial representation of the denotational

semantics in Fig. 1 (right).
To introduce this new semantics, we use the toy language While, presented in

Sect. 2, which supports unbounded loops. We describe its concrete denotational
semantics as a recursively defined function. After that, in Sect. 3, we introduce
our main contribution: a denotational semantics for symbolic execution. This
semantics corresponds to the concrete semantics given in Sect. 2, as stated in
Theorem 1. This result, which is simply a very graceful identity of functions,
trickles down to correctness and completeness of the transition systems imple-
menting concrete and symbolic execution.

In Sect. 4, we present symbolic execution in two equivalent ways: first, as
done by De Boer and Bonsangue [2], we extract traces—finite lists of assignments
and Boolean assertions—from programs, and define the substitutions and path
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Fig. 1. Pictorial representations of denotational semantics (left concrete, right symbolic
execution). V is the value space; X the set of variables

conditions on these traces. Every trace constitutes a part of the denotational
semantics presented in Sect. 3, as stated in Theorem 2. Second, the substitutions
and path conditions can be directly generated by a transition system—this is
more in line with implementation practice. We provide a proof of correspondence
between these two approaches to symbolic execution in Proposition 1. Most
results up until Sect. 4 have been mechanized2 in the Coq theorem prover [7]—
they are labeled with the symbol . In Sect. 5, we discuss a straightforward
extension of our work to procedure calls, with support for mutual recursion.

2 The Language While

e ∈ E ::= x
| op(e1, . . . , en)

p ∈ P ::= Skip
| x:= e
| p � p
| if b p p
| while b p

In the language While, programs p are generated
by means of assignments x:= e of expressions e to
variables x (free of side-effects), sequencing, con-
ditional branching and unbounded loops. Expres-
sions e ∈ E are generated by operators op over
the variables x ∈ X . Zero-arity operators can be
considered constants (in Q, for example). There is
a distinct subset BE ⊆ E of Boolean expressions
b ∈ BE that are used for branching and loops.
There are at least the following three distinguished operators: the constant truth
� ∈ BE, the unary operator ¬ for negation, and the binary operator ∧ for
conjunction.

Concrete Semantics. Variables x ∈ X take values in a value space V. To evaluate
Boolean expressions b ∈ BE, we assume there is a distinguished truth value
1 ∈ V. A (concrete) program state is a valuation v : X → V, or v ∈ VX that
assigns a value to each program variable. The updated valuation v[y �→ a] (some
a ∈ V) denotes the valuation v′ for which v′(x) = v(x) if x 	= y and v′(y) = a.

2 The mechanized theory is available at https://doi.org/10.5281/zenodo.8096802.

https://doi.org/10.5281/zenodo.8096802
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Expressions e are functions |e| : VX → V such that |x|(v) = v(x), and evalu-
ated recursively. That is, |op(e1, . . . , en)|(v) = op(|e1|(v), . . . , |en|(v)), where op
denotes the interpretation of the operator. The Boolean expressions b ∈ BE of
branching and iteration conditions are interpreted as an indicator function. That
is, v satisfies b (by definition), written v � b, if and only if |b|(v) = 1. Boolean
expressions b may thus be interpreted as subsets |b| ⊆ VX of the state space,
where v ∈ |b| iff |b|(v) = 1. The Boolean expression � is defined as |�| = VX .
Negation is interpreted as set complement in VX and conjunction is set inter-
section. We sometimes write e or b in lieu of |e| or |b|.

The semantics of programs p ∈ P are partial functions fp : VX ⇀ VX defined
inductively as:

fp : v �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if p = Skip
v[x �→ e(v)] if p = x:= e

(fp2 ◦ fp1)(v) if p = p1 � p2

fp1(v) if p = if b p1 p2 and v � b

fp2(v) if p = if b p1 p2 and v 	� b

fm
q (v) if p = while b q, where m := min{j ∈ N : f j

q (v) 	� b}

Here, fm denotes m-fold iterated applications of f (and identity for m = 0).
Partiality of a function arises when while loops diverge: there may not exist
j ∈ N such that f j

q (v) 	∈ b. If p is undefined for input v, we write fp(v)↑. On the
other hand, if p is defined for v, we write fp(v)↓.

The definition of the partial function for the while case is equivalent to a
least fixed point construction using total functions, extending the codomain with
undefinedness (⊥). The partial order of functions is pointwise, and the relation
on VX ∪ {⊥} is the identity unioned with {⊥ ≤ v | v ∈ VX }.

Example 1. Consider the program pabs from Sect. 1, and let V = Z and X = {x},
so VX = Z. We have, e.g., fpabs : −2 �→ 2 and fpabs : 42 �→ 42.

3 Symbolic Execution Semantics

We now turn to the central definition in this work. The denotational semantics
for symbolic execution is defined using the subset Fp ⊆ (VX → VX ) × P(VX ),
defined inductively below over the structure of p. The semantics of a program p
will then be a piecewise definition of pairs (F,B) ∈ Fp. We therefore refer to an
element (F,B) ∈ Fp as a piece of p; F is the piece behavior and B is the piece
precondition. Every piece corresponds to a symbolic execution, as we will show
later.

– For inaction, the state remains unaltered and there is no restriction on the
precondition:

FSkip := {(v �→ v,VX )}
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– An assignment has no restriction on the precondition, but the state is updated
according to the assignment:

Fx:= e := {(v �→ v[x �→ e(v)],VX )}

– When sequencing two programs p and q, range over all pairs of executions and
compose them. The first precondition should be satisfied and, after executing
the first component, the second precondition should be satisfied:

Fp � q := {(F2 ◦ F1, B1 ∩ F−1
1 [B2]) : (F1, B1) ∈ Fp, (F2, B2) ∈ Fq}

For later use, we will also denote this structure by Fq � Fp.
– The two branches of an if statement are put together in a union of sets—the

precondition is updated accordingly (−� denotes complement):

Fif b p q := {(F,B ∩ b ) : (F,B) ∈ Fp} ∪ {(F,B ∩ b�) : (F,B) ∈ Fq}

– In a while statement, the disjoint union is for every possible number of itera-
tions m. For m = 0, the behavior is that of Skip, v �→ v, and the pre-condition
is the negation of the Boolean formula. Every next number m+1 of loop iter-
ations takes all possible executions of m iterations, pre-composes all possible
additional iterations, and updates the preconditions accordingly:

Fwhile b p :=
∞⋃

m=0

(Ωb,p)m{(v �→ v, b�)},

where (Ωb,p)m denotes m applications of the mapping Ωb,p from (VX →
VX ) × P(VX ) to itself that pre-composes an additional iteration of the loop:

Ωb,p : F �→ {(F ◦ Fp, b ∩ Bp ∩ F−1
p [B]) : (F,B) ∈ F, (Fp, Bp) ∈ Fp}

Example 2. For the program pabs from Sect. 1, with VX = Z, we have Fpabs =
{(F1, B1), (F2, B2)}, where F1 : x �→ −x and B1 = Z<0; F2 : x �→ x and B2 = N.

The preconditions form a subpartition of the input space; they may not cover
the whole input space due to non-termination:

Lemma 1 (Pairwise Disjoint Preconditions). Let (F,B), (F ′, B′) ∈ Fp. If
B ∩ B′ 	= ∅ then (F,B) = (F ′, B′).

Proof (Sketch). By induction on the structure of p. The base cases vacuously hold
because the Fp are singletons. The inductive steps are mechanically verified.

The lemma justifies the following definition, where a unique (F,B), if it exists,
is picked:

Definition 1 (Denotational Semantics of Symbolic Execution). Let p
be a program. The symbolic semantics of p is the partial function Fp : VX ⇀ VX

defined by

Fp : v �→
{

F (v) if (F,B) ∈ Fp s.t. v ∈ B

undefined otherwise
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With this semantics, correctness and completeness of symbolic execution with
respect to concrete execution are encapsulated in one elegant identity:

Theorem 1 (Concrete Correspondence ). For all p, fp = Fp.

4 Symbolic Execution

The semantics described in Sect. 3 is a denotational semantics for symbolic exe-
cution systems, such as the one described by De Boer and Bonsangue [2]. We
will provide a detailed proof of this in the sequel, by defining traces through
a program and showing that each (F,B) ∈ Fp corresponds to a trace. Every
such trace corresponds to a final substitution and path condition obtained from
symbolic execution.

Traces form a subclass of programs that are free of branching and loops. The
syntax of traces is generated by the following grammar:

T � t ::= ( x:= e | b )∗

They are finite lists of assignments and Boolean assertions.
Traces are extracted from a program p through a nondeterministic transition

relation −→⊆ (P×T)× (P×T). The following symbolic transition rules imple-
ment the extraction of traces; we write · to attach an element at the end of the
list (and later also overload it to denote concatenation of traces, and furthermore
for deconstruction):

Fig. 2. Inductive transition rules for trace extraction

The reflexive-transitive closure ∗−−→, starting from the empty trace ε, produces
all finite traces through a program p:

Tp := {t ∈ T : (p, ε) ∗−−→ (Skip, t)}.

The unfolding of while loops produces infinite traces (not considered in Tp). The
system is progressive; the program Skip is the only one that cannot make a
transition, and is considered the terminated program. Nondeterminism arises
only from the outgoing transitions from if and while statements.

Example 3. The program pabs from Sect. 1 has two traces: (x < 0) · (x:= − x)
and ¬(x < 0).
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If (p, s) ∗−−→ (q, u) then s is a prefix of u, i.e., u = s · t for some trace t. Moreover,
(p, s) ∗−−→ (q, s · t) if and only if (p, ε) ∗−−→ (q, t). Sequencing of programs is
concatenation of traces: u ∈ Tp � q if and only if there are s ∈ Tp and t ∈ Tq such
that u = s · t.

4.1 Final Substitutions

Below we will show how to extract substitutions from traces. A (symbolic) sub-
stitution is a map σ : X → E from variables to expressions over variables.
Expressions e ∈ E should be interpreted symbolically ; the denotation |e| will
always be made explicit from now on.

The updated substitution σ[x �→ e] for some e ∈ E maps x �→ e and leaves
every other variable y unchanged: y �→ σ y for y 	= x. A substitution σ can be nat-
urally extended to expressions e ∈ E by σ op(e1, . . . , en) := op(σ e1, . . . , σ em).
The identity, or initial substitution {x �→ x}x∈X is denoted σ0.

Semantically, expression evaluation, as in |e| : VX → V, extends naturally to
symbolic substitutions σ. In fact, |σ|, given a concrete state v ∈ VX , provides
the evaluations of the expressions associated to the variables by the substitution.
That is,

|σ| : VX → VX , v �→ (x �→ |σ x|(v)) (1)

In other words, |σ| is a concrete state transformer. Note that we overload the
notation | · | here: on the left, it interprets a substitution; on the right, it inter-
prets an expression.

We have |σ0|(v) = v for all v ∈ VX , which corresponds to the behavior
of Skip. Induction over expressions (not unexpectedly) shows that evaluating
expressions after the semantic effect of a substitution is denotationally the same
as performing the substitution within the expression:

(|e| ◦ |σ|)(v) = |σ e|(v) (2)

for every expression e ∈ E and every v ∈ VX . This holds in particular for Boolean
expressions b ∈ BE, so that, for v ∈ VX , it holds that |σ|(v) � b if and only if
v � σ b, and so

|σ b| = |σ|−1[|b|
]

(3)

Behaviors of traces are extracted as a symbolic substitution as follows:

Definition 2 (Trace Substitution). The function Sub : T → E
X → E

X is
defined inductively over the structure of traces t ∈ T as follows:

Sub(ε, σ) = σ
Sub(x:= e · t, σ) = Sub(t, σ[x �→ σ e])

Sub(b · t, σ) = Sub(t, σ)

The substitution of a trace t, denoted Sub(t), is defined to be Sub(t, σ0).
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In this definition, the notation Sub is overloaded: a trace and a substitution
define a new substitution, but if only a trace is specified, the substitution is
taken to be the initial one, σ0. If t ∈ Tp (meaning (p, ε) ∗−−→ (Skip, t)), the
substitution Sub(t) is called a final substitution of p. Final substitutions Sub(t)
of a program p are thus interpreted as functions |Sub(t)| that transform inputs
according to the trace t through p.

Example 4. The final substitution of the trace t = (x < 0) · (x:= − x) ∈ Tpabs is

Sub(t) = Sub((x < 0) · (x:= − x), σ0) = Sub(x:= − x, σ0) = Sub(ε, σ0[x �→ −x])

and this is just x �→ −x. Note the distinction in font typesetting between this
substitution and the function F1 in Example 2. The substitution here is really
the syntactic object x �→ −x whose denotation is F1. This distinction is crucial
for understanding symbolic execution from a denotational perspective.

Concatenation of traces is composition of the substitutions:

Lemma 2 (Composition of Substitutions ). For all traces s, t ∈ T:
|Sub(s · t)| = |Sub(t)| ◦ |Sub(s)| as functions.

Proof. We have Sub(s · t, σ) = Sub(t,Sub(s, σ)) by induction on s. Also
|Sub(s, σ)| = |Sub(s, σ0)| ◦ |σ|, where the interesting inductive step is

|Sub(x:= e · s, σ)| = |Sub(s, σ[x �→ σ e])|
IH= |Sub(s)| ◦ |σ[x �→ σ e]|
∗= |Sub(s)| ◦ |Sub(x:= e)| ◦ |σ|
IH= |Sub(s,Sub(x:= e))| ◦ |σ|
= |Sub(x:= e · s)| ◦ |σ|

where, at (*), one uses |Sub(x:= e)| ◦ |σ| = |σ[x �→ σ e]|. Indeed, for y 	= x and
arbitrary input v, both sides reduce to |σ y|(v), and for y = x, where x is the
variable used in the assignment, the left-hand side reduces to |e|(|σ|(v)); the
right-hand side to |σ e|(v)—these are equal as mentioned (2). Now

|Sub(s · t, σ0)| = |Sub(t,Sub(s, σ0))| = |Sub(t, σ0)| ◦ |Sub(s, σ0)|,

which was to be shown.

4.2 Path Conditions

Given a program p and a final substitution Sub(t) of some trace t ∈ Tp, how do
we know for which inputs p behaves like |Sub(t)|? To answer this question, we
extract a precondition from the Boolean assertions in the trace. This precondition
is called the path condition in symbolic execution, and represents the unique part
of the input space that triggers p to behave like Sub(t). The Boolean conditions
have to be taken under appropriate substitutions; this makes their definition
somewhat intricate.
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Definition 3 (Trace Path Condition). The function PC : T → E
X → E is

defined inductively over the structure of traces t ∈ T as follows:

PC(ε, σ) = �
PC(x:= e · t, σ) = PC(t, σ[x �→ σ e])

PC(b · t, σ) = σ b ∧ PC(t, σ)

The path condition of a trace t, denoted PC(t), is defined to be PC(t, σ0).

The notation PC is again overloaded: if only a trace is provided, the substitution
is taken to be the initial one. Interestingly, PC treats assignments in the same
way as Sub. Whereas Sub ignores Boolean assertions, PC uses them to generate
the Boolean precondition. Being a Boolean expression, the path condition has
an interpretation (denoted | · |) as a subset of the initial state space VX .
Example 5. Suppose now that pabs is preceded by an assignment x:= x+2, so let
qabs = x:= x+ 2 � pabs. This qabs has a trace t = (x:= x+2) · (x < 0) · (x:= − x)
in Tqabs . Its path condition is

PC(t, σ0) = PC((x < 0) · (x:= − x), σ0[x �→ x+ 2])
= (x+ 2 < 0) ∧ PC(x:= − x, (x �→ x+ 2))

and this is (x+ 2 < 0) ∧ �.
Similar to substitutions (Lemma 2), path conditions can be composed (back-
wards) when traces are sequenced:

Lemma 3 (Backward-Composition of Path Conditions ). For all traces
s, t ∈ T: |PC(s · t)| = |PC(s)| ∩ F−1

[
|PC(t)|

]
where F = |Sub(s)|.

Proof. By induction on s, for every substitution σ, PC(s · t, σ) ≡ PC(s, σ) ∧
PC(t,Sub(s, σ)), where ≡ denotes the equivalence b ≡ b′ defined by |b| = |b′|.
Syntactic equality fails due to extra truth conjuncts in the base case. By induc-
tion on t, one also shows that |PC(t, σ)| = |σ|−1[|PC(t)|

]
, where one crucially

uses the fact (3) that |σ b| = |σ|−1[|b|
]

for all b. Now

|PC(s · t, σ0)| = |PC(s, σ0) ∧ PC(t,Sub(s, σ0))| = |PC(s)| ∩ |Sub(s)|−1[|PC(t)|
]

A trace t ∈ Tp is feasible if |PC(t)| 	= ∅.
Theorem 2 (Trace Correspondence ). Let p be a program. There is a
one-to-one correspondence between feasible traces t ∈ Tp and pieces (F,B) ∈ Fp

with B 	= ∅.
Proof (Sketch). The bijection is Φp : Tp → Fp, t �→ (|Sub(t)|, |PC(t)|). For all
p, there are three things to show: well-definedness, surjectivity, and injectivity.
Well-definedness here means (|Sub(t)|, |PC(t)|) ∈ Fp for t ∈ Tp. These three
things are proven by induction on the structure of p.

Unfeasible traces are not considered in the correspondence, because they have
no semantic contribution to the program. They are moreover semantically hard
to identify, because one is forced to reason about the nature of F . On the other
hand, two pieces (F,B), (F ′, B′) for feasible traces can easily be distinguished
by their path conditions, since they have to be disjoint (Lemma 1).
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Fig. 3. Inductive transition rules for direct symbolic execution

4.3 Direct Symbolic Execution

We have extracted traces from a program and defined the final substitutions and
path conditions for them. Instead, we could have extracted these directly, as is
done in practice. For the rules of a transition system that does exactly this, see
Fig. 3. Again, ∗� denotes the transitive closure of �. Note that every rule here
has a corresponding rule in Fig. 2, and a simple analysis will show that both
systems produce the same results:

Proposition 1 (Symbolic Execution via Traces ). Let p be a program.

– If (p, ε) ∗−−→ (p′, t) then (p, σ0,�) ∗� (p′,Sub(t), φ) where |φ| = |PC(t)|.
– If (p, σ0,�) ∗� (p′, σ, φ) then there is a trace t such that (p, ε) ∗−−→ (p′, t) with

Sub(t) = σ and |PC(t)| = |φ|.

This proposition holds in particular for p′ = Skip, yielding a correspondence
between Tp and pairs of final substitutions and path conditions obtained from
direct symbolic execution.

Proof (Sketch). By induction on the length of the transition chains. The induc-
tive step consists of a case analysis of all single-step transitions, which is a
straightforward unfolding of definitions.

The following are immediate corollaries of Theorems 1 and 2 and the above
proposition.

Corollary 1 (Correctness ). If (p, σ0,�) ∗� (Skip, σ, φ) then fp(v) = |σ|(v)
for all v such that v � φ.

Corollary 2 (Completeness ). If fp(v)↓ then there is a symbolic execution
(p, σ0,�) ∗� (Skip, σ, φ) such that v � φ which is unique in this property.

Example 6. Consider the program qabs from Example 5. The program pabs has
the two terminating symbolic executions (x �→ −x, x < 0) and (σ0, x ≥ 0), whose
denotations are respectively (α : x �→ −x,Z<0) and (idZ : x �→ x,Z≥0). The
assignment x:= x + 2 has one symbolic execution (x �→ x + 2,�) with denota-
tion (β : x �→ x + 2,Z). The denotational semantics immediately says that the
sequence qabs = x:= x+ 2 � pabs has two symbolic executions with denotations

(α ◦ β, Z ∩ β−1[Z<0]) = (x �→ −(x + 2), Z<−2),
(id ◦ β, Z ∩ β−1[Z≥0]) = (x �→ x + 2, Z≥−2),
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This example illustrates a more general potential of denotational semantics for
symbolic execution. Indeed, consider again the two symbolic executions

(p, σ0,�) ∗� (Skip, σp, φp) and (q, σ0,�) ∗� (Skip, σq, φq)

from Sect. 1. Then, using the denotational semantics of symbolic executions, it
follows naturally that (p � q, σ0,�) ∗� (Skip, σ, φ) for some (σ, φ) with

|σ| = |σq| ◦ |σp| and |φ| = |φp| ∩ |σp|−1[|φq|]

That is, σ is denotationally equivalent to σp within σq – formally {x �→ σp (σq x)}
– and φ is denotationally equivalent to φp ∧ σp φq.

5 Extension to Procedure Calls

In this section we extend While with procedure calls. Let P, Q, . . . range over
procedure names and extend the syntax of program statements with

p ::= . . . | P(
⇀
e )

Here,
⇀
e denotes a finite list e1, . . . , en of expressions that are passed as argu-

ments. They are evaluated to a list of values written |⇀e |(v), accordingly. For a
finite ordered set of variables U = {u1, . . . , un}, write U:=

⇀
e for the sequence of

assignments u1:= e1 � . . . � un:= en. Its semantics v �→ v[U �→ |⇀e |(v)] is clear.
It is assumed that procedures are always declared; a procedure declaration

P :: p binds the procedure name P to the program p. A structured program
[P :: p]∗ p is then a list of procedure declarations followed by a single main pro-
gram statement. For notational simplicity, we assume that the names of declared
procedures in a structured program are distinct and let every local variable in
a procedure be a parameter. Moreover, one finite set U = {u1, . . . , un} of local
variables is used for all procedures. Then, for a procedure declaration P :: p,
p contains variables from X and U . The main function only uses variables in
X—the set of global variables. X is disjoint from U . Every procedure call always
passes n—the size of U—arguments

⇀
e for the parameters. We use void proce-

dures without return values; these can be encoded using a global return variable.

5.1 Concrete Semantics

A parameter k is used to track the recursion depth. Following the terminology of
Owens et al. [15], we refer to this k as the clock. The clock is only instantiated by
the main function and carried across different procedures, allowing for arbitrarily
long chains of nested procedure calls and even mutual recursion.

Let Y be an infinite set of variables used to substitute the local variables
U , and let Y be disjoint from X . For a procedure call P(

⇀
e ) with clock value k,

there is always a finite set Yk ⊆ Y of fresh variables available. We substitute
Yk for the local variables U in the body p of a procedure P to avoid overwriting
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local variables in calls from lower depths. This is written p[U/Yk]. A state during
procedure calls is an evaluation w ∈ VX∪Y . Write w = (v, u), where v : X → V
is the global component and u : Y → V contains the local states.

The semantics gp,k : VX∪Y ⇀ VX∪Y of procedure statements p with clock
value k ∈ N is defined inductively over k and p as:

gp,k : w �→

⎧
⎪⎪⎨

⎪⎪⎩

...
gq[U/Yk−1],k−1(w[Yk−1 �→ |⇀e |(w)]) if p = P(

⇀
e ), k > 0, and P :: q

undefined if p = P(
⇀
e ) and k = 0

The semantics of all other cases is the same as in the concrete semantics of Sect. 2,
with the exception that the clock value k is passed around; it is never altered
except at procedure calls. At a procedure call, the local state is prepared, i.e., w
is updated with Yk−1 �→ |⇀e |(w), and Yk−1 substitutes the set U of local variables
occurring in q, which is the body of the procedure labeled P. For this reason,
we have either x ∈ X or x ∈ Yk for all variables x occurring in assignments
and Boolean expressions in the definitions at clock value k, since q only contains
variables from X and U . Hence, expressions in a local environment at clock value
k are over X ∪ Yk and can be evaluated accordingly.

We let the semantics of the main program follow that of Sect. 2, extended to
procedure calls as follows: if p = P(

⇀
e ) and P :: q is a declaration then

fp(v) := v′, where (v′, u′) = gq[U/Yk],k(v, u0[Yk �→ |⇀e |(v)]),

Here, k is the minimum clock value such that the right-hand side is defined, and
u0 ∈ VY is some initialized local state; e.g., u0(y) = 1 for all y ∈ Y. To take
the minimum clock value k such that the computation is defined is an approach
similar to while loops, where we chose the minimum integer such that the state
violated the loop guard. Like before, this integer may not exist.

If a clock value does exist, one can choose any sufficiently large one:

Lemma 4. Let p be a statement and w ∈ VX∪Y .

– If gp,k(w)↑ then for all j < k: gp,j(w[Yj �→ Yk])↑.
– If gp,k(w)↓ then for all � > k and x ∈ X : gp,�(w[Y� �→ Yk])(x) = gp,k(w)(x).

The proof is by induction over the clock value �, with base case k + 1, and
induction over p.

5.2 Symbolic Semantics

The denotational semantics for symbolic execution of procedure call statements
is presented in Fig. 4. The definition follows Sect. 3 for general statements, with
the exception that a parameter k for recursion depth is passed around. For
sequencing, recall the notation � introduced in Sect. 3. The while case is an
infinite union of m-fold applications of the operator Ωb,q,k, which is the same as
Ωb,q as introduced in Sect. 3, but uses Gq,k instead of Fq.
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Fig. 4. Denotational semantics for symbolic execution with procedure calls

In case k = 0, the function becomes undefined at a procedure call. This is
reflected in the fact that the piece precondition is set to the emptyset.

The semantics of the main program statement is extended to procedure calls
in a way similar to while loops. For a procedure declaration P :: p, we define

FP(
⇀
e ) :=

∞⋃

k=0

Gp,k � GYk:=
⇀
e ,0

Since the resulting global state is independent of the choice of k, Lemma 1 still
holds and Definition 1 is still justified.

5.3 Symbolic Execution Traces

To extract symbolic traces we simply add the rule

(P(
⇀
e ), t) −→ (p[U/Yk], t)

for declarations P :: p, where Yk is the fresh set of variables that we may assume
to correspond to the k-th recursive call in the denotational semantics of symbolic
execution and the concrete semantics. Theorems 1 and 2 still hold for While
extended with procedure calls.

6 Related Work

We have drawn inspiration from earlier formal descriptions of symbolic execu-
tion [2], where de Boer and Bonsangue proved correctness and completeness
of symbolic executions with respect to an operational-style semantics modeling
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concrete execution. Whereas their proofs work directly by induction on the exe-
cution chains, it is interesting to note that correctness and completeness in our
setting arise as straightforward corollaries of the correspondence between the
denotational and concrete semantics. Moreover, de Boer and Bonsangue used
substitutions to define evaluation after substitution; we have semanticized this
by interpreting substitutions as mathematical functions on the state space VX .
Although crucial to our work, this semantics of substitutions is far from unex-
pected, as substitutions are syntactic objects describing mathematical functions.
However, we feel this fact is easily overlooked when reasoning about symbolic
execution. Defining a denotational semantics for symbolic execution amends this.

De Boer and Bonsangue [2] described two ways of obtaining the final sym-
bolic substitutions and path conditions. These are exactly the two methods we
described in Sect. 4. Proving that they are equivalent (Proposition 1) could not
be done syntactically: the conjuncts appearing in the corresponding path con-
ditions are different, but equivalent. Having a denotational semantics here was
essential for the proof.

Kneuper [12] gives a denotational semantics of symbolic execution based on
sets of sequences of symbolic states and a function extending these sequences.
Steinhöfel [17, Ch. 3] describes a more general approach based on concretization
of symbolic states. A similar approach is taken by Porncharoenwase et al. [16]
who describe symbolic execution of a Scheme dialect through big-step semantics.
Whereas the present work defines symbolic semantics for a language and relates
them to concrete semantics, these works describe semantics for the exploration
of symbolic states.

Owens et al. [15] mechanize what they call a functional big-step semantics
for a toy language called FOR, which is similar to ours, but has for loops instead
of while loops, and models assignments as side-effects of expressions. Their func-
tional big-step semantics is essentially identical to our concrete semantics, and
we have drawn inspiration from their work for our proof mechanizations in Coq,
but our work is the first to approach symbolic execution from a denotational
perspective.

Nakata and Uustalu [14] explored four different trace-based coinductive oper-
ational semantics for the While language: big-step and small-step, functional and
relational—all of them for concrete execution, whereas we include symbolic. In
the terminology of [14,15], the present work could have been titled: Functional
Big-Step Semantics for Symbolic Execution. We deemed “denotational” more
appropriate, as the purpose of our work is to elucidate the denotation of the
syntactic objects generated in symbolic execution, and to enable compositional
reasoning; this has historically been the use of denotational semantics in formal
methods.

7 Conclusions and Future Work

We have defined a denotational semantics for symbolic execution as a function
defined piecewise on a partition of the input space. Each part is the interpretation
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of the path condition in symbolic execution, and the piecewise definition on
this part is the corresponding symbolic substitution, interpreted as a function
on the input space. The correspondence between this denotational semantics
and a concrete semantics (Theorem 1), which is a simple identity of functions,
has correctness (or coverage) and completeness (or precision) of the symbolic
semantics as immediate corollaries, as formulated in Corollaries 1 and 2. Having
this denotational semantics allows for compositional reasoning about symbolic
executions, which can be particularly unintuitive for the path condition.

These results have been mechanized in the theorem prover Coq. The proofs
are all constructive; we have used the constructive definite description axiom
(consistent but not constructively provable) to assume we can find the minimum
integer regarding while loops and recursive procedure calls. This assumption is
not surprising or unrealistic, as symbolic execution in practice deals with finite
traces only. A reason to consider infinite symbolic executions (which we aim for
in future work by using a stream semantics) is to allow arbitrarily long but finite
symbolic executions.

The denotational semantics extends easily to more language constructs, such
as procedures (Sect. 5). Other work [19] illustrates the use of a denotational
semantics for proof techniques involving probabilistic language constructs such
as sampling and observe statements. A denotational semantics for such language
constructs are straightforward extensions of the work presented here.

A highly interesting extension of the work in this paper is to incorporate par-
allelization; compositional correctness and completeness of a small-step symbolic
semantics for parallel programs has recently been mechanized in [11]. In a denota-
tional setting, parallelization can be addressed by means of a trace semantics and
corresponding coinductive techniques (see, e.g., [18]); furthermore, concurrency
is very context-sensitive, which makes assigning a denotational (or functional
big-step) semantics challenging. In future work we plan to study a trace-based
denotational semantics of symbolic execution, allowing parallelization as well as
non-termination. We further consider describing a language-independent app-
roach to symbolic execution using coalgebras. This has previously been studied
coinductively [13] (but without coalgebras). Finally, having both an operational
and a denotational semantics, a natural follow-up question is: can we show a
correspondence between our denotational semantics and an axiomatic semantics
for symbolic execution (e.g., in the style of the rules of the KeY verification
system [1, Chap. 3])? We believe such a correspondence could be used to enrich
verification techniques based on symbolic execution.
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Abstract. Runtime Verification is a formal method to check a run of a
system against a specification. To this end, a monitor is generated from
the specification checking the system under scrutiny. Typically, runtime
verification is used for checking executions of programs. However, it may
equally be well suited for runs of robotic systems, most of which are built
and controlled on top of the Robot Operating System (ROS). In stream
runtime verification the specifications are given as stream transforma-
tions and this approach has become popular recently with several stream
runtime verification systems starting from LOLA having emerged. This
paper introduces the TeSSLa-ROS-Bridge, which allows to interact with
ROS-based robotic systems via the temporal stream-based specification
language TeSSLa.

1 Introduction

Runtime verification (RV) is a lightweight formal dynamic verification technique
analyzing single executions of systems wrt. given correctness properties. RV has
been studied both in theory and practical applications [4,20]. The starting point
is a formal specification of the property to verify, from which typically a monitor
is generated checking the run of the system under scrutiny.

Originally, runtime verification is used to verify (partially) program execu-
tions. A common specification language is Linear-time Temporal Logic (LTL) [28]
restricted to traces of atomic propositions.

Cyber-physical systems (CPS) [3,18] are computer-based systems in which
software typically controls and monitors the overall system and its execution.
To this extent, physical and software components are deeply intertwined. Their
correct behaviour requires to reason on different spatial and temporal scales
and complex interactions. Hence, correctness specifications for CPS require new
specification formalisms. The most prominent formalism patterned after LTL is
STL which comes with a qualitative [21] and quantitative semantics [14]. STL has
been used in many different application contexts for CPS, especially automotive
systems [22]. It has also been used in the CPS subfield of robotics [23].

An alternative family of formalisms for runtime verification is stream-based
runtime verification (SRV), pioneered by Lola [7]. The basic idea is to understand
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the run of the underlying system (formally a word) as a stream and to spec-
ify stream transformations translating input streams to output streams which
may cast errors according to the specification. If the output is sent back to the
underlying system, the specification may also compute measures to correct the
run, or, e.g. to steer the robot. Modern SRV systems (both synchronous and
asynchronous) including RTLola [5], Lola2.0 [9], CoPilot [26], TeSSLa [6] and
Striver [13] follow this approach.

The Robot Operating System (ROS) [29] is an open-source framework that
provides a collection of software libraries and tools for building robot applica-
tions. ROS was developed to simplify the process of creating and controlling
robots by providing a flexible and modular architecture. ROS has a large and
active community of developers, researchers, and enthusiasts. This community
contributes to the development and maintenance of ROS, shares code and pack-
ages, and provides support and resources for new users.1

Large and heavy robots may cause serious hazards, especially when operating
in environments with humans. As such, a significant number of robotic systems
can be classified as safety critical. Therefore, providing runtime verification capa-
bilities for monitoring and controlling robots is beneficial, and this is what this
paper is about: It presents a solution allowing to check and control ROS-based
systems with the stream runtime verification language TeSSLa, i.e. a TeSSLa-
ROS-Bridge, which allows a TeSSLa monitor to run as part of the ROS-based
system (available open source, see https://git.tessla.io/ros/tesslarosbridge).

We explain that using the TeSSLa-ROS-Bridge (TRB) allows to program
a robot facilitating the pattern of separation of concerns [24]. The robot may
be programmed as usual, e.g. using machine learning techniques, while safety
checks and e.g. emergency stops may be specified in TeSSLa. Using the TRB,
the resulting monitor will run in parallel to the actual robot code and ensure
the given safety conditions.

Related Work and Contribution. Since the first release of ROS in 2007, ROS
bindings have been developed for several stand-alone tools to allow them to be
easily integrated into the framework, supporting its emergence as the standard
development platform for robotic systems. E.g. Carla ROS bridge2, which inte-
grates a tool for simulation of autonomous driving (CARLA [8]) with ROS, or
Mathwork’s ROS Toolbox3 to connect ROS with Matlab/Simulink, just to name
a few. The idea of embedding monitoring and runtime verification components
into a ROS system has also been explored in recent years. There are several tools
for running RV monitors on ROS, such as [23], which allows a user to build and
run monitors from STL specifications. The Ogma [27] tool allows execution of
the languages CoPilot, FRET and Lustre as ROS components, for example to
monitor and control the robot system. Similarly, ROS Monitoring [11] provides
a formalism agnostic platform to connect the ROS system to a monitor.

1 See http://ros.org.
2 See https://github.com/carla-simulator/ros-bridge.
3 See https://de.mathworks.com/products/ros.html.

https://git.tessla.io/ros/tesslarosbridge
http://ros.org
https://github.com/carla-simulator/ros-bridge
https://de.mathworks.com/products/ros.html
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In this paper we present a tool for execution of the asynchronous SRV lan-
guage TeSSLa on a ROS system. In contrast to synchronous SRV languages,
TeSSLa is characterized by the fact that input and output events of the monitor
can occur independently of each other not in a fixed time grid but at arbitrary
time stamps, which is particularly suitable for monitoring CPS. Furthermore, the
TeSSLa-ROS-Bridge enables the use of TeSSLa’s rich standard library and other
existing TeSSLa libraries for various runtime verification purposes on robotic sys-
tems. Thereby, the handling for the user takes place most comfortably via the
use of so called annotations. In detail the paper covers the following sub-aspects:
1. We present the design and implementation details of the TeSSLa-ROS-Bridge.
2. We show by means of an example how to enrich a robotic system with a safety
envelope for checking given properties formulated in TeSSLa.

Structure of the Paper. The paper is structured as follows: Sect. 2 gives a brief
introduction to ROS and the specification language TeSSLa. Section 3 presents
the concept and implementation of the TeSSLa-ROS-Bridge and Sect. 4 demon-
strates its usage and the concept of creating a safety-envelope for a robotic
system on basis of a practical example. Section 5 contains the conclusion and
hints at future work.

2 Preliminaries

ROS. The open-source Robot Operating System (ROS) [29] was developed to
simplify the process of creating and controlling robots by providing a flexible
and modular architecture. ROS offers a hardware abstraction layer that allows
developers to write robot applications without worrying about the specific details
of the underlying hardware. This abstraction makes it easier to develop portable
and reusable code that can work with different robot platforms.

Most important in our setting, ROS uses a publish-subscribe messaging sys-
tem, where different components of a robot system can communicate with each
other by publishing and subscribing to message channels or topics. This decou-
pled communication model allows for modular development and easy integra-
tion of different components. In fact, the TeSSLa-ROS-Bridge and the compiled
TeSSLa monitor will be a component of the ROS system communicating via
the publish-subscribe messaging system with the underlying robot system, as
described in detail in the next section.

TeSSLa. TeSSLa, short for Temporal Stream Based Specification language,
names a specification language [6] and belonging tool chain [16] developed as
a community-driven open source project4. The basic concept behind TeSSLa
is that a specification describes a stream transformation from input to output
streams. This enables its usage for Runtime Verification, where the input streams
originate from the system under scrutiny and comprise data about events that
occurred in the system (like memory values, notification about function calls or

4 https://www.tessla.io.

https://www.tessla.io
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sensor readings). A TeSSLa specification can then be used to define a boolean
output stream, indicating whether a certain property over the inputs (and thus
the system) is met. However, TeSSLa’s streams are not restricted to boolean
domains and thus specifications can also define more advanced output streams,
bearing e.g. statistical data about the observed system. Furthermore all events
of TeSSLa streams have a timestamp attached which enables simple specification
of timing properties in TeSSLa.

TeSSLa’s tool chain allows the compilation of a specification to a monitor in
different backend languages (Rust, Scala among others) into which input stream
events can iteratively be fed and which in turn computes the events on the output
streams. In addition to logging or notifying the user, these monitor outputs can
be fed directly back to the monitored system and influence it, e.g. by triggering
an emergency stop, or even be used to control the system.

A TeSSLa specification consists of a number of input stream declarations with
their corresponding types. Further derived streams can be defined by applying
certain operators on the input stream and other defined streams. Some of the
derived streams can then be marked as output streams of the specification.

While all TeSSLa specifications can in theory be defined with use of six core
operators [6], the TeSSLa implementation also allows the definition of so-called
macros, i.e. user defined stream-operations built on other core operations or
other macros, to make specification of complex properties more convenient. A
selection of belonging macros can be grouped into a module, which makes it easy
to share and reuse them in other specifications. There are for example modules
for monitoring AUTOSAR Timing constraints [12,25] or Timed Dyadic Deontic
Logic [17] with TeSSLa. The TeSSLa compiler also comes with a standard library,
containing macros and modules for frequently needed operations and typical use-
cases, e.g. a module with Past LTL operators.

Furthermore, TeSSLa contains an annotation system. It is possible to define
global or local annotations, which can be used inside a specification. These anno-
tations are intended to contain meta information about the specification that is
used to configure other tools, which interact with the monitor (e.g. instrumenta-
tion tools or output visualization). While global annotations (starting with two
@ signs) can be placed anywhere in the specification and relate to the specifica-
tion as a whole, local annotations (starting with a single @ sign) refer to a single
input or output stream. Annotations from a specification can be extracted by
the compiler and passed to connected tools.
module MyModule {

import StreamFunctions
def cntTimeReset[A](cnt: Events[A], resetTime: Int) =

resetCount (cnt , delay(const(resetTime , cnt), cnt))
}
import MyModule
in x: Events[Int]
def c = cntTimeReset(x, 10s)
@VisBubbles out c

Listing 1. Example TeSSLa specification
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Fig. 1. Generalized ROS graph showing how the TeSSLa-ROS-Bridge is connected
to an existing ROS system. Messages on subscribed topics are fed to the monitor as
events on its input streams and derived events on the monitor’s output streams are
made available to other nodes as messages on topics.

A simple example of a TeSSLa specification can be found in Listing 1. The
specification contains the declaration of an input stream x with events of type
integer and defines a derived stream c, which is also marked as output. Stream c

is defined by the application of the macro cntTimeReset on stream x and the value
10 s as second parameter. Note at this point that TeSSLa natively supports the
usage of time units in specifications. The utilized macro cntTimeReset is defined
on the top of the specification inside the module MyModule. It counts the number
of events on stream cnt (with generic event type A), but resets to 0, if for the
time period passed via parameter resetTime no new cnt event has appeared.
Therefore it utilizes the core operator delay and the standard library macros
const and resetCount. The module is imported in the outermost scope to make
the macro directly available there. Finally, stream c is further annotated with
@VisBubbles. This annotation (also defined in the standard library) is intended
to signal a visualization frontend for the output log in which style to draw the
corresponding stream.

3 TeSSLa-ROS-Bridge

As motivated in the introduction, the TeSSLa-ROS-Bridge allows the integration
of TeSSLa monitors into a ROS computation graph. The TeSSLa monitor is
encapsulated in a ROS node that subscribes to existing topics of the graph and
publishes monitoring output to topics.

Figure 1 shows a generalized ROS computation graph. A ROS computation
graph consists of nodes, visualized as round blue shapes. A node can encapsulate
hardware actuators and sensors, or computational logic. Nodes communicate
through topics, shown as green boxes in the diagram. A node can have multiple
publishers and subscribers, represented as Pup and Sub respectively. Publishers
send messages to a topic and subscribers receive messages from a topic.

The TeSSLa-ROS-Bridge is shown to the right of the Fig. 1. It is implemented
as a ROS node (runnable on ROS 2), and like any other ROS node, the TeSSLa-
ROS-Bridge can subscribe to topics and use the information provided on those
topics as input. This approach allows TeSSLa monitors to be added to existing
ROS systems. The monitor is clearly separated from the monitored system and
does not manipulate the monitored system in any way other than by publishing
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to topics. This separation of concerns between sensors, actuators, control logic
and monitoring fits well with the ROS approach. A practical example illustrating
this idea is given in the next section.

The TeSSLa monitor M and the corresponding TeSSLa-ROS-Bridge are
automatically compiled from a TeSSLa specification. TeSSLa’s annotation sys-
tem is used to map streams to topics: Input streams annotated with the ROS
annotation @RosSubscription are connected to a subscriber in the TeSSLa-ROS-
Bridge that is subscribed to the given topic. Output streams annotated with the
ROS annotation @RosPublisher are connected to a publisher in the TeSSLa-ROS-
Bridge that publishes to the given topic.

The @RosSubscription and @RosPublisher annotations take three arguments
each: The topic’s name, its type and its quality of service. The quality of service
indicates the queue size, which limits the amount of queued messages if a sub-
scriber is not receiving them fast enough. Predefined profiles for special use cases
such as sensor values are also available. For example, qos_profile_sensor_data

uses best effort reliability and a smaller queue size.
At runtime, the compiled TeSSLa monitor is provided with every message

received on the subscribed topics. The monitor computes the events on the
derived TeSSLa output streams of the specification. These new events are pub-
lished to the topics connected to the TeSSLa-ROS-Bridge publishers, and those
annotated as output are additionally written to a log file for further offline anal-
ysis.

The TeSSLa-ROS-Bridge is written in Python using the ROS client library
for the Python language rclpy5. The TeSSLa specification is compiled into a
Rust library which is included in the TeSSLa-ROS-Bridge using the PyO36 Rust
bindings for Python. This approach allows us to integrate the widely used Python
library for ROS 2 with the fast, natively compiled TeSSLa monitor.

In detail, the automated compilation process performs the following steps:
1. Compile the TeSSLa specification into a Rust monitoring library using the
TeSSLa Rust compiler. 2. Compile the annotations in the TeSSLa specification
into a JSON configuration using the TeSSLa core compiler. 3. Configure the
TeSSLa-ROS-Bridge using the JSON configuration: Add publishers and sub-
scribers and generate Python code to connect them to the monitor’s input and
output streams. 4. Package the TeSSLa-ROS-Bridge with the TeSSLa monitor
as a ROS 2 package using the ROS 2 toolchain.

Evaluation and Limitations. We have evaluated the tool both in a practical case
study on a ROS 1 robot system (see the following section) using a ROS1/ROS2
bridge, and in a synthetic example on a personal computer with Intel Core i7
CPU and 8GB RAM inside a virtual machine. In particular, we used artificial
specifications with 10 to 2500 core operations and a single ROS node that gen-
erated dummy events and received events from the TeSSLa monitor. We also
used this ROS node to record the latency between sending events to the monitor
and receiving responses. We measured a latency of about 15 milliseconds per
5 https://github.com/ros2/rclpy.
6 https://github.com/PyO3/pyo3.

https://github.com/ros2/rclpy
https://github.com/PyO3/pyo3
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Fig. 2. Simplified ROS graph of the example discussed in Sect. 4. The diagram shows
the ROS nodes with their publishers and subscribers to topics. Each node is integrated
with either some real hardware, the controller logic or the TeSSLa monitor.

event. In our case studies, the measurement was not noticeably affected by the
size of the specification, and was therefore mainly caused by the message passing
between the ROS nodes and the bridge.

An input event rate that is too high, causing the monitor to lag behind the
input values, can cause the monitor to produce safety-relevant outputs too late,
and is thus a potential threat to the correctness of the tool. In addition, incor-
rect or incomplete sensor readings can cause the monitor to cast incorrect and
potentially fatal verdicts. However, solutions have been developed for monitor-
ing TeSSLa specifications in the presence of imprecise or missing inputs that can
partially remedy the situation [19]. Similarly, [15] discusses sound and perfect
LOLA monitoring in the presence of uncertainty, but it is an open problem how
to transfer this strategy to the asynchronous SRV language TeSSLa. However,
both approaches suffer from rather high execution time overheads, which makes
them only partially applicable for the described use cases. Finally, components
that do not report correctly to the monitor, or that do not behave according to
its output, can also undermine the safety layer generated by the monitor.

Security is an important aspect in the context of safety-critical applications.
Since the TeSSLa-ROS-Bridge integrates the monitor as a regular node into the
ROS computation graph, the usual security considerations for ROS apply7: ROS
nodes communicate over networks which are by default shared resources. How-
ever, attacks over the network are impossible, as long as all nodes are in the same
physical network that is not connected to any other network. In more complex
environments firewalls and routing rules can be used to isolate the network of
the ROS nodes. ROS2 is based on the Data Distribution Service (DDS) [1] speci-
fication and can therefore take advantage of the security enhancements provided
by the DDS security specification [2], such as authentication, access control and

7 See http://wiki.ros.org/Security.

http://wiki.ros.org/Security
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encryption [10]. These can easily be enabled in our approach since the TeSSLa-
ROS-Bridge provides a standard ROS2 node.

4 TeSSLa-ROS-Bridge in Action

In this section we discuss how a robot system can be shielded by a runtime
verification layer by means of a practical example. In our setting we have a
driving robot with distance sensor and status LED running ROS. The simplified
ROS computation graph is shown in Fig. 2.

The robot’s hardware is accessed directly by dedicated ROS nodes: the sensor,
motor and LED nodes on the left are connected to the actual robot hardware and
provide sensor values in the form of messages to topics or subscribe to topics in
order to execute command messages on actuators. The node controller contains
the control logic steering the robot. This node subscribes to values and publishes
new values based on the information it receives. Similarly, but separately, the
TeSSLa-ROS-Bridge monitors the robot by subscribing and publishing to topics.

We now want to assure two safety criteria on the system: (1) The system may
not drive whenever there is something too close to the sensor. (2) The system has
to stop completely if there were more than five near-collisions within a period of
30 s (usually an indication of a human or animal in the robot’s movement range
or the robot being stuck somewhere).
include "TesslaROSBridge.tessla"
def RED = 0; def YELLOW = 1; def GREEN = 2

@RosSubscription ("/distance_sensor", "int64", "10") in distance: Events[Int]

def tooClose = default(distance < 20, false)
def tooManyErrors = MyModule.cntTimeReset(rising(tooClose), 30s) > 5
def stop = tooClose || LTL.once(tooManyErrors)
def ledCode = if tooClose then RED else if stop then YELLOW else GREEN

@RosPublisher("/emergency_stop ", "bool", "10") @VisBool out stop
@RosPublisher("/status_led ", "int64", "10") @VisSignal out ledCode
@VisSignal out tooClose

Listing 2. Example TeSSLa specification with ROS interaction

Listing 2 shows a TeSSLa specification for this property. The specification
defines an input stream distance with events of type Int. Further it marks the
streams stop, ledCode and tooClose as outputs. All of these streams are annotated.
On the one hand with visualization annotations in case the TeSSLa-ROS-Bridge
log shall be viewed in a graphical backend. On the other hand distance is con-
nected to the robot’s distance sensor and stop and ledCode to the corresponding
driver units of the robot via TeSSLa-ROS-Bridge annotations (defined in the
imported TesslaROSBridge.tessla).

Further the specification defines a stream tooClose, which is true if the value
from distance falls below 20 (with default set to false). The stream tooManyErrors

turns true if there were more than five tooClose events during the last 30 s
(defined via macro from Listing 1). The stream stop is true if either tooClose is
currently true or once in the past tooManyErrors was true (realized by standard
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Fig. 3. Jackal stops after obstacle is too close, as identified in TeSSLa. Full video at
https://www.tessla.io/blog/rosBridge/

library macro LTL.once implementing Past-LTL’s once operator). Stream ledCode

finally determines a numeric code for the status LED, red if something is cur-
rently too close to the robot, yellow if the robot stopped because of too many
errors and green otherwise. The color codes for this purpose are defined in the
upper part of the specification. With the TeSSLa-ROS-Bridge it is possible to
run an additional monitor node on the ROS system, executing the specification.

As motivated in the previous section, by the chosen design we reach a sep-
aration of concerns: while the control logic is responsible for the robot to fulfill
its potentially complex task, the enforcement of a safe driving behavior is fully
outsourced to the TeSSLa monitor. This is an advantage in terms of formally
verified development of safety critical software: For the guarantee that the robot
behaves according to the specification (i.e. not driving when something is too
close and stop moving after too many close contacts) it is not necessary to prove
anything about the (arbitrarily complex) control logic but just to prove that the
motor really stops whenever it receives an emergency_stop event from the mon-
itor node. This can usually be done, for example with help of static verification
methods. We implemented and tested (see Fig. 3) the core of the example and
executed it on Jackal robots, running ROS.

5 Conclusions and Future Work

In this paper, we describe the TeSSLa-ROS-Bridge allowing to fuse runtime veri-
fication and programming robots. It allows to monitor ROS-based robot applica-
tions, especially for safety properties. By means of an example, we show that we
have laid the foundation for such combinations, while sophisticated experiences
still have to be gained. We plan mainly two directions of future work. Using
TeSSLa’s module system, it is possible to provide domain specific specification
routines. We plan to develop a control library simplifying to issue mitigation
actions once violations to specifications have been detected. However, as a pre-
cursor of this work, we plan to study monitoring aware programming patterns for
robots. Besides checking and managing safety properties and respectively viola-
tions, this will allow for more elaborated monitoring of robots, especially health

https://www.tessla.io/blog/rosBridge/
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parameters such as energy availability etc. while at the same time supporting
the concept of separation of concerns.
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Abstract. Complex abstract data types are often used to facilitate cre-
ating concise models of the behavior of realistic systems. However, static
analysis techniques that aim to optimize such models often consider vari-
ables of complex types as a single indivisible unit. The use of complex
data types thus negatively affects the optimizations that can be per-
formed. In this paper we revisit and extend a technique by Groote and
Lisser that can be used to replace a single, complex variable by multi-
ple variables of simpler data types, improving the effectiveness of other
static analyzes. We describe the technique in the context of the process
algebraic specification language mCRL2, and establish its correctness.
We demonstrate using an implementation in the mCRL2 toolset that it
sometimes reduces the size of the underlying state spaces, and it typically
reduces the verification times when using symbolic model checking.

1 Introduction

The mCRL2 language [7] is a process algebraic specification language with an
associated toolset to model, validate and verify complex systems [3]. Models in
mCRL2 typically consist of a number of (communicating) parallel processes that
are parameterized with data. As preprocessing for further analysis, mCRL2 spec-
ifications are transformed into linear process equations (LPEs). In this step, par-
allelism and communication are removed from the process definition. Therefore,
an LPE consists of a single (recursive) process definition, parameterized with
data, and a number of condition-action-effect rules referred to as summands.

The mCRL2 toolset, among other features, offers several manipulation tools
for LPEs (e.g. constant elimination and unused parameter elimination, see [6]).
The transformations applied by these tools mainly operate on process parameters
and aim to reduce the complexity of the LPE under consideration. They can
result in a reduction (under bisimilarity) of the underlying state space.

To facilitate the modeling of realistic processes, mCRL2 supports complex
algebraic data types. However, since the LPE transformations do not consider
the structure within the data type of a process parameter, using complex data
types reduces the effectiveness of these transformations. Thus, in order to benefit
from their full potential, we need to simplify these complex data structures.

To address this, Groote and Lisser [6] originally introduced a technique for
flattening the structure of process parameters and implemented this under the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Ábrahám et al. (Eds.): ICTAC 2023, LNCS 14446, pp. 399–416, 2023.
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name structelm in µCRL [1] (the precursor of mCRL2). The idea behind this
approach is to replace a given parameter p by multiple parameters p1, . . . , pn that
together encode the data type of p, effectively exposing its internal structure.
This enables the application of the aforementioned LPE simplification techniques
to p1, . . . , pn, which would otherwise not be possible [6]. This same technique
was implemented in the mCRL2 tool lpsparunfold.

In this paper, we revisit the transformation behind lpsparunfold and iden-
tify several constructions that occur often in LPEs, but are not dealt with ade-
quately, limiting the practical applicability of lpsparunfold. We extend this
technique to enable further simplifications and preserve bisimilarity of the LPE.
Our contributions are:

– we identify an alternative way of placing the functions that reconstruct the
original parameter p from its unfolded constituents p1, . . . , pn,

– we allow the technique to preserve global variables in such a way that they
can be effectively used by other static analysis techniques,

– we simplify complex state update expressions by locally eliminating functions
that are defined using pattern matching, and

– we experimentally demonstrate that our extensions are effective at enabling
other LPE transformations and speeding up the model checker.

In particular, our experiments show that our extensions enable larger reductions
of the underlying state space, directly benefiting explicit-state model checking.
For symbolic reachability we observe that, even if no state space reduction is
possible, the flattening achieved by lpsparunfold reduces the execution time.

Related Work. Our work is most closely related to various analysis and trans-
formation techniques for LPEs that have been developed over the years. The
aforementioned elimination techniques from [6] are a prime example. A more
advanced algorithm is liveness analysis [16], which reconstructs a control flow
graph from a given LPE and uses knowledge of relevant data parameters to
reduce the size of the underlying state space.

Similar ideas have been developed for Parameterized Boolean Equation Sys-
tems (PBES) [8]. For example, redundant and constant parameter elimination
for PBES is presented in [13], liveness analysis in [10]; a generalization of con-
stant elimination occurs in [12].

The implementation of symbolic reachability used in our experiments is based
on the techniques from [2,11], and uses the decision diagrams from Sylvan [17].

Overview. Section 2 introduces an example that is used throughout the paper.
Next, preliminaries are provided in Sect. 3. Parameter unfolding from [6] is pre-
sented in Sect. 4. Our extensions to [6] are presented in Sect. 5. Finally, we vali-
date our ideas with experiments in Sect. 6 and conclude in Sect. 7.

2 Motivating Example

As a running example we use an mCRL2 specification of a simple system, shown
in Fig. 1, inspired by the mCRL2 models generated from OIL specifications [4].
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Fig. 1. Linear process specification of a simple system

The system starts out uninitialized (init P (uninit)). If the system is initialized ,
it can be in one of two states, off or on, and can be toggled between them.
Moreover, an IP address, abstracted as natural number, is assigned to the system.

The LPE is given after the proc keyword. The definition of the process
consists of (possibly recursive) summands, that, essentially, describe a set of
condition-action-effect rules. When uninitialized , it can be initialized to off ,
where the IP address is irrelevant. This is modeled using a global variable dc1
(dc stands for don’t-care). When the system is off , it can be switched on, and
the IP address is set to an arbitrary value using the sum operator

∑
n : N. If the

system is on, the system can be switched off . Again the IP address is immaterial.
The LPE is defined in the context of the data specification, which consists

of several parts. First, sort specifies two sorts. Structured sort Sys has two con-
structors, uninit : Sys and sys : State × N → Sys. For this, standard operations
such as equality (≈) and inequality (�≈) are predefined, e.g., that sys(p, n) �≈
uninit for all p : State, n : N. Also, the projection functions get state : Sys →
State and get ip : Sys → N are defined such that, get state(sys(p, n)) = p and
get ip(sys(p, n)) = n. The State argument indicates the status of the system
which can be set to p on or p off , e.g., given s : Sys, function set state(s, p on)
sets the state of s to p on. Similarly, set ip(s, 1 ) sets the IP address of s to 1.

Note that the labeled transition system underlying this process has an infinite
state space due to the use of natural numbers for IP addresses. However, this
parameter does not affect the behavior of the system: the behavior of the system
when it is on, i.e., it is in a state sys(p on, n), is bisimilar for all values of n. Yet,
static analysis tools such as parameter elimination and constant elimination are
not able to simplify the LPE because the real structure of the process is hidden
in process parameter s.
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3 Preliminaries

The mCRL2 language is a modeling language based on process algebra with
data [7]. In general, the language allows the specification of communicating,
parallel processes. However, the first step in any automated analysis using the
mCRL2 toolset [3] is to linearize the specification. In this process, parallel com-
position operators are eliminated, and replaced by sequential composition and
choice, effectively making the allowed interleavings explicit. This results in a
standardized format for processes, the linear process equations (LPEs). The tech-
nique we study in this paper operates on such LPEs. In the remainder of this
section we first introduce the data, and subsequently the LPEs.

3.1 Data

The language for data types in mCRL2 is based on an algebraic specification.
We here give a brief overview. For details, we refer to the treatment in [7]. A
signature is a triple Σ = (S, CS ,MS) where S is a set of sorts, CS and MS
are disjoint sets of function symbols over S, called constructors, and mappings,
respectively. Such function symbols are of the form f : D1 × · · · × Dn → D such
that Di,D ∈ S for 1 ≤ i ≤ n. If n = 0, we say f is a constant. We generally
assume that the signature contains Booleans and standard numeric types along
with their constructors and operations. With a slight abuse of notation we use
their semantic sets B, N, . . . and operations such as ∧ and + also for the syntactic
counterparts. For any sort D, we assume sort List(D) is defined, with construc-
tors [] for the empty list, and � for the constructor that adds an element in
front of a list. Sorts constructed using →, such as D1 × · · · × Dn → D are called
function sorts. If D = D1 × · · · × Dn → D′ we write range(D) for its range D′.

Constructors are used to inductively define the elements of a sort. We write
CS(D) = {f : D′ ∈ CS | range(D′) = D} for the constructors of sort D. We
assume a bijection ιD between CS(D) and 0..|CS(D)| − 1 ordering the construc-
tors, and write ι if D is clear from the context. We say that D is a constructor
sort if, and only if, CS(D) �= ∅. A constructor sort D is syntactically non-empty
if there is a constructor f : D1 × · · · × Dn → D such that if Di is a constructor
sort, then Di is syntactically non-empty, for 1 ≤ i ≤ n. We require all construc-
tor sorts to be non-empty, and for f : D ∈ CS , range(D) must not be a function
sort.

Expressions in the data language are referred to as data expressions or terms
over a set XS of S-sorted variables. They are syntactically described by the
following grammar:

t ::= x | f | t(t, . . . , t)

where x ∈ XS are variables, f ∈ CS ∪ MS are function symbols, and t(t, . . . , t)
describes the application of a term to its arguments. We write e[x := e′] for the
syntactic substitution of x with e′ in e. The mCRL2 language additionally sup-
ports quantification and lambda expressions. Our technique straightforwardly
extends to this setting, so we omit those constructs for the sake of simplicity.
With every sort D, we associate a default expression, defD.



Simplifying Process Parameters by Unfolding Algebraic Data Types 403

Equality of terms is defined using a data specification D = (Σ,E), where Σ
is a signature and E is a set of conditional equations of the form 〈X , c → t = u〉,
where X ⊆ XS , and c, t, u are terms over X . We typically write 〈X , t = u〉, when
c = true and c → t = u or t = u, if X is clear from the context.

The semantics of data types is described using model class semantics [7].
Sorts are mapped into their semantic counterpart using applicative structures. A
set {MD | D ∈ S} is an applicative structure if, and only if, MB = {true, false},
and if D = D1 ×· · ·×Dn → D′, then MD contains all (semantic) functions from
MD1 ×· · ·×MDn

→ MD′ . Function �−� maps every function symbol in the data
specification into its semantic counterpart, that is, for all f ∈ CS ∪ MS of sort
D, �f� ∈ MD. This is generalized to arbitrary terms as follows:

�x�σ = σ(x) if x ∈ XS
�f�σ = �f� if f ∈ CS ∪ MS

�t(t1, . . . , tn)�σ = �t�σ(�t1�σ, . . . , �tn�σ)

where σ : XS → ⋃
D∈S MD is a valuation that ensures that σ(x) ∈ MD for

all x : D. We write σ[v/d] for the valuation that assigns v to d and otherwise
behaves as σ. The model M of a data specification is an applicative structure
together with an interpretation function, that in addition ensures that for equa-
tions 〈X , c → t = u〉 ∈ E and valuations σ, if �c�σ = true then �t�σ = �u�σ;
�true�σ = true, �false�σ = false, for all valuations σ; and if D is a constructor
sort, then every v ∈ MD is a constructor element. Element v ∈ MD is a con-
structor element if a constructor function f ∈ CS of sort D1 × · · · × Dn → D
exists such that v = �f�(v1, . . . , vn) where vi is either a constructor element of
sort Di, or sort Di is not a constructor sort. We write t ≡ t′ for terms t and t′

if for all models, �t�σ = �t′�σ for all valuations σ.

3.2 Linear Processes

A Linear Process Equation (LPE) defines the name of a recursive process, whose
definition is a set of summands that are, essentially, condition-action-effect rules
that may refer to local variables. An LPE is typically defined in the context of
a data specification D, that specifies algebraic data types, and a set of global
variables Xg. The combination of an LPE with a data specification and its global
variables is a Linear Process Specification (LPS).

Definition 1. A linear process specification (LPS) L is a tuple (D,Xg, P,�e)
where D is a data specification describing the data types used in the LPS, Xg is
a set of global variables, P is a linear process equation (LPE), and �e is a vector
of expressions of sort �D that may refer to variables in Xg. We typically say that
P (�e) is the initial process. LPE P is described as follows:

P (�d : �D) =
∑

i∈I

∑

�ei : �Ei

ci → ai(fi) · P (gi) +
∑

j∈J

∑

�ej : �Ej

cj → aδj(fj)



404 A. Stramaglia et al.

where �d is a vector of process parameters whose types are �D. I and J are disjoint,
finite index sets, such that for i ∈ I and j ∈ J we have that ci and cj are boolean
expressions, ai and aδj are actions, fi and fj are terms that form the action
parameters, and gi is the next state, providing the vector of terms assigned to
the parameters of process P in the recursive call to P . Terms ci, fi, gi (cj, fj)
range over �d, Xg, and �ei (�ej).

In their full generality, LPEs can use timestamps on the actions. These times-
tamps are treated by our transformation in the same way as action parameters.
For the sake of simplicity, we restrict ourselves to untimed LPEs in this paper.
For the same reason, we will henceforth only consider recursive summands.

Transformations of LPEs are correct if they are behavior preserving. For this,
we use a generalization of strong bisimulation to linear processes [6]. Two LPEs
P and P ′ with initial values e and e′, respectively, are strongly bisimilar if and
only if the labeled transition systems induced by P (e) and P ′(e′) are strongly
bisimilar. In this case, we write P (e) � P ′(e′).

4 Parameter Unfolding

Parameter unfolding was introduced by Groote and Lisser under the name
structelm [6], and has later been implemented in the mCRL2 toolset in a tool
called lpsparunfold. The idea behind parameter unfolding is that a term from a
constructor sort whose head symbol is a constructor can be replaced by separate
terms for the name of the constructor and each of the arguments. For instance,
in our running example, the single process parameter s is then replaced by
three process parameters: e : USys , s1 : State and s2 : N, where e represents the
constructor at the head of s, and s1 and s2 are the arguments of the first con-
structor. The term sys(p off , dc1 ) in the first summand of our running example
can be replaced by the terms csys , p off , and dc1 ; the Sys constructor uninit in
the initialization is replaced by the value cuninit . As uninit does not have any
parameter, the new parameters s1 and s2 can be set to a default value.

Unfolding of process parameters happens in two steps. First, the data speci-
fication is extended with a new sort to represent constructors, and mappings to
move between the sort that is unfolded, and newly introduced parameters. Next,
the parameters in the linear process are unfolded.

4.1 Extending the Data Specification

Our improvements to Groote and Lisser’s technique concern the unfolding of the
parameters in the linear process. The extension of the data specification is, in
essence, left unchanged, and its formal definition can be found in [6]. We therefore
only introduce the unfolding of the data type using our running example.

When unfolding a sort D, a new data specification is constructed that extends
D with a new sort UD, to represent the constructors of D, constructors for this
new sort, as well as case functions, determinizers and projection functions and
the associated equations.
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Example 1. Recall the data specification from Fig. 1. We unfold sort Sys. Note
that CS(Sys) = {sys : State ×N → Sys, uninit : Sys}, that is it has two construc-
tors, sys and uninit . The data specification of the running example is extended
with the following.

sort USys ;
cons csys , cuninit : USys ;
map CSys : USys × Sys × Sys → Sys

detSys : Sys → USys ;
π1

sys : Sys → State;
π2

sys : Sys → N;
var x, x1, x2 : Sys; e : USys ;

y1 : State; y2 : N;

eqn CSys(cuninit , x1, x2) = x1;
CSys(csys , x1, x2) = x2;
CSys(e, x, x) = x;
detSys(uninit) = cuninit ;
detSys(sys(y1, y2)) = csys ;
π1

sys(uninit) = p on;
π2

sys(uninit) = 0;
π1

sys(sys(y1, y2)) = y1;
π2

sys(sys(y1, y2)) = y2;

The explanation of the additions is as follows. We add constructor sort
USys , with constructors csys , cuninit , i.e., we introduce one new constructor in
sort USys for every constructor in the unfolded sort. Case function CSys is
used in the unfolding of processes to reconstruct an expression of sort Sys
from the unfolded parts, e.g., CSys(csys , uninit , sys(p on, 3)) = sys(p on, 3).
The case Csys(e, x, x) = x is used to facilitate simplifications in the imple-
mentation even when the arguments do not yet have a concrete value. We add
determinizer functions detSys that are used to recognize the head symbol of
an expression of sort Sys, and map it onto the corresponding constructor in
USys , e.g., detSys(sys(p on, 3)) = csys . Projection functions π1

sys and π2
sys are

added to extract the arguments of an expression with head symbol sys, e.g.,
π2
sys(sys(p on, 3)) = 3; if this projection function is applied to uninit it returns

a default value. Since constructor uninit has no arguments, there are no projec-
tion functions πuninit .

To be effective in practice, the projection and determinizer functions need to
distribute over if-then-else and the case functions. Therefore, also the following
distribution laws are added.

var x1, x2 : Sys; e : USys ; b : B
eqn π1

sys(CSys(e, x1, x2)) = CSys(e, π1
sys(x1), π1

sys(x2));
π1
sys(if (b, x1, x2)) = if (b, π1

sys(x1), π1
sys(x2));

π2
sys(CSys(e, x1, x2)) = CSys(e, π2

sys(x1), π2
sys(x2));

π2
sys(if (b, x1, x2)) = if (b, π2

sys(x1), π2
sys(x2));

detSys(CSys(e, x1, x2)) = CSys(e, detSys(x1), detSys(x2));
detSys(if (b, x1, x2)) = if (b, detSys(x1), detSys(x2));

4.2 Unfolding Process Parameters in an LPE

We next describe how to unfold a process parameter d in an LPE, and how to
split expressions e that were assigned to d into expressions that can be assigned
to the new process parameters. As our extensions modify these definitions, we
present them in more detail. For the sake of simplicity, we describe the unfolding
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in the setting of an LPE with a single process parameter. For processes with
multiple process parameters, this generalizes in the obvious way.

Definition 2. Let d : D be a variable of constructor sort D, with CS(D) =
{f0, . . . , fn}. Let D be such that for all constructors f : D1 × · · · × Dn → D ∈
CS(D), and terms t1, . . . , tn, t′1, . . . , t

′
n, if f(t1, . . . , tn) ≡ f(t′1, . . . , t

′
n) then ti ≡ t′i

for all i.
We first define how process parameters are manipulated.

– First, if we unfold parameter d, new parameters need to be introduced to store
the arguments for each of the constructors of sort d. For fi : D1

i ×· · ·×Dni
i →

D ∈ CS(D), this is the vector params(d, fi) = d1i : D1
i , . . . , . . . dni

i : Dni
i . Note

that if fi is a constant, params(d, fi) is the empty vector.
– To define the parameters unfolding d we need one variable that represents the

constructor, and parameters for the arguments of each of the constructors.

params(d) = ed : UD, params(d, f1), . . . , params(d, fn)

Note ed : UD determines the constructor of sort D, with UD the corresponding
constructor sort.

– If d is replaced by params(d), any use of d needs to be reconstructed using an
equivalent expression in terms of the new parameters. We abbreviate this by
reconstruct(d).

reconstruct(d) = C(ed, f0(params(d, f0)), . . . , fn(params(d, fn)))

If originally e was assigned to d, after d has been replaced by params(d), expres-
sion e also needs to be split into expressions that can be assigned to these new
parameters. We define the following. Let e be an expression of type D. Then

unfold(e) = detD(e), π1
f0

(e), . . . , πm0
f0

(e), . . . , π1
fn

(e), . . . , πmn

fn
(e)

where mi denotes the index of the last argument of constructor fi.

The unfolding of process parameters described in [6] is as follows. In the rest
of this paper, we will refer to this as using default case placement.

Definition 3 (Unfolding of process parameters [6]). Let L = (D,Xg, P, e)
be an LPS, where P is the following LPE.

P (d : D) =
∑

i∈I

∑

�ei : �Ei

ci → ai(fi) · P (gi)

The result of unfolding process parameter d : D in L, denoted parunfold(d)(L) is
the LPS (D′,Xg, P

′, unfold(e)), where D′ is data specification D in which sort D
is unfolded, and LPE P ′ is as follows:

P ′(params(d)) =
∑

i∈I

∑

�ei : �Ei

ci[d := reconstruct(d)]

→ ai(fi[d := reconstruct(d)]) · P ′(unfold(gi[d := reconstruct(d)]))
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So, essentially, unfolding parameter d replaces d by the vector params(d). In
the right hand side of the equation, every occurrence of d is replaced syntacti-
cally by reconstruct(d), i.e., an application of the corresponding case function.
Finally, in the recursive calls to P , the expression that after the previous step has
become gi[d := reconstruct(d)], is unfolded using unfold(gi[d := reconstruct(d)]).
Similarly, using unfold(e), the initial process is unfolded.

Example 2. Recall our motivating example, for which we have described the
unfolding of sort Sys in the data specification in Example 1. If we unfold param-
eter s, we get the LPE and initialization shown below.

proc P (e : USys , s1 : State, s2 : N)
= C(e, uninit , sys(s1 , s2 ) ≈ uninit)

→ initialize·
P (detSys(sys(p off , dc1 )), π1

sys(sys(p off , dc1 )), π2
sys(sys(p off , dc1 )))

+
∑

n : N
(!(C(e, uninit , sys(s1 , s2 )) ≈ uninit)∧

get state(C(e, uninit , sys(s1 , s2 ))) ≈ p off )
→ on · P (detSys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)),

π1
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)),

π2
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)))

+(!(C(e, uninit , sys(s1 , s2 )) ≈ uninit)∧
get state(C(e, uninit , sys(s1 , s2 ))) ≈ p on)
→ off · P (detSys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )),

π1
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )),

π2
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )));

init P (detSys(uninit), π1
sys(uninit), π2

sys(uninit));

It has three parameters. Parameter e keeps track of the constructor of the expres-
sion in s, e.g., initially s is uninit , so the corresponding value in e is cuninit .
Parameters s1 and s2 are used to track the arguments of the constructor sys.
If e is csys , then sys(s1, s2) is equivalent to s (the orginal parameter that is
unfolded). As uninit does not have arguments, no parameters need to be intro-
duced for its arguments. The original expression s is then reconstructed in the
process by replacing s with C(e, uninit , sys(s1 , s2 )). The functions detSys , π1

sys

and π2
sys are used to move from an expression of sort Sys to expressions of sort

USys , State and N.
Using the equations for detSys , π1

sys and π2
sys for rewriting, this can be simpli-

fied slightly. The recursion of the first summand then becomes P (csys , p off , dc1 )
and the initialization becomes initP (cuninit , p on, 0), as per the default values
of πi

sys(uninit). The resulting LPE cannot be simplified further. Since parame-
ters s1 and s2 appear in the conditions of each of the summands, existing static
analysis tools for constant elimination and parameter elimination are not able
to remove any of the parameters from this process.

Correctness of the unfolding is established by the following theorem.

Theorem 1 ([6]). Let L = (D,Xg, P, e) and parunfold(d)(L) = (D′,Xg, P
′,

unfold(e)) be the LPSs as in Definition 3. Then P (e) � P ′(unfold(e)).
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5 Improving Parameter Unfolding

In this section we present three improvements to parameter unfolding: we alter
the way case functions are placed in the processes, we explicitly take global
variables into account during the transformation, and we show how pattern
matching rules in the data specification can be used to simplify the data in the
resulting process expressions.

5.1 Alternative Case Placement

In our standard definition of unfolding, each occurrence of d is replaced by
reconstruct(d), and thus case functions are placed at an innermost level. This
can limit simplification by rewriting; e.g., expression C(e, uninit , sys(s1 , s2 )) ≈
uninit in the condition of the first summand in Example 2 cannot be simplified.

In many cases, placing the case function at an outermost level aids rewriting
and subsequent analysis of the LPE. Formally, every condition ci now becomes
C(ed, ci[d := f0(params(d, f0))], . . . , ci[d := fn(params(d, fn))]). However, this
may lead to an exponential blow-up in the size of the conditions if multiple
parameter unfoldings are performed successively. Therefore, we propose an inter-
mediate approach that places case functions at the level where subexpressions are
no longer Boolean. We call this alternative case placement. Intuitively, starting
from the outermost placement, we distribute the case function over the standard
Boolean operators.

Definition 4. Given a data expression c and a variable d, the alternative case
placement is the expression acp(c, d), where acp is the recursive function:

acp(b, d) = C(e, b[d := f1(params(d, f1))], . . . , b[d := fn(params(d, fn))])
acp(¬ϕ, d) = ¬acp(ϕ, d)
acp(ϕ ∧ ψ, d) = acp(ϕ, d) ∧ acp(ψ, d)
acp(ϕ ∨ ψ, d) = acp(ϕ, d) ∨ acp(ψ, d)
acp(ϕ ⇒ ψ, d) = acp(ϕ, d) ⇒ acp(ψ, d)

Here, ϕ and ψ are arbitrary terms and b is a data expression that does not have
¬,∧,∨,⇒ as its top-level operator.

Note that in the first case of the definition of acp, acp(b, d) is equivalent to
b if d does not occur in b, by the rule C(e, x, x) = x. Under alternative case
placement, the unfolded LPE of Definition 3 becomes:

P ′(params(d)) =
∑

i∈I

∑

�ei : �Ei

acp(ci, d) → ai(acp(fi, d)) · P ′(acp(unfold(gi), d))

Correctness follows immediately from the observation that acp(b, d) ≡ b[d :=
reconstruct(d)] (by case analysis on e). We next discuss the benefits of alternative
case placement on our running example.
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Example 3. Recall our motivating example, for which we have described the
unfolding of sort Sys in Examples 1 and 2. We show the result of the unfolding
using the alternative case placement. As all summands are changed in a similar
way, we focus on the last summand of the LPE:

(!C(e, uninit ≈ uninit , sys(s1 , s2 ) ≈ uninit)∧
C(e, get state(uninit) ≈ p on, get state(sys(s1 , s2 )) ≈ p on))
→ off · P (C(e, detSys(set state(set ip(uninit , dc2 ), p off )),

detSys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))),

C(e, π1
sys(set state(set ip(uninit , dc2 ), p off )),

π1
sys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))),

C(e, π2
sys(set state(set ip(uninit , dc2 ), p off )),

π2
sys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))))

Compared to the LPE using default case placement, observe that the case
functions now appear at a higher level. For instance, the second conjunct of
the condition was changed from get state(C(e, uninit , sys(s1 , s2 ))) ≈ p on) to
C(e, get state(uninit) ≈ p on, get state(sys(s1 , s2 )) ≈ p on)). In the original,
the case function cannot be simplified further, as the first argument e is a vari-
able, and it cannot be matched to any of the rewrite rules; also, there are no rules
that allow distributing equality over the case function. When applying alterna-
tive case placement, the equality appears within the scope of the arguments of
the case function, and the (implicit) equations for ≈ can be used to simplify the
individual arguments.

Similar changes can be seen in the arguments of the recursive processes. Using
the equations for ≈, detSys , π1

sys , π2
sys , set ip and set state, the last summand

is simplified to:

(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p on, s1 ≈ p on))
→ off · P (C(e, cuninit , csys), C(e, p on, p off ), C(e, 0, dc2 ))

We thus obtained more concise expressions than those in Example 2. In partic-
ular, this summand no longer contains any reference to unfolded parameter s2.
The same applies to the other two summands, hence parameter s2 can be elimi-
nated. As a result, the sum over n in the second summand can be eliminated as
well, and the final LPE we obtain is:

proc P (e : USys , s1 : State)
= C(e, true, false)

→ initialize · P (csys , p off )
+(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p off , s1 ≈ p off ))

→ on · P (C(e, cuninit , csys), p on)
+(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p on, s1 ≈ p on))

→ off · P (C(e, cuninit , csys), C(e, p on, p off ))
init P (cuninit , p on);

Note that the original state space before the unfolding is infinite while after
unfolding with alternative case placement the state space has only three states.
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5.2 Global Variables

Other static analysis techniques use global variables to more effectively sim-
plify the process. For instance, when constant elimination observes that the only
change to a parameter is assigning a global variable to that parameter, the global
variable can be replaced by a constant. This is safe since all values for global
variables lead to bisimilar processes.

When unfolding a process parameter, the value assigned to it in the initial-
ization or recursion may be a global variable dc ∈ Xg. Applying the unfold-
ings described so far results in unfold(dc), which contains expressions such as
detD(dc) and πj

fi
(dc) that cannot be rewritten further. Other static analysis

techniques cannot directly use such expressions, leaving the resulting LPE more
complicated than it needs to be, resulting in longer verification times.

We illustrate the issue using an example that is based on the representation
of the board in the specifications of games such as tic-tac-toe.

Example 4. Process P is initialized with a singleton list [o] of sort List(Piece)
representing the board. It also has parameters p, keeping track of the player
whose turn it is, and done to indicate that the game ends. As long as done is
false, and l contains a piece of player p whose turn it is, p is updated to the next
player. If l contains a piece of the other player, a τ transition is taken, the values
of l and p are set to global variables, and done is set to true. If done is true, the
process deadlocks. This resembles what happens in models of board games such
as tic-tac-toe when the game ends.

sort Piece = struct x | o;
map other : Piece → Piece;
eqn other(x) = o; other(o) = x;
act is : Piece;
glob dc1 : List(Piece); dc2 : Piece;
proc P (l : List(Piece), p : Piece, done : Bool)

= (¬done ∧ l ≈ [other(p)]) → τ.P (dc1, dc2, true)
+(¬done ∧ l ≈ [p]) → is(p).P ([p], other(p), done);

init P ([o], o, false);

Unfolding parameter l yields the following LPE.

proc P (e : UPiece , lp : Piece, ll : List(Piece), p : Piece, done : Bool)
= ¬done ∧ CList(Piece)(e, [], lp � ll) ≈ [other(p)]

→ τ.P (detList(Piece)(dc1), π1
�(dc1), π2

�(dc1), dc2, true)
+(¬done ∧ CList(Piece)(e, [], lp � ll) ≈ [p])

→ is(p).P (detList(Piece)([p]), π1
�([p]), π2

�([p]), other(p));
init P (detList(Piece)([o]), π1

�([o]), π2
�([o]), o, false);

The recursion in the first summand cannot be simplified further, and constant-
and redundant parameter elimination cannot remove any parameters.

Since the behavior of a process is not affected by (the value of) a global vari-
able, the individual arguments of the expression assigned to that global variable
also do not affect the behavior of the process. Therefore, instead of applying pro-
jection functions to a global variable, fresh global variables can be introduced
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for each of the new process parameters when unfolding a global variable. We
extend the definition of unfold from Definition 2 as follows.

Definition 5. Let e be an expression of constructor sort D. Then

unfoldg(e) =

{
dce, dc1f0

, . . . , dcm0
f0

, . . . , dc1fn
, . . . , dcmn

fn
if e ∈ Xg

unfold(e) otherwise

where dce, dc1f0
, . . . , dcm0

f0
, . . . dc1fn

, . . . , dcmn

fn
are fresh global variables, and mi

denotes the index of the last argument of constructor fi.

The unfolded LPE taking global variables is obtained by using unfoldg instead
of unfold in Definition 3.1 We apply this improved definition to the specification
in Example 4.

Example 5. Recall the specification from Example 4. When using unfoldg

instead of unfold, the recursion in the first summand becomes P (dce, dclp ,
dcll , dc2 , true).

This allows further simplification using constant elimination and parameter
elimination and simplification using rewriting to the LPE below.

proc P (lp : Piece, p : Piece, done : Bool)
= (¬done ∧ lp ≈ p) → is(p).P (p, other(p), done)
+(¬done ∧ lp ≈ other(p)) → τ.P (dclp , dc2 , true);

init P (o, o, false);
In particular, all case functions, determinizers and projection functions are fully
removed. The transformation now essentially replaced the (fixed-length) list in
the original process by its individual elements.

5.3 Simplifications for Pattern Matching Rules

In the recursion P (unfold(gi[d := reconstruct(d)])), we regularly obtain expres-
sions of the shape detD(h(a1, . . . , an)) or πl

fk
(h(a1, . . . , an)) for some function

symbol h that is not a constructor. Both of these cannot be rewritten any further,
often due to the fact that there is insufficient information to apply the pattern
matching in the equations for h. Therefore, we propose a method to perform one
unfolding of the function h, allowing us to achieve the necessary simplifications.
Let us first consider an example.

Example 6. Suppose we have a function plusone, which is defined using pattern
matching, that increments every element of a list. Our linear process P updates
the elements of its argument l : List(N) using this function as follows:

map plusone : List(N) → List(N);
var x : N; xs : List(N);
eqn plusone([]) = [];

plusone(x � xs) = (x + 1) � plusone(xs);
proc P (l : List(N)) = a · P (plusone(l));
init P ([7]);

1 The definition using alternative case placement can be modified to take global vari-
ables into account in the same way.
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If we unfold l (default case placement), we obtain as first argument update in
the summand the expression detList(N)(plusone(CList(N)(e, [], s1 � s2))), which
cannot be rewritten any further.

Intuitively, since detList(N) considers only its argument’s constructor, and
plusone does not modify the constructor, detList(N)(l) = detList(N)(plusone(l))
for all l. However, due to the pattern matching nature of plusone, we can only
eliminate the application of detList(N) by means of term rewriting if l is of the
shape [] or x�xs. Thus, the tools are not able to deduce that the update in the
example above is in fact equal to e, and that the summand does not modify e.
To facilitate further static analysis in the above example, it would be helpful to
have a general technique for further simplification in such situations.

Our approach is to compute a single non-pattern-matching rewrite rule for
each mapping that is equivalent to its original pattern-matching-based definition.
The pattern matching logic will instead be encoded in a tree of case functions.
We will apply the new singly-defined rule in selected places in order to eliminate
determinizer and projection functions by means of ordinary rewriting. At its
core, our transformation is based on the following observation, which follows by
case analysis on the top-level constructor in ai.

Lemma 1. Let h : D1 × . . . Dn → D be a mapping and a1, . . . , an arbitrary
expressions. Then we have for any σ and any 1 ≤ i ≤ n:

�h(a1, . . . , an)�σ = �CDi
(detDi

(ai),

h(a1, . . . , ai−1, f1(π1
f1

(ai), . . . , πn1
f1

(ai)), ai+1, . . . , an), . . . ,

h(a1, . . . , ai−1, f|CS(D)|(π1
f|CS (D)|(ai), . . . , π

n|CS (D)|
f|CS (D)|

(ai)), ai+1, . . . , an))�σ

We repeatedly apply this equality until each application of h can be rewritten,
leading to nested case function applications. Furthermore, we add the rewrite
rule CD(e, cf1 , . . . , cf|CS (D)|) = e to aid simplification. Using the distribution
laws, the surrounding determinizer/projection functions can often be eliminated.

Example 7. We revisit the expression detList(N)(plusone(CList(N)(e, [], s1 � s2)))
obtained from unfolding in Example 6. Applying Lemma 1 on plusone, we obtain
the following expression that can be rewritten to just e.

detList(N)(CList(N)(detList(N)(CList(N)(e, [], s1 � s2)),
plusone([]),

plusone(π1
List(N)(CList(N)(e, [], s1 � s2)) � π2

List(N)(CList(N)(e, [], s1 � s2)))))

6 Experiments

The original parameter unfolding technique from [6] has been available in the tool
lpsparunfold in the mCRL2 toolset [3] for over a decade. We have extended
the C++ implementation with the ideas described. The tool allows selecting
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Table 1. Experimental results for symbolic reachability, reporting size of the underly-
ing labeled transition system, and the mean total time of each of the tool executions
out of 10 runs.

Models Sizes (# states) Times (s)

standard original new.def new.alt standard original new.def new.alt

cylinder 1 593 209 30.2 16.8 16.9 17.4

fourinarow3-4 12 305 63.9 59.2 1.5 1.5

fourinarow3-5 t-o 171 243 t-o 1 437.6 10.5 10.5

fourinarow4-3 6 214 15.3 32.3 1.0 1.0

fourinarow4-4 t-o 187 928 t-o 1 790.0 10.6 10.4

fourinarow4-5 t-o 5 464 759 t-o t-o 350.5 350.1

fourinarow5-3 44 131 832.8 400.7 3.4 3.3

fourinarow5-4 t-o 2 788 682 t-o t-o 166.0 164.9

fourinarow5-5 t-o t-o t-o t-o t-o

onoff t-o 3 t-o t-o t-o 0.1

sla7 7 918 2.0 2.5 2.6 2.4

sla10 238 931 31.9 19.1 18.8 15.6

sla13 t-o 6 693 054 t-o 432.7 418.3 324.2

swp2-2 14 064 1.2 1.2 1.2 1.2

swp2-4 140 352 2.4 2.5 2.4 2.4

swp2-6 598 320 3.2 3.5 3.1 3.2

swp2-8 1 731 840 4.1 4.8 3.9 4.0

swp4-2 2 589 056 5.9 9.8 7.4 7.3

swp4-4 292 878 336 132.4 173.6 110.4 111.7

swp4-6 5 729 304 960 3 072.5 1 146.3 716.9 725.5

swp4-8 t-o 50 128 191 488 t-o t-o 2 968.2 3 010.4

swp8-2 t-o t-o t-o t-o t-o

tictactoe3-3 5 479 14.1 9.6 1.5 1.5

wms 155 034 776 17.0 17.0 16.8 16.2

which parameters to unfold, and the number of times that parameter should be
unfolded using command-line options. Multiple parameters can be unfolded in a
single run; this is achieved by iterating the unfolding of a single parameter.

To evaluate the effect of our improvements on further analysis of LPEs and
the generation of the underlying state space using symbolic reachability, we
compare the following workflows:

– standard: standard static analysis workflow: instantiate finite summations,
eliminate constant and redundant parameters and superfluous summation
variables [6] (tools lpssuminst, lpsconstelm, lpsparelm and lpssumelm).
Finally, perform symbolic reachability (lpsreach). No parameter unfolding.

– original: before standard, perform the original parameter unfolding.
– new.def: before standard, perform parameter unfolding with our extension

for global variables and pattern matching rules with default case placement.
– new.alt: same as new.def but use alternative case placement.

The workflows are executed on various models translated to mCRL2, includ-
ing our running example (onoff). Models of two-player games, often used to teach
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formal methods: four-in-a-row, with varying numbers of rows and columns and
tic-tac-toe on a standard 3× 3 board, in which the board is encoded using fixed
length lists of lists. First, the board is unfolded, and then each of the rows result-
ing from this first unfolding. Models of a sliding window protocol [5], that forms
the basis of the TCP protocol used for reliable in-order delivery of packets, as
it occurs in [7], with window size n and m messages (swp-n-m) for different
values of n and m. The send and receive windows are unfolded. Moreover, we
include models based on industrial applications: a UML state machine diagram
of an industrial pneumatic cylinder (cylinder) [15]; the protocol negotiating a
service level agreement (sla) between two parties communicating via message
passing along reliable channels encoded using fixed length lists [9]; and a model
of the Workload Management System (wms) of the DIRAC Community Grid
Solution for the LHCb experiment at CERN [14]. Note that the use of complex
data structures for industrial case studies is wide-spread, allowing the creation
of concise and elegant models.

All experiments were run 10 times, on a machine with 4 Intel 6136 CPUs
and 3 TB of RAM, running Ubuntu 20.04. A reproduction package is available
from https://github.com/astramaglia/lpsparunfold-experiments. The results are
presented in Table 1. We used a time-out of 1 h (3600 s), and a memory limit of
64 GB. We report the size of the explored state space (in number of states, or ‘t-
o’ in case of a time-out) and the mean total running time of ten runs in seconds.
For most of the experiments, the standard deviation is below 10% of the mean.2

If workflows result in the same state space for a model, we report the size only
once in the table.

The experiments show that our improvements typically reduce the total run-
ning time of the verification. In particular, our extension for global variables
reduces the running time for four-in-a-row and tic-tac-toe. The simplifications
for pattern matching rules show a reduction in the running time for the slid-
ing window protocol (swp). Alternative case placement reduces the infinite state
space of our running example (onoff) to only three states; for the service-level-
agreement protocol (sla) it reduces the total running time.

Even when the size of the state space is not changed, our improvements often
reduce the running time of symbolic reachability. This is due to the simplification
of data in the processes, and the reduction of dependencies between process
parameters. Although in theory alternative case placement could lead to an
exponential blow-up of the expressions in the LPE, this is not observed in our
experiments.

7 Conclusion

In this paper we described and revisited the static analysis technique for flatten-
ing the structure of process parameters in LPEs, in the context of mCRL2. The
extensions improve the effectiveness of parameter unfolding in two ways. First,
2 The SDs for the only cases where it exceeds 10% of the mean are: fourinarow4-3
standard 1.7, sla7 new.def: 0.3, tictactoe3-3 standard: 2.0, wms standard: 2.5,
original: 2.2, new.def: 1.9.

https://github.com/astramaglia/lpsparunfold-experiments
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it improves the effectiveness of other static analysis tools. Our experiments show
that this can result in large reductions of the underlying state space, directly
improving explicit-state model checking. Second, for symbolic model checking,
and symbolic reachability in particular, our improvements reduce the execution
times even if the size of the state space is not reduced.

We believe the effect of lpsparunfold should be investigated in relation to
other static analysis techniques such as dead variable analysis. Together these
have the potential to speed up the model checking of industrial systems, e.g.,
described by OIL models [4] and Cordis models [15] using mCRL2. Furthermore,
the effect of lpsparunfold could be investigated in the context of PBESs.

Acknowledgements. Michel Reniers and Frank Stappers previously described
Groote and Lisser’s original definition of parameter unfolding in an unpublished note.
Some of our notation is inspired by their note.
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Abstract. A software product line (SPL) is a family of closely related
software systems which capitalizes on the variability and reusability of
the software products and can be formalised by a feature model. Feature
model evolution plans (FMEP) capture the current SPL as well as the
planned evolution of the SPL to ensure successful long-term development.
As business requirements often change, FMEPs should support interme-
diate update. This modification may cause paradoxes in an FMEP, e.g.,
a node left without a parent, making the plan impossible to realise. Cur-
rent tools exist to validate FMEPs, but require analysing the entire plan
even when a modification affects only small parts of it. Hence, there is a
need for a method that detects such paradoxes in a more efficient way.
In this paper, we present an interval based feature model (IBFM), a rep-
resentation for FMEPs, that allows local reasoning to validates only the
parts of the plan affected by changes. We define operations for updating
the FMEPs and the preconditions under which they preserve soundness,
i.e., absence of paradoxes, and show the correctness of the method.

Keywords: Software Product Line · Evolution Planning ·
Interval-based Feature Models · Operational Semantics

1 Introduction

A software product line (SPL) capitalizes on the similarity and variability of
closely related software products [23]. The similarities and variability are cap-
tured by features, which are customer-visible characteristics of a system [23].
Each product in the product line (called a variant) comprises a selection of
these features, resulting in a flexible and customisable set of variants available
to customers. To model an SPL it is common to use a feature model (FM), a
tree-like structure with nodes representing features. From this model, a variant
can be derived by selecting features. The structure of the feature model specifies
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Fig. 1. Simple paradox

restrictions for which variants are allowed, while also making it possible to model
all possible variants at once [3]. Due to the size and complexity of software sys-
tems, SPLs constitute a major investment with long-term strategic value. Over
time, SPLs have to be adapted as part of software evolution to address new or
changing requirements, which is particularly complicated as an entire software
family has to be adapted [15,20].

Long Term Evolution Planning. Complex projects require planning [7], where
a plan may contain many changes to a feature model, which describes how the
feature model should look at a future point in time. For instance, new technology
may emerge that the manager wishes to incorporate into the product line but
which she believes will take a year to implement. One can then plan how the
feature model will look at that point and at some earlier stages where the new
technology is partly included. On the other hand, as requirements may change
over time, existing plans must evolve accordingly, for instance, some features may
need to be added or removed. These retroactive changes can affect later parts of
the plan, causing paradoxes that make the plan impossible to realise [14].

We illustrate in Fig. 1 how a paradox can be introduced through making
changes to an existing plan. In the original evolution plan on the left of Fig. 1,
a feature Comfort Systems exists at time 3 and is removed at time 6; and on
the right we have the modified plan in which a child feature Parking Pilot is
added to Comfort Systems at time 4. This change eventually causes a paradox
at time 6 since feature Parking Pilot is left without a parent feature. In this
case, it is straightforward to detect this paradox manually, but infeasible for a
plan with hundreds of features and points in time. Thus, there is a need for
tooling that supports safe retroactive change to feature model evolution plans.
Notice also the difference between feature model change, i.e., planning to remove
Comfort Systems at time 6, and plan change, i.e., modifying the original plan by
introducing Parking Pilot at time 4. In this paper, we focus on plan changes.

Formalisation of feature model evolution plans (FMEPs) and methods for
verifying soundness of FMEPs has been introduced in [10]. However, changes to
FMEPs have not been addressed formally. The method in [10] requires analysis
of the entire plan each time a change is made to the plan, even though much of
the plan will often not be affected by a change.
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This paper aims to remedy this by providing local reasoning of plan change
instead of entire plans, leveraging the knowledge that a change may only affect
parts of the plan, in both spatial (i.e., which parts of the feature model a
change affects) and temporal dimensions (i.e., which points in time in the plan
are affected by the change). As part of this challenge, we establish operations
for modifying feature model evolution plans and a modular rule-based analysis
method that can determine each operation’s scopes and effects. We introduce the
notion of intervals, enabling the lookup of information about specific parts of the
feature models at a specific time. Changing an intermediate stage of a feature
model evolution plan may cause paradoxes—structural violations of the feature
model—at a later stage of the plan. Such paradoxes should be discovered, and
the rule-based analysis must be sound. For this, we need to take into account the
corresponding properties, namely, modularity, well-formedness, and correctness
of model modification. An implementation of the resulting soundness checker for
interval-based feature model evolution plans with an example is available at [18].

The rest of the paper is organised as follows: Sect. 2 provides the background
knowledge, Sect. 3 introduces the interval-based feature models and presents the
operational semantics rules of update operations. Section 4 shows the soundness
of the rule system presented in Sect. 3. Finally, we discuss related work in Sect. 5
and conclude the paper in Sect. 6.

2 Background

In this section, we will first briefly recall the background of software product lines
and feature model evaluation plans. Then, we use a simple example to describe
the spatial and temporal scopes of update operations introduced in this paper.

2.1 Software Product Lines

A software product line (SPL) is a family of closely related software systems.
These systems will often have several features in common, as well as variations
that make each piece of software unique. SPLs are used to make highly config-
urable systems, where each product in the SPL, called a variant, is defined by
the combination of features chosen.

Variants of a software product line can be defined in terms of a feature
model. These models play a central role in planning and are also used as a
communication tool. A feature model is a tree structure of features and groups.
Features represent a concrete aspect in an SPL. They can be mandatory or
optional and will contain zero or more groups. Each group has a set of features
and the type of the group dictates which features in the group can be selected.
For example, in an and group, all the mandatory features have to be chosen,
while or groups have to select at least one feature and alternative groups have
to select exactly one feature. Therefore, groups with types or or alternative
must not contain mandatory features. A visual representation of a feature model
can be seen in Fig. 2. The small filled dot above Infotainment System indicates
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Fig. 2. Vehicle feature model

that the feature is mandatory, whereas the white dot above Comfort Systems
represents an optional feature. Each feature (except the root) is in a group.
The Infotainment System feature is in an and group below Car. The features
Android Auto and Apple Car Play are in an alternative group, indicated by the
arc between the features, meaning that each valid variant has exactly one of the
two features. This vehicle feature model does not contain any or group, which
can be indicated by a filled arc between the features if needed.

Well-Formedness Requirements. In addition to the described tree structure,
a feature model is considered to be sound if it satisfies the following well-
formedness requirements:

WF1 A feature model has exactly one root feature.
WF2 The root feature must be mandatory.
WF3 Each feature has exactly one unique name, variation type and (potentially

empty) collection of subgroups.
WF4 Features are organised in groups that have exactly one variation type.
WF5 Each feature, except the root feature, must be part of exactly one group.
WF6 Each group must have exactly one parent feature.
WF7 alternative or or groups must not contain mandatory features.
WF8 A feature model must not contain cycles.

Definition 1 (Paradox, Sound Plan). A paradox is a violation of well-
formedness requirements WF1–WF8; a plan without paradoxes is called sound.

2.2 Planning Feature Model Evolution

Feature models let engineers capture all variants of the current software product
line, but it can be beneficial to model future versions as well. Changing the
SPL may potentially influence many configurations. Thus, it is paramount to
thoroughly plan SPL evolution in advance, e.g., to perform analyses and to have
enough time for implementing new or adapted features.

Feature Model Evolution Plans (FMEPs) [10], or Evolution Plans (EPs),
allow us to model a sequence of feature models representing the current and
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Fig. 3. Vehicle evolution plan

all planned future versions of an SPL. Each feature model in an EP represents
the product line at a point in time, which could have varying validity, from a
week from now to a year or more. Since the next feature model is derived from
the previous one, we can represent the EP by means of an initial feature model
as well as a sequence of time points, where each time point specifies a set of
operations to be performed on the previous feature model to derive the next.
The operations will either add, remove, move, rename, or change types of feature
and/or groups in the feature model.

An example of an EP can be seen in Fig. 3, where the initial feature model
containing three features is shown on the left, while a sequence of three time
points together with the corresponding set of operations is on the right. At
time 1, a group and two features are added to the initial feature model, at
time 3, one feature is added, and at time 4, another group and a feature are
added. Performing all the operations at these three time points results in a
feature model that is identical to the one in Fig. 2.

For an EP to be sound, all of the feature models in the plan must uphold the
structural requirements WF1–WF8 described in Sect. 2.1. While the soundness
can be verified automatically in [10], it requires verifying the entire plan, which
is a sequence of feature models, each time a change is made, even though the
majority of the plan may not be affected. To improve the efficiency of soundness
checking for modified plans, we propose interval-based feature models (IBFMs),
whose explicit representation of intervals for features and groups allow us to
check the soundness of the corresponding affected parts of the plans. To achieve
such local reasoning with IBFMs, we first introduce the notion of scopes of an
update operation below.

2.3 Spatial and Temporal Scopes of Update Operations

The scopes of an update operation consist of two parts, spatial and temporal,
indicating the parts of a plan that may be affected by the operation. The spatial
scope refers to the parts of a feature model that may be influenced by the change
performed by an operation, while the temporal scope corresponds to the time
points that may be affected by applying an operation. We illustrates these two
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Fig. 4. Visualisation of the scopes for a move-feature operation

scopes of a move-feature operation in Fig. 4. For simplicity, only features are
presented while groups are implicit in the visualisation.

In the original plan, feature E is moved to the group below feature D at
time 3, and feature D to the group below feature C at time 4. In the modified
EP at the bottom part of Fig. 4, a move-feature operation is introduced to the
original plan, by which the feature D is moved to the group below feature F at
time 2 and all the other operations remain the same as in the original plan. Note
that moving a feature includes moving its entire subtree, as shown in the figure.

Although the feature model might be sound at the point the feature is moved,
it might become invalid due to other operations applied at a later point in time.
In this example, the feature model is sound at time 2 when feature D is moved
to the group below feature F , but becomes unsound at time 3 when feature E
is moved to the group below feature D according to the original plan, creating
a cycle (details about cycle detection will be discussed in the next section).
Since feature D is moved under the group of feature C at time 4 as in the
original plan, the temporal scope for the soundness checking of this newly added
move-feature operation is from time 2 to time 3. Since the operation only affects
features D, E and F , the spatial scope contains only these three features. Observe
that features A, B, C and G are not in the scope, nor are the time points 1 and 4,
for which we can rely on the soundness of the original plan and do not need to
perform the soundness checking again.

For each of the update operations, we define the scope in the spatial and
temporal dimensions of an EP. By assuming that the original plan is sound, we
can analyse only within the corresponding scope that may cause a paradox. We
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reformalise the tree-based feature model into an interval-based feature model
(IBFM) in Sect. 3.

3 Formalisation of IBFMs

In this section we present the interval-based feature model as our representation
for feature model evolution plans, and the requisite data structures.

A feature model evolution plan has two dimensions: the spatial dimension and
the temporal dimension. The spatial dimension consists of the feature models—
which features and groups exist, what their names and types are, and how they
are related. The temporal dimension concerns time, i.e., which points in time
appear in the feature model evolution plan. To store the information about the
spatial dimension, we have decided to use maps, which are useful for looking up
information about a specific element. Looking up a feature ID in such a map
will give us the information about that feature.

Definition 2 (Map). A map is a set of entries on the form [ k �→ v ], where
each key k uniquely defines a value v. The query map [k] would give us v if
[ k �→ v ] ∈ map. Assigning (or overwriting) a value v to key k is denoted by
map [k] ← v. To remove a mapping with key k, we use map\k. For maps with
set values, we define the operator ∪←−. If map [k] = S then map [k] ∪←− v =
map [k] ← S ∪ {v}. We additionally define \v, to remove a specific value v from
a set at key k.

Definition 3 (Interval). We define an interval as a set of time points (mem-
bers of a set T such that < is a strict total order on T ) between a lower bound and
an upper bound, where the lower and upper bounds are time points. We denote
the interval using the familiar mathematical notation [tstart, tend), where tstart is
the lower bound, and tend is the upper bound. These intervals are left-closed and
right-open, meaning that tstart is contained in the interval, and all time points
until but not including tend. To allow us to use intervals that have no end, we
define the time point ∞ as upper bound, such that tn < ∞ for all tn.

Definition 4 (Interval map). An interval map is a map where the key is an
interval. Lookups are performed using intervals (returning values in the overlap)
or a timepoint in a straight-forward manner.

Furthermore, IM [tn]≤ returns the set of keys containing time point tn. For
interval maps with set values, we define an additional function IM [tn]

v
≤ where v

is some value, returning the set of the keys containing tn and associated with a
set containing v. The function IM [[tn, tm)]≤≥ returns all the interval keys in the
map IM overlapping the interval [tn, tm).

Hence for interval maps with non-overlapping keys, the resulting set will contain
at most one element.

To describe an entire feature model evolution plan, we define the interval-
based feature model. It consists of three maps: names, features, and groups.
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The names map contains all of the names used in the feature model, and which
features they belong to during which times. Similarly, the features and groups
maps rely on interval maps to store all of the information about features and
groups throughout the plan, respectively. The information is retrieved by looking
up a name, a feature ID, or a group ID, which promotes the modularity of
plan change verification. The reason for this choice is mainly modularity. As
previously mentioned, the goal of this paper is to minimize which parts of the
plan are checked for paradoxes, as a change rarely affects more than a small part
of the plan. Representing an updated plan either as a sequence of trees associated
with time points or as an initial model followed by a sequence of operations is
suboptimal for the reasoning of plan change, since to add a new feature to the
plan, both representations would require us to look through the entire plan to
check that the feature ID and name are unique at all times.

To add or rename a feature, a soundness checker must verify that no other
feature is using the name during the affected part of the plan. We therefore
include the names map in the representation for efficient verification of afore-
mentioned issue. A feature or group ID may not already be in use when we add
it, so the features and groups maps support efficient lookup for IDs.

Definition 5 (Interval-based feature model). An interval-based feature
model (IBFM) is defined as a triple (names, features,groups) where names
is a map from names to interval maps with feature ID values, features is a
map from feature IDs to feature entries, and groups is a map from group IDs
to group entries.

The names map has entries of the form [ name �→ Im ], where the inter-
val map Im contains mappings on the form [ [tstart, tend) �→ featureID ], where
featureID is the ID of some feature in the interval-based feature model. This
should be interpreted as “The name name belongs to the feature with ID
featureID from tstart to tend”.

The features map has entries of the form [ featureID �→ feature entry ]. A
feature entry has a name, a type, a parent group, and zero or more child groups.
This information is collected into a 5-tuple (Fe, Fn, Ft, Fp, Fc), where Fe is an
interval set denoting when the feature exists, Fn is an interval map with name
values, Ft is an interval map with the feature’s variation types, Fp is an interval
map with group ID values, and Fc is an interval map where the values are sets
containing group IDs, the interval keys possibly overlapping.

The groups map has entries of the form [ groupID �→ group entry ]. A group
entry has a type, a parent feature, and zero or more child features, which we
define in terms of intervals and collected into a 4-tuple (Ge, Gt, Gp, Gc) simi-
larly to the feature entries, where Ge is an interval set denoting when the group
exists, Gt is an interval map with the group’s types, Gp is an interval map with
parent feature IDs, and Gc is an interval map with child feature ID set values,
the interval keys possibly overlapping.

Figure 5 shows an example IBFM-triple. Lookups for missing elements return
(tuples of) ∅. The root feature’s ID is constant for a interval-based feature
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Fig. 5. Example interval-based feature model

model. We assume that it has been computed and represent it by referring to
RootID . This is to avoid cluttering the representation with information that
never changes.

Operations

The following operations cover the changes that are likely to be desired for a
feature model evolution plan. The choice of operations is largely based on the edit
operations defined in our earlier work [10]. We adapt them by adding a temporal
dimension, letting us specify both where an operation should be applied in the
feature model, and when, i.e., at which stage of the plan.

In the following, we discuss the Add-Feature and Move-Feature
operations in detail by showing the semantics rules as well as the corresponding
helper functions, and briefly describe the rest of the operations. We refer the
reader to Chap. 4 in [17] for the semantics rules of the remaining operations.

Helper Functions. In these two operations, five straight-forward helper func-
tions are used: compatibleTypes, setFeatureAttributes, addChildFeature,
clampInterval and removeFeatureAt (see Appendix).

The compatibleTypes function takes a group type (and, or or alterna-
tive) and a feature type (mandatory or optional) and checks whether they
are compatible. The types should belong to a parent group and its child feature.
The only combination which is not allowed is a mandatory feature with an
alternative or or parent group.

The setFeatureAttributes function takes a feature entry, an interval, a
name, a type, and a group ID, and returns the feature entry with the information
included. It modifies the existence set by adding the interval, maps the interval
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to the name in the names map, to the type in the types map, and to the parent
group ID in the parent groups map.

The addChildFeature function takes a group entry, an interval, and a feature
ID, and adds the feature ID to the group’s child feature map during the interval.
The clampInterval function takes an interval map and a time point, and short-
ens the key containing this time point to end at this point. The removeFeatureAt
function takes a group entry, a feature ID, and a time point and removes the
feature ID from its parent group’s child feature map.

The operational rules update a state of the interval-based feature plan of the
form operation � (names, features,groups), where operation denotes the
change we intend to make to the interval-based feature model (names, features,
groups). The new state is of the form (names′, features′,groups′), where the
maps have been updated according to the semantics of the operation.

addFeature(featureID, name, featureType, parentGroupID) from tn to tm:

[tn, tm) �∈≤≥ Fe [tn, tm) ∈≤ Ge names [name] [[tn, tm)] = ∅ tn < tm
features [featureID] = (Fe, Fn, Ft, Fp, Fc)
groups [parentGroupID] = (Ge, Gt, Gp, Gc)

∀gt ∈ Gt [[tn, tm)] : compatibleTypes(gt, type)
(Add-Feature)

addFeature(featureID, name, type, parentGroupID) from tn to tm �
(names, features,groups)

−→ (names [name] [[tn, tm)] ← featureID,
features [featureID] ← setFeatureAttributes(features [featureID] , [tn, tm),

name, type, parentGroupID),
groups [parentGroupID] ← addChildFeature(groups [parentGroupID] , [tn, tm), featureID))

Rule Add-Feature checks that when adding a feature during the interval
[tn, tm), its ID cannot be in use during the interval ([tn, tm) 	∈≤≥ Fe). The par-
ent group must exist ([tn, tm) ∈≤ Ge), and the types it has during the interval
must be compatible with the type of the added feature (∀gt ∈ Gt [[tn, tm)] :
compatibleTypes(gt, type)). The name of the feature must not be in use dur-
ing the interval (names [name] [[tn, tm)] = ∅), and the interval must start before it
ends (tn < tm).

If applied, this rule adds feature with ID featureID, name name, and feature
variation type featureType to the group with ID parentGroupID in the interval
[tn, tm). Notice that the default value in the features map lets us treat a failed
lookup as a feature. We choose to let this operation affect the plan only within an
interval so as to enable the adding of features to groups that are planned to be
removed, and to add flexibility. Temporal scope: [tn, tm). Spatial scope: self,
parent, name.

moveFeature(featureID, targetGroupID) at tn: Moves the feature with ID
featureID to the group with ID targetGroupID at tn. The operation does not
affect future moves planned for the feature. The feature’s subtree is moved along
with the feature.
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¬createsCycle Fp [tn]≤ = {[tp1 , tp2 )}
Fp [[tn, tp2 )] = {oldParentID} [tn, tp2 ) ∈≤ Ge

∀[tf1 , tf2 ) ∈ Ft [[tn, tp2)]≤≥ ∀[tg1 , tg2 ) ∈ Gt

[〈
[tf1 , tf2 )

〉tp2
tn

]
≤≥

∀ft ∈ Ft
[
[tf1 , tf2 )

] ∀gt ∈ Gt [[tg1 , tg2 )] (compatibleTypes(gt, ft))
features [featureID] = (Fe, Fn, Ft, Fp, Fc)
groups [newParentID] = (Ge, Gt, Gp, Gc)

(Move-Feature)

moveFeature (featureID, newParentID) at tn �
(names, features,groups)

−→ (
names,

features [featureID] ← (Fe, Fn, Ft, clampInterval(Fp, tn) [[tn, tp2 )]
← newParentID, Fc),((

groups [oldParentID] ← removeFeatureAt (groups [oldParentID] , featureID, tn)
)

[newParentID]
)

← addChildFeature(groups [newParentID] , [tn, tp2 ), featureID)
)

The premise ¬createsCycle invokes a cycle detection algorithm (see
Sect. 4.5.1 in [17]), making sure that within the temporal scope no structural
cycles occur, by looking up only the ancestors of both the feature and the target
group during the temporal scope. The premise Fp [tn]≤ = {[tp1 , tp2)} indicates
the scope of the operation, namely [tn, tp2), while the premise Fp [[tn, tp2)] =
{oldParentID} identifies the ID of the feature’s former parent group for updat-
ing the groups map. The premise [tn, tp2) ∈≤ Ge ensures that the new parent
exists during the entire temporal scope.

As the plan may contain several type changes for both the feature being
moved and its new parent, we check that the types they have at the same time
are compatible through compatibleTypes: for each interval key overlapping the
temporal scope in the feature’s type map, then for each interval in the group’s
type map overlapping the aforementioned key and restricted by the temporal
scope, then for all types mapped to by those keys, those types must be com-
patible. This ensures that the rule is not too strict, because it check only those
combinations of types which the feature and its new parent group have at the
same time, further restricted by the temporal scope.

If applied, the feature’s parent group map is updated by shortening the inter-
val mapped to the former parent’s ID to end at tn, and adding a new mapping
[ [tn, tp2) �→ newParentID ]. The feature is removed from the previous parent’s
(oldParentID) set of child features during the temporal scope, and the feature
is added to the new parent’s set of child features during the same interval. Tem-
poral scope, Spatial scope: implicit/computed.

addGroup(groupID, groupType, parentFeatureID) from tn to tm: Adds
group with ID groupID and type groupType to the feature with ID
parentFeatureID during the interval [tn, tm). The group ID cannot be in use
during the interval, and the parent feature must exist during the entire inter-
val. Temporal scope: [tn, tm). Spatial scope: group groupID, parent feature
parentFeatureID.

removeFeature(featureID) at tn: Removes the feature with ID featureID
from the feature model at tn. If the plan contains a removal of the feature and
a subsequent reintroduction, removing the feature at an earlier stage does not
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affect the reintroduction, but rather moves the point of removal to an earlier
point in time. The feature must exist at tn in the original plan for the modi-
fication to be valid. The feature must not have any child groups that are left
orphaned after removal. Temporal scope: [tn, tk), with tm ≤ tn ≤ tk, where
[tm, tk) in which the feature exists inside the feature model. Spatial scope: Self,
parent, children, name.

removeGroup(groupID) at tn: Very similar to removeFeature. Removes
the group with ID groupID from the feature model at tn, not affecting potential
later reintroductions. The group must exist at tn in the original plan, and the
group must not have any child features that are left orphaned after removal.
Temporal scope: [tn, tk), where tk is the time at which the group was originally
planned to be removed. Spatial scope: Self, parent, children, name.

moveGroup(groupID, targetFeatureID) at tn: Very similar to moveFea-
ture; moves the group with ID groupID to the feature with ID targetFeatureID
at tn. The operation does not affect future moves planned for the group. The
group’s subtree is moved along with the group. If the move causes a cycle, then
the modification should not be applied. Temporal scope: [tn, tm), where tm
is the time at which the group is next moved or removed in the original plan.
Spatial scope: self, parent, children.

changeFeatureVariationType(featureID, newType) at tn: Changes the
feature variation type of the feature with ID featureID to newType at time tn.
The change does not affect planned type changes to the feature. If the new type
is mandatory, the parent group type must be and, or else the operation cannot
be applied. Temporal scope: [tn, tm) where tm is the next time point at which
the feature’s type changes next or when the feature is (next) removed. Spatial
scope: self, parent.

changeGroupVariationType(groupID, newType) at tn: Changes the
group variation type of the group with ID groupID to newType. If the new
type is or or alternative, and a child feature has type mandatory, then the
operation cannot be applied. Temporal scope: [tn, tm), where tm is the next
time point at which the group’s type changes next or when the group is (next)
removed. Spatial scope: self, children.

changeFeatureName(featureID, name) at tn: Changes the name of the
feature with ID featureID to name. It does not affect future renaming operations
to the feature. No other feature may have the same name. Temporal scope:
[tn, tm) where tm is the next time point at which the feature’s name changes next
or when the feature is (next) removed. Spatial scope: name, feature, previous
name.

4 Soundness

In this section, we are going to show the soundness of the rule system presented in
Sect. 3. Given a sound plan, i.e., containing no paradoxes, we show that applying
a rule will result in a sound plan, and that the rules operate within the operation’s
scope and updates the model correctly. For the rest of the section, we will first
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present the well-formedness for interval-based feature models, and we sketch the
soundness proof of the two representative rules Add-Feature and Move-
Feature, and consequently the soundness of the rule system. We refer the
interested readers to [17] for the complete proofs.

4.1 Well-Formedness of Interval-Based Feature Models

To show the resulting modified plan, that is, an interval-based feature model, is
sound, we will have to show the absence of paradoxes. In other words, we have
to show the model respects the well-formedness requirements. Assuming the
first time point in the plan is t0, we formalise the well-formedness requirements
listed in Sect. 2.1 for interval-based feature models (names, features,groups)
as follows:

IBFM1. An interval-based feature model has exactly one root feature. Let
RootID be the root of the model, and assume that features [RootID ] =
(Re, Rn, Rt, Rp, Rc). This requirement means that the root always exists, i.e.,
Re = {[t0,∞)}, and it does not have a parent group, i.e., Rp = ∅.

IBFM2. The root feature must be mandatory, i.e., Rt =
{[ [t0,∞) �→ mandatory ]} where Rt is the types map of the root feature.

IBFM3. At any time tn ≥ t0, each feature has exactly one unique name, varia-
tion type and (potentially empty) collection of child groups. Given a feature ID
featureID, if features [featureID] = (Fe, Fn, Ft, Fp, Fc) and tn ∈≤ Fe, then

(i) Fn [tn] = {name}—the feature has exactly one name,
(ii) names [name] [tn] = {featureID}—the name is unique at the time point tn,
(iii) Ft [tn] = {type} with type ∈ {mandatory,optional}—the feature has

exactly one type, and
(iv) Fc [tn] = C, such that

⋃
C is a set of the group IDs, and if

groupID ∈
⋃

C and groups [groupID] = (Ge, Gt, Gp, Gc) , then Gp [tn] =
{featureID}—if a group is listed as a child group of a feature, then the
feature is listed as the parent of the group at the same time.

IBFM4. At any time tn ≥ t0, each group has exactly one variation type. Given
a group ID groupID, this means that if groups [groupID] = (Ge, Gt, Gp, Gc)
and tn ∈≤ Ge, then Gt [tn] = {type} for type ∈ {and,or,alternative}.

IBFM5. At any time tn ≥ t0, each feature, except for the root feature,
must be part of exactly one group. Formally, given a feature ID featureID 	=
RootID , if features [featureID] = (Fe, Fn, Ft, Fp, Fc) and tn ∈≤ Fe, then
Fp [tn] = {groupID} with groups [groupID] = (Ge, Gt, Gp, Gc), tn ∈≤ Ge, and
featureID ∈

⋃
Gc [tn]. Conversely, if featureID ∈

⋃
Gc [tn], then Fp [tn] =

groupID.

IBFM6. At any time tn ≥ t0, each group must have exactly one parent feature.
Formally, given a group ID groupID, if groups [groupID] = (Ge, Gt, Gp, Gc)
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and tn ∈≤ Ge, then Gp [tn] = {featureID}, and features [featureID] =
(Fe, Fn, Ft, Fp, Fc) with groupID ∈

⋃
Fc [tn].

IBFM7. At any time tn, a group with types alternative or or must
not contain mandatory features. Formally, given a group ID groupID with
groups [groupID] = (Ge, Gt, Gp, Gc), if Gt [tn] = {type} with type ∈
{alternative,or}, and if featureID ∈

⋃
Gc [tn] and features [featureID] =

(Fe, Fn, Ft, Fp, Fc), then Ft [tn] = {optional}.

IBFM8. The interval-based feature model contains no cycles, which means that
at any time point tn ≥ t0, for any feature or group that exists at tn, if we follow
the parent chain upwards, we never encounter the same feature or group twice.
In other words, no feature or group is its own ancestor.

IBFM9. Consider a feature with ID featureID where features [featureID] =
(Fe, Fn, Ft, Fp, Fc), if tn /∈≤ Fe, then Fn [tn] = Ft [tn] = Fp [tn] = Fc [tn] = ∅,
and for all keys name in names, featureID /∈ names [name] [tn], i.e., no name
belongs to the feature. Similarly, for a group with ID groupID such that
groups [groupID] = (Ge, Gt, Gp, Gc), if tn /∈≤ Ge, then Gt [tn] = Gp [tn] =
Gc [tn] = ∅, i.e., a feature or a group which does not exist cannot have a name,
a type, a parent, or a child.

Since our IBFM representation does not enforce structural requirements, we
need IBFM9 in addition to the original eight well-formedness requirements.

4.2 Soundness of the Rule System

In the following, we prove the soundness of the rule system by showing the
soundness of each rule in the system. We assume that the original plan is sound,
i.e., well-formed. The soundness proof of each rule consists of three parts: (i)
modularity : the rule operates strictly within the previously defined temporal
and spatial scopes (see Sect. 2.3); (ii) well-formedness preservation : the rule
preserves the well-formedness requirements defined in Sect. 4.1; and (iii) correct-
ness of model modification : the rule updates the model correctly, preserves
soundness as well as respects the semantics of the operation.

Soundness of rule Add-Feature. Let the initial state be

addFeature(featureID, name, type, parentGroupID) from tn to tm �
(names, features,groups)

and (names′, features′,groups′) the resulting state after rule Add-
Feature is applied. Recall that this operation adds the feature
with ID featureID to the well-formed interval-based feature model
(names, features,groups) from tn to tm.

Proof. Firstly, we are going to show the rule is modular, i.e., to prove that the
rule operates strictly within the temporal and spatial scopes of the addFeature
operation. It is straightforward to see that the rule operates within the spatial
scope of the operation since the rule just looks up the feature ID, the parent



Modular Soundness Checking of FMEP 431

group ID, and the name, and only updates the name, feature, and parent group
in the model. Furthermore, the only interval looked up or assigned to in model’s
interval maps and sets is [tn, tm), which corresponds to the temporal scope of
the rule. Thus, the rule is modular.

Next, we are going to show that the rule preserves well-formedness, i.e.,
the updated interval-based feature model (names′, features′,groups′) is well-
formed. IBFM1 and IBFM2 obviously hold since featureID 	= RootID due
to the rule guarantees that the feature does not exist during the temporal scope
in the original model.

Since IBFM9 holds for the original model, the feature does not exist during
the temporal scope [tn, tm), and therefore has no name, type, or child groups in
the original plan. The rule uses setFeatureAttributes to add the feature with
exactly one name and one type during the temporal scope, and with an empty
set of child groups. The temporal scope is also added to the feature’s existence
set, so only the new feature has the ID featureID during the temporal scope.
Hence, we conclude that IBFM3 holds.

It is straightforward for IBFM4 as the rule does not modify the parent
group’s variation type. The argument for IBFM5 is similar to IBFM3 . In
addition, no other feature IDs are removed from the parent group’s feature set,
and we have already established that featureID 	= RootID , which consequently
justify IBFM5 .

It is easy to see IBFM6 and IBFM7 hold: for IBFM6 , the new feature
does not have any child groups during the temporal scope, and the parent group’s
parent feature does not change; and for IBFM7 , the rule ensures that all of the
parent group’s types are compatible with the added feature’s type during the
temporal scope.

Since the new feature has no child groups, adding the feature cannot create
a cycle; and by assumption, IBFM8 holds in the original plan, thus, IBFM8
also holds in the modified plan. IBFM9 is also preserved as the rule adds the
temporal scope to the new feature’s existence table, and since the parent group
exists in the original plan.

As the rule is modular, it does not affect any other part of the plan, thus,
preserves well-formedness. Finally, it is straightforward to see that the names
map is modified correctly, i.e., names′ [name] [tk] = {featureID} where tn ≤
tk < tm.

To show that the addFeature operation updates the features map in
the feature model correctly with the rule, we have to show that for all time
points tk with tn ≤ tk < tm, the feature exists (tk ∈≤ F ′

e), the features has
the expected name, type and parent group, i.e., F ′

n [tk] = {name}, F ′
t [tk] =

{type} and F ′
p [tk] = {parentGroupID}, respectively, and the feature has no

child groups, i.e., F ′
c [tk] = ∅. These statements hold due to both premises in

the rule and the definition of function setFeatureAttributes. For example,
tk ∈≤ F ′

e is true due to the function updates Fe with Fe ∪ {[tn, tm)}.
As for the modified groups map, we have to show that the child features

of the group is updated correctly. Since the map is updated with the function
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addChildFeature which ensures that featureID ∈
⋃

G′
c [tk] for all tk with

tn ≤ tk < tm, where groups′ [parentGroupID] =
(
G′

e, G′
t, G′

p, G′
c

)
, the feature

is in the parent group’s set of child features in the updated model during the
entire temporal scope.

As a result, we conclude that the rule is sound by showing the modularity,
the well-formedness and the correctness of modification.

Soundness of rule Move-Feature. Let the initial state be

moveFeature(featureID, newParentID) at tn � (names, features,groups)

and the state resulting from the rule application (names′, features′,groups′).
Recall that this operation moves the feature with identity featureID in the
original well-formed IBFM to the group with identity newParentID at time tn.

Proof. Similar to the previous case, we first show the rule is modular, i.e., to
prove that the rule operates strictly within the temporal and spatial scopes of
the moveFeature operation. The premise Fp [tn]≤ = {[tp1 , tp2)} of rule indicates
that in the original plan, the feature being moved has a parent group during the
temporal scope [tp1 , tp2). As the rule moves this feature at time tn, the temporal
scope for this rule is [tn, tp2). We can easily see that the rule only modifies the
plan within this temporal scope, and detects cycles for each feature model at
each time point in this interval.

The spatial scope in this rule refers to the new ancestors of the feature after
the rule application. We can see that only the feature with ID featureID and
its new parent group with ID newParentID are looked up in the rule. As for
the cycle detection algorithm used in the rule, it looks up only the ancestors of
both the feature and the target group during the temporal scope. Thus, the rule
operates within the defined spatial scope, and consequently is modular.

Next, we are going to show that the rule preserves well-formedness. IBFM1
and IBFM2 immediately hold because the rule can only be applied if the feature
to be moved has a parent group, thus, not the root. The rule neither updates
the name, type and child groups of the feature, nor modifies the target group’s
type and parent feature. Hence, IBFM3 , IBFM4 and IBFM6 hold for the
updated model.

With the functions clampInterval, removeFeatureAt and addChildFeat
ure, the rule ensures that the feature is removed from the old parent group at
tn. The ID of the feature is then added to the new parent group at tn, which
guarantees that the feature always has exactly one parent group during the
temporal scope. Hence, IBFM5 holds.

IBFM7 follows immediately as the function compatibleTypes to ensure
that each type the feature has during the time scope is compatible with the
type of the parent group. As for IBFM8 , since the original plan is sound, the
modified one will only contain a cycle if the feature being moved is part of this
cycle, i.e., occurs in its own list of ancestors. IBFM8 therefore holds since the
cycle detection algorithm guarantees that the modified interval-based feature
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model does not contain any cycle by checking the new ancestors of the moved
feature. It is easy to see that IBFM9 holds as it holds for the orignal plan and
the feature exists in the temporal scope in the modified plan.

As the rule is modular, it does not affect any other part of the plan,
thus, preserves well-formedness. Finally, the rule correctly modifies the origi-
nal model since during the temporal scope, the feature’s parent group should
be newParentID, and the feature should only appear in the new parent group’s
set of child features. By the definition of function clampInterval, the feature
belongs to the old parent group oldParentID is shortened to end at tn, and a
new mapping [ [tn, tp2) �→ newParentID ] is inserted. Thus, it is clear that for all
ti with tn ≤ ti < tp2 , F ′

p [ti] = {newParentID}. Together with IBFM5 from the
well-formedness of the modified feature model, we can easily see that the feature
appears in the new parent group’s set of child features.

As a result, we conclude that the rule is sound.

Corollary 1 (Soundness of the rule system). Given a sound plan in a
form of interval-based feature model and an operation, if the operation is applied
by a rule in the rule system, the resulting model is sound: it does not contain
paradoxes, and is well-formed.

Proof. This holds immediately by the soundness of each rule in the system.

5 Related Work

Due to changes in product requirements, SPL evolution is often crucial and has
been investigated in the context such as refactoring [1,11], catalog of change
operators and modification operations on feature models with various levels
of granularity [7,19,24], diagram differences detection and model transforma-
tion [8,22]. The conflict and dependency analysis field for graph transformation
systems proposed methods for detecting incompatibilities between general graph
modifications [2,12,13]. Such procedures could be utilised to prevent incompat-
ibilities between operations within a feature model evolution plan, thus ensure
its structural consistency. Compared to these procedures, our work additionally
focuses on the semantical consistency and detection of paradoxes of plans for
evolution planning.

DeltaEcore [26] is a tool suite for generating custom delta languages for
arbitrary meta models of the source languages. DeltaEcore addresses temporal
variability in terms of Hyper Feature Models, which capture feature versions
which can be mapped to different implementation artefacts. However, it is not
possible to model evolution of feature models themselves. DarwinSPL [20] is a
tool suite for modeling SPLs with spatial, contextual and temporal variability
but it does not address the issues related to the updates of FMEPs. EvoFM [7]
supports long-term feature-oriented planning and analysis of evolution plans but
it also does not support plan changes. Other tools for planning the evolution
of SPLs include Feature-Driven Versioning [16], FORCE [9], EvolPL [6] and
SuperMod [25]. Even though the need and principle feasibility for SPL evolution
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planning has been recognized before [6,21], most existing concepts and tools do
not tackle the issues resulted from the modification of evolution plans.

A term rewriting system for soundness checking for FMEPs was introduced
and integrated [10]. It validates FMEPs but requires analysis of the entire plan,
even when a modification affects only small parts of the FMEPs. Other works on
the formal side of product line evolution include [24] where safe evolution scenar-
ios are formalised through a notion of partial refinement and [4,5] a language-
independent theory of product line refinement for stepwise and compositional
product line evolution, including soundness of several refinement transforma-
tion templates. We provide a solution to the challenge of supporting feature
model evolution planning while ensuring consistent feature model evolution plans
through modular rule-based analysis.

6 Conclusion

In this paper, we present a set of update operations for changing feature model
evolution plans. Furthermore, we define the scope of each of these operations,
meaning that we deduce exactly which parts of a plan may be affected by each
operation. A representation for feature model evolution plans is devised with the
aim to easily isolate the scope of an operation for analysis. Based on the scope
and representations, we create an analysis method for validation and application
of the update operations. The analysis is formalised as a set of rules, giving a
detailed specification of when an operation may be applied to the evolution plan,
and how to apply the modification. We implement a prototype of the analysis as
proof of concept. Finally, we give a proof that the rule set is sound by showing
that each rule preserves well-formedness of the structure of the feature model,
that the application of each rule affects only a specified scope within the feature
model evolution plan, and that each rule updates the evolution plan correctly
according to the semantics of the operation applied.

The implementation of the soundness checker in Haskell published at [18]
provides methods for validating the result of applying an operation to an interval-
based feature model. It also makes it possible to convert from a simple feature
model evolution plan to an interval-based feature model. Models and operations
are specified in straight-forward datatypes, and the tool executes the soundness
checks and updates the model.

A future improvement of this work could be the formalisation within a the-
orem proving framework, as we already have an implementation in a functional
language and we expect verification of all properties of data structures and oper-
ations to be amenable to mechanisation. We also plan to provide more examples
to practically explore the complexity of the operations beyond the example pro-
vided in the artefact.

Acknowledgements. This paper is partially supported by the CroFlow project:
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A Helper Functions [17]

Here we show the helper functions that are used in the two operational rules
addFeature and moveFeature in Sect. 3.

compatibleTypes(and,_) = True
compatibleTypes(_,mandatory) = False
compatibleTypes(_,_) = True

setFeatureAttributes((Fe, Fn, Ft, Fp, Fc) , [tstart, tend), name, type, parentGroupID)
= ( Fe ∪ {[tstart , tend )}

, Fn [[tstart , tend )] ← name
, Ft [[tstart , tend )] ← type
, Fp [[tstart , tend )] ← parentGroupID
, Fc )

addChildFeature((Ge, Gt, Gp, Gc) , [tstart , tend ), fid)

=
(
Ge, Gt, Gp, Gc [[tstart , tend )]

∪←− fid
)

removeFeatureAt
(
(Ge, Gt, Gp, Gc) , featureID, tc

)
=

(
Ge, Gt, Gp, clampIntervalValue (Gc, tc, featureID)

)

clampInterval (map, tc)
= map′ [[tstart , tc)] ← v
where {[tstart , tend )} = map [tc]≤

{v} = map [tc]
map′ = map \ [tstart , tend )

clampIntervalValue (map, tc, v)

= map′ [[tstart, tc)]
∪←− v

where {[tstart, tend)} = map [tc]v≤
map′ = map \v [tstart, tend)
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