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Abstract. There are two important things in science: (A) Finding
answers to given questions, and (B) Coming up with good questions. Our
artificial scientists not only learn to answer given questions, but also con-
tinually invent new questions, by proposing hypotheses to be verified or
falsified through potentially complex and time-consuming experiments,
including thought experiments akin to those of mathematicians. While
an artificial scientist expands its knowledge, it remains biased towards
the simplest, least costly experiments that still have surprising outcomes,
until they become boring. We present an empirical analysis of the auto-
matic generation of interesting experiments. In the first setting, we inves-
tigate self-invented experiments in a reinforcement-providing environ-
ment and show that they lead to effective exploration. In the second
setting, pure thought experiments are implemented as the weights of
recurrent neural networks generated by a neural experiment generator.
Initially interesting thought experiments may become boring over time.
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1 Introduction and Previous Work

It has been pointed out that there are two important things in science: (A)
Finding answers to given questions, and (B) Coming up with good questions,
e.g., [2,30,31,42,60,63,65,68]. (A) is arguably just the standard problem of com-
puter science. But how to implement the creative part (B) in artificial systems
through reinforcement learning (RL), gradient-based artificial neural networks
(NNs), and other machine learning methods?

For at least three decades, work on artificial scientists equipped with artificial
curiosity and creativity has been published that addresses this question, e.g., [33,
38,40,42,48,53,57,60,70,72,73]. One early such work is the intrinsic motivation-
based adversarial system from 1990 [38,42]. It is an artificial Q&A system
designed to invent and answer questions. For that, it uses two artificial NNs.
The first NN is called the controller C. C probabilistically generates outputs that
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may influence an environment. The second NN is called the world model M . It
predicts the environmental reactions to C’s outputs. Using gradient descent, M
minimizes its error, thus becoming a better predictor. But in a zero-sum game,
the reward-maximizing C tries to find sequences of output actions that maximize
the error of M . M ’s loss is the gain of C (like in the later application of artificial
curiosity called GANs [10,64], but also for the more general cases of sequential
data and RL [20,74,80]).

C is asking questions through its action sequences: What happens if I do
that? M is learning to answer those questions. C is motivated to come up with
questions where M does not yet know the answer and loses interest in questions
with known answers.

This type of Q&A system helps to understand the world, which is neces-
sary for planning [38,39,42] and may boost external reward [2,31,40,50,52,58].
Clearly, the adversarial approach makes for a fine exploration strategy in many
deterministic environments. In stochastic environments, however, it might
fail. C might learn to focus on those parts of the environment where M can
always get high prediction errors due to randomness, or due to computational
limitations of M . For example, an agent controlled by C might get stuck in front
of a TV screen showing highly unpredictable white noise, e.g., [2,57]. Therefore,
in stochastic environments, C’s reward should not be the errors of M , but (an
approximation of) the first derivative of M ’s errors across subsequent training
iterations, that is, M ’s learning progress or improvements [40,54]. As a
consequence, despite M ’s high errors in front of a noisy TV screen, C won’t get
rewarded for getting stuck there, simply because M ’s errors won’t improve. Both
the totally predictable and the fundamentally unpredictable will get boring.

This simple insight led to lots of follow-up work [57]. For example, one par-
ticular RL approach for artificial curiosity in stochastic environments was pub-
lished in 1995 [72]. A simple M learned to predict or estimate the probabilities
of the environment’s possible responses, given C’s actions. After each interac-
tion with the environment, C’s intrinsic reward was the KL-Divergence [25]
between M ’s estimated probability distributions before and after the resulting
new experience—the information gain [72]. This was later also called Bayesian
Surprise [19]. Compare earlier work on information gain [66] and its maximiza-
tion without RL & NNs [6].

In the general RL setting where the environment is only partially observ-
able [61, Sec. 6], C and M may greatly profit from a memory of previous
events [38,39,43]. Towards this end, both C and M can be implemented as
LSTMs [7,12,16,61] or Transformers [28,75].

The better the predictions of M , the fewer bits are required to encode the
history H of observations because short codes can be used for observations that
M considers highly probable [17,83]. That is, the learning progress of M has a
lot to do with the concept of compression progress [53,55–57]. But it’s not quite
the same thing. In particular, it does not take into account the bits of infor-
mation needed to specify M . A more general approach is based on algorithmic
information theory, e.g., [22,26,51,69,78,79]. Here C’s intrinsic reward is indeed
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based on algorithmic compression progress [53,55–57] based on some cod-
ing scheme for the weights of the model network, e.g., [8,15,23,24,46,47,71],
and also a coding scheme for the history of all observations so far, given the
model [15,17,34,53,78,83]. Note that the history of science is a history of com-
pression progress through incremental discovery of simple laws that govern seem-
ingly complex observation sequences [53,55–57].

In early systems, the questions asked by C were restricted in the sense that
they always referred to all the details of future inputs, e.g., pixels [38,42]. That’s
why in 1997, a more general adversarial RL machine was built that could ignore
many or all of these details and ask arbitrary abstract questions with com-
putable answers [48–50]. Example question: if we run this policy (or program)
for a while until it executes a special interrupt action, will the internal stor-
age cell number 15 contain the value 5, or not? Again there are two learning,
reward-maximising adversaries playing a zero-sum game, occasionally betting
on different yes/no outcomes of such computational experiments. The winner of
such a bet gets a reward of 1, the loser –1. So each adversary is motivated to come
up with questions whose answers surprise the other. And both are motivated to
avoid seemingly trivial questions where both already agree on the outcome, or
seemingly hard questions that none of them can reliably answer for now. This is
the approach closest to what we will present in the following sections.

All the systems above (now often called CM systems [62]) actually maximize
the sum of the standard external rewards (for achieving user-given goals) and
the intrinsic rewards. Does this distort the basic RL problem?

It turns out not so much. Unlike the external reward for eating three times
a day, the curiosity reward in the systems above is ephemeral, because once
something is known, there is no additional intrinsic reward for discovering it
again. That is, the external reward tends to dominate the total reward. In totally
learnable environments, in the long run, the intrinsic reward even vanishes next
to the external reward. Which is nice, because in most RL applications we care
only for the external reward.

RL Q&A systems of the 1990s did not explicitly, formally enumerate
their questions. But the more recent PowerPlay framework (2011) [60,70]
does. Let us step back for a moment. What is the set of all formalisable ques-
tions? How to decide whether a given question has been answered by a learning
machine? To define a question, we need a computational procedure that takes
a solution candidate (possibly proposed by a policy) and decides whether it is
an answer to the question or not. PowerPlay essentially enumerates the set of
all such procedures (or some user-defined subset thereof), thus enumerating all
possible questions or problems. It searches for the simplest question that
the current policy cannot yet answer but can quickly learn to answer
without forgetting the answers to previously answered questions. What
is the simplest such Q&A to be added to the repertoire? It is the cheapest one—
the one that is found first. Then the next trial starts, where new Q&As may
build on previous Q&As.
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In our empirical investigation of Sect. 3, we will revisit the above-mentioned
concepts of complex computational experiments with yes/no outcomes, focusing
on two settings: (1) The generation of experiments driven by model prediction
error in a deterministic reinforcement-providing environment, and (2) An app-
roach where C (driven by information gain) generates pure thought experiments
in form of weight matrices of RNNs.

2 Self-invented Experiments Encoded as Neural
Networks

We present a CM system where C can design essentially arbitrary computa-
tional experiments (including thought experiments) with binary yes/no out-
comes. Experiments may run for several time steps. However, C will prefer simple
experiments whose outcomes still surprise M , until they become boring.

In general, both the controller C and the model M can be implemented
as (potentially multi-dimensional) LSTMs [11]. At each time step t = 1, 2, . . .,
C’s input includes the current sensory input vector in(t), the external reward
vector Re(t), and the intrinsic curiosity reward Ri(t). C may or may not interact
directly with the environment through action outputs. How does C ask questions
and propose experiments? C has an output unit called the START unit. Once it
becomes active (>0.5), C uses a set of extra output units for producing the weight
matrix or program θ of a separate RNN or LSTM called E (for Experiment), in
fast weight programmer style [4,9,18,21,36,37,41,44,45].

E takes sensory inputs from the environment and produces actions as outputs.
It also has two additional output units, the HALT unit [59] and the RESULT
unit. Once the weights θ are generated at time step t′, E is tested in a trial,
interacting with some environment. Once E’s HALT unit exceeds 0.5 in a later
time step t′′, the current experiment ends. That is, the experiment computes its
own runtime [59]. The experimental outcome r(t′′) is 1 if the activation result(t′′)
of E’s RESULT unit exceeds 0.5, and 0 otherwise. At time t′, so before the
experiment is being executed, M has to compute its output pr(t′) ∈ [0, 1] from
θ (and the history of C’s inputs and actions up to t′, which includes all previous
experiments their outcomes). Here, pr(t′) models M ’s (un)certainty that the
final binary outcome of the experiment will be 1 (YES) or 0 (NO). Then the
experiment is run.

In short, C is proposing an experimental question in form of θ that will yield
a binary answer (unless some time limit is reached). M is trying to predict this
answer before the experiment is executed. Since E is an RNN and thus a general
computer whose weight matrix can implement any program executable on a
traditional computer [67], any computable experiment with a binary outcome can
be implemented in its weight matrix (ignoring storage limitations of finite RNNs
or other computers). That is, by generating an appropriate weight matrix θ, C
can ask any scientific question with a computable solution. In other words, C can
propose any scientific hypothesis that is experimentally verifiable or falsifiable.
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At t′′, M ’s previous prediction pr(t′) is compared to the later observed out-
come r(t′′) of C’s experiment (which spans t′′ − t′ time steps), and C’s intrinsic
curiosity reward Ri(t′′) is proportional to M ’s surprise. To calculate it, we inter-
pret pr(t′) as M ’s estimated probability of r(t′′), given the history of observations
so far. Then we train M by gradient descent (with regularization to avoid over-
fitting) for a fixed amount of time to improve all of its previous predictions
including the most recent one. This yields an updated version of M called M∗.

In general, M∗ will compute a different prediction PR(t′) of r(t′′), given the
history up to t′ −1. At time t′′, the contribution RIG(t′′) to C’s curiosity reward
is proportional to the apparent resulting information gain, the KL-divergence

RIG(t′′) ∼ DKL

(
PR(t′)||pr(t′)

)
.

If M had a confident belief in a particular experimental outcome, but this belief
gets shattered in the wake of C’s experiment, there will be a major surprise and a
big insight for M , as well as lots of intrinsic curiosity reward for C. On the other
hand, if M was quite unsure about the experimental outcome, and remains quite
unsure afterwards, then C’s experiment can hardly surprise M and C will fail to
profit much. C is motivated to propose interesting hypotheses or experiments that
violate M ’s current deep beliefs and expand its horizon. An alternative intrinsic
curiosity reward would be based on compression progress [53,55–57].

Note that the entire experimental protocol is the responsibility of θ. Through
θ, E must initialize the experiment (e.g., by resetting the environment or moving
the agent to some start position if that is important to obtain reliable results),
then run the experiment by executing a sequence of computational steps or
actions, and translate the incoming data sequence into some final abstract binary
outcome YES or NO.

C is motivated to design experimental protocols θ that surprise M . C will get
bored by experiments whose outcomes are predicted by M with little confidence
(recall the noisy TV), as well as by experiments whose outcomes are correctly
predicted by M with high confidence. C will get rewarded for surprising experi-
ments whose outcomes are incorrectly predicted by M with high confidence.

A negative reward per time step encourages C to be efficient and lazy and
come up with simple and fast still surprising experiments. If physical actions in
the environment cost much more energy (resulting in immediate negative reward)
than E’s internal computations per time step, C is motivated to propose a θ
defining a “thought experiment” requiring only internal computations, without
executing physical actions in the (typically non-differentiable) environment. In
fact, due to C’s bias towards the computationally cheapest and least costly
experiments that are still surprising to M , most of C’s initial experiments may
be thought experiments. Hence, since C, E and M are differentiable, not only
M but also C may be often trainable by backpropagation [4] rather than the
generally slower policy gradient methods [1,29,77,81]. Of course, this is only
true if the reward function is also differentiable with respect to C’s parameters.
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3 Experimental Evaluation

Here we present initial studies of the automatic generation of interesting exper-
iments encoded as NNs. We evaluate these systems empirically and discuss
the associated challenges. This includes two setups: (1) Adversarial intrinsic
reward encourages experiments executed in a differentiable environment through
sequences of continuous control actions. We demonstrate that these experiments
aid the discovery of goal states in a sparse reward setting. (2) Pure thought exper-
iments encoded as RNNs (without any environmental interactions) are guided
by an information gain reward.

Together, these two setups cover the important aspects discussed in Sect. 2:
the use of abstract experiments with binary outcomes as a method for curious
exploration, and the creation of interesting pure thought experiments encoded as
RNNs. We leave the integration of both setups into a single system (as described
in Sect. 2) for future work.

3.1 Generating Experiments in a Differentiable Environment

Reinforcement learning (RL) usually involves exploration in an environment with
non-differentiable dynamics. This requires RL methods such as policy gradi-
ents [82]. To simplify our investigation and focus solely on the generation of
self-invented experiments, we introduce a fully differentiable environment that
allows for computing analytical policy gradients via backpropagation. This does
not limit the generality of our approach, as standard RL methods can be used
instead.

Our continuous force field environment is depicted in Fig. 1. The agent has
to navigate through a 2D environment with a fixed external force field. This
force field can have different levels of complexity. The states in this environment
are the position and velocity of the agent. The agent’s actions are real-valued
force vectors applied to itself. To encourage laziness and a bias towards simple
experiments, each time step is associated with a small negative reward (−0.1). A
sparse large reward (100) is given whenever the agent gets very close to the goal
state. We operate in the single life setting without episodic resets. Additional
information about the force field environment can be found in Appendix A. Since
the environment is deterministic, it is sufficient for C to generate experiments
whose results the current M cannot predict.

Method. Algorithm 1 and Fig. 2 summarize the process for generating a
sequence of interesting abstract experiments with binary outcomes. The goal
is to test the following three hypotheses:

– Generated experiments implement exploratory behavior, facilitating the
reaching of goal states.

– If there are negative rewards in proportion to the runtime of experiments,
then the average runtime will increase over time, as the controller will find it
harder and harder to come up with new short experiments whose outcomes
the model cannot yet predict.
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Fig. 1. A differentiable force field environment. The agent (red) has to navigate
to the goal state (yellow) while the external force field exerts forces on the agent. (Color
figure online)

Fig. 2. Generating self-invented experiments in a differentiable environment.
A controller Cφ is motivated to generate experiments Eθ that still surprise the model
Mw. After execution in the environment, the experiments and their binary results are
stored in memory. The model is trained on the history of previous experiments.

– As the model learns to predict the yes/no results of more and more experi-
ments, it becomes harder for the controller to create experiments whose out-
comes surprise the model.

The generated experiments have the form Eψ(s) = (a, r̂), where Eψ is a linear
feedforward network with parameters ψ, s is the environment state, a are the
actions and r̂ ∈ [0, 1] is the experimental result. Both s and a are real-valued
vectors.

Instead of a HALT unit, a single scalar τ ∈ R
+ determines the number

of steps for which an experiment will run. To further simplify the setup, the
experiment network is a feedforward NN without recurrence. To make the exper-
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imental result differentiable with respect to the runtime parameter, τ predicts
the mean of a Gaussian distribution with fixed variance over the number of steps.
The actual result r̃ is the expectation of the result unit r̂ over the distribution
defined by τ (more details on this can be found in Appendix A.1). The binarized
result r has the value 1 if r̃ > 0.5, and 0 otherwise. The parameters θ of the
experiment are the network parameters ψ together with the runtime parameter
τ , i.e. θ := (ψ, τ).

For a given starting state s, the controller Cφ generates experiments: Cφ(s) =
θ. Cφ is a multi-layer perceptron (MLP) with parameters φ, and θ denotes the
parameters of the generated experiment. The model Mw is an MLP with param-
eters w. It makes a prediction Mw(s, θ) = ô, with ô ∈ [0, 1], for an experiment
defined by the starting state s and the parameters θ.

During each iteration of the algorithm, Cφ generates an experiment based
on the current state s of the environment. This experiment is executed until
the cumulative halting probability defined by the generated τ exceeds a certain
threshold (e.g., 99%). The starting state s, experiment parameters θ and binary
result r are saved in a memory buffer D of experiments. Every state encountered
during the experiment is saved to the state memory buffer B.

After the experiment execution, the model Mw is trained for a fixed number
of steps of stochastic gradient descent (SGD) to minimize the loss

LM = E(s,θ,r)∼D[bce(Mw(s, θ), r)], (1)

where bce is the binary cross-entropy loss function.
The third and last part of each iteration is the training of the controller Cφ.

The loss that is being minimized via SGD is

LC = Es∼B[−bce
(
Mw(s, Cφ(s)), r̃(Cφ(s), s)

) − Re(Cφ(s), s)]. (2)

The function r̃ maps the experiment parameters and starting state to the con-
tinuous result of the experiment. The function Re maps the experiment param-
eters and starting state to the external reward. Note that gradient information
will flow back from r̃ and R to φ through the execution of the experiment in the
differentiable environment. The first term corresponds to the intrinsic reward for
the controller, which encourages it to generate experiments whose outcomes Mw
cannot predict. The second term is the external reward from the environment,
which punishes long experiments. Since the reward for reaching the goal is sparse
and not differentiable with respect to the experiment’s actions, no information
about the goal state reaches Cφ through the gradient.

Results and Discussion. To investigate our first hypothesis, Fig. 3a shows
the cumulative number of times a goal state was reached during an experiment,
adjusted by the number of environment interactions of each experiment. Specifi-
cally, it shows h(j) =

∑j
k=1

gk

nk
, where j = 1, 2, . . . is the index of the generated

experiment, gk is 1 if the goal state was reached during the kth experiment
and 0 otherwise, and nk is the runtime of the kth experiment. Our method,
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(a) Number of times the goal state was reached,
adjusted by the number of environment interac-
tions. Experiments generated with adversarial
intrinsic reward benefit exploration more than
random experiments. Without intrinsic motiva-
tion, the agent usually fails to reach any goal
states in the sparse reward setting. Mean with
bootstrapped 95% confidence intervals across
30 seeds.

(b) Blue: the average runtime of experiments gen-
erated by Cφ. Purple: the difference between result
prediction accuracy of the current Mw for the gener-
ated experiment and the average prediction accuracy
of the current Mw for random experiments. As it gets
harder for Cφ to generate experiments θ that are sur-
prising to Mw (hard to predict), the runtime increases
and the experiments tend to be harder to predict than
the average randomly drawn experiment. Mean with
bootstrapped 95% confidence intervals across 30 seeds.

Fig. 3. Experiments in the differentiable force field environment

as described above and in Algorithm 1, reaches the most goal states per envi-
ronment interaction. Purely random experiments also discover goal states, but
less frequently. Note that such random exploration in parameter space has been
shown to be a powerful exploration strategy [32,35,76]. The average runtime
of the random experiments is 50 steps, compared to 22.9 for the experiments
generated by Cφ. To rule out a potential unfair bias due to different runtimes,
Fig. 6 in the Appendix shows an additional baseline of random experiments with
an average runtime of 20 steps, leading to results very similar to those of longer
running random experiments. If we remove the intrinsic adversarial reward, the
controller is left only with the external reward. This means that there is no bce
term in Eq. 2. It is not surprising that in this setting, Cφ fails to generate experi-
ments that discover goal states, since the gradient of LC contains no information
about the sparse goal reward.

Figure 3b addresses our second and third hypotheses. Cφ indeed tends to
prolong experiments as Mw has been trained on more experiments, even though
experiments with long runtimes are discouraged through the punitive external
reward. Our explanation for this is that it becomes harder with time for Cφ to
come up with short experiments for which Mw cannot yet accurately predict
the correct results. This is supported by the fact that the prediction accuracy of
Mw for newly generated experiments goes up. Specifically, Fig. 3b shows the dif-
ference between prediction accuracy of the current Mw for the newly generated
experiment and the expected prediction accuracy of the current Mw for experi-
ments randomly sampled from a simple prior. This accounts for the general gain
of Mw’s prediction accuracy over the course of training. It can be seen that in
the beginning, Cφ is successful at creating adversarial experiments that surprise
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Mw. With time, however, it fails to continue doing so and is forced to create
longer experiments to challenge Mw.

3.2 Pure RNN Thought Experiments

The previous experimental setup uses feedforward NNs as experiments and
an intrinsic reward function that is differentiable with respect to the con-
troller’s weights. This section investigates a complementary setup: interesting
pure thought experiments (with no environment interactions) are generated in
the form of RNNs without any inputs, driven by an intrinsic curiosity reward
based on information gain which we treat as non-differentiable.

Algorithm 1. Adversarial yes/no experiments in a differentiable environment
Input: Randomly initialized differentiable Controller Cφ : S → Θ, randomly initialized
differentiable Model Mw : S × Θ → R, empty experiment memory D, empty state
memory B, set of random initial experiments Einit, Differentiable environment
Output: An experiment memory populated with (formerly) interesting experiments
1: for θ ∈ Einit do
2: s ← current environment state
3: Execute the experiment parametrized by θ in the environment, obtain binary

result r
4: Save the tuple (s, θ, r) to D
5: Save all encountered states during the experiment to B
6: end for
7: repeat
8: s ← current environment state
9: θ ← Cφ(s)

10: Execute the experiment parametrized by θ in the environment, obtain binary
result r

11: Save tuple (s, θ, r) to D
12: ŝ ← current environment state
13: for some steps do
14: Sample tuple (s, θ, r) from D
15: Update the model using SGD: ∇wbce(Mw(s, θ), r)
16: end for
17: for some steps do
18: Sample starting state s from B
19: Set environment to state s
20: Execute the experiment parametrized by Cφ(s) in the environment, obtain

continuous result r̃ and external reward Re

21: Update the controller using SGD: ∇φ

( − bce(Mw(s, Cφ(s)), r̃) − Re

)

22: end for
23: Set environment to state ŝ
24: until no more interesting experiments are found
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Method. In many ways, this new setup (depicted in Fig. 4 and described in
Algorithm 2 in the Appendix) is similar to the one presented in Sect. 3.1. In
what follows, we highlight the important differences.

An experiment Eθ is an RNN of the form (ht+1, rt+1, γt+1) = Eθ(ht), where
ht is the hidden state vector, rt ∈ {0, 1} is the binary result at experiment
time step t, and γt ∈ [0, 1] is the HALT unit. The result r of Eθ is the rt for
the experiment step t where γt first is larger than 0.5. Since there is no external
environment and the experiments are independent of each other, the model Mw is
again a simple MLP with parameters w. It takes only the experiment parameters
θ as input and makes a result prediction ô = Mw(θ), ô ∈ [0, 1].

As mentioned above, here we treat the intrinsic reward signal as non-
differentiable. This means that—in contrast to the method presented in
Sect. 3.1—the controller cannot receive information about Mw from gradients
that are backpropagated through the model. Instead, it has to infer the learning
behavior of Mw from the history ω of previous experiments and intrinsic rewards
to come up with new surprising experiments. The controller Cφ is now an LSTM
that is trained by DDPG [27] and generates new experiments solely based on the
history of past experiments: Cφ(ω) = θ. The history ω is a sequence of tuples
(θi, ri, Ri), where i = 1, 2, . . . is the index of the experiment. It contains experi-
ments up to the last one that has been executed. More details on the training
of Mw and the algorithm can be found in Appendix B.

For these pure thought experiments, we use a reward based on information
gain. Let w be M ’s weights at certain point in time. Then a new experiment
with parameters θ is generated, executed and saved to the buffer. On this buffer
D, which now includes θ, M is trained for a fixed number of SGD steps to obtain
new weights w∗. Then, the information gain reward associated with experiment
θ is

RIG(θ,w,w∗) =
1

|D|
∑

θ̃∈D
DKL(Mw∗(θ̃)||Mw(θ̃)), (3)

where we interpret the output of the model as a Bernoulli distribution.

Results and Discussion. Figure 5 shows the information gain reward asso-
ciated with each new experiment that Cφ generates. We observe that, after a
short initial phase, the intrinsic information gain reward steadily declines. This
is similar to what we observe for the prediction accuracy in Sect. 3.1: it becomes
harder for the controller to generate experiments that surprise the model. It
should be mentioned that this is a natural effect, since—as the model is trained
on more and more experiments—every new additional experiment contributes
on average less to the model’s change during training, and thus is associated
with less information gain reward. An interesting, albeit minor, effect shown in
Fig. 5 is that also in this setup, the average runtime of the generated experiments
increases slightly over time, even though there is no negative reward for longer
thought experiments. For shorter experiments, however, it is apparently easier
for the model to learn to predict the results. Hence, at least in the beginning,
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Fig. 4. Generating abstract
thought experiments encoded
as RNNs. The model is trained to
predict the results of previous exper-
iments. The controller generates new
interesting thought experiments (with-
out environment interactions) based
on the history of previous experiments,
their results and rewards.

Fig. 5. Empirical results for pure
thought experiments encoded as
RNNs. Blue: the average runtime of
each experiment generated by Cφ. Pur-
ple: information gain reward (Eq. 3) for
Cφ associated with each experiment.
Mean with bootstrapped 95% confi-
dence intervals across 20 seeds.

they yield more learning progress and more information gain. Later, however,
longer experiments become more interesting.

In comparison to the experiments generated in Sect. 3.1, the present ones
have a much shorter runtime. This is a side-effect of the experiments being RNNs
with a HALT unit; for randomly initialized experiments, the average runtime is
approximately 1.6 steps.

4 Conclusion and Future Work

We extended the neural Controller-Model (CM) framework through the notion of
arbitrary self-invented computational experiments with binary outcomes: exper-
imental protocols are essentially programs interacting with the environment,
encoded as the weight matrices of RNNs generated by the controller. The model
has to predict the outcome of an experiment based solely on the experiment’s
parameters. By creating experiments whose outcomes surprise the model, the
controller curiously explores its environment and what can be done in it. Such
a system is analogous to a scientist who designs experiments to gain insights
about the physical world. However, an experiment does not necessarily involve
actions taken in the environment: it may be a pure thought experiment akin to
those of mathematicians.

We provide an empirical evaluation of two simple instances of such systems,
focusing on different and complementary aspects of the idea. In the first setup,
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we show that self-invented abstract experiments encoded as feedforward net-
works interacting with a continuous control environment facilitate the discovery
of rewarding goal states. Furthermore, we see that over time the controller is
forced to create longer experiments (even though this is associated with a larger
negative external reward) as short experiments start failing to surprise the model.
In the second setup, the controller generates pure abstract thought experiments
in the form of RNNs. We observe that over time, newly generated experiments
result in less intrinsic information gain reward. Again, later experiments tend to
have slightly longer runtime. We hypothesize that this is because simple exper-
iments initially lead to a lot of information gain per time interval, but later do
not provide much insight anymore.

These two empirical setups should be seen as initial steps towards more capa-
ble systems such as the one proposed in Sect. 2. Scaling these methods to more
complex environments and the generation of more sophisticated experiments,
however, is not without challenges. Direct generation and interpretation of NN
weights may not be very effective for large and deep networks. Previous work [3]
already combined hypernetworks [13] and policy fingerprinting [5,14] to gener-
ate and evaluate policies. Similar innovations will facilitate the generation of
abstract self-invented experiments beyond the small scale setups presented in
this paper.

A Experiments in the Force Field Environment

The force field of the environment is based on a 2D grid of randomly sampled
force vectors. To get a continuous force field, bicubic interpolation between the
vectors of the grid is used. Hence, the resolution of the grid influences the com-
plexity of the force field (higher resolution → more intricate force field). In all
experiments, the grid resolution is sampled uniformly from {(3, 3), (5, 5), (7, 7)}.
The random seed of each run affects both the force field and the position of the
goal state. This means that every run has its own unique environment.

A.1 Experiment Execution

Let r̂t ∈ [0, 1] be the value of the result node at step t of the experiment whose
runtime is determined by the parameter τ ∈ [0, 100]. The maximum runtime
is fixed to 100 steps. A distribution over experiment steps t is defined by τ as
follows: pτ (t) =

exp(−0.5(t−τ)2)
∑100

u=1 exp(−0.5(u−τ)2)
.

The continuous result of the experiment is the expectation of the result unit
over this distribution: r̃ = Et∼pτ

r̂t. The binary result of the experiment r is the
boolean value r̃ > 0.5.

A.2 Hyperparameters for the Force Field Experiments

Table 1 shows the hyperparameters for Algorithm 1. The output nodes of Cφ

that generate the parameters ψ of the experiment network have a tanh output



Learning One Abstract Bit at a Time Through Self-invented Experiments 267

nonlinearity and are then scaled to the predefined range. The output node that
generates τ is clipped to the range [0, 100].

The experiment parameters for random baselines are generated as ψ =
2 tanh(v), where v ∼ N (0, 4I). The runtime parameter τ is sampled uniformly
from the allowed range. The hyperparameters for the model are the same as in
Table 1. The baseline with only external reward also uses the hyperparameters
of Table 1. The difference is that in this setting, the loss of the Cφ is simply
LC = Es∼B[−R(Cφ(s), s)] instead of the one defined in Eq. 2.

Table 1. Hyperparameters for Algorithm 1

Hyperparameter Value

hidden layers Mw [128, 128, 128, 128]
hidden layers Cφ [128, 128, 128, 128]
training steps per iteration Mw 100
training steps per iteration Cφ 100
learning rate Mw 0.0003
learning rate Cφ 0.0003
weight decay Mw 0.01
weight decay Cφ 0.01
experiment parameter range [–2, 2]
noise input nodes Cφ 8
environment grid resolutions [(3, 3), (5, 5), (7, 7)]
number of iterations 1000
number of initial experiments in Einit 100
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A.3 Additional Results

Fig. 6. Similar to Fig. 3a, but with an additional baseline of short random experiments
with an average runtime of 20 steps.

To account for a potential bias due to experimental runtime, Fig. 6 shows the
adjusted number of goal states for a baseline of shorter random experiments.

B Pure Thought Experiments

Algorithm 2 summarizes the method described in Sect. 3.2. In this setup, the
model Mw is trained to minimize the following loss:

LM = E(θ,r)∼D[bce(Mw(θ), r)]. (4)

Efficient approximation of the policy gradients for the controller is achieved
through an actor-critic method, specifically DDPG [27]. The controller Cφ has
an additional LSTM encoder that generates a vector-sized representation of the
history ω of previous experiments, their results and the reward associated with
them. The actor is an MLP that receives as input the history representation
created by the LSTM and generates the weights of an experiment RNN, whereas
the critic receives both a history representation and experiment weights as input,
and outputs a scalar reward estimation. Actor and critic share the same LSTM
history encoder and take alternating gradient descent steps during training. The
input to the LSTM history encoder is the sequence ω of the last 1000 that have
been executed.

The experiment RNNs Eθ used in this empirical evaluation have 3 hidden
units and no inputs. The initial hidden state h0 is treated as part of the param-
eters θ and is thus also generated by Cφ. Random experiments are sampled
the same way as described in Sect. A.2. All other hyperparameters are listed in
Table 2.
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Table 2. Hyperparameters for Algorithm 2

Hyperparameter Value

hidden layers Mw [128, 128, 128, 128]
hidden layers Cφ LSTM [64]
hidden layers Cφ MLP [128, 128, 128, 128]
training steps per iteration Mw 50
training steps per iteration Cφ 10
learning rate Mw 0.0001
learning rate Cφ 0.0001
weight decay Mw 0.01
weight decay Cφ 0.01
experiment parameter range [–3, 3]
number of iterations 30000
number of initial experiments in Einit 100

Algorithm 2. Pure thought experiments encoded by RNNs
Input: Randomly initialized differentiable Controller Cφ : Ω → Θ, where Ω is the set of
sequences of the form (θi, ri, Ri, θi+1, ri+1, Ri+1, . . .), randomly initialized differentiable
Model Mw : Θ → R, empty sequential experiment memory D, set of random initial
experiments Einit

Output: An experiment memory populated with (formerly) interesting pure thought
experiments
1: for θ ∈ Einit do
2: Execute the RNN thought experiment parametrized by θ, obtain binary result

r
3: Save the tuple (θ, r) to D
4: Train Mw on data from D for a fixed number of steps minimizing Equation 4 to

obtain updated weights w∗

5: Calculate the intrinsic reward Ri = RIG(θ,w,w∗) (Equation 3)
6: w ← w∗

7: Save Ri to D
8: end for
9: repeat

10: ω ← sequence of the last experiments from D
11: θ ← Cφ(ω)
12: Execute the RNN thought experiment parametrized by θ, obtain binary result

r
13: Train Mw on data from D for a fixed number of steps to obtain updated weights

w∗

14: Calculate the intrinsic reward Ri = RIG(θ,w,w∗)
15: w ← w∗

16: Save Ri to D
17: Train Cφ for a fixed number of steps with DDPG to maximize the expected

intrinsic reward
18: until no more interesting experiments are found
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