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Preface

The 4th International Workshop on Active Inference (IWAI) took place in Ghent, Bel-
gium on September 13–15, 2023. In contrast to the previous editions (2020–2022),
which were held in conjunction with the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), this
was the first standalone edition. We gathered around 70 active inference researchers
from academia and industry in the beautiful scenery of the Saint Peter’s Abbey, with a
three-day program packed with two tutorials, three keynotes, a poster session, and six
sessions of paper presentations.

This volume presents the 17 full papers that were accepted and presented at the
workshop. Out of 34 submissions, 17 full papers were selected through a double-blind
review process. The papers are clustered in the six sections as presented at the workshop.
These sections cover a wide range of domains that find applications of active inference,
ranging from robotics, decision-making and control, psychology, representation learn-
ing, to theoretical advancements of learning and inference as well as active inference
implementations.

The IWAI 2023 organizers would like to thank the Program Committee for their
valuable review work, all authors for their contributions, Noor Sajid and Ajith Anil
Meera for their excellent tutorials, Tetsuya Ogata, Antonella Maselli and Karl Friston
for their inspiring keynotes, and of course all the attendees. We would also like to thank
our sponsorsVERSESAI,GhentUniversity (IDLab), imec and theAI Flanders Research
Program, which made this event possible.

Group picture taken at IWAI 2023, September 14, Ghent, Belgium.
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Contextual Qualitative Deterministic Models
for Self-learning Embodied Agents

Jan Lemeire1,2(B) , Nick Wouters2, Marco Van Cleemput1, and Aron Heirman2

1 Department of Industrial Sciences (INDI), Vrije Universiteit Brussel (VUB), Pleinlaan 2,
1050 Brussels, Belgium

jan.lemeire@vub.be
2 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB),

Pleinlaan 2, 1050 Brussels, Belgium

Abstract. This work presents an approach for embodied agents that have to
learn models from the least amount of prior knowledge, solely based on knowing
which actions can be performed and observing the state. Instead of relying on
(often black-box) quantitative models, a qualitative forward model is learned that
finds the relations among the variables, the contextual relations, and the qualita-
tive influence.We assume qualitative determinism andmonotonicity, assumptions
motivated by human learning. A learning and exploitation algorithm is designed
and demonstrated on a robot with a gripper. The robot can grab an object and
move it to another location, without predefined knowledge of how to move, grab
or displace objects.

Keywords: Autonomous robots · Developmental learning · Open-ended
learning · Qualitative Models

1 Introduction

We believe that self-learning capabilities are crucial for fully autonomous agents. With
the right learning architecture, agents will be able to adapt to new, unseen, and uncon-
trolled, open environments. They can discover knowledge autonomously, with no need
for external supervision, while also having the capability to redefine their own behavior
in case of unexpected perturbations.

We developed a qualitative approach, that allows for a high level of abstraction. It is
therefore effective, data-efficient, relates to symbolic reasoning, and provides explain-
ability. The idea of self-learning agents in general, is to start with an empty brain that
doesn’t contain any prior knowledge, apart from a generic learning architecture. With
this developmental learning philosophy in mind, our agent aims to achieve the fol-
lowing goals. Firstly it wants to formalize the effect of its actions on the world in a
forward model. It does so by interacting with the world, and relating its observations
to its actions. Secondly, it will exploit the learned model to make effective action plans
to achieve desired goal states. In other words, the agent will learn to manipulate its
environment through its directly controllable actuators. In order to do this, our agent’s
learning architecture needs algorithms for exploration, learning, and exploitation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. L. Buckley et al. (Eds.): IWAI 2023, CCIS 1915, pp. 3–13, 2024.
https://doi.org/10.1007/978-3-031-47958-8_1
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As opposed to monolithic black box models, such as neural networks, our approach
is based on explicitly modeling the structure and qualitative properties of the system.
Some examples of qualitative relations that our system will learn are the following:
“positive motor input gives an increase of x- and y-coordinate if the robot’s orientation
is North”, “if I touch a wall, I cannot move further, but can move in the other direc-
tion”, or “If I touch an object that is located North of me, and if I move North, the
object’s position will change”. Those examples illustrate the plausibility of the assump-
tion of qualitative determinism on which our approach relies: in our world, things hap-
pen roughly deterministically. Certainly, if we only look at the direction of changes in
variables and not the quantity of the changes.

The contributions of this work are the explicit modeling of context, the identifica-
tion of the context and the graph describing the relations among the variables, and the
exploitation algorithm based on the graph and context.

First, the related work is discussed. The three assumptions are given in the subse-
quent section. Then we present the experimental setup before defining the model class.
In the last 2 sections, the learning and exploitation algorithms are given and the experi-
mental results are shown.

2 Related Work

There is extensive work on qualitative models [3,6], in which the advantages over pure
quantitative models are extensively discussed and proven. Bratko et al. [2,13] proposed
qualitative models for robotic control. They are based on a small set of variables, while
we try to learn networks over a large set of variables. Also, with our representation
of context, we enable high-level reasoning. The work of Mugan et al. [10] tackles the
same problem as in this paper. They also employ qualitative dynamic Bayesian net-
works. But they use a probabilistic approach and turn the networks into MDPs to use
the model for solving tasks. In Sect. 7, we show how that model can directly be used to
determine effective actions. Mugan’s quantitative space allows more qualitative values
than just the sign. The space is partitioned by so-called landmarks, which resemble our
contextual partitioning.

There is quite extensive work on algorithms for causal structure learning, such as
the PC algorithm and its variants [11]. However, these algorithms heavily rely on the
probabilistic nature of the relations since they rely on some type of faithfulness, which
is violated in the presence of deterministic relations [9].

The advantage of explicitly adding context to the models has been studied by [12].
Applied to Bayesian networks this results in context-specific independencies [1], which
come from our contextual edges. Our representation is based on the work of [5].

The field of Active Inference [7] is also concerned with the self-learning of embod-
ied agents. The theoretical foundations are based on probabilistic models, while we
challenge their necessity for the robotic settings on which we focus. Many approaches
for active inference are based on (deep) neural networks, e.g., Çatal et al. [4]. These are
monolithic black-box models, while the presented approach is based on explicit model-
ing of the qualitative properties, which can then be exploited for reasoning about plans
and linking them to symbolic approaches.
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3 Assumptions

We assume that the system under study can be described by a limited set of piece-wise
deterministic monotonic functions defined over variables that are observed or derived:

– piece-wise monotonic functions: the relations among variables are primarily
monotonous. At certain points/boundaries/constraints (called landmarks by [10]),
the monotonicity might be ‘broken’ and a new ‘tone’ starts. We say that the state
space is divided into subspaces.

– limited: almost every continuous mathematical function can be split into pieces of
monotonicity, but we assume that for the functions of our models, the number of
pieces is limited.

– we assume that the set of observed variables is sufficient to characterize the state of
the system. This will also become possible by relying on derived variables. Derived
variables are defined over observed variables or other derived variables.

– we assume qualitative determinism. Although this will be relaxed later. We plan to
add a don’t know-value for variables and function outputs. This value can also be
used in regions where the variable’s sign changes and there is some uncertainty.

4 Experimental Setup

We will perform experiments on a simulated robot. The robot has 4 motors: one for the
right wheel (mR), one for the left wheel (mL), one to close the gripper (close), and
one to lift the gripper (lift). The wheel motors can only turn in one direction (to drive
forward). The robot knows its position (x and y) and its orientation (or). It also has
a camera for the position of an object (obx, oby and obz) and a sensor for detecting
whether an object is held (hold).

The goal is that the robot explores the effect of its actions and learns a model such
that it can grab an object and move it to another location. This setup is similar to the
setup used by Mugan and Kuipers [10].

5 Contextual Qualitative Deterministic Causal Models

Here we define the proposed model class.

5.1 Problem Definition

Similar to the Markov Decision Processes (MDPs), the problem is defined by a tuple
〈S,A, T 〉, where S is a set of states that are observed, A a set of actions, and T is a
transition model, which, in our approach, is a deterministic function S′ = T (S,A). As
opposed to MDPs, we do not have a reward signal R; the agent will learn a model for
T by intrinsic motivation.
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5.2 Model Definition

A model is defined over the action variables from A, the previous state _S (the under-
score is used for previous state variables) and the new state S. State variables are
directly observed or calculated from other variables. The latter we call derived vari-
ables. For each state variable, we add the derived variable ds = s−_s, which measures
the change of variable s and can be regarded as an approximation of the time derivative.
Note that we use capitalized names for vectors and small letters for single variables.

The model consists of two parts: the description of the relations among the variables
and the nature of these relations. Similar to a dynamic Bayesian network, the relations
among the variables are modeled by a Directed Acyclic Graph (DAG), which we will
interpret causally: the orientation of the edges represents the causal influence. Variables
A and _S are input or root variables. Only the variables of S have incoming edges. The
parents of variable s are denoted with Pa(s).

By assuming determinism, all (dependent) state variables could be expressed as a
function of the (free) input variables and the previous state. However, since we want to
have simple relations, we want to find an order in which all dependent variables can be
calculated from input or other dependent variables such that the relations are ‘simple’:
each variable has a minimum of parents and the relations are basic qualitative functions
based on the monotonicity assumption.

Once the DAG is established, the dependence of each state variable on its parents
has to be established. As we are only interested in the qualitative relation, the function
returns the sign of the variable.

We denote the sign of variable v by Q(v), which has three possible outcomes:
PLUS, MINUS and ZERO, also denoted with +, − and 0. When applied to a vector,
Q(V ) returns the vector containing the signs of the vector elements. To each state vari-
able s, a deterministic qualitative function Q(s) = QF (Pa(s)) is determined. For the
moment, we allow two types of qualitative functions. In the first case, the qualitative
value of s can be determined by the qualitative values of the parent variables only,
while in other cases, the quantitative values are needed. The first type is a function that
only depends on the qualitative value of the independent variable and can thus be writ-
ten as Q(s) = QF (Q(Pa(s))). The function can be described by a ternary truth table.
The second type is a function Q(s) = QF (Pa(s)) that can be described by a monotone
decision function DF such that Q(s) = Sign(DF (Pa(s))). The function separates the
positives from the negatives, as shown in Fig. 1. When the left motor is actuated more
than the right motor, the robot turns to the left (the change of orientation is positive).
Otherwise to the right, except if both actuations are equal, then the robot drives straight.

5.3 Representing Context

So far, our model is able to model deterministic monotonic functions qualitatively.
These functions are only valid in parts of the state space, which are defined by the
context. For some of the state variables, different qualitative functions might apply
according to the context, which depends on some action or state variables. Here we
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Fig. 1. How the left and right motor determine the sign of the change of the robot’s orientation.
This is a type 2 function.

limit the context of a specific function to a specific range of one variable (which we call
the context variable): the total range of that variable is partitioned into two or more
contexts.

Definition 1. Variable c is a context variable of state variable s if its range can be
subdivided into regions in which the qualitative function can be written as a truth table
(Type 1) or with a decision function (Type 2).

In each context of c, s might depend on another set of parents, or it is just the quali-
tative function that starts another ‘tone’. An example of the latter is shown in Fig. 2. The
orientation (expressed in degrees) determines the sign of the change of the x-coordinate.
Between 90 and −90◦, x changes positively, otherwise negatively. Driving forward is
determined by the minimum of the left and right motor actuation (minLR) since the
difference between both actuations results in a turn of the robot.

The edge between context variable c and state variable s is called a context edge.
We augment the DAG with this contextual information and call it the meta-DAG. If
some edges towards s depend on the context defined by c, they are called contextual
edges. When drawing the DAG, we point the context edge towards these edges. The
current state makes the contextual edges active or inactive. If a context edge only deter-
mines the qualitative function of s, we point it towards s. An example is given in the
next section.

Figure 3 shows the meta-DAG for the example robot defined in Sect. 4. A few addi-
tional derived variables are added. distx and disty represent the distance of the robot
and the object’s x and y coordinate respectively. mdist is the maximal value of distx
and disty.
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Fig. 2. The change of the x-coordinate depends on the robot’s orientation or. The orientation is
a context variable. It also depends on minLR which is the minimum of the left and right motor
actuation.

Fig. 3. The contextual qualitative model of the example robot. Contextual edges are shown with
dashed lines. The thick edges are known relations coming from derived variables.
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6 The Learning

In this section we give the algorithm for learning the model defined in Sect. 5.

6.1 The Tests

The algorithm is based on analyzing the relations among the variables by applying the
following tests the observed data.

– Function depStr measures the dependency strength between two variables. Pear-
son’s correlation coefficient is used for this.

– Function condDepStr measures the conditional dependency strength between two
variables conditional on some others with Pearson’s partial correlation coefficient.

– Function isQDet tests whether a variable can be written as a deterministic func-
tion given a set of other variables. The test checks in each context the two types of
qualitative functions that are allowed:

Type 1: the data is arranged according to the truth table (all possible sign combina-
tions of the independent variables). A conflict in a cell happens when there are
samples with different signs for the dependent variable.

Type 2: a monotone decision function is fit on the data to separate the PLUS for the
MINUS values in the space defined by the independent variables. Then it is
checked whether the decision function can effectively separate the PLUS from
the MINUS values. A support vector machine is trained with a linear kernel. To
test the separation, we ignore the ZERO values and take a margin of 5 percent.

– Function isContext for context identification: data is filtered according to the range
of the proposed context variable, and the test for determinism is applied. For Type
1 functions, the truth table is gradually filled by gradually enlarging the context’s
range. As soon as a conflict occurs, a new context starts. For Type 2 functions, the
classification is retrained with a conflict to check whether this can annul the conflicts.

6.2 The Learning Algorithm

The goal is to construct the model: identification of the relations that form the DAG
and parameterization of QF (Pa(s)) of each variable s. However, this is not necessary
for derived variables since their functions are known by their definition. An exception
is the variables indicating the change of state variables denoted with the prefix ‘d’.
These variables are added to the unknown variables, called target variables, while the
corresponding state variables are considered to be known by their relation s = ds+ _s.
The known edges are shown with thick lines in Fig. 3.

The algorithm has to find for each target variable a set of parents that qualitatively
determine the target variable. By choosing a set of potential parents for a target variable,
the tests of Sect. 6.1 are used to determine whether it results in a possibly-contextual
function of type I or type II. The potential parents are chosen in order of the correlation
and partial correlation coefficients until a deterministic function is found. We start with
the target variable having the highest correlation with one of the action variables. Then,
additional action variables or variables from the previous state are added according to
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their partial correlation. If no deterministic function is found, the target variable will
be reconsidered at a later stage (when other target variables have been resolved). Once
a state variable is resolved, it is added to the list of action variables to select the next
target variable. As such, it can serve as a parent of the other target variables.

6.3 Exploration and Learning

Fig. 4. The exploratory trajectory of the robot with random driving.

During exploration, the robot gathers data that will be used for learning the model. At
first, random inputs are given for the motors (a so-called motor ‘babbling’) by which
the driving will be learned. This is the upper part of the model, controlling the robot’s
position. The exploratory trajectory, which contains 150 data points, is shown in Fig. 4.

For learning how to grab and move an object, there must be data acquired in which
the object is accidentally grabbed and displaced. Therefore, the robot is, during its
random exploration, regularly oriented towards the object and the gripper is regularly
closed to make the chance of grabbing possible. The second exploratory trajectory, by
which the lower part of the model involving the object is learned, is shown in Fig. 5.
This trajectory contains 350 points during which the object was successfully grabbed
and moved 4 times.

With the collected data of 500 points, the learning algorithm correctly learns the
model of Fig. 3 with the correct qualitative functions.
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Fig. 5. The exploratory trajectory of the robot (in blue) when trying to grab the object. The tra-
jectory of the object is shown in red. (Color figure online)

7 Exploitation

A task is defined by a goal state in which some state variables should attain certain
values. The robot has to take actions in a control loop such that the goal state is reached
effectively. Algorithm 1 describes how the qualitative model is used to choose the
actions to achieve the goals. Applied to our case, the robot has to travel through 5
subspaces: turn -> drive to object -> grab -> lift -> move. This chain is calculated
backward: to move an object, the context indicates that the object should be lifted, then
to lift an object, it should be grabbed, etcetera.

A hierarchical plan is created: at the higher level, a path across subspaces is sought;
at the lower level, a path within a subspace is calculated through a simple control loop.
This corresponds to most top-down approaches for robot control [8]. Here it follows
naturally from our bottom-up approach.

With the model learned in Sect. 6, the robot, starting from position (0, 0), is assigned
to grab an object at position (30, 30), bring it to (10, 40) and return home. In Fig. 6, the
paths of the robot and the grabbed object are shown.

The path of the robot might not be a straight line to the object. This is because of
our qualitative approach. It makes calculations and reasoning simpler at the expense
of accuracy. By accuracy, we mean that we do not calculate the exact command the
robot has to drive to reach the desired goal. The qualitative information the robot is
using is shown in Fig. 2. It tells him in which range the orientation should be to travel
in the direction of the object, but it does not tell him exactly how much the orientation
should be to travel straight to the object. Once the robot is in the desired orientation, it
drives straight. By doing this, the robot gets closer to the object. There comes a point
in time when the robot stops getting closer to the object because of this non-exact path.
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Algorithm 1. ReachGoal(Goal G, State S)
1: while G �= S do
2: dGS ← G − S
3: for all dgs in dGS do
4: if dgs is non-zero then
5: construct a list of tuples of contexts and action signs such that Q(dgs) = Q(ds) is

attained in the model
6: rank all tuples on amount of context values that have to be changed with respect to

the current state (lower is better)
7: end if
8: end for
9: search for the simplest (according to the sum of ranks) combination of tuples of the lists

(one tuple per dgs) so that the contexts and action signs are the same for all tuples.
10: if context �= current state S then
11: recursively execute function ReachGoal with Goal set to the wanted context
12: end if
13: estimate values with the right sign for the action variables (controller)
14: execute actions
15: update S with the new state
16: end while

Fig. 6. The trajectory of the robot (in blue) for bringing the object from position (30, 30) to
position (10, 40) and returning home. The trajectory of the object is shown in red. (Color figure
online)

The robot creates a new subgoal at this point. This subgoal is changing the orientation
to another quadrant so that the robot once again is able to get closer to the object by
driving straight. It keeps doing this until the desired goal is reached.
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8 Conclusions

This work is part of the quest for the ‘first principles’ that allows self-learning. With
the human example in mind, we put some thought-provoking ideas on the table. In
everyday situations, probabilistic models are not needed except for the notion that there
are things we don’t know (yet). Modeling qualitative properties explicitly enables rea-
soning, makes the link with top-down symbolic approaches, and is easier to learn than
quantitative approaches that often require 1000s of samples. The algorithms presented
in this paper showed that it is possible and resulted in promising results. Important
remaining challenges are the autonomous identification of useful derived variables,
effective curiosity-driven exploration and incremental learning.
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Abstract. To adapt an autonomous system to a newly given cognitive
goal, we propose a method to dynamically combine multiple perception-
action loops. Focusing on the fact that humans change their embodiment
during development, the perception-action loops associated with each
body part are combined. Applying the method to an end-effector move-
ment task with a robot arm shows that the joints necessary to accomplish
the target task are selectively moved in practical time. The result sug-
gests that the robot adapts to the newly given cognitive goal and that
developmental embodiment is an essential component in the design of an
autonomous system.

Keywords: active inference · embodiment · robot · cognitive goal

1 Introduction

Active inference is a mathematical description of the rules that organisms should
obey. Organisms select their actions based on their beliefs about their environ-
ment and attempt to minimize their free energy. This allows the organism to
reach a preferable state while minimizing uncertainty about the environment
[8,12,13,29]. Active inference has been found to explain a variety of human char-
acteristics [2,9,11,14,15,28]. However, when active inference is used to reveal
characteristics of organisms or to construct autonomous systems, the methods
for designing generative models are not yet fully understood [6,34,35].

In recent years, many studies have used deep learning techniques to learn
generative models in active inference. Ueltzhöffer [33] proposed to implement
the generative models with neural networks, called “deep active inference”. The
proposed methods performed as well as conventional reinforcement learning on
the toy problems [7,25,33,37]. By modeling the above probabilities with neural
networks, existing learning methods can be used to infer generative models even
when the state and action space is multidimensional. Wei et al. [35] also proposed
a method for learning generative models from human demonstration behavior
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and evaluated it on car driving behavior. The experiments show that the pro-
posed method is able to mimic human driving behavior on highways. Other
studies have also applied active inference to robots [20,22,24,26,31,32]. These
studies have revealed an important aspect of active inference: acting to realize
the predicted outcome of sensory input makes complex inverse kinematics mod-
els unnecessary. However, all of these studies assumed that the state and action
spaces for a given cognitive goal were given. In other words, the Markov Blanket
(see Sect. 2.1) for a given cognitive goal must be designed in advance. The Markov
Blanket extracts from the world the observations and actions required for each
cognitive goal. It is virtually impossible to predesign these Markov Blankets for
all cognitive goals that would be given in an autonomous system.

To adapt to a newly given cognitive goal, organisms, including humans, are
said to have multiple Markov Blankets dynamically [27,29]. The Markov Blanket
can be applied at different scales, such as separating the outside of the brain from
the whole brain, and separating the self from others [23]. In addition, multiple
Markov Blankets can be nested within each other [3,10]. Given the role of Markov
Blanket as an interface to the world, flexible combinations of Markov Blanket
require developmental embodiment. Developmental embodiment is essential for
organisms to adapt autonomously to different cognitive goals [4,5].

In this paper, we propose a method to adapt to a newly given cognitive
goal through dynamically formed Markov Blankets with developmental embod-
iment. The proposed method defines two types of Markov Blankets: primitive
Markov Blankets, which are preconfigured according to the system’s embod-
iment, i.e., the hardware configuration, such as joints and sensors, and meta
cognitive Markov Blankets, which are created as a higher level of the primitive
Markov Blankets when a cognitive goal is given. Active inference is performed in
each Markov Blanket, and in addition, the meta cognitive Markov Blanket devel-
ops embodiment by selecting the necessary primitive Markov Blankets according
to the cognitive goal (hereafter “attention”). In the process of adapting to the
cognitive goal, the primitive Markov Blankets that are the attention targets are
gradually determined. By dynamically combining multiple Markov Blankets, the
system can adapt to a newly given cognitive goal.

Dynamical Markov Blanket formation is implemented and validated using
a robot task. A robot is one of the solutions to realize an embodied system.
However, robots currently used in industry, as seen in robots used in factories,
tend to focus on efficiency and are superior as “automated” systems, but still
have many problems as “autonomous” systems. In the future, robots will be
used in everyday spaces where there may be more human-robot interaction. In
such situations, the robot is expected to autonomously perform complex tasks
in which new goals of the tasks are unexpectedly assigned or the operating
environment is constantly changing. The proposed method is validated using the
basic robot arm task, end-effector movement. The validation will be an important
first step for autonomous systems to adapt to more complex tasks.
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2 Method

2.1 Markov Blanket

Markov Blanket [10,19,27,30] determines the appropriate observations and
actions for the system to adapt to the newly given cognitive goal. Determin-
ing observations and actions means that no other information is considered. For
example, if a person tries to pick up a cup within reach while sitting, he or she
will observe the position of the cup’s handle (observation) and move his or her
hand (action), but will not observe the color of the curtain behind him or her,
nor will he or she move his or her toes. Given a cognitive goal, the organism uses
the Markov Blanket to determine the necessary information.

In the free energy principle underlying active inference, the determination of
observations and actions by the Markov Blanket results in the setting of the gen-
erative model inside the system and the generative process in the environment.
The ultimate goal of the system is to approximate the generative process with the
generative model. The closer the generative model is to the generative process,
the more appropriately the system observes and acts on the environment.

2.2 Generative Model

Given the world as a discrete space, the generative model can be described in
linear algebraic form [29]. Observations oτ , hidden states sτ , and actions πτ are
all assumed to be categorical variables. Under the assumption, the generative
model is decomposed into likelihood P (oτ | sτ ), transition probability P (sτ+1 |
sτ , π), preference P (oτ | C), and prior belief P (s1), represented by matrices A,
B, C, and D, respectively:

P (oτ | sτ ) = Cat(A)
P (sτ+1 | sτ , π) = Cat(Bπτ )

P (oτ | C) = Cat(Cτ )
P (s1) = Cat(D)

(1)

The free energy is minimized by updating the generative model. The update
rule for each generative model is derived by transforming the equation that
minimizes the variational free energy:

a = a +
∑

τ

oτ ⊗ sτ

bπτ = bπτ +
∑

τ

sπτ ⊗ sπτ−1

c = c +
∑

τ

oτ

d = d + s1

(2)

where a to d are the elements of matrices A to D, respectively.
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2.3 Action Selection

Actions with smaller expected free energy G, weighted by precision γG, are
selected with higher probability. The belief about policy P (π) is as follows:

P (π) = Cat(π0)
π0 = σ(lnE − γGG)

(3)

where E is the habit term. Precision in general is defined as the inverse of the
variance of the probability distribution and represents the confidence in the
probability distribution. The higher the precision, the higher the confidence in
that probability distribution. Precision is discussed in relation to attention to the
information stream conveyed as a probability distribution. Adjusting precision
higher leads to attention to the information stream, while adjusting precision
lower diverts attention away from the information stream.

In this study, the precision of each primitive Markov Blanket γ
prim(i)
G is

adjusted according to the preference of each primitive Markov Blanket Cprim(i)
τ

for the action of meta cognitive Markov Blanket πmeta
τ . In everyday space, mul-

tiple ways of achieving a cognitive goal are expected. That is, the preference of
each primitive Markov Blanket Cprim(i)

τ for achieving the action of the meta cog-
nitive Markov Blanket πmeta

τ have variance. A large variance in the preference
of each primitive Markov Blanket Cprim(i)

τ is interpreted as not having to “stick”
to the action of that primitive Markov Blanket π

prim(i)
τ , while a small variance

means that the action of that primitive Markov Blanket π
prim(i)
τ is indispensable.

Based on the above, the precision of each primitive Markov Blanket γ
prim(i)
G is

adjusted by the precision (i.e., the inverse of the variance) of the preference of
each primitive Markov Blanket γ

prim(i)
C .

γ
prim(i)
G =

{
1(γprim(i)

C > θprim(i))
0(γprim(i)

C ≤ θprim(i))

γ
prim(i)
C = 1/V ar(Cat(Cprim(i)

τ ))

(4)

If the precision of the preference of each primitive Markov Blanket γ
prim(i)
C is

higher than the threshold θprim(i), then the action with the smaller expected
free energy of that primitive Markov Blanket Gprim(i)

τ will be selected with
higher probability as shown in Eq. (3). On the other hand, if the precision
of the preference of each primitive Markov Blanket γ

prim(i)
C is less than the

threshold θprim(i), the habit term Eprim(i) is preferred. In this study, the habit
term Eprim(i) was set so that the action that preserves the current state of each
primitive Markov Blanket s

prim(i)
τ (i.e., “do nothing”) is selected. Thus, adjusting

the precision of each primitive Markov Blanket γ
prim(i)
G determines which of the

primitive Markov Blankets is given attention.
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Fig. 1. Dynamical Markov Blanket formation. Meta cognitive and primitive agents per-
form active inference, respectively. These are connected by transformations of observa-
tions and actions between primitive and meta cognitive agents. The generative models
of the meta cognitive agent Cmeta and Dmeta and the generative models of the primitive
agent Aprim(i), Bprim(i), and Dprim(i) are assumed to be known, and the generative
models of the meta cognitive agent Ameta and Bmeta are updated.

2.4 Dynamical Markov Blanket Formation Process

The dynamical Markov Blanket formation process consists of active inference,
generative model updating, and attention updating by agents in the system,
determined by Markov Blankets. In the following, the agent corresponding to
a primitive Markov Blanket is called a primitive agent and the agent corre-
sponding to a meta cognitive Markov Blanket is called a meta cognitive agent.
The causal graphs of primitive and meta cognitive agents are shown in Fig. 1.
Since primitive agents are associated with embodiment of the system such as
joints and sensors, determining the hardware configuration (usually at the time
the system is shipped) means that generative models of the primitive agents
Aprim(i), Bprim(i), and Dprim(i) is given. When a new cognitive goal is given to
the system, a new instance of the meta cognitive agent is created. At this time,
only generative models Cmeta and Dmeta are given, and for generative models
Ameta and Bmeta, only categorical variables are given.

In active inference, after acquiring observations and inferring the hidden
state, the action is selected based on the expected free energy. First, the observa-
tions of n primitive agents o

prim(i)
τ (i = 0 . . . n) are transformed into observation
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of the meta cognitive agent ometa
τ using the hardware configuration of the sys-

tem, e.g. kinematics (Fig. 1(1)). Next, the meta cognitive agent infers the hidden
state smeta

τ from the observation ometa
τ (Fig. 1(2)). The meta cognitive agent then

computes the expected free energy Gmeta
τ and probabilistically selects an action

πmeta
τ so that the expected free energy Gmeta

τ becomes smaller (Fig. 1(3)). The
action of meta cognitive agent πmeta

τ are then translated into preferences of n

primitive agents Cprim(i)
τ (i = 0 . . . n) (Fig. 1(4)). The primitive agent then cal-

culates its expected free energy Gprim(i)
τ and selects its action π

prim(i)
τ according

to the Eq. (3) (Fig. 1(5)).
In generative model updating, only the likelihood Ameta and transition prob-

ability Bmeta of the meta cognitive agent are updated according to the Eq. (2).
Since meta cognitive agents are created according to cognitive goals, the initial
likelihood Ameta and transition probability Bmeta are assumed to be uniformly
distributed, and preferences Cmeta and prior distributions Dmeta are known.

In attention updating, the precision of each primitive agent γ
prim(i)
G is

updated according to the precision of preference of each primitive agent γ
prim(i)
C .

Since primitive agents are associated with hardware, the initial attention targets
are all primitive agents, i.e., γ

prim(i)
G = 1(i = 0 . . . n). If the precision of prefer-

ence of each primitive agent γ
prim(i)
C becomes below its threshold θprim(i), the

precision of the primitive agent γ
prim(i)
G is switched to zero, as shown in Eq. (3).

3 Results and Discussion

3.1 Experimental Setup

Using the robot task of moving the position of an end-effector with a robot
arm, we validated that the robot adapts to a newly given cognitive goal through
dynamical Markov Blanket formation. Figure 2(a) shows the Universal Robotics
UR5e robot arm used for the validation. The robot arm has a base, shoulder,
elbow, wrist 1, wrist 2, and wrist 3 joints, and a Robotiq 2F-140 Adaptive Grip-
per as an end-effector. Each joint angle of the robot arm was controlled using
ROS Melodic Morenia installed on Ubuntu 18.04 LTS. The dynamical Markov
Blanket formation was implemented in Python using pymdp [17].

The cognitive goal of the system in our validation is a robot task that moves
the end effector of a robot arm from one position to another. Figure 2(b) shows
the three robot tasks used in this validation. The FC task is to move the position
of the robot arm’s end-effector from position F (front) to position C (center) to
confirm the basic performance of the dynamical Markov Blanket formation. The
FCR task is to move the position of the robot arm’s end-effector from position
F to position C and then to position R (right). The FCR task involves two
cognitive goals: moving from position F to C and moving from position C to
R to validate the advantage of attention. The CR-CL task has two phases. In
the first phase, the robot repeatedly moves the end-effector from position C
to position R, forming a meta cognitive Markov Blanket. After the generative
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Fig. 2. Validation Setting. (a) Universal Robots UR5e 6-axis robot arm used for vali-
dation. (b) Cognitive goals. The cognitive goal in this validation is the task of moving
the end-effector of the robot arm. (c) Sequence in each task. Each episode contains
five steps, and in each step, each agent performs active inference, generative model
updating, and precision updating. At the beginning of each episode, the end-effector
position is reset to the initial position. (d) Orientation patterns of the end-effector at
position C for the FC and FCR tasks.

models and the number of primitive Markov Blankets that are the attention
targets have converged sufficiently, the second phase is executed. In the second
phase, the robot repeatedly moves the end-effector from position C to position
L (left) to form a Markov Blanket. The CR-CL task compares adaptation to
cognitive goals with a single Markov Blanket and that with dynamically formed
multiple Markov Blankets. The FC and FCR tasks were validated on the real
machine, while the CR-CL task was validated by simulation.

In our validation, the primitive agents correspond to each joint of the 6-
axis robot arm, and the meta cognitive agents correspond to each robot task.
Each agent is assumed to be in a discrete space. Table 1 lists the observations,
hidden states, and actions of each agent. For primitive agents, joint angles are
discretized. For the meta cognitive agent, both obsesrvation and hidden states
were set to the end-effector positions possible in the task. Since the information
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Table 1. Observation, hidden state, and action in validation.

Agent Primitive Meta cognitive (FC case)

Observation oτ Current joint angle [deg]:
{10x | |x| ≤ 27, x ∈ Z}

Current end-effector position:
Position F/Position C

Hidden state sτ Current joint angle [deg]:
{10x | |x| ≤ 27, x ∈ Z}

Current end-effector position:
Position F/Position C

Action πτ Move to [joint angle]/Stop
Joint angle [deg]:
{10x | |x| ≤ 27, x ∈ Z}

Move to C/Stop

used by each agent has a very simple structure, the hidden state was identical
to the observation and thus observable.

Each task was repeated for 20 episodes (FC and FCR tasks) or 60 episodes
(CR-CL task), with 5 steps per episode for each agent. Figure 2 (c) shows
sequence in each task. In each episode, the end-effector position was first reset
to its initial position. In each step, the primitive and meta cognitive agents
performed active inference, and then the meta cognitive agent updated the like-
lihood and transition probability and updated attention to each primitive agent
(precision γ

prim(i)
C ). In the following, all episodes are consistently represented in

terms of time steps. For example, time step 7 is step 2 in episode 2.
To simplify the implementation of precision-based attention updating, vari-

ance, the inverse of precision, was used. The preference of the primitive Markov
Blanket corresponds to the angle pattern of each joint that achieves the target
position of the end-effector. For the threshold θprim(i) in Eq. (4), 1/θprim(i) =
4[deg2]. Figure 2(d) shows the orientation patterns at position C in the FC and
FCR tasks. The robot tasks in our validation differs from robot tasks commonly
used in factories, where various orientations are allowed at the target position.
Similarly, at position R in the FCR task, 14 different orientation patterns are
allowed. In the CR-CL task, however, only one orientation pattern is allowed at
all positions C, R and L in order to eliminate the influence of attention.

The transformation from primitive agent observations to meta cognitive
agent observations, and from meta cognitive agent actions to the preferences
of each primitive agent, used a kinematics database to correspond to discretized
joint angles. The kinematics database maps the aforementioned orientation pat-
terns, i.e. the set of joint angles, to the positions of the end-effector. In the trans-
formation from the observation of a primitive agent to that of a meta cognitive
agent, the end-effector position corresponding to the joint angles observed by
the primitive agent were obtained from the kinematics database and used as the
observations of the meta cognitive agent. In addition, the transformation from
the meta cognitive agent’s action to each primitive agent’s preference requires
the conversion of the meta cognitive agent’s action to the end-effector position.
If the meta cognitive agent’s action is “Move to C/R/L”, it is converted to the
end-effector’s position C/R/L. If the meta cognitive agent’s action is “Stop”, it is
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converted to the current end-effector position. The joint angles corresponding to
the converted end-effector position were randomly sampled from the kinematic
database and used as the primitive agent’s preferences.

3.2 Adaptation to Newly Given Cognitive Goal

To confirm that the robot arm adapts to the newly given cognitive goal, an
FC task was performed with the robot arm. Figure 3(a) shows the transition
in the number of primitive agents that were the attention targets in the five
trials of the FC task. Attention was pruned from time step 3 to 8, and the
number of the attention targets converged to 3 at time step 8 for all trials.
This was because the minimum number of dimensions required at position C
was 3. Among the six dimensional variables indicating position and orientation,
only the three dimensional variable indicating position was uniquely specified at
position C in the FC task. Figure 3(b) shows the transition of each joint angle
and orientation of the robot arm from time step 1 to 5 and from time step 16 to
20 for trial 2 in Fig. 3(a). From time step 1 to 5, the multiple orientation patterns
in Fig. 2(d) were attempted to move the end-effector to position C, because more
than five primitive agents were the attention targets. In contrast, from time step
16 to 20, the end-effector reached position C by moving only the shoulder, elbow,
and wrist 1 joints and executing only one orientation pattern, because only the
primitive agents associated with those joints were the attention targets.

The results suggest that by updating attention and refining the primitive
agent combination, the robot arm adapts to the newly given cognitive goal. The
decrease in the number of orientation patterns attempted seems to correspond
to the phenomenon that humans, when given a new cognitive goal, initially act
with hesitation and then gradually become more confident in their actions and
adapt to the new goal. In addition, the finding that only half of the joints of
the robot arm were moved at later time steps is considered equivalent to the
phenomenon that humans adapt by moving only the necessary body parts in
order to reduce energy costs [1,16,21].

3.3 Attention Switching

To confirm the advantage of attention, the FCR task was performed with the
robot arm. The FCR task consists of multiple cognitive goals of moving from
position F to C and moving from position C to R. Attention was switched
between these movements so that the appropriate joints were moved for each
movement. Figure 4 shows the variance transition of each primitive agent’s pref-
erence. The closer to blue, the higher the variance, i.e., the lower the precision.
At time step 1, immediately after the FC agent was created, and at time step
6, immediately after the CR agent was created, the variance was zero because
each primitive agent experienced only one preference pattern. As the time step
progressed, the variance of the primitive agents differed between the FC and
CR agents. During the time steps of the FC agent, the variances of the shoul-
der, elbow, and wrist 1 joints, which contribute significantly to pitch rotation,
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Fig. 3. Attention transitions. (a) Transitions in the number of primitive agents that
are attention targets for five trials. Since the same number of the attention targets were
maintained after time step 20, the plot was not shown. (b) Transition of joint angles
from time step 1 to 5 and from time step 16 to 20.

remained small, while those of the base, wrist 2, and wrist 3 joints became
larger. During the time steps of the CR agent, the variances for the base, shoul-
der, elbow, and wrist 2 joints, which contribute significantly to the yaw rotation,
remained small, while the variances for the wrist 1 and wrist 3 joints became
larger. By time steps 11 and 16, the unnecessary attentions of the FC and CR
agents, respectively, were pruned. In later time steps, the respective attention
targets of both FC and CR agents remained unchanged.

Attention switching would enable the system to adapt to complex cognitive
goals. Complex cognitive goals are generally assumed to be decomposable, either
spatially or temporally, into simpler cognitive goals. By setting up meta cognitive
Markov Blankets for each decomposed cognitive goal, the system will adapt to
complex cognitive goals within a single framework of dynamical Markov Blanket
formation. Adapting to complex cognitive goals with multiple Markov Blankets
also means that the system has the potential to respond flexibly to changes in the
environment. It has already been suggested that the system is able to respond to
context switching by switching the generative models [18]. Our proposed method
would enable the system to respond to unexpected context switching. An exam-
ple of an unexpected context switching is when an obstacle appears in the path
of the robot arm and the robot arm must avoid it. Specifically, it can be handled
by replacing some of the previously formed Markov Blanket sequences, or by
adding meta cognitive Markov Blankets to the Markov Blanket sequences.
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starting at time step 21, clearly switched between the FC and the CR agent’s steps.

3.4 Comparison with Single Markov Blanket

Comparison with the single Markov Blanket in the CR-CL task confirms the
advantages of dynamical Markov Blanket formation. The single Markov Blanket
here is a task independent meta cognitive Markov Blanket. In the CR-CL task,
according to the proposed method, the Markov Blanket corresponding to the CR
task is formed in the first phase, and that corresponding to the CL task is formed
in the second phase. The single Markov Blanket, on the other hand, has at least
the current end-effector positions “position C”, “position R”, and “position L” as
observation and hidden states, and “Move to position R”, “Move to position L”,
and “Stop” as actions.

Dynamically formed Markov Blanket showed higher learning performance
than the single Markov Blanket. Table 2 shows the average, minimum and max-
imum time steps of the five trials required for the expected free energy to con-
verge. The convergence of the expected free energy, i.e. the learning of the gener-
ative model, took longer for the single Markov Blanket than for the dynamically
formed Markov Blanket, because the number of dimensions for all observations,
hidden states, and actions is higher in the single Markov Blanket. Table 3 shows
examples of generative models of the single Markov Blanket A and B that failed
to learn. In some cases, generative models became unexpected, even when the
expected free energy converged. The single Markov Blanket sometimes fell into
local solutions due to the high dimensionality of the observations, hidden states,
and actions, which made learning unstable. In contrast, dynamical Markov Blan-
ket formation only requires generative models with the minimum number of
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Table 2. Convergence time step.

Values Dynamical Single

Average 125.2 176

Minimum 111 154

Maximum 144 201

Table 3. Failed examples of generative models.

dimensions of observations, hidden states, and actions for a newly given cogni-
tive goal, and learning was more stable.

The results suggest the importance of dynamically forming Markov Blan-
kets in acquiring the adaptive capabilities of an autonomous system. The pro-
posed method is inspired by changes in human embodiment during development.
Humans are said to be able to respond to newly given cognitive goals by gradually
accumulating what they can do during development [36]. What would happen
if we had adult bodies at birth? The single Markov Blanket addresses just such
an assumption. Just as the learning performance of the single Markov Blanket
was lower than that of the dynamically formed Markov Blanket, humans with an
adult body at birth would not be able to adapt well to cognitive goals because of
the lack of the developmental embodiment. We believe that the developmental
embodiment is an essential part of the design of an autonomous system.

4 Conclusion

We proposed dynamical Markov Blanket formation to adapt an autonomous
system to a newly given cognitive goal, focusing on human embodiment during
development. Applying the method to an end-effector movement task with a
robot arm showed that the joints necessary to accomplish the target task are
selectively moved. Furthermore, the learning performance of dynamically formed
Markov Blankets was better than that of the single Markov Blanket. The results
suggest that the robot adapts to the newly given cognitive goal and that devel-
opmental embodiment is essential for designing an autonomous system. Future
work includes scaling the precision adjustment that determines the attention to
more than just the joint angle.
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Abstract. The capability to self-asses our performance before doing a
task is essential for the decision making process, e.g., when selecting the
most suitable tool for a given task. While this form of awareness has been
identified in humans as metacognitive performance (thinking about the
performance), robots still lack this cognitive ability. This awareness has
a potential to enhance their embodied decision power, robustness and
safety. Here, we take a step in this direction by proposing a novel syn-
thetic model that unites active inference with some ideas from metacog-
nition. We (mathematically) identify three main components that con-
tribute to the agent’s self-evaluation when making a decision: i) its per-
formance for task completion, ii) its control effort towards task com-
pletion, and, very importantly and novel, iii) its self-confidence about
the decision. We further show that these quantities are seamlessly bal-
anced inside the free energy objective. As a proof of concept, we framed
our theoretical account within the tool selection problem as a use case.
Results show that the agent is able to select the best tool—modelled as
spring-mass-damper systems—given three types of control tasks: attain a
goal position, velocity and acceleration. Interestingly, the proposed tool
selection criteria prioritises the performance during a hard task, and
self-confidence during an easy task. Furthermore, we discuss how our
mathematical framework can be generalized for tool/model optimization
and invention.

Keywords: Active Inference · Tools · Metacognition · Robotics

1 Introduction

One crucial difference in decision making between humans and machines is
the human’s capacity to self-evaluate their performance before (predictively)
and after (postdictively) doing the task. This ability of thinking about their
performance—or metacognitive performance [4]—provides a powerful second
order decision making where confidence plays a primary role. This confidence
monitoring has been described as an “independent” cognitive process that
encodes how good you think you are at performing a task, and that affects
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. L. Buckley et al. (Eds.): IWAI 2023, CCIS 1915, pp. 31–42, 2024.
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Fig. 1. An intuitive illustration of the proposed tool selection scheme based on the
metacognitive performance evaluation. The agent selects a tool from a given tool-set
to complete the task, based on its imagined performance towards task completion, the
required control effort and its self confidence in using the tool. In this work, we consider
the tools as spring mass damper systems for modelling. The illustrative example is only
for conceptual clarity.

the decision made [3]. For example, given two routes with the same travel dis-
tance, the route that you are more confident might be selected, as this decision
offers less uncertainty in reaching the destination. Conversely, in robot decision
making (e.g., optimal control), with rare exceptions, task performance (or task
completion) is only taken into account. For instance, state of the art controllers
like LQR optimise the sum of weighted quadratic cost1 for states and control
input [2]. This cost is purely performance driven and does not take the confi-
dence levels of the control signal into account. We propose that incorporating
metacognitive capabilities within robot control and decision making is of prime
importance for the development of brain-inspired robot controllers [11]. Such
agents will be able to solve complex cognitive tasks using self-assesment as a
proxy for both high-level and low-level decisions.

1 J =
∫ ∞
0

(xT Qx + uT Ru + 2xT Nu)dt where Q, R and N are weights.
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With the aim of stepping closer to a metacognitive robot decision making, we
contribute with a decision making model that can balance between performance,
control effort and, crucially, self-confidence, grounded on the fundamentals of the
Free Energy Principle (FEP) [5]. Particularly, we propose i) a low-level (force)
controller design for task completion, based on continuous Active Inference [9],
ii) a closed form solution to compute the agent’s self-confidence, and iii) a high-
level decision making criteria that balances between the performance, control
effort and self-confidence of the low-level controller—e.g, for selecting which tool
is the best. While there have been other attempts to model metacognition in
discrete active inference [7] this is, to the best of our knowledge, the first model
in continuous state and action space that is able to incorporate self-confidence
evaluation within the low level control and the high-level decision making.

As a practical use case to validate our proposal, we focus on the tool selection
problem, where the agent has to select the best tool given a goal. Robots that
are aware (or capable to self-evaluate) of the low level control to select the right
tool for the given task is a challenging and impactful problem. For example,
robots autonomously selecting the right spanner from a tool kit for tightening
the bolts is expected to improve the process automation [10]. Besides, addressing
tool use may be useful to validate current metacognitive theories about human
behaviour.

In this paper, we provide the mathematical description of our proposal to
solve the tool selection problem using metacognitive performance capabilities,
followed by its evaluation in simulated experiments. The results show how the
agent selects the best tool—modelled as a spring-mass-damper (SMD) system—
using its self-confidence, under three types of control tasks: attain a goal position,
velocity and acceleration. Figure 1 shows the proposed tool selection scheme.

2 Tool Selection Problem

The tool selection problem consists of selecting a tool from a set of p tools
T = {T 1, T 2, . . . , T p}, such that it best completes a task using its controller, by
fulfilling the desired goal conditions. We restrict the set of possible tools to those
whose dynamics can be modelled using a linear state space system of the form:

ẋ = Ax + Bu, y = Cx, (1)

where A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n are the matrices defining the

system dynamics, u ∈ R
r×1 is the control input to the system, x ∈ R

n×1 is
the hidden state, and y ∈ R

m×1 is the measured output. Hence, every tool is
fully described by its matrices T i = {Ai, Bi, Ci}. We consider three theoretical
types of tasks Γ = {Γ 1, Γ 2, Γ 3} in terms of goal condition τg: reach a desired
i) constant goal state xg (e.g., reaching task), ii) constant goal state velocity
ẋg (e.g., screw tightening tasks), and iii) constant goal acceleration ẍg (e.g.,
constant force tasks like lifting, pushing). This paper aims to select the tool T i

with a dynamics given in Eq. 1, for a given task Γ j , such that the task variable
τ best reaches the desired goal τg within a tolerance (desired goal covariance)
of Στg

= (P τg

)−1.
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3 Task Active Inference with Metacognitive Performance

We provide a solution on tool selection using a novel decision making model,
hereinafter Meta Task Active Inference (Meta-TAIC), that improves previous
continuous AIF controllers [9] by redefining the free energy objective to incor-
porate self-confidence in control, task performance and control cost. To this end
we first introduce a novel low-level controller for task completion, that explicitly
connects action optimization to the preferred goal state, thus allowing task com-
pletion evaluation. Second, we mathematically formalize a high-level decision
making criteria that includes confidence evaluation, which allows the agent, for
instance, to select the best tool for a specific task.

3.1 Free Energy Objective for Meta-TAIC

We introduce a novel form of the free energy objective for the Meta-TAIC from
first principles aimed at task completion with high performance, minimal control
effort and high confidence.

According to Bayes rule, the posterior distribution p(θ/y) of parameter θ,
given the measurement y is given by p(θ/y) = p(θ, y)/p(y). Since the computa-
tion of p(y) =

∫
p(y, θ)dθ is intractable for large search spaces of θ, variational

methods use a recognition density q(θ) to closely approximate p(θ/y) by min-
imizing the Kullback-Leibler (KL) divergence between both the distributions.
This procedure results in the minimization of an objective function called free
energy, given by [5]:

F =
∫

q(θ) ln p(y/θ)p(θ)dθ −
∫

q(θ) ln q(θ)dθ. (2)

Under the FEP, brain’s perception and control follows the minimization of its
free energy and active inference agents optimize F to choose the control policy
via gradient descent on free energy.

We consider the problem of evaluating the control action u, to perform the
task Γ i, by controlling the task variable τ i to reach the goal τ ig

, within a desired
level of uncertainty or prior covariance Στ = (P τg

)−1. The recognition density
is assumed to be a Gaussian distribution of the form q(u) = N (u : μu, (Πu)−1).
The notation P is used for the prior precision (or inverse covariance) and Π is
used for the conditional precision. We assume a Gaussian prior distribution on u,
written as p(u) = N (u : ηu, (Pu)−1). The distribution p(τ i/u) is assumed to be
Gaussian distributed as p(τ i/u) = N (τ i : τ ig

, (P τ i

)−1). Using the task variable
as the direct measurement y = τ i and control action as the unknown parameter
θ = u, upon simplification of Eq. 2 reduces the free energy (after dropping the
constants) to:

F =
1
2
(τ i − τ ig

)T P τ i

(τ i − τ ig

)
︸ ︷︷ ︸

performance error Ug

+
1
2
(u − ηu)T Pu(u − ηu)

︸ ︷︷ ︸
control effort Uc

− 1
2
ln |Πu|

︸ ︷︷ ︸
self-confidence H

. (3)
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The resulting free energy can be seen as a sum of three terms: i) performance
measure Ug (the prior precision weighted deviation of the task variable from
the goal), ii) control cost U c (the prior precision weighted control effort), and
iii) confidence measure H (the level of confidence in the chosen control action).
When ηu = 0, minimizing F implies, maximizing performance, minimizing con-
trol effort and maximizing confidence. This objective can be used to design the
controller.

3.2 Controller Design and Its Self-confidence

We optimize the control actions by gradient descent on free energy objective.
Under this scheme, the discrete time update rule for Meta-TAIC is written as a
function of the first two gradients of free energy as:

u(t + dt) = u(t) +
(
e−kl ∂2 F

∂u2 dt − I
)(∂2 F

∂u2

)−1 ∂F

∂u
, (4)

where kl is the learning rate. Inspired from the dynamic expectation maximiza-
tion algorithm [6], we propose a closed form solution for the optimal precision
of control action2, from the second gradient of Ug +U c (following an analogous
mathematical derivation from [1]):

Πu =
∂2(Ug + U c)

∂u2
. (5)

Equation 3, 4 and 5 together represent our controller design and its self confidence
in action. The presence of the measure of agent’s confidence in action, third term
in Eq. 3 and its closed form computation (Eq. 5) is the novelty of this work. The
agent is not only aware of its decisions u, but also of its second order judgement
or confidence in decisions (Πu), making it metacognitive. In the next section,
the agent will be equipped with a metacognitive decision making capability for
the tool selection problem.

3.3 Tool Selection Criteria Using Free Energy

In this section, we propose a high-level decision making criteria for tool selec-
tion based on the objective function formulated in Eq. 3. The criteria involves
selecting the tool T i that minimizes the free energy integral (F̄ =

∫
Fdt) for the

given task Γ j , within the stipulated time T0 as:

T i = argmin
Ti

∫ T0

0

F (T, Γ j)dt (6)

The chosen tool maximises the task performance with minimal control effort and
maximum confidence in action, leading to the task completion. In addition to
task performance, the agent is now aware of its self confidence in actions while
using the tool, making the decision making process metacognitive.
2 Evaluated by also using a mean field term (W = 1

2
trace(Σu ∂2(Ug+Uc)

∂u2 )) in the free
energy in Eq. 3, and differentiating F with Σu and equating it to 0. W is omitted
from F in this work for mathematical simplicity.
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3.4 Task Specific Free Energy Gradients

This section describes the free energy expression and its gradients for the tool
dynamics given in Eq. 1 for three tasks. These gradients are necessary for the
update rule of the controller in Eq. 4.

Constant Goal State Γ 1. The free energy of an agent that acts to reach a
desired goal state (τg = xg) with a precision (inverse covariance) of P xg

can be
written as:

F =
1
2
(x − xg)T P xg

(x − xg) +
1
2
(u − ηu)T Pu(u − ηu) − 1

2
ln |Πu|. (7)

Differentiating it by u yields the gradients of free energy as:

∂F

∂u
= (x − xg)T P xg ∂x

∂u
+ uT Pu,

∂2 F

∂u2
=

∂x

∂u

T

P xg ∂x

∂u
+ Pu. (8)

Constant Goal State Velocity Γ 2. The free energy of an agent taking actions
to reach a desired goal state velocity (τg = ẋg) with precision P ẋg

, using a tool
with the dynamics ẋ = Ax + Bu, is:

F =
1
2
(ẋ − ẋg)T P ẋg

(ẋ − ẋg) +
1
2
(u − ηu)T Pu(u − ηu) − 1

2
ln |Πu|

=
1
2

[
(Ax + Bu − ẋg)T P ẋg

(Ax + Bu − ẋg) + (u − ηu)T Pu(u − ηu) − ln |Πu|
]

(9)
Differentiating it with u yields the two gradients of free energy as:

∂F

∂u
= (Ax + Bu − ẋg)T P ẋg

(A
∂x

∂u
+ B) + uT Pu

∂2 F

∂u2
= (A

∂x

∂u
+ B)T P ẋg

(A
∂x

∂u
+ B) + Pu

(10)

Constant Goal State Acceleration Γ 3. The free energy of an agent trying
to reach a desired goal state acceleration (τg = ẍg) with precision P ẍg

is:

F =
1
2
(ẍ − ẍg)T P ẍg

(ẍ − ẍg) +
1
2
(u − ηu)T Pu(u − ηu) − 1

2
ln |Πu| (11)

Substituting ẋ = Ax + Bu and ẍ = Aẋ + Bu̇ yields:

F =
1
2

[
(Aẋ + Bu̇ − ẍg)T P ẍg

(Aẋ + Bu̇ − ẍg) + (u − ηu)T Pu(u − ηu) − ln |Πu|
]

=
1
2

[
(A2x + ABu + Bu̇ − ẍg)T P ẍg

(A2x + ABu + Bu̇ − ẍg)+

(u − ηu)T Pu(u − ηu) − ln |Πu|
]

(12)
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Differentiating it with u yields:

∂F

∂u
= (A2x + ABu + Bu̇ − ẍg)T P ẍg

(A2 ∂x

∂u
+ AB + B

∂u̇

∂u
) + (u − ηu)T Pu

∂2 F

∂u2
= (A2 ∂x

∂u
+ AB + B

∂u̇

∂u
)T P ẍg

(A2 ∂x

∂u
+ AB + B

∂u̇

∂u
) + Pu

(13)
The Eqs. 8, 10 and 13 along with the update rule in Eq. 4 show that the con-

trol action for all three tasks using Meta-TAIC is independent of the confidence
term Πu for a linear state space system. In the next section, we provide a proof
of concept for the tool selection criteria using simulation experiments.

4 Simulation Results

This section aims to demonstrate the working of Meta-TAIC and the tool selec-
tion criteria, with an SMD as the tool used. The MATLAB code used for the
simulation is available at: https://github.com/ajitham123/mTAIC_IWAI2023.

4.1 Task Specific Πu for SMD as the Tool

This section describes the closed-form computation of the self-confidence tailored
for the three different tasks. For the sake of simplicity to provide the proof of
concept, we define all tools as Spring Mass Damper Systems (SMDs). The system
matrices of an SMD is given by:

A =
[

0 1
− k

m
−b
m

]

, B =
[
0
1
m

]

, C =
[
1
0

]

(14)

Using the mathematical formulations in Sect. 3, the precision of action can
be computed specifically for the SMD as a tool, for all the three tasks (refer
Appendix A for the derivation):
i) Task 1, constant state position

Πu = Pu +
pxg

k2
(15)

ii) Task 2, constant state velocity

Πu = Pu + pẋg
(k + b − 1

m

)2

(16)

iii) Task 3, constant state acceleration

Πu = Pu + pẍg
(k − 1

m

)2

. (17)

From Eqs. 15, 16 and 17, it is evident that Πu is independent of u for all
tasks. Intuitively, this means that the confidence in decisions is independent of
the decision itself, which is line with the literature on biological metacognition
[8]. This completes the proof for mutual exclusivity of u and Πu within Meta-
TAIC for SMD as the tool.

https://github.com/ajitham123/mTAIC_IWAI2023
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4.2 Performance Evaluation of the Controller

This section shows the effectiveness of our controller in completing all the three
tasks. Figure 2 shows the performance of Meta-TAIC during task 1, using all
three tools. Tool 1 (in blue) performs the best by quickly taking the SMD to the
constant goal state xg =

[
0.5
0

]
(in dashed black), with minimal control effort.

Intuitively, the solution to keep an SMD at a constant position is by applying
a constant force. Meta-TAIC comes up with this solution for a converging u in
Fig. 2.
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Fig. 2. Meta-TAIC takes the SMD to a constant goal position (task 1) using all tools.
All tools reach the goal position (marked by dotted black in Fig. 2a) with a final zero
velocity (in Fig. 2b) and a final zero acceleration (in Fig. 2c). (Color figure online)

Similarly, Fig. 3 and 4 shows the success of our controller in completing tasks
2 and 3 using all three tools, by taking the SMD to the constant goal state veloc-
ity ẋg =

[
0.5
0

]
and constant goal state acceleration ẍg =

[
0.5
0

]
respectively. The

solution for an SMD to attain a constant goal velocity is by linearly increasing
the force (u in Fig. 3), and to attain a constant goal acceleration is by quadrat-
ically increasing the force (u in Fig. 4). This confirms the correct working of
our proposed Meta-TAIC controller for all tasks and tools. The details of the
simulation setup is given in Appendix B.
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Fig. 3. Meta-TAIC takes the SMD to a constant goal velocity (task 2) using all tools.
All tools reach the goal velocity (marked by dotted black in Fig. 3b) with a final zero
acceleration (in Fig. 3c).

4.3 Tool Selection

This section aims to use the results of Meta-TAIC from the previous section to
demonstrate the functioning of our tool selection criteria introduced in Sect. 3.3.
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Fig. 4. Meta-TAIC takes the SMD to a constant goal acceleration (task 3) using all
tools. The graphs are coinciding for all tools. All tools reach the goal acceleration
(marked by dotted black in Fig. 4c).

Table 1 shows the free energy integral (F̄ ) for three tasks when three tools with
different parameters were used. The tool selection based on the minimization
of F̄ results in tool 1 for task 1, tool 2 for task 2 and tool 3 for task 3. The
tool selected for the given task with minimum F̄ also has the maximum Πu.
Intuitively, this reflects the fact that the agent is more confident about task
completion using the selected tool.

Table 1. The free energy integral (F̄ ) and the precision over action for three different
tools for three different tasks.

Tool Tool parameters F̄ for task Πu for task
k(N/m) b(Ns/m) m(kg) Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Tool 1 0.2 0.4 0.4 1384.7 −678.5 −3678 .25 2 40
Tool 2 0.3 0.2 0.3 2194.5 −1311 −3984 .11 3.78 54
Tool 3 0.3 0.6 0.2 2194.6 −208 −4792 .11 1.25 122

4.4 Performance vs Confidence

This section aims to illustrate the capability of our tool selection criteria to
balance between performance and confidence. The same simulation setup in the
previous section was repeated for task 2 under two sets of goal state velocities:
i) easy goal with ẋg =

[
.5
0

]
and ii) hard goal with ẋg =

[
10
0

]
. Table 2 shows

the contribution of performance, control effort and confidence on free energy.
With minimal F̄ , tool 2 is selected for the easy task and tool 1 is selected for
the hard task. For the easy task, since all tools perform reasonably well with
similar control effort, the confidence plays the dominant role in shaping the
decision making for tool selection as per our criteria. However, for a hard task,
our criteria prioritises performance over confidence for tool selection. This shows
the capability of our tool selection criteria to balance between performance and
confidence within the free energy objective.
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Table 2. The contribution of free energy components for task 2 under two hardness
levels. Tool 2 is selected for the easy task and tool 1 for the hard task.

Tool Easy task Hard task
Ūg Ūc H̄ F̄ Ūg Ūc H̄ F̄

Tool 1 13.6 .01 −692 −678.5 5442 5.5 −692 4756
Tool 2 16 .02 −1327 −1311 6391 9 −1327 5073
Tool 3 14.8 .03 −223 −208 5925 12.7 −223 5714

5 Conclusion

The capability of a robot to evaluate its self-confidence in the decisions made
is fundamental to the development of brain-inspired agents with metacognitive
capabilities. In this work, we proposed a novel controller (Meta-TAIC) that
can balance between performance, control action and its confidence in control.
Using the free energy formulations, we introduced a closed form expression for an
agent’s confidence in decisions. We used it to propose a high-level decision mak-
ing criteria with the capability of metacognitive performance for task completion,
and applied it to the tool selection problem. Through simulation experiments on
a spring damper system, we showed that our controller achieved the goals for the
given tasks. The tool selection criteria selected different tools for different tasks
by balancing between performance, control action and confidence in control.
Interestingly, the framework could be easily extended for tool optimization—to
find an optimal tool for a given task. One of the limitations of our approach
is the restriction of tools with linear dynamics. Future research will focus more
complex tool dynamics and using self-confidence as a proxy for optimizing new
tools.

Acknowledgements. This work was supported by the Metatool project, European
Innovation Council through the Pathfinder Challenges grant No. 101070940.

Appendix

A Task Specific Computation of Πu for an SMD

This section aims to compute the free energy gradients and the precision on
actions (Πu) for all the three tasks, specific to the SMD system.

Constant State Position Task. Differentiating Eq. 1 with u and substituting
∂ẋ
∂u = 0 in it yields ∂x

∂u = −(A−1B)T . Further substituting it in Eq. 8 yields the
free energy gradients (necessary for the meta-TAIC update rule) as:

∂F

∂u
= −(x − xg)T P xg

(A−1B) + uT Pu,
∂2 F

∂u2
= (A−1B)T P xg

A−1B + Pu (18)
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Substituting A,B,C from Eq. 14 as per Eq. 5, using ∂2(Ug+Uc)
∂u2 = ∂2F

∂u2 , yields the
precision on action for the constant goal position task as:

Πu = Pu +
pxg

k2
(19)

Constant State Velocity Task. The agent makes an assumption about the
consequence of its action on the state evolution as ∂x

∂u =
[
1
1

]
. Substituting it in

Eq. 10 results in:

∂F

∂u
= (Ax + Bu − ẋg)T P ẋg

(A
[
1
1

]
+ B) + uT Pu,

∂2 F

∂u2
= (A

[
1
1

]
+ B)T P ẋg

(A
[
1
1

]
+ B) + Pu

(20)

Substituting A,B,C from Eq. 14, yields the precision on action as:

Πu = Pu + pẋg
(k + b − 1

m

)2

(21)

Constant State Acceleration Task. The agent makes the assumptions ∂x
∂u =

[
1
0

]
, ∂u̇

∂u = 0 and u̇ = u(t−1)−u(t−2)
dt , resulting in:

∂F

∂u
= (A2x + ABu + Bu̇ − ẍg)T P ẍg

(A2
[
1
0

]
+ AB) + uT Pu

∂2 F

∂u2
= (A2

[
1
0

]
+ AB)T P ẍg

(A2
[
1
0

]
+ AB) + Pu

(22)

Substituting A,B,C from Eq. 14, yields the precision on action as:

Πu = Pu + pẍg
(k − 1

m

)2

(23)

B Simulation settings

The parameters of the tools are: i) tool 1 with k = 0.2N/m, m = 0.4kg, b =
0.4Ns/m, ii) tool 2 with k = 0.3N/m, m = 0.3kg, b = 0.2Ns/m and iii) tool
3 with k = 0.3N/m, m = 0.2kg, b = 0.6Ns/m. The simulation was run for
a total time T0 = 20s with a sampling time of dt = 0.01s. The prior on u is
selected with a mean ηu = 0 and low precision Pu = 10−5. Task 1 has a goal
state xg =

[
0.5
0

]
with precision P xg

=
[
0.01 0
0 0.01

]
, task 2 has a goal state velocity

ẋg =
[
0.5
0

]
with precision P ẋg

=
[
1 0
0 1

]
, and task 3 has a goal state acceleration

ẍg =
[
0.5
0

]
with precision P ẍg

=
[
10 0
0 0

]
. A learning rate of kl = 1 was used for

task 1, and kl = 4 was used for task 2 and 3.
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Abstract. The ability to invent new tools has been identified as an
important facet of our ability as a species to problem solve in dynamic
and novel environments [17]. While the use of tools by artificial agents
presents a challenging task and has been widely identified as a key goal
in the field of autonomous robotics, far less research has tackled the
invention of new tools by agents. In this paper, (1) we articulate the
distinction between tool discovery and tool innovation by providing a
minimal description of the two concepts under the formalism of active
inference. We then (2) apply this description to construct a toy model
of tool innovation by introducing the notion of tool affordances into the
hidden states of the agent’s probabilistic generative model. This particu-
lar state factorisation facilitates the ability to not just discover tools but
invent them through the offline induction of an appropriate tool prop-
erty. We discuss the implications of these preliminary results and outline
future directions of research.

Keywords: active inference · tool innovation · model factorisation ·
one-shot generalization

1 Introduction

Tool innovation has been identified as a core feature of human cognitive and
cultural development, and has provided us with a key adaptive advantage as
a species to survive adverse environments [4,17,24]. While both the use and
innovation of tools was initially seen as a uniquely human capability, evidence
has shown that a phylogenetically widespread variety of non-human animals
engage in forms of tool manipulation, innovation and manufacture [19]. A large
body of research has approached the topic of tool use in humans, animals and
robotic systems [3,7,18]. Here, we define tool use to be “the exertion of control
over a freely manipulable external object (the tool) with the goal of altering the
physical properties of another object, substance, surface or medium (the target,
which may be the tool user or another organism) via a dynamic mechanical
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interaction” [23]. However, developing the understanding of how to use a given
tool is significantly different from the process of inventing a new tool.

Tool innovation refers to the process by which an agent independently con-
structs novel tools without relying on social demonstration or observation. This
requires the ability to envision and conceptualise the appropriate tool for a given
problem, while the knowledge of how to physically transform materials during
construction is referred to as tool manufacture [2]. The task of tool innova-
tion presents a challenging problem in artificial agents, yet it is one that we as
humans are inherently very good at. Indeed, research indicates that we develop
innovation skills at a very early age [6]. The animal innovation literature sug-
gests that we can distinguish between two different classes of tool innovation:
1) that which arises as a result of incidental discovery where the animal then
simply repeats this action in the same context and 2) that which is the result of
intentional action by the animal resulting from some process of causal inference
[25]. Herein, we define these two classes of innovation as tool discovery and tool
innovation respectively.

Making such a distinction for both animals and human infants is challenging
given the difficulty in determining the intentions driving subjects’ proposed solu-
tions to a problem [6]. While human behavioural experiments often explore the
putative cognitive abilities required for tool innovation, no attempt is made to
model such behaviour [8]. We therefore seek to offer a simple model of the cog-
nitive phenomena underpinning the process of tool innovation. In the interest of
a focused inquiry and to maintain conceptual clarity, we limit ourselves to being
concerned with the causal reasoning involved in the process of tool innovation,
while choosing to omit the challenges associated with the motor skills required
to manipulate objects and manufacture tools from physical materials.

In recent years, theories which describe the brain as broadly Bayesian have
gained considerable traction in the field of neuroscience. The ‘Bayesian brain
hypothesis’ posits that perception arises as a result of Bayesian model inversion,
with incoming sensory data updating these causal models of the world in accor-
dance with Bayes’ rule [10]. The theory of active inference (AIF) extends this
idea and casts action, perception and learning as being underwritten by the same
underlying process of Bayesian inference. Derived from first principles, the the-
ory provides a formal account of behaviour arising as a result of the imperative
to minimise of the information-theoretic quantity of surprisal. In other words,
an autonomous agent is continually in the act of accumulating Bayesian model
evidence (“self-evidencing”) and it is from this perspective that we can under-
stand decision-making under uncertainty [21]. AIF offers a rich description of
the internal mechanisms of belief-based reasoning and principled account of the
natural emergence of curious and insightful adaptive behaviour [11]. It has also
recently been proposed as a framework well-suited to robotics [9]. We therefore
chose to explore the concept of tool innovation using this framework.

The main contribution of this paper is (1) the articulation of the distinction
between tool discovery and tool innovation within the AIF framework and (2) a
minimal model of non-trivial tool innovation that requires generalised inferences
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about the tool structure required to solve a task. First of all, we show that with
a perfect generative model, the agent can straightforwardly use tools optimally
to solve a task. We then demonstrate that the agent can discover the correct
tools and learn to solve the task when it is not provided with this information
in its model a priori. Finally, we provide evidence that factorising the hidden
states of the generative model into the affordances of the tool can enable the
agent to conceive offline the appropriate properties of the tool required to solve
the task. It is this difference between the generative model and the generative
process which is key to facilitating tool invention. This enables the agent to not
simply happen upon the appropriate tool during exploration of environmental
contingencies, but to invent them through the induction of an appropriate tool
property. We discuss the implications of these preliminary results and outline
future directions of research.

2 Active Inference in Discrete State Space

In AIF, the minimisation of sensory surprisal is achieved through the minimisa-
tion of a tractable quantity called the variational free energy F , known as (neg-
ative) evidence lower-bound (ELBO) in the variational inference literature [5].
This minimisation is performed via the maintenance of a probabilistic generative
model of the environment. AIF has been widely implemented using discrete-time
stochastic control processes known as partially-observable Markov decision pro-
cesses (POMDPs) [9]. We therefore implement our simulations agent with an
AIF framework in discrete state space using the Python package pymdp [13].
This specifies a standard POMDP generative model as a joint probability dis-
tribution over observations o, hidden states s, policies π and model parameters
φ. In contrast to much of the reinforcement learning literature, a policy in this
case is defined as a fixed sequence of control states uτ for each timestep τ that
together represent a plan of action of length T , π = {u1, ..., uT } [21]. We assume
the standard factorisation of the POMDP as a product of conditional (likelihood)
distributions and prior distributions over a finite time horizon [1 : T ].

The most important distributions when specifying this generative model
are the observation likelihood P (oτ | sτ ;φ), the transition likelihood P (sτ |

Fig. 1. The task of the agent is to reach the reward by using the tools provided. The
simulation environment shows the agent (robot) can only move between the left and
right rooms (grey) and the reward (shown as a pot of gold) can be placed in any of
the other rooms (blue). A vertical tool (V) can be picked up in the left room, and a
horizontal tool (H) in the right room (Color figure online)
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sτ−1, π;φ), and the prior preference over observations P (oτ ), known in pymdp
as the A, B and C matrices respectively. We also further factorise our representa-
tions of oτ and sτ into separate modalities and factors: oτ = {o1τ , o2τ , ..., oM

τ } and
sτ = {s1τ , s2τ , ..., sF

τ } in which M is the number of modalities and F the number
of hidden state factors such that the likelihood distributions can be written as:

P (oτ | sτ ) =
M∏

m=1

P (om
τ | sτ ) (1)

P (sτ | sτ−1,uτ−1) =
F∏

f=1

P (sf
τ | sτ−1,uτ−1) (2)

We allow state factors in the transition likelihoods to depend on themselves
and a specified subset of other state factors.1 Since we are working in discrete
space, the probability of states and observations can be described by a categorical
probability distribution.

In this work, we consider the simple environment shown in Fig. 1. It consists
of a 2× 4 grid of locations in which the agent can only move between two rooms:
left and right (shown here in grey). The agent is always initialised in the left-hand
room. A vertical tool (V) is located in the left-hand room while a horizontal tool
(H) is located in the right-hand room. In one of the remaining rooms (shown
in blue), a reward is located, and it is the goal of the agent to try and reach
this reward using the tools provided. For example, if the reward is in the room
directly north of the right-hand room as shown, the agent is required to be in
the right-hand room holding tool V in order to reach it. The agent can choose
to pick up the tool if it is in the relevant room, while it may drop tools whilst
it is in any room (in which case, any of the tools in the agent’s possession are
dropped and returned to their original rooms). If the agent already possesses
a tool and picks up a different tool, this creates a compound tool (HV). The
rooms directly north, east and west of the left and right rooms are known as the
adjacent rooms and these only require the individual tools V or H to solve. The
northeastern and northwestern rooms are termed the corner rooms and present a
greater challenge for the agent as they require the construction of the compound
tool (HV) to solve.

For the initial experiments, the hidden states of the environment are fac-
torised into two factors, sτ = {s1τ , s2τ}, which consist of: room state and tool
state (see Table 1). A policy length of 4 time-steps is chosen given that the
task of retrieving the reward can always be solved optimally within 4 steps (for
any reward location). As we have set the policy length to be 4 time-steps and
we have 4 possible actions, we therefore have 256 (44) possible policies which
we must individually evaluate by calculating the expected free energy for every
time-step (see Sect. 3). In all experiments, the agent is equipped with a strong
prior preference for the observation of reward in the reward modality. In terms

1 This requires a recent branch of pymdp which enables this kind of factorisation. See
https://github.com/infer-actively/pymdp/tree/sparse likelihoods 111.

https://github.com/infer-actively/pymdp/tree/sparse_likelihoods_111
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Table 1. Generative Model Structure

States Factors Dimensions Values

Hidden states Room 2 Left, Right

Tool 4 Null, V, H, HV

Observations Room 2 Left, Right

Tool 4 Null, V, H, HV

Reward 2 Null, Reward

Control States 4 Null, Move, Pick-up, Drop

of relative log probabilities, we specify this to be 0 for an observation of null and
50 for an observation of reward. Observations in all other modalities have a flat
prior (i.e. no preference given).

3 Policy Inference

In AIF, policy inference is effectively a search procedure in which a free energy
functional of expected states and observations under a policy is evaluated for each
possible policy. Once we have calculated this quantity (known as the expected
free energy, G) for each policy, we can convert this into a probability distribution
over the set. Action selection then simply amounts to sampling from this dis-
tribution accordingly. Policies which most minimise G will be assigned a higher
probability and are therefore more likely to be chosen. Since the variational pos-
terior factorises over time, we can calculate G for each time step independently.
The expected free energy for a particular future time step under a particular
policy is given by:

Gτ (π) = EQ[ln Q(sτ |π) − ln P̃ (oτ , sτ |π)] (3)

where P̃ (oτ , sτ |π) = P (sτ |oτ , π)P̃ (oτ ), representing a generative model that is
biased to produce preferred observations (for full derivations, see [13]). Gτ (π) can
be rearranged in various ways to give intuition about what it actually represents.
One such representation decomposes this free energy functional into an epistemic
value (information gain) term and a pragmatic value (utility) term:

Gτ (π) ≤ −EQ(oτ |π)[DKL [Q(sτ |oτ , π) ‖ Q(sτ |π)]]
︸ ︷︷ ︸

State Information Gain

−EQ(oτ |π)[ln P̃ (oτ )]
︸ ︷︷ ︸

Utility

(4)

Epistemic value refers to the information gain from the expected outcomes of
hidden states. Given a policy, it measures the divergence between the expected
states and the expected states conditioned on the observations. This gives rise
to curious behaviour in which the agent is compelled to minimise uncertainty
about its environment via exploration. On the other hand, the utility term simply
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measures the extent to which the observations expected under a policy align with
the observations the agent wishes to encounter. This promotes the exploitation
of knowledge in order to satisfy preference over outcomes. This trade-off between
exploration and exploitation therefore naturally arises in AIF; both imperatives
are cast as ways in which an agent acts to resolve uncertainty.

(a) Information gain dominating policy selection (b) Utility dominating policy selection

Fig. 2. Decomposing expected free energy G into respective information gain and util-
ity contributions can elucidate the agent’s intended consequences of an action. The
expected free energy G (black line) is evaluated over a set of 256 policies. The compo-
nents which contribute to the selection of the best policy (circled) are state information
gain (dark green), parameter information gain (light green) and utility (orange). Exam-
ples shown are instances when the selected policy is a) driven by information gain as
there is little variation in utility and b) driven by utility as there is little variation in
information gain (Color figure online)

We can visualise this trade-off by plotting the respective utility and informa-
tion gain components of the total G. Figure 2a shows an example in which each
of the policies vary little with respect to their expected utility and the policy
selected has been driven by the high information gain component. In contrast,
Fig. 2b shows an example of when the dominant driving force in policy selection
is the utility component while information gain remains largely invariant across
policies. Note that we also include a parameter information gain term which is
explained in Sect. 4.

4 Parameter Inference

Learning in AIF is a process of inference over the model parameters, φ, which
are simply the categorical likelihood distributions. We treat these parameters as
something over which the agent maintains and updates beliefs (i.e. as random
variables). Consider the example of an A matrix, which encodes the observation
likelihood model P (o|s), with the entry A[i, j] representing the probability of
seeing observation i given state j. There is therefore a separate categorical dis-
tribution for each state (i.e. each column sums to 1). The Dirichlet distribution
is a conjugate prior for the categorical distribution, and we therefore model prior
beliefs over the categorical as a Dirichlet. It can be shown that, when the agent
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obtains new empirical information, the Bayesian process of updating this prior
is simply a count-based increase of the Dirichlet parameters according to the
observation o and inferred state s [13,15]:

αposterior = αprior + o ⊗ s (5)

where α represents the Dirichlet parameters. Now that we are treating model
parameters as random variables, we can expand G to include the expected param-
eter information gain component:

(6)
This will drive the agent to seek observations which lead to a larger change

in the categorical distribution.

5 Experiment 1: Tool Use

In the first set of experiments, the agent has a perfect probabilistic generative
model of the world. This means that the correct transition likelihood and obser-
vation likelihood distributions are provided and therefore no learning is required.
We then show that the agent can straightforwardly infer the optimal actions in
order to achieve its goal of reaching the reward. We use this as a simple model
of tool use in an autonomous agent, given the definition of tool use defined pre-
viously [23]. By this account, our simulated agent conducts tool use by acting
to “exert control over” tools V, H or HV in order to “alter the physical proper-
ties” of the tool user (by extending the agent’s reach) enabling it to successfully
retrieve the reward. In this sense, we reduce tool use to an action sequencing
problem.

Table 2. Comparing optimal number of steps required to solve each reward location
with actions taken. When the generative model is perfectly known, the agent solves
the task optimally

Reward Location Optimal No. of Steps Actions of Agent

North-left 1 Pick-up

North-right 2 Pick-up, Move

East 2 Move, Pick-up

West 3 Move, Pick-up, Move

Northeast 3 Pick-up, Move, Pick-up

Northwest 4 Pick-up, Move, Pick-up, Move / Move, Pick-up, Move, Pick-up

For each trial, we place the reward in one of the possible reward locations and
allow the agent 12 time-steps in which to act in the world and obtain the reward.
The agent uses all 12 time-steps, and therefore if it has found the reward, the
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Fig. 3. When the generative model is perfectly known, the selected policy is based
solely on the utility component of G. An example of G (black line) evaluated for all
256 policies and the selected policy (circled) which is the one with the highest utility
(orange). Note that since the generative model is fully known, and the environment is
fully observed, all policies have zero information gain component (Color figure online)

optimal behaviour would be to perform an action that will keep it in the same
state (i.e. the action “Null”).

As expected, the agent solves the task of obtaining the reward optimally for
each reward location (Table 2). Given the stochastic nature of policy selection,
we note in that the agent solves the northwest room via two different methods,
yet both are optimal (i.e. of length 4). Since the generative model is fully known,
the agent gains no new information about states or parameters during inference.
Indeed, Fig. 3 shows that if we plot the relative utility and information gain
contributions to the expected free energy of each policy during action selection,
we see that it only comprises of a utility component compared to Fig. 2 (i.e.
there is no epistemic value contribution to G).

6 Experiment 2: Tool Discovery

Next, we investigate the ability of the agent to learn how a particular tool solves
the task. We present this as a toy example of tool discovery given that knowl-
edge about how to create a tool arises incidentally as a result of environmental
exploration. Whilst we again provide the agent with a fully known observation
likelihood distribution, for the following experiment we initialise the agent with
a uniformly distributed transition likelihood model. This means that the agent
initially knows nothing about how states and actions effect future states. It
therefore must learn these state transitions rather than being provided with this
information from the outset (as in experiment 1). The agent happens upon the
correct tool to use for a given reward location, and then repeats this action in
the same contexts. This is in line with our previous definition of tool discovery
[25].

Figure 4 shows that the number of steps the agent takes to find the reward
decreases over the number of runs. In this continual learning task, each time the
reward location changes (at runs 0, 10, 20, 30 and 40) it demands the learning of a
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new tool and we see an initial increase in the number of steps requires to solve the
task. This is because the information the agent has about state transitions (i.e.
how states and actions give rise to states at the next time-step) is not sufficient
to solve the task. The agent therefore explores more of the environment before
encountering the correct tool required to satisfy its preference for the reward
observation. We then see a sharp drop after the agent has learned about the
required state transitions, and the number of steps taken to solve the task quickly
plateaus to the optimal number shown in Table 2.

Interestingly, as a result of the ordering in which the reward locations are
presented (north-right, west, north-left, east, ...), the agent solves the north-left
and east reward locations optimally from the outset. This is due to the fact
that the solving of previous adjacent rooms (north-right and west) resulted from
the learning of tool V and H respectively. When the agent then encounters the
reward in the remaining adjacent rooms, it has already learned about the correct
actions to create these tools to solve the task despite never having seen these
particular reward locations before. The corner rooms require more steps despite
having already learned V and H, as the agent must still discover the new tool HV.
Given that the agent is always initialised in the left-hand room, the northwest
corner (Fig. 4b) takes more steps to solve that the northeast corner (Fig. 4b)
because it involves a more complex action sequence to retrieve the reward (see
Table 2).

(a) Finishing with reward in northeast room (b) Finishing with reward in northwest room

Fig. 4. The number of steps taken to solve the task for each reward location decreases
quickly over runs to the optimal number of steps, reflecting the agent learning via
discovery. Graphs show the mean (± ste) number of steps to solve reward location
averaged over 20 independent trials. The agent is exposed to a different reward locations
every 10 runs (dashed lines). The reward is first located in the adjacent rooms (in the
order north-right, west, north-left, east) before being presented with a) the northeast
or b) the northwest room for final 3 runs (40–42). For both cases, despite learning how
to create a V and H tool in the earlier runs, the agent still has to learn about the HV
tool when the reward is placed in a corner room
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(a) North-right room (b) East room (c) Northeast room

Fig. 5. The agent only learns the tools that it needs to learn in order to solve the task.
We provide a measure of how well the agent knows each tool by looking at the posterior
probability associated with the correct control state (i.e. action) for creating each tool
when solving for rooms a) north-right b) east and c) northeast over 125 steps

Importantly, given that the minimisation of G naturally incorporates two
competing imperatives (utility and information gain), this means that the agent
learns only the tools that it needs to learn in order to solve the task, and does not
continue exploring its environment if it is able to leverage its current knowledge
to effectively realise prior preferences. Figure 5a shows that for the north-right
room, the agent only learns the vertical tool (V). This is because the first tool it
picked up (V) allowed it to solve the task and therefore the agent did not need
to continue exploring the hidden states of the environment as it had all of the
knowledge it needed. Figure 5b) shows that for the east room, the agent first tried
the vertical tool (V), however this did not lead to the agent observing preferred
observations (reward) and therefore it does not infer the action of picking up
this tool again. Instead, it pursues policies which yield high information gain
(i.e. it explores new states of the environment) and finds that picking up tool H
leads to a rewarding observation. By selecting policies which maximise utility,
it therefore repeats this action (“pick-up”) in the same context, and learns this
tool with more confidence while neglecting to explore other options. Finally,
Fig. 5c shows that in order to discover the compound tool (HV), the agent first
happens upon tools V and H (as these tools are more likely to be stumbled
across given they require a less complex sequence of actions in order to learn
about them). However, these do not provide it with high utility. Since there are
unknown states (such as tool HV) that provide it with high information gain,
the agent continues exploring and then finds that creating the compound tool
brings about its preferred observations.

A policy is selected on its value of G which is composed of both expected
utility and expected information gain. We can visualise the evolution of this
trade-off in driving policy selection during a continual learning trial. For each
time-step, we see how the chosen policy ranks in the ordered list of all policies
with respect to utility and the ordered list of all policies with respect to infor-
mation gain. This rank provides us with a measure of the relative contributions
of utility and information gain in the selection of a policy. For example, if the
chosen policy ranks very highly for utility, and yet ranks very low in the context
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(a) Finishing with reward in northeast room (b) Finishing with reward in northwest room

Fig. 6. Policy selection is initially dominated by information gain, but is then very
quickly driven by utility as the agent learns new information. Graph shows how the
selected policy ranks in the context of all possible policies in terms of utility and
information gain (averaged over 20 independent trials) (best rank is 0, worst is 256).
Like Fig. 4, the reward location changes every 10 runs (dashed lines) in the order north-
right, west, north-left, east. The agent is then presented with a) the northeast or b)
northwest room for the final 3 runs

of the best policies for information gain, we know that the policy (and therefore
resultant action) has been selected primarily due to its high utility.

As Fig. 6 shows, for each reward location, the information gain component
is initially very high and therefore dominates action selection. This is because
when the reward location is changed, the state transition information is not
adequate to solve the task. The gain in information quickly drops as the agent
learns transitions via exploration, while the utility rank of the policy increases as
it can leverage this newly learned information to seek the preferred observation
of the reward. Note that at runs 20 and 30, this spike in information gain is lower
that at 0 and 10. This is because the agent has already learned about creating
tool V and H in the north-right and west reward locations respectively. When the
agent is then presented with the novel adjacent reward locations (north-left and
east), it has the advantage of already having the knowledge of how to pick up the
correct tool to use to solve the problem. For the final reward location (northeast
for Fig. 6a and northwest for Fig. 6b), we also see a spike in information gain.
This is in agreement with Fig. 4 which shows that we do indeed see an increase in
the number of steps taken to solve these final rooms. Despite having knowledge
about the individual tools H and V, the agent must explore further to ‘discover’
the compound tool.

We have therefore shown that the agent can leverage the knowledge gained
in the incidental discovery of required state transitions to solve the task. This
amounts to a simple model of tool discovery behaviour in accordance with our
previously defined definition.
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7 Experiment 3: Tool Innovation

The following experiment investigates the concept of tool innovation in our AIF
agent. In order to achieve this, the agent must be able to analyse the problem and
identify the kind of the tool required to solve the task. This entails developing
a grounded understanding of the objects in the environment which can then be
leveraged to construct a suitable tool through a process of generalisation. For
the acquisition of grounded knowledge about the world, we turn to the concept
of ‘affordances’ from ecological psychology [12]. This refers to opportunities for
action provided by the environment. In the robotics literature, this is defined
as the “relationship between an actor (i.e., robot), an action performed by the
actor, an object on which this action is performed, and the observed effect” [1].

We adjust our generative model to incorporate the following tool affordances
into the hidden states: the horizontal reach (x-reach) and vertical reach (y-reach)
afforded by each tool and the room state sτ = {s1τ , s2τ , s3τ}. Each affordance state
can take a binary value. We refer to this as the Affordance Model while the
previous model which included an unfactorised tool state is referred to as the
Tool State Model. Importantly, these affordances do not depend on one another,
which allows for generalisation of learning in novel situations (i.e. the agent does
not need to separately explore the x-reach state in the context of two differ-
ent y-reach states). This aligns with the concept of disentangled representations,
characterised as disjoint representations of the underlying transformation prop-
erties of the world [14]. That is, transformations that vary a subset of properties
of the world state, while leaving all others invariant.

In this sense, the agent can learn solely about the tool V and tool H, and
when faced with a new reward location in which it requires both a positive x-
reach and y-reach, it should spontaneously produce the compound tool (HV) in
an optimal way. This is a simple yet non-trivial notion of innovation in which the
agent does not merely just discover a new tool (as in experiment 2). The agent
is able to encounter a new situation (reward location), understand the structure
of the required solution (both a non-zero x-reach and y-reach) and generate
the required solution (tool HV). We can think of this as a simple example of
‘one-shot’ generalisation to novel stimuli [20,22].

Fig. 7. In the Tool State Model used of
experiment 2, there is a one to one map-
ping between the tools the agent observes,
and the internal representations it has for
them (None, V, H, HV). In the Affordance
Model in experiment 3, the agent separates
the lantent tool states into properties of x-
reach and y-reach

To test this hypothesis, we have the
agent learn the entries of the transi-
tion likelihood distribution model from
scratch (i.e. we initialise it as a uni-
form distribution as in experiment 2).
However, our transition likelihood now
includes the new factorised tool states
(see Fig. 7). In a continual learning
task, we present the agent with the
adjacent rooms (which only require the
learning about H and V) and then
test it on the northeast room (which
requires tool HV).
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Figure 8a shows that, indeed, when the Affordance Model agent has only pre-
viously learned about tools H and V, it successfully creates tool HV optimally
(having never seen this observation before). With the Tool State Model in exper-
iment 2, this task was not solved optimally (as it initially took an average of
roughly 5 steps to solve). As Fig. 8d shows, this coincides with a greater infor-
mation gain component driving action selection, meaning the agent is exploring
in order to discover the compound tool. On the other hand the information gain
component for the agent with the Affordance Model is much lower. This suggests
that the factorisation of hidden states into affordances indeed equips the agent
with the ability to leverage its current knowledge in order to compose relevant
affordances and spontaneously ‘invent’ the new tool.

It is worth noting, that when repeating this experimental procedure of expos-
ing the Affordance Model agent to the adjacent rooms and then testing on the
northwest (rather than the northeast) room, the agent does not solve this opti-
mally, but ‘near-optimally’. As Fig. 8b shows, the Affordance Model agent solves
this task marginally quicker than the agent with the Tool State Model, however
it does not immediately find the optimal solution of 4 steps. Upon inspection
of the learned transition likelihood distributions, it appears that there is a large
information gain component of G that drives the agent to select the action ‘drop’
(and this is reflected in Fig. 8e). The agent has never explored what this action
‘drop’ does in the left-hand room with no tools, and therefore it repeats this
action until it no longer yields high state information gain. Once it has learned
this particular fact, it then goes on to select the optimal policy and solves the
task in the next 4 steps.

To confirm that this is indeed what is causing the sub-optimal behaviour, we
tailor our policy selection strategy on the critical runs. We repeat the experimen-
tal trial, but once the reward location has changed to the final northwest room,
we ignore the information gain components of G. The agent therefore selects
policies based on utility alone. After this adjustment, the Affordance Model
agent then solves the northwest room optimally (see Fig. 8c). Importantly, when
information gain is ignored for the Tool State Model, this still does not lead the
agent to solve the task optimally. This is because it does not have the required
knowledge about the compound tool while the Affordance Model has all of the
information it needs in order to solve the task by a process of induction.
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(a) Reward in northeast room (b) Reward in northwest room (c) Northwest room, utility only

(d) Reward in northeast room (e) Reward in northwest room (f) Northwest room, utility only

Fig. 8. Factorising the hidden states into tool affordances enables the agent to perform
one-shot generalisation. All graphs are the results of 3 runs following exposure to all
adjacent rooms (10 runs per room) and averaged over 10 independent trials. The top
panel compares the Tool State Model to the Affordance Model in terms of the mean
number of steps (±se) taken to solve a) the northeast room b) northwest room and c)
northwest room selecting policies based only on utility. The bottom panel shows the
utility and information gain rank of the selected policy for d) the northeast room e)
northwest room and f) northwest room selecting policies based only on utility

8 Discussion

We have distinguished between tool use, tool discovery and tool innovation and
asked what this might look like using the framework of AIF. We then ground
this work with the construction of a simple model in order to take seriously this
distinction and see what insights can be drawn. We provide the first evidence for
the necessary properties associated with the process of tool innovation: namely
that of offline induction of appropriate tool structure through composing relevant
affordances.

We have identified that when solving the northwest room, the agent with the
Affordance Model is not (sub-optimally) solving the task by having to discover
the tool, as is the case with the agent with the Tool State Model. Rather, the
agent seeks to investigate a specific state which it has never seen before and
when it has sufficiently learned this fact (such that the information gain that it
yields is significantly diminished), it subsequently solves the task in the optimal
number of steps. Further investigation is required to ask why the utility is not
enough to override this high information gain when it already has the knowledge
of the correct tool to employ and the state transitions to create this tool.

We acknowledge that in our choice to factorise the hidden state of the agent’s
generative model into the tool affordances of x-reach and y-reach, we play the
role of an intelligent designer. Ideally, we would like to have autonomous sys-
tems that choose what to learn from the environment and factorise their model
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in a way that best explains the latent causes of sensory observations. Smith
et al. [22] introduce an approach whereby a probabilistic generative model has
flexibility in the hidden states. The idea is one of furnishing of extra “slots” in
the hidden states, allowing the agent to expand its generative model to incor-
porate new information when encountering new concepts. A process of Bayesian
model reduction then acts to prune the model, ensuring that model complexity
is reduced if in fact two concepts can be explained by the same underlying cause.
This approach has been further extended to deep hierarchical AIF models, facil-
itating the formation of flexible and generalisable abstractions during a spatial
foraging task [16]. This kind of adaptive structure learning would be useful in the
context of tool innovation, allowing us to infer the best affordances to represent
a tool. We therefore identify this approach as an interesting avenue for further
research in the context of tool innovation in AIF agents.

Finally, we note that our model is limited given our intentional choice to
omit the sensorimotor challenges associated with both tool manipulation and
tool construction. Given that tool manufacture has been identified by Beck et
al. [2] as a key component in the process of tool innovation, future work should
look towards constructing models which can effectively handle more physically
realistic tasks.

9 Conclusion

Overall, we have provided a minimal description of the distinction between tool
discovery and tool innovation under the formalism of active inference. We have
used this to then explore a simple model of tool innovation in an AIF agent
by introducing a factorisation of hidden states of the generative model into
affordances. This particular structural choice affords the agent with the ability
to generalise what it has learned about state transitions and conceptualise a
suitable tool via a process of induction. We have discussed the implications and
limitations of our results and outlined directions for further research.
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Politécnica De Madrid.

Author contributions. P.F.K. conceived the project and both designed and
conducted experiments. P.C. designed and conducted experiments and wrote the
manuscript. C.L.B. supervised the project.

References

1. Andries, M., Chavez-Garcia, R.O., Chatila, R., Giusti, A., Gambardella, L.M.:
Affordance equivalences in robotics: a formalism. Front. Neurorobot. 12, 26 (2018)

2. Beck, S.R., Apperly, I.A., Chappell, J., Guthrie, C., Cutting, N.: Making tools isn’t
child’s play. Cognition 119(2), 301–306 (2011)



58 P. Collis et al.

3. Bentley-Condit, V.: Smith: animal tool use: current definitions and an updated
comprehensive catalog. Behaviour 147(2), 185-32A (2010)

4. Biro, D., Haslam, M., Rutz, C.: Tool use as adaptation (2013)
5. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for

statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)
6. Breyel, S., Pauen, S.: The beginnings of tool innovation in human ontogeny: how

three-to five-year-olds solve the vertical and horizontal tube task. Cogn. Dev. 58,
101049 (2021)
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Abstract. How does the brain adapt to slow changes in the body’s kine-
matic chain? And how can it perform complex operations that need tool
use? Here, we consider both processes through the same perspective and
propose that the kinematic chain is represented by an Active Inference
model encoding, in a hierarchical fashion, intrinsic and extrinsic informa-
tion separately. However, the several pathways through which prediction
errors can be minimized introduce some optimization problems. We show
that an agent can rapidly change its kinematic chain online using action-
perception cycles, similar to how learning and inference processes are
handled in Predictive Coding Networks.

Keywords: Deep kinematic inference · Motor learning · Active
Inference · Cortical oscillations · Tool use

1 Introduction

In normal conditions, the kinematic chain of an organism remains constant or
only gradually changes on a lifetime scale. But there are situations where it is
modified in much faster timescales, e.g., when using a tool to solve a task. It
has been demonstrated that when monkeys are trained to use a tool to reach an
object, their internal bodily representations in parietal and motor areas change
to represent the tool [15]. This finding suggests that the kinematic chain encoded
in the motor cortex is not fixed but modifies dynamically, i.e., when an exter-
nal object is used for a sufficient amount of time. One hypothesis is that this
mechanism is the result of an increase in the boundary between the self and
the environment which, according to Predictive Coding theories, happens when
the agent can predict the consequences of its actions – in this case, the move-
ment of the tool – through a closed loop between motor commands and sensory
evidence [11,12]. But a similar behavior can be also seen when patients with
lesions to the motor cortex are trained to move, through implanted devices, an
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external robotic arm, which with extensive training becomes an integral part of
the patient. Or, to the other extreme, in patients with an amputated limb, when
the cortical region previously devoted to its control shrinks [10].

It is therefore critical (i) to understand how the motor cortex can take into
account and predict such slow and rapid changes in the kinematic chain, and
(ii) to efficiently simulate the same scenario in robotic experiments. In Optimal
Control theories, complicated cost functions usually have to be defined to tackle
such dynamic elements [22,23], and while the maturity of the framework has
led to interesting results, it seems unlikely that the same mechanisms are at
work in biological organisms [6]. In contrast, Predictive Coding based theories
such as Active Inference, which tackles the motor control inversion by generating
proprioceptive predictions from high-level latent states, provide a simpler and
more biologically plausible solution that does not use any cost function [1,17].

In particular, it assumes that agents are endowed with a generative model
specifying the dynamics of their hidden states and that desired goals are encoded
as priors over the dynamics, which act as attracting states. Goal-directed move-
ments are then realized by first generating predictions from the hidden states
and then minimizing the corresponding prediction errors, or the discrepancy
between predicted and current sensations. The main difference with respect to
Optimal Control is that the mapping between proprioceptive predictions and
control signals for the muscles can be implemented easily using reflex arcs in
the spinal cord rather than requiring complex inverse dynamics computations
[1]. In fact, the inverse model maps from peripheral proprioceptive sensations to
movements, not from central hidden states to actions, as in Optimal Control [7].

The advantages of the Active Inference framework are even more evident
when using hierarchical models, which are able to construct a richer repre-
sentation of the environment. Despite such capabilities, the current literature
comprises few hierarchical models [3,9,18], with no implementations of deep
kinematic structures for realistic settings. As concerns the kinematic inversion,
this is usually done through methods borrowed from Optimal Control such as
the pseudoinverse [16]. However, these approaches are not biologically plausible
since the exteroceptive generative model has to be duplicated into the dynamics
of the hidden states. Importantly, no studies today tackle motor learning from
an Active Inference perspective, since the forward kinematics typically generates
only the end effector position and the agent has no access to all the information
inside its kinematic chain, greatly limiting the range of tasks it can solve. Instead,
we propose that a deep hierarchical model encoding beliefs over all segments of
the kinematic chain [19] is capable of not only inferring the correct kinematic
chain during perception but also during action, which may answer why changes
in the motor cortex can be recorded after extensive tool use. As will be shown,
the simultaneous learning of the joint angles and limb lengths during the move-
ment is made possible through action-perception cycles – with some analogies to
the optimization of Predictive Coding Networks [13] – allowing the agent not to
get stuck during the free energy minimization process that happens when both
phases are not run rhythmically.
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2 Deep Kinematic Inference

Fig. 1. Generative models for deep kinematic inference. (A) An example of a
kinematic chain. (B) Factor graph of a single level of a hierarchical structure where
each block is an IE model. Note that the extrinsic belief acts as a prior for the layer
below.

The deep kinematic inference grounds on a simple block called “Intrinsic-
Extrinsic (IE) model” [19], shown in Fig. 1B. This model has two different beliefs
encoding respectively intrinsic (e.g., joint angles μθ and limb lengths μl) and
extrinsic (e.g., absolute position and orientation of a limb μe). The two beliefs
of a level j − 1 are used to compute the extrinsic belief of level j through the
following kinematic generative model:

μ(j)
e = ge(μ

(j)
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(j)
l ,μ(j−1)

e ) =

⎡
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where we used a more compact notation to indicate the sine and cosine of the
angles:

cθ,φ = cos(θ + φ)
sθ,φ = sin(θ + φ) (2)

This block is replicated so as to match the whole agent’s kinematic chain;
the resulting hierarchical structure allows connecting several nodes to a single
layer, thus encoding complex kinematic models with ramifications (e.g., fingers).
The extrinsic belief then performs the inference by averaging every contribution
of its children through the corresponding precisions πe and kinematic prediction
errors εe:
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M∑
m
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e ε(j+1,m)

e (3)



62 M. Priorelli and I. P. Stoianov

(a) A 4-DoF robotic arm has to reach a
static target (represented in red) with
its end effector.

(b) Evolution over time of the difference be-
tween true and estimated joint angles (blue
line), and between true and estimated limb
lengths (red line), aggregated over 1000 tri-
als during inference only.

Fig. 2. (a) A 4-DoF robotic arm has to reach a static target (represented in red) with its
end effector.(b) Evolution over time of the difference between true and estimated joint
angles (blue line), and between true and estimated limb lengths (red line), aggregated
over 1000 trials during inference only. (Color figure online)

Note that the extrinsic kinematic precision π
(j+1)
e modulates the update dynam-

ics of the length belief μ
(j)
l , the angle belief μ

(j)
θ , and the extrinsic belief μ

(j)
e of

level j.
Intrinsic and extrinsic beliefs also generate proprioceptive and exteroceptive

(e.g., visual) sensations, respectively through the generative models gp and gv.
The kinematic inversion is automatically performed by inference – thus without
requiring explicit functions into the dynamics of the hidden states – through the
gradients of the kinematic generative model ∂θge and ∂ege over joint angles and
extrinsic information, respectively. This architecture also allows solving a wide
range of tasks through the definition of flexible functions that generate future
goals based on the current belief [21], such as obstacle avoidance, trajectory
planning in Cartesian space, or maintaining a vertical orientation while reaching
a target [19].

For the scope of this study, we only consider a simple 4-DoF robotic arm
whose goal is to reach a static target with the end effector, as shown in Fig. 2a.
Note that in the following simulations, we assume that visual and proprioceptive
observations directly provide the Cartesian position and angles of the limbs,
respectively.

3 Perceptual Motor Learning

The model illustrated above allows not only to solve complex tasks that require
the simultaneous coordination of several limbs, but also to learn the kinematic
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chain. In fact, the gradient of the kinematic generative model of Eq. 1 with
respect to the length belief:

∂ge

∂μ
(j)
l

& =
[
c
(j)
θ,φ s

(j)
θ,φ 0

]
(4)

allows inferring and learning the segment lengths of every level:

μ̇
(j)
l = ∂μl

gT
e π(j+1)T

e ε(j+1)
e (5)

This adaptive behavior has several practical applications: for instance, an agent
with a tool in its hand could infer the extremity of the tool by extending the
length of its end effector. In addition, the hierarchical nature of the model allows
specifying different learning dynamics for each segment, so that the belief over
the end effector augmented with the new tool could be inferred in a much faster
timescale than the rest of the arm. As shown in Fig. 2b, the agent is able to
correctly infer – even in single trials – both joint angles and limb lengths ran-
domly initialized each time. Note that in this case we did not use proprioceptive
information on purpose, so the agent had to simultaneously infer them through
exteroceptive sensations only.

4 Online Motor Learning and Action-Perception Cycles

Fig. 3. Sequence of frames for the reaching task with adaptable limb lengths. Real and
estimated arms are represented in blue and cyan, respectively. In this simulation, the
beliefs over limb lengths are initialized to a wrong value. (Color figure online)
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When performing the same kind of inference during goal-directed movements
– e.g., target reaching – a few issues arise. In this case, an attractor is embedded
into the dynamics of the extrinsic belief of the last layer (corresponding to the
end effector), whose update is:
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e =

[
μ

′(4)
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e ε
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v π
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The attractor expresses the difference between the current belief and a desired
state, multiplied by a gain, i.e., f

(4)
e (μe) = λ(μe − μ∗). In brief, the extrinsic

belief is subject to an attractive force encoding the target location ε
(4)
μe , a forward

kinematic prediction error coming from the layer below (e.g., the elbow) ε
(4)
e ,

and a visual prediction error ε
(4)
v . Thus, the kinematic prediction error acts both

on the extrinsic belief in Eq. 6 and on the length belief in Eq. 4.

Fig. 4. Evolution of length and extrinsic beliefs. The top panel shows the dynamics
of real (blue line) and estimated (orange line) lengths of the end effector. The middle
panel shows the dynamics of the distance between real end effector and target (blue
line), and between estimated end effector and target (orange line). The bottom panel
shows the dynamics of every component of the extrinsic belief update, namely the 1st-
order belief (blue line) encoding the attractor, the visual prediction error (orange line),
and the kinematic prediction error from the elbow (green line). (Color figure online)

Figure 3 shows a sequence of frames of a simple reaching task when the agent
is allowed to infer the length of its limbs, which are initialized to a wrong value.
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The joint angles rapidly stabilize, and so do almost all the limb lengths, resulting
in the estimated arm gradually growing during the reaching movement, until it
matches the real one. However, the agent fails to estimate the length of the last
limb – where the attractor is defined – and the end effector stops before reaching
the destination. What happens is that the kinematic prediction error εe of the
end effector affects the minimization of the length belief while the extrinsic belief
is pulled toward the desired state.

Fig. 5. Neural implementation of a single level of the model. For simplicity, the dynam-
ics functions are not displayed. Here, s

(j)
v and s

(j)
p indicate visual and proprioceptive

observations of level j, respectively.

In order to understand this behavior, let us analyze the evolution of the
extrinsic and length beliefs of the end effector, as shown in Fig. 4. In this case,
the kinematic prediction error εe that results from the attractor of the dynamics
function (green line in the bottom panel) climbs up the hierarchy and flows into
the angle belief, so that the end effector is gradually pulled toward the target
(orange line in the middle panel). However, note that the kinematic prediction
error tries to exert a force on the length belief (orange line in the top panel) as
well. These different pathways are displayed in Fig. 5, showing a neural imple-
mentation for a single level of the hierarchical model. The result is that, as clear
in the last frame of Fig. 3, the extrinsic belief settles to the correct value – i.e.,
the agent thinks that the target has been reached – but the length belief is over-
estimated. If we focus on the last panel of Fig. 4, we can note that the 1st-order
extrinsic belief and the visual prediction error are never really minimized but
get stuck pushing in opposite directions.

This behavior is similar to what happens during optimization of a Predictive
Coding Network. Since the length belief is not constrained by sensory observa-
tions directly but is free to change, we can consider it as a parameter of the
network. Changing such parameters – i.e., learning – before the network has set-
tled to a steady configuration where all prediction errors have been minimized
leads to some issues in the optimization because the distributions which the pre-
dictions are sampled from constantly change. For this reason, whenever a new
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pair of input and output is presented to the network, learning is allowed after
the inference has stabilized [14,24].

Fig. 6. Sequence of frames for the reaching task with adaptable limb lengths. Real and
estimated arms are represented in blue and cyan, respectively. The beliefs over limb
lengths are initialized to a wrong value. (Color figure online)

Similarly, the abnormal behavior for online motor learning can be avoided if
we alternate between: (i) perceptual phases where, as before, the length likeli-
hood is minimized without imposing any bias over the extrinsic dynamics; and
(ii) action phases where the length belief is kept fixed but the extrinsic attractor
results in the end effector moving toward the target. As shown in Fig. 6, in this
case the agent is able to reach the target while correctly inferring the length of
all segments. During the first phase, it tries to match the estimated kinematic
chain to the real one; during the second phase, it imposes a false belief in the
end effector dynamics, ultimately driving the arm movement. More specifically,
Fig. 7, representing the dynamics of the task with action-perception cycles, shows
that the 1st-order extrinsic belief, the visual prediction error, and the kinematic
prediction error all approach zero. Crucially, after an initial overestimate of the
end effector’s length, the correct value is gradually found at the end of the trial.

The oscillating behavior of the end effector in Fig. 6 is due to the number
of time steps of the action-perception cycles. As shown in Fig. 8, increasing this
value results in decreased time needed to reach the target but less stable behav-
ior. To the extreme, a very low frequency has the consequence of splitting the
task into a pure perceptual phase and a pure reaching motion, resulting in the
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Fig. 7. Evolution of length and extrinsic beliefs with action-perception cycles.

most stable behavior but at the expense of the highest time needed and being
unable to react rapidly if environmental changes are introduced in the middle
of the trial. On the other hand, if the cycle window decreases the end effec-
tor presents less oscillations but at the cost of increased overall time. However,
beyond a certain limit, the agent fails again to infer the correct length and hence
reach the target. There is thus a tradeoff between stable behavior, time efficiency,
and flexibility. For comparison, we also performed a simulation without action-
perception cycles: in this case, the agent is not able to reach the target in almost
none of the trials. Note however that the oscillating behavior could be avoided
by keeping a steady motor command depending on the proprioceptive error of
the previous phase.

5 Discussion

Rhythmic oscillations are found throughout all cortical areas. From an Active
Inference perspective, action-perception cycles emerge from the modulation of
the precisions of prediction errors: specifically, attention has been associated with
the estimation of high-level beliefs depending on the evidence accumulated, while
salience is related to the uncertainty minimization process that decides what
sensory data to sample next [2]. Here, we proposed that this mechanism may
be key to the correct estimation and learning of the latent states when goal-
directed actions are involved. This finding is in line with the hypothesis that



68 M. Priorelli and I. P. Stoianov

Fig. 8. Performance of the motor learning task as a function of cycle frequency pre-
sented in terms of accuracy (left), defined as the percentage of trials where the agent
reaches the target, and movement time in successful trials (right), defined as the num-
ber of time steps needed to reach the target. In the control “w/o” condition, inference
is not separated in action-perception cycles.

theta rhythms exist to resolve potential conflicts between high and low levels of
the hierarchy [5].

As explained in the previous section, in a hierarchical model with multiple
inputs and multiple outputs prediction errors can concurrently flow into sev-
eral pathways. When performing state estimation and action at the same time,
the agent might get stuck in local minima during the process of free energy
minimization whenever particular priors are imposed in the belief dynamics to
realize goal-directed movements. In Predictive Coding Networks, phases of infer-
ence where the network settles to stable values and prediction errors are totally
minimized follows a learning phase where the network’s parameters are updated
with the new state values – in an analogous way to the optimization steps of
an EM algorithm [4]. Similarly, we showed that a correct behavior for an online
motor learning task is obtained by splitting it into separate cycles of perception
and action. In the most extreme scenario, a pure perceptual phase is followed
by a pure reaching phase, leading to the best reaching behavior. However, this
condition does not allow the agent to react to environmental changes, e.g., if one
has to rapidly modify its kinematic chain in order to grab a tool. Interestingly,
cycles with too-high frequencies need even more time to complete the task than
the previous case, and good performances that can also account for dynamic
flexibility are obtained somewhat in between the two conditions.

The action-perception cycles are performed by modulating high- and low-
level precisions. In particular, perceptual phases are realized by increasing high-
level precisions and decreasing the ones of the belief dynamics where the attrac-
tors are defined - although it has been hypothesized that such phases may arise
from switching off the proprioceptive input through sensory attenuation [8]. This
has the effect that the network can stabilize to the correct state inferred through
the observations, before the beliefs are left free to change by the biased internal
dynamics while keeping fixed parameters. This mechanism may generalize to all
cases where goal-directed dynamics is embedded into the dynamics function of
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a hierarchical structure, as we showed with a model that had to concurrently
estimate the depth of an object and fixate it through the perspective projections
from each eye [20]. In the latter approach, some interesting parallelisms arise
with higher-level processes that cycle between saccades and evidence sampling.

We also propose that this online motor learning might be critical not only
when considering the most intuitive conditions, i.e., when an organism grows or
abruptly loses a limb, but also in voluntary actions where one has to use external
tools to solve a specific task. Although not implemented here, the model pre-
sented can easily address this scenario since it is possible to extend the length
of the last level (i.e., the end effector) without changing the overall structure.
The beliefs would be updated according to the new sensory evidence (e.g., visual
observations of the tool) through local message passing of prediction errors. A
hierarchical model might also explain how patients with implanted devices can
adapt their motor cortex so as to represent the new arm attached: in this sce-
nario, a joint would be added to a particular location of the kinematic hierarchy
allowing a new Degree of Freedom to the patient. How this is possible through
self-modeling of the agent’s representation of its kinematic chain would be an
interesting direction of research. Finally, future studies will be done to simulate
tasks requiring tool use: in particular, an agent might be required to solve a
multi-step task involving reaching a tool, grabbing it, and finally reaching an
object with its extremity.
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Abstract. Here we review recent work attempting to combine the first principles
formalism of the Free Energy Principle and Active Inference (FEP-AI) framework
with a recently proposed integrative model that attempts to ground personality as
control variables for goal-seeking systems: Cybernetic Big 5 Theory (CB5T).
First we summarize core aspects of this synthesis, then introduce some novel
(and speculative) hypotheses, and then finally consider future implications for
personality modeling with FEP-AI and CB5T.
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1 Introduction

As AI models continue to gain sophistication, we find ourselves with both new oppor-
tunities and challenges. In terms of benefits, we have the potential for AIs to act as tools
for understanding (e.g. computational psychiatry), helpers (e.g. industrial applications
and labor augmentation), and perhaps even companions (e.g. elder care). With respect
to risks, we have the possibility of these systems to learn unexpected behavior patterns
that could have potentially undesirable consequences. In what follows, we briefly review
some recent work on personality modeling [1], which we believe could have far reaching
consequences for our abilities to realize positive outcomes with respect to a future where
AI becomes an increasingly central part of our lives.

Personality can be thought of as a “phenomenological” description of the most rele-
vant features for explaining overall behavior and cognition. In dynamic systems terms,
we may think of this as a “normal form” description, that attempts to capture the maxi-
mal amount of detail of a particular system with minimal description lengths [2]. In the
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realm of psychology, personality can be considered as the ‘essence’ of individuality, in
terms of describing more enduring features that are stable across circumstances. With
Cybernetic Big 5 Theory (CB5T) [3], DeYoung proposes that personality is constituted
by both “characteristic adaptations” (i.e., policies people learn for responding to dif-
ferent classes of situations) as well as the well-known (evolutionarily selected) traits
such as Openness, Extraversion, Agreeableness, Conscientiousness, and Neuroticism.
CB5T further argues that these traits are best understood in the context of modeling
individuals in cybernetic terms, or as goal-seeking systems that are governed by various
forms of feedback processes. This kind of functional understanding of persons and other
complex adaptive systems suggests potentially fruitful intersections with computational
frameworks, which is the issue we turn towards next.

2 FEP-AI

The Free Energy Principle (FEP) understands all persisting systems as entailing pre-
dictive (generative) models of the conditions under which they maintain their particular
forms through intelligent actions. The processes enacted by generative models of per-
sons come in many varieties, ranging from unconscious habits, to emotionally charged
reactive dispositions, to declarative knowledge and self-organization via autobiographi-
cal narratives [4, 5]. To the extent that persons have identifiable traits and characteristic
adaptations (i.e., personalities), these would represent enduring parameter values for
the generative models governing dynamics, where this stability could be due to being
genetically specified, epigenetically canalized [6], or as stable (to degrees) emergent
equilibria. Different personality configurations would correspond to different models by
which persons attempt to achieve their goals, including the primary goal of preserving
essential features at the core of identity.

It isworth emphasizing the extremely broad scope of theFEP,which is as far-reaching
as the purview of generalized Darwinism, with which it may be fully isomorphic [7].
Not only do nervous systems entail predictive models, but so do entire populations of
organisms and their extended phenotypes as (previously selected, teleonomical) ‘predic-
tions’ with respect to evolutionary fitness. By this account, nervous systems are merely
a (very) special case of generative modelling, where not only is it the case that such sys-
tems are models in their very existence, but where such systems also have models that
function as cybernetic controllers [8–10]. In these ways, active inference provides a for-
malism in which all persisting dynamical systems can be understood as (self-)generative
models, grounded in first principles regarding the necessary preconditions for continued
existence in a world governed by the 2nd law.

This universal Bayesian/Darwinian account extends all the way down to neuronal
oscillations [11], to habitual reactions [12, 13], and all the way up to narrative selves as
stories that achieve degrees of truth with the telling-doing-enacting [5, 14, 15], including
with respect to shared narratives by which we more effectively collaborate with each
other in pursuing valued goals [16, 17]. Within active inference, all characteristics of
persons are selected—in the sense of both generalized Darwinism [18] and Bayesian
model selection [19]—according to their relative abilities to minimize their respective
free energies, which is suggested to be equivalent to maximizing self-model-evidence.
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Specifically, each characteristic of the person represents its own replicative dynamic
that teleonomically ‘attempts’ to maximize model evidence for itself [20, 21]. From
this perspective, personalities represent relatively stable evolutionary game theoretic
equilibria among competing and cooperating quasi-species [22–25].

Work within the FEP paradigm has yielded a normative model of behavior in Active
Inference (AI) to describe the processes by which free energy is minimized [26]. Further,
advances in deep reinforcement learning appear to be converging on the kinds of solu-
tions that are predicted to be necessary for (bounded) optimality in the FEP and Active
Inference (FEP-AI) framework [27, 28]. The notion of active inference rests on the insight
that perception takes place within the context of adaptively shaping actions, which alter
patterns of likely perceptions. Rather than being the result of passive sensations, per-
ception is an active process of foraging for information and resolving model uncertainty
[29–31], often driven by discrete actions as a kind of hypothesis testing [32–35]. Both
perception and action are understood as kinds of inferences in the FEP-AI framework, in
that they both represent means by which systems can engage in comparing predictions
against sensations. One way systems can reduce prediction-error is by updating internal
models, thus changing predictions; in this way, perception is understood as a kind of
best-guess inference as to the causes of sensations. However, another way systems can
reduce prediction-error is by updating the world through action, and thus making its
predictions more accurate by changing likely perceptions; in this way, active inference
represents a means by which not just perception, but also adaptive goal-oriented behav-
ior can be realized via prediction-error minimization. The degree to which dynamics
are governed by these two strategies—of updating of states either internal or external to
the system—is determined (by gradient descent) according to whichever combination is
expected to minimize overall free energy (i.e., cumulative precision-weighted prediction
error) (Fig. 1). As we will describe in greater detail below, this foundational (intertwined
and synergistic) duality between perceiving and acting may also have implications for
understanding fundamental aspects of personality as well (Fig. 2).

Within the FEP-AI framework, all cybernetic systems necessarily minimize free
energy for their generativemodels.However, in order to effectively achieve this objective,
adaptive goal-seeking systems (such as organisms) select actions anticipated to result
in free energy minimizing consequences in the future. Under this regime of expected
free energy, model accuracy becomes expected utility, or opportunities for realizing the
extrinsic value of ensuring preferred outcomes. Further, model complexity becomes the
ambiguity and risk associated with pursuing particular courses of action, or opportuni-
ties for realizing the intrinsic value of reducing uncertainty via learning. Optimizing for
extrinsic value involves minimizing discrepancies between preferred system-world con-
figurations and observations, which entails pragmatically exploiting particular policies
(i.e., sets of state-action mappings for goal realization, broadly construed to include the
covert behavior of cognition). Optimizing for intrinsic value involves model refinement
through seeking out sources of uncertainty as opportunities for maximizing informa-
tion gain, so allowing for epistemic exploration of hypothesis spaces regarding adaptive
actions. These two sources of value relate to exploitation/exploration tradeoffs, which
in this case are navigated [36] by selecting policies based on whatever combination of
actions is estimated to most effectively minimize overall expected free energy. If these
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Fig. 1. Perception and action as active inference.

Fig. 2. Internal attunement and external attunement as active inference.

actions occur in the context of a novel task environment about which little is known,
then policy selection in FEP-AI will tend to primarily involve the exploration of opti-
mizing for information gain, followed by a shift to more exploitative behavior as the
task structure becomes sufficiently clear to afford informed actions. However, if actions
fail to be as successful as anticipated, then this will tend to result in shifting back to
exploratory behavior until a better “grip” on the situation can be acquired [37, 38]. In
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this way, given well-calibrated prior expectations, agents governed by FEP-AI will tend
to exhibit flexibly balanced levels of curiosity as they engage in goal-oriented behavior.

These dual strategies for minimizing expected free energy mean that cybernetic
systems governed by FEP-AI may decide to forego pursuing a goal in favor of model
refinement, if the latter will lead to a bigger reduction in prediction error [39]. This may
be a surprising implication of these models, as certainly evolutionary fitness depends
more on achieving goals that on enhancing the accuracy of perceptual maps. Refining
internal models will be preferred over achieving valued goals through action only to
the extent that this choice serves the more fundamental goal of promoting continued
existence and effective goal pursuit over time [20]. Indeed, evolved cybernetic systems
will tend to prioritize stable goal pursuit and homeostasis as a pre-requisite for existence,
with “interoceptive inference” providing a potentially useful case example, in terms of
those modeling efforts tending to center on the avoidance of excessive risk with respect
to the preconditions for basic life management [40]. FEP-AI tries to address this priori-
tization in that we should expect “adaptive priors” to make it such that all predictions are
ultimately chained to evolutionary fitness [41], such that we would expect from systems
selected to minimize free energy with respect to maintaining the preconditions for their
existence.

3 CB5T and Cybernetic Control Variables; Focus on Stability
and Plasticity

Parallels between FEP-AI and models of personality have recently been explored by
Safron and DeYoung [1] with respect to Cybernetic Big 5 Theory (CB5T) [3]. In brief,
CB5T contextualizes the Big 5 trait hierarchy as reflecting evolved control parameters
for systems that attempt to minimize entropy with respect to the goals by which they
preserve themselves. This is highly compatible with FEP-AI. Intriguingly, above the
Big 5 in the trait hierarchy, two higher-order factors have been identified as Stability
(shared variance of Conscientiousness, Agreeableness, and (inverse) Neuroticism) and
Plasticity (shared variance of Openness and Extraversion). One may be tempted to map
onto FEP-AI’s dual optimization for extrinsic/pragmatic and intrinsic/epistemic value,
respectively. However, this potential functional mapping should not be overstated, since
a cybernetic interpretation of Extraversion as indicating “reward sensitivity” could be
applied to situations where either pragmatic or epistemic value are at play, depending on
what a particular individual finds rewarding (e.g. persons with high or low trait Openness
as appreciating intrinsic value to respectively greater or lesser degrees). The dynamic
tension between Stability and Plasticity has been observed in countless systems, with
intriguing recent work suggesting that a major dimension of cultural variation may exist
in the degree of “tight” or “loose” attitudes with respect to norms (i.e., relative degrees
of precision on prediction-errors that would release policies for realizing deontic value)
[42, 43]. An integration (and convergent support) between active inference and a pre-
dominant model of personality has important implications for computational psychiatry
[2], and variations in the Big 5 trait hierarchy have recently been shown to converge with
principled taxonomies of psychopathology (e.g. HiTOP) [44] (Figs. 3 and 4).
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Fig. 3. Stability and Plasticity in personality theory.

Fig. 4. Stability and Plasticity as the respective protection and updating of policies for enaction.

Interpretations of biophysical processes in terms of parameter settings for FEP-AI
may help to provide substantial convergent support for CB5T, as well as an additional
means of interpreting similar phenomena. For example, differing levels of dopaminer-
gic function appear to have major impacts on personality with respect to Extraversion
and probably also Openness/Intellect [45], and has been interpreted as indicating ten-
dencies towards exploration (or Plasticity) in CB5T. In FEP-AI, tonic dopaminergic
function is associated with precision (an inverse temperature parameter) over policies,
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indicating certainty (subjectively, confidence) and more deterministic action selection;
phasic dopamine, however, indicates changing estimates with respect to expected free
energy and updating of likelihoods for selecting different policies for enaction, as in
reward prediction errors [46–49], including overt behavior as well as cognitive ‘acts’
[50]. That is, nervous systems tuned to exhibit high dopaminergic signaling may more
readily deploy mental acts such as discrete attentional shifts and more extended simu-
lated plans, potentially contributing to more exploratory and flexible cognitive styles.
While utilizing distinct conceptual frames, this account of dopamine in FEP-AI has
strong correspondences with CB5T’s interpretation of dopamine as a “neuromodulator
of exploration” (DeYoung, 2013) and contributor to personality Plasticity. Further, FEP-
AI’s interpretation of changes in phasic dopamine as updating likelihoods for policy
deployment has clear parallels with CB5Ts interpretations of Plasticity as a capacity for
updating strategies for goal attainment when confronted with obstacles and associated
psychological entropy [51, 52].

While CB5T and FEP-AI both associate dopaminewith potentiallymore exploratory
behavioral and cognitive styles—and possiblymore extraverted and open personalities—
they also emphasize the context-sensitivity of functional consequences from varying pat-
terns of neuromodulation. In both frameworks, overly simple exploration/exploitation
distinctions are problematized based on the fact that action selection is governed by
control hierarchies with multiple (potentially nested) goals unfolding over varying
timescales (DeYoung, 2015; Pezullo, Rigoli, Friston, 2018). For example, a person with
highly confident beliefs regarding goal realization may choose to exploit a particular
opportunity, or they may venture out into the unknown and explore new territories if
they predict that course of action could realize even greater value.

The relative positioning of goals and related representations within overall hierar-
chies in many ways speaks to the core of what we tend to mean by ‘personality.’ That
is, we might expect hierarchically higher (or deeper) representations to be somewhat
shielded from disruption by particular events on account of their being more opportuni-
ties (or multiple realizability) for minimizing prediction error via hierarchically lower
patterns. This would be consistent with the ways in which systems distal from primary
modalities have both close connections with neuromodulatory value signals, which tend
to be most responsive to overall surprisal from relatively abstract action-outcome associ-
ations (e.g. attainment of particular goals from specific patterns of enaction). If person-
ality is understood as a way of summarizing the most impactful and enduring features
of a goal-seeking system, then perhaps we should not be too surprised to observe that
personalities are often most powerfully impacted by disruption to hierarchically higher
(or deeper) systems such as the ventral prefrontal cortex (c.f. pseudopsychopathy phe-
nomena and the case of Phineas Gage (who became “no longer Gage” after a steel rod
blasted through his head during a railroad construction accident) [53].

The hierarchical organization of goals is crucially important for multiple reasons.
Firstly, the world as a whole tends to have hierarchical structure with smaller (more
quickly evolving) things tending to be nestedwithin larger (more slowly evolving) things.
As such, there could be advantages for reactive dispositions to entities/events at these
different scales having a similar kind of organization (cf. optimization via local gradients,
locality-sensitive hashing, etc.). The attainment of complex goals via extended sequences
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necessarily requires larger (and likely more slowly evolving) zones of integration, with
coherent orchestration among the various sub-goals required to achieve the broader aims
to which they might contribute (or hinder) [54]. Conscientiousness is the personality
trait most associated with the coherent management of goal hierarchies, and seems
to only be reliably identifiable in animals with more complex nervous systems [55].
Speculatively, the nature of Conscientiousness (as a feature of cybernetic systems) may
provide conceptual linkage between consciousness as knowledge and the character virtue
of conscience as wise/integrated self-knowing and self-governance [56–58]. That is,
the common etymological roots of these words may also point to their overlapping
functions and potential inter-dependencies during the processes by which personhood
is bootstrapped in sophisticated cognitive systems, like us [59].

While the functional significances of the brain’s serotonin systems have not been
thoroughly explored within FEP-AI, compelling parallels can nonetheless be identified.
Within CB5T, moderate levels of serotonergic signaling would tend to correspond to
Stability, or the protection of pre-existing strategies from disruption. These functions
may have been conserved throughout evolution, as can be observed both in the locomo-
tory modes ofC. elegans, and even the foraging consequences of single celled organisms
reducing directed motion upon encountering and consuming nutrient-rich meal (tryp-
tophan → serotonin) [60, 61]. In this way, serotonin’s functionality as a satiety—and
potentially safety and successful sociality—promoting signal would provide a coun-
tervailing force to dopaminergic disinhibition of action, consistent with the opponent-
process dynamics that have been observed on multiple levels of organization ranging
from hypothalamic nuclei to frontal lobe attractor dynamics [62–65]. Within FEP-AI,
physiological levels of serotonin (potentially resulting in greater occupancy of 5-HT1a
relative to 5-HT2a receptors) have been associated with greater precision over intero-
ceptive states, whose (allostatic) connections to the internal milieu and life management
would be consistent with an association with Stability in CB5T. Notably with respect
to computational psychiatry (and also ethology, these are the neurotransmitter systems
agonized by SSRIs for depression and anxiety (and also dominance within social hier-
archies). However, extreme levels of serotonergic signaling have been associated with
the “relaxation” of beliefs and greater exploration in FEP-AI [66–68]. While CB5T has
previously emphasized serotonin’s potential role in modulating Stability, potential roles
of this system for enhancing Plasticity is a promising direction for future research.

There is increasing interest in the effects of stimulating serotonergic 5-HT2a recep-
tors for providing means for “how to change your mind” [69], and for achieving “altered
traits via altered states” [70]. Compounds that act on these pathways have been described
with various forms of suggestive terminology including psychedelics (“mind manifest-
ing” and “higher states of consciousness”), hallucinogens (perception as inference)„
entheogens (self-actualization and transpersonal psychology and spirituality), and even
“entactogens” for non-classic psychedelics (healing from trauma and repairing exces-
sively jagged/ruptured—and so non-navigable—free energy landscapes) [71]. Openness
is the trait most commonly associated with potential change under psychedelic psy-
chotherapy [72–74], but little work has examined the Big 5 aspects (where substantial
effect sizes are most likely to be observed) [75, 76], nor what kinds of personality change
could be possible with targeted interventions. With respect to specific mechanisms, it is
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notable that 5-HT2a receptors appear to be particularly concentrated on deep association
cortices [77], which would be consistent with our suggestion that hierarchically-higher
representations may be particularly relevant for stabilizing personality. The possibility
for changing persons by changing the function of upper levels of cortical hierarchies
has been compellingly described in terms of “hub collapse” and disrupted personhood
with psychedelics and meditative states [78–82], the cybernetic properties of bowtie
architectures allowing for an “allostatic overload” mechanisms for flexibly adjusting
functional depth [54], as well as in terms of predictive processing and other machine
learning principles [66, 67, 83, 84].

4 A Hypothesis on Personality Aspects and Social Power

The discovery of two (and only two) aspects underneath each of the Big 5 trait domains
could potentially be partially explainable in terms of a fundamental axis of variation
in active inference: that is, the degree to which prediction-error is minimized via either
perception (i.e., updating internal models) or action (i.e., updating system-world states).
This may lead to new testable hypotheses regarding the bio-computational processes
contributing to personality variation. Could personalities be influenced by general ten-
dencies with respect to adjusting the relative gain on predictions (including actions) or
prediction-errors (i.e., sensory observations) in different inferential control hierarchies?

For example, increased gain on interoceptive precision has been associated with
social power [85], potentially corresponding to more opportunities for inwardly focused
attention (due to not having to constantly attend outwards in order to monitor environ-
mental contingencies). If prediction errors are allowed to ascend to hierarchically higher
(anterior) levels of the insula, then somatic information may be more likely to be accom-
panied by conscious access, and potentially the disinhibition of action (via coupling with
frontoparietal control hierarchies over the predictive enactment of sequences of propri-
oceptive poses). Any neuromodulator or hormonal factor that agonizes the mesolimbic
dopamine system may further contribute to the likelihood of connecting interoceptive
percepts with actions, both via lowering disinhibition thresholds in the striatum and
increasing coupling between relevant networks [86]. In terms of both phenomenol-
ogy and functional significances, this may correspond to the experience of willing and
empowerment through the exercising of agency [15, 87, 88].

Given the fact that sex/gender roles have evolved (on phylogenetic, cultural, and
ontogenetic levels) in conjunction with power (or dominance) differentials, this could
potentially help to explain the especially large effects observed with respect to male-
female differences at the aspect level [76]. Similar differences could potentially be
observed with respect to other social power differentials, such as race or class, and
across all cases, may help to explain differences in either internalizing or externalizing in
psychopathology, with the former beingmore likely to result in autonomic dysregulation
as observed with respect to cardiac and gastrointestinal dysfunction [89, 90], but with
the latter being more likely to result in accident proneness—or daring/improbable, but
potentially great and heroic accomplishments [91, 92]. However, given the potentially
rapid pace of cultural evolution, we might not expect empirical correlations between
aspect-level personality traits and gender/race/class to be constant over time either across
or within individuals [93–95].
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5 Psychological Integration, Mindfulness, and Wellbeing

FEP-AI and CB5T both emphasize the importance of hierarchical organization for
achieving complex goals. However, the stable pursuit of complex/distal objectives may
depend on the integrity of hierarchical active inference [96]. This may further require
the ability to down-regulate (predominantly interoceptive) prediction errors (i.e., emo-
tionally self-regulate), so allowing for flexibility in prioritizing policies and not have
the integrity of goal hierarchies be disrupted by proximal setbacks [55]. This flexible
balancing of priorities could have transdiagnostic relevance [97, 98], theoretically pro-
moting the formation of a kind of reflective equilibrium where goal-hierarchies become
more elegant/realizable. Over time, this balanced adjustment and personal evolution
could even help contribute to the kinds of integration and individuation discussed by
self-actualization psychologists [3]. While the precise nature of mindfulness remains
unclear in personality psychology [99], this state (and possibly a trait) may correspond
to one of the most effective means of engaging in the kind of emotional self-regulation
required for inter-temporally coherent active inference [24, 100]. Without this skill at
internal navigation, we might expect excessive responses to prediction-errors, which
may result in elevated Neuroticism when considered at the level of personality traits.

In theory, the difficulty of cultivating the kinds of cognitive (and affective) flexibil-
ity associated with mindfulness could potentially account for the failure to consistently
observe a general factor of personality (GFP) [101–104]. For example, part of the reason
that a GFP may not be reliably observed could be due to opposing relations between
Stability and Plasticity. However, similarly to the relationship between epistemic and
pragmatic value in active inference, synergy between these objectives ought to be pos-
sible (and is normatively required). Mindfulness may allow people to more readily (and
flexibly achieve this dynamic balance, potentially even allowing individuals to more
robustly occupy an “edge of chaos” regime where Stability and Plasticity positively
interact/correlate. Even more, mindfulness could promote greater control through meta-
awareness [105], so allowing one to bemore effective in occupying inter-regimeswithout
falling into one attractor or another. From this cybernetic view, mindfulness could be
thought of as adaptively/flexibly stretching the region of phase space where adaptively
balanced dynamics are possible [106].

Theoretically, systems that succeed in approaching this optimality frontier may
exhibit the hallmarks of self-organized criticality [107]. The dynamic balance between
order and chaos is characteristic of governance by critical-point attractors, an essential
property for adaptive systems [108], and a promising avenue for research. Relationships
may potentially be observable between personality variables and putative metrics of
criticality in neural measures such as network flexibility [109], critical slowing [107],
fractal dimension [110], and power-law distributions [111]. These criticality measures
may exhibit positive correlations with Plasticity as reflecting a general potential for
adaptive reorganization. [Relationships between criticality and Stability may be best
accounted for by an inverted-U function (after controlling for Plasticity).] Correlations
between these criticalitymeasures, personality, and effectivelyminimizing free energy—
as indexed by learning ability or positive affect [112–115]—could provide compelling
evidence that “edge of chaos” dynamics may allow for optimality to be achieved across
multiple regimes, including persons [98, 116] (Figs. 5 and 6).
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Fig. 5. Dynamic balance of Stability and Plasticity as cybernetic universality class.

Fig. 6. Dynamic balancing of Stability and Plasticity and enhanced adaptivity via (cohesive)
psychological flexibility.

6 Conclusions

In reviewing points of intersection between FEP-AI and CB5T, our intention was to
provide a general sense for what might be possible for personality modeling. For more
details, we refer interested readers to a recent book chapter on this topic [1]. The potential
intersections of personality science with FEP-AI is a complex and deep topic, and as
such we consider the preceding discussion to be more of a suggestion of potentially
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helpful directions for future work, rather than a definitive statement of canonical cross-
mappings. More specifically, we believe it could be useful to investigate the following
hypotheses:

• The meta-traits of Stability and Personality can be fruitfully applied to cybernetic
systems at all scales.

• These meta-traits may have useful functional mappings with neuromodulators
(understood as kinds of machine learning parameters) such as dopamine and
serotonin.

• The identification of two aspects beneath each of the big 5 trait domains suggests
potentially functionally significant opponent processes (or opposing modes of policy
selection with respect to coherent organismic/agentic life histories).

• There may be fruitful correspondences between personality aspects and tendencies
towards minimizing free energy via updating either internal models or external world
states via respective perception or overt enaction.

• Understanding self-actualization may help to illuminate the question of what tends to
be ‘predicted’ overall by systems such as us, with implications for both (multi-level)
evolutionary theory and the psychology of wellbeing.

• Computational frameworks such as FEP-AI may be useful for explaining some of
the cybernetic significances of major personality traits and their neurophysiologi-
cal and behavioral correlates; e.g. neuroticism as sensitivity to overall cybernetic
entropy, with centralized control structures such as the anterior cingulate and amyg-
dala potentially acting as expected free energy integrators, and also potential sources
of intervention for clinical condition (cf. loci for deep brain stimulation in depression).

We chose to discuss thiswork here becausewe are in the early stages of implementing
amajor research program inspired by these theories,wherewewill be demonstrating how
stable prosocial personalities (as preferences) can be made to emerge in AI agents as the
iteratively select policies and update of priors [117]. This project will initially be focused
on developing architectures and integrative simulation environments for the FEP-AI
community and personality modelers. However, we will expand this research program
over the comingyears to develop increasingly powerful (andhuman(ely)-aligned) agents.
As such being able to precisely model the personalities of these agents may eventually
be a matter of more than academic importance.
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Abstract. We introduce and motivate the concept of embedded norma-
tivity to account for the externalization of social norms in the material
environment through human social activity. We ground this notion in the
Active Inference framework, and more specifically through the derived
Skilled Intentionality framework of ecological perception and action. This
framework considers that skilled agents experience their world as a land-
scape of affordances, or opportunities for action. This landscape is inher-
ently normative, as its experience is tied to the agent’s anticipations
over its own behaviour (and therefore, indirectly, to its motivations). We
emphasize that given this framework, normativity does not exist inside or
outside the agent’s boundaries, but is brought about by its engagement
with the world. We discuss the dynamics of internalization and exter-
nalization by which agents come to project normativity onto elements of
their environment, and experience this normativity as a simple attraction
toward favoured states. Given this account, we revisit earlier descriptions
of the shared material and sociocultural niche enable the broadcasting
and integration of norms. Finally, we discuss how embedded normativity
can be brought into existence by the perception of humans, and relate
our discussion to the ontological stance of participatory realism. We hope
that our argument contributes to a variety of debates ranging from social
ontology to epistemology, but most notably those regarding the relation
between cognitive and material culture and the localization of cognition.

Keywords: Embodied cognitive science · Skilled intentionality ·
Active Inference · Cognitive niche construction · Participatory realism

1 Introduction

Cognitive science has traditionally attempted to explain human behaviour by
calling onto computational processes happening in the brain. By construction,
this approach abstracts the role of the material and sociocultural environment in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. L. Buckley et al. (Eds.): IWAI 2023, CCIS 1915, pp. 91–105, 2024.
https://doi.org/10.1007/978-3-031-47958-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47958-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-47958-8_7


92 A. Guénin–Carlut and M. Albarracin

the construction of human behaviour. Yet, interindividual coordination entails
participation in the set of (implicit or explicit) norms and rules which underlie
social activity. Basic examples could be the simple rules of the game of catch, the
use of a specific language, or the distribution of speech in a conversation. Failure
to respect those norms typically means failure to coordinate. However, the way
we understand those norms is inherently reconstructive. The correct actions in
a given context are not inherently known to us; instead, we construct them
through trial and error throughout our development. In Wittgensteinian terms,
we could claim that human social behaviour is influenced by the participation
in a collective “form of life” [53], an expression which (while never properly
defined by the philosopher) emphatically highlights the constructive aspect of
the structure underlying social activity.

We propose to account for the co-construction between encultured cognition
and the environment in which it is embedded through the way social normativity
becomes integrated and externalized within a given social and material niche,
for which we coin the term embedded normativity. This term describes forms of
normativity, i.e. the property of judging certain actions or outcomes as desir-
able or not through specific evaluative norms and values, which are embedded
within an agent’s ecological and cognitive niche - rather than following from
purely internal metabolic and cognitive processes. It is meant to highlight that
all forms of normativity ultimately constitute embedded normativity, assuming
that normativity is produced by a process of attunement in which organisms
change their structure (through learning and perception) and the structure of
the world (through action) so as to maximise coherence between their embodied
expectations about the world and their actual sensorimotor flow. In so doing,
the model of the world implicitly encoded within an agent’s activity becomes
entangled with the statistical structure of the environment from whence they
emerged (i.e., the generative process) [7], in a way that prevents the distinction
between an internal realm of decision making and an external realm which to
perceive and act upon.

The concept of embedded normativity was recently mobilized in cognitive
archaeology to defend the possibility of inferring the structure of social organi-
zations from the material traces of past societies [33,34]. The argument goes as
follows: if normativity is indeed embedded in the material and social environ-
ment one experiences, rather than in the architecture of the brain, maybe we
can reconstruct from the archaeological landscapes we investigate the norms and
values of the agents that experienced (and shaped) that landscape. We intend to
hereby present this notion in a more focused and systematic manner, exposing
its formal grounding as well as the conceptual questions it raises. In particu-
lar, we argue that embedded normativity is not present outside the perspective
of a situated agent, but precisely emerges from the multiscale integration of
social and cognitive constraints occurring through engagement with the world.
Our argument aims to inform an existing debate between artefact-first [41] to
cognition-first [50] accounts of the relation between material culture and human
cognition, by dissolving the dichotomy between the two.
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The account we propose is based on the Active Inference framework (Act-
Inf), a neurocomputational theory positing that cognition works through the
systematic prediction of expected sensorimotor states and the minimization of
prediction error [37,42]. Active Inference affords a rich conceptual model of how
humans integrate and enact cultural norms and values, as developed for example
in [38,39,44,52]. Perhaps most importantly, it emerges as a special case of the
Free Energy Principle (FEP), a mathematical framework describing how biologi-
cal systems resist disorder and maintain their existence through minimizing free
energy by constructing cognitive meaning (formally speaking, Bayesian belief
distributions) from dynamical self-organisation [14,46]. More precisely, the FEP
accounts for cognition as a process of dynamical individuation as a well-defined
system ongoing simultaneously at many nested scales of analysis [35,36,43,45] -
and not only within the brain, but wherever we can identify well-defined systems
with measurable statistical regularities.

Under the FEP, the organism’s internal states do indeed garner and encode
exploitable, action-guiding dynamics about environmental states. However, they
are established and maintained through active inference, that is, through pat-
terns of adaptive action. This suggests that cognition is not a passive process of
receiving information from the environment, but an active process of engaging
with and shaping the environment. If we take this picture seriously, meaning
emerges through the process of engagement with the world, while affording the
multi-scale integration of nested boundaries of cognitive individuation [43]. In
this light, we clarify that embedded normativity does not exist inside or outside
the brain, but rather in the statistical properties of engagement with the world
by cultural agents. This accounts provide a novel argument within the existing
debate over the localization of cognition, as well as the role of materiality in
human minds. Not only do we claim that the norms governing cognition exist
at the interface between an agent and their niche, but we also claim that those
norms are constructed through the (constrained) activity of the agent.

2 Encultured Cognition as Active Inference

The Free Energy Principle (FEP) is a theoretical framework that first emerged
as a description of the mechanics of the human brain [23], and was then extended
to describe the behavior of living systems [24,25] and more generally self-
organization in dynamical systems [26]. At its core, the FEP posits that all
cognitive agents strive to minimize their Variational Free Energy (VFE), a mea-
sure of surprise or uncertainty about their sensory inputs and motor outputs1.
This is achieved by improving their internal model of the world to better predict
sensory inputs, and by acting on the world to bring about sensory inputs that
conform to their predictions. Critically, the minimization of VFE is a mathemat-
ical consequence of the existence of a Markov Blanket, i.e. a collection of states
1 Formally, Variational Free Energy constitutes an upper bound over the surprise.

However, we do not need to focus on the specifics of the formalism in the present
article.
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which mediate the interaction between an agent and its environment2. This pro-
cess of minimizing free energy is thought to underlie perception, learning, and
action [5,37], but also the biological processes of development and evolution [40].
The FEP therefore provides a mathematical formulation of the tendency of living
systems to maintain themselves in a restricted set of states while embedded in
a fluctuating, partially observed environment, and this at multiple nested scales
of analysis [35,45]. Although the references discussed here may look esoteric,
and that their accessibility is comprised by the shift in the meaning of key con-
cepts over time, we may redirect the reader toward accessible discussion of the
underlying theory in its latest articulation [42].

In the context of the human brain, the FEP motivates Active Inference [27],
a mechanical theory of the dynamics of the mind drawing heavily from predic-
tive processing. The core idea of this line of research is that the brain produces
predictions (or, more minimally, anticipation) of the upcoming sensory states,
and “perceives” this world of imagination. This design principle allows a straigh-
forward explanation of the uncanny computational power of the mind, its ability
to function with very limited data, the impression we have to experience a con-
tinuous environment even though our sensations are architecturally limited in
scope and features, and the prevalence of top-down neuronal connections even
in regions of the brain which are associated with sensory processing [10]. Active
Inference is particular in its two principal features: first, it postulates that the
brain optimizes its generative model of the world (i.e. its posterior belief over
the causes of its sensations) specifically by minimizing variational free energy
(which means performing approximately Bayes-optimal inference over sensory
and motor states); second, it considers that motor commands themselves consti-
tute predictions/anticipations of motor activity. In other words, action is mod-
eled as a self-fulfilling prophecy, where agents predict their own actions and then
generate evidence for these predictions through their actions. This enables the
implementation of very rich patterns of regulation in behavior agents interact
with their environment, gather information, and update their beliefs based on
new data in a nearly optimal way. This is to be contrasted with the more classi-
cal picture that the course of action is computed after perception as an explicit
series of motor command which is then enacted, which could only enable online
adaptive regulation at a prohibitive computational cost [37]. Given those con-
siderations, we consider that Active Inference is essentially correct in identifying
and formalizing the general design principles that power human cognitive archi-
tecture.

2 Technically, the mutual information between the attracting distribution of the inter-
nal states of the agent (A) and the attracting distribution of the external states of
its environment (E) become zero when conditioned on the attracting distribution of
the boundary (B), i.e. I(A;E|B) = 0. The distinction with our initial statement is
that it still allows direct causation from the environment to the agent or vice-versa,
assuming that this causation does not translate into the dependance of the attracting
distributions. We have used the shortcut above as it is largely used, more immedi-
ately intuitive, and the distinction appears nowhere in our argument. However, we
refer the reader to [1], would they want to deepen their understanding of the issue.
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In the general case, Active Inference may be considered as a process of attune-
ment between an agent and the environment it inhabits, as both (or more pre-
cisely, their statistics) become predictive of each other. This affords directly an
interpretation in terms of niche construction [16], as the agent de facto recruits
its environment in producing the statistical regularities which underlie its exis-
tence. For example, the traces the mammal leaves when foraging may leave a
path they will consequently use to assist (and to some extent perform in their
stead) the function of spatial navigation. In Active Inference terms, the tun-
nel “predicts” states that enable the continued existence of the mammal, and
conversely it provides a regular niche for the mammal to predict. A more com-
pelling example may be the act of writing to remember things, or to compute
complex calculations. Just like regular niche construction can be understood as
an extension of the phenotype, cognitive niche construction can be understood
as an extension of the mind [15]. The idea that the relevant cognitive process
may rely on external states is entirely unproblematic, as (from the perspective
of Active Inference) cognition is performed by the dynamical flow of the coupled
agent-environment system, and not by any of its subparts [43].

These considerations provide a straightforward account of encultured cogni-
tion, acknowledging that the human niche includes other humans and their cul-
tural practices. Indeed, Active Inference suggest that if humans belong to each
other’s environments, the process of trying to predict each other’s actions (and
what they would do in a situation such as ours) lead to the active construction of
shared goals and narratives in interaction with others through a process known
as “Thinking Through Other Minds” (TTOM). It affords the transmission of
cultural representations, such as the meanings of specific symbols or the content
of social norms, but also the integration of those representation in our expec-
tations and our actions, as well the participative construction of their meaning.
Critically, the content of representations or norms is not information that an
agent may rationally decide to acknowledge or ignore. The content of represen-
tations is integrated in the very flow of the expectations by which we understand
and act in the world, and therefore in the opportunity for actions we experience
[17,44,52]. What we actually do is determined not by reason or passion, but by
the flow of expectations which generates our perceptions, actions and cognitive
attitudes [11]. Of course, this is strongly coupled to (and constrained by) our
social identity [31], as well as (implicit or explicit) social norms [2]. For example,
an agent that would perceive themselves as a parent and believe that parents
care for their children would not experience a choice in whether or not to care
for their children. They would care for their children simply because they expect
themselves to do (or they would need to revise their identity as a parent, or
the belief they have about what parents do). In that context, the relevant scale
to explain the behaviour of the agent would be the shared cultural niche which
led to the development of its identity and the norms it embeds, rather than the
individual attitudes of the agent.
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3 The Skilled Intentionality Framework and Embedded
Normativity

The Skilled Intentionality Framework (SIF) is a theoretical approach that aims
to integrate the Active Inference Framework presented above with the earlier
approach of ecological psychology. Ecological psychology, unlike the early pro-
gram of cognitive science, focused on the process of direct engagement with the
world, independently from representation and higher-order “computation”. A
core notion of ecological psychology is the notion of affordance, which refers to
the possibilities for action that a given environment affords to a given agent
[30]. For example, a chair affords sitting while a lamp does not, and a lamp
affords lighting while a chair does not. Critically, while an affordance consti-
tutes a direct relationship between the structure of an organism and this of an
object, an affordance as an object of perception entails a direct invitation (or, to
use the contextually relevant terminology, solicitation) for action. Given those
consideration, the notion of skilled intentionality aims to capture the way agents
systematically maintains themselves in a metastable zone3 where they are able
to recognize the structure of their environment, and act selectively on the affor-
dances which enable them to continue this process [8]. The authors argue that
this ecological perspective is compatible with the Active Inference paradigm,
as the tendency for skilled agents to strive toward an ’optimal grip’ on their
environment can be described as a process of minimizing surprise or prediction
error, thereby maximizing predictability. In the words of the authors: “a skilled
climber is anticipating the affordances ahead; she does not just get a grip on
the next hold in climbing, say, but also anticipates that she needs to be able to
move on after that. [...] One can see again that in such a metastable state, one
is flexibly able to switch between different movement regimes and better fit to
adapt to the specific details of the environmental aspects”. Most importantly,
perhaps, Active Inference provides an explanation of how the perception of the
world as a landscape of affordances emerges: it is through a process of predictive
processing, where the brain generates and updates predictions about the causes
of sensory inputs, that the agent anticipates and engages in the perception-action
cycle [51].

This account entails a profound duality between the regimes of normativity
enacted by the agent and the very structure of its experience. Yet again bor-
rowing from [8]: “For an expert boxer the zone of optimal metastable distance
will solicit moving toward, because this zone offers a wide range of action oppor-
tunities and the possibility to flexibly switch between them in line with what
the dynamically changing environment demands or solicits”. In other words, the

3 Metastability is a concept in physics and dynamical systems theory describing states
which, while robust with regard to infinitesimal perturbations, are absorbed within
a nearby attractors states with relatively small perturbations. In neuroscience, the
term is used somewhat abusively to describe the persistence of oscillations away from
equilibrium, which is widely understood to be a critical condition for cognition (see
e.g. [47] for a recent discussion of the issue).
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skilled agent described by the SIF does not experience the states of the world as a
given set of perceptual states, on which they compute then enact plans of action
to reach their goals. Rather, the skilled agent experiences its world as a stream
of invitations for action, on which they can act seamlessly. This can be related
to the phenomenology of the state of flow described by positive psychology [19],
or to the wei wu wei (“action without action”, or “action without effort”) of
ancient Chinese philosophy [49].4 For the skilled agent, intentionality emerges as
an attuned synergy between the flow of action and sensory signal, rather than
as the intervention of an overarching driver such as the Self or the Will. In con-
sequence, the norms and values that guide behaviour reduce to the experience
of affordances and sollications made by the agent, and of their intrinsic valence.
For the most part, normativity is experienced as coming from outside, in the
realm of perceptions which elicit anticipations and actions.

To be clear, there are many nuances to be included in that statement. The
norms and value underlying behaviour are not in fact imposed from the outside.
Rather, they arise from the agent’s own predictive models, which are shaped by
both their individual history, by the cultural and social norms through which
they understand the world [15], and the concrete features of their sensory envi-
ronment. Additionally, the sensations that guide behaviour are not limited to
so-called “exteroceptive” sensation which inform us of the states of the out-
side world. They also include interoceptive and proprioceptive sensations, all of
which contribute to the generation of anticipations. The normativity embedded
in proprioception would feel like it comes from inside, given that the agent is
capable to discriminate the boundary of its self, and this process indeed grounds
the agent’s self-attribution of emotions [48]. Additionally, an agent may formu-
late an explicit plan of action and then strive to follow it, corresponding to
what is classically understood as an act of will. However, words may as well be
considered as an anchor for cognition which enables the agent to “write” their
intentions in language, or in other as an artificial space of sensations which the
agent constructs to extend its ability for recalling memories and past decisions
[9]. Therefore, they constitute a simple extension of the domain of agency as
we described it here, rather than the basis a parallel system of decision making.
Our central point remains: to the skilled agent, intentionality feels like attune-
ment between actions and sensations. We hereby propose, in line with [33,34] to
account for that phenomenon through the concept of embedded normativity.

The role that embedded normativity plays in the argument of [34] is two
fold. First, it constitutes an ontological statement that the processes underlying
agency cannot be quite pinned down to inside or outside. Indeed, the picture that
the active inference framework paints is that normativity arises not just from
the internal structure of an organism but also from the interaction between the
organism and its environment (see for example [3] for a thermodynamical view,

4 However, these states of effortless action are not always the norm or the goal, and
conscious effort in planning and decision-making processes” [27]. Rather, they repre-
sent particular modes of engagement that can emerge when an agent is highly skilled
and the conditions are right [10].
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or [6] for the classical enactive treatment of the question). Here, the domain of
normativity is extended to represent how the structure of the environment of the
organism shapes the norms enacted by the agent5. This is in line with the clas-
sical Active Inference picture of individuation, cognitive niche construction, and
enculturation, as was presented in part 2. Second, it entails an epistemological
shift from a focus on an agent’s structure and cognitive attitudes to a focus on
the constraints applying on the agent’s behaviour. Normativity is considered not
just as a property of the landscapes that agents experience but also as a prop-
erty of the agents themselves, arising from their ability to set and pursue goals.
The authors insist that human societies may participatively construct and enact
regimes of embedded normativity which “extrinsically regulating the intrinsic
metabolic and modulatory normativity of an autonomous agent, and organizing
the way human agents acquire norms”. Taken together, those notions paint a
radically counter-intuitive picture. Most people would admit that social norms
indeed exist, and that to exist they must somehow be inferred from one’s envi-
ronment. But classically, one would account for normativity as a supervenient
phenomenon, and ultimately reduce it to individual behaviour and attitudes. A
question remains: in what sense can normativity exist in a shared social and
material niche, if it can only manifest through the activity of our individual
minds?

4 Externalization and Internalization: Bringing About
Our World

The answer to that puzzle is deceptively simple. There is no problem with the
idea that normativity can act from outside while existing inside if we don’t
admit that outside versus inside constitutes a meaningful dichotomy to begin
with. In the context of Active Inference, the boundary between an agent and its
environment unambiguously constitutes the Markov Blanket. However, the FEP
describes cognition as a process of attunement through the dynamical flow of the
coupled agent-environment system, where the flow of agent’s internal dynamics
is (by construction) dual to a system of beliefs over the environment [21]. There
is no reason why the localization of a given object inside or outside an agent’s
Markov Blanket should determine whether or not it is a driver of cognition. As
discussed in [15], this notion echoes the parity principle formulated by the semi-
nal article for the Extended Mind program: “If [. . . ] a part of the world functions
as a process which, were it done in the head, we would have no hesitation in rec-
ognizing as part of the cognitive process, then that part of the world is [. . . ] part
of the cognitive process” [13]. In other words, if we accept that cognitive agents
are enactive and predictive systems, then any system outside that is recruited by
5 Note that enactive theorists would typically agree that enculturation plays a role in

the generation of normativity (see e.g. [20]. However, norms are still conceived as a
property of the organism, which may or may not be influenced from out there. The
concept of embedded normativity, on the contrary, suggests that there is normativity
acting from out there.
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a cognitive agent to guide its behaviour can be considered part of the cognitive
process. Indeed, acting on the environment is a normal way to reduce prediction
error under Active Inference, and this include the construction of an adequate
ecological niche which enacts biological functions for the agent [16]. Perhaps
more problematically for the proponents of a strong role of localization in decid-
ing whether a given system produces cognition, we should outline that there exist
no definitive separation between well-individuated domains of “inside” and “out-
side”. Indeed defining a partition between agent and environment only requires
that the statistics of both subsystem be independent of each other, given those
of the boundary between the two (the Markov Blanket). This allows for the defi-
nition of agent boundaries at many nested scales of analysis [43]. This pattern of
multiscale integration is arguably the key driver enabling complex information
processing in cognitive agents, and it is not compatible with the view that there
exist a definitive boundary between “agent” and “non-agent”.

Rather than projecting an excessive meaning to the dichotomy between
“inside” and “outside” a given agent, we would like to focus on the processes
underlying the integration of given objects within its cognitive architecture. We
believe most researchers would agree that there is a relevant difference between
using an object to understand or manipulate its world, or try to manipulate and
understand it. In the case of tool use, this difference is straightforward: some-
one may look through binoculars or look at them, and they may use a hoe to
dig or they may try to change its handle. The difference between both cases is
not whether the object is inside or outside the Markov Blanket, it is whether
it is inside or outside the relevant Markov Blanket for the specific interaction
at play. We should outline that this distinction directly maps onto the priors
the agent (understood here at the exclusion of the tool) is equipped with, as
manifested within the regimes of attention enacted in each case. If the agent has
the adequate priors to understand the binoculars as a means to see and the hoe
as a means to dig, they will experience the related action-oriented affordances
and allocate their attention accordingly. If they don’t, they can only experience
the tools as an affordance for exploratory behaviour, which may (or may not)
cause them to discover the aforementioned priors. Critically, the possibility of
an account of cognitive integration in terms of priors enables a treatment in
terms of information theory. To borrow the terminology of [32], that cognitive
agent learn about the world by “asking questions” about the states which are of
interest to it, where the nature of the “questions” asked is dual to its Bayesian
priors (as understood under Active Inference) [22]. Therefore, the agent’s per-
ception of the world is constrained in its outcome to a specific space of possible
“answers” conditioned by the intrinsic priors defining the “question”, and the
associated regime of attention. Followingly, learning how to use a new object so
as to gather information (i.e. integrating it in the structure of priors underlying
“questions”) means constructing a new space of possible observed states. This
leads to a counter-intuitive state of affairs, where exploratory behaviour led by
the imperative of Variational Free Energy minimization leads to the construction
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of a novel semiotic interface, or a novel “world” to be enacted by the augmented
agent.

Given those considerations, we may simply consider than we experience as
outside what we ask questions about, while we experience as inside what we ask
question with. In other words, we perceive as an external reality those aspects
of the world which we interrogate, while those aspect of the world which enable
our inquiry by integrating our embodied engagement with the world become as
transparent as are our eyes and ears. [29] describes the process by which agents
construct the boundaries of what they experience as an external reality. As
agents engage with their environment and progressively master their tools, the
means through which they perceive reality become transparent. They stop being
experienced as external objects which serves to gather information, and simply
become the new mode by which we interface with the external world. In the same
process, the outcome of our perception stops being experienced as the product
of our own activity, and become objective features of the outside world. In the
words of the author, “during these successful perceptual processes, the quality of
the agent-environment interaction is transformed; the agent’s grip on a specific
aspect of the world is improved, and this allows that aspect to be grasped as a
distal object. From this point of view, the local activity is still a necessary part
of the process, but its role is fundamentally different: it no longer serves as the
input for the internal construction of a putative object, but rather becomes part
of the coupling through which the object is disclosed to experience”. We may call
this process externalization, as the author does in his discussion of previous work
on sensory substitution [4]. This word captures well how the target of perception
are objectivized and experienced as external objects. However, we wish to outline
that this process is dual to the internalization of specific priors (or regimes of
attention) which enable perception, and constrain their semiotics.

The discussion of the semiotic role of cognitive externalization and internal-
ization becomes critical when we export this framework to the perception of nor-
mativity in sociocultural landscapes. When an agent learns to navigate a given
society, they internalize the proper priors to communicate with other agents
through embodied synchronization, language and material symbolism. Mature
members of the communities therefore come to fully externalize the associated
normative load, and experience it as an objective (naturalized) feature of the
world. An early exemple of how this process enables the writing of normative
cues in the material niche is the Sierra de Barbanza described in [18]. There,
small rock edifices mark segments of the optimal travel path for travellers cross-
ing the Sierra. To an unaware traveller, those edifices would be a feature of the
environment among many, which (if they even notice those) they may choose to
investigate or not. But to the experienced travellers, those edifices simply consti-
tute direct instructions regarding the path they should follow. While the edifices
were most likely built with the explicit intent to mark the way, the fact their
efficacy as norms depends on the agent’s skill should highlight a core aspect of
our treatment. Embedded normativity does not exist inside or outside the agent,
it’s brought about by specific environmental cues which the agent experiences
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as carrying normative significance due to their integrated priors. In other words,
the internalization of the shared priors underlying engagement with a given cul-
tural niche is dual to the enaction of a specific collection of normative constraints
over behaviour, which constitute the locus of social normatvity.

5 Conclusion

This paper has explored the concept of embedded normativity, a regime of nor-
mativity where the norms and value underlying an agent’s actions are somehow
embedded into its environment. We account for this phenomenon through the
Active Inference framework, and more specifically through the derivative frame-
work of Skilled Intentionality. In this picture, agents experience their environ-
ment as a landscape of affordances, or in another words as a space of opportu-
nities for action. Because the perception of affordances elicits the expectation
of action, and therefore (under Active Inference) motivate it, the perception of
affordances constitute an inherently normative phenomenon. We highlight that,
following from this treatment, the constraints of the agent’s environment are as
meaningfully carriers of normativity as the constraint’s of the agent’s organism.

We address the main apparent limitation of the concept of embedded norma-
tivity, i.e. the apparent suggestion that norms may exist outside the domain of
cognition. In our account, agents may fluidly internalize (integrate in their own
organization) or externalize (instrument as an element of the world) specific sys-
tems. The intrinsic normativity of cognitive agents may be externalized by cre-
ating traces in the material landscape around them, for example a path marking
their most frequent itineraries. Consequently, the same agents may internalize
the normative load of those traces by “forgetting” that they are states of the
external world which happen result from their own actions as they learn to treat
them as direct instruction to modulate their own behaviour. The construction,
the integration, and the enaction of embedded normativity all require the active
participation of the agent in perceiving and acting on their material niche, as
structured by a given generative model of their environment. Assuming that
other agents share common constraints over their own generative model, which
may for example follow from past engagement with and internalization of similar
patterns, action and perception of the shared ecological niche emerges as a locus
of shared regimes of normativity.

The concept of embedded normativity becomes especially interesting when
we consider how the construction of affordances is, at least in humans, a social
activity influenced by (and constitutive of) cultural norms and values. The
shared material, social and cultural niche serves as a way to broadcast normativ-
ity through material symbols such as word and road signs, as well as through the
production of direct constraints over perception and action. In turn, the shared
niche serve to scaffold the development of complex cognition and coordination
in mature humans, and (to some extent) to externalize the cognitive load it
entails. This accounts highlights the mutually constructive relationship between
human cognition and material culture, as outlined e.g. in [12]. Our argument
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suggests that the ambiguity intrinsic in the process of cognitive externaliza-
tion enables the construction of new, previously unaccessible and unconceivable,
possibilities for cognition and social organization. In other words, the dynamics
of embedded normativity underwrite how human participatively construct the
social constraints which constitutes the structure of their societies.

In this perspective, the drive toward prediction error minimization of cultural
agents counter-intuitively leads to their active participation in the construction
of a shared reality. This produce a novel problem for embedded normativity,
namely the difficulty of account for objects or property that do not exist inside
or outside the boundaries of the agent but in the terms of the interaction itself.
Normativity constitutes a very straightforward and unconvestroversial example
of this regime of existence, which may be used to specify and formalize further the
framework. In the general case, the conception of material engagement as being
enabled by the internalization of regimes of embedded normativity entails the
much more radical view that the outcome of any observation is relative to specific
biologically grounded and enculturated modes of navigating the world. As a
means to alleviate the tensions which emerge from this view, we point toward
the more general epistemological and ontological position of participatory realism
which entails that cognitive agents (or, in other contexts, physical observers)
construct reality by their very activity of engaging with the world in order to
understand it [29,32].

More generally, we argue embedded normativity provides a rich landscape of
possibilities for future research. We could explore how this concept may be inte-
grated with preexisting theories of cognition and perception to provide a more
comprehensive understanding of human behavior and experience. For instance,
how do material landscapes constrains the development of human cognition?
Does embedded normativity enables the other cognitive processes such as mem-
ory, attention, and decision-making? Since those process are embedded in com-
plex social interactions and cultural phenomena, can we really attribute them to
single agents? Perhaps most importantly, this line of research admits a straight-
forward application to artificial intelligence and robotics, in the treatement of
explanability through the lenses of externalization-interalization dynamics. By
integrating the scales of analysis which underlie the construction, integration,
and enaction of cultural norms, embedded normativity provide a natural oper-
ational concept for the study of social and ecological robotics across scales of
activity - in particular through the “ecosystem of intelligence” approach outlined
by the recent work of VERSES Lab [28].
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Abstract. Agential learning refers to the process of forming beliefs
regarding one’s degree of control over actions and outcomes in their
environment. We first provide an overview and evaluation of associative,
statistical, and Bayesian models of agential learning. We then argue that
the existing models have limitations in explaining the process of agen-
tial learning. Finally, we introduce an active inference account of agen-
tial learning, and present results from simulations. We propose that the
active inference framework may provide a comprehensive model of agen-
tial learning describing three fundamental processes: (i) perception, (ii)
learning, and (iii) action.

Keywords: Agency · Agential Learning · Active Inference ·
Computational Psychology

1 Introduction

An agent is someone or something that acts to control their actions and events in
the environment. Agency, then, refers to having control over one’s own actions,
and leveraging that sense to control themselves or events in the environment
[1,2]. Agential learning is the process of tracking and forming relevant beliefs [3]
regarding one’s degree of agency. Having an ongoing registration of the degree
of control agents (self and others) have over the states in their environment
facilitates individual- and group-level goal-directed behaviours [4].

Rather than a binary concept, degree of agency refers to the amount of con-
trol the agent has to generate or prevent the occurrence of the event. When
based purely on objective experience, agency can be formalised as a statisti-
cal relationship, or contingency, between the action produced by an agent and
its consequence/outcome (discrete variables), each with a dichotomous state of
being present or absent. Contingencies, and correlations, vary on a scale from
-1 to +1: a positive contingency is when an action predicts the outcome (e.g.,
pressing a button and the light being turned on), negative contingency is when
an action signals the absence of the outcome (e.g., pressing a button and the
light being turned off), and zero contingency is when the action has no relation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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to the presence or absence of the outcome (e.g. the pressing of a button does not
have an impact on the light).

One experimental task widely used to assess action-outcome contingency
learning involves an action that the participant can freely perform (a so-called
free-operant procedure [5]), such as pressing a button, and depending on the
objective contingency set by the experimenter, an outcome is present or absent,
such as a light being on or off. Subsequently, participants report the degree
of control they perceive they have on a visual analog or numeric rating scale
varying from -1 to +1. It has been well-demonstrated that perceived contingency
as reported on the rating scale is aligned with the action-outcome objective
contingency [6–12]. In this paper, we examine agential learning in the context
of a simple scenario involving a single action and single outcome, though more
complex versions could be entertained.

2 Previous Models of Agential Learning

Philosophers and then psychologists have been challenged to explain how agents
learn that one event predicts (or causes) the presence or absence of another
event [13–17]. Models that were originally used to explain cue-outcome contin-
gency learning in non-human animals have been employed to explain human
performance with some success. Several models based on associative learning
theory, statistical accounts, inferential reasoning, and Bayesian learning have
been proposed. However, none account for the complexity of learning [18–20]
as they fail to capture the relations between perception, learning, and action in
informing a sense of agency.

2.1 Associative Models

Associative models [21–25] adopt a bottom-up approach and are process-driven.
One model first applied to Pavlovian learning and then extended to explain
instrumental learning is the Rescorla-Wagner model. Based on reinforcement
principles and successfully applied to human statistical learning, the learning
rule is as follows:

ΔVn = αβ(λn − Vtotal) (1)

ΔV represents the change in associative strength of an action in that trial
(n). The learning rate parameters, α and β, represent the associability of the
action and outcome respectively, representing how fast a particular action can be
learnt. The subtraction in the parenthesis represents the prediction error, which
is the discrepancy between the expected and actual occurrence of the outcome
given an action. λ represents the absolute value of the outcome on a trial (n).
Vtotal is the total current associative prediction of all stimuli presented at that
trial, therefore it comprises V1 +V2+...+Vn. In sum, the Rescorla-Wagner model
proposes that learning involves forming associations between all actions present
in the environment, and those associations compete with one another as there
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is a limit to the amount of associative strength the outcome can support. The
agent’s knowledge regarding associations is represented as a single weight value
on each action.

Associative learning explanations of action-outcome contingency learning
suggest that agents integrate information online as each action’s associative
strength gets updated, requiring few cognitive resources and being computa-
tionally cheap. It is often described as a form of model-free associative learning.
However, because the values get updated with each trial, explaining phenom-
ena such as retrospective revaluation, which has been demonstrated in humans
[26–28], require additional assumptions.

The statistical account of action-outcome contingency learning [13,29] sug-
gests that the perceived contingency by the agent is related to an estimate of
the difference between the probability of outcome occurring given an action
and probability of outcome occurring given a lack of action. Models based on
such statistical metrics alone, however, are unable to account for learning curves
because probabilities are not affected by the amount of evidence on which they
are based [30].

The associative learning and statistical models explain agential learning as
the perception of a punctate value reflecting the action-outcome contingency,
overlooking other processes that may be involved. For example, the selection of
actions by the agent are not accounted for, except in the obvious cases where
an experimenter impels or instructs action. An agent’s action produces data
for the agent, which they use to form beliefs about their agency [31]. Indeed,
a link between probability of acting and objective contingency has been estab-
lished in free-operant tasks [32–34]. Moreover, agency may emerge from a form
of inferential reasoning [18,35,36], wherein agents not only rely on direct sensory
input and statistical metrics, but also engage in processes that involve learning
about the dynamics and causes of the latent states of the world. Bayesian models
of contingency learning provide an alternate account and address some of the
limitations of previous models [37,38].

2.2 Bayesian Associative Models

Inferring a Causal Structure
Researchers have proposed that agents may conduct Bayesian inference to infer
the causal structure of the environment [39,40]. The agent may do this by using
bottom-up sensory information (observations) to infer the causal hidden states
of their environment using an internal model of the world: a generative model
that captures the agent’s beliefs about how (potentially dynamic) latent states
of the world relate to observable sensory data.

A generative model of agential learning would comprise: (i) a prior proba-
bility distribution which represents the agent’s current beliefs about the hidden
states, and (ii) a likelihood probability distribution which captures the agent’s
knowledge of how observations (the action and outcome) are generated from hid-
den states by encoding the likelihood of observations given states. Using Bayes’
rule, one can compute a posterior probability distribution over hidden states,
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given observations. This can be interpreted as the agent’s beliefs regarding which
hidden states best explain its sensory data, i.e., beliefs regarding their degree
of agency. In the context of Bayesian cognitive neuroscience, this updating of
beliefs via Bayesian inference has been analogised to perception [41].

The discrepancy between the agent’s predictions (from the priors) and beliefs
about hidden states after receiving observations (posterior) is quantified by
Bayesian surprise, a similar metric to prediction error as in the Rescorla-Wagner
model. This is a measure of the degree to which the internal model and poste-
rior beliefs get updated to reduce future surprise, which would ensure an internal
model of the causal structure of the world to be as close to the real causal struc-
ture of the world as possible. Bayesian inference can therefore be framed as an
alternative problem of maximising marginal (log) likelihood, or, in other words,
minimising surprise.

In traditional models of contingency learning, punctate values represent all
of the agent’s knowledge. Bayesian approaches assume a different knowledge
representation in the generative model as the agent entertains a probabilistic
representation of its world, allowing a spectrum of alternative hypotheses to be
represented via their posterior beliefs. The probability distributions allow the
agent to express uncertainty, where the more spread out the beliefs are (repre-
sented by a flatter probability distribution), the greater the uncertainty. Such a
representation of knowledge allows the model to keep track of multiple combi-
nations of hypothetical beliefs, making the perceived causal structure malleable.
Therefore, when belief regarding an association is highly uncertain, observational
data has a rapid influence on changing that belief. These properties of a Bayesian
approach account for how an agent perceives an action-outcome contingency [37].

Explaining Actions
The models described so far consider the agent as a passive observer, and predict
action based on the action that is strongest associated with the outcome to
produce the most favoured outcomes [7]. However, in reality, when agents are
learning the degree of agency they have, the agent has the opportunity to explore
or manipulate the world in order to extract information. In other words, the
agent actively samples the environment, creating observations for itself to infer
and perceive (a degree of) agency and test its beliefs in order to attain the
preferred outcome state.

The representation of uncertainty in Bayesian models used to explain obser-
vational learning can be leveraged to guide active learning. Here, the agent’s
actions are explained as the agent actively engaging with the environment to
maximise expected information gain based on the generative model to reduce
uncertainty [42]. While this explains exploratory behaviour, exploitation is
explained by a separate function, based on Bayesian decision theory (or expected
utility theory), wherein a value function of states is computed, which represents
how rewarding the state is for the agent to be in. The value of the states depend
on the agent’s learning history of state-action pairs, i.e., tracking how many
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times the agent attains the outcome by conducting that action from that state.
The agent would thereby select the action that yields the outcomes it values.

However, while exploitation and exploratory behaviour can be explained by
different functions, the balance between the two often must be adjusted by intro-
ducing trade-off parameters, and different strategies have been employed accord-
ing to task constraints [43]. This calls for a universal model of active learning
instead of selecting a model from a class of models to optimally conduct the
trade-off between exploration and exploitation dependent on the context. In the
next section, we introduce an active inference model of agential learning, where
a trade-off between information gain and rewards inherently arises as perception
and action are not treated as processes optimising two different functions but
rather a single function. It is argued that the active inference framework provides
a comprehensive model of agential learning.

3 Active Inference

3.1 Perception, Action, and Learning in Active Inference

Active inference is a process theory, based on the free energy principle [44], that
provides a unified account of perception, action, and learning in agents. Active
inference extends the (variational) Bayesian inferential process described earlier
for perception to action, stemming from the notion that the agent minimises
surprise. In active inference, however, a proxy for Bayesian surprise, (variational)
free energy, is minimised [31,45]. It is argued that while Bayesian frameworks
consider surprise to be dependent on the agent’s generative model, surprise is also
dependent on observations [45]. Active inference leverages this dependence to
predict actions, wherein the agent infers the consequences of its own actions and
the hidden states of the world, to exhibit behaviour that attains its preferences
and actively reduces uncertainty in the agent’s world model [46,47].

Under active inference, action selection is not only a function of past and
present observations (as in Bayesian accounts), but also a function of prospective
forms of inference based on anticipated future observations. The agent infers the
best action sequence (policies) on the basis of future observations the actions
would engender, which is based on beliefs about likelihoods of observations given
the anticipated states in addition to the transitions of states across time as a
function of the policy. This formulation of action selection in active inference
casts action trajectories as a functional of beliefs (i.e., beliefs of beliefs, with
probability distributions) inevitably encompassing the notions of uncertainty
and preferences.

According to active inference, action selection occurs by expected free energy
(EFE) being calculated for each policy and a policy is selected according to its
negative EFE as policies that afford the lowest EFE are the most likely. EFE
can be seen as the combination of (i) the anticipated information gain afforded
by expected observations under a policy (exploration) and (ii) how well expected
observations align with preferences (exploitation). Maximising the exploration
term is equivalent to maximising the expected divergence between the expected
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posterior distribution, with and without observations expected under a policy
- maximising this leads to behaviour that actively seeks out observations that
resolve the most (posterior) uncertainty. Maximising the exploitation term is
equivalent to changing policies to produce those observations that best match the
agent’s prior beliefs about observations (i.e., its preferences), which is specified
in the agent’s generative model. Hence, active inference balances exploration and
exploitation, ensuring that an optimal agent pursues both. Often, in situations
where the agent is uncertain about hidden states that are relevant to preferred
observations, active inference agents will first perform more epistemically driven
actions to resolve uncertainty, before opting for a more pragmatic action that
maximises utility, i.e., exploit the resolved structure of the environment.

Learning occurs in active inference by updating model parameters, such as
the likelihood distributions and state transition beliefs. In the discrete state-
space models commonly used in active inference, these likelihood and transition
distributions are described as categorical distributions with matrices of parame-
ters. These distributions are often equipped with conjugate Dirichlet priors [48],
whose parameters take the form of pseudocounts or positive real numbers that
parameterise prior beliefs about the corresponding categorical parameters. The
values of these Dirichlet hyper parameters can be interpreted as pseudocounts
that are proportional to the prior probability of seeing particular state-outcome
contingencies or coincidences between states and actions over time. Learning is
thus cast as posterior inference over these Dirichlet hyperparameters [48]. Hence,
when a new observation is received by the agent, a posterior distribution over
the model parameter is acquired to be used as the prior distribution in the next
time step, equipping the agent to sequentially update beliefs about the model
parameters. A learning rate parameter can also be specified to control how much
the values in the Dirichlet distribution change after each time step, representing
how quickly the agent can get stuck in its ways during learning [48].

To summarise, when there is a mismatch between the agent’s predictions
and sensory inputs, the agent (i) updates its internal model to reduce future
surprise by updating its beliefs about the states that caused the observation,
and/or (ii) updating its beliefs about the dynamics of the world (updating model
parameters), and/or (iii) actively engages with the environment to generate and
maximise model evidence, thereby reducing future surprise. These processes of
minimising surprise respectively map onto three fundamental processes: (i) per-
ception, (ii) learning, and (iii) action.

3.2 Generative Model of Agential Learning

The Agential Learning Task
In this section, a discrete-time generative model of the classic free-operant agen-
tial learning task is presented as in Fig. 1), along with a set of simulations pre-
sented in Figs. 3 and 4). In the learning task, the agent produces an action by
pressing a button or not, and according to the objective contingency, an out-
come is present or absent. In some of our experimental conditions, the agent has
100% or 80% (positive or negative) control over the outcome, referred to as the
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deterministic and probabilistic conditions, respectively. In other conditions, the
agent has no control, i.e., the outcome is produced at random, independent of
the agent’s actions.

Generative Model of Agential Learning Task
The generative model an active inference agent is equipped with is in the form
of a Partially Observable Markov Decision Process (POMDP; [45]). POMDPs
express the generative model with a sequence of hidden states (s) that evolve over
time. The hidden states inferred by the agent in this agential learning task are
the objective contingency (positive, negative, or zero) between the self-produced
action and outcome, which is the context (or experimental condition) the agent
is in (scontextt ).

At each time step (t), the current state is conditionally dependent on the state
at the previous time step and on the actions (u; aka control states) currently
being executed. The actions are dependent on the policy (π; aka action sequence)
currently being executed. Each time step is associated with an observation (o)
that depends only on the state at that time. The observations the agent receives
are of the outcome (ooutcome

t ), wherein the outcome can be present or absent,
and the observations of the action the agent conducted (oactiont ), wherein the
agent observes that it pressed the button or not.

The hidden and control states are classified into state factors, and observa-
tions are classified into observation modalities. This means that at any given
time, observations will be evinced from each modality, and hidden states will be
inferred from each state factor, and an action (control state) is selected accord-
ingly. The s, u, and o are discrete random variables, so all model parameters are
categorical distributions too.

The agent’s generative model is equipped with model parameters denoted as
A, B, C, and D tensors that allow the agent to perform active inference. The
likelihood tensor (A), represents the beliefs of probability of some observation
given the states in the agent’s environment, P (ot|st). The top-left matrix in
A tensor panel in Fig. 2 illustrates that the agent believes the probability it
will observe the outcome being present given it is in the positive control state
and has pressed the button is 0.6. This value is not 1.0 as the agent cannot have
already learned the precise likelihood mappings as it does not know the objective
contingency in all of the possible contexts in which it could be operating, so
it conducts learning by updating the likelihood tensor regarding outcomes via
Dirichlet counts (Dir(Aoutcome),). The degree of control the agent perceives is
indicated by the posterior probability of the state.

The state transition tensor (B), represents the beliefs of the dynamics of
the environment as how hidden states and actions determine subsequent hidden
states, P (st|st−1, ut). The objective contingency does not change over a block
of trials, and we assume the agent knows this fact veridically, and thus their
generative model has an identity matrix in the left matrix presented in the B
tensor panel in Fig. 2.
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Sampling the environment occurs as a function of preferring each observation,
represented in the preference tensor (C) in Fig. 2, reducing uncertainty. There
is a slight preference for not producing an action as producing an action costs
resource. To introduce evidence variance, periods of sub-optimal action would
be intentionally conducted by the agent to create variation in the observations
and assess the agent’s generative model. The D tensor represents the agent’s
beliefs of the prior probability of being in each state, which is a flat distribution
to reflect the agent’s lack of a bias towards being in a positive, negative, or
zero-contingency state.

Simulation Results
All simulations described in this paper were conducted using the
sparse likelihoods 111 branch of pymdp, a freely available Python package for
performing active inference in discrete state spaces [49]. The code used for
the simulations described in this paper can be found here: https://github.com/
riddhipits/iwai agency oneagent.

Figures 3 and 4 illustrate the results of simulations of an agent conducting
agential learning in the deterministic and probabilistic learning task across three
experimental conditions. Panels correspond to each experimental condition: pos-
itive control, negative control, and zero control. The three sub-panels in each
panel illustrate the agent’s beliefs over time (x-axis) regarding the experimental
condition (or context), the actions it took, and the outcomes it observed. The
strength of the belief is reflected in the grayscale cells, with black cells indicating
a value of 0.0 and white cells indicating a value of 1.0. The agent had 50 trials
to learn about the degree of control.

In the deterministic (100%) agency simulation (Fig. 3), in the positive and
negative control condition, the agent quickly learned that it had full positive
and negative control, respectively; this is illustrated by the gradual transition
from black to white on the top-most sub-panels. In the first few trials, the agent
tracks (via Dirichlet counts) the outcome observation given the states it observes
(actions) and infers (context) and reflects its learning of the environment being
deterministic by updating the likelihood tensors in its generative model. Accord-
ingly, the agent then infers, with certainty that it is in the positive or negative
condition. As predicted, the agent introduces evidence variance by occasionally
acting sub-optimally to increase certainty regarding its beliefs. In the proba-
bilistic (80%) agency simulation (Fig. 4), the agent learns similarly, albeit less
quickly and with more uncertainty as illustrated with more grey cells.

In the zero-control condition, the agents in both simulations (Fig. 3 and
Fig. 4) takes longer learn that its actions have no control over the outcome.
To elaborate, in Fig. 3, during the first few trials (Box A), the agent’s actions of
pressing the button were coincidentally paired with the outcome being present,
which is why it had a higher belief of being in the negative control state. And
in the middle of the block of trials (Box B), the agents actions aligned with
what it would predict to perceive in a positive control condition, which is why
its beliefs shift towards the positive control condition until it receives evidence

https://github.com/riddhipits/iwai_agency_oneagent
https://github.com/riddhipits/iwai_agency_oneagent
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against that belief. Finally, the agent’s beliefs increase for the zero-control con-
dition. Throughout the block of trials, the agent tests its hypotheses by variably
pressing the button or not.

4 Discussion and Concluding Remarks

These simulations reveal that the active inference framework has potential to
provide a comprehensive model of agential learning tying perception, actions,
and learning processes, resulting from the minimisation of a single metric: free
energy. Previous models have treated these processes as optimising disparate
functions.

Compared to Bayesian agents, active inference agents possess a deeper repre-
sentation of the causal structure and dynamics of the environment as an active
inference agent’s generative model is equipped with beliefs about state transi-
tions across time. This is leveraged by the active inference agent as it allows
the agent to consider future states and observations based on future actions to
optimally select an action. The actions maximise evidence for the agent’s gen-
erative model of their environment by exploring the environment when uncer-
tainty is high and then exploiting the environment to attain preferred observa-
tions/outcomes, and introduce evidence variance to continually assess the agent’s
generative model.

The active inference model of agential learning may allow us to explain indi-
vidual differences in agential learning. For example, agents experiencing learned
helplessness (a key symptom of depression) may have a higher learning rate for
the zero-control state due to generalisation from trauma, resulting in them hav-
ing a bias and getting stuck when the belief of being in a zero-control state is
higher. Over time, this may result in them developing a habit of not producing
an action (due to deep temporal active inference models; see [50]), resulting in
reduced variance in sampling the environment.

The simulation results in this paper emphasise that observations of differ-
ent action-outcome combinations make a big difference to the perceived contin-
gency in a zero-control condition. This predicts that agents who produce actions
would experience more (but accidental) action-outcome-present observations and
thereby perceive an illusion of (positive) control, whereas agents who withhold
actions would perceive more no-action-outcome-present observations, resulting
in perceiving zero control. The predictions are in line with data from humans as
experimenters showed that non-depressed individuals produced more actions in
the zero-control condition, perceiving an illusion of (positive) control, and indi-
viduals experiencing depression withheld actions, perceiving a lack a control,
potentially explaining their lack of sense of agency [51].

Nonetheless, further examination of the active inference formulation of agen-
tial learning is warranted. In future research studies, we intend to: (i) conduct
statistical model comparisons between the different accounts of agential learn-
ing via model fitting to human behavioural data, (ii) examine if active inference
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Fig. 1. A graphical representation [52] of the active inference based generative model of
the agential learning task. The variables of the model are illustrated as circles and model
parameters as squares and rectangles. The arrows indicate the direction of influence.
Please see the main text for a description of the variables and parameters.

Fig. 2. The details of the model parameters of the generative model of the agential
learning task.
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Fig. 3. Simulation results for deterministic (100% control) agential learning task. The
three panels illustrate three separate simulations, one for each experimental condition:
positive control, negative control, and zero control. Within each panel of simulation
result, there are three sub-panels, where the x axis is the timestep. The black cells repre-
sent the value of 0.0 and white cells represent the value of 1.0, so the grayscale cells are
values within that range. The top sub-panel illustrates the beliefs the agent has regard-
ing the context states, the middle sub-panel illustrates the actions the agent selected
over time, and the bottom sub-panel illustrates the outcomes the agent observed over
time.
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Fig. 4. Simulation results for probabilistic (80% control) agential learning task. The
three panels illustrate three separate simulations, one for each experimental condition:
positive control, negative control, and zero control. Within each panel of simulation
result, there are three sub-panels, where the x axis is the timestep. The black cells repre-
sent the value of 0.0 and white cells represent the value of 1.0, so the grayscale cells are
values within that range. The top sub-panel illustrates the beliefs the agent has regard-
ing the context states, the middle sub-panel illustrates the actions the agent selected
over time, and the bottom sub-panel illustrates the outcomes the agent observed over
time.
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explains individual differences in agential learning across the depression spec-
trum, and (iii) explore more complex scenarios of agential learning such as one
with multiple agents and outcomes.
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Jason G. Fox1, Gabriel René1, Karl Friston1,7, and Maxwell J. D. Ramstead1,7

1 VERSES AI Research Lab, Los Angeles, CA 90016, USA
mahault.albarracin@verses.ai
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1 Introduction: Explainable AI and Active Inference

Artificial intelligence (AI) systems continue to proliferate and, at the time of
writing, have become an integral part of various intellectual and industrial
domains, including healthcare, finance, and transportation [71,86]. Traditional
AI models, such as deep learning neural networks, have been widely recognized
for their ability to achieve high performance and accuracy across various tasks
[46,66]. However, it is well known that these models almost invariably func-
tion as “black boxes,” with limited transparency and interpretability of their
decision-making processes [18,49]. This lack of explainability can lead to skepti-
cism and reluctance to adopt AI systems—and indeed, to harm, particularly in
high-stakes situations, where the consequences of a wrong decision can be severe
and harmful [11,12,26,94].

The problem of explainable AI (sometimes referred to as the “black box”
problem) is the problem of understanding and interpreting how these models
arrive at their decisions or predictions [9,10]. While researchers and users may
have knowledge of the inputs provided to the model and the corresponding out-
puts that it produces, comprehending the internal workings and decision-making
processes of AI systems can be complex and challenging. This is in no small part
because their intricate architectures and numerous interconnected layers learn
to make predictions by analyzing vast amounts of training data and adjusting
their internal parameters, without explicit instruction from a programmer [5].
The method by which these systems are trained thus, by design, limits their
explainability. Moreover, the internal computations that are performed by these
models—when they engage in decision-making—can be highly complex and non-
linear, making it difficult to extract meaningful explanations of their behavior,
or insights into their decision-making process [31]. This problem is compounded
by the fact that most machine learning implementations of AI fail to represent
or quantify their uncertainty; especially, uncertainty about the parameters and
weights that underwrite their accurate performance. This means that AI, in
general, cannot evaluate (or report) the confidence in its decisions, choices or
recommendations.

The lack of interpretability poses several challenges. Firstly, it hampers trans-
parency and makes audits by third parties next to impossible, as the designers,
users, and stakeholders of these systems may struggle to understand why a par-
ticular decision or prediction was made. This becomes problematic in critical
domains such as healthcare or finance, where the ability to explain the reason-
ing behind a decision is essential for trust, accountability, and compliance with
regulations [29,76]. Secondly, the black box nature of machine learning models
can hinder the identification and mitigation of biases or discriminatory patterns.
Without visibility into the underlying decision-making process, it becomes chal-
lenging to detect and address biases that may exist within the model’s training
data or architecture.

This opacity can lead to unfair or biased outcomes, perpetuating social
inequalities or discriminatory practices [44,79,110]. Additionally, the lack of
interpretability of the model limits its ability to provide meaningful explanations
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to end-users. Individuals interacting with machine learning systems often seek
explanations for the decisions made by these systems [61,109]. For instance, in
medical diagnosis, patients and healthcare professionals may want to understand
why a particular diagnosis or treatment recommendation was given [80,81]; or
consider automated suggestions in practical industrial settings [65]. Without
explainability, users may be hesitant to trust the system’s recommendations or
may feel apprehensive (not without good reason) about relying on the outputs
of such models.

Accordingly, the need for explainable AI has become increasingly important
[1]. “Explainable AI” refers to the development of AI systems that can provide
human-understandable explanations for their decisions and actions [48]. This
level of transparency is crucial for fostering trust [17], ensuring accountability
[97], and facilitating inclusive collaboration between humans and AI systems
[13,52,58]. Recent efforts to regulate AI may turn explainability into a require-
ment for the deployment of any AI system at scale. For instance, in the United
States, the National Institute of Standards and Technology (NIST) released its
Artificial Intelligence Risk Management Framework (RMF) in 2023 [107], which
includes explainability and interpretability as crucial characteristics of a trust-
worthy AI system. The RMF is envisioned as a guide for tech companies to
manage the risks of AI and could eventually be adopted as an industry stan-
dard. In a similar vein, US Senator Chuck Schumer has led a congressional effort
to establish US regulations on AI, with one of the key aspects being the avail-
ability of explanations for how AI arrives at its responses [27].

In the European Union, a proposed Regulation Laying Down Harmonized
Rules on Artificial Intelligence (better known as the “AI Act”) is set to increase
the transparency required for the use of so-called “high-risk” AI systems [20].
For instance, groups that deploy automated emotion recognition systems may
be obligated to inform those on whom the system is being deployed that they
are being exposed to such a system. The AI Act is expected to be finalized and
adopted in 2023, with its obligations likely to apply within three years’ time.
The Council of Europe is also in the process of developing a draft convention on
artificial intelligence, human rights, democracy, and the rule of law, which will be
the first legally binding international instrument on AI. This convention seeks to
ensure that research, development, and deployment of AI systems are consistent
with the values and interests of the EU, and that they remain compatible with
the AI Act and the proposed AI Liability Directive, which includes a risk-based
approach to AI. In addition, the US-EU Trade and Technology Council published
a joint Roadmap for Trustworthy AI and Risk Management in 2022, which aims
to advance collaborative approaches in international standards bodies related
to AI, among other objectives [101]. Therefore, explainability is clearly a major
issue in research, development, and deployment of AI systems, and will remain
so for the foreseeable future.

Explainable AI aims to bridge the gap between the complexity and lack of
auditability of contemporary AI systems and the need for human interpretabil-
ity and auditability [1,14,48]. It seeks to provide insights into the factors that
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influence AI decision-making, enabling users to understand the explicit reasoning
and other factors driving the output of AI systems. Understanding the perfor-
mance and potential biases of AI systems is crucial for their ethical and respon-
sible deployment [93,95]. This understanding, however, must extend beyond the
performance of AI systems on academic benchmarks and tasks to include a deep
understanding of what the models represent or learn, as well as the algorithms
that they instantiate [47].

Transparency considerations are embedded in the design, development, and
deployment of AI systems, from the societal problems that arise worth developing
a solution for, to the data collection stage, and still at the point where the
AI system is deployed in the real world and iteratively improved [51,52]. This
transparency may enable the implementation of other ethical AI dimensions like
interpretability, accountability, and safety [19].

Researchers have been exploring various approaches to develop more explain-
able AI systems [6,26]. However, these efforts have yet to yield a principled and
widely accepted path method for, or path to, explainability. One promising direc-
tion is to draw inspiration from research into human introspection and decision-
making processes [24]. Furthermore, a two-stage decision-making process, which
includes a reflection stage where the network reflects on its feed-forward deci-
sion, can enhance the robustness and calibration of AI systems [85]. It has been
suggested that explainability in AI systems can be further enhanced through
techniques such as layer-wise relevance propagation [7] and saliency maps [116],
which aid in visualizing the model’s reasoning process. By translating the inter-
nal models of AI systems into human-understandable explanations, we can foster
trust and collaboration between AI systems and their human users [63]. However,
as [47] argue, we must also consider the metatheoretical calculus that underpins
our understanding and use of these models. This involves not only consider-
ing the performance of the model on a task, but also the implications of the
performance of the model for our understanding of the mind and brain.

In this paper, we investigate the potential of active inference, and the free
energy principle (FEP) upon which is based [42,89], to enhance explainability in
AI systems, notably by capturing core aspects of introspective processes, hierar-
chical decision-making processes, and (cover and overt) forms of action in human
beings [54,90,91]. The FEP is a variational principle of information physics that
can be used to model the dynamics of self-organizing systems like the brain.
Active inference is an application of the FEP to model the perception-action
loops of cognitive systems: it provides us with the basis of a unified theory of the
structure and function of the brain (and indeed, of living and self-organizing sys-
tems more generally; [87,92]. Active inference allows us to model self-organizing
systems like brains as being driven by the imperative to minimize surprising
encounters with the environment; where this surprise scores how far a thing or
system deviates from its characteristic states (e.g., a fish out of water). By doing
so, the brain continually updates and refines its world model, allowing the agent
to act adaptively and in situationally appropriate ways.
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The relevance of using active inference is that the models of cognitive
dynamics—and in particular, introspection—that have been developed using its
tools can be adapted to enable the design of human interpretable and auditable
(and indeed, self-auditable) AI systems. The ethical and epistemological or epis-
temic gains that this enables are notable. The proposed active inference based AI
system architecture would enable artificial agents to access and analyze their own
internal states and decision-making processes, leading to a better understanding
of their decision-making processes, and the ability to report on themselves. Proof
of concept for this kind of “self report” is already at hand [83] and, in princi-
ple, is supported in any application of active inference. At one level, committing
to a generative model—implicit in any active inference scheme—dissolves the
explainability problem. This is because one has direct access to the beliefs and
belief-updating of the agent in question.

Indeed, this is why active inference has been so useful in neuroscience to
model and explain behavioral and neuronal responses in terms of underlying
belief states: e.g., [2,3,102,104,108]. As demonstrated in [83] it is a relatively
straightforward matter to augment generative models to self-report their belief
states. In this paper, we address a slightly more subtle aspect of explainability
that rests upon “self-access”; namely, when an agent infers its own “states of
mind”—states of mind that underwrite its sense-making and choices. Crucially,
this kind of meta-inference [34,43,98,115] may rest on exactly the representa-
tions of uncertainty (a.k.a., precision) that are absent in conventional AI.

This paper is organized as follows. We first introduce essential aspects of
active inference. We then discuss how active inference can be used to design
explainable AI systems. In particular, we propose that active inference can
be used as the basis for a novel AI architecture—based on explicit generative
models—that both endows AI systems with a greater degree of explainability and
audibility from the perspective of users and stakeholders, and allows AI systems
to track and explain their own decision-making processes in a manner under-
standable to users and stakeholders. Finally, we discuss the implications of our
findings for future research in auditable, human-interpretable AI, as well as the
potential ethical considerations of developing AI systems with the appearance
of introspective capabilities.

2 Active Inference and Introspection

2.1 A Brief Introduction to Active Inference

Active inference offers a comprehensive framework for naturalizing, explaining,
simulating, and understanding the mechanisms that underwrite decision-making,
perception, and action [21,23]. The free energy principle (FEP) is a variational
principle of information physics [89]. It has gained considerable attention and
traction since it was first introduced in the context of computational neuroscience
and biology [36,37]. Active inference denotes a family of models premised on the
FEP, which are used to understand and predict the behavior of self-organizing
systems. The tools of active inference allow us to model self-organizing systems
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as driven by the imperative to minimize surprise, which quantifies the degree
to which a given path or trajectory deviates from its inertial or characteristic
path—or its upper bound, variational free energy, which scores the difference
between its predictions and the actual sensory inputs it receives [87].

Active inference modeling work suggests that decision-making, perception,
and action involve the optimization of a world model that represents the causal
structure of the system generating outcomes of observations [89]. In particular,
active inference models the way that latent states or factors in the world cause
sensory inputs, and how those factors cause each other, thereby capturing the
essential causal structure of the measured or sensed world [59]. Minimizing sur-
prise or free energy on average and over time allows the brain to maintain a
consistent and coherent internal model of the world—one that maximizes pre-
dictive accuracy while minimizing model complexity—which, in turn, enables
agents to adapt and survive in their environments [37,38]. (Strictly speaking,
this is the other way around. In other words, agents who “survive” can always
be read as minimizing variational free energy or maximizing their marginal like-
lihood (a.k.a., model evidence). This is often called self-evidencing [55].)

Active inference has instrumental value in allowing us to model, and thereby
hopefully help to understand, core aspects of human consciousness (for a review,
see [37]). Of particular interest to us here, it enables us to model the pro-
cesses involved in introspective self-access (see [90,91]. Active inference mod-
eling deploys the construct of generative models to make sense of the dynamics
of self-organizing systems. In this context, a generative model is a joint proba-
bility density over the hidden or latent causes of observable outcomes; see [89]
for a discussion of how to interpret these models philosophically and [98] for a
gentle introduction to the technical implementation of these models.

We depict a simple generative model, apt for perceptual inference, in Fig. 1,
and a more complex generative model, apt for the selection of actions (a.k.a. pol-
icy selection) in Fig. 2. These models specify the way in which observable out-
comes are generated by (typically non-observable) states or factors in the world.

The main advantage of using generative models over current state of the art
black box approaches is interpretability and auditability. Indeed, the factors that
figure in the generative model are explicitly labeled, such that their contributions
to the operations of the model can be read directly off its structure. This lends
the generative model a degree of auditability that other approaches do not have.

2.2 Active Inference, Introspection, and Self-modeling

Active inference modeling has been deployed in the context of the scientific
study of introspection, self-modeling, and self-access, which has led to the devel-
opment of several leading theories of consciousness (for a review, see [90,100]).
Introspection, which is defined as the ability to access and evaluate one’s own
mental states, thoughts, and experiences, plays a pivotal role in self-awareness,
learning, and decision-making and is a pillar of human consciousness [69]. Self-
modeling and self-access can be defined as interconnected processes that con-
tribute to the development of self-awareness and to the capacity for introspection.
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Fig. 1. A basic generative model for precision-weighted perceptual infer-
ence. This figure depicts an elementary generative model that is capable of perform-
ing precision-weighted perceptual inference. States are depicted as circles and denoted
in lowercase: observable states or outcomes are denoted o and latent states (which
need to be inferred) are denoted s. Parameters are depicted as squares and denoted as
uppercase. The likelihood mapping A relates outcomes to the states that cause them,
whereas D harnesses our prior beliefs about states, independent of how they are sam-
pled. The precision term γ controls the precision or weighting assigned to elements of
the likelihood, and implements attention as precision-weighting. Figure from [98].

Self-modeling involves the creation of internal representations of oneself, while
self-access refers to the ability to access and engage with these representations
for self-improvement and learning [8,78]. These processes, in conjunction with
introspection, form a complex dynamic system that enriches our understanding
of consciousness and the self-and indeed, may arguably form the causal basis of
our capacity to understand ourselves and others.

Introspective self-access has been modeled using active inference by deploying
a hierarchically structured generative model [70]. The basic idea is that for a
system to report or evaluate its own inferences, it must be able to enact some
form of self-access, where some parts of the system can take the output of other
parts as their own input, for further processing. This has been discussed in
computational neuroscience under the rubric of “opacity” and “transparency”
[72–74,98]. The idea is that some cognitive processes are “transparent”: like a
(clean, transparent) window, they enable us to access some other thing (say, a
tree outside) while not themselves being perceivable. Other cognitive processes
are “opaque”: they can be assessed per se, as in introspective self-awareness (i.e.,
aware that you are looking at a tree as opposed to seeing a tree). The idea, then,
is that introspective processes make other cognitive processes accessible to the
system as such, rendering them opaque.
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Fig. 2. A generative model for policy selection. This figure depicts a more sophis-
ticated generative model that is apt for planning and the selection of actions in the
future. The basic model depicted in Fig. 1 has now been expanded to include beliefs
about the current course of action or policy (denoted π̄), as well as B, C, E, F and
G parameters. This kind of model generates a time series of states (s1, s2, etc.) and
outcomes (o1, o2, etc.). The state transition (B) parameter encodes the transition prob-
abilities between states over time, independently of the way they are sampled. B, C, E,
F and G enter into the selection of beliefs about courses of action, a.k.a. policies. The
C vector specifies preferred or expected outcomes and enters into the calculation of
variational (F) and expected (G) free energies. The E vector specifies a prior preference
for specific courses of action. Figure from [98].

In the context of self-access, the transparency and opacity of introspective
processes has been modeled using a three-level generative model [98]. The model
is depicted in Fig. 3. This model provides a framework for understanding how
we access and interpret our internal states and experiences. The first level of
the model (in blue), which implements the selection of overt actions, can be
seen as a transparent process. The second, hierarchically superordinate level (in
orange), which implements attention and covert action [74,91], represents more
opaque processes, which make processes in the first layer accessible to the sys-
tem. This layer models mental actions and shifts in attention that we may not
be consciously aware of, or able to report. The second level takes as its input
the inferences (posterior state estimations) ongoing at the first level, as data for
further inference—about the system’s inferences. Attentional processes are of
this sort: they are about cognitive processes and action, and they modulate the
activity of the first level. The third, final level (in green) implements the aware-
ness of where one’s attention is deployed. In other words, it both recognizes and
instantiates a particular attentional set via bottom-up and top-down messages
between levels, respectively. On the whole, this three-level architecture models
our self-access and introspective abilities in terms of the processes regulating
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Fig. 3. A hierarchical generative model capable of self-access. Here, the gen-
erative model depicted in Fig. 2 (in blue) has been augmented with two superordinate
hierarchical layers. In this architecture, posterior state estimates at one level are passed
onto the next level as data for further inference. Note that this induces an architecture
where the system is able to make inferences about its own inferences. Figure from [98].

transparency and opacity at a phenomenal level of description, or attentional
selection at a psychological level.

Ramstead, Albarracin et al. (2023) recently discussed how active inference
enables us to model both overt and covert action (also see [34,69,70,74,115]).
Overt actions—observable behaviors such as physical movements or verbal
responses—are directly influenced by the brain’s hierarchical organization and
can be modeled using active inference [39–41]. In contrast, covert actions refer
to internal mental processes, such as attention and imagination, which involve
the manipulation and processing of internal representations in the absence of
observable behaviors [4,15,28,32,53,57,67,82,84,112]—of the sort discussed as
“mental action” [68,69,74,98]. These actions are essential for higher cognitive
functions, which rely on the brain’s capacity to explore and manipulate abstract
concepts and relationships.

In a significant new body of work in the active inference tradition [103–
105,113,114], a hierarchical architecture of this type was deployed that was aug-
mented with the capacity to report on its emotional states. Thus, it is possible to
use active inference to design systems that can not only access their own states
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and perform inferences on their basis, but also to report on their introspective
processes in a manner that is readily understandable by human users and stake-
holders. With this formulation of how active inference enables agents to model
their overt and covert action, in the following sections, we argue that we can and
ought to research, design, and develop AI systems that mimic these introspective
processes, ultimately leading to more human-like artificial intelligence.

3 Using Active Inference to Design Self-explaining AI

We argue that incorporating the design principles of active inference into AI
systems can lead to better explainability. This is for two key reasons. The first is
that, by deploying an explicit generative model, AI systems premised on active
inference are designed explicitly such that their operations can be interpreted
and audited by a user or stakeholder that is fluent in the operation of such
models. We believe that the inherent explainability of active inference AI might
be scaled up, by deploying the kind of explicit, standardized world modelling
techniques that are being developed as open standards within the Institute of
Electrical and Electronics Engineers (IEEE) P2874 Spatial Web Working Group
[106], to formalize contextual relationships between entities and processes and
to create digital twins of environments that are able to update in real time.

The second is that, by implementing an architecture inspired by active infer-
ence models of introspection, we can build systems that are able to access—and
report on—the reasons for their decisions, and their state of mind when reaching
these decisions.

AI systems designed using active inference can incorporate the kind of hier-
archical self-access described by [98,103–105,113,114], to enhance their intro-
spection during decision-making. As discussed, in the active inference tradition,
introspection can be understood in the context of the (covert and overt) actions
that AI systems perform. Covert actions, which are internal computations and
decision-making processes that are not directly observable to users and stake-
holders, can be recorded or explained to make the system more explainable.
Overt actions, which are actions that an AI system takes based on its internal
computations, such as making a recommendation or decision, can be explained
to help users understand why the AI system acted as it did. This kind of deep
inference promotes introspection, adaptability, and responses to environmental
changes [25,99].

The proposed AI architecture includes components that continuously update
and maintain an internal model of its own states, beliefs, and goals. This capac-
ity for self-access (and implicitly self-report) enables the AI system to opti-
mize (and report on) its decision-making processes, fostering introspection (and
enhanced explainability). It incorporates metacognitive processing capabilities,
which involve the ability to monitor, control, and evaluate its own cognitive pro-
cesses. The AI system can thereby better explain the factors that contribute to
its decisions, as well as identify potential biases or errors, ultimately leading to
improved decision-making and explainability.
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The proposed AI architecture would include introspection and a self-report
interface, which translates the AI system’s internal models and decision-making
processes into human-understandable (natural) language (using, e.g., large lan-
guage models). In effect, the agent would be talking to itself, describing its
current state of mind and beliefs. This interface bridges the gap between the AI
system’s internal workings and human users, promoting epistemic trust and col-
laboration. In this way, the system can effectively mimic human-like conscious-
ness and transparent introspection, leading to a deeper understanding of its
decision-making processes and explainability. This advancement may be essen-
tial in fostering trust and collaboration between AI systems and their human
users, paving the way for more effective and responsible AI applications.

Augmenting a generative model with black box systems—like large language
models—may be a useful strategy to help AI systems articulate their “under-
standing” of the world. Using large language models to furnish an introspective
interface may be relatively straightforward, leveraging their powerful natural
language processing capabilities to create explanations of belief updating. This
architecture—with a hierarchical generative model at its core—may contribute
to the overall performance and explainability of hybrid AI systems. Attention
mechanisms also achieve this purpose by enhancing the explainability of the
AI system’s decision making, emphasizing important factors in the hierarchical
generative model that contribute to its decisions and actions.

These ideas are not new. Attentional mechanisms, particularly those at the
word-level, have been identified as crucial components in AI architecture, specif-
ically in the context of hierarchical generative models—and in generative AI, in
the form of transformers. They function by focusing on relevant aspects dur-
ing decision-making processes, thereby allowing the system to effectively process
and prioritize information [64]. In fact, the performance of hierarchical models,
which are a type of AI architecture, can be significantly improved by integrat-
ing word-level attention mechanisms. These mechanisms are powerful because
they can leverage context information more effectively, especially fine-grained
information.

The AI architecture that we propose employs a soft attention mechanism,
which uses a weighted combination of hierarchical generative model components
to focus on relevant information. The attention weights are dynamically com-
puted based on the input data and the AI system’s internal state, allowing
the system to adaptively focus on different aspects of the hierarchical genera-
tive model [60]. This approach is similar to the use of deep learning models for
global coordinate transformations that linearize partial differential equations,
where the model is trained to learn a transformation from the physical domain
to a computational domain where the governing partial differential equations are
simpler, or even linear [45].

The AI architecture that we describe here effectively integrates diverse infor-
mation sources for decision-making, mirroring the complex information process-
ing capabilities observed in the human brain. The hierarchical structure of the
generative model facilitates the exchange of information between different levels
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of abstraction. This exchange allows the AI system to refine and update its inter-
nal models based on both high-level abstract knowledge and low-level detailed
information.

In conclusion, the integration of introspective processes in AI systems may
represent a significant step towards achieving more explainable AI. By leveraging
explicit generative models, as well as attention and introspection mechanisms,
we can design AI systems that are not only more efficient and robust, but also
more understandable and trustworthy. This approach allows us to bridge the gap
between the complex internal computations of AI systems and the human users
who interact with them. Ultimately, the goal is to create AI systems that can
effectively communicate the reasons that drive their decision-making processes,
adapt to environmental changes, and collaborate seamlessly with human users.
As we continue to advance in this field, the importance of introspection in AI will
only become more apparent, paving the way for more sophisticated and ethically
sound AI systems.

4 Discussion

4.1 Directions for Future Research

The problem of explainable AI is the problem of understanding how AI models
arrive at their decisions or predictions. This problem is especially relevant to
avoid biases and harm in the design, implementation, and use of AI systems.
By incorporating explicit generative models and introspective processing into
the proposed AI architecture, we can create a system that is or seems capa-
ble of introspection and, thereby, that displays greatly enhanced explainability
and auditability. This approach to AI design paves the way for more effective
AI deployment across various real-world applications, by shedding light upon
the problem of explainability, thereby offering opportunities for fostering trust,
fairness, and inclusivity.

The development of the AI architecture based on active inference opens sev-
eral potential avenues for future research. One possible direction is to further
investigate the role of attention and introspection mechanisms in both AI sys-
tems and human cognition, as well as the development of more efficient atten-
tional models to improve the AI system’s ability to focus on salient information
during decision-making. The approach that we propose bridges the gap between
AI and cognitive neuroscience by incorporating biologically-inspired mechanisms
into the design of AI systems. As a result, the proposed architecture promotes
a deeper understanding of the nature of cognition and its potential applications
in artificial intelligence, thus paving the way for more human-like AI systems
capable of introspection and enhanced collaboration with human users.

Future work could explore more advanced data fusion techniques, such as
deep learning-based fusion or probabilistic fusion, to improve the AI system’s
ability to combine and process multimodal data effectively. Evaluating the effec-
tiveness of these techniques in diverse application domains will also be a valuable
avenue for research [62,75]. Furthermore, the explanation dimension of these AI
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systems has been a significant topic in recent years, particularly in decision-
making scenarios. These systems provide more awareness of how AI works and
its outcomes, building a relationship with the system and fostering trust between
AI and humans [33].

In addition to the aforementioned avenues for future research, another
promising direction lies in the realm of computational phenomenology (for a
review and discussion, see [88]. Beckmann, Köstner, & Hipólito (2023) have pro-
posed a framework that deploys phenomenology—the rigorous descriptive study
of first-person experience—for the purposes of machine learning training. This
approach conceptualizes the mechanisms of artificial neural networks in terms
of their capacity to capture the statistical structure of some kinds of lived expe-
rience, offering a unique perspective on deep learning, consciousness, and their
relation. By grounding AI training in socioculturally situated experience, we
can create systems that are more aware of sociocultural biases and capable of
mitigating their impact. Ramstead et al. (2022) propose a similar methodology
based on explicit generative models as they figure in the active inference tradi-
tion. This connection to first-person experience, of course, does not guarantee
unbiased AI. But by moving away from traditional black box AI systems, we shift
towards human-interpretable models that enable the identification and correc-
tion of biases in the AI system. This approach aligns with our goal of creating
AI systems that are not only efficient and effective, but also ethically sound and
socially responsible.

The incorporation of computational phenomenology into our proposed AI
architecture could further enhance its introspective capabilities and its ability
to understand and navigate the complexities of human sociocultural contexts.
This could lead to AI systems that are more adaptable, more trustworthy, and
more capable of meaningful collaboration with human users. As we continue to
explore and integrate such innovative approaches, we move closer to our goal
of creating AI systems that truly mirror the richness and complexity of human
cognition and consciousness.

4.2 Ethical Considerations of Introspective AI Systems

Ethical AI starts with the development of AI systems that are ethically designed;
AI systems must be designed in such a way as to be transparent, auditable,
explainable, and to minimize harm. The experience of AI may improve our ethical
intuitions and self-understanding, potentially helping our societies make better-
informed decisions on serious ethical dilemmas [16]. But as these systems become
increasingly integrated into our daily lives, research on the ethical implications
of introspective AI systems, as well as the development of regulatory frameworks
and guidelines for responsible AI use, become crucial.

The development of introspective AI systems raises several ethical consider-
ations. Even if these systems provide more human-like decision-making capabili-
ties and enhanced explainability, it is and will remain crucial to ensure that their
decisions are transparent, fair, and unbiased, and that their designers and users
can be held accountable for harm that their use may cause. The lack of ethics



136 M. Albarracin et al.

and interpretability of AI decisions are critical issues, leading to the proposal of
two scenarios for the future development of ethical AI: more external regulation
or more liberalization of AI explanations [56].

To address these concerns, future research should focus on developing meth-
ods to audit and evaluate the AI system’s decision-making processes, as well
as identify and mitigate potential biases within the system. The development
of laws, policies, and best practices for seizing the opportunities and minimiz-
ing the risks posed by AI technologies would benefit from building on ethical
frameworks such as the one offered by Cowls & Floridi [22]. This framework
emphasizes the importance of transparency, accountability, and the alignment
of AI with human values.

Additionally, the AI4People initiative presents five ethical principles and 20
recommendations to establish a Good AI Society. These principles and recom-
mendations, if adopted, would provide a strong foundation for achieving this goal
[35]. The recommendations are structured around five key principles: Beneficence
(promoting good), Non-Maleficence (preventing harm), Autonomy (protecting
human intervention), Justice (ensuring fairness), and Explicability (ensuring
transparency). These principles guide the development of AI in a way that aligns
with societal values and ethical considerations, fostering responsible innovation
and deployment.

Moreover, as introspective AI systems become more prevalent, issues related
to agency, privacy, and data security may arise. Ensuring that these systems
protect sensitive information by abiding by data protection regulations, thereby
safeguarding agency, will be of paramount importance. The results from a sur-
vey study by Esmaeilzadeh [30] show that technological, ethical, and regulatory
concerns significantly contribute to the perceived risks of using AI applications
in healthcare, highlighting the need for robust data protection measures.

In terms of the implications of developing sentient/introspective AI, beyond
the human-centric ethics, ethical frameworks such as the one offered by Cowls
& Floridi [22] are meaningful and useful when non-human agents (animals as
well as AI agents) may also be deserving of ethical consideration and care. The
conceptual analysis reveals interdependencies and tensions between ethical prin-
ciples, advocating the need for a basic understanding of AI inputs, functioning,
agency, and outcomes [50]. The AI4People initiative also presents five ethical
principles and 20 recommendations to establish a Good AI Society, providing a
strong foundation for achieving this goal [35].

The ethics of doing cognitive modeling on/about humans require a wider
range of driving ethical principles for designing more socially responsible AI
agents [111]. An embedded ethics approach, such as embedding ethicists into
the development team, can improve the consideration of ethical issues during AI
development [96].

The development of AI systems based on active inference has broad impli-
cations for both the fields of AI and consciousness studies. As future research
explores the potential of this novel approach, ethical considerations and responsi-
ble use of introspective AI systems must remain at the forefront of these advance-
ments, ultimately leading to more transparent, effective, and user-friendly AI
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applications. The dearth of literature on the ethics of AI within LMICs, as well
as in public health, also points to a critical need for further research into the
ethical implications of AI within both global and public health, to ensure that
its development and implementation is ethical for everyone, everywhere [77].

5 Conclusion

We have argued that active inference has demonstrated significant potential in
advancing the field of explainable AI. By incorporating design principles from
active inference, the AI system can better tackle complex real-world problems
with improved auditability of decision-making, thereby increasing safety and
user trust.

Throughout our discussions and analysis, we have highlighted the importance
of active inference models as a foundation for designing more human-like AI sys-
tems, seemingly capable of introspection and finessed (epistemic) collaboration
with human users. This novel approach bridges the gap between AI and cog-
nitive neuroscience by incorporating biologically-inspired mechanisms into the
design of AI systems, thus promoting a deeper understanding of the nature of
consciousness and its potential applications in artificial intelligence.

As we move forward in the development of AI systems, the importance of
advancing explainable AI becomes increasingly apparent. By designing AI sys-
tems that can not only make accurate and efficient decisions, but also provide
understandable explanations for their decisions, we foster (epistemic) trust and
collaboration between AI systems and human users. This advancement ulti-
mately leads to more transparent, effective, and user-friendly AI applications
that can be tailored to a wide range of real-world scenarios.
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Abstract. This paper addresses a mathematically tractable model of
the Prisoner’s Dilemma using the framework of active inference. In this
work, we design pairs of Bayesian agents that are tracking the joint
game state of their and their opponent’s choices in an Iterated Pris-
oner’s Dilemma game. The specification of the agents’ belief architecture
in the form of a partially-observed Markov decision process allows care-
ful and rigorous investigation into the dynamics of two-player gameplay,
including the derivation of optimal conditions for phase transitions that
are required to achieve certain game-theoretic steady states. We show
that the critical time points governing the phase transition are linearly
related to each other as a function of learning rate and the reward func-
tion. We then investigate the patterns that emerge when varying the
agents’ learning rates, as well as the relationship between the stochastic
and deterministic solutions to the two-agent system.

Keywords: Game Theory · Bounded Rationality · Multi-Agent
Systems · Prisoner’s Dilemma

1 Introduction

Studies of behavioural science, be it in biology, psychology, or machine learning,
often rely on the concept of rational thinking and decision making [3,23,24,30].
Game theory has had wide success in precisely formulating contexts in which
players or agents are challenged to converge to an optimal yet counter-intuitive
strategy that maximises reward. In particular, game theory models communi-
cation among agents that can result in bounded-complex emergent behaviour
[6,31]. The Iterated Prisoner’s Dilemma (IPD) is a quintessential game, in which
the ‘dilemma’ is that the highest reward is attributed to the action of defec-
tion, but the optimal behaviour in the long run is to cooperate, because of the
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‘Shadow of the Future’ phenomenon [11]1. When played iteratively, agents learn
each other’s predictable behaviour and can form an optimal strategy, away from
the Nash equilibrium of the one-shot game. To do so, agents need to be aware
of what their opponent is likely to do, which is why the IPD is widely used to
study the evolution of cooperation for selfish agents [20].

This work addresses a computational model of the (memory-one) Iterated
Prisoner’s Dilemma under the framework of active inference (AIF) [12,25,28].
AIF is an agent-based modelling framework derived from theoretical neuro-
science, where cognitive processes like action, perception, and learning are seen as
solutions to an inference problem. As an explicitly model-based, Bayesian frame-
work for simulating behaviour, AIF provides cognitively ‘transparent’ agents,
whose posterior beliefs about the world and associated uncertainties are accessi-
ble and interpretable. This enables careful investigation into the Bayesian basis
of behaviour in these simple models, in turn allowing us to identify the conditions
under which optimal behaviour is possible.

When two identical and deterministic AIF agents play against one another,
we show that the equation governing across-trial learning dynamics is mathemat-
ically tractable given one approximation. This enables us to derive functions that
model the specific conditions under which convergence to an optimal strategy—
namely the Pavlov Strategy [20]—for the IPD can occur, given a multi-agent AIF
model. The Pavlov strategy is win-stay-lose-change, where agents will cooperate
if the agent’s and opponent’s moves are the same in the previous round and
defect otherwise. We explore how these dynamics vary across different configu-
rations of the agents’ learning rates, as well as how stochasticity in the agent
network determines the probabilities of agents reaching the optimal outcome.

1.1 Iterated Prisoner’s Dilemma

In the Prisoner’s Dilemma, at each round, both players can either defect or
cooperate, leading to 4 possible outcomes [16] (see Table 1 with different reward
levels). The outcome with the highest reward is if the player defects and its
opponent cooperates (DC), which is also the outcome with the lowest reward
for the opponent (CD). The second-best outcome is if both cooperate (CC), and
the third-best outcome for both players is if they defect (DD). In this model, the
four reward levels are respectively [3, 1, 4, 2]. This work specifically models the
memory-one IPD, where each player only considers the previous move of their
opponent when making their decision for the current round.

There are several notable strategies in the IPD, which have been categorised
in different ways [17]. First, a dominant strategy produces the best possible payoff
for an agent, regardless of the strategies used by opponents. The most commonly
cited dominant outcome is when both players defect (choose to betray) in every
round. From an individual player’s perspective, defecting in every round provides

1 This is when agents in repeated play—without awareness of when the play will
end—will be more cooperative because they are made to learn about the possibility
of being punished and plan accordingly [16].
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Table 1. Example payout matrix in a Prisoner’s Dilemma game.

Player 2

Cooperate (C) Defect (D)

Player 1
C (3, 3) (1, 4)

D (4, 1) (2, 2)

a higher immediate payoff compared to cooperation, especially when the other
player cooperates. However, defecting in every round is not socially optimal as
it leads to a lower overall payoff compared to mutual cooperation. The challenge
is to find strategies that can foster cooperation and lead to better outcomes for
both players in the long run, rather than succumbing to the dominant outcome
of mutual defection [14].

In order to reach the social optimum of cooperation, new heuristics or bounds
on the agents need to emerge in order for them to look beyond the reward func-
tion when deciding their actions. This makes the IPD a good arena to study
bounded rationality, in which agents do not have access to the full generative
process (encompassing both themselves and their opponent), and therefore must
make decisions given a bound on their awareness or knowledge, of, for instance,
the other player, or any external environmental factors [30]. Agents playing the
IPD has been studied in the context of reinforcement learning already [18,29],
and the idea of bounded rationality serves as a motivation for using active infer-
ence agents to model the IPD, as the AIF is a transparent and interpretable
framework in which agents infer actions and quantify uncertainty under the
constraints of their generative model.

There are several ways to train the agents to converge to the social optimum,
which we will refer to as the cooperative steady state. When agents sample their
actions deterministically, our model shows that active inference agents parame-
terised with a constrained set of learning rates can converge to the cooperative
steady state by learning the Pavlov Strategy [20], and it also demonstrates learn-
ing rate configurations that get trapped in the Nash equilibrium, in which agents
converge to Unconditional Defection [26,29].

1.2 Active Inference

Active inference (AIF) agents are able to plan and learn about their state
space and transition probabilities through observed experience. They infer which
actions to take by minimising the expected free energy anticipated to accrue from
their actions [25]. This often allows these agents to solve complex tasks often
seen in reinforcement learning or neuroscience, such as the Multi-Armed Bandit
[19] and other Monte-Carlo based tasks [7].

Advances in the ability to quickly build and scale models of AIF agents, par-
ticularly in Python using the pymdp library [13], have allowed for a much more
scalable and accessible means to model these agents in different and flexible
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Fig. 1. Beliefs about transition probabilities over trials. Top: A representation
of Player 1’s beliefs at three phases of the simulation (t = 10, 20, 150). Each box contains
a graph representation of the transition probabilities, and histograms of the cooperate-
conditioned (top row) or defection-conditioned (bottom row) transition distributions
at the displayed trial indices. Darker values represent a higher probability. Bottom:
The inferred probabilities of cooperation in each trial. Agents select the action with the
highest posterior probability. The agents begin by continuously defecting, then undergo
an oscillatory period of defection and cooperation, and eventually reach a cooperative
steady state. After this period of training, they will have learned the Pavlov strategy,
i.e. they will cooperate if the agent’s and opponent’s moves are the same in the previous
round and defect otherwise [20].

environments, as well as to connect them in networks and allow them to observe
each other’s actions. This has allowed researchers to ask more interesting ques-
tions about how relevant AIF is in terms of modelling rational decision making,
such as those observed in game theory. In this paper, we show that not only can
AIF agents effectively learn optimal strategies to the IPD, but the framework of
active inference enables us to derive the exact conditions for when this will occur
and have a layered understanding of the agents’ ‘mental process’ throughout the
game.

The agents in this model actively entertain beliefs about the dynamics of
the game and iteratively update their beliefs about the game dynamics (i.e.,
a ‘transition model’) as they play multiple rounds against their opponent. In
the context of the discrete-time and -space models used in the present work,
this amounts to updating the elements of transition probability matrices that
represent each agent’s beliefs about game states from one trial to the next. After
every trial of iterated play, the agents update these state transition probability
distributions based on their actions and the outcomes that they observed. In
doing so, the agents have the capacity to learn strategies, manifested as patterns
of learned probabilities of transition from each state to each other state.
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Table 2. Generative model variables and notation.

Variable Name Notation

Hidden States s ∈ {CC, CD, DC, DD}
Observations o ∈ {CC, CD, DC, DD}
Actions u ∈ {uC , uD}
Observation Model P (ot|st; A) = Cat(A)

Transition Model P (st+1|st−1,ut−1; B) = Cat(B)

Transition Model Parameter P (B) =
∏

ju P (B•ju), P (B•ju) = Dir(b•ju)

Initial State Prior P (s1; D) = Cat(D)

‘Biased’ State Prior (Reward) P̃ (s; C) = Cat(C), s.t. lnC = [3, 1, 4, 2]

Our hypothesis is that throughout iterative play, the bounded-rational agents
will learn to infer actions based on learned patterns of their opponent’s behaviour
(i.e., the ability to predict revenge from defection), and this will result in a strat-
egy leading to the social optimum steady state in which both agents cooperate.
Further, given the interpretability of the AIF, we will be able to analytically
derive the process that the agents undergo during this learning process and thus
predict how it might change with different parameters.

2 Simulation Dynamics

Here, we explore the long-term dynamics of the IPD. Agents play in turns for a
finite set of trials, updating their transition model beliefs Q(B;φb) at each trial.
Unless otherwise specified, agents are configured exactly the same (same priors,
same learning rate) and sample their actions deterministically as described in
Eq. (A.21). In this model, agents always converge to the cooperative steady
state and remain there indefinitely. The magnitude of the learning rate η affects
the rate of convergence by scaling the update to the transition matrix at each
timestep, as shown in Eq. (A.25). In Fig. 1 we show the simulation dynamics for
agents configured with learning rate η = 0.3, but it’s important to note that at
different learning rates, the nature of these dynamics would not change - rather
the critical time points would only occur either sooner (for larger η) or later
(for smaller η). Therefore, the amount of time taken in order to converge is not
representative of the performance of this model, but rather a parameter that can
be tweaked. Given the transparency of this deterministic system, it is possible to
explain exactly how these agents are ‘thinking’, given their posteriors over time.

Agents are initialised with uniform transition matrices as in Eq. (A.7). Upon
the first observation, they infer the game state and calculate the expected free
energies (EFEs, or G) of cooperating and defecting. They take the action that
has smaller EFE, i.e., arg minu G0(u). At first, because of the reward param-
eterization and the uniformity in the transition prior P (B;b), defection will
minimise the EFE (i.e., predicts the highest reward), according to:
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G0(u = C, φC) = −(BC
0 · φC

0 ) · (lnBC
0 · φC

0 − lnC) =
1
2

ln(C1C2) − ln
1
2

(1)

G0(u = D, φD) = −(BD
0 · φD

0 ) · (lnBD
0 · φD

0 − lnC) =
1
2

ln(C3C4) − ln
1
2

(2)

Therefore, as long as ln(C3C4) < ln(C1C2), the agent always defects on the
first timestep. Agents will then continue to defect, because the expected reward
from realising the state DC still outweighs that of any other predicted state. As
the agents continue to defect, their beliefs about P (st = DC|st−1 = DD, u = D)
will be decreasing with a proportional increase in P (st = DD|st−1 = DD, u = D),
meaning G(u = D) will increase as the probability of getting their desired reward
decreases.

At a critical time, which we denote τ1
2, the agents will begin assigning more

probability to cooperation than defection φC > φD, because the transition prob-
abilities have decreased sufficiently for the EFE of cooperation to outweigh that
of defection. Once the agents begin cooperating, they undergo an oscillatory
period during which their actions fluctuate from cooperation to defection. This
is because at τ1, the transition probabilities P (st|st−1 = CC) are fixed at their
initial value, since the agents have yet observed the previous state being CC.
Thus the agents will still be optimistic about realising the highest reward state
DC via the transition probability P (st+1 = DC|st = CC, u = D).

The agents will eventually learn that inferring to defect will inevitably lead
to observing DD, and inferring to cooperate will inevitably lead to CC. The
oscillatory period is crucial to this because it teaches the agent that defecting in
response to cooperation will only ever lead to DD. The oscillation continues until
the critical time point τ2, in which the probability p(st+1 = DC|st = CC,ut = D)
becomes smaller than p(st+1 = DD|st = CC,ut = D), at which point the agents
will cooperate for all remaining rounds.

2.1 The Analytic Transition Function

In the above model of AIF agents, an analytic solution for the evolution of each
agent’s beliefs about the transition likelihood Q(B;φ∗

b) is available. This is for-
mulated by deriving approximations to τ1—the critical trial in which the agents
transition to an oscillatory period between defection and cooperation—and τ2,
the second phase transition in which the agents converge to the cooperative
steady state. Given the expressions for τ1 and τ2 in Eq. (3), we can write down
the evolution of the Dirichlet parameters of the transition probability matrix.
The derivations for the following expressions are in AppendixA.4 and A.5. Here,
C corresponds to the ‘biased’ state reward prior, and each entry of C corresponds
to the reward value of that observation (rCC, rCD, rDC, rDD). For the full defini-
tion see Eq. (A.5).

2 Whose solution in terms of generative model parameters we derive in the next
section.
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Fig. 2. Marginalised transition probabilities under different η. The dotted lines
represent the marginalised probabilities from all states to the highest reward state
DC, and the solid lines represent the marginalised probabilities from all states to the
socially optimal state CC. The transition probabilities to DC decrease initially during
the period of defection, then fluctuate during the period of oscillation and steady out
close to 0 once the agents reach the cooperate steady state, and the probabilities to
state CC take the same pattern in the opposite direction. This happens more rapidly for
larger η, because the updates to the parameters of the transition likelihood distribution
are larger at every trial.

τ1 ≈ R1(β)
η

τ2 ≈ R2(β)
η

(3)

where

R1 =
2

ln C3
C4

+ 2 −
√

(ln C4
C3

− 2)2 − 8(− ln C4
2
√
C1C2

− 1
5 )

− 1 R2 =
3
2
R1

(4)
This means that τ2, the number of trials it takes the system to reach the

steady state, can be precisely approximated as a linear function of τ1, the number
of trials it takes to start the oscillatory period (see Fig. 3)—i.e. the critical time
points governing the phase transition are linearly related to each other as a
function of learning rate and the reward function. Given these expressions, our
analytic form of the transition rule for the posterior Dirichlet parameters over
the transition model is:
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Fig. 3. Simulated vs. derived relation between reward and learning rate.
Simulated and approximated τs for three values of β parameterizing the reward func-
tion. On the left, we approximate τ1 with the equation τ1 = R1

η
where R1 depends on

the reward parameter of β. On the right, we approximate τ2 with τ2 = τ1 + 1
η
R2 where

again, R2 depends on β. With a larger β, meaning a higher predicted reward for the
state DC, the values of τ increase as it will take more trials for the players to update
their transition probabilities away from having a preference to defect.

φ
C
bt+1

=

⎧
⎪⎨

⎪⎩

bC
0

bC
0 + η

2 sCC ⊗ sDD(t − R1
η )

bC
τ2

+ ηsCC ⊗ sCC(t − R2
η )

φ
D
bt+1

=

⎧
⎪⎨

⎪⎩

bD
0 + ηsDD ⊗ sDDt t <

R1
η

bD
τ1

+ η
2 sDD ⊗ sCC(t − R1

η )
R1
η < t <

R2
η

bD
τ2

t >
R2
η

(5)
which can be used to exactly replicate the trajectory of Q(st+1|st, ut) over time
(Fig. 3).

We conclude by noting that the agents in this model, after undergoing these
two phase transitions and converging to CC, have learned the well-known Pavlov
(also known as the “Win-Stay Lose-Shift”) strategy from IPD literature [20].
Agents learned during 0 < t < τ1 that given the observation DD, the best
strategy is to cooperate, and during τ1 < t < τ2 they learned that cooperating
is the best outcome given the observation CC—therefore, having reached τ2,
they continue cooperating. To show that the agents learned the Pavlov strat-
egy, we performed an experiment where once an agent converged to the steady
state, we disabled additional learning and had this agent play against an agent
that behaves completely randomly. When playing against this random agent,
they observe the new asymmetric states DC or CD. The desire to maximise
expected utility (via the drive to minimise KL risk, a.k.a., the expected free
energy) will lead them to perform the ‘greedy’ strategy of defection, which is
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how their behaviour is consistent with the Pavlov strategy3. Future work will
further characterise the space of learnable strategies under this framework.

3 Generalizing the Model

In the previous section, we found an approximate solution for the belief-,
action-, and learning-dynamics, which completely describes the case of two
symmetrically-parameterised agents playing IPD. For any given parameterisa-
tion of the prior preferences C, we derived the trials at which the critical tran-
sitions take place in the two-agent system, steering it away from the Nash equi-
librium and towards the cooperative steady state.

The simplicity of this model is that these agents are configured exactly alike,
and therefore there is complete symmetry in the state space. This means that
the agents will only ever observe two out of four possible states in the space.
However, this case no longer holds when either the agents are parameterised
with different learning rates, or when they sample their actions stochastically,
according to Eq. (A.22). These cases open the space of possible strategies that
the agents can learn, some of which will lead the agents to fall into the Nash
equilibrium, and others which will allow them to reach the optimal outcome.

3.1 Different Learning Rates

We now assume agents parameterised with different η and the same β, per-
forming actions deterministically. We denote the agent with larger η1 as a1, and
the agent with smaller η2 as a2. According to Eq. (A.38), the critical value τ1
depends on η, and since η1 > η2, this means τa1

1 < τa2
2 . Thus, a1 will cooperate

at τa1
1 = R1

η1
, but a2 will not yet deem cooperation a better policy than defection

(namely, the EFE of defection will remain below that of cooperation). There-
fore, at τa1

1 , the game state will be CD from a1’s perspective and DC from a2’s
perspective. This symmetry-breaking means that the system will not enter into
the typical oscillation phase triggered by mutual cooperation (as is guaranteed
when η1 = η2 and thus τa1

1 = τa2
1 ).

The nonidentical observations imply that after τa1
1 , a1 believes P (st+1 =

CD|DD) is more probable, thereby being disincentivised to continue cooperat-
ing, and a2 believes P (st+1 = DC|DD) is more probable, being incentivised
to continue defecting. The degree of disincentivisation (or incentivisation) will
increase in proportion to η1 or η2, respectively, due to a corresponding η1-scaled
increase in Ga1(u = C) and an η2-scaled decrease in Ga2(u = D). This growing

3 An agent exhibiting the Pavlov strategy will only cooperate if in the previous trial,
both agents performed the same action (i.e., the state was either CC or DD, otherwise
they will defect).
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asymmetry in the agents’ beliefs means that Eq. (5) no longer holds. At this
point, the agents will return to continuous defection until another instance of
G(u = D) = G(u = C) occurs; the duration of this depends on η.

In sum, the conditions under which the joint-agent system converges to the
optimal steady state is determined by whether or not the agents’ learning rates
are configured such that there will be some time point t less than some threshold
Tmax in which both agents cooperate simultaneously. If this is not the case, then
as defection continues, the rate of increase of G(u = D) slows, and after a
certain amount of time (governed by η) it will become too slow and never catch
up to G(u = C) (see Fig. 4). In other words, if at any point, for either agent,
Gt(u = D) < Gt(u = C) ∀t ∈ (0, Tmax], the agents are trapped in the Nash
equilibrium.

Figure 4 shows EFE trajectories in scenarios where agents converge to the
optimal outcome (above) and where agents get trapped in the Nash equilib-
rium (below). Convergence to the Nash equilibrium occurs in the absence of any
trial where the relative value of cooperation reaches 0 simultaneously for both
agents. Instead, the relative values of cooperation slowly converge to different
and nonoverlapping limits4. If the intersection of the condition in Eq. (A.31)
does occur, this guarantees that the agents will begin the oscillatory period
which will eventually lead them to convergence to CC (while there may be some
instances of CD and DC in the oscillatory period, this will not prevent eventual
cooperation). In general, when learning rates are close together, the likelihood
of convergence to CC is more likely; however, the actual pattern is more compli-
cated than this. Figure 5 demonstrates the complex pattern of instances in which
the agents converge to the cooperative steady state given different learning rate
combinations, with both the deterministic and stochastic sampling.

3.2 Stochastic Sampling

Here, we introduce noise in the action selection such that agents sample actions
with some probability proportional to their (negative) EFE. Action stochastic-
ity can be controlled with an inverse temperature parameter α according to
Eq. (A.22). In general, all of the principles outlined in Sect. 2 remain; however,
now the agents will sometimes perform the suboptimal action. This enables
agents to experience the entire state space (different combinations of defection
and cooperation) and therefore estimate transitions between all the combinations
of states.

4 Note that even after the agents reach a cooperative steady state, the difference in
expected free energy takes time to flatten because the entropy is still decreasing as
beliefs become more precise, via learning.
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Fig. 4. Relative value of cooperation under different η parameterisations.
Above: Agents are configured with ηs along the tendrils of Fig. 5. On the left, the
relative values of cooperation, calculated as G(u = C) −G(u = D), reach zero several
times and converging around 0.75 at the optimal outcome. On the right: the fluctuations
in the individual EFEs. There are periods before τ1 and between τ1 and τ2 in which
one player will cooperate and the opponent defects; this creates the spikes in the
distribution, as one agent is punished and the other is rewarded. Below: Agents with
ηs that are not on the tendrils in Fig. 5, meaning that they do not converge to the
cooperative steady state. We can see on the left how Gt(u = D) is converging to
something less than Gt(u = C).

We can see from Fig. 5 that, on average, endowing the agents with stochas-
ticity enables them to converge to the cooperative steady state for a larger
number of combinations of different learning rates. This makes sense, because
it increases the likelihood of ‘escaping’ the pattern of continuous defection, and
therefore learning about the advantages of cooperation. In terms of the reward,
the agents that have most similar learning rates will behave most similarly and
therefore accumulate more reward (along the diagonal).
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Fig. 5. Parameter sweeps over η. Top row: Agents sample actions deterministi-
cally. Wherever the average cooperation is nonzero, agents converged to the cooperative
steady state—yellow cells indicate faster cooperation, which is generally associated with
higher overall reward. Bottom row: Agents sample actions stochastically. Coopera-
tion still occurs most often along the diagonal, tapering off as learning rates become
more different.

4 Conclusion

Iterated Prisoners’ Dilemma games have long been the test bed for new develop-
ments in behavioural science and game theory. Because of the relative simplicity
of the game’s structure—and its, at times, surprising experimental results—
researchers often use it to develop mathematical frameworks for understanding
decision making in social or multi-agent contexts. In this paper, we demonstrated
how active inference can be used to model the IPD transparently, such that in
a simple set-up, we can derive a solution to the evolution of the agents’ beliefs
about the game dynamics, i.e., the transition probabilities. This allows us to
quantitatively reason about why the agents converge to their chosen optimal
strategy and how behaviour changes as a function of different learning rates and
stochastic action selection. While the simple case of similarly-configured agents
resulted in both agents exhibiting the Pavlov strategy, once we introduce asym-
metry in the generative models, and/or stochasticity in action sampling, then
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upon testing, agents are able to learn a variety of different strategies, including
the Pavlov strategy, Unconditional Defection, Unconditional Cooperation, and
Tit for Tat—or some variation of Tit for Tat [15,32].

This finding is a starting point for future work, in which such a model could
be extended to multiple agents interacting towards a common goal, and inves-
tigating the various strategies that emerge from acting in a network order to
minimise free energy. The current model did not incorporate the information-
seeking components that are often leveraged in action-selection under active
inference [10]. In our case, the ambiguity term of the expected free energy was
zero by construction (due to zero observation uncertainty), but future work could
explore the role of parameter information gain (resolving uncertainty about B)
and how that changes the multi-agent dynamics in IPD. Overall, in this work
we demonstrated that AIF can offer game theory a novel analytic transparency
and simplicity for accounting for multi-agent dynamics using a first-principles,
Bayesian account.
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A Appendix

A.1 Generative Model

In this section, we describe the Prisoner’s Dilemma game as a two-agent active
inference system and determine the conditions under which the agents reach the
optimal state of constant cooperative play, avoiding the Nash equilibrium. To
enable active inference agents to reach the cooperative steady state, we invoke
the notion of parameter learning; specifically, the ability of agents to infer likely
sequences of game states by updating posterior beliefs about transition probabili-
ties. These transition probabilities parameterise a likelihood model that describes
transitions between game states (e.g., the transition from the state of ‘cooperate-
cooperate’ to ‘cooperate-defect’). Under active inference, this parameter learning
is cast as a problem of inferring generative model parameters. Usually, param-
eter inference unfolds on a slow timescale (hence the term ‘learning’) relative
to ‘fast’ inference of hidden states [9] (See Table 2 for full description of model
parameters).

The agent’s generative model is a Markov Decision Process [27] that encodes
a joint distribution over sequences of hidden states s1:T observations o1:T , actions
u1:T , and model parameters A,B,D [13]. Markov Decision Processes assume that
the dynamics are shallow, with single-timestep dependency P (st+1|st, ut;B); this
Markov property means we can write the generative model as a product of time-
dependent distributions:
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P (o1:T , s1:T ,u1:T , A, B) = P (s1;D)P (π)P (A)P (B)P (D)

T−1∏

t=1

P (ot+1|st+1;A)P (st+1|st,ut;B)

(A.1)

multiplied by initial priors over hidden states, policies, and parameters.
The hidden states s consist of a single factor with four possible states or

levels, corresponding to the game states (the four combinations of possible two-
player choices): CC, CD, DC, and DD. This game state factor comprises the
primary random variable in each agent’s model.

In our notation, the first letter of each game state corresponds to the focal
agent’s choice, and the second letter corresponds to that of its opponent. In our
formulation, agents have precise knowledge of the current game state, which they
technically infer through (unambiguous) observation of their and their oppo-
nent’s action. Uncertainty comes into the game insofar as agents must predict
the subsequent game state and then act based on their predictions and their
desires to maximise utility.

There is one observation modality with four observations, which again cor-
respond directly to the four game states. Therefore, the four observations are
CC, CD, DC, and DD. Note that the agents will only observe the game state
after-the-fact, i.e., each observation corresponds to the game state in the previ-
ous round of iterative play. This is because in the Prisoner’s Dilemma, the agents
perform their actions at any given trial without knowing what their opponent
will do in that trial, but in iterative play, the agents can build a strategy over
time by observing the resulting game states after each trial ends.

Observation Likelihood. The observation model P (ot|st, A) is a conditional
distribution encoding the agent’s beliefs about the relationship between the cur-
rent (hidden) game state and its concurrent observation. Also known as the
likelihood model, the agent uses this distribution to infer the most likely game
state, given an observation thereof.

In the simulations presented here, we assume that agents are equipped with
a deterministic, unambiguous observation model, i.e., observations are determin-
istic indicators of the game state. In the discrete state space models common in
active inference, likelihoods like P (ot|st, A) are often represented as multidimen-
sional arrays (e.g., matrices) whose values are populated by parameters; in the
case of the observation model, we represent this likelihood directly as a matrix A
whose entries are given by the likelihood parameters A. Hereafter we use bold-
face X to indicate a representation of Categorical parameters in terms of vectors
and matrices, and use the standard italic notation X to indicate the random
variable in the generative model (e.g. P (A)). When we have an unambiguous or
precise likelihood mapping, this matrix is the identity matrix, representing the
mapping from hidden states (columns) to observations (rows):
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P (ot = i|st = j, [A]ij) = δ(i − j) (A.2)

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ = I (A.3)

An agent with such a precise likelihood model will infer the game state in
the previous round of iterative play entirely based on the observed game state.

However, one can imagine introducing uncertainty into an agent’s beliefs by
adding off-diagonal, positive values into the A matrix – this would correspond to
the agent believing that game state observations are ambiguous with respect to
the true game state. Concretely, we could imagine that one agent might receive a
misleading signal indicating that its opponent defected when they actually coop-
erated. A simple way to parameterise this uncertainty is through an inverse tem-
perature parameter ψ, which makes the A matrix totally uninformative (maxi-
mum entropy columns) in the limit of ψ → 0, and infinitely precise in the limits
of ψ → ∞:

A =
Iψ

∑
Iψ

(A.4)

Finally, it is worth mentioning that we assume P (A) is infinitely precise and
not subject to learning. Therefore, we emit any parameterisation of the priors
over this likelihood, while we keep them for the transition likelihood parameters
B, as we will update these in learning.

Reward. Different game states are assigned different rewards or desirabilities
under the Prisoner’s Dilemma problem formulation. Active inference converts
the notion of ‘reward’ into prior probability by equipping agents with biased
prior beliefs about future states or observations [8]. In the context of planning
actions, this biased prior serves the role of a “goal-vector” or reward function [13].
We denote this as a biased prior over states in our agent’s model P̃ (s;C)5. This
special ‘goal prior’ is parameterised by a vector of Categorical parameters C.
Reward and prior probability can be straightforwardly related via the relation
P̃ (s) ∝ exp(r) [22]; therefore, we typically parameterise C using relative log
probabilities or nats, i.e., C = ln P̃ (s) + Z. Following from Table 1, the most
desirable observation is sDC (the agent defects and the opponent cooperates),
followed by sCC (both players cooperate), then sDD (both players defect), and
finally sCD (the agent cooperates and the opponent defects). Therefore, our C
vector is C = [3, 1, 4, 2].

Note that the values of these numbers have an effect on the desirability
of the observations and therefore will impact the agents action-planning such
that they plan actions that they infer will result in the observation of the most

5 Note that in many formulations of active inference this is formulated as a prior over
observations P̃ (o;C).
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desirable state. Changing the values of these rewards will change the incentive
and behaviour of the agents.

Different Reward Parameterizations. We can parameterise the reward
function C in terms of a single precision that makes a single ordered reward func-
tion with the constraints rCD < rDD < rCC < rDC more or less shallow/steep.
We do this using the softmax (normalised exponential transformation):

C = σ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

rCC

rCD

rDC

rDD

⎤
⎥⎥⎦ , β

⎞
⎟⎟⎠ , where CCC =

exp(βrCC)∑
i exp(βri)

lnCCC = βrCC − ln

(∑
i

exp(βri)

)

=⇒ lnC ∝ β

⎡
⎢⎢⎣

rCC

rCD

rDC

rDD

⎤
⎥⎥⎦ (A.5)

Policies. A policy π is comprised of individual actions, or control states, π =
{u1,u2, ...uH}. At each trial of iterative play, the agents can either defect or
cooperate. This means that the policy space consists of two control states, namely
uC and uD. Once the action is inferred, the intersection of both agents’ actions
will result in the realised game state.

Transition Likelihood. The transition matrix encodes the beliefs that the
agent holds about how game states will evolve given previous trials and their
actions. Because action selection under active inference depends on model-based
planning, this transition model also directly determines the agent’s strategy.
Although in this work we focus on how agents can automatically learn the game’s
dynamics and thus their strategies through experience, we nevertheless begin by
constraining what agents can learn by initialising agents‘ beliefs about transi-
tion dynamics, so that they assume that two game state transitions are always
impossible. Agents believe that when they cooperate, there is zero probability
that the next state will be DC or DD, and conversely, when they defect, they
believe there is zero probability that the next state will be CD or CC. Therefore,
the transition matrix encodes the agent’s assumptions about whether the other
will cooperate or defect in the next trial, given the outcome of the current trial
and the agent’s own action.

We use existing formulations of parameter learning under active inference
to allow our agents to update their beliefs about transition model over time
based on experience. Technically, the agents are updating a Dirichlet posterior
belief over the Categorical parameters B that characterise its transition model
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(a transition probability matrix, mapping from past to current game states,
further conditioned on action). They update this matrix of posterior Dirichlet
parameters at the end of each trial, based on that trial’s outcome.

At the beginning of iterative play, the agent will be initialised with no prior
opinion or knowledge about which of the possible transitions are more likely
given its actions (aside from the zero constraints laid out above). These uniform
initial transition distributions are shown in Eq. (A.6) and Eq. (A.7).

P (st+1|st,ut = C) =

⎡
⎢⎢⎣

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (A.6)

P (st+1|st,ut = D) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

⎤
⎥⎥⎦ (A.7)

At the conclusion of each trial during a session of iterative play, a given agent
observes the game state of the previous trial and updates its beliefs about tran-
sitions based on the realised states and its actions. As these transition dynamics
are learned, the agent is simultaneously learning a strategy based on planning
the most optimal action (cooperate or defect), given its evolving beliefs.

A.2 Inference

State Inference. At each trial of iterative play, the agents first infer the game
state by inverting their Markovian (POMDP) generative model using ongoing
observations ot.

The agent’s hidden state inference involves optimising a variational poste-
rior over hidden states and policies Q(s1:T , π) as a categorical distribution with
parameters φ̃ that are factorised ‘mean-field’-style across timesteps [4]:

Q(s1:T , π; φ̃) = Q(π;φπ)
∏
1:T

Q(st;φs,t)

where the variational parameters φ̃ = {φπ,φs1:T } are themselves segregated into
policy-specific parameters φπ and hidden-state-specific parameters φs1:T .

At each timestep t, the agent performs inference by optimising the poste-
rior parameters φ̃ to minimise the timestep-specific variational free energy Ft,
which due to the Markovian factorisation of the generative model and mean-field
factorisation of the posterior, can be expressed in terms of only the generative
model of the current timestep P (ot, st, π,A,B,C):

Ft = EQ(st,π;φ̃t)

[
lnQ(st, π; φ̃t) − lnP (ot, st, π,A,B,C)

]
(A.8)

The optimal posterior parameters φ̃
∗

are those that minimise the free energy
in Eq. (A.8) and can be found by solving exactly for the fixed points of Ft. We
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begin by solving for the parameters of the variational beliefs about hidden states
φst

:

∂Ft

∂φst

= 0

=⇒ φ∗
st

= σ
(
lnAT ot + ln(But−1 · φ∗

st−1
)
)

(A.9)

where σ represents the softmax (or normalised exponential) transform of a vec-
tor. The ith entry of the softmaxed output is given by:

σ(x)i � exp(xi)∑
j exp(xj)

(A.10)

The initial matrix-vector product in the last line of Eq. (A.9) lnAT ot rep-
resents the contribution of sensory evidence to inference, and can be thought
of as picking out the row of the A matrix that corresponds to the observation
at timestep t. The second matrix vector product ln(But−1 · φ∗

st−1
) represents

the contribution of prior information to inference. This simple form is a conse-
quence of the mean-field factorisation of the variational parameters φs1:T across
timesteps and an ‘empirical prior’ assumption, where the prior term of the gener-
ative model P (st) = EP (st−1)[P (st|st−1,ut−1,B)] is evaluated at the parameters
of the previous timestep’s variational posterior, in a manner reminiscent of a
belief propagation step or empirical Bayes:

P (st) = EP (st−1) [P (st|st−1,ut−1,B)]

≈ EQ(st−1;φst−1
) [P (st|st−1,ut−1,B)] (A.11)

We can simplify the expression for the parameters of the variational beliefs
due to the unambiguous form of the observation likelihood with infinite precision

in Eq. (A.3), A =
Iψ

∑
Iψ

, as well as the fact that the agents are taking identical

actions at every trial, thus limiting the state space to {CC, DD} which implies
that inference can be solved for exactly for any trial t > 0 as

φ∗
st

= σ

(
ln
(

Iψ

∑
Iψ

)T

ot + ln
(
But−1 · φ∗

st−1

))
(A.12)

= lim
ψ→∞

σ
(
ψ ln

(
IT ot

)
+ ln

(
But−1 · φ∗

st

)− ln
∑

Iψ
)

(A.13)

= σ
(
ln
(
IT o1

))
= IT o1 (A.14)

Policy Inference. Under active inference, action selection and planning are
cast as an inference problem, where policies are treated as a latent variable
to be inferred. This has deep homology to contemporary approaches to model-
based planning in reinforcement learning, such as planning as inference and
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control as inference [1,2,5,22]. In particular, active inference agents optimise
a variational posterior over policies Q(π). However, because policies inherently
require estimation of future, unobserved states, we use an augmented, ‘predic-
tive’ generative model to perform this policy inference. This predictive generative
model is importantly augmented with the biased prior distribution over states
P̃ (s;C). Beliefs about policies, similar to those about hidden states, are opti-
mised by minimising a free energy functional of beliefs about the consequences
of action under the predictive generative model. This functional is known as
the expected free energy and exhibits many desirable properties such as a nat-
ural balance between information-seeking (‘exploration’) and goal-directedness
(‘exploitation’) [21]. The approximate posterior over policies Q(π) is also a Cate-
gorical distribution with parameters φu; the optimal setting of these parameters
φ∗

u minimises the expected free energy, leading to the relationship:

Q(π;φu) = σ(−G(π))

G(π) =
H∑

τ=1

Gt+τ (ut+τ−1) (A.15)

The second line shows that the expected free energy of a policy is the sum of
the expected free energies that accrue for each action that comprises the policy:
π = {u1,u2, ...uH}. For the present purposes we only consider 1-step ahead
policies (H = 1). This means that the expected free energy of a policy is simply
the expected free energy computed one timestep into the future Gt+1(ut).

The expected free energy can be decomposed into expected ambiguity and
risk terms:

Gt+1(ut) = EQ(st+1|ut) [H [P (ot+1|st+1)]] + DKL (Q(st+1|ut) ‖ ln P (st+1|C))
(A.16)

We can write this general expression in terms of sufficient statistics of the vari-
ational distribution over hidden states φ∗

st
. The ambiguity term of the expected

free energy vanishes because the agent’s likelihood matrix is the identity:

ABt · φ∗
st

· (ln(ABt · φ∗
st

) − lnC
)

(A.17)

= Bt · φ∗
st

(
lnBt · φ∗

st
− lnC

)− (A lnA) · φ∗
st︸ ︷︷ ︸

=0

(A.18)

Action Selection. Having optimised a posterior over policies (which in this
context simply reduce to control states), action selection simply consists of sam-
pling the action at trial t that minimises the expected free energy, i.e., sampling
an action from the posterior marginal over actions.

φu = σ(−G) (A.19)
ut+1 ∼ Q(ut+1;φu) (A.20)
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This can be done either deterministically by selecting the most probable
control state at every timestep:

ut+1 = arg max
u

Q(ut+1;φu) (A.21)

Or, this can be done stochastically by sampling from the posterior over
actions. The stochasticity of this sampling can be further tuned by sampling
from a transformed action posterior scaled by a temperature parameter α.

ut+1 ∼ Q(ut+1;φ, α) (A.22)

B Matrix Learning. After every trial of iterative play, each agent updates its
posterior beliefs about the transition model B by optimizing Dirichlet parame-
ters φb, which are the sufficient statistics of a Dirichlet parameterization of the
posterior Q(B;φb). This is also known as ‘learning’ in the active inference lit-
erature, and analogised to neuronal processes such as synaptic plasticity, which
typically occurs on a slower timescale than hidden state inference (analogised
to rapid dynamics of neural firing rates) [9]. Dirichlet distributions are used as
the parameterizations of discrete Categorical likelihood matrices, due to their
natural role as conjugate priors for the Categorical distribution.

We supplement the generative model with an additional prior over the param-
eters of the transition model, the Dirichlet distribution P (B;b) parameterised
by a vector of positive real hyperparameters b, that can also be interpreted as
‘pseudocounts’, i.e., how many times has the agent seen this particular transition
occur, before the simulation starts. Alongside this prior we introduce a varia-
tional posterior over B that is also a Dirichlet distribution Q(B;φb). This leads
to a new expression for the variational free energy at a given time point, which
includes an additional Kullback-Leibler divergence between the variational and
generative model Dirichlet distributions over B [13]:

Ft = EQ(st,ut,B;φ̃ )

[
lnQ

(
st,ut, B; φ̃

) − lnP (ot, st,ut, A, B, C;A,b,C)
]

= EQst,ut;φ s,u

[
lnQ

(
st,ut;φs,u

) − lnP (ot, st,ut, A, C;A,C)
]
+ DKL (Q(B;φb) ‖ P (B;b))

(A.23)

This new expression means that when we minimise Ft with respect to the
variational (Dirichlet) parameters φb, we get a closed-form expression for the
variational beliefs over B, which can be expressed in terms of the Dirichlet prior
parameters b and the variational posterior over hidden states at current and
previous timesteps φst

and φst−1
.

Bt+1 =
φ∗

b

φb,0

(A.24)

φ∗
b = b + η(φst

⊗ φst−1
) (A.25)
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where Eq. (A.24) represents the update to the Dirichlet prior for the transition
distribution during learning. This is updated with respect to the learning rate
η and the transition probabilities given the previously performed action at−1. It
is this normalised updated Dirichlet prior that then becomes the new transition
probability distribution for the following trial.

The updates to the transition model are governed by the sequence of game
states. We can imagine a fictive 1-turn sequence (two trials) to imagine how a
particular sequence influences learning. If at one trial, the agents both cooper-
ated, then they will infer that the game state was CC. Given this belief, they will
infer which action to take. If they choose to defect, hoping that the opponent
will cooperate again, the resulting inferred state will be that the optimal action
is ut = uD, and after the trial they will observe the resulting state, DD. At this
point, the agents will update their beliefs about likely transitions (encoded in
the B matrix parameters), such that there will be a small incremental increase in
the conditional probability of DD, given a past state of CC and a past action of
uD, i.e., P (st+1 = DD|st = CC,ut = uD). The size of this update is determined
by a learning rate parameter η.

A.3 Deriving the Analytic Form of the Transition Function

When two deterministic agents have the same learning rate, they will perform
the same action at every timestep. This has the consequence that the two-agent
system will only ever explore two out of four states, namely CC and DD.

The posterior belief can be represented as a vector of its parameters, and
in the solution of two identical agents, it can take two possible values, which
we denote as sCC and sDD. Because the likelihood distribution is the identity
matrix, these will be maximally precise vectors:

sCC =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ sDD =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (A.26)

The initial Dirichlet parameters of the prior distribution over the transition
model are, for the cooperate and defect-conditioned transitions, respectively,

bC
0 =

⎡
⎢⎢⎣

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ bD

0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

⎤
⎥⎥⎦ (A.27)

This means that at each timestep, there are four possible updates to the
parameters of each agent’s variational posterior over the transition model φb,
given the two variational beliefs a given agent might have (sCC and sDD):
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φ∗
bt+1

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

bC
0 + η · (sCC ⊗ sCC)t

bD
0 + η · (sDD ⊗ sCC)t

bC
0 + η · (sCC ⊗ sDD)t

bD
0 + η · (sDD ⊗ sDD)t

(A.28)

When the agents are both defecting (e.g., in the first timestep when the most
likely action is defect), then the update rule for the weights of the Dirichlet
parameters of the transition matrix is governed by:

φ∗
bt<τ1

= bD
0 + η

(
sDD ⊗ sDD

)
t (A.29)

Bt+1<τ1 =
φ∗
bt<τ1

φ∗
bt<τ1 ,0

(A.30)

At some critical time τ1 the probability of cooperation exceeds that of
defection, due to the change in the expected free energies of the two actions
Gτ1(u = C) < Gτ1(u = D). This triggers the beginning of the so-called “oscil-
lation period” (see Sect. 2 in the main text), where agents periodically oscillate
between cooperating and defecting with the same phase. We can expand this
condition according to Eq. (A.18) into the following form:

BC
0 · sDD

τ1 · (lnBC
0 · sDD

τ1 − lnC
)

= BD
τ1 · sDD

τ1 · (lnBD
τ1 · sDD

τ1 − lnC
)

(A.31)

As shown in Sect. A.4, the equality in Eq. (A.31) can be written in terms of
η, C and τ1:

1
(2 + η2τ1)

[
ln

1
2(1 + ητ1)C3

+ (1 + 2ητ1) ln
1 + 2ητ1

2(1 + ητ1)C4

]
=

1
2

ln
(

1
4C1C2

)
,

(A.32)

We now let y = 1
2+2ητ1

, which will always be between 0 and 1. We can now
rewrite Eq. (A.32) as

y ln y − y lnC3 + (1 − y) ln(1 − y) − (1 − y) lnC4 =
1
2

ln
(

1
4C1C2

)
(A.33)

To derive τ1 in terms of η, we must make an approximation. We use the fact
that when y is between 0 and 1, it can be approximated by y ≈ Ayb(y −1). This
gives us the following expression as an approximation for (35)

Ayb(y − 1) − y lnC3 − A(1 − y)by − (1 − y) lnC4 =
1
2

ln
(

1
4C1C2

)
(A.34)

The optimal values for the approximation are A = 4774
4563 and b = 3

5 , however,
for simplicity, we let A = 1 and b = 1 and then the desired root of Eq. (A.34)
can be solved as:

y =
1
4
(
ln

C3

C4
+ 2 −

√
(ln

C4

C3
− 2)2 − 8(− ln

C4

2
√

C1C2

− 1
5
)
)

(A.35)
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Therefore, since y = 1
2+2ητ1

, we have that

τ1 ≈ R1

η
(A.36)

where

R1 =
2

ln C3
C4

+ 2 −
√

(ln C4
C3

− 2)2 − 8(− ln C4
2
√
C1C2

− 1
5 )

− 1 (A.37)

We now have an approximation for τ1 in terms of η and a constant R1,
which depends on the reward C which can be parameterised by β according to
Eq. (A.5).

τ1 =
R1(β)

η
(A.38)

for some precision β. We can plot this equation for different values of β to see
how the values in the reward function influence τ1 (see Fig. 6).

For τ1 < t < τ2 (i.e., during the period of oscillation dynamics shown in
Fig. 2), the update rules then become:

φD
bτ1<t<τ2

= bD
τ1 +

1
2
η(sDD ⊗ sCC)(t − τ1) (A.39)

φC
bτ1<t<τ2

= bC
0 +

1
2
η(sCC ⊗ sDD)(t − τ1) (A.40)

The update rule changes from Eq. (A.39) to Eq. (A.40) at every other trial,
from conditioning on the previous action being D, to being C. The oscillation
period persists until some time τ2. At τ2 we will have that, for the first time,
G0(u = C, φC) < G0(u = C, φD). Again, we can expand this according to
Eq. (A.18) as:

BC
τ2 · sCC · (lnBC

τ2 · sCC − lnC
)

= BD
τ2 · sCC · (lnBD

τ1 · sCC − lnC
)

(A.41)

Rewriting this equation in terms of η, τ1, τ2, and C leads to the following
inequality (for full derivation, see Sect.A.5):

1

2 + η(τ2 − τ1)

[

ln[
1

C3
(

1

2 + η(τ2 − τ1)
)] + (1 + η(τ2 − τ1)) ln

1 + η(τ2 − τ1)

C4(2 + η(τ2 − τ1))

]

= − 1

2
ln(4C1C2)

(A.42)

This time, we let y = 1
2+η(τ2−τ1)

and we have:

(y − 1) ln y − y lnC3 + (1 − y) ln(1 − y) − (1 − y) lnC4 = −1
2

ln(4C1C2)

(A.43)
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Fig. 6. Dynamics of the expected free energy. Left: The difference of EFE for
cooperation and defection (vertical axis). The roots of this equation are the values of
τ1 for different values of β, parameterizing the values in the reward function C as per
Eq. (A.42), with η = 0.2. It is clear that with a higher value of β, it will take agents
longer to cooperate, i.e. τ1 will be larger, demonstrated by the horizontal translations
of the curves as β increases. Right: Values of τ1 for different values of β parameterizing
the reward function, at different learning rates. Again, we see that as β increases, τ1
increases. We can also see that larger η competes with higher β to decrease τ1, as the
agents update their transition probability distributions at a higher frequency.

Now, notice that this is the exact same equation as Eq. (A.33) above, which
we know we can approximate as Eq. (A.34). We can then write our solution in
terms of R1:

τ2 ≈ 1
η
(
1
y

− 2) + τ1 =
1
η
(
3
2
R1) (A.44)

The resulting equation is obtained in terms of R2, where R2 = 3
2R1.

τ2 ≈ R2(β)
η

(A.45)

After τ2, agents will cooperate indefinitely according to the final steady state
update rule:

φ∗
bt>τ2

= bC
τ2 + η

(
sCC ⊗ sCC

)
t (A.46)

Bt+1>τ2 =
φ∗
bt>τ2

φ∗
bt>τ2 ,0

(A.47)

A.4 Full Derivation of τ1

Here we derive τ1 for the following equality from Eq. (A.31):

BC
0 · sDD

τ1 · (lnBC
0 · sDD

τ1 − lnC
)

= BD
τ1 · sDD

τ1 · (lnBD
τ1 · sDD

τ1 − lnC
)

(A.48)
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Using the following:

Bt =
φbt

φbt,0
(A.49)

φD
bt<τ1

= bD
0 + η(sDD ⊗ sDD)t (A.50)

φC
bt<τ1

= bC
0 (A.51)

bC
0 =

⎡
⎢⎢⎣

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ bD

0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

⎤
⎥⎥⎦ (A.52)

sDD = e4, (A.53)

we have:

φC
b0

φC
b0,0

· sDD ·
(

ln
φC
b0

φC
b0,0

· sDD − lnC

)

=
φD
bτ1

φD
bτ1 ,0

· sDD ·
(

ln
φD
bτ1

φD
bτ1 ,0

· sDD − lnC

)

(A.54)

On the LHS:

φC
b0

φC
b0,0

· sDD ·
(

ln
φC
b0

φC
b0,0

· sDD − lnC

)
= (bC

0 · e4) · ln
bC
0 · e4
C

= −1
2

ln(4C1C2)

(A.55)

On the RHS:

φD
bτ1

φD
bτ1 ,0

· sDD ·
(

ln
φD
bτ1

φD
bτ1 ,0

· sDD − lnC

)
=

φbD
τ1

,j=4

φD
bτ1 ,0

·
(

ln
φbD

τ1
,j=4

φD
bτ1 ,0

− lnC

)

(A.56)

=
1
2

1
1 + ητ1

ln(
1

2(1 + ητ1)C3
) +

1
2

1 + 2ητ1
1 + ητ1

ln(
1 + ητ1

2(1 + ητ1)C4
)

(A.57)

Our equality is therefore:

1
(2 + 2ητ1)

[
ln

1
2(1 + ητ1)C3

+ (1 + 2ητ1) ln
1 + 2ητ1

2(1 + ητ1)C4

]
= −1

2
ln(4C1C2)

(A.58)

A.5 Full Derivation of τ2

Our condition for deriving τ2 in terms of the expected free energies is

BC
τ2 · sCC · (lnBC

τ2 · sCC − lnC
)

= BD
τ2 · sCC · (lnBD

τ2 · sCC − lnC
)

(A.59)
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Here our φs between trials τ1 and τ2 are:

φD
bτ1<t<τ2

= φD
bt<τ1

+
1
2
η(sDD ⊗ sCC)(t − τ1) (A.60)

φC
bτ1<t<τ2

= bC
0 +

1
2
η(sCC ⊗ sDD)(t − τ1) (A.61)

And to solve for τ2 our inequality is

φC
bτ2

φC
bτ2 ,0

· sCC ·
(

ln
φC
bτ2

φC
bτ2 ,0

· sCC − lnC

)

=
φD
bτ2

φD
bτ2 ,0

· sDD ·
(

ln
φD
bτ2

φD
bτ2 ,0

· sDD − lnC

)

(A.62)

On the LHS we have:

φC
bτ2

φC
bτ2 ,0

· sCC ·
(

ln
φC
bτ2

φC
bτ2 ,0

· sCC − lnC

)
= −1

2
ln(4C1C2) (A.63)

On the RHS:

φC
bτ2

φC
bτ2 ,0

· sDD =
1

2 + η(τ2 − τ1)

⎡

⎢
⎢
⎣

0
0
1

1 + η(τ2 − τ1)

⎤

⎥
⎥
⎦ (A.64)

1

2 + η(τ2 − τ1)

[

ln

[
1

C3
(

1

2 + η(τ2 − τ1)
)

]

+ (1 + η(τ2 − τ1)) ln
1 + η(τ2 − τ1)

C4(2 + η(τ2 − τ1))

]

(A.65)

1

2 + η(τ2 − τ1)
ln

[
C4

C3(1 + η(τ2 − τ1)
)

]

+ ln
1 + η(τ2 − τ1)

C4(2 + η(τ2 − τ1))
(A.66)

Finally, our inequality is:

1
2 + η(τ2 − τ1)

[
ln
[

1
C3

(
1

2 + η(τ2 − τ1)

)]
+

(1 + η(τ2 − τ1)) ln
1 + η(τ2 − τ1)

C4(2 + η(τ2 − τ1))

]
= −1

2
ln(4C1C2)

(A.67)
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Abstract. The theoretical properties of active inference agents are
impressive, but how do we realize effective agents in working hardware
and software on edge devices? This is an interesting problem because the
computational load for policy exploration explodes exponentially, while
the computational resources are very limited for edge devices. In this
paper, we discuss the necessary features for a software toolbox that sup-
ports a competent non-expert engineer to develop working active infer-
ence agents. We introduce a toolbox-in-progress that aims to accelerate
the democratization of active inference agents in a similar way as Ten-
sorFlow propelled applications of deep learning technology.
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1 Introduction

This position paper aims to complement a recent white paper on designing future
intelligent ecosystems where autonomous Active InFerence (AIF) agents learn
purposeful behavior through situated interactions with other AIF agents [11].
The white paper states that these agents “... can be realized via (variational)
message passing or belief propagation on a factor graph” [11, abstract]. Here,
we discuss the computational requirements for a factor graph software toolbox
that supports this vision. Noting that the steep rise of commercialization oppor-
tunities for deep learning systems was greatly facilitated by the availability of
professional-level toolboxes such as TensorFlow and successors, we claim that a
high-quality AIF software toolbox is needed to realize the proposition in [11].
Therefore, in this paper, we ask the question: what properties should a fac-
tor graph toolbox possess that enable a competent engineer to develop relevant
AIF agents? The question is important since the number of applications for
autonomous AIF agents is expected to vastly outgrow the number of world-class
experts in AIF and robotics.

As an illustrating example, consider an engineer (Sarah) who needs to design
a quad-legged robot that is tasked to enter a building and switch off a valve.
We assume that Sarah is a competent engineer with an MS degree and a few
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. L. Buckley et al. (Eds.): IWAI 2023, CCIS 1915, pp. 173–185, 2024.
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years of experience in coding and control systems. She has some knowledge of
probabilistic modeling but is not a top expert in those fields.

In order to relieve Sarah from designing every detail of the robot, we expect
that the robot possesses some “intelligent” adaptation capabilities. Firstly, the
robot should be able to define sub-tasks and solve these tasks autonomously.
Secondly, since we do not know a-priori the inside terrain of the building, the
robot should be capable of adapting its walking and other locomotive skills under
situated conditions. Thirdly, we expect that the robot performs robustly, in real-
time, and cleverly manages the consumption of its computational resources.

All these robot properties should be supported seamlessly by Sarah’s AIF
software toolbox. For instance, she should not need to know the specifics of how
to implement robustness in her algorithms or how many time steps the robot
needs to look ahead in any given situation for effective planning purposes. We
want a toolbox that enables competent engineers to develop effective AIF agents,
not a toolbox for a select group of world-class machine learning experts. We do
expect that Sarah is capable of describing her beliefs about desired robot behav-
ior through the high-level specification of a probabilistic (world or generative)
model or, at least, the prior preferences or constraints that underwrite behavior.

After reviewing some motivating agent properties that follow immediately
from committing to free energy minimization (Sect. 2), we proceed to discuss
why message passing in a factor graph is the befitting framework for imple-
menting AIF agents (Sect. 3.1). More specifically, we argue that a reactive
programming-based implementation of message passing will be the standard in
professional-level AIF tools (Sect. 3.2). In comparison to the usual procedural
coding style, reactive message passing leads to increased robustness (Sect. 3.3),
lower power consumption (Sect. 3.5), hard real-time processing (Sect. 3.4), and
support for continual model structure adaptation (Sect. 4). In Sect. 5.3 we intro-
duce RxInfer, a toolbox-in-progress for developing AIF agents that robustly
minimize free energy in real-time by reactive message passing.

2 The Free Energy Principle and Active Inference

2.1 FEP for Synthetic AIF Agents

The Free Energy Principle (FEP) describes self-organizing behavior in persistent
natural agents (such as a brain) as the minimization of an information-theoretic
functional that is known as the variational Free Energy (FE).1 Essentially, the
FEP is a commitment to describing adaptive behavior by Hamilton’s Principle
of Least Action [14]. The process of executing FE minimization in an agent
that interacts with its environment through both active and sensory states is
called Active Inference (AIF). Crucially, the FEP claims that, in natural agents,

1 For reference, we use the following abbreviations in this paper: Active Inference
(AIF), Constrained Bethe Free Energy (CBFE), Expected Free Energy (EFE), (vari-
ational) Free Energy (FE), Free Energy Principle (FEP), Free Energy Minimization
(FEM), Message Passing (MP), Reactive Message Passing (RMP).



Design of Synthetic Active Inference Agents 175

FE minimization is all that is going on. While engineering fields such as signal
processing, control, and machine learning are considered different disciplines, in
nature these fields all relate to the same computational mechanism, namely FE
minimization.

For an engineer, this is good news. If we wish to design a synthetic AIF
agent that learns purposeful behavior solely through self-directed environmental
interactions, we can focus on two tasks:

1. Specification of the agent’s model and inference constraints. This is equivalent
to the specification of a (constrained) FE functional.

2. A recipe to continually minimize the FE in that model under situated condi-
tions, driven by environmental interactions.

We are interested in the development of an engineering toolbox to support
these two tasks.

2.2 FEM for Simultaneous Refinement of Problem Representation
and Solution Proposal

An important quality of the robot will be to define tasks for itself and solve
these tasks autonomously. Here, we shortly discuss how the FEP supports this
objective.

Consider a generative model p(x, s, u), where x are observed sensory inputs,
u are latent control signals and s are latent internal states. For notational ease,
we collect the latent variables by z = {s, u}. The variational FE for model p(x, z)
and variational posterior q(z) is then given by

F [q, p] = − log p(x)
︸ ︷︷ ︸

surprise

+
∑

z

q(z) log
q(z)
p(z|x)

︸ ︷︷ ︸

bound

(1a)

=
∑

z

q(z) log
q(z)
p(z)

︸ ︷︷ ︸

complexity

−
∑

z

q(z) log p(x|z)
︸ ︷︷ ︸

accuracy

. (1b)

The FE functional in (1a) can be interpreted as the sum of surprise (negative
log-evidence) and a non-negative bound that is the Kullback-Leibler divergence
between the variational and the optimal (Bayesian) posterior. The first term,
surprise, can be interpreted as a performance score for the problem represen-
tation in the model. This term is completely independent of any inference per-
formance issues. The second term (the bound) scores how well actual solutions
are inferred, relative to optimal (Bayesian) inference solutions. In other words,
the FE functional is a universal cost function that can be interpreted as the
sum of problem representation and solution proposal costs. FE minimization
leads toward improving both the problem representation and solving the prob-
lem through inference over latent variables. In particular, FE minimization over
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a particular model structure p should lead to nested sub-models that reflect the
causal structure of the sensory data. Sub-tasks are solved by FE minimization in
these sub-models. Hence, both creation of subtasks and solving these subtasks
are driven solely by FE minimization.

In conclusion, a high-end toolbox should be capable to minimize FE both
over (beliefs over) latent variables through adaptation of q(z) (leading to better
solution proposals for the current model p), and over the model structure p
(leading to a better problem representation).

As an aside, an interesting consequence of the FE decomposition into problem
plus solution costs is that a relatively poor problem representation with a supe-
rior inference process may be preferred (evidenced by lower FE), over a model
with a good problem representation (high Bayesian evidence) where inference
costs are high. The notion that the model with the largest Bayesian evidence
may not be the most useful model in a practical application, casts an interesting
light on the common interpretation of FE as a mere upper bound on Bayesian
evidence. We argue here that FE is actually a more principled performance score
for a model, since in addition to Bayesian model evidence, FE also scores the
performance loss in a model due to an inaccurate inference process.

2.3 AIF for Smart Data Sets and Resource Management

If we want the robot to cope with unknown physical terrain conditions, it is not
sufficient to pre-train the robot offline on a large set of relevant examples. The
robot must be able to acquire relevant new data and update its model under
real-world conditions.

FE minimization in the generative model’s roll-out to the future results in
the minimization of a cost functional known as the Expected Free Energy (EFE).
It can be shown that the EFE decomposes into a sum of pragmatic (goal-driven,
exploitation) and epistemic (information-seeking, exploration) costs [9]. As a
result, inferred actions balance the need to acquire informative data (to learn a
better predictive model) with the goal to reach desired future behavior.

In contrast to the current AI direction towards training larger models on
larger data sets, an active inference process elicits an optimally informative,
small (“smart”) data set for training of just “good-enough” models to achieve
a desired behavior. AIF agents adapt enough to accomplish the task at hand
while minimizing the consumption of resources such as energy, data, and time.
The trade-off between data accuracy and resource consumption is driven by
the decomposition in (1b) of FE as a measure of complexity minus accuracy.
According to this decomposition, more accurate models are only pursued if the
increase in accuracy outweighs the resource consumption costs.

In short, AIF agents that are driven solely by FE minimization will inherently
manage their computational resources. These agents automatically infer actions
that elicit appropriately informative data to upgrade their skills toward good-
enough performance levels. Since both the agent and environment mutually affect
each other in a real-time information processing loop, it would not be possible
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Fig. 1. Forney-style Factor Graph representation of the factorization (2).

to acquire the same data set through the sampling of the environment without
the agent’s participation.

3 FE Minimization by Reactive Message Passing

3.1 Why Message Passing-Based Inference?

Up to this point, our arguments strongly supported AIF as an information pro-
cessing engine for the robot. Unfortunately, the computational demands for sim-
ulating a non-trivial synthetic AIF agent are extreme. For comparison, consider
the human brain that minimizes in real-time, for less than 20W, a highly time-
varying FE functional (visual data rate about of about a million bits per second)
over about 100 trillion latent variables (synapses). It has been estimated that
the human brain consumes about a million times less energy than a high-tech
silicon computer on quantitatively comparable information processing tasks [17].

Clearly, the human brain minimizes FE in a very different way than is avail-
able in standard optimization toolboxes. In this section, we will argue for devel-
oping a FE minimization toolbox based on reactive message passing in a factor
graph.

First, we shortly recapitulate why message passing in factor graphs is an
effective inference method for large models. Consider a factorized multivariate
function

p(x1,x2, . . . , x7)
= fa(x1)fb(x2)fc(x1, x2, x3)fd(x4)fe(x3, x4, x5)ff (x6)fg(x5, x6, x7) (2)

Assume that we are interested in inferring (the so-called marginal distribution)

p(x3) =
∑

x1

∑

x2

∑

x4

∑

x5

∑

x6

∑

x7

p(x1, x2, . . . , x7) (3)

If each variable xi in (3) has about 10 possible values, then the sum contains
about 1 million terms. However, making use of the factorization (2) and the
distributive law [7], we can rewrite this sum as
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p(x3) =
(

−→µ 3(x3)
︷ ︸︸ ︷
∑

x1

∑

x2

fa(x1)fb(x2)fc(x1, x2, x3)
)

·

·
(

∑

x4

∑

x5

fd(x4)fe(x3, x4, x5)
(

←−µ 5(x5)
︷ ︸︸ ︷
∑

x6

∑

x7

ff (x6)fg(x5, x6, x7)
)

︸ ︷︷ ︸

←−µ 3(x3)

)

(4)

The computation in (4), which requires only a few hundred summations and
multiplications, is clearly preferred from a computational load viewpoint. To
execute (4), we need to compute intermediate results −→µ i(xi) and ←−µ i(xi) that
afford an interpretation of local messages in a Forney-style Factor Graph (FFG)
representation of the model, see Fig. 1.

Variational FE minimization can also be executed by message passing in a
factor graph. In fact, nearly all known effective variational inference methods on
factorized models can be interpreted as minimization of a so-called “constrained
Bethe Free Energy” (CBFE) functional [16]. In this formulation, posterior varia-
tional beliefs are factorized into beliefs over both the nodes and the edges of the
graph. It is possible to add constraints to these local beliefs such as requiring
that a particular variational posterior is expressed by a Gaussian distribution.
In general, CBFE minimization by message passing in a factor graph supports
local adaptation of a plethora of constraints to optimize accuracy vs resource
consumption [1,16].

Useful dynamic models for real-time processing of data streams with a large
number of latent variables are necessarily sparsely connected because otherwise,
real-time inference would not be tractable. In sparse models, the computational
complexity of inference can be vastly reduced by message passing in a factor
graph representation of the model. In particular, automated CBFE minimiza-
tion by message passing in a factor graph supports refined optimization of the
accuracy vs resource consumption balance.

3.2 Reactive vs Procedural Coding Style

Next, we discuss a key technological component for a synthetic AIF agent,
namely the requirement to execute FE minimization through a reactive pro-
gramming paradigm.

A crucial feature of all MP-based inference is that the inference process con-
sists entirely of a (parallelizable) series of small steps (messages) that individu-
ally and independently contribute to FE minimization. As a result, a message
passing-based FE minimization process can be interrupted at any time without
loss of important intermediate computational results.

In a practical setting, it is very important that an ongoing inference process
can be robustly (without crashing) interrupted at any time with a result. These
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intermediate inference results can only be reliably retrieved if the inference pro-
cess iteratively updates its beliefs in small steps, or, in other words, by message
passing. Moreover, the inference process should not be subject to a prescribed
control flow that contains for-loops. Rather, if we were to write code for an
anytime-interruptable inference process in a programming language, we should
use a reactive rather than the more common procedural programming style. In
a reactively coded inference engine, there is no code for control flow, such as
“do first this, then that”, but instead only a description of how a processing
module (a factor graph node) should react to changes in incoming messages. We
will call this process Reactive Message Passing (RMP) [2]. In an RMP infer-
ence process, there is no prescribed schedule for passing messages such as the
Viterbi or Bellman algorithm. Rather, an RMP inference process just reacts by
FE minimization whenever FE increases due to new observations.

In Fig. 2, we display the consequences of choosing a reactive programming
style for an application engineer like Sarah. The procedural programming style
in Algorithm-1 requires Sarah to provide the control flow (the “procedure”) for
the inference process. Sarah needs to write code for when to collect observations,
when to update states, etc. The specific control flow in Algorithm-1 is just an
example and there exists literature that aims to improve the efficiency of the
control flow [5,10]. In order to write an efficient inference control flow recipe for
a complex AIF agent, Sarah needs to be an absolute expert in this field.

Consider in contrast the code for reactive inference in Algorithm-2. In a reac-
tive programming paradigm, there is no control flow. Rather, the only inference
instruction is for the agent to react to any opportunity to minimize FE. When FE
minimization is executed by a reactive message passing toolbox, the application
engineer only needs to specify the model.

Aside from lowering the competence bar for application engineers to design
effective AIF agents, the procedural style of implementing FE minimization is
fundamentally inappropriate. The control flow in Algorithm-1 necessarily con-
tains many design choices that only become known during deployment. For
instance, how far should the agent roll out its model to the future for computing
the EFE? This kind of information is highly contextual and not available to
the application engineer. In contrast, the application engineer’s code for reactive
inference (“react to any FEM opportunity”) works for any model in any context.
In a reactive inference setting, the appropriate planning horizon is going to be
continually updated (inferred) with contextual information. In other words, it
is the reactive FEM process itself that leads to optimizing the inference control
flow.

3.3 RMP for Robustness

Since an AIF agent executes under situated conditions, it must perform the FE
minimization process robustly in real-time. Consider an agent whose computa-
tional resources are represented by a graph and FE minimization results from
executing MP-based inference on that graph. Any MP schedule that visits the
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Algorithm 1 Procedural AIF
1: Specify model p(x, s, u, θ)
2: for t = 1, 2, . . . do Deploy
3: Collect new observation xt

4: Update state q(st|x1:t)
5: Update desired future p̃(x>t)
6: Upd. candidate policies {π(i)}
7: for all π(i) do
8: Predict future p(x>t|st, π

(i))
9: Compute EFE G(π(i))
10: end for
11: Select π∗ = argmin

π∈{π(i)}
G(π)

12: end for

Algorithm 2 Reactive AIF
1: Specify model p(x, s, u, θ)
2: while true do Deploy
3: React to any FEM opportunity
4: end while

Fig. 2. Pseudo-code for procedural and reactive coding styles for AIF agents.

nodes in the graph in a prescribed fixed order (as would be the case in a pro-
cedural approach to FE minimization) is vulnerable to malfunction in any of
the nodes in the schedule. In principle, the FE minimization process needs to
stop after such a malfunction and proceed to compute a new MP schedule. Since
FE minimization is the only ongoing computational process, the robot basically
moves blindfolded after a reset. Clearly, for robustness, we need a system that
continues to minimize FE, even after parts of the graph break down over time.
In a reactive inference framework, collapse of a component is simply a switch to
an alternative model structure. The new model may perform better or worse at
FE minimization, but there is no reason to stop processing.

3.4 RMP for Real-Time, Situated Processing

An ongoing RMP process can always be interrupted when computational
resources have run out on a given platform. In this way, by trading compu-
tational complexity (i.e., the number of messages) for accuracy, any RMP-based
inference process can be scaled down to a real-time processing procedure, where
of course a prediction accuracy price may have to be paid, depending on the
available computational resources. In short, FE minimization in any model can
be executed in real-time on any computational platform if we implement infer-
ence by RMP in a factor graph.

3.5 RMP for Low Power Consumption

Similarly, an ongoing RMP process can always be terminated if the expected
improvement in accuracy does not outweigh the expected computational load
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that additional messages would incur.2 Note that, since FE decomposes as com-
putational complexity minus accuracy, interrupting an RMP-based inference pro-
cess for this reason is fully consistent with the goal of FE minimization.

Interrupting an ongoing MP process by any of the above-mentioned rea-
sons (e.g., node malfunction, running out of computational resources, expected
processing costs outweighing expected accuracy gains, etc.), in principle always
leads to sacrificing some prediction accuracy in favor of saving computational
costs. Crucially, these interrupts will not cause a system-wide crash in a reactive
system.

4 Model Structure Adaptation

In Sect. 2.2, we touched upon the notion that FE minimization should ideally
drive the generative model p to evolve to structurally segregated but communi-
cating sub-models that reflect the causal structure of the environment. Techni-
cally, this is due to the drive for a lower surprise (− log p(x)).

There is another reason why online structural adaptation is important. Free
energy minimization over the structure of p should also lead to a model structure
for which inference costs DKL[q(z)||p(z|x)] are lower by moving p(z|x) closer to
q(z). Consider again the procedural and reactive inference code in Fig. 2. The
control flow in the procedural code aims to cleverly steer the inference process
toward maximal inference accuracy for minimal computational costs. In contrast,
the reactive code just declares that the system should react (by message passing)
to any FE minimization opportunity. In the reactive framework, clever inference
is learned over time by continual minimization over all movable parts of the
CBFE, i.e., by FEM over states, parameters, structure (adaptation of p), and
constraints (adaptation of the structure of q). To learn the most effective paths
for inference, the toolbox should support structural adaptation over both p and
q.

Unfortunately, online structural adaptation during the deployment of the
robot is still an ongoing research issue, e.g., [3,8,15]. One technical difficulty is
that an efficient inference control flow (which states are updated at what time,
etc.) may change if the structure of the generative model changes. In a procedural
programming style, we would need to reset the system and reprogram the infer-
ence code in Algorithm-1 (in Fig. 2). This is incompatible with the demand that
the agent adapts during deployment. As discussed above, a reactive program-
ming style solves this issue since the application inference code (Algorithm-2 in
Fig. 2) is independent of the model structure.

2 The computational load and complexity can only be equated in the absence of a Von
Neumann bottleneck (i.e., with mortal computation or in-memory processing). This
is because energy and time are ‘wasted’ by reading and writing to memory.
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5 Discussion

5.1 Review of Arguments

We shortly summarize our view on a professional-level supporting software tool-
box for the design of relevant AIF agents, see also Table 1. In Sect. 2, we discussed
a few extraordinary features that follow straightaway from committing to free
energy minimization as the sole computational mechanism for a future AI ecosys-
tem as proposed in Friston et al. [11]. First, the FE functional in an AIF agent
can be interpreted as a universal performance criterion that applies in principle
to all problems. If FEM can be extended to structural model adaptation, then
an AIF agent is naturally able to create and solve sub-problems. Moreover, by
virtue of the decomposition of EFE into a sum of information- and goal-seeking
costs, AIF agents naturally seek out small “smart” data sets.

In terms of FEM implementation, we asserted that useful models are highly
factorized and sparse. Efficient inference in factorized models can always be
described as message passing in a factor graph. In particular, nearly all known
variants of highly efficient message passing algorithms for FEM can be formu-
lated in a single framework as minimizing a Constrained Bethe Free Energy
(CBFE).

We then claimed that a reactive rather than procedural processing strategy is
essential. Reactive message passing-based (RMP) inference is always interrupt-
ible with an inference result, thus supporting guaranteed real-time processing,
which is a hard requirement for AIF agents in the real world. In comparison to
the more common procedural programming approach to FEM, reactive process-
ing also improves robustness, resource consumption, and the capability to make
structural changes without the need for resetting the inference process.

This latter feature, support for online structural adaptation is also a vital
feature of a high-quality AIF toolbox. Online structural adaptation leads to
both continual problem representation refinement (by lowering surprise) and to
a more efficient inference process.

Table 1. Summary of benefits for supporting reactive message passing and structural
adaptation in an AIF agent.

realization technology benefits

1 FEP, AIF one solution approach;
smart data

2 reactive message passing low power;
robustness;
real-time

3 structural adaptation problem refinement;
clever inference



Design of Synthetic Active Inference Agents 183

5.2 Review of Existing Tools

Currently, there exists a small but vibrant research community on the develop-
ment of open-source tools for simulating synthetic AIF agents. In this com-
munity, a few supporting packages have been released, including SPM [12],
PyMDP [13] and ForneyLab [6]. The SPM toolbox was originally written by
Karl Friston and colleagues, and has developed into a very large set of tools and
demonstrations for experimental validation of the scientific output of the UCL
team and collaborators. PyMDP is a more recent Python package for simulating
discrete-state POMDP models by Conor Heins, Alexander Tschantz and a team
of collaborators. ForneyLab.jl is a Julia package from BIASlab (http://biaslab.
org) for simulating FE minimization by message passing in Forney-style factor
graphs. Unfortunately, none of the above-mentioned tools support reactive mes-
sage passing-based inference. Therefore, we believe that these tools will serve the
community well as AIF prototyping and validation tools, but they will not scale
to support real-time, robust simulation of AIF agents with commercializable
value.

5.3 Reactive Message Passing with RxInfer

More recently, BIASlab has released the open-source Julia package RxInfer
(http://rxinfer.ml) to support an engineer at Sarah’s level to develop commer-
cially relevant AIF agents that minimize FE by automated reactive message
passing in a factor graph [2]. Julia is a modern open-source scientific program-
ming language with roughly the syntax of MATLAB and out-of-the-box speed
of C [4].

The development process of RxInfer focuses on the following priorities:

1. model space coverage
– RxInfer aims to support reactive message passing-based FEM for a very

large set of freely definable relevant probabilistic models.
2. user experience

– RxInfer aims to support a busy, competent researcher or developer who
understands probabilistic modeling (but doesn’t know Julia) to design
and deploy an AIF agent into the world. In particular, a user-friendly
specification of nested AIF agents should be supported.

3. adaptation
– RxInfer aims to support continual adaptation by automated FEM over

all movable parts of the CBFE functional, including states, parameters,
structure, and variational constraints.

4. real-time
– RxInfer aims to process data streams in “hard” real-time, under situated

conditions, even for large models. Larger models may lead to less accurate
inference (in terms of KL-divergence between variational and Bayesian
posteriors), but no crashes.

http://biaslab.org
http://biaslab.org
http://rxinfer.ml
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5. low-power
– RxInfer aims to process data streams on any, possibly time-varying,

power budget. Lower power budgets may lead to less accurate inference
but no crashes.

At the time of writing this paper, RxInfer supports fast and robust auto-
mated CBFE minimization by reactive message passing for states and parame-
ters in a large set of freely definable models. RxInfer processes streaming data
very fast, but not yet guaranteed in hard real-time. User-friendly specifications
of AIF agents will be released this summer. Model structure adaptation is sup-
ported by NUV priors (normal priors with unknown variance) [15], but not yet
by online Bayesian model reduction [3,8]. RxInfer comes with a large set of
examples and is slated to support the above priority list in the future.

6 Conclusions

Supported by RxInfer or a similar toolbox, future AI engineers will no longer
design end-product algorithms, but will instead design the designers (AIF agents)
of production algorithms in short and easy-readable code scripts. Along with
[11], we think that the potential benefits of shared intelligence in ecosystems
of communicating AIF agents are hard to overstate. As we have argued in this
position paper, the required underlying technology for realizing this vision is
very demanding and currently not yet available. Still, we also think it is not out
of reach and is one of the most exciting ongoing research threads in the AI field.

Acknowledgments. I would like to acknowledge my colleagues at BIASlab (http://
biaslab.org) for the stimulating work environment and the anonymous reviewers for
excellent feedback on the draft version. Some wording in this document, such as foot-
note (see footnote 2), comes straight from a reviewer.
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Abstract. Organisms have to keep track of the information in the envi-
ronment that is relevant for adaptive behaviour. Transmitting informa-
tion in an economical and efficient way becomes crucial for limited-
resourced agents living in high-dimensional environments. The efficient
coding hypothesis claims that organisms seek to maximize the informa-
tion about the sensory input in an efficient manner. Under Bayesian
inference, this means that the role of the brain is to efficiently allocate
resources in order to make predictions about the hidden states that cause
sensory data. However, neither of those frameworks accounts for how that
information is exploited downstream, leaving aside the action-oriented
role of the perceptual system. Rate-distortion theory, which defines opti-
mal lossy compression under constraints, has gained attention as a for-
mal framework to explore goal-oriented efficient coding. In this work, we
explore action-centric representations in the context of rate-distortion
theory. We also provide a mathematical definition of abstractions and
we argue that, as a summary of the relevant details, they can be used to
fix the content of action-centric representations. We model action-centric
representations using VAEs and we find that such representations i) are
efficient lossy compressions of the data; ii) capture the task-dependent
invariances necessary to achieve successful behaviour; and iii) are not in
service of reconstructing the data. Thus, we conclude that full reconstruc-
tion of the data is rarely needed to achieve optimal behaviour, consistent
with a teleological approach to perception.

Keywords: Rate-distortion theory · Action-centric representations ·
Efficient coding · Bayesian Inference

1 Introduction

Embodied agents have to focus on the relevant information from their environ-
ment to achieve adaptive behaviour. Their resource-limited cognition and the
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high-complexity structure inherent to the environment force them to economize
the transmission of information. Thus, the goal of the perceptual system is to
generate representations that are useful for successful behaviour while at the
same being encoded in the most efficient manner.

A well-known hypothesis in theoretical neuroscience called the efficient cod-
ing hypothesis proposes that the neural coding in the brain is optimized to max-
imize sensory information under metabolic and capacity constraints [3,13,23].
In particular, this hypothesis suggests that neurons are tuned to the statisti-
cal properties of the environment, which allows them to efficiently allocate sig-
naling resources to generate compressed low-dimensional representations of the
environment. In this theoretical framework, it is commonly assumed that the
function of neurons is to maximize their capacity to account for all the vari-
ability in the sensory input. In information theory terms, this means that the
brain seeks to maximize the mutual information between stimuli and neurons’
response to reduce as much as possible the uncertainty about the environment,
which is defined by its entropy. While this hypothesis answers the question about
information processing under biological constraints, it leaves aside the utilitarian
aspect of perception [11,14,15,18,20].

Cognition can’t be fully understood without its ecological context, as agents
are coupled with their environment forming a perception-action feedback loop
[22]. In this sense, the functional role of perceptual processing has to be in service
of achieving behavioural objectives, and to do that, perceptual representations
must efficiently encode the relevant information needed by the motor system to
guide future actions. Thus, a key component of the perceptual system is to sum-
marize relevant sensory information to generate action-centric representations.

The teleological essence of the perceptual system imposes a normativity on
representations: a perceptual representation is accurate if it captures the relevant
information needed downstream and discards the irrelevant details. Thus, we
need an extra ingredient to account for the goodness of representations under
constraints. This is where the rate-distortion theory comes into play [19]. This
subfield of information theory defines the optimal trade-off between channel
capacity and expected communication error. When error-free communication is
not necessary to guide behaviour, the optimal encoding is a lossy compression
of the input.

Interestingly, rate-distortion theory can be seen as a way to perform Bayesian
inference under constraints. Under a Bayesian approach to cognition, the brain
performs inference to compute an optimal posterior distribution over hidden
environmental states given sensory data [8]. As computing the true posterior
is usually intractable, the brain approximates the true posterior by optimizing
the variational free energy [4,9,10]. The main conceptual contribution of rate-
distortion theory is to define the “goodness” of that approximation, as comput-
ing the true posterior is not always necessary to act optimally. In the context of
active inference, it has been shown that action-oriented models learn parsimo-
nious representations of the environment by capturing relevant information for
behaviour [21]. In the same spirit, we investigate the information-theoretic prop-



Action-Centric Representations and Rate-Distortion Theory 191

erties of action-centric representations and their relation to the formal definition
of abstractions we propose.

In this work, we explore action-centric representations under the lens of
rate-distortion theory to account for the teleological aspect of perception. To
do that, we provide a mathematical definition of abstraction that allows us to
specify the task-relevant information that should carry an action-centric rep-
resentation. Given the tight connection between Bayesian Inference and rate-
distortion theory, we use a Variational Autoencoder (VAE) framework to model
action-centric representations as optimal lossy compression. Our results show
that action-centric representations are optimal lossy compressions of the data;
can be successfully used in downstream tasks; and crucially, they achieve that
without being in service of reconstructing the data.

2 Efficient Coding and Rate-Distortion Theory

2.1 Efficient Coding

The efficient coding hypothesis states that neurons are optimized to maximize
the information they carry about sensory states. In doing so, neurons have to
generate minimal redundancy codes to economically use limited resources. In
particular, neurons seek to maximize the ratio between information about sen-
sory inputs, defined by the mutual information I(X;Z) between sensory data
X and neural responses Z, and the channel capacity C: I(X;Z)

C . The maximum
mutual information is upper bounded by the channel capacity

C ≥ I(X;Z) (1)

so the best efficient coding satisfies

I(X;Z) = C (2)

where neuronal encoding exploits the whole bandwidth of the channel.

2.2 Rate-Distortion Theory as Goal-Oriented Efficient Coding

Under the classical conception of efficient coding, the exploitation of informa-
tion downstream is ignored. When not all sensory information is needed to guide
behaviour, error-free communication is not expected. This is precisely what is
addressed by the rate-distortion theory, which provides the theoretical founda-
tions for optimal lossy data compression. Formally, the rate-distortion function
defines an optimal lossy compression Z of some data X as the minimization of
their mutual information I(X;Z) given some expected distortion D associated
with reconstructing X from its lossy compression Z. It is defined as [6]

R(D) = min
q(z|x):Dq(x,z)≤D

I(X;Z) (3)
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where q is the optimal distribution of z given x that satisfies the expected dis-
tortion constraint and the rate R is an upper bound on the mutual information:

R ≥ I(X;Z) (4)

The expected distortion D is defined by some arbitrary loss function (e.g., mean-
squared error) that quantifies the faithfulness of information transmission (i.e.,
how well can the data be recovered from its optimal lossy compression). Lossy
compression sacrifices the capacity to represent all the information in the input
in service of transmitting information that allows adaptive behaviour. Having
a faithfulness criterion allows the brain to efficiently represent the world by
allocating just the necessary amount of resources required to navigate the envi-
ronment (Fig. 1). Thus, rate-distortion adds a teleological perspective to efficient
coding that shifts the focus from efficient information maximization to efficient
transmission of action-oriented information.

In the lossy regime of the rate-distortion (i.e., all points such that D > 0), the
obtained representations can be understood as abstractions of the data, as their
function is to summarize the relevant properties of the data needed downstream.
In the next section, we provide a mathematical definition of abstractions based
on the intuition that are entities that convey the necessary information to answer
a set of queries about the data. The mathematical formulation of abstractions
is crucial to determine the content of action-centric representations.

Fig. 1. Rate-distortion function for a discrete random variable with four uniformly
distributed states. Assuming that behavioral objectives are achievable even when half of
the information generated at the source is missing; that is, when the expected distortion
D does not exceed 0.5 (x-axis), an optimal agent with bounded rationality can rely on
a lossy compression scheme and transmit information at a rate R of 0.20 bits (y-axis).

3 Abstractions and Action-Centric Representations

3.1 Mathematical Formalization of Abstractions

An abstraction is the reduction of complexity by discarding certain features while
preserving others. As a relational concept, an abstraction involves two compo-
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nents: its object (what is being abstracted) and its content (what the abstraction
is about). The content of the abstraction is a summary of the relevant proper-
ties of its object and the relevancy is fixed, ultimately, by the agent’s needs.
Thus, abstractions are intrinsically teleological entities; that is, their meaning or
content is fixed by their function or purpose, which is to transmit information
about the properties of interest for an agent.

Following [16], we address the content of abstractions as the information
necessary to answer a set of queries about the data. A query captures what the
agent wants to know about the data (i.e., what is relevant). Formally, given a
set of queries about the data Q = {Q1, Q2 . . . Q3}, each query is a mapping from
the data distribution to a probability distribution over a subset of elements of
the data Q : X → p(q|x). A good abstraction is one that fulfills its purpose;
namely, one that keeps track of those properties that make it possible to answer
a particular query. Thus, the ‘goodness’ of an abstraction z for a given query
can be defined as:

LQ(x, z) = D[Q(x)||Q(r(z))] (5)

where Q(x) is the query distribution over the true system or data, Q(r(z)) is
the query distribution over a lossy reconstruction of the data r(z) produced by
the abstraction z, and D is an arbitrary divergence function. Without loss of
generality, the ‘goodness’ of an abstraction given a set of queries can be defined
as the weighted loss over all the queries given the abstraction:

L(x, z) =
∑

Qi∈Q

p(Qi)LQi
(x, z) (6)

Ideally, the mutual information between the abstractions and the query
should be the same as the information transmitted between the data and the
query:

I(X;Q) = I(Q;Z) (7)

The intuition is that a good abstraction Z of the data should reduce the uncer-
tainty of the data X in the same way as the query Q does.

3.2 Abstractions as Sufficient and Non-superfluous Representations

Following [7], an abstract representation Z that captures the relevant details
of the data X to answer a query Q should be sufficient (I(X;Q|Z) = 0) and
non-superfluous (I(X;Z|Q) = 0):

I(X;Z|Q)︸ ︷︷ ︸
Superfluous

= I(X;Z) − I(X;Q;Z) (8)

= I(X;Z) − I(X;Q) + I(X;Q|Z)︸ ︷︷ ︸
Sufficient

(9)

= I(X;Z) − I(X;Q) (10)
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therefore
(
I(X;Z|Q) = 0

) ∧ (
I(X;Q|Z) = 0

) ⇐⇒ I(X;Z) = I(X;Q) (11)

From an information theory perspective, a good abstraction Z only carries the
relevant information in the data; that is, the information necessary to answer a
query. Note that this is a continuum where at one extreme the optimal compres-
sion captures all the information in the data when the query contains the same
information as the data H(Q) = H(X) (an ideal scenario in the efficient coding
hypothesis, where the goal is to maximize mutual information):

I(X;Q) = H(X) − H(X|Q) = H(X) − H(X|X) = H(X) (12)

therefore

I(X;Z) = I(X;Q) (13)
I(X;Z) = H(X) (14)

which corresponds to the lossless compression regime of the rate-distortion func-
tion. On the contrary, when the communication channel is closed, then we recover
the other extreme of the rate-distortion curve, where the mutual information is
zero. This is the case when knowing the query does not reduce the uncertainty
of the data:

I(X;Q) = H(X) − H(X|Q) = H(X) − H(X) = 0 (15)

therefore

I(X;Z) = I(X;Q) (16)
I(X;Z) = 0 (17)

Any other stage in between is a case where the query carries partial information
about the data. Importantly, these information-theoretic entities are implicitly
optimized in rate-distortion theory. On the one hand, sufficient information is
related to predictability and, therefore, to communication fidelity, which is satis-
fied when the expected distortion allows for answering the query (i.e., successful
behaviour). On the other hand, non-superfluous information is related to the
minimization of the mutual information up to a point in which only query-
relevant information is encoded in the abstraction. Thus, optimal lossy repre-
sentations, whose function is to encode the relevant invariances and symmetries
in the data, lie in the rate-distortion curve.

4 Variational Free Energy and Rate-Distortion Theory

As computing the rate-distortion function is intractable in high-dimensional sys-
tems [6], variational inference can be used as a proxy of the amount of informa-
tion transmitted through a communication channel. In variational inference, a
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quantity called variational free energy sets an upper bound on the sensory sur-
prisal (i.e., the entropy of sensory states), and by minimizing it is reduced the
uncertainty about the sensory data allowing for predictability of future states
and adaptive behaviour. One common variational free energy decomposition is
the ELBO, which involves two terms, accuracy and complexity, and is formally
defined as [17]

F =
∫

q(z|x) ln
q(z|x)
p(x, z)

(18)

F =
∫

q(z|x) ln
q(z|x)
p(z)

−
∫

q(z|x) ln p(x|z) (19)

F = DKL[q(z|x)||p(z)]︸ ︷︷ ︸
Complexity

− E
z∼q

[ln p(x|z)]
︸ ︷︷ ︸

Accuracy

(20)

To model lossy representations of the data, we use VAEs due to its close rela-
tion to variational inference and rate-distortion theory. VAEs is an unsupervised
learning framework that captures the underlying data distribution by using i)
an encoder that learns a latent representation of the data; and ii) a decoder
that generates data-like samples from the latent representation. The objective
function optimized by VAEs is the ELBO, where the complexity term can be
seen as a regularizer applied to the latent space, and the accuracy term as the
faithfulness of the decoder’s reconstruction.

As has been recently shown [1,12], the ELBO is implicitly optimizing the
rate-distortion function. On the one hand, the expected complexity is an upper
bound on the mutual information I(X;Z) (see Appendix C for full derivation):

E
p(x)

[
DKL[q(z|x)||p(z)]

]≥ I(X;Z) (21)

just as the rate R is in rate-distortion theory. On the other hand, the expected
distortion can be measured using any loss function that captures how faithful the
reconstruction of the decoder resembles the input data (e.g., hamming distance).
In this case, the negative log-likelihood used in VAEs can be used as a distortion
measure between the input and its reconstruction, so D can be defined as:

D = − E
z∼qφ(z|x)

[
log pθ(x|z)

]
(22)

Thus, variational inference can be understood through the lens of rate-distortion
is characterized as

F = − E
z∼qφ(z|x)

[
log pθ(x|z)

]

︸ ︷︷ ︸
Distortion

+DKL

[
qφ(z|x)||p(z)

]
︸ ︷︷ ︸

Rate

(23)
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5 Methods

5.1 Model

Inspired by the utilitarian perspective on the efficient coding hypothesis and
the mathematical foundations of abstractions, we present a modified VAEs to
model action-centric representations (Fig. 2). The main novelty of the VAEs
presented here lies in the accuracy term of the free energy (Eq. (20)). Contrary
to vanilla VAEs, where the goal is to learn latent representations of the data to
reconstruct it as faithfully as possible, here we are interested in learning action-
centric representations that convey sufficient and non-superfluous information
about a query. In this model, full reconstruction of the data is not expected.
The final form of the objective function for our action-centric VAEs is:

F = −D[Q(x)||Q(r(z))] + βDKL

[
qφ(z|x)||p(z)

]
(24)

where β is the gradient of the rate with respect to the distortion ∂R
∂D = β and

here it’s used to target specific regimes of the rate-distortion plane [5]. The
accuracy is modified to account for the goodness of the abstraction. The training
pipeline is as follows. First, we define a query to be the discrimination of the
ten classes of the FASHION-MNIST dataset. We first trained a classifier, using a
CNN, on the task specified by the query (i.e., multiclass classification). Once the
discriminator is trained we trained both the vanilla VAEs and our action-centric
VAEs. Importantly, both VAEs have the same channel capacity, as they share the
same architecture, so the maximum achievable rate in both models is the same.
The crucial difference is that our VAEs is not trained to fully reconstruct the data
but to generate reconstructions that can be well-classified by the discriminator.

(a) Algorithmic details of the action-centric
VAEs

(b) Architecture of the action-
centric VAEs

Fig. 2. Action-centric VAEs. Left: algorithmic level of the action-centric VAEs. Right:
a schematic overview of the architecture. The novel component is in the accuracy
term of the ELBO. Instead of measuring the faithfulness of the reconstruction, it is
measured how good is the reconstruction for a specific task, which in this case is an
image classifier.
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By doing this divergence measure, we can evaluate the goodness of the abstract
representations for the given query. To compute the rate-distortion function, we
trained several VAEs using different β to study the rate-distortion trade-off in
different regimes and the potential differences between vanilla VAEs and our
model.

Using this model we can investigate whether the latent space can efficiently
encode just the relevant invariances and symmetries required for the downstream
task without the need to generate faithful reconstructions of the data. If that is
the case, full reconstruction no longer becomes a necessary condition for goal-
oriented representations. In the next section, we present the main results and
their connection to the theoretical framework presented previously.

5.2 Results

(a) Accuracy as a function
of the number of steps.

(b) Fully reconstruction
objective.

(c) Action-centric objec-
tive.

Fig. 3. Rate-distortion curve made up of different VAEs. Note that as a distortion
measure here we use the accuracy. Left figure: vanilla VAEs that try to maximize
the mutual information given the channel constraints. Right figure: lossy compression
VAEs whose function is to maximize utility downstream given the channel constraints.

The results regarding the transmission of information in the two different VAEs
are shown in Fig. 3. In (Fig. 3a) it can be seen how action-oriented VAEs con-
verges faster to an encoding-decoding scheme that is useful for the downstream
task (measured by the accuracy), compared to the VAEs. This indicates that
action-centric representations might require less exposure to data, which makes
them more efficient in terms of exploiting the available information.

Figure 3b and Fig. 3c show the rate-distortion curve for both types of VAEs. It
is clear how action-oriented representations require significantly less information
from the data to achieve better results in the downstream task. In particular, it
can be seen that transmitting at a rate of around 10 bits the action-centric VAEs
reaches almost 85% of accuracy, compared to the 67% achieved by the vanilla
VAEs at approximately the same rate. This suggests that lossy compression leads
to efficient codings and, importantly, to better behaviour.

The results so far indicate that the main function of representations might
not be to fully reconstruct the data, but not capture the relevant invariances in
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the data exploited by optimal behaviour. We explicitly show this by investigating
the reconstructions obtained by action-oriented representations. Figure 4 shows
a sample of the reconstructions obtained by the vanilla and action-centric VAEs,
respectively. While the vanilla VAEs generates relatively faithful reconstructions
of the data, the action-centric VAEs generates meaningless and uninterpretable
images. Interestingly, these action-oriented reconstructions are classified with
approximately 85% of accuracy, which suggests that the underlying structure of
these reconstructions is preserving some important invariances and symmetries
of the data. On the contrary, the full reconstruction might carry irrelevant infor-
mation that is non-task specific, which could explain why they are more difficult
to classify.

Fig. 4. Data reconstruction by VAEs and action-centric VAEs.

6 Discussion

Agents need to navigate complex environments with limited biological informa-
tion processing. Under this circumstance, an optimal perceptual system has to
efficiently allocate cognitive resources to transmit the relevant sensory informa-
tion to achieve successful behaviour. Thus, the goal of perception is not to gen-
erate faithful reconstructions of the sensory input, but abstract representations
that are useful downstream.

A common approach to representations in Artificial Intelligence and Neuro-
science is that they should be in service of fully reconstructing the data. However,
such representations will carry irrelevant information for downstream tasks that
only depend on the exploitation of specific invariances and symmetries of the
data.

In this work, we explore useful efficient coding within the framework of rate-
distortion to explore optimal information processing for task-dependent con-
texts. We have provided a formal definition of abstractions that can be used
to learn action-centric representations whose main function is to capture the
task-dependant invariances in the data. Such lossy compressions of the data lie
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near optimal points of the rate-distortion curve. Crucially, we show that action-
centric representations i) are efficient lossy compressions of the data; ii) capture
the task-dependent invariances necessary to achieve adaptive behaviour; and iii)
are not in service of reconstructing the data. This could shed some light on how
organisms are not optimized to reconstruct their environment; instead, their
representational system is tuned to convey action-relevant information.

Interestingly, our work resonates with recent research on multimodal learning
such as the joint embedding predictive architecture and multiview systems [2,
7]. The main objective of these models is to obtain representations that are
useful downstream but from which it’s not possible to reconstruct the data.
These representations learn the relevant invariances by maximizing only the
information shared across different views or modalities of the data. We argue that
action-centric representations operate in a similar way, as shared information
across views is an implicit way to define a query (see Appendix D).

An interesting line of research is to explore faithful reconstruction in the
context of fine-grained queries such as pixel predictability. We hypothesize that,
as the number of pixel-specific queries approaches the pixel space of the image,
the abstract representation might allow for faithful reconstruction of the data.
Although that could be to the detriment of worse performance on downstream
tasks.

In conclusion, this work sets a promising line of research in the field of repre-
sentational theory by understanding representations not as faithful reconstruc-
tions of the data but as action-driven entities.

A Model Details

The classifier used to implement the query is a deep convolutional network
(CNN) with three convolutional layers. The number of filters for the first layer is
16, and it is doubled in each layer. The kernel size is 3 in all layers, and padding
is set to 1, also in all layers. Stride is 1 in the first two layers, and 2 in the third
one. In addition, batch normalization is applied in each layer; 16 for the first one,
and doubled in each layer. The activation function in each layer is ReLU, and
max pooling is applied in the first two layers, both with a kernel size of 2, and
stride of 2 in the first and 1 in the second. Between the first two fully connected
layers it is used a dropout of 0.2. The number of neurons for the fully connected
layers is 512, 128, and 10. We use the Adam optimizer with a learning rate of
0.001. We trained the classifier for 15 epochs with a batch size of 64.

Regarding the VAEs, the encoder is a CNN of 4 layers with the same param-
eters as the CNN. Every VAEs trained has 8 latent dimensions and are trained
for 20 epochs using a batch size of 64. In the case of the vanilla VAEs, the β used
to draw the rate-distortion curve are 100, 40, 20, 10, 5, 1, 0.5, 0.1, and 0.01. For
the custom VAEs, the β values are 6e−2, 3e−2, 1e−2, 6e−3, 3e−3, 1e−3, 5e−4,
1e−4, 1e−5, 1e−6.
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B Latent Space of VAEs

PCA to explore and show the latent space of the vanilla and action-centric VAEs
that achieve a good performance downstream (Fig. 5):

(a) Vanilla VAEs (β = 0.5) (b) Action-centric VAEs (β = 1e 4)

Fig. 5. Latent spaces of the two types of VAEs.

As can be seen, our VAEs achieves a compact meaningful encoding of the
data, with an apparent better separability among classes than the vanilla VAEs.

C ELBO and RDT

One way to derive the upper bound on mutual information from the complexity
term of the ELBO is:

E
p(x)

[
DKL[q(z|x)||p(z)]

]
= E

p(x)

[∫
q(z|x) ln

q(z|x)

p(z)
dxdz

]
(25)

= E
p(x)

[∫
q(z|x) ln

q(z|x)q(z)

p(z)q(z)
dxdz

]
(26)

= E
p(x)

[∫
q(z|x) ln

q(z|x)

q(z)
dxdz +

∫
q(z|x) ln

q(z)

p(z)
dxdz

]
(27)

=

∫
q(z|x)q(x) ln

q(z|x)

q(z)
dxdz +

∫
q(z|x)q(x) ln

q(z)

p(z)
dxdz

(28)

=

∫
q(x, z) ln

q(x, z)

q(x)q(z)
dxdz +

∫
q(z) ln

q(z)

p(z)
dz (29)

= I(X; Z) + DKL[q(z)||p(z)] (30)
≥ I(X; Z) (31)
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Another way to derive this upper bound is by splitting the expected com-
plexity into conditional entropy and entropy terms:

E
p(x)

[
DKL[q(z|x)||p(z)]

]
= E

p(x)

[∫
q(z|x) ln

q(z|x)
p(z)

dxdz
]

(32)

=
∫

q(z|x)q(x) ln q(z|x)dxdz −
∫

q(z|x)q(x) ln p(z)dxdz

(33)

=
∫

q(x, z) ln q(z|x)dxdz −
∫

q(z) ln p(z)dz (34)

In the last equation, we can see that the first term is the negative conditional
entropy −H(Z|X) which is one of the two terms in which the mutual information
is decomposed: I(Z;X) = H(Z) − H(Z|X). To get the entropy H(Z) we need
to replace p(z) by an approximate distribution q(z). By Jensen’s inequality, we
know that DKL[q(z)||p(z)] ≥ 0, therefore, we know that:

∫
q(z) ln q(z) −

∫
q(z) ln p(z) ≥ 0 (35)

∫
q(z) ln q(z) ≥

∫
q(z) ln p(z) (36)

Replacing that term in the previous expression (34) we get:

∫
q(x, z) ln q(z|x)dxdz −

∫
q(z) ln p(z)dz ≥

∫
q(x, z) ln q(z|x)dxdz −

∫
q(z) ln q(z)dz

(37)∫
q(x, z) ln q(z|x)dxdz −

∫
q(z, x) ln q(z)dxdz ≥

∫
q(x, z) ln

q(x, z)

q(x)q(z)
dxdz = I(X;Z) (38)

D Multiview Architectures and Queries

Given a query Q(X) over X in a multiview scenario it can be understood as the
subset of information contained in the intersection of X and t(X) such that:

Q(X) ∈ X ∩ t(X) (39)

as the transformation t only preserves those symmetries relevant for the query
(i.e., relevant to solve a set of tasks that only depend on those invariances).
Therefore, the relevant query in a multiview scenario can be defined as:

Q(X) = p(X, t(X)) (40)
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Mutual information between X and Z and between Q(X) and Z is (assuming
that X, X’ and Z form a dag where Z only depends on X):

I(X;Z) =
∫

p(x, z) ln
p(x, z)

p(x)p(z)
dxdz (41)

I(Q(X);Z) =
∫

p(q, z) ln
p(q, z)

p(q)p(z)
dqdz (42)

=
∫

p(x, x′, z) ln
p(x, x′, z)

p(x, x′)p(z)
dxdx′dz (43)

=
∫

p(x, x′, z) ln
p(x′)p(x|x′)p(z|x)
p(x′)p(x|x′)p(z)

dxdx′dz (44)

=
∫

p(x, x′, z) ln
p(z|x)
p(z)

dxdx′dz (45)

=
∫

p(x, x′)p(z|x) ln
p(x, z)

p(x)p(z)
dxdx′dz (46)

=
∫

p(x)
p(x, z)
p(x)

ln
p(x, z)

p(x)p(z)
dxdz (47)

=
∫

p(x, z) ln
p(x, z)

p(x)p(z)
dxdz (48)

= I(X;Z) = I(X;X ′) (49)

The mutual information between the latent Z and one of the views X is equal
to the mutual information between the query distribution Q(X) and the latent
Z. As the mutual information between an optimal lossy representation and its
corresponding view is equal to the mutual information between views, then, the
information conveyed by the query is the one shared by the views. This shows
that the multiview architecture is essentially a query-oriented system where the
transformations applied to the data keep specific invariances with respect to a
set of implicit queries of interest.
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Abstract. Living organisms need to acquire both cognitive maps for
learning the structure of the world and planning mechanisms able to deal
with the challenges of navigating ambiguous environments. Although sig-
nificant progress has been made in each of these areas independently,
the best way to integrate them is an open research question. In this
paper, we propose the integration of a statistical model of cognitive
map formation within an active inference agent that supports plan-
ning under uncertainty. Specifically, we examine the clone-structured
cognitive graph (CSCG) model of cognitive map formation and com-
pare a naive clone graph agent with an active inference-driven clone
graph agent, in three spatial navigation scenarios. Our findings demon-
strate that while both agents are effective in simple scenarios, the active
inference agent is more effective when planning in challenging scenar-
ios, in which sensory observations provide ambiguous information about
location.

Keywords: Cognitive map · Active inference · Navigation · Planning

1 Introduction

Cognitive maps [1] are mental representations of spatial and conceptual rela-
tionships. They are considered essential components for intelligent reasoning and
planning, as they are often associated with navigation in humans and rodents [2].
For this reason, a lot of recent developments in both neuroscience and computer
science have been building computational models of cognitive maps [3].

These advances in the field [4,5] are very impressive in learning abstract
representations and even show that biological patterns such as grid cells [4], or
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splitter cells [5] can emerge from learning. However, these works typically do not
focus on complex planning tasks and only consider naive or greedy strategies.

In this paper, we investigate the potential of active inference as a planning
mechanism for these cognitive maps. Active inference is a corollary of the free
energy principle which states that intelligent agents infer actions that minimize
their expected free energy. This is a proxy or bound on expected surprise, yielding
a natural trade-off between exploration and goal-driven exploitation [6,7]. We
aim to investigate the impact of active inference as a planning mechanism on
the performance of cognitive maps in spatial navigation strategies, especially in
terms of disambiguating the “mental position” and decision-making efficiency.

In particular, we look at the clone-structured cognitive graph (CSCG) [5]:
a unifying model for two essential properties of cognitive maps. First, flexi-
ble planning behavior, i.e. if observations are not consistent with the expected
observation in the plan, the plan can be adapted. Second, the model is able
to disambiguate aliased observations depending on the context in which it is
encountered, e.g. in spatial alternation tasks at the same location different deci-
sions are made depending on context [8]. Given the CSCG’s inherent mecha-
nism for disambiguating aliased observations, we hypothesize that coupling it
with active inference as a planning system will enable the identification of the
optimal sequence that accurately represents the agent’s location.

To investigate this hypothesized benefit of active inference, we compare both
a naive clone graph and an active inference-driven clone graph for navigating
toward goals on two separate metrics: the number of steps it takes for an agent
to reach the goal and the overall success rate. We design three distinct spa-
tial navigation scenarios, each with a different complexity. First, we consider a
slightly ambiguous (open room) environment described by [5] where we evaluate
the structure learning mechanism and planning algorithms for both models. We
then increase the level of ambiguity in a maze described in [9] where we believe
that information-seeking behavior will be crucial for self-localization. Finally, we
evaluate the performance in the T-maze, where an agent is punished for mak-
ing the wrong choice by ending the episode. To summarize, the contributions of
this paper are: (i) we show how to use the learned structure of a CSCG as the
generative model within the active inference framework, (ii) we show that active
inference agents are significantly faster in disambiguating the state in highly
ambiguous environments than greedy planning agents, and (iii) we show that
active inference agents make more careful decisions by first gathering evidence,
yielding higher success rates for finding the reward in the T-maze environment.

2 Methods

In this section, we first describe the mechanisms driving standard clone-
structured cognitive graphs for structure learning. Then we provide a brief sum-
mary of the active inference framework and how the action is driven through
Bayesian inference. Finally, we conclude this section by showing how the CSCG
can be used as a generative model within the active inference framework.
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2.1 Clone-Structured Cognitive Graphs

Fig. 1. (a) A mapping of a sequence of observations to distinct clone states in the
clone-structured cognitive graph. The color indicates clones belonging to a specific
observation, i.e. for each colored observation there are two clones states from which
it can transition into either clone state belonging to the next observation. (b) The
factor graph describing an active inference driven partially observable Markov decision
process (POMDP). π denotes the policy, which is sampled according to the expected
free energy G, dependent on the preference matrix C. The hidden states of the agent st
are initialized using the prior matrix D. These states are then transitioned according
to the B matrix, conditioned on the selected policy. Finally, the observed outcome
variables are generated through the likelihood factor (A matrix). Observed variables
are denoted in light blue circles, while unobserved variables are denoted in white circles.
The factors describing the generative model are denoted in a dark blue square. (Color
figure online)

Clone-structured cognitive graphs (CSCG) [5] are a computational implementa-
tion of a cognitive map that models the joint probability of a sequence of action
and observation pairs. They are a variation of the action-augmented hidden
Markov model, where the next state and action are conditioned on the current
state and action. The crucial difference is that these clone-structured cognitive
graphs are able to disambiguate aliased observations based on the context (e.g.
the previously visited trajectory), which is a property that is also observed in
hippocampal splitter cells.

In order for a CSCG to be able to disambiguate observations, it needs distinct
states for each observation based on its context - in this case, the previous
observations and actions. All states corresponding to a single observation are
called the clones of this observation, and by design, each state deterministically
maps to a single observation. In essence, a CSCG is a hidden Markov model in
which multiple different values of the hidden state predict identical observations
(i.e. their corresponding columns in the transition matrix are non-identical). A
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pair of the clone states in a CSCG is therefore a set of two values that a hidden
state might take which share identical likelihood contingencies, but differ in
their transition probabilities. A depiction of the clone graph, as described in [5]
is shown in Fig. 1a.

The CSCGs are optimized by minimizing the variational free energy over
a sequence of observation-action pairs using the Baum-Welch algorithm [10],
an expectation-maximization scheme for hidden Markov models. Through this
optimization and random initialization, the model will converge to use distinct
clone states for different sequences in the data. This distinction between clones is
further improved by optimizing the learned model parameters through a Viterbi
decoding step, only keeping the states necessary for the maximum likelihood
paths in the learned model.

2.2 Clone Graph Agent

We define a clone graph agent that uses a greedy planning approach to select the
actions. Planning using the clone-structured cognitive graphs is done by setting
a fixed target state (or states), and forward propagating the messages starting
from the current state. When one of the target states is assigned a non-zero
probability, a path is found and the maximum likelihood states are backward
propagated to retrieve the corresponding action sequence, or policy. The prob-
ability of each policy is computed as the belief over the current state Q(s|õ, ã).
Once the agent’s belief over state collapses to a single state, the planning mech-
anism falls back to the one described in [5], where the current state is known.

2.3 Active Inference Agent

Actionable agents, whether biological or artificial, are separated by their envi-
ronment through sensory inputs (perception) and action. The agent’s observa-
tions are indirectly observed through its different sensory modalities, while the
world state is also only indirectly affected by the agent’s actions. This separation
between the hidden variables (action, observation, agent state, and world state)
is commonly referred to as the Markov blanket.

The free energy principle proposes that an agent possesses a generative model
that describes how outcomes are generated from the world state and how the
world state is affected by the agent’s actions. The principle states that the agents
will minimize their surprise, bounded by the variational free energy by updating
the parameters of the generative model (learning) or inferring the hidden state
(perception). Active inference agents can infer the action that minimizes the
“expected free energy (G)” (or in other words, the free energy of the future
courses of actions) [6].

Active inference assumes that actions are inferred through the minimization
of the expected free energy G. This means that the posterior over a policy is
proportional to the expected free energy G, which can be computed for each
policy. More specifically, approximate posterior over policy Q(π) is computed
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as the softmax (σ) over the categorical over all the policies with a value of the
respective expected free energy G, γ is a temperature variable:

Q(π) = σ(−γG(π)),

Where the expected free energy G of this model, for a fixed time horizon T , is
defined as in [11]:

G(π) =
T∑

τ=t+1

G(π, τ)

G(π, τ) ≥ −EQ(oτ |π)
[
DKL[Q(sτ |oτ , π)||Q(sτ |π)]

]
︸ ︷︷ ︸

Epistemic value

−EQ(oτ |π)
[
log P (o)

]
︸ ︷︷ ︸

Pragmatic Value

This equation decomposes in two distinct terms: an epistemic value computing
the information gain term over the belief over the state, and a pragmatic value
(or utility) term with respect to a preferred distribution over the observation
P (o). In active inference, the goal of an agent is encoded in this prior belief as
a preference. In a CSCG, planning is done by setting a preferred state, whereas
in active inference this is typically done by setting the preferred observation.
In order to make both approaches comparable, here we always plan by setting
preferred states (and assume an identity mapping between the state and obser-
vation).

Evaluating the expected free energy G for all the considered policies is expo-
nential w.r.t. the time horizon T . This limits the tree depth to low values for
which this is practically computable. To mitigate this limitation, we set the pref-
erence for each state proportional to the distance toward the goal state (in the
cognitive map). While this system simplifies computing the utility to be suffi-
cient for a depth of one, the planning mechanism still requires larger depths for
achieving (non-greedy) long-term information-seeking behavior.

CSCG as the Generative Model for Active Inference. We consider active
inference in the discrete state space formulation [12], as shown in the factor graph
in Fig. 1b. The generative model is therefore described by a set of four specific
matrices: the A matrix defines the likelihood model, or how observations are
generated from states: P (o|s), the B matrix defines the transition model, or
how the belief over state changes conditioned on an action at: P (st+1|st,at).
The C matrix describes the preference of the agent P (s), and finally, the D
matrix describes the prior belief over the initial state P (s).

First, we learn the world structure using a CSCG through the minimization
of the evidence lower bound with respect to the model parameters as described
in [5]. We then map the parameters of the learned hidden Markov model to the
four matrices describing the active inference model.

First, we reduce the model by only considering the states for which the
transition probability marginalized over action and next state

∑
s

∑
a p(st|s,a),

assuming a uniform distribution over s and a, is larger than the threshold of
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0.0001. The A matrix can be directly constructed by setting P (oi|sj) = 1 for all
remaining clones sj of observation oi.

To construct the B matrix, the transition matrix from the trained CSCG
can be taken directly. A crucial difference between the POMPD in discrete time
active inference and the CSCG is that the actions are state-conditioned in the
latter. This means that starting in some states, an action can not be taken.
In the learned transition matrix, the following condition does not always hold:∑

st+1
P (st+1|st,at) = 1. We convert this transition matrix to proper proba-

bilities by adding a novel dispreferred state sd, for which we set the transition
probability to 1 in these illegal cases, and for which this state transitions to
itself for each possible action. We then normalize the transition matrix such
that probabilities sum to 1. We also add a P (od|sd) = 1 mapping in the A
matrix.

The preference of the agent, or C matrix, is not present in the standard
formulation of the CSCG. However, the agent is able to plan toward a goal
that is set in state space. We model this by setting a preference over this state,
or set of states in case of an observation-space preference or multiple target
goals. Additionally, for the newly added state sd to which the illegal actions are
mapped, we set a very low value (as if it would drive you to a state that is farther
away from the goal than the maximum distance) in order to drive the agent to
avoid these actions when planning according to its expected free energy.

The prior distribution over the initial state, matrix D, is initialized as a
uniform prior over all the states. The agent thus starts with no knowledge about
the state it is in and has to gather evidence to change this belief.

3 Results

In this work, we compare the behavior of two agents that select their actions
using a CSCG: the former (“clone graph”, Sect. 2.2) agent plans using a greedy
approach, whereas the latter (“active inference”, Sect. 2.3) agent uses active
inference and expected free energy to plan ahead. We also compare these two
agents with a random (“random”) agent baseline. In particular, we look at goal-
driven behavior in three distinct environments each requiring a different level
of information-seeking behavior. First, we consider an open room as proposed
in [5] in which the agent has to reach a uniquely defined corner, for which the
goal is provided as a goal observation. Second, we consider a more ambiguous
environment in which the agent has to reach the uniquely defined center of a
room, but it first needs to localize itself within the room. Finally, we evaluate
the approach on the T-maze, where the agent should first observe a cue, as a
wrong decision is “fatal”.

In each experiment, we first train the generative models as CSCGs and then
convert them to discrete state space matrices for active inference within the
PyMDP framework [11].
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3.1 Navigating in an Open Room Environment

In this first experiment, we investigate the performance of all agents in a simple
environment where we hypothesize that there is no immediate gain in using
the active inference framework for information-seeking behavior. As the clone
graph agent is still able to integrate observations to improve its belief over its
current state, we expect both agents to gather enough evidence to accurately
plan toward the goal.

For this maze, we consider an open room environment based on the one
described in [5]. We recreate the environment within the Minigrid [13] frame-
work. The room is defined by a four-by-four grid in which the agent can freely
navigate by selecting actions like “turn left”, “turn right” or “move forward”.
The agent observes a three-by-three patch around its current position, as shown
in Fig. 2b. Each corner of the environment is uniquely defined by an observable
colored patch, as shown in Fig. 2a and Fig. 2b. Each observed patch is mapped
to a unique index as observation. In this environment, this corresponds to 21
observations.

We learn the structure of the room by first training a CSCG, initialized with
20 clones for each observation, as described in Sect. 2. The model parameters
were learned using a random-walk sequence consisting of 100k observation-action
pairs. We then set the preference of the agent to the two observations reaching
the corner, e.g. for the bottom right corner this is the observation of reaching
it from the left and from the top. As described in Sect. 2, we select the clone
states for which the likelihood of this observation is 1 and set the preference for
all these states for both the clone graph and active inference planning schemes.

We run an experiment for all three agents where the agent starts in a random
(ambiguous, i.e. looking at the center) pose and has to reach a randomly selected
corner as the goal. We run this for 400 separate trials, where each trial was
seeded with the same random seed, ensuring that the different agents start with
the same starting position and goal. We provide the agents with 25 timesteps
to reach the goal and report the success rate and episode length for each of the
agents. Qualitatively, in Fig. 2a, we observe that the behavior between the clone
graph agent and the active inference agent is very similar; it first picks a corner
which is either the goal and the episode ends or an informative landmark, and
then the agent moves towards the goal.

Quantitatively, we observe the duration of the episode and see that the aver-
age episode length shown in Fig. 2c is significantly larger for the random agent
with respect to both the clone graph agent (2-sample independent t-test, p-
value = 7.6 · 10−6) and the active inference agent (2-sample independent t-test,
p-value = 3.6 · 10−5), illustrating that the model has learned the structure of
the world and is not moving randomly. Secondly, we observe that the average
episode length of the clone graph agent does not significantly differ from the
active inference agent (2-sample independent t-test, p-value = 0.237), illustrat-
ing that for this environment the information-seeking behavior does not benefit
performance. This is further evidenced by the success rate shown in Fig. 2d,
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where the performance of both agents does not significantly differ as they are
identical at a 100% success rate.

From this experiment, we conclude that in an environment where the agent
can quickly find an unambiguous landmark such as the corners in the open room,
both agents have similar performance.

Fig. 2. (a) Qualitative results of navigating the open room maze for the different agents
with different random seeds. The agent is tasked with reaching a particular corner in
the maze. The trajectory of the agent is marked, and the arrow points the direction in
which the agent is looking. (b) The two three-by-three observations defining a goal in a
corner of the open room maze. (c) A box plot representing the statistics of the amount
of time until the goal is reached (only the success scenarios are considered) over 400
trials. (d) The success rate of the agent in reaching the goal observation (computed
over 400 trials).
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3.2 Self-localization in an Ambiguous Maze

In the previous environment, the agent was able to quickly self-localize as random
actions would easily disambiguate where in the environment they are. In this
experiment, we increase the level of ambiguity and evaluate whether the active
inference agent is able to self-localize faster than the clone graph agent.

For this experiment, we consider the highly ambiguous maze from Friston et
al. [9] shown in Fig. 3a. In this environment, the agent is only able to observe
the one-by-one tile the agent is currently standing on, i.e. if it is a red, white, or
green tile. While the red and white tiles are highly ambiguous, there is only a
single green tile at the center of the maze. The agent is able to navigate the maze

Fig. 3. (a) Qualitative results of navigating the ambiguous maze with the three different
agents. The green square marks the goal observation, the trajectory of the agent is
marked in black. In this maze, the agent can only observe the current tile, and the
color of the tile represents the observation the agent receives. (b) Shows the amount
of steps needed for reaching the target, only measured for the success cases. (c) Shows
the success rate, computed over 400 trials for the three agents. (Color figure online)
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through actions like “up”, “down”, “left” or “right”, and is only limited by a
wall around the maze. Unique observation tiles are again mapped to categorical
indices.

We construct a CSCG with 40 clones per observation and optimize it over
a sequence of 10k steps in the environment until convergence. We then set the
preference for this environment as the green tile, in a similar fashion as we did
in the experiment in Sect. 3.1 for both the clone graph agent and the active
inference agent.

In this environment, the agent’s goal is always to go to the green tile in the
center of the room. However, the agent starts at a random position on a white
tile. We again run this experiment for 400 trials for each agent, seeded over trials
such that the starting position is the same for each agent. Each episode has a
max duration of 25 steps, and we record the episode length and the success rate
of the agents. Qualitatively, we can see the trajectories taken by the clone and
active inference agents in Fig. 3a. We observe that both agents are able to solve
the task, seemingly moving randomly in the maze. However, we also observe the
random agent navigating in the maze, which typically does not reach the goal.
Quantitatively, we again measure that the clone graph agent (2-sample indepen-
dent t-test, p-value = 1 ·10−99) and active inference agent (2-sample independent
t-test, p-value = 1 · 10−168) significantly differ from the random agent, showing
goal-directed behavior. However, we now observe that the clone graph agent with
a mean episode duration of 10.92 steps is significantly slower than the active
inference agent with a mean episode duration of 7.92 steps (2-sample indepen-
dent t-test, p-value = 3.46 · 10−22) even though their success rate is similar with
98.5% for the clone graph agent and 100% for the active inference agent.

From this experiment, we conclude that in highly ambiguous environments,
agents using active inference for goal-driven behavior disambiguate their location
and reach the goal faster than agents who do not.

3.3 Solving the T-Maze

In this final experiment, we consider an environment where making informative
decisions is crucial. We compare the performance of the agents in the quintessen-
tial active inference environment: the T-maze [14]. In this environment, the agent
must make a choice to go either in the left or the right corridor without being able
to observe the location of the reward (we hide it behind a door), and the episode
ends when it makes a decision. The agent is, however, able to disambiguate the
location of the reward by observing a colored cue behind itself.

We create the environment again in the Minigrid environment [13], and the
agent has three-by-three patches as observations and can act by either “turn-
ing left”, “turning right” or “moving forward”. The agent always starts in an
upwards-looking position, looking away from the cue. Additionally, when the
agent wants to walk through a door, it immediately goes to the tile behind the
door, ending the episode either in reward or not.

We train a CSCG with 5 clones per observation on 500 distinct episodes with
a maximum length of 50 steps, however, these episodes are typically shorter as
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the agent goes through a door. Similar to the open room environment, we map
each three-by-three observation patch to a unique index and additionally, we also
map the reward to a separate observation. This yields 17 unique observations
the agent can observe. We then set the preference to the rewarding observation
for both the clone and active inference agents, and depending on context, the
agent should be able to infer a different path towards the goal.

Fig. 4. (a) Qualitative results of navigating the T-maze with the three different agents.
The green square marks the goal observation, and the black arrows the trajectory
followed by the agent. At the bottom of the T, there is a colored cue, blue marks that
the goal is on the right, while red marks that the goal is on the left. (b) Shows the
number of steps needed for reaching the target, only measured for the success cases.
(c) Shows the success rate, computed over 400 trials for the three agents. (Color figure
online)

We again conduct 400 random trials, where the seed is again fixed for each
trial within an agent, ensuring that for each trial the goal location is the same.
When we evaluate the behavior of the agents qualitatively (Fig. 4a), we observe
that the active inference agent always moves forward, turns around and checks for
the cue, and then moves towards the correct goal location. In contrast, the clone
graph agent randomly picks a direction as it has not accurately inferred in which
state it currently is. Interestingly, when the stochasticity of the action sampling
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forces the agent to turn around and it observes the cue, it chooses the correct
action. This explains the 56.75% success rate, which is slightly higher than the
expected 50% of selecting actions randomly. In this environment, where thought-
less decisions are punished, the active inference agent is significantly more accu-
rate with a success rate of 100% (2-sample independent z-test for proportions,
p-value = 6.25 · 10−50). Interestingly, the clone graph agent is significantly faster
with an average of 4.5 steps than the active inference agent with an average of
5 steps (2-sample independent t-test, p-value = 2.86 · 10−5). This is attributed
to the fact that the agent does not take the time to observe the cue and moves
towards wherever it believes the goal is.

From this experiment, we conclude that in information-critical decision-
making environments using active inference provides a significant benefit over
greedy planning strategies.

4 Discussion

We relate our work to representation learning in complex environments. In
the context of learning cognitive maps, work has been done that explicitly
separates the underlying spatial structure of the environments with the spe-
cific items observed [4]. While this model does not entail a generative model,
other approaches do consider the hippocampus as a generative model [15] and
show that through generative processes novel plans can be created. Model-based
reinforcement learning systems learn similar world models directly from pix-
els [16] and are able to achieve high performance on RL benchmarks. All these
approaches typically treat planning as a trivial problem that can be solved
through forward rollouts, or by value optimization using the Bellman equation,
however, they do not consider the belief over the state as a parameter.

Within the active inference community, a lot of work has been applied to
planning in different types of environments. Casting navigation as inferring the
sequence of actions under the generative model using deep neural networks has
been done before in [17,18], where the approximate posterior is implemented
through a variational deep neural network. The active inference framework has
also been successful in solving various RL benchmarks [19,20]. These approaches
show that inferring action through surprise minimization is powerful in solving
a wide range of tasks, although they do not explicitly deal with aliasing in
observations.

We believe that the combination of both approaches can yield a promising
avenue for building cognitive maps in silico that can be used to solve important
real-world tasks such as navigation.

The CSCG has been shown to be a powerful model for flexible planning and
disambiguating aliased observation, making it the perfect candidate for integra-
tion within the active inference framework. Through this interaction with the
inherent uncertainty-resolving behavior of active inference, we have observed sig-
nificant improvements in terms of success rate or episode lengths depending on
the specific environment.
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Another open issue that we plan to resolve in the future is the fact that the
CSCG is currently learned in an offline fashion. Therefore our current approach
is not benefitting from the curiosity- or novelty-based scheme of active inference
[7,21], which we hypothesize to improve the training efficiency with respect to
the number of required samples.

5 Conclusion

We first propose a mechanism for using the clone-structured cognitive graph
within the active inference framework. This allows us to use the naturally
context-dependent disambiguating of aliased observations in the generative
model within the active inference framework that naturally will seek the sequence
best aligned with this purpose. Through evaluation in three distinct environ-
ments, we have highlighted the advantages of active inference compared to more
simplistic and greedy planning methods. We show that in naturally unambiguous
environments, the active inference and clone agents perform similarly in both
success rate and time to reach the goal. Additionally, we have observed that the
active inference agent exhibits a significantly higher success rate in environments
requiring informed decision-making. Finally, we show that in environments where
an agent has to make an informed decision, the active inference agent has a sig-
nificantly higher success rate. These results corroborate the benefits of using an
active inference approach.
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Abstract. Although the latent spaces learned by distinct neural net-
works are not generally directly comparable, even when model architec-
ture and training data are held fixed, recent work in machine learning [13]
has shown that it is possible to use the similarities and differences among
latent space vectors to derive “relative representations” with compara-
ble representational power to their “absolute” counterparts, and which
are nearly identical across models trained on similar data distributions.
Apart from their intrinsic interest in revealing the underlying structure
of learned latent spaces, relative representations are useful to compare
representations across networks as a generic proxy for convergence, and
for zero-shot model stitching [13].

In this work we examine an extension of relative representations to
discrete state-space models, using Clone-Structured Cognitive Graphs
(CSCGs) [16] for 2D spatial localization and navigation as a test case
in which such representations may be of some practical use. Our work
shows that the probability vectors computed during message passing can
be used to define relative representations on CSCGs, enabling effective
communication across agents trained using different random initializa-
tions and training sequences, and on only partially similar spaces. In the
process, we introduce a technique for zero-shot model stitching that can
be applied post hoc, without the need for using relative representations
during training. This exploratory work is intended as a proof-of-concept
for the application of relative representations to the study of cognitive
maps in neuroscience and AI.

Keywords: Clone-structured cognitive graphs · Relative
representations · Representational similarity

1 Introduction

In this short paper we explore the application of relative representations [13] to
discrete (graph-structured) models of cognition in the hippocampal-entorhinal
system — specifically, Clone-Structured Cognitive Graphs (CSCGs) [16]. In the
first two sections we introduce relative representations and their extension to
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discrete latent state spaces via continuous messages passed on graphs. We then
introduce CSCGs and their use in SLAM (Simultaneous Localization And Map-
ping). Finally, we report preliminary experimental results using relative repre-
sentations on CSCGs showing that (a) relative representations can indeed be
applied successfully to model the latent space structure of discrete, graph-like
representations such as CSCGs, and more generally POMDPs such as those
employed in discrete active inference modeling [1,8]; (b) comparison of agents
across partially disparate environments reveals important shared latent space
structure; and (c) it is possible to use the messages or beliefs (probabilities
over states) of one agent to reconstruct the corresponding belief distributions of
another via relative representations, without requiring the use of relative rep-
resentations during training. These examples illustrate an extension of existing
representational analysis techniques developed within neuroscience [10], which
we hope will prove applicable to the study of cognitive maps in biological agents.

2 Relative Representations

Relative representation [13] is a technique recently introduced in machine learn-
ing that allows one to map the intrinsically distinct continuous latent space
representations of different models to a common shared representation identi-
cal (or nearly so) across the source models, so that latent spaces can be directly
compared, even when derived from models with different architectures. The tech-
nique is conceptually simple: given anchor points A = [x1,x2, ...,xN ] sampled
from a data or observation space and some similarity function sim (e.g. cosine
similarity)1, the relative representation rMi of datapoint xi with respect to model
M can be defined in terms of M ’s latent-space embeddings eMi = fencM (xi) as:

rMi = [sim(eMi , eMa1
), sim(eMi , eMa2

), ..., sim(eMi , eMaN
)] (1)

where eMai
is the latent representation of anchor i in M .

Crucially, the anchor points A must be matched across models in order for
their relative representations to be compatible. “Matching” is in the simplest
case simply identity, but there are cases in which it is feasible to use pairs of
anchors related by a map g(x) → y (see below).

In [13] it is shown that the convergence of a model Mtarget during training
is well predicted by the average cosine similarity between its relative represen-
tations of datapoints and those of an independently validated reference model
Mref . This is to be expected, given that there is an optimal way of partitioning
the data for a given downstream task, and that distinct models trained on the
same objective approximate this optimal solution more or less closely, subject
to variable factors like random initialization and hyperparameter selection.

While relative representations were recently introduced in machine learning,
they take their inspiration in part from prior work on representational similar-
ity analysis (RSA) in neuroscience [4,10]. Indeed, there is a formal equivalence
1 The selection of both suitable anchor points and similarity metrics is discussed at

length in [13]. We explain our choices for these hyperparameters in Sect. 5.2 below.
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between relative representations and the Representational Dissimilarity Matri-
ces (RDMs) proposed as a common format for representing disparate types of
neuroscientific data (including brain imaging modalities as well as simulated
neuronal activities in computational models) in [10]. Specifically, if a similarity
rather than dissimilarity metric is employed2, then each row (or, equivalently,
column) of the RDM used to characterize a representational space is, simply, a
relative representation of the corresponding datapoint.

Arguably the main contribution of [13] is to exhibit the usefulness of this
technique in machine learning, where relative representations may be employed
as a novel type of latent space in model architectures. Given a large enough sam-
ple of anchor points, relative representations bear sufficient information to play
functional roles similar to those of the “absolute” representations they model,
rather than simply functioning as an analytical tool (e.g. to characterize the
structure of latent spaces and facilitate abstract comparisons among systems).

The most obvious practical use of relative representations is in enabling
“latent space communication”: Moschella et al. [13] show that the projection of
embeddings from distinct models onto the same relative representation enables
“zero-shot model stitching”, in which for example the encoder from one trained
model can be spliced to the decoder from another (with the relative represen-
tation being the initial layer supplied as input to the decoder). A limitation of
this procedure is that it depends on using a relative representation layer during
training, precluding its use for establishing communication between “frozen” pre-
trained models. Below, we make use of a parameter-free technique that allows
one to map from the relative representation space back to the “absolute” repre-
sentations of the input models with some degree of success.

3 Extending Relative Representations to Discrete
State-Space Models

Despite the remarkable achievements of continuous state-space models in deep
learning systems, discrete state spaces continue to be relevant, both in machine
learning applications, where discrete “world models” are responsible for state-of-
the-art results in model-based reinforcement learning [6], and in neuroscience,
where there is ample evidence for discretized, graph-like representations, for
example in the hippocampal-entorhinal system [16,18,25] and in models of
decision-making processes such as the POMDPs (Partially Observable Markov
Decision Processes) used in active inference models [19] and elsewhere.

While typical vector similarity metrics such as cosine distance behave in a
somewhat degenerate way when applied to many types of discrete representations
(e.g., the cosine similarity between two one-hot vectors in the same space is 1
if the vectors are identical and 0 otherwise), they can still be usefully applied
in this case (see Sect. 5 below). More generally, the posterior belief distributions
inferred over discrete state spaces during simulations in agent-based models may
provide suitable anchor points for constructing relative representations.
2 See [10] fn.2.
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Concretely, such posterior distributions are often derived using message-
passing algorithms, such as belief propagation [14] or variational message passing
[27]. We pursue such a strategy for deriving relative representations of a special
kind of hidden Markov model (the Clone-Structured Hidden Markov Model or (if
supplemented with actions) Cognitive Graph [16]), in which it is simple to com-
pute forward messages which at each discrete time-step give the probability of
the hidden states z conditioned on a sequence of observations o (i.e. P (zt|o1:t)).
The CSCG/CHMM is particularly interesting both because of its fidelity as a
model of hippocampal-entorhinal representations in the brain and because, as
in the case of neural networks, distinct agents may learn superficially distinct
CSCGs that nonetheless form nearly isomorphic cognitive maps, as shown below.

4 SLAM Using Clone-Structured Cognitive Graphs

An important strand of research in contemporary machine learning and compu-
tational neuroscience has focused on understanding the role of the hippocampus
and entorhinal cortex in spatial navigation [16,20,23,25], a perspective that may
be applicable to navigation in more abstract spaces as well [18,21]. This field of
research has given rise to models like the Tolman-Eichenbaum machine [25] and
Clone-Structured Cognitive Graph [5,16]. We focus on the latter model in the
present study, as it is easy to implement on toy test problems and yields a suit-
able representation for our purposes (an explicit discrete latent space through
which messages can be propagated).

The core of the CSCG is a special kind of “clone-structured” Hidden Markov
Model (CHMM) [17], in which each of N possible discrete observations are
mapped deterministically to only a single “column” of hidden states by the like-

lihood function, i.e. p(o|z) =
{
1 if z ∈ C(o)
0 if z /∈ C(o)

, where C(o) is the set of “clones”

of observation o. The clone structure encodes the inductive bias that the same
observation may occur within a potentially large but effectively finite number
of contexts (i.e. within many distinct sequences of observations), where each
“clone” functions as a latent representation of o in a distinct context. This allows
the model to efficiently encode higher-order sequences [3] by learning transi-
tion dynamics (“lateral” connections) among the clones. CSCGs supplement this
architecture with a set of actions which condition transition dynamics, creating
in effect a restricted form of POMDP.

The most obvious use of CSCG models (mirroring the function of the hip-
pocampal-entorhinal system) is to allow agents capable of moving in a space to
perform SLAM (Simultaneous Localization And Mapping) with no prior knowl-
edge of the space’s topology. Starting with a random transition matrix, CSCGs
trained on random walks in 2D “rooms”, in which each cell corresponds to an
observation, are shown in [16] to be capable of learning action-conditioned tran-
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sition dynamics among hidden states that exhibit a sparsity structure precisely
recapitulating the spatial layout of the room (see Fig. 1).3

Fig. 1. Example of two cognitive graphs (B) learned by CSCG agents via distinct
random walks on the same room (A). Following the convention in [16], colors indicate
distinct discrete observations (in the room) or latent “clones” corresponding to those
observations (in the graphs). Code for training and producing plots is provided in the
supplementary materials for [16]. Note that the two graphs are obviously isomorphic
upon inspection (the left graph is visually rotated about 50 degrees clockwise relative
to the right one, and the node labels differ).

Given a sequence of observations, an agent can then infer states that cor-
respond to its location in the room, with increasing certainty and accuracy as
sequence length increases. Crucially, location is not an input to this model but
the agent’s representation of location is entirely “emergent” from the unsuper-
vised learning of higher-order sequences of observations.

Building on the codebase provided in [16], we examined the certainty of
agents’ inferred beliefs about spatial location during the course of a random walk
(see Fig. 2.). Though less than fully confident, such agents are able to reliably
infer room location from observation sequences alone after a handful of steps.
Conditioning inference as well on the equivalent of “proprioceptive” information
(i.e., about which actions resulted in the relevant sequence of observations) dra-
matically increases the certainty of the agents’ beliefs. We explored both of these
regimes of (un)certainty in our experiments.

5 Experiments: Communication Across Cognitive Maps

We investigate the extent to which common structure underlying the “cognitive
maps” learned by distinct CSCG agents can be exploited to enable communi-
cation across them. As in the case of neural networks trained on similar data,

3 The training used to obtain this result is based on an efficient implementation of the
Baum-Welch algorithm for E-M learning, followed by Viterbi training — please see
[16] for details.
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Fig. 2. Maximum probability assigned to any hidden state of a CSCG over time (during
a random walk). The left panel shows confidence derived from messages inferred from
observations alone, and the right panel shows the case of messages inferred from both
actions and observations.

CSCG agents trained on the same room but with distinct random initializations
and observation sequences learn distinct representations that are nonetheless
isomorphic at one level of abstraction (i.e. when comparing the structural rela-
tionships among their elements, which relative representations make explicit —
cf. Appendix B, Fig. 5).

We also explore whether partial mappings can be obtained across agents
trained on somewhat dissimilar rooms. We used two metrics to evaluate the
quality of cross-agent belief mappings: (1) recoverability of the maximum a pos-
teriori belief of one agent at a given timestep, given those of another agent
following an analogous trajectory; (2) cosine similarity between a given message
and its “reconstruction” via such a mapping. The main results of these prelimi-
nary experiments are reported in Table 1.

5.1 Mapping via Permutation

We first confirmed that CSCG agents trained on distinct random walks of the
same room (and with distinct random transition matrix initializations) learn
functionally identical cognitive maps if trained to convergence using the proce-
dure specified in [16]. Visualizations of the learned graphs clearly demonstrate
topological isomorphism (see references as well as Fig. 1B), but in addition we
found that the forward messages for a given sequence of observations are identi-
cal across agents up to a permutation (i.e., which “clones” are used to represent
which observation contexts depends on the symmetry breaking induced by differ-
ent random walks and initializations). It is thus possible to “translate” across such
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cognitive maps in a simple way. First, we obtain message sequences M and M′

from the first and second CSCGs conditioned on the same observation sequence,
and extract messages m and m′ corresponding to some particular observation
ot. We then construct a mapping sort_indexmot

(z) → sort_indexm′
ot
(z′) from

the sort order of entries z in m to that of entries z′ in m′. Using this mapping,
we can predict the maximum a posteriori beliefs in M′ nearly perfectly given
those in M under ideal conditions (see the “Permutation (identical)” condition
in Table 1).4

5.2 Mapping via Relative Representations

Though it is thus relatively simple to obtain a mapping across cognitive graphs
in the ideal case of CSCGs trained to convergence on identical environments,
we confirm that relative representations can be used in this setting to obtain
comparable results. A message m′ from the second sequence (associated with
model B) can be reconstructed from message m in the first (model A’s) by
linearly combining model B’s embeddings EB

A of the anchor points, via a softmax
(σ) function (with temperature T ) of the relative representation rAm of m derived
from model A’s anchor embeddings:5

m̂′ =
(
EB

A
)
σ
[rAm

T

]
(2)

Intuitively, the softmax term scales the contribution of each vector in the
set of anchor embeddings to the reconstruction m̂′ in proportion to its rela-
tive similarity to the input embedding, so that the reconstruction is a weighted
superposition (convex combination) of the anchor points. The reconstruction
of a sequence M′ of m d′-dimensional messages from an analogous “source”
sequence M of d-dimensional messages, with the “batch” relative representation
operation6 RA

M ∈ R
m×|A| written out explicitly in terms of the matrix product

between M ∈ R
m×d and anchor embeddings EA

A ∈ R
|A|×d, is then precisely

analogous to the self-attention operation in transformers:

M̂′ = σ
[M[

EA
A

]T
T

]
EB

A (3)

4 This procedure does not work if the chosen message represents a state of high uncer-
tainty, e.g. at the first step of a random walk with no informative initial state prior.
The mapping also fails for many states since CSCGs, by construction, assign zero
probability to all states not within the clone set of a given observation, leading to
degeneracy in the mapping. We also found that accuracy of this method degrades
rapidly to the extent that the learned map fails to converge to the ground truth
room topology.

5 In practice, a softmax with a low temperature worked best for reconstruction.
6 If M = A, this term is a representational similarity matrix in the sense of [10].
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Here, the source messages M play the role of the queries Q, model A’s anchor
embeddings EA

A act as keys K, and model B’s anchor embeddings act as values
V in the attention equation which computes output Z = σ

[
QKT

]
V.7

Since self-attention may be understood though the lens of its connection to
associative memory models [12,15], this correspondence goes some way toward
theoretically justifying our choice of reconstruction method. In particular, fol-
lowing [12], reconstruction via relative representations can be understood as
implementing a form of heteroassociative memory in which model A and B’s
anchor embeddings are, respectively, the memory and projection matrices.

Though empirical performance against a wider range of alternative methods
of latent space alignment remains to be assessed, we note a formal connection to
regression-based approaches such as [22], in which a representation Y of the data
is expressed as a mixture of “guesses” (linear projections of local embeddings)
from k experts, weighted according to the fidelity of each expert’s representation
of the input data X . This can be expressed as a system of linear equations
Y = UL in which Y, U and L play roles analogous to those of M̂, σ

[
RA

M

]
and

EB
A above, with the “repsonsibility” terms (weights) introducing nonlinearity, as

the softmax does in our approach (see Appendix C for further details).
Not surprisingly, the results of our procedure improve with the number of

anchors used (see Appendix A, Fig. 4). In our experiments, we used N = 5000
anchors. We obtained more accurate mappings using this technique when the
anchor points were sampled from the trajectory being reconstructed, which
raises the probability of an exact match in the anchor set; for generality, all
reported results instead sample anchor points (uniformly, without replacement)
from distinct random walks. While would be possible in the present setting to use
similarity metrics tailored to probability distributions to create relative represen-
tations, we found empirically that replacing cosine similarity with the negative
Jensen-Shannon distance slightly adversely affected performance.

5.3 Mapping Across Dissimilar Models

As shown in [13], relative representations can reveal common structure across
superficially quite different models — for example those trained on sentences in
distinct natural languages — via the use of “parallel” anchor points, in which the
anchors chosen for each model are related by some mapping (e.g. being transla-
tions of the same text). In the context of CSCGs, anchors (forward messages) are
defined relative to an observation sequence. To sample parallel anchors across
agents, we therefore require partially dissimilar rooms in which similar but dis-
tinct observation sequences can be generated.

We used four experimental manipulations to generate pairs of partially dis-
similar rooms (see Fig. 3), which we now outline along with a brief discussion of
our results on each.

7 In the present setting, one might even draw a parallel between the linear projection
of transformer inputs to the key, query and value matrices and the linear projection
of observations and prior beliefs onto messages via likelihood and transition tensors.
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Table 1. Mapping across distinct CSCG models*

Condition Max belief recovery %
accurate (±SD)

Reconstruction accuracy mean
cosine similarity (±SD)

Baseline: AR† (identical) 0.01(±0.01) 0.07(±0.07)

Permutation (identical) 84.09(±28.9) 0.69(±0.01)

Permutation (shifted) 3.41(±1.48) 0.69(±0.01)

Permutation (landmark) 20.70(±19.14) 0.89(±0.003)

RR‡ (identical) 89.44(±1.84) 0.99(±0.003)

RR (isomorphic) 41.0(±3.17) 0.67(±0.02)

RR (expansion: large → small) 97.42(±3.24) 0.98(±0.02)

RR (expansion: small → large) 47.47(±2.74) 0.59(±0.02)

RR (shifted) 34.81(±3.81) 0.63(±0.03)

RR (landmark) 34.13(±6.47) 0.52(±0.06)
† Absolute Representations ‡ Relative Representations *For each condition, mean results
and standard deviation over 100 trials (each run on a distinct random graph) are reported,
for the more challenging case of messages conditioned only on observations. For all but the
(expansion) conditions, the results of mapping in either direction were closely comparable and
we report the mean.

Fig. 3. Schematic illustration of experimental conditions. A and B indicate distinct
rooms on which parallel models were trained, except for the “IDENTICAL” condition,
where multiple models are trained on a single room. Numbers within nodes illustrate
stochastic association of particular hidden state indices with positions in the learned
graphs. Graph sizes depicted here do not reflect those used in the experiments.
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Isomorphism. Any randomly generated grid or “room” of a given fixed size
will (if CSCG training converges) yield a cognitive map with the same topology.
It should thus be possible to generate parallel sequences of (action, observation)
pairs — and thus parallel anchor points for defining relative representations —
across two such random rooms, even if each contains a distinct set of possible
observations or a different number of clones, either of which would preclude the
use of a simple permutation-based mapping.

The relationships among observations will differ across such rooms, how-
ever, which matters under conditions of uncertainty, since every clone of a given
observation will be partially activated when that observation is received, leading
to different conditional belief distributions. This effect should be mitigated or
eliminated entirely when beliefs are more or less certain, in which case “lateral”
connections (transition dynamics) select just one among the possible clones cor-
responding to each observation. Indeed, we found that it is possible to obtain
near-perfect reconstruction accuracy across models trained on random rooms
with distinct observation sets, provided that messages are conditioned on both
actions and observations; whereas we only obtained a <50% success rate in this
scenario when conditioning on observations alone.

Expansion. In this set of experiments, we generated “expanded” versions of
smaller rooms and corresponding “stretched” trajectories (paired observation
and action sequences) using Kroenecker products, so that each location in the
smaller room is expanded into a 2 × 2 block in the larger room, and each step
in the smaller room corresponds to two steps in the larger one. We can then
define parallel anchors across agents trained on such a pair of rooms, by taking
(a) all messages in the smaller room, and (b) every other message in the larger
one. In this condition, the large → small mapping can be performed much more
accurately than the opposite one, since each anchor point in the smaller (“down-
sampled”) room corresponds to four potential locations in the larger. Superior
results on the (large → small) condition VS our experiments on identical rooms
may be explained by the fact that the “small” room containts fewer candidate
locations than the room used in the “Identical” condition.

Shifting. In a third set of experiments, we generated rooms by taking overlap-
ping vertical slices of a wider room, such that identical sequences were observed
while traversing the rooms, but within different wider contexts. In this case only
the messages corresponding to overlapping locations were used as anchor points,
but tests were performed on random walks across the entire room. Under condi-
tions of certainty, mapping across these two rooms can be solved near-perfectly
by using all messages as candidate anchor points, since the rooms are isomor-
phic. Without access to ground-truth actions, it was possible to recover the
beliefs of one agent given the other’s only ∼35% of the time. We hypothesize
that this problem is more challenging than the “Isomorphic” condition because
similar patterns of observations (and thus similar messages) correspond to dis-
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tinct locations across the two rooms, which should have the effect of biasing
reconstructions toward the wrong locations.

Landmarks. Finally, partially following the experiments in [16] on largely fea-
tureless rooms with unique observations corresponding to unique locations (e.g.
corners and walls), we define pairs of rooms with the same (unique) observations
assigned to elements of the perimeter, filled by otherwise randomly generated
observations that differed across rooms. Using only the common “landmark” loca-
tions as anchors, it was still possible to use relative representations to recover an
agent’s location from messages in a parallel trajectory in the other room with
some success.

Summary. The results reported in Table 1 were obtained under conditions of
significant uncertainty, in which messages were conditioned only on observations,
without knowledge of the action that produced those observations. In this chal-
lenging setting, relative representations still enabled recovery (well above chance
in all experimental conditions, and in some cases quite accurate) of one agent’s
maximum a posteriori belief about its location from those of the other agent,
averaged across messages in a test sequence.8

In all settings, it was possible to obtain highly accurate mappings (>99% cor-
rect in most cases) by conditioning messages on actions as well as observations.
This yields belief vectors sharply peaked at the hidden state corresponding to an
agent’s location on the map. In this regime, the reconstruction procedure acts
essentially as a lookup table, as a given message m resembles a one-hot vector
and this sparsity structure is reflected in the relative representation (which is ∼0
everywhere except for dimensions corresponding to anchor points nearly identi-
cal to m). The softmax weighting then simply “selects” the corresponding anchor
in model B’s anchor set.9 Conditioning messages on probabilistic knowledge of
actions (perhaps the most realistic scenario) can be expected to greatly improve
accuracy relative to the observation-only condition, and is an interesting subject
for a follow-up study.

8 It is worth noting that this is essentially a one-of-N classification task, with effective
values of N around 48 in most cases. This is because (following [16]) most experiments
were performed on 6×8 rooms, and there is one “active” clone corresponding to each
location in a converged CSCG.

9 There is a variation on this in which multiple matches exist in the anchor set, but
the result is the same as we then combine n identical anchor points.
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6 Discussion

The “messages” used to define relative representations in the present work can be
interpreted as probability distributions, but they can also be interpreted more
agnostically as, simply, neuronal activity vectors. Recent work in systems neu-
roscience [2] has shown that it is possible to recover common abstract latent
spaces from real neuronal activity profiles. As noted above, relative representa-
tions were anticipated in neuroscience by RSA, which in effect treats the neuronal
responses, or computational model states, associated with certain fixed stimuli
as anchor points. This technique complements others such as the analysis of
attractor dynamics [26] as a tool to investigate properties of latent spaces in
brains, and has been shown to be capable of revealing common latent represen-
tational structure across not only individuals, but linguistic communities [28]
and even species [7,11]. Consistent with the aims of [13] and [10], this paradigm
might ultimately provide fascinating future directions for brain imaging studies
of navigational systems in the hippocampal-entorhinal system and elsewhere.

Relative representations generalize this paradigm to “parallel anchors”, and
also demonstrate the utility of high-dimensional representational similarity vec-
tors as latent representations in their own right, which can, as demonstrated
above, be used to establish zero-shot communication between distinct models.

While the conditions we constructed in our toy experiments are artificial, they
have analogues in more realistic scenarios. It is plausible that animals navigating
structurally homeomorphic but superficially distinct environments, for example,
should learn similar cognitive maps at some level of abstraction. Something anal-
ogous to the “expansion” setting may occur across two organisms that explore
the same space but (for example due to different sizes or speeds of traversal, and
thus sample rates) coarse-grain it differently. The idea of landmark-based navi-
gation is central to the SLAM paradigm generally, and the stability of landmarks
across otherwise different spaces may provide a model for the ability to navigate
despite changes to the same environment over time. Finally, while experiments
on partially overlapping rooms seem somewhat contrived if applied naively to
spatial navigation scenarios, they may be quite relevant to models of SLAM in
abstract spaces [18], such as during language acquisition, where different speak-
ers of the same language may be exposed to partially disjoint sets of stimuli,
corresponding to different dialects (or in the limit, idiolects).
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Crucially, the common reference frame provided by these techniques might
allow for the analysis of shared representations, which (when derived from well-
functioning systems) should embody an ideal structure that individual cognitive
systems in some sense aim to approximate, allowing for comparison of individual
brain-bound models against a shared, abstract ground truth. Such an abstracted
“ideal” latent space could be used to measure error or misrepresentation [9], or
to assess progress in developmental contexts.

7 Conclusion

In this work we have considered a toy example of the application of relative
representations to graph-structured cognitive maps. The results reported here
are intended mainly to illustrate concrete directions for the exploration of the
latent structure of cognitive maps using relative representations, and as a proof-
of-principle that the technique can be applied to the case of inferred posterior
distributions over discrete latent spaces. We have also introduced a technique for
reconstructing “absolute” representations from their relative counterparts with-
out learning.

In addition to further investigating hyperparameter settings (such as choice
of similarity function) to optimize performance in practical applications, future
work might explore the application of relative representations to more complex
models with discrete latent states, such as the discrete “world models” used in
cutting-edge model-based reinforcement learning [6], or to enable belief sharing
and cooperation in multi-agent active inference scenarios. Given the connection
to neural self-attention described above, which has also been noted in the context
of the Tolman-Eichenbaum Machine [24], it would also be intriguing to explore
models in which such a translation process occurs within agents themselves, as
a means of transferring knowledge across local cognitive structures.
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Appendix A: Effect of Anchor Set Size on Reconstruction

Fig. 4. Average cosine similarity ( u·v
‖u‖‖v‖ ) between ground-truth CSCG beliefs (mes-

sages) and their reconstructions from those of a distinct CSCG model trained on the
same room and receiving the same sequence of observations, using the method in Eq. 2,
plotted against number N of anchors used to define the relative representations. We
begin by setting N to the dimensionality of the model’s hidden state. The average is
across all 5000 messages in a test sequence.
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Appendix B: Visualizing the Correspondence of Relative
Representations Across Models

Fig. 5. Example representational similarity matrix comparing relative representations
of analogous message sequences (i.e. inferred from the same observation sequence)
from two distinct models trained on the same environment. This differs from the
(dis)similarity matrices typically used in RSA [10], as rows and columns in this case
represent distinct sets of first-order representations, i.e. cell (i, j) represents the cosine
similarity between rAi and rBj . Thus the diagonal symmetry illustrates the empirical
equivalence of these two sets of relative representations.
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Appendix C: Comparison to LLC

Locally Linear Coordination (LLC) [22] is a method for aligning the embeddings
of multiple dimensionality-reducing models so that they project to the same
global coordinate system. While its aims differ somewhat from the procedure
outlined in the present study, LLC is also an approach to translating multi-
ple source embeddings to a common representational format. As noted above,
there is an interesting formal resemblance between the two approaches, which
we explore in this Appendix.

The LLC Representation

LLC presupposes a mixture model of experts trained on N D-dimensional input
datapoints X = [x1, x2, ..., xN ], in which each expert mk is a dimensionality
reducer that produces a local embedding znk

∈ R
dk of datapoint xn. The mix-

ture weights or “responsibilities” for the model can be derived, for example, as
posteriors over each expert’s having generated the data, in a probabilistic setting.

Given the local embeddings and responsibilities, LLC proposes an algorithm
for discovering linear mappings Lk ∈ R

d×dk from each expert’s embedding to a
common (lower-dimensional) output representation Y ∈ R

N×d, which can then
be expressed as a responsibility-weighted mixture of these projections. That is
to say, leaving out bias terms for simplicity: each output image yn of datapoint
xn is computed as

yn =
∑
k

rnk

(
Lkznk

)
(4)

Crucially for what follows, with the help of a flattened (1D) index that spans
the “batch” dimension N as well as the experts k, we can express this in simpler
terms as Y = UL. We define matrices U ∈ R

N×∑
k dk and L ∈ R

∑
k dk×d in

terms of, respectively: (a) vectors un, where unj
= rnk

zink
(i.e. the jth element

of un is the ith element of k’s embedding of xn scaled its responsibility term) —
and (b) re-indexed, transposed columns lj = lik of the Lk matrices. Intuitively,
each row un of U concatenates the experts’ responsibility-weighted embeddings
rnk

znk
of datapoint xn, while each of L’s d columns is a concatenation of the

corresponding row of the projection matrices Lk, so that the matrix product UL
returns a responsibility-weighted prediction for yn in each row (see Fig. 6).

Relationship to Our Proposal

Ignoring the motivation of dimensionality reduction which is irrelevant for
present purposes, there is a precise conceptual and formal equivalence between
this model and the procedure for reconstructing model B’s embeddings given
those of model A described above in Sect. 5.2.

Specifically, we can regard each of model A’s anchor embeddings eAxk
as an

“expert” in a fictitious mixture model, with an associated responsibility term
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Fig. 6. Visual schematic of the computation of a single entry of the output of (A)
the projection of input xn to output yn as in the Locally Linear Coordinates (LLC)
mapping procedure; (B) the reconstruction of a latent embedding eB

n in model B’s
embedding space given input xn to model A. The groupings in brackets in (A) illustrate
the concatenations of vector embeddings (scaled by responsibility terms rnk) in un, and
of projection columns in lj . 1k in (B) denotes a row of k 1s (where k in this case denotes
the number of anchors, i.e. is set to |A|). Each entry in the column vector

[
EB

A
]T
j

is
the jth dimension of one of model B’s anchor embeddings.

measuring its fidelity to the input xi , which in this case is given by the cosine
similarity between the anchor embedding and the input embedding. Then like
the rows of U , each row of σ

[
RA

X

]
, which is a relative representation rAi = EA

AeAi
of input i after application of the softmax, acts as a responsibility-weighted
mixture of multiple “views” of the input. Similarly, since the rows of EB

A are
anchor embeddings in the output space, its columns j act precisely as do the
columns of L, i.e. as columns in a projection matrix, so that σ[rAi ] ·EB

Aj outputs
dimension j of the reconstructed target embedding eBi .

There is at least one important difference between LLC and our procedure:
in LLC each expert uses an internal transform to generate an input-dependent
embedding, which is then scaled by its responsibility term, which also depends
on the input. Reconstruction via relative representations instead employs fixed
stored embeddings, so that each “expert” contributes a scalar value rather than
an embedding vector to the final output. However, the expression of LLC in
terms of a linear index demonstrates that this makes no essential difference
mathematically (conceptually, these scalar “votes” are 1D vectors; cf. Figure 6).

The point is not that these two algorithms are doing precisely the same thing
(they are not, as LLC aims to align multiple embedding spaces by deriving a
mapping to a distinct common space, while our approach aims to recover the
contents of one embedding space from another). The use of LLC to reconstruct
input data X from its “global” embedding Y as in [22] is quite closely related
to our procedure, however, and at this level of abstraction the approaches may
be regarded as the same, with a difference in the nature of the “experts” used in
the mixture model and the attendant multiple “views” of the data. The relative
representation reconstruction procedure, while presumably not as expressive,
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may compensate to some extent for the use of scalar “embeddings” by using a
large number of “experts”, and has the virtue of eschewing the need for a mixture
model to assign responsibilities, or indeed for multiple intermediate embedding
models, to perform such a mapping.
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Abstract. This work studies how brain-inspired neural ensembles
equipped with local Hebbian plasticity can perform active inference
(AIF) in order to control dynamical agents. A generative model capturing
the environment dynamics is learned by a network composed of two dis-
tinct Hebbian ensembles: a posterior network, which infers latent states
given the observations, and a state transition network, which predicts the
next expected latent state given current state-action pairs. Experimen-
tal studies are conducted using the Mountain Car environment from the
OpenAI gym suite, to study the effect of the various Hebbian network
parameters on the task performance. It is shown that the proposed Heb-
bian AIF approach outperforms the use of Q-learning, while not requir-
ing any replay buffer, as in typical reinforcement learning systems. These
results motivate further investigations of Hebbian learning for the design
of AIF networks that can learn environment dynamics without the need
for revisiting past buffered experiences.

Keywords: Active Inference · Hebbian Learning · Sparse Coding

1 Introduction

The study of Sparse Coding [1–4] and Predictive Coding [5–7] networks has
gained much attention for understanding the mechanisms underlying learning
and inference in the brain [8]. In particular, it has been shown that the learning
of the weight dictionary used to project the input signals into sparse codes
can be conducted via the biologically-plausible Hebbian learning mechanism
[9], with experimental evidence behind this mechanism observed in the brain
[10,11]. Hebbian learning differs from the widely-used back-propagation of error
(backprop) technique due to its local nature [7,12,13], where the weight wj of
neuron i is modified via a combination f of the weight’s input xj and the neuron’s
output yi (with ηd the learning rate parameter):

wj ←− wj + ηdf(yi, xj) (1)
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When applied to layers that evince some form of competition between their
neurons, the Hebbian mechanism in (1) leads to the unsupervised learning of
complementary features from the input signals [14].

At the same time, Active Inference (AIF) has gained huge interest as a first-
principle theory, explaining how biological agents evolve and perform actions
in their environment [15,16]. In recent years, the use of deep neural net-
works (DNNs) for parameterizing generative models has gained much atten-
tion in AIF research [17–19]. Deep AIF systems are typically composed of
a posterior network qΦP

(sl|ol−1, al−1), inferring the latent state sl given an
incoming observation-action pair {ol−1, al−1}, and a state-transition network
pΦS

(sl|sl−1, al−1), predicting the next latent state sl given the current state-
action pair {sl−1, al−1} [17]. The state-transition network is used to generate
the agent’s roll-outs for different policies in order to compute the Expected Free
Energy associated to each policy [17]. Finally, a likelihood network pΦL

(ol|sl)
reconstructing the input observation ol from the latent state sl can also be
optionally implemented [20] (not utilized in this work). Each network parame-
terizes its respective density function through weight tensors ΦP , ΦS and ΦL.

In this work, we aim to study how AIF can be performed in Hebbian learning
networks without resorting to backprop (as typically used in deep AIF systems).
Experiments conducted in the OpenAI Mountain Car environment [21] show
that the proposed Hebbian AIF approach outperforms the use of Q-learning and
compares favorably to the backprop-trained Deep AIF system of [17], while not
requiring any replay buffer, as in typical reinforcement learning systems [22].
Our derivations and experiments add to a growing number of work addressing
the study of Hebbian Active Inference [23,24].

This paper is organized as follows. Background theory about Hebbian learn-
ing networks is provided in Sect. 2. Our Hebbian AIF methods are covered in
Sect. 3. Experimental results are shown in Sect. 4. Conclusions are provided in
Sect. 5.

2 Background Theory on Hebbian Learning Networks

Inspired by previous works that model the neural activity of biological agents
through Sparse Coding [5,9] (such as in the mushroom body of an insect’s brain
[25]), we model each individual Hebbian Ensemble layer of our networks as an
identically-distributed Gaussian likelihood model with a Laplacian prior on the
neural activity c:

p(c|o, Φ) ∼ exp (−||Φc − o||22) exp (−λ||c||1) (2)

where o is the input of dimension N , c is the output of dimension M , Φ is the
N × M weight matrix of the layer (also called dictionary), and λ is a hyper-
parameter setting the scale of the Laplacian prior. Choosing a Laplacian prior
is motivated by the fact that it promotes sparsity in the output neural code in a
way similar to how sparsity is induced in networks of Spiking Leaky Integrate-
and-Fire neurons, modelling cortical neural activity [9].
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Under Sparse Coding (2), inference of c and learning of Φ is carried via [9]:

C,Φ = arg min
C,Φ

∑

l

||Φcl − ol||22 + λ||cl||1 with C = {cl,∀l} (3)

which can be solved via Proximal Stochastic Gradient Descent [26], by alternat-
ing between: a) the inference of cl, given the current input ol and the weight Φ
and b) the learning of Φ, given the current cl and ol.

Hence, we instantiate Hebbian layers as the dynamical system given in (4),
where T denotes the transpose, ηc is the coding rate, ηd is the learning rate and
Proxλ||.||1 is the proximal operator to the l1 norm (non-linearity) [27]. For each
input oi, the neural and weight dynamics of the Hebbian network follows the
update rules in (4) for an arbitrary number of iterations (set to 100 in this work
as a good balance between speed of convergence and convergence quality), in
order to infer the corresponding cl and learn Φ [9].

{
cl ← Proxλ||.||1{cl − ηcΦ

T (Φcl − ol)}
Φ ← Φ − ηd(Φcl − ol)cT

l

(4)

with Proxλ||.||1 acting as the neural non-linearity:

Proxλ||.||1(ci) = sign(ci)max(0, |ci| − ηcλ),∀i (5)

From a neural point of view, the dynamical system of (4) can be imple-
mented as the network architecture in Fig. 1, where all weight updates follow
the standard Hebbian rule (1) [9].

Fig. 1. Baseline Hebbian network architecture used in this work. The dynamics
of the network follow (4) and minimize (3), given subsequent input vectors o. Each
layer possesses its own weight matrix Φ, Ψ which evolve through Hebbian plasticity
(Ψ ∼ ΦT in (4), as an independent, local set of weights).
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3 Active Inference in Hebbian Learning Networks

In this Section, we show how the Hebbian network described above in Sect. 2 is
utilized in order to build an AIF system. First, we describe how Variational Free
Energy minimization can be performed by a cascade of two Hebbian networks:
a state-transition network predicting the next latent states given the previous
ones, and a posterior network providing latent states given input observations.
Crucially, it is shown that Free Energy minimization necessitates top-down Heb-
bian learning connections from the state-transition network towards the posterior
network, steering the posterior output activity towards the state-transition out-
put during learning. Then, we show how the Expected Free Energy is computed
by generating state transition roll-outs. In summary, the ensuing scheme show-
cased below can be regarded as learning to plan; in which the requisite inferences
are amortised by Hebbian learning. Note that this learning is effectively a local
scheme that eschews need for back propagation.

3.1 Minimizing the Variational Free Energy

The Variational Free Energy can be decomposed as [17,28] (where E denotes the
expected value):

F = DKL[qΦP
(sl|ol−1, al−1)||pΦS

(sl|sl−1, al−1)]︸ ︷︷ ︸
expected complexity (ambiguity)

− Eq[log(pΦL
(ol|sl))]︸ ︷︷ ︸

expected accuracy (risk)

(6)

with the parametrized densities qΦP
, pΦS

, pΦL
described in Sect. 1. Since the Heb-

bian network architecture used in this work intrinsically provides a means to
reconstruct its input xl in (3) (i.e., likelihood modelling) from its produced latent
code cl in (3) (i.e., posterior modelling), using the same dictionary parameter
matrix Φ in (3) that was used to generate cl via (4), we have ΦL = ΦP in (6)
and we will solely use ΦP below to denote the posterior weight matrix.

Under the assumption of Gaussian likelihood with identity covariance in (2),
the KL divergence DKL in F can be simplified to [29]:

F ∼ ||ΦScS,l − {sl(ΦP ), al}||22 + ||ΦP sl − {ol, al}||22 (7)

where sl(ΦP ) explicits the dependency of sl on ΦP (sl being the posterior net-
work output activity) and cS denotes the output activity of the state-transition
network given sl. The Free Energy in (7) must be minimized with regard to the
state transition weights ΦS and the posterior weights ΦP during learning:

ΦS , ΦP = arg min
ΦS ,ΦP

||ΦScS,l − {sl(ΦP ), al}||22 + ||ΦP sl − {ol, al}||22,∀l (8)

This indicates that it is not only the state transition model that must be steered
towards the posterior model, but also, the posterior model must be steered
towards the output of the state-transition network. This effect can be achieved
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by re-formulating the optimization in (8) as:
{

ΦS = arg minΦS
||ΦScS,l − {sl, al}||22,∀l (a)

ΦP = arg minΦP
||ΦP sl − {ol, al}||22 + ||ΦP (ΦScS,l) − {ol, al}||22 (b)

(9)

Intuitively, the right-hand term in (9 b) steers the posterior model towards
the state-transition model by first re-projecting the output activity of the state-
transition network cS into the latent space as ΦScS (considering ΦS fixed). Then,
minimizing ||ΦP (ΦScS,l) − {ol, al}||22 modifies ΦP in order to steer its posterior
output sl towards the re-projected state-transition activity ΦScS (considering
{ol, al} fixed).

State-Transition Model. Inspired by prior work on dictionary-based sequence
modeling [30], we implement the transition model pΦS

(sl|s̃l−1, ãl−1) as an auto-
regressive Hebbian network (see Fig. 2 a), taking as input a sequence of state-and-
action history s̃l−1 = [sl−1, . . . , sl−Lbuf

], ãl−1 = [al−1, . . . , al−Lbuf
] and inferring

the next state s̃l = [sl, . . . , sl−Lbuf
] as the re-projection of its internal sparse

code cS in the input space through the network weights ΦS :

s̃l = ΦScS,l (10)

where ΦS,j and cS,j respectively denote the weight vector and the sparse code
of each layer j in the state transition network. Therefore, the state-transition
network effectively projects the Lbuf previous states (noted s̃l−1) into a common
internal sparse code cS and reconstructs the next states s̃l by re-projection of
cS into the input space.

The state-transition network learns its weights ΦS following (9 a) and infers
its output activity cS via sparse coding (see Sect. 2):

ΦS , cS,l = arg min
ΦS ,cS,l

||ΦScS,l − s̃l||22 + λP ||cS,l||1,∀l (11)

where λP is a parameter that sets the strength of the sparsity of the state-
transition output activity. (11) can therefore be implemented via the Sparse
Coding-based Hebbian learning ensemble described in Sect. 2. This auto-
regressive strategy enables the network to learn state predictions using Hebbian
learning, without the need for non-bio-plausible back-propagation through time
(BPTT) [30,31].

In order to prevent the vanishing or exploding of the state transition model
when producing roll-outs further in time, we regularize the norm of the recon-
structed states sl to an arbitrary magnitude α using (12). We keep α = 5 in
our experiments in Sect. 4, giving a good balance for the dynamic range of the
network output activity (adjusted empirically).

sl = α
sl

||sl||2 (12)
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Posterior Model. Similar to the state-transition model, we use a Hebbian
ensemble as posterior model, where the internal sparse code cP (see Fig. 2 b)
is identified as the hidden state sl ≡ cP,l inferred by the posterior network
qν(sl|ol−1, al−1), given the observation and action pair {ol−1, al−1} in (2).

Therefore, the posterior network learns its weights ΦP following (9 b) and
infers its output activity sl = cP,l via sparse coding (see Sect. 2):

ΦP , cP,l = arg min
ΦP ,cP,l

||ΦP cP,l − {ol, al}||22 + λQ||cP,l||1
︸ ︷︷ ︸

Standard Sparse Coding

+

Top-down Connection
︷ ︸︸ ︷

||ΦP (ΦScS,l)− {ol, al}||22 (13)

for all l, where λQ sets the strength of the sparsity of the posterior output
activity. The left-hand standard sparse coding term in (13) can be implemented
via the Hebbian learning ensemble described in Sect. 2, while the right-hand term
in (13) can be implemented using top-down connections from the state-transition
output activity cS towards the posterior network, via the state-transition weight
matrix ΦS (see Fig. 2 b).

Finally, here again, we apply the regularization rule (12) to the inferred
posterior state, effectively constraining sl to lie on the α-sphere manifold.

Fig. 2. Hebbian Active Inference Architecture. a) The state-transition network
takes as input the Lbuf previous latent states produced by the posterior network, and
projects them onto its internal representation cS via the learned ΦS . When producing
roll-outs, the state-transition network estimates the next state ŝl by re-projecting the
output activity cS due to [sl−Lbuf , . . . , sl−1] back onto the input space via (10). b) The
posterior network takes observation-action pairs as input and produces latent states
s (corresponding to the output in Fig. 1). In addition to the Hebbian mechanisms
depicted in Fig. 1, the weights ΦP of the posterior network are also subject to a top-
down Hebbian learning mechanism for minimizing the second term in (9 b).
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3.2 Minimizing the Expected Free Energy

Given a policy π, the Expected Free Energy G(π) (EFE) can be written as [32]:

G(π) =
∑

l

Eq(ol,sl|π)[log q(sl|π) − log p(sl, ol|π)]

=
∑

l

−H{q(sl|π)} − Eq(ol,sl|π)[log p(sl, ol|π)] (14)

where H denotes the Shannon entropy. It can be seen in (14) that selecting a
policy that minimizes the EFE entails the maximization of the posterior entropy
(promoting exploration) and the joint posterior over the states and observations
(reaching the desired goal) [32].

To reach the desired goal, we produce roll-outs of states sl given a certain
policy and approximate the risk term −Eq[log p(sl, ol|π)] to be minimized as:

− Eq(ol,sl|π)[log p(sl, ol|π)] ∼ ||sl − s∗||22 (15)

where s∗ is the desired state that the agent must reach, corresponding to a desired
observation (e.g., the agent’s position). Since the observation ol can encompass
more than just the goal to be reached (i.e., the observation ol could be both the
position and the velocity of an agent, even though the desired goal is to reach a
specific position regardless of the velocity), we compute the goal state s∗ as:

s∗ = arg max
s

∫

ω∈Dω

q(s|Ω∗, ω)dω (16)

where Ω∗ contains all observations that must be reached in order to attain the
desired goal and ω designates all observation modalities that are not taking part
in defining the goal that must be reached, with Dω their domain of definition.
In practice, (16) is estimated by averaging the output of the posterior network,
while sweeping ω for a grid of possible values and keeping Ω∗ fixed.

Regarding the exploration term in (14), our Hebbian network does not
directly allow the estimation of the entropy H{q(ol, sl|π)}, since the network
does not infer standard deviations as in a variational auto-encoder (VAE) [17].
We propose to replace the maximization of the entropy H{q(ol, sl|π)} with
a surrogate term, crafted to promote exploration as well. As a surrogate for
H{q(ol, sl|π)}, we choose to maximize the variance (noted Var) of the state
trajectory sl,∀l = 1, ..., L along time during the roll-outs. Intuitively, a state
trajectory that presents lots of variation in time will promote the exploration of
new states, providing a similar qualitative effect as maximizing H{q(ol, sl|π)}.
Therefore, we select the policy π such that the distance to the desired state
is minimized, while achieving a state trajectory variance larger than a certain
threshold tv.

π∗ = arg min
π

G(π) =
L∑

l=1

||sl − s∗||22 s.t. Var(||sl − s∗||22, l = 1, ..., L) ≥ tv

(17)
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Given a set of Np policies to try, tv can be determined in an adaptive way as
follows, such that the divergence from the desired state is minimized, while ensur-
ing the variance of counterfactual state trajectories exceeds a certain threshold:

tv = β × 1
2
[max

π
(Var(||sl(π) − s∗||22,∀l)) + min

π
(Var(||sl(π) − s∗||22,∀l))] (18)

where β is the strength hyper-parameter (empirically set to 0.5 in our experi-
ments reported below). β acts as the precision or inverse temperature parame-
ter associated with prior preferences (i.e., the precision of the prediction error
between predicted and desired states). It must be noted that this approach might
have some limitations since it could promote a presence of noisy perturbation
during state transition (as the variance in (17) represents the entropy of the
environment vs. the entropy of the agent’s brain in (14))

4 Experimental Results

The aim of our experimental studies is to determine i) how the main network
hyper-parameters (number of neurons, sparsity in output activity,...) impact the
success rate of the proposed Hebbian AIF system; ii) to what extent Hebbian AIF
is robust when learning without using a replay buffer and iii) how Hebbian AIF
compares to Q-learning (which uses dense rewards versus unsupervised learning
in Hebbian AIF).

4.1 Mountain Car Environment

We perform experiments in the Mountain Car environment from the OpenAI
gym suite [21]. In this task, a car starts at a random position at the bottom of
a hill and is expected to reach the top of a mountain within 200 time steps. The
agent is subject to gravity and cannot reach the goal trivially, just by accelerating
towards it. Rather, the agent must learn to gain momentum before accelerating
towards the goal.

In this environment, the x-axis position x and the velocity vx of the car
constitute the input observations to the Hebbian AIF network. Before feeding
the observation tuple (x, vx) to our Hebbian network, we normalize (x, vx) using
(19) in order to equalize the dynamic range of the position and velocity signals:

{
x ←− x−μx

σx

vx ←− vx−μvx

σvx

(19)

where (μx, σx) and (μvx
, σvx

) denote the mean and standard deviation of the
position and velocity signals respectively (estimated during random environment
runs).
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We use an action space constituted by two discrete actions: accelerate to the
left and accelerate to the right. In addition, each action is repeated for 10 con-
secutive time steps once selected during the Expected Free Energy minimization
in (17).

In order to compute the Expected Free Energy, we generate roll-outs of L =
200 time step predictions for 100 different random policies πj , j = 1, ...100 with
equal probability of selecting the accelerate to the left or the accelerate to the
right actions.

As learning rate for the Hebbian learning mechanism (4), we use ηd = 10−4

with a decay rate of 0.8 applied at the end of each successful episode, i.e. if the
episode terminates successfully, ηd ←− ηd × 0.8 (else no decay is applied on ηd).
All weights are initialized randomly from a normal distribution with standard
deviation 0.01.

In the remainder of this Sections, we perform all our experiments using a 10-
fold validation approach, by reporting the success rate curves as averages over
10 different runs (with 35 episodes per runs), with different random network
initializations. For each run, we compute the success rate curve using a moving
average window of size 5, and report the mean success rate curve by averaging
over the 10 runs, alongside with its standard deviation (see e.g. Fig. 3). We will
now study the impact of the various network hyper-parameters on the achieved
success rates so as to give a complete account of their effect during model tuning.

4.2 Impact of the Number of Neurons in the Posterior and State
Transition Networks

Figure 3 and 4 show the effect of sweeping the number of coding neurons MQ and
MP in both the posterior and state-transition networks. Figure 3 shows that for
MQ < 8, the success rate is sub-optimal, but reaches a steady plateau around
MQ = 8 (orange curve in Fig. 3). Then, as MQ is increased for MQ > 8, the
success rate becomes sub-optimal again, with dips in the performance along the
episodes (e.g., red curve in Fig. 3). This phenomenon can be explained as follows:
for MQ < 8, the posterior network does not have enough parameters to capture
the input dynamics into its latent space and under-fits, while for MQ > 8, the
posterior network starts over-fitting, reducing the success rate again1. Regarding
the state-transition network, Fig. 4 shows that the higher the number of neurons
MP , the flatter the success rate curves become, leading to higher performance.
The state transition network does not seem to over-fit as MP is increased (for
λP = 10−4 kept fixed). Rather, Fig. 4 indicates that a higher state-transition

1 Note that we are using our Hebbian scheme to amortize variational inference. This
means we are optimizing amortization (encoding) parameters, not the (decoding)
parameters of the generative model. An alternative approach would be to treat the
model parameters as random variables and derive the update rules for minimizing
variational free energy, in the form of a Hebbian update. In this instance, over-fitting
would be precluded because of the complexity term in (6). However, this would not
be amortization; this would be an implementation of AIF as described in [34].
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Fig. 3. Impact on the success rate when changing the number of neurons MQ

in the posterior network .

network capacity is beneficial for capturing important dynamics in the latent
space, at the output of the posterior network.

4.3 Impact of the Sparsity of the Output Activity in the Posterior
and State Transition Networks

Figure 5 and 6 show the effect of sweeping the sparsity-defining hyper-parameters
λQ and λP in both the posterior and state-transition networks. For the posterior
network, Fig. 5 shows that the success rate performance initially grows as λQ is
increased from λQ = 10−6 to λQ = 10−5. Doing so, the non-linearity of the
posterior network is increased, better capturing observation features into its
latent space. Then, as λQ grows past λQ = 10−4, the success rate degrades
again, indicating a too strong posterior network non-linearity.

Regarding the state-transition network, Fig. 6 a) shows that the lower λP , the
higher the success rate becomes. This suggests that making the state-transition
network more linear (i.e., lower λP ) better captures the dynamics of the latent
space produced by the posterior network (other parameters kept fixed).
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Fig. 4. Impact on the success rate when changing the number of neurons MP

in the state transition network .

Fig. 5. Impact on the success rate when changing the sparsity hyper-
parameter λQ in the posterior network .
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Fig. 6. a) Impact on the success rate when changing the sparsity λP in the
state transition network . b) Success rate when changing the time-lag buffer
length Lbuf .

4.4 Impact of the Time-Lag Buffer Length on Task Performance

Figure 6 b) shows how the length Lbuf of the time-lag buffer impacts the achieved
success rate. Initially, as Lbuf increases, the success rate increases as well, due
to an increased availability of past latent states used by the state-transition
network to estimate the next expected state. Then, as Lbuf is further increased
for Lbuf > 20, the success rate drops again due to the addition of latent states
from deep in the past that are less useful for estimating the present dynamics.

4.5 Comparing Hebbian AIF Against the Use of a Replay Buffer
and Against Q-Learning

Figure 7 compares the success rate obtained using our proposed Hebbian AIF
system against a) the use of a replay buffer during learning and b) the use of a
Q-learning agent. Experience replay is done by saving the history of observation-
action pairs in a buffer after each episode. After the end of the episode, a past
experience is randomly selected and used to train the Hebbian AIF system for
one episode.

Regarding the Q-learning setup, we use a standard Q-table learning approach
[22], with the python implementation proposed in [33].

Figure 7 shows that our Hebbian AIF system converges much faster than the
Q-learning system and behaves in a comparable manner to the Hebbian AIF
setup with a replay buffer. Indeed, the Q-learning agent needs two orders of
magnitude more training episodes in order to converge, despite the fact that
it utilizes the dense rewards provided by the Mountain Car environment [21]
(vs. unsupervised learning for Hebbian AIF)2. This confirms prior observations
2 Although we have referred to the AIF scheme as unsupervised, there is an implicit

constraint on behavior that is implemented, in this instance, by the goal states
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about the efficient convergence of AIF systems, due to their ability to learn a
generative model of environment dynamics used to select actions during learning
(vs. supervised learning of a Q-table) [17].

Finally, it is interesting to note that, compared to the Deep AIF results
reported in [17] (using a fully-connected 2-hidden-layer network trained through
backprop), the Hebbian AIF system proposed in this work eventually reaches
∼100% success rate (see red curve in Fig. 6 a) while the system in [17] reaches
∼95%, motivating further investigations of Hebbian learning for AIF systems.

Fig. 7. Hebbian AIF versus the use of a replay buffer and Q-learning (a).
Q-learning needs two orders of magnitude more episodes in order to converge (b).

5 Conclusion

This paper has investigated how neural ensembles equipped with local Hebbian
plasticity can perform active inference for the control of dynamical agents. First,
a Hebbian network architecture performing joint dictionary learning and sparse
coding has been introduced for implementing both the posterior and the state-
transition models forming our generative Active Inference system. Then, it has
been shown how Free Energy minimization can be performed by the proposed
Hebbian AIF system. Finally, extensive experiments for parameter exploration
and benchmarking have been performed to study the impact of the network
parameters on the task performance. Experimental results on the Mountain Car
environment show that the proposed system outperforms the use of Q-learning,
while not requiring the use of a replay buffer during learning, motivating future
investigations of using Hebbian learning for designing active inference systems.

in (16). In AIF, goal-directed behavior emerges from inferring the right courses of
action that lead to preferred outcomes. In amortized AIF, this planning as inference
is learned; as we have demonstrated. In contrast, reinforcement learning ignores
inference and simply learns rewarded behaviors, which can take a very long time -
because there is no learning of a generative model, or the constraints that it affords.
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Abstract. There are two important things in science: (A) Finding
answers to given questions, and (B) Coming up with good questions. Our
artificial scientists not only learn to answer given questions, but also con-
tinually invent new questions, by proposing hypotheses to be verified or
falsified through potentially complex and time-consuming experiments,
including thought experiments akin to those of mathematicians. While
an artificial scientist expands its knowledge, it remains biased towards
the simplest, least costly experiments that still have surprising outcomes,
until they become boring. We present an empirical analysis of the auto-
matic generation of interesting experiments. In the first setting, we inves-
tigate self-invented experiments in a reinforcement-providing environ-
ment and show that they lead to effective exploration. In the second
setting, pure thought experiments are implemented as the weights of
recurrent neural networks generated by a neural experiment generator.
Initially interesting thought experiments may become boring over time.

Keywords: Reinforcement Learning · Exploration

1 Introduction and Previous Work

It has been pointed out that there are two important things in science: (A)
Finding answers to given questions, and (B) Coming up with good questions,
e.g., [2,30,31,42,60,63,65,68]. (A) is arguably just the standard problem of com-
puter science. But how to implement the creative part (B) in artificial systems
through reinforcement learning (RL), gradient-based artificial neural networks
(NNs), and other machine learning methods?

For at least three decades, work on artificial scientists equipped with artificial
curiosity and creativity has been published that addresses this question, e.g., [33,
38,40,42,48,53,57,60,70,72,73]. One early such work is the intrinsic motivation-
based adversarial system from 1990 [38,42]. It is an artificial Q&A system
designed to invent and answer questions. For that, it uses two artificial NNs.
The first NN is called the controller C. C probabilistically generates outputs that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. L. Buckley et al. (Eds.): IWAI 2023, CCIS 1915, pp. 254–274, 2024.
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may influence an environment. The second NN is called the world model M . It
predicts the environmental reactions to C’s outputs. Using gradient descent, M
minimizes its error, thus becoming a better predictor. But in a zero-sum game,
the reward-maximizing C tries to find sequences of output actions that maximize
the error of M . M ’s loss is the gain of C (like in the later application of artificial
curiosity called GANs [10,64], but also for the more general cases of sequential
data and RL [20,74,80]).

C is asking questions through its action sequences: What happens if I do
that? M is learning to answer those questions. C is motivated to come up with
questions where M does not yet know the answer and loses interest in questions
with known answers.

This type of Q&A system helps to understand the world, which is neces-
sary for planning [38,39,42] and may boost external reward [2,31,40,50,52,58].
Clearly, the adversarial approach makes for a fine exploration strategy in many
deterministic environments. In stochastic environments, however, it might
fail. C might learn to focus on those parts of the environment where M can
always get high prediction errors due to randomness, or due to computational
limitations of M . For example, an agent controlled by C might get stuck in front
of a TV screen showing highly unpredictable white noise, e.g., [2,57]. Therefore,
in stochastic environments, C’s reward should not be the errors of M , but (an
approximation of) the first derivative of M ’s errors across subsequent training
iterations, that is, M ’s learning progress or improvements [40,54]. As a
consequence, despite M ’s high errors in front of a noisy TV screen, C won’t get
rewarded for getting stuck there, simply because M ’s errors won’t improve. Both
the totally predictable and the fundamentally unpredictable will get boring.

This simple insight led to lots of follow-up work [57]. For example, one par-
ticular RL approach for artificial curiosity in stochastic environments was pub-
lished in 1995 [72]. A simple M learned to predict or estimate the probabilities
of the environment’s possible responses, given C’s actions. After each interac-
tion with the environment, C’s intrinsic reward was the KL-Divergence [25]
between M ’s estimated probability distributions before and after the resulting
new experience—the information gain [72]. This was later also called Bayesian
Surprise [19]. Compare earlier work on information gain [66] and its maximiza-
tion without RL & NNs [6].

In the general RL setting where the environment is only partially observ-
able [61, Sec. 6], C and M may greatly profit from a memory of previous
events [38,39,43]. Towards this end, both C and M can be implemented as
LSTMs [7,12,16,61] or Transformers [28,75].

The better the predictions of M , the fewer bits are required to encode the
history H of observations because short codes can be used for observations that
M considers highly probable [17,83]. That is, the learning progress of M has a
lot to do with the concept of compression progress [53,55–57]. But it’s not quite
the same thing. In particular, it does not take into account the bits of infor-
mation needed to specify M . A more general approach is based on algorithmic
information theory, e.g., [22,26,51,69,78,79]. Here C’s intrinsic reward is indeed
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based on algorithmic compression progress [53,55–57] based on some cod-
ing scheme for the weights of the model network, e.g., [8,15,23,24,46,47,71],
and also a coding scheme for the history of all observations so far, given the
model [15,17,34,53,78,83]. Note that the history of science is a history of com-
pression progress through incremental discovery of simple laws that govern seem-
ingly complex observation sequences [53,55–57].

In early systems, the questions asked by C were restricted in the sense that
they always referred to all the details of future inputs, e.g., pixels [38,42]. That’s
why in 1997, a more general adversarial RL machine was built that could ignore
many or all of these details and ask arbitrary abstract questions with com-
putable answers [48–50]. Example question: if we run this policy (or program)
for a while until it executes a special interrupt action, will the internal stor-
age cell number 15 contain the value 5, or not? Again there are two learning,
reward-maximising adversaries playing a zero-sum game, occasionally betting
on different yes/no outcomes of such computational experiments. The winner of
such a bet gets a reward of 1, the loser –1. So each adversary is motivated to come
up with questions whose answers surprise the other. And both are motivated to
avoid seemingly trivial questions where both already agree on the outcome, or
seemingly hard questions that none of them can reliably answer for now. This is
the approach closest to what we will present in the following sections.

All the systems above (now often called CM systems [62]) actually maximize
the sum of the standard external rewards (for achieving user-given goals) and
the intrinsic rewards. Does this distort the basic RL problem?

It turns out not so much. Unlike the external reward for eating three times
a day, the curiosity reward in the systems above is ephemeral, because once
something is known, there is no additional intrinsic reward for discovering it
again. That is, the external reward tends to dominate the total reward. In totally
learnable environments, in the long run, the intrinsic reward even vanishes next
to the external reward. Which is nice, because in most RL applications we care
only for the external reward.

RL Q&A systems of the 1990s did not explicitly, formally enumerate
their questions. But the more recent PowerPlay framework (2011) [60,70]
does. Let us step back for a moment. What is the set of all formalisable ques-
tions? How to decide whether a given question has been answered by a learning
machine? To define a question, we need a computational procedure that takes
a solution candidate (possibly proposed by a policy) and decides whether it is
an answer to the question or not. PowerPlay essentially enumerates the set of
all such procedures (or some user-defined subset thereof), thus enumerating all
possible questions or problems. It searches for the simplest question that
the current policy cannot yet answer but can quickly learn to answer
without forgetting the answers to previously answered questions. What
is the simplest such Q&A to be added to the repertoire? It is the cheapest one—
the one that is found first. Then the next trial starts, where new Q&As may
build on previous Q&As.
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In our empirical investigation of Sect. 3, we will revisit the above-mentioned
concepts of complex computational experiments with yes/no outcomes, focusing
on two settings: (1) The generation of experiments driven by model prediction
error in a deterministic reinforcement-providing environment, and (2) An app-
roach where C (driven by information gain) generates pure thought experiments
in form of weight matrices of RNNs.

2 Self-invented Experiments Encoded as Neural
Networks

We present a CM system where C can design essentially arbitrary computa-
tional experiments (including thought experiments) with binary yes/no out-
comes. Experiments may run for several time steps. However, C will prefer simple
experiments whose outcomes still surprise M , until they become boring.

In general, both the controller C and the model M can be implemented
as (potentially multi-dimensional) LSTMs [11]. At each time step t = 1, 2, . . .,
C’s input includes the current sensory input vector in(t), the external reward
vector Re(t), and the intrinsic curiosity reward Ri(t). C may or may not interact
directly with the environment through action outputs. How does C ask questions
and propose experiments? C has an output unit called the START unit. Once it
becomes active (>0.5), C uses a set of extra output units for producing the weight
matrix or program θ of a separate RNN or LSTM called E (for Experiment), in
fast weight programmer style [4,9,18,21,36,37,41,44,45].

E takes sensory inputs from the environment and produces actions as outputs.
It also has two additional output units, the HALT unit [59] and the RESULT
unit. Once the weights θ are generated at time step t′, E is tested in a trial,
interacting with some environment. Once E’s HALT unit exceeds 0.5 in a later
time step t′′, the current experiment ends. That is, the experiment computes its
own runtime [59]. The experimental outcome r(t′′) is 1 if the activation result(t′′)
of E’s RESULT unit exceeds 0.5, and 0 otherwise. At time t′, so before the
experiment is being executed, M has to compute its output pr(t′) ∈ [0, 1] from
θ (and the history of C’s inputs and actions up to t′, which includes all previous
experiments their outcomes). Here, pr(t′) models M ’s (un)certainty that the
final binary outcome of the experiment will be 1 (YES) or 0 (NO). Then the
experiment is run.

In short, C is proposing an experimental question in form of θ that will yield
a binary answer (unless some time limit is reached). M is trying to predict this
answer before the experiment is executed. Since E is an RNN and thus a general
computer whose weight matrix can implement any program executable on a
traditional computer [67], any computable experiment with a binary outcome can
be implemented in its weight matrix (ignoring storage limitations of finite RNNs
or other computers). That is, by generating an appropriate weight matrix θ, C
can ask any scientific question with a computable solution. In other words, C can
propose any scientific hypothesis that is experimentally verifiable or falsifiable.
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At t′′, M ’s previous prediction pr(t′) is compared to the later observed out-
come r(t′′) of C’s experiment (which spans t′′ − t′ time steps), and C’s intrinsic
curiosity reward Ri(t′′) is proportional to M ’s surprise. To calculate it, we inter-
pret pr(t′) as M ’s estimated probability of r(t′′), given the history of observations
so far. Then we train M by gradient descent (with regularization to avoid over-
fitting) for a fixed amount of time to improve all of its previous predictions
including the most recent one. This yields an updated version of M called M∗.

In general, M∗ will compute a different prediction PR(t′) of r(t′′), given the
history up to t′ −1. At time t′′, the contribution RIG(t′′) to C’s curiosity reward
is proportional to the apparent resulting information gain, the KL-divergence

RIG(t′′) ∼ DKL

(
PR(t′)||pr(t′)

)
.

If M had a confident belief in a particular experimental outcome, but this belief
gets shattered in the wake of C’s experiment, there will be a major surprise and a
big insight for M , as well as lots of intrinsic curiosity reward for C. On the other
hand, if M was quite unsure about the experimental outcome, and remains quite
unsure afterwards, then C’s experiment can hardly surprise M and C will fail to
profit much. C is motivated to propose interesting hypotheses or experiments that
violate M ’s current deep beliefs and expand its horizon. An alternative intrinsic
curiosity reward would be based on compression progress [53,55–57].

Note that the entire experimental protocol is the responsibility of θ. Through
θ, E must initialize the experiment (e.g., by resetting the environment or moving
the agent to some start position if that is important to obtain reliable results),
then run the experiment by executing a sequence of computational steps or
actions, and translate the incoming data sequence into some final abstract binary
outcome YES or NO.

C is motivated to design experimental protocols θ that surprise M . C will get
bored by experiments whose outcomes are predicted by M with little confidence
(recall the noisy TV), as well as by experiments whose outcomes are correctly
predicted by M with high confidence. C will get rewarded for surprising experi-
ments whose outcomes are incorrectly predicted by M with high confidence.

A negative reward per time step encourages C to be efficient and lazy and
come up with simple and fast still surprising experiments. If physical actions in
the environment cost much more energy (resulting in immediate negative reward)
than E’s internal computations per time step, C is motivated to propose a θ
defining a “thought experiment” requiring only internal computations, without
executing physical actions in the (typically non-differentiable) environment. In
fact, due to C’s bias towards the computationally cheapest and least costly
experiments that are still surprising to M , most of C’s initial experiments may
be thought experiments. Hence, since C, E and M are differentiable, not only
M but also C may be often trainable by backpropagation [4] rather than the
generally slower policy gradient methods [1,29,77,81]. Of course, this is only
true if the reward function is also differentiable with respect to C’s parameters.
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3 Experimental Evaluation

Here we present initial studies of the automatic generation of interesting exper-
iments encoded as NNs. We evaluate these systems empirically and discuss
the associated challenges. This includes two setups: (1) Adversarial intrinsic
reward encourages experiments executed in a differentiable environment through
sequences of continuous control actions. We demonstrate that these experiments
aid the discovery of goal states in a sparse reward setting. (2) Pure thought exper-
iments encoded as RNNs (without any environmental interactions) are guided
by an information gain reward.

Together, these two setups cover the important aspects discussed in Sect. 2:
the use of abstract experiments with binary outcomes as a method for curious
exploration, and the creation of interesting pure thought experiments encoded as
RNNs. We leave the integration of both setups into a single system (as described
in Sect. 2) for future work.

3.1 Generating Experiments in a Differentiable Environment

Reinforcement learning (RL) usually involves exploration in an environment with
non-differentiable dynamics. This requires RL methods such as policy gradi-
ents [82]. To simplify our investigation and focus solely on the generation of
self-invented experiments, we introduce a fully differentiable environment that
allows for computing analytical policy gradients via backpropagation. This does
not limit the generality of our approach, as standard RL methods can be used
instead.

Our continuous force field environment is depicted in Fig. 1. The agent has
to navigate through a 2D environment with a fixed external force field. This
force field can have different levels of complexity. The states in this environment
are the position and velocity of the agent. The agent’s actions are real-valued
force vectors applied to itself. To encourage laziness and a bias towards simple
experiments, each time step is associated with a small negative reward (−0.1). A
sparse large reward (100) is given whenever the agent gets very close to the goal
state. We operate in the single life setting without episodic resets. Additional
information about the force field environment can be found in Appendix A. Since
the environment is deterministic, it is sufficient for C to generate experiments
whose results the current M cannot predict.

Method. Algorithm 1 and Fig. 2 summarize the process for generating a
sequence of interesting abstract experiments with binary outcomes. The goal
is to test the following three hypotheses:

– Generated experiments implement exploratory behavior, facilitating the
reaching of goal states.

– If there are negative rewards in proportion to the runtime of experiments,
then the average runtime will increase over time, as the controller will find it
harder and harder to come up with new short experiments whose outcomes
the model cannot yet predict.
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Fig. 1. A differentiable force field environment. The agent (red) has to navigate
to the goal state (yellow) while the external force field exerts forces on the agent. (Color
figure online)

Fig. 2. Generating self-invented experiments in a differentiable environment.
A controller Cφ is motivated to generate experiments Eθ that still surprise the model
Mw. After execution in the environment, the experiments and their binary results are
stored in memory. The model is trained on the history of previous experiments.

– As the model learns to predict the yes/no results of more and more experi-
ments, it becomes harder for the controller to create experiments whose out-
comes surprise the model.

The generated experiments have the form Eψ(s) = (a, r̂), where Eψ is a linear
feedforward network with parameters ψ, s is the environment state, a are the
actions and r̂ ∈ [0, 1] is the experimental result. Both s and a are real-valued
vectors.

Instead of a HALT unit, a single scalar τ ∈ R
+ determines the number

of steps for which an experiment will run. To further simplify the setup, the
experiment network is a feedforward NN without recurrence. To make the exper-
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imental result differentiable with respect to the runtime parameter, τ predicts
the mean of a Gaussian distribution with fixed variance over the number of steps.
The actual result r̃ is the expectation of the result unit r̂ over the distribution
defined by τ (more details on this can be found in Appendix A.1). The binarized
result r has the value 1 if r̃ > 0.5, and 0 otherwise. The parameters θ of the
experiment are the network parameters ψ together with the runtime parameter
τ , i.e. θ := (ψ, τ).

For a given starting state s, the controller Cφ generates experiments: Cφ(s) =
θ. Cφ is a multi-layer perceptron (MLP) with parameters φ, and θ denotes the
parameters of the generated experiment. The model Mw is an MLP with param-
eters w. It makes a prediction Mw(s, θ) = ô, with ô ∈ [0, 1], for an experiment
defined by the starting state s and the parameters θ.

During each iteration of the algorithm, Cφ generates an experiment based
on the current state s of the environment. This experiment is executed until
the cumulative halting probability defined by the generated τ exceeds a certain
threshold (e.g., 99%). The starting state s, experiment parameters θ and binary
result r are saved in a memory buffer D of experiments. Every state encountered
during the experiment is saved to the state memory buffer B.

After the experiment execution, the model Mw is trained for a fixed number
of steps of stochastic gradient descent (SGD) to minimize the loss

LM = E(s,θ,r)∼D[bce(Mw(s, θ), r)], (1)

where bce is the binary cross-entropy loss function.
The third and last part of each iteration is the training of the controller Cφ.

The loss that is being minimized via SGD is

LC = Es∼B[−bce
(
Mw(s, Cφ(s)), r̃(Cφ(s), s)

) − Re(Cφ(s), s)]. (2)

The function r̃ maps the experiment parameters and starting state to the con-
tinuous result of the experiment. The function Re maps the experiment param-
eters and starting state to the external reward. Note that gradient information
will flow back from r̃ and R to φ through the execution of the experiment in the
differentiable environment. The first term corresponds to the intrinsic reward for
the controller, which encourages it to generate experiments whose outcomes Mw
cannot predict. The second term is the external reward from the environment,
which punishes long experiments. Since the reward for reaching the goal is sparse
and not differentiable with respect to the experiment’s actions, no information
about the goal state reaches Cφ through the gradient.

Results and Discussion. To investigate our first hypothesis, Fig. 3a shows
the cumulative number of times a goal state was reached during an experiment,
adjusted by the number of environment interactions of each experiment. Specifi-
cally, it shows h(j) =

∑j
k=1

gk

nk
, where j = 1, 2, . . . is the index of the generated

experiment, gk is 1 if the goal state was reached during the kth experiment
and 0 otherwise, and nk is the runtime of the kth experiment. Our method,
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(a) Number of times the goal state was reached,
adjusted by the number of environment interac-
tions. Experiments generated with adversarial
intrinsic reward benefit exploration more than
random experiments. Without intrinsic motiva-
tion, the agent usually fails to reach any goal
states in the sparse reward setting. Mean with
bootstrapped 95% confidence intervals across
30 seeds.

(b) Blue: the average runtime of experiments gen-
erated by Cφ. Purple: the difference between result
prediction accuracy of the current Mw for the gener-
ated experiment and the average prediction accuracy
of the current Mw for random experiments. As it gets
harder for Cφ to generate experiments θ that are sur-
prising to Mw (hard to predict), the runtime increases
and the experiments tend to be harder to predict than
the average randomly drawn experiment. Mean with
bootstrapped 95% confidence intervals across 30 seeds.

Fig. 3. Experiments in the differentiable force field environment

as described above and in Algorithm 1, reaches the most goal states per envi-
ronment interaction. Purely random experiments also discover goal states, but
less frequently. Note that such random exploration in parameter space has been
shown to be a powerful exploration strategy [32,35,76]. The average runtime
of the random experiments is 50 steps, compared to 22.9 for the experiments
generated by Cφ. To rule out a potential unfair bias due to different runtimes,
Fig. 6 in the Appendix shows an additional baseline of random experiments with
an average runtime of 20 steps, leading to results very similar to those of longer
running random experiments. If we remove the intrinsic adversarial reward, the
controller is left only with the external reward. This means that there is no bce
term in Eq. 2. It is not surprising that in this setting, Cφ fails to generate experi-
ments that discover goal states, since the gradient of LC contains no information
about the sparse goal reward.

Figure 3b addresses our second and third hypotheses. Cφ indeed tends to
prolong experiments as Mw has been trained on more experiments, even though
experiments with long runtimes are discouraged through the punitive external
reward. Our explanation for this is that it becomes harder with time for Cφ to
come up with short experiments for which Mw cannot yet accurately predict
the correct results. This is supported by the fact that the prediction accuracy of
Mw for newly generated experiments goes up. Specifically, Fig. 3b shows the dif-
ference between prediction accuracy of the current Mw for the newly generated
experiment and the expected prediction accuracy of the current Mw for experi-
ments randomly sampled from a simple prior. This accounts for the general gain
of Mw’s prediction accuracy over the course of training. It can be seen that in
the beginning, Cφ is successful at creating adversarial experiments that surprise
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Mw. With time, however, it fails to continue doing so and is forced to create
longer experiments to challenge Mw.

3.2 Pure RNN Thought Experiments

The previous experimental setup uses feedforward NNs as experiments and
an intrinsic reward function that is differentiable with respect to the con-
troller’s weights. This section investigates a complementary setup: interesting
pure thought experiments (with no environment interactions) are generated in
the form of RNNs without any inputs, driven by an intrinsic curiosity reward
based on information gain which we treat as non-differentiable.

Algorithm 1. Adversarial yes/no experiments in a differentiable environment
Input: Randomly initialized differentiable Controller Cφ : S → Θ, randomly initialized
differentiable Model Mw : S × Θ → R, empty experiment memory D, empty state
memory B, set of random initial experiments Einit, Differentiable environment
Output: An experiment memory populated with (formerly) interesting experiments
1: for θ ∈ Einit do
2: s ← current environment state
3: Execute the experiment parametrized by θ in the environment, obtain binary

result r
4: Save the tuple (s, θ, r) to D
5: Save all encountered states during the experiment to B
6: end for
7: repeat
8: s ← current environment state
9: θ ← Cφ(s)

10: Execute the experiment parametrized by θ in the environment, obtain binary
result r

11: Save tuple (s, θ, r) to D
12: ŝ ← current environment state
13: for some steps do
14: Sample tuple (s, θ, r) from D
15: Update the model using SGD: ∇wbce(Mw(s, θ), r)
16: end for
17: for some steps do
18: Sample starting state s from B
19: Set environment to state s
20: Execute the experiment parametrized by Cφ(s) in the environment, obtain

continuous result r̃ and external reward Re

21: Update the controller using SGD: ∇φ

( − bce(Mw(s, Cφ(s)), r̃) − Re

)

22: end for
23: Set environment to state ŝ
24: until no more interesting experiments are found
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Method. In many ways, this new setup (depicted in Fig. 4 and described in
Algorithm 2 in the Appendix) is similar to the one presented in Sect. 3.1. In
what follows, we highlight the important differences.

An experiment Eθ is an RNN of the form (ht+1, rt+1, γt+1) = Eθ(ht), where
ht is the hidden state vector, rt ∈ {0, 1} is the binary result at experiment
time step t, and γt ∈ [0, 1] is the HALT unit. The result r of Eθ is the rt for
the experiment step t where γt first is larger than 0.5. Since there is no external
environment and the experiments are independent of each other, the model Mw is
again a simple MLP with parameters w. It takes only the experiment parameters
θ as input and makes a result prediction ô = Mw(θ), ô ∈ [0, 1].

As mentioned above, here we treat the intrinsic reward signal as non-
differentiable. This means that—in contrast to the method presented in
Sect. 3.1—the controller cannot receive information about Mw from gradients
that are backpropagated through the model. Instead, it has to infer the learning
behavior of Mw from the history ω of previous experiments and intrinsic rewards
to come up with new surprising experiments. The controller Cφ is now an LSTM
that is trained by DDPG [27] and generates new experiments solely based on the
history of past experiments: Cφ(ω) = θ. The history ω is a sequence of tuples
(θi, ri, Ri), where i = 1, 2, . . . is the index of the experiment. It contains experi-
ments up to the last one that has been executed. More details on the training
of Mw and the algorithm can be found in Appendix B.

For these pure thought experiments, we use a reward based on information
gain. Let w be M ’s weights at certain point in time. Then a new experiment
with parameters θ is generated, executed and saved to the buffer. On this buffer
D, which now includes θ, M is trained for a fixed number of SGD steps to obtain
new weights w∗. Then, the information gain reward associated with experiment
θ is

RIG(θ,w,w∗) =
1

|D|
∑

θ̃∈D
DKL(Mw∗(θ̃)||Mw(θ̃)), (3)

where we interpret the output of the model as a Bernoulli distribution.

Results and Discussion. Figure 5 shows the information gain reward asso-
ciated with each new experiment that Cφ generates. We observe that, after a
short initial phase, the intrinsic information gain reward steadily declines. This
is similar to what we observe for the prediction accuracy in Sect. 3.1: it becomes
harder for the controller to generate experiments that surprise the model. It
should be mentioned that this is a natural effect, since—as the model is trained
on more and more experiments—every new additional experiment contributes
on average less to the model’s change during training, and thus is associated
with less information gain reward. An interesting, albeit minor, effect shown in
Fig. 5 is that also in this setup, the average runtime of the generated experiments
increases slightly over time, even though there is no negative reward for longer
thought experiments. For shorter experiments, however, it is apparently easier
for the model to learn to predict the results. Hence, at least in the beginning,
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Fig. 4. Generating abstract
thought experiments encoded
as RNNs. The model is trained to
predict the results of previous exper-
iments. The controller generates new
interesting thought experiments (with-
out environment interactions) based
on the history of previous experiments,
their results and rewards.

Fig. 5. Empirical results for pure
thought experiments encoded as
RNNs. Blue: the average runtime of
each experiment generated by Cφ. Pur-
ple: information gain reward (Eq. 3) for
Cφ associated with each experiment.
Mean with bootstrapped 95% confi-
dence intervals across 20 seeds.

they yield more learning progress and more information gain. Later, however,
longer experiments become more interesting.

In comparison to the experiments generated in Sect. 3.1, the present ones
have a much shorter runtime. This is a side-effect of the experiments being RNNs
with a HALT unit; for randomly initialized experiments, the average runtime is
approximately 1.6 steps.

4 Conclusion and Future Work

We extended the neural Controller-Model (CM) framework through the notion of
arbitrary self-invented computational experiments with binary outcomes: exper-
imental protocols are essentially programs interacting with the environment,
encoded as the weight matrices of RNNs generated by the controller. The model
has to predict the outcome of an experiment based solely on the experiment’s
parameters. By creating experiments whose outcomes surprise the model, the
controller curiously explores its environment and what can be done in it. Such
a system is analogous to a scientist who designs experiments to gain insights
about the physical world. However, an experiment does not necessarily involve
actions taken in the environment: it may be a pure thought experiment akin to
those of mathematicians.

We provide an empirical evaluation of two simple instances of such systems,
focusing on different and complementary aspects of the idea. In the first setup,
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we show that self-invented abstract experiments encoded as feedforward net-
works interacting with a continuous control environment facilitate the discovery
of rewarding goal states. Furthermore, we see that over time the controller is
forced to create longer experiments (even though this is associated with a larger
negative external reward) as short experiments start failing to surprise the model.
In the second setup, the controller generates pure abstract thought experiments
in the form of RNNs. We observe that over time, newly generated experiments
result in less intrinsic information gain reward. Again, later experiments tend to
have slightly longer runtime. We hypothesize that this is because simple exper-
iments initially lead to a lot of information gain per time interval, but later do
not provide much insight anymore.

These two empirical setups should be seen as initial steps towards more capa-
ble systems such as the one proposed in Sect. 2. Scaling these methods to more
complex environments and the generation of more sophisticated experiments,
however, is not without challenges. Direct generation and interpretation of NN
weights may not be very effective for large and deep networks. Previous work [3]
already combined hypernetworks [13] and policy fingerprinting [5,14] to gener-
ate and evaluate policies. Similar innovations will facilitate the generation of
abstract self-invented experiments beyond the small scale setups presented in
this paper.

A Experiments in the Force Field Environment

The force field of the environment is based on a 2D grid of randomly sampled
force vectors. To get a continuous force field, bicubic interpolation between the
vectors of the grid is used. Hence, the resolution of the grid influences the com-
plexity of the force field (higher resolution → more intricate force field). In all
experiments, the grid resolution is sampled uniformly from {(3, 3), (5, 5), (7, 7)}.
The random seed of each run affects both the force field and the position of the
goal state. This means that every run has its own unique environment.

A.1 Experiment Execution

Let r̂t ∈ [0, 1] be the value of the result node at step t of the experiment whose
runtime is determined by the parameter τ ∈ [0, 100]. The maximum runtime
is fixed to 100 steps. A distribution over experiment steps t is defined by τ as
follows: pτ (t) =

exp(−0.5(t−τ)2)
∑100

u=1 exp(−0.5(u−τ)2)
.

The continuous result of the experiment is the expectation of the result unit
over this distribution: r̃ = Et∼pτ

r̂t. The binary result of the experiment r is the
boolean value r̃ > 0.5.

A.2 Hyperparameters for the Force Field Experiments

Table 1 shows the hyperparameters for Algorithm 1. The output nodes of Cφ

that generate the parameters ψ of the experiment network have a tanh output
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nonlinearity and are then scaled to the predefined range. The output node that
generates τ is clipped to the range [0, 100].

The experiment parameters for random baselines are generated as ψ =
2 tanh(v), where v ∼ N (0, 4I). The runtime parameter τ is sampled uniformly
from the allowed range. The hyperparameters for the model are the same as in
Table 1. The baseline with only external reward also uses the hyperparameters
of Table 1. The difference is that in this setting, the loss of the Cφ is simply
LC = Es∼B[−R(Cφ(s), s)] instead of the one defined in Eq. 2.

Table 1. Hyperparameters for Algorithm 1

Hyperparameter Value

hidden layers Mw [128, 128, 128, 128]
hidden layers Cφ [128, 128, 128, 128]
training steps per iteration Mw 100
training steps per iteration Cφ 100
learning rate Mw 0.0003
learning rate Cφ 0.0003
weight decay Mw 0.01
weight decay Cφ 0.01
experiment parameter range [–2, 2]
noise input nodes Cφ 8
environment grid resolutions [(3, 3), (5, 5), (7, 7)]
number of iterations 1000
number of initial experiments in Einit 100
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A.3 Additional Results

Fig. 6. Similar to Fig. 3a, but with an additional baseline of short random experiments
with an average runtime of 20 steps.

To account for a potential bias due to experimental runtime, Fig. 6 shows the
adjusted number of goal states for a baseline of shorter random experiments.

B Pure Thought Experiments

Algorithm 2 summarizes the method described in Sect. 3.2. In this setup, the
model Mw is trained to minimize the following loss:

LM = E(θ,r)∼D[bce(Mw(θ), r)]. (4)

Efficient approximation of the policy gradients for the controller is achieved
through an actor-critic method, specifically DDPG [27]. The controller Cφ has
an additional LSTM encoder that generates a vector-sized representation of the
history ω of previous experiments, their results and the reward associated with
them. The actor is an MLP that receives as input the history representation
created by the LSTM and generates the weights of an experiment RNN, whereas
the critic receives both a history representation and experiment weights as input,
and outputs a scalar reward estimation. Actor and critic share the same LSTM
history encoder and take alternating gradient descent steps during training. The
input to the LSTM history encoder is the sequence ω of the last 1000 that have
been executed.

The experiment RNNs Eθ used in this empirical evaluation have 3 hidden
units and no inputs. The initial hidden state h0 is treated as part of the param-
eters θ and is thus also generated by Cφ. Random experiments are sampled
the same way as described in Sect. A.2. All other hyperparameters are listed in
Table 2.
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Table 2. Hyperparameters for Algorithm 2

Hyperparameter Value

hidden layers Mw [128, 128, 128, 128]
hidden layers Cφ LSTM [64]
hidden layers Cφ MLP [128, 128, 128, 128]
training steps per iteration Mw 50
training steps per iteration Cφ 10
learning rate Mw 0.0001
learning rate Cφ 0.0001
weight decay Mw 0.01
weight decay Cφ 0.01
experiment parameter range [–3, 3]
number of iterations 30000
number of initial experiments in Einit 100

Algorithm 2. Pure thought experiments encoded by RNNs
Input: Randomly initialized differentiable Controller Cφ : Ω → Θ, where Ω is the set of
sequences of the form (θi, ri, Ri, θi+1, ri+1, Ri+1, . . .), randomly initialized differentiable
Model Mw : Θ → R, empty sequential experiment memory D, set of random initial
experiments Einit

Output: An experiment memory populated with (formerly) interesting pure thought
experiments
1: for θ ∈ Einit do
2: Execute the RNN thought experiment parametrized by θ, obtain binary result

r
3: Save the tuple (θ, r) to D
4: Train Mw on data from D for a fixed number of steps minimizing Equation 4 to

obtain updated weights w∗

5: Calculate the intrinsic reward Ri = RIG(θ,w,w∗) (Equation 3)
6: w ← w∗

7: Save Ri to D
8: end for
9: repeat

10: ω ← sequence of the last experiments from D
11: θ ← Cφ(ω)
12: Execute the RNN thought experiment parametrized by θ, obtain binary result

r
13: Train Mw on data from D for a fixed number of steps to obtain updated weights

w∗

14: Calculate the intrinsic reward Ri = RIG(θ,w,w∗)
15: w ← w∗

16: Save Ri to D
17: Train Cφ for a fixed number of steps with DDPG to maximize the expected

intrinsic reward
18: until no more interesting experiments are found
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Abstract. Markov Decision Processes (MDPs) are wielded by the Rein-
forcement Learning and control community as a framework to bestow
artificial agents with the ability to make autonomous decisions. Control
as Inference (CaI) is a tangent research direction that aims to recast opti-
mal decision making as an instance of probabilistic inference, with the
dual hope to incite exploration and simplify calculations. Active Infer-
ence (AIF) is a sibling theory conforming to similar directives. Notably,
AIF also entertains a procedure for per- and proprio-ception, which is
currently lacking from the CaI theory. Recent work has established an
explicit connection between CaI and Markov Decision Processes (MDPs).
In particular, it was shown that the CaI policy can be iterated recur-
sively, ultimately retrieving the associated MDP policy. In this work,
such results are generalized to Partially Observable Markov Decision Pro-
cesses, that – apart from a procedure to make optimal decisions – now
also entertains a procedure for model based per- and proprio-ception. By
extending the theory of CaI to the context of optimal decision making
under partial observability, we mean to further our understanding of and
illuminate the relationship between these different frameworks.

1 Introduction

The Reinforcement Learning and control community at large is concerned with
automated decision making or control system synthesis. To that end, the com-
munity often relies on the framework of Markov Decision Processes (MDPs) or
Stochastic Optimal Control (SOC). These synonymous frameworks synthesize
policy makers or controllers by minimising the expected cost over a(n) (in)finite
decision or control horizon [19,23]. In a model-based setting, probabilistic models
are utilised to assess the uncertain (future) behaviour of the system. The solution
is provided by a deterministic function known as the optimal policy or control.
Though theoretically appealing, often these solutions can only be attained at
the result of complex calculations directly pursuing the deterministic result.

An intriguing question that has been pursued by several authors is whether
the complexity of these calculations can be alleviated by drawing on the proba-
bilistic setting that is already utilised to model the system [2,7–10,21,22]. It has
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been argued that it is sometimes easier to approach a problem probabilistically,
even if the problem and the eventual result are deterministic [6,17].

In control, these endeavours let to a paradigm that is referred to as Con-
trol as Inference (CaI) [1,13]. Here one attempts to recast optimal control as
an inference process. To that end, the framework entertains an extension of the
standard Markov Chain generative model that is used otherwise in optimal deci-
sion making, i.e. MDPs. To attain an MDP, a Markov Chain is equipped with a
utility function1 – in other words a cost function – associating value to partic-
ular decisions. In CaI, rather than through a utility function, value is encoded
through an auxiliary set of exogenous observation variables whose (future) values
are assumed fixed and indicate that an optimal decision has been made. Thence,
the control system is inferred by calculating the probability of making a decision
at present time assuming (future) optimally has been achieved2.

By a specific choice of the auxiliary emission model, the framework resumes
close analogies with the theory of optimal control. Recent work has established an
explicit connection between CaI and MDPs [12]. Particularly, it has been shown
that the two main governing problems in CaI majorize conventional optimal con-
trol problems. This observation and the particular structure of the associated
solutions, then invites to establish a fixed point iteration, maintaining prob-
abilistic controllers, but whose stationary point eventually coincides with the
deterministic control. This result characterizes CaI by its computational impli-
cations rather than by it efficacy to incite explorative behavioural tendencies.

Active Inference (AIF) is another framework that casts planning as an infer-
ence problem and which leverages approximate inference tools to solve this prob-
lem. An interesting comparison between AIF and CaI was made by Milledge et
al. [14], the key difference being identified by the way in which value is encoded
in the generative model. Whereas CaI extends a veridical generative model
with exogenous optimisation variables, AIF encodes value into the generative
model itself directly. Exploration in the context of CaI manifests as entropy-
maximization, whereas exploration in the context of AIF is said to be goal-
directed through maximization of an expected information gain [14].

Distinctively, compared to the thus far existing literature on CaI, AIF also
entertains a procedure for per- and proprio-ception. To make way for a more
nuanced comparison between CaI and AIF, we establish an explicit connection
between CaI and Partially Observable Markov Decision Processes (POMDPs).
We will show that the probabilistic fixed point iterations applying to MDPs
extend to POMDPs and shall make a first attempt at interpreting these results.

1.1 Notation

With notation, xt = {x0, . . . , xt}, and, xt = {xt, . . . , xT }, we refer to the leading
or trailing part of a time series or sequence. The index, t, refers to the final or
1 Applying to the whole history of the system.
2 Ergo by conditioning the present action on future auxiliary observation variables.

The exact technical details somewhat deviate from this verbal exposition, however
it succeeds elegantly at capturing the gist of the idea.
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initial time instance of the corresponding subsequence. We silently assume that
a complete sequence starts at time t = 0 and ends at time t = T .

2 Background

The present paper and the results it communicates are rather technical in nature.
It is, therefore, essential to clearly sketch the mathematical stage upon which
our results are founded. No attempt is made at achieving vigorous mathematical
rigor.

We take interest in solving the following stochastic optimal control problem

min
uT−1

∫
RT (xT , uT−1)p(xT |uT−1)dxT (1)

The integrand is defined as an accumulated cost (i.e. the utility function)

RT (xT , uT−1) = rT (xT ) +
T−1∑
t=0

rt(xt, ut) (2)

For the generative model, p(xT |uT−1), we adopt a (Hidden) Markov Chain
configuration depicted in Fig. 1. Conventionally, here xT denotes a sequence of
(hidden) state variables, y

T
denotes a sequence of measurement or observation

variables, and, uT−1 denotes a sequence of arbitrary control inputs.
So, next to the state variable sequence, xT , that is already represented in the

control problem, there is also a measurement sequence, y
T
. This implies that the

generative model is truly characterised by the following joint density.

p(xT , y
T
|uT−1) (3)

x0 x1 xt xt+1 xT

y0 y1 yt yt+1 yT

u0 ut−1 ut uT−1

Fig. 1. Probabilistic graph model of a Hidden Markov Chain.

Without loss of generality we can make the presence of the measurement
sequence explicit in the optimal control objective

min
uT−1

∫
RT (xT , uT−1)p(xT , y

T
|uT−1)dxT dy

T
(4)
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The goal is now to find the optimal control, u∗
T , as the argument that mini-

mizes (1). Here our notation falls somewhat short because the optimal control or
agent is in fact a function that may depend on several variables of the generative
model. The variables that the agent uses, depends on the information that we
grant it access to. This information can be reflected explicitly in the way the
generative model is decomposed.

There are two main strategies to decompose the generative model.

1. The causal decomposition

p(xT , y
T
|uT−1) =

T∏
t=0

p(xt|xt−1, ut−1)p(yt|xt) (5)

which depends on the state transition density model, p(xt|xt−1, ut−1), and,
the emission density model, p(yt|xt). In optimal decision making, it is typically
assumed that the agent has access to these models as part of the generative
model it entertains.

2. The evidential decomposition

p(xT , y
T
|uT−1) =

T∏
t=0

p(yt|yt−1
, ut−1)p(xt|yt

, ut−1) (6)

which depends on the output transition density model, p(yt|yt−1
, ut−1), and,

the Bayesian belief density, p(xt|yt
, ut−1). The latter can be calculated using

the Bayesian filtering equations [18]. The former is governed by

p(yt+1|yt
, ut) =

∫
p(yt+1|xt+1)p(xt+1|xt, ut)p(xt|yt

, ut−1)dxtdxt+1 (7)

As we mentioned, the decomposition strategy shall be determinative with
regard to what information the controller is granted access to. By construc-
tion, the information will coincide with that required by the transition density,
governing the dynamics. In case of MDPs, the dynamics are governed by the
state transition density, p(xt|xt−1, ut−1). In case of POMDPs, the dynamics are
governed by the output transition density, p(yt|yt−1

, ut−1).
As such, the causal decomposition is useful when we grant the control sys-

tem access to the state variable xt to compute ut. This setting is characteristic
of MDPs. Then the measurement variables become irrelevant and can be disre-
garded altogether. The evidential decomposition is useful in the setting where we
deny the control system access to the state and only present it with a real-time
measurement, yt, and, a memory, storing the variables y

t
and ut−1. This setting

is characteristic of POMDPs and will be the setting that enjoys our interest in
the remainder of this paper.

For notational convenience, the historical variables y
t
and ut−1 that are avail-

able at time t can be concatenated in a variable, wt. Note that the variable, wt,
contains all the information required to calculate the Bayesian state belief func-
tion, p(xt|wt), so that often no distinction is made between the two. Substituting
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the new variable, wt, into our earlier definitions, the output transition density
simplifies to p(yt+1|wt, ut). This substitution is particularly relevant because it
neatly distinguishes between the decisions that have been taken, ut−1, and the
decision, ut that needs to be taken at the present time t.

Adopting notation wt and substitution of the evidential decomposition in (4)
then yields a problem formulation tailored to the POMDP setting

min
uT−1

∫ T∑
t=0

∫
r(xt, ut)p(xt|wt)dxt

T∏
t=0

p(yt|wt−1, ut−1)dy
T

(8)

It is well known that optimal control problems exhibit a so called optimal
substructure and can be treated by means of dynamic programming by conse-
quence. To expose the substructure in the present setting, it is crucial that we
recognize that a decision at time t can rely on the information in wt. This variable
however contains the earlier decision variables ut−1. As such it appears the older
decision variables affect the present decision variable, apparently destroying the
optimal substructure. Fortunately, once the decision has been made, ut, becomes
a regular variable that we can no longer optimize. Therefore, when treating the
problem, the earlier decision variables contained in wt should not be treated in
the same manner as the optimization variables ut.

Once convinced by this last observation, it is easily verified that the optimal
control is governed by the following backward recursion.

Vt(wt) = min
ut

∫
Rt(xt, ut)p(xt, yt+1|wt, ut)dxtdyt+1

= min
ut

∫
rt(xt, ut)p(xt|wt)dxt +

∫
Vt+1(wt+1)p(yt+1|wt, ut)dyt+1

(9)

This defines the standard Bellman equation for POMDPs [20]. Retrospec-
tively, Eq. (9) also illustrates why we may disregard the older decision variables,
ut−1, when taking the present decision, ut. This is because the present decision
is only affected by the present belief, p(xt|wt), – directly or through (7) – not
by the particular values that determine wt itself3.

3 Control as Inference

Control as Inference (CaI) is a paradigm within optimal control theory which
attempts to cast optimal decision making as an inference problem. The premise
is that, if successful, this would allow to bring to bear a wide range of inference
techniques to alleviate treatment of difficult optimal control problems.

There exist several angles to arrive at the framework [9,12,13]. Though,
before we engage in further discussion, it is necessary to expand upon the prob-
lem formulation that has been established thus far. To that end we generalize
3 In fact, the set populated by wt is surjective to the set populated with belief func-

tions, p(xt|wt), defined on the state-space.
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the generative model explicitly annotating that the model is parametrized by a
policy sequence, πT−1

4. We further assume that the policy sequence is popu-
lated by policy densities, πt(ut|wt), conditioning the probability of taking some
decision, ut, onto the information that is contained in wt.

p(xT , uT−1, yT
;πT−1) (10)

In the extended formulation, the evidential decomposition is given by

p(xT , uT−1, yT
;πT−1) =

T∏
t=0

p(xt|wt)πt(ut|wt)p(yt|wt−1, ut−1) (11)

This first intervention places the control variables on an equal footing with
the other variables.

3.1 Encoding Value

Second, we need a mechanism that introduces the notion of value in the genera-
tive model [14]. To that end we introduce an auxiliary set of binary measurements
variables, zT . It is presumed that all of these auxiliary variables have assumed
the value 1 with probability proportional to the negative exponential transform
of the cost rate in (2)5. We further write zt when we mean zt = 1.

p(zt|xt, ut) ∝ e−rt(xt,ut) (12)

Introduction of these variables into the generative model results into the
graphical depiction in Fig. 2. The associated joint density follows

p(xT , uT−1, yT
, zT ;πT−1) ∝ p(xT , uT−1, yT

;πT−1)e
−RT (xT ,uT−1) (13)

Because the variables zT have a fixed value, often the density in the right-hand
side of Eq. (13) is referred to as the desired joint density,

p∗(xT , uT−1, yT
;πT−1) (14)

dropping the ubiquitous dependency on zT .

4 Note that we could have introduced this formulation at the very beginning and
optimized for πt rather than ut. Formally this is equivalent since the set of all
densities also contains the set of all deterministic functions. Moreover, this would
have saved us from the trouble explaining why the decision variables contained in wt

are treated differently then the decision variable ut. Now it is clear this is because
we do not optimize the decision variable, ut, itself but rather the policy, πt.

5 It is rather difficult to give a convincing justification for this model. Rather it should
be understood as a technical trick.
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3.2 Inferring Policies

At this stage, alternative strategies can be traced to extract a policy. The strate-
gies are equivalent in the sense that, eventually, they arrive at the same principle
problems and inference mechanism [12]. In this work we follow the approach used
in [12], referred to as probabilistic (optimal) control [9,10].

Probabilistic control interprets CaI as a density matching problem, defining
the optimal control as that sequence that makes the generative model closest to
the desired generative model, p∗. Put differently, the goal of an optimal policy
sequence, πT−1, is to induce a density that exhibits the same statistics as the
desired density, p∗. The only remaining question is how we quantify the proximity
between two densities. Therefore we rely on the information-theoretic projection
strategies known as the information (I) and moment (M) projection [3,16]6.

1. information projected probabilistic optimal control problem

π•
T−1 = min

πT−1

D

[
p(xT , uT−1, yT

;πT−1)
∥∥∥p∗(xT , uT−1, yT

; ρ
T−1

)
]

(15)

2. moment projected probabilistic optimal control problem

π�
T−1 = min

πT−1

D

[
p∗(xT , uT−1, yT

; ρ
T−1

)
∥∥∥p(xT , uT−1, yT

;πT−1)
]

(16)

Note that in either case, the desired generative model depends on some arbi-
trary policy sequence, ρ

T−1
. These policy sequences can be interpreted as our

agent’s prior belief about the policy before encoding value into the optimal policy
belief sequences, π•

T−1, or π�
T−1, respectively.

x0 x1 xt xt+1 xT

y0 y1 yt yt+1 yT

z0 z1 zt zt+1 zT

u0 ut−1 ut uT−1

Fig. 2. Probabilistic graph model of the extended Hidden Markov Chain.

6 Both projection strategies rely on the relative entropy or Kullback-Leibler diver-
gence, D[π||ρ]. The relative entropy is a divergence and not a distance and thus
asymmetric in its arguments. Therefore the I-projection and the M-projection do
not yield the same projection [3,15]. They are either mode seeking or covering for
π. As a result the I-projection will underestimate the support of ρ and vice versa.
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4 Probabilistic Majorization of Optimal Decision Making

To establish our main results it is required that we give a brief introduction of the
Majorizing-Minimizing (MM) principle which shall proof essential to interpret
and wield the solutions of problems (15) and (16).

4.1 The Majorizing-Minimizing Principle

The MM principle aims to to convert hard optimization problems into sequences
of simple ones [11]. When the goal is to minimize the objective, say minθ f(θ), the
MM principle requires to majorize the objective function, f(θ), with a surrogate,
g(θ, θ′), anchored at the current iterate, θ′. Majorization of an objective imposes
two requirements on the surrogate: (1) the tangency condition, and, (2) the
domination condition, with a > 0 and b independent of θ

f(θ′) = a · g(θ′, θ′) + b

f(θ) ≤ a · g(θ, θ′) + b
(17)

The surrogate can then be used as a proxy for the true objective to obtain a
new iterate through the following fixed point iteration

θ∗ ← argmin
θ

g(θ, θ∗) (18)

By definition, the iteration drives the objective function downhill. Strictly
speaking, the descent property depends only on decreasing g(θ, θ′), not on strictly
minimizing it. Under appropriate regularity conditions, an MM approach is guar-
anteed to converge to a stationary point of the objective function.

f(θ′′) ≤ a · g(θ′′, θ′) + b ≤ a · g(θ′, θ′) + b = f(θ′) (19)

4.2 Information Projected Probabilistic Optimal Control

First let us treat problem (15).

Lemma 1. Consider the I-projection in (15) and let p∗ be defined as in (13).
Then the probabilistic optimal control is given by

π•
t (ut|wt) = ρt(ut|wt)

exp(−Q•
t (wt, ut))

exp(−V •
t (wt)

The functions V •
t and Q•

t are generated recursively in a backward manner

V •
t (wt) = − log

∫
exp(−Q•

t (wt, ut))ρt(ut|wt)dut

and

Q•
t (wt, ut) =

∫
rt(xt, ut)p(xt|wt)dxt +

∫
V •

t+1(wt+1)p(yt+1|wt, ut)dyt+1
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The proof is analogous to the proof of Lemma 1 in [12].
Now, so far not much attention was given to the choice of the prior policy,

ρ
T−1

, rather than that it is arbitrary in some sense. Further, given the structure
of the probabilistic control policies, π•

t , an evident question is to ask what hap-
pens if we were to iterate the solutions? It turns out that the answer contains
the key to understanding how the CaI paradigm relates to conventional optimal
control theory.

The relation is established by the following proposition

Proposition 1. Objective (15) majorizes objective (1).

The proof is analogous to the proof of Proposition 3 in [12].
Then, by merit of the MM principle, the following fixed point iteration con-

verges to the optimal control as defined by the argument of problem (1).

π•
T−1 ← arg min

πT−1

D

[
p(xT , uT−1, yT

;πT−1)
∥∥∥p∗(xT , uT−1, yT

;π•
T−1)

]
(20)

4.3 Moment Projected Probabilistic Optimal Control

Second we shift attention to problem (16).

Lemma 2. Consider the M-projection in (16) and let p∗ be defined as in (13).
Then the probabilistic optimal control is given by

π�
t (ut|wt) = ρt(ut|wt)

exp(−Q�
t (wt, ut))

exp(−V �
t (wt))

The functions V �
t and Q�

t are generated recursively in a backward manner

V �
t (wt) = − log

∫
exp(−Q�

t (wt, ut))ρt(ut|wt)dut

and
Q�

t (wt,ut) = − log
∫

exp(−rt(xt, ut))p(xt|wt)dxt

− log
∫

exp(−V �
t+1(wt+1))p(yt+1|wt, ut)dyt+1

The proof is analogous to the proof of Proposition 1 in [12].
First note that its solution is governed by a similar, though not equivalent,

backward recursion. Especially, the definition of the corresponding Q-function
is distinct. This has already one direct and significant implication. One easily
verifies that the value function is governed by a path integral

V �
t (wt) = − log

∫
e−Rt(xt,ut)p(xt, ut, yt+1|wt; ρt)dxtdutdyt+1 (21)

Clearly, we may now also set out and attempt to establish a similar result
as in Proposition 1. Though it cannot be that (16) majorizes the same objective
as (15). This simple observation warrants further exploration. To that end it is
required that we engage in a different line of inquiry.
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4.4 Risk Sensitive Optimal Control and Estimation

Let us reconsider the desired joint density and marginalize out all variables
but the auxiliary measurement sequence, zT . This function then reads as the
likelihood of the measurement sequence zT . Now also recall that the generative
model has been parametrised by the policy sequence, πT . Consequently, we can
establish a Maximum Likelihood Estimation (MLE) problem

max
πT−1

log p(zT ;πT−1) (22)

where

p(zT ;πT−1) ∝
∫

e−RT (xT ,uT−1)p(xT , uT−1, yT
;πT )dxT duT−1dy

T
(23)

It is interesting to note that problem (23) corresponds exactly with the
definition of a Risk Sensitive Optimal Control (RSOC) problem. RSOC is an
extension of the optimal control framework using an exponential utility function
rather than a linear one. Such an exponential utility function puts less (or more)
emphasis on the successful histories. We refer to the body of work in [23].

This brief investigation has to two interesting implications. First, we can
establish a similar relation between the RSOC problem in (23) and M-projected
optimal control problem in (16).

Proposition 2. Objective (16) majorizes objective (23).

The proof is analogous to the proof of Proposition 4 in [12].
Again, by merit of the MM principle, the following fixed point iteration con-

verges to the optimal control as defined by the argument of problem (22).

π�
T−1 ← arg min

πT−1

D

[
p∗(xT , uT−1, yT

;π�
T−1)

∥∥∥p(xT , uT−1, yT
;πT−1)

]
(24)

Second, it turns out that the RSOC problem can be viewed as a MLE prob-
lem. Treatment of MLE problems associated to generative models with a sim-
ilar complexity as is presently the case, are usually treated by means of the
Expectation-Maximization (EM) algorithm, which is a specialization of the MM
principle to probabilistic graph models. Treatment of the MLE in (22) with the
EM principle results into the following fixed point iteration.

π�
T−1 ← arg min

πT−1∈P
D

[
p(xT , uT−1, yT

|zT ;π
�
T−1)

∥∥∥p(xT , uT−1, yT
;πT−1)

]
(25)

One easily verifies that the fixed point iteration in (25) is equivalent to that
in (24). Therefore, the solution given in Lemma 2 extends to problem (25).
Furthermore, one verifies that the solution of (25), after substituting ρ

T−1
for

π�
T−1, is given alternatively by the marginalised Bayesian smoother [18], making

this the sole expression that can be evaluated by means of conventional inference.

π�
t (ut|wt) =

p(wt, ut|zT ; ρT−1
)

p(wt|zT ; ρT−1
)

(26)
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5 Discussion

We give first a resume of what has been presented.
The goal of this paper was to give a technical exposé of the theory of CaI

under the restriction of partial observability. Therewith it serves the dual purpose
of, (1) extending the present literature on CaI to POMDPs – which remained
limited to MDPs – and, (2) providing ground to further illuminate the close
analogies that exist with the theory of AIF. To that end we have taken the
route of probabilistic control, that formulates CaI as a distribution matching
problem. The optimal probabilistic control policy is defined as that which makes
the generative model as close as possible to some desired generative model.
Here, one interpretation is that the notion of value in the desired generative
model is encoded by means of an auxiliary sequence of exogenous observation
variables. Depending on the information-theoretic projection method pursued to
quantify proximity in density spaces, the resulting problems are then shown to
either majorize the SOC or RSOC problems. Both results imply at a fixed point
iteration that maintains probabilistic controllers that eventually collapse on the
associated deterministic optimal control.

Next we briefly discuss these results in light of (1) calculation, (2) exploration
and finally (3) Active Inference.

(1) We argue that one of the main advantages of the CaI framework is compu-
tational. Remark that the present work associates CaI irrevocably with classical
optimal control theory. Rather than viewing (15) and (16) as stand-alone prob-
lems, we belief they should be viewed within context of the fixed point iterations
– put differently, we belief the intermediate solutions have limited value on their
own. The benefit of the present over the classical problems is that they can be
solved explicitly yielding backward induction rules for the policy. As opposed to
the backward induction rules of classical optimal control theory, they have been
stripped from any, difficult to evaluate, optimisation operators (i.e. argmin).
Instead, any quantity of interest, i.e. the V - and Q-functions, may be calculated
by evaluating an expectation operator with respect to the prior model, possi-
bly by approximation – though it is recognized that the resulting procedures will
remain challenging to practice in general. Commenting further on the fixed point
iterations, it is possible to interpret the policy sequences from the frequentist
point of view instead of the Bayesian. Technically such an interpretation is irrel-
evant. Though here we argue that one may interpret each intermediate iterate
policy sequence as a set of belief functions that express our uncertainty about the
underlying deterministic solution. Put differently, the sequences give expression
to our epistemic uncertainty about the deterministic solution. Finally, we argue
that problem (16) claims a special place due to the technical equivalence between
the MLE and RSOC problem. As a direct result, it follows that the probabilistic
control itself (26) can be evaluated by means of the Bayesian smoother, which
itself is a well-established problem with many known numerical treatments.
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(2) In principal, exploration is not required in the context of MDPs because
the framework presupposes exact knowledge of the generative model. Hence our
statement, that CaI is characterised by its computational advantages rather than
its capacity to incite purposeful exploration. As noted by Millidge [14] and others,
explorative behavioural tendencies obtained through CaI on MDPs boils down to
(naive) entropy maximization of the policy. In the context of POMDPs however
goal-directed exploration is imminent. Any POMDP agent will determine, based
on the generative model it started with, whether it is useful to explore for the
sake of exploration, i.e. to reduce its uncertainty about its own state and that
of the world, or, whether it is more beneficial to pursue value by minimizing
the objective – even though the agent may not be too certain about its state
and that of the world at that given time. These two behavioural tendencies
are balanced out automatically. Explorative behavioural tendencies are often
associated to random tendencies but we do not think this is necessarily so. The
decision maker can be certain about its decision. The fact that it may incite
behaviour that appears ‘random’ is a result of the observation it makes next,
which itself is indeed subject to uncertainty. This mechanism makes it effectively
appear so that the decision maker entertains some randomness in its decisions.
That being said, ‘exploration’ in terms of entropy maximization on POMDP
may very well exhibit all the attributes we would like it to exhibit.

(3) These final comments lead us to a comparison between CaI and AIF. A
first comparison between CaI and AIF was made by Millidge et al. [14]. Their
conclusion was that CaI retains a degree of freedom over AIF that entertains
a non-veridical generative model that is biased towards the agent’s preferences.
With AIF, the same model that is used to ‘truthfully’ infer the present state, is
also used to express behavioural preferences, inevitable leading to a conflict of
interest. Recent AIF extensions are embracing strategies to encode value with-
out impeding perception [4,5]. These strategies are in close agreement with the
information projected optimal control strategy in (15). Consider the following
control objective that is standard in AIF. Here, qπ denotes the variational poste-
rior, and, p̃, usually corresponds with the ‘biased’ model prior, p(xT , uT−1, yT

)
[4,14] – more generally it can be interpreted as the desired model [5].

Eqπ(xT ,uT−1,y
T
)

[
log qπ(xT , uT−1) − log p̃

]
(27)

Then a first distinction between AIF and the present CaI theory, is that here we
rely on exact Bayesian inference (filtering) to obtain the state belief, p(xt|wt).
If we were to adopt the same strategy in AIF this would imply that

qπ ← p(xT , uT−1, yT
;πT ) (28)

Further, assuming the generative model is unbiased, we have to come up with
a different desired model, p̃. To that end, let us substitute one of the following
desired models (adopting notation from Sect. 3)
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p̃ ← p∗(xT , uT−1;πT )
p̃ ← p∗(xT , uT−1, yT

;πT )
(29)

Substituting the first model, one easily verifies that problem (27) and (15) are
equivalent. If instead we substitute the second model, one verifies problem (27)
reduces to (15) subtracting an additional term, referred to as the ‘ambiguity’ [5].

(15) − Ep(xT ,uT−1,y
T
;πT )

[
log p(y

T
|xT )

]
(30)

To interpret this term, we remark that the same effect can be obtained within
the context of CaI by using an alternative cost function definition, in particular

rt(xt, ut, yt) ← rt(xt, ut) − log p(yt|xt) (31)

Quantitatively, this is equivalent to seeking out ‘likely’ observations.
All of the presented results support the observations that CaI on POMDPs

and AIF are very similar frameworks. This of course raises the question which
framework is to be preferred. This and other related questions are topics for
future research.
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