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Preface

The International Conference on Cryptography and Coding is the biennial conference
of the Institute of Mathematics and its Applications (IMA) on cryptography and coding
theory. The conference series was established in 1995 and its 19th edition was held on
December 12–14, 2023, at Royal Holloway, University of London.

The Program Committee for the conference, consisting of 21 international experts in
cryptography and coding, selected 14 full papers from 36 submissions for presentation at
the conference and inclusion in these proceedings. The review process was double-blind
and rigorous. Each submission was reviewed independently by at least two reviewers
in an individual review phase, and subsequently considered by the Program Committee
in a discussion phase. Feedback from the reviews and discussions was provided to the
authors and their revised submissions are included in these proceedings.

The papers accepted at IMACC23, which appear in this book, present cutting-edge
results in a variety of areas, including coding theory, symmetric cryptography, zero-
knowledge protocols, digital signature schemes and extensions, post-quantum crypto-
graphy and cryptography in practice.

The conference’s program included invited talks from prominent researchers in the
area, namely Dario Fiore (IMDEA Software Institute) and Carla Ràfols (Pompeu Fabra
University), as well as the presentation of posters showcasing recent advances in coding
theory and cryptography.

It was a pleasure to chair IMACC23, and I would like to thank in particular the
Organizing Committee for their support, the Program Committee for their time, energy
and very helpful work, and the IMA for their help in running the conference.

December 2023 Elizabeth A. Quaglia
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An Upper-Bound on the Decoding Failure
Probability of the LRPC Decoder

Étienne Burle and Ayoub Otmani(B)

Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie,
Normandie Univ, LITIS UR 4108, F-76000 Rouen, France

{Etienne.Burle,Ayoub.Otmani}@univ-rouen.fr

Abstract. Low Rank Parity Check (LRPC) codes form a class of rank-
metric error-correcting codes that was purposely introduced to design
public-key encryption schemes. An LRPC code is defined from a parity
check matrix whose entries belong to a relatively low dimensional vec-
tor subspace of a large finite field. This particular algebraic feature can
then be exploited to correct with high probability rank errors when the
parameters are appropriately chosen. In this paper, we present theoreti-
cal upper-bounds on the probability that the LRPC decoding algorithm
fails.

Keywords: Rank metric · Decoding problem · LRPC code ·
Homogeneous matrix

1 Introduction

Rank-metric cryptography has attracted a relative interest over the last years
mainly thanks to the recent trend that appeared with the goal of standardizing
quantum-safe public-key algorithms. ROLLO [3] and RQC [1] are two examples
of rank-metric public-key encryption schemes that were submitted to the NIST
call for standardizing quantum-resistant public-key cryptographic algorithms.
The theory of codes endowed with the rank-metric was first studied in [6] where
a Singleton-type bound was proved and a class of codes reaching the bound was
given. A few years later, Gabidulin constructed [7] the first example of rank-
metric error-correcting codes which can be seen as the counterparts of general-
ized Reed-Solomon (GRS) codes. The so-called Gabidulin codes are defined from
the evaluation of non-commutative linearized polynomials [12]. They can be effi-
ciently decoded by an equivalent of the Euclidean algorithm [13] while achieving
the rank-Singleton upper-bound. Not long after, the first rank-metric public-key
encryption scheme called the GPT cryptosystem appeared in [8]. It bore strong
similarities with the famous McEliece cryptosystem [11]. The GPT scheme is
indeed an analogue of the McEliece cryptosystem but based on Gabidulin codes.
Not surprisingly, this strong resemblance to GRS codes is the reason why their
use in the GPT cryptosystem has been subject to several attacks [9,10], as well
as the different reparations that were subsequently cryptanalysed [14–16]. These
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. A. Quaglia (Ed.): IMACC 2023, LNCS 14421, pp. 3–16, 2024.
https://doi.org/10.1007/978-3-031-47818-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47818-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-47818-5_1
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flaws in the design do not mean that the rank-metric is not viable in cryptogra-
phy. Indeed, the famous decoding problem has naturally its rank version which
is also believed to be intractable both in a classical and quantum setting.

ROLLO replaces Gabidulin codes with the class of (Ideal) Low Rank Parity
Check (LRPC) codes introduced in [4]. An LRPC code is defined by means of an
homogeneous (n − k) × n parity-check matrix H =

[
hi,j

]
where each entry hi,j

lies in a linear subspace W � Fqm over Fq of relatively low dimension w. This
property can then be exploited to design a probabilistic decoding algorithm that
can recover any error vector e ∈ Fn

qm of rank weight t � (n − k)/w.
The principle behind the LRPC decoder [4] is to view the syndrome s =

eHT as a sample of a uniformly distributed random variable taking values on
(E · W)n−k where E � Fqm is the t-dimensional linear space generated over Fq by
the coordinates of e. Under the assumption that the linear space over Fq spanned
by the entries of s denoted by S ⊂ Fqm is equal to E ·W, the decoding algorithm
first recovers a basis ε1, . . . , εt of E by computing the intersection

⋂w
i=1 f−1

i · S
where {f1, · · · , fw} is an arbitrary (known) basis of W. The success of this step
lies in the fact that with high probability this intersection is equal to E . The
last step then consists in computing the coordinates e1, . . . , en of e by writing
that ej =

∑t
d=1 xj,dεd where each xj,d ∈ Fq is unknown. One can then solve the

linear system s = eHT and expect to find a unique solution when w � n/(n−k)
because in that case the number of unknowns nt is at most the number (n−k)wt
of linear equations.

Recently, an encryption scheme based on LRPC codes has been proposed in
[2] where the decoder receives a matrix of syndromes S = EHT where E is an
homogeneous matrix so that the probability that the entries of S span E · W is
increased. Another work [5] gives a new construction of error-correcting codes
that can be decoded by the same techniques but relies on a generalization of the
notion of homogeneous matrices. It introduced the concept of semi-homogenous
parity-check matrices which are matrices such that the coordinates of each row
span a different low-dimensional linear subspace of Fqm . This enables the authors
to build a public-key encryption scheme where the public key is statistically close
to a random matrix. Note that the security of ROLLO relies on the difficulty
of the (Ideal) LRPC code indistinguishability problem which asserts that it is
computationally hard to distinguish a randomly drawn parity-check matrix of
an Ideal LRPC code from a random parity-check matrix of an Ideal code.

All these schemes have to deal with the decryption failures that inherently
come from the LRPC decoding algorithm. As an adversary could shatter the
security of these schemes if he manages to exploit decryption failures, it is
therefore of paramount importance to lower the decoding failure probability
below the desired security threshold. The best existing bounds on the decod-
ing failure probability are given in [3,4]. It is stated in [4] that the decod-
ing failure probability behaves essentially as q−(n−k)+tw which comes from an
approximation of the probability that the entries of the syndrome vector s
does not span E · W. Another analysis is given in [3] resulting to the expres-
sion q−(n−k)+tw−1 + q−(w−1)(m−tw−t). The first term corresponds to a tighter
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approximation of the one given in [4], and the quantity q−(w−1)(m−tw−t) reflects
the probability that the intersection of random linear subspaces R1, . . . ,Rw

all containing E is different from E . Several works [2–4] assumed that f−1
i · S

behaves as a random linear space Ri containing E . But this hypothesis cannot
be realistic because of the existence of the elements f1, . . . , fw in Fqm such that
fi · Ri = fj · Rj for every i �= j when Ri = f−1

i · S. Although the validity of
the approximation q−(w−1)(m−tw−t) is verified by simulations in [3], it does not
necessarily predict the asymptotic behavior.

Our Contribution and Main Results

We revisit the analysis of the LRPC decoder with the main goal to establish
provable theoretical bounds. Although we do not reach the best existing heuristic
approximations, our work manages to close a little bit further the gap between
the theoretical bounds and the practical approximations. We provide in Table 1
a comparison between existing bounds and the bounds we obtain in this work.

As we have seen, there are several reasons that make the LRPC decoder
fail. The first one comes from the fact that the entries of s might not span
E · W. In [4, Proposition 4.3], the authors state that the coordinates of s are
independently and uniformly distributed over E · W leading them to upper-
bound the probability1 by q−(n−k)+tw. We provide in Proposition 1 a simple
argument that explains why the coordinates of s are independent and uniform
random variables over the random choices over H and e. This enables us to use
the closed-form expression of the probability that random vectors belonging to
the same linear subspace span it. We apply this result to the coordinates of the
syndrome vector s and we show in Proposition 5 that this probability is lower
than q−(n−k)+tw/(q − 1). We notice that when dim(E · W) = tw the probability
is equivalent to this term (see Remark 2). As a consequence, the upper-bound
q−(n−k)+tw−1 given in [3] cannot hold.

Next, the second reason why the LRPC decoder might not decode correctly
comes from the fact that we do not obtain E when computing

⋂w
i=1 f−1

i · S. In
the literature there exists essentially two ways to upper-bound the probability
of occurrence of this event. One approach is described in [4] where two upper-
bounds are given: in [4, Proposition 3.5] the probability is at most tqtw(w+1)/2−m

and in [4, Proposition 3.8] it is at most tq(2w−1)t−m. The other path followed
in [3, Proposition 2.4.2] and [2, Proposition 3] consists in assuming as explained
previously that f−1

i · S behaves as a random linear space Ri containing E . This
enables the authors to prove that the probability is at most q−(w−1)(m−tw−t).
In this work, we depart from this assumption and we prove in Theorem 2 that
this probability is at most q(2w−1)t/(qm − qt−1). Although our bound is less
interesting than q−(w−1)(m−tw−t), it is however better than the theoretical ones
given in [4].

Finally the last situation that induces a decoding failure is when the unknown
coordinates of e cannot be recovered because the linear system inferred from

1 We can also get this result by using directly Theorem 2 from [2].
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s = eHT is not of full rank. This happens when the dimension of E ·W is strictly
less than dimFq

E dimFq
W = tw. The paper [4] shows in Proposition 3.3 that

this case happens with probability at most tqtw−m over the random choice of E
and for a given set W. In Proposition 4 we improve this bound by showing that
this probability is at most qtw/

(
qm − qt−1

)
.

Theorem 1 summarizes all our theoretical analysis which allows us to prove
that when twq−(n−k)+tw � 1, tw = ω(1) and k = Θ(n), we obtain an upper-
bound asymptotically equivalent to q−(n−k)+tw/(q − 1) + q2tw−m as n tends to
+∞ (Corollary 1).

Table 1. Comparison with previous theoretical bounds

Case of error Previous bound [4] Our bound

P

{
〈eHT〉

Fq
�= E · W

}
q−(n−k)+tw 1 −

tw−1∏
i=0

(
1 − qi−(n−k)

)
< q−(n−k)+tw

q−1

P

{
E �=

⋂w
i=1 f−1

i · W · E
}

tq(2w−1)t−m q(2w−1)t/(qm − qt−1)

P

{
dim E · W �= tw

}
tqtw−m qtw/

(
qm − qt−1)

2 Preliminaries

2.1 Notation

The symbol � will be used to define the left-hand side object. |S| denotes the
cardinality of a set S. We shall write x

$←− S to express that x is sampled
according to the uniform distribution over a set S. We will use the notation
P{E(x) | x

$←− S} to give the probability that an event E(x) occurs under the
constraint that x

$←− S. The finite field with q elements where q is a power of a
prime number is written as Fq. All vectors will be regarded by default as row
vectors and denoted by boldface letters like a = (a1, . . . , an). The linear space
over a field F spanned by vectors b1, . . . ,bk is written as 〈b1, . . . ,bk〉

F
. For f ∈ F

and U ⊆ F, the set {fu | u ∈ U} is denoted by f · U . Given two arbitrary sets A,
B included in Fqm where m � 1, we let A · B � 〈ab | a ∈ A, b ∈ B〉

Fq
. The set of

r × n matrices with entries in a set V ⊆ F is denoted by Vr×n. The transpose is
denoted by T. For matrices A and B having the same number of rows,

[
A | B

]

represents the matrix obtained by concatenating the columns of A followed by
the columns of B.

2.2 Rank Metric

We consider a finite field extension Fqm/Fq of degree m � 1 where q is a power
of a prime number. The support of a vector x ∈ FL

qm denoted by 〈x〉
Fq

is the
vector space over Fq spanned by its entries, namely

〈x〉
Fq

� 〈x1, . . . , xL〉
Fq

⊆ Fqm .
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The rank weight of x is then dim〈x〉
Fq

. We let Grt(q,m) be the set of all
t-dimensional linear subspaces over Fq included in Fqm . The cardinality of
Grt(q,m) is given by the Gaussian coefficient:

∣
∣
∣Grt(q,m)

∣
∣
∣ =

t−1∏

i=0

qm − qi

qt − qi
. (1)

The sphere in FL
qm of radius w centered at 0 is denoted by St

(
FL

qm

)
. Notice

that if (β1, . . . , βt) is a basis of E � 〈x〉
Fq

where x ∈ St

(
FL

qm

)
then there exists

M ∈ Ft×L
q such that x = (β1, . . . , βt)M.

2.3 Auxiliary Results

We gather in this part some results that will be useful in the next sections.

Proposition 1. Let N , L, r be natural numbers, and consider two independent
and uniformly distributed random matrices U $←− F

N×(L+r)
q and V $←− F

(L+r)×r
q

with the assumption that V has rank r. Then the entries of UV are independent
and uniformly distributed random variables.

Proof. Let us write UV = U1V1 + U2V2 where U =
[
U1 | U2

]
with U1 ∈

FN×r
q , U2 ∈ FN×L

q , and V =
[
V1

V2

]
with V1 ∈ Fr×r

q , V2 ∈ FL×r
q . Without loss

of generality we can assume that V1 is non-singular and because U1 is a uniform
random matrix, U1V1 is consequently a uniformly distributed random matrix.
The fact that UV is a uniform random matrix can be inferred from the uniform
randomness of U1V1 and the independence between U2V2 from U1V1. 
�

Proposition 2. Let U be a vector space of dimension at most d over Fq and
consider an integer n � d. The probability that n vectors drawn independently
and uniformly at random u1

$←− U , . . . ,un
$←− U span U over Fq is at least

d−1∏

i=0

(
1 − qi−n

)
.

Proof. Let a be the dimension of U . The probability that u1, . . . ,un span U is
equal to the probability that an n×a random matrix with entries in Fq has rank
a. This probability is then given by

(qn − 1)
qn

× · · · ×
(
qn − qa−1

)

qn
� (qn − 1)

qn
× · · · ×

(
qn − qd−1

)

qn

where the inequality is derived from the hypothesis that a � d. 
�

Remark 1. The inequality in Proposition 2 is an equality if the dimension of U
equals d.
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Lemma 1. Consider A ⊆ 〈g1, . . . , gr〉Fq
⊂ Fqm with 0 < r � m, and let us

assume that A contains a linear space over Fq of dimension at least d � r.
For randomly drawn elements e1, . . . , et from Fqm such that 〈e1, . . . , et〉Fq

∈
Grt(q,m), there exists a in At \ {0} such that

∑t
j=1 ajej = 0 with probabil-

ity at most
qtr+1 −

(
qd − 1

)
(qt − 1)

qm+1 − qt
(2)

Proof. Let us fix an arbitrary t-tuple a = (a1, . . . , at) from At \{0}. There exists
then i ∈ {1, . . . , t} such that ai �= 0. The condition

∑t
j=1 ajej = 0 is equivalent

to writing that
ei = −a−1

i

∑

j �=i

ajej . (3)

Knowing that e1, . . . , et are random elements picked from Fqm that are linearly
independent, we can see that we would have a contradiction if aja

−1
i lies within

Fq for every j different from i. Consequently, we introduce the set T � At \ {0}
that does not contain t-tuples a such that there exist i ∈ {1, . . . , t} and scalars λj

from Fq so that we have both ai �= 0 and aj = λjai for every j in {1, . . . , t}\{i}.
We can remark that the number of t-tuples is least2

(
qd − 1

)
(qt − 1) /(q − 1)

and therefore the cardinality of T is at most qrt − 1 −
(
qd − 1

)
(qt − 1) /(q − 1).

From the whole previous discussion, and after applying the Union bound, the
probability that we are looking for can be upper-bounded as follows

P

{

∃a ∈ At \ {0},
t∑

i=1

aiei = 0

}

= P

{

∃a ∈ T ,
t∑

i=1

aiei = 0

}

�
∑

a∈T
P

{
t∑

i=1

aiei = 0

}

.

Furthermore, because of (3), the probability that
∑t

i=1 aiei = 0 given that
(a1, . . . , at) ∈ T , is at most the ratio between the number of (t − 1)-tuples that
are linearly independent over the number of linearly independent t-tuples, that
is

P

{
t∑

i=1

aiei = 0

}

�
∏t−2

j=0

(
qm − qj

)

∏t−1
j=0 (qm − qj)

=
1

qm − qt−1
.

2 Such t-tuples a are of the form (0, . . . , 0, ai, λi+1ai, . . . , λtai) where i can take any
value in {1, . . . , t}, ai is any non-zero element in A, and λi+1, . . . , λt have arbitrary
values in Fq. The number of such tuples is therefore at least

(
qd − 1

) ∑t−1
u=0 qu because

the choice over ai can be restricted to the linear space of dimension d contained in
the set A.
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The conclusion then follows as we have

∑

a∈T
P

{
t∑

i=1

aiei = 0

}

�
(

qrt − 1 −
(
qd − 1

) t−1∑

u=0

qu

)
1

qm − qt−1

�
qrt −

(
qd − 1

)
qt−1
q−1

qm − qt−1
�

qrt −
(
qd − 1

)
qt−1

q

qm − qt−1

which provides the claimed bound (2). 
�

3 Decoding of LRPC Codes

This section is devoted to explaining how to solve efficiently the Rank decoding
problem with an homogeneous matrix, or stated otherwise, we will explain how
LRPC codes can be efficiently decoded. We first recall the definition of the Rank
decoding problem and then introduce the family of LRPC codes through the
notion of homogeneous matrix.

Definition 1 (Rank decoding problem). Let q, m, n, k, t be a natural num-
bers such that k < n and t < n. The Rank decoding problem consists in finding
e from the input (R, eRT) assuming that R ∈ F

(n−k)×n
qm and e $←− St(Fn

qm).

Definition 2 (Homogeneous matrix & LRPC code). An r × n matrix
M is homogeneous of weight w and support W ∈ Grw(q,m) if M ∈ Wr×n.
A linear code defined by an homogeneous parity-check matrix is named a Low
Rank Parity Check (LRPC) code.

Throughout this section we consider s ∈ Fn−k
qm , an homogeneous parity-check

matrix H ∈ F
(n−k)×n
qm of weight w and support W and an integer t. The goal

is then to find a vector e ∈ Fn
qm such that s = eHT and 〈e〉

Fq
∈ Grt(q,m).

Throughout this section we assume that an arbitrary basis {f1, . . . , fw} of W
was picked, and the parameters satisfy the following constraints,

{
tw � n − k,

n � (n − k)w.
(4)

3.1 Description

We aim here to give a full description of the LRPC decoder. It consists of two
steps that will be described below. We will also give in Theorem 1 an upper-
bound on the probability that the LRPC decoder fails. But before that, we first
explain how from an input (H, eHT) the algorithm first recovers the support
〈e〉

Fq
, and then all the entries of e.

The first step is given in Algorithm 1. The goal here is to compute a basis
ε1, . . . , εt of 〈e〉

Fq
. One can observe that the algorithm fails at this stage if one

of the following events occurs:
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Algorithm 1. Step I – Support Recovering (H, s, t)
1: B ← ∅
2: if dim

w⋂

i=1

f−1
i · 〈s〉

Fq
= t then

3: B ← {ε1, . . . , εt} where ε1, . . . , εt is a basis of
w⋂

i=1

f−1
i · 〈s〉

Fq

4: end if
5: return B

1. 〈s〉
Fq

�= E · W which will in particular always occur if n − k < tw,
2. Or 〈s〉

Fq
= E · W holds but yet the strict inclusion E �

⋂w
i=1 f−1

i · 〈s〉
Fq

happens.

In the following, we elaborate more on these cases. The second step then starts
once a basis ε1, . . . , εt of E is successfully recovered. Next, it checks whether the
dimension of E ·W is equal to tw. Note that in this case, a basis of E ·W is given
by {

fiεj

∣
∣ i ∈ {1, . . . , w} , j ∈ {1, . . . , t}

}
.

Each entry of s =
[
sr

]
is written as sr =

∑
i,j σ

(r)
i,j fiεj where σ

(r)
i,j lies in Fq.

Similarly each entry of H =
[
hr,d

]
with d ∈ {1, . . . , n} is decomposed as hr,d =

∑
i ν

(r,d)
i fi with ν

(r,d)
i in Fq. Lastly each entry ed of the unknown vector e is

written as ed =
∑

j x
(d)
j εj where x

(d)
j are unknowns that are sought in Fq so that

we have

sr =
n∑

d=1

hr,ded =
n∑

d=1

(
w∑

i=1

ν
(r,d)
i fi

)⎛

⎝
t∑

j=1

x
(d)
j εj

⎞

⎠

=
w∑

i=1

t∑

j=1

(
n∑

d=1

ν
(r,d)
i x

(d)
j

)

fiεj .

The latter equality implies that we have a system of (n − k)tw linear equations
involving tn unknowns composed of the linear relations

σ
(r)
i,j =

n∑

d=1

ν
(r,d)
i x

(d)
j

where (r, i, j) runs through {1, . . . , n − k} × {1, . . . , w} × {1, . . . , t}. As we have
taken (n−k)w � n and since dim E ·W = tw we are sure to get a unique solution.
We see in particular that this second step always fails if the dimension of E · W
is not equal to tw.

3.2 Decoding Failure Probability

In this part, we focus on the question of estimating the probability that the
LRPC decoder fails on a random input (H, eHT). Henceforth we denote it by
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P

{
Φ(H, eHT) �= e

}
where Φ denotes the LRPC decoder. We also define the

probability that Φ fails at the first and second step by PI and PII respectively.
We then clearly have P

{
Φ(H, eHT) �= e

}
= PI +(1 − PI) PII which implies that

P

{
Φ(H, eHT) �= e

}
� PI + PII . (5)

We now state our main result.

Theorem 1. Consider natural numbers w, t, m, k, n such that tw � n−k, n �
(n−k)w and 2(w−1)t < m. Assume that W $←− Grw(q,m) and E $←− Grt(q,m).
For H $←− W(n−k)×n and e $←− En, the probability P

{
Φ(H, eHT) �= e

}
is at most

PI + PII where
⎧
⎪⎪⎨

⎪⎪⎩

PI � 1 −
tw−1∏

i=0

(
1 − qi−(n−k)

)
+

q(2w−1)t+1 − (qw − 1) (qt − 1)
qm+1 − qt

,

PII � qtw

qm − qt−1
.

The rest of this section is devoted to proving this theorem.

3.3 An Upper-Bound on PI

The algorithm Φ fails during the first step if either 〈s〉
Fq

�= E ·W, or 〈s〉
Fq

= E ·W
holds but we have E �=

⋂w
i=1 f−1

i · 〈s〉
Fq

. Consequently the probability PI is at
most

P

{
〈s〉

Fq
�= E · W

}
+ P

{

E �=
w⋂

i=1

f−1
i · 〈s〉

Fq

∣
∣
∣ 〈s〉

Fq
= E · W

}

.

In order to give an upper-bound on P

{
〈s〉

Fq
�= E · W

}
we use Proposition 1 to

claim that the entries of s are independent and uniformly distributed random
variables taking values on E · W, and then we use Proposition 2 to bound the
probability that randomly drawn vectors from a finite-dimensional vector space
over Fq form a set of maximum dimension.

Proposition 3. For e $←− En and H $←− W(n−k)×n where E ∈ Grt(q,m) and
W ∈ Grw(q,m), the probability that 〈eHT〉

Fq
is different from E · W is

P

{
〈eHT〉

Fq
�= E · W

}
� 1 −

tw−1∏

i=0

(
1 − qi−(n−k)

)
.

Proof. Let h1, . . . ,hn−k be the rows of H. Consider a basis ε of E , and
similarly fix an arbitrary basis β of W. Let us define E ∈ Ft×n

q , and
M1 ∈ Fw×n

q , . . . ,Mn−k ∈ Fw×n
q such that e = εE and hi = βMi for
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each i ∈ {1, . . . , n − k}. Clearly the entries of the matrices E and MT �[
MT

1 | · · · | MT
n−k

]
∈ F

n×w(n−k)
q are independent and uniformly distributed ran-

dom variables over Fq, and additionally, we have

eHT = εE
[
(βM1)

T · · · (βMn−k)T
]

= εEMT

⎡

⎢
⎣

βT 0
. . .

0 βT

⎤

⎥
⎦ .

We know from Proposition 1 that MET is uniformly distributed matrix over
F

w(n−k)×t
q which therefore implies that the entries of eHT are independent and

uniformly distributed random variables over E · W. We then use Proposition 2
to conclude. 
�

We now focus on the second reason why Φ fails in step one, namely we would
like to upper bound P

{
E �=

⋂w
i=1 f−1

i · 〈s〉
Fq

∣
∣
∣ 〈s〉

Fq
= E · W

}
. This will be done

in Theorem 2 whose proof requires Lemma 1 which will also be useful as we will
see for establishing the probability of failure in the second step.

Theorem 2. Let U � E · W where W ∈ Grw(q,m) and E $←− Grt(q,m) with
(2w − 1)t < m. Then for an arbitrary basis f1, . . . , fw of W, we have

P

{

E =
w⋂

i=1

f−1
i · U

∣
∣
∣ E $←− Grt(q,m)

}

� 1 − q(2w−1)t+1 − (qw − 1) (qt − 1)
qm+1 − qt

·

Proof. We know that E �=
⋂w

i=1 f−1
i · U is actually equivalent to the strict inclu-

sion E �
⋂w

i=1 f−1
i · U , which in particular implies E � f−1

1 · U ∩ f−1
2 · U . Given

a basis e1, . . . , et of E and for every j ∈ {1, . . . , w}, a generating set of f−1
j · U

as an Fq-linear subspace of Fqm is given by
{

e1, . . . , et

} ⋃ {
ekf�f

−1
j

∣
∣
∣ 	 ∈ {1, . . . , w} \ {j}, k ∈ {1, . . . , t}

}
. (6)

So the existence of a non-zero element in f−1
1 ·U ∩f−1

2 ·U means that there exist
scalars λk, γk, αk,�, βk,j in Fq not all zero such that

t∑

k=1

λkek +
t∑

k=1

w∑

�=2

αk,�f
−1
1 f�ek =

t∑

k=1

γkek +
t∑

k=1

w∑

j=1,j �=2

βk,jf
−1
2 fjek. (7)

In order to have this element not in E , we must have in particular αk,� and βk,j

not all zero. In other words, by defining A as the subset of Fqm such that

A �

⎧
⎨

⎩
λ +

w∑

�=2

α�f
−1
1 f� +

w∑

j=1,j �=2

βjf
−1
2 fj

∣
∣
∣ λ ∈ Fq, (α�, βj) ∈ F2w−2

q \ {0}

⎫
⎬

⎭

we see that (7) entails that there exist a1, . . . , at in A such that
∑t

k=1 ekak =
0. Notice also that A is included inside a linear space of dimension 2w − 1
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and contains the linear space of dimension w that is generated by the linearly
independent elements 1, f−1

1 f2, . . . , f
−1
1 fw. Consequently from Lemma 1 we can

write that

P

{

E �=
w⋂

i=1

f−1
i · U

∣
∣
∣ E $←− Grt(q,m)

}

� P

{
E � f−1

1 · U ∩ f−1
2 · U

}

� q(2w−1)t+1 − (qw − 1) (qt − 1)
qm+1 − qt

which concludes the proof. 
�

3.4 An Upper-Bound on PII

We have seen that the second step of Φ fails if the dimension of E · W is not
equal to tw, that is to say we have

PII = P

{
dim E · W �= tw

}
. (8)

Then the bound given in Theorem 1 follows from the following result that can
be proved thanks to Lemma 1.

Proposition 4. For W ∈ Grw(q,m) and assuming that wt < m, we have

P

{
dim E · W = tw

∣
∣
∣ E $←− Grt(q,m)

}
� 1 − qtw

qm − qt−1
. (9)

Proof. E·W is generated by {eifj | 1 � i � t, 1 � j � w} where {fj | 1 � j � w}
is a basis for W and {ei | 1 � i � t} is a basis for E . Furthermore, the dimension
of E · W is different from tw means that there exist scalars γi,j in Fq such that

t∑

i=1

⎛

⎝
w∑

j=1

γi,jfj

⎞

⎠ ei = 0.

We can then apply Lemma 1 in order to obtain the following lower-bound

P

{
dim E · W �= tw

∣
∣
∣ E $←− Grt(q,m)

}
� qtw

qm − qt−1
.

This clearly is equivalent to (9) and terminates the proof. 
�

4 Asymptotic Analysis

We recall from Proposition 3 that the probability that the coordinates of eHT

do not span E · W is given

P

{
〈eHT〉

Fq
�= E · W

}
� 1 −

tw−1∏

i=0

(
1 − qi−(n−k)

)
. (10)

The goal here is to upper-bound the term 1 −
∏tw−1

i=0

(
1 − qi−(n−k)

)
.
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Proposition 5. Let us define T (q, t, w) � 1 −
∏tw−1

i=0

(
1 − qi−(n−k)

)
. Then

under the condition that twq−(n−k)+tw � 1, we have

0 � q−(n−k)+tw

q − 1
− T (q, t, w) � q−(n−k)

q − 1
+

1
q + 1

(
q−(n−k)+tw

q − 1

)2

In particular, with tw = ω(1) and k = Θ(n), it entails that T (q, t, w) ∼
q−(n−k)+tw

q−1 as n tends to +∞.

Remark 2. We know by Remark 1 that if dim(E · W) = tw, then (10) is an
equality. Hence P

{
〈eHT〉

Fq
�= E · W

}
is equivalent to q−(n−k)+tw/(q − 1).

Proof. Note that by expanding the expression of 1 −
∏tw−1

i=0

(
1 − qi−(n−k)

)
we

have

T (q, t, w) = 1 −
tw−1∏

i=0

(
1 − qi−(n−k)

)
=

tw∑

i=1

(−1)i+1ui (11)

where
ui �

∑

{k1,...,ki}⊆{0,...,tw−1}
|{k1,...,ki}|=i

q
∑i

j=1 kj−i(n−k).

We will prove that the sequence (ui)0�i�tw−1 is decreasing. Let us suppose for
the moment that it is true. Then the whole sum

∑tw
i=1(−1)i+1ui satisfies the

inequalities

u1 − u2 �
tw∑

i=1

(−1)i+1ui � u1 (12)

with u1 = q−(n−k)
∑tw−1

j=0 qj = q−(n−k)(qtw − 1)/(q − 1) and u2 � q−2(n−k)+2tw

(q−1)2

because of the following series of inequalities,

u2 = q−2(n−k)
tw−2∑

k1=0

qk1

tw−1∑

k2=k1+1

qk2 =
q−2(n−k)

q − 1

tw−2∑

k1=0

qk1
(
qtw − qk1+1

)

=
q−2(n−k)

(q − 1)2

(
q2tw−1 − qtw − q2tw−1 − q

q + 1

)

=
q−2(n−k)

(q + 1)(q − 1)2
(
q2tw − (q + 1)qtw + q

)

� q−2(n−k)+2tw

(q + 1)(q − 1)2

Gathering this last inequality with (11) and (12), we obtain then

q−(n−k)

q − 1
(
qtw − 1

)
− q−2(n−k)+2tw

(q + 1)(q − 1)2
� T (q, t, w) � q−(n−k)

q − 1
(
qtw − 1

)
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To finish the proof, it only remains to prove that u1, . . . , utw is a decreasing
sequence. Let us choose i in {1, . . . , tw − 1}. We have then

ui+1 = q−(i+1)(n−k)
∑

{k1,...,ki+1}⊆{0,...,tw−1}
|{k1,...,ki+1}|=i+1

q
∑i+1

j=1 kj

= q−i(n−k)q−(n−k)+tw
∑

{k1,...,ki+1}⊆{0,...,tw−1}
|{k1,...,ki+1}|=i+1

qki+1−tw+
∑i

j=1 kj

� q−(n−k)+twq−i(n−k)
∑

{k1,...,ki+1}⊆{0,...,tw−1}
|{k1,...,ki+1}|=i+1

q
∑i

j=1 kj

� q−(n−k)+twq−i(n−k)
tw−1∑

�=0

∑

{k1,...,ki}⊆{0,...,tw−1}\{�}
|{k1,...,ki}|=i

q
∑i

j=1 kj

� twq−(n−k)+twui.

By assumption we have twq−(n−k)+tw � 1 which shows that ui+1 � ui. 
�

Corollary 1. With twq−(n−k)+tw � 1, tw = ω(1) and k = Θ(n), we have when
n → ∞

P

{
Φ(H, eHT) �= e

}
� q−(n−k)+tw

q − 1
+ q2tw−m

Proof. It follows from Theorem 1 and Proposition 5.

5 Conclusion

The LRPC decoding algorithm is becoming more and more a predominant tool
in rank-metric cryptography as it is the main ingredient that serves to invert
encryption functions in [2,3,5]. It is therefore of great importance to establish
well-grounded bounds on the decoding failure probability to ensure a trust on
the parameters provided for those schemes. Yet all existing bounds are either too
loose for being interesting in concrete cryptographic applications, or are tight
according to experimental observations but are not supported by realistic model.
This work partially fill this gap by improving existing theoretical bounds. Our
upper-bound behaves asymptotically as q−(n−k)+tw/(q − 1) + q2tw−m.

However, there is still a large gap with the experimental bound
given in [2,3] that comes from the second case of failure in the
first step of the decoding algorithm. That is why a finer analysis of
this event could result to a better bound. Lastly, our analysis applies
specifically to “unstructured” LRPC codes and it would be interest-
ing to study the decoding failure probability of ideal LRPC codes.
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Abstract. The notion of coset leader has applications in coding theory and cryp-
tography. It has been studied in several papers. In this paper, we extend a recent
study, made on the coset leaders of the first order Reed-Muller codes, to two
classes of Boolean functions which have played an important role in diverse
domains of Boolean functions, and whose study was missing in this context.
We characterize the coset leaders that belong to the classes of Niho functions
and threshold functions (this second class being a generalization of the class of
majority functions).

Keywords: Boolean functions · coset leader ·Walsh transform

1 Introduction

A coset leader of the first order Reed-Muller code (denoted by RM(1, n); the Reed-
Muller code, of length 2n and order r being denoted by RM(r, n), see [2,11] for more
details on Reed-Muller codes) is a Boolean function f : F

n
2 �→ F2 whose Ham-

ming weight wH( f ) is the minimum in the coset of RM(1, n) containing it: wH( f ) =
min{wH( f + �) : � ∈ RM(1, n)}.

Coset leaders play a role in coding theory and present an interest from the cryp-
tographic viewpoint. Indeed, as mentioned in [4], they can be used in maximum like-
lihood decoding analysis (see [1], [9] for more details). Concerning cryptography, if
f + � is a coset leader (located in the RM(1, n)-coset including f ), then � is a best affine
approximation of f . Finding such � is the crucial step in cryptanalyses based on affine
approximations, such as the fast correlation attack [12]. Furthermore, the Hamming
weight of a coset leader of RM(1, n) is equal to its nonlinearity, an important notion in
cryptography, see [2].

The study of coset leaders of RM(1, n) was commenced in [4]. After characterizing
the coset leaders in the well known classes of direct sums of monomial functions and
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Maiorana-McFarland functions, this reference left open the characterization of coset
leaders in the class of Niho functions (which provide under certain conditions functions
with optimal nonlinearity called bent functions, see [2,13]) the class of Carlet-Feng
functions and the class of symmetric functions. Symmetric functions are of interest for
cryptography, as they allow to implement in an efficient way non linear functions on
large numbers of variables, see [2]. An important subclass of symmetric functions are
the threshold functions; majority functions are particular cases of threshold functions.
The majority functions and the Carlet-Feng functions are known for having an optimal
algebraic immunity, another important parameter in cryptography, see [2,3,8].

As already observed in [4] (and straightforward), determining the coset leaders in a
given coset f +RM(1, n) is closely related to determining the Walsh transform of f (see
its definition in Sect. 2). Note that many cryptographic properties (such as nonlinearity
and balancedness) can be characterized by means of the Walsh transform (see [2,6]).

In [7,15], the Walsh spectrum of rotation symmetric functions (that is, functions
which output the same value at all the inputs obtained by applying a circular permuta-
tion on the coordinates of a given input) is computed for degrees 3 and 2 respectively.
In [8], the Walsh spectrum of the majority function is given.

This paper aims to study the coset leaders in the class of Niho functions and in
an infinite class of symmetric Boolean functions called the threshold functions which
generalize the class of majority functions. Note that, as mentioned in [4], when a class
is not a union of cosets of RM(1, n), it is not sufficient to determine the coset leaders
which belong to the class; we need to extend this determination to the class equal to the
union of the cosets f + RM(1, n) when f ranges in the class.

The paper is organized as follows: Section 2 recalls the background on Boolean
functions and the properties of coset leaders useful for our characterizations. Section 3
is devoted to the characterization of coset leaders in the class of Niho functions and in
Sect. 4 the characterization is made for the class of threshold functions.

2 Preliminaries

In this document Fn
2 denotes the vector space over the finite field with 2 elements F2.

A function from F
n
2 to F2 is called a Boolean function on F

n
2, or an n-variable Boolean

function, or a Boolean function in dimension n. There are different ways to express
Boolean functions, each ensuring uniqueness. Among them, we have the multi-variate
polynomial expression called the algebraic normal form (in brief, ANF), belonging to
F2[x1, . . . , xn]/(x21 + x1, . . . , x2n + xn) and defined as follows:

f (x) =
∑

I⊆{1,2,...,n}
aI

(∏

j∈I
x j

)
=
∑

I⊆{1,2,...,n}
aI xI where aI ∈ F2.

We also have the possibility of representing Boolean functions by their trace represen-
tation. In such representation, the vector space Fn

2 is identified with the field F2n (thanks
to the choice of a basis of F2n , which is an n-dimensional vector space, decomposing
any element in F2n on the fixed basis). Every Boolean function f can then be written in
the form f (x) = trn(F(x)) where F is a mapping from F2n to F2n and where trn is the
trace function from F2n to F2, defined by trn(x) = x+ x2+ x2

2
+ ...+ x2

n−1
(more generally,
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for any m > 1 dividing n, the trace function from F2n to the subfield F2m is denoted by
trnm and defined by trnm(x) = x + x2

m
+ x2

2m
+ ... + x2

n−m
).

The algebraic degree of a Boolean function f , denoted by deg( f ), is the degree of its
ANF (see [10]). For every binary vector x ∈ Fn

2, the Hamming weight wH(x) of x is the
number of its non zero coordinates (i.e. the size of the set {i ∈ {1, . . . , n} : xi � 0}, called
the support of x). The Hamming weight wH( f ) of a Boolean function f on Fn

2 is also the
size of the support of the function, denoted by supp( f ), i.e. of the set {x ∈ Fn

2/ f (x) = 1}.
The Hamming distance between two Boolean functions f and g denoted by dH( f , h),
equals the Hamming weight of their sum, that is, |{x ∈ Fn

2; f (x) � g(x)}|.
We define in what follows the notions of affine equivalence and of affine invariance

which lead to the first trivial property of coset leader in [4].

Definition 1. Two Boolean functions f and g are said affinely equivalent, and we write
then f ∼ g, if there exists L, an affine automorphism of Fn

2, such that f = g ◦ L, where
‘◦’ is the operation of composition. If L is a simple permutation of the input bits, then
f and g are called permutation-equivalent.

A parameter associated to a function is called an affine invariant if it is preserved by
affine equivalence. For instance, the Hamming weight and the algebraic degree are
affine invariants.

Let us recall the coset leader definition.

Definition 2. An n-variable Boolean function f with n ≥ 2 is called a coset leader of
the first order Reed-Muller code RM(1, n) if for all � ∈ RM(1, n), we have wH( f + �) ≥
wH( f ). By abuse of language, given any Boolean function f , we shall call “coset leaders
of f " the coset leaders in the coset f + RM(1, n).

The property of being a coset leader is of course also an affine invariant:

Lemma 3. [4] Let n be a positive integer, and let f and g be two n-variable Boolean
functions with n ≥ 2 such that f ∼ g. Then, f is a coset leader of RM(1, n) if and only
if g is also a coset leader of RM(1, n).

We shall use the notion of Fourier and Walsh transform defined as follows:

Definition 4. Let f be a Boolean function in n variables. The Fourier transform of f ,
valued in Z, is denoted by f̂ and defined as:

f̂ (u) =
∑

x∈Fn
2

f (x)(−1)u·x, for all u ∈ Fn
2,

where “·” is some chosen inner product, that is, where x · y is a bilinear form such that
x · y = 0 for every y ∈ F

n
2 if and only if x = 0 (i.e. the only element orthogonal to F

n
2

is 0). Note that in this expression, f is treated as valued in {0, 1} ⊂ Z and not in F2.
Equivalently, we have f̂ (u) =

∑
x∈supp( f )(−1)u·x.

The Walsh transform of f , denoted by Wf , is the Fourier transform of the sign function
fχ(x) = (−1) f (x):

Wf (u) =
∑

x∈Fn
2

(−1) f (x)+u·x for all u ∈ Fn
2.
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The Walsh transform satisfies the so-called Parseval relation
∑

u∈Fn
2

W2
f (u) = 22n.

In the following, given a Boolean function f in n variables, the Walsh spectrum
{Wf (a), a ∈ Fn

2} of f is denoted by WS ( f ).
Let f be an n-variable Boolean function. It is clear that (−1) f (x) = 1 − 2 f (x) which

implies f̂ (u) = 2n−1δ0(u)− 1
2Wf (u), where δ0 is the Kronecker symbol defined by δ0(u) =

1 if u is the null vector and δ0(u) = 0 otherwise. In particular, u = 0 yields

wH( f ) = 2n−1 − 1
2

Wf (0).

The nonlinearity nl( f ) of a Boolean function f over Fn
2 is the minimum Hamming dis-

tance dH( f , h) = |{x ∈ F
n
2; f (x) � h(x)}| between f and affine functions h (in other

words, the distance from f to RM(1, n)). We have:

nl( f ) = 2n−1 − 1
2
max
a∈Fn

2

| Wf (a) | . (1)

Thanks to the Parseval Relation, the maximum of W2
f (a) is larger than or equal to its

arithmetic mean 22n

2n = 2n, and we have then the so-called covering radius bound:

nl( f ) ≤ 2n−1 − 2n/2−1.

We have also the following easy result from [4]:

Lemma 5. [4] An n variable Boolean function f is a coset leader of the first order
Reed-Muller code RM(1, n) if and only if nl( f ) = wH( f ), that is, Wf (0) = maxa∈Fn

2
|

Wf (a) |, or equivalently, Wf (0) ≥ |Wf (a)| for all a ∈ F
n
2, or still equivalently f̂ (0) ≤

2n−1 −maxa�0 | f̂ (a)|.
Given a Boolean function f and a vector a, denoting the function a · x by �a(x), we

have Wf+�a (0) = Wf (a) and Wf+�a+1(0) = −Wf (a); then we have:

Lemma 6. [4] For every n-variable Boolean function f , every vector a and every bit
ε, the function f + �a + ε is a coset leader if and only if |Wf (a)| is maximal over Fn

2 and
either Wf (a) > 0 and ε = 0, or Wf (a) < 0 and ε = 1.

Since the threshold functions and the majority functions (see the definition in Sect. 4)
are symmetric functions, we recall now some properties of symmetric functions useful
in the sequel. Note that a function is called symmetric if it is invariant under any permu-
tation of the variables, i.e., if f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n)) for any permutation π on
{1, . . . , n}. For Boolean functions, this is equivalent to the fact that f outputs the same
value for all the inputs having the same Hamming weight. Further, when a symmetric
Boolean function contains a degree r monomial, then it contains all the other degree r
monomials (see [8]), i.e. its ANF is also symmetric. One can represent an n-variable
symmetric Boolean function f (x1, ..., xn) in a reduced form by the (n + 1)-bit string
(re f (i))i=0,1,...,n where:

re f (i) = f (x), where wH(x) = i.
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The Walsh spectra of symmetric Boolean functions have very nice combinatorial prop-
erties related to the Krawtchouk polynomials [14]. The Krawtchouk polynomial of
degree i is given by

Ki(x, n) =
i∑

j=0

(−1) j

(
x
j

)(
n − x
i − j

)
, i = 0, 1, ..., n. (2)

For a fixed vector a such that wH(a) = k, we have that Ki(k, n) =
∑

wH (x)=i(−1)a·x, and
we can easily check that Wf (a) =

∑n
i=0(−1)re f (i)Ki(k, n). Since any symmetric function

f satisfies Wf (a) = Wf (b) for all a, b such that wH(a) = wH(b), we will denote by
Wf (k) the value of the Walsh transform of the symmetric function f at any point a with
wH(a) = k.

We shall need the following result which is a part of Proposition 4 in [8]:

Proposition 7. [8, Proposition 4]

1. K0(k, n) = 1, K1(k, n) = n − 2k.
2. Ki(k, n) = (−1)kKn−i(k, n) (for n even and k odd, K n

2
(k, n) = 0)

3. Ki(k, n) = (−1)iKi(n − k, n)

Some proofs in Sect. 4 will rely on the following two results:

Proposition 8. [8, Proposition 5]

For n even,Ki

(n
2
, n
)
=

⎧⎪⎪⎨⎪⎪⎩
0 for odd i( n
2
i
2

)
for even i .

For any α ∈ R we use the usual notation whereby �α
 denotes the integer part of α (�α�
denoting the smallest integer greater than or equal to α).

Lemma 9 [8, Lemma 4]. Let f be the majority function in n variables.

1. For k even,Wf (k) =

{
K n

2
(k, n) for even n

0 for odd n
,

2. For odd k,Wf (k) = 2
� n−1

2 
∑

i=0

Ki(k, n),

3. Wf (1) = 2

(
n − 1
� n
2 

)
,

4. Wf (n) =

⎧⎪⎪⎨⎪⎪⎩
(−1) n

2

(
n
n
2

)
for even n

(−1) n−1
2 2
(

n−1
n−1
2

)
for odd n

,

5. for even n,Wf

(n
2

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1) n

4

( n
2
n
4

)
for even n

2

2
∑ n−2

4
i=0 (−1)i

( n
2
i

)
for odd n

2

.
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3 Coset Leaders in the Class of the Niho Functions

We address here the well known class of Niho functions. To define the functions in this
class, we identify Fn

2 with F2n (the finite field of order 2n) and we use the so-called polar
decomposition of the elements of F2n into the product of an element of the subfield F2 n

2

(meaning that n must be even) and of an element of the multiplicative subgroup of F∗2n

of order 2
n
2 + 1 (see [13] and [2, Subsect. 5.1.2] for more details).

Definition 10. Let n be an even positive integer and m = n
2 . A Niho function f is a

Boolean function whose restriction to the set μF∗2m is linear for any μ ∈ F
∗
2n (where μ

can without loss of generality be taken in the multiplicative subgroup U of F∗2n of order
2m + 1). In other words f is a function defined as:

f (μ y) = trm(y φ(μ)); μ ∈ U, y ∈ F∗2m , (3)

where trm is the trace function from F2m to F2, and φ is a function from U to F2m .

From e.g. [2], for all functions f given by Relation (3), and denoting by trnm the trace
function from F2n to F2m , we have, for every u ∈ F2n :

Wf (u) = (−1) f (0) +
∑

μ∈U, y∈F∗2m

(−1)trm(y φ(μ))+trn(μ y u)])

= (−1) f (0) +
∑

μ∈U, y∈F∗2m

(−1)trm(y [φ(μ)+trnm(μ u)])

= (−1) f (0) − (2m + 1) + 2m card({μ ∈ U, φ(μ) + trnm(μ u) = 0}) (4)

wH( f ) = 2n−1 − 1
2

(
(−1) f (0) − (2m + 1) + 2m card({μ ∈ U, φ(μ) = 0})

)

and

nl( f ) = 2n−1 − 1
2
max
u∈Fn

2

∣∣∣∣(−1) f (0) − (2m + 1) + 2m card
({μ ∈ U, φ(μ) + trnm(μ u) = 0})

∣∣∣∣.

Note that if f (0) = 0, then from Relation (4), f is bent (that is, f has maximal non-
linearity 2n−1 − 2m−1; equivalently Wf (u) ∈ {±2m} for every u) if and only if for all u,
card
({μ ∈ U, φ(μ) + trnm(μu) = 0}) ∈ {0, 2}.

Remark 11. From Lemma 6, we have that, given a Niho function f defined by Relation
(3), the functions f (μ y) + trn(u μ y)) + ε in the coset f + RM(1, n) are coset leaders of
RM(1, n) if and only if

max
u∈Fn

2

∣∣∣∣(−1) f (0) − (2m + 1) + 2m card({μ ∈ U, φ(μ) + trnm(μ u) = 0})
∣∣∣∣ =

(−1)ε
(
(−1) f (0) − (2m + 1) + 2m card({μ ∈ U, φ(μ) = 0})

)
.

The class of Niho functions is not a union of cosets of the first order Reed-Muller
code. As we mentioned in the introduction, we need then not only to characterize the
coset leaders of RM(1, n) among all functions in this class, but more generally those
belonging to the RM(1, n)-cosets having non-empty intersection with the class. Note
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that if m = 1 (that is, n = 2), the Niho function is in fact a Boolean function in 2
variables and its coset leaders are easy to determine. Indeed, there are only 16 functions
(whether Niho or not) in 2 variables: the 8 affine functions and the 8 functions of the
form x1x2 + a(x) with a(x) affine. The zero function is the unique coset leader of each
of the 8 affine functions and for the others 8 functions, the unique coset leader of each
of them is the function x1x2.
This is why, in the following result, we assume m ≥ 2:

Theorem 12. Let n and m ≥ 2 be two positive integers with n = 2m. Let f be a Niho
function defined by Relation (3). For all u ∈ F2n , we set N(u) = card({μ ∈ U, φ(μ) +
trnm(μ u) = 0}) and NU = maxu∈F2n N(u). According to the two possible values of f at 0,
we have:

1. If f (0) = 0, then the coset leaders of f are:
– the functions f (μ y) + trm(y trn

m(μ u)) where N(u) = NU ≥ 2;
– the functions f (μ y) + trm(y trn

m(μ u)) + 1 where N(u) = 0, NU ≤ 2.
2. If f (0) = 1, by distinguishing the following two cases, we have:

a) For m = 2, the coset leaders of f are:
– the functions f (μ y) + trm(y trnm(μ u)) where N(u) = NU ∈ {3, 4, 5};
– the functions f (μ y) + trm(y trnm(μ u)) + 1 where N(u) = 0 and NU ≤ 3.

b) For m ≥ 3, the coset leaders of f are:
– the functions f (μ y) + trm(y trnm(μ u)) where N(u) = NU ≥ 3;
– the functions f (μ y) + trm(y trnm(μ u)) with N(u) = NU = 2 when N(v) �
0,∀v ∈ F2n ;

– the functions f (μ y) + trm(y trnm(μ u)) + 1 with N(u) = 0; NU ≤ 2.

Proof. Note that the expression �a(x) = a · x of Lemma 6 is replaced here by u · (μ y) =
trm(y trnm(μ u)).
Since we have card(U) = 2m + 1, then the possible values of N(u) are 0, 1, 2, ..., 2m + 1
and according to Relation (4), we have Wf (u) = (−1) f (0) − (2m + 1) + 2mN(u) which
means:

1. If f (0) = 0, then the values 0, 1, 2, ..., 2m + 1 of N(u) yield the following possible
values of the Walsh transform of f : −2m, 0, 2m, 2m+1, 3 ·2m, ..., 22m. We can therefore
write WS ( f ) ⊆ {−2m, 0, 2m, 2m+1, 3 · 2m, ..., 22m} = A ∪ B where A = {−2m, 0, 2m}
(whose elements correspond respectively to the values N(u) = 0, 1, 2) and B =
{2m+1, 3 · 2m, ..., 22m} (whose elements correspond respectively to the values N(u) =
3, 4, ..., 2m + 1) and since m ≥ 1, then for all k ∈ B and l ∈ A, we have k > |l|. Hence,
the inequality NU ≥ 3 implies there exists u such that Wf (u) ∈ B meaning that the
maximal value of |Wf (u)| is obtained in B and corresponds to the maximal value of
N(u) which is NU , and the inequality NU ≤ 2 implies that WS ( f ) ⊆ A. Thus, we
distinguish the two cases:
• WS ( f ) ∩ B � ∅, that is, NU ≥ 3
• WS ( f ) ⊆ A = {−2m, 0, 2m}, that is, NU ≤ 2, in which case there exists u such
that Wf (u) = −2m that is, N(u) = 0 or there exists u such that Wf (u) = 2m that
is, N(u) = 2 (note that the case Wf (u) = 0 can not yield a coset leader of f since
by the Parseval relation, we have maxa∈Fn

2
| Wf (a) |� 0 for all f ),

and the result follows from Lemma 6.



24 C. Carlet et al.

2. If f (0) = 1, then the values 0, 1, 2, ..., 2m+1 of N(u) yield the values −2m−2,−2, 2m−
2, 2m+1 − 2, 3 · 2m − 2, ..., 22m − 2 as the possible values of the Walsh transform of f .
We can therefore write WS ( f ) ⊆ {−2m−2,−2, 2m−2, 2m+1−2, 3·2m−2, ..., 22m−2} =
C ∪ D where C = {−2m − 2,−2, 2m − 2} (whose elements correspond respectively to
the values N(u) = 0, 1, 2) and D = {2m+1 − 2, 3 · 2m − 2, ..., 22m − 2} (whose elements
correspond respectively to the values N(u) = 3, 4, ..., 2m + 1) and we have:
a) If m = 2, then C = {−6,−2, 2} corresponding respectively to N(u) = 0, 1, 2 and

D = {6, 10, 14} corresponding to N(u) = 3, 4, 5. The result follows from Lemma
6 by distinguishing the following three cases:
– Wf (u) ∈ {10, 14} for some u with N(u) = NU = 4, 5
– Wf (u) ∈ {−6, 6} for some u when NU ≤ 3 and where Wf (u) = −6 means

N(u) = 0 and Wf (u) = 6 means N(u) = 3.
– Wf (u) ∈ {−2, 2} for all u when N(u) ∈ {1, 2} for all u (but this last case is

impossible because by the Parseval Relation, the Walsh spectrum of f can
not be contained in {−2, 2} when m ≥ 2).

b) If m ≥ 3, then the element 2m+1 − 2, which is the minimum of D, is such that,
for all s ∈ C = {−2m − 2,−2, 2m − 2}, we have 2m+1 − 2 > |s|, implying that for
all r ∈ D and s ∈ C, we have r > |s|.
If NU ≥ 3, then there exists u such that Wf (u) ∈ D, and the maximal value of
|Wf (u)| is obtained in D and corresponds to N(u) = NU .
If NU ≤ 2 then WS ( f ) ⊆ C. This case yields the subcases:

∗ N(v) � 0 for all v and Wf (u) = 2m − 2 for some u with N(u) = 2 (note that
by using again the Parseval relation, the case Wf (u) = −2 can not yield a
coset leader of f );
∗ Wf (u) = −2m − 2 for some u that is, N(u) = 0.

�

4 Coset Leaders in the Class of Threshold Functions

We address now the class of threshold functions, which is a particular class of symmet-
ric Boolean functions.

Definition 13. [5] Let n and d be two positive integers with d ≤ n + 1. The threshold
function of parameters d, n is the Boolean function in n variables denoted by Td,n and
defined by:

Td,n(x) =

{
0 if wH(x) < d
1 otherwise

,

Definition 14. [5] For any positive integer n, the majority function in n variables is the
Boolean function f defined by:

f (x) =

{
0 if wH(x) ≤ � n

2 

1 otherwise

,
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Note that if f is the majority function in n variables, then f = T� n+1
2 �,n meaning that the

family of threshold functions is a super-class of that of majority functions. Note also
that the majority function is balanced when n is odd (see [8]).
The nonlinearity of threshold functions is given in [5] as follows:

nl(Td,n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2n−1 −
(

n−1
n−1
2

)
if d = n+1

2∑n
k=d

(
n
k

)
= wH(Td,n) if d > n+1

2∑d−1
k=0

(
n
k

)
= 2n − wH(Td,n) if d < n+1

2

,

Hence, from Lemma 5 and Lemma 6, we have the obvious:

Corollary 15. For any integers d ≤ n + 1, we have:

• if d = n+1
2 , the coset leaders of Td,n are all the functions Td,n(x) + a · x + ε where

a ∈ Fn
2 and ε ∈ {0, 1} are such that

WTd,n(a) = 2(−1)ε
(

n − 1
(n − 1)/2

)
.

• if d > n+1
2 , then Td,n is a coset leader and the other coset leaders of Td,n are all the

functions Td,n(x) + a · x + ε, where a ∈ F
n
2 and ε ∈ {0, 1} are such that WTd,n(a) =

(−1)ε(2n − 2wH(Td,n)).
• if d < n+1

2 , the coset leaders of Td,n are all the functions Td,n(x) + a · x + ε, where
a ∈ Fn

2 and ε ∈ {0, 1} are such that

WTd,n(a) = (−1)ε
⎛⎜⎜⎜⎜⎜⎜⎝2

n − 2
d−1∑

k=0

(
n
k

)⎞⎟⎟⎟⎟⎟⎟⎠ .

Since the class of threshold functions is not a union of cosets of RM(1, n), we have to
characterize the coset leaders of each functions in this class.

The following two results from [8], in which Ki(x, n) denotes the Krawtchouk poly-
nomial of degree i defined in Relation (2), are also useful:

Lemma 16 [8, Lemma 5]. For all 1 ≤ k ≤ � n−1
2 
 and 0 ≤ i ≤ � n−1

2 
, Ki(1, n) ≥ |Ki(k, n)|.
Corollary 17 [8, Corollary 1]

1. For odd n, |Ki(1, n)| ≥ |Ki(k, n)| for all 0 ≤ i ≤ n, and 1 ≤ k ≤ n − 1.
2. For even n, |Ki(1, n)| ≥ |Ki(k, n)| for all 0 ≤ i ≤ n, and 1 ≤ k ≤ n − 1 except i = n

2 or
k = n

2 .

From Lemma 16, Ki(1, n) ≥ 0 for all 0 ≤ i ≤ � n−1
2 
 and then Corollary 17 yields:

Corollary 18. We have

1. For odd n, Ki(1, n) ≥ |Ki(k, n)| for all 0 ≤ i ≤ � n−1
2 
, and 1 ≤ k ≤ n − 1.

2. For even n, Ki(1, n) ≥ |Ki(k, n)| for all 0 ≤ i ≤ � n−1
2 
, and 1 ≤ k ≤ n−1 except k = n

2 .
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By recalling that Wf (k) denotes the Walsh transform of a symmetric function f at any
vector of weight k, we have the following result (in which nothing is said for the case
k = 0 in the second item but we will address this case in the proof of the next theorem):

Proposition 19. Let n ≥ 3 be a positive integer and let f be the majority function in n
variables.

1. For odd n ≥ 3, Wf (1) >
∣∣∣Wf (k)

∣∣∣ for all 2 ≤ k ≤ n − 1 and for k = 0.
2. For even n ≥ 4, Wf (1) >

∣∣∣Wf (k)
∣∣∣ for all 2 ≤ k ≤ n − 1.

Proof

1. Let n be odd. According to the first item of Lemma 9, for all even k, 0 ≤ k ≤ n−1, we
have Wf (k) = 0 meaning clearly that Wf (k) < Wf (1) by the third item of Lemma 9.
Moreover, from the first item of Proposition 7, for all k = 2, ..., n − 2 we have
|K1(k, n)| = |n − 2k| ≤ n − 4 < n − 2 = K1(1, n). So, from the first item of Corollary
18 and the second item of Lemma 9, for all odd k, we have

Wf (1) = 2
(
1 + K1(1, n) +

� n−1
2 
∑

i=2

Ki(1, n)
)
> 2
(
1 + |K1(k, n)| +

� n−1
2 
∑

i=2

|Ki(k, n)|
)

≥
∣∣∣∣∣∣∣∣
2
� n−1

2 
∑

i=0

Ki(k, n)

∣∣∣∣∣∣∣∣
=
∣∣∣Wf (k)

∣∣∣ ,

and the result follows.
2. Let n be even. For all odd k, 2 ≤ k ≤ n−2 and k � n

2 , by using again the second item
of Lemma 9 and the second item of Corollary 18 the proof is similar to the case of k
odd in the proof of the first item.

For k = n
2 odd, according to Lemma 9 (item 5), we have

∣∣∣Wf ( n
2 )
∣∣∣ =
∣∣∣∣∣2
∑ n−2

4
i=0 (−1)i

( n
2
i

)∣∣∣∣∣ ≤
2
∑ n−2

4
i=0

( n
2
i

)
= 2

n
2 . By induction on n ≥ 4 (n even), it is easy to check that 2

n
2 <

2
(

n−1
n
2

)
= Wf (1).

Now for k even, 2 ≤ k ≤ n − 2, the first item of Lemma 9 and Relation (2) yields

Wf (k) = K n
2
(k, n) =

n
2∑

j=0

(−1) j

(
k
j

)(
n − k
n
2 − j

)
=

∑

j=2p
j≤ n

2

(
k
j

)(
n − k
n
2 − j

)
−
∑

j=2p+1
j≤ n

2

(
k
j

)(
n − k
n
2 − j

)
= a − b

where we can easily check that a =
∑

j=2p
j≤ n

2

(
k
j

)(
n−k
n
2− j

)
> 0 and b =

∑
j=2p+1

j≤ n
2

(
k
j

)(
n−k
n
2− j

)
> 0

for all 2 ≤ k ≤ n−2. According to Lemma 9, Wf (1) = 2
(

n−1
n
2

)
=
(

n
n
2

)
=
∑ n

2
j=0

(
k
j

)(
n−k
n
2− j

)
=

a + b > |a − b| = |Wf (k)|.
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For the last case k = n − 1 which is odd, Lemma 9 (item 2) and Proposition 7 (item
3) yield:

Wf (n − 1) = 2
� n−1

2 
∑

i=0

Ki(n − 1, n) = 2
� n−1

2 
∑

i=0

(−1)iKi(1, n).

By Relation (2), we have clearly Ki(1, n) =
(

n−1
i

)
−
(

n−1
i−1
)
> 0 for all 0 ≤ i ≤ � n−1

2 

and since n ≥ 4 (meaning that, � n−1

2 
 ≥ 1 and then the sum in Wf (n − 1) above is a
sum of at least two elements), we obtain (by recalling that if a0, ..., ap−1 are p ≥ 2
positive numbers, we have clearly

∑p−1
i=0 ai = |∑p−1

i=0 ai| > |∑p−1
i=0 (−1)iai|):

∣∣∣Wf (n − 1)
∣∣∣ =

∣∣∣∣∣∣∣∣
2
� n−1

2 
∑

i=0

(−1)iKi(1, n)

∣∣∣∣∣∣∣∣
< 2

� n−1
2 
∑

i=0

Ki(1, n) = Wf (1),

which ends the proof.

�
We have then the following result:

Theorem 20. Let n ≥ 3 be a positive integer and f the majority function in n variables.

1. For n odd, the coset leaders of f are the functions:
a) f + x j for all j = 1, ..., n,
b) f +

∑n
j=1 x j +

1
2 (1 − (−1)

n−1
2 ).

2. For n even, f is a coset leader and the other coset leaders of f are the functions:
a) f + x j for all j = 1, ..., n,
b) f +

∑n
j=1 x j +

1
2 (1 − (−1)

n
2 ).

Proof. According to Lemma 9 and to [8, Theorem 3], the Walsh transform of the major-
ity function f at any vector of weight 1 denoted by Wf (1), is positive and has maximal
absolute value. Hence, items 1.a and 2.a follow from Lemma 6.

1.b) Let n be odd. According to Lemma 9 (item 4),
∣∣∣Wf (n)

∣∣∣ =
∣∣∣∣2(−1) n−1

2

(
n−1
n−1
2

)∣∣∣∣ = 2
(

n−1
n−1
2

)
=

Wf (1) that is, Wf (n) = Wf (1) if n = 4k + 1 and Wf (n) = −Wf (1) if n = 4k + 3.
Thus,

∣∣∣Wf (n)
∣∣∣ is maximal and the results follows from Lemma 6.

2.b) Let n be even. According to Lemma 9 (item 1) and Relation (2), Wf (0) =
K n

2
(0, n) =

(
n
n
2

)
= 2
(

n−1
n
2

)
= Wf (1) meaning that f is a coset leader. According

to Lemma 9 (item 4) again,
∣∣∣Wf (n)

∣∣∣ =
∣∣∣∣(−1) n

2

(
n
n
2

)∣∣∣∣ =
(

n
n
2

)
= 2
(

n−1
n
2

)
= Wf (1) that is,

Wf (n) = Wf (1) if n = 4k and Wf (n) = −Wf (1) if n = 4k + 2. Thus,
∣∣∣Wf (n)

∣∣∣ is
maximal and then the result follows from Lemma 6 again.

By Proposition 19 there are no other coset leaders, which ends the proof. �
We address now the characterization of coset leaders in the class of threshold func-

tions. The next result is for n odd; the case d = n+1
2 , which corresponds to the majority

function was addressed in Theorem 20 and will therefore not be considered in the fol-
lowing.
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Theorem 21. Let n ≥ 3 be an odd integer and d a positive integer such that d ≤ n−1
2 .

Then Td,n + 1 is the unique coset leader of the threshold function Td,n.

Proof

• For k even, since Ki(k, n) = (−1)kKn−i(k, n) = Kn−i(k, n) then we have

WTd,n (k) =
d−1∑

i=0

Ki(k, n) −
n∑

i=n−d+1

Ki(k, n) −
n−d∑

i=d

Ki(k, n) = −
n−d∑

i=d

Ki(k, n) = −2
n−1
2∑

i=d

Ki(k, n)

and the fact that for all integer i = 0, 1, ..., n,
(

n
i

)
=
(

n
n−i

)
yields WTd,n(0) = −2

∑ n−1
2

i=d

(
n
i

)
.

It remains to show that
∣∣∣WTd,n(0)

∣∣∣ >
∣∣∣WTd,n(k)

∣∣∣ for all k even, k = 2, ..., n. Note
that for all a with wH(a) = k and i ≥ 1, we have Ki(k, n) =

∑
wH (x)=i(−1)a·x =∑

1≤t1<t2<...<ti≤n(−1)at1+...+ati and the fact that 1 ≤ k < n implies there exist 1 ≤ t1 <
t2 < ... < ti ≤ n with at1 + ... + ati = 1 and there also exist 1 ≤ t1 < t2 < ... < ti ≤ n
such that at1 + ...+ati = 0 meaning that |Ki(k, n)| =

∣∣∣∑1≤t1<t2<...<ti≤n(−1)at1+...+ati

∣∣∣ <
(

n
i

)

and since Ki(k, n) = Kn−i(k, n) (k being even), then we have:

∣∣∣WTd,n (k)
∣∣∣ ≤ 2

n−1
2∑

i=d

|Ki(k, n)| < 2

n−1
2∑

i=d

(
n
i

)
=
∣∣∣WTd,n(0)

∣∣∣ .

• For k odd, since Ki(k, n) = −Kn−i(k, n), then we have WTd,n(k) = 2
∑d−1

i=0 Ki(k, n)

meaning for k = 1 that, WTd,n(1) = 2
∑d−1

i=0 Ki(1, n) = 2
∑d−1

i=0

((
n−1

i

)
−
(

n−1
i−1
))
= 2
(

n−1
d−1
)
.

Using the well known fact that
(

n
d

)
≤
(

n
� n
2 

)
and the fact that

(
n−1
d−1
)
<
(

n
d

)
(a consequence

of the well-known formula
(

n−1
d−1
)
+
(

n−1
d

)
=
(

n
d

)
) we have

WTd,n(1) = 2

(
n − 1
d − 1

)
< 2

(
n
d

)
≤ 2

(
n

n−1
2

)
≤ 2

n−1
2∑

i=d

(
n
i

)
= |Wd,n(0)|.

For k odd with 2 ≤ k ≤ n − 1, then according to Corollary 18, |Ki(k, n)| ≤ Ki(1, n),
for all i = 1, ..., n−2

2 meaning that

∣∣∣WTd,n(k)
∣∣∣ = 2

∣∣∣∣∣∣∣

d−1∑

i=0

Ki(k, n)

∣∣∣∣∣∣∣ ≤ 2
d−1∑

i=0

|Ki(k, n)| ≤ 2
d−1∑

i=0

Ki(1, n) = WTd,n(1) <
∣∣∣Wd,n(0)

∣∣∣ .

Now for the last case k = n which is odd, according to Proposition 7 and using the
fact that for all d < n,

∑d−1
i=0 (−1)i

(
n
i

)
= (−1)d−1

(
n−1
d−1
)
(which can be easily proven

using
(

n−1
i−1
)
+
(

n−1
i

)
=
(

n
i

)
) we have

∣∣∣WTd,n(n)
∣∣∣ = 2

∣∣∣∣∣∣∣

d−1∑

i=0

Ki(n, n)

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣

d−1∑

i=0

(−1)iKi(0, n)

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣

d−1∑

i=0

(−1)i
(
n
i

)∣∣∣∣∣∣∣ =

2

(
n − 1
d − 1

)
< |Wd,n(0)|.
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The proof is completed by Lemma 6. �

Note that for n odd and for all d = 1, 2, ..., n−1
2 , the inequality n+3

2 ≤ n − d + 1 ≤ n
holds and we have WTn−d+1,n(k) = −WTd,n(k) when k is even (meaning that WTn−d+1,n(0)
is positive) and WTn−d+1,n(k) = WTd,n(k) when k is odd. Then, according to the proof of
Theorem 21 we have the obvious:

Corollary 22. Let n ≥ 3 be an odd integer and d a positive integer such that d ≥ n+3
2 .

Then Td,n is the unique coset leader of the threshold function Td,n.

The following results give the coset leaders of Td,n when n is even. We start with d = n
2 .

Theorem 23. Let n ≥ 4 be an even integer. Then the coset leaders of T n
2 ,n

are the
functions:

a) T n
2 ,n
+ 1

b) T n
2 ,n
+ x j for all j = 1, 2, ..., n.

c) T n
2 ,n
+
∑n

i=1 x j +
1
2 (1 + (−1)

n
2 )

Proof

• For k even, by using the fact that for all integer i = 0, 1, ..., n, Ki(k, n) = Kn−i(k, n),
we have:

WT n
2 ,n
(k) =

n−2
2∑

i=0

Ki(k, n) −
n∑

i= n+2
2

Ki(k, n) − K n
2
(k, n) = −K n

2
(k, n),

meaning that WT n
2 ,n
(0) = −K n

2
(0, n) = −

(
n
n
2

)
and WT n

2 ,n
(n) = −K n

2
(n, n) = (−1) n

2+1
(

n
n
2

)
.

Now let us show that for all k = 2, ..., n − 2 even, we have
∣∣∣∣WT n

2 ,n
(k)
∣∣∣∣ <
(

n
n
2

)
=∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣ . Note that for all a with wH(a) = k,

K n
2
(k, n) =

∑

wH (x)= n
2

(−1)a·x =
∑

1≤i1<i2<...<i n
2
≤n

(−1)ai1+...+ai n
2

the fact that 1 ≤ k < n implies that there exist 1 ≤ i1 < i2 < ... < i n
2
≤ n with

ai1 + ... + ai n
2
= 1 and there also exist 1 ≤ i1 < i2 < ... < i n

2
≤ n such that

ai1 + ... + ai n
2
= 0 meaning that

∣∣∣K n
2
(k, n)

∣∣∣ =
∣∣∣∣
∑

1≤i1<i2<...<i n
2
≤n(−1)

ai1+...+ai n
2

∣∣∣∣ <
(

n
n
2

)
and

therefore for k even we have:
∣∣∣∣WT n

2 ,n
(k)
∣∣∣∣ =
∣∣∣K n

2
(k, n)

∣∣∣ <
(
n
n
2

)
=

∣∣∣∣∣WT n−1
2 ,n

(0)
∣∣∣∣∣ .

• For k odd, since Ki(k, n) = −Kn−i(k, n) and K n
2
(k, n) = 0, we have

WT n
2 ,n
(k) =

n−2
2∑

i=0

Ki(k, n) −
n∑

i= n+2
2

Ki(k, n) − K n
2
(k, n) = 2

n−2
2∑

i=0

Ki(k, n)
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meaning that for k = 1,

WT n
2 ,n
(1) = 2

n−2
2∑

i=0

Ki(1, n) = 2

n−2
2∑

i=0

((
n − 1

i

)
−
(
n − 1
i − 1
))
= 2

(
n − 1

n−2
2

)
=
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣ .

According to Corollary 18, for all i = 1, ..., n−2
2 , for all 2 ≤ k ≤ n − 2 with k � n

2 , we

have |Ki(k, n)| ≤ Ki(1, n) =
(

n−1
i

)
−
(

n−1
i−1
)
and |K1(k, n)| = |n − 2k| < n − 2 = K1(1, n).

Thus,
∣∣∣∣∣∣∣∣
2

n−2
2∑

i=0

Ki(k, n)

∣∣∣∣∣∣∣∣
≤ 2

n−2
2∑

i=0

|Ki(k, n)| < 2

n−2
2∑

i=0

|Ki(1, n)| = 2

(
n − 1

n−2
2

)
=

(
n
n
2

)
=
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣

For the case k = n
2 odd, from Proposition 8, we have Ki( n

2 , n) = (−1) i
2

( n
2
i
2

)
, Meaning

that

∣∣∣∣∣WT n
2 ,n
(
n
2
)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
2

n−2
2∑

i=0

(−1) i
2

( n
2
i
2

)∣∣∣∣∣∣∣∣
≤ 2

n−2
2∑

i=0

( n
2
i
2

)
= 2

n−2
4∑

i=0

( n
2

i

)
= 2

n
2 <

(
n
n
2

)
=
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣ .

For the last case k = n − 1 which is odd, the third item of Proposition 7 yields:

WT n
2 ,n
(n − 1) = 2

� n−2
2 
∑

i=0

Ki(n − 1, n) = 2
� n−2

2 
∑

i=0

(−1)iKi(1, n),

since Ki(1, n) =
(

n−1
i

)
−
(

n−1
i−1
)
> 0 for all 0 ≤ i ≤ � n−1

2 
, then we have:

∣∣∣∣WT n
2 ,n
(n − 1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
2
� n−1

2 
∑

i=0

(−1)iKi(1, n)

∣∣∣∣∣∣∣∣
< 2

� n−1
2 
∑

i=0

Ki(1, n) = WT n
2 ,n
(1).

Thanks to Lemma 6, a) and c) follow from the case k even and b) follows from the case
k odd. �

The result is different for d ≤ n−2
2 .

Theorem 24. Let n ≥ 4 be an even integer and d a positive integer such that d ≤ n−2
2 .

Then Td,n + 1 is the unique coset leader of Td,n.

Proof

• For k even, 1 ≤ k < n, since Ki(k, n) = (−1)kKn−i(k, n) = Kn−i(k, n), then we have

WTd,n(k) =
d−1∑

i=0

Ki(k, n) −
n∑

i=d

Ki(k, n) =
d−1∑

i=0

Ki(k, n) −
n−d∑

i=d

Ki(k, n) −
n∑

i=n−d+1

Ki(k, n) =

−
n−d∑

i=d

Ki(k, n) = −2
n−2
2∑

i=d

Ki(k, n) − K n
2
(k, n).
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Hence, WTd,n (0) = −2
∑ n−2

2
i=d

(
n
i

)
−
(

n
n
2

)
.

Since for all k such that 1 ≤ k < n, we have |Ki(k, n)| <
(

n
i

)
, then for k � 0 even, this

implies

∣∣∣WTd,n(k)
∣∣∣ =

∣∣∣∣∣∣∣∣
−2

n−2
2∑

i=d

Ki(k, n) − K n
2
(k, n)

∣∣∣∣∣∣∣∣
≤ 2

n−2
2∑

i=d

|Ki(k, n)| +
∣∣∣K n

2
(k, n)

∣∣∣ <

2

n−2
2∑

i=d

(
n
i

)
+

(
n
n
2

)
=
∣∣∣WTd,n(0)

∣∣∣ .

For k = n which is even, WTd,n(n) = −2
∑ n−2

2
i=d Ki(n, n) − K n

2
(n, n) = 2

∑ n−2
2

i=d (−1)i
(

n
i

)
−

(−1) n
2

(
n
n
2

)
and we have clearly

∣∣∣∣∣2
∑ n−2

2
i=d (−1)i

(
n
i

)
− (−1) n

2

(
n
n
2

)∣∣∣∣∣ < 2
∑ n−2

2
i=d

(
n
i

)
+
(

n
n
2

)
=

∣∣∣WTd,n(0)
∣∣∣.

• For k odd, since Ki(k, n) = −Kn−i(k, n) and K n
2
(k, n) = 0, then we have

WTd,n (k) =
d−1∑

i=0

Ki(k, n) −
n−d∑

i=d

Ki(k, n) −
n∑

i=n−d+1

Ki(k, n) = 2
d−1∑

i=0

Ki(k, n).

According to Corollary 18, for all i = 1, ..., n−2
2 , for all 2 ≤ k ≤ n − 2 with k � n

2 , we

have |Ki(k, n)| ≤ Ki(1, n) =
(

n−1
i

)
−
(

n−1
i−1
)
and |K1(k, n)| = n − 2k < n − 2 = K1(1, n).

So for 2 ≤ k ≤ n − 2 with k � n
2 ,

∣∣∣WTd,n(k)
∣∣∣ =
∣∣∣∣∣∣∣2

d−1∑

i=0

Ki(k, n)

∣∣∣∣∣∣∣ ≤ 2
d−1∑

i=0

|Ki(k, n)| < 2
d−1∑

i=0

Ki(1, n) = WTd,n(1) <

2

n−2
2∑

i=0

Ki(1, n) = 2

(
n − 1

n−2
2

)
=

(
n
n
2

)
<
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣

For k = n
2 odd, from the proof of Theorem 23,

∣∣∣∣∣WTd,n(
n
2
)
∣∣∣∣∣ ≤ 2

d−1∑

i=0

∣∣∣∣∣Ki(
n
2
, n)
∣∣∣∣∣ < 2

n−2
2∑

i=0

∣∣∣∣∣Ki(
n
2
, n)
∣∣∣∣∣ <
(
n
n
2

)
<
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣

For k = n − 1, which is odd, the third item of Proposition 7 yields:

∣∣∣WTd,n(n − 1)
∣∣∣ =
∣∣∣∣∣∣∣2

d−1∑

i=0

Ki(n − 1, n)
∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣2

d−1∑

i=0

(−1)iKi(1, n)

∣∣∣∣∣∣∣ ≤

2
d−1∑

i=0

Ki(1, n) < 2

n−2
2∑

i=0

Ki(1, n) =

(
n
n
2

)
<
∣∣∣∣WT n

2 ,n
(0)
∣∣∣∣ .
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The proof is completed by Lemma 6. �

Note also that for n even and for all d = 1, 2, ..., n−2
2 , the inequality n+4

2 ≤ n−d+1 ≤ n
holds and we have WTn−d+1,n(k) = −WTd,n (k) when k is even (meaning that WTn−d+1,n(0) is
positive) and WTn−d+1,n(k) = WTd,n(k) when k is odd. Then, according to the proof of
Theorem 24 we have the obvious:

Corollary 25. Let n ≥ 4 be an even integer and d a positive integer such that n+4
2 ≤

d ≤ n. Then Td,n is the unique coset leader of Td,n.

Remark 26. Note that Helleseth and Klove defined in [9] the notion of false neighbor
of a codeword h ∈ C which is a nonzero codeword g ∈ C such that wH(h − g) ≤ wH(h).
They showed that an error e has no false neighbor if and only if it is the unique coset
leader in its coset. Thanks to the above characterizations, the threshold function Td,n,
with n even (resp. odd) and d � n

2 ,
n
2 + 1 (resp. d � n+1

2 ), has a unique coset leader in
its coset, meaning in the coding point of view that it has no false neighbor.

Conclusion
In this paper, we answered some of the open problems raised in a recent study. We
characterized the coset leaders in the class of Niho functions, majority functions and
in general in the class of threshold functions. Many questions are still to be addressed.
For instance, the general structure of coset leaders is still to be investigated. Moreover,
the characterization of coset leaders in the whole class of symmetric Boolean func-
tions is not yet completed and in many other classes of Boolean functions (such as the
class of Carlet-Feng functions whoseWalsh spectrum is unknown), this characterization
remains to be determined.
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Abstract. The syndrome decoding problem lies at the heart of code-
based cryptographic constructions. Information Set Decoding (ISD) algo-
rithms are commonly used to assess the security of these systems. The
most efficient ISD algorithms rely heavily on nearest neighbor search
techniques. However, the runtime result of the fastest known ISD algo-
rithm by Both-May (PQCrypto ’18) was recently challenged by Carrier
et al. (Asiacrypt ’22), which introduce themselves a new technique called
RLPN decoding which yields improvements over ISD for codes with small
rates k

n
≤ 0.3.

In this work we first revisit the Both-May algorithm, by giving a clean
exposition and a corrected analysis. In this context we confirm the result
by Carrier et al. that the initial analysis is flawed and conclude with the
same runtime exponent. Our work aims at fully substantiating the cor-
rected runtime exponent by a detailed analysis. Furthermore, we show
that the Both-May algorithm significantly improves on memory complex-
ity over previous algorithms. Our main contribution is therefore to give
the correct perspective on the significance of the Both-May algorithm
and to clarify any remaining doubts on the corrected baseline.

Further, we outline a potential strategy for enhancing the Both-May
algorithm by merging two of its subroutines, by introducing a fixed-
weight nearest neighbor variant. Although we do not obtain immedi-
ate improvements, the nearest neighbor variant has already found novel
applications in recent research. This initiated study of algorithms to solve
the fixed-weight variant could potentially lead to future improvements
through our construction.

Keywords: representation technique · syndrome decoding · nearest
neighbor search · code-based cryptography

1 Introduction

Cryptography based on the hardness of the decoding problem, known as code-
based cryptography, is a promising candidate for post quantum secure systems.
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The ongoing fourth round standardisation effort of NIST includes three candi-
dates, all of them being code-based constructions. Therefore it is certain that
after the end of this round at least one code-based scheme will be selected for
standardisation. This makes analysis of those schemes, their security and espe-
cially strengthening our understanding of the hardness of the underlying problem
an important task.

The binary syndrome decoding problem can be formulated as given the parity-
check matrix H of a binary linear code of length n and dimension k as well as
a syndrome s = He, recover the low Hamming weight vector e. The fastest
known algorithms for solving generic instances of this problem are usually Infor-
mation Set Decoding (ISD) algorithms, pioneered by the original work of Prange
in 1962 [21]. Since then there have been numerous improvements on Prange’s
algorithm [1,2,4,5,9,18–20,22], mostly by extending the initial algorithm by an
enumeration step. These works usually improve the asymptotic runtime expo-
nent as long as the error-weight, i.e., the Hamming weight of e, is as high as
Ω(n). In this case the asymptotic running time is of the form 2cn, where the
constant c depends on the precise code parameters and the ISD algorithm. How-
ever, most code-based constructions do not fall into this regime by using an
error-weight as small as o(n). Moreover, it has been shown that the asymptotic
advantage of all ISD improvements vanishes for a sublinear choice of the error
weight [23]. And yet, the best known algorithms for attacking those code-based
schemes are exactly these ISD extension of Prange’s algorithm, still improving
second order terms or polynomial factors in this regime.

Usually, the theoretical study of algorithmic improvements in the constant
or high weight regime serves as an indicator which variations lead to practical
improvements in the cryptographic setting. Just recently the ISD algorithms
by May-Meurer-Thomae (MMT) [19] and the one by Becker-Joux-May-Meurer
(BJMM) [1], both initially studied and proposed in the constant weight regime,
were used to obtain new computational records in the cryptographic setting [13].
In their work, Esser, May and Zweydinger [13] identify the memory consumption
of these algorithms as one of the major bottlenecks for practical applications.
Further, the memory consumption, or more precisely the slowdown emerging
from the memory access cost that goes along with accessing large amounts of
random access memory (RAM), is essential for currently proposed parameter
sets to reach the necessary security goals [8,11,13]. Therefore, for the security
of code-based constructions as well as for the practical adaptation of advanced
ISD techniques it is important to understand how and if this memory usage
can be reduced. Recently, first time-memory trade-offs to achieve this goal were
introduced [14], but those techniques always come at the cost of an increased
time complexity.

The most recent ISD algorithms speed up the enumeration step by the use
of nearest neighbor search techniques [4,5,20]. The fastest of these algorithms
by Both and May [5] claims significant improvements on the time and memory
complexity of previous proposals. However, in a recent work, Carrier, Debris-
Alazard, Meyer-Hilfiger and Tillich [7] challenge the result of Both and May,
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by pointing out a flaw in the analysis of its time complexity. Note that (a later
revision of) [7] includes the corrected time complexity exponent together with a
correction of necessary parts of the original analysis. However, considering the
significance of the Both-May algorithm a self-contained corrected analysis pro-
viding full details is of major importance for the field. Note that the significance
of the Both-May algorithm stems from the fact that the corrected time expo-
nent still slightly improves previous ISD, and the algorithm hence remains the
baseline for new improvements.

This baseline is of utmost importance to classify the gain of new ISD and
other decoding algorithms, as for instance the newly proposed RLPN technique
of Carrier et al. [7], which achieves runtime improvements over ISD in some
regimes. In this work we clarify any left doubts by giving a corrected and sim-
plified analysis of the Both-May algorithm confirming the exponent stated in
the revision of [7]. Furthermore, our analysis also reveals significant gains in
the memory complexity of the Both-May algorithm over previous works, contra-
dicting the perception that the algorithm after all constitutes only as a slight
improvement over previous ISD. Overall, this result is in line with the results
from Esser and Bellini [11] who performed a more practical study of the algo-
rithm also observing mostly memory rather than time improvements.

Furthermore, we extend the algorithm by Both and May by detailing a pos-
sible strategy for future improvements. Our idea combines two steps which are
usually performed sequentially in the enumeration part of the algorithm – the
nearest neighbor search and a subsequent filtering of the found solutions accord-
ing to some criterion. Therefore we treat the nearest neighbor search in non-
blackbox fashion which allows us to directly embed the filtering into the proce-
dure.

Our Contribution. We provide a clean description of the most recent ISD
algorithm by Both and May and a corrected analysis. Our main contribution
is therefore to provide the correct baseline for further improvements. In this
context, we confirm the result of Carrier et al. [7] that the initial analysis of
the algorithm is flawed and confirm the corrected runtime exponent (delivered
previously in a revision of [7]). Concentrating solely on the minor improvement
in the runtime exponent gives the impression that the Both-May algorithm and
with it the broader research on extensive nearest neighbor search in the ISD con-
text are of low significance. However, in our analysis we find that the Both-May
algorithm significantly lowers the memory consumption of previous ISD algo-
rithms. Considering the importance of the memory-usage observed by multiple
recent works, this strongly supports the significance of the algorithm and, more
broadly, its research field.

More precisely, we confirm that the Both-May algorithm reduces the worst-
case runtime in the full distance decoding setting from 20.0953n down-to 20.0951n.
On the other hand, we observe that the memory consumption is lowered from
20.092n to 20.076n, yielding the largest memory improvement made by any ISD
algorithm so far.
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A second contribution lies in detailing a possible strategy for future improve-
ments of the algorithm by Both and May. Our strategy relies on a novel combina-
tion of the nearest neighbor search and a subsequently applied filtering step. We
therefore treat the nearest neighbor search in a non-blackbox fashion to embed
the filtering, such that a single application of the adapted algorithm yields the
already filtered lists. In this context, we introduce a variation of the nearest
neighbor problem, the fixed-weight nearest neighbor problem and propose a first
algorithm solving the problem.

We note that our current analysis does not yield an improvement in the
time or memory complexity of the Both-May algorithm. However, we outline
further future directions for improvements. Furthermore, our definition of the
fixed-weight nearest neighbor problem might be of independent interest, as it
already found application in the recent SievingISD algorithm by Guo, Johansson
and Nguyen [16]. This initiated study might lead to future improvements on
algorithms for solving the fixed-weight nearest neighbor problem, and in turn
lead to an improved decoding procedure via our construction.

All used optimization code is available at https://github.com/Memphisd/
Revisiting-NN-ISD.

Outline. In Sect. 2 we cover necessary basics on nearest neighbor search, the
syndrome decoding problem and the general technique of ISD. Subsequently, in
Sect. 3 we recall the Both-May algorithm and give a corrected analysis. Finally,
in Sect. 4 we give a high-level description of our potential improvement strategy,
while for the full technical details, we refer to the full version of this work [10].

2 Preliminaries

We denote vectors by bold lower case and matrices by bold upper case letters.
All logarithms are base two. We use standard landau notation for complexity
statements. We denote by H(x) := −x log(x) − (1 − x) log(1 − x) the binary
entropy function. To approximate binomial coefficients, we make use of the well
known approximation (

n

k

)
= Θ̃

(
2nH(k/n)

)
. (1)

For a vector v we denote by vi the projection to the i-th coordinate of v. We
extend this notation to sets of coordinates, i.e., for a set I ⊆ {1, . . . , n}, where n
is the length of v we denote by vI the projection of v to the coordinates indexed
by I. For a binary vector x ∈ F

n
2 , we let wt(x) := |{i | xi = 1}| be its Hamming

weight. We refer to the set of vectors of length n and Hamming weight w as
B(n,w) := {x ∈ F

n
2 | wt(x) = w}.

Nearest Neighbor Search. Most recent ISD techniques rely on subroutines
to solve a specific kind of nearest neighbor search problem. Informally, given
two lists of binary vectors and a distance ε the problem asks to find all pairs

https://github.com/Memphisd/Revisiting-NN-ISD
https://github.com/Memphisd/Revisiting-NN-ISD
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with distance ε between the two lists. In our analysis we use the algorithm by
May and Ozerov [20] to solve this problem, which achieves the best known time
complexity. More precisely, we use a recent adaptation of the algorithm by Esser,
Kübler and Zweydinger [12], which generalizes May-Ozerov’s result to arbitrary
list sizes and distances. The following lemma (compare to [12, Theorem 1]) states
the time complexity of the algorithm.

Lemma 2.1 (May-Ozerov Nearest Neighbor [12,20]). Let ε ∈ [[0, 1
2 ]] and

λ ∈ [[0, 1]], n ∈ N. Given two lists L1, L2 of size |Li| = 2λn containing uniformly
at random drawn elements from F

n
2 , there is an algorithm that returns all pairs

(x1,x2),xi ∈ Li with wt(x1 + x2) = εn in expected time 2ϑn(1+o(1)), where

ϑ =

⎧⎨
⎩

(1 − ε)
(

1 − H

(
δ�− ε

2
1−ε

))
for ε ≤ ε�

2λ + H(ε) − 1 for ε > ε� ,

with δ� := H−1(1 − λ) and ε� := 2δ�(1 − δ�) using memory |Li|(1+o(1)).

We encounter a slightly different setting where the vectors contained in the
lists are of length � · n for some constant � ∈ [[0, 1]] instead of length n. It is easy
to see that by normalizing ε and λ to � we can still make use of Lemma 2.1 in
this case.

Corollary 2.1. Let ε′ ∈ [[0, 1
2 ]] and λ′, � ∈ [[0, 1]], n ∈ N. Given two lists L1, L2 of

size |Li| = 2λn containing uniformly at random drawn elements from F
�n
2 . Then

there is an algorithm that returns all pairs (x1,x2),xi ∈ Li with wt(x1 + x2) =
ε′n in expected time 2ϑ·�n(1+o(1)), where ϑ is as in Lemma 2.1 for ε := ε′

� and
λ := λ′

� .

Decoding. A binary linear code C of length n and dimension k is a k-
dimensional subspace of F

n
2 . Such a code can be represented via the kernel of

a parity-check matrix H ∈ F
(n−k)×n
2 , i.e. C = {c ∈ F

n
2 | Hc = 0}. The task of

recovering a codeword c ∈ C from a given faulty version c′ = c + e is known
as the decoding problem. This problem is polynomial-time equivalent to the syn-
drome decoding problem, which asks to recover the error term e from the given
syndrome Hc′ = H(c + e) = He.

Definition 2.1 (Syndrome Decoding Problem). Let C ⊆ F
n
2 be a random

linear code of dimension k with constant rate k
n and parity-check matrix H.

Given a syndrome s ∈ F
n−k
2 and an integer ω < n the syndrome decoding

problem asks to find a vector e ∈ F
n
2 of Hamming weight wt(e) = ω that satisfies

He = s. We call e the solution and (H, s) an instance of the problem.

Note that ω is usually rather small and that without this restriction on the
Hamming weight the problem could easily be solved by Gaussian elimination.
The most commonly considered setting is the full distance decoding setting,
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which bounds ω by the minimum distance of the code. The minimum distance
d of a code C is the minimal weight of the sum of two codewords of C, i.e.,
d := minc1,c2∈C wt(c1 + c2) = minc∈C wt(c). Random linear codes are known
to asymptotically achieve a minimum distance of d = H−1(1 − k/n)n [15,24].
Now, the full distance decoding setting bounds ω ≤ d, which implies that for
each uniformly random choice of (H, s) there exists one solution in expectation.

Information Set Decoding (ISD). The best known strategy to solve generic
instances of the syndrome decoding problem is ISD. Given an instance (H, s′)
of the syndrome decoding problem, ISD algorithms first apply a random per-
mutation P to the columns of H to obtain a permuted instance (HP, s′) with
solution P−1e. Then HP is transformed into systematic-form by multiplication
with an invertible matrix Q, which yields the identity

(QHP)(P−1e) = (In−k | H1)(e1, e2) = e1 + H1e2 = Qs′ =: s,

where P−1e = (e1, e2). The permutation step aims at distributing the weight
on P−1e such that wt(e1) = ω −p and wt(e2) = p, where p has to be optimized.

In a last step the algorithm then recovers e2 and e1 from the identity
H1e2 + s = e1. The subroutines to accomplish this last step differ between
ISD algorithms, but commonly they rely on enumeration of the weight-p vector
e2 and try to identify those for which H1e2 + s is of small weight ω − p. If this
does not lead to a solution the weight was not distributed as desired and the
algorithm starts over with a new random permutation.

ISD and nearest neighbor. The identity H1e2+s = e1 defines a nearest neighbor
problem. Therefore let e2 = (e21, e22) and rewrite the identity as

H1(e21,0) = H1(0, e22) + s + e1.

Since e1 is not known, but of small Hamming weight ω − p we have

H1(e21,0) ≈ H1(0, e22) + s.

We can solve this identity directly by applying Lemma 2.1. Therefore, enumerate
all e2i and store the left (resp. right) side of the above identity in list Li, and
let the target distance be ε = ω − p.

However, prior to the result of Both and May, ISD algorithms solve the
identity mostly by guessing (or enumerating) the bits of e1 on some projection
π of its coordinates. This leads to an exact identity π(H1e2) = π(s + e1) where
the value of π(s + e1) is known. Now the algorithms solve the problem on the
projection π after which they check if they fulfill the identity on all coordinates.

Modern ISD algorithms split e2 in multiple addends and then solve the exact
identity in a binary tree fashion, where at the leaves candidates for the summands
are enumerated (similar to the two list example above).
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3 The Both-May Algorithm

The algorithm by Both and May differs from previous works in how it solves the
nearest neighbor identity

H1e2 + s = e1 (2)

In contrast to previous works the algorithm does not enumerate coordinates of
e1 to obtain an exact identity. Instead it solves the nearest neighbor identity
directly by using the May-Ozerov nearest neighbor search algorithm.

The algorithm still relies on a search-tree to construct e2. Therefore it splits
e2 = z1 + z2 in the sum of two addends. From Eq. (2) it follows that H1z1 and
H1z2 + s are wt(e1) close, since e1 is of small weight this implies

Hz1 ≈ Hz2 + s. (3)

Now the algorithm makes the bet that both sides of the equation are itself
small on some projection π of the coordinates, i.e., that wt

(
π(Hz1)

)
= ω

(1)
a

and wt
(
π(Hz2 + s)

)
= ω

(1)
a for some small ω

(1)
a . Then it splits z1 = y1 +y2 and

z2 = y3+y4 again in the sum of two addends. Assuming both sides of Eq. (3) are
indeed small on the projection π, we obtain the two nearest neighbor identities

π(Hy1) ≈ π(Hy2) and π(Hy3) ≈ π(Hy4 + s). (4)

3.1 Depth-2 Variant

For didactic reasons let us start with the algorithm using a search tree in depth
two to construct the solution e2. Therefore, in the base lists Li, i = 1, . . . , 4 all
possible values for the yi are enumerated. Then L1, L2 and L3, L4 are combined
by solving the respective nearest neighbor identities from Eq. (4). This yields
two new lists L

(1)
1 and L

(2)
1 containing candidates for z1 and z2 respectively. In

a final step the lists L
(1)
1 and L

(2)
1 are combined by solving the nearest neighbor

identity from Eq. (3) to find e2. This process is illustrated in Fig. 1. A pseudocode
description of the algorithm is given by Algorithm 1. In the graphic as well as
in the algorithmic description the projection π is chosen to map to the first �a

bits of the given vector.

Finding a Representation of the Solution. Let the permutation induce a
weight distribution, such that wt(e2) = p and wt(π(e1)) = ωa, where π is, as
defined in Algorithm 1, the projection to the first �a coordinates of e1, while
p, ωa and �a have to be optimized. Also let zi ∈ B(k, p1), i = 1, 2 , for some p1
that has to be optimized. Observe that this implies multiple representations of
e2, i.e. multiple different pairs (z1, z2) that sum to e2. Precisely there are

R1 =
(

p

p/2

)(
k − p

p1 − p/2

)
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Fig. 1. Both-May algorithm in depth-2. Weight in gray regions differs from weight of
uniformly random vectors. Numbers inside gray areas indicate regions of fixed weight.
Curly arrows illustrate final check for contained solution, N indicates nearest neighbor
search. (Color figure online)

such representations, where z1, z2 have both weight p1. Here the first term counts
the possibilities to distribute p/2 out of the p one-entries of e2 on z1, while the
remaining p/2 ones must be set in z2. The second factor then counts how the
remaining p1 − p/2 one entries in z1 and z2 can cancel out. The goal of the
algorithm is to enumerate only an 1/R1 fraction of these representations, as
any representation leads to e2. To achieve this, a constraint on the space of
representations is enforced via the weight-guess ω

(1)
a made on the projection π

of both sides of Eq. (3). The parameter ω
(1)
a has to be optimized as well.

On the base level all possible yi are enumerated in list Li, where we let
y1,y3 ∈ B(k/2, p1/2) × 0k/2 and y2,y4 ∈ 0k/2 × B(k/2, p1/2), i.e., we perform a
meet-in-the-middle split of z1 and z2. The lists L1 and L2 are then combined by
searching those pairs y1,y2 with wt(π(H1(y1 + y2))) = ω

(1)
a . The lists L3 and

L4 are combined analogously by previously adding s.
Let us analyze the probability that any representation of the solution fulfills

the weight-guess ω
(1)
a on the projection. More precisely, let the probability that

for any representation (z1, z2) of e2 we have wt(π(H1z1)) = wt(π(H1z2 + s)) =
ω
(1)
a be q. Then we have

q : = Pr
[
wt(π(H1z1)) = wt(π(H1z2 + s)) = ω(1)

a | e2 = z1 + z2,wt(π(e1)) = ωa

]

= Pr
[
wt(a1) = wt(a2) = ω(1)

a | e′
1 = a1 + a2,wt(e′

1) = ωa, e′
1 ∈ F

�a
2

]
(5)

=

(
ωa

ωa/2

)( �a−ωa

ω
(1)
a −ωa/2

)
2�a

,
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since there exist 2�a pairs a1,a2 that fulfill e′
1 = a1 + a2, but only(

ωa

ωa/2

)( �a−ωa

ω
(1)
a −ωa/2

)
of them have correct weight ω

(1)
a .1 Note that the first equality

follows from the randomness of H and the fact that e1 = H1e2 + s. Concluding,
as long as q · R1 ≥ 1, we expect the two lists L

(1)
1 and L

(2)
1 to contain at least

one representation of e2.
Note that our construction of L

(1)
i (via a meet-in-the-middle split) only allows

to obtain balanced zi, i.e., elements with weight p1/2 on both halves of their coor-
dinates. However, balanced elements form a polynomial fraction of all elements,

since using Eq. (1) we obtain
( k/2

p1/2)
2

( k
p1

) = Θ̃(1). Therefore we still can construct

R1 representations up to a polynomial factor.

Algorithm 1: Both-May Depth-2

Input : H ∈ F
(n−k)×n
2 , s′ ∈ F

n−k
2 , ω ∈ N

Output: e ∈ F
n
2 ,He = s′ with wt(e) = ω

1 Choose optimal p, p1, �a, ωa, ω
(1)
a and define

π : Fn−k
2 → F

�a
2 , π(x1, . . . , xn−k) = {x1, . . . , x�a}

π̄ : Fn−k
2 → F

n−k−�a
2 , π̄(x1, . . . , xn−k) = {x�a+1, . . . , xn−k}

2 Enumerate

Lj = {yj | yj ∈ B(k/2, p1/2) × 0k/2}, j = 1, 3

Lj = {yj | yj ∈ B(k/2, p1/2) × 0k/2}, j = 2, 4

3 repeat
4 choose random permutation matrix P

5 H′ ← QHP =
(
In−k H1

)
, s ← Qs′

6 Compute via nearest neighbor

L
(1)
1 = {z1 | z1 = y1 + y2, yi ∈ Li, wt(π(H1z1)) = ω(1)

a }
L

(1)
2 = {z2 | z2 = y3 + y4, yi ∈ Li, wt(π(H1z2 + s)) = ω(1)

a }
L = {e2 | e2 = z1 + z2, zi ∈ L

(1)
i , wt

(
π̄(H1e2 + s)

)
= ω − ωa − p}

7 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s) = ω − p then
8 return P(H1e2 + s, e2)

1 This term corresponds to the number of representations of one weight-ωa vector of
length �a as sum of two weight-ω

(1)
a vectors.
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Complexity of the Algorithm. The probability for the permutation dis-
tributing the weight as desired is

P =

(
�a

ωa

)(
k
p

)(
n′

ω′
)

(
n
ω

) ,

where n′ := n − k − �a and ω′ := ω − p − ωa. Hence, after P−1 iterations we
expect to have chosen one permutation that distributes the weight as desired.

Next we investigate the time per iteration of the loop of Algorithm 1, which
is dominated by the nearest neighbor search. Therefore, let us first calculate the
(expected) list sizes. The base lists Li are of size

L0 =
(

k/2
p1/2

)
,

while we expect the level-1 lists to be of size

L1 := E[L(1)
i ] = (L1)2 ·

( �a

ω
(1)
a

)
2�a

= Õ
⎛
⎝

(
k
p1

)( �a

ω
(1)
a

)
2�a

⎞
⎠ ,

since by the randomness of H the probability that H1x for any x �= 0 has weight

ω
(1)
a on a projection to �a coordinates is

( �a

ω
(1)
a

)
2�a

.
For the construction of the lists L

(1)
i and L we use the May-Ozerov nearest

neighbor search algorithm. The complexity of this algorithm to find all ε close
pairs on lists of size L containing length-� vectors is given by Corollary 2.1 and
we denote it as NL,�,ε. Therefore the overall time complexity of the algorithm is

T = P−1 · max(NL1,�a,ω
(1)
a

,NL2,n′,ω′),

while the memory complexity is max(L1,L2). Note that the final list does not
affect the memory complexity, as its elements can be checked on-the-fly for being
a solution. Furthermore the construction of this list is at least as expensive as
its size, which is why it does not appear in the time complexity.

Complexity exponent. In our optimizations we approximate the binomial coeffi-
cients in the analysis using Eq. 1. Then for each optimization parameter oi we let
oi = ôi ·n, where ôi ∈ [[0, 1]]. Furthermore, we similarly let k = k̂n, where k̂ = k

n is
the rate of the code. We then minimize the running time over the choices of the ôi

under the correctness constraint qR1 ≥ 1. Finally we maximize over all possible
choices for the rate k̂ with corresponding weight ω = ω̂n = H−1(1 − k̂)n (full
distance setting). This results in a complexity of the form 2cn with constant c.

To actually find the values of the ôi, k̂ and eventually c we use a numerical
optimization tool provided by the python library scipy. The way we access this
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library is inspired by a code of Bonnetain et al. [3].2 In general it is possible
that such optimizers do not output a global minimum but instead run into some
local minimum. However, to increase the confidence in the found optimum we
ran the optimization thousands of times with random starting points, until no
further improvement could be made.

This process leads to a running time of T = 2cn = 20.0982n with memory
complexity M = 20.716n at worst-case rate k̂ = 0.422 and, hence, ω = H−1(1 −
0.422)n ≈ 0.1373n.

We stress that these results essentially match those given in the original
work of Both and May [5]. The reason is that in contrast to higher search tree
depth variants the depth-2 variant does not make use of a filtering step, which
introduced the flaw in the analysis of [5] as we describe in the following section.

3.2 Depth-4 Variant

Both and May obtain their best result for a tree in depth four. Here the splitting
of e2 is continued recursively, i.e. yi = x2i−1 + x2i, i = 1, 2, 3, 4 and xj =
w2j−1 + w2j , j = 1, . . . , 8. The algorithm then recursively makes a bet on the
smallness of Hyi (respectively Hy4+s) and Hxj (respectively Hx8+s) on some
projections to obtain nearest neighbor identities for each level. Also it enforces
a specific weight on the vectors yi and zi itself. Eventually, all possible wj are
enumerated in the base lists Lj , j = 1, . . . , 16.

Similar to before the wi form a meet-in-the-middle split of the xj , i.e.,
w2i−1 ∈ B(k/2, p1/2) × 0k/2 and w2i ∈ 0k/2 × B(k/2, p1/2), where p1 is sub-
ject to optimization.

Additionally, a filtering step is introduced after the construction of the level-
2 and level-3 lists. This filtering step discards all vectors which do not sum to
predefined weights or which do not sum to predefined weights on projections that
already have fixed weights, i.e., those already used for nearest neighbor search
on previous levels (compare to Fig. 2).

The pseudocode of the algorithm is given by Algorithm 2 and an illustration
in Fig. 2. For simplification we choose the projections on each level to be the
next �a, �b and �c coordinates respectively. More precisely, we define

πa : Fn−k
2 → F

�a
2 , πa(x1, . . . , xn−k) = {x1, . . . , x�a

}
πb : Fn−k

2 → F
�b
2 , πb(x1, . . . , xn−k) = (x�a+1, . . . , x�a+�b

)

πc : Fn−k
2 → F

�c
2 , πc(x1, . . . , xn−k) = {x�a+�b+1, . . . , x�a+�b+�c

}
(6)

Analogously to the depth-2 case, we let

π̄ : Fn−k
2 → F

n−k−�′
2 , �′ := �a + �b + �c with π̄(x) = (x�′+1, . . . , xn−k) (7)

be the projection to the remaining coordinates.

2 This code is accessible at https://github.com/xbonnetain/optimization-subset-sum.

https://github.com/xbonnetain/optimization-subset-sum
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Fig. 2. Leftmost path of depth-4 algorithm from leaves (base lists) to root (final list).
Gray areas indicate regions where weight differs from weight of uniformly random vec-
tors. Numbers inside gray areas indicate regions of fixed weight. Curly arrows illustrate
filtering process, N indicates nearest neighbor search. (Color figure online)

Remark 3.1 (Block notation). We use letters to refer to different projections (or
blocks) of coordinates while we use numbers to indicate different levels of the
tree. For instance, ω

(3)
b is the predefined weight of block b on level 3.

Finding a Representation of the Solution. Let us assume the permutation
P distributes the weight on P−1e = (e1, e2) such that

wt(e2) = p and wt
(
πδ(e1)

)
= ωδ for δ ∈ {a, b, c},

which implies wt
(
π̄(e1)

)
= ω − ωa − ωb − ωc − p.

The algorithm constructs on each level i = 1, 2, 3 vectors of weight pi that
should sum to weight-pi+1 vectors, where p4 := p. Note that each such weight-
pi+1 vector has Ri representations as sum of weight-pi vectors, where

Ri =
(

pi+1

pi+1/2

)(
k − pi+1

pi − pi+1/2

)
.
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Algorithm 2: Both-May Depth-4

Input : H ∈ F
(n−k)×n
2 , s′ ∈ F

n−k
2 , ω ∈ N

Output: e ∈ F
n
2 ,He = s′ with wt(e) = ω

1 Choose optimal p, p1, p2, p3, �a, �b, �c, ωa, ωb, ωc, ω
(1)
a , ω

(2)
a , ω

(3)
a , ω

(2)
b , ω

(3)
b , ω

(3)
c

2 Let πa, πb, πc, π̄ be defined as in Equations (6) and (7)
3 Enumerate

Lj = {wj | wj ∈ B(k/2, p1/2) × 0k/2}, j = 1, 3, . . . , 15

Lj = {wj | wj ∈ B(k/2, p1/2) × 0k/2}, j = 2, 4, . . . , 16

4 repeat
5 choose random permutation matrix P

6 H′ ← QHP =
(
In−k H1

)
, s ← Qs′ and define sj,i :=

{
s , i = j

0n−k , else

7 Compute level-1 lists via nearest neighbor for i = 1, . . . , 8

L
(1)
i = { xi | xi = w2i−1 + w2i, wj ∈ Lj , wt(πa(H1xi + s8,i)) = ω(1)

a }

8 Compute via nearest neighbor then filter level-2 lists for i = 1, . . . , 4

L
(2)
i = { yi | yi = x2i−1 + x2i, xj ∈ L

(1)
j , wt(πb(H1yi + s4,i)) = ω

(2)
b }

L
(2)
i ← {y ∈ L

(2)
i | wt

(
πa(H1y + s4,i)

)
= ω(2)

a ∧ wt(y) = p2}

9 Compute via nearest neighbor then filter level-3 lists for i = 1, 2

L
(3)
i = { zi | zi = y2i−1 + y2i, yj ∈ L

(2)
j , wt(πc(H1zi + s2,i)) = ω(3)

c }
L

(3)
i ← {z ∈ L

(3)
i | wt

(
πa(vi)

)
= ω(3)

a ∧ wt
(
πb(vi)

)
= ω

(3)
b ∧ wt(z) = p3}

, with vi := H1z + s2,i

10 Compute final (level-4) list via nearest neighbor, ω′ := ω − ωa − ωb − ωc − p

L = { e2 | e2 = z2i−1 + z2i, zj ∈ L
(3)
j , wt(π̄(H1e2 + s′)) = ω′}

11 if ∃e2 ∈ L : wt(e2) = p ∧ wt(H1e2 + s′) = ω − p then
12 return P(H1e2 + s′, e2)

Therefore, we intend again to enumerate an 1/Ri-fraction of all possible
representations to ensure that there is one representation on expectation of each
weight-pi+1 vector contained on level i. Let us analyze the constraint imposed
on each level introduced by restricting to a specific weight on the projections
πa, πb and πc. We have already seen in Sect. 3.1 that the probability that any
representation of a level-2 element survives the level-1 constraint is (see Eq. (5))

q1 =

( ω(2)
a

ω
(2)
a /2

)( �a−ω(2)
a

ω
(1)
a −ω

(2)
a /2

)
2�a

.
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By the same reasoning if we now on level-2 impose weight restrictions on both
projections πa and πb, we obtain

q2 :=
∏

δ∈{a,b}
Pr

[
wt(πδ(Hy1)) = wt(πδ(Hy2)) = ω

(2)
δ | wt(πδ(H(y1 + y2))) = ω

(3)
δ

]

=
∏

δ∈{a,b}
Pr

ai∈F
�δ
2

[
wt(πδ(a1)) = wt(πδ(a2)) = ω

(2)
δ | wt(πδ(a1 + a2)) = ω

(3)
δ

]

=

( ω
(3)
a

ω
(3)
a /2

)( �a−ω
(3)
a

ω
(2)
a −ω

(3)
a /2

)

2�a
·

( ω
(3)
b

ω
(3)
b

/2

)( �b−ω
(3)
b

ω
(2)
b

−ω
(3)
b

/2

)

2�b
.

Eventually for the last level we obtain analogously

q3 :=
∏

δ∈{a,b,c}
Pr

[
wt(πδ(Hz1)) = wt(πδ(Hz2)) = ω

(3)
δ | wt(πδ(H(z1 + z2))) = ωδ

]

=
∏

δ∈{a,b,c}

( ωδ
ωδ/2

)( �δ−ωδ

ω
(3)
δ

−ωδ/2

)

2�δ
.

Now as long as we have qi · Ri ≥ 1 we ensure that in expectation on each level
i at least one representation of each possible level-(i + 1) element, i.e., of each
x ∈ F

k
2 with wt(x) = pi+1 is present. This implies in turn that on level 3 there

is a representation of the searched weight-p vector e2. Since we conditioned on
wt(π̄(e1)) = ω − p − ωa − ωb − ωc this representation is found by the level-4 list
construction.

Note that to avoid duplicates in the lists we will also optimize parameters
according to the constraint qi · Ri ≤ 1, which implies qi · Ri = 1.

Complexity of the Algorithm. The probability for the permutation dis-
tributing the weight as desired is

P =

(
�a

ωa

)(
�b

ωb

)(
�c

ωc

)(
�′

ω′
)(

k
p

)
(

n
ω

) ,

where �′ := n − k − �a − �b − �c and ω′ := ω − p − ωa − ωb − ωc. Therefore after
P−1 iterations we expect one to distribute the weight as desired.

Now let us analyze the cost to construct the tree. First, we argue about the
expected list size on each level after filtering, which is exactly where the analysis
of [5] goes wrong. The base lists are analogously to the depth-2 variant of size

L0 =
(

k/2
p1/2

)
.

Now, we have already shown that for suitable parameters, satisfying qiRi = 1,
on level i = 1, 2, 3 there exists exactly one representation of each possible level-
(i + 1) element, i.e., of each x ∈ F

k
2 with wt(x) = pi+1. Therefore the expected

list size on level-i after filtering is

Li =
(

k

pi

)
· ρi,
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where ρi is the probability that a vector x ∈ F
k
2 fulfills the level-i restriction.

Since level i imposes a weight restriction on a total of i blocks, we have

ρ1 =

( �a

ω
(1)
a

)
2�a

, ρ2 =

( �a

ω
(2)
a

)( �b

ω
(2)
b

)
2�a+�b

and ρ3 =

( �a

ω
(3)
a

)( �b

ω
(3)
b

)( �c

ω
(3)
c

)
2�a+�b+�c

.

In Appendix A we outline the difference to the original analysis of [5].
The time complexity per iteration of the loop is again given by the time it

takes to construct all lists. The level-i lists, i = 1, 2, 3 are constructed via a
nearest neighbor search on lists of size Li−1 including vectors of length �δ with
target weight ω

(i)
δ , δ ∈ {a, b, c}. The final list is then constructed via nearest

neighbor search on the remaining �′ coordinates for target weight ω′. Therefore
the cost for each level i is Ti, where

T1 = NL0,�a,ω
(1)
a

, T2 = NL1,�b,ω
(2)
b

, T3 = NL2,�c,ω
(3)
c

and T4 = NL3,�′,ω′ ,

Eventually the total time complexity of Algorithm 2 is given as the number of
iterations times the cost for one iteration, giving

T = P−1 max
i

(Ti).

Numerical Optimization of Algorithm 2. We follow the same optimization
methodology as for the depth-2 case, under correctness constraints qiRi = 1,
to obtain the asymptotic running time and memory exponents. We find a worst
case rate for the algorithm of k̂ = 0.42 with ω̂ = H−1(1 − k̂) ≈ 0.1384, leading
to a time and memory complexity of

T = 20.0951n and M = 20.076n,

for optimal parameters3

p̂ = 0.05180, p̂3 = 0.04719, p̂2 = 0.03371, p̂1 = 0.01783,

�̂a = 0.05280, �̂b = 0.10178, �̂c = 0.12367,

ω̂a = 0.00651, ω̂(3)
a = 0.00593, ω̂(2)

a = 0.00428, ω̂(1)
a = 0.05,

ω̂b = 0.01220, ω̂
(3)
b = 0.01091, ω̂

(2)
b = 0.09414,

ω̂c = 0.01504, ω̂(3)
c = 0.01354.

While this running time is far greater than the initially claimed 20.0885n [5], it
still slightly improves on the previously best running time of 20.0953n reported
in [4]. Further, the memory complexity is drastically improved by a factor of
20.0161n from previously 20.0915n to 20.0754n.

In Fig. 3 we compare the time and memory exponents of the latest three ISD
improvements, which are in chronological order(old to new): May-Ozerov [20],
BJMM-MO [4], Both-May [5] (Sect. 3.2).
3 Due to rounding to a precision of 10−5 there might be a certain deviation in satisfying

the correctness constraints. For the exact numbers we refer to our optimization
scripts.
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Fig. 3. Comparison between the time (left) and memory (right) exponent of the Both-
May, May-Ozerov and BJMM-MO algorithm in the full distance setting.

4 A Strategy for Future Improvements

In the following we outline a possible strategy for further improvements of the
Both-May algorithm on a high level. For an in-depth technical description the
reader is referred to the full version of this article [10].

Note that the Both-May algorithm works on each level in two steps. First it
combines two lists of the previous level to obtain vectors which fulfill a weight
restriction on a subset of the coordinates. Then in a second step it filters the
vectors for the weight restriction on the remaining coordinates. We propose to
improve this process by embedding the filter process into the nearest neighbor
search algorithm, to directly obtain vectors that satisfy the weight restriction on
all or at least more coordinates.

Therefore we adapt the May-Ozerov nearest neighbor algorithm to also per-
form the filtering step and then use this adaptation within the Both-May algo-
rithm. This adaptation requires to solve a specific variant of a nearest neighbor
problem, which we call fixed-weight nearest neighbor problem as a subroutine.
In the full version of this article we then develop a first algorithm to solve this
variant and upper bound its complexity to finally obtain a complexity estimate
for the whole decoding procedure. While we obtain no direct improvement of
the asymptotic exponent, we outline several future directions to further improve
the approach.

4.1 Combining Nearest Neighbor Search and Filtering

Let us first briefly recall how the May-Ozerov nearest neighbor search algorithm
finds all ε-close pairs between two same-sized input lists L1, L2 containing uni-
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formly random vectors from F
m
2 and how its complexity is composed. For an

in-depth explanation and analysis the reader is referred to [6,12,20]. First, the
algorithm computes an exponential number of list pairs L′

1, L
′
2 from the initial

lists. For optimal parameter choices it is guaranteed that L′
1, L

′
2 each have only

polynomial size, while simultaneously any distance-ε pair between L1 and L2 is
still contained in at least one of the constructed pairs L′

1, L
′
2. In a final step the

algorithm then finds the ε-close pairs by computing L′
1 × L′

2 for every list pair
L′
1, L

′
2 naively.

Fig. 4. Illustration of the May-Ozerov nearest neighbor search algorithm. Arrows indi-
cate the application of a locality sensitive filter. Each node branches q−1

ε times. Bold
stripes in lists indicate pair of distance ε progressing through all r applied filters.

The list pairs are computed in a tree-like fashion, where the input pair L1, L2

forms the root of the tree (compare to Fig. 4). This tree is constructed iteratively,
level by level. In every step of the algorithm each leaf of the tree is branched
1/qε times. A child-node is computed by traversing both lists of the parent node
— individually, no pairs between lists are considered — and applying a locality-
sensitive filter to each element. This filter discards elements that do not match
the filter criterion and, hence, reduces the lists’ sizes. Furthermore, it has the
property, that an arbitrary element passes the filter with probability qf, while for
an ε-close pair (x,y) between the lists, x and y pass the filter at the same time
with probability qε > q2f . Therefore close pairs are more likely to pass the same
filter than non-close pairs. The branching factor of q−1

ε ensures that if there is
an element of distance ε contained in the current node, it progresses to the next
level through at least one of the filters. This procedure is repeated r times to
construct a tree of depth r containing q−r

ε leaves. It is important to note that
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the algorithm up to the leaf-level only operates on each list individually, i.e., no
pairs between the lists are examined. Therefore, lists L′

1, L
′
2 contained in any leaf

are subsets of the initial lists L1, L2. Once all leaf nodes have been constructed,
the algorithm proceeds by computing the Cartesian product L′

1×L′
2 for all pairs

of lists contained in any leaf.

Embedding the Filtering. In Algorithm 2 the May-Ozerov algorithm operates
only on a projection π to m out of n coordinates, e.g., on projection π := πb to
construct the level-2 lists. However, for some of remaining coordinates there are
also weight restrictions, e.g. on projection πa on level two, which are imposed
via the filtering step. We now exchange the naive search for ε-close pairs on
projection π at the leaf-level of the May-Ozerov algorithm by an algorithm that
finds vectors that match the weight restriction on the remaining coordinates.
Finally, we then keep only those pairs attaining distance ε on the projection π.

Note that vectors that are filtered for a certain weight on a given projection
are guaranteed to have fixed weight on this same projection on the previous level.
For example level-2 lists are filtered on projection πa, which implies that elements
in level-1 lists have already fixed weight on projection πa, namely weight ω

(1)
a .

Therefore, given any pair of leaf lists in the May-Ozerov algorithm finding
elements matching the additional weight restriction on one projection can be
seen as nearest neighbor problem, where the input vectors have fixed weight.
More formally, we give the following definition.

Definition 4.1 (Fixed Weight Nearest Neighbor Problem). Let �, ω1, ω2

be integers with ω1, ω2 ≤ �. Given two lists L1, L2 of same size containing uni-
formly at random drawn elements from B(�, ω1) the fixed weight nearest neighbor
problem asks to find all pairs (x1,x2),xi ∈ Li with wt(x1 + x2) = ω2

In the full version of this article we describe an adaptation an LSH algorithm
by Indyk and Motwani [17] to solve this problem. We then incorporate this
algorithm into the May-Ozerov algorithm at the leaf-level, and finally embed
this adapted May-Ozerov algorithm into the Both-May algorithm.

4.2 Further Improving the Approach

The current version of the algorithm does not yet yield a gain in the time or
memory complexity of the decoding procedure. However, there are several ways
to improve the current algorithm that have the potential to lead to an improved
decoding routine.

First of all, the current algorithm does not yet eliminate the need for the filter-
ing step completely. That is because the fixed-weight nearest neighbor problem
we give in Definition 4.1 only covers the case of vectors of fixed-weight on the
full length, corresponding to the filtering step on a single projection. However,
the filtering has to enforce the correct weight on the vectors v ∈ F

k
2 themselves,

and on the corresponding projections πδ(Hv), δ ∈ {a, b, c}. Therefore, the algo-
rithm could clearly be improved by constructing the fully filtered lists directly



52 A. Esser

via the adapted nearest neighbor routine. However, this introduces a variant of
the fixed-weight nearest neighbor problem with multiple stripes of different given
input and output weights. The analysis in that case clearly complicates, and it
is not clear if straightforward adaptations of algorithms to that problem variant
are efficient.

Another direction for improvements are improved algorithms for the fixed-
weight nearest neighbor problem. The algorithm we detail in the full version of
this article [10] for solving the problem is an adaptation of an early LSH algo-
rithm by Indyk and Motwani. Improvements from the general nearest neighbor
case are likely to translate to the fixed-weight setting. Also there might exist
different strategies for the fixed-weight setting, such as the approach recently
detailed in [16].

Acknowledgements. We thank the anonymous reviewers of Crypto ’23 for pointing
out a flaw in the analysis of a previous version of this work.

Furthermore, we are grateful to the whole team of authors around the publication
[7] for insightful comments and remarks that led to this improved revision. Especially,
we would like to express our sincere gratitude to Charles Meyer-Hilfiger for his proactive
approach and thoughtful insights which greatly influenced the refinement of our work.

A Details on flaw in original Both-May analysis

In [5] Both and May decide to calculate the expected list size on level i based
on the probability that a pair of level-(i − 1) elements advances to level i. Let
us denote this probability by φi. Then the expected list size on level i is equal
to Li = (Li−1)2 · φi. However, instead Both and May take Li =

(
k
pi

) · φi. Note
that the square of level-(i− 1) lists is usually larger than the number of possible
elements with weight pi, as only an exponential small fraction sums to weight-pi

vectors (making the filtering step effective). In turn, the expected list size is
underestimated in the original work.
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In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

20. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

21. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-031-22972-5_17
https://eprint.iacr.org/2022/1328
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9


54 A. Esser

22. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

23. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear
error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 10

24. Varshamov, R.R.: Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk SSSR 117, 739–741 (1957)

https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-319-29360-8_10


Symmetric Cryptography:
Constructions and Attacks



Feistel Ciphers Based on a Single
Primitive

Kento Tsuji and Tetsu Iwata(B)

Nagoya University, Nagoya, Japan

tsuji.kento.y1@s.mail.nagoya-u.ac.jp, tetsu.iwata@nagoya-u.jp

Abstract. We consider Feistel ciphers instantiated with tweakable block
ciphers (TBCs) and ideal ciphers (ICs). The indistinguishability security
of the TBC-based Feistel cipher is known, and the indifferentiability secu-
rity of the IC-based Feistel cipher is also known, where independently
keyed TBCs and independent ICs are assumed. In this paper, we ana-
lyze the security of a single-keyed TBC-based Feistel cipher and a single
IC-based Feistel cipher. We characterize the security depending on the
number of rounds. More precisely, we cover the case of contracting Feis-
tel ciphers that have d ≥ 2 lines, and the results on Feistel ciphers are
obtained as a special case by setting d = 2. Our indistinguishability
security analysis shows that it is provably secure with d + 1 rounds. Our
indifferentiability result shows that, regardless of the number of rounds, it
cannot be secure. Our attacks are a type of a slide attack, and we consider
a structure that uses a round constant, which is a well-known counter
measure against slide attacks. We show an indifferentiability attack for
the case d = 2 and 3 rounds.

Keywords: Feistel cipher · Tweakable block cipher · Ideal cipher ·
Provable security

1 Introduction

Background. A Feistel structure is one of the widely used structures of a block
cipher, and its security proof was given by Luby and Rackoff [LR88]. It is shown
that the 3-round Feistel structure instantiated with 3 independent pseudorandom
functions (PRFs), which we call the Feistel cipher, is a pseudorandom permuta-
tion (PRP), a block cipher that is indistinguishable from a random permutation
against adversaries in a chosen plaintext attack (CPA) setting. Similarly, the 4-
round Feistel cipher is a strong PRP (SPRP), where the adversary is in a chosen
ciphertext attack (CCA) setting.

A question of whether one can securely reduce the number of independent
PRFs has been studied, as reducing the number of PRFs implies the reduc-
tion of the key length, and hence it reduces the cost for maintaining, exchang-
ing, and updating the secret key. Let Φ[F1, F2, . . . , Fr] be the r-round Feistel
cipher, where the PRF Fi is used in the i-th round. The structure that sim-
ply replaces all the PRFs with a single-keyed PRF F , i.e., Φ[F, F, . . . , F ], is
easily distinguishable from a random permutation regardless of the number of
rounds [ZMI89]. Pieprzyk showed that Φ[F1, F1, F1, F2] and Φ[F1, F1, F1, F1◦F1]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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are PRPs [Pie90]. Patarin showed that Φ[F1, F2, F1, F2] is an SPRP [Pat92].
Additionally, Patarin pointed out that Φ[F, F, F, F ◦ ζ ◦ F ] is an SPRP, where
it uses 1-bit cyclic rotation ζ. Nandi proved that Φ[ζ ◦ F, F, F, F ] is an SPRP
and has the optimal number of PRF calls [Nan10]. See also [Nan15] for a related
result that uses a mask.

A tweakable block cipher (TBC), formalized by Liskov et al. [LRW11], is
the generalization of a block cipher to take an additional input called a tweak.
Minematsu pointed out that TBCs can be used as a primitive for constructing
block ciphers, and instantiated a concrete structure by combining TBCs and
universal hash functions [Min09]. By replacing the PRFs and XORs in the Feistel
cipher with TBCs, Coron et al. formalized a TBC-based Feistel cipher and proved
its indistinguishability security [CDMS10].

Indifferentiability, formalized by Maurer et al. [MRH04], is one of the security
definitions for cryptographic permutations, a key-less permutation. This defini-
tion captures the hardness to distinguish a cryptographic permutation from a
random permutation, where the cryptographic permutation makes oracle calls to
an ideal primitive. Some instances of random oracle (RO) based Feistel ciphers
are analyzed with the indifferentiability notion. See [CHK+16,DKT16,DS16]
for the results on this line of research. The TBC-based Feistel cipher [CDMS10]
can be seen as a cryptographic permutation by regarding the TBC as the ideal
cipher (IC), which models an ideally secure block cipher, and its indifferentia-
bility analysis is presented in [CDMS10], where independent ICs are used in the
construction. Bhaumik et al. later improved the security bound [BNR21].

Contracting Feistel structures are derivations of the Feistel structure, and
we consider the TBC-based counterpart [Min15]. These structures have d lines,
where d ≥ 2, and d − 1 lines are used as the tweak of the TBC to update the
remaining line. See Fig. 1 for the structure. The security of the structure is known
in the indistinguishability notion [Min15,NI19], and in the indifferentiability
notion [GL15,NI20], where we consider the IC with key length of d − 1 lines
instead of a TBC.

Our Contributions. The indistinguishability results on the TBC-based Feistel
ciphers [CDMS10] and on the TBC-based contracting Feistel ciphers [Min15,
NI19] assume independent TBCs, and the indifferentiability results on the IC-
based Feistel ciphers [CDMS10,BNR21] and on the IC-based contracting Feistel
ciphers [GL15,NI20] assume independent ICs. In this paper, we investigate the
security of the single primitive-based counterparts, which replace the TBCs or
the ICs with a single primitive, i.e., a single-keyed TBC or a single IC. Our
target is the n-bit block and (d − 1)n-bit tweak single-keyed TBC-based Feistel
cipher for indistinguishability, and the n-bit block, (d − 1)n-bit key single IC-
based Feistel cipher for indifferentiability. We remark that by setting d = 2,
our results cover the case of regular Feistel ciphers of 2 lines. We present the
following results:

Indistinguishability Results. Let Φr be the r-round single-keyed TBC-based Feis-
tel cipher with d lines. We show that for any r ≤ d, Φr can be distinguished from
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a random permutation with O(1) queries. We then show that Φd+1 is secure in
the indistinguishability notion, where the security bound is O(q2/2n) for adver-
saries making q queries. This makes a sharp difference to the PRF-based Feis-
tel cipher, which is insecure regardless of the number of rounds. Next, for any
r ≥ d+1, we show that Φr can be distinguished from a random permutation with
O(2n/2) queries, with a type of slide attack [BW99]. On one hand, this shows
the tightness of the security bound of the case r = d + 1, i.e., it is impossible
to show a better security bound for this case. This also shows that, even if we
increase the number of rounds beyond d + 1 rounds, the security of Φr does not
improve, showing an impossibility of improving the security by increasing the
number of rounds.

These results show that the d-round structure can be practically used in
applications that are sufficient with O(2n/2) security, however, it cannot be used
if higher security is needed, regardless of the number of rounds.

Indifferentiability Results. Let ̂Φr be the r-round single IC-based Feistel cipher
with d lines. We show that for any r, ̂Φr is not secure in the indifferentiability
notion. The attack is the straightforward application of the attacks against Φr,
and they work with O(1) queries. The attack can be seen as a type of slide
attack [BW99]. Using a round constant is a well-known countermeasure, and one
may hope that a round constant can prevent the attack. We consider a variant of
̂Φr that uses a round constant, and demonstrate that the round constant cannot
prevent the indifferentiability attack for the case d = 2 and r = 3.

These results show that single IC based structures should not be used in
practice.

Table 1 and Table 2 summarize the previous results and our results. Table 1
shows the results for d = 2 and Table 2 shows the results for d ≥ 2 except for
d > 2 in [GL15].

Further Related Works. A problem of whether one can securely reduce the
number of independent keys/primitives has been studied in various other con-
structions. See, e.g., [ABD+13,CLL+14,DDKS14,CS15,XDG22,XDG23]. With
respect to slide attacks, key-reduced Feistel ciphers have been actively analysed.
See, e.g., [DKR97,BS10,DDS12,IS13,BBDK18]. Compared to these results, our
attacks follow a fundamentally similar approach, while our targets employ
stronger primitives, TBCs/ICs, instead of PRFs/ROs.

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n be the set of all n-bit strings. For two strings
X and Y , let X ‖ Y denote their concatenation. For d string X1,X2, . . . , Xd,
we denote their concatenation X1 ‖ X2 ‖ . . . ‖ Xd by X [1..d]. For a finite set S,

s
$←− S is the operation of a uniformly random selection of an element from S

and assigning it to s.
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Table 1. Summary of previous results and our results (d = 2) on Feistel ciphers. In
the “Key” column,“ind.” is the abbreviation of “independent”.

(a) Results based on indistinguishability. “Model” shows the
model of the adversary. “Key” indicates the relation between
the keys for each round. In the results of
[Pie90,Pat92,Nan10], the number of PRF calls is additionally
noted, and φ means that an additional function (e.g., a 1-bit
rotation) is required for the structure.

Primitive Key Model # of rounds Security Reference

PRF

ind.
PRP 3 O(q2/2n) [LR88]

SPRP 4 O(q2/2n)

single

PRP
any O(1) attack [ZMI89]

4 (5 calls) O(q2/2n) [Pie90]

SPRP

4

(5 calls + φ)
O(q2/2n) [Pat92]

4

(4 calls + φ)
O(q2/2n) [Nan10]

TBC

ind. SPRP
2 O(q2/2n) [CDMS10]

3 O(q2/22n)

single SPRP

2 O(1) attack Theorem 1

3 O(q2/2n) Theorem 2

≥ 3
O(2n/2)

attack
Theorem 3

(b) Results based on indifferentiability. “Instance” indicates
the relation between the ROs/ICs for each round.

Primitive Instance # of rounds Security Reference

RO ind.

5 O(1) attack [CHK+16]

8 O(q8/2n) [DS16]

10 O(q12/2n) [DKT16]

14 O(q16/22n) [CHK+16]

IC
ind.

2 O(1) attack [CDMS10]

3 O(q2/2n)

O(n2q/2n) [BNR21]

single any O(1) attack Theorem 4
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Table 2. Summary of previous results and our results on contracting Feistel ciphers.
d ≥ 2 denotes the number of lines, l is a constant value s.t. 1 ≤ l ≤ d−1. In “Security”,
the maximum number of queries is additionally noted if exists.

(a) Results based on indistinguishability.

Primitive Key Model # of rounds Security Reference

TBC

ind. SPRP

3d O(q2/2dn) [Min15]

3d − 2 O(q2/2dn) [NI19]

d + l
O(q2/2(1+l)n)

(q ≤ 2n)

d O(q2/2n)

single SPRP

≤ d O(1) attack Theorem 1

d + 1 O(q2/2n) Theorem 2

≥ d + 1
O(2n/2)

attack
Theorem 3

(b) Results based on indifferentiability. In [GL15], d > 2.

Primitive Instance # of rounds Security Reference

IC

ind.

≤ 2d − 2 O(1) attack
[GL15]

(d > 2)

2d − 1 O(q2/2n)

2d + 1 O(q2/22n) [NI20]

2d + 2l − 1
O(q2/2(1+l)n)

(q ≤ 2n)

single any O(1) attack Theorem 4

2.2 (Tweakable) Block Cipher

A block cipher E : M × K → M is a keyed permutation. For plaintext M ∈ M,
key K ∈ K, and ciphertext C ∈ M, we write the encryption as C = EK(M)
and the decryption as M = E−1

K (C). If M = {0, 1}n, we say that it is an n-bit
block cipher. Let Perm(n) be the set of all n-bit permutations, and a random
permutation is an element selected from Perm(n) uniformly at random.

A tweakable block cipher ˜E : M × K × T → M is a keyed permutation
that takes additional input called a tweak [LRW11]. For plaintext M ∈ M,
key K ∈ K, tweak T ∈ T , and ciphertext C ∈ M, we write the encryption
as C = ˜EK(T,M) and the decryption as M = ˜E−1

K (T,C). If M = {0, 1}n
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and T = {0, 1}t, we say that it is an (n, t)-bit TBC. Let ˜Perm(n, t) be the set
of all the functions ˜P : {0, 1}n × {0, 1}t → {0, 1}n s.t. for any T ∈ {0, 1}t,
˜P (·, T ) ∈ Perm(n), and a tweakable random permutation (TRP) is an element
selected from ˜Perm(n, t) uniformly at random, which we call an (n, t)-bit TRP.

The ideal cipher ̂E : M × K → M is the set of random permutations that
idealizes a block cipher. For each K, ̂E(K, ·) is a random permutation over
M. For plaintext M ∈ M, key K ∈ K, and ciphertext C ∈ M, we write
the encryption as C = ̂E(K,M) and the decryption as M = ̂E−1(K,C). If
M = {0, 1}n and K = {0, 1}k, we say that it is an (n, k)-bit IC.

2.3 Security Definitions

We consider the security of block cipher E as a keyed primitive and as a crypto-
graphic permutation. As a keyed primitive, we consider the indistinguishability
notion [LR88], i.e., the notion of a pseudorandom permutation (PRP) and a
strong pseudorandom permutation (SPRP). A PRP-adversary has oracle access
to a cryptographic permutation oracle EK in the real world, and random per-
mutation π in the ideal world. For an adversary A that makes a maximum of q
oracle queries, we define the PRP-advantage and SPRP-advantage as follows:

Advprp
E (A) = |Pr[AEK(·) ⇒ 1] − Pr[Aπ(·) ⇒ 1]|

Advsprp
E (A) = |Pr[AEK(·),E−1

K (·) ⇒ 1] − Pr[Aπ(·),π−1(·) ⇒ 1]|

Next, as a cryptographic permutation, we consider the indifferentiability
notion [MRH04]. Let C be a cryptographic permutation that is built on the
ideal cipher ̂E, i.e., C makes oracle calls to ̂E to compute its output, and we
write C

̂E for this. In the real world, an adversary A has oracle access to ̂E and
C

̂E . In the ideal world, A makes queries to a random permutation π and a sim-
ulator Simπ, where the simulator Sim has oracle access to π. We call a query
to C

̂E or π as a construction query, and a query to E or Simπ as a primitive
query. For an adversary A that makes a maximum of q oracle queries in total,
we define the advantage as follows:

Advindiff
C,Sim(A) = |Pr[AC

̂E(·), ̂E(·) ⇒ 1] − Pr[Aπ(·),Simπ(·) ⇒ 1]|

2.4 Coefficient-H Technique [Pat08,CS14]

Our security proof is based on the coefficient-H technique. Let R and R−1 be
the real world oracles that internally call a block cipher EK and its inverse E−1

K .
Similarly, let I and I−1 be the ideal world oracles that internally call a random
permutation π and its inverse π−1. For an adversary A that makes a maximum
of q oracle queries, a transcript θ denotes a tuple that records all the interactions
between A and the oracles. Let ΘR be the random variable of θ when A interacts
with R and R−1, and ΘI be the random variable of θ when A interacts with I
and I−1. An attainable transcript is a transcript θ such that Pr[ΘI = θ] > 0.
Then, the coefficient-H technique states the following result:
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Lemma 1. Consider a deterministic adversary A. Partition all the attainable
transcripts into two disjoint sets Tgood and Tbad. Suppose that there exists ε1
such that Pr[ΘI ∈ Tbad] ≤ ε1, and there exists ε2 such that, for all θ ∈ Tgood,
Pr[ΘR = θ]/Pr[ΘI = θ] ≥ 1 − ε2. Then we have Advsprp

E (A) ≤ ε1 + ε2.

We remark that although Lemma 1 is modified specifically for an SPRP
adversary, the coefficient-H technique can be applied to general security defini-
tions. See e.g., [Pat08,CS14].

3 Constructions

3.1 Block Ciphers

Fix d ≥ 2. Let ˜E be an (n, (d − 1)n)-bit TBC and K be a key of ˜E. First, we
define an encryption round function φ as

φ[ ˜EK ](X [1..d]) = X [2..d] ‖ ˜EK(X [2..d],X1) ,

where X [1..d] ∈ {0, 1}dn is the input. See Fig. 1a. Then, the r-round single-keyed
TBC-based Feistel cipher Φr is defined by iterating the round function φ for r
times as follows:

Φr[ ˜EK ](M [1..d]) = φ[ ˜EK ] ◦ φ[ ˜EK ] ◦ · · · ◦ φ[ ˜EK ]
︸ ︷︷ ︸

r times

(M [1..d])

It takes M [1..d] ∈ {0, 1}dn as input.
Likewise, we define a decryption round function φ−1 as

φ−1[ ˜EK ](X [1..d]) = ˜E−1
K (X [1..d−1],Xd) ‖ X [1..d−1] ,

where X [1..d] ∈ {0, 1}dn is the input. Next, the decryption of Φr, which we write
Φ−1

r , is defined by repeating φ−1 for r times as follows:

Φ−1
r [ ˜EK ](C [1..d]) = φ−1[ ˜EK ] ◦ φ−1[ ˜EK ] ◦ · · · ◦ φ−1[ ˜EK ]

︸ ︷︷ ︸

r times

(C [1..d])

It takes C [1..d] ∈ {0, 1}dn as input.

3.2 Cryptographic Permutations

Let ̂E be an (n, (d − 1)n)-bit IC. Cryptographic permutations can be defined
from an ideal cipher similarly to block ciphers.

With round functions φ[ ̂E] and φ−1[ ̂E] shown in Fig. 1b, where the key of
̂E is regarded as a tweak of ˜EK in φ[ ˜EK ], the r-round single IC-based Feistel
cipher, which we write ̂Φr, is defined as follows:

̂Φr[ ̂E](M [1..d]) = φ[ ̂E] ◦ φ[ ̂E] ◦ · · · ◦ φ[ ̂E]
︸ ︷︷ ︸

r times

(M [1..d])

̂Φ−1
r [ ̂E](C [1..d]) = φ−1[ ̂E] ◦ φ−1[ ̂E] ◦ · · · ◦ φ−1[ ̂E]

︸ ︷︷ ︸

r times

(C [1..d])
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Fig. 1. (a) φ[ ˜EK ](X [1..d]) = X [2..d] ‖ Y , where Y = ˜EK(X [2..d], X1) and (b)

φ[ ̂E](X [1..d]) = X [2..d] ‖ Y , where Y = ̂E(X [2..d], X1)

4 Security of Φr

We present three results on Φr. In Theorem 1, we first show an efficient distin-
guisher on Φr with r ≤ d. Next, with an additional round, in Theorem 2, we
prove that Φr with r = d + 1 is provably secure up to O(2n/2) queries. Finally,
in Theorem 3, we present a distinguisher that makes O(2n/2) queries against Φr

for any r ≥ d + 1. This shows the tightness of Theorem 2, and this also shows
that increasing the number of rounds beyond r = d + 1 does not increase the
security.

We remark that we use a TRP ˜E as the underlying TBC, and we thus omit
writing the key K, while ˜E and Φr = Φr[ ˜E] are still keyed primitives.

4.1 Attack on Φr for r ≤ d

We have the following theorem for Φr for r ≤ d.

Theorem 1. Fix d ≥ 2. Let ˜E be the (n, (d − 1)n)-bit TRP, and Φr = Φr[ ˜E] be
the r-round single-keyed TBC-based Feistel cipher. Then there exists an adver-
sary A against Φr with r ≤ d such that Advprp

Φr
(A) = O(1), where A makes

O(1) queries.

Proof. Let O be the oracle, which is either the block cipher Φr or the random
permutation π.
The Attack on Φr for r ≤ d − 1. We first introduce A on Φr for r ≤ d − 1.

A makes an encryption query using an arbitrary plaintext M [1..d] ∈ {0, 1}dn

to obtain the corresponding ciphertext C [1..d] ∈ {0, 1}dn, and returns 1 iff Cd−r =
Md. In Φr, Md never goes through ˜E, and it directly appears as Cd−r. In π,
Cd−r is a part of a uniformly random output of π, thus A outputs 0 except for a
negligible probability of an n-bit collision. Therefore A can distinguish Φr from
π with 1 query.
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Fig. 2. Structure of Φ4 for d = 5. M5 directly appears as C1.

An example of Φ4 with d = 5 is shown in Fig. 2.
The Attack on Φd. We introduce our adversary A on Φd.

A first makes an encryption query M to obtain C, and then makes an encryp-
tion query M ′ to obtain C ′, where M ′ = M [1..d−1] ‖ C ′1. Then A outputs 1 iff
C [2..d] = C ′[1..d−1]. In Φd, the first round of the second query reproduces the
second round of the first query. This state collision continues in the subsequent
rounds, and eventually, C [2..d] = C ′[1..d−1] always holds. In π, C [2..d] and C ′[1..d−1]

are the outputs of random permutation π, and hence A outputs 0 except for a
negligible probability of a (d− 1)n-bit collision. Therefore, A can distinguish Φd

from π with O(1) queries.
An example of Φ5 with d = 5 is shown in Fig. 3. 
�

Fig. 3. Structure of Φ5 for d = 5. (a) step 1, (b) step 2.
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4.2 Security of Φd+1

We have the following theorem for Φd+1.

Theorem 2. Fix d ≥ 2. Let ˜E be the (n, (d−1)n)-bit TRP, and Φd+1 = Φd+1[ ˜E]
be the r-round single-keyed TBC-based Feistel cipher, where r = d + 1. Then for
any adversary A that makes at most q queries, we have

Advsprp
Φd+1

(A) ≤ (4d + 1)q2

2n
+

0.5q2

2dn
.

We present the outline of the proof. The detailed proof is given in AppendixA.

Outline of Proof. In Φd+1 = Φd+1[ ˜E], we use a single TRP ˜E, and we write ˜Ei

to indicate ˜E in the i-th round. Note that ˜Ei = ˜E for all i.
Let S = ˜E1(M [2..d],M1), an output of the TRP in the 1st round. We regard

S as the internal state, and we see that, for each of the TRP calls, S appears as
the output block of the TRP (as ˜E1), or as a tweak (as ˜E2, . . . , ˜Ed), or as the
input block (as ˜Ed+1). See Fig. 4 for an example of Φ6 for d = 5.

Our proof is based on the coefficient-H technique. Let M
[1..d]
i , Si, and C

[1..d]
i

be the plaintext, internal state, and the ciphertext of the i-th query, respectively.
We define the bad conditions as follows:

1. {M1
1 , . . . , Md

1 , . . . , M1
q , . . . , Md

q } ∩ {S1, . . . , Sq} 
= ∅
2. {C1

1 , . . . , Cd
1 , . . . , C1

q , . . . , Cd
q } ∩ {S1, . . . , Sq} 
= ∅

3. |{S1, . . . , Sq}| < q

Namely, if any of the Si collides with other variables, then the transcript is bad.
If Si is a unique value, then all the tweaks of ˜E2, . . . , ˜Ed in the i-th query are

unique. For example, in ˜E2 in Fig. 4, Si appears in the 4th line of the tweak. It
never appears on the same line in other TRPs. Because of this, if Si is unique,
the tweak of ˜E2 never collides with other tweaks. Furthermore, an output of ˜E1

and an input of ˜Ed+1 are clearly unique.
Intuitively, without the bad conditions and with an assumption that the

adversary does not make redundant queries, we can show that every TRP has
at least one unique element in the output block, tweak, or in the input block.
This is sufficient to show that all the TRPs, which is actually a single TRP, can
interpolate them with a non-zero probability.

The good probabilities are almost the same in Φd+1 and π, and from the
coefficient-H technique, we obtain the upper bound of the distinguishing advan-
tage.

4.3 Attack on Φr for r ≥ d + 1

We have the following theorem for Φr for r ≥ d + 1.

Theorem 3. Fix d ≥ 2. Let ˜E be the (n, (d − 1)n)-bit TRP, and Φr = Φr[ ˜E] be
the r-round single-keyed TBC-based Feistel cipher. Then there exists an adver-
sary A against Φr with r ≥ d + 1 such that Advprp

Φr
(A) = O(1), where A makes

O(2n/2) queries.
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Fig. 4. Structure of Φ6 for d = 5. S appears in all the tweaks from ˜E2 to ˜E5, and is
used as an output in ˜E1 and an input in ˜E6.

Proof. We present our adversary A for d ≥ 3 and r ≥ d + 1. We later cover the
case d = 2.

1. Fix M [2..d] ∈ {0, 1}(d−1)n arbitrarily.
2. For i = 1, . . . , 2n/2, choose M1

i uniformly at random without overlaps, i.e.,
M1

i 
= M1
i′ holds for any 1 ≤ i < i′ ≤ 2n/2. Then make 2n/2 encryption

queries C
[1..d]
i ← O(M1

i ‖ M [2..d]) for i = 1, . . . , 2n/2.
3. For j = 1, . . . , 2n/2, choose S′

j uniformly at random without overlaps. Then

make 2n/2 encryption queries C
′[1..d]
j ← O(M [2..d] ‖ S′

j) for j = 1, . . . , 2n/2.

4. If there exists (i, j) s.t. C
[2..d]
i = C

′[1..d−1]
j , then output 1, else output 0.

This algorithm adopts the same approach as the one for Φd. However,
the internal states Si = ˜E(M [2..d],Mi) cannot be directly observed. We make
O(2n/2) queries so that we have the dn-bit state collision with a high probability.
Let q = 2n/2. The collision probability among the q values of Si and q values of
S′

j can be evaluated as follows:

Pr[{S1, . . . , Sq} ∩ {S′
1, . . . , S

′
q} 
= ∅] ≥

(

1 − 1
e

)

q(q − 1)
2n

≈ 0.632

Here, e is the base of the natural logarithm and the last approximation follows
from q = 2n/2.

As for the random permutation, the probability of the collision among C
[2..d]
i

and C
′[1..d−1]
j can be evaluated in a similar way by regarded them as (d−1)n-bit

random values. We obtain

Pr[{C
[2..d]
1 , . . . , C [2..d]

q } ∩ {C
′[1..d−1]
1 , . . . , C ′[1..d−1]

q } = ∅] ≤ 0.5q2

2(d−1)n
=

0.5
2(d−2)n

,

where we used q = 2n/2 for the last equality.
From the discussion above, we obtain the lower bound of the distinguishing

advantage as

Advprp
Φr

(A) � 0.5
(

1 − 1
2(d−2)n

)

.
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An example of Φ6 for d = 5 is shown in Fig. 5.
If d = 2, this algorithm does not work because in π, we have an n-bit output

collision in step 4 with a high probability. To deal with this problem, we modify
the algorithm as follows:

4′. If there exists no (i, j) satisfying C2
i = C ′1

j , then output 0.

5′. For (i, j) s.t. C2
i = C ′1

j , make encryption queries X [1..2] ← O(C [1..2]
i ) and

X ′[1..2] ← O(C ′[1..2]
j ).

6′. If X2 = X ′1 holds, then output 1, else output 0.

Steps with a prime symbol are modified or added for d = 2. In both Φr and
π, this algorithm aborts in step 4 with almost the same probability, and we see
that the algorithm proceeds to steps 5′ and 6′ with a high probability.

Extra steps (steps 5′ and 6′) are based on the distinguisher on Φd. If Si = S′
j

holds for some (i, j) in Φr, then we see that C
[1..2]
i and C

′[1..2]
j in step 5′ are the

input and output of the r-th round of the encryption of (M2, S′
j). Therefore,

this algorithm outputs 1 with a high probability in Φr and outputs 0 in π with
a similar discussion for Φd. 
�

Fig. 5. Structure of Φ6 for d = 5. (a): i-th query, (b) j-th query satisfying S′
j = Si.

5 Security of ̂Φr

We have the following theorem for ̂Φr.

Theorem 4. Fix d ≥ 2. Let ̂E be the (n, (d − 1)n)-bit IC, and ̂Φr = ̂Φr[ ̂E]
be the r-round single IC-based Feistel cipher. Then for any r ≥ 1, ̂Φr is not
indifferentiable from a random permutation.
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Proof. We first consider the case r ≤ d. Now we see that the same adversary
against Φr for r ≤ d in Sect. 4.1 works as the adversary against ̂Φr, since the
adversary against Φr can be regraded as the adversary against ̂Φr in the indif-
ferentiability notion that makes only construction queries without making any
primitive queries. Although the simulator can make queries to a random permu-
tation π, the simulator cannot control π’s entries at all, so that any simulator
does not affect the success probability of the adversary.

Next, we consider the case r ≥ d + 1. We take the approach of the adversary
against Φr with r ≥ d + 1 presented in Sect. 4.3. For an arbitrary plaintext
M [1..d] ∈ {0, 1}dn, A first obtains the output of the 1st round IC by using a
primitive query S ← ̂E(M [2..d],M1). Next, A makes two construction queries
with plaintexts M [1..d] and M [2..d] ‖ S to obtain ciphertexts C [1..d] and C ′[1..d].
Then A outputs 1 if C [2..d] = C ′[1..d−1]. Otherwise, A outputs 0.

In ̂Φr, the ciphertexts C [1..d] and C ′[1..d] always satisfy C [2..d] = C ′[1..d−1].
Observe that the complexity to search for the internal state S is replaced with a
primitive query, and hence A runs with O(1) queries. On the other hand, in π,
the simulator has to find S such that the last (d − 1)n bits of π(M [1..d]) collides
with the first (d − 1)n bits of π(M [2..d] ‖ S). However, finding such S needs
approximately O(2(d−1)n) queries, or there does not exist such S. Therefore, A
can distinguish ̂Φr from π with a high probability. 
�

6 Indifferentiability of Feistel Cipher with Constants

We have seen in the previous section that for any r ≥ 1, ̂Φr[ ̂E] cannot be
secure in the indifferentiability notion. The attack can be seen as a type of slide
attacks [BW99], and introducing a round constant is a well-known countermea-
sure against the attack. In this section, we consider a variant of ̂Φr that uses
a round constant. One may hope that the round constant prevents the slide
attacks. However, we show that this is not the case for d = 2 and r = 3 in the
indifferentiability notion.

We consider a 3-round structure that we write ̂Φ′
3 within the indifferentia-

bility notion. A round function φ′
i used in ̂Φ′

3 is defined as

φ′
i[ ̂E](X [1..2]) = X2 ‖ ̂E(X2 ⊕ ci,X

1) ,

where ci is the n-bit round constant. Then ̂Φ′
3 is defined with φ′

i as

̂Φ′
3[ ̂E](M [1..2]) = φ′

3[ ̂E] ◦ φ′
2[ ̂E] ◦ φ′

1[ ̂E](M [1..2]) .

We show that ̂Φ′
3 can be distinguished from π with O(1) queries.

1. Fix M
[1..2]
1 ∈ {0, 1}2n arbitrarily.

2. Make a primitive query S1 ← ̂E(M2
1 ⊕ c1,M

1
1 ).

3. Make a construction query C
[1..2]
1 ← O(M [1..2]

1 ).
4. Make a construction query C

[1..2]
2 ← O(M2

1 ‖ S1 ⊕ c1 ⊕ c2).
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5. Make a construction query M
[1..2]
3 ← O−1(C1

1 ⊕ c2 ⊕ c3 ‖ C1
2 ).

6. Make a construction query C
[1..2]
4 ← O(M2

3 ‖ S1).
7. If C1

4 = C2
1 holds, then output 1, else output 0.

Figure 6 visualizes how the algorithm works.

Fig. 6. Structure of ̂Φ′
3. ICs of the same background except for white ones have the

same input block, key, and output block. (a) step 3, (b) step 4, (c) step 5, (d) step 6.

The 2nd and succeeding construction queries reproduce inputs and outputs
of an adjacent IC in the previous query. As shown in Fig. 6, in the final query
in step 6, we have two reproductions, one from step 3 and the other one from
step 5, and we always observe the previous value of C2

1 as a part of the output.
Now we observe that a loop is formed if we focus on the input and output of

the construction, which is shown with dotted lines in Fig. 6. We see that finding
such a loop in π is not possible if we consider efficient simulators. Therefore, the
probability of C1

4 = C2
1 is negligible in π.

As a remark, this algorithm never makes primitive queries once a construc-
tion query is made. This implies that ̂Φ′

3[ ̂E] does not achieve the sequential
indifferentiability notion [MPS12] which is a weaker notion of indifferentiability.

7 Conclusions

In this paper, we analyzed the security of the single-keyed TBC-based Feis-
tel ciphers in the indistinguishability notion, and the single IC-based Feistel



Feistel Ciphers Based on a Single Primitive 71

ciphers in the indifferentiability notion. We completed the security characteri-
zation depending on the number of rounds. We also considered a structure that
employs a round constant, and showed that this does not work for the case d = 2
and r = 3 in the indifferentiability notion.

As open problems, there have been various proposals to modify the PRF-
based Feistel cipher so that the security is maintained [Pie90,Pat92,Nan10,
Nan15], and it would be interesting to see how one can modify the single-keyed
TBC-based/single IC-based Feistel ciphers to improve the security. With respect
to the construction with a round constant, we have only covered the indifferen-
tiability notion of the case d = 2 and r = 3, and it would be interesting to see
the security with other parameters and/or in the indistinguishability notion.

Acknowledgements. The authors would like to thank the anonymous reviewers of
IMACC 2023 for their constructive comments. This work was supported by JSPS KAK-
ENHI JP20K11675.

A Security Proof of Φd+1

We show the detailed proof of Theorem 2. We recall the theorem.

Theorem 2. Fix d ≥ 2. Let ˜E be the (n, (d−1)n)-bit TRP, and Φd+1 = Φd+1[ ˜E]
be the r-round single-keyed TBC-based Feistel cipher, where r = d + 1. Then for
any adversary A that makes at most q queries, we have

Advsprp
Φd+1

(A) ≤ (4d + 1)q2

2n
+

0.5q2

2dn
.

We first define the transcripts followed by two oracles, the real world oracle
based on Φd+1 and the ideal world oracle based on the random permutation π,
and the bad conditions. Next, we compute the bad probability in Lemma 2 and
the good probability ratio in Lemma 3. The security bound is obtained from
these lemmas and the coefficient-H technique in Lemma 1.

Transcripts. The adversary A is given access to the encryption and decryption
oracles. If the i-th query is an encryption query M

[1..d]
i , then A obtains the

corresponding ciphertext C
[1..d]
i . If the i-th query is a decryption query C

[1..d]
i ,

then A obtains M
[1..d]
i . Without loss of generality, we assume that A makes

exactly q queries, does not repeat a query, and does not make a redundant
query, i.e., if A obtains C

[1..d]
i for an encryption query M

[1..d]
i , then it does not

use C
[1..d]
i in the subsequent decryption queries, and vice versa. As we detail

below, after making q queries and before returning the decision bit, A is given
all the internal state values S1, . . . , Sq. Since it is only beneficial to A, there is
no loss of generality of giving the additional input to A. Then the transcript is
defined as follows:

((M [1..d]
1 , C

[1..d]
1 ), . . . , (M [1..d]

q , C [1..d]
q ), S1, . . . , Sq) (1)
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Definition of the Oracles. The real world oracles R,R−1 internally make use
of the block cipher Φd+1 and its inverse Φ−1

d+1. After making q queries, the oracles
R,R−1 give A all the internal states S1, . . . , Sq. Figure 7 shows the algorithms
of R,R−1.

Algorithm 1 Procedure of R for the i-th query (encryption)

Input: M
[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1: X
[1..d]
i ← M

[1..d]
i

2: for j = 1 to d + 1 do
3: Xd+j

i ← ˜E(X [1+j..d−1+j]
i , Xj

i )
4: Si ‖ C

[1..d]
i ← X

[d+1..2d+1]
i

5: return C [1..d]

Algorithm 2 Procedure of R−1 for the i-th query (decryption)

Input: C [1..d] ∈ {0, 1}dn

Output: M [1..d] ∈ {0, 1}dn

1: X
[d+2..2d+1]
i ← C

[1..d]
i

2: for j = d + 1 to 1 do
3: Xj

i ← ˜E(X [2+j..d+j]
i , X1+j

i )
4: M

[1..d]
i ‖ Si ← X

[1..d+1]
i

5: return M [1..d]

Fig. 7. Algorithm of R and R−1

The ideal world oracles I, I−1 internally make use of the random permutation
π and its inverse π−1. After q queries, I, I−1 generate dummy internal states
S1, . . . , Sq with the same probability distribution as TRP ˜E. For this, for an
encryption query, the oracle simulates the 1st round TRP. For a decryption
query, the oracle simulates the (d + 1)-st round TRP. After completing the
simulation, S1, . . . , Sq are given to A. Figure 8 shows the algorithms of I, I−1.

Bad Conditions. For the TRP ˜E in the real world, the tweak determines
the permutation between the input and output of the TRP. Accordingly, if the
tweaks are the same, the TRP does not output distinct outputs from the same
inputs or distinct inputs from the same outputs. By applying this to all the
combinations of the TRPs in Φd+1, we obtain the bad conditions of the whole
structure of Φd+1 as follows:

1. {M1
1 , . . . , Md

1 , . . . , M1
q , . . . , Md

q } ∩ {S1, . . . , Sq} 
= ∅
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Algorithm 3 Procedure of I for the i-th query (encryption)

Input: M
[1..d]
i ∈ {0, 1}dn

Output: C
[1..d]
i ∈ {0, 1}dn

1: C
[1..d]
i ← π(M [1..d]

i )
2: return C

[1..d]
i

Algorithm 4 Procedure of I−1 for i-th query (decryption)

Input: C
[1..d]
i ∈ {0, 1}dn

Output: M
[1..d]
i ∈ {0, 1}dn

1: M
[1..d]
i ← π−1(C [1..d]

i )
2: return M

[1..d]
i

Algorithm 5 Generation of dummy internal states S1, . . . , Sq

Input: (M [1..d]
1 , C

[1..d]
1 ), . . . , (M [1..d]

q , M
[1..d]
q ) ∈ ({0, 1}dn × {0, 1}dn)q

Output: S1, . . . , Sq ∈ ({0, 1}n)q

1: for i = 1 to q do
2: if the i-th query is encryption then
3: if ˜E(M [2..d]

i , M1
i ) is defined then

4: Si ← ˜E(M [2..d]
i , M1

i )
5: else
6: Si

$←− {0, 1}n \ Ran(M [2..d]
i )

7: else � the i-th query is decryption
8: if ˜E−1(C [1..d−1]

i , Cd
i ) is defined then

9: Si ← ˜E−1(C [1..d−1]
i , Cd

i )
10: else
11: Si

$←− {0, 1}n \ Dom(C [1..d−1]
i )

12: X
[1..2d+1]
i ← M

[1..d]
i ‖ Si ‖ C

[1..d]
i

13: for j = 1 to d + 1 do
14: ˜E(X [1+j..d−1+j]

i , Xj
i ) ← Xd+j

i

15: return S1, . . . , Sq

Fig. 8. Algorithm of I and I−1, where Dom(T ) and Ran(T ) are defined as

Dom(T ) = {x | ˜E(T, x) = y is defined for some y} and Ran(T ) = {y | ˜E(T, x) =
y is defined for some x}
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2. {C1
1 , . . . , Cd

1 , . . . , C1
q , . . . , Cd

q } ∩ {S1, . . . , Sq} 
= ∅
3. |{S1, . . . , Sq}| < q

Recall that a transcript is defined as (1), and let Tbad be the set of all the
transcripts that satisfy at least one of the conditions above. Let Tgood be the set
of all the transcripts that does not satisfy any of the conditions above.

In what follows, we discuss the correctness of the above bad conditions, i.e.,
without the bad conditions, we show that the underlying TRP ˜E can interpolate
all the relevant inputs, tweaks, and the outputs with a non-zero probability.

First, observe that the absence of the above three conditions guarantees that
all the tweaks in ˜E2, . . . , ˜Ed are distinct. That is, there are q tweaks for each of
˜E2, . . . , ˜Ed, and we thus have q(d−1) values of the tweak in total for ˜E2, . . . , ˜Ed.
It can be verified that all these q(d − 1) values are distinct, and they are also
different from the q tweaks of ˜E1 and the q tweaks of ˜Ed+1.

Next, let T 1 = {M
[2..d]
1 , . . . , M

[2..d]
q } be the set of the q tweaks of ˜E1 and

T d+1 = {C
[1..d−1]
1 , . . . , C

[1..d−1]
q } be the set of the q tweaks of ˜Ed+1. From the

discussion above, all these 2q tweaks are different from those of ˜E2, . . . , ˜Ed,
while we may have |T 1| < q, T 1 ∩ T d+1 
= ∅, or |T d+1| < q.

– If |T 1| < q, i.e., if M
[2..d]
i = M

[2..d]
j holds for some 1 ≤ i < j ≤ q, we

necessary have M1
i 
= M1

j since the adversary does not repeat a query, and
from Si 
= Sj , this case does not yield inconsistency in ˜E.

– If T 1 ∩ T d+1 
= ∅, there are two cases to consider.
The first case is M

[2..d]
i = C

[2..d]
j for some 1 ≤ i < j ≤ q. In this case, ˜E1

and ˜Ed+1 have to satisfy Si = ˜E1(M [2..d]
i ,M1

i ) and Cd
j = ˜Ed+1(C [1..d−1]

j , Sj),
which is possible since Si 
= Cd

j and M1
i 
= Sj .

The second case is M
[2..d]
i = C

[2..d]
i for some 1 ≤ i ≤ q. In this case, ˜E1

and ˜Ed+1 have to satisfy Si = ˜E1(M [2..d]
i ,M1

i ) and Cd
i = ˜Ed+1(C [1..d−1]

i , Si),
which is again possible since Si 
= Cd

i and M1
i 
= Si.

– The analysis of the case |T d+1| < q is similar to the case |T 1| < q.

Therefore, the absence of the bad conditions implies that the TRP ˜E can
interpolate all the relevant inputs, tweaks, and the outputs with a non-zero
probability. We next compute the probability of the bad conditions and the
ratio of the good probabilities to use the coefficient-H technique.

Probability of the Bad Conditions. We have the following lemma.

Lemma 2. We have Pr[ΘI ∈ Tbad] ≤ (4d + 1)q2

2n
.

Proof. We compute the probability of the bad conditions based on the random-
ness of S1, . . . , Sq. Assume that A has completed making q queries to the oracles,
and hence (M [1..d]

1 , C
[1..d]
1 ), . . . , (M [1..d]

q , C
[1..d]
q ) are fixed. We further assume that
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we do not have the bad conditions for S1, . . . , Si−1, and we compute the proba-
bility that Si causes one of the bad conditions, which we write “Si is bad.” We
then have

Pr[Si is bad] ≤ 2dq + (i − 1)
2n − 2q

.

The term 2q of the denominator indicates the maximum value of |Ran(M [2..d]
i )|

or |Dom(C [1..d−1]
i )|. Due to the uniqueness of S1, . . . , Si−1, the tweaks of TRPs

other than ˜E1 and ˜Ed+1 also have unique values. Therefore, |Ran(M [2..d]
i )| or

|Dom(C [1..d−1]
i )| takes the maximum value of 2q when M

[2..d]
j and C

[1..d−1]
j take

the same value for all j = 1, . . . , i−1. Besides, from the uniqueness of S1, . . . , Si−1

and the assumption that no queries are repeated, it is guaranteed that the corre-
sponding entry, i.e., (M [2..d]

i ,M1
i ) for encryption or (C [1..d−1]

i , Cd
i ) for decryption,

does not exist at the generation of Si. That is, Si has randomness when gener-
ating it.

Now, by taking the summation of Pr[Si is bad], we have

Pr[ΘI ∈ Tbad] ≤
q

∑

i=1

2dq + (i − 1)
2n − 2q

≤ (2d + 0.5)q2

2n − 2q

≤ (4d + 1)q2

2n
,

where the third inequality follows from 2q < 2n−1.

Ratio of the Good Probabilities. We have the following lemma.

Lemma 3. For any θ ∈ Tgood, we have
Pr[ΘR = θ]
Pr[ΘI = θ]

≥ 1 − 0.5q2

2dn
.

Proof. First, we define the following two sets:

Qe = {i | the i-th query is encryption}
Qd = {i | the i-th query is decryption}

In the real world, we additionally define two sets as follows:

Senc,x
i = {(j, k) | ((j < i ∧ 1 ≤ k ≤ d + 1) ∨ (j = i ∧ 1 ≤ k < x))

∧ (the j-th tweak of ˜Ek) = (the i-th tweak of ˜Ex)}
Sdec,x

i = {(j, k) | ((j < i ∧ 1 ≤ k ≤ d + 1) ∨ (j = i ∧ x < k ≤ d + 1))

∧ (the j-th tweak of ˜Ek) = (the i-th tweak of ˜Ex)}
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Intuitively, Senc,x
i is the set of (j, k) that shares the same tweak as the i-th tweak

of ˜Ex when the i-th query is encryption, and Sdec,x
i is that when the i-th query

is decryption. That is, for the i-th tweak of ˜Ex, these sets indicate the indices
that share the same tweak in the previous TRP calls. Then, the probability can
be evaluated as follows:

Pr[ΘR = θ] =
d+1
∏

x=1

⎛

⎝

∏

i∈Qe

1
2n − |Senc,x

i | ×
∏

i∈Qd

1

2n − |Sdec,x
i |

⎞

⎠

≥ 1
(2n)dq

×
∏

i∈Qe

1
2n − |Senc,1

i |
×

∏

i∈Qd

1

2n − |Sdec,d+1
i |

.

The last inequality is obtained by assuming |Senc,x
i | = |Sdec,x

i | = 0 except for
|Senc,1

i | and |Sdec,d+1
i |.

In the ideal world, as with the real world, we define two sets as follows:

T enc,x
i = {(j, k) | ((j < i ∧ 1 ≤ k ≤ d + 1) ∨ (j = i ∧ 1 ≤ k < x))

∧ (the j-th tweak of ˜Ek) = (the i-th tweak of ˜Ex)}
T dec,x

i = {(j, k) | ((j < i ∧ 1 ≤ k ≤ d + 1) ∨ (j = i ∧ x < k ≤ d + 1))

∧ (the j-th tweak of ˜Ek) = (the i-th tweak of ˜Ex)} .

Here, in the definitions above, we abuse the notation to write ˜Ek for the TRP ˜E
used in the k-th round in Algorithm 5. Then, the probability can be evaluated
as follows:

Pr[ΘI = θ] =
1

(2dn)q
×

∏

i∈Qe

1
2n − |T enc,1

i |
×

∏

i∈Qd

1

2n − |T dec,d+1
i |

.

Finally, we compute the ratio of the two possibilities. We have

Pr[ΘR = θ]
Pr[ΘI = θ]

≥ (2dn)q

(2n)dq
×

∏

i∈Qe

2n − |Senc,1
i |

2n − |T enc,1
i |

×
∏

i∈Qd

2n − |Sdec,d+1
i |

2n − |T dec,d+1
i |

≥ 1 − 0.5q2

2dn
,

where the last inequality follows since Senc,x
i = T enc,x

i and Sdec,x
i = T dec,x

i are
always satisfied from the definitions of the oracles.

From Lemma 2, Lemma 3, and the coefficient-H technique, we obtain Theo-
rem 2.
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Abstract. The FBC block cipher is an award-winning algorithm of the
recent Cryptographic Algorithm Design Competition in China, which
has three versions: FBC128-128 with a 128-bit block size and a 128-
bit key size, FBC128-256 with a 128-bit block size and a 256-bit key
size, and FBC256 with a 256-bit block size and a 256-bit key size. The
best previously published cryptanalysis results on FBC are an impossi-
ble differential attack on 13-round FBC128-128 and a boomerang attack
on 13-round FBC128-256. In this paper, we exploit a 12-round rectangle
distinguisher with probability 2−234 of FBC128 and a 16-round rectangle
distinguisher with probability 2−448 of FBC256, and observe that prelim-
inary satisfying ciphertext quartets can be efficiently filtered out by sort-
ing plaintext pairs according to some nibble positions at the ciphertext
side during key-recovery phase, and finally we mount rectangle attacks
on 14-round FBC128-128, 15-round FBC128-256 and 19-round FBC256
to recover their respective user key. Our attacks break more rounds than
any previously published attacks on FBC.

Keywords: Cryptology · Block cipher · FBC · Rectangle attack

1 Introduction

Aiming to select block cipher and public-key encryption algorithms, the Cryp-
tographic Algorithm Design Competition in China, organised by the Chinese
Association of Cryptologic Research under the guidance of State Cryptography
Administration Office, started in 2018, and finished in 2020. The FBC block
cipher, designed by Feng et al. [5], is an award-winning algorithm of the com-
petition. FBC employs a generalized Feistel structure and has three versions:
FBC128-128 with a 128-bit block size and a 128-bit key size, FBC128-256 with
a 128-bit block size and a 256-bit key size, and FBC256 with a 256-bit block size
and a 256-bit key size, which have a total of 48, 64 and 80 rounds, respectively.

The main published cryptanalytic results on FBC are as follows. In 2019,
Ren et al. [13] described a 11-round differential [2] with probability 2−122 and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. A. Quaglia (Ed.): IMACC 2023, LNCS 14421, pp. 80–95, 2024.
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Table 1. Main cryptanalytic results on FBC

Cipher Attack Type Rounds Data Memory Time Source

FBC128-128 Linear 11 284KP 232 Bytes 2112.54Enc. [13]

Differential 12 2122CP 264 Bytes 293.41Enc. [13]

Impossible differential 11 2127CP 2160 Bytes 294.54Enc. [13]

13 2126CP 252 Bytes 2122.96Enc. [16]

Rectangle 14 2126.17CP 2133.17 Bytes 2126.59Enc. Sect. 3.2

FBC128-256 Rectangle 13 2117.67CP 2118.67 Bytes 2243.97Enc. [13]

15 2126.17CP 2133.17 Bytes 2252.29Enc Sect. 3.3

FBC256 Rectangle 19 2231.75CP 2239.75 Bytes 2231.83Enc Sect. 4.2
KP: Known plaintexts; CP: Chosen plaintexts.

a 12-round differential attack on FBC128-128, a 10-round linear approxima-
tion [11] with bias 2−42 and an 11-round linear attack on FBC128-128, a 7-
round impossible differential [3,8] and an 11-round impossible differential attack
on FBC128-128, and a 12-round boomerang [15] distinguisher with probability
2−235.34 (more specifically, an amplified boomerang [6] or rectangle [1] distin-
guisher) and a 13-round boomerang attack on FBC128-256. In 2022, Zhang et
al. [16] described 7-round impossible differentials of FBC128 and an impossible
differential attack on 13-round FBC128-128.

Being an extension to differential cryptanalysis [2], the boomerang attack [15]
treats a block cipher as a cascade of two sub-ciphers and is based on the idea of
using two short differentials with larger probabilities instead of a long differential
with a smaller probability, under an adaptive chosen plaintext or ciphertext
attack scenario. The amplified boomerang attack [6] and the rectangle attack [1]
simplify the attack scenario of the boomerang attack to a chosen plaintext or
ciphertext attack scenario under a uniformity assumption. The boomerang-style
attacks can use more than two differentials, some for the first sub-cipher and the
others for the other sub-cipher, and generally assume that the differentials for the
sub-ciphers behave independently [7,12], although boomerang connectivity table
tools [4,14] have recently been proposed for use under certain circumstances.

In this paper, we further analyse the security of the FBC block cipher against
rectangle attack. First, we exploit a 12-round rectangle distinguisher with proba-
bility 2−234 on FBC128, and observe that during key-recovery phase the output
difference of the 12-round distinguisher enables us to obtain preliminary sat-
isfying ciphertext quartets efficiently by sorting the plaintext pairs according
to the values of some nibble positions with a zero difference at the ciphertext
side, and finally we can use the 12-round rectangle distinguisher to make key-
recovery attacks on 14-round FBC128-128 and 15-round FBC128-256, breaking
one or two more rounds than the best previously published cryptanalytic results
on FBC128-128 and FBC128-256, respectively. Similarly, we exploit a 16-round
rectangle distinguisher with probability 2−448 on FBC256 and use it to mount a
key-recovery attack on 19-round FBC256. Table 1 summarises previous and our
main cryptanalytic results on FBC. Our attacks are better than any previously
published attacks on FBC in terms of the numbers of attacked rounds.
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The remainder of the paper is organized as follows. In the next section, we
give the notion used throughout this paper and briefly describe the FBC block
cipher and Ren et al.’s 13-round FBC128-256 attack. We present our rectan-
gle attacks on FBC128 and FBC256 in Sects. 3 and 4, respectively. Section 5
concludes this paper.

2 Preliminaries

In this section, we give the notation and briefly describe the FBC block cipher
and Ren et al.’s boomerang attack on 13-round FBC128-256.

2.1 Notation

In all descriptions we assume that the bits of an n-bit value are numbered from
0 to n − 1 from left to right, a number without a prefix represents a decimal
number, a number with prefix 0x represents a hexadecimal number, and we use
the following notation throughout this paper.

⊕ bitwise logical exclusive XOR
≪ left rotation of a bit string
� an arbitrary value of some length, where two values represented by the �

symbol may be different
e the base of the natural logarithm (e = 2.71828 · · · )

2.2 The FBC Block Cipher

The FBC block cipher employs a 4-branch generalised Feistel structure and has
three versions: FBC128-128 with a 128-bit block size and key size, FBC128-256
with a 128-bit block size and a 256-bit key size, and FBC256 with a 256-bit block
size and key size, and they have a total of 48, 64 and 80 rounds, respectively.
Denote the input and output of the i-th round (i ≥ 0) by (X0

i ,X1
i ,X2

i ,X3
i ) ∈

(Fb
2)

4 and (X0
i+1,X

1
i+1,X

2
i+1,X

3
i+1) ∈ (Fb

2)
4 respectively, then the encryption

process of the i-th round, as illustrated in Fig. 1, is as follows,

X0
i+1 = F(X0

i ,K2i) ⊕ X1
i ,

X1
i+1 = F(X3

i ,K2i+1) ⊕ X2
i ⊕ X0

i ,

X2
i+1 = F(X0

i ,K2i) ⊕ X1
i ⊕ X3

i ,

X3
i+1 = F(X3

i ,K2i+1) ⊕ X2
i ,

where b is 32 for FBC128 and 64 for FBC256, F is the round function, and K2i+1

and K2i are round keys.
The round function F consists of the following three operations:

– Key Addition: Input is XORed with a round key to produce output u.



Rectangle Attacks on Reduced Versions of the FBC Block Cipher 83

X1
i+1

X0
i

X0
i+1

K2i

X1
i

X2
i+1

X3
i

X3
i+1

K2i+1

X2
i

S P P S

F F

L

Fig. 1. One-round encryption of FBC

Table 2. The S-box of FBC

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 5 10 15 4 9 14 11 8 2 7 12 13 3 6 1 0

– Column Transform S: Representing u as u = (u0‖u1‖u2‖u3), apply the same
4 × 4-bit bijective S-box S 8 or 16 times in parallel to u to produce output
v = (v0‖v1‖v2‖v3) as (v0,j‖v1,j‖v2,j‖v3,j) = S(u0,j‖u1,j‖u2,j‖u3,j), where ui

and vi are 8-bit for FBC128 and 16-bit for FBC256, and ui,j and vi,j are
respectively the j-th bit of ui and vi (0 ≤ i ≤ 3, 0 ≤ j ≤ 7 for FBC128 and
0 ≤ j ≤ 15 for FBC256). The S-box specification is given in Table 2.

– Row Transform P: Given input v, the output z is computed as z = v ⊕ (v ≪
3) ⊕ (v ≪ 10) for FBC128, and z = v ⊕ (v ≪ 17) ⊕ (v ≪ 58) for FBC256.

At last, to simplify our subsequent descriptions and cryptanalysis, we denote
by L the linear operation except the F layer in a round, as shown in Fig. 1, and
give the details of the Row Transform of FBC128 and FBC256 in Tables 3 and
4, respectively.

Table 3. Details of row transform of FBC128

v 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

v ≪ 3 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26

27 28 29 30 31 0 1 2

v ≪ 10 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 0 1

2 3 4 5 6 7 8 9
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Table 4. Details of row transform of FBC256

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

v ≪ 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v ≪ 58 58 59 60 61 62 63 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

2.3 Ren et al.’s Boomerang Attack on 13-Round FBC128-256

Ren et al.’s boomerang attack on 13-round FBC128-256 [13] is actually an
amplified boomerang or rectangle attack, which is based on a 12-round (ampli-
fied boomerang or rectangle) distinguisher with 2−235.34. The 12-round distin-
guisher is made up of two groups of 6-round differentials, where the group of
6-round differentials Δα → Δβ′ for Rounds 0–5 have the same input difference
α = 0x00000000000000000100020801000000 but different output differences β′:
4096 β′ with probability 2−34, 204800 β′ with probability 2−36 and 966656 β′

with probability 2−38, and the group of 6-round differentials Δγ′ → Δδ for
Rounds 6–11 have the same output difference δ but different input differences
γ′, which are similar to the 6-round differentials Δα → Δβ′ in the decryption
direction. As a result, they obtained a 12-round distinguisher with probability
[4096×(2−34)2+204800×(2−36)2+966656×(2−38)2]×[4096×(2−34)2+204800×
(2−36)2 + 966656 × (2−38)2] × 2−128 ≈ 2−107.34 × 2−128 = 2−235.34 by Biham et
al.’s probability formula

(√∑
β′ Pr2[α → β′] ·

√∑
γ′ Pr2[γ′ → δ]

)2 × 2−n of [1]
(n is block size), and finally they appended one round at the end of this 12-round
distinguisher to attack 13-round FBC128-256 in the following procedure:

1. Choose 2117.67 plaintext pairs with difference α, and get the corresponding
ciphertext pairs.

2. Guess the round key in Round 12, partially decrypt every ciphertext pair to
get the corresponding intermediate values immediately after Round 11, XOR
each of them with δ, and store the resulting pair in a table.

3. Partially decrypt every ciphertext pair with the round key guessed in Step
2 to get the corresponding intermediate values immediately after Round 11,
and check whether the resulting pair is in the table of Step 2. If there is a
match, the guessed round key may be correct, since it is expected that there
is (2117.67)2 × 2−235.34 = 1 satisfying quartet under the correct key.
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3 Rectangle Attacks on 14-Round FBC128-128
and 15-Round FBC128-256

In this section, we describe a 12-round rectangle distinguisher with probability
2−234 of FBC128, and present rectangle attacks on 14-round FBC128-128 and
15-round FBC128-256.

3.1 A 12-Round Rectangle Distinguisher with Probability 2−234

of FBC128

We exploit a 12-round rectangle distinguisher with probability 2−234 for FBC128,
which has a slightly larger probability than Ren et al.’s. Our 12-round dis-
tinguisher is made up of a group of 6-round differentials Δα → Δβ′ for the
first 6 rounds and a group of 6-round differentials Δγ′ → Δδ for the last
6 rounds, here the 6-round differentials Δα → Δβ′ have the same input dif-
ference α = 0x00000000000000000800004208000000 but different output differ-
ences β′: 256 β′ with probability 2−32 and 7 × 210 = 7168 β′ with probability
2−33, and the 6-round differentials Δγ′ → Δδ have the same output difference
δ = 0x08000000080000420000000008000042 but different input differences γ′,
which are similar to the 6-round differentials Δα → Δβ′ in the decryption direc-
tion. Table 5 gives a 6-round differential Δα → Δβ′ with probability 2−32, and
Table 6 gives a 6-round differential Δα → Δβ′ with probability 2−33. The other
6-round differentials Δα → Δβ′ can be easily obtained by changing the output
difference of the last round of one of the two 6-round differentials of Tables 5 and
6. The difference distribution table (DDT) of the FBC S-box is given as Table 7
in the appendix.

Hence, the 12-round rectangle distinguisher has a probability of [256 ×
(2−32)2 + 7168 × (2−33)2] × [256 × (2−32)2 + 7168 × (2−33)2] × 2−128 = 2−106 ×
2−128 = 2−234.

3.2 Attacking 14-Round FBC128-128

We can attack 14-round FBC128-128 by appending one round respectively at
the beginning and end of the above 12-round rectangle distinguisher. We assume
the attacked 14 rounds are Rounds 0–13, and the 12-round distinguisher is used
from Rounds 1–12, as illustrated in Fig. 2. The attack procedure is as follows.

1. By the S-box DDT in Table 7, we have DDT (0x8, 0x8) = DDT (0x8, 0xA) =
DDT (0x2, 0x2) = DDT (0x2, 0x6) = DDT (0x2, 0xA) = DDT (0x2, 0xE) =
DDT (0x4, 0x1) = DDT (0x4, 0x4) = DDT (0x4, 0xC) = DDT (0x4, 0xD) =
4 and DDT (0x8, 0x3) = DDT (0x8, 0x7) = DDT (0x8, 0x9) = DDT (0x8,
0xD) = 2 under the notation DDT (Δa,Δb) = #{x|S(x) ⊕ S(x ⊕ a) = b}.
Thus, given the input difference α to Round 1 from the 12-round distinguisher,
there are 6 × 4 × 4 × 6 ≈ 29.17 possible input differences to Round 0, which
we denote by Δj (j = 0, 1, · · · , 29.17 − 1). We choose 2117 × 29.17 = 2126.17

plaintext pairs (Pi, Pi,j) such that Pi,j = Pi ⊕Δj , and obtain their ciphertext
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Table 5. A 6-round differential with probability 2−32 of FBC128

Round ΔX0 ΔX1 Prob ΔX2 ΔX3 Prob

Round 1 0x00000000 0x00000000 0x08000042 0x08000000

→ S box 0x00000000 1 0x08000000 2−2

→ P 0x00000000 0x08000042

Round 2 0x00000000 0x00000000 0x08000000 0x00000000

→ S box 0x00000000 1 0x00000000 1

→ P 0x00000000 0x00000000

Round 3 0x00000000 0x08000000 0x00000000 0x08000000

→ S box 0x00000000 0x08000000 2−2

→ P 0x00000000 0x08000042

Round 4 0x08000000 0x08000042 0x00000000 0x08000042

→ S box 0x01000000 2−2 0x01000024 2−6

→ P 0x08000042 0x08040100

Round 5 0x00000000 0x00040100 0x08000042 0x08040100

→ S box 0x00000000 0x08010100 2−6

→ P 0x00000000 0x10190142

Round 6 0x00040100 0x18190100 0x08000000 0x18190100

→S box 0x00020800 2−4 0x18120100 2−10

→ P 0x421C0100 0xB90A090A

Output difference 0x5A050000 0xB10E080A 0x421C0100 0xB10A090A

Table 6. A 6-round differential with probability 2−33 of FBC128

Round ΔX0 ΔX1 Prob ΔX2 ΔX3 Prob

Round 1 0x00000000 0x00000000 0x08000042 0x08000000

→ S box 0x00000000 1 0x08000000 2−2

→ P 0x00000000 0x08000042

Round 2 0x00000000 0x00000000 0x08000000 0x00000000

→ S box 0x00000000 1 0x00000000 1

→ P 0x00000000 0x00000000

Round 3 0x00000000 0x08000000 0x00000000 0x08000000

→ S box 0x00000000 0x08000000 2−2

→ P 0x00000000 0x08000042

Round 4 0x08000000 0x08000042 0x00000000 0x08000042

→ S box 0x01000000 2−2 0x01000024 2−6

→ P 0x08000042 0x08040100

Round 5 0x00000000 0x00040100 0x08000042 0x08040100

→ S box 0x00000000 0x08040100 2−6

→ P 0x00000000 0x4A1C0142

Round 6 0x00040100 0x421C0100 0x08000000 0x421C0100

→S box 0x00020800 2−4 0x18120100 2−11

→ P 0x421C0100 0xB90A090A

Output difference 0x00000000 0x88008288 0x421C0100 0x88048388

pairs (Ci, Ci,j), where i = 0, 1, · · · , 2117−1. Clearly, Pi⊕Pi,j = (0x080000000�
0000 � �0 � 0 � � � � � 08000042).

2. Store (Ci, Ci,j) into a hash table indexed by (L−1(Ci)[0, 2− 8, 10− 13, 16, 18,
24, 26 − 29],L−1(Ci,j)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29]), that is, nibbles
(0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29) of L−1(Ci) and L−1(Ci,j), store also
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Fig. 2. Rectangle attack on 14-round FBC128-128

(Ci,j , Ci) into this hash table indexed by (L−1(Ci,j)[0, 2−8, 10−13, 16, 18, 24,
26− 29],L−1(Ci)[0, 2− 8, 10− 13, 16, 18, 24, 26− 29]), and obtain preliminary
satisfying ciphertext quartets ((Ca, Cb), (Cc, Cd)) such that L−1(Ca)[0, 2 −
8, 10 − 13, 16, 18, 24, 26 − 29] = L−1(Cc)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29]
and L−1(Cb)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29] = L−1(Cd)[0, 2 − 8, 10 −
13, 16, 18, 24, 26 − 29], by accessing every table entry to get the preliminary
satisfying ciphertext quartets and removing their actually identical counter-
parts at the corresponding entries. (Note that ((Ci0 , Ci0,j0), (Ci1 , Ci1,j1)) and
((Ci0 , Ci0,j0), (Ci1,j1 , Ci1)) are different quartets, but ((Ci0,j0 , Ci0), (Ci1,j1 ,
Ci1)) and ((Ci0 , Ci0,j0), (Ci1 , Ci1,j1)) are actually identical quartets, more
specifically, two ciphertext pairs (Ca, Cb) and (Cc, Cd) under a table index
constitute a preliminary satisfying ciphertext quartet ((Ca, Cb), (Cc, Cd)),
but this quartet appears pairwise with its actually identical counterpart
((Cb, Ca), (Cd, Cc)) in the whole table, and the entry of the quartet ((Cb, Ca),
(Cd, Cc)) can be immediately determined from the entry of the quartet
((Ca, Cb), (Cc, Cd)), so it takes only an access to remove a counterpart.) As
a result, it is expected that there are approximately (2126.17)2 × (2−19×4)2 =
2100.34 preliminary satisfying ciphertext quartets ((Ca, Cb), (Cc, Cd)).

3. Check whether the 2100.34 preliminary quartets ((Ca, Cb), (Cc, Cd)) meet
L−1(Ca) ⊕ L−1(Cc) = 0x080000000 � 0000 � �0 � 0 � � � � � 08000042 and
L−1(Cb)⊕L−1(Cd) = 0x080000000�0000��0�0�����08000042, and keep only
the satisfying quartets. It is expected that there remain 2100.34 × (2−4×4)2 =
268.34 satisfying quartets ((Ca, Cb), (Cc, Cd)).

4. Guess (K26[1],K27[1, 6, 7]), and do as follows.
(a) Partially decrypt every remaining quartet ((Ca, Cb), (Cc, Cd)) to check

whether both (Ca, Cc) and (Cb, Cd)) produce the difference δ immediately
before Round 13. It is expected that there remains 268.34 × (2−9×4)2 =



88 W. Zhou and J. Lu

2−3.66 < 1 satisfying quartet ((Ca, Cb), (Cc, Cd)) for every key guess, and
216 × [1 − (

268.34

0

)
(2−9×4×2)0(1 − 2−9×4×2)2

68.34
] ≈ 216 × 2−3.71 = 212.29

guesses of (K26[1],K27[1, 6, 7]) have at least one remaining quartet.
(b) For every remaining quartet ((Ca, Cb), (Cc, Cd)) (if any), get the corre-

sponding ((Pa, Pb), (Pc, Pd)) and extract the subkeys (K0[1],K1[1, 6, 7])
such that ((Pa, Pb), (Pc, Pd)) produces the difference α immediately after
Round 0. (Skip this quartet if there is no satisfying (K0[1],K1[1, 6, 7]).)

5. For every remaining (K0[1],K1[1, 6, 7]), exhaustively search the remaining 112
key bits to determine the 128-bit user key.

The attack requires 2126.17 + 2117 ≈ 2126.17 chosen plaintexts. The memory
complexity of the attack is dominated by Step 2, which is 2126.17 × 4× 16× 2 =
2133.17 bytes. The time complexity of the attack is dominated by the encryptions
of the 2126.17 chosen plaintexts and Steps 2 and 5, Step 2 has a time complexity
of 2126.17 × 2 = 2127.17 memory accesses, which is equivalent to 2127.17

14×2 ≈ 2122.36

14-round FBC128-128 encryptions under an extreme approximation that a one-
round FBC128-128 encryption is approximated as two table lookups, Step 5 has
a time complexity of 212.29 × 2112 = 2124.29 14-round FBC128-128 encryptions,
and thus the attack has a total time complexity of 2126.17 + 2122.36 + 2124.29 ≈
2126.59 14-round FBC128-128 encryptions. The attack has an expected success
probability of approximately 1 − (1 − 2−234)2

234 ≈ 1 − e−1 ≈ 63%.
Notice that an usual process for rectangle attack is to check whether the

two ciphertext pairs (Ci0 , Ci1) and (Ci0,j0 , Ci1,j1) out of a ciphertext quartet
((Ci0 , Ci1), (Ci0,j0 , Ci1,j1)) could produce the expected δ difference, but in this
14-round FBC128-128 attack, some nibble positions immediately before the L
operation of Round 13 have a determinate zero difference, so L−1(Ci0)[0, 2 −
8, 10 − 13, 16, 18, 24, 26 − 29] ⊕ L−1(Ci1)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29] =
L−1(Ci0,j0)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29] ⊕ L−1(Ci1,j1)[0, 2 − 8, 10 −
13, 16, 18, 24, 26 − 29] = 0 leads to (L−1(Ci0)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 −
29],L−1(Ci0,j0)[0, 2 − 8, 10 − 13, 16, 18, 24, 26 − 29]) = (L−1(Ci1)[0, 2 − 8, 10 −
13, 16, 18, 24, 26−29],L−1(Ci1,j1)[0, 2−8, 10−13, 16, 18, 24, 26−29]). This is why
we can filter out preliminary satisfying ciphertext quartets efficiently by sorting
the ciphertext pairs of the chosen plaintext pairs as described in Step 2.

Note that in Step 2 we can make a more refined filtering by further sorting the
plaintext pairs according to the values of some nibble positions with a non-zero
difference at the ciphertext side, but this is not necessary from the perspective
of time complexity.

3.3 Attacking 15-Round FBC128-256

We can attack 15-round FBC128-256, by appending one round at the end of
the above 14-round FBC128-128 attack. As illustrated in Fig. 3, we assume the
attacked 15 rounds are Rounds 0–14, the 12-round distinguisher is used from
Rounds 1–12, and the attack procedure is as follows.
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1. Same as Step 1 of the above 14-round FBC128-128 attack.
2. Store (Ci, Ci,j) into a hash table indexed by (L−1(Ci)[0, 2 − 5, 8, 10, 24, 26],

L−1(Ci,j)[0, 2 − 5, 8, 10, 24, 26]), that is, nibbles (0, 2 − 5, 8, 10, 24, 26) of
L−1(Ci) and L−1(Ci,j), store also (Ci,j , Ci) into this hash table indexed
by (L−1(Ci,j)[0, 2− 5, 8, 10, 24, 26],L−1(Ci)[0, 2− 5, 8, 10, 24, 26]), and obtain
preliminary satisfying ciphertext quartets ((Ca, Cb), (Cc, Cd)) such that
L−1(Ca)[0, 2− 5, 8, 10, 24, 26] = L−1(Cc)[0, 2− 5, 8, 10, 24, 26] and L−1(Cb)[0,
2 − 5, 8, 10, 24, 26] = L−1(Cd)[0, 2 − 5, 8, 10, 24, 26]. It is expected that there
are (2126.17)2 × (2−9×4)2 = 2180.34 preliminary satisfying ciphertext quartets
((Ca, Cb), (Cc, Cd)).

3. Guess (K28[1, 6, 7],K29[1, 3 − 7]), and do as follows.
(a) Partially decrypt each of the 2180.34 preliminary quartets ((Ca, Cb), (Ca,

Cb)) to check whether both (Ca, Cc) and (Cb, Cd)) produce the difference
0x080000000�0000��0�0�����08000042 immediately before the L oper-
ation of Round 13. It is expected that there remain 2180.34 × (2−14×4)2 =
268.34 satisfying quartets ((Ca, Cb), (Cc, Cd)) for every key guess.

(b) Guess (K26[1],K27[1, 6, 7],K28[3, 4],K29[0, 2]), partially decrypt every
remaining quartet ((Ca, Cb), (Cc, Cd)) to check whether both (Ca, Cc)
and (Cb, Cd)) produce the difference δ immediately before Round 13. It is
expected that there are 268.34 × (2−9×4)2 = 2−3.66 < 1 satisfying quartet
((Ca, Cb), (Cc, Cd)) for every key guess and 268×[1−(

268.34

0

)
(2−9×4×2)0(1−

2−9×4×2)2
68.34

] ≈ 216 × 2−3.71 = 264.29 guesses of (K26[1],K27[1, 6, 7],
K28[1, 3, 4, 6, 7],K29) have at least one remaining quartet.

(c) For every remaining quartet ((Ca, Cb), (Cc, Cd)) (if any), get the corre-
sponding ((Pa, Pb), (Pc, Pd)) and extract the subkeys (K0[1],K1[1, 6, 7])
such that ((Pa, Pb), (Pc, Pd)) produces the difference α immediately after
Round 0. (Skip this quartet if there is no satisfying (K0[1],K1[1, 6, 7]).)

4. For every remaining (K26[1],K27[1, 6, 7],K28[1, 3, 4, 6, 7],K29), exhaustively
search the remaining 188 key bits to determine the 256-bit user key.

The attack has a data complexity of approximately 2126.17 chosen plaintexts,
a memory complexity of approximately 2126.17 ×4×16×2 = 2133.17 bytes and a
success probability of 63%. The time complexity of the attack is dominated by
Step 4, which is 264.29 × 2188 = 2252.29 15-round FBC128-256 encryptions.

4 Rectangle Attack on 19-Round FBC256

In this section, we describe a 16-round rectangle distinguisher with probability
2−448 of FBC256, and present a rectangle attack on 19-round FBC256.

4.1 A 16-Round Rectangle Distinguisher with Probability 2−448

of FBC256

The 16-round distinguisher is made up of two groups of 8-round differen-
tials Δα → Δβ′ for the first 8 rounds and a group of 8-round differentials
Δγ′ → Δδ for the last 8 rounds, here the 8-round differentials Δα → Δβ′
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Fig. 3. Rectangle attack on 15-round FBC128-256

have the same input difference α = 0x08000000000000004800000800000000000
00000000008014800000800000000 but 26 different output differences β′ with
probability 2−51, and the 8-round differentials Δγ′ → Δδ have the
same output difference δ = 0x0000000000000000000000000000080148000
008000000000800000000000801 but 26 different input differences γ′ with prob-
ability 2−51, which are similar to the 8-round differentials Δα → Δβ′ in the
decryption direction. Hence, the 16-round rectangle distinguisher has a proba-
bility of [26 × (2−51)2] × [26 × (2−51)2] × 2−256 = 2−448.

An 8-round differential Δα → Δβ′ is described in detail in Table 8 in the
appendix. The other 8-round differentials can be easily obtained by changing the
output difference of the last round of the 8-round differential of Table 8.

4.2 Attacking 19-Round FBC256

We can attack 19-round FBC256 by appending one round at the beginning and
two rounds at the end of the above 15-round rectangle distinguisher, and we
assume the attacked 19 rounds are Rounds 0–18 and the 16-round distinguisher
is used from Rounds 1–16, as illustrated in Fig. 4. Slightly different from the
above 14-round FBC128-128 attack and 15-round FBC128-256 attack, here we
use the early abort technique [9,10] for a reduced time complexity, by guessing
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0x00000000
00000000

0x08000000
00000000

Fig. 4. Rectangle attack on 19-round FBC256

only a small fraction of the unknown required subkey bits at a time in Round
18, instead of guessing all of them at once.

1. By the S-box DDT in Table 7, we have DDT (0x1, 0x1) = DDT (0x1, 0x5) =
DDT (0x8, 0x8) = DDT (0x8, 0xA) = 4 and DDT (0x8, 0x3) = DDT (0x8,
0x7) = DDT (0x8, 0x9) = DDT (0x8, 0xD) = DDT (0x1, 0x3) = DDT (0x1,
0x7) = DDT (0x1, 0xB) = DDT (0x1, 0xF ) = 2. Thus, given the input dif-
ference α to Round 1 from the 16-round distinguisher, there are 6 × 6 × 6 ≈
27.75 possible input differences to Round 0, which we denote by Δj (j =
0, 1, · · · , 27.75 − 1). We choose 2224 × 27.75 = 2231.75 plaintext pairs (Pi, Pi,j)
such that Pi,j = Pi ⊕ Δj , and obtain their ciphertext pairs (Ci, Ci,j), where
i = 0, 1, · · · , 2224 −1. Clearly, Pi ⊕Pi,j = (0x0000000000000000080000000000
0000 � �0 � 0 � 0 � 0000 � � � �0800000000000801).

2. Store (Ci, Ci,j) into a hash table indexed by (L−1(Ci)[0 − 12, 14, 18, 20, 22,
24 − 27, 40, 42, 50, 52, 54, 56 − 59],L−1(Ci,j)[0 − 12, 14, 18, 20, 22, 24 −
27, 40, 42, 50, 52, 54, 56 − 59]), that is, nibbles (0 − 12, 14, 18, 20, 22, 24 −
27, 40, 42, 50, 52, 54, 56 − 59) of L−1(Ci) and L−1(Ci,j), store also (Ci,j , Ci)
into this table indexed by (L−1(Ci,j)[0 − 12, 14, 18, 20, 22, 24 − 27, 40,
42, 50, 52, 54, 56 − 59],L−1(Ci)[0 − 12, 14, 18, 20, 22, 24 − 27, 40, 42, 50,
52, 54, 56 − 59]), and obtain preliminary quartets ((Ca, Cb), (Cc, Cd))
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such that L−1(Ca)[0 − 12, 14, 18, 20, 22, 24 − 27, 40, 42, 50, 52, 54, 56 −
59] = L−1(Cc)[0 − 12, 14, 18, 20, 22, 24 − 27, 40, 42, 50, 52, 54, 56 − 59] and
L−1(Cb)[0−12, 14, 18, 20, 22, 24−27, 40, 42, 50, 52, 54, 56−59] = L−1(Cd)[0−
12, 14, 18, 20, 22, 24 − 27, 40, 42, 50, 52, 54, 56 − 59]. It is expected that there
are (2231.75)2 × (2−30×4)2 = 2223.5 preliminary satisfying ciphertext quartets
((Ca, Cb), (Cc, Cd)).

3. Check whether the 2223.5 preliminary satisfying ciphertext quartets ((Ca, Cb),
(Cc, Cd)) meet L−1(Ca)[0−12, 14, 18, 20, 22, 24−27, 40, 42, 50, 52, 54, 56−59]⊕
L−1(Cc)[0 − 12, 14, 18, 20, 22, 24 − 27, 40, 42, 50, 52, 54, 56 − 59] = 0x000000
0000000801��0�0�0�0000������������0�0�������0�0�0�0000���� and
L−1(Cb)[0− 12, 14, 18, 20, 22, 24− 27, 40, 42, 50, 52, 54, 56− 59]⊕L−1(Cb)[0−
12, 14, 18, 20, 22, 24−27, 40, 42, 50, 52, 54, 56−59] = 0x0000000000000801��0�
0�0�0000������������0�0�������0�0�0�0000����, and keep only the
satisfying quartets. It is expected that there remain 2223.5×(2−2×4)2 = 2207.5

satisfying quartets ((Ca, Cb), (Cc, Cd)).
4. Guess K37[0, 1, 3, 12, 13], partially decrypt each of the 2207.5 remaining quar-

tets ((Ca, Cb), (Cc, Cd)) to check whether both (Ca, Cc) and (Cb, Cd) pro-
duce ΔX2

18[0 − 3] = 0x0800. (Note that this can be done by checking the
two ciphertext pairs out of a quartet one after the other as introduced
in [9].) It is expected that there remain 2207.5 × (2−4×4)2 = 2175.5 satisfy-
ing ((Ca, Cb), (Cc, Cd)) for every key guess.

5. Guess K37[5, 7, 14, 15], partially decrypt each of the 2175.5 remaining quar-
tets ((Ca, Cb), (Cc, Cd)) to check whether both (Ca, Cc) and (Cb, Cd) pro-
duce ΔX2

18[4 − 7, 9, 11 − 15] = 0. It is expected that there remain 2175.5 ×
(2−10×4)2 = 295.5 satisfying ((Ca, Cb), (Cc, Cd)) for every key guess.

6. Guess K36[13, 15], partially decrypt each of the 295.5 remaining quartets
((Ca, Cb), (Cc, Cd)) to check whether both (Ca, Cc) and (Cb, Cd) produce
ΔX1

18 = ΔX3
18. It is expected that there remain 295.5 × (2−9×4)2 = 223.5

satisfying ((Ca, Cb), (Cc, Cd)) for every key guess.
7. Guess (K37[2, 9, 11],K35[1, 13, 15]), partially decrypt each of the 223.5 remain-

ing quartets ((Ca, Cb), (Cc, Cd)) to check whether both (Ca, Cc) and (Cb, Cd)
produce ΔX2

17 = 0x4800000800000000. It is expected that there remains
223.5 × (2−9×4)2 = 2−48.5 < 1 satisfying quartets for every key guess, and
268× [1−(

223.5

0

)
(2−9×4×2)0(1−2−9×4×2)2

23.5
] ≈ 268×2−48.5 = 219.5 guesses of

(K37[0−3, 5, 7, 9, 11−15],K36[13, 15],K35[1, 13, 15]) have at least one remain-
ing quartet. For every remaining quartet ((Ca, Cb), (Cc, Cd)) (if any), get the
corresponding ((Pa, Pb), (Pc, Pd)) and extract the subkeys K1[1, 13, 15] such
that ((Pa, Pb), (Pc, Pd)) produces the difference α immediately after Round
0. (Skip this quartet if there is no satisfying K1[1, 13, 15].)

8. For every remaining (K37[0 − 3, 5, 7, 9, 11 − 15],K36[13, 15],K35[1, 13, 15]),
exhaustively search the remaining 188 key bits to determine the 256-bit user
key.

The attack has a data complexity of approximately 2231.75 + 2224 ≈ 2231.75

chosen plaintexts, a memory complexity of approximately 2231.75 × 4× 32× 2 =
2239.75 bytes and a success probability of 1 − (1 − 2−448)2

448 ≈ 1 − e−1 ≈ 63%.
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The time complexity of the attack is dominated by the encryptions of the 2231.75

chosen plaintexts and Step 2, and Step 2 has a time complexity of 2231.75 ×
2 = 2232.75 memory accesses, which is equivalent to 2232.75

19×2 ≈ 2227.51 19-round
FBC256 encryptions under an extreme approximation that a one-round FBC256
encryption is approximated as two table lookups. Therefore, the attack has a
total time complexity of 2231.75+2227.51 ≈ 2231.83 19-round FBC256 encryptions.
Note that there are different data-memory-time tradeoffs and we can increase
the success probability by using more chosen plaintexts.

5 Conclusion

The FBC block cipher is an award-winning algorithm of the recent Crypto-
graphic Algorithm Design Competition in China. In this paper, we have pre-
sented rectangle attacks on 14-round FBC128-128, 15-round FBC128-256 and
19-round FBC256 to recover their respective user key. These are better than any
previously published cryptanalytic results on FBC in terms of the numbers of
attacked rounds. Like most cryptanalytic results on block ciphers, our attacks
are theoretical in the sense of the independence and uniformity assumptions of
rectangle attack, and they do not endanger the security of the full FBC cipher.

Acknowledgements. This work was supported by State Key Laboratory of Cryptol-
ogy (No. MMKFKT202114). Jiqiang Lu was Qianjiang Special Expert of Hangzhou.

Appendix

Table 7. Difference distribution table of the FBC S-box

Input difference 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1 0 4 0 2 0 4 0 2 0 0 0 2 0 0 0 2

0x2 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0

0x3 0 4 0 2 0 4 0 2 0 0 0 2 0 0 0 2

0x4 0 4 0 0 4 0 0 0 0 0 0 0 4 4 0 0

0x5 0 0 0 2 4 0 0 2 0 0 0 2 4 0 0 2

0x6 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2

0x7 0 4 2 0 0 0 2 0 0 0 2 0 0 4 2 0

0x8 0 0 0 2 0 0 0 2 4 2 4 0 0 2 0 0

0x9 0 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2

0xA 0 0 0 2 0 0 0 2 4 2 0 0 0 2 4 0

0xB 0 0 0 0 0 0 4 0 4 2 0 2 0 2 0 2

0xC 0 0 0 0 2 2 2 2 0 2 0 2 2 0 2 0

0xD 0 0 0 2 2 2 2 0 0 2 0 0 2 0 2 2

0xE 0 0 2 2 2 2 0 0 0 2 2 0 2 0 0 2

0xF 0 0 2 0 2 2 0 2 0 2 2 2 2 0 0 0
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Table 8. An 8-round differential with probability 2−51 of FBC256

Round ΔX0 ΔX1 Pro ΔX2 ΔX3 Prob

Round 1 0x08000000 0x48000008 0x00000000 0x48000008

00000000 00000000 00000801 00000000

→S box 0x08000000 2−2 0x48000008 2−6

00000000 1 00000000 1

→ P 0x48000008 0x08000000

00000000 00000801

Round 2 0x00000000 0x00000000 0x48000008 0x08000000

00000000 00000000 00000000 00000000

→S box 0x00000000 1 0x08000000 2−2

00000000 1 00000000 1

→ P 0x00000000 0x48000008

00000000 00000000

Round 3 0x00000000 0x00000000 0x08000000 0x00000000

00000000 00000000 00000000 00000000

→S box 0x00000000 1 0x00000000 1

00000000 1 00000000 1

→ P 0x00000000 0x00000000

00000000 00000000

Round 4 0x00000000 0x08000000 0x00000000 0x08000000

00000000 00000000 00000000 00000000

→ S box 0x00000000 1 0x08000000 2−2

00000000 1 00000000 1

→ P 0x00000000 0x48000008

00000000 00000000

Round 5 0x08000000 0x48000008 0x00000000 0x48000008

00000000 00000000 00000000 00000000

→ S box 0x08000000 2−2 0x48000008 2−6

00000000 1 00000000 1

→ P 0x48000008 0x08000000

00000000 00000801

Round 6 0x00000000 0x00000000 0x48000008 0x08000000

00000000 00000801 00000000 00000801

→ S box 0x00000000 1 0x08000000 2−2

00000000 1 00000801 2−4

→ P 0x00000000 0x48010208

00000000 00004881

Round 7 0x00000000 0x00010100 0x08000000 0x00010200

000000801 00004848 00000009 00004881

→ S box 0x00000000 1 0x00010200 2−4

00000801 2−4 00004881 2−8

→ P 0x00010200 0x00000000

00004881 01000C01

Round 8 0x00000000 0x08000000 0x00010200 0x08000000

00000000 01000400 00004881 01000C01

→ S box 0x00000000 1 0x08000000 2−2

00000000 1 01000401 2−7

→ P 0x00000000 0x48080208

00000000 81002480

Output 0x08000000 0x48090008 0x00000000 0x48090008

difference 01000400 81006C01 00000801 81006C01
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Abstract. Succinct non-interactive zero-knowledge arguments of
knowledge (zk-SNARKs) are a type of non-interactive proof system
enabling efficient privacy-preserving proofs of membership for NP lan-
guages. A great deal of works has studied candidate constructions that
are secure against quantum attackers, which are based on either lat-
tice assumptions, or post-quantum collision-resistant hash functions. In
this paper, we propose a code-based zk-SNARK scheme, whose security
is based on the rank support learning (RSL) problem, a variant of the
random linear code decoding problem in the rank metric. Our construc-
tion follows the general framework of Gennaro et al. (CCS’18), which is
based on square span programs (SSPs). Due to the fundamental differ-
ences between the hardness assumptions, our proof of security cannot
apply the techniques from the lattice-based constructions, and indeed, it
distinguishes itself by the use of techniques from coding theory. We also
provide the scheme with a set of concrete parameters.

Keywords: Code-based Cryptography · Rank support learning
problem · Square span programs · zk-SNARKs

1 Introduction

Zero-knowledge proof systems [25], since its first appearance in 1985, have been
become the cornerstone of cryptography. They are an essential component of
many privacy-preserving cryptographic systems, including credentials and digi-
tal currencies [3,4,12,13,20] as well as group signatures [8,9,15,19] and verifiable
computation [10,22,23]. In a zero-knowledge proof of knowledge system for an
NP relation R, a prover can convince a verifier that a statement is true with-
out revealing anything more about the statement to the verifier. For practical
applications, succinct non-interactive zero-knowledge arguments of knowledge
(zk-SNARKs) [28,31] are more desirable: we additionally require that (i) the
proof should consist of a single message from the prover to the verifier (non-
interactivity); (ii) the length of the proof and the verification complexity is
sublinear (ideally, polylogarithmic) in the size of the circuit computing R (suc-
cinctness); and (iii) the proof also guarantees that the prover knows the witness
(argument of knowledge).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Constructions of succinct non-interactive zero-knowledge can be based on
numerous different assumptions, of which one may name collision-resistant hash
functions [5,16], the discrete logarithm assumption [11], various pairing-based
assumptions [26], and lattice-based assumptions [24,27]. On the other hand, the
advancing threat of quantum computers has given tremendous stimulant to the
cryptographic community to put more effort into cryptographic constructions
that would plausibly withstand the power of quantum attacks. However, present
post-quantum zk-SNARKs are only known from hash functions and lattice-based
assumptions.

Our Result. In this work, following the method of [24], we introduce the first
(designated-verifier) zk-SNARK scheme in the rank metric context. Prior to this
work, there has been no construction in the code-based cryptography realm, so
the construction herein could be viewed as the first. Furthermore, being based on
code-based assumptions with rank metrics, our scheme is plausibly considered to
be secure under quantum attacks. We note that the work of Lipmaa [29] makes
use of error-correcting codes to improve the performance of span programs and
does not concern with code-based assumptions.

Overview of Our Technique. Our starting point is the framework of Gennaro
et al. [24]. Conceptually, based on the techniques of [17] and [23], the framework
of [24] uses square span programs to characterize the complexity class NP, lead-
ing to a simpler and faster designated-verifier zk-SNARK. The main technical
challenge in the framework of [24] is the growth of noise of the lattice-based
homomorphic operations. As mentioned there, this growth might leak informa-
tion of the witness to the verifier, thus violate the zero-knowledge property. For-
tunately, in the asset of lattice-based techniques, the so-called noise-smudging
technique can be used to overcome this leakage problem. The idea is that after
doing homomorphic addition, a noise with much larger weight is added to the
computed one, thus, the final noise is dominated by that of the adding noise.
(One might think of this technique as hiding “leaves” in “forest.”) This tech-
nical challenge, resolved by smudging, also causes the setting of the common
reference string to become involved, that is, the natures of encodings are not
the same: some having small noise while others requiring much larger one. The
reason underlying this setting is to guarantee success of the reduction.

The naive scheme obtained when one carries out the construction to the rank
metric context is even worse since the noise grows linearly with respect to the
number of homomorphic operations. And in order to be able to decrypt these
ciphertexts, the length of the public code in used must be very large (and thus,
the degree of extension field as well) causing parameters of the whole system to
be out of concern. (We assume one uses the rank-quasi cyclic (RQC) encryp-
tion scheme to design the underlying encoding scheme). Out of this situation, a
natural question arises:

Can we design a SNARK in code-based cryptography (and even in lattice-based
cryptography) without using the smudging technique?

We put forth effort to resolve this question in code-based cryptography by
making use of the rank support learning problem. We now recall the main tech-
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nical ingredients of [24]’s framework, which lie in the way the common refer-
ence string (CRS) is constructed. In particular, the CRS in the construction of
Gennaro et al. consists of encoding elements together with the description of a
square span program which computes the statement and public parameters of
some additively homomorphic “noisy” encoding scheme. In [24], their encoding
scheme is instantiated from lattice-based assumption. Let E denote this encoding
scheme. By examining the form of the CRS, we make the observation that the
encodings therein could be divided into three groups. The first group consists
of encodings of powers of a hidden element, say, E(1),E(s), . . . ,E(sd), where s
is kept secret. The second group consists of encodings of elements which are
resulted from the first group by a common mask, i.e., E(α),E(αs), . . . ,E(αsd),
where α plays the role of a mask. The third group consists of encodings of ele-
ments which are values of polynomials at s masked by a common element, i.e.,
E
(
βt(s)

)
,E
(
βv�u+1(s)

)
, . . . ,E

(
βvm(s)

)
. The crucial point is that the error for

each of these encodings has to be chosen carefully, so that addition of encod-
ings computationally hides the witness. This is needed when showing the zero-
knowledge property of the scheme, whose security proof is based on the smudging
technique. Furthermore, when paying closer attention to the way a proof is gener-
ated, we observe that homomorphic evaluations (or rather additions) are always
performed between elements of each group together with a set of coefficients in
the prescribed finite field.

In rank metric code-based cryptography, it seems difficult to do so due to
the aforementioned reasons. However, these two observations lead us to the idea
of using one and the same vector space of noises for each group. More precisely,
let V1, V2, V3 be randomly chosen subspaces of prescribed dimensions, then for
i = 1, 2, 3, all elements of the ith group are produced by using noises coming
from Vi. The effect is that after doing homomorphic additions with coefficients
in the base field, the noise of the obtained ciphertext has the same magnitude
as that of its components. Furthermore, the magnitude of noises in the three
groups are slightly different, i.e., the one in the first group is of the smallest
value while the other two groups have the same magnitude of noises, and allow
“truly” homomorphic addition of order two, that is, any linear combination of
two independent encodings/ciphertexts is again a valid encoding/ciphertext. The
reason for this requirement will become clear in the proof of security. By further
adding another encoding, i.e., a mask, whose noises belong essentially to the
same vector space as that of each group, we can argue from this property that
the resulted ciphertext does not leak any potential information of the witness.

We also note that though the concrete parameters of our scheme do not
compete well with those of [24], we emphasize that the novelty of our work
lies in the way the encoding elements are divided and treated. We believe this
method may be of independent interest for other applications.

Organization of the Paper. The rest of this work is organized as follows.
Section 2 recalls some basic matters needed; Sects. 3 and 4 describe an encoding
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scheme and the corresponding zk-SNARK construction. The efficiency and some
examples of parameter are the content of Sect. 6.

2 Preliminaries

2.1 Notations

Vectors are denoted by bold low-case letters, e.g., vector v. Bold capital letters
are used to denote matrices, e.g., matrix A. The notation Sn

r is defined to be the
sphere of radius r in F

n
qm0 for some positive integer m0. We use the notation [n]

to denote the set {0, 1, . . . , n} for a positive integer n, �x� to denote the greatest
integer less than or equal to x, and a | b to denote a divides b. Negligible functions
are denoted by neg(·).

2.2 Background on Code-Based Cryptography

This section recalls some basic code-based notions as well as ingredients needed,
all of which could be found in [7]. Let m0, n be two positive integers and q a power
of a prime number. Let {α1, . . . , αm0} be a basis of Fqm0 over Fq. This basis can
be used to associate any vector x := (x1, . . . , xn) ∈ F

n
qm0 to the corresponding

matrix Ax ∈ F
n×m0
q as

⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠ =

⎛

⎜
⎝

a11 · · · a1m0

...
...

...
an1 · · · anm0

⎞

⎟
⎠ ·

⎛

⎜
⎝

α1

...
αm0

⎞

⎟
⎠ .

The rank weight of x is defined to be the rank of matrix Ax, that is, ‖x‖ :=
rank(Ax). In this metric, the distance between two vectors x and y, denoted by
d(x,y), is defined to be equal the rank weight of x−y, i.e., d(x,y) := ‖x−y‖.

Now, let f(x) ∈ Fqm0 [x] be a polynomial of degree n and Rf := Fqm0 [x]/〈f〉.
Consider the following mapping:

φ : Fn
qm0 −→ Rf

(a0, . . . , an−1) 	−→ a0 + · · · + an−1x
n−1.

The inverse mapping, denoted by φ−1, simply maps a polynomial to the vector
formed by its coefficients. For the sake of simplicity, if a := (a0, . . . , an−1) ∈
F

n
qm0 , we let φ(a) = a0 + · · · + an−1x

n−1 = a(x). For a,b ∈ F
n
qm0 , their product

a · b is defined as
a · b := φ−1

(
a(x) · b(x)

)
.

Clearly, we have a · b = b · a. It is also not hard to see that

a · b = (a0, . . . , an−1) ·

⎛

⎜
⎝

φ−1
(
b(x)

)

...
φ−1

(
xn−1b(x)

)

⎞

⎟
⎠ . (1)
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The right-most expression on the right-hand side of Eq. 1 is usually referred to
as the ideal matrix generated by b(x) with respect to f(x). For ease of notation,
vectors are identified with their corresponding polynomials, i.e., xkb is under-
stood to be φ−1

(
xkb(x)

)
. Thus, the ideal matrix of a vector b with respect to f

is written as

b =

⎛

⎜
⎜
⎜
⎝

b
x · b

...
xn−1 · b

⎞

⎟
⎟
⎟
⎠

.

In our construction, we will use 2- and 3-ideal codes. A 2-ideal code of length
2n with respect to a polynomial f(x) of degree n over Fqm0 is a code whose
parity-check matrix is of the form

H =
[
In | hT

]
, (2)

where h is the ideal matrix of a vector h with respect to f(x) in F
n
qm0 . Similarly,

a 3-ideal code of length 3n with respect to a polynomial f(x) of degree n over
Fqm0 is a code whose parity matrix is of the form

H =
(

In 0 hT
1

0 In hT
2

)
. (3)

For a given vector x ∈ F
n
qm0 , it is usually associated with the vector space

generated by its coordinates.

Definition 1. Let x := (x1, . . . , xn) ∈ F
n
qm0 . The vector space over Fq defined

by x1, . . . , xn is called the support of x, and denoted by supp(x). That is,

supp(x) := Span
Fq

(x1, . . . , xn).

Next, we recall some definitions concerning code-based hardness assumptions.

Definition 2 (Rank Syndrome Decoding Problem). Let n, k, and w be
positive integers, H a random matrix over F

(n−k)×n
qm0 , and y a random vector in

F
n−k
qm0 . The rank syndrome decoding problem, RSD(n, k, w), asks to find a vector

x ∈ Sn
w such that HxT = yT .

In the following definitions, for ν ∈ {2, 3}, let SP (n, ν) be the set of all parity
matrices of ν-ideal codes with respect to a polynomial P (x) of degree n over
Fqm0 , as defined in Eqs. 2 or 3, respectively.

Definition 3 (ν-IRSD Distribution). Let n,w be positive integers, P (x) ∈
Fq[x] an irreducible polynomial of degree n. The ν-IRSD(n,w) distribution
chooses uniformly at random a matrix H ∈ SP (n, ν) together with a vector
x ∈ F

νn
qm0 such that ‖x‖ = w and outputs

(
H,H · xT

)
.
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Definition 4 (Computational ν-IRSD Problem). Let n,w be positive inte-
gers, P (x) ∈ Fq[x] an irreducible polynomial of degree n, H ∈ SP (n, ν) a random
matrix, and y ← F

n
qm0 . The computational ν-IRSD(n,w) problem asks to find a

vector x ∈ F
νn
qm0 such that ‖x‖ = w and H · xT = yT .

Definition 5 (Decisional ν-IRSD Problem). The decisional ν-IRSD(n,w)
problem asks to decide with non-negligible advantage whether (H,yT ) came from
the ν-IRSD(n,w) distribution or the uniform distribution over SP (n, ν) × F

n
qm0 .

Next, we recall the rank support learning problem. It made its first appear-
ance in [21], in the construction of a rank-metric based public-key encryption
scheme, and recently, in [6]. This problem can be viewed as a relaxation of the
RSD problem in which, instead of giving one syndrome instance as in the RSD
case, it gives a certain number of syndromes, all produced from the very same
support of errors. Its definition reads.

Definition 6 (Rank Support Learning Problem). Let n, k, r,N be positive
integers. Given a matrix H ∈ F

(n−k)×n
qm0 and N syndromes sT

i = HeT
i , where

ei ← V for all i = 1, 2, . . . , N, and V is a subspace of Fn
qm0 of dimension r, the

RSL(n, k, r,N) problem asks to find V.

When the number N increases, the problem becomes easier to solve. The
attack in [18] suggests that parameters should be chosen satisfying N < kr. The
decisional version of this problem is as follows.

Definition 7 (Decisional RSL Problem). Given an instance either from
(H,HE) or (H,U), where H is a full rank matrix of size (n − k) × n, U is
a random matrix in F

(n−k)×N
qm0 , and E is a matrix formed from N randomly cho-

sen vectors ei’s in a vector space of dimension r, the decisional rank support
learning DRSL(n, k, r,N) asks to decide which is the case.

For our purpose, we also need another variant of this problem. In addition
to a set of N vectors, either produced from preimages of the same support or
from the uniform distribution, two additional vectors are also given, which are
Fq-linearly random combinations of these N vectors. The problem now still asks
to decide which is the case.

Definition 8 (Variant RSL Problem-vRSL). Given an instance either from
(H,HE,HE · aT ,HE · bT ) or (H,U,U · aT ,U · bT ), where H ∈ F

(n−k)×n
qm0 is a

full rank matrix, U is a random matrix in F
(n−k)×N
qm0 , a,b are randomly chosen

vectors in F
N
q , and E is a matrix formed from N randomly chosen vectors ei’s in

a vector space of dimension r, the vRSL(n, k, r,N) problem asks to decide which
is the case.

The rationale behind this formulation is that what really affects the hardness
of the problem is the information of V given in the form of HE or, equivalently,
{HeT

i }N
i=1. Adding one or two random Fq-linearly combinations of these vectors
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does not leak more information about V. In fact, this problem is not easier than
the RSL problem. Given an RSL instance, one could create a vRSL instance by
randomly picking two vectors a,b ∈ F

N
q , computing the corresponding linearly

combinations; these combinations together with the provided RSL instance then
form an instance of the vRSL problem. Therefore, if we can solve the vRSL
problem, then we can also solve the RSL problem. The hardness of this problem
is used to argue the zero-knowledge property of our scheme. Furthermore, the
hardness of this problem also guarantees the zero-knowledge property of the
linear coefficients, i.e., the random vectors a and b. An adversary, if being asked
for such a set of coefficients, has either to solve the RSL problem or to make a
guess, both of which succeed with negligible probability.

Remark 1. We remark that the problem in the above definition could be general-
ized to the case in which, in addition to the syndromes (either chosen uniformly
or not), a polynomial number of random Fq-linearly combinations of these syn-
dromes are also given. The reduction could be carried in the same manner.

In the above definitions, the matrix H can be assumed to have ideal struc-
tures, and we also make the assumption that the problems corresponding to
this situation, namely, the ideal rank support learning (IRSL) problem and its
variant (vIRSL), are hard.

2.3 Succinct Non-interactive Arguments

We recall the definition of (designated-verifier) succinct non-interactive argu-
ments of knowledge (SNARKs) below. We specialize our definitions to the prob-
lem of Boolean circuit satisfiability.

Definition 9. Let C := {Cn}n∈N be a family of Boolean circuits. A designated-
verifier non-interactive argument system for an NP relation RC is a triple of
algorithms Π = (G,P,V) such that

– G(1λ, 1n): On input the security parameter λ and the circuit family parame-
ter n, the setup algorithm G generates a common reference string crs and a
verification key vrs.

– P(crs, u, w): On input the common reference string crs, a statement u, and its
witness w, the prover algorithm P generates a proof π.

– V(vrs, u, π): On input the verification key vrs, a statement u and a proof π,
the verification algorithm V outputs 1 if the proof π is valid, and 0 otherwise.

An argument of knowledge system is required to be complete and to have
knowledge soundness.

Definition 10 (Completeness). An argument of knowledge system Π for a
relation RC is complete if for all n ∈ N and for any pair (u,w) ∈ RCn

, we have

Pr

⎡

⎣
(crs, vrs) ← G(1λ, 1n)

π ← P(crs, u, w)
s.t. V(vrs, u, π) = 1

⎤

⎦ ≥ 1 − neg(λ).
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Definition 11 (Knowledge Soundness). An argument of knowledge system
Π for the relation RC is knowledge-sound if for any PPT adversary A, there
exists an extractor ExtA, given access to A’s inputs, such that

Pr

⎡

⎣
(crs, vrs) ← G(1λ,R)

(u, π;w) ← (A ‖ ExtA)V(vrs,·)(crs)
s.t. (u,w) /∈ R ∧ V(vrs, u, π) = 1

⎤

⎦ ≤ neg(λ),

where (y; z) ← (A ‖ ExtA) (x) signifies that on input x,A outputs y, and that
ExtA, given the same input x and A’s random tape, produces z.

Additionally, a system is said to be succinct if it satisfies the following prop-
erty.

Definition 12 (Succinctness). There exists a fixed polynomial p(·) indepen-
dent of C such that for every large enough security parameter λ ∈ N, we have
that

– Fully Succinct: G runs in time p(λ + log |Cn|), V runs in time p(λ + |x| +
log |Cn|), and the length of the proof output by P is bounded by p(λ+log |Cn|).

– Preprocessing: G runs in time p(λ + |Cn|), V runs in time p(λ + |x| +
log |Cn|), and the length of the proof output by P is bounded by p(λ+log |Cn|).
If an argument system has the property that the witness(es) is (computa-

tionally) hiding, then it is said to be zero-knowledge. This notion is captured
by the simulation paradigm: there exists a PPT algorithm S, called simulator,
such that given a statement u, it generates a valid proof whose distribution is
indistinguishable from that generated in the real protocol.

Definition 13 (Zero-knowledge). An argument of knowledge system Π is
zero-knowledge if there exists a PPT simulator S = (S1,S2) such that for any
PPT adversary A given access to an oracle O defined as

Oracle Ob(u,w):
If R(u,w) = false, return ⊥.
If b = 1, then π ← P(crs, u, w),
else π ← S2(td, u),
return π,

we have

Pr

⎡

⎢
⎢
⎣

(crs, vrs, td) ← S1(1λ, 1n)
b ← {0, 1}

b′ ← AOb(vrs)
s.t. b = b′

⎤

⎥
⎥
⎦ ≤ 1

2
+ neg(λ).

Definition 14 (zk-SNARK). A succinct non-interactive zero-knowledge argu-
ment of knowledge (zk-SNARK) is a non-interactive argument system that is
complete, succinct, knowledge-sound and zero-knowledge.
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2.4 Encoding Schemes

We recall the definition of encoding schemes with noise from [24], adapted to
our secret-key setting.

Definition 15. An encoding scheme Enc over a finite field Fq is a tuple of PPT
algorithms (K,E,D) such that:

– K(1λ): The key generating algorithm takes as input the security parameter λ
and outputs a public information pk and a secret state sk.

– E(sk,m): The non-deterministic encoding algorithm maps an element m ∈ Fq

into some encoding space S using the secret state sk, such that
{{E(a)} | a ∈

Fq

}
partitions S, where {E(a)} denotes the set of the possible evaluations of

the algorithm E on a.
– D(sk, c): The decoding algorithm takes as input the secret state sk, an encoding

c and outputs an element m ∈ Fq.

An encoding scheme Enc must have the following properties:

– d-linearly homomorphic: there exists a PPT algorithm Eval which takes
pk, d encodings E(m1), . . . ,E(md), and coefficients (a1, . . . , ad) ∈ F

d
q as input

and outputs a valid encoding of
∑d

i=1 aimi with overwhelming probability
in λ.

– Quadratic root detection: there exists a PPT algorithm which takes the
public key pk, a set of encodings {E(m1), . . . ,E(mt)}, and a quadratic polyno-
mial P ∈ Fq[x1, . . . , xt] as input and checks for the correctness of the equality
P (m1, . . . , mt) = 0.

– Image verification: there exists a PPT algorithm which takes the public
key pk and an element c as input and decides whether c is a valid encoding
of a field element or not.

2.5 Assumptions

The following assumptions are the adaptations of q-PDH and q-PKE assump-
tions (cf. [23,24]) to the code-based context together with the application of the
rank support learning problem. In the following, all the encodings are produced
by using a common vector space of noise.

Assumption 1 (q-PDH). Let Enc = (K,E,D) be an encoding scheme over a
finite field Fq. The q-power Diffie-Hellman assumption, q-PDH, holds for Enc if
for all PPT adversary A, we have

Pr

⎡

⎣
(pk, sk) ← K(1λ), s ← Fq

y ← A (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)
)

s.t. y = E(sq+1)

⎤

⎦ ≤ neg(λ).
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Assumption 2 (q-PKE). Let Enc = (K,E,D) be an encoding scheme over a
finite field Fq. The q-power of knowledge of exponent assumption, q-PKE, holds
for Enc if for all PPT adversary A, there exists a non-uniform knowledge extrac-
tor ExtA, given access to A’s input, such that

Pr

⎡

⎢
⎢
⎣

(pk, sk) ← K(1λ), α, s ← Fq

σ ← (
pk,E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)

)

(c, ĉ; (a0, . . . , aq)) ← (A ‖ ExtA)(σ, z)
s.t. ĉ = αc ∧ c /∈ {E(∑q

i=0 ais
i
)}

⎤

⎥
⎥
⎦ ≤ neg(λ),

for any auxiliary input z ∈ {0, 1}poly(λ) that is generated independently of α.

2.6 Square Span Programs

We briefly recall here the definition of a square span program [17].

Definition 16. A square span program over a finite field Fq consists in a tuple
of m + 1 polynomials v0(x), v1(x), . . . , vm(x) ∈ Fq[x] and a target polynomial
t(x) such that deg vi ≤ deg t for all 0 ≤ i ≤ m. We say that the square span
program ssp has size m and degree d = deg t. We say that ssp accepts an input
a1, . . . , a� ∈ {0, 1} if and only if there exist a�+1, . . . , am ∈ {0, 1} satisfying

t(x)
∣
∣
(

v0(x) +
m∑

i=1

aivi(x)
)2

− 1.

We say that ssp verifies a boolean circuit C : {0, 1}� → {0, 1} if it accepts exactly
those inputs (a1, . . . , a�) ∈ {0, 1}� satisfying

C(a1, . . . , a�) = 1.

We follow [24]’s approach for the SSP generation. That is, on a boolean
circuit C of size d, it generates a finite field Fq of q elements such that q ≥
max{d, 8}. Next, it randomly picks d elements r0, . . . , rd−1 and defines t(x) :=
(x − r0) · · · (x − rd−1). It outputs ssp as

(
v0(x), . . . , vm(x), t(x)

)← SSP(C),

where v0, . . . , vm are m + 1 polynomials of degree at most d as in the above
definition.

3 Our Code-Based Encoding Scheme

In this section, we describe our instantiation of an encoding scheme from coding
theory, which is based on the RQC cryptosystem. The description of the RQC
encryption scheme was originally published in [1], and can be found in [2] with
little changes. In this work, it is turned into a secret-key and used as an encoding
scheme in the following manner.
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1. Setup(1λ): Generate parameters n := n(λ), k := k(λ), δ := δ(λ), w :=
w(λ), we := we(λ), wr := wr(λ). The plaintext space is F

k
qm0 . Output

param :=
(
n, k, δ, w,we, wr, P (x)

)
, where P (x) ∈ Fq[x] is an irreducible poly-

nomial of degree n which remains irreducible over Fqm0 [x].
2. KeyGen(param): Generate h ← F

n
qm0 ,x,y ← Sn

w, a generator matrix G ∈
F

k×n
qm0 of a public code C, which is capable of correcting up to δ errors. Output

the public parameters pp := (param,h,G) and sk := (x,y).
3. Enc(pp, sk,m): To encrypt a message m ∈ F

k
qm0 , randomly choose r1, r2 ←

Sn
wr

and e ← Sn
we

. Compute
{

c1 ← r1 + h · r2,
c2 ← (x + h · y) · r2 + e + m · G.

Return c := (c1, c2).
We note that the noises vectors r1, r2, e are chosen from a common vector
space. Therefore, we also have wr = we.

4. Dec(sk, c): To decrypt, first compute c2 − y · c1, and then use the decoding
algorithm of the code C to recover m.

From the RQC encryption scheme describe above, our encoding scheme
(K,E,D) is defined in which K consists of Setup and KeyGen algorithms, the
encoding algorithm E is the encryption algorithm Enc, the decoding algorithm
D is the decryption algorithm Dec.

We aim at encoding of elements of the finite field Fq, we do it as follows.
For an element s ∈ Fq, define s = (s, 0, . . . , 0) ∈ F

k
q, i.e., the vector s is formed

by placing s in the first entry and 0 elsewhere. An encoding of s is defined to
be an encryption of s, i.e., E(s) := Enc(s). For two elements s1, s2 ∈ Fq, if
we denote t = s1s2, then we have t = s1 · s2 = (s1s2, 0, . . . , 0), and hence,
E(s1s2) = Enc(s1 ·s2). Therefore, this mapping (from Fq to F

k
qm0 ) is well-defined.

To complete the description of our encoding scheme, its properties are defined
below.

– Eval(pk, c1, . . . , cd; a1, . . . , ad) computes and outputs c̃ = (c̃1, c̃2), where c̃b =∑d
i=1 aicb,i, for some prescribed positive integer d describing the number of

desired homomorphic additions and b ∈ {1, 2}.
– Quadratic root detection uses the decryption algorithm to invert ciphertexts

and evaluates value of the polynomial at the obtained messages.
– Image verification uses the decryption algorithm of RQC to test whether a

given vector c is a valid encoding of some plaintext or not.

By the hardness of IRSL problem, a random vector space of noise can be used
a couple of times, which is described in the problem. Our zk-SNARK construc-
tion will exploit this variation in subsequent sections. Furthermore, similar to
previous work [24], we will assume that our encoding scheme satisfies the q-PDH
and q-PKE assumptions as described in Sect. 2.5.
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3.1 Bound of Noise

The main point of this section is to give a feature of the sum of noises in a
particular case, that is, when the sum of noise’s weight is much smaller than
either the vector length or the degree of the field extension. Simply stated, the
weight of the sum is upper-bounded by the sum of every single noise’s weight.

Proposition 1. Let �,m0, n, w1, . . . , w� be positive integers such that m0, n >
dw, where dw = w1+· · ·+w�. Let ti be randomly chosen from Sn

wi
for i = 1, . . . , �,

and U = supp
(∑�

i=1 ti
)
. Then, we have dim U ≤ dw.

Proof. The proof is quite straightforwards, since we have

U ⊆ supp t1 ⊕ · · · ⊕ supp t�.

��
As mentioned earlier, for our construction, noises used in the encodings (in

each group) share a common vector space and the linear coefficient would be in
the based field. Therefore, the noise of the resulted encoding would also belong
to the prescribed vector space. The above proposition proves to be helpful in
the security proof of our zk-SNARK later, and in fact, the equality holds with
overwhelming probability [30].

3.2 Additive Homomorphism

The purpose of this section is to show the additive homomorphism of the RQC
scheme. Intuitively, by the result of the previous section, the noise of the homo-
morphic ciphertext grows linearly with respect to the number of additive com-
ponents. However, as long as the magnitude of the homomorphic noise is within
the decoding capability of the public code C, the decoding algorithm will always
succeed.

Proposition 2. Let d be the number of additive operations, w,we, wr be mag-
nitudes of the secret key and noises from an RQC scheme whose public code can
decode errors of rank weight up to δ. If d(2wwr + we) ≤ δ, then c̃, which is the
output of Eval is a correct encoding.

Proof. Observe that c̃ = (c̃1, c̃2), where
{

c̃1 =
∑d

i=1 air
(1)
i + h · (∑d

i=1 air
(2)
i

)
,

c̃2 = s · (∑d
i=1 air

(2)
i

)
+
∑d

i=1 aiei +
(∑d

i=1 aimi

) · G.

Since ai’s are elements of Fqm0 , so ‖air
(j)
i ‖ = ‖r(j)i ‖ and ‖aiei‖ = ‖ei‖ for all

1 ≤ i ≤ d and j = 1, 2. By Proposition 1, we get
⎧
⎪⎨

⎪⎩

wrd ≤∑d
i=1 air

(1)
i ,

wrd ≤∑d
i=1 air

(2)
i ,

wed ≤∑d
i=1 aiei.
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Thus,
∥
∥
∥
∥x ·

d∑

i=1

air
(2)
i − y ·

d∑

i=1

air
(1)
i +

d∑

i=1

aiei

∥
∥
∥
∥

≤ w · wrd + w · wrd + wed

≤ δ,

which allows successful decryption. ��

4 Our Code-Based Zk-SNARK Scheme

In the following, let (K,E,D) be the encoding scheme described in Sect. 3. We
assume Our zk-SNARK scheme Π is detailed as:

– Setup. The setup algorithm takes as input the security parameter 1λ in the
unary form and the circuit C. It generates a square span program of degree d
over the field Fq of size q ≥ d that verifies C by running:

ssp =
(
v0(x), . . . , vm(x), t(x)

)← SSP(C).

Then, it runs (pp, sk) ← K(1λ) using our encoding scheme. It samples
α, β, s ← Fq such that t(s) �= 0, and returns the crs:

crs :=
(
ssp, pp,G1,G2,G3

)
,

where

G1 :=
{
E(1),E(s), . . . ,E(sd)

}
,

G2 :=
{
E(α),E(αs), . . . ,E(αsd)

}
,

G3 :=
{
E(βt(s)), {E(βvi(s))}m

i=�u+1

}
,

and �u denotes the size of input u of circuit C. Elements in each group are
formed from the encoding scheme which uses three vector spaces of noises
V1, V2, V3, respectively. Furthermore, dimV1 = r, dim V2 = dim V3 = r, where
0 < r − r.
Finally, it sets vrs = sk and td = (α, β, s) as the verification key and the
trapdoor, respectively.

– Prover. The prover algorithm, on input some statement u := (a1, . . . , a�u),
and its witness w = (a�u+1, . . . , am) such that (a1, . . . , am) is a satisfying
assignment for the circuit C. The {ai}i also satisfies

t(x)
∣
∣
(

v0(x) +
m∑

i=1

aivi(x)
)2

− 1.

The prover samples γ ← Fq, sets v(x) = v0(x) +
∑m

i=1 aivi(x) + γt(x) and

h(x) =
v(x)2 − 1

t(x)
∈ Fq[x].
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It computes

H = E
(
h(s)

)
, Ĥ = E

(
α · h(s)

)
, V̂ = E

(
α · v(s)

)
,

Vw = E

(
m∑

i=�u+1

aivi(s) + γt(s)

)

,

Bw = E

(

β ·
( m∑

i=�u+1

aivi(s) + γt(s)
))

.

The prover returns π :=
(
H, Ĥ, V̂ , Vw, Bw

)
.

We note that the prover computes H and Vw from the first encoding group
G1, Ĥ and V̂ from the second group G2, and Bw from the third group G3 in
the following manners. Assume that h(x) = h0 + h1x + · · · + hdx

d, then
1. H = Eval

({E(si)}d
i=0; {hi}d

i=0

)
; the same kind of computation is used for

Vw;
2. Ĥ = Eval

({E(αsi)}d
i=0; {hi}d

i=0

)
; this is also applied for V̂ ;

3. Bw = Eval
(
E(βt(s)), {E(vi(s))}m

i=�u+1; γ, 1, . . . , 1
)

with the observation
that

γE
(
βt(s)

)
= E

(
γβt(s)

)
.

– Verifier. Upon receiving a proof π and a statement u = (a1, . . . , a�u), the
verifier, in possession of the verification key vrs first checks that

ĥs − α · hs = 0, v̂s − α · vs = 0,

v2
s − 1 − hs · ts = 0,

bs − β · vs = 0,

where (hs, ĥs, v̂s, vs, bs) are the values encoded in π =
(
H, Ĥ, V̂ , Vw, Bw

)
, and

ts, vs are computed as ts := t(s) and vs := v0 +
∑�u

i=1 aivi(s) + vs. (Recall
that t(s) and vi(s) are obtained from the CRS.)
The verifier checks that whether it is possible to perform one more homomor-
phic operation. (Thus, in our scheme, essentially d takes the value 2.) If these
checks pass, it outputs 1; otherwise, it outputs 0.

Theorem 1. If the q-PKE and q-PDH assumptions hold for the encoding
scheme (K,E,D) then the protocol above is a zk-SNARK with perfect complete-
ness, computational soundness and computational zero-knowledge.

The perfectness of the scheme is guaranteed by the fact that the decryption
step succeeds with probability 1. Therefore, we only need to concern ourselves
with the zero-knowledge and soundness property.

5 Security Analysis of Our Zk-SNARK Scheme

5.1 Zero-Knowledge

The idea behind this property is that the distributions of the elements in a proof
does not differ from that of its components. The description of the simulator S
is as follows. On input td = (α, β, s) and u = (a1, . . . , a�u),
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1. S randomly picks an element γ ∈ Fq and computes

h =

(
v0(s) +

∑�u
i=1 aivi(s) + γ

)2 − 1
t(s)

.

2. It computes
⎧
⎪⎨

⎪⎩

H = E(h), Ĥ = E(αh),
V̂ = E

(
α(v0(s) +

∑�u
i=1 aivi(s) + γ)

)
, Vγ = E(γ),

Bγ = E(βγ).

3. It outputs (H, Ĥ, V̂ , Vγ , Bγ).

Proof. Since the encodings in each group Gi share a same vector space Vi for
i = 1, 2, 3, and all the polynomials in consideration are in Fq[x], therefore, after
homomorphically adding, the noises in the new encodings belong to the same
vector spaces as that of its component encodings.

Observe that in the real protocol, H and Vw are resulted from adding
encodings of G1, Ĥ and V̂ from G2, and Bw from G3, respectively. By the
vIRSL(2n, n, r, N) problem (for each group), these outputs are computationally
indistinguishable from truly random ones.

On the other hand, by the decisional IRSL(2n, n, r, N) problem, the distribu-
tion of the outputs of the simulated protocol are computationally indistinguish-
able from the uniformly random. Therefore, by hybrid argument, we conclude
that the outputs distribution of the real execution and that of the simulation
are computationally indistinguishable. ��

We note also that the role of γt(s) in the scheme is to hide the witness and
is indispensable. Indeed, since the homomorphic linear coefficients are elements
of Fq, so they form a vector which can be viewed as a rank-1 vector over F

N
qm0 .

In this particular situation, finding these low rank vectors can be performed as
follows. From the encodings of G3, except the first, form an n× (m− �u) matrix
whose columns are the first parts of these encodings. Note that, without adding
γt(s), the last term of the proof becomes

Bw = E

(

β ·
( m∑

i=�u+1

aivi(s)
))

= Eval

(
{E(βvi(s))}m

i=�u+1; {ai}m
i=�u+1

)
.

Regarding as a rank decoding problem and by applying algorithm in [14],
(a�u+1, . . . , am) could be recovered in polynomial time. Thus, witness must be
concealed by the necessary use of the term γt(s).

One may hide the witness by further repeating one more time exactly the
encryption step of the RQC scheme, i.e., re-randomizing the resulted encoding
before outputting it (thus modifying the evaluation algorithm). By the hardness
of the IRSL problem, we can argue the (computational) indistinguishability of
the output. This is somewhat similar to the technique of [27].
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5.2 Soundness

The idea of the proof follows the frame of [32] and [24] with some adaptations
to rank-code hardness assumptions.

Proof. Assume that there is an adversary A who can break the scheme Π with
non-negligible probability, we construct an algorithm B to solve q-PDH or q-PKE
problems. First, we show how B can use A for this purpose.

Let π be a proof produced by A which is accepted. Using an extractor of the
d-PKE assumption, B can recover the coefficients of the polynomials v(x), h(x).
Define

vmid(x) = v(x) − v0(x) −
�u∑

i=1

aivi(x).

Since the proof is accepted but the statement is false, so by the same arguments
as in the proof in [32], there are only two possibilities

(i) t(x)h(x) �= v2(x) − 1 but t(s)h(s) = v2(s) − 1, or
(ii) Bw is an encoding of βvmid(s) but vmid is not in the linear span of {v�u+1, . . . ,

vm, t}
��

Claim. If (i) holds, then B can break the q-PDH assumption with q = 2d − 1.

Proof. Let p(x) = v2(x) − 1 − t(x)h(x). In this case, p(x) is a polynomial of
degree at most 2d having s as a root. Assume that pk is the leading coefficient
of p(x), define

p̂(x) = xk − p−1
k p(x).

We see that s is a root of xk−p̂(x), therefore, it also is a root of xq+1−xq+1−kp̂(x).
Observe that for q = 2d−1, xq+1−kp̂(x) is a polynomial of degree at most 2d−1.
Therefore, E

(
sq+1−kp̂(s)

)
can be computed from E(1),E(s), . . . ,E(s2d−1), which

form a challenge of the q-PDH assumption for q = 2d − 1. This means that
B can compute E(sq+1) = E

(
sq+1−kp̂(s)

)
and break the q-PDH assumption for

q = 2d − 1. ��
Claim. If (ii) holds, then B can break the q-PDH assumption with q = d.

Proof. First, B generates a uniformly random polynomial a(x) of degree
q = d subject to the constraint that all the polynomials a(x)t(x) and
{a(x)vi(x)}m

i=�u+1 do not contain the term xq. Since deg a(x) = d, so B can
compute the value a(s) from the challenge of the d-PDH assumption, namely,
E(1),E(s), . . . ,E(sd),E(sd+2), . . . ,E(s2d). Thus, when preparing inputs for adver-
sary A, B sets β = a(s). The proof is accepted, so the term Bw must be an
encoding of a known polynomial in s, i.e., the polynomial

a(s)vmid(s) = b0 + b1s + · · · + b2qs
2q.
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Since vmid is not in the linear span of {v�u+1, . . . , vm, t}, so the above polyno-
mial has the term sq+1 with overwhelming probability (cf. [23]). B performs an
evaluation as

h = Eval

(
{E(si)}i∈[q+d]\{q+1}, {−bi}i∈[q+d]\{q+1}

)
.

Then b−1
q+1(h + Bw) is an encoding of sq+1, which is a solution to the q-PDH

assumption for q = d. ��
From these above analyses, B proceeds as follows.

– Target at the q-PDH problem with q = 2d − 1. (B can equally target the
q-PDH assumption with q = d, and follow the case (ii).)

– B, from its challenge E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q), prepares inputs
for adversary A, i.e., the crs. That is, B randomly picks α, β ∈ Fq and com-
putes the corresponding terms in the crs from E(1),E(s), . . . ,E(sd) (depend-
ing on which problem B would target) which form a subset of the set of
elements of the challenge. The elements of the first group come directly from
the challenge while the elements of the second and third groups are produced
by a further step of re-randomization, i.e., by adding some noises from a
common vector space to each encoding. (This operation could be viewed as
re-randomization.) The preparation for a value β is shown as in (ii). All the
encodings of the so-generated crs are ciphertexts sharing a common vector
space of noise, however, by the IRSL(2n, n, r, N) problem, the view of A on
this input is computationally indistinguishable from input of the real protocol.

– By the contradictory assumption, A outputs a proof which is accepted, how-
ever, the statement is false.

– By using the extractor of the d-PKE assumption, B obtains the coefficients
of polynomial v(x) and h(x).

– If (i) holds, B would find a solution for the q-PDH assumption as described
above and break the q-PDH assumption for q = 2d − 1.

– If (ii) holds, B aborts.

We note that the distribution of the input for A prepared by B is computa-
tionally indistinguishable from that of the real scheme. Therefore, (i) and (ii)
happen with equal chance. Thus, B can break the targeted assumption with
non-negligible probability.

6 Efficiency and Parameters

6.1 Efficiency

– A proof consists of 5 encodings, each of which is a ciphertext of the underlying
RQC scheme. Therefore, the size of proof is |π| = 10m0n log q.

– A crs contains m+1 polynomials vi’s, a polynomial t(x), the public parameters
pp, and (m − �u + 2d + 3) encodings. Each polynomial is of degree at most d,
hence needs (d+1)m0 log q bits for its description. The size of pp is dominated
by (k + 1)m0n log q. Thus, the size of crs is

(2d + 4 + k + m − �u)m0n log q + (m + 2)(d + 1)m0 log q = O(mm0d log q).
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6.2 Parameters

This section provides an example of parameters for the scheme. These parameters
are selected to target the security level of 128 bits and soundness error of the
same level.

Taking attacks in [6,18] into consideration, for the IRSL(2n, n, r, N) problem
to be at the 128 bit-level of security, m0, n, and r are chosen such that

m0 >

⌊
m0n − N

2n − �N
r �

⌋

.

And to guarantee the success of decoding, n, r, r, w, and k are chosen such that
w(r+ r) ≤ n−k

2 . (We use the RQC version in which 1 belongs to the vector space
of the secret keys.) Also, the relation between m0 and n is always m0 ≥ n, since
a Gabidulin code is employed. To sum up, parameters are chosen to satisfy that

⎧
⎪⎪⎨

⎪⎪⎩

m0 >
⌊

m0n−N
2n−�N

r �

⌋
,

w(r + r) ≤ n−k
2 ,

n ≤ m0.

The parameter d is fixed to be d = 213, and N = 4d is the number of given
“syndromes.” Recall that the size of a proof is |π| = 10m0n log q, so we get the
result.

N q = |F| m0 n k r r w |π| (kB)

215 ≈ 2143 503 491 3 59 61 2 44147
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Abstract. Zero-knowledge proof or argument systems for generic NP
statements (such as circuit satisfiability) have typically been instantiated
with cryptographic commitment schemes; this implies that the security
of the proof system (e.g., computational or statistical) depends on that of
the chosen commitment scheme. The MPC-in-the-Head paradigm (Ishai
et al., JoC 2009) uses the same approach to construct zero-knowledge
systems from the simulated execution of secure multiparty computation
protocols.

This paper presents a novel method to construct zero-knowledge pro-
tocols which takes advantage of the unique properties of MPC-in-the-
Head and replaces commitments with an oblivious transfer protocol. The
security of the new construction is proven in the Universal Composability
framework of security and suitable choices of oblivious transfer protocols
are discussed together with their implications on the security properties
and computational efficiency of the zero-knowledge system.
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1 Introduction

An interactive proof system [24] is a two-party protocol for an unbounded prover
and a verifier with the goal of convincing the verifier that a certain statement
is true. Such a proof system must fulfill two properties: (1) completeness, if
the statement is true, an honest prover is able to convince the verifier; and (2)
soundness, if the statement is not true, no (malicious) prover is able to convince
the verifier. A relaxation of an interactive proof system is an interactive argument
system in which the prover is computationally bounded [10].

The notion of zero-knowledge for a proof or argument system, introduced by
Goldwasser, Micali and Rackoff [24], ensures that a malicious verifier interacting
with an honest prover is not able to learn any information beyond the veracity of
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the statement. Generally, such a construction allows for two inputs: the receiver
holds a statement x belonging to some NP Language while the prover holds a
witness w with the intent of proving some relation R about x and w.

Most of the existing zero-knowledge protocols are constructed from commit-
ment schemes, relying on their hiding and binding properties. Furthermore, there
is some evidence that such commitment schemes may be necessary to construct
a zero-knowledge proof system [34]. In this work, we show that a zero-knowledge
protocol can alternatively be constructed from an oblivious transfer protocol.

To obtain a zero-knowledge protocol using oblivious transfers we use the
MPC-in-the-Head (MPCitH) paradigm [27]. In this framework, the prover sim-
ulates a secure n-party multi-party computation (MPC) protocol which verifies
that w is a correct witness for x. To do this the prover creates an additive sharing
of its witness w, which means that the prover samples wi, for i ∈ [n], uniformly
at random under the condition that w = w1 + w2 + . . . + wn. The execution
of this protocol assumes n parties, Pi, with each party’s private input defined
as wi. The result of the simulation of this protocol is n views {viewi}i∈[n]. The
prover then commits to these views by sending them to the verifier. The verifier
responds with some randomly chosen indices I ⊂ [n] for which the prover opens
the commitments (viewi)i∈I , thus demonstrating the correct verification of w by
the MPC protocol.

We show, however, that the commitment scheme is unnecessary and one can
obtain a zero-knowledge protocol in the MPCitH paradigm by using an oblivi-
ous transfer protocol instead. Instead of committing to n views {viewi}i∈[n], the
prover, in this OT-hybrid paradigm, engages in an oblivious transfer protocol
which has inputs {viewi}i∈[n] submitted by the prover and I ⊂ [n] submitted
by the verifier. At the end of the Oblivious Transfer protocol, the verifier has a
subset of views, which it can then check for consistency. Below, we show how
this gives us a zero-knowledge protocol in the Universal Composability frame-
work [12].

1.1 Technical Overview

In Fig. 3 we describe an MPC-in-the-Head protocol which realises the zero-
knowledge proof functionality described in Fig. 1 in the FOT-hybrid model (see
Fig. 2). Due to the arbitrary number of parties that the verifier can choose to
open (as long as it does not break the secrecy of the MPC protocol) we use an
arbitrary k-out-of-n OT functionality.

We prove the UC-security of our protocol and show that its security holds
in the FOT-hybrid model. First, the completeness of the proof follows from the
correctness of the MPC protocol; if the latter is perfectly correct, then so is the
resulting proof system, in the FOT-hybrid model.

Secondly, the soundness of the proof system holds unconditionally in the
FOT-hybrid model since a malicious prover is caught whenever its cheating
behaviour is observed in the MPC protocol by the verifier; here, the robust-
ness of the MPC protocol matters, since a robust MPC protocol will still output
a correct rejection of an invalid witness despite a certain number of cheating
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parties. The property we prove is in fact knowledge soundness since the defini-
tion of the ZK functionality requires a valid witness to be provided in order to
inform the verifier of a valid proof. The UC simulator of our security proof is
therefore able to extract a valid witness (with some soundness error) in cases
where a malicious prover is able to make an honest verifier accept.

Finally, the zero-knowledge property of the proof system follows from the
privacy property of the MPC protocol which guarantees that no information is
learnt about a secret-shared witness when too few shares are known. Since the
OT functionality guarantees that exactly k views out of a possible n will be
opened, even for malicious verifiers, the k-privacy of the MPC protocol guaran-
tees malicious-verifier zero-knowledge for the proof system.

When instantiating our protocol with a specific oblivious transfer protocol
to realise FOT, the security type (perfect, statistical or computational) of the
OT protocol must then also be taken into account to establish the final security
guarantees of the proof (or argument) system.

To this effect, in Sect. 4 we list several OT protocols that could be suitable to
instantiate our protocol. Given that generic k-out-of-n OT protocols are more
difficult to come by in practice, we discuss several options to use simpler 1-
out-of-n and even 1-out-of-2 OT protocols based on existing efficient MPCitH
protocols from the literature.

1.2 Comparison and Theoretical Value

We discuss how our work differs from the existing zero-knowledge constructions
and how it contributes to the theoretical research regarding the round complexity
of zero-knowledge protocols.

1. While the construction we present is similar to the compiler proposed in [28],
the latter is only a generic protocol which could realize, in the OT-hybrid
model, the zero-knowledge proof functionality as a special case. However, due
to its generic nature, this compiler carries several inefficiencies, especially due
to the fact it is designed so that clients play symmetric roles in the compiled
protocol.
In our construction, only the Prover client will simulate the MPC servers
that compute the circuit, rather than this being joint work with the Verifier
in an expensive distributed way as propose by Ishai et al. This assymmetry
in the role of the Prover and the Verifier is also advantageous for security
against malicious Verifiers, since the latter cannnot influence the execution
of the MPC protocol to maliciously obtain information about the Prover’s
secret input. In short, specialising the task of MPC in the hybrid model to
the case of zero-knowledge proofs enables us to present a simpler and more
optimised protocol than a direct instantiation of the IPS compiler would
yield. Additionally, this MPC-in-the-Head construction provides a detailed
presentation of how to instantiate this framework with oblivious transfer.

2. Given that the rewinding proof technique is troublesome in the quantum
setting [2], our work benefits from straight-line extraction, especially since
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using rewinding of the adversary to prove UC-security of OT protocols is
also not allowed. This would be beneficial to construct post-quantum zero-
knowledge protocols.

3. The round complexity of a zero-knowledge protocol has been a topic of
research since the introduction of the zero-knowledge notion in 1989 (see
Appendix A for a brief survey). However, the round complexity of post-
quantum zero-knowledge protocols is a recent research direction and it is
not as developed as in the classical case.1 We emphasize that our approach
in this paper would be valuable to construct a constant-round post-quantum
zero-knowledge protocol since the round complexity of our protocol depends
on the (post-quantum) implementation of the OT functionality and it benefits
from a straight-line extraction.

4. We prove the zero-knowledge in the Universal Composability framework [12].

2 Preliminaries

This section introduces notations and recalls standard definitions.

2.1 Notation

We denote by λ the security parameter. For elements n ∈ Z we denote by [n] the
set of integers {1, . . . , n}. We say that a function f : N → N is negligible if, for
every positive polynomial p(·) and all sufficiently large integers k it holds that
f(k) < 1

p(k) . We abbreviate a probabilistic polynomial time machine by PPT.
For any element a ∈ K, we will denote a random sampling of a from a

distribution Dα as a ← Dα. Furthermore, we shall denote by Uα the uniform
distribution with variance α. If an element a is drawn uniformly random from
a set, or according to a protocol, A, where the distribution used to sample from
A is known, we may abbreviate by writing a ← DA.

2.2 Zero-Knowledge Proof and Argument Systems

For an NP language L, we denote by R the relation consisting of pairs (x,w)
such that x is an instance in L and w is a corresponding candidate witness. In
an interactive proof or argument protocol, a prover wishes to demonstrate that
some NP statement x ∈ L is true using a valid witness w such that (x,w) ∈ R.

The proof or argument protocol is correct if an honest prover always suc-
cessfully convinces an honest verifier of the veracity of a true statement. The
protocol is sound if a malicious prover cannot convince an honest verifier that
a false statement x∗ �∈ L is in fact true; it is additionally knowledge sound if
a malicious prover cannot convince a verifier even of a true statement x ∈ L
without knowing at least one valid witness w such that (x,w) ∈ R.

1 Even with some (apparently) contradictory results: the impossibility [13] and the pos-
sibility [32] of constructing constant-round post-quantum black-box zero-knowledge.
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For both notions of soundness, it is tolerated that a malicious prover can
successfully convince an honest verifier with a negligible probability called the
soundness error. If this error is negligible even for computationally unbounded
malicious provers, then the protocol is called a proof system; if the soundness
error is negligible only for PPT malicious provers, then the protocol is called an
argument system.

A proof or argument system can also be zero-knowledge (ZK) if the interac-
tion of an honest prover with a verifier reveals no information about the witness w
other than its validity. This property can hold against either honest verifiers or
fully malicious ones.

UC-secure ZK systems for circuit satisfiability. This work focuses on UC-secure
protocols for proving in zero-knowledge the satisfiability of an arbitrary circuit C.
We assume that the reader is familiar with the terminology of UC security and
proofs [12]. In Fig. 1 we recall the zero-knowledge functionality [16].

Fig. 1. Ideal functionality for circuit-based ZK proofs

In this figure, C is a circuit, with format depending on ty, such that for a
given x, Cx(w) = 1 ⇔ R(x,w) = 1. At the end of the protocol, the verifier
then accepts or rejects the proof. We denote by (P(x,w),V(x)) = b, b ∈ F2,
the verifier’s decision such that b = 1 means the verifier accepts and otherwise
rejects.

While not explicitly defined in the functionality, the knowledge soundness
and zero-knowledge properties of a protocol that securely UC-realizes FZK fol-
low from the different proof cases. Namely, knowledge soundness follows from
security against a malicious prover: the UC simulator must input (C,w) to FZK

acting as the ideal-world malicious prover such that FZK then induces the ideal-
world verifier to accept or reject the proof with the same distribution as the real-
world verifier. The simulator must then extract the witness (valid or not) from
the real-world malicious prover and this simulation will fail (i.e., the ideal-world
verifier will reject a false statement when the real-world verified will incorrectly
accept it) exactly with the knowledge soundness error of the protocol.
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Similarly, zero-knowledge follows from the security against a dishonest veri-
fier: the UC simulator must produce a protocol transcript, without knowledge of
the witness (only of its validity), that cannot be distinguished as a simulation.

2.3 Oblivious Transfer Protocols

Oblivious Transfer (OT) is a well known primitive within cryptography, which
has been extensively researched since its introduction by Rabin [36]. In an OT
Protocol a sender, S, and a receiver, R, execute the transfer of a subset of
messages, m = {m0, . . . ,mk−1}, out of a total set of n messages. Depending on
the protocol these messages could be bits or strings. Generally OT protocols are
divided, broadly, into three different categories depending on k and n: (k, n) =
(1, 2), (k, n) = (1, n), and k, n ∈ N, k < n. For an Oblivious Transfer protocol to
be secure the following two properties have to be obtained:

– Sender Security: Upon committing to n messages, m1, . . . ,mn, the sender is
assured that R receives no more than k messages and will only learn the
contents of these k messages.

– Receiver Security: Upon committing to the k indices I, I ⊂ [n], the receiver
is assured that S does not learn which messages the receiver has learnt.

In [14] they define a 1-out-of-n OT protocol which is easily adapted to the
k-out-of-n variant. We describe this adapted variant in Fig. 2. As you can see
this is exactly what we would expect from an OT protocol.

Fig. 2. Ideal functionality for k-out-of-n OT.

2.4 MPC

In this paper the standard definitions of MPC from the literature will be followed,
[11,20,27]. To this extent let n be the number of parties and let P = {P1, . . . , Pn}
be the set of identified parties. A public input x is known to all parties, while
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each party individually supplies their private input wi. To securely realize an n-
party functionality f , f takes as input (x,w1, . . . , wn) and produces n outputs.
Any protocol, Π, takes as input the party that wishes to execute the protocol,
Pi, their private input, wi, their random input, ri, and the public parameter x,
and possibly a security parameter k in the case of statistical or computational
security. Moreover, for the protocol called in round j + 1, the protocol will
additionally require the messages that Pi received in the previous j rounds. The
protocol will then output n messages, and, if required, a broadcast message.
Specifically, if the broadcast message of Π is abort then the protocol terminates
immediately, only outputting Pi’s local output. Throughout the execution of a
protocol the view of a player Pi, denoted viewi, is constructed. This view includes
wi,ri, and the messages that Pi received during the execution of Π. The following
definition follows naturally:

Definition 1. Let viewi and viewj be produced by protocol Π with respect to
some public input x. Then two views can be called consistent if the outgoing
messages implicit in viewi are identical to the incoming messages reported in
viewj and vice versa.

Note that this is a natural definition as we can take viewi, Π, and x and
reconstruct the local output for Pi and the messages sent. In [27] it is shown that
there is no difference between consistency of the views from a global perspective
and a local perspective.

Lemma 1 (Lemma 2.3, [27]). Let Π be an n-party protocol with public input
x. Let {view1, . . . , viewn} be the set of (not necessarily correct) views. Then for
any i, j ∈ [n], it holds that viewi and viewj are consistent with respect to Π and
x if and only if there exists and honest execution of Π with public input x in
which viewi is the view of Pi for every i ∈ [n].

For our MPC constructions we will consider both the semi-honest and the
malicious models. For the semi-honest model, also known as “Honest, but curi-
ous”, the parties will execute a protocol Π as is prescribed, however the parties
will attempt to learn more information from the protocol than is intended to.
In the malicious model such restrictions are lifted and the parties are allowed to
act arbitrarily in regards to the protocols and each other.

In the semi-honest case security can be broken into the following two prop-
erties:

Definition 2 (Correctness [27, Definition 2.4]). We say that Π realize a
deterministic n-party functionality f(x,w1, . . . , wn) with perfect (resp., statis-
tical) correctness if for all inputs x,w1, . . . , wn the probability that the output of
some player is different from the output of f is 0 (resp., negligible in λ), where
the probability is over the independent choices of the random inputs r1, . . . , rn.

Definition 3 (t-Privacy [27, Definition 2.5]). Let 1 ≤ t < n. We say that Π
realizes f with perfect t-privacy if there is a PPT simulator Sim such that for any
inputs x,w1, . . . , wn and every set of corrupted players T ⊆ [n], where |T | ≤ t,
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the joint view ViewT (x,w1, . . . , wn) of players in T is distributed identically to
Sim(T, x, (wi)i∈T , fT (x,w1, . . . , wn)), where fT (·) denotes the view of the output
of f of the parties in T .

For relaxations to statistical (resp., computational) t-privacy, we require that
for every distinguisher D (resp., D with circuit size poly(λ)), there is a negligible
function δ(·) such that

|Pr[D(ViewT (λ, x,w1, . . . , wn)) = 1]
− Pr[D(Sim(λ, T, x, (wi)i∈T , fT (x,w1, . . . , wn))) = 1]| ≤ δ(λ)

For the malicious model, however, correctness is not sufficient. Instead we
adopt notion that Π is secure if and only if the protocol is t-private, as defined
above, and r-robust.

Definition 4 (r-Robustness [27, Definition 2.6]). We say that Π realizes f
with perfect (resp., statistical) r-robustness if it is perfectly (resp,. statistically)
correct in the presence of a semi-honest adversary as in Definition 2, and further-
more for any computationally unbounded malicious adversary corrupting a set R
of at most r players, and for any inputs (x,w1, . . . , wn), the following robustness
property holds. If there is no (w′

1, . . . , w
′
n) such that f(x,w′

1, . . . , w
′
n) = 1, then

the probability that some uncorrupted players outputs 1 in an execution of Π in
which the inputs of the honest players are consistent with (x,w1, . . . , wn) is 0
(resp., negligible in λ).

3 Zero-Knowledge from MPCitH and Oblivious Transfer

It were these definitions that led to MPC-in-the-Head (MPCitH) paradigm, as
introduced in [27], where any honest-majority MPC protocol, i.e. t < n

2 corrup-
tions, can be used to obtain a zero-knowledge proof for an arbitrary relation R.

The idea is as follows: Let P be the prover and let V be the verifier. Given a
public parameter x, P submits a witness w, which upon computation of R(x,w)
shows that x belongs to a language L or not, specifically: R(x,w) ∈ F2 such
that, for a valid witness, if x ∈ L, R(x,w) = 1, otherwise R(x,w) = 0.

Now assume that P generates a sharing, 〈w〉 = (w1, . . . , wn), and computes
R(x, 〈w〉) by choosing random coins ri uniformly at random. By regarding each
pair (wi, ri) as parties in an n-party MPC protocol, as described in Sect. 2.4,
we then obtain a set of views, viewi, corresponding to the output of the MPC
protocol.

Having obtained the views, the P submits the views to an oracle O, which the
verifier, V, then queries a set of indices, I, to obtain {viewi}i∈I . By Lemma1 we
then obtain that the verifier can conclude if the computation was done correctly
by checking that the opened views are all consistent with each other and that
the protocol outputs a positive result.

One way to realize such an oracle is by implementing an oblivious transfer
protocol. Figure 3 presents an MPCitH-based ZK proof system in the FOT-hybrid
model.
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Fig. 3. MPC-in-the-head ZK protocol in the FOT-hybrid model.

This protocol, ΠZK, proceeds exactly as described when instantiated with
FOT. In the FOT-hybrid model, ΠZK can be shown to UC-securely realize FZK.

Theorem 1. Let ΠMPC be an n-party protocol with perfect correctness, t-
privacy and perfect r-robustness, with t = Ω(λ) and n = c · t for some con-
stant c > 1. ΠZK of Fig. 3 UC-realises FZK of Fig. 1 with soundness error
ε = max{p1(n, t, r), p2(n, t, r)}, where

p1(n, t, r) =
(

r

t

)(
n

t

)−1

, and

p2(n, t, r) =

{
0 otherwise(∑k

j=0

(
k
j

)(
n−2k
t−j

)) (
n
t

)−1 if n − 2k > 0

and k = �r/2
 + 1.

Proof. We design a simulator Sim to act as adversary in the ideal-world execu-
tion. We consider in turn the four cases of the real-world where: both parties are
honest, only the verifier is honest, only the prover is honest, and both parties
are corrupt.

1. Both Parties Are Honest: Upon receiving the query from FZK, the simula-
tor Sim sends (sid, ready) to A on behalf of FOT. If A responds with abort, then
Sim responds abort to FZK, otherwise it responds with continue.
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2. Only the Prover Is Corrupt: Upon receiving view∗ = (view∗
1, . . . , view

∗
n) from

the corrupt prover P∗, the simulator reconstructs a witness w∗ = w∗
1 + · · ·+w∗

n

and sends (sid, prove,P,V, C, w∗) to FZK. It also sends (sid, ready) to A.
When FZK queries Sim, the simulator first checks A’s response. If A replied

(sid, abort) to FOT, then Sim also sends abort to FZK. Otherwise, Sim responds
with continue.

3. Only the Verifier Is Corrupt: Upon receiving (prove, C) from FZK, the simula-
tor sends (sid, ready) to A on behalf of FOT. When A sends (sid, receive,S,R, I)
to FOT, Sim sends (sid, verify, C) to FZK. If A responded with (sid, abort) to FOT,
then Sim responds abort to FZK when queried, otherwise it responds continue,
and receives (sid, C, y).

The simulator invokes the t-privacy simulator SimMPC of the MPC protocol
on corruption set I by sampling {wi}i∈I uniformly at random as in the protocol
and inputting (I, x, {wi}i∈I , y). From SimMPC it then receives a set of consistent
views {viewi}i∈I which will agree with the required outcome, y. Finally, Sim
sends these views to A as the response from FOT.

4. Both Parties Are Corrupt: Just like in case 2, the corrupt prover, P∗, submits
view∗ = (view∗

1, . . . , view
∗
n) to Sim. Upon receiving these views Sim sends sid, ready

to A and processes any abort instructions coming from A if necessary. Unless
it receives an abort instruction from A, like in case 3, the corrupt verifier, V∗,
submits a set I to Sim. Sim then sends (viewi)i∈I to V∗. No further simulation
is necessary as both the prover and the verifier are corrupt.

Completeness [27, proof of Theorem 3.1]: If (x,w) ∈ R and the prover is
honest, then, since

∑n
i=1 wi = w and ΠMPC is perfectly correct, the views

view1, . . . , viewn always have output 1. Since these views are honestly produced,
they are always consistent with each other.

Soundness: Note that in the real world, the prover uses an MPC-in-the-Head
protocol to produce a set of n views, (view1, . . . , viewn), from which the ver-
ifier then gets to select a t-sized set of views to open. However, in the ideal
world, the prover submits the n views to Sim who then extracts the witnesses
w∗

1 , . . . , w
∗
n and recombines them to obtain w∗ = w∗

1 + . . . + w∗
n. Sim then sends

the recombined witness to FZK. FZK then evaluates if the witness received is
correct and returns the outcome, abort or accept, to the verifier. Clearly there is
a discrepancy here between the real world and the ideal world if, and only if, the
t sized set of views opened to the verifier is consistent while there are views in
the remaining (n − t) views that would cause an inconsistency; this would cause
the ideal world verifier to abort while the real world verifier would accept. Since
we are opening t views of a t-private and perfectly r-robust MPC protocol, the
soundness analysis follows exactly that of the protocol of Ishai et al. for MPC-
in-the-head with MPC in the malicious model [27, Theorem 4.1]. Here we make
use of the explicit probability formulae given by Giacomelli et al. [19] following
the analysis of Ishai et al. We therefore have that the soundness error is equal
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to the value ε(n, t, r) = max{p1(n, t, r), p2(n, t, r)}, where

p1(n, t, r) =
(

r

t

)(
n

t

)−1

, and

p2(n, t, r) =

{
0 otherwise(∑k

j=0

(
k
j

)(
n−2k
t−j

)) (
n
t

)−1 if n − 2k > 0
,

where k = �r/2
+1. Here p1 illustrates the case in which A has corrupted a set
of views which do not pass the robustness threshold and therefore t ≤ r. This
means that the soundness error, which is the probability that the ideal world
aborts while the real world accepts, is dictated by the probability that a set is
chosen in which the t views are consistent while there is an inconsistency within
the remaining r−t views out of all the possible size t sets. Similarly, p2 illustrates
the case in which A manages to corrupt a set that breaks the r-robustness of
the protocol. Note that in this case r-robustness can not be broken if 2k ≥ n.
This concludes that the soundness error can be described as

|Pr[ExecZ,Π,P∗ = 1] − Pr[ExecZ,F,SimP∗ = 1]| = ε(n, t, r)

Zero-Knowledge: If ΠMPC is perfectly t-private, then the simulation returned
by SimMPC is case 3 is distributed identically to an honest execution of the
protocol. Similarly, if ΠMPC is statistically or computationally t-private, then the
distribution of the views returned by SimMPC is statistically or computationally
close to that of the views produced by an honest prover.

|Pr[ExecZ,Π,A = 1] − Pr[ExecZ,F,SimV∗ = 1]| = |DΠMPC
− DSimMPC

|
��

4 Suitable Oblivious Transfer Protocols

The characteristics of the MPCitH proof system in the OT-hybrid model that we
propose in Sect. 3 are strongly tied to those of the chosen OT protocol. Namely,
the proof system will have as many rounds as the OT protocol does, will be secure
against either unbounded or computationally-bounded2 provers depending on
the OT protocol’s security against malicious senders, will be honest-verifier zero-
knowledge if the OT protocol is only secure against passive malicious receivers,
and so on. In this section, we therefore discuss the suitability of a non-exhaustive
list of UC-secure OT protocols from the literature, summarized in Table 1, to
instantiate the OT functionality used by our protocol.

While the MPCitH proof system from Sect. 3 uses an arbitrary k-out-of-n
OT protocol, in practice the values for k and n are fixed by the choice of the
MPC protocol. As can be seen from Table 1, in fact k-out-of-n OT protocols are
the least common in the literature as they are often not the initial goal of OT
protocol designers.
2 In this case our protocol would formally be an MPCitH argument system.
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Table 1. Non-exhaustive list of UC-secure OT protocols

Reference Format Rounds UC Secure Security Level Post Quantum OT type

[4] 1/2 2 ROM Statistical Multiple String
[35] 1/2 2 CRS Statistical LWE Bit
[31] 1/2 4 ROM Computational Isogenies String
[17] 1/2 2 CRS Statistical LPN String
[3] Protocol-1 1/2 2 ROM Computational Isogenies String
[3] Protocol-2 1/2 4 Standard Computational Isogenies String
[33] 1/n 5 Standard Statistical NTRU String
[26] 1/n 2 CRS Computational × String
[9] 1/n 3 ROM Statistical LWE String
[25] k/n 3 CRS Computational × String

4.1 Generic MPCitH and 1-out-of-2 Oblivious Transfer

The initial proposal for MPCitH by Ishai et al. [27] can straightforwardly be
instantiated with a 2-party MPC protocol, implying t = 1; this enables the
use of 1-out-of-2 OT to realize FOT. This is advantageous because this is the
type of OT that is most often first constructed, and is the most present in the
post-quantum OT literature (see Table 1).

This type of OT also tends to be the most efficient, with several constructions
requiring only two rounds of communication; this yields a two-round MPCitH
zero-knowledge argument system, since the security against a malicious OT
sender holds with computational assumptions.

However, a drawback of this approach is that each execution of the MPCitH
protocol has a soundness error of 1/2 because a new sharing of the witness
is created each time. To achieve soundness errors of O(2−λ) therefore requires
O(λ) independent repetitions of the MPC protocol, which is computationally
expensive for the prover.

Furthermore, two-round OT protocols that are simulation-secure (let alone
UC-secure) are impossible in the plain model [23] which therefore implies that
any zero-knowledge proof systems based on efficient two-round oblivious transfer
must necessarily rely on setup assumptions such as the random oracle model or
a common reference string.

4.2 Broadcast MPCitH and 1-out-of-n Oblivious Transfer

A drawback of the previous instantiation is that creating independent 2-party
secret sharings of the witness leads to computational inefficiency for the prover,
since it has to simulate O(λ) repetitions of the MPC protocol; this is also not effi-
cient for the communication efficiency of the proof system, since each repetition
of the MPC protocol needs to open the view of one party to the verifier.

To reduce the number of repetitions, and thus the amount of communication
that is sent, it can be interesting to increase the value of n, and also vary the
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value of t. However, as Table 1 shows, t-out-of-n UC-secure OT protocols are
not common—the only one we found is furthermore not post-quantum secure.
Therefore it is more interesting to look at specific values for t.

When the MPC protocol used for the MPCitH construction is (n−1)-private,
we say that is it “full-threshold” to mean that the threshold of tolerated privacy
corruptions is as high as it can possibly be. In this setting, all but one of the
MPC parties’ views can be opened to the verifier which means that FOT of Fig. 1
can be realized by an (n − 1)-out-of-n OT protocol, also known as “all-but-one
OT”. However, efficient constructions for this type of OT have only recently been
proposed [5] and their design space is not as well understood. Independently of
the chosen OT protocol, such an instantiation would still require opening n − 1
views for each repetition of the MPC protocol, which would not improve the
communication efficiency.

This can be remedied by choosing an MPC protocol which exclusively uses
a broadcast communication channel; that is, whenever a party sends a message,
it is received identically by all other parties in the protocol. With such a com-
munication model, much less data needs to be included in the views of each
MPC party since all incoming messages from party Pi are identical for all other
parties, and equal to all outgoing messages of party Pi.

Therefore, when combined with a full-threshold MPC protocol (see Sect. 4.2),
when all parties except for Pi are requested by the MPCitH verifier, the prover
needs to send only the list of outgoing messages of Pi, rather than the n−1 lists
of incoming messages for the other parties.

For the FOT-hybrid version that we propose in Sect. 3, this implies that FOT

can be realized with 1-out-of-n OT protocols for the part of the views that
contain the MPC protocol messages; since that is usually the biggest part of
the view, this results in a factor n reduction in the amount of communication.
Furthermore, 1-out-of-n OT protocols are more commonly built than (n − 1)-
out-of-n ones (see Table 1) which gives more choices for the instantiation.

4.3 Hypercube MPCitH and 1-out-of-2 Oblivious Transfer

While most recent MPCitH constructions are based on broadcast MPC [6,15],
the computational cost of (n− 1)-out-of-n and 1-out-of-n OT protocols required
to instantiate our construction may be too high, and reverse the advantages
gained from the use of broadcast-based MPC protocols.

The recent technique of “Hypercube MPCitH” [1] can enable the return to
2-party MPC by secret-sharing a high number of MPC parties, say n = Nd = 32,
into d = 5 parallel executions of N = 2-party MPC computations which use a
single Nd-sharing of the witness.

The advantage of this technique is to reduce the opening of the message part
of the views of the MPC protocol to 1-out-of-2 OTs, instead of 1-out-of-n, while
grouping the opening of n − 1 witness share parts of the views into a single
(n − 1)-out-of-n OT.
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A Constant-Round Zero-Knowledge

Table 2 surveys the round complexity of computational zero-knowledge proto-
cols. Katz [30] shows that if a language L has a 4-round, black-box, com-
putational zero-knowledge proof system with negligible soundness error, then
L̄ ∈ MA. Particularly, assuming the polynomial hierarchy does not collapse, the
five rounds computational zero-knowledge proof systems [21] is optimal.

Table 2. Constant-round Zero-knowledge Protocols.

Ref System Verifier coins Black-box Sim Round Achievability Assumption

[22] Proof Public � constant ×
[29] Proof Public × constant × iO
[21] Proof Private � 5 � Claw-free
[18] Proof Private × 3 × iO
[8] Proof Private × 4 � certain HFa and LWE
[22] Arg. Public � 3 ×
[8] Arg. Public × 5 � certain HFa and LWE
[22] Arg. Private � 3 ×
[7] Arg. Private � 4 � one-way function
[8] Arg. Private × 3 � certain HFa and LWE

a keyless multi-collision-resistant hash functions.
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Abstract. In this work, we extend the MPC-in-the-Head framework,
used in recent efficient zero-knowledge protocols, to work over the ring
Z2k , which is the primary operating domain for modern CPUs. The pro-
posed schemes are compatible with any threshold linear secret sharing
scheme and draw inspiration from MPC protocols adapted for ring oper-
ations. Additionally, we explore various batching methodologies, leverag-
ing Shamir’s secret sharing schemes and Galois ring extensions, and show
the applicability of our approach in RAM program verification. Finally,
we analyse different options for instantiating the resulting ZK scheme
over rings and compare their communication costs.

1 Introduction

Zero-knowledge (ZK) proofs [21] are a fundamental tool for numerous privacy-
preserving applications. A proof system enables a prover to convince a verifier
that a statement is true beyond reasonable doubt. The zero-knowledge property
additionally ensures that the only information learnt from the interaction by the
verifier (or any other listener) is the veracity of the statement, and nothing else.

A common method of expressing statements for proof systems is circuit sat-
isfiability. In this approach, both the prover and verifier possess a circuit C, and
the prover aims to demonstrate their knowledge of a witness w which satisfies
the condition C(w) = 0. Usually, C is a circuit defined over a field, either binary
or arithmetic. However, many use cases of ZK proof systems (such as program
verification) require the statement to be expressed with arithmetic over a ring,
such as Z2k . In particular, the underlying structure of choice for modern CPUs,
64-bit integers, can be expressed over the ring Z264 . Hence proof systems natively
compatible with this ring arithmetic allow to preserve the semantics of a con-
ventional CPU, without the costly need to emulate it with finite field arithmetic
instead.
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There are few exceptions to this approach and some ZK protocols have been
extended to operate over rings. In particular, when considering highly efficient
and scalable zero-knowledge protocols, some works [3,4,27] have extended proto-
cols based on vector oblivious linear evaluation (VOLE) to work over Z2k . These
kinds of proofs are able to handle very large statements, such as proving prop-
erties of complex computer programs, but are only designated-verifier, i.e., the
verifier needs to keep some state secret from the prover. This means that these
proofs cannot be made non-interactive and require both parties to be online at
the same time.

Publicly verifiable proofs can be generated in different ways, for exam-
ple following the MPC-in-the-Head (MPCitH) paradigm introduced by Ishai,
Kushilevitz, Ostrovsky and Sahai in [23]. Despite its simplicity, this technique
has proven efficiency and flexibility, and found a variety of different applica-
tions. In the context of zero-knowledge, MPCitH leads to very efficient proto-
cols [2,6,17,18,20,25,26] for proving statements that can be expressed with small
to medium-size circuits, and it can be used to develop efficient post-quantum
digital signature schemes [5,9].

MPC-in-the-Head. The core idea behind MPCitH is for the prover P to emulate
an MPC protocol for the circuit C, amongst N parties, in their head, and commit
to each of the emulated parties’ view. The verifier V then asks to decommit a
small enough subset of these views so as not to break the privacy of the MPC
scheme. The soundness of the proof comes from the correctness of the underlying
secure MPC protocol and the decommitment of parties’ views. In this way, if
the prover wants to cheat in the MPC protocol, they need to simulate some
parties as acting maliciously, which in turn can be detected if the set of malicious
parties overlaps the set of decommited parties. In addition, since the verifier sees
fewer views than the privacy threshold of the MPC protocol, the zero-knowledge
property holds.

The seminal work of Ishai et al. [23] describes a generic compiler which
makes black-box use of the underlying MPC protocol, but only considers
asymptotic complexity; on the other hand, recent concretely efficient protocols
[2,17,18,20,26] provide different concrete instantiations for the MPC protocol
used to evaluate the circuit C, based both on full-threshold [6,12,25,26] and
variable t-threshold secret-sharing schemes [2,17,18,20]. In the latter case, the
resulting ZK scheme can achieve better soundness and different choices of t result
in different proof-size/efficiency/soundness trade-offs.

Another significant difference among these efficient MPCitH based schemes
lies in the way the MPC protocol is used, i.e., whether its task consists of comput-
ing the circuit C or just verifying it. In the former approach, taken for example
by [6,23,26], the prover locally emulates the MPC protocol by secret-sharing the
witness w among the N simulated parties as the input of the MPC evaluation;
then it evaluates in MPC the circuit C and sends to the verifier commitments
to each parties’ input shares, random tapes and received messages (these values
constitute a party’s view) and to all output shares. Then, the verifier randomly
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chooses t of the views’ commitments to be opened, and verifies that the com-
mitted messages are all consistent with each other and with the output shares.

In the latter approach, used for example by [2,5,12], instead of computing
the entire circuit C in MPC, the prover, that knows the witness and all the
intermediate values of the circuit evaluation, inputs (or injects) all these values
(the witness and results of non-linear operations) in a secret-shared form as input
of the MPC protocol, whose role at this point is simply checking that these inputs
are indeed correct. This approach usually leads to better performance for the
prover. The input of this MPC protocol is also called extended witness, since the
role of the MPC protocol is not only that of verifying that w is a valid witness,
i.e., that C(w) = 0, but also that the non-linear operations in C have been
honestly computed.

1.1 Our Contribution

This work describes how to adapt some efficient MPCitH protocols, like [6,12,18],
to work over a ring of the form Z2k . As said before, compared to VOLE-based
schemes, MPCitH proofs have the advantage to be public coin, which enables
public verifiability and the ability to obtain non-interactive proofs via the Fiat–
Shamir transformation [19]. 1 We summarize our contributions as follows.

MPCitH over Z2k . Our approach considers MPCitH schemes such as Limbo [12]
and [18] where the MPC protocol is used to verify the correctness of the com-
mitted extended inputs. This type of protocols can be well suited to particular
use cases, such as verifying computations or proving the correct execution of
RAM programs (where an extension of existing protocols to work over Z2k can
be practically relevant).

In recent years, MPC protocols have also been extended to work over rings;
see for example [11,15] for the case of dishonest majority (i.e. t ≥ N/2), and
[1,24] for the case of honest majority (i.e. t < N/2). In the case of honest major-
ity protocols, the natural secret-sharing scheme to instantiate a threshold MPC
protocol, Shamir’s secret sharing [28], requires the underlying algebraic structure
to be suitably large. In the case of MPC over finite fields one simply extends the
base field so that it contains N +1 elements (where N is the number of parties).
In the case of rings it requires a large enough Galois ring extension, so that the
largest exceptional sequence2 in the extension ring contains N +1 elements. This
was originally introduced in the context of secret sharing by Fehr [16].

A similar approach is also needed in our protocols, where we replace the full-
threshold additive sharing scheme used in Limbo with a t-threshold secret shar-
ing scheme to achieve better soundness. We show different options to instantiate
our MPC verification procedures, and analyse their respective communication

1 Many VOLE proofs can be split into an interactive, witness-independent prepro-
cessing phase and a public-coin online phase, of which the latter can be made non-
interactive. Note that this still requires the designated verifier to keep secret state.

2 Informally, an exceptional sequence of elements in a ring R is such that their pairwise
difference is invertible. (See Sect. 2.2.).
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costs. While the t-threshold approach generally comes with a larger proof size
than the additive sharing, it trades this for higher efficiency for the verifier, who
now only needs to verify that t parties behaved honestly rather than N − 1.

Finally, we recall that KKW [26] already works over any rings. This scheme
is known for its efficiency when dealing with small to medium-sized circuits,
however, as mentioned earlier, it requires an MPC evaluation of the entire circuit
C, which may not be the most suitable approach for applications like program
verification.

Packing Techniques. In the full version [8], we describe a methodology for packing
within our MPCitH proofs, that is, proving multiple statements for the same
circuit in parallel, in a single proof. It consists of two orthogonal approaches
that could potentially be combined to achieve better packing rates. We take
advantage of Shamir’s threshold secret sharing scheme by embedding multiple
secrets in the roots of the sharing polynomial, and we also make use of the
additional coefficients provided by Galois ring extensions by placing multiple
secrets within a single ring element.

Performing batch proofs in this way additionally alleviates the extra commu-
nication cost for a threshold scheme, since the extra space that was introduced to
have a large enough exceptional set becomes completely utilised. In combination
with the increased verifier efficiency and the better soundness guarantees, this
makes the threshold setting preferable to the additive setting for batch proofs.

RAM Applications. Also in the full version, we adapt the compilation procedure
of [13] to the ring structure. The techniques used there allow to compile a list of
read and write array accesses to a standard arithmetic circuit for proof systems in
order to enable program verification. This compilation naturally fits the MPCitH
framework extended to the ring Z2k that we describe in this paper. This approach
removes the need of any bit-decomposition operation; this is different from other
recent works [22] that use MPCitH schemes based on the KKW protocol [26] for
program verification and ring switching techniques based on edaBits [14].

In our work, to verify the correctness of the memory operations, the initial
array is extended to a checking circuit Ccheck over Z2k—with standard linear and
multiplication gates and calls to a random oracle—that verifies the consistency
of a list of access tuples which contains both the initial array and the accesses
performed, encoded as a set of tuples. Given this list, Ccheck produces new mul-
tiplication triples that need to be verified via a checking procedure over rings.
To perform these consistency checks, [13] describes three subcircuits EqCheck,
BdCheck and PermCheck to verify respectively equality, upper and lower bounds
and permutation of a list of values in zero-knowledge.

While our compilation follows the blueprint of [13], the main difference is
that, to suit the ring structure, we require a large enough exceptional sequence
and the removal of the EqCheck sub-circuit that crucially relies on every element
having an inverse. Our resulting construction inherits all the properties of the
scheme described in [13], leading to a public-coin constant-overhead ZK proof
system for computations over Z2k in the RAM model.
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2 Preliminaries

This section establishes notation and recalls standard results.

2.1 Notation

We denote by λ the computational security parameter and by σ the statistical
security parameter. For a set S, we let a ← S denote the uniform sampling a
from S. If D is a probability distribution over S, we let a ← D denote sampling a
from S according to D. For a probabilistic algorithm A, we let a ← A denote the
probabilistic assigning to a of the output of algorithm A, with the distribution
being determined by the random coins of A. We let [n] ⊂ N denote the set
{1, . . . , n}. We use x for vectors of elements, and x◦y for element-wise products.

Zero-knowledge proofs. We use standard definitions of zero-knowledge proofs;
we construct our protocols to allow proving arbitrary NP language-membership
statements. Let L be in NP and R(x,w) be a corresponding NP relation with
statement x and witness w. That is, the statement x is a member of L if and
only if a witness w exists such that (x,w) ∈ R. We can then consider an arith-
metic circuit C (with addition and multiplication gates) that decides (or rather
confirms) membership of L when given such a witness. Concretely, the circuit
satisfies C(x,w) = 0 if and only if (x,w) ∈ R. The focus of this work are zero-
knowledge proofs of knowledge for relations where C is an arithmetic circuit over
the ring Z2k .

2.2 Rings

While the circuits we use in our proof systems are defined over the ring Z2k , we
need to work over larger rings to enable threshold secret sharing and to achieve
low soundness errors. In this work we consider two ways to obtain such larger
rings as described below.

2-Adic Extensions. Instead of using Z2k , we increase the modulus and work
over Z2k+s , where s depends on the security parameter. This methodology
of extending the ring 2-adically in order to check various relations was first
introduced in the SPDZ2k protocol [11]. While this is a well-studied technique
in the MPC literature, there are some limitations inherent to our application
to MPCitH. Many soundness checks that use such an extension only guar-
antee consistency for the k lower bits; this may therefore require iterating
such extensions to Z2k+n·s . Moreover, since Z2k is not a subring of Z2k+s , we
cannot easily lift Z2k elements to Z2k+s if we also wish to retain some auxil-
iary algebraic relationship between the lifted values. The converse direction—
truncating elements of Z2k+s to Z2k—is a well-defined ring homomorphism.

Galois Extensions. We extend the base ring Z2k by forming the Galois ring
GR(2k, d) = Z2k [X]/(p(X)), the ring of polynomials with Z2k coefficients
reduced modulo an irreducible polynomial p(X) of degree d. One advantage
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of this technique is that reduction modulo 2 results in the field F2d , i.e., we
have GR(2k, d)/(2) � F2d . Also, while taking a degree-d extension increases
the size of elements by a multiplicative factor d, it can be used for several
different checks—unlike the 2-adic extensions. Moreover, a Z2k element can
be easily “lifted” into a GR(2k, d) element by using zero for the coefficients
of non-constant terms. This lift often retains algebraic relationships between
the lifted elements.

Note that both techniques can also be combined to obtain rings of the form
GR(2k+s, d).

Definition 1 ((Maximal) Exceptional Sequence). Let GR(2k, d) be a
degree-d Galois extension of Z2k . A set {α1, . . . , αn} is an exceptional sequence
(of length n emph) in GR(2k, d) if for all i �= j ∈ [n] we have αi − αj ∈
GR(2k, d)∗.

An exceptional sequence of length n is maximal if there does not exist an
exceptional sequence of length n′ > n.

In GR(2k, d), there exists a maximal exceptional sequence of length 2d, see [1,
Prop. 2]. We use Ex(R) to denote a maximal exceptional sequence of a Galois
ring R and assume that we can efficiently sample uniformly random elements
from it. For Ex(R) we can take the 2d polynomials with {0, 1} coefficients as an
exceptional sequence.

To perform soundness checks in our proof systems, we will often reduce these
to equality checks between two polynomials. While the Schwartz–Zippel Lemma
is frequently used for this purpose when the polynomials are defined over finite
fields, we require a generalised variant that is adapted to our ring-based setting.

Lemma 1 Generalized Schwartz–Zippel Lemma [10]). Let R be a ring,
and f : Rn → R an n-variate non-zero polynomial of total degree (the sum of
degrees of each variable) D over R. Let A ⊆ R be a finite exceptional sequence
with |A| ≥ D. Then, Prx∈RAn [f(x) = 0] ≤ D

|A| .

For soundness checks over 2-adic extensions, we also introduce the following
lemma to bound the soundness error over Z2k when performing computations
over Z2k+s . The proof is standard, and can be found in the full version.

Lemma 2 (2-adic Random Linear Combinations). Let δ1, . . . , δn be ele-
ments of GR(2k+s, d), such that at least one δi �≡ 0 (mod 2k). Also let α1 = 1
and α2, . . . , αn ← GR(2s+1, d) be chosen uniformly at random. Then we have
the probability bound Pr

[∑
αi · δi ≡ 0 (mod 2k+s)

] ≤ 2−(s+1)·d.

2.3 Secret-Sharing Schemes Over Rings

We consider additive (A) as well as threshold (T ) secret sharing schemes over
our commutative finite rings R, e.g. R = GR(2k, d), which we denote as �·�A

and �·�T respectively. Our protocols work with any linear secret sharing scheme.
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Only the overall soundness and the communication cost depend on the instan-
tiation. Hence, we will often drop the A or T from the notation and just write
�·�. Both schemes allow the parties to compute linear functions on shared values
such as �γ� = a · �α�+ b · �β�+ c by performing only local computations on their
individual shares.

Additive Secret-Sharing. An additive (N − 1)-out-of-N secret sharing over
R is straightforward. To share a value v ∈ R, first sample values v1, . . . , vN ← R
and then set Δv = v − ∑

i∈[N ] vi. The share of party Pi is then defined as
�v�A

i := (vi;Δv). We denote this procedure as �v�A ← ShareA(v). Recon-
struction is performed by computing v = Δv +

∑
i∈[N ] vi, which we denote as

v ← RecA(�v�A).

Threshold Secret-Sharing. The well-known threshold secret sharing scheme
due to Shamir [28] relies on polynomial interpolation which usually requires a
field structure. We follow the work of Abspoel et al. [1], who have shown how
to use Galois rings to realize Shamir-style threshold secret sharing over rings in
the context of MPC.

Let α0, . . . , αN be an exceptional sequence of length N +1 within GR(2k, d).
To share a value v ∈ Z2k among parties P1, . . . , PN with threshold t, first sample
a random degree-t polynomial f from GR(2k, d)[X]≤t with the condition that
f(α0) = v. To then create shares, give each party Pi, for i ∈ [N ], the value
�v�T

i := yi := f(αi). We denote such a sharing with �v�T ← ShareT (v).
To reconstruct a value v, we use Lagrange interpolation using any index set

S ⊆ [1, N ] of at least t + 1 shares:

f(X) =
∑

i∈S

yi ·
∏

j∈S\{i}

X − αj

αi − αj

This interpolation over GR(2k, d) is well-defined since, by definition of an excep-
tional sequence, all differences αi − αj are invertible. Let the reconstruction
procedure be denoted by v ← RecT ({�v�T

i }i∈S).

Note that, in general, one needs to check whether a shared value lies in
the base ring Z2k or (strictly) in the ring extension GR(2k, d) \ Z2k . To deal
with this, we describe a checking procedure ΠRing-Check, which ensures a set of
shares corresponds to values in Z2k without violating t-privacy, in Sect. 4. This
procedure can then be applied to the input shares. In our protocols, no other
wires or shares, such as the rest of the extended witness, need be validated in this
way, as either these shares are obtained through linear operations that preserve
this property, or the property is guaranteed by the correctness of our subprotocol
to check multiplications.
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2.4 MPC-in-the-Head via Linear Secret Sharing

This section presents a general framework for MPCitH protocols based on thresh-
old linear secret sharing schemes, built on the framework of Feneuil et al. [18]
that provides a generic transformation for MPC protocols based on threshold
linear secret sharing. We first describe a generic MPC protocol for circuit veri-
fication, then show how it can be used to obtain a ZK proof system, and finally
analyse the resulting soundness.

MPC Protocol for MPCitH. The MPC protocol presented in Fig. 1 is generic
for threshold LSSS over Z2k , in the sense that it can be instantiated with any
multiplication checking protocol and any suitable LSSS. It involves an input party
who distributes secret shared values to the computing parties. Looking ahead, we
refer to the totality of these input values as the extended witness of the resulting
proof system. In addition, computing parties have access to two oracles: a hint
oracle OH which provides the parties with a sharing of an arbitrary secret value
from the input party; and a randomness oracle OR which outputs random public
values.

These oracles are mainly used in the following subprotocols whose goal is to
verify some properties on shares of (extended) witness values:

ΠZero-Check takes as input a value �v� (resp. a vector of values �v�) and returns

 when v = 0 (resp. every entry of v is zero), or ⊥ otherwise. This can be
achieved similarly to share reconstruction, with the difference that the opened
value is not sent.

ΠMult-Check takes a triple (�a�, �b�, �c�) and returns 
 if and only if a ◦ b =
c. In some cases, this equality can be checked over a different ring than
that in which the input values are shared. We provide three instantiations of
ΠMult-Check in Sect. 3, and these form the main contribution of this paper.

ΠRing-Check takes as input a vector of values �v�, shared over a 2-adic exten-
sion GR(2k+src , d0) and outputs 
 if and only if the truncation of v to
GR(2k, d0) lies in the subring Z2k . It also truncates the elements of v to
the ring GR(2k+s, d0). (See Sect. 4.)

We write Πτ
Mult-Check to denote the parallel repetition of τ instances. By verify-

ing a property through one of these subprotocols, we mean that the subprotocol
is run, and Reject is returned by the MPC protocol when the output differs from

. Reconstructing a shared value is performed by each party Pj first broadcast-
ing its share �v�j and then running v ← Rec(�v�) In the threshold setting, only
t + 1 shares are required since the other shares are determined by these.

In essence, this protocol does not compute the circuit C, but only checks
that the values given by the input party are consistent with an honest evaluation
of C. To do so, the computation parties parse C in topological order but only
(locally) compute the linear gates, whereas output of non-linear gates and Rec
are provided as input and hence need to be checked. This is necessary because
the input party is not trusted to provide the correct values. The output of the
protocol is either Accept or Reject. To decrease the false-positive rate of the
multiplication checking procedure, the parties execute it τin times in parallel.
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Fig. 1. Generic MPC protocol for circuit verification

From MPC to ZK. The compilation technique of Ishai et al. [23], applied to
this MPC protocol, provides our interactive zero-knowledge scheme between a
prover P and a verifier V.

The prover executes, in their head, the MPC protocol ΠC(x,w) between
N parties using an LSSS with t-privacy. To do so, P first evaluates C(x,w)
in the clear, and secret shares w as well as the intermediate values required
for a local computation of C. After recording these N input views, it plays
the role of the input party and distributes these shares to virtual computing
parties. These parties execute ΠC(x,w) and its checking sub-protocols. When
the protocol queries OH , the requested shared values are provided by P to the
virtual parties and recorded in the input views. Queries to OR are replaced by
an interaction with the verifier, where first P commits to the input views so far,
and then V responds with a random value.

In the final interaction, after ΠC terminates, V asks to open t of the N views,
which it checks for consistency. If the consistency check succeeds, and the output
of ΠC(x,w) is Accept, then V also outputs Accept.

ZK Protocol Soundness. The MPC protocol may output Accept for an
invalid witness with some bounded false-positive rate p, i.e., the probability
that ΠC(x,w) outputs Accept when in fact C(x,w) �= 0. When p is not suffi-
ciently small, we increase the detection probability by performing τin parallel
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inner repetitions of the circuit check inside the MPC protocol. This leads to an
overal false-positive rate of errMPC = pτin .

The framework of Feneuil et al. [18] provides a generic transformation for
any such MPC protocol with N parties and tolerating up to t corruptions into
an MPCitH proof, with a soundness error of

errZK =
1

(
N
t

) + errMPC · t · (N − t)
t + 1

. (1)

For an additive full-threshold secret sharing scheme (t = N − 1), this becomes

errZK =
1
N

+ errMPC ·
(

1 − 1
N

)
.

By setting N and t, we obtain a certain errZK for the soundness error of a
single execution of the protocol. Since this may be too high for a given security
setting, we can repeat the transformed protocol τout times (outer repetitions) to
obtained any desired soundness error, errτoutZK .

We denote the overall proof size by sizeProof , which one can think of as the
communication cost in bits, required to commit to the parties’ views and open
t of them in τout repetitions.

3 Checking Multiplications Over Rings

We now describe three instantiations for ΠMult-Check. The three protocols have
appeared previously in the context of MPCitH over fields, but their extension
to MPC over rings is mostly new, although a protocol similar to our sacrificing
check can be found in [3] for VOLE-based zero-knowledge proofs over Z2k .

We analyse their soundness in the ring-based setting, and compare their
performance. For each of the checking procedures, we analyse the false-positive
rate errMPC of the resulting MPC protocol. It then suffices to use the generic
transformation of Feneuil and Rivain [18] to compile our MPC protocol into an
MPCitH proof system with soundness error as in Eq. (1).

Our three different checking procedures are: 1) A simple sacrifice-based check,
ΠSac-Check (described in Sect. 3.1), 2) an inner product multiplication check,
ΠIP-Check (in Sect. 3.2), and 3) a compressed multiplication check, ΠCompress (in
Sect. 3.3). For the first two of these, one can improve the soundness by utilizing
either 2-adic or Galois extensions. The third, compressed multiplication check,
is adapted from the methodology in [7,12], and requires a Galois ring extension.

Looking ahead, in the next section we also present a fourth procedure which
checks that a set of shares (typically the input to the circuit) all correspond to
values in Z2k (as in line 1 of Fig. 1). This procedure takes its inputs as shares in
GR(2k+src , d0), has a soundness error of errRing-Check. When the chosen multiplica-
tion checking procedure would have sufficient soundness with smaller s < src, it
is possible to locally truncate the input shares correspondingly before performing
the procedure.
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The false-positive rate of the MPC protocol becomes errMPC := errτinCheck +
errRing-Check where errCheck denotes the false-positive rate of a single execution of
the checking procedure. In Sect. 5, we investigate the differences in communica-
tion cost for our different multiplication checks and sharing scheme choices.

3.1 Sacrifice Based Check

Our first multiplication checking procedure is a sacrificing based check. This is
based on the checking protocol of Baum and Nof [6], combined with an opti-
mization of Kales and Zaverucha [25, Sect. 2.5, Optimization 3], transferred to
the ring setting. The algorithm is presented in Fig. 2.

Fig. 2. The sacrificing check over rings.

As inputs, it receives the vectors (�x�, �y�, �z�) of multiplication input and
output values, secret-shared over the “computation ring” GR(2k+s, d0). In case
of d1 > 1, it first lifts these vectors to the “checking ring” GR(2k+s, d0 · d1).
Then, the hint oracle OH distributes to the parties secret shares of �a� and �c�,
correlated in such a way that a ◦ y = c. After receiving a random coefficient ε
from the randomness oracle OR, the parties “sacrifice” the vector �a� by using
it to mask the randomized vector ε · �x� and reconstruct the masked value as α.
Finally, the protocol checks whether both z and c were computed correctly by
OH by checking that the sacrificing equation ε · �z� − �c� − α ◦ �y� is equal to 0.
The argument is that if either z or c is incorrect, then the probability that the
equality holds, taken over the choice of ε ∈ GR(21+s, d0 · d1), is very small.

We first take a brief look at the correctness of the protocol. If the input is
valid, then the protocol always outputs Accept, since

ε · z − c − α ◦ y = ε · x ◦ y − a ◦ y − (ε · x − a) ◦ y

= ε · x ◦ y − a ◦ y − ε · x ◦ y + a ◦ y = 0.

The zero-knowledge property remains preserved by virtue of α being uniformly
random as a result of the mask a being uniformly random.
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We obtain the following theorem, whose proof can be found in the full version.

Theorem 1 (Soundness of ΠSac-Check). For invalid input, i.e., ∃i ∈ [m] . xi ·
yi �= zi, the check passes with probability at most errSac-Check := 2−(s+1)·d0·d1 .

3.2 Inner Product Multiplication Check

Our second checking procedure, which is based on inner product checks, is
described as a precursor to the Limbo protocol [12], together with optimiza-
tions from Kales and Zaverucha [25], adapted to the ring setting. We present the
algorithm in Fig. 3.

Fig. 3. The inner product check over rings.

This second checking procedure ΠIP-Check works very similarly to the sacri-
ficing check ΠSac-Check of Fig. 2, the main difference is that the hint oracle OH

produces a single correlated inner product tuple ((a, c) such that 〈ay〉 = c) rather
than m correlated multiplication tuples ((a, c) such that a◦y = c). This change
then requires the random oracle OR to produce m random values (contained in
the vector η), instead of a single one, and it also changes the checking equation
so that it checks a single equality, rather than m. This time, the security ratio-
nale is that if either z or c is incorrect, then the single checking equation will
not equal 0 except with small probability (over the choice of η). The rationale
for the zero-knowledge property is again due to the random mask �a�.

Here as well, the protocol is correct, since if the input is valid, then the
protocol always outputs Accept as

〈η, z〉 − c − 〈α,y〉 = 〈η,x ◦ y〉 − 〈a,y〉 − 〈η ◦ x − a,y〉
= 〈η,x ◦ y〉 − 〈a,y〉 − 〈η ◦ x,y〉 + 〈a,y〉 = 0.

We obtain the following theorem, whose proof can be found in the full version.
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Theorem 2 (Soundness of ΠIP-Check). For invalid input, i.e., ∃i ∈ [m] . xi ·
yi �= zi (mod 2k), the check passes with probability at most errIP-Check :=
2−(s+1)·d0·d1 .

3.3 Compressed Multiplication Check

Our third, and final check, is adapted from Limbo [12]. In contrast to the previous
checks, we do not use 2-adic extensions here, since we would have to extend the
modulus repeatedly at least logν(m) times. To apply the compressed protocol
with compression factor ν, the check must happen over an algebraic structure
where an exceptional sequence of length at least 2ν + 1 exists.

We first give the subprotocol of [12] to compress a sequence of ν inner product
tuples into a single inner product tuple in Fig. 4; then we present the main
protocol in Fig. 5. Correctness and zero-knowledge for this checking protocol
follow the same arguments as the original version over fields. Soundness follows
from the following theorem, whose proof can be found in the full version.

Fig. 4. The subroutine for inner product compression
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Theorem 3 (Soundness of ΠComp-Check). Let d := d0 · d1. For invalid input,
i.e., ∃i ∈ [m] . xi · yi �= zi (mod 2k), the check passes with probability at most

errComp-Check :=2−d + (1 − 2−d) ·
((

2(ν − 1)
2d − ν

)
·
logν(m)−2∑

j=0

(
1 − 2(ν − 1)

2d − ν

)j

+
(

2ν

2d − ν

)
·
(

1 − 2(ν − 1)
2d − ν

)logν(m)−1
)

≤ 2−d +
2ν

2d − ν
· logν(m).

4 Checking Base Ring Sharings

To ensure the prover knows and inputs a witness over the base ring Z2k , we
devise a check for the parties to ensure this in Fig. 6. We can perform a batched
check that all the values we wish to inspect are simultaneously correct by taking
a random linear combination with coefficients from Z21+src , and opening that.
Since this would leak a linear combination of secret values, we also allow the
prover to input an additional sharing of a value in Z2k+src to mask this relation
(before receiving the random coefficients from the verifier). This is conceptually
similar to the recent approach by Shoup and Smart in [29].

Fig. 5. The compressed multiplication check
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Fig. 6. The check to ensure sharings correspond to values in the base ring.

In [1], Abspoel et al. consider a similar problem for the case of non-MPCitH
MPC protocols. They solve this problem by generating random secret shared
masks hiding values in the correct ring by means of hyperinvertible matrices,
after which these masks can be adjusted with a public value to hide the wanted
secret. In an MPCitH context however, this becomes both less convenient, since
all computing parties need to contribute their own randomness, as well as requir-
ing a higher communication cost in the final proof size. Soundness follows from
the following theorem, whose proof can be found in the full version.

Theorem 4 (Soundness of ΠRing-Check). For invalid input, that is if any of
x0, x1, . . . , x� are a value in GR(2k, d0) \Z2k when reduced modulo 2k, the check
passes with probability at most errRing-Check := 2−(src+1).

When dealing with additive sharings, the parties can instead simply check
their own local shares to lie in the correct ring and return ⊥ when this is not
the case. For semi-honest parties, this is guaranteed to have no false positives.

Table 1. Rings and numbers of primitive operations used by the three multiplication
checking protocols.

Multiplication Check

ΠSac-Check ΠIP-Check ΠComp-Check

small ring Rsmall GR(2k+s, d0) GR(2k+s, d0) GR(2k, d0)

big ring Rlarge GR(2k+s, d0 · d1) GR(2k+s, d0 · d1) GR(2k, d0 · d1)

challenge space C GR(21+s, d0 · d1) GR(21+s, d0 · d1) GR(2, d0 · d1)

rounds μ 1 1 logν(m) + 1

input over Rsmall #inputs + m #inputs + m #inputs + m

hint over Rlarge m 1 (2ν − 1) · logν(m) + 2

uniform hint over Rlarge m m 2

reconstruction over Rlarge m m 1

challenge from C 1 m m + logν(m)
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5 Protocol Communication Costs

The communication costs of the zero-knowledge proofs depends greatly on the
used secret sharing scheme and the multiplication check protocol, as well as a
large set of parameters. To simplify notation, we use Rsmall for the ring used to
share the witness, Rlarge for the ring extension in which the checks are performed.
Moreover, the random challenges from OR live in the challenge space C, and μ
denotes the number of rounds of the MPC protocol, i.e., the number of calls
to OR. For brevity of notation, we use B (S) = �log2 |S|� to denote the number
of bits needed to represent an element from S.

Table 1 shows how many primitive operations we need for each checking pro-
tocol, and Table 2 gives the communication cost of each operation in both sharing
types. The costs of the challenges are B (C)·μ·τin, since they can be shared across
the “outer repetitions”.

Table 2. Communication costs in bits of the primitive operations. Here B(·) denotes
the number of bits required to encode an element of the set passed as argument.

Sharing Scheme

Additive Threshold

input over Rsmall B (Rsmall) B (Rsmall) · t
hint over Rlarge B (Rlarge) B (Rlarge) · t
uniform hint over Rlarge 0 B (Rlarge) · t
reconstruction over Rlarge B (Rlarge) B (Rlarge)

challenge from C B (C) B (C)

Primitive Costs: The communication costs for our basic operations can be
summarized as follows.

Commitments: Before each call to OR the prover commits to the current state of
the computation. The τout ·μ ·N total commitments can be combined into τout ·μ
Merkle trees, and for each round it is sufficient to send a hash of the τout Merkle
roots. Thus, committing costs 2λ · μ bits. Before the verifier selects a subset of
parties whose views to open, the prover sends another hash with shares of the
last reconstructed values.

To open t of the commitments in each repetition, we have to send, in addi-
tion to the committed data, λ bits of randomness per commitment as well the
corresponding Merkle paths. Each path is of length log2(N), but since we open
t views and the path overlap, we pay 2λ · log2(N/t) bits per path.

Overall, this results in

sizeCommit := 2λ · (μ + 1) + τout · λ · μ · t · (2 log2(N/t) + 1)

bits of communication for committing and opening.
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Opening Sharings: Since to open a sharing only the reconstructed value needs
to be revealed on top of the t already decommited shares, the cost for opening
a Z2k value is k bits (for a GR(2k, d) value this is k · d bits), regardless of the
secret sharing scheme being used.

Providing Hints: The OH oracle can be instantiated in two different ways,
depending on the kind of secret sharing being used. For a threshold secret sharing
scheme, both specific and uniformly random values v ∈ Z2k (or v ∈ GR(2k, d))
can be obtained by running �v� ← Share(v) and distributing the shares to the
corresponding parties. This costs t · k (or t · k · d) bits of proof size.

For additive secret sharing, uniformly random values in Z2k or GR(2k, d)
can be obtained at zero extra cost by having all parties individually derive their
shares from a PRG seed. A uniformly random sharing �r�A can be transformed
into a sharing of a specific value �v�A by updating the public adjustment Δv, at
the cost of only k or k · d bits of proof size.

Protocol Costs: We can now summarize the communication costs per checking
protocol:

ΠSac-Check: The sacrificing check requires

sizeA
Sac-Check := 2 · m · (k + s) · d0 · d1

sizeT
Sac-Check := (2 · m · t + m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.
ΠIP-Check: The inner product check results requires

sizeA
IP-Check := (m + 1) · (k + s) · d0 · d1

sizeT
IP-Check := ((m + 1) · t + m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.
ΠComp-Check: The compressed multiplication check results requires

sizeA
Comp-Check := ((2ν − 1) · logν(m) + 3) · k · d0 · d1

sizeT
Comp-Check := (((2ν − 1) · logν(m) + 4) · t + 1) · k · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.
ΠRing-Check: For additive sharing, this check has no overhead. In the threshold

case, this procedure requires one additional share input and one share recon-
struction in GR(2k+src , d0) to the overall proof size, hence the total costs
are

sizeA
Ring-Check := 0

sizeT
Ring-Check := (t + 1) · (k + src) · d0

bits of communication for additive, resp. threshold, sharing.
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Here we do not take into account the cost of the verifier sending a challenge or
a seed for outputs of the OR oracle. In the non-interactive case, these are obtained
from the Fiat–Shamir transform and therefore free in terms of communication; in
the interactive case however, the verifier sends λ bits per “round” of dependent
calls to OR.

Overall Costs: Finally, we can present the overall communication cost, i.e.,
the proof size. Note here that the cost for sizeInput depends on k + src, rather
than the potentially smaller k + s.

sizeProof = sizeCommit + τout · (sizeInput + τin · sizeCheck) + τin · sizeChallenge

5.1 Concrete Comparison of the Three ΠMult-Check Subprotocols

To compare our different protocols concretely with one another, we fix certain
choices for σ, k and m and examined the per-multiplication-gate communication
cost of a full proof σ bits of security. In the full version we present tables which
give the communication cost of an entire proof, except for the challenges sent
from the verifier. That is, we only examine the communication from the prover
towards the verifier, which also gives a good idea of the proof size that would
be incurred when the protocol is transformed to a non-interactive proof by the
Fiat-Shamir transform.

All our experimental validations were computed with #inputs = 128 elements
in Z2k . Since the additive sharing has some optimizations for random sharings
and ΠRing-Check and does not require d0 > 1 to enable sharing values across
N parties, it generally comes out as the optimal choice for the configurations
examined here.

We observe that for ΠSac-Check and ΠIP-Check, which require at least m openings
each, the optimal choice for d1 is one since the overhead for d0 · s extra bits is
generally smaller than d0 · (d1 − 1) · k extra bits, even though the size of inputs
and injected multiplications grows as well. When the communication due to the
check is asymptotically smaller than the communication due to the input of
the extended witness, it becomes preferable to avoid the extra d0 · s bits per
multiplication cost in the input already.

Since we can observe that ΠCompress consistently results in the smallest proof
sizes, we further also look at the overhead of this protocol. That is, we investigate
the ratio of proof size to the theoretical optimum of k · (#inputs + m) bits for
any protocol that needs to inject the results of multiplications. This rate is a
constant that mostly depends on the target value of σ and decreases slightly as
the number of multiplications increases. Since the choice of k doesn’t influence
the choice of multiplication check, it also has no further impact on the overhead.
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Abstract. Distributing the Elliptic Curve Digital Signature Algorithm
(ECDSA) has received increased attention in past years due to the wide
range of applications that can benefit from this, particularly after the
popularity that the blockchain technology has gained. Many schemes
have been proposed in the literature to improve the efficiency of multi-
party ECDSA. Most of these schemes either require heavy homomorphic
encryption computation or multiple executions of a functionality that
transforms Multiplicative shares to Additive shares (MtA). Xue et al.
(CCS 2021) proposed a 2-party ECDSA protocol secure against mali-
cious adversaries and only requires one execution of MtA, with an online
phase that consists of only one party sending one field element to the
other party with a computational overhead dominated by the verifica-
tion step of the signature scheme. We propose a novel protocol, based
on the assumption that the Computational Diffie-Hellman problem is
hard, that offers the same online phase performance as the protocol of
Xue et al., but improves the offline phase by reducing the computational
cost by one elliptic curve multiplication and the communication cost by
two field elements. To the best of our knowledge, our protocol offers the
most efficient offline phase for a two-party ECDSA protocol with such
an efficient online phase.

Keywords: ECDSA · Two-party Protocols · Threshold Signatures

1 Introduction

Multi-party computation (MPC) is a technique from cryptography that enables
multiple parties to conduct computation on their secrets while preserving them
private. MPC was formally introduced with Yao’s 2-party protocol for the Mil-
lionaires’ problem [26]. Today, it became a pioneering solution for a wide variety
of real-world problems, such as cryptographic key protection, privacy-preserving
data analytics, and so forth [15].

With the rise of the blockchain technology and cryptocurrencies, multi-party
signing [7] and, in particular, threshold signing has gained significant attention
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in the past decade. Namely, a (t, n) signature scheme enables n parties to dis-
tribute the signing power in such a way that signing a message m requires the
collaboration of at least t+1 of them. This is accomplished by having the n par-
ties participate in the key generation phase to produce a private key unknown
to them. At the end of this phase, each party will hold a share of the private key,
together with the public key. Then the signing phase is executed as an interactive
protocol as well, where at least t+1 parties participate with their shares so as to
produce the signature, which is then checked with the verification algorithm of
the signature scheme being distributed. This benefits cryptocurrencies as trans-
actions are sent by producing a signature using the sender’s private key. Thus
to prevent a single point of failure while maintaining the key, one can share it
among different parties placed in different locations, who need to collaborate to
sign.

In this regard, thresholdizing the ECDSA algorithm has drawn most of the
attention, as it is the signing algorithm used in Bitcoin. We can find in the
literature many works that addressed this [2,5,6,8,9,12–14,23,25] where various
schemes were constructed, either addressing the 2-party case [8,13,14,25], or
more generally, the n-party case [2,5,6,9,12,23]; using generic MPC protocols
[5,23], or special purpose protocols targeting ECDSA [2,6,8,9,12–14,25]. Those
schemes differ particularly in the way of sharing values, namely additively or
multiplicatively. That is, at the heart of the ECDSA algorithm, one needs to
calculate s = k−1(H(m) + x · r) mod q. In a threshold version of ECDSA, both
the private key x and the random nonce k used for signing the message m are
secretly shared among parties. In fact, to provide a threshold version of ECDSA,
the main challenge consists of choosing an adequate way to secretly share k and
x so that s can be computed efficiently. Note that this calculation contains
inverting a secret, and multiplying it with another value obtained by evaluating
linear operations over another secret (addition and multiplication with opened
values).

For instance, for the 2-party case, additively secret sharing k is problematic
for inversion, as in this case, party P1 holds k1 and party P2 holds k2 subject to
k1+k2 = k mod q, and from this, the two parties need to calculate k−1. Alterna-
tively, one can secretly share k in a multiplicative way to overcome this obstacle,
as in this case, inverting becomes a local operation; however, the resulting value
still needs to be multiplied by H(m)+x ·r, which still introduces obstacles either
x was additively or multiplicatively secret shared.

As a solution to these challenges, several authors in the field proposed using
homomorphic encryption. This approach allows one party to transmit a secret
to the other party in encrypted form so that they can execute the challenging
computation and decrypt it afterward. The homomorphic encryption schemes
that were used are partially homomorphic, as performing one type of operation
over the ciphertexts was sufficient for the computation needed.

For the most part, homomorphic encryption was introduced to realize a
Multiplicative-to-Additive (MtA) functionality which enables parties to obtain
an additive version of the shares of a secret from a multiplicative one, adopt-
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ing ideas from [17]. Based on this functionality, parties who hold multiplicative
shares α and β, respectively, can get the corresponding additive shares a and
b where a + b = α.β by querying this functionality. The need for querying this
protocol arises when an additive sharing is preferable than a multiplicative one
from a performance point of view. Of course, this functionality does not come for
free, and it introduces a cost to the protocol whenever it is called; however, there
exist many instantiations of it, such as Paillier encryption [20]-based MtA [12],
El Gamal encryption [10]-based MtA [16], and Castagnos-Laguillaumie (CL)
encryption [4]-based MtA [3]. Besides, one can also construct Oblivious Transfer
(OT) [21]-based MtA [8], which has the advantage of decreasing the computa-
tional complexity by eliminating the need for homomorphic encryption at the
expense of incurring a relatively high bandwidth. As a result, one has multiple
options for MtA instantiations, each of which offers a different tradeoff between
the computation and communication costs, thanks to which one can select the
one that best fits the constraints faced. Also, it should be noted that Fireblocks’
teams showed a Paillier key vulnerability in [12] leaking secret key or inverse
nonce information [18]. These attacks occur when the MtA functionality is used
without range proofs that ensure the inputs of MtA are chosen from the required
domain. Thus, it is recommended to use suitable range proofs to detect mali-
ciously formed input in Paillier-based MtA functionality.

For the 2-party case of threshold ECDSA, two works are most related to
ours, namely, the one of Lindell [14] and Xue et al. [25]. Lindell has proposed
a simple and efficient 2-party protocol against malicious adversaries. To briefly
go over this protocol, both x and k are secretly shared in a multiplicative way,
where each party Pi generates xi in the key generation phase so that the private
key x is equal to x = x1 · x2. Party P1 also encrypts x1 so as to send it to P2,
then in the signing phase, the two parties generate their share of the nonce k,
then P2 computes its share of s and sends it to P1, which involves encrypting
and performing homomorphic encryption operations. Finally, P1 calculates the
signature s, which involves decryption before the verification step.

On the other hand, Xue et al. proposed an online-friendly algorithm against
malicious adversaries. That is, this protocol has a nearly optimal online phase,
in the sense that the heaviest part of it consists of the verification step of the
signature, which in turn consists of calculating two scalar multiplications M of
elliptic curve points (scalar multiplications will be denoted as M from now on).
The communication cost is also efficient, as only a single field element needs to
be sent. This is opposed to [14] as one needs to send and operate over ciphertexts
during the online phase. However, providing such an efficient online phase came
with the cost of offloading all the heavy computation in the offline phase of the
signing step. That is, while the key generation does not involve any encryption,
an MtA is being executed for every signature during the signing phase, which is
still a good compromise as it reduces the number of calls to the MtA functionality
compared to other schemes. Thus the resulting protocol offers an efficient online
phase with a good overall cost. However, this scheme can be further optimized,
as we will see in the next section.
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1.1 Our Contribution

We present a protocol against malicious adversaries with a nearly optimal online
phase as in [25], but with reduced computation and communication costs for the
offline phase. That is, our key generation is the same as in [25], where we produce
additive secret sharings of x (Pi generates Qi ← [xi] · P , where P is a generator
of the curve, and the public key is Q ← Q1 +Q2), and our online phase requires
two scalar multiplication M as in [25]. However, our offline phase reduces the
number of EC multiplications by one and the size of data communicated by two
field elements.

The cost reduction is achieved by eliminating the additional step of re-sharing
the secret x in [25], and basing the security of our protocol on the 1-Weak
Diffie-Hellman problem, which is equivalent to the Computational Diffie-Hellman
problem. That is, at the heart of the signing phase of the protocol of [25], x was
re-shared between the two parties (following obvious notation) as x = x′

1.(k2 +
r1) + x′

2, where the nonce k is shared as k = k1(r1 + k2), then the shares x′
1 and

k2 are the values forwarded to the MtA functionality.
Instead, we simplified the protocol by adopting a multiplicative sharing of k

where it is unnecessary to perform a re-sharing step (Pi generates Ri ← [ki] · P
for P the generator of the curve, and the point R from which we take the x-
coordinate r is R ← [k1 · k2] · P ). We query the MtA only once on the most
convenient inputs for our choices. Namely, querying the MtA on x1 as the input
of P1, and k−1

2 as the input of P2. This was a logical choice as holding an additive
sharing as

x1 · k−1
2 = a + b mod q

by the players allows them to do the online phase in only one pass, as the
signature s can be written as

s = k−1
1 · (k−1

2 · (H(m) + x2 · r) + x1 · k−1
2 · r) mod q

In this case, P2 computes locally its signature share as

s2 ← k−1
2 · (H(m) + x2 · r) + b · r mod q

and sends it to P1 to construct the signature

s ← k−1
1 · (s2 + a · r) mod q

However, it is crucial to note that the protocol requires P1 to input x1 for
MtA. If there are no checks on this input to MtA, a malicious P1 can corrupt
the system since P1 takes the partial signature s2 and then generates the full
signature s. For example, a malicious P1 can forge a signature on a different
message m′ of his choice by crafting the value to be sent to MtA as x′

1 ←
−r−1 · (H(m′) − H(m) + x1 · r), then P1 will compute the full signature s as
k−1
1 · (s2 + a · r) = k−1

1 · (k−1
2 · (H(m) + x2.r) + (a + b) · r) = k−1 · (H(m′) + x · r)

which is a valid signature on m′ that is chosen by P1.
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In order to prevent P1 from mounting such an attack and manipulating the
distribution of s2, we add a check operation on the correctness of the MtA input
of P1. Namely after calling MtA and receiving its outputs, P1 computes [a] · P
and sends it to P2, who computes k2 · ([a] · P + [b] · P ) and checks whether
it is equal to Q1 or not. The correctness of this equality ensures that P1 used
the correct x1 value as MtA input, and as we will see, P1 will not be able to
bypass it, unless he breaks the standard assumption that the Computational
Diffie-Hellman problem is hard. It is worth noting that the check we add is not
concerned with the security of the underlying MtA, but rather to ensure that
the parties involved are invoking the MtA with the appropriate inputs. This of
course adds a round of communication to the protocol, however, it is a critical
step in ensuring the protocol’s security, which is analogous to the consistency
check executed immediately following the MtA call in [25].

In sum, the protocol we end up with utilized an additive sharing of x and a
multiplicative sharing of k, which is a similar setting of [8] for the (1, n)-ECDSA
case (i.e., any two parties among the n parties can construct a valid signature).
However, we only call the MtA functionality once while it is being called three
times in [8]. Besides, we only perform 13M, while 16M are needed for [8].

This improvement has an impact depending on the instantiation of MtA. For
instance, in the case of an OT-based MTA, where such a choice is usually made
to have a low computation cost, reducing the number of EC multiplications by
one will decrease the computation cost of the offline phase of [25] (Table 4 of [25])
by 5.4%. On the other hand, in the case of a CL-based MtA, which introduces
a low communication cost, reducing the size of transmitted data by two field
elements decreases the communication cost of the offline phase of [25] (Table 5
of [25]) for the case of the secp256k1 curve by 3.7%. While these percentages
may seem modest, the potential gains are substantial, given the vast scale at
which ECDSA signatures are executed, and all the applications that can benefit
from a distributed version of it.

We also implemented our protocol and obtained an online phase of 0.1 ms,
which is half the time required for the online phase of [25]; however, given the
similarity of the online phase between the two protocols, this difference in time
is most likely due to our implementation’s use of the highly optimized C library
secp256k1 for the operations over the curve.

1.2 Paper Organization

This paper is organized as follows: Sect. 2 provides the necessary background over
the hardness assumption upon which we are basing the security of our protocol,
the ECDSA scheme, and the ideal functionalities we used. Section 3 presents
the proposed protocol, along with the cost analysis, comparison with related
work, and its running time based on our implementation. Section 4 concludes
the paper. Then in the Appendix, security proofs are given.
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2 Preliminaries

2.1 Hardness Assumptions

The security of our protocol is based on the 1-Weak Diffie-Hellman problem [19],
also referred to as the Inverse Diffie-Hellman problem [1]. That is, this problem
is a special case of the k-Weak Diffie-Hellman problem (and can be proven to be
equivalent to it), where the adversary is given a set of points {P , [x]·P , [x2]·P,
. . . , [xk]·P} for a randomly chosen x, and asked to find [x−1]·P .

Definition 1. (Computational Diffie-Hellman Assumption.) Let G be a cyclic
group of a large prime order, and P a generator of G. Given a tuple (P , [a]·P ,
[b]·P ) for a randomly chosen a and b, it is computationally hard to compute
[a·b]·P .

Definition 2. (1-Weak Diffie-Hellman Assumption.) Let G be a cyclic group of
a large prime order, and P a generator of G. Given a tuple (P , [x]·P ) for a
randomly chosen x, it is computationally hard to compute [x−1]·P .

Theorem 1. The 1-Weak Diffie-Hellman and the Computational Diffie-
Hellman assumptions are equivalent.

The proof of theorem 1 is given Appendix A.

2.2 The ECDSA Scheme

The ECDSA scheme is a signature algorithm that involves key generation, sign-
ing, and verification. Let G be an elliptic curve group of order q of size λ bits,
with a generator P , and the neutral element being denoted as O. The ECDSA
scheme works as follows:

– KeyGen(1λ) → (x,Q): set a random private key x ← Zq and compute the
corresponding public key Q = [x] · P .

– Sign(x,m) → (r, s): generate the signature (r, s) using private key x, message
m, and hash function H with codomain of size λ bits. That is:

• Set a random nonce k ← Z∗
q and compute R ← [k] ·P = (rx, ry), then set

r ← rx mod q.
• Compute s ← k−1 · (H(m) + r · x) mod q and output (r, s).

– Verify(m; (r, s)) → b ∈ {0, 1}: equals 1 if the signature is valid; 0 otherwise.
That is:

• Compute R ← s−1 · ([H(m)] · P + [r] · Q) = (rx, ry).
• If r = rx mod q, output 1; otherwise output 0.

Due to the structure of elliptic curves, if (r, s) is a valid signature, then
its complement (r, −s) is also a valid signature. Thus, this gives rise to the
malleability problem of the ECDSA scheme. To overcome this problem, one can
follow the low-s rule, where the low-s is the value between 0 and q−1

2 . Therefore,
we assume that the output of the signing procedure is always the lower s value.
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2.3 Ideal Functionalities

We describe below the ideal F2ECDSA functionality that our protocol realizes,
as well as the ideal functionalities queried by our protocol, namely, an ideal
zero-knowledge proof (ZKP) functionality FZKP and an ideal committed non-
interactive zero-knowledge functionality FCommit-ZK which are similar to the ones
used in [14], as well as an ideal Multiplicative-to-Additive (MtA) functionality
FMtA. In this content, we assume that each functionality provides a fresh ses-
sion identifier (sid) for each invocation of it. This can be achieved by having
the parties exchange random strings between each other, which will be further
concatenated then hashed so as to produce the session identifiers.

F2ECDSA Functionality. The F2ECDSA functionality is composed of a key gener-
ation phase and a signing phase. In the key generation phase, the key pair (x,Q)
is generated, where x is stored internally, and Q is given to the parties. In the
signing phase, the signature on the given message is constructed and given to
P1. The functionality is introduced in Fig. 1.

2-party ECDSA functionality F2ECDSA

Given an elliptic curve group G of order q, a generator P of G, and a hash function
H with a codomain of size λ bits. The functionality works as follows:

KeyGen: On input init from both parties P1 and P2:
– Run KeyGen as defined in Subsection 2.2, so as to generate a key pair

(x, Q).
– Store (x, Q) and send Q to both parties.
– Set an internal flag ready to 1 and ignore further calls.

Sign: On input Sign(sid, m) from both parties P1 and P2. If ready = 1 and the
session identifier sid has not been used previously:
– Run Sign as defined in Subsection 2.2, so as to generate the signature (r, s).
– Send (r, s) to P1.
– Store internally (sid, delivered).

Fig. 1. 2-party ECDSA functionality F2ECDSA

FZKP Functionality. The FZKP functionality is depicted in Fig. 2. With this
functionality, one party can prove the knowledge of a witness w for an element
y, such that the pair (y, w) satisfies the relation R. For our protocol, this relation
is R ← {(Q,x) ∈ G×Zq|Q = [x]·P} for public parameters G and its generator P ,
which allows to prove knowledge of the discrete log of an elliptic curve point. The
sigma protocol of Schnorr [22] can be used to instantiate this functionality, which
can be made non-interactive using the Fiat-Shamir paradigm in the random-
oracle model [11].

ZKPs are expected to satisfy three key properties, completeness, soundness,
and zero knowledge. Completeness means that given a witness w for a statement
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FZKP

FZKP functionality between P1 and P2 works as follows:

Prove: On input (prove, sid, x, w) from Pi for i ∈ {1, 2}, send (proof, sid, x) to
P3−i if (x, w) ∈ R and sid has not been previously used, otherwise ignore the
message.

Fig. 2. FZKP

x ∈ R, there is an efficient algorithm that provides a convincing proof , i.e. it
ensures that if two parties follow the protocol, the verifier accepts the proof.
Soundness means a malicious prover cannot construct a convincing proof for
x �∈ R, i.e. soundness prevents the verifier from accepting a false proof of the
statement. Also, zero-knowledge means that proof does not reveal the used wit-
ness w, i.e. it states that proof does not leak any information except for the
truth of the statement.

FCommit-ZK Functionality. The FCommit-ZK functionality is depicted in Fig. 3.
Through this functionality, a party will be able to commit to its Non-interactive
ZKP (NIZKP) and open it afterwards. As mentioned in [14], this functionality
can be realized in the random oracle model by having the parties hash their
NIZKP concatenated with a randomness r, which will be both opened in the
decommitment phase.

FCommit-ZK

FCommit-ZK functionality between P1 and P2 works as follows:

Commit: On input (com-prove, sid, x, w) from Pi for i ∈ {1, 2}, record (sid, i, x, w)
if sid has not been used previously and (x, w) ∈ R, then send (proof-receipt, sid)
to P3−i, otherwise ignore the message.

Decommit: On input (decom-proof, sid) to Pi, send (decom-proof, sid, x, 1) to P3−i

if (sid, i, x, w) is recorded and (x, w) ∈ R, otherwise send (decom-proof, sid, x, 0)
to P3−i

Fig. 3. FCommit-ZK

FMtA Functionality. The FMtA functionality is depicted in Fig. 4. This func-
tionality takes as an input the two values α and β coming from P1 and P2

respectively, and forwards to them respectively two random values a and b, sub-
ject to the relation a + b = α · β mod q, i.e., it transforms a multiplicative
sharing of a secret to an additive sharing. As stated earlier, one can instantiate
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MtA from many constructions, such as the Paillier encryption scheme [20] or El
Gamal [10], Castagnos-Laguillaumie (CL) [4] or OT [21].

FMtA

FMtA functionality between P1 and P2 works as follows:

Reshare: On input (sid, α ∈ Zq) from P1 and (sid, β ∈ Zq) from P2. If sid has
been used before ignore this message. Otherwise:
– Sample a ← Zq and calculate b ← α · β − a mod q
– Send (sid, a) to P1 and (sid, b) to P2.

Fig. 4. FMtA

3 Protocol

Our two party ECDSA protocol is composed of two phases; one phase for a
distributed key generation that runs once, at the end of which the parties will
hold an additive sharing of the secret x as x = x1 + x2, then the second phase
is for signing, which consists of:

– Generating the nonce k, which will be multiplicatively shared between the
parties as k = k1 · k2.

– Querying the MtA functionality, so as to convert the product of P1’s secret
key x1 and P2’s nonce k−1

2 to an additive sharing a + b, namely, P1 and P2

receive a and b respectively such that a+b = x1.k
−1
2 mod q. After the query,

P1 computes Z ← [a] · P and sends it to P2, who computes (Z + [b] · P ) · k2
and checks if it is equal to Q1, so as to control the correctness of the MtA
input against a malicious P1.

– Online signing, that starts by P2 generating locally its share of the signature
after the MtA invocation, namely s2 = k−1

2 (H(m) + r.x2) + b · r mod q,
then sends it to P1 who will generate the signature by calculating locally
s = k−1

1 (s2 + a · r) mod q and verifying whether this signature is valid. Note
that the nonce generation and the MtA invocation are message-independent,
thus we can refer to these two steps as the offline signing.

The complete process is illustrated in Fig. 5. Also the graphical represen-
tation of the key distribution and signing phase are given in Fig. 6 and Fig. 7,
respectively.

Security of our protocol is simulation based, following the real/ideal paradigm
[24]. The type of adversary we considered is a malicious one with static corrup-
tion. This implies that the adversary A can deviate from the protocol, but the
party he corrupts (either P1 or P2) is set prior to the protocol execution.
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2-party ECDSA Protocol

Given an elliptic curve group G of order q and a generator P of G:

Key Generation: To generate a pair of keys for the ECDSA algorithm, the parties
do as follows:
1. P1 generates x1 ← Zq and calculates Q1 = [x1] · P .
2. P1 sends (com-prove, 1, Q1, x1) to FCommit-ZK.
3. P2 receives (proof-receipt, 1)
4. P2 generates x2 ← Zq and calculates Q2 = [x2] · P .
5. P2 sends (prove, 2, Q2, x2) to FZKP.
6. P1 receives (proof, 2, Q2) from FZKP. If not, P1 aborts.
7. P1 sends (decom-proof, 1) to FCommit-ZK.
8. P2 receives (decom-proof, 1, Q1, z) from FCommit-ZK. If z = 0, P2 aborts.

Both parties set Q ← Q1 + Q2 to be the public key. The private key is x ←
x1 + x2 mod q (note that no party holds x, but only an additive share of it).

Signing: To sign a message m, the parties do as follows:
1. Generating the nonce k:

(a) P1 generates k1 ← Zq and calculates R1 = [k1] · P .
(b) P1 sends (com-prove, sid||1 R1, k1) to FCommit-ZK.
(c) P2 receives (proof-receipt, sid||1, 1)
(d) P2 generates k2 ← Zq and calculates R2 = [k2] · P .
(e) P2 sends (prove, sid||2, R2, k2) to FZKP

(f) P1 receives (proof, sid||2, R2) from FZKP. If not, P1 aborts.
(g) P1 sends (decom-prove, sid||1) to FCommit-ZK.
(h) P2 receives (decom-proof, sid||1, R1, z) from FCommit-ZK. If z = 0, P2

aborts.
Both parties set R ← [k1 · k2] · P = (r, y), corresponding to the nonce
k ← k1 · k2 (note that no party holds k, but only a multiplicative share of
it).

2. Querying the MtA functionality:
(a) P1 and P2 query FMtA with the respective inputs x1 and k−1

2 . FMtA

forwards a to P1 and b to P2.
(b) P1 calculates Z ← [a] · P and sends it to P2.
(c) P2 verifies if k2 · (Z + [b] · P ) = Q1. If it is not the case P2 aborts.

3. Online signing:
– P2 calculates s2 ← k−1

2 · (H(m) + x2 · r) + b · r mod q and sends it to
P1.

– P1 calculates s ← k−1
1 · (s2 + a · r) mod q.

– P1 verifies if s is a valid signature of m, if so P1 outputs (r, s) as the
signature.

Fig. 5. 2-party ECDSA Protocol

Theorem 2. The protocol of Fig. 5 securely implements the functionality of
Fig. 1 in the (FZKP,FCommit-ZK,FMtA)-hybrid model in the presence of a mali-
cious static adversary under the ideal/real definition of [24], assuming the Com-
putational Diffie-Hellman problem is hard.
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The proof of theorem 2 is given in Appendix B.

P1 P2

Choose random x1

Compute Q1← [x1] · P
Compute DLOG proof π1

Compute commit to Q1,x1 Commit Choose random x2

Compute Q2 ← [x2] · P
Compute DLOG proof π2

(Q2, π2)
Verify proof π2

Compute Q = Q1 + Q2

Decommit to Q1,π1 Verify proof π1

Compute Q = Q1 + Q2

Fig. 6. The 2-Party ECDSA Key Distribution Protocol

3.1 Cost Analysis

We analyze below the theoretical complexity of our two party ECDSA protocol,
and compare it with the one of [14,25].

Theoretical Complexity - Key Distribution. The distributed key gener-
ation consists of generating keys and zero-knowledge proofs. The computation
cost can be examined in terms of EC multiplications as this is the heaviest oper-
ation performed. For the keys, each party carries out 1M to produce its share
of the public key. On the other hand, two zero-knowledge proofs of knowledge
of discrete log need to be produced. Using the standard Schnorr proofs in non-
interactive from, each party carries out 1M as a prover and 2M as a verifier. Thus
the key distribution requires 8M in total. For the communication cost, each party
needs to send its share of the public key and the corresponding NIZKP, and P1,
needs to send as well a commitment to its share at the beginning of the protocol,
which consists of an output of the hash function H being used (of size λ bits).
Assuming one EC point can be represented in λ bits, and a NIZKP consists of
two field elements and one EC point, the size of data communicated between
the parties is 9 ·λ. Note that the cost of our key distribution is the same as [25],
which is a negligible cost compared to the one of Lindell [14], as the latter is
dominated by the usage of homomorphic encryption.

Theoretical Complexity-Signing. The computation cost of the signing pro-
tocol can be examined in terms of EC multiplications and MtA invocations. That
is, the first step of the offline phase is similar to the key generation, except that
the nonce is multiplicatively shared, thus each party needs to perform an extra
EC multiplication so as to obtain R. Also, the calculation needed to check P1’s
input to MtA requires 3 EC multiplications. Thus, it results in a computation
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P1 P2

m, x1, Q m, x2, Q

Choose random k1

Compute R1 ← [k1] · P
Compute DLOG proof π1

Compute commit to R1, π1 Commit Choose random k2

Compute R2 ← [k2] · P

Compute DLOG proof π2
R2, π2

Verify proof π2

Compute R ← [k1] · R2

Compute r from R

Send k−1
2 as MtA input

Verify proof π1

Compute R ← [k2] · R1

Compute r from R

Decommit to R1, π1

MtA
a b

Send x1 as MtA input

Compute Z ← [a] · P
Z

Verify if k2 · (Z + [b] · P ) = Q1

Compute
s ← k−1

1 · (s2 + a · r) mod q
Verify signature

s2 Compute
s2 ← k−1

2 · (H(m) + x2 · r) + b · r
mod q

Fig. 7. The 2-Party ECDSA Signing Protocol

cost of 13M, and a communication cost of 10 · λ. To obtain the total cost of the
offline phase, one needs to add these costs to the executing of 1 MtA. The cost
of this depends on the instantiation used, which can yield different results. For
instance, MtA can be instantiated from the Paillier encryption scheme, i.e., the
building block upon which [14] is based. This would result in a protocol where
homomorphic encryption is used in the offline phase, with an inferior perfor-
mance to that of [14], however with an improved online phase performance than
[14]

In fact, the online phase consists of performing operations over a field by both
parties, and a verification phase of the signature, which requires from the verifier
(in our case P1) to carry out 2M. Thus neglecting the cost of operations over a
field, the computation cost of the online phase if 2M. As for the communication
cost, P2 needs to send one field element to P1, thus λ bits of data need to be
communicated between the parties.

Table 1 compares these costs with the ones of [14,25]. For [14], the cost of
the homomorphic operations is dominated by exponentiations modulo N2 by
numbers from ZN . We refer to these exponentiations as E. The value N refers
to the public key of Paillier, which determines the size of a Paillier encryption,
which is a number from ZN2 . MtA refers to the cost of invoking an instantiation
of the MtA functionality.
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As one can notice, the computation and communication cost of our online
phase is the same as [25], which outperforms the one of [14], for which the online
phase requires performing an extra exponentiation, and sending an encryption
of Paillier (N is typically of size 2048 bits) instead of a field element. However,
our offline phase outperforms the one of [25], as in our case the computation and
communication required are reduced respectively by 1M, and 2 · λ.

Table 1. Cost Analysis of Signing

Protocol Computation Communication

Offline Online Offline Online

Lindell [14] 10M+2E 2M+1E 9 · λ 2 · log2(N)

Xue et al. [25] 14M+1MtA 2M 12 · λ+1MtA λ

Ours 13M+1MtA 2M 10 · λ+1MtA λ

3.2 Implementation

We implemented our protocol in C++, over the secp256k1 curve standardized by
NIST, which is the one used by Bitcoin. The hash function we used is Sha256, and
for the curve operation we used the Secp256k11 C library. The implementation
can be found in https://github.com/YounesTal1/2ecdsa

We took runtimes with an Amazon instance of “t2.xlarge” (16 GiB of memory
and 4 vCPU), running with “Ubuntu 18.04.6 LTS”, this instance was located in
“us-east-1” (Virginia). The runtimes we obtained are given in Table 2. Note that
our implementation used a single thread, and that the runtimes reflect only the
computation cost of our protocol. These runtimes were obtained by calculating
the average time needed for a 1000 key generation, where each key was used
to sign 100 messages. Note also that the MtA implemented is a dummy one
(one party receives the multiplicative share of the other party, and produces the
additive shares for both parties), hence Table 2 contains the term MtA, where
one can plug in the time needed to execute the MtA of their choice to obtain the
overall runtime of the offline signing. As can be observed, our protocol is efficient
in terms of the computation cost, for both key generation and signing. That is,
the key generation only requires 1.05 ms and the offline phase (excluding the
MtA call) requires 1.26ms. The difference in runtimes is mainly due to the five
extra EC multiplications, namely two extra EC multiplications that need to be
performed for calculating R, as the nonce is shared multiplicatively, and three
extra EC multiplications that need to be performed for checking the correctness
of P1’s input to MtA. The online phase only requires 0.1ms, as this is dominated
by two EC multiplications for the signature verification.

1 https://github.com/bitcoin-core/secp256k1.

https://github.com/YounesTal1/2ecdsa
https://github.com/bitcoin-core/secp256k1
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Table 2. Runtimes in milliseconds of our protocol. These runtimes correspond to
the time needed for one key generation, one execution of the offline phase, and one
execution of the online phase.

Key generation Offline signing Online signing

1.05 1.26 + MtA 0.10

To understand the impact of the MtA functionality on the runtimes, so as
to give a comprehensive evaluation of our protocol, let us consider two cases,
an OT based MtA, and a CL based MtA. For this we will base our analysis on
the runtimes of [25]. That is, [25] implemented their protocol with different MtA
instanciations. For the case of OT, the offline phase took 2.6ms and required
90.9 KBytes of data to be communicated (Table 4 of [25]). For the case of CL,
the offline phase took 1386ms and required 1.7KB of data to be communicated
(Table 5 of [25]). As for the online phase, it took 0.2ms, which is dominated by
2M operations.

As the offline phase of [25] consists of 14M+1MtA, and requires 12·λ +1MtA
(see Table 1), for the case of OT, one would estimate the MtA runtime to be
around 1.2ms, and the communication cost of the MtA to be 90.52 KBytes,
thus based on this, our offline phase would take around 2.46ms and require 9.84
KBytes, hence a gain of 5.4% on the running time. For the case of CL, one would
estimate the MtA runtime to be around 1384.6ms, and the communication cost
of the MtA to be 1.32 KBytes, thus based on this, our offline phase would take
around 1385.9ms and require 1.636 KBytes, hence a gain of 3.7% of the size of
communicated data.

4 Conclusion

We proposed an efficient two-party ECDSA protocol secure against malicious
adversaries. Our protocol has a light online phase, dominated by the verification
step of ECDSA, and requires only sending one field element from one party to
the other. Our offline phase uses a single call of the MtA functionality, and to
the best of our knowledge, it offers the most efficient offline phase in terms of
the computational and communication cost for such an online phase.

It is worth noting that the asymmetry introduced to the protocol, between
what the two parties do, particularly the inputs they send to the MtA function-
ality, poses a challenge to generalize the protocol to the multiparty case with a
low number of invocation to the MtA functionality (say at most equal to the
number of parties). We leave further exploration as future work.
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A Proof of Theorem 1

The proof below is taken from [19].

Let us assume we can solve the Diffie-Hellman problem, then given the tuple
(P ,[x]·P ) one can obtain [x−1]·P = [x−1·x−1]·([x]·P ) from solving the Diffie-
Hellman problem over the tuple ([x]·P , P = x−1·([x]·P ), P = x−1·([x]·P )).

Conversely, let us assume we can solve the 1-Weak Diffie-Hellman problem,
then given the tuple (P , [a]·P , [b]·P ), one can obtain ([a2]·P ) from solving the 1-
Weak Diffie-Hellman problem over the tuple ([a]·P , P = a−1·([a]·P )). Similarly,
one can obtain ([b2]·P ) and ([(a+b)2]·P ) from the tuples ([b]·P , P ) and ([a+b]·P ,
P ) respectively. Next, one can obtain ([a·b]·P ) by calculating 2−1·[((a + b)2 −
(a)2 − (b)2)]·P .

B Proof of Theorem 2

In Fig. 8, we build a simulator S, to simulate P1 when P2 is corrupt, and to
simulate P2 when P1 is corrupt. Below, we sketch a proof to demonstrate why
the views in a real and a simulated execution will be indistinguishable for an
adversary A.

B.1 Corrupted P1

Key Generation Phase. The difference between the real execution and the
simulated execution is the generation of Q2. In the case of a real execution,
Q2 is computed as [x2] · P where x2 is randomly generated, while in the case
of a simulated run, Q2 is computed by calculating Q2 ← Q − Q1. Since Q is
randomly generated by the F2ECDSA functionality of Fig. 1 (Q ← [x] · P for a
randomly generated x), then the distributions from which Q2 is generated in the
real and simulated executions are indistinguishable.

Signing Phase. In the nonce generation, a similar argument can be given to
show that the views are indistinguishable. That is in a real execution, R2 is
computed as [k2] · P where k2 is randomly generated, while in the case of a
simulated run, R2 is computed by calculating R2 ← [k−1

1 ] · R. Since R is ran-
domly generated by F2ECDSA (R ← [k] · P for a randomly generated k), then the
distributions from which R2 is generated in the real and simulated executions
are indistinguishable.

In the MtA call, both in the real and simulated executions, P1 is intended to
receive a randomly generated a, thus the views are indistinguishable. Afterwards,
P1 sends Z to P2. In a simulated execution, P2 aborts if P1 has provided to the
MtA functionality a different input than x1, or if he sends a different value than
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2-party ECDSA Simulator
The simulator S does as follows:

Corrupt P1 (i.e. simulating P2):

1. Key Generation:
– S queries F2ECDSA to obtain the public key Q.
– S receives (com-prove, 1, Q1, x1) from A intended to be sent to FCommit-ZK.
– S checks whether Q1 = [x1] · P , if it is the case, S calculates Q2 = Q − Q1, and

sends (proof,2 Q2) to A, as if FZKP sent it. If Q1 is different than [x1] · P , S does
the same with a randomly generated Q2.

– S receives (decom-proof, 1, Q1, z) from FCommit-ZK. If z = 1, the simulator stores
(x1, Q) for further use, otherwise, S simulates P2 aborting.

2. Signing:
(a) Nonce generation:

– S queries F2ECDSA to obtain the signature (r, s), then calculates R ← [s−1 ·
H(m)] · P + [s−1 · r] · Q as in the verification procedure.

– S receives (com-prove, sid||1, R1, k1) from A intended to be sent to FCommit-ZK.
– S checks whether R1 = [k1] · P , if it is the case, S calculates R2 = k−1

1 · R,
and sends (proof, sid||2, R2) to A, as if FZKP sent it. If R1 is different than
[k1] · P , S does the same with a randomly generated R2.

– S receives (decom-proof, 1, R1, z) from FCommit-ZK. If z = 1, the simulator
stores (k1, R) for further use, otherwise, S simulates P2 aborting.

(b) MtA:
– The simulator here receives x1 from A intended to be sent to FMtA, then

forwards a randomly generated number a to P1. If the x1 received here is
different from the share of the secret key of P1, the simulator sets an internal
flag cheatsid||1 to be 1.

– The simulator receives Z from P1. If cheatsid||1 is equal to 1, or Z is different
than [a] · P , S simulates P2 aborting.

(c) Online signing:
– S calculates s2 ← s · k1 − a · r mod q and sends it to P1.

Corrupt P2 (i.e. simulating P1):

1. Key Generation:

– S queries F2ECDSA to obtain the public key Q.
– S sends (receipt, 1) to A as if it was sent by FCommit-ZK.
– S receives (prove, 2, Q2 , x2) from P2 intended to be sent to FZKP.
– S checks if Q2 = [x2] · P . If it is not the case, S simulates P1 aborting.
– S calculates Q1 = Q − Q2, and sends (decom-proof, 1, Q1, 1) as if FCommit-ZK sent

it. S stores (x2, Q) for further use.
2. Signing:

(a) Nonce generation:

– S queries F2ECDSA to obtain the signature (r, s), then calculates R ← [s−1 ·
H(m)] · P + [s−1 · r] · Q as in the verification procedure.

– S sends (receipt, sid||1, 1) to A as if it was sent by FCommit-ZK.
– S receives (prove, sid||2, R2 , k2) from P2 intended to be sent to FZKP.
– S checks if R2 = [k2] · P . If it is not the case S simulates P1 aborting.
– S calculates R1 = k−1

2 · R, and sends (decom-proof, 1, R1, 1) as if FCommit-ZK
sent it. S stores (k2, R) for further use.

(b) MtA:

– The simulator here receives k−1
2 from A intended to be sent to FMtA, then

forwards a randomly generated number b to P2. If the k−1
2 received here is

different from the one stored in the nonce generation, the simulator sets an
internal flag cheatsid||2 to be 1.

– S sends k−1
2 · Q1 − [b] · P to A. The k2 used by the simulator here and in

the next step is the one he received in the MtA call.
(c) Online signing:

– S receives s2 from A. If cheatsid||2 = 1 or s2 is different from k−1
2 · (H(m) +

x2 · r) + b · r mod q, S simulates P1 aborting. Otherwise, S outputs (r, s)
as the signature.

Fig. 8. 2-party ECDSA Simulator
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[a] · P . This behaviour is equivalent to what happens in a real execution, where
P2 checks whether k2 ·(Z+[b] ·P ) = Q1. That is, let us denote by ε1, the additive
error that P1 can introduce to x, namely, P1 sends to MtA the value x′ ← x + ε
mod q, and by E, the additive error that P1 can introduce to Z, namely, P1

sends P2 the value Z ′ ← Z + E. To pass the check of P2, the following equation
needs to be satisfied:

Q1 = k2 · (Z ′ + [b] · P )
= k2 · (E + Z + [b] · P )
= k2 · (E + [a] · P + [b] · P )

= k2 · (E + (x1 + ε1) · k−1
2 · P )

= k2 · (E + x1 · k−1
2 · P + ε1 · k−1

2 · P )

= Q1 + k2 · (E + ε1 · k−1
2 · P )

which implies that k2 · E + ε1 · P = 0. If E = O, then ε1 = 0 mod q. Also
if ε1 = 0 mod q, then E = O as k2 �= 0 mod q. Thus E = O or ε1 = 0 mod q
implies that the adversary has not cheated, as we end up with a case where he
does not modify the values he is supposed to send.

Let us look at the case where E �= O and ε1 �= 0 mod q. The equation holds
if the adversary chooses ε1 in such a way that E = ε1 · [k−1

2 ] · P = O. While
R2 = [k2] · P is known to the adversary, obtaining [k−1

2 ] · P from it would mean
breaking the 1-Weak Diffie-Hellman problem, which as we have seen is equivalent
to the Computational Diffie-Hellman problem which is believed to be hard.

Thus to summarize, the adversary will not be able to make the check pass if
he cheats, either in the MtA call or the step afterward.

In the online signing:
If the parties reach this stage, P1 will be receiving in the simulated execution

s2 = s · k1 − a · r mod q, which is equal to

s2 = s · k1 − a · r

= k−1 · (H(m) + r · x) · k1 − a · r

= k−1
2 · (H(m) + r · x) − a · r)

= k−1
2 · (H(m) + r · x1 + r · x2) − a · r

= k−1
2 · (H(m) + r · x2) + k−1

2 · r · x1 − a · r

= k−1
2 · (H(m) + r · x2) + r · (a + b) − a · r

= k−1
2 · (H(m) + r · x2) + r · b

which is what P1 receives in a real execution.
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B.2 Corrupted P2

Key Generation Phase. Similarly to the case of a corrupted P1, the difference
between the real execution and the simulated execution is the generation of Q1.
In the case of a real execution, Q1 is computed as [x1] · P where x1 is randomly
generated, while in the case of a simulated run, Q1 is computed by calculating
Q1 ← Q − Q2. Since Q is randomly generated by the F2ECDSA functionality of
Fig. 1 (Q ← [x] · P for a randomly generated x), then the distributions from
which Q1 is generated in the real and simulated executions are indistinguish-
able.

Signing Phase. Similarly to the case of a corrupted P1, in the nonce generation,
a similar argument can be given to show that the views are indistinguishable.
That is in a real execution, R1 is computed as [k1] · P where k1 is randomly
generated, while in the case of a simulated run, R1 is computed by calculating
R1 ← [k−1

2 ] · R. Since R is randomly generated by F2ECDSA (R ← [k] · P for a
randomly generated k), then the distributions from which R1 is generated in the
real and simulated executions are indistinguishable.

In the MtA call, both in a real and simulated executions, P2 is intended
to receive a randomly generated b (In the simulated execution b = x1 · k−1

2 − a
mod q for a randomly generated a. Note that the Simulator uses here and in what
follows the k2 he received at the MtA call, and not the one received during the
nonce generation), thus the views are indistinguishable. In the step afterwards, in
the simulated execution, P2 receives [k−1

2 ] ·Q1− [b] ·P , which is the same as what
he receives in a real execution, as [k−1

2 ]·Q1−[b]·P = [k−1
2 ·x1]·P −[b]·P = [a]·P .

Thus the views are indistinguishable.
In the online signing:

– if P2 does not cheat at all during the protocol, he will be able to calculate
s2 = k−1

2 ·(H(m)+x2 ·r)+b ·r mod q and send it to P1. In the real execution
P1 will add it to its share s1, and the sum will yield a valid signature which
will be published by P1. In the simulated execution, s2 will pass the check of
the simulator and therefore he will publish the signature.

– if P2 cheated at the MtA call, or does not send the correct s2, in the real
execution, P1 will not find a valid signature after summing up its share with
the one of P2, thus P1 will send the abort signal. In the simulated execution,
either cheat flag will be equal to 1 at this stage, or s2 will not pass the check
of the simulator. In both cases the simulator will abort. That is, the only case
where the views will be distinguishable, is when the adversary cheats on the
MtA call, and yet manages to send the correct s2. Let us denote by ε, the
additive error that the adversary introduces to his input to MtA, namely he
sends k−1

2 + ε instead of k−1
2 . In this case a + b = x1 · (k−1

2 + ε). In order to
pass the check, P2 needs to send s2 such that s · k1 = s2 + a · r mod q. This
implies that:
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s2 = s · k1 − a · r

= k−1 · (H(m) + r · x) · k1 − a · r

= k−1
2 · (H(m) + r · x1 + r · x2) − a · r

= k−1
2 · (H(m) + r · x2) + k−1

2 · r · x1 − a · r

= k−1
2 · (H(m) + r · x2) + r · b − x1 · r · ε

As x1 is unknown to the adversary, he can satisfy this equation only if ε = 0,
i.e., the case where he does not cheat in the MtA call. Thus the behaviour
of the simulator will make the real execution and the simulated one indistin-
guishable.
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Abstract. Anonymous credential schemes enable service providers to
verify information that a credential holder willingly discloses, without
needing any further personal data to corroborate that information, and
without allowing the user to be tracked from one interaction to the next.
Mercurial signatures are a novel class of anonymous credentials which
show good promise as a simple and efficient construction without heavy
reliance on zero-knowledge proofs. However, they still require signifi-
cant development in order to achieve the functionality that most exist-
ing anonymous credential schemes provide. Encoding multiple attributes
of the credential holder in such a way that they can be disclosed selec-
tively with each use of the credential is often seen as a vital feature of
anonymous credentials, and is one that mercurial signatures have not yet
implemented. In this paper, we show a simple way to encode attributes
in a mercurial signature credential and to regulate which attributes a cre-
dential holder can issue when delegating their credential to another user.
We also extend the security model associated with mercurial signatures
to account for the inclusion of attributes, and prove the security of our
extension with respect to the original mercurial signature construction.

Keywords: Privacy · Anonymous credentials · Delegatable
credentials · Mercurial signatures · Selective disclosure

1 Introduction

Privacy in the digital world is an increasingly serious concern, with many efforts
being made to minimise the use, storage, and disclosure of personal information.
However, this goal is difficult to reconcile with the interests of service providers
who often have a need to know that their clients are engaging in good faith and
are permitted to use their services. These reasonable checks usually involve some
form of identification, which makes it easy for providers to build profiles on their
users.

One powerful solution to these conflicting interests is the use of anonymous
credentials, which are designed to allow service providers to verify information
that the credential holder willingly discloses, without needing any further per-
sonal data to corroborate that information, and without allowing the user to be
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tracked from one interaction to the next. Anonymous credentials have been fully
realised since 2001 [2], but their adoption has been extremely slow, due in large
part to the cumbersome nature of the zero-knowledge proofs they rely on.

A recently developed type of anonymous credential, known as mercurial sig-
natures [6], shows promise in overcoming this hurdle, as its malleable nature
replaces much of the need for traditional zero-knowledge proofs. Mercurial signa-
tures also allow for credential holders to delegate their credentials anonymously
to other users, forming a chain of trust and enabling more private and versatile
use of their systems.

However, the novelty of mercurial signatures means that they still lack much
of the functionality that more established types of anonymous credential offer.
Most notably, they do not yet offer the ability to encode detailed information
about the credential holder’s attributes and disclose only a subset of that infor-
mation, a feature known as selective disclosure which is often viewed as necessary
for an anonymous credential system.

Our contribution. This paper proposes an elegant extension to mercurial sig-
natures which allows the selective disclosure of attributes, in a way which also
remains compatible with the delegation of credentials. We also extend the secu-
rity game associated with the original mercurial signatures to take account of
the additional requirements that accompany credential attributes, and we prove
the security of our extension with respect to the original CL19 mercurial signa-
ture construction. Although we use the CL19 construction for simplicity in our
demonstration, the extension is also compatible with other credentials based on
FHS-type structure-preserving signatures and set commitments, including the
CL21, CLP22, and MSBM23 constructions [4,7,10].

Section 2 introduces the basic concepts that underpin this work. Section 3
gives an overview of the previous development of mercurial signatures. In Sect. 4,
we detail our extension and give an overview of the associated proofs. We con-
clude in Sect. 5 with a brief look at the other areas in which this field can be
progressed.

2 Preliminaries

A function ε : N → R
+ is called negligible if for all c > 0 there is a k0 such

that ε(k) < 1/kc for all k > k0. We use a ←R S to denote that a is chosen
uniformly at random from a set S. Given a probabilistic algorithm A(a1, ..., an),
we use A(a1, ..., an; r) to make the randomness r used by the algorithm explicit,
and [A(a1, ..., an)] to denote the set of points with positive probability of being
output by A. We write groups multiplicatively throughout this paper, and given
a group G we use G

∗ to denote G\{1G}.

2.1 Bilinear Maps

Given three cyclic groups G1, G2, and GT , all of prime order p, a bilinear map
or pairing is an efficiently computable function e : G1 × G2 → GT such that,
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given generators P and P̂ of G1 and G2 respectively, e(P a, P̂ b) = e(P, P̂ )ab.
The pairing is called non-degenerate if e(P, P̂ ) �= 1GT

, in which case e(P, P̂ )
generates GT .

All of the bilinear maps used in this paper will be non-degenerate and based
on cyclic groups of the same prime order. We define a bilinear-group genera-
tor to be a polynomial-time algorithm that takes as input a security parameter
1κ and outputs a tuple (p,G1,G2,GT , e, P, P̂ ) such that the groups G1 = 〈P 〉,
G2 = 〈P̂ 〉, and GT are cyclic groups of prime order p with �log2 p� = κ, and
e : G1 × G2 → GT is a non-degenerate bilinear map.

2.2 Zero-Knowledge Proofs of Knowledge

Let LR = {x|∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal language with a binary,
polynomial-time witness relation R ⊆ {0, 1}∗ × {0, 1}∗, so that the membership
of x ∈ LR can be decided in polynomial time when given a witness w of length
polynomial in |x| certifying (x,w) ∈ R. Consider an interactive protocol (P,V)
between a potentially unbounded prover P and a PPT verifier V with outcome
(·, b) ← (P(·, ·),V(·)) where b = 0 indicates that V rejects and b = 1 indicates
that V accepts the conversation with P. Such a protocol is a zero-knowledge
proof of knowledge (ZKPoK) if it satisfies the following three properties:

– Completeness: We call such a protocol (P,V) complete if, for all x ∈ LR and
w such that (x,w) ∈ R we have that (·, 1) ← (P(x,w),V(x)) with probability
1.

– Zero knowledge: We say that the protocol (P,V) is zero-knowledge if for
all PPT algorithms V∗ there exists a PPT simulator S such that:

{SV∗
(x)}x∈LR ≈ {〈P(x,w),V∗(x)〉}(x,w)∈R

where 〈P(·, ·),V∗(·)〉 denotes the transcript of the interaction between P and
V, and "≈" denotes perfect indistinguishability.

– Knowledge soundness: We say that (P,V) is a proof of knowledge (PoK)
relative to an NP relation R if, for any (possibly unbounded) malicious prover
P∗ such that (·, 1) ← (P∗(x),V(x)) with non-negligible probability, there
exists a PPT knowledge extractor K with rewinding black-box access to P∗

such that KP∗
(x) returns a value w satisfying (x,w) ∈ R.

Zero-knowledge proofs of knowledge are used by provers to convince veri-
fiers that they know a secret value w satisfying a specific statement x. For this
work we are particularly interested in protocols to prove knowledge of a dis-
crete logarithm, which can be efficiently instantiated using Σ-protocols as in
Cramer et al. [5]. When using zero-knowledge proofs of knowledge, we denote
the composite of proofs of witnesses w1, . . . , wn satisfying statements x1, . . . , xn

by PoK{(w1, . . . , wn) | x1 ∧ · · · ∧ xn}.
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2.3 Anonymous Credentials

Anonymous credentials are a privacy-preserving system which allows a prover
to obtain, from a trusted issuer, a credential on one or more attributes repre-
senting access rights or pieces of identifying information, which can then be used
to prove their possession of these attributes to a verifier in zero knowledge. An
anonymous credential system consists of the following PPT algorithms:

IssuerKeyGen(1κ, 1t): A probabilistic algorithm which takes as input a security
parameter κ and an upper bound t on the size of attribute sets, and outputs a
key pair (osk, opk) for an issuer.

ProverKeyGen(opk): A probabilistic algorithm which takes as input an issuer’s
public key opk and outputs a key pair (usk, upk) for a prover.

(Obtain(usk, opk, A), Issue(upk, osk, A)): A pair of probabilistic algorithms run
by a prover and an issuer, respectively, which interact during execution. Obtain
takes as input the prover’s secret key usk, the issuer’s public key opk, and a
non-empty attribute set A of size |A| ≤ t, and Issue takes as input the prover’s
public key upk, the issuer’s secret key osk, and a non-empty attribute set A of
size |A| ≤ t. At the end of the protocol, Obtain outputs a credential cred for the
user on the attribute set A, or ⊥ if the execution failed.

(Show(opk, A, D, cred), Verify(opk, D)): A pair of algorithms run by a prover and
a verifier, respectively, which interact during execution. Show is a probabilistic
algorithm which takes as input an issuer’s public key opk, an attribute set A of
size |A| ≤ t, a non-empty set D ⊆ A, and a credential cred. Verify is a deterministic
algorithm which takes as input an issuer’s public key opk and a set D. At the
end of the protocol, Verify outputs either 1 or 0, indicating whether it accepts
the credential showing or not.

Informally, the security properties that an anonymous credential must satisfy
are as follows:

– Correctness: A showing of a credential cred with respect to a non-empty set
of attributes D always verifies if cred was issued honestly for some attribute
set A such that D ⊆ A.

– Unforgeability: A prover cannot perform a valid showing of attributes for
which they do not possess a credential, and no coalition of provers can combine
their credentials to perform a valid showing of attributes for which no single
prover in the coalition has a credential. This must hold even after seeing
arbitrary showings of valid credentials by honest users.

– Anonymity: During a showing, no verifier, issuer, or coalition of multiple
verifiers and/or issuers can learn anything about the prover except that they
possess a valid credential on an attribute set that includes D.

We say that an anonymous credential system offers selective disclosure
if it supports attribute sets of size greater than 1 (and therefore allows D to
be a proper subset of A). Such credentials are often called attribute-based
credentials.
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We say that a credential is multi-show if it can be used in multiple runs
of the Show algorithm and the verifier(s) to which it has been shown cannot
distinguish them from protocol runs using different credentials. We can identify
two distinct families of multi-show credentials: zero-knowledge credentials,
which are not revealed to the verifier during the Show algorithm, instead using
zero-knowledge proofs to convince the verifier of the valid credential’s existence,
and self-blindable credentials, which are partially or fully shown to the veri-
fier during the Show algorithm, and subsequently altered such that they remain
valid but are unrecognisable in later showings.

2.4 Delegatable Credentials

Delegatable credentials, first proposed in 2006 by Chase and Lysyanskaya [3],
extend the anonymous credential model by allowing the holder of a credential
to (anonymously) issue new credentials to other users. This process is called
delegation, and allows credentials to form a chain of trust; each credential iden-
tifies the root authority which issued the original credential, and how many steps
removed from that original credential it is, but does not uniquely identify the
other delegators along the chain.

Crites and Lysyanskaya [6] provide a model for delegatable credentials, which
differs from the basic anonymous credential model in a few key ways. First, they
add the following PPT algorithm:

NymGen(sk, L(pk0)): A probabilistic algorithm that takes as input a participant’s
secret key sk and a delegation level (i.e. number of steps removed from the
root issuer) L(pk0) under the root issuer whose public key is pk0, and generates
a pseudonym and auxiliary information for that participant at that level.

The pseudonym and auxiliary information function as a fresh public key and
secret key, respectively, that other participants cannot link to the underlying
long-term key pair. The Issue/Obtain and Prove/Verify algorithms then become:

(Obtain(LI(pk0), pk0, skR, nymR, auxR, nymI), Issue(LI(pk0), pk0, skI, nymI,
auxI, credI, nymR)): Obtain takes as input the issuer’s delegation level, the root
authority’s public key, the secret key and a pseudonym and auxiliary information
belonging to the recipient, and the issuer’s pseudonym (not the issuer’s long-
term public key), and Issue takes as input the issuer’s delegation level, the root
authority’s public key, the secret key, pseudonym, auxiliary information, and
credential belonging to the issuer, and the recipient’s pseudonym. The protocol
outputs a new credential for the recipient, which has a (potentially equal) subset
of the attributes in credI and delegation level LI(pk0) + 1. By convention, a root
authority runs Issue with LI(pk0) = 0, nymI = pk0, and auxI = credI = ⊥.

(Prove(LP (pk0), pk0, skP, nymP, auxP, credP), Verify(pp, LP (pk0), pk0, nymP)):
Prove takes as input the prover’s delegation level, the root authority’s public key,
the prover’s secret key, the pseudonym by which the verifier knows the prover
(which should differ from the pseudonym to which the credential was issued) and
its auxiliary information, and the prover’s credential. Verify takes as input the
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system parameters pp (which were assumed in the basic model to be part of the
issuer’s public key), the prover’s delegation level, the root authority’s public key,
and the prover’s pseudonym. The output is unchanged from the basic anonymous
credential model.

Delegatable credentials also extend the basic security goals of anonymous
credentials. In particular, the Correctness and Unforgeability properties are
extended such that every credential along a chain must be generated correctly
and honestly in order for the credential shown at the end to be considered correct
and honest. The Anonymity property is also extended to apply to delegators;
this can be to protect the delegators’ privacy, but it is also necessary for provid-
ing anonymity to the prover, since two credentials with the same root authority
but different delegators would otherwise become distinguishable, which would
reduce the prover’s anonymity set.

Though there is no clear consensus on how delegatable credentials should
use attributes, Blömer and Bobolz [1] propose the requirement that a delegated
credential must encode a subset of the attributes in the delegator’s credential,
conceptually enforcing that not only the credential but the attributes themselves
are delegated from one level to the next. We will refer to this as selective dele-
gation (of attributes). This model is ideal for scenarios in which the attributes
of delegated credentials are expected to represent strictly equal or lesser privi-
leges than those of the credentials higher up the chain. This includes the case
in which the issuing process itself is delegated, as the selective delegation model
allows the root issuer to provide each sub-issuer with a credential containing all
of the attributes that sub-issuer is empowered to sign.

3 Previous Work

3.1 SPS-EQ Credentials

The precursor to mercurial signatures, SPS-EQ credentials are a form of self-
blindable, attribute-based credentials first proposed by Hanser and Slamanig in
2014 [9] and refined by Fuchsbauer et al. in 2019 [8]. They are based on a novel
primitive called structure-preserving signatures on equivalence classes, usually
abbreviated as SPS-EQ.

A structure-preserving signature scheme is one in which the message and the
signature are both made up of group elements in the same bilinear pairing, as
is the public key. SPS-EQ schemes further define an equivalence relation on the
message and signature spaces, and allow both messages and signatures to be
randomised within the resulting equivalence classes.

In addition to the usual Sign and Verify functions, SPS-EQ schemes include
a function ChgRepR(M,σ, μ, pk), parametrised by equivalence relation R, which
takes as input a message M, a signature σ, a randomising factor μ, and a public
key pk, and outputs a message M ′ in the same equivalence class as M and a
signature σ′ such that:

Verify(M ′, σ′, pk) = Verify(M,σ, pk).
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The security requirements of SPS-EQ schemes include a class-hiding prop-
erty, which states that an adversary given a pair of messages should not be
able to tell whether they are in the same equivalence class, and an origin-hiding
property, which states that the output of the ChgRepR function should be indis-
tinguishable from a fresh message-signature pair.

Hanser and Slamanig’s construction defines its message space by generating
a bilinear pairing e : G1 × G2 → GT with DDH-hard groups, and creating a
vector space of elements in (G∗

1)
l with l greater than 1. The equivalence relation

is then defined such that two messages M and M ′ are equivalent if and only if
M ′ is a scalar power of M.

The secret key is a vector (xi)i∈l in (Z∗
p)

l and the public key is the corre-
sponding vector (X̂i)i∈l = (P̂ xi)i∈l where P̂ is a generator of G2 included in the
public parameters; the public key is therefore a vector in (G∗

2)
l. A signature σ

on a message M ∈ (G∗
1)

l is a tuple (Z, Y , Ŷ ) with Z, Y ∈ G1 and Ŷ ∈ G2 such
that:

Z =
∏

i∈l M
xiy
i , Y = P

1
y , Ŷ = P̂

1
y ,

where P and P̂ are generators of G1 and G2, respectively, included in the public
parameters, and y is chosen randomly from Z

∗
p at the time of signing.

SPS-EQ schemes were specifically designed for use in anonymous credentials,
using their randomisation as the credential blinding mechanism, with SPS-EQ’s
class-hiding and origin-hiding properties providing unlinkability for the result-
ing credentials. In order to encode attributes, they had to be combined with a
commitment scheme that could be randomised in a manner consistent with the
SPS-EQ construction.

3.2 Randomisable Set Commitments

In order to support attributes with selective disclosure, Hanser and Slamanig also
constructed a set commitment scheme which can opened securely to a chosen
subset of the committed set, and can be randomised in a similar manner to the
signature scheme, allowing a set commitment to the desired attribute set A to
be used as the message in the signature scheme.

The scheme works by committing to a polynomial fS(X ) whose roots are the
members of the committed set S ; that is, fS(X ) =

∏
s∈S (X – s). S must be a

subset of Zp, but could encode other types of data using a hash function.
The commitment scheme is instantiated by a manager who selects the secu-

rity parameter 1κ and a maximum set cardinality 1t and generates a bilinear
pairing e : G1 × G2 → GT which is published along with generators P and
P̂ for G1 and G2 respectively. The manager then chooses a random trapdoor a
∈ Zp and publishes (P ai

, P̂ ai

)i∈[t]. This ensures that the trapdoor is not needed
to compute P fS(a) =

∏|S|
i=0 P fia

i

, which is needed to generate and verify com-
mitments, or P̂ fS(a), which is needed to verify subsets.

In order to commit to a set, the prover chooses a random ρ ∈ Z
∗
p and computes

the commitment C = P ρfS(a) which is stored along with the opening information
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O = (0, ρ). To open this commitment to the full set S, the prover sends S, C,
and O to the verifier, who is able to compute C from S and O and confirm the
match.

If the prover wishes to open a subset T of the committed set S, they first
generate a witness W = P ρfS\T (a). This can be verified without revealing the
full set S by using the bilinear map to check whether e(W, P̂ fT (a)) = e(C, P̂ ).

If a commitment C is randomised using a blinding factor μ after a witness W
has been generated as above, applying the same blinding factor to W produces
a new witness W ′ which is consistent with the new commitment. This allows the
set commitments to be used as messages for SPS-EQ signatures, such that it is
possible to encode attributes in an SPS-EQ credential and selectively disclose
them to a verifier even after the credential has been randomised.

Subsequent work by Connolly et al. [4] extended this commitment scheme
with a function for opening on disjoint sets, allowing the commitment’s owner
to prove that certain values are not included in the committed set. They also
add an optional proof of exponentiation (PoE) technique to shift computation
work from the verifier to the prover during openings. These functions require no
changes to the structure of the commitment, and hence incur no additional cost,
while significantly expanding the expressiveness of the scheme.

3.3 Mercurial Signatures

Mercurial signatures are an extension to SPS-EQ proposed by Crites and Lysyan-
skaya [6] with the intention of supporting delegatable credentials. To do this, they
add a set of functions to allow a key pair (pk, sk) to be randomised such that
the resulting (pk′, sk′) is still a valid key pair, and a signature under pk to be
randomised to produce a valid signature on the same message under pk′. Ran-
domising the public key allows delegators to be anonymised, and prevents the
credential chain of a delegated credential from becoming identifiable.

Given parameterised equivalence relations RM , Rpk, and Rsk, Crites and
Lysyanskaya define mercurial signatures generally as consisting of the following
PPT algorithms:

PPGen(1k) → PP : A probabilistic algorithm which takes as input the security
parameter 1k and outputs the public parameters PP , including parameters for
RM , Rpk, and Rsk, and parameters for algorithms sampleρ and sampleμ, which
are used to generate converters for keys and for messages, respectively.

KeyGen(PP, l) → (pk, sk): A probabilistic algorithm which takes as input the
public parameters PP and a length parameter l and outputs a key pair (pk, sk).
Following the authors’ example, we also write (pk, sk) ∈ KeyGen(PP, l) to denote
that there exists a set of random choices KeyGen could make on input (PP, l)
that would result in (pk, sk) as the output. It is also noted that the message
space M is well-defined from PP and l.

Sign(sk, M) → σ: A probabilistic algorithm which takes as input a signing key
sk and a message M ∈ M and outputs a signature σ.
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Verify(pk, M,σ): → 0/1: A deterministic algorithm which takes as input a public
key pk, a message M ∈ M, and a purported signature σ, and outputs 0 or 1.

ConvertSK(sk,ρ) → s̄k: A deterministic algorithm which takes as input a signing
key sk and a key converter ρ ∈ sampleρ and outputs a new signing key s̄k ∈
[sk]R

sk

.

ConvertPK(pk,ρ) → p̄k: A deterministic algorithm which takes as input a public
key pk and a key converter ρ ∈ sampleρ and outputs a new public key p̄k ∈
[pk]R

pk

.

ConvertSig(pk,M,σ, ρ) → σ̄: A probabilistic algorithm which takes as input a
public key pk, a message M ∈ M, a signature σ, and a key converter ρ ∈ sampleρ,
and outputs a new signature σ̄.

ChangeRep(pk, M,σ, μ) → (M ′, σ′): A probabilistic algorithm which takes as
input a public key pk, a messages M ∈ M, a signature σ, and a message converter
μ ∈ sampleμ, computes a new message M ′ ∈ [M ]RM

and a new signature σ′,
and outputs (M ′, σ′).

In order to define a construction for mercurial signatures, Crites and Lysyan-
skaya made a simple extension from Hanser and Slamanig’s structure-preserving
signature construction. Recalling that the secret key is a vector (xi)i∈l in (Z∗

p)
l

and the public key is the corresponding vector (X̂i)i∈l = (P̂ xi)i∈l in (G∗
2)

l, Crites
and Lysyanskaya’s construction randomises the keys by taking an input ρ ∈ Z

∗
p

and setting sk′ = (ρxi)i∈l and pk′ = (X̂ρ
i )i∈l. A signature σ = (Z, Y, Ŷ ) can then

be randomised by choosing a random ψ ∈ Z
∗
p and setting σ′ = (Zψρ, Y

1
ψ , Ŷ

1
ψ ).

This is identical to the signature randomisation in SPS-EQ, and ensures that if
σ is a valid signature on a message M under pk, σ′ is a valid signature on M
under pk′.

One major limitation of the CL19 mercurial signature construction (and,
indeed, of the SPS-EQ construction before it) is that the length of the signer’s
key serves as an upper bound on the length of the message to be signed. This is
especially problematic in the context of delegatable credentials, where a typical
message consists of the prover’s public key plus a representation of at least one
attribute. If the issuer has a key of length l and signs a credential with k group
elements representing its attributes, the prover’s key length can only be at most
l − k. Furthermore, if that prover then wishes to delegate the credential with all
of its attributes, the recipient’s key length can only be up to l − 2k, and so on.

In a subsequent paper, Crites and Lysyanskaya proposed a method to over-
come this problem [7]. The message is assumed to be of the form (P,M1, ...,Mn),
where P is a generator of G1 and Mi = Pmi for all 1 ≤ i ≤ n, with the values
mi being encoded information such as private key elements and attributes. The
approach taken by Crites and Lysyanskaya is to transform each element of the
message into its own fixed-length message which can be signed separately using
the original scheme.

Later work by Connolly et al. [4] used similar techniques to obtain issuer-
hiding SPS-EQ credentials which could easily be converted to mercurial signa-
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tures by adding a protocol for delegation. They also made use of the FHS ran-
domisable set commitment scheme in Sect. 3.2 to encode attributes with selective
disclosure; however, their work does not achieve selective delegation, as we will
see in the next section.

The only relative of mercurial signatures to directly combine delegation
with selective disclosure of attributes is the recent work by Mir et al. [10],
which replaces the SPS-EQ primitive with SPS-EQ on Updatable Commitments
in order to achieve an efficient construction with several desirable properties,
including the ability to restrict the number of times a credential can be dele-
gated and to prevent a delegatee from showing attributes from a higher delega-
tion level. They also introduce a method to batch subset openings of multiple
commitments for efficient verification, called cross-set commitment aggregation.
However, their approach also does not consider selective delegation of attributes;
in contrast to Blömer and Bobolz’s model, there is no enforced relationship
between the attributes on different delegation levels. A relationship could still
be shown to a verifier, but only if every delegator provides the delegatee with
the opening of their commitment so that the delegatee can show the relevant
attributes on higher levels. Even if the delegator uses a subset witness to keep
some attributes hidden, this would sacrifice the information-theoretic privacy of
the delegation protocol.

4 Providing Selective Disclosure

The CL19 credential construction does not include a way to encode any infor-
mation other than the holder’s public key, meaning it cannot be used to prove
anything other than that the holder is the genuine owner of the credential. While
the mere fact of possessing a credential can be taken to certify a single, binary
attribute, most existing credential schemes are built to be able to certify a mul-
titude of attributes, along with providing a way to disclose only those that are
relevant during a particular transaction.

One approach to encoding these attributes is to use the same set commitment
scheme as SPS-EQ signatures. Since mercurial signatures directly extend SPS-
EQ and the credential schemes are derived in a similar way, when a mercurial
signature is first issued the set commitment can work identically to the commit-
ments in SPS-EQ credentials. This also has the benefit of allowing a credential’s
size to be constant, rather than linear in the number of attributes.

The CLP22 scheme [4] takes this approach, but their work does not con-
sider credential delegation. The MSBM23 scheme [10] is similar but does allow
credential delegation; however, under their model the attributes in a delegated
credential bear no relation to the delegator’s attributes. In this paper, we are
concerned with the more restrictive model of selective delegation introduced by
Blömer and Bobolz [1], which adds a further challenge to overcome.
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4.1 Selective Delegation

The difficulty here arises because when one user, Alice, delegates a credential
to another user, Bob, Bob’s attribute commitment ĈB has not been signed by
the root issuer, and Alice’s identity is intentionally hidden from any party Bob
discloses the credential to, meaning that her signature cannot be trusted in the
same way.

In order to ensure that no user has issued a credential more permissive than
their own, the verifier of Bob’s credential must have some way of confirming
that Alice was authorised to issue the attributes in Bob’s attribute set B. This
means that the verifier must be able to check whether or not B is a subset of
Alice’s attribute set A. In order to achieve this, we will design a special subset
witness that can be included on the delegation chain to connect Alice and Bob’s
credentials, leading to a chain in which each credential except for the first has
an associated witness value linking it to the one before. The difficulty in this
approach lies in designing a witness value that can be computed by Alice and
Bob at the time of delegation and does not leak any information about either
attribute set.

In the case that A = B, the verifier can already confirm the relation with
the pairing equation e(Xρ1ρ2

1 , Ĉρ3
B ) = e(Cρ1ρ2

A , Ŷ ρ3
1 ) which can be verified using

only the elements Xρ1ρ2
1 , Cρ1ρ2

A , Ŷ ρ3
1 , Ĉρ3

B within the blinded credB . Here X1 is
the first element of the public key in Alice’s credential, Ŷ1 is the first element
of the public key in Bob’s credential, CA and ĈB are Alice and Bob’s attribute
commitments, respectively, as formulated in the FHS19 credential scheme [8],
and ρ1, ρ2, and ρ3 are the blinding factors used by Alice and Bob to randomise
their credentials, with Alice applying ρ1 to her credential, and Bob applying ρ2
to Alice’s credential and ρ3 to his own credential. Note that the assignment of
G1 and G2 in this example is arbitrary and can be reversed as needed depending
on the delegation level.

To support the case where B is a proper subset of A, the verifier will need to
replace Xρ1ρ2

1 with X
ρ1ρ2fA\B(a)
1 , a subset witness that can only be generated by

Alice. Alice could in theory supply this witness to Bob during delegation, but if
Bob subsequently delegates the credential further, that witness will need to be
passed along again. Effectively, this is no different to storing the witness value
as part of the credential chain.

However, formulating the witness in this way leaks whether or not A = B,
since in that case fA\B(a) = 1, and so X

ρ1ρ2fA\B(a)
1 = Xρ1ρ2

1 . Indeed, this means
anyone could attempt to guess the full attribute set of a credential they have
seen and check their guess by creating a commitment ĈQ and testing whether
e(Xρ1ρ2

1 , ĈQ) = e(Cρ1ρ2
A , Ŷ ρ3

1 ). This can be prevented by decoupling the com-
mitment’s opening factor from the owner’s key pair, making it instead a fresh,
random exponent, ψ. The pairing equation then correspondingly becomes:

e(P ρ1ρ2ψAfA\B(a), Ĉρ3
B ) = e(Cρ1ρ2

A , P̂ψBρ3).

Because the element PψAfA\B(a) is in G1, it cannot be signed by Alice, and
it cannot be generated in advance to gain the issuer’s signature, since it requires
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knowledge of Bob’s attribute set. With two unsigned elements in the equation,
the values could be adjusted to a trivial solution, and so the result cannot be
trusted by a verifier. However, Bob can include the exponent ρ−1

3 ψ−1
B and rear-

range the pairing equation to:

e(P ρ1ρ2ψAρ−1
3 ψ−1

B fA\B(a), Ĉρ3
B ) = e(Cρ1ρ2

A , P̂ ).

Because P ρ1ρ2ψAρ−1
3 ψ−1

B fA\B(a) is a unique solution to this equation and is
being compared with two signed elements and a public parameter, an adversary
cannot modify it without rendering the credential useless, so it can safely be
placed on the credential chain as an unsigned witness tag connecting party A’s
credential to party B’s credential. Using this tag, any verifier can easily check
that B ⊆ A, while the random factors mask any further information.

4.2 Construction of Mercurial Signature Credentials with Set
Commitments

Applying these modifications to CL19 credentials [6], we arrive at the following
construction.

Let λ be the maximum delegation level that should be permitted
on a credential. This has to be specified because the keys must get
shorter at each delegation level to allow signing attributes. Define MSi =
(PPGeni,KeyGeni,Signi,Verifyi,ConvertSKi,ConvertPKi,ConvertSigi,ChangeRepi)
for all 0 ≤ i ≤ λ as instantiations of mercurial signatures as constructed by Crites
and Lysyanskaya [6], such that for all i, j ∈ [λ], PPGeni = PPGenj , MSi is param-
eterised with key and message length li = λ+1−i, and the roles of G1 and G2 are
reversed in all other algorithms of MSi if i is odd, so that for 0 ≤ i < λ, (RM )i =
(Rpk)i+1. Let Com0 = (Setup0,Commit0,Open0,OpenSubset0,VerifySubset0) and
Com1 = (Setup1,Commit1,Open1,OpenSubset1,VerifySubset1) be two instantia-
tions of FHS randomisable set commitments [8] with the roles of G1 and G2 in
Com1 reversed.

The construction consists of the following algorithms and protocols. For sim-
plicity, the protocols are written as if the credential chain length L is even; if L
is odd, the roles of G1 and G2 must be reversed.

Setup(1k, 1t, 1λ) → (params): Given k, t, λ > 0, compute PP ← PPGen0(1k);
extract (P, P̂ ) from PP , choose a ←R

Zp, and compute (P ai

, P̂ ai

)i∈[t]; output
params = (PP, p, t, λ, (P ai

, P̂ ai

)i∈[t]).

KeyGen(params) → (pk, sk): There are two cases. For the root authority,
compute (pk0, sk0) ← KeyGen0(PP, l0) and output it. For others, compute
(pki, ski) ← KeyGeni(PP, li) for all i ∈ [λ] and output all of the key pairs
(pki, ski)i∈[λ].

Issue(params,L, pk0, skI , pkI , OI , credI ,AI ,AR) ↔
Receive(params,L, pk0, skL+1, pkL+1,AR) → (credR, ρ)

– If L = 0, define credI = ⊥ and AI = Zp.
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– If L ≥ λ, return ⊥.
– Receiver calculates (CR, OR) ← Commit(params,AR), extracts ρR from

OR = (b, ρR), and calculates P ρR .
– Receiver sends CR, P ρR , pkL+1.
– Receiver proves PoK{α1, ..., αl, β|(Pα1 , ..., Pαl) = pkL+1 ∧ P β = P ρR}.
– If AR �⊆ AI or |AR| > t or the PoK fails, Issuer returns ⊥.
– If e(CR, P̂ ) �= e(P ρR , P̂ fAR

(a)) and ∀a′ ∈ AR : P a′ �= P a, Issuer returns ⊥.
– If L = 0, Issuer computes σ1 ← Sign0(skI , (pkL+1, CR)) and sends credR =

(pkL+1, CR, σ1).
– If L > 0, Issuer computes (cred′

I , sk
′
I , ψ) ← RandCred(credI , skI , pk0, L) and

σL+1 ← SignL(sk′
I , (pkL+1, CR)).

– If L > 0 and ∀a′ ∈ AI : P a′ �= P a, Issuer extracts ρI from OI and Ĉ ′
I from

cred′
I , computes W̄R ← OpenSubset(params, Ĉ ′

I ,AI , (0, ρIψ),AR), and sends
σL+1, W̄R, and cred′

I .
– If L > 0 and ∃a′ ∈ AI\AR : P a′

= P a, Issuer calculates fAR
(a′)−1, sets

W̄R ← (C ′
I)

fAR
(a′)−1

, and sends σL+1, W̄R, and cred′
I .

– If L > 0 and ∃a′ ∈ AR : P a′
= P a, Issuer sets C̄R = C ′

I , W̄R = P ρR , and
σL+1 ← SignL(sk′

I , (pkL+1, C̄R)), and sends σL+1, C̄R, W̄R, and cred′
I .

– If ∃a′ ∈ AR : P a′
= P a, Receiver sets CR = C̄R.

– If ∀2 ≤ i ≤ L : Verifyi−1(pk
′
i−1, nym′

i, σ
′
i) = 1 ∧ e(C ′

i,W
′
i ) = e(P,C ′

i−1)
and Verify0(pk0, nym′

1, σ
′
1) = 1 and VerifyL(pk′

I , nymR, σL+1) = 1 and

e(CR, W̄R) = e(P ρR , C ′
I), Receiver calculates WR = W̄

ρ−1
R

R , appends pkL+1,
CR, σL+1, WR to cred′

I to form credR, and stores credR, OR, skR =
skL+1, pkR = pkL+1.

RandCred(cred, sk, pk0, L) → (cred′, sk′, ρ): If L > λ, return ⊥; otherwise, given
cred of the form (nym1, ..., nymL, σ1, ..., σL,W2, ...,WL), where nymi = (pki, Ci),
choose random (ρ1, ..., ρL) ← (Z∗

p)
L; define nym′

0 = pk0, σ̄1 = σ1; if L ≥ 2, for

2 ≤ i ≤ L, set σ̄i = ConvertSigi−1(pki−1, nymi, σi, ρi−1) and W ′
i = W

ρi−1ρ−1
i

i ;
for 1 ≤ i ≤ L, set (nym′

i, σ
′
i) = ChangeRepi(nym′

i−1, nymi, σ̄i, ρi); set cred′ =
(nym′

1, ..., nym
′
L, σ′

1, ..., σ
′
L,W ′

2, ...,W
′
L) and sk′ = ρL(sk); output (cred′, sk′, ρL).

CredProve(params,LP , pk0, skP , pkP , OP , credP ,AP ,S,D) ↔ CredVerify
(params, pk0) → {0, 1}
– Prover extracts CLP

from credP and computes WLP
← OpenSubset(params,

CLP
,AP , OP ,S), ŴLP

← OpenDisjoint(params,CLP
.AP , OP ,D).

– If LP ≤ λ, Prover computes (cred′
P , sk′

P , ψ) ← RandCred(credP , skP , pk0, LP ),
W ′

LP
= Wψ

LP
, and Ŵ ′

LP
= Ŵψ

LP
.

– Prover sends cred′
P ,W ′

LP
, Ŵ ′

LP
,S,D.

– Prover proves PoK{α1, ..., αl|(Pα1 , ..., Pαl) = pk′
LP

}.
– Verifier extracts nym′

LP
= (pk′

LP
, C ′

LP
) from credP and infers LP from the

length of cred′
P .

– If LP > λ or the PoK fails, Verifier returns 0.
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– If ∀2 ≤ i ≤ LP : Verifyi−1(pk
′
i−1, nym′

i, σ
′
i) = 1 ∧ e(C ′

i,W
′
i ) = e(P,C ′

i−1),
Verify0(pk0, nym′

1, σ
′
1) = 1, VerifySubset(params,C ′

LP
,S,W ′

LP
) = 1, and

VerifyDisjoint(params,C ′
LP

,D, Ŵ ′
LP

) = 1, Verifier outputs 1; otherwise, Veri-
fier outputs 0.

Similar adjustments can be made to add selective delegation to the variable-
length CL21 scheme [7] and to the issuer-hiding CLP22 scheme [4], since all three
constructions randomise message elements in the same way and are therefore
compatible with the same set commitments and witness values. The witness
values in Sect. 4.1 are also compatible with the MSBM23 credential scheme [10],
allowing its delegation mechanism to be used with the more restrictive Blömer
and Bobolz model.

In the next subsection, we give an overview of the security proofs for the
above construction, which can be found in full in the appendices. Similar proofs
should be obtainable for the variable-length Crites-Lysyanskaya scheme and the
Connolly et al. scheme with minimal changes to the proof strategy.

4.3 Security Analysis

In order to assess the security of this scheme, we must first establish the security
goals of a delegatable, attribute-based credential (DABC): namely correctness,
unforgeability, and anonymity. In the context of this scheme, these can loosely
be defined as follows:

– Correctness: The scheme is correct if, whenever Setup and KeyGen are run
correctly and the Issue-Receive protocol is executed correctly on correctly gen-
erated inputs including an attribute set X , the receiver outputs a certification
chain that, when used as input to the prover in an honest execution of the
CredProve-CredVerify protocol with input sets S and D such that S ⊆ X and
D ∩ X = ∅, is accepted by the verifier with probability 1.

– Unforgeability: The scheme is unforgeable if:
• a (non-root) user without a correctly-issued credential cannot perform a

showing or issue a credential that would be accepted by a verifier with
non-negligible probability

• a user in possession of a credential for an attribute set X cannot with
non-negligible probability perform a valid showing for sets S and D such
that S �⊆ X and D ∩ X �= ∅, even if colluding with other users.

• a user in possession of a credential for an attribute set X cannot with non-
negligible probability issue a valid delegated credential for a set Y �⊆ X ,
even if colluding with other users.

– Anonymity: The scheme is anonymous if, during a showing of a credential,
no verifier, issuer, or coalition of verifiers and issuers can identify the user,
identify past showings of the same credential, or learn anything about the
user other than that they possess a valid credential for the attributes being
shown.



Selective Delegation of Attributes in Mercurial Signature Credentials 195

Note that the CL19 and CL21 schemes [6,7] cannot satisfy anonymity in
cases where the credential chain includes a public key (other than the root issuer)
whose secret key is known by the adversary. Such cases are therefore eliminated
in the security game that provides the formal criteria.

In order to formalise the security definitions, we extend the security game
from Crites and Lysyanskaya’s DAC model [6] to account for the addition of
attributes to the credentials, and of subset and disjoint set openings to the
showing protocol. The resulting security game is included in the full version of
the paper.

Correctness: The correctness of the scheme in Sect. 4.2 follows by inspection.
In particular, it can be seen that it matches Crites and Lysyanskaya’s original
mercurial signature scheme [6], expanded to make the contents of each creden-
tial explicit, and with the addition of attribute sets, attribute witnesses, and
verification checks on attributes.

Unforgeability: The proof of unforgeability for the scheme in Sect. 4.2 works
by enumerating the ways in which an adversary could achieve a forgery in the
attribute-based security game, and shows how each reduces to either a forgery
in the non-attribute-based mercurial signature model or a breaking of one of the
security properties of the set commitment scheme. See the full version of the
paper for further details.

Anonymity: The proof of anonymity for the scheme in Sect. 4.2 is an extension
of the hybrid argument in Crites and Lysyanskaya’s proof of anonymity for
the original mercurial signature construction, which shows that the adversary’s
view when attributes are included is indistinguishable from the case in which
all honest parties have identical attributes; therefore the inclusion of credential
attributes and subset witnesses does not enable the adversary to distinguish
between credentials. See the full version of the paper for further details.

5 Conclusion and Future Work

In this paper, we have introduced a method by which mercurial signatures can
encode and delegate multiple attributes of the credential holder, in keeping
with the properties of selective disclosure and restricted, selective delegation
as described by Blömer and Bobolz. This is an extremely important feature for
an anonymous credential system, providing far more versatility than a credential
that does not encode any detailed attribute information, and so it represents a
significant step toward bringing mercurial signature credentials into line with
the functionality available from older credential schemes.

There are still other major avenues for improving mercurial signature cre-
dentials, however. Most notably, the CL19 mercurial signature scheme suffers
from a severe reduction in its anonymity property, resulting from the fact that
an adversary that has delegated a credential can subsequently recognise its own
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key in that credential’s delegation chain. This weakness is addressed by the work
of Connolly et al. [4], who use a different key structure in their scheme, but this
still only solves it in the honest parameter model. In theory, a zero-knowledge
proof of honest parameter generation given at the time of delegation would close
this weakness, but further work is needed to accomplish this.

Mercurial signatures also have yet to be extended to a multi-authority model
enabling their seamless use in systems with multiple issuing authorities, and
there is interest in finding other basic constructions from which mercurial sig-
natures could be developed, particularly any based on quantum-secure assump-
tions.
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Abstract. We extend the middle product to skew polynomials, which
we use to define a skew middle-product Learning with Errors (LWE) vari-
ant. We also define a skew polynomial LWE problem, which we connect
to Cyclic LWE (CLWE), a variant of LWE in cyclic division algebras.
We then reduce a family of skew polynomial LWE problems to skew
middle-product LWE, for a family which includes the structures found
in CLWE. Finally, we give an encryption scheme and demonstrate its
IND-CPA security, assuming the hardness of skew middle-product LWE.

Keywords: middle product · LWE · cyclic division algebras · skew
polynomials

1 Introduction

The development of efficient quantum algorithms for cryptographic problems
(e.g. [21]) has lead to the development of post-quantum cryptography, which
relies on computationally intractable problems for both classical and quantum
computers. A prime candidate for a family of such computationally intractable
problems are lattice problems, following the pioneering work of Ajtai [1]. In par-
ticular, much post-quantum cryptographic functionality is based on the Learning
with Errors (LWE) problem, introduced by Regev [18].

LWE-style problems consist of solving systems of noisy linear equations. Over
the integers, LWE loosely asks a challenger to find s ∈ Z

n
q from a number of

samples of the form (ai, 〈ai, s〉 + ei mod q), where ai ∈ Z
n
q and ei is some noise.

However, cryptosystems based on LWE have sub-optimal storage requirements
and computation with LWE samples is often inefficient, due to the relative inef-
ficiency of high-dimensional matrix multiplication. For this reason, structured
variants of LWE have been introduced.

These include Ring LWE (RLWE) [15], which uses multiplication in the ring
of integers of a number field to create multiple correlated LWE samples. For
instance, if R is the ring of integers of the 2nth cyclotomic field for power-of-two
n, then R = Z[x]/(xn + 1) and multiplication on a fixed basis by a polynomial
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a ∈ R can be represented by a matrix
⎛
⎜⎜⎜⎝

a0 −an−1 · · · −a1

a1 a0 . . . −a2

...
...

. . .
...

an−1 an−2 . . . a0

⎞
⎟⎟⎟⎠ .

Other structured forms of LWE have been studied, such as PLWE [22], which
considers R = Z[x]/(f(x)) for a broader range of f(x), and CLWE [9], which
developed LWE from orders in cyclic division algebras (CDAs). These variants
both use algebraic objects which permit matrix representations over Z to rewrite
multiplication by an element a as multiplication by an integral matrix.

Another variant, middle-product LWE (MPLWE) [19], replaced ring multipli-
cation with the middle product, denoted �. This product takes two polynomials
a, b and outputs a polynomial whose coefficients are the ‘middle’ coefficients of
the product a · b, discarding higher and lower order terms. In particular, given
a =

∑da−1
i=0 xiai, b =

∑db−1
i=0 xibi with da +db −1 = d+2k for some d, k, we have

a �d b =
⌊

(a · b) mod xk+d

xk

⌋
.

The discarding of coefficients allows for fast algorithms to compute middle prod-
ucts [8,10] and this product has a matrix presentation such that samples of shape
(a, a � r + e) form structured instances of LWE. In particular, one can write

a �d r =

⎛
⎜⎜⎜⎝

a0 a1 a2 ... ada−1 0 ... 0
0 a0 a1 ... ada−2 ada−1 ... 0
...

. . . . . . . . . . . . . . . ...
...

0 ... ... ... 0 a0 ... ada−1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

rdr−1

...
r1
r0

⎞
⎟⎟⎟⎠

In [19] a reduction from a family of PLWE problems to MPLWE was given,
guaranteeing that MPLWE is at least as hard as the hardest PLWE problem
in the family. Notably the chosen family includes RLWE instances. They also
gave a public key encryption scheme and proved its IND-CPA security, assuming
hardness of MPLWE.

Our Contribution. We develop a novel form of MPLWE for skew polyno-
mial rings, which are a noncommutative form of polynomial ring, named ‘Skew
MPLWE’ (SMPLWE). We define the middle product for such rings and also a
novel structured form of LWE for skew polynomial rings, named ‘skew polyno-
mial LWE’ (SPLWE). We show that this LWE variant includes CLWE instances,
reduce a family of SPLWE problems to SMPLWE, and give a PKE scheme.

We state four motivations for this work:

1. We define and make use of (to our knowledge) the first structured LWE-
variant from skew polynomials. This was implicit in [9], but the connection
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was never utilised other than for multiplication algorithms. This appears a
promising avenue of future research, given the well-studied properties of skew
polynomial rings and their profitable application by coding theorists.

2. We continue the study of LWE in CDAs. Defining SMPLWE and SPLWE and
relating them to CLWE provides further indications of the precise security
level of CLWE, which is believed to lie somewhere between that of RLWE and
MLWE, but more precise understanding is lacking. Our reduction provides
new quantitative information on CLWE.

3. SMPLWE enjoys a reduction from a family of SPLWE problems (including
CLWE-style problems). This provides SMPLWE with a strong security guar-
antee and may be preferable in some contexts to CLWE, for this reason.

4. SMPLWE, like MPLWE, enjoys fast multiplication algorithms. Fast algo-
rithms for skew polynomials exist [7], and it seems likely that these could be
used to efficiently compute the skew middle product. This yields a crypto-
graphic scheme which is both efficient and, as explained above, secure.

Our reduction holds for a restricted parameter set relative to [19], since it
appears the noncommutative structure of our rings means that for only some
parameters is SMPLWE structured LWE (in the notation of [19], when n = m =
d). In more detail, we consider quotients of skew polynomial rings of the form
OL[u, θ]/(ud − γ), where L is a number field with ring of integers OL, K is an
index d subfield of L such that Gal(L/K) is generated by an automorphism θ,
u satisfies ux = θ(x)u for any x ∈ OL, and γ ∈ OK , and prove our results for
middle product samples (a, a�dr+e), where deg(a) = d−1 and deg(r) = 2(d−1).
In this setting, we set a �d r =

⌊
(a·r) mod u2d−1

ud−1

⌋
and can write

a �d r =

⎛
⎜⎜⎜⎝

ad−1 θ(ad−2) . . . θd−1(a0) 0 . . . 0
0 θ(ad−1) . . . θd−1(a1) θd(a0) . . . 0
...

. . . . . . . . . . . . . . .
...

0 0 . . . θd−1(ad−1) . . . θd−3(a1) θd−2(a0)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

r0
r1
...

rdr−1

⎞
⎟⎟⎟⎠

We then define two problems: SPLWEq,s,f,χ is the problem of distinguishing
samples of the form (ai, ais + ei mod q) from samples uniform over the domain,
and SMPLWEq,s,d,d,χ′ is the challenge of distinguishing samples of the form
(ai, ai �d s + ei) from those uniform over the domain, where ai and s are skew
polynomials of bounded degree and ei is added noise. We then prove

Main Reduction (Theorem 1). Let d > 0, q ≥ 2, and χ an error distribu-
tion. Then there exists a ppt. reduction from SPLWEq,s,f,χ for any polynomial
f(u) = ud−γ ∈ OL[u, θ] with γ ∈ OK \{0} coprime with q, to SMPLWEq,s,d,d,χ′ .
This result reduces a family of SPLWE problems to SMPLWE - a family which
includes CLWE-style instances. To achieve this, new families of linear transfor-
mations on coefficients of skew polynomials are introduced. We then give a PKE
scheme and demonstrate its IND-CPA security, if SMPLWE is hard.

We note here that we consider a family of SPLWE problems under the coeffi-
cient embedding. These SPLWE problems include the ones considered in CLWE,
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but in that setting the canonical embedding was used. It is not currently clear
what the relationship between CLWE in the coefficient and in the canonical
embedding is, but it seems likely that, in a similar way as holds for RLWE,
CLWE under the coefficient embedding is still a ‘hard’ problem, although we
stress that we do not have any formal proofs of the security of CLWE under
the coefficient embedding. However, we note the work of [20] and consider it
reasonable to suggest that CLWE in the canonical and coefficient embeddings
can be related via a linear transformation with limited loss in parameter quality.
We provide evidence toward this end in Appendix B.

Prior Work and Paper Organisation. MPLWE was introduced in [19] and
CLWE in [9]. More on middle product-based cryptography can be found in
[4,5,14,23]. In [17], MPLWE was related to a number of LWE variants, such
as RLWE. We note the extensive use of skew polynomials in coding theory [3].

Preliminaries are in Sect. 2, we recollect LWE in Sect. 3, skew polynomials in
Sect. 4, and CDAs in Sect. 5. We introduce the skew middle product in Sect. 6,
give a reduction from SPLWE to SMPLWE in Sect. 7, provide a PKE scheme in
Sect. 8, and then conclude.

2 Preliminaries

If v is an n-dimensional vector, we denote by v̄ the n-dimensional vector
whose entries are those of v in reverse order; i.e. if v = (v1, ..., vn)T , then
v̄ = (vn, ..., v1)T .
We prove IND-CPA security of our cryptosystem below. Recall:

Definition 1. ( [12]) Let Π = (Gen, Enc, Dec) be a PKE scheme, and A be an
adversary. We say Π is indistinguishable under chosen-plaintext attack if any ppt.
adversary in the following experiment PubKA,Π(n) has negligible advantage:

1. Gen is run to obtain keys (pk, sk).
2. Adversary A is given pk, and outputs a pair of equal-length messages m0,m1

in the message space.
3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext c ← Encpk (mb) is

computed and given to A. We call c the challenge ciphertext.
4. A outputs a bit b′. The output of the experiment is 1 if b′ = b, and 0 otherwise.

If b′ = b we say that A succeeds.

That is, Pr [PubKA,Π(n) = 1] ≤ 1
2 + neg(n).

To complete the proof, we will rely on properties of hash functions:

Definition 2. A family H of hash functions h : X → Y of finite cardinality is
called universal if Prh←U(H) [h (x1) = h (x2)] = 1/|Y |, ∀ x1 �= x2 ∈ X.
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The statistical distance between two distributions D,D′ over a discrete set
S is defined Δ(D,D′) = 1

2

∑
x∈S |D(x) − D′(x)|. The uniform distribution over

a finite set S′ is denoted U(S′).

Lemma 1. [19, Lemma 2.1] Let X,Y,Z be finite sets. Let H be a universal hash
function family h : X → Y and f : X → Z be arbitrary. Then for any random
variable T taking values in X, and γ(T ) = maxt∈X Pr[T = t], we have:

Δ((h, h(T ), f(T )), (h,U(Y ), f(T ))) ≤ 1
2

·
√

γ(T ) · |Y | · |Z|

3 Learning with Errors and Middle Products

The Middle Product. The middle product can be thought of as the multiplica-
tion rule which takes two polynomials, multiplies them together, then discards
the lower and higher coefficients, forming a polynomial whose coefficients are
the ‘middle’ part of the product. Formally, if R is an arbitrary ring and R<d[x]
denote the polynomials over R of degree at most d − 1:

Definition 3. Let da, db, d, k ∈ N such that da + db − 1 = d + 2k. The middle-
product of a ∈ R<da [x] and b ∈ R<db [x] is defined

�d :R<da [x] × R<db [x] → R<d[x],

(a, b) �→ a �d b =
⌊

(a · b) mod xk+d

xk

⌋
.

We can now define middle product learning with errors, following [19]:

Definition 4. (MPLWE distribution) Let n, d > 0, q ≥ 2, and χ be a distribu-
tion over R

<d[x]. For s ∈ Z
<n+d−1
q [x], define the distribution MPq,n,d,χ(s) over

Z
<n
q [x]×R

<d
q [x] as the distribution obtained by sampling a ← U

(
Z

<n
q [x]

)
, e ← χ

and outputting (a, b = a �d s + e).

Definition 5. (decision MPLWE) Let n, d > 0, q ≥ 2, and χ be a distribution
over R

<d[x]. Then the decision MPLWE problem, MPLWEn,d,q,χ, consists in
distinguishing between arbitrarily many samples from MPq,n,d,χ(s) and the same
number of samples from U

(
Z

<n
q [x] × R

<d
q [x]

)
, with non-negligible probability

over s ← U
(
Z

<n+d−1
q [x]

)
.

4 Skew Polynomials

A skew polynomial ring over a field is defined as follows:

Definition 6. Let F be a field and θ be an automorphism of F. Then F[u, θ] :=
{∑n

i=0 uixi : xi ∈ F}, the set of polynomials in u with coefficients in F equipped
with standard polynomial addition and having polynomial multiplication subject
to the condition xu = uθ(x) for all x ∈ F, is called a skew polynomial ring.
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The multiplication rule means that for non-trivial choice of θ, F[u, θ] is a non-
commutative ring. If Fθ is the fixed field of θ, Fθ = {x ∈ F : θ(x) = x}, and θ has
order d, then F

θ[ud] is the largest commutative subring of F[u, θ]. The elements
of this subring are called central and generate two-sided ideals of F[u, θ]. For
more on skew polynomials, see [16], [11, Chapter 8] or Appendix A.

One may restrict the coefficients to be taken from some subring of a field,
and for MPLWE in skew polynomial rings we will indeed restrict the coefficients
to the ring of integers of a number field. An important construction of skew
polynomial rings (other examples can be found in Appendix A) is the following:

Example 1. Let L/Q be a finite Galois extension, and θ ∈ Gal(L/Q) with fixed
field K, such that [L : K] = d and Gal(L/K) is cyclic. Then OL[u, θ] is a skew
polynomial ring with center OK [ud].

Skew Polynomial Learning with Errors. In this section we define a Learn-
ing with Errors distribution sampling skew polynomials, and state search and
decision problems for that distribution. Below, Rq := R/qR for a ring R.

Definition 7. Let q ≥ 2 and d ≥ 1. Let θ be an automorphism of L of degree d,
R := OL[u, θ], s ∈ Rq, LR := L ⊗R, and f ∈ R be a monic central skew polyno-
mial of degree n. To obtain a sample from the Skew Polynomial Learning with
Errors distribution (SPLWE) SPq,s,f,χ, sample a ← U (Rq), e

χ←− LR[u, θ]/fR,
and output (a, as + e mod q) ∈ Rq × LR[u, θ]/(q, f)R.

The decision problem is then defined as follows:

Definition 8. (decision SPLWE) Let Υ be a distribution on a family of error
distributions over LR[u, θ], and U(·) be the uniform distribution. The decision
SPLWE problem SPLWEq,s,f,χ is on input a number of independent samples
from either SPq,s,f,χ for random (s, χ) ← U (Rq)×Υ or U(Rq × LR[u, θ]/(q, f)R),
to decide which is the case with non-negligible advantage.

Useful Matrices for Manipulating Skew Polynomials. In this section we
will define and prove basic properties of a number of linear transformations on the
coefficients of skew polynomials, which we later use in establishing the hardness
of SMPLWE and a cryptosystem based off it. We define these as matrices, and
specialise to the skew polynomial rings of Example 1. We begin with:

Definition 9. Let f ∈ OL[u, θ] be a monic central skew polynomial of degree
m. Let a ∈ OL[u, θ]. Define Rotd

f (a) as the d × m matrix with ith row given by
the coefficients of a · ui−1 mod f , for i = 1, ..., d.

It is immediate that if a ≡ a′ mod f , then Rotd
f (a) = Rotd

f (a′). Moreover,
Rotd

f (ab) = Rotd
f (b)Rotd

f (a). When m = d, we will write Rotf (a) for Rotd
f (a).
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Definition 10. Let f ∈ OL[u, θ] be a monic central skew polynomial of degree
m. Define Mf,θ as the m×m matrix with entries such that Mf,θ ·a has ith entry

⎛
⎝

⎛
⎝

m∑
j=1

ui+j−2θi−1(aj−1)

⎞
⎠ mod f

⎞
⎠ mod u.

We introduce this matrix for the following reason:
⎛
⎝

m∑
j=1

ui+j−2θi−1(aj−1) mod f

⎞
⎠ mod u =

⎛
⎝

m∑
j=1

uj−1aj−1u
i−1 mod f

⎞
⎠ mod u

=

⎛
⎝

m∑
j=1

uj−1aj−1u
i−1 mod f

⎞
⎠ mod u

=
(
aui−1 mod f

)
mod u,

which is the constant coefficient of aui−1 mod f , and hence

Mf,θ · a = Rotf (a) · (1, 0, ..., 0)T .

Example: Suppose f(u) = ud − γ for some γ ∈ OK and deg(a) = d − 1. Then

Rotf (a) =

⎛
⎜⎜⎜⎝

a0 a1 ... ad−1

γθ(ad−1) θ(a0) ... θ(ad−2)
...

...
. . .

...
γθd−1(a1) γθd−1(a2) ... θd−1(a0)

⎞
⎟⎟⎟⎠ , Mf,θ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 ... 0 0
0 0 ... 0 γθ
0 0 ... γθ2 0
...

... ...
...

...
0 γθd−1 ... 0 0

⎞
⎟⎟⎟⎟⎟⎠

We introduce a kind of generalised Toeplitz matrix which we will later require:

Definition 11. Let d, k > 0. Let r ∈ O<k+1
L [u, θ]. Set GToepd,k+1(r) to be the

d × (k + d) matrix whose i, jth entry is given by θj−1(rk−j+i).

This definition is important for writing the middle product in matrix form,
as we shall see later. It also has the following property: if f(u) = ud −γ for some
γ ∈ K and a ∈ OL[u, θ]<d is a skew polynomial, there exists a 2d − 1 × d matrix
Nf and skew polynomial ã such that GToepd,d(a) · Nf = Rotf (ã). Formally:

Proposition 1. Let a ∈ OL[u, θ]<d, f(u) = ud − γ, and θ have order d. Then
there exists a 2d−1×d matrix Nf and a skew polynomial ã such that GToepd,d(a)·
Nf = Rotf (ã). Moreover, if a = a0 + ua1 + ... + ud−1ad−1, we have ã = ad−1 +
uθ(ad−2) + ... + ud−1θd−1(a0).

Proof. Write a = a0 +ua1 + ...+ud−1ad−1 ∈ OL[u, θ]. GToepd,d(a) has the form

GToepd,d(a) =

⎛
⎜⎜⎜⎝

ad−1 θ(ad−2) . . . θd−1(a0) 0 . . . 0
0 θ(ad−1) . . . θd−1(a1) θd(a0) . . . 0

. . . . . . . . .
0 0 . . . θd−1(ad−1) . . . θd−3(a1) θd−2(a0)

⎞
⎟⎟⎟⎠
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Note that the entries of each column of GToepd,d(·) all feature the same power
of θ. Since GToepd,d has size d × 2d − 1 and Rotf size d × d, any matrix N such
that GToepd,d ·N = Rotf must have size 2d−1×d. Setting Nf to be the matrix

Nf =

⎛
⎜⎜⎜⎜⎜⎝

Id

γ 0 0 ... 0
0 γ 0 ... 0

... ...
. . . ... ...

0 0 ... γ 0

⎞
⎟⎟⎟⎟⎟⎠

,

where Id is the d × d identity matrix, one finds

GToepd,d(a) · Nf =

⎛
⎜⎜⎜⎝

ad−1 θ(ad−2) ... θd−1(a0)
γθd(a0) θ(ad−1) ... θd−1(a1)

...
... ...

...
γθd(ad−2) γθ(ad−3) ... θd−1(ad−1)

⎞
⎟⎟⎟⎠ ,

which is Rotf (ã), where ã = ad−1 + uθ(ad−2) + ... + ud−1θd−1(a0). ��

5 Cyclic Division Algebras and CLWE

In this section we review Cyclic LWE. Suppose L/K is a finite Galois extension
of number fields of degree d and 〈θ〉 = Gal(L/K). Consider

A := L + uL + ... + ud−1L,

where u is such that 1
)

ud = γ for some γ ∈ K and 2
)

ux = θ(x)u for all x ∈ L.
Then we call A a cyclic algebra over K, and write (L/K, θ, γ). When γ ∈ OK ,
A contains a discrete subring

Λ := OL + uOL + ... + ud−1OL.

An important property of cyclic algebras is the division property; we say a
cyclic algebra A is division if every element has a multiplicative inverse. Division
algebras are noncommutative equivalents of fields (and sometimes known as skew
fields). The following provides a useful criterion for a cyclic algebra to be division:

Definition 12. An element α of K is non-norm if there does not exist an ele-
ment x ∈ L such that αi = NL/K(x), for 0 < i < [L : K].

Proposition 2. [2] The cyclic algebra A is a division algebra if and only if γ
is a non-norm element.

We connect CDAs with skew polynomial rings via the following:

Lemma 2. Let [L : K] = d and 〈θ〉 = Gal(L/K). Then Λ ∼= OL[u, θ]/(ud − γ).
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Proof. We define a map ϕ : OL[u, θ] → Λ via

g(u) �→ g′(u) := g(u) mod (ud − γ) �→ g′,

where g(u) = g0 + ug1 + ... + uk−1gk−1 is a skew polynomial in OL[u, θ] and
g′ ∈ Λ has coefficients g′

i, i = 0, ..., d − 1. This map is surjective, since any
element of Λ can be written g = g0 + ug1 + ... + ud−1gd−1 with coefficients in
OL, so ϕ(g0 + ug1 + ... + ud−1gd−1) = g trivially. Let x ∈ ker(ϕ), so ϕ(x) = 0.
This means g′(u) = 0, since the second map sends the ui-coefficients of the
skew polynomial to the ui-coefficients of the element of Λ, so an element of the
kernel is in the ideal generated by ud − γ in OL[u, θ]. This ideal is two-sided, as
ud − γ is central, so OL[u, θ]/(ud − γ) is a ring, and we obtain an isomorphism o
rings. ��

When K = Q(ζm) is the mth cyclotomic field, L/K is such that Gal(L/K)
is cyclic, and γ ∈ O×

K with γ �∈ NL/K(L×), then Λ is a maximal order in a CDA
[9]. This enables us to connect SPLWE, CLWE and SMPLWE (defined below).

CLWE. In [9], an LWE problem was defined in Λ via the CLWE distribution.
We state a version in which a and s are sampled from Λ. Below LR := L ⊗ R.

Definition 13. Let L/K be a Galois extension of number fields with [L : K] = d
and Gal(L/K) cyclic, generated by θ. Let A := (L/K, θ, γ) be the resulting cyclic
K-algebra with element u such that ud = γ ∈ OK and γ satisfying the non-norm
condition. Let Λ be the natural order of A. For an error distribution ψ over⊕d−1

i=0 uiLR, q ≥ 2, and secret s ∈ Λq, a sample from the CLWE distribution
Πq,s,ψ is obtained by sampling a ← Λq uniformly at random, e ← ψ, and

outputting (a, b) = (a, a · s + e mod qΛ) ∈
(
Λq,

⊕d−1
i=0 uiLR/qΛ

)
.

Definition 14. Let Υ be a family of error distributions and let UΛ be the
uniform distribution on

(
Λq,

(⊕d−1
i=0 uiLR

)
/qΛ

)
. The decision CLWE problem

DCLWEq,s,ψ is, given a number of independent samples from Πq,s,ψ for a ran-
dom pair (s, ψ) ← U (Λq) × Υ or from UΛ, to decide which with non-negligible
advantage.

The hardness of DCLWE was proven in [9] under the canonical embedding1.
Unlike in that work, here we consider CLWE under the coefficient embedding.
This currently lacks a formal security proof, but as explained in the introduction,
there is good reason to consider DCLWE a ‘hard’ problem.

6 The Middle Product for Skew Polynomials

We now define a middle product for skew polynomials. This middle product
again takes two (skew) polynomials, multiplies them together, then discards the
lower and higher coefficients, forming a (skew) polynomial whose coefficients are
the ‘middle’ part of the product. Below, R is a ring.
1 We note here that the reduction required a restriction of the secret space.
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Definition 15. Let da, db, d, k ∈ Z≥0 such that da + db − 1 = d + 2k. The
middle-product of a ∈ R<da [u, θ] and b ∈ R<db [u, θ] is defined

�d :R<da [u, θ] × R<db [u, θ] → R<d[u, θ],

(a, b) �→ a �d b =
⌊

(a · b) mod uk+d

uk

⌋
.

We now define skew middle product learning with errors, over OL:

Definition 16. (SMPLWE distribution) Let n, d > 0, q ≥ 2, and χ be a
distribution over L<d

R
[u, θ]. For s ∈ O<n+d−1

Lq
[u, θ], define the distribution

SMPq,s,n,d,χ over O<n
Lq

[u, θ] × L<d
Rq

[u, θ] as the distribution obtained from sam-

pling a ← U
(
O<n

Lq
[u, θ]

)
, e ← χ and outputting (a, b = a �d s + e).

Definition 17. (decision SMPLWE) Let n, d > 0, q ≥ 2, and χ be a distribu-
tion over L<d

R
[u, θ]. Then decision SMPLWE, SMPLWEq,s,n,d,χ, consists in dis-

tinguishing between arbitrarily many samples from SMPq,s,n,d,χ and the same

number of samples from U
(
O<n

Lq
[u, θ] × L<d

Rq
[u, θ]

)
, with non-negligible proba-

bility over s ← U
(
O<n+d−1

Lq
[u, θ]

)
.

We now prove two lemmas:

Lemma 3. Let d, k > 0, r ∈ O<k+1
L [u, θ], a ∈ O<k+d

L [u, θ], and b = r �d a. Let
θ be an L-automorphism of order d. We have b = GToepd,k+1(r) · a.
Proof. We can write r �d a =

∑d−1
i=0 ui(

∑
j+l=i+k θl(rj)al). Thus

b =
(
θk(r0)ak + θk−1(r1)ak−1 + ... + rka0,

θk+1(r0)ak+1 + θk(r1)ak + ... + θ(rk)a1,

..., θk+d−1(r0)ak+d−1 + θk+d−2(r1)ak+d−2 + ... + θd−1(rk)ad−1

)
.

and this is precisely GToepd,k+1(r) · a. and the result follows. ��
Lemma 4. (associativity) Let d, k, n > 0. For r ∈ O<k+1

L [u, θ], a ∈ O<n
L [u, θ],

and s ∈ O<n+d+k−1
L [u, θ], we have θn−1(r) �d (a �d+k s) = (r · a) �d s.

Proof. First, observe that the left hand side and right hand side have the same
degree. Let the vector of (r ·a)�ds be denoted by u, that of θn−1(r)�d(a �d+k s)
by v, and that of a �d+k s by w.

For d, k > 0, and r ∈ O<k+1
L [u, θ], set HToepd,k+1(r) to be the d × (k + d)

matrix whose i, jth entry is given by θk+d−j((ui−1r)j−1), where for polynomial
f , (f)l denotes the lth coefficient of f , indexed from 0. This is the matrix such
that b = HToepd,k+1(r)a for b = r �d a. We then have

v = HToepd,k+1(θn−1(r)) · w = HToepd,k+1(θn−1(r))
(
HToepd+k,n(a) · s

)
.
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Moreover, u = HToepd,k+n(r · a) · s. The result follows from the property
HToepd,k+1(θn−1(r))HToepd+k,n(a) = HToepd,k+n(r · a). ��
We can view decision SMPLWEq,d,d,χ as a structured RLWE variant as fol-
lows: given polynomially many samples (GToepd,d (ai),bi) ∈ Od×(2d−1)

Lq
× Ld

Rq

for uniform ai ← U
(
O<d

Lq
[u, θ]

)
, decide if the bi were sampled uniformly over

the domain or have the form bi = GToepd,d (ai) s + ei for some uniform
s ← U

(
O<2d−1

Lq
[u, θ]

)
and ei ← χ. Note the samples are correlated.

7 Reduction from SPLWE to SMPLWE

We adapt the reduction for standard MPLWE, under the coefficient embedding.

Theorem 1. Let d > 0, q ≥ 2, and χ a distribution over L<d
R

[u, θ]. Then there
exists a ppt. reduction from SPLWEq,s,f,χ for any polynomial of the form f(u) =
ud − γ ∈ OL[u, θ] with γ ∈ OK \ {0} coprime with q, to SMPLWEq,s,d,d,χ′ .

Proof. Like in [19], we use an efficiently computable transformation φ that maps
(ai, bi) ∈ OLq

[u, θ]/f × LRq
[u, θ]/f to (a′

i, b
′
i) ∈ O<d

Lq
[u, θ] × L<d

Rq
[u, θ], send-

ing U
(OLq

[u, θ]/f × LRq
[u, θ]/f

)
to U(O<d

Lq
[u, θ]× L<d

Rq
[u, θ]) and SPq,s,f,χ to

SMPq,s′,d,d,χ′ , for a new s′ that is a function of s and a new distribution χ′ that
depends on χ and f . Given such a φ, the steps of the reduction are:

1. Sample a uniform t ← U
(
O<2d−1

Lq
[u, θ]

)
.

2. For each SPLWE sample (ai, bi), compute (ai, b
′
i) = φ (ai, bi). Give (ai, b

′
i) +

(0, ãi �d t) to the SMPLWE oracle.
3. Return the output of the oracle.

For such a transformation φ, the reduction preserves the uniformity of uniform
samples, and maps SPq,s,f,χ samples to SMPq,s′+t,d,d,Mf,θ·χ samples. When s is
uniform, the SMPq,s′+t,d,d,Mf,θ·χ samples have a uniform s′ + t.

To construct φ, let (ai, bi) ∈ OLq
[u, θ]/f × LRq

[u, θ]/f be a SPLWE sample.
Let deg(f) = d. Set φ (ai, bi) = (ai, b

′
i) where b′

i is defined

b′
i = Mf,θ · bi ∈ L<d

Rq
[u, θ].

Plainly ai is uniform, by definition. Observe that if bi is uniformly distributed,
then so is its vector of coefficients bi. Moreover, since the matrix Mf,θ is invert-
ible modulo q we find Mf,θ · bi is also uniform.
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Now write bi = ai · s + ei, for s ∈ OLq
[u, θ]/f and ei ← χ. Since Rotf (bi) =

Rotf (ai) · Rotf (s)+ Rotf (ei), we have

Mf,θ · bi = Rotf (bi) · (1, 0, .., 0)T

= (Rotf (ai) · Rotf (s) + Rotf (ei)) · (1, 0, ..., 0)T

= Rotf (ai) · Rotf (s) · (1, 0, ..., 0)T + Rotf (ei) · (1, 0, ..., 0)T

= Rotf (ai) · Mf,θ · s + Mf,θ · ei

= GToepd,d (ãi) · Nf · Mf,θ · s + Mf,θ · ei

= GToepd,d (ãi) · s′ + Mf,θ · ei,

where s′ = Nf · Mf,θ · s. Since b′
i = Mf,θ · bi = GToepd,d (ãi) · s′+ Mf,θ · ei, the

new error is e′
i = Mf,θ · ei, as required. ��

In order to remove dependence on the choice of γ, one can consider a family of
polynomials Fβ := {f(u) = ud − γ : |γ| ≤ β}. If χ = Dαq, then χ′ = Mf,θ · Dαq.
Expanding Mf,θ over Z, since Mf,θ is invertible, we have χ′ = DMf,θ·(αqI[L:Q]).
Since the the square of the largest singular value ‖Mf,θ‖2 = |γ|2, then restricting
to f ∈ Fβ , adding an error e′

i ← DΣ for a positive definite Σ such that Mf,θ ·
ei + e′

i ∼ Dαqβ removes any dependence of the error on the choice of f ∈ Fβ .

8 Public Key Encryption Scheme

In this section we give an encryption scheme and prove its IND-CPA security.
Let L/K be a cyclic Galois extension of degree d, Gal(L/K) = 〈θ〉, [K : Q] = n,
and q unramified in OL. The scheme uses the following error distribution: let
χ = �Dαq� be a discretised Gaussian over O<d+k

L [u, θ], where coefficients are
sampled from Dαq, rounded to the nearest integer, and set as the Z-coefficients
of a skew polynomial in O<d+k

L [u, θ]. Plaintexts are taken from B<d[u, θ], where
B = {a(x) ∈ OL : ai ∈ {0, 1} for all i}. We denote B× := B mod qOL ∩ O×

Lq
.

Ciphertexts will be elements of O<d+2k
Lq

[u, θ] × O<d
Lq

[u, θ].

Key Generation. To generate a key pair (pk, sk), begin by sampling s ←
U

(
O<2(d+k)−1

Lq
[u, θ]

)
. Then for all i ≤ t, sample uniform ai ← U

(
O<d+k

Lq
[u, θ]

)

and errors ei ← χ, and set bi = ai �d+k s + 2 · ei ∈ O<d+k
Lq

[u, θ], i = 1, ..., t. The
public key is pk := (ai, bi)i≤t, and the secret key is sk := s.

Encryption. Given public key pk = (ai, bi)i≤t we encrypt a message μ ∈
B<d[u, θ] as follows. We sample ri ← U

(B<k+1[u, θ]
)
, i = 1, ..., t, replace the

smallest non-zero OL-coefficient of each ri with an element sampled uniformly
from B×, and output a ciphertext c = (c1, c2) ∈ O<d+2k

Lq
[u, θ] × O<d

Lq
[u, θ], where

c1 =
∑
i≤t

ri · ai, and c2 = μ +
∑
i≤t

θd+k−1(ri) �d bi
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Decryption. Given sk = s, to decrypt a ciphertext c = (c1, c2), compute

μ′ := (c2 − c1 �d s mod q) mod 2

We now show correctness.

Lemma 5. Let α < 1/(16
√

ndt(k + 1)) and q ≥ 16ndt(k + 1). With probability
at least 1 − nd2 · 2−Ω(n) over valid key pairs (pk, sk), for all plaintexts μ ∈
B<d[u, θ] and with probability 1 over the encryption randomness, decryption is
correct.

Proof. Suppose that c = (c1, c2) is a ciphertext encrypting a message μ under a
public key pk = (ai, bi)i≤t. Then to decrypt c we compute

c2 − c1 �d s = μ +
∑
i≤t

θd+k−1(ri) �d bi −
⎛
⎝∑

i≤t

ri · ai

⎞
⎠ �d s

= μ +
∑
i≤t

(
θd+k−1(ri) �d (ai �d+k s + 2 · ei) − (ri · ai) �d s

)

= μ +
∑
i≤t

θd+k−1(ri) �d (ai �d+k s) − (ri · ai) �d s + 2θd+k−1(ri) �d ei

= μ + 2
∑
i≤t

θd+k−1(ri) �d ei mod q

where the final equality holds by Lemma 4. Note that if

‖μ + 2 ·
∑
i≤t

θd+k−1(ri) �d ei‖∞ < q/2,

then c2−c1�d s mod q = μ+2 ·∑i≤t θd+k−1(ri)�d ei, so c2−c1�d s mod q mod
2 = μ. Similarly to [19, Lemma 4.1], the coefficients of

∑
i≤t θd+k−1(ri)�d ei can

be written as an inner product between a binary [OL : Z]t(k + 1)-dimensional
vector and a vector distributed according to �Dαq�[OL:Z]t(k+1), so applying a
(Gaussian) tail bound and the triangle inequality, the coefficients each have
magnitude at most αq

√
[OL : Z]t(k + 1) + [OL : Z]t(k + 1) with probability at

least 1−2−Ω(n). Thus ‖μ+2·∑i≤t θd+k−1(ri)�dei‖∞ < 2αq
√

[OL : Z]t(k + 1)+
2t[OL : Z](k + 1) + 1 with probability at least 1 − d[OL : Z]2−Ω(n). ��
To show security of the above scheme, we demonstrate its IND-CPA secu-
rity, assuming the hardness of SMPLWE, following [19]. We denote the set
of ri obtainable during the encryption procedure by B<k+1

[u, θ], and write
ri ← B<k+1

[u, θ].

Lemma 6. Let q, k, d ≥ 2. For bi ∈ O<d+k
Lq

[u, θ], let hbi
denote the map that

sends ri ← B<k+1
[u, θ] to ri �d bi ∈ O<d

Lq
[u, θ]. Then the hash function family

H = (hbi
)bi

is universal.
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Proof. Identical to [19, Lemma 4.2], included for completeness. It suffices to
prove that for all y ∈ O<d

Lq
[u, θ]

Prb1 [r1 �d b1 = y] = |OLq
|−d.

Let j be the smallest integer such that the uj-coefficient of r1 is non-zero and let
r1 have ith coefficient r1,i. Then r1�db1 = y restricted to entries j, ..., j+d−1 can
be written as a triangular linear map with entries in {r1,j , ..., r1,j+d−1} and r1,j

along the diagonal, applied to the vector of d coefficients of b1, up to application
of θ. Since r1,j is invertible by construction, restricting the map b1 �→ r1 �d b1
to these d coefficients of b1 is a bijection, which implies the result. ��

By linearity the hash function family (h(bi)i
)(bi)i

with (bi)i ∈
(
O<d+k

Lq
[u, θ]

)t

and hbi
mapping (ri)i≤t ←

(
B<k+1

[u, θ]
)t

to
∑

i ri �d bi is also universal.

Theorem 2. Let t ≥ 2+2(k+d) log(q)
k . Then the SMPLWE PKE scheme is IND-

CPA secure, assuming the hardness of SMPLWEq,d+k,d+k,Dαq
.

Proof. We perform two hops from the IND-CPA experiment for SMPLWE to
an experiment which we show to be of negligible statistical distance from our
starting point. We first consider a variant of the IND-CPA experiment in which
pk = (ai, bi)i is sampled uniformly. Assuming the hardness of decision SMPLWE,
the probabilities that A outputs b′ = b in the IND-CPA experiment and in the
variant experiment are negligibly close.

Now consider a second experiment. Suppose pk = (ai, bi)i is a valid public
key, but instead of computing a valid ciphertext c encrypting μb under pk for
b ∈ {0, 1}, c = (c1, c2) is computed by the following process: sample uniform
ri ← B<k+1

[u, θ], i = 1, ..., t, sample a uniform v ← U
(
O<d

Lq
[u, θ]

)
, and set

(c1, c2) :=

(
t∑

i=1

ri · ai, v

)

Since v is independent of b, the probability that A outputs b′ = b is precisely
1/2. We now show that the distributions of ((ai, bi)i , c1, c2) in the two variant
experiments are of negligible statistical distance from one another; that is, that

Δ

⎛
⎝

⎛
⎝(ai, bi)i ,

∑
i≤t

ri · ai,
∑
i≤t

ri �d bi

⎞
⎠ ,

⎛
⎝(ai, bi)i ,

∑
i≤t

ri · ai, v

⎞
⎠

⎞
⎠ ≤ neg(n)

where ai, bi, ri, and v are sampled uniformly from O<d+k
Lq

[u, θ], O<d+k
Lq

[u, θ],

B<k+1
[u, θ] and O<d

Lq
[u, θ] respectively, for i = 1, ..., t. Applying Lemma 1, since

Lemma 6 showed the hash function family (hbi
)bi

is universal, and noting that
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∑
i≤t ri · ai ∈ O<d+2k

Lq
[u, θ] which is of cardinality |OLq

|d+2k, we find that the

statistical distance above is upper bounded by 1
2

√
γ(T ) · |Y | · |Z|, where X =

(B<k+1
[u, θ])t, γ(T ) = maxw∈X Pr[T = w] ≤ |B|−tk, |Y | = |OLq

|d, and |Z| =
|OLq

|d+2k; so the upper bound is

1
2

(
|B|−tk · |OLq

|2(d+k)
)1/2

=
1
2

(
2−ndtk · q2nd(d+k)

)1/2

If t ≥ 2+2(k+d) log(q)
k this becomes negligible in n. ��

9 Conclusion

We have introduced SMPLWE and SPLWE and reduced a family of problems
based on the latter to the former. We have connected SPLWE and CLWE. We
also gave a PKE scheme and proved its security under a reasonable assumption.
Future work might include removing restrictions on the degrees of the polyno-
mials involved, and obtaining greater functionality from the SMPLWE problem.

A Skew Polynomial Rings

In this appendix we give a fuller explanation of the theory of skew polynomials.

Definition 18. Let R be a commutative ring. A polynomial in the indetermi-
nate x with coefficients in R is an expression of the form

a0 + a1x + ... + anxn,

where x commutes with elements of R, ai ∈ R for i = 0, ..., n, and n < ∞.

We call n the degree of the polynomial, and if we label f(x) = a0+a1x+...+anxn,
then we write deg(f) = n. The set of polynomials with coefficients in R is denoted
R[x]. This set has a ring structure, where addition is performed coefficient-wise
(e.g. a0 + a1x + b0 + b1x = a0 + b0 + (a1 + b1)x) and multiplication is defined

(a0 + a1x + ... + anxn) · (b0 + b1x + ... + bmxm) =
n+m∑
k=0

k∑
l=0

albk−lx
k

Definition 19. If R and S are two rings, we let Hom(R,S) denote the set of
homomorphisms from R to S and Iso(R,S) the set of isomorphisms from R to
S. If R = S, then we write End(R) = Hom(R,R) for the endomorphisms of R
and Aut(R) = Iso(R,R) for the automorphisms of R.

Let F
′ be an algebraic field extension of F. Then any F-endomorphism of F′ is

an F-automorphism of F′.

The order of an endomorphism θ is the smallest integer d such that θd = id.
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Examples

1. Let C denote the complex numbers and · complex conjugation, that is, the
map sending a + ib �→ a − ib =: a + ib. Then · is an automorphism of C, and
has order 2.

2. Let Fq be a finite extension of Fp, the finite field of p elements. Then the map
a �→ ap is an automorphism of Fq, called the Frobenius map, denoted Frobp.
If q = pr, Frobp has order r.

3. Let Q(
√

d) be a real quadratic extension of Q with defining polynomial f(x) =
x2 − d for some d ∈ N. Then the map τ sending d �→ −d and fixing Q is an
automorphism of Q(

√
d) of order 2.

Definition 20. Let R be a ring and θ an endomorphism of R. Then expressions
in the indeterminate x of the form

a0 + a1x + ... + anxn

where xr = θ(r)x for all r ∈ R, ai ∈ R for i = 0, ..., n, and n < ∞ are called
skew polynomials.

The degree of a skew polynomial f(x) = a0+a1x+ ...+anxn is n. We denote the
set of skew polynomials with coefficients in R and indeterminate x defined by
some endomorphism θ by R[x, θ]. If θ is the identity map id, then R[x, id] = R[x].

Proposition 3. Let R be a ring and θ ∈ End(R). Then R[x, θ] is a ring.

Proof. Addition is coefficient-wise (e.g. a0+a1x+b0+b1x = a0+b0+(a1+b1)x).
Multiplication is defined

(a0 + a1x + ... + anxn) · (b0 + b1x + ... + bmxm) =
n+m∑
k=0

k∑
l=0

alθ
l (bk−l) xk

The result follows from axiom checking. ��
Let R be an integral domain and θ be injective. Then anθn(bm) �= 0 if an, bm �= 0,
so the leading term of the product of a0+a1x+...+anxn and b0+b1x+...+bmxm

is non-zero. This allows us to generalise the notion of degree to skew polynomials.
Thus when R is a domain and θ injective the degree of the above product is n+m
and the degree of the product of two skew polynomials is the sum of the degrees.

Examples

1. C[x, ·]. Write ι(·) = · for convenience. We have

(a0 + ... + anxn) · (b0 + ... + bmxm) =
n+m∑
k=0

k∑
l=0

alι
l(bk−l)xk

=
n+m∑
k=0

( ∑
l even

albk−l +
∑
l odd

albk−l

)
xk
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2. Fpr [x,Frobp]. Then (a0+...+anxn)·(b0+...+bmxm) =
∑n+m

k=0

∑k
l=0 alb

pl

k−lx
k.

3. Q(
√

d)[x, τ ]. Then

(a0 + ... + anxn) · (b0 + ... + bmxm) =
n+m∑
k=0

k∑
l=0

alτ
l(bk−l)xk

=
n+m∑
k=0

( ∑
l even

albk−l +
∑
l odd

alτ(bk−l)

)
xk

A left ideal I of a ring R is an additively closed subgroup which is closed under
multiplication on the left from R, that is, RI ⊂ I. Right ideals are defined
analogously. An ideal is principal if it is generated by a single element. We have

Proposition 4. If R is an integral domain and θ is injective, then R[x, θ] is an
integral domain. If K is a field and σ an endomorphism of K, then every left
ideal of K[x, σ] is principally generated.

The above gives an analogous statement to the fact that a polynomial ring K[x]
over a (commutative) field K is a PID. A similar statement holds for right ideals.

Definition 21. Let R be a ring and θ ∈ End(R). Then we call

Rθ := {y ∈ R : θ(y) = y}
the fixed ring of θ.

Note the above is a ring: 0, 1 ∈ Rθ, Rθ inherits associativity and distributivity
from R, and is additively and multiplicatively closed by the properties of θ. If
K is a field and σ ∈ Aut(K), Kσ is a subfield of K called the fixed field of σ.

Definition 22. The center Z(R) of a (noncommutative) ring R is the set of
elements of R which commute with all other elements of R; that is,

Z(R) := {y ∈ R : yz = zy for all z ∈ R}
It is clear that Z(R) is a commutative subring of R. The following describes the
center of a skew polynomial ring:

Proposition 5. Let R be a ring and θ ∈ End(R) have finite order d. Then the
center of R[x, θ] is given by Z(R[x, θ]) = Z(R)[xd]. If θ has infinite order, then
Z(R[x, θ]) = Z(R).

A central element z generates a two-sided ideal, since Rz = zR by definition.

Examples

1. Z(C[x, ·]). The fixed field of · is R, since a + i · 0 = a = a. Since · has order
two, we find Z(C[x, ·]) = R[x2].
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2. Z(Fpr [x,Frobp]). The fixed field of Frobp is Fp and Frobp has order r, so we
find Z(Fpr [x,Frobp]) = Fp[xr].

3. Z(Q(
√

d)[x, τ ]). Since Q(
√

d)τ = Q and τ2 = id, Z(Q(
√

d)[x, τ ]) = Q[x2].

We briefly consider some further properties of skew polynomial rings. We first
note that Hilbert’s basis theorem holds:

Theorem 3. Let R be a Noetherian ring, θ an automorphism of R, and S =
R[x, θ]. Then S is Noetherian.

Let K be an algebraic number field Galois over Q and OK the ring of integers
of K. The Q-automorphisms of K restrict to endomorphisms of OK , so we can
consider the skew polynomial ring OK [x, θ] where θ ∈ Gal(K/Q). Since OK is
Noetherian, by the theorem so is OK [x, θ].

Let f, g ∈ R[x, θ]. We say g is a left divisor of f if f = gh for some h ∈ R[x, θ].
A skew polynomial f is irreducible if all its left divisors are either units or skew
polynomials of the same degree as f . Then

Theorem 4. [16] Let f1, ..., fn, g1, ..., gm be irreducible skew polynomials such
that f1 · ... · fn = g1 · ... · gm. Then n = m and deg(fi) = deg(gπ(i)) for some
permutation π and i = 1, ..., n.

We can consider quotients of skew polynomial rings. If I is a left ideal of R[x, θ],
then R[x, θ]/I is a left R[x, θ]-module, since if f(x), g(x) ∈ R[x, θ]

f(x)(g(x) + I) = f(x)g(x) + f(x)I ⊂ f(x)g(x) + I

If I is a two-sided ideal, then R[x, θ]/I is a ring:

(f(x) + I)(g(x) + I) = f(x)g(x) + Ig(x) + f(x)I + I2 ⊂ f(x)g(x) + I

When K is a field, every ideal is principally generated, and so if z ∈ Z(K[x, σ]),
then K[x, σ]/zK[x, σ] is a ring.

Examples

1. Note that x2 + π ∈ Z(C[x, ·]), so C[x, ·]/(x2 + π)C[x, ·] is a ring.

2. Since xr2
+1 ∈ Z(Fpr [x,Frobp]), Fpr [x,Frobp]/(xr2

+1)Fpr [x,Frobp] is a ring.

3. Note that x8 + 1 ∈ Z(Q(
√

d)[x, τ ]), so Q(
√

d)[x, τ ]/(x8 + 1)Q(
√

d)[x, τ ] is a
ring.
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B On the Equivalence of Embeddings for CLWE

In [6,20] instances of number fields were given for which the distortion induced by
mapping between the canonical and the coefficient embedding was polynomially
bounded, impyling a polynomial-time equivalence between solving RLWE in
those fields and solving the corresponding PLWE instances. They achieved this
by bounding Frobenius norm of the map Vf which sends the canonical embedding
of an element x to a coefficient representation of x, that is

σL(x) = Vf · coeff(x),

where coeff(·) is the vector of coefficients of x ∈ Z[x]/f(x) and σL is the canonical
embedding. In this appendix, we give examples of CDAs for which the coefficient
representation of an algebra element is only polynomially distorted by mapping
it into canonical space. These instances were studied in [13].

In particular, we consider CDAs obtained from quadratic extensions of power-
of-two conductor cyclotomic fields K = Q(ζ2r ), obtained by adjoining

√
� to

K, where � > 2 is prime and satisfies � ≡ 1 mod 2r, � �≡ 1 mod 2r+1. Then
A = (L/K, θ, ζn) is a CDA and Λ is a maximal order in A, with L = Q(ζ2r ,

√
�).

Write m = 2r and n = 2r−1. We then define the powerful basis of OL:

−→p := (1, ζm, ..., ζn−1
m ,

1 +
√

�

2
, ζm

1 +
√

�

2
, ..., ζn−1

m

1 +
√

�

2
)

From this we obtain a matrix in R
n×n by applying the canonical embedding to

the entries of −→p :

σL(−→p ) =

(
σL(1), ..., σL(ζn−1

m ), σL

(
1 +

√
�

2

)
, ..., σL

(
ζn−1
m

1 +
√

�

2

))

It can be checked that σL(x) = σL(−→p ) · coeff(x). This implies that ‖σL(x)‖ ≤
s1(σL(−→p )) · ‖x‖−→p , where ‖ · ‖−→p denotes taking the �2-norm of the coefficient
vector of an element expressed in the basis −→p , and s1(σL(−→p )) is the largest
singular value of σL(−→p ). Labelling the smallest singular value by s2n(·), we have

Proposition 6. [13, Proposition 1] Let n = 2r−1, � ≡ 1 mod 2r a prime, and
L = Q(ζ2r ,

√
�). Then, using the powerful basis of OL, we have

s1(−→p ) =
√

n

2

√
� + 5 +

√
�2 − 6� + 25,

s2n(−→p ) =
√

n

2

√
� + 5 −

√
�2 − 6� + 25.
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Therefore for bounded values of �, say � = poly(n), the singular values are also
polynomial in n. Bounding the si(σL(−→p )) allows us to bound Vf .

The above can be extended to Λ: considering an element x = x0 + ux1 with
xi ∈ OL, i = 0, 1, we let the canonical embedding extend coefficient-wise for
σA(x) := (σL(x0), σL(x1)) and find that

VΛ =
(

σL(−→p ) 0
0 σL(−→p )

)

sends coeff(x) = (coeff(x0), coeff(x1)) to σA(x). The singular values of this
matrix are simply the singular values of σL(−→p ) multiplied by

√
2. As before,

if � = poly(n), we find that the singular values of the above are polynomial in
n, and similarly for V −1

Λ .
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Abstract. The identity-based signature, initially introduced by Shamir
[26], plays a fundamental role in the domain of identity-based cryptog-
raphy. It offers the capability to generate a signature on a message,
allowing any user to verify the authenticity of the signature using the
signer’s identifier information (e.g., an email address), instead of relying
on a public key stored in a digital certificate. Another significant con-
cept in practical applications is the threshold signature, which serves as
a valuable tool for distributing the signing authority. The notion of an
identity-based threshold signature scheme pertains to the distribution
of a secret key associated with a specific identity among multiple enti-
ties, rather than depending on a master secret key generated by a public
key generator. This approach enables a qualified group of participants
to jointly engage in the signing process. In this paper, we present two
identity-based threshold signature schemes based on isogenies, each of
which addresses a different aspect of security. The first scheme priori-
tizes efficiency but offers security with abort, while the second scheme
focuses on robustness. Both schemes ensure active security in the quan-
tum random oracle model. To build these identity-based threshold sig-
natures, we begin by modifying the identity-based signature scheme pro-
posed by Shaw and Dutta [27], to accommodate the CSI-SharK sig-
nature scheme. Subsequently, we leverage the resulting identity-based
signature and build two threshold schemes within the CSIDH (Commu-
tative Supersingular Isogeny Diffie-Hellman) framework. Our proposed
identity-based threshold signatures are designed based on CSI-SharK
and can be easily adapted with minimal adjustments to function with
CSI-FiSh.

Keywords: Identity-based signature · Identity-based threshold
signature · Isogeny-based cryptography · CSI-SharK · CSI-FiSh ·
CSIDH

1 Introduction

In recent years, there has been a notable surge of interest in identity-based cryp-
tography, initially introduced by Shamir [26]. The rationale behind this height-
ened attention lies in its remarkable advantages over conventional certificate-
based cryptography, primarily due to its ability to circumvent the arduous cer-
tificate management procedures inherent in the latter approach. Identity-based
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identification serves as a fundamental element in identity-based cryptography,
which was initially proposed in 2004 by Bellare et al. [6] and Kurosawa et al.
[22] as separate endeavors. In an identification scheme based on identity, each
user designates their identity, such as an email address, as their public key. The
Public Key Generator (e.g., a dealer) generates the corresponding secret key
for the user’s identity by utilizing its master secret key. Subsequently, the user,
assuming the role of a prover, can employ this secret key to establish its identity
to a verifier who possesses the associated public key.

Shamir in the same work [26] introduced the concept of an IDentity-based
Signature (IDS) scheme. This innovation garnered significant attention and later
gained further prominence through the Fiat-Shamir transformation [17]. The
advent of IDS schemes brought a fresh perspective to the field, as they enabled
users to sign messages instead of merely authenticating their identities [19,20].
Consequently, the verification process became the responsibility of the verifier,
who checks the validity of the signature. On the other hand, due to a wide range
of applications (e.g., in blockchains), threshold signature schemes have received
more attention in recent years. Such schemes allow distributing the secret key
into shares among multiple parties or devices, such that only a set of authorized
parties can jointly sign a message to produce a single signature. Key recovery
attacks on threshold signature schemes require more effort than on the non-
threshold ones, as the adversary has to attack more than one device or party
simultaneously. In the realm of IDS, Baek and Zheng [4], for the first time,
introduced the concept of secret sharing among multiple parties. They devised
an IDentity-based THreshold Signature (IDTHS) that uses bilinear pairings.

An illustrative application of the IDTHS scheme can be envisioned in the fol-
lowing scenario: Let us consider Alice, who serves as the president of a company.
In this capacity, she has established an identity that represents the company
and possesses a private key associated with this identity. Through the utiliza-
tion of this private key, Alice can affix her signature to various documents.
However, she harbors concerns regarding situations where she may be physically
absent. Consequently, she desires to delegate this signing authority to a set of
signature-generation servers. By employing this arrangement, signatures for a
given message can be collectively generated by these servers. Importantly, any
user can successfully verify the resulting signature using the company’s publicly
accessible identity, provided that the user obtains a specific number of partial
signatures from the signature-generation servers.

After Shor’s quantum attack [28] on the Factoring and Discrete Logarithm
(DL) problems, a new wave of investigation emerged among researchers. Their
focus shifted towards the exploration of post-quantum cryptographic techniques
capable of constructing protocols resilient against the formidable threat posed
by quantum adversaries. One prominent avenue of inquiry in this domain
revolves around isogeny-based cryptography. The concept of employing isoge-
nies as a cryptographic foundation was initially introduced by Couveignes [12],
followed by the notable works of Rostovtsev and Stolbunov [25,30]. These schol-
ars embarked upon devising innovative methods to build cryptographic scheme
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based on isogenies that could achieve post-quantum security. In [24], Peng et al.
introduced an IDTHS scheme based on isogenies that accounts for post-quantum
security concerns. Their scheme is built based on CSI-FiSh signature [9]. In 2021,
Shaw and Dutta [27] analysed Peng et al.’s scheme and uncovered vulnerabilities
in both the IDS scheme itself and its underlying trapdoor samplable relation.
Then, Shaw and Dutta [27] presented a fixed version of their construction.

Our Contribution. We first modify the CSI-FiSh-based IDS of Shaw and
Dutta [27] to work with the CSI-SharK scheme, which was recently proposed
by Atapoor et al. [2] and shown to outperform CSI-FiSh in the threshold set-
ting. This translation allows us to leverage the properties of CSI-SharK, and
obtain a new IDS from isogenies that has considerably shorter master secret key
in comparison with the original scheme [27].

Next, we use the resulting IDS scheme and propose two IDTHS schemes
based on isogenies, each of which addresses a different aspect of security. Both
protocols are designed to achieve active security, ensuring the security of the
protocol even in the scenarios where parties are malicious and deviate from hon-
est protocol execution. In our initial threshold signature scheme, honest parties
have the ability to detect any misbehaviour from malicious entities, resulting in
the termination of the protocol execution. However, it is important to note that
this protocol only achieves active security with abort and identification of the
adversary remains unattainable.

To deal with the above concern, as the next contribution, we propose a
robust scheme, which additionally guarantees the correctness of final output.
The second threshold signature scheme ensures security against active adver-
saries and achieves robustness, thereby enabling the identification and expul-
sion of any malicious party responsible for protocol malfunctions or miscon-
duct. The remaining parties then collaboratively reconstruct the compromised
party’s secret, facilitating the seamless continuation and completion of the pro-
tocol, ultimately yielding the final signature. Our technique to achieve robust-
ness is inspired from the construction of ThreshER SharK signature scheme [3].
ThreshER SharK is a threshold, efficient and robust signature scheme that
recently is proposed by Atapoor et al. [3] and is built on top of CSI-SharK
signature scheme [2]. To achieve robustness, the distributed signing protocol
needs to be run by all the parties, rather than a qualified set of them. Therefore,
our second construction is less efficient in comparison with the first one, but it
can achieve robustness.

Organization. Section 2 presents some preliminaries which will be used in the
follow-up sections. In Sect. 3, we adapt the CSI-FiSh based IDS scheme of Shaw
and Dutta [27] to work with the CSI-SharK scheme [2]. In Sect. 4, we present
the first IDTHS based on isogenies with abort. In Sect. 5, we propose the first
robust IDTHS scheme based on isogenies. We conclude the paper in Sect. 6.
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2 Preliminaries

Next, we provide an overview of several key concepts, which are used in the
follow-up sections. Some of them are provided in the full version of the paper [1].

Notation. We use the notation x ← X to represent the assignment of a uni-
formly random value to the variable x from the set X, assuming a uniform
distribution over X. If D is a probability distribution over a set X, we indicate
the assignment x ← D as the process of sampling from the set X according
to the distribution D. The concatenation of strings s1 and s2 is represented by
s1‖s2. When referring to a probabilistic polynomial-time (PPT) algorithm as A,
the notation a ← A represents the assignment of the output of A, where the
probability distribution is over the random tape of A. Furthermore, we denote
ZN as the set of integers modulo N , expressed as Z/NZ. The function log(x) is
defined as the logarithm of x with base 2.

2.1 Isogeny-Based Cryptography

Isogenies are rational maps between elliptic curves that are also homomorphisms
with respect to the natural group structure on these curves. Our investigation is
limited to the set E of supersingular elliptic curves over prime fields Fp and sepa-
rable Fp-rational isogenies defined between them (the so-called CSIDH setting).
Isogenies from an elliptic curve to itself are called endomorphisms. Under the
addition and composition operations, the endomorphisms of elliptic curves form
a ring. The subring of Fp-rational endomorphism rings of curves in E is always
isomorphic to an order O in the quadratic imaginary field Q(

√−p). Separable
isogenies are uniquely defined by their kernel, which can be identified with the
kernels of ideal classes in the ideal-class group Cl(O). As a result, we can see the
class group as acting on the set E via a free and transitive group action.

To ensure efficient computation of isogenies, the prime p is usually chosen
such that p − 1 = 4

∏
i �i, where the �i are small prime factors. The factor 4

ensures that p ≡ 3 mod 4 and that the special elliptic curve E0 : y2 = x3 + x
is supersingular. Throughout this work, we assume that the class group Cl(O)
is known, enabling the transformation of arbitrary ideals into efficiently com-
putable isogeny chains of degrees li using the relation lattice. We note that this
is not a trivial assumption as current class group computations in reach fall
short of realistic security levels [9,10,23] or lead to very slow protocols [15]. We
point out, however, that there are polynomial-time quantum algorithms to this
end [21]. We refer to [7,9,11,31] for more details on the explicit computations
of isogenies. For a more thorough introduction to isogenies and isogeny-based
cryptography, we recommend [11,15,29].

Finally, we note that class groups are generally of composite order. By work-
ing in cyclic subgroups of Cl(O) with generator g and order N | #Cl(O), we can
redefine the group action as [ ] : ZN × E → E , where ideals of the form ga for
a ∈ ZN can be reduced modulo the relation lattice and efficiently computed. To
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work in a subgroup ZN ′ ⊂ ZN , we can simply use the generator gN/N ′
. For the

rest of this work, we always assume the choice of the subgroup ZN to be such
that {1, . . . , n} defines an exceptional set modulo N , i.e. that n is smaller than
the smallest divisor of N . Next, we recall some security assumptions that are
used in our studied and constructed protocols.

Definition 2.1 (Group Action Inverse Problem (GAIP) [11,16]). Given
two supersingular elliptic curves E,E′ ∈ E over the same finite field Fp and with
EndFp

(E) 	 EndFp
(E′) 	 O, find a ∈ ZN , such that E′ = [a]E.

Definition 2.2 (Multi-Target-GAIP [9,16]). Given k + 1 supersingular
elliptic curves E0, E1, . . . , Ek ∈ E over Fp with the same Fp-rational endomor-
phism ring, find a ∈ ZN , s. t. Ei = [a]Ej for some i, j ∈ {0, . . . , k} with i 
= j.

Definition 2.3 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary
Inputs (Ck−1-VPwAI) [5]). Given an element E ∈ E and the pairs
(ci, [cix]E)k−1

i=1 , where Ck−1 = {c0 = 0, c1 = 1, c2, . . . , ck−1} is an exceptional
set, find x ∈ ZN .

2.2 Identity-Based Signature Schemes

Next, we recall the definition of IDS from [27], which originally were proposed
by Shamir in [26].

Definition 2.4 (Identity-Based Signature Scheme). An IDS scheme con-
sists of four PPT algorithms (Setup,Extract,Sign,Verify).

– (pp,msk) ← Setup(1λ): Given the security parameter λ, it outputs public
parameters pp and a master secret key msk.

– uskid ← Extract(pp,msk, id): Given pp, msk, and the user identity id, it outputs
the user secret key uskid for the given id.

– σ ← Sign(pp,m, uskid): Given pp, uskid, and a message m, it outputs σ.
– (1/0) ← Verify(pp, id,m, σ): Given pp, id, m, and signature σ, it outputs 1 if

σ is a valid signature on m, otherwise outputs 0.

Definition 2.5 (Correctness). For all (pp,msk) ← Setup(1λ), all uskid ←
Extract(pp,msk, id), all m and id, we have Verify(pp, id,m,Sign(pp,m, uskid)) = 1.

Definition 2.6 (Security). An IDS scheme is said to be secure against
UnForgeability against chosen-identity and Chosen Message Attacks (UF-IDS-
CMA) [24,27] if for all PPT adversaries A, there exists a negligible function ε
such that

AdvUF−IDS−CMA
IDS,A (λ) = Pr[A wins in ExpUF−IDS−CMA

IDS,A (λ)] < ε,

where the experiment ExpUF−IDS−CMA
IDS,A (λ) is described in Fig. 1.
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Input: The challenger C takes input the security parameter 1λ, and generates
(pp,msk) ← Setup(1λ). It gives the public parameters pp to the adversary A
while keeping the secret msk to itself.

Query Phase: C responds to polynomially many adaptive queries made by A,
- Oracle OExtract(msk,·): On receiving queries on a user identity id from A, the
challenger C responds with her user secret key uskid ← Extract(pp,msk, id)
for the given identity id.

- Oracle OSign(uskid,·): On receiving queries on a message m, and a user identity
id from the adversary A , the challenger C responds with a signature σ ←
Sign(pp, m, uskid) where uskid ← Extract(pp,msk, id) is the user secret key
corresponding to the identity id.

Forgery: A eventually outputs a message m�, user identity id�, and a forge signa-
ture σ�. A wins the game if 1 ← Verify(pp, id, m, σ), with the restriction that
id� has not been queried to OExtract(msk,·) and (m�, id�) has not been queried to
OSign(uskid,·).

Fig. 1. ExpUF−IDS−CMA
IDS,A (λ): UnForgability against Chosen Message Attacks.

2.3 Identity-Based Threshold Signature Scheme

We use the definition of an IDTHS scheme as proposed by Baek and Zheng [4],
which is outlined below:

Definition 2.7 (Identity-Based Threshold Signature Scheme). A (t, n)
IDTHS consists (Setup,Extract,DKey,DSign,Verify):

– (pp,msk) ← Setup(λ): Given a security parameter λ, the algorithm generates
the master secret key msk and the public parameters pp.

– uskid ← Extract(pp,msk, id): Given the public parameters pp, the master secret
key msk, and a user identity id, the algorithm generates a private key uskid
associated with id.

– {skl}n
l=1 ← DKey(pp, uskid, n, t): Given a private key uskid associated with

an identity id, a number of signers n and a threshold parameter t, the algo-
rithm generates n shares of skl and provides each one to the party Pl for
l = {1, · · · , n}.

– σ ← DSign(pp,m, {skl}l∈S , id): Given pp, a message m, shares {skl}l∈S,
where |S| = t + 1, and id. Signers using a robust protocol jointly generate
σ. Note that partial signatures of m computed by each party may be broadcast
during the execution of the DSign protocol.

– 1/0 ← Verify(pp, id,m, σ): Given a signers’ identity id, a message m and σ,
the algorithm outputs 1 if the signature is valid, otherwise 0.

Note that these definitions are specifically designed for (t, n) IDTHS with
abort security. It’s important to distinguish between this level of security and
a stronger concept known as “identifiable-abort.” In the case of identifiable-
abort, the system can reveal the identity of at least one malicious party in
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the event of an abort. Our first threshold signature, as proposed in Sect. 4,
provides security with abort but does not achieve the identifiable-abort property.
This limitation arises from the fact that the DKey algorithm, executed by the
dealer, does not output the verification keys (equivalent to partial public keys).
Consequently, during the partial opening phase, honest parties are unable to
identify the malicious party based on their partial opening. While it’s possible
to detect cheating and trigger an abort after summing up all partial signatures,
but identifying the malicious party remains a challenge.

In the case of a robust IDTHS scheme, the algorithm DKey, which is executed
by a trusted dealer, not only provides the secret keys {skl}n

l=1 but also outputs
the verification keys {vkl}n

l=1. Additionally, the signing protocol DSign, which
involves all n parties and uses the secret keys {skl}n

l=1, also receives the verifica-
tion keys {vkl}n

l=1. It’s worth noting that in a robust IDTHS system, when t+1
parties involve in the DSign protocol, it can achieve the identifiable-abort prop-
erty. Lastly, it’s important to highlight that the IDTHS with abort only requires
a single honest signer to maintain security, whereas the identifiable-abort and
robust versions of the signature require an honest majority of participants.

The following will consider the security definitions of an IDTHS, which are
unforgeability and robustness [4]. Note that the attacker is assumed to be static.

Definition 2.8 (Unforgeability Against Chosen Message and Identity
Attack). Let AIDTHS, be an attacker assumed to be a probabilistic Turing
machine. Consider the following game GIDTHS in which AIDTHS interacts with
the challenger CIDTHS.

Phase 1. The challenger runs the Setup algorithm and gives AIDTHS the
resulting common parameters pp.

Phase 2. AIDTHS corrupts t − 1 signature generation servers.
Phase 3. AIDTHS issues a number of private key extraction queries, each of

which consists of usk. On receiving usk, the challenger runs the key
extraction algorithm taking usk as input and obtains a corresponding
private key x. The challenger gives x to AIDTHS.

Phase 4. AIDTHS submits a target identity usk�. On receiving usk�, the chal-
lenger runs the key extraction algorithm taking usk� as input and
obtains a corresponding private key x�. Subsequently, it runs the pri-
vate key distribution algorithm taking x� as input to share it among
n signature generation servers. We denote the key shares by x�,i for
i = 1, · · · , n. The challenger gives x�,i for i = 1, · · · , t − 1, (private
keys for the corrupted servers) to AIDTHS.

Phase 5. AIDTHS issues a number of signature generation queries, each of
which consists of a message denoted by m. On receiving m, the
challenger, on behalf of the uncorrupted servers, runs the signature
generation algorithm taking x�,i for i = t, · · · , n and m as input,
and responds to AIDTHS with σ output by the signature generation
algorithm. Note that in this phase, AIDTHS is allowed to issue pri-
vate key extraction queries (identities) except for usk�. Note also
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that AIDTHS is allowed to see partial signature broadcast during
the execution.

Phase 6. AIDTHS outputs (usk�, m̃, σ̃), where σ̃ is a valid signature of the
identity usk� on the message m̃. A restriction here is that AIDTHS

must not make a private key extraction query for x� and it must
not make a signature generation query for m̃. We denote AIDTHS’s
success by

SuccUF−IDTHS−CMA
IDTHS,AIDTHS (k) = Pr[Verify(pp, x�, m̃, σ̃) = 1].

We denote by

SuccUF−IDTHS−CMA
IDTHS,AIDTHS (t, qe, qs)

the maximum of the attacker AIDTHS’s success over all attack-
ers AIDTHS having running time t2 and making at most qe key
extraction queries and qs signature generation queries. The ID-based
threshold signature scheme is said to be (t, qe, qs, ε)-UF-IDTHS-
CMA secure if

SuccUF−IDTHS−CMA
IDTHS,AIDTHS (t, qe, qs) < ε.

Definition 2.9 (Abort). A (t, n) ID-based threshold signature scheme is said
to be secure with abort if parties abort in the presence of an attacker that makes
the corrupted signature generation servers deviate from the normal execution.

Definition 2.10 (Robustness). A (t, n) ID-based threshold signature scheme
is said to be robust if it computes a correct output even in the presence of an
attacker that makes the corrupted signature generation servers deviate from the
normal execution.

Note that in the case of the abort scenario, the verification process solely
focuses on assessing the validity of the final signature. This final signature is
acquired by combining the partial signatures generated by individual parties. It
either accepts the signature as valid or aborts the process, all without singling
out the malicious party. Conversely, in the robust case, the parties not only
validate the final signature but also verify the individual signatures (referred
to as “openings”) to identify and disqualify any malicious participants. This
verification process ensures the guaranteed delivery of the output.

In terms of achieving active security with either an abort or robustness
approach, these definitions closely resemble the security criteria found in reg-
ular threshold signature schemes [14,18]. However, when it comes to the algo-
rithms involved, IDTHS differ from regular threshold signatures. In identity-
based schemes, a master secret key is employed to generate specific secret keys
for each ID, followed by an algorithm that distributes these ID-specific secret
keys to the corresponding ID holders. In contrast, regular threshold signatures
utilize a single secret key that is shared among all n participating parties.
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Commitment Schemes. In our protocols, we assume parties have access to a
commitment functionality FCommit, which allows one party to commit, and later
open the value to a set of parties. We assume the opened value is only available
to the targeted receivers and is sent over a secure communication channel. The
description of FCommit is provided in Fig. 2, which can be easily implemented in
the random oracle model.

Init: Given (Init, Pi, B) from all parties, this initializes a commitment functionality
from party Pi to the parties in B. This is shown with F i,B

Commit, if B is a singleton
set B = {j} then we write F i,j

Commit, and if B = P \ {i} then we write FPi
Commit.

Commit: On input of (Commit, id, data) from parties Pi and (Commit, id, ⊥) from
all parties in B the functionality stores (id, ⊥).

Open: On input of (Commit, id) from all players in B∪{i} the functionality retrieves
the entry (id, data) and returns data to all parties in B.

Fig. 2. The Functionality FCommit [13].

2.4 k-MT-GAIP Distributed Key Generation

Now we recall the DKG protocol presented in the CSI-SharK framework by
Atapoor et al. [2] (Fig. 3), which will be used in Sect. 4 to build our specific
IDTHS scheme.

2.5 Shamir Secret Sharing

A (t, n)-Shamir secret sharing scheme allows n parties to individually hold a
share si of a common secret s, such that any subset of fewer than t + 1 parties
are not able to learn any information about the secret s while any subset of at
least t + 1 parties are able to efficiently reconstruct the common secret s via
Lagrange interpolation by computing s = f(0) =

∑
i∈S si · LS

0,i, where

LS
0,i :=

∏
j∈S\{i}

j
j−i (mod N),

are Lagrange basis polynomials evaluated at 0. Any subset of fewer than t + 1
parties are not able to find s = f(0), as this is information-theoretically hidden,
even given t shares. Since we will be working over the ring ZN with N composite,
the difference j − i of any two elements in i, j ∈ S must be invertible modulo N .
If q′ is the smallest prime factor of N , it is enough to require that n < q′. This
is indeed the case of our applications.
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Input: The fixed elliptic curve E0 and a set Q of n parties.
Output: ([s1]E0, . . . , [sk−1]E0)

1. Parties individually sample k − 1 secrets si ∈ ZN shared between the parties,
where Pj ∈ Q holds s1,j , . . . , sk−1,j such that si =

∑
Pj∈Q si,j .

2. Define an ordering the players in Q = {P1, . . . , Pn}.
3. Each party Pj initialises an instance of FCommit; call it FPj

Commit.
4. For i = 1, . . . , k − 1, each party Pj executes

- Ei,Pj ← [si,j ]E0.
- π1

i,j ← NIZK.P ((E0, Ei,Pj ), si,j). (Run the ID protocol for GAIP [9])

- Use FPj

Commit where Pj submits input (Commit, idPj , (Ei,Pj , π
1
i,j)) and all other

parties input (Commit, idPj , ⊥).
5. For i = 1, . . . , k − 1

- Parties run FPj

Commit with input (Open, idPj ) & abort if FPj

Commit returns abort.
- All other players execute NIZK.V ((E0, Ei,Pj ), π

1
i,j) and abort if the verifica-

tion algorithm fails.
6. E0

1 ← E0, E
0
2 ← E0, · · · , E0

k−1 ← E0.
7. For j = 1, . . . , n

- Party Pj computes Ej
1 ← [s1,j ]Ej−1

1 , · · · , Ej
k−1 ← [sk−1,j ]Ej−1

k−1.

- For i = 1, . . . , k − 1, compute π2
i,j ← NIZK.P ((E0, Ei,Pj , E

j−1
i , Ej

i ), si,j).
(Run the argument in the full version of the paper [1])

- Broadcast (Ej
1, E

j
2, · · · , Ej

k−1, π
2
1,j , . . . , π

2
k−1,j) to all players.

- For i = 1, . . . , k − 1, all other players execute NIZK.V (E0, Ei,Pj , E
j−1
i , Ej

i )
and abort if the verification algorithm fails.

8. Return (En
1 , En

2 , . . . , En
k−1) = ([s1]E0, [s2]E0, · · · , [sk−1]E0).

Fig. 3. Full-threshold k-MT-GAIP distributed key generation protocol [2].

3 Identity-Based Signatures from CSI-SharK

In this section, we modify the CSI-FiSh-based IDS of Shaw and Dutta [27] to
work with the CSI-SharK signature scheme [2]. The primary benefit inherent in
this adaptation arises from the singular nature of the secret key of CSI-SharK.
The process of adapting Shaw and Dutta’s signature [27] to the CSI-SharK
signature is mostly alterations in the Setup and Extract algorithms. The Setup
algorithm generates pp and a master secret key msk, where msk consists of S0

different coefficients of a single secret value s. Since the soundness rate of the
underlying ID protocol is 1

1+S0
, one needs to amplify the soundness error rate

by repeating the protocol T0 times. The Extract algorithm gets msk := s and
generates a new user secret key uskidi,j for a specific id. The length of the user
public key is S1 and since the soundness rate of the protocol now is 1

1+S1
, one

needs to amplify the soundness error rate by repeating the protocol T1 times.
Note that both the Setup and Extract algorithms are executed by a trusted
authority. Bellow, we describe the algorithms of the resulting IDS scheme:
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Setup Algorithm. Given the security parameter 1λ, act as follows,

1. Select the integers T0, T1, S0 = 2γ0 − 1 and S1 = 2γ1 − 1 where γ0, γ1 are
integers and T0 < S0, T1 < S1

2. Sample a cryptographic hash function H : {0, 1}� → [0, S0]T0S1 and a public
(super) exceptional set ΞS0 := {c0 = 0, c1 = 1, c2, · · · , cS0}

3. Sample s ←$ ZN , and for i = 1 to S0 set: Ei = [cis]E0

4. Return
pp = {E0, T0, T1, S0, S1,H,ΞS0 := {c0 = 0, c1 = 1, c2, · · · , cS0}, {Ei}S0

i=1}
and msk = s.

Extract Algorithm. Given (pp,msk, id) act as follows,

1. Set s0 ← 0 and for i = 1 to T0, j = 1 to S1: ri,j ←$ ZN and Ri,j = [ri,j ]E0

2. Compute u ← H(id||{Ri,j}T0,S1
i=1,j=1)

3. Parse u as {ui ∈ [0, s0]}T0S1
i=1 and ΞS0 as {c0 = 0, c1 = 1, c2, · · · , cS0}

4. For i = 1 to T0, j = 1 to S1 open: xi,j = ri,j − cui
s mod N

5. Return uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1).

Sign Algorithm. Given (pp, uskidi,j ,m), act as follows,

1. Parse uskidi,j to ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0 set: xi,0 ← 0
3. For i = 1 to T0 do:

(a) For j = 1 to S1 compute: Xi,j = [xi,j ]Eui

4. For i = 1 to T0 do:
(a) For j = 1 to T1 sample: ki,j ←$ ZN and compute Ki,j = [ki,j ]Eui

5. Compute v ← H ′(m||{Ki,j}T0,T1
i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1
i=1,j=1

7. For i = 1 to T0 do:
(a) For j = 1 to T1 open: zi,j = ki,j − xi,vi,j

mod N

8. Return σ ← ({zi,j}T0,T1
i=1,j=1, {Xi,j}T0,S1

i=1,j=1, v).

Verify Algorithm. Given (pp, id,m, σ), act as follow,

1. Retrieve u = H(id||{Xi,j}T0,S1
i=1,j=1) and parse v as {vi,j}T0,T1

i=1,j=1

2. For i = 1 to T0 do:
(a) For j = 1 to T1 if: vi,j = 0 then K ′

i,j [zi,j ]Eui
, else K ′

i,j [zi,j ]Xi,vi,j

3. Compute v′ ← H ′(m||{K ′
i,j}T0,T1

i=1,j=1)
4. If v′ 
= v then return “Invalid” otherwise return “valid”.

Correctness. The correctness of the resulting IDS follows from the correct-
ness of the CSI-SharK signature and the underlying identity-based ID protocol
(reviewed in the full version of the paper [1]).
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Theorem 3.1. Let IDS be the IDS scheme outlined above. Let A be an adversary
that breaks the UF-IDS-CMA security of IDS (defined in Definition 2.6). Then
we can construct an impersonator I breaking the IMP-PA security (IMPerson-
ation under Passive Attacks, defined in [27, Definition 6.12]) of the underlying
ID protocol of the signature scheme (given in the full version of the paper [1]).

Efficiency. The efficiency of the resulting IDS scheme is close to the original
version, presented by Shaw and Dutta [27] except that, in contrast to the original
scheme based on CSI-FiSh, in our case the master secret key is a single element
of ZN , rather than S0 elements (of ZN ).

4 Identity-Based Threshold Signature with Abort

This section presents an IDTHS scheme based on isogenies, using the CSI-SharK
signature scheme [2]. The IDTHS ensures security with abort, meaning that
if any issues arise and the protocol cannot be followed, the involved parties
will abort and cease the procedure. In Sect. 3, we described an IDS using CSI-
SharK which consists of PPT algorithms (Setup,Extract,Sign,Verify), where a
single signer is involved. Using the mentioned IDS scheme, we build an IDTHS
scheme consisting of five PPT algorithms (Setup,Extract,DKey,DSign,Verify)
(described in Definition 2.7). In the resulting threshold scheme, the algo-
rithms (Setup,Extract,Verify) are identical to the non-threshold case, where
(Setup,Extract) are executed by a trusted authority. Due to this fact, to con-
serve space, we do not re-write the algorithms of (Setup,Extract,Verify). The
threshold variant includes an additional algorithm DKey, which is responsible
for sharing the user secret key returned by the Extract algorithm. Similar to the
non-threshold case, in the threshold version, we assume that a trusted authority
runs the algorithms (Setup,Extract,DKey). The trusted authority will employ the
DKey algorithm to distribute the secret key uskidi,j corresponding to id among
all the parties sharing the same id. In this paper, we use the well-known Shamir’s
secret sharing scheme, although it’s worth noting that alternative secret sharing
schemes are also viable options. Next, we describe the procedures of the DKey
and DSign algorithms:

DKey: The description of DKey is given in Fig. 4 which a dealer samples a random
degree-t polynomial and uses Shamir’s secret sharing to distribute the user’s
secret key uskidi,j among multiple parties and sends the shares xi,j,l to each
party via the secure channels.

DSign: Given the public parameters pp, the message m, the secret keys of each
party xi,j,l, the distributed signing algorithm DSign is employed to generate a
signature. This algorithm is executed by a qualified set of parties Q = {1, · · · , q}
and if any individual fails to adhere to the designated protocol, the honest par-
ties will collectively abort the process and cease the ongoing computation. The
description of DSign is given in Fig. 5. As it can be seen, during Step 3, the par-
ties collaboratively compute the public key and determine Ei,j,L = [xi,j,l]Ei,j,l−1,
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Input: (pp, uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1), n, t), where n is the number of parties
and t is threshold parameter (t + 1 parties can reconstruct the secret).
Output: Private {xi,j,l}l=n,i=T0,j=S1

l=1,i=1,j=1 and Public {Fi,j,l}l=n,i=T0,j=S1
l=1,i=1,j=1 .

An authority acts as follows:

1. Parse uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0, j = 1 to S1 do:

(a) Sample a degree-t polynomial fi,j(X) = xi,j + ci,j,1X
1 + · · · + ci,j,tX

t.
(b) For l = 1 to n: set xi,j,l = fi,j(l) as a secret for each party.

3. For l = 1, · · · , n: send xi,j,l to party Pl securely.

Fig. 4. DKey algorithm for the proposed IDTHS.

Input: (pp, m, {xi,j,l}l=q,i=T0,j=S1
l=1,i=1,j=1 ),

Output: σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Signing Algorithm DSign: a qualified set of parties {P1, · · · , Pq} act as follows,
1. For l = 1 to q each party for i = 1 to T0: set xi,0,l ← 0
2. For i = 1 to T0 and j = 1 to S1: set Ei,j,0 = E0

3. For i = 1 to T0 and j = 1 to S1 do:
(a) For l = 1 to q do:

i. Party Pl computes Ei,j,l ← [xi,j,l]Ei,j,l−1

// Parties use the NIZK argument (given in the full version of the

paper [1]), to prove they are updating the curve with the secret
which they got from the dealer.

ii. Compute πi,j,l ← NIZK.P ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), xi,j,l)
iii. Broadcast (Ei,j,l, πi,j,l)

// Parties use the verifier of NIZK argument (given in the full

version of the paper [1]), to verify the proof.
iv. All players execute NIZK.V ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), πi,j,l) and

abort if the verification algorithm fails.
(b) Set Ei,j = Ei,j,q and return Ei,j

4. For i = 1 to T0 and j = 1 to T1: given Eui , parties of the qualified set run
Full-threshold 2-MT-GAIP given in Fig. 3, and generate Ki,j = [ki,j ]Eui

5. Compute v ← H (m||{Ki,j}T0,T1
i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1
i=1,j=1

7. For i = 1 to T0, j = 1 to T1, and l = 1 to q: party Pl opens zi,j,l =
ki,j,l − xi,vi,j ,l mod N

8. For i = 1 to T0, j = 1 to T1: parties compute zi,j = q
l=1(zi,j,l)

Return σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Fig. 5. DSign algorithm for the proposed IDTHS with abort.
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We let A denote the set of parties controlled by the adversary.
Sign: On input of a message m the functionality proceeds as follows:

1. The functionality adversary waits for an input from the adversary.
2. If the input is not abort then the functionality generates a signature σ on

the message m.
3. The signature is returned to the adversary, and the functionality again waits

for input. If the input is again not abort then the functionality returns σ to
the honest players.

Fig. 6. Distributed signature functionality FDSign [13].

where Ei,j,l is shared among the parties. This computation involves updating the
curve Ei,j,l with their respective shares xi,j,l in a round-robin way and providing
a proof, using the Non-Interactive Zero-Knowledge (NIZK) argument (summa-
rized in the full version of the paper [1]), to demonstrate that they correctly
updated Eui

with the secret xi,j,l received from the authority. Subsequently, the
parties must verify the proofs provided by all other parties using the verification
process outlined in the full version of the paper [1]. Given that the process is
executed in a round-robin manner, the final update is performed by the last par-
ticipant in the qualified set Q. As outlined in Step 3b, the update contributed by
party Pq yields the conclusive public key Ei,j := Ei,j,q. In Step 4, the involved
parties execute the full-threshold DKG protocol (depicted in Fig. 3) for k = 2,
and calculate the value of Ki,j . Note that when implementing this in practice, it
is possible to parallelize these executions and loops. In Step 5, the challenge v is
generated by hashing the concatenation of message m and Ki,j computed in the
previous step. Then, in Step 7, parties open their response zi,j,l and locally add
them all together and achieve zi,j . Finally, the algorithm returns the signature
σ which consists of (zi,j , Ei,j , v).

Next, we argue the security of our new IDTHS scheme. To this end, in Fig. 6,
we first describe the distributed signature functionality FDSign and then simulate
our proposed threshold signing protocol.

Security of DKey: We highlight that the DKey algorithm is executed by a
trusted dealer and does not need to be simulate.

Theorem 4.1. The (t, n) IDTHS protocol described in Fig. 5 is UF-IDTHS-
CMA secure with abort in the quantum random oracle model (the hash functions
are modelled as quantum random oracles), against a static adversary corrupting
up to t parties, with t < n/2, if the IDS scheme proposed in Sect. 3 is EUF-IDS-
CMA secure.

Proof. In Theorem 3.1, we showed that the IDS scheme proposed in Sect. 3
is EUF-IDS-CMA secure. Next, we show that the DSign protocol presented in
Fig. 5 securely implement the functionality FDSign (given in Fig. 6) in the FCommit-
hybrid model against an active adversary corrupting up to t parties.
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DSign Simulation: The proof is analogous to that of Theorem 4.3 in Atapoor
et al. [2]. One key difference is in the case of Atapoor et al. [2], parties get
the commitment to xi,j from the distributed key generation phase, while in our
case the trusted dealer publishes the commitments to xi,j . Let Pl be the honest
party. A and S engage in an execution of the DSign protocol in Fig. 5. The
authority has committed to the secret shares of xi,j . Now A and S proceed with
the round-robin protocol for computing the public keys as in Step 3 of Fig. 5. All
steps for honest players can be simulated exactly by following the real protocol,
except for the party Pl which holds the unknown shares xi,j,l for i = 1, · · · , T0

and j = 1, · · · , S1. The input to this party in execution l will be Ei,j,l−1 =[∑l−1
p=1 xi,j,p

]
E0, while the output needs to be Ei,j,l =

[
−∑l−1

p=1 xi,j,p

]
Ei,j , so

as to create the correct output curve Ei,j . The curve Ei,j,l can thus be computed

by S as Ei,j,l :=
[
−∑

p�=l xi,j,p

]
Ei,j . After computing Ei,j,l the associated ZK

proof can hence be simulated as well. If A deviates from the protocol in any way,
this is caught by the ZK proofs and S will be able to abort. Thus if abort does
not happen in the protocol, the simulator will output the same curve Ei,j .

Again in Step 4 of the Fig. 5, parties are running a full-threshold 2-MT-
GAIP protocol from Fig. 3 to jointly compute Ki,j = [ki,j ]Eui

. Next, w.l.o.g., we
write the simulation for particular values of i, j, while it can also be extended
for all i = 1, · · · , T0, and j = 1, · · · , T1. Let Pl be the honest party. A and S
engage in an execution of the full-threshold 2-MT-GAIP protocol in Fig. 3. As
each party needs to commit to its secret share of s, the simulator commits to
a random share s∗

l , say K∗
Pl

= [s∗
l ]Eui

, produces a simulated proof and then
commits to the curve and proof using the commitment scheme. If later the
simulator is asked to open this, the simulator will equivocate the commitment
so that it can be opened to the correct elliptic curve and proofs. Note that, the
simulator is able to compute them after extracting the adversarial shares. From
the π1

Pp
(in Fig. 3), given in the commit phase, S is able to extract the values

sp entered by A in the first round of proofs. The extracted values sp are now
passed to the functionality, which completes them to a valid set of shares of the
secret and returns the corresponding curves Eui

, K. At this point, S has all the
adversarial shares and the curves Eui

, K. The honest share sl is unknown to S.
Even though it does not have the honest share, it can fake the commitment by
setting KPl

:=
[
−∑

p�=l sp

]
K which it can do by using the curves it got from the

functionality and the adversarial shares that it got from the proofs-of-knowledge.
Having Eui

and KPl
, S can simulate the corresponding proof. It then commits

to this proof using FPl

Commit. The commitments can now be opened. Now A and
S proceed with the round-robin protocol for computing the public keys as in
Step 7 of the Fig. 3. All steps for honest players can be simulated exactly by
following the real protocol, except for the party Pl which holds the unknown
share sl. The input to this party in execution l will be Kl−1 =

[∑l−1
p=1 sp

]
Eui

while the output needs to be Kl =
[
−∑l−1

p=1 sp

]
K, so as to create the correct

output K. The curve Kl can thus be computed by S like it did for computing
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KPl
and the associated ZK proof can hence be simulated as well. If A deviates

from the protocol in any way, this is caught by the ZK proofs and S will be able
to abort.

In our simulation of full-threshold 2-MT-GAIP generation protocol the value
ki,j,l is unknown and ‘fixed’ by the implicit equation given by the signature
({zi,j}T0,T1

i=1,j=1, {Xi,j}T0,S1
i=1,j=1, v) returned by the functionality which gives us

Ki,j = [ki,j ]Eui
= [zi,j ]Xi,vi,j

, where vi,j is the random challenge value obtained
from the quantum random oracle, i.e., v ← H ′(m||{Ki,j}T0,T1

i=1,j=1). The final part
of the signature which needs to be simulated is the output of zi,j,l. We know
what A should output and hence can define zi,j,l = zi,j − ∑

l �=l′ zi,j,l′ . If A devi-
ates from the protocol in the final step and uses an invalid value of zi,j,l′ , then
the adversary will learn the signature, but the honest players will abort; which
realizes the ideal functionality described in Fig. 6. ��

5 Robust Identity-Based Threshold Signature Scheme

Our threshold signature from the previous section does not provide a guarantee
for output delivery. The protocol is susceptible to the Denial-of-Service (DoS)
attack, which allows malicious parties to indefinitely deny the generation of the
desired result. In this section, we extend our IDTHS from Sect. 4 to achieve
robustness and assure output delivery. Our robust scheme is also build based
on the CSI-SharK signature, however with some changes, at the cost of a longer
master secret key, can be adapted to work with the CSI-FiSh signature as well. In
the proposed robust IDTHS if any dishonest behaviour by a participant occurs,
the efforts invested thus far are not rendered futile. The involved parties are able
to identify the malicious parties, exclude them from the protocol, reconstruct
their shares, and seamlessly continue the protocol to achieve the correct output.
In the rest of section, we are highlighting the distinctions between the signature
discussed in Sect. 4 and the new one, without reiterating the similarities.

DKey: In Step 2 of the new DKey protocol (given in Fig. 7), in addition to gener-
ating the polynomial fi,j(X) for sharing the secret xi,j , the authority generates
another polynomial gi,j(Y ) to re-share each share of xi,j,l among all the parties.
At the end, the authority privately sends a share of this re-sharing, denoted as
wi,j,l,k, to each party, along with their respective share of xi,j,l. Later, we show
how the parties use these values to verify the opening responses in Step 7 of
DSign algorithm (described in Fig. 8). This approach originally is proposed and
used in the ThreshER SharK scheme [3] to achieve robustness. However, it is not
directly applicable within the context of our scheme. We will provide a detailed
explanation as we proceed through the description of the DSign algorithm.

DSign:Figure 8describestheprocedureofourproposedrobustDSignprotocol.Com-
pared to theDSign protocol from Fig. 5, in the robustDSign, the first key difference
is that we need all the parties to be present in the signing procedure, as explained
in Step 7 of Fig. 8. Steps 1-3b are the same as our previous DSign protocol. Then,
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An authority runs DKey:

1. Parse uskidi,j = ({ui}T0S1
i=1 , {xi,j}T0,S1

i=1,j=1)
2. For i = 1 to T0, j = 1 to S1 do:

(a) Choose a random degree t poly fi,j(X) = xi,j + ci,j,1X
1 + · · · + ci,j,tX

t

(b) for l = 1 to n: set xi,j,l = fi,j(l) as a secret for each party and create the
corresponding commitment Fi,j,l = [xi,j,l]F0 for each secret xi,j,l

i. Choose a random degree t poly gi,j,l(Y ) = xi,j,l+di,j,1Y
1+· · ·+di,j,tY

t

and reshare secrets xi,j,l obtained from the previous step
ii. for k = 1 to n: set wi,j,l,k = gi,j,l(k) as a new secret for each party’s

secret xi,j,l.
3. For p = 1, · · · , n: send all the related (xi,j,l, wi,j,l,k)i=T0,j=S1,l=n,k=n

i=1,j=1,l=1,k=1 to party
Pp securely and publish {Fi,j,l}i=T0,j=S1,l=n

i=1,j=1,l=1 .

Fig. 7. DKey algorithm for the proposed robust IDTHS.

in Step 4, parties run the robust Distributed Key Generation (DKG) protocol CSI-
RAShi++from[3],tocomputeKi,j .TherobustDKGprotocolCSI-RAShi++works
with Shamir secret sharing and is recently proposed as an improved version of the
DKG protocol CSI-RAShi [8]. CSI-RAShi++ allows a set of parties to sample [x]E
in a fully distributedmanner, such that at the end, eachparty gets a Shamir share of
x. Using CSI-RAShi++ and our re-sharing from theDKey step allows us to achieve
robustness.Creating the challenge inStep6 remains the sameasbefore. Step7 is the
subtle part of theprotocol to achieve the robustness. In this step,weuse the reshares
ofthesharesofallparties(fromtheDKeystep)alongwiththeresharesgenerateddur-
ing the execution of CSI-RAShi++ DKG protocol, and verify the partial openings
of individual parties.

In this step, parties open a polynomial instead of a value. In the abort version,
when the parties open a value it gives the possibility to find the misbehaviour
and abort but they can not identify the malicious parties. But in this case,
since we are in the honest majority setting, due to opening a polynomial, the
parties can identify an adversary (using the reshares from the DKey and DKG
steps) and disqualify him. Then, they can reconstruct his share and continue the
computation until the end.

Finally, parties sum all the responses up and achieve the final zi,j . The sig-
nature as before consists of ({zi,j}T0,T1

i=1,j=1, {Ei,j}T0,S1
i=1,j=1, v).

Theorem 5.1. The (t, n) IDTHS described in Fig. 8, is UF-IDTHS-CMA
secure and robust in the quantum random oracle model (the hash functions are
modelled as quantum random oracles), against a static adversary corrupting up
to t parties, with t < n/2, if the IDS scheme proposed in Sect. 3 is EUF-IDS-
CMA secure.

Security Proofs. The security of DKey can be argued similar to the abort con-
struction, given in Sect. 4, and the simulation of DSign is analogous to the proof
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Signing Algorithm DSign: All Parties {P1, · · · , Pn} act as follows,
1. For l = 1 to n party Pl for i = 1 to T0: set xi,0,l ← 0
2. Set Ei,j,0 = E0

3. For i = 1 to T0 and j = 1 to S1 do:
(a) For l = 1 to n do:

i. Party Pl computes Ei,j,l ← [xi,j,l]Ei,j,l−1

ii. Compute πi,j,l ← NIZK.P ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), xi,j,l), using
the NIZK argument (given in the full version of the paper [1]),

iii. Broadcast (Ei,j,l, πi,j,l)
iv. All players execute NIZK.V ((E0, Fi,j,l, Ei,j,l−1, Ei,j,l), πi,j,l) (given

in the full version of the paper [1]), and abort if the verification al-
gorithm fails.

(b) Set Ei,j = Ei,j,n and return Ei,j

4. For i = 1 to T0, j = 1 to T1 , and For l = 1 to n, given Eui , parties run
the DKG of CSI-RAShi++ (given in the full version of the paper [1]) and
generate Ki,j = [ki,j ]Eui .
// Note that bi,j,l(X) which is a degree t polynomial sampled by parties
during the DKG protocol of CSI-RAShi++ and the degree t polynomial of
gi,j which was sampled by a trusted dealer in the DKey algorithm for re-
sharing the share of the parties, both are using for checking and robustness.

5. Compute v ← H ′(m||{Ki,j}T0,T1
i=1,j=1)

6. Parse v as {vi,j ∈ [0, S1]}T0,T1
i=1,j=1

7. For i = 1 to T0, j = 1 to T1, and l = 1 to n do:
(a) Each party Pl computes zi,j,l(Y ) = bi,j,l(Y ) − gi,vi,j ,l(Y )
(b) Using their secret value shared during the NI-VSS protocol (given in

the full version of the paper [1]), namely bi,j,l(l) and gl
i,j(l) given by the

authority, each party P ′
l verifies

zi,j,l(l′)
?= bi,j,l(l′) − gi,vi,j ,l(l′)

(c) Whenever one of these checks fails, P ′
l broadcasts a complaint against

Pl When a player Pl has t + 1 or more complaints against them, they
are disqualified. The remaining players can then construct zi,j,l(0) by
reconstructing both bi,j,l(0) and gi,j,l(0) using the information from the
DKG and given by the authority. This is always possible when there
are at least t + 1 honest parties (honest majority).

(d) Using {zi,j,l(0)}n
i=1, parties build the responses zi,j(0) =

∑
i∈Q zi,j,l(0)

8. Return σ ← ({zi,j}T0,T1
i=1,j=1, {Ei,j}T0,S1

i=1,j=1, v).

Fig. 8. DSign algorithm for the proposed robust IDTHS.

of theorem 5.1, which is omitted. We highlight that, in this case, one key differ-
ence is that the security of the DSign protocol relies on the security of the robust
CSI-RAShi++ DKG protocol from [3].

6 Conclusion

We initiated our work by modifying the existing identity-based signature based
on isogenies, as proposed by Shaw and Dutta [27], in order to align it with
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the CSI-SharK signature scheme. Subsequently, we proposed two identity-based
threshold signature schemes in the CSIDH setting. Both of the proposed signa-
tures possess active security within the quantum random oracle model, with the
first one offering security with abort, while the second one is characterized by
robustness. Although these novel constructions represent theoretical outcomes,
they can be considered as the first step towards the development of identity-
based threshold protocols that are based on isogenies. It is worth noting that
any advancements made in the underlying protocols, e.g., CSI-SharK signature,
CSI-RAShi++ DKG protocol, or even improvements in the computations of
group actions, can be applied to our identity-based threshold signatures as well.
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Abstract. An anonymous communication network (ACN) is designed
to protect the identities of two parties communicating through it, even if
an adversary controls or observes parts of the network. Among the ACNs,
Tor represents a practical trade-off between offering a reasonable level of
anonymity and, simultaneously, an acceptable transmission delay. Due
to its practical impact, there is abundant literature on the performance
of Tor concerning both communication and security aspects.

Recently, a static framework was suggested for evaluating and com-
paring, in a quantifiable way, the effect of different scenarios (attacks,
defence mechanisms, and other protocol changes). Although a static
model is useful, many scenarios involve parameters and stochastic vari-
ables that change or evolve over time, or that may be influenced by
active and malicious adversaries. In this paper, we propose a dynamic
framework for evaluating such scenarios. We identify several scenarios
where this framework is applicable, and illustrate our framework by con-
sidering the guard node mechanism in Tor. We evaluate and compare
variations on the guard node concept suggested in the literature with
respect to relevant performance metrics and, using the framework, sup-
port our evaluation with a theoretical analysis.

Keywords: Anonymity · Onion Routing · Tor · Traffic Analysis

1 Introduction

Onion routing aims to provide anonymity by obfuscating the link between a
user and their network destination [9,10,28,31]. Ideally, the link remains hidden
even against adversaries who observe or influence large swaths of the network.
The most widespread implementation of onion routing is Tor [7], which relies on
users picking multiple nodes from the network and establishing circuits to relay
traffic through the nodes. These nodes are referred to as onion routers, and their
identities are collected and distributed to the users by a central authority.

The anonymity provided by a Tor circuit strongly depends on what an adver-
sary can observe. If all routers on the circuit are adversarially controlled, no
anonymity is possible. Moreover, the first and last node on a circuit play a cru-
cial role as the first node can easily identify the user whereas the last node knows
the destination. If an adversary can correlate the two, e.g., by traffic analysis,
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anonymity is lost. Furthermore, an adversary only observing the first node can
still attempt website fingerprinting to infer the destination.

Indeed, since its inception, these and other attacks, as well as improvements
to Tor to counter them, have been proposed (see [17] for a recent overview).
Whereas some attacks, such as traffic analysis and website fingerprinting, can be
cast in a static framework [25], more advanced adversaries and countermeasures
require a more dynamic framework to evaluate and compare threat models and
protocol modifications. To limit the length and the scope of the paper, we will
focus on guard nodes as illustrative scenario.

In recognition of the importance of the entry node and its honesty in provid-
ing anonymity, guard nodes were introduced through a series of modifications
to the original Tor design [20,23]. Based on previous research [8,12,27,32], the
underlying philosophy is to improve the anonymity for the majority of users by
sacrificing that of a few. Although guard nodes are initially randomly selected
by a user, they become the choice of entry node for that user’s circuits across
an extended period of time. In this way, users who pick an honest entry node
will be “guaranteed” to be safe for an extended time frame, compared to always
choosing a new entry node for every circuit. In contrast, users picking a corrupted
guard node will suffer from a security degradation as more of their circuits will be
exposed. Hence, analysing the security trade-offs provided by guard nodes nec-
essarily involves the modelling of circuit re-establishment, which is a dynamic
feature.

Our Contribution. We provide an evaluation framework to evaluate the effi-
cacy of attacks by adversaries observing and possibly interacting with the Tor
network over time. The framework can be applied to a variety of aspects of the
onion routing protocol, including for instance:

1. effects of the guard nodes feature on anonymity;
2. guarantees of dynamic unlinkability;
3. severity of tagging attacks.

In particular, we focus on the first of these to illustrate the use of the frame-
work. The framework enables the comparison of different attacks, threat models,
and metrics in the dynamic scenario, and facilitates the discovery and identifi-
cation of gaps in the literature. Such gaps may occur, for example, in the cases
where different attacks (or defences against them) are published and evaluated
with the use of mutually incompatible metrics.

Related Work. Since its inception, several analyses of Tor’s anonymity have
been conducted [1–3,18,19,24] (see also [22, Section 2] for a comprehensive
account of different frameworks). A common approach, inspired by cryptographic
games and proofs of security, is to formally define a game, the adversary, and a
challenge. A main drawback of this approach is the lack of time-dependent and
dynamic features being captured in the framework, as highlighted by Backes et
al. [3]. They combined the formal approach with a concept of “time” within
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the framework, but focused on timing as additional information available to the
adversary (e.g., for traffic analysis) instead of the evolution of the network itself
over time. On the other hand, simulation-based approaches [14,15] allow for
more practical analyses, with the distinct challenge of isolating and analysing
the impact that the many parameters have on the results of the experiment.

2 Preliminaries

Notation. We use capitalised letters A,B, . . . to refer to random variables, and
we base our treatment on the relationships among them. In particular, the causal
relationship, denoted A � B, indicates that in a real-world system random
variable A will be set before B and I(A; B) > 0; in other words, the random
process modelled by the variable A happens before the process modelled by B
and the outcome of the former influences the outcome of the latter. We use U
and C to indicate the sets of users and, respectively, circuits; the boldface letters
u and n refer to the numbers of users and guard nodes. We will use standard
concepts from information theory, as detailed in the full version [26].

2.1 The Static Framework

Melloni, Stam, and Ytrehus [25] introduced a novel framework for assessing the
security of low-latency ACNs in static scenarios such as traffic analysis and web-
site fingerprinting. This static framework deviates from prevailing, more rigid
approaches [13,18] by incorporating security metrics beyond conventional adver-
sarial advantages and drawing inspiration from cryptographic games.

Central to the framework are random variables that capture different aspects
of the game. These variables describe general behaviour of ACNs, and their
purpose is to enable the identification of potential information leakages and
quantify these in terms of conditional entropy and mutual information.

At the core of the framework sits the random variable S, which models the
users connecting to their chosen destinations; S represents the secret an adver-
sary wants to uncover. The random variable G represents all information in the
system that could possibly be observed. For instance, in Tor it contains the states
of all proxies (users) and routers, as well as all sorts of traffic traces.

In general, the precise distribution of G is hard to pin down as it depends on
a lot of factors, e.g. the length of circuits, how nodes are chosen, protocol spec-
ification, as well as general load on the ACN and its underlying infrastructure.
However, G uniquely determines S in the sense that H(S |G ) = 0.

The view of the adversary, V , captures the information (from G) that is actu-
ally available to the adversary: once the threat model is fixed, V is completely
determined by G, so H(V |G ) = 0.

The goal of the adversary is specified by a query q, that identifies partial
information on S of particular interest. The adversary processes its view V into
an output O that is relevant for the query q at hand. For instance, it could
be the adversary’s posterior best guess for the answer to q. In any case, in the
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literature this processing is usually referred to as an attack on Tor and metrics
are used to measure how well the attack actually fared.

Even though the exact probability distributions of the random variables
may be unknown, their relationship is clear and can be defined in terms of
information-theoretic notions, in particular using conditional entropy as done
above. Moreover, as O arises from data processing of V , H(O |V ) = 0 holds and
the data-processing inequality [4, Theorem 2.8.1] implies that I(V ; S) ≥ I(O; S).
Note that these conditions coexist with the causality relations S � G � V � O.

Our description of the static framework so far contained one small simplifi-
cation. Melloni et al. additionally introduce a random variable Z representing
auxiliary information gathered by an adversary during an initial training phase
that can subsequently be used to refine the actual attack, that is the processing of
V into O. For instance, V typically includes traffic traces and their shaping may
be heavily affected by the destination or network topology, irrespective of the
identity or even behaviour of the user. The variable Z captures what an adver-
sary learns about the random behaviour of the ACN independent of the secret
S. Thus I(S ; Z ) = 0, yet the information might be useful for the processing, in
the sense that H(S | V ,Z ) ≤ H(S |V ) or, equivalently, I(S ; V ,Z ) ≥ I(S ; V ).

Melloni et al. suggest Z might also contain an estimate of how S is dis-
tributed, for instance an adversary might try to determine the rough popularity
of websites prior to any attack. To capture such a scenario formally, one could
take a Bayesian approach where S is distributed according to a fixed model with
unknown parameters (themselves following an uninformative prior); in that case
Z can contain an estimation of the parameters according to which S is dis-
tributed. As we are primarily interested in evaluation scenarios, as opposed to
real-life attacks, we can always assume the distribution of S is fixed and known.

Perspectives. The static framework is especially useful to specify an experi-
mental setup used to evaluate security. In that case, a simplified scenario may be
studied in lieu of a more complicated, realistic model and identifying the simpli-
fications and their justifications (and limitations) can be useful. Often different
metrics are required depending on the perspective that is taken, for instance a
user might be primarily concerned about the likelihood of being deanonymised
(a worst case), whereas a designer might be more interested in the expected
number of compromises (an average case). Some simplifications will be suitable
for one perspective, but perhaps less so for another.

3 A Dynamic Framework

Although the static framework can model attacks that involve time, such as traf-
fic analysis, it is ill-equipped to deal with situations where parties actively change
their behaviour over time, or where the system design introduces dependencies
over time. To address such scenarios, in this section we introduce a general frame-
work for an analysis of ACNs involving dynamic behaviour. Similar to the static
framework, the dynamic one is described in terms of general random variables
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and the relations between them, where we focus on those relations that best cap-
ture dynamic aspects of the game. When applying the framework to a concrete
scenario, the random variables and their relations should be specified in suffi-
cient detail to answer any relevant research question, for instance what spaces
the various random variables are defined over and how they are distributed.
Irrelevant details, not pertinent to the research question can be abstracted away
or left un(der)specified.

Introducing Epochs. To enable research into the effects of active adversaries
tampering with the network as well as dynamic features of the onion protocol,
we allow evolution of the environment by introducing the concept of epochs. An
epoch is a period of time during which we assume behaviour by the parties to
be fixed, so within an epoch the static framework applies. A dynamic picture
emerges by considering a sequence of epochs, effectively discretising real time.
Indeed, for each epoch t ∈ N we will consider the random variables St, Gt, Vt,
Ot, and Zt. Additionally, we will for a given random variable Xt, let Xt denote
the collection of all the previous Xi up to and including t.

In the dynamic setting, the focus of an adversary’s goal with respect to the
epoch t can be made explicit by writing qt for the adversarial query and μq(t)
for a corresponding evaluation metric. The notation μq(t) emphasizes the metric
as a function over time; in Sects. 4 and 5 we will consider different metrics μi,
subscripted simply by an index i, as they all relate to the same query q.

Cross-Epoch Variable Dependencies. Within a given epoch t, the way the
variables St, Gt, Vt, Ot, and Zt relate to each other is directly inherited from
the static framework. For the dynamic framework, we are interested in plausible
relationships between variables from different epochs. Here we make a further
distinction between intra-variable dependencies (e.g. between St and St−1) and
inter-variable dependencies (e.g. between St and Gt−1).

We identify several possible scenarios, mainly depending on whether and how
the dependency manifests for the different random variables. Here we concentrate
on the core of the dependency, for instance when considering how Gt depends
on Gt−1, we are less interested in the logical consequences in any dependency
that can be (fully) explained by St depending on St−1.

Intra-variable Dependencies. Consider how users select their destinations, as
captured by St. As the boundary between two epochs is somewhat arbitrary
when considering real-life Tor, some users are likely to stick to a destination,
whereas others might change (or connect for the first time). Thus, a user’s future
behaviour might depend on the present, but arguably not on the past, so St sat-
isfies the (first order) Markov property, namely that I

(
St+1; St

)
= I

(
St+1; St

)
.

For evaluation purposes, it can be useful to restrict to one of the two extreme
cases: either the outcome is drawn once and then fixed, so St+1 = St which
implies that I

(
St+1; St

)
is maximal; or the different epochs are independent of

each other, so I
(
St+1; St

)
= 0 and minimal. The former, fixed case is useful
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to analyse active attacks exploiting adversarially triggered circuit tear-downs
(including tagging attacks), whereas the latter case can be used to analyse link-
ability over longer time domains. In a real-life setting, the mutual information
lies somewhere between these extremes.

When considering Gt, we recall that according to Tor protocol specifications,
each user and router participating in the network is stateful and maintains all
relevant information about its circuits and connections in the current state [6].
Thus, for circuits that remain active from one epoch to the next, Gt+1 will
depend on Gt, without any further dependency on past epochs. Similarly, for
guard nodes, any state maintained by a user regarding the identity (and usage)
of guard nodes will be part of Gt. Consequently, without significant loss of appli-
cability, we can assume that also Gt exhibits a first order Markov property, i.e.
I
(
Gt+1; Gt

)
= I

(
Gt+1; Gt

)
.

As the adversary’s view Vt is a function of Gt, it might inherit its Markov
property. In the static model, the threat model ruling how V is a function of G
can be deemed fixed; in the dynamic model, an adversary might corrupt different
routers in different epochs, thus changing which part of Gt is visible in Vt.

For an adversary’s output Ot the question of how it relates to its predecessors
Ot−1 is, to a large extent, moot. What matters is that, on the one hand, Ot may
well depend on the adversary’s view on all epochs so far, i.e. on V t and not just
Vt. For instance, when trying to link users’ information over multiple epochs, an
adversary will necessarily have to combine its view across epochs. On the other
hand, we might be interested in how an adversary’s success evolves as a function
of time t. However, in that case the appropriate tool is a metric μq(t) rather
than a direct statement on Ot itself.

Finally, for the auxiliary random variable Zt, we assume the adversary to
accumulate all the collected information, so H

(
Zt

∣
∣ Zt+1

)
= 0 for t ∈ N.

Inter-variable Dependencies. We already identified one inter-variable depen-
dency above, namely in situations where an adversary’s output Ot may depend
on the view V t across all epochs so far in case the goal is epoch-spanning. Yet,
even if the goal is specific to the current epoch, if St is partially dependent on
St−1, then information collected in the previous epoch might still serve an adver-
sary well, for instance to rule out some destinations from the pool of possible
ones (improving the confidence level in the output Ot).

Another inter-variable dependency arises when an adversary uses the view
in Vt to disrupt the network, which will subsequently be reflected in Gt+1. For
instance, an adversary might block access to some routers, thereby influencing
how users pick the routers for their circuits.

4 Application of the Framework to Guard Nodes

In this section we discuss how to apply the dynamic framework to the study of
the performance of guard node scenarios. Due to page limitations we need to
keep the discussion brief.
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Context. Guard nodes were introduced in 2013 [23], recognizing that “some
circuits are going to be compromised, but it’s better to increase your probability of
having no compromised circuits at the expense of also increasing the proportion
of your circuits that will be compromised if any of them are.” The underlying
technical assumption is that a single party controlling both the first and last
nodes of a circuit can link source and destination of the traffic, and a single
compromised circuit may suffice to ruin a user’s anonymity.

Fixing the first node over a period of time increases the probability of having
no compromised circuits over that period of time when compared to randomly
picking a new entry node every new circuit setup. This fixed entry node is known
as a guard node. In practice, users will still need to change guard nodes from time
to time, for instance when their guard node is overloaded or unavailable, the last
referred to as the natural churn of the network. To balance these unpredictable
events, the guard node feature employed by Tor shortlists several nodes and then
selects the guard node from this list; after a while, the list is refreshed [21].

As a result of this mechanism, the guard node policy actually consists of two
distinct selection parts. First, a guard list maintenance policy describes how to
construct the list of potential guard nodes, how many to pick, and when to pick
new ones: this refresh process is referred to as guard rotation. Second, a guard
selection policy dictates which node to pick from the short list whenever the
proxy builds a new circuit. It is noteworthy to remark that literature on the
subject tends to disregard the distinction between guard list maintenance policy
and guard selection policy, focusing almost exclusively on the first.

The guard list maintenance policy is influenced by two factors: the churn of
the nodes happening in the network and the guard rotation defined in the policy
itself. Guard rotation also allows for recovery after compromise, as unlucky users
picking corrupted guard nodes will refresh them after their lifetime expires.

Several changes [5,8,11,12,20,30] to the original guard list maintenance algo-
rithm have been proposed and analysed. These proposals mainly investigate the
effects of changing the lifetime and quantity of guard nodes, both on perfor-
mance and security. The fact that fixing a single guard node maximises security
has already been recognised [5], but with some caveats when considering that
nodes might be unreachable [8].

Security Evaluation. When the guard node feature was announced [23], the
goal stated by the Tor team was to decrease the number of deanonymised users,
conceding a higher number of uncovered destinations for the users that have
been deanonymised. The first two security metrics we will consider are focused
at estimating these quantities.

Later, Johnson et al. [16] employed the probability distribution of the time
until first compromise as a security metric. In this paper, for ease of presentation
we will instead use the average time until first compromise as our third metric.
Lastly, we will consider a fourth metric to describe the situation for a user who
is among the unlucky ones. We will describe these metrics in more detail in
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the Metrics subsection, after we have discussed the dynamic framework in the
context of this specific application.

Security evaluation depends also greatly on the specific definition of com-
promise: different authors employ different approaches, possibly affecting a fair
comparison. For example, Hayes and Danezis [12] consider a user to be compro-
mised the moment they choose a malicious guard node (even before using it),
while for Johnson et al. [16] a user needs to actually build a circuit through a
malicious node to be compromised. We discuss this further in Sect. 5.1.

Our evaluation framework allows us to reveal hidden assumptions and simpli-
fications (Sect. 5.1), facilitating both an exploration of possible alternatives and
a combinatorial analysis and comparison of various guard node policies across
scenarios (Sect. 5.2). It also enables a unified comparison of approaches discussed
in the literature.

Remark 1. When considering the security offered by guard nodes, the emphasis
is usually on circuit compromise. In our analysis, we will follow this lead, however
there are other security ramifications tied to the use of guard nodes. For instance,
it might be possible to identify a user based on their chosen guards (guard
node fingerprinting [5]), which could violate the privacy goal of unlinkability of
sessions over an extended period of time. The above holds even if each circuit
is selected with an a honest exit node. In addition to guard node fingerprinting,
ingress traffic fingerprinting allows linking user across epochs. We omit a further
discussion of these issues in order to bound the length and scope of the paper.

Dynamic Modelling. To model guard nodes in our framework, we start by
specifying a minimal setup of the random variables that suffices to capture the
various guard node policies and their intended effect on security.

System Setup. We will consider u users that each connect to a single destination
du,t per epoch t, where we furthermore assume that users select their destinations
independently of each other and different users may select their destination with
different probability distributions. These choices specify the secrets St, where
additionally we assume St to be independent across epochs. From the users’
perspective, each epoch is marked by the setup of their respective circuits.

The variable Gt contains the state of the system and possible observables
for an adversary. We assume that during each epoch, every user establishes
a new circuit to its destination, resulting in the set of circuits C. Sticking to
the default Tor circuit length of 3, each circuit can be represented as ci =
(cID, uID, gID,mID, eID, dID), consisting of ID for the circuit itself, the user, guard,
middle, exit nodes and destination. Here the circuit identity cID is simply a global
identifier used in the framework.

Given the circuit belonging to user u in epoch t, the destination dID will match
that in St, so equal du,t . The middle router mID and exit router eID are assumed
to be chosen independently and uniformly at random, whereas, crucially, the
guard node gID is selected according to the guard node policy.
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The guard node policy itself is modelled by maintaining (in Gt) on the one
hand all information that proxies require to select their guard nodes (such as
bandwidth and availability) and on the other, for each proxy, that proxy’s state
pertaining to its guard nodes, as prescribed by the specific policy (for instance,
the priority of the guard nodes, how long they have been in use by that proxy,
etc.). Different guard selection proposals may require additional information,
such as the mapping of guard nodes to their set in the guard sets proposal [12].

The guard node feature advantage starts from the second circuit setup and
involves information from the previous epoch that is maintained into the current
one, consistent with Gt being a Markov process. In case there is no guard node
feature, Gt is memoryless and users select new entry nodes every circuit setup.

For the possible observables and for each node, operational information is
maintained in Gt for all the circuits routed by that node. Here we use the model
common for traffic analysis and website fingerprinting, and let guard and exit
nodes observe (uID,mID, ingress trace) and (mID, dID, egress trace), respectively.

The Adversary. The view of the adversary Vt consists of a selection of the last
two types of tuples. Which tuples an adversary can observe depends on the threat
model, more specifically on which nodes are corrupted; we indicate the ratio of
malicious entry and exit nodes with γ and ε respectively. Here one could make a
distinction, as Melloni et al. [25] do, between full control where the adversary has
completely corrupted the node and can see its state (including the identity of the
middle router mID for every circuit through that node); and partial control where
an adversary can observe the link traffic between the node and the outside world
(so uID and ingress trace, respectively dID and egress trace, but not mID). The
difference between these two types of adversarial views relates to the amount of
information acquired by the adversary per time unit, so that an adversary with
the weaker level of node compromise may have to observe more traffic to obtain
the same results. Pragmatically, the difference between these two cases can be
modelled by different ε values (where ε is changed to mean “the probability of
full circuit deanonymisation given a guard compromise”.)

In these minimal settings, the adversary aims to uncover as many user–
destination pairs as possible, based on Vt. Since each user only has one destina-
tion per epoch, the adversary can simply output Ot =

{
d̂uj ,t

}
, indicating the

guessed destination for users u1, . . . , ui in epoch t.

Metrics. To formalize the security metrics mentioned earlier, we introduce two
auxiliary random variables: X≤t(u) represents the number of correct guesses by

the adversary up to epoch t for user u, defined as X≤t(u) =
∑t

i=1

[
d̂u,i

?= du,i

]
;

and Y≤t denotes the number of users that have never been deanonymised (up to
epoch t), i.e. Y≤t = |{u|X≤t(u) = 0}|.

The goal of the guard nodes feature is to minimize the deanonymised users:

μ1(t) = E
[
Y≤t

]
, or equivalently with μ1(t) =

∑

u

Pr[X≤t(u) = 0]. (1)
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Table 1. Description of the identified metrics.

Metric Description

μ1(t) Expected number of users that, up to epoch t, have never been
deanonymised (1).

μ2(t) Expected number of uncovered destinations for any user that has been
already deanonymised (2).

μ3 Average time until first deanonymisation (3).

μ4(t) Average of Pr[compromise at time t + 1 | compromise at time t ] (4).

The “price” is an increase in deanonymised destinations for compromised users:

μ2(t) =
1
u

∑

u

E[X≤t(u) |X≤t(u) > 0 ]. (2)

We also simplify the metrics of by Johnson et al. [16], considering the average
instead of the full distribution:

μ3 =
1
u

∑

u

E[min {t|X≤t(u) > 0}]. (3)

Recalling that the guard node construction gains anonymity for the majority
by sacrificing a few, it is also useful to have a metric that quantifies how much
the few will suffer. We will use the following metric:

μ4(t) =
1
u

∑

u

Pr[X≤t+1(u) > X≤t(u) |X≤t(u) > X≤t−1(u) ]. (4)

4.1 Guard Nodes Policies

The framework allows us to compare several variations of guard node policies
through computation of the metrics, but we first need to identify the parameters
needed to describe a guard node policy. The number of nodes picked by each
proxy, according to a defined probability distribution Δ, is n. We also need an
ordering � to specify the relative preference of guard nodes to use each time the
user wants to setup a new circuit, and the maximum lifetime of T epochs for
guard nodes before being refreshed.

No Guard Nodes. The base case is having no guard nodes feature at all: the
proxy chooses a new entry node for every circuit setup, i.e. T = 1; we refer to
this as no-guards policy.
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Table 2. Different models of guard node policies.

Type Policy Description

Guard maintenance No-guards No guard nodes.

1-guard Single guard node.

3-guards 3 guard nodes, simplified Tor current specification.

Tor Guard Specification The current Tor guard node specification [21].

Guard selection Ideal uniform-use See “Simplified policies” in Sect. 5.1.

Greedy See “Simplified policies” in Sect. 5.1.

Single Guard. The simplest guard based policy is the one with a single guard
node, using only that for circuit setups until it expires or if it is unreachable.
Formally, n = 1 and T > 1.

3-Guards. A more practical policy is represented by the 3-guards policy, where
the proxy selects 3 entry nodes and uses them as guard nodes until they expire
or become unreachable. This guard policy is a simplified version of the current
Tor Guard Specification (see below). The introduction of multiple guard nodes
prompts the need to specify the guard selection policy, ruling which guard node
to select for each circuit creation.

Tor Guard Specification. The current Tor guard node specification [21] is
based on a series of subsequent samplings performed by the proxies, starting from
the set of all the current guard nodes according to some probability distribution
and some further processing (see [26]). The proxy picks, at run-time, 3 nodes
to use as guards from a persistent short list, with nodes being removed from
it when they are either unreachable for some epochs or their lifetime as guards
expired.

5 Analysis

In Sect. 5.1, we first explain the simplifications and assumptions we apply in order
to design an analytical model for evaluation purposes. Subsequently, in Sect. 5.2
we derive quantitative values for the metrics in Table 1 based on the parameters
already introduced. As an alternative to the analytical results, we also created
a simple simulation program that is described in Sect. 5.3. Section 5.4 discusses
suitable parameter ranges, and in Sect. 5.5 we provide numerical results.

5.1 Simplifications and Assumptions

Research on ACNs is seldom performed on real-world data and systems, for
both practical and ethical reasons, e.g. the lack of available information, the
intractable complexity of the live Tor network, the need to create reproducible
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results from controllable network states and parameter values, or the privacy
intrusion of observing actual Tor communication. To overcome these limita-
tions, researchers introduce simplifications and assumptions when analysing
some aspects of Tor. Here we summarize the simplifications we subsequently
apply in Sect. 5.2. Justifications for these simplifications can be found in the full
version [26]. The simplifications we use include:

1. St: Simple and uniform user behaviour. In each epoch, each user selects a
destination independently of the others and connects to it.

2. Uniform node corruption. Each guard node is corrupted with a fixed proba-
bility γ, and each exit node is corrupted with a fixed probability ε.

3. Uniform guard node churn. Each guard node experiences churn with a fixed
probability ϕ.

4. A “breach of anonymity” occurs iff a circuit’s entry/guard node and its exit
nodes are both corrupted. Other models can be represented by adjusting ε.

5. The analysis ignores parameters irrelevant to the computation of metrics.
6. Simplified policies for

– Guard list selection. Each time a guards list is renewed, guards are selected
uniformly at random.

– Selection of guard for each circuit. In a greedy policy (respectively, the
ideal uniform use (IU) policy), the user will use a guard node that has
been used most often (resp. least often) during the lifetime of the current
guard list. In our context, these theoretical policies serve to obtain bounds
on Tor’s anonymisation performance.

– Churn policy. If all n guard nodes are simultaneously unavailable in an
epoch, an immediate renewal of the entire guard list is triggered.

7. Guard lists are disjoint over time.

5.2 Quantitative Formulas for Metrics

In this section, we provide formulas for the metrics introduced in
Sect. 4 (see Table 1) for the guard node policies identified in Table 2 (except
the Tor Guard policy, the performance of which is bounded by that of other
policies). We omit the proofs and refer to the full version [26] for proofs.

Three General and Basic Lemmas. In Lemmas 1 to 3 we give general
expressions for metrics μi, i ∈ 1, . . . , 3 that are valid for all guard node policies
and the user behaviour that we will discuss. These expressions still rely on further
calculations, specific to each policy, that will be derived further later on for some
policies.

Lemma 1 (Formulas for μ1(t) for any guard node policy). Assume that
in each epoch, each user, independent from the others, selects a destination and
establishes a new Tor circuit to it. Then

μ1(t) = E
[
Y≤t

]
= u · Pr[X≤t(u) = 0]. (5)
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Lemma 2 (Formulas for μ2(t) for any guard node policy). Let St be
as described in Sect. 4, and assume that for each circuit setup, the exit node is
selected independently of the guard node. Then, for any guard node policy,

μ2(t) =
tγε

1 − Pr[X≤t = 0]
. (6)

Lemma 3 (Formulas for μ3 for any guard node policy). Let St be as
described in Sect. 4. Then, for any guard node policy,

μ3 =
t∑

t̃=1

(
t̃ · Pr

[
X≤t̃ = 1

∣
∣ X≤t̃−1 = 0

] · Pr
[
X≤t̃−1 = 0

])
. (7)

The No-Guards and 1-Guard Policies, Reachable Guard Nodes. In this
subsection we derive results for the simple cases of the no-guards policy and the
1-guard policy, when Tor nodes are always reachable (i.e., there is no churn, so
ϕ = 0). From Lemmas 1 to 3, we see that we need to calculate Pr[X≤t = 0] for
each specific scenario. The next lemma gives the probability of no compromise
when a guard node is reused for several circuits.

Lemma 4. Consider a sequence of � circuits, created with a single guard node
and with random exit nodes. Then the probability of no compromise in any of
the � circuits is Fγ,ε(�) = F (�) (dropping the subscripts for convenience), where

Pr[X≤� = 0] = F (�) � 1 − γ + γ (1 − ε)�
. (8)

Proposition 1 (Formulas for Pr[X≤t = 0] for no guards, single guards).
Let St be as described. Then for the no guards policy,

Pr[X≤t = 0] = (1 − γε)t

while for a single guard policy,

Pr[X≤t = 0] = (F (T))�t/T�
F (t mod T) . (9)

Proposition 2 (Formulas for μ3 for ϕ = 0). Let St be as described in Sect. 4,
and let μ3 = E[min {t|X≤t > 0}] = E[max {t|X≤t = 0}]+1. Then, without guard
nodes,

μ3 =
1
εγ

. (10)

With a single guard node,

μ3 =
γ

ε

(
Tε(1 − (1 − ε)T)F (T) + (1 − (Tε + 1)(1 − ε)T)(1 − F (T))

(1 − F (T))2

)
. (11)

With more than one guard node and the greedy guard selection policy, ϕ = 0
implies that only a single guard node is ever used, so that (11) is valid also for
this case. Also, for T = 1, (11) reduces to (10).
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Proposition 3 (Formulas for μ4(t) for ϕ = 0). In the no-churn case, i.e.
ϕ = 0,

μ4(t) =

⎧
⎪⎨

⎪⎩

γε if t ≡ 0 mod T,

ε otherwise.
(12)

The General Case: ϕ ≥ 0, n ≥ 1,T ≥ 1. The previous subsection gives an
insight into the performance when the churn probability ϕ is very small. The
results for ϕ = 0 imply that choosing a single guard policy with T as large as
possible is the best thing to do, but for practical reasons, the Tor protocol uses
guard lists with more than one guard node. Hence we proceed with the case of
ϕ > 0, with a reset policy as discussed in Sect. 5.1. In this case, over t epochs, a
user will go through a random number m of consecutive guard lists. Since, due
to churn, a guard list may be prematurely reset, the ith guard list will actually
last for a random number Ti of epochs, where the last guard list may still be
active at time t and

1 ≤ Ti ≤ T, 1 ≤ i ≤ m (13)

and
m∑

i=1

Ti = t. (14)

Thus, the metrics values for a given set of parameters and a given policy
depend on the probability distribution of m and the sequence Ti, i = 1, . . . ,m
for each t. We will return to how to calculate μ1(t) in Proposition 4, but it is
convenient to state a couple of supporting results first.

For a guard list of n guards, and for each i = 1, . . . ,n, let �i be the number
of times guard i is used during t epochs, so that

∑
i �i = t. By Lemma 5, γ, ε,

and the distribution χ = (�1, . . . , �n) completely determine Pr[X≤t = 0].

Lemma 5. Assume that, at time t = �1 + · · · + �n ≤ T, the n different guard
nodes from the guard list have been used (in any order) respectively �1, . . . , �n
times since the last guard list renewal. Then

Pr[X≤t = 0] =
n∏

i=1

F (�i) (15)

Lemma 6 (Monotonicity of F (�)). Assume, without loss of generality, that
�i ≥ �i+1, for 1 ≤ i < n. For positive integers �1 ≥ �2,

F (�1 + 1) F (�2 − 1) ≥ F (�1) F (�2) (16)

and for positive integers �1, �2,

F (�1 + �2) ≥ F (�1) F (�2) . (17)
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It follows from Lemma 5 and Lemma 6 that a greedy policy is optimum
with respect to maximizing Pr[X≤� = 0], and that an ideally uniform use (IU)
policy is the worst possible. Hence the performance of any policy (for selecting a
guard from the guard list for use for the next circuit) will lie between these two
extremes. Another consequence of these lemmas is that the μ1(t)-performance
of the IU policy is lower bounded by that of the no-guard case (see Fig. 1).

Assume that the user has created t circuits (one circuit per epoch), and
that the n guard nodes have been used respectively χ1, χ2, . . . , χn times, where
χ1 + χ2 + · · · + χn = t and, without loss of generality, χ1 ≥ χ2 ≥ · · · ≥ χn.
Then let the guard node distribution be χ(t) = (χ1, χ2, . . . , χn). The ordering
of the actual guard nodes may change over time to maintain the constraint
χ1 ≥ χ2 ≥ · · · ≥ χn. Finally, let χ (t) be the set of all guard distributions at
epoch t. At time t > 0, the current guard set has been used for a random time of
b epochs, and the Markov process describing the guard use will be in a random
state χ(b).

Let Pχ(b) be the probability of guard distribution χ = (χ1, χ2, . . . , χn) at
epoch b, where b = χ1 + χ2 + · · · + χn and 1 ≤ b ≤ T. Guard distributions
develop over epochs through a random walk if ϕ > 0. Let Pχ′(t−1)→χ(t) denote
the probability that a guard distribution χ′(t − 1) at epoch t − 1 develops into
χ(t) at epoch t. The probability Pχ′(t−1)→χ(t) depends (only) on ϕ and the guard
selection policy. More details can be found in the full version [26].

For χ′ = (1, 0, . . . , 0
︸ ︷︷ ︸

n−1

), define Pχ′(1) = 1, and for 1 < b ≤ T and χ ∈ χ (b),

Pχ(b) =
∑

χ′∈χ(b−1)

Pχ′(b − 1)Pχ′(b−1)→χ(b).

Proposition 4 (Formula for Pr[X≤t = 0] for n-guards scenarios). Let
G0(P,Z) =

∑T
b=1 PbZ

b and G(Q,Z) =
∑T

b=1 QbZ
b, where Pb = F (b) Pχ(b) for

b = 1, . . . ,T and Qb = F (b) Pχ(b)ϕn for b = 1, . . . ,T−1 while QT = F (T) Pχ(T).
Then, for ∀t > 1, ∀t′ ≥ t− 1, the probability Pr[X≤t = 0] is the coefficient of Zt

in the polynomial

G0(P,Z)
t′∑

�=0

G(Q,Z)�. (18)

5.3 Simulation Program

The analytical approach in Sect. 5.2 offers expressions that, at least for some
metrics, give “exact” numerical results. However, some expressions are compli-
cated and offer little in terms of intuitive understanding. A simulation process
may be easier to apply to most of the metrics we consider, and gives sufficiently
precise results. Since tornettools does not support the guard node feature [15,
Section 3.2.2] and shadow [14] would require adapting Tor’s source code for each
of the various policies, we wrote a program to simulate a Tor scenario simplified
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as discussed in Sect. 5.1. To check the correctness of the simulation program, we
have verified that the results coincide exactly with our theoretical results where
applicable.

For each simulation sample, a set of parameter values is applied to a random
process in which guard lists are selected, guards and exit nodes are compromised
according to probabilities γ and ε, guard nodes are selected according to a given
policy and based on availability according to the churn parameter ϕ, and a guard
list is completely renewed when it has been used for T epochs or all guards are
simultaneously unavailable. Each sample is run for a preselectable number of
epochs, and data for the metrics are collected for each sample. For each set of
parameters, the simulation is run for as many (106 − 107) samples as needed.

Lemma 7 (Formulas for μ4 for ϕ > 0). For the case of ϕ > 0, the asymp-
totic value of μ4 = limt→∞ μ4(t) is given by

μ4 = (πchange(γ − 1) + 1)ε, (19)

where πchange is the probability that the guard node used at time t+1 is different
from the one used at time t.

Remark 2 (Regarding Lemma 7). It can be seen that (with equality for n = 1),

πchange ≥ 1
∑T

i=1(1 − ϕn)i
.

For n > 1, πchange is a lower bound on πchange, since guard changes can occur
also due to other reasons. For n > 1, πchange can be estimated by simulation. A
direct estimator for μ4(t) can näıvely be obtained by counting pairs of compro-
mised circuits in a simulation and dividing this number by γε, but using (19)
gives a more precise way of estimating μ4(t).

5.4 Discussion: Relevant Parameter Ranges

To provide further insight into the practical ramifications of our work, we next
discuss suitable parameter ranges, followed by an interpretation of the results
from our analytical model for these parameters.

Network Characteristics n and ϕ. Natural churn rate ϕ in the Tor network
can be computed by collecting and comparing subsequent consensus files. We
observe from previous research [29, Section 5.2] that ϕ is typically in the range
[0.001, 0.003]. For an n-guard policy, the probability that all n guard nodes are
simultaneously unavailable in an epoch is ϕn. This observation is an argument
for using lists with at least three guard nodes. Conversely, it suggests robustness
and small downtime as criteria for selecting guard nodes.
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Epoch Granularity T. In our experiments, we have used both small (to shed
light on the mechanisms) and large values of T. Our model is simplified with
respect to real users, who will not be continuously connected. However, it seems
reasonable that a real user can create some hundred circuits, one epoch per
circuit, during a normal Tor guard list lifetime.

Compromise Levels γ and ε. We can model different scenarios through careful
choice of γ and ε:

– ε = 1: The case when guard compromise is considered equivalent to circuit
compromise.

– 0 < ε < 1: guard compromise combined with a probability ε of the union of
events {website fingerprinting is successful, exit node is compromised}.

– 0 < ε = γ < 1: The case where both ends need to be compromised for a
circuit to be compromised; we are concerned with one single adversary that
controls the fraction ε = γ of Tor node bandwidth.

– 0 < ε � γ < 1: The case where both ends need to be compromised for
a circuit to be compromised; we are concerned by compromise by any of
these. Each adversary controls a fraction ε of Tor node bandwidth. Thus, the
effective guard node compromise ratio γ is ε × (number of adversaries).

5.5 Results

Figure 1 shows results for μ1(t) and μ2(t) for selected sets of parameters. From
the results, different patterns emerge:

– The value of μ1(t) for the greedy policy quickly converges to its expected
value of (1 − γ), until the guard list is renewed.

– The value of μ1(t) for the IU policy is sometimes close to the greedy policy
(curves C and D), and always lower bounded by the no-guard policy (curve
E). For the parameter set corresponding to curve B, the IU policy curve (not
explicitly shown) coincides almost exactly with curve E. In general, for large
n and T and small ϕ, the guard selection policy influences μ1(t) heavily.

– The value of μ2(t) for the greedy policy quickly converges to (6).
– For the realistic ϕ ∈ [0, 0.003] there is no significant impact of ϕ on any of

our metrics. Thus our results for all four metrics conditioned on ϕ = 0 are
good approximations.

– In general, the two other metrics (not shown due to lack of space) seem to
vary less dramatically.
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Fig. 1. Simulation results for 500 epochs and parameter sets (n, T, ϕ, γ, ε). The param-
eter sets as listed in the figure legend are A: (1, 1000, 0, 0.2, 0.05), B: (100, 1000, 0.1,
0.2, 0.05), C: (3, 10, 0.1, 0.2, 0.05), D: (3, 10, 0.1, 0.2, 0.05, IU), E: (1, 1, 0, 0.2, 0.05),
F: (3, 100, 0), G: (3, 100, 0.003, 0.2, 0.05), H: (3, 100, 0.1, 0.2, 0.05), I: (3, 100, 0.1,
0.2, 0.01), J: (3, 100, 0.1, 0.1, 0.01), K: (3, 100, 0.1, 0.2, 0.1), L: (3, 100, 0.2, 0.2, 0.05),
M: (3, 100, 0.3, 0.2, 0.05), N: (100, 1000, 0.1, 0.2, 0.05), O: (3, 10, 0.1, 0.2, 0.05), P:
(1, 1, 0, 0.2, 0.05). Unless explicitly stated as IU (ideally uniform), the policy is the
greedy one. Black, blue, green, and orange curves show μ1(t). The “waves” of the blue
and green curves show the effect of changing stable guard sets. The red curves passing
through the lower left corner show μ2(t) /t. (Color figure online)

6 Conclusion

We have presented a general evaluation framework to evaluate the security per-
formance of Tor network protocol policies and the efficacy of attacks carried
out by adversaries observing and possibly interacting with the Tor network over
time. As an example, we have used the framework to develop an analysis of the
guard node feature, shedding new insights on the guard node selection as distinct
from the guard list maintenance and the effects that various parameters have on
the examined metrics.
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Abstract. We present a reactive MPC protocol built from FHE which
is robust in the presence of active adversaries. In addition the protocol
enables reduced bandwidth via means of transciphering, and also enables
more expressive/efficient programs via means of a Declassify operation.
All sub-components of the protocol can be efficiently realised using exist-
ing technology. We prove our protocol secure in the UC framework.

1 Introduction

Multi-Party Computation (MPC) and Fully Homomorphic Encryption (FHE)
are often seen as competing technologies in the cryptographic goal of Comput-
ing on Encrypted Data. However, this is a rather naive view. One can base
MPC on various different cryptographic building blocks, for example tradition-
ally one based MPC on Linear Secret Sharing Schemes (LSSSs) or Garbled
Circuits (GCs). However, one can also base MPC on FHE, as was originally
pointed out in Gentry’s thesis [29]. Gentry provides a simple Secure-Function
Evaluation (SFE) protocol in which parties use an FHE algorithm to encrypt
their inputs to each other, the parties then compute independently the func-
tion output homomorphically, and then the (public) output is obtained via a
distributed decryption protocol.

Since its creation by Gentry, the development of FHE has been rapid. There
are now a plethora of schemes to choose from: BGV [10], BFV [9,25], CKKS
[15], GSW [30], FHEW [24], and TFHE [16], to name but a few. Each scheme
comes with its own advantages and disadvantages, and particular applications
for which it is well suited.

One can view the distributed decryption protocol in Gentry’s SFE protocol
above as a mini-MPC protocol, thus we have (in some sense) built an SFE
protocol from an FHE scheme and a mini-MPC protocol, with the key generation
itself performed by another mini-MPC protocol (such as that in [34]). There are
a few drawbacks with Gentry’s blueprint. Firstly, it only provides secure function
evaluation (i.e. evaluation of a single function, with a public output, in a one-
shot manner), therefore it does not provide full reactive MPC. Secondly, the
protocol only provides semi-honest (a.k.a. passive) security. On the other hand
the communication complexity is a (admittedly large) function of the input size,
i.e. the communication complexity does not depend on the function complexity.
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MPC and FHE have been combined in other ways. For example the SPDZ
protocol [21] produces an actively-secure MPC protocol based on LSSS technol-
ogy, but one which uses an FHE scheme supporting circuits of multiplicative
depth one (so called Somewhat Homomorphic Encryption (SHE) schemes of
depth one) as a means of providing an efficient offline phase. Indeed one can
view the offline phase of SPDZ as a variant of Gentry’s FHE-based MPC pro-
tocol for the functionality of producing Beaver multiplication triples. To obtain
active security in SPDZ one needs to augment the FHE ciphertexts with Zero-
Knowledge Proofs of Knowledge (ZKPoKs). There are ZKPoKs which have been
specifically designed for this usage in the SPDZ protocol [5].

In a different direction, [18] provides a robust MPC protocol, in the honest
majority setting, which utilizes an SHE scheme of a specified depth, which follows
Gentry’s blueprint for SFE. The extension from SHE to supporting any function
is enabled by replacing the bootstrapping in FHE by a special protocol based
on distributed decryption; namely bootstrapping is performed by interaction.

Another combination of MPC and FHE technologies has been the work on
Multi-Key FHE (MK-FHE), see [1,2,33] amongst many other works. In these
works, instead of parties generating a global single FHE key in an initialization
phase (as in the works above), the parties take their existing individual (multiple)
FHE key pairs and combine them in order to perform an MPC-like computation.
Whilst this provides a simpler operational setup, the practical implementations
of MK-FHE are not as efficient as single key FHE. Another variant of MK-
FHE is that of Multi-Party FHE (MP-FHE). The work on MP-FHE is much
like our own application; namely there is a distributed key generation protocol
and a distributed decryption protocol. However in MP-FHE, the key derivation
is created directly from the underlying mathematics, as opposed to applying
generic MPC technology. Thus the resulting FHE schemes obtained are slightly
different, or have slightly larger parameters, than those proposed in single party
FHE. We emphasise that in our work we envisage the use of standard FHE
scheme’s with the same parameter sets for the single user case; but we use them
in a multi-user environment. To distinguish this from MK-FHE and MP-FHE,
we call our usage simply Threshold-FHE. In the full version we outline some of
the related work in this area in more detail.

In a separate line of work, stretching over the last twenty years, a major per-
formance improvement in practical LSSS-based MPC protocols has been seen to
come from “opening”, or “declassifying” secret information during an MPC com-
putation. This use of Declassify as a basic operation has been exploited in many
MPC systems to enable efficient fixed point, floating point and other advanced
operations, see for example [12–14,20] amongst other works. Whilst the above
works on applying FHE to SFE/MPC protocols utilize a method to declassify
data, via the distributed decryption protocol inherent in the output operation,
they have not exploited the ability to perform distributed decryption as a means
of declassifying data during a computation; and thus enabling a richer set of
basic operations than just Add and Mult.
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In a final line of work, researchers have been investigating transciphering
as a means of reducing the huge ciphertexts seen in FHE computations. For
example in the above works, the parties need to encrypt via FHE, and so the
input (whilst independent of the function size) is still very large (as the FHE
ciphertexts are large). In addition an MPC protocol may wish to store data for a
long period of time. By transciphering from the FHE cipher to a more compact
cipher (for example a simple encryption scheme based on a stream cipher) and
back again, one can reduce input bandwidth and storage quite considerably.
The paper [23] considers transciphering for BGV/BFV style FHE schemes, and
presents a specialized cipher tuned for these two schemes, called Pasta. They
show that with levelled BGV/BFV style FHE such a transciphering, from an
encryption under Pasta to an encryption under the FHE scheme, can be done
in about 120 s for plaintext spaces of 17 and 33 bits. For TFHE style FHE,
it would appear that utilizing a standard bit-oriented stream cipher with low
multiplicative depth (for example Trivium [22]) would be more efficient, or even
a small modification of Trivium such as Kreyvium [11]. In [23], the authors report
on a homomorphic implementation of Kreyvium using TFHE which outputs one
encrypted bit of output every 237 ms. In [4] this is improved to roughly 4 ms
per bit.

1.1 Our Contribution

We start by the observation that current FHE schemes are now fast enough
that they can be deployed in real life scenarios. In particular bootstrapping is no
longer a bottleneck, for example bootstrapping for the TFHE encryption scheme
[16] can be done in under 20 ms [17]. In addition distributed decryption can be
done (depending on the type of FHE scheme, the parameters and the number
of parties) in either a few milli-seconds or around half a second [19]1. Thus one
can reasonably imagine implementing, in the real world, an MPC protocol which
utilizes a Threshold-FHE scheme.

Our second observation is that such (practical) protocols need to be fully
general and fully secure. By this we mean that the MPC protocol should be
robust, i.e. it should be maliciously secure and should provide guaranteed output
delivery for honest parties, and the input and output parties may be distinct
from the parties executing the MPC operation. In addition the protocol should
be composable, so any security proof needs to be given in the UC framework.

Our third observation is that one wants a protocol that supports fully reactive
computation, with both public and private outputs to parties. In particular the
“programs” executed by the MPC system should support useful features such
as the Declassify operation discussed above.

Our final observation is that one does not want the communication com-
plexity of the input, output and storage of data to depend on the relatively

1 These are timings using standard processors, if FPGA or ASIC acceleration is applied
then these run-times for distributed decryption could be reduced by at least two
orders of magnitude.
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large FHE ciphertexts (and any associated zero-knowledge proofs which need to
accompany them for active security considerations). For example, one may want
to support clients entering data which are on a resource bound mobile device.
Thus our MPC protocol should support transciphering as a basic primitive.

Thus we provide an FHE based MPC protocol which implements the four
main points above. We provide a full UC proof of security for the protocol. We
believe this is the first time both transciphering and Declassify operations have
been shown to the secure within an FHE-based MPC protocol, as opposed to
being secure in a stand-alone manner. We pay particular attention to ensure
that all building blocks used by our protocol are efficiently implementable with
current technology. Thus our protocol can be implemented, and utilized today,
to enable low-bandwidth, FHE-based MPC computations.

1.2 System Overview

We work in an MPC model in which we separate the parties into three sets; the
parties who provide input I = (I1, . . . , II), the parties who obtain output O =
(O1, . . . ,OO), and the parties who perform the computation C = (C1, . . . , CC).
This distinguishing of roles between the parties seems to have first been intro-
duced in the FairplayMP system [6], a generalization to secret sharing based
MPC was presented in the Cybernetica research report [7], with a full presenta-
tion being given in [8].

We assume a monolithic adversary that can statically corrupt any number
of input parties, any number of output parties, and a specified fraction of the
computing parties. The number of computing parties which are corruptible is
given by a threshold t, where we assume t < C/3 in order to ensure that our
distributed decryption protocol is robust2. Obviously if all input parties are
corrupted then there is little point in performing a secure computation at all, so
we can assume that at least one input party is honest.

We present our model in the synchronous communication model, but we
believe it can be easily adapted to the asynchronous model (assuming an asyn-
chronous protocol for our Declassify operation, and assuming a standard synchro-
nization point for obtaining parties inputs). Parties are assumed to be connected
by authentic channels, except in specific instances where we require private chan-
nels (these will be explicitly mentioned when we require them).

1.3 Discussion

Our protocol is essentially an MPC protocol realised via FHE, and not via Yao-
or LSSS-based, constructions. We are using this MPC formalisation of an FHE-
enabled protocol to capture various use cases of FHE all in one go.

2 One can theoretically push this to t < C/2, but then the distributed decryption
protocol is much less efficient given current technology.
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Standard MPC: In the standard MPC definition we have I = O = C. This
captures standard MPC use cases of secure data collaboration, and collaborative
computing. As already remarked, an initial (passively secure) SFE protocol based
on FHE was originally given in Gentry’s PhD thesis [29].

The advantage of using our FHE-based MPC protocol, over a standard LSSS-
or GC-based MPC protocol, is that the communication costs can be reduced
considerably. Indeed our consideration of transciphering within our model is key
to reducing communication costs.

In practice network performance improves at a slower rate than computing
performance; this is inherent in technology as network latency is bound by the
speed-of-light, and network bandwidth is also bound by physical limitations. On
the other hand, methods of improving computational efficiency seem to have no
limits3. Thus it is expected in the long run that computation intensive FHE-
based MPC will outperform communication intensive LSSS- or GC-based MPC.

Outsourcing FHE: In the standard outsourcing scenario, considered in many
FHE papers, we have I = O = {I}, i.e. a single identical input and output
party. Then the computation is performed by a single server, C = {C}, with
the result returned to the user. That there is only one input party, who must
therefore be honest, can simplify the input protocols considered in our paper
(as we can assume all inputs are honestly created). Of course some outsourcing
examples have that the server also has some private input. In which case one
has I = {I, C}, O = {I} and C = {C}; in which case one cannot assume that all
inputs are validly created.

If we restricted our programs to not have any Declassify instructions then this
becomes the standard FHE outsourcing scenario and we can obtain semi-honest
security if C contains just one server4. However, to obtain robust security (i.e. to
protect against a dishonest server) one needs a form of Verifiable Computation
(VC). A simple way to obtain VC, and hence active robust security, is to ensure
that C has at least three parties and the set C contains an honest majority. This
ensures that the function has been computed correctly homomorphically.

The obvious disadvantage of not having a Declassify instruction is that every
function needs to be represented as an arithmetic circuit over any underlying
ring R, which is a not so expressive a representation. Without the Declassify
instruction one is (often) led to more complex representations of the same input
program. Thus in practice, for outsourced FHE computation one might still
want to use an MPC-like situation where one has multiple servers with at most
t < C/3 bad servers.

3 Despite many people predicting the end of Moore’s Law for over two decades, there
seems no evidence that the improvement in compute performance is slowing down.

4 Although we need a slightly different method for the Output command than what
we will use, and also a different FHE key setup, for example so that the single party
in O knows the decryption key. These are all minor changes, which simplify the
discussion and so we ignore them going forward.
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Blockchain Scenario: In a blockchain scenario one can imagine the parties
I and O being users of the blockchain, with data stored on the blockchain in
encrypted form (when the data is sensitive). The computing parties then become
an analogue of network validators, which process a smart contract over this
encrypted data. That the input parties must agree on the smart contract in this
scenario, implies that the input parties and computing parties automatically have
consensus on the program P. The blockchain is simply the data store used by
the validators to store the variables and the program. Thus our methodology of
transciphering to reduce the cost of data storage will be key to such applications.

In the blockchain scenario one can also imagine a situation in which one
actually has two sets of parties making up the computing parties C. The first set
C

1 just computes the deterministic operations which require no interaction. We
require of these operations that they are executed correctly, thus the consensus
mechanism of the blockchain can ensure that the specific deterministic values
are computed correctly, i.e. we have that C

1 must contain an honest majority.
When an interactive operation needs to be performed on the FHE ciphertexts,

one now passes to a different set of parties C
2 of size C where one can tolerate

only t < C/3 adversarial parties5. In the blockchain situation one can image the
set C

2 being the set of blockchain validators.
Finally, in blockchains it is often important to enable bad actors to be iden-

tified, since, for example, they can then be “slashed” in Proof-of-Stake style
blockchains. This additional systems security requirement is orthogonal to our
work, but is enabled since we utilize robust MPC components which enable the
honest parties to detect which adversarial parties are misbehaving.

2 Homomorphic Building Blocks

Our protocol relies on same basic building blocks arising from developments
in Fully Homomorphic Encryption (FHE); namely FHE itself, Threshold-FHE,
FHE transciphering, and ZKPoKs of plaintext knowledge for FHE ciphertexts.
We present all these objects generically, with pointers to specific instantiations.
All our building blocks can be realised in practical applications today.

2.1 Fully Homomorphic Encryption

We consider an FHE scheme with plaintext space a ring R, which one can think
of either as a finite field F or as a finite ring such as Z/(pk) (with Z/(2k) being
a ring of particular interest). An FHE scheme, with plaintext space a ring R,
is a tuple of algorithms (KeyGen,Enc,Dec,Add,Mult) and a space E of “valid”
encryptions. The set E is a subset of a larger set E. These algorithms have the
following signatures:

– KeyGen(1κ): On input of the security parameter κ, this randomized algorithm
produces a public/private key pair (pk, sk).

5 Again t < C/3 is chosen as opposed to t < C/2 for efficiency reasons with current
technology.
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– Enc(m, pk; r): On input of m ∈ R, a public key, and randomness from a space
of random coins Coins, this produces a ciphertext ct ∈ E .

– Dec(ct, sk): On input of an element ct ∈ E and a secret key sk this outputs
the corresponding plaintext m ∈ R.

– Add(ct1, ct2, pk): On input of two elements ct1, ct2 ∈ E which decrypt to
m1,m2 ∈ R this deterministically produces a ciphertext ct3 ∈ E which
decrypts to m1 + m2.

– Mult(ct1, ct2, pk): On input of two elements ct1, ct2 ∈ E which decrypt to
m1,m2 ∈ R this deterministically produces a ciphertext ct3 ∈ E which
decrypts to m1 · m2.

The correctness conditions of an FHE scheme are obvious; i.e. every element in
E should be decryptable to the correct value.

To ease notation we write Add(ct1, ct2, pk) as ct1 + ct2 and Mult(ct1, ct2, pk)
as ct1 · ct2. We also assume that scalars (i.e. non-encrypted values in R) can
be added and multiplied into ciphertexts at will. Thus one can form arbitrary
arithmetic expressions combining ciphertexts and plaintexts, with the output
being a ciphertext if any of the input variables are valid ciphertexts.

A key issue with existing FHE techniques, unlike many traditional public key
ciphers, is that it is not possibly to efficiently test whether a supposed ciphertext
ct lies in E or in E. In fact the IND-CPA security of the scheme is often reduced
to the hard problem of distinguishing elements of E from elements of E. This
causes a problem in protocols as we need to ensure that all ciphertexts which are
attempted to be decrypted, are indeed decryptable (i.e. valid ciphertexts). This
is, one of the reasons, why we will require zero-knowledge proofs of knowledge
(ZKPoKs) below. In addition, not all elements in E may arise from applications
of the Enc function, i.e. E is not the image of R under Enc. This is because valid
ciphertexts also arise from the application of the homomorphic operations Add
and Mult.

There are a plethora of FHE schemes available; each with different properties.

– BGV/BFV: These schemes [9,10,25] usually utilize a plaintext ring of R =
Fp, or more generally R = F

r
p if r slots are used, where p is a large prime.

For such schemes bootstrapping (needed to ensure the output of a series of
homomorphic operations lies in E) is very slow.

– CKKS: This scheme [15] enables a plaintext ring of an approximation to R,
i.e. R ≈ R, or an approximation to R

r if r slots are used. Here bootstrapping
is relatively fast, but it only allows a smoothing out of the approximation to
the real numbers being used.

– TFHE: This scheme [16], in its most common implementation, enables a plain-
text space of R = Z/(2k) (for a small value of k, say k = 1 or k = 4). However,
bootstrapping is highly efficient, and one can extend the homomorphic oper-
ations to arbitrary look up tables on R.

FHE Security: We assume a slightly different notion of FHE security than per-
haps is sometimes used (although this notion was used previously in for example
[21]); a notion which we dub IND-KEY security.
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Definition 1 (IND-KEY). We assume there is a “fake” key generation algo-
rithm denoted KeyGen∗(1κ), which only outputs public keys, which are indistin-
guishable from standard public keys. In addition we require that applying the
non-fake encryption algorithm with the fake public key, produces a ciphertext
which is statistically indistinguishable from an encryption of zero with the fake
public key. Thus we assume the following relationships between distributions:

{
pk : (pk, sk) ←KeyGen(1κ)

} ∼=c

{
p̃k : p̃k ← KeyGen∗(1κ)

}
. (1)

{
Enc(m, p̃k; r) : p̃k ← KeyGen∗(1κ), m ← R, r ← R

}

∼=s

{
Enc(0, p̃k; r) : p̃k ← KeyGen∗(1κ), r ← R

}
. (2)

A scheme which satisfies Eqs. (1) and (2) is said to be IND-KEY secure.

All the above FHE schemes satisfy this security requirement as their public
keys, and ciphertexts, consist of a collection of LWE/Ring-LWE pairs. By the
LWE assumption these are indistinguishable from random pairs of elements from
the appropriate sets.

FHE security is usually defined via an IND-CPA notion; namely that an
adversary, on input of pk, who selects two messages m1 and m2 of his choosing,
cannot, on being given a ciphertext ct∗ encrypting either m1 or m2, decide
whether ct∗ encrypts m1 or m2. Our IND-KEY notion, however, implies the
standard IND-CPA security notion via the following sequence of hybrids: Take
the experiment in the standard IND-CPA game in which the encrypted message
is the adversarially chosen message m0, now switch to the using a fake public
key p̃k. By our first security assumption (in Eq. (1)) this hop is indistinguishable.
Now hop to encrypting an encryption of zero, again this hop is indistinguishable
by our second security assumption (in Eq. (2)). Now hop to encrypting m1, and
finally hop from the fake public key p̃k to the real one pk. These last two hops
are indistinguishable for the same reason.

2.2 Threshold-FHE

Formally we define the threshold decryption via two ideal functionalities. The
first FKeyGen, in Fig. 1, acts as a set-up assumption for our protocol, needed for
the UC proof we provide. It generates a key pair, and secret shares the secret
key among the computing parties C using a linear secret sharing scheme 〈·〉
which tolerates up to t adversaries. Party Ci’s share of a secret shared value x is
denoted by 〈x〉i.

One can realise this functionality using a generic MPC protocol. Note, despite
wanting active security we do not “complete” adversarial input shares into a
complete sharing (as is often done in such situations), as we can assume the
implementing MPC protocol for FKeyGen does not actually need to do this.

The key functionality we want to implement is FKeyGenDec given in Fig. 2.
Note, that this functionality always returns the correct result, irrespective of
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FKeyGen

Init(sid):
1. Execute (pk, sk) ← KeyGen(1κ) for the underlying FHE encryption

scheme.
2. Generate a secret sharing 〈sk〉 of the secret key amongst the C players

in C.
3. Send (sid, pk) to all players (including the adversary), and send

(sid, 〈sk〉i) to player Ci (including adversarially controlled players).

Fig. 1. The ideal functionality for distributed key generation

FKeyGenDec

Init(sid):
1. Execute (pk, sk) ← KeyGen(1κ) for the underlying FHE encryption

scheme.
2. Send (sid, pk) to all players, including the adversary and store the value

sk.
DistDecrypt(sid, ct, U): For a ciphertext ct ∈ E and a set of players U .

1. Compute m ← Dec(ct, sk).
2. Output (sid, ct, m) to all players in U , and (sid, ct) to the adversary (if

the adversary controls no party in U).

Fig. 2. The ideal functionality for distributed key generation and decryption

what the adversary does. A protocol which realises FKeyGenDec in the FKeyGen-
hybrid model is given in [19] when t < C/3, for all the FHE schemes above.

The functionality implies that if the target set of players U in the DistDecrypt
cannot be adversarially corrupted by definition, then the functionality is con-
nected to the players in U via private channels. When the players in C imple-
ment such a functionality, this implies (for such sets U) that the communication
between the sets of players in C and those in U is over private channels.

In our protocol the functionality is used in two situations:

– U contains a single output player, this is when DistDecrypt is used for private
output to an output player. We do not know if the player is adversarially
corrupted, thus we need private channels between the functionality and the
player in U .

– U is the set of computing parties C. Here C could contain an adversarial
player, and thus the output can be made in the clear by definition. So we
only need authentic channels.
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2.3 FHE Transciphering

A big problem with FHE ciphertexts is that they are large, i.e. the bits needed
to represent an element in E is large. Hence, a common proposal to avoid this
is to enable a form of homomorphic transciphering via another cipher (usually
symmetric). We define the underlying symmetric cipher with the following syn-
tax,

Sym :
R × Rρ × {0, 1}∗ × N −→ S,

(m,k; nonce, cnt) 	−→ c

Note, the key is an element of Rρ as eventually we will be evaluating the sym-
metric cipher given a homomorphic encryption of the key. We will also require
the inverse operation

Sym−1 :
S × Rρ × {0, 1}∗ × N −→ R,

(c,k; nonce, cnt) 	−→ m

with an obvious correctness requirement

Sym−1
(
Sym( m,k; nonce, cnt ),k; nonce, cnt

)
= m.

In what follows, for simplicity, we assume that S ⊂ Rσ for some value of σ (so we
can also evaluate Sym−1 homomorphically). We also assume that every element
of S corresponds to a valid encryption of some message under Sym6. We require
the cipher to be IND-CPA secure, which our two constructions below (from a
secure PRG and a secure PRF) satisfy.

The cipher Sym is said to be FHE-friendly if there is an efficient way to imple-
ment the algorithm homomorphically (with no distributed decryption interac-
tions) within the FHE scheme7 given a homomorphic encryption of the key, and
possibly a homomorphic encryption of the message and/or ciphertext.

Being FHE friendly means that, given a homomorphic encryption of the key

Enc(k, pk) = (ct1, . . . , ctρ) = ( Enc(k1, pk), . . . ,Enc(kρ, pk) ),

and a (plaintext) nonce nonce/counter cnt, one can homomorphically compute

Enc( Sym( m,k; nonce, cnt ), pk ) (3)

efficiently from Enc(k, pk) and either m or Enc(m, pk) . In addition one can also
compute efficiently

Enc( Sym−1( c,k; nonce, cnt ), pk ) (4)

efficiently from Enc(k, pk) and either c or Enc(c, pk).

6 This can be relaxed, but that would require further zero-knowledge proofs, and
complications, in our protocol, in order to prove that ciphertexts where actually
valid encryptions.

7 Obviously it also has to be efficiently computable in the clear.
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In particular a vector plaintext message m can be encrypted, by someone
who knows the secret key k, into a compact ciphertext c. Then given c, someone
who holds the homomorphically encrypted secret key, Enc(k, pk), can transcipher
c into the encryption of the message m under the FHE cipher Enc by evaluating
Eq. (4). With access to a distributed decryption functionality one can also tran-
scipher a ciphertext encrypted under Enc to a ciphertext encrypted under Sym,
by evaluating Eq. (3), followed by applying the distributed decryption function-
ality.

Such a symmetric encryption scheme can be easily derived from an FHE-
friendly stream or block cipher;

– If we are given an FHE-friendly stream cipher

PRG :
Rρ × {0, 1}∗ −→ R∗,

(k, IV) 	−→ PRG(k, IV).

then we can define Sym by the operation, with S = R,

Sym( m,k; nonce, cnt ) := m + PRG(k, nonce)(cnt),

using the nonce as the stream cipher IV, and the counter cnt to index into the
resulting keystream.

– If we are given an FHE-friendly block cipher

PRF :
Rρ × {0, 1}∗ −→ R,

(k, IV) 	−→ PRF(k, IV).

then we can define Sym by essentially using the block cipher in CTR-mode

Sym( m,k; nonce, cnt ) := m + PRF(k, nonce‖cnt),
using the IV as the nonce concatenated with the counter and S = R.

Note, the key difference between the block and the stream cipher is that in the
block cipher one has a potentially high cost on every invocation, whereas in the
stream cipher each invocation (a different increasing value of cnt for the same
value of nonce) can be cheap, but the initialization phase (processing the key
and nonce) can be expensive.

2.4 Zero-Knowledge Proofs of Plaintext Knowledge

The zero-knowledge proofs we use will always be called with a prover being a
party in I ∪ O ∪ C and the verifiers being the set C. We will apply the ZKPoKs
to prove the specific NP-relation Renc given by

Renc =
{

(ct, (m, r)) : m ∈ R, r ∈ Coins, ct = Enc(m, pk; r)
}

.

The zero-knowledge proofs will be defined by four algorithms, which make use
of a random oracle:
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– Prv(ct, (m, r)): A prover algorithm which, on input of a ciphertext ct and a
witness (m, r) for the relation Renc, will produce a proof π.

– Ver(ct, π): A verifier algorithm which, on input of a ciphertext ct and a proof,
will output true or false.

– Sim(ct): A simulator algorithm which, on input of a ciphertext ct, will produce
a simulated proof π; it does so by programming the underlying random oracle.

– Ext(ct): This knowledge extraction algorithm, which has black box (poten-
tially rewindable) access to the proving algorithm will extract the underlying
witness for the ciphertext ct from a prover which holds this witness.

For all of the FHE schemes mentioned earlier (BGV,BFV,CKKS and TFHE)
the encryption algorithm Enc is of the following form: It generates some “small”
random integer values (which one can consider as sums of bits, where the bits
are part of the random coins in r), then two values (a,b) are constructed which
are linear combinations of the random bits, the message, and the values in the
public key pk. The final ciphertext is the pair (a,b). One can therefore interpret
the NP-relation Renc as a (multiple) subset-sum relation over the hidden bits in
the random coins r and the bits making up the message m.

Many proof systems for subset-sum/lattice like relations exhibit a form of
soundness slack. This means that the statement, which we can guarantee a dis-
honest prover actually commits to, is a slightly modified version of the one which
an honest prover is using. Use of such proof systems in FHE-based protocols
result in us having to increase parameters in order to deal with the slack intro-
duced by such proofs8. To ensure simpler protocols, and optimal parameters for
our underlying FHE scheme, we require our zero-knowledge proofs to exhibit no
such soundness slack. With this requirement in mind there appears two forms
of (efficient) zero-knowledge proofs one could use.

Proofs Based on MPC-in-the-Head: If post-quantum secure proofs are
required then one technique to prove such subset sum NP-relations is to use
MPC-in-the-Head based zero-knowledge proofs. For example the techniques
of [26] and [27] can be applied directly to this situation resulting in a very
simple proof technique. Both these papers are based on specializations of the
general KKW [31] method for MPC-in-the-Head. At heart these are interactive
proof systems (essentially Σ-protocols), but they are made non-interactive using
the Fiat–Shamir heuristic in the standard way. In these proofs the simulation
algorithm Sim works by programming the random oracle challenges, and the
extraction algorithm Ext works (again by programming the random oracle) by
rewinding the prover and issuing the prover different responses to it’s random
oracle queries.

Proofs Based on Vector Commitments: If one is prepared to accept pre-
quantum security assumptions (in particular hardness assumptions in elliptic
8 Effectively the FHE noise in fresh ciphertexts is increased, resulting in larger param-

eters, or more bootstrapping, or both.
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curve groups which support pairings) one can utilize proofs based on a vector
commitment scheme, [32]. These proofs are proven secure in the Algebraic Group
Model (AGM) [28]. The prover, verifier and simulator work roughly (from a
very high level) just as in the previous case; with the simulator also needing to
program the underlying random oracle. However, the extraction algorithm works
in the AGM and does not need to rewind the prover. The extraction algorithm
simply “observes” the group operations performed by the prover, and from these
is able to extract the underlying witness.

In both cases the knowledge extraction via rewinding or via the use of the
AGM, causes the underlying ZKPoK to not be UC secure. However, this does not
cause an issue in our main protocol security proof. We can still prove UC security
of our underlying MPC-FHE protocol. The reason for this is as follows: Our UC
protocol simulator will know the secret key of the underlying cryptosystem and
so can extract the important part of the witness, i.e. m, by simply decrypting.
In our security proof that the simulator is valid, where we do not know the
secret key, we can extract the witness at that point by either rewinding the
environment or using the AGM. In particular the rewinding/AGM execution is
required only for the security reduction that the protocol simulator is correct,
and not for actually implementing the protocol simulator. Thus the proof will
ensure we have a UC-secure protocol.

3 Ideal Functionality

The ideal functionality, in Fig. 3 below, represents a generic MPC functionality,
which captures the ability to transcipher between two secure domains; one which
allows arithmetic (i.e. homomorphic) operations and one which does not. It also
captures the ability of computing parties to execute programs which include a
Declassify operation. The basic programming model we envision is described in
the full version, which is a simple extension of the M-Circuit MPC model of [3]
to the case of FHE (which we therefore call an F-Circuit). With the ideal func-
tionality being a functionality which ideally realises this programming model.

We assume a register bank V = {varidi}, which (for simplicity) we assume
is a flat single file of registers, i.e. no stacks or index-able memory. The ideal
functionality keeps track of registers which are in the clear, as well as registers
which are meant to be held securely within the functionality.

For simplicity of exposition we allow this ideal functionality to output an
abort, but this only happens for a badly typed program; which should be caught
by the compiler. Thus the reader should treat the abort’s as purely syntactic
sugar for their reading, and not as actual abort’s by the functionality.

Note the ideal functionality assumes that all players agree on each instruction
sent to it, thus this implies consensus on the input F-Circuit program.

4 The MPC-FHE Protocol

Here, we combine all the components together into one protocol which executes
the F-Circuit functionality.
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FF−Circuit

Init: On input (sid, Init, R) from all parties store R.
Input: On input of (sid, Input, Ii, varid, x), for Ii ∈ I, from Ii and

(sid, Input, Ii, varid) from all other parties:
1. If type2(varid) {∈� s, −} then abort.
2. If type1(varid) = R and x ∈ R then store x in varid.
3. If type1(varid) = − and x ∈ Z then store x in varid.
4. If type2(varid) = − then send x to the adversary.
5. If x =⊥ then store the value zero in varid.

This last case corresponds to an adversarial input x which is mistyped.
Output: On input of (sid,Output, Oi, varid) for Oi ∈ I from all parties:

1. If type2(varid) {∈� s, −} then abort.
2. Send the value x stored in varid to Oi.
3. If type2(varid) = − then also send x to the adversary.

Add: On input of (sid,Add, varidz, varidx, varidy) from all parties:
1. If type1(varidx) �= type1(varidy) or type1(varidx) �= type1(varidz) then

abort.
With a caveat here in relation to the implicit coercions mentioned ear-
lier.

2. If type2(varidx) {∈� s, −} then abort.
3. If (type2(varidx) = s or type2(varidy) = s) and type2(varidz) �= s then

abort.
4. Retrieve x from varidx and y from varidy and store z = x+ y in varidz.

Mult: On input of (sid,Mult, varidz, varidx, varidy) from all parties:
1. If type1(varidx) �= type1(varidy) or type1(varidx) �= type1(varidz) then

abort.
Again, with a caveat here in relation to the implicit coercions mentioned
earlier.

2. If type2(varidx) {∈� s, −} then abort.
3. If (type2(varidx) = s or type2(varidy) = s) and type2(varidz) �= s then

abort.
4. Retrieve x from varidx and y from varidy and store z = x · y in varidz.

Declassify: On input of (sid,Declassify, varidy, varidx) from all parties:
1. If type(varidx) �= (R, s) or type(varidy) �= (R, −) then abort.
2. Assign the contents x of varidx to varidy and send x to the adversary

if C contains a corrupt party.
Transs→t: On input of (sid,Transs→t, varidy, varidx) from all parties:

1. If type(varidx) �= (R, s) or type(varidy) �= (R, t) then abort.
2. Assign the contents x of varidx to varidy.

Transt→s: On input of (sid,Transt→s, varidy, varidx) from all parties:
1. If type(varidx) �= (R, t) or type(varidy) �= (R, s) then abort.
2. Assign the contents x of varidx to varidy.

Fig. 3. The ideal functionality for executing a program represented by a F-Circuit

The protocol is given in Figs. 4, 5, 6 and 7, where we assume the input F-
Circuit is validly typed. The protocol is given in the {FKeyGenDec}-hybrid model,
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and works in the fully robust/malicious setting; i.e. the protocol should not
abort. All players are assumed to be connected by authentic channels. However,
if the output routine with variant = Enc is used then the servers C need to be
connected to the parties in O via private channels.

ΠF−Circuit (Part I)

Init(sid):
1. The players call Init on FKeyGenDec so that all players obtain pk.
2. All players Ii ∈ I generate a random symmetric key ki,i ∈ Rρ, encrypt

it using Enc(ki,i, pk; ri,i) to obtain cti,i ∈ Eρ. The ciphertext cti,i is
broadcast to all players in C.

3. All players Oi ∈ O generate a random symmetric key ko,i ∈ Rρ,
encrypt it using Enc(ko,i, pk; ro,i) to obtain cto,i ∈ Eρ. The ciphertext
cto,i is broadcast to all players in C.

4. All players Ci ∈ C generate a random symmetric key kc,i ∈ Rρ, encrypt
it using Enc(kc,i, pk; rc,i) to obtain ctc,i ∈ Eρ. The ciphertext ctc,i is
broadcast to all players in C.

5. The players in I, O and C call the prover π ← Prv(ct(m, r)) with input
the respective ciphertexts (cti,i, cto,i and ctc,i), the respective plaintexts
(ki,i, ko,i and kc,i), and the respective randomness (ri,i, ro,i and rc,i),
in order to obtain proofs πi,i, πo,i and πc,i.

6. The proofs are broadcast to the players in C. The players in C verify
the proofs using Ver(ct, π). If any proof fails then the parties in C

replace the associated ciphertext with a default encryption of zero.
7. Set ct0 ← ctc,1+· · ·+ctc,C , this is an encryption of k0 = kc,1+· · ·+kc,C .
8. Set cnti,i ← 0 for all Ii ∈ I.
9. Set cnto,i ← 0 for all Oi ∈ O.

10. Set cntc ← 0.

Fig. 4. The protocol for executing a program represented by a F-Circuit – Part I

The connections between the players in I and the players in C are assumed to
be by reliable broadcast channels, which are reliable in the presence of byzantine
faults, including by the sender. This can be ensured by the players in C executing
an echo-broadcast upon receiving data from a player in I, to ensure the value has
indeed been broadcast correctly. As C contains an honest majority, the players
in C can take a majority vote on what the precise input is, or declare the parties
input to be invalid.

For the Input and Output commands we provide two different implementa-
tions when type2(varid) = s. We refer to the type of input/output as the variant,
which is an element of {Enc,Sym,−}. When the input/output value is in the
clear then we assume that variant = −.

– The first, indexed by Enc, utilizes, for input, an FHE ciphertext plus a zero
knowledge proof (it therefore requires rather a large amount of data transfer),
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ΠF−Circuit (Part II)

Input(sid, Ii, varid, x; variant): When player Ii wishes to input a value x of valid
type type(varid) we execute:
1. If type2(varid) = − then player Pi broadcasts x, in the clear, to all

players in C.
2. If type2(varid) = s and variant = Enc then

(a) Player Pi encrypts x using ctx ← Enc(x, pk; rx), with randomness
rx.

(b) Player Pi broadcasts ctx to all players in C.
(c) Player Pi invokes the prover πx ← Prv(ctx, (x, rx)) with input the

ciphertext ctx, the message x and the associated randomness rx,
and broadcasts the resulting proof πx to all players in C.

(d) If the proof verifies when calling Ver(ctx, πx), then the players in C

store ctx in register varid, otherwise they store a default encryption
of zero in register varid.

3. If type2(varid) = s and variant = Sym then
(a) Player Pi encrypts x using

cx ← Sym( x,ki,i; sid, cnti,i ).

(b) Player Pi broadcasts cx to all players in C.
(c) The players in C transcipher cx from an encryption under Sym to

an encryption under Enc by computing

ctx ← Sym−1( cx, cti,i; sid, cnti,i ).

(d) Incremement cnti,i.
Note, if any of the proofs do not verify, or the broadcasts are invalid
then the players in C store a deterministic default value, say zero (resp.
a homomorphic encryption of zero) in the register varid.

Fig. 5. The protocol for executing a program represented by a F-Circuit – Part II

whilst for output requires the outputting party to be connected by private
channels to the parties in C (which execute the distributed decryption func-
tionality). Realising so many private channels may be problematic in some
situations.

– The second variant, indexed by Sym, utilizes for both input and output the
transciphering methodology into a ciphertext encrypted by a key which only
the input (resp. output) party knows. It requires no such private channels,
and enables minimal bandwidth consumption.
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ΠF−Circuit (Part III)

Output(sid, Oi, varid; variant): When player Oi is expecting an output value x
of valid type type(varid) we execute:
1. If type2(varid) = − then

(a) The contents of register varid is sent to player Oi by all players in
C.

(b) Player Oi takes the majority verdict as the value of the register
sent.

(c) The value sent is the output value.
2. If type2(varid) = s and varid = Enc then

(a) All players in C ∪ {Oi} invoke DistDecrypt(sid, ctx, {Oi}) on
FKeyGenDec where ctx is the contents of register varid.

(b) The party Oi receives the output plaintext value, and takes this
as the output value. Note, that Oi only receives the value implies
private channels between the entities in C and the entities in O.

3. If type2(varid) = s and varid = Sym then
(a) All players in C take the contents ctx of register varid and computes

homomorphically

ct′x ← Sym( ctx, cto,i; sid, cnto,i ).

(b) All players in C invoke c ← DistDecrypt(sid, ct′x,C) on FKeyGenDec.
(c) The value c is sent to player Oi by the players in C, with Oi taking

the majority verdict as the value of the ciphertext sent.
(d) Player Oi decrypts c to obtain x by computing

x ← Sym−1( c,ko,i; sid, cnto,i ).

(e) Incremement cnto,i.

Fig. 6. The protocol for executing a program represented by a F-Circuit – Part III

We see that for private output to parties we have a trade-off; either we require
private channels between the output party and the parties in C, or we only
require authenticated channels, but we require the computing parties to exe-
cute a transciphering operation. Both options require a distributed decryption
operation; one with private output and one with public output.
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ΠF−Circuit (Part IV)

Add(sid, varidz, varidx, varidy):
1. The players in C retrieve x from varidx and y from varidy and store

z = x + y in varidz.
Mult(sid, varidz, varidx, varidy):

1. The players in C retrieve x from varidx and y from varidy and store
z = x · y in varidz.

Declassify(sid, varidy, varidx):
1. The players in C retreive ctx from varidx and execute

DistDecrypt(sid, ctx,C) on FKeyGenDec.
2. The output y they receive is assigned to the register varidy.

Transs→t(sid, varidy, varidx):
1. The players in C retrieve ctx from varidx, recall this is an FHE-

encrypted ciphertext.
2. The players in C homomorphically compute

ct′x ← Sym( ctx, ct0; sid, cntc ).

3. The players in C execute c ← DistDecrypt(sid, ct′x,C) on FKeyGenDec.
4. The output c they receive (along with the counter cntc) is assigned to

the register varidy.
5. Incremement cntc.

Transt→s(sid, varidy, varidx):
1. The players in C retrieve cnt′c‖cx from varidx, recall this is a Sym-

encrypted ciphertext with index cnt′c.
2. The players in C homomorphically compute

cty ← Sym−1( cx, ct0; sid, cnt′c ).

3. The output cty is assigned to the register varidy.

Fig. 7. The protocol for executing a program represented by a F-Circuit – Part IV

In the full version we prove the following theorem

Theorem 1. In the random oracle model the protocol ΠF−Circuit (in Figs. 4,
5, 6 and 7) UC realizes the functionality FF−Circuit from Fig. 3 in the
{ FKeyGenDec }-hybrid model, assuming the underlying FHE encryption scheme
is IND-KEY secure, and the cipher Sym is IND-CPA.
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