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Abstract. Platforms are nowadays typically equipped with trusted exe-
cution environments (TEEs), such as Intel SGX or ARM TrustZone.
However, recent microarchitectural attacks on TEEs repeatedly broke
their confidentiality guarantees, including the leakage of long-term cryp-
tographic secrets. These systems are typically also equipped with a cryp-
tographic coprocessor, such as a TPM or Google Titan. These copro-
cessors offer a unique set of security features focused on safeguarding
cryptographic secrets. Still, despite their simultaneous availability, the
integration between these technologies is practically nonexistent, which
prevents them from benefitting from each other’s strengths.
In this paper, we propose TALUS , a general design and a set of three
main requirements for a secure symbiosis between TEEs and crypto-
graphic coprocessors. We implement a proof-of-concept of TALUS based
on Intel SGX and a hardware TPM. We show that with TALUS , the
long-term secrets used in the SGX life cycle can be moved to the TPM.
We demonstrate that our design is robust even in the presence of tran-
sient execution attacks, preventing an entire class of attacks due to the
reduced attack surface on the shared hardware.

1 Introduction

The need for stronger protection of data and computations has led to the
advent of secure enclaves, CPU-provided isolated Trusted Execution Environ-
ments (TEE) that secure general-purpose computations. Prevalent technologies
are Intel SGX [16,20,27], ARM TrustZone [1], or Keystone [42] and MI6 [5] for
RISC-V.

The security offered by these secure enclaves for code and data isola-
tion depends on several high value cryptographic credentials (e.g., Launch
and Provisioning Key for Intel SGX, AMD PSP infrastructure key for AMD
SEV, manufacturer root keys for ARM TrustZone). Enclave programs, in
turn, depend on credentials derived from those long-term secrets, e.g., for
secure storage of enclave data. Unfortunately, enclave technology shares hard-
ware, e.g., CPU cores, between trusted and untrusted code, opening an attack
surface. Especially for Intel SGX, this attack surface has been exploited in
microarchitectural attacks [49], some of which leak confidential data from CPU
buffers [4,7,63,64,72].
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Our key observation is that virtually all platforms today are additionally
equipped with specialized cryptographic or security-oriented coprocessors that
protect cryptographic credentials, access control secure storage, or monotoni-
cally count. For instance, Trusted Platform Modules (TPM) [68] are available on
effectively all desktop and server machines, and more solutions become available,
such as Google’s Titan, Microsoft’s Cerberus, or AMD’s PSP [76]. In contrast to
general purpose application processors with security extensions for TEEs, those
coprocessors have been designed for the primary goal to safeguard cryptographic
credentials and secret data. Integration between secure enclaves and crypto-
graphic coprocessors creates a stronger security solution in which enclaves can
use the complementary coprocessor features. Concrete use-cases would benefit
from this integration, e.g., impeding microarchitectural attacks against enclaves
based on TPM features. Unfortunately, such an integration is currently, if it
exists, very limited. We ask the following fundamental questions: Which security
guarantees does the combination of CPU-provided TEEs with secure coprocessors
provide that each of the technologies cannot provide on their own? What are the
requirements to combine the advantages of both technologies without introducing
new security problems or large performance overheads?

To answer these questions, we introduce a hardware/software co-design,
TALUS , to combine CPU-provided TEEs with cryptographic coprocessors.
Enclave code can directly invoke the coprocessor only via the CPU firmware
and bus connections to make use of the coprocessor’s facilities, such as counters
or key management. We identify three core requirements to realize our idea:
a secure communication channel between processors and coprocessors, vertical
access control to distinguish between enclave and non-enclave code, and hori-
zontal access control to distinguish between different enclaves. To understand
how SGX can be integrated with an on-board hardware TPM, we built a proof-
of-concept integration between Intel SGX and a hardware TPM on commodity
hardware. We show that a combination of Intel SGX (emulated through KVM-
SGX [34] and QEMU-SGX [35]) with hardware TPM is feasible with firmware
changes and demonstrate through different use cases the security benefits of this
symbiosis.

We show that TPM fills a gap in the trusted-computing features of SGX that
is due to a lack of replay-protected secure non-volatile memory. Several previ-
ously published defenses for attacks against SGX provide their full strength
only if such building blocks are available [13,57,65]. Furthermore, preventing
recent microarchitectural attacks against TEEs [7,63,64,75], including under-
volting [38,56,61] is only effective if an enclave can store a persistent state to
limit the number of attack attempts. In addition to the possibility of preventing
attacks against enclaves, we demonstrate that all high-value secrets used during
the lifetime of enclaves can be safely stored in the TPM without ever reaching a
shared hardware element. We can actively mitigate existing attacks and harden
an enclave against potential future attacks by reducing the amount of high-value
secrets stored in the enclave. Our proof-of-concept implementation shows that
the expected overhead of an average 21.6% is amortized in typical use cases, as
only rarely used operations suffer from a slowdown of several milliseconds.
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In summary, we make the following contributions:

1. We introduce TALUS , a hardware/software co-design to combine CPU-
provided TEEs with cryptographic coprocessors.

2. We show that TALUS provides extended features, like rollback protected
TPM NV-storage for persistent counters to limit execution control attacks
against enclaves.

3. We demonstrate that TALUS significantly reduces the attack surface for
microarchitectural attacks.

4. We analyze TALUS for real use cases, showing that its performance overhead
is amortized in many use cases while providing strong security guarantees.

2 Background

2.1 Intel Software Guard eXtension (SGX)

SGX is an extension to the x86 instruction set that allows a user-space process to
create and manage a protected isolated memory region called an enclave within
its own address space, even protected from OS and hypervisor access [26,48].
SGX assumes that the CPU, including its microcode, is the only trusted element
in the system. Enclave data are stored encrypted in DRAM and unencrypted
in the CPU caches and registers. An external party can verify an enclave by
(remote) attestation of the enclave code and meta-data [6,66].

Intel supplies two infrastructure enclaves, the launch enclave (LE) and quot-
ing enclave (QE), on which SGX is heavily dependent. The LE is responsible
for handling and launching user-space enclaves with a token called EINITTOKEN

that is generated using i) the measurement of the static content of the enclave
(MRENCLAVE) and ii) the enclave-author validation (MRSIGNER). The LE requires a
128-bit Launch Key (LK) to derive the EINITTOKEN. The QE is designed to vali-
date local attestation reports by enclaves generated with an asymmetric private
key that a remote verifier can verify. Both the LE and the QE are entrusted with
long-term high-value cryptographic credentials.

2.2 Trusted Platform Module (TPM)

TPM by the Trusted Computing Group is the most widely deployed trusted
computing technology on commodity platforms used by, e.g., Microsoft Windows
management instrumentation, Intel Trusted eXecution Technology (TXT) [31],
Microsoft Bitlocker [51], or Google Chrome [19]. A TPM contains a small non-
volatile memory block, a set of platform configuration registers (PCR), an
onboard processor to execute TPM code in isolation from the other hardware, co-
processing for standard cryptographic algorithms, a secure clock, and a random
number generator. TPMs can reliably report internal data to a third-party veri-
fier, i.e., remote attestation based on a pre-installed endorsement key. Typically,
a TPM is available as a hardware chip soldered to the mainboard, traditionally
connected via the Low Pin Count (LPC) bus or on newer platforms via the SPI
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bus, making it only available through memory-mapped I/O (MMIO) registers
protected by the chipset. Intel also implements a firmware TPM called Platform
Trust Technology (Intel-PTT) [25] housed inside Intel CSME [28].

3 Requirements Analysis

In this section, we define three fundamental requirements for a secure integra-
tion of CPU-provided Trusted Execution Environments with onboard secure
coprocessors: secure communication channel, horizontal access control, and ver-
tical access control. We systematically compare how SGX and TPM meet
those requirements and how well these two technologies can be integrated, as
demonstrated later by our proof-of-concept implementation. In the full technical
report [11], we have extended this comparison further to other secure coproces-
sors and TEEs.

Communication Channel (CC). For a secure integration between the secu-
rity coprocessor and the application processor (AP), the communication chan-
nel between them must be secured from eavesdropping even in case of physi-
cal attacks, e.g., bus sniffing (CC1), and there should not be any dependen-
cies on buffers vulnerable to microarchitectural attacks that can leak sensitive
data transferred via the channel (CC2). TPM and SGX fulfill CC1 since TPM
and Intel CPUs support end-to-end encryption of the communication between
them [17,31,68]. However, this channel does not avoid insecure buffers, and
decrypted data on the CPU side might still pass through such buffers. As demon-
strated by recent attacks, none of the TEEs, including SGX, is free of insecure
buffers. Therefore, SGX inherently fulfills not CC2, and we show in Sect. 5 how
we overcome this limitation in combination with TPM.

Horizontal Access Control (HC). TEEs can host multiple tenants. For exam-
ple, SGX supports multiple (parallel) enclaves. Horizontal access control ensures
that the AP and the coprocessor can distinguish between requests from mutually
untrusted tenants inside a TEE. For instance, one enclave should not be able
to access another enclave’s data within the coprocessor. A trusted entity, such
as an AP, must create access or identity tokens that can identify TEE tenants.
The tokens must be securely communicated to the coprocessor. The coproces-
sor must also understand those tokens to control access to managed data and
secrets. Hardware TPM and firmware TPM employ extended authorization poli-
cies (EAP) that can use these access tokens for access control to TPM-managed
objects, like TPM-internal storage and keys. All AP-based TEEs can fulfill this
requirement because they can uniquely identify the different enclave codes they
host. They can provide this information on calls to the coprocessor. For example,
in SGX, this would be the code measurement of the enclave by the CPU.

Vertical Access Control (VC). AP-based TEE technologies and the coproces-
sor should support access control based on different security levels (e.g., applica-
tion, OS, or hardware) to prevent non-enclave code from accessing enclave-owned
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entities in the coprocessor. The access token to distinguish between different
security levels needs to be generated and handled by a secure piece of code and
be securely communicated to the coprocessor. Hardware and firmware TPM offer
Locality to distinguish between TPM commands originating from different secu-
rity levels. Still, the locality of a command must be communicated to the TPM
by the CPU or firmware. Furthermore, SGX registers when it executes in enclave
mode, but this security level is only used CPU-internally and not for Locality.

TALUS: Integrating Intel SGX and Hardware TPM. The main issue
of vanilla SGX is the lack of confidentiality- and integrity-protected tamper-
resistant storage. As we are unaware of any non-volatile memory inside a CPU,
we do not see how SGX can be improved by only updating the firmware and
without adding new components (like a TPM) to the TCB. Vanilla SGX can use
PTT for certain trusted computing use cases. However, PTT is housed inside
the CSME [28] and connected through the DMI interface without any security
around the communication channel. Moreover, although CSME employs its own
OS with its own security ring, completely segregated from the platform secu-
rity, the command buffer for PTT is configured by untrusted software, such as
the OS, and PTT recently suffered from access control errors [29,30] that com-
pletely undermine its security and are currently unfixable in production devices.
Additionally, secrets typically flow through the memory hierarchy on the CPU
where untrusted code can run in parallel, observing side effects of the secret
processing, e.g., when unsealing data from disk. Furthermore, in SGX, support
for counters depends on the Platform Service Enclave and Intel ME, which are
often not available in SGX production deployments and have already been dep-
recated [32]. Moreover, these counters can be reset by reinstalling the SGX plat-
form software [46]. As SGX stores counters inside the BIOS flash storage, they
do not persist across system resets [46]. The unavailability of integrity-protected,
tamper-resistant storage does not allow SGX to store a secure counter, which
limits the possibility of enclaves to enforce a number of enclave executions, as
exploited in interrupt-based attacks [7].

Based on our requirements analysis, we found that the combination of SGX
with hardware TPM is highly amenable for integration and allows to fill those
gaps in SGX with TPM functionality. Due to the historical relationships between
Intel CPUs and TPM, they can create an encrypted channel between them. Addi-
tionally, SGX can identify (i.e., measure) enclave code while TPM can use this
identity in its access control policies. Therefore, our proof-of-concept implemen-
tation for our TALUS design is based on SGX and a hardware TPM.

4 High-Level TALUS Overview

Our systematization (Sect. 3) underlines the intuition that the TPM, when inte-
grated as a coprocessor with SGX, can provide desirable features to secure
enclaves, such as physically isolated processing of cryptographic secrets, a secure
clock, or persistent counters. The basic idea is to retrofit SGX with a direct
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communication channel to the TPM chip without going through the host OS.
With such a communication channel, enclaves can leverage the TPM facilities
as building blocks, e.g., to implement secure monotonic counters (cf. Sect. 5).
This section provides more details on the security benefits, requirements, and
challenges of integrating SGX enclaves with a TPM. The high-level overview of
TALUS is available in the extended version of the paper [11].

4.1 Threat Model

The threat model for TALUS is the union of the coprocessor and enclave threat
model. Only the coprocessor (including firmware) and the processor (including
microcode) are trusted. We assume that the coprocessor does not suffer from
implementation [54] or platform integration flaws [22]. Similarly, we assume that
the enclaves are not malicious [50] and are free of classical software vulnerabili-
ties [14,43,71,74]. Microarchitectural attacks [69], such as classical side channels
and transient execution attacks, are in scope. We allow physical attacks in line
with the TPM and SGX specifications, e.g., bus tapping, bus sniffing, or sim-
ilar physical layer attacks [3,37,40]. We exclude physical attacks outside of a
reasonable attacker model for SGX and consumer-grade hardware, such as bus
snooping on high-speed or address buses [41], against which SGX also fails to
defend.

4.2 Design of TALUS

Integrating a coprocessor (e.g., TPM) with a secure enclave technology, such as
SGX, poses both security (SC) and functional (FC) challenges. In this section, we
detail the challenges and how we design TALUS to solve these challenges.

SC1. Secure Communication Channel. CPU and coprocessor must
exchange data securely. Ideally, the coprocessor is physically integrated with
the CPU package (e.g., similar to AMD PSP), and the communication channel
is physically secured against eavesdropping. If the coprocessor is an additional
hardware element, a secure connection via the usually insecure bus is required.
For TPM and SGX, TPM is connected to the CPU via the unprotected LPC
or SPI bus. Thus, TALUS relies on symmetric authenticated cryptography to
establish a secure channel between the coprocessor and the CPU while ensuring
confidentiality and integrity despite an untrusted OS and a physical attacker.

SC2. Authorization of Commands. A coprocessor, such as TPM, is
often shared between various entities on the system, such as firmware, OS, and
user-space applications. Further, the enclave technology might support multiple
mutually-untrusted tenants. Thus, the coprocessor has to manage the credentials
for different enclaves (differentiated using, e.g., MRSIGNER, MRENCLAVE, PRODID and
SVN). Moreover, the coprocessor is also used by non-enclave code, e.g., the OS,
firmware, or user-space application. Consequently, it is crucial to have authoriza-
tion of coprocessor commands to control access to coprocessor entities (like keys
or NVM) to ensure that every enclave and non-enclave code only ever has access
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to its own coprocessor entities. TALUS with SGX and TPM ensures authoriza-
tion using locality and EAP. Authorization to TPM entities between different
actors in the system, e.g., OS, third-party software, or hardware, is based on the
TPM locality. Different enclaves running on the same system authorize via their
identities through TPM EAP [11].

SC3. Avoiding Shared Hardware. It is often necessary to securely (SC1)
send secret data, e.g., session keys, to the CPU while reducing the amount
of shared hardware involved in the communication. Recent transient-execution
attacks showed that a software-only attacker can read stale entries in vari-
ous internal CPU buffers [7,9,62–64]. Thus, TALUS provides strict isolation
of coprocessor-released data, ensuring that data does not pass (in plaintext)
through shared hardware elements with (known) vulnerabilities. TALUS imple-
ments the entire communication using only CPU registers as storage.

Besides those security challenges, we identify the following functional chal-
lenges (FC) that influence TALUS .

FC1. Functionality Mapping. Enclave functionalities require a corre-
sponding faithful command mapping offered by the coprocessor, e.g., to generate
and use keys with the same authorization policies. The coprocessor driver logic
for these commands can be implemented in CPU microcode [33] without requir-
ing hardware changes. The microcode changes have to support only minimal
amounts of ephemeral storage for policy sessions and session handles, both of
which can be stored in the insecure BIOS flash.

FC2. Attestation. Enclaves depend on attestation to convince (remote)
parties that they are communicating with the intended enclave. If the coproces-
sor supports attestation and management of attestation secrets, the attestation
can be outsourced to the coprocessor. Thus, attestation secrets are never stored
in shared hardware. A TPM supports remote attestation of TPM internal data.
However, this poses the challenge of faithfully integrating the TPM attestation
protocols with SGX. TALUS achieves this by extending TPM PCR21 with a
measurement of an SGX secret (e.g., measurement of the QE). PCR21 is pro-
tected using EAP to ensure that only the microcode can access it, and the PCR21
measurement is attested through TPM-based attestation to a remote verifier.

FC3. Asynchronous Execution. When outsourcing cryptographic com-
mands to a potentially much slower coprocessor, we face the problem that the
coprocessor execution is asynchronous to the enclave execution. For example, the
enclave might be interrupted before the coprocessor finishes executing an issued
command by the enclave. Thus, TALUS ensures proper scheduling between
enclave execution and coprocessor execution to handle asynchronous execution
by storing secrets in the special-purpose registers and encrypting them during
interrupts, preventing the register content from leaking through unprotected
buffers. Interrupts already require a significant amount of microcode execution
in the CPU, e.g., SGX stores registers in the SSA and resets the register values
to non-secret values. Hence, adding encryption is feasible in microcode.
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5 TALUS Implementation

This section briefly introduces the implementation details of a proof-of-concept
of TALUS based on SGX and a hardware TPM. An in-depth discussion is avail-
able in the extended version [11]. We show the functionality and all the security
guarantees using the Intel SGX emulator [45] and a hardware TPM, allowing
us to implement the entire design of TALUS . For the performance evaluation,
we instead use a hardware SGX enclave in combination with the same hard-
ware TPM, with the limitation that the communication channel is not protected
against a malicious OS. All evaluations are performed on an Intel i7-7820X run-
ning Ubuntu 16.04.04 with kernel 5.0.0. As the TPM, we use an Infineon SLB
9670 that supports TPM 2.0 (HTPM). The size of the enclave used for perfor-
mance evaluation is 52 kB.

5.1 Connecting SGX and TPM

Channel Between SGX and TPM (SC1). Typically, the OS provides the
TPM as an MMIO device to the system and user-space software. However,
TALUS cannot rely on the untrusted OS for communication. For our proof-of-
concept implementation, we rely on the end-to-end encrypted programmed I/O
channel between the CPU and the hardware TPM. To prevent untrusted sys-
tem software from interfering with the channel, we distinguish between MMIO
and DMA requests. The channel is controlled by Intel TXT using an access
control mechanism called Locality offered by the TPM through TPM Local-
ity Address Mapping [31]. TPM localities indicate the source of the command
within the platform. Locality 0 is full public access, locality 1 is the OS, and
higher localities (up to locality 4) correspond to the highest privilege levels, i.e.,
hardware and microcode, including SGX. In TALUS , localities ensure the ver-
tical access control to the TPM (e.g., software, OS), while command authoriza-
tion (cf. Sect. sec:integration) ensures the horizontal access control (i.e., different
enclaves).

The channel directly stores data in the CPU registers. Cole and Prakash [15]
showed that, in addition to general-purpose registers, sensitive data can also be
stored in the Intel MPX bnd registers. As Linux or GCC no longer supports Intel
MPX [60], these registers can be used by an enclave without conflicting with any
other existing software.

Interrupt Handling (FC3). On an interrupt, SGX performs an Asyn-
chronous Enclave Exit (AEX) to save the enclave execution state in the State Save
Area (SSA) before invoking the OS exception handling. Although architecturally
secure, RIDL [63], ZombieLoad [64], and ÆPIC [4] showed that storing registers
in the SSA leaves copies of the values in internal CPU buffers from where they
can be leaked. Forcing SGX to dump registers to the SSA is always possible, as
an attacker can inject interrupts at any time during enclave execution [70].

TALUS does not allow the registers (BND0-BND3) holding potentially secret
data to be saved directly to the SSA. In our proof-of-concept implementation,
we encrypt the registers on EEXIT, EREMOVE, or AEX before storing them. We use
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AES in counter mode, with the SGX sealing key as the encryption key and the
number of asynchronous exits as the counter. Using the number of asynchronous
exits as a counter has the advantage that an attacker has only one shot at
leaking the (encrypted) secret, and the attacker cannot even detect if the secret
has changed between two interrupts [44].

Fig. 1. Design and implementation of TALUS

As computations with secrets often require multiple general-purpose or SIMD
registers [18,55], it is also beneficial to prevent other registers from spilling
secrets into the SSA. Similarly to protecting enclaves from traditional side-
channel attacks, we see that responsibility with the enclave developer. Without
TALUS , a developer cannot write code so that secrets are not leaked through
transient-execution attacks. If TSX is available, it is possible to protect interme-
diate results from spilling into the architectural domain by relying on a compiler
extension [21]. However, since TSX is deprecated, transient execution can be
used as a (less efficient) alternative, as shown in recent work [64,73,77].

5.2 Porting SGX Functionality to TPM

In this section, we demonstrate that SGX functionality can be mapped to the
TPM using command authorization.

TPM Command Mapping (FC1). Figure 1.a shows the TALUS workflow
to use the TPM as the backend for the SGX SDK functions that handle keys.
Other operations, such as reading a persistent counter from the TPM, follow
the same idea. For persistent secure storage of the wrapped keys, an enclave can
rely on the OS to store the data on the hard disk. Creating and using counters
is similar to key handling. As TPM counters are implemented in the TPM’s
NVM, creating a new counter equals creating a new dedicated NVM space with
TPM NVDefineSpace and returning a handle to the enclave. Via this handle, the
enclave can read or increment the TPM-managed counter. To retrieve the time,
TPM’s GetTime or Readclock can be used. TPM provides a secure clock signal
with the granularity of 30 ns (LPC bus bandwidth is 33 MHz).
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For key handling, TPM offers adequate secrets and functionalities to
achieve the same bindings of keys as SGX (cf. Fig. 1.b). For example, TPM’s
TPM2 OWNERSHIP can replace the SGX OWNERSHIP or the CPU can share the
CPUSVN with the TPM that can be used as KDF input (Fig. 1.b). TPM-generated
keys can be bound to the specific TPMs through TPM secret seeds (i.e.,
TPM2 CreatePrimary or TPM2 Create for non-migratable keys). To bind gen-
erated keys in TALUS to both CPU and TPM, SGX sends a secret derived from
SEAL FUSES to the TPM as input to the TPM key generation. Other enclave-
related information are available in the SECS created by SGX for every enclave.
More details on the command mapping between SGX and TPM are available in
the extended version [11].

Enclave Authorization (SC2). TALUS uses TPM’s extended authoriza-
tion policies (EAP) to ensure that one enclave cannot have unauthorized access
to another enclave’s TPM entities. EAP policies are set during the creation of a
TPM entity, such as a key. The CPU in TALUS dictates the EAP of newly cre-
ated TPM entities. It handles the policy sessions with the TPM, supplying the
necessary information for authorization from the key-derivation material. With
EAP, we can represent the same policies reflected in the key-derivation material
selection in default SGX. For example, if a key is created with MRSIGNER selected
but not MRENCLAVE, i.e., it can be derived by all enclaves of the same developer,
we represent this in an EAP that requires the enclave’s MRSIGNER value. When
using the key, the CPU supplies the current enclave’s MRSIGNER value to the TPM
policy session. Only if it matches the value set in the EAP at key creation time
can that enclave use the key.

5.3 Limitations of the TALUS Implementation

Our proof-of-concept implementation demonstrates that TPM and SGX are
very amenable for integration, leading to improved enclave security (cf. Sect. 6).
Our security discussion motivates further research into more secure integra-
tion of coprocessors with CPUs. In our proof-of-concept implementation, the
CPU uses an end-to-end encrypted channel with pre-shared keys to the TPM
(TPM TakeOwnership). Hence, we rely on a non-compromised chipset to, e.g.,
prevent cuckoo attacks [58]. A coprocessor physically integrated into the CPU,
such as Microsoft Pluton [52], can remove the dependency on the chipset for a
secure, authenticated connection. While we did not attempt such a tighter inte-
gration for the proof-of-concept in this paper, we provide functional objectives
and requirements for a secure integration between a coprocessor and an enclave.
More details are available in the extended version [11].

6 Case Studies

In this section, we present two case studies using TALUS . We demonstrate how
TALUS protects the enclave life cycle by storing all long-term secrets in the
TPM. We also show how to strengthen mitigations against microarchitectural
attacks by reducing the amount of data to protect and limiting enclave restarts.
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6.1 TALUS-Backed Enclave Management

Enclave Creation. Figure 2.a shows the two-step process of TPM-backed
enclave creation: (i) allocating enclave pages in EPC and addition of code and
data to those pages, and (ii) measuring page contents (MRENCLAVE) and veri-
fication of the measurement against a signed reference value. With TALUS ,
the TPM creates and verifies MRSIGNER and MRENCLAVE. These operations require
hashing of MRSIGNER using TPM commands like TPM2 HashSequenceStart,
TPM2 HashSequenceUpdate and lastly TPM2 HashSequenceComplete. The TPM
returns the hash of the measured enclave pages, i.e., MRENCLAVE. SGX verifies the
measurement of the enclave code (using the command TPM2 VerifySignature)
with the reference value signed by the creator of the enclave using the creator’s
public key. If the values are the same, the enclave creation is successful.

Fig. 2. Enclave-related use-cases for TALUS

Enclave Launch. A successfully created enclave is launched using the EINIT

command. Vanilla SGX employs a complex launch-control mechanism involving
the LE, which requires a launch key (LK) [16]. By default, the LK is derived
using the same key derivation used for sealing keys, and transferred between
the trusted runtime and LE via microarchitectural buffers. Transient-execution
attacks [7,64] attacked these buffers to extract the launch key. TALUS replaces
this unprotected buffer transfer by encapsulating the key inside the TPM and
releasing it upon successful authorization. We implement the launch control
using TPM (cf. Fig. 2.b). The launch process starts when EINIT requests an
enclave initialization (cf. Fig. fig:usecaseenclacveverification.b) from the LE. The
LE issues an LK request to the TPM with the TPM2 CreatePrimary command.
Note that this process can also be ported to Intel DCAP.

The related enclave information from Enclave SECS is passed to the TPM.
The TPM creates a key using the EINITTOKEN KDM as supplied by the CPU.
SGX also resets TPM PCRs and extends the enclave information into those
PCRs (e.g., PCR 11–13). The PCR extension is a well-known procedure used in,
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e.g., Flicker [47], other solutions for proof-of-execution [59], and measured boot
mechanisms [31]. After the TPM returns a key handle, an EINITTOKEN generation
request is issued, wrapped in an EAP session using the enclave identity informa-
tion as policy. Therefore, the authorization succeeds only if the correct enclave
information was extended into the PCRs. The TPM creates the EINITTOKEN, an
HMAC of the enclave identity information, using the launch key loaded into the
TPM. The EINITTOKEN is returned to EINIT ( D ) from the LE. EINIT receives
the EINITTOKEN and sends it to the TPM for verification ( F ). After verifica-
tion, the TPM returns an acknowledgment of success to EINIT ( G ) to proceed,
setting the enclave’s INIT attribute to true. This enables a ring 3 application to
execute the enclave’s code using SGX instructions. The used PCRs are reset to
their predefined values, which is possible because the code runs at locality 4.

Fig. 3. TALUS performance evaluation

Performance of Enclave Management Using TALUS . Figure 3.b shows the
performance of the TPM-backed functions. Enclave creation, which includes allo-
cating enclave pages, measuring page contents, and verifying the measurements,
takes on average 624.16 ms with TALUS and a hardware TPM (QEMU-HTPM).
Compared to vanilla SGX, which also takes 97.75 ms, this is only an overhead of
526.41 ms. Given that the creation of an enclave is a one-time event in the life
cycle of an enclave and does not affect any operation at runtime, this overhead
is likely amortized over the runtime of the enclave.

SGX Attestation (FC2). For SGX, attestation is implemented in the QE.
SGX employs local attestation to prove an enclave’s identity to the QE. The
QE uses the attestation keys provisioned to the platform to attest the platform
information and the attested enclave’s MRENCLAVE. A TPM naturally supports
attestation using attestation keys, however, only of TPM-internal data (e.g.,
PCR values or TPM entities). With TALUS , we adapt the mechanism imple-
mented by Intel and AMD for DRTM/Late-launch, where the platform attests
with the TPM a small piece of code measured by the CPU. DRTM uses PCR17
of the TPM for measurement attestation. The CPU can only reset PCR17 at
locality 4. Hence, a verifier is assured that the attested measurement in PCR17
can only come from the CPU during DRTM. In TALUS , we designate PCR21 for
SGX attestation and set an EAP on this PCR that allows only locality 4 to read,
extend, and reset this PCR. The TPM can attest this policy to a remote verifier
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to ensure them about this policy. During SGX attestation, the microcode resets
PCR21 and extends it with the measurement of the QE (i.e., MRENCLAVE of the
QE) and the report generated by the QE. A remote verifier can use the attested
PCR21 value to check for a trusted QE and the proper report, i.e., MRENCLAVE

and optionally supplied data to the report. Note that the EPID attestation used
by SGX [66] is an extended version of TPM’s DAA and can be modeled entirely
using DAA [6]. Simply extending the enclave MRENCLAVE into a PCR and attest-
ing this PCR is insufficient without ensuring that the MRENCLAVE is correct and
reported by a trusted entity.

Fig. 4. The total runtime of the commands split into base execution time and the
overhead added by QEMU.

Performance of Other Co-processor Functions We evaluate the runtime
of Sign Enclave, Get Key, Quote, Load key, Get Time and Read Counter provided
by TALUS . As a baseline, we measure the time it takes the hardware TPM
(HTPM) to execute these primitives. Figure 3.a shows the average execution
time over 1000 measurements and a 95 % confidence interval. Communication
between the TPM and SGX adds a small average overhead between 0.49 ms
(generating a 2048-bit RSA key) and 50.77 ms (enclave signing).

TALUS running with a hardware TPM adds an average overhead of 98.61 ms
± 1.95 ms. Note that the overall runtime overhead of an enclave depends on its
workload, i.e., how often these commands are executed.

Data Encryption using TALUS. We evaluate a real-world use case that
encrypts data using AES without leaking the key, even in the presence of tran-
sient execution attacks (cf. Sect. 6.2). Our application uses a 128-bit AES key
securely stored in the TPM, only fetched when encrypting user-provided data.
To ensure no leakage of round keys via the SSA [64], we execute the round-key
derivation and encryption within a hardware transaction [21]. The total runtime
of encrypting 4 kB of data and cleaning up any secret state is 1.66 µs±0.001 µs,
excluding fetching the key from the TPM. The overhead from TALUS , i.e.,
securely getting the key, is 58.43 ms±1.45 ms. As a baseline, we compare the run-
time to a variant where the key is not fetched from the TPM but unsealed from
the disk. This (insecure) variant has an average runtime of 199.21 µs±0.45 µs.
Note that the one-time overhead is amortized if the enclave runtime increases,
e.g., if larger amounts of data are encrypted.
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Since only Intel can implement a native version of TALUS , and there is no
cycle-accurate emulator that supports SGX, we can only provide an estimate for
such a version. Figure 4 shows the overhead added by QEMU for the TALUS
commands, adding an overhead between 5 ms to 10 ms (avg. of 6.82 ms). This
overhead constitutes between 2.21% to 38.77% (avg. of 21.60 %). We assume
that commands in a native TALUS implementation are around 20 % faster.

6.2 Impeding Microarchitectural Attacks

SGX enclaves are a constant target of microarchitectural attacks [49,69]. The
property that enclaves can be started arbitrarily often makes it challenging
to write side-channel-resilient code [49]. Furthermore, with transient-execution
attacks such as Foreshadow [7], Spectre [39], RIDL [63], ZombieLoad [64], and
architectural vulnerabilities such as ÆPIC [4], attackers can leak sensitive data
from internal CPU buffers despite side-channel-resilient code.

Preventing Transient-Execution Attacks. TPMs are assumed to be resilient
against other forms of microarchitectural attacks since no untrusted code can
access the hardware of a TPM. Further, by design, TPM does not release
any secret keys managed by TPM to the outside, but only key handles. How-
ever, sometimes the TPM needs to release secret data to the enclave (e.g., a
decrypted symmetric key). With TALUS , data is loaded directly into CPU reg-
isters. No transient-execution attack against CPU general-purpose registers has
been demonstrated [8]. Note that Meltdown attacks were only shown against sys-
tem registers [8,23] and floating-point and the upper half of SIMD registers in
specific scenarios [24,53,67]. Hence, as long as a secret is only stored in, e.g., an
MPX register (BND0-BND3), it cannot be leaked using a transient-execution attack.
Otherwise, Meltdown mitigations, such as KPTI, would also be ineffective.

Proof-of-Concept Evaluation. As a proof of concept, we reproduce the AES-
NI encryption from ZombieLoad [64]. With TALUS , we can load the AES key
from the TPM directly into the CPU registers without requiring a memory load.
Hence, the attack vector used by Schwarz et al. [64] is mitigated. To mitigate the
remaining attack vector, the storing and loading of the XMM registers in the SSA,
we rely on Cloak [21] to not leak any intermediate results from the registers
to memory. We verify that the plain AES key is never stored in memory by
inspecting the memory. Further, we are certain that the key is not stored in any
vulnerable microarchitectural element used for interacting with the memory, such
as the store buffer or line-fill buffer, preventing leakage via transient-execution
attacks. However, we cannot exclude the existence of unknown buffers that are
on the data path in Cloak [21] and that might become vulnerable in the future.

Limiting Precise Execution Control & Strengthening Countermea-
sures. Due to the strong attacker model, SGX enclaves can be interrupted at
an arbitrary point, allowing precise execution control [49]. With SGX-step [70],
enclaves can be interrupted after every instruction, allowing to amplify side-
channel leakage. Constant interruptions result in constantly storing and loading
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of the enclave state, resulting in more reliable transient-execution attacks [7,64].
By design, TALUS does not store secrets stored in the MPX registers in plain
memory, preventing leakage of these values (cf. Sect. 5.1). While TALUS cannot
directly prevent precise execution control, its persistent storage can track how
often an enclave was interrupted. Although enclaves can detect interrupts via
overwritten values in the SSA [12,57], they cannot store this information across
enclave restarts. With TALUS , an enclave can track the number of interrupts
across enclave restarts. Due to this persistent storage, an enclave can refuse to
start if it suffers from an excessive number of interrupts.

Generally, TALUS allows enclaves to keep information across restarts,
strengthening state-of-the-art countermeasures against microarchitectural
attacks. T-SGX [65], Varys [57], or Déjà Vu [13] drastically reduce the observable
leakage during one enclave run. However, since they cannot prevent arbitrary
enclave restarts, leakage is still possible [36]. Using secure counters of TALUS
strengthens such countermeasures to prevent an enclave from starting if too
many abnormal events have been observed during execution.

Proof-of-Concept Evaluation. We implement the restart limitation in the
sample enclave of T-SGX [65]. The enclave first increments a counter stored in
the TPM and retrieves the current value. This value is the number of times the
enclave has been started. Only if the current counter value is below an enclave-
defined threshold the enclave continues to provision the secrets. The limit can
be obtained from a remote server to increase the number of allowed execu-
tions over time gradually. Contrary to the number of enclave executions, storing
this threshold in a sealed data blob is possible. A rollback attack would only
decrease the number of remaining enclave executions, providing no advantages
to an attacker. As the check only happens once at enclave startup, this is a one-
time overhead. With T-SGX, the time it takes to create and launch the enclave
is 19.66 ms± 0.016 ms (n = 1000). Increasing, reading, and comparing the timer
with TALUS takes on average 17.45 ms± 0.23 ms.

7 Other Platforms

TALUS shows how a co-processor can be integrated with a TEE on x86. Other
platforms, such as ARM and RISC-V, can also benefit from our requirement
analysis. For example, ARM TrustZone supports co-processors such as Google
Titan or Apple T2 but with limited use cases such as disk encryption, key gen-
eration or encryption. On RISC-V, Keystone Enclaves and RoCC (Rocket chip
coprocessor) are available on the Boom core [10] and Rocket core [2]. Hence, also
on RISC-V, integrating the co-processor with enclaves can provide better secu-
rity guarantees. A detailed discussion on how other platform can benefit from a
TALUS implementation is available in the extended version [11].

8 Conclusion

We showed that secure enclaves, such as SGX, can benefit from secure copro-
cessors, such as a TPM, if they are securely integrated. With TALUS , we
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presented a design that supports secure side-channel-resilient communication
between TEEs and cryptographic coprocessors. We presented a proof-of-concept
implementation based on a hardware TPM and SGX, demonstrating how a
TPM can protect the SGX infrastructure credentials during enclave building
and launching, and how such a design impedes microarchitectural attacks on
SGX. From our prototype, we derive crucial requirements for secure integration
between TEEs and coprocessors. We believe that the identified and solved chal-
lenges leading to our design of TALUS are valuable for future systems, such
as integrating Microsoft’s Pluton with enclaves, and can be transferred to other
combinations of enclave technology and coprocessors, such as AMD PSP or ARM
TrustZone.
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2. Asanović, K., et al.: The rocket chip generator. Tech. rep., EECS Department, Uni-
versity of California, Berkeley, April 2016. http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-17.html

3. Boone, J.: Tpm genie: attacking the hardware root of trust for less than $50 (2018).
Acessed 13 Feb 2019

4. Borrello, P., et al.: ÆPIC Leak: Architecturally leaking uninitialized data from the
microarchitecture. In: USENIX Security 22 (2022)

5. Bourgeat, T., et al.: Mi6: Secure enclaves in a speculative out-of-order processor.
In: MICRO ’52 (2019)

6. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Secure Comput.
(2012)

7. Bulck, J.V., et al.: Foreshadow: extracting the keys to the intel SGX kingdom with
transient out-of-order execution. In: 27th USENIX Security Symposium (USENIX
Security 18) (2018)

8. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: USENIX Security Symposium (2019)

9. Canella, C., et al.: Fallout: Leaking data on meltdown-resistant cpus. In: CCS
(2019)

10. Celio, C., et al.: Boom v2: an open-source out-of-order risc-v core. Tech. rep.,
EECS Department, University of California, Berkeley, September 2017. http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

11. Chakraborty, D., Schwarz, M., Bugiel, S.: Talus: Reinforcing tee confidentiality
with cryptographic coprocessors (technical report) (2023)

12. Chen, G., et al.: Defeating Speculative-Execution Attacks on SGX with HyperRace.
In: Dependable and Secure Computing (DSC) (2019)

13. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjá vu. In: AsiaCCS (2017)

14. Cloosters, T., Rodler, M., Davi, L.: Teerex: discovery and exploitation of memory
corruption vulnerabilities in {SGX} enclaves. In: USENIX Security Symposium
(2020)

https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html


TALUS: Reinforcing TEE Con Dentiality with Cryptographic Coprocessors 163

15. Cole, M., Prakash, A.: Simplex: repurposing intel memory protection extensions
for information hiding. arXiv:2009.06490 (2020)

16. Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptology ePrint Archive
(2016)

17. Futral, W., Greene, J.: Intel Trusted Execution Technology for Server Platforms:
A Guide to More Secure Datacenters, 1st edn. Apress, Berkely, CA, USA (2013)

18. Garmany, B., Müller, T.: PRIME: private RSA infrastructure for memory-less
encryption. In: ACSAC (2013)

19. Google: Tpm usage - the chromium project (2019). https://www.chromium.org/
developers/design-documents/tpm-usage

20. Greene, James: Intel R© smi transfer monitor (stm) user guide (2016). https://
firmware.intel.com/content/smi-transfer-monitor-stm

21. Gruss, D., et al.: Strong and efficient cache side-channel protection using hardware
transactional memory. In: USENIX Security Symposium (2017)

22. Han, S., Shin, W., Park, J.H., Kim, H.: A bad dream: subverting trusted platform
module while you are sleeping. In: USENIX Security 18 (2018)

23. Intel: Rogue system register read (2018). https://software.intel.com/content/
www/us/en/develop/articles/software-security-guidance/advisory-guidance/
rogue-system-register-read.html

24. Intel: Vector Register Sampling/CVE-2020-0548/INTEL-SA-OO329 (2020).
https://software.intel.com/content/www/us/en/develop/articles/software-
security-guidance/advisory-guidance/vector-register-sampling.html

25. Intel Corporation: Strengthening security with intel R©platform trust technol-
ogy (2014). https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/enterprise-security-platform-trust-technology-white-paper.pdf

26. Intel Corporation: Intel R© 64 and ia-32 architectures software developer’s manual
(2016). https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-instruction-set-reference-
manual-325383.pdf

27. Intel Corporation: Intel R© software guard extensions (intel sgx) (2016). https://
software.intel.com/en-us/sgx. Accessed 15 July 2019

28. Intel Corporation: Intel converged security and management engine (intel
csme) (2020). https://www.intel.com/content/dam/www/public/us/en/security-
advisory/documents/intel-csme-security-white-paper.pdf

29. Intel Corporation: Intel-sa-00219 sgx sw developer guidance (2020). https://www.
intel.com/content/dam/www/public/us/en/security-advisory/documents/the-
intel-csme-dam-vulnerability-cve-2018-3659-and-cve-2018-3643-whitepaper.pdf.
Accessed 11 Dec 2021

30. Intel Corporation: The intel R© converged security and management engine iommu
hardware issue - cve-2019-0090 and cve-2020-0566 (2020). https://www.intel.com/
content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-
whitepaper.pdf. Accessed 11 Dec 2021

31. Intel Corporation: Intel R© trusted execution technology (intel R© txt) soft-
ware development guide measured launch environment developer’s guide
(2021). http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

32. Intel Corporation: Unable to find alternatives to monotonic counter application
programming interfaces (apis) in intel R© software guard extensions (intel R© sgx) for
linux* to prevent sealing rollback attacks (2021). https://www.intel.com/content/
www/us/en/support/articles/000057968/software/intel-security-products.html.
Accessed 10 Jan 2022

http://arxiv.org/abs/2009.06490
https://www.chromium.org/developers/design-documents/tpm-usage
https://www.chromium.org/developers/design-documents/tpm-usage
https://firmware.intel.com/content/smi-transfer-monitor-stm
https://firmware.intel.com/content/smi-transfer-monitor-stm
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/vector-register-sampling.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/the-intel-csme-dam-vulnerability-cve-2018-3659-and-cve-2018-3643-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/the-intel-csme-dam-vulnerability-cve-2018-3659-and-cve-2018-3643-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/the-intel-csme-dam-vulnerability-cve-2018-3659-and-cve-2018-3643-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/cve-2019-0090-whitepaper.pdf
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html


164 D. Chakraborty et al.

33. Intel Corporation: Xucode: An innovative technology for implementing com-
plex instruction flows (2021). https://software.intel.com/content/www/us/en/
develop/articles/software-security-guidance/secure-coding/xucode-implementing-
complex-instruction-flows.html

34. Intel Corporation: Kvm sgx (2022). https://github.com/intel/kvm-sgx. Accessed
01 June 2020

35. Intel Corporation: Qemu sgx (2022). https://github.com/intel/qemu-sgx. Accessed
01 June 2020

36. Jiang, J., Soriente, C., Karame, G.: Monitoring performance metrics is not enough
to detect side-channel attacks on intel sgx. arXiv:2011.14599 (2020)

37. Kauer, B.: Oslo: improving the security of trusted computing. In: Proceedings 16th
USENIX Security Symposium (SEC ’07). USENIX Association (2007)

38. Kenjar, Z., et al.: V0LTpwn: attacking x86 processor integrity from software. In:
USENIX Security Symposium (2020)

39. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy (SP) (2019)

40. Lawson, N.: Tpm hardware attacks July 2007. https://rdist.root.org/2007/07/16/
tpm-hardware-attacks/. Accessed 06 Aug 2018

41. Lee, D., Jung, D., Fang, I.T., Tsai, C.C., Popa, R.A.: An off-chip attack on hard-
ware enclaves via the memory bus. In: USENIX Security 20 (2020)

42. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open
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