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Abstract. We propose a new fair exchange protocol that takes advan-
tage of delay encryption and commutative encryption to achieve optimal
partial fairness among all protocols involving one-way messages. Our pro-
tocol consists of 3 setup messages and 2N + 1 exchange messages and it
is fair against covert adversaries with probability 1− 1

2N
. We prove that

this is optimal up to shortening the setup phase which is notably more
efficient than existing protocols.
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1 Introduction

A fair exchange protocol allows two parties to exchange secrets fairly without
mutual trust. Given its practical importance, this problem has been studied
extensively in different contexts. Many solutions using Trusted Third Parties as
mediators (e.g. [10]) or judges (e.g. [1]) have been proposed. When in lack of
a TTP, fair exchange was first shown to be impossible by Even and Yacobi [9]
in 1980 and later by Pagnia and Gärtner [21]. Garbinato and Rickebusch [11]
analysed this result further to provide a finer classification when some trust is
present in the network. While their result is very interesting in the setting where
multiple parties are involved, in our 2-party context they conclude that one party
must be trusted.

Similar problems such as multi-party coin flipping or exchange of signatures
were also proved impossible, respectively, by Cleve [5] and by Even and Yacobi
[9]. As a result, researchers tried to design protocols that either achieve weaker
fairness properties or take advantage of stronger assumptions. For instance,
under the assumption that both parties have similar computational power, bit
commitments schemes [7] can be used to achieve weaker fairness where a party’s
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knowledge is at most one bit more than the other party’s knowledge. Using
the weaker assumption that both parties have similar sequential computational
power, Boneh and Naor [3] proposed a protocol where bit commitments were
replaced with timed commitments. Alternatively, Ben-Or et al.[2] proposed a
fair exchange of signatures where the probability that one party is committed
to a contract while the other is not can be arbitrarily small. Following the same
trend of using probabilistic definitions of fairness, Gordon and Katz [16] intro-
duced the concept of partial fairness for secure two-party computations.

A very similar concept was used in the context of two-party fair exchange
by Roscoe and Ryan [24] and later refined by Couteau et al. [6]. We follow their
approach and propose a fair exchange protocol where the probability of an unfair
run is almost inversely proportional to the number of messages exchanged. This
fairness is achieved against covert adversaries, i.e. the malicious entity will not
perform actions for which they can be blamed. We achieve a stronger form of
fairness and better bounds than the protocols of [6,16]. In particular, Gordon
and Katz [16] show that general 2 party computations cannot be performed with
polynomial partial fairness when parties are allowed to early abort the protocol
and only polynomial running time. Couteau et al. [6] escape this impossibility
result using timed-release encryption and show that any 2 party functionality
can achieve partial fairness by designing a partially fair exchange protocol.

1.1 Our Contribution and Related Work

The key idea used in the protocol by Couteau et al. as well as in [16] is to hide
the secret among a set of dummy values, then exchange them one by one. In this
paper, we explore the theoretical limits of this approach by proving an upper
bound on the partial fairness that can be achieved and then building a protocol
that reaches it. In this paper, the results and protocols of that approach are
improved significantly.

In the protocol analysed by Couteau et al., the probability that Alice receives
Bob’s secret is at most 2

N greater than Bob’s chances of receiving Alice’s secret
(and vice versa), where N is the number of messages in the exchange phase of
their protocol. However, each party could get roughly a 1

4 probability of receiv-
ing the other party’s secret without revealing theirs. In our protocol, the latter
probability is bounded above by 1

N−1 .
Similarly, Gordon and Katz’s [16] protocol hides the correct output of the

computation among a list of other random values. Our protocol improves on
theirs in three distinct ways. Firstly, in [16] each party has immediate access to
all the value already exchanged. Therefore, if a malicious entity had access to
some information on the value of the correct output, they could recognise some
random values as such. Hence, their decision on when to abort will no longer be
uniformly random. We solve this by encrypting the secrets to exchange and only
work with encryption keys. Assuming that the honest party picks truly random
keys, the adversary cannot distinguish which key is used for the secrets until
the ciphertext is available at the end of the protocol. Secondly, we propose a
concrete setup phase consisting of only 3 messages, of which the last will be sent
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together with the first exchange message. In [16], the sub-protocol preceding the
exchange phase is only described abstractly. Finally, we achieve better fairness,
i.e. we halve the probability of an unfair run of the protocol.

Like those of [6,24], our protocol relies on the unusual assumptions of the
existence of delay encryption (often called Timed-Release Encryption) [23] and
a commutative blinding scheme. The former assumption is what let our proto-
col circumvent the impossibility result proved by Gordon and Katz [16]. Only
a few delay encryption schemes have been proposed in the past 30 years. We
believe exponentiation modulo a prime [18] is a viable option in our case since it
relies only on the assumption that repeated squaring is inherently sequential and
that both parties have a somewhat similar sequential computation power. This
is much more reasonable assumptions than similarity in general (i.e. parallel)
computational power.

In Sect. 2, we present the preliminary definitions of each cryptographic prim-
itive used in the fair exchange protocol. The next section is dedicated to the
description of our protocol. In Sect. 4, we analyse the fairness of the proposed
protocol as well as showing its optimality.

2 Preliminaries

In this section, we lay out the definitions of the cryptographic primitives that
will be used in the fair exchange protocol.

2.1 Notation

In this paper we will use the following notation:

– ZN is the set {0, . . . , N − 1}
– vectors are written in bold. v[i] is the ith entry of v starting from 0.
– (ai)i∈X is a vector of length |X| whose entries are ai

– If v ∈ XN and f : X → Y , we write f(v) for (f(v[i]))i∈ZN
∈ Y N .

– x
$←− X means that x is sampled uniformly from the set X.

– mod is the usual binary function Z × N
+ → N such that a mod b ∈ Zb.

– a‖b is the concatenation of a and b by interpreting them as binary strings.

2.2 Symmetric Encryption and Hashing

We use standard symmetric encryption (KGen,Enc,Dec) [15,17] and only require
it to be secure against ciphertext-only attacks. We write Enck(m)/Deck(m) to
mean the encryption/decryption of message/ciphertext m under the key k.

Our protocol takes advantage of cryptographic hashing (H : {0, 1}∗ →
{0, 1}n) [15,17] as a commitment scheme. Therefore, both preimage resistant
and second preimage resistant are required.
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2.3 Delay Encryption

Delay encryption (sometimes called Timed-Release Encryption) is an unusual
cryptographic primitive whose aim is not to provide confidentiality of a message
from other parties, but to hide the message from anyone for some predefined
amount of time. For the reader accustomed with Timed-Release Encryption,
what we use and define is a “delay” time-lock-puzzle-based encryption scheme
rather than time-specific schemes using trusted third parties. This is justified
because, in the presence of a TTP, the fair exchange problem becomes trivial.

More formally, a delay encryption scheme is a triple of algorithms and asso-
ciated sets M, C,P:

Pgen : {1}∗ × N → P delay : M × P → C open : C × P → M
Intuitively, Pgen(1λ, T ) generates public parameters p that are used to delay a
message for time T . delayT (m) will mean that the algorithm is used on m to
delay it for elapsed time T . Similarly, we omit p and write open(c). Practically
speaking, delayT (m) will create a puzzle c so that open(c) can solve the puzzle and
obtain m only after at least T (sequential) time. A honest party with moderate
computational power should be able to run open(c) in sequential time not much
longer than T . In order for our scheme to make sense, we set the following
requirement

∀m ∈ M ∀T ∈ N open(delayT (m)) = m

We say that a delay encryption is COA-secure if for any family of circuits A
of conceivable size and depth at most λT , we have

Pr
m

$←−M
T

$←−N

[
m ← A(c, T, p)

∣∣∣∣ c ← delayT (m) ∧ p ← Pgen(1λ, T )
]

<
1

|M| +negl (λ)

Intuitively, a COA-secure delay encryption scheme correctly hides encrypted
messages for the expected amount of time. We remark that the size of such
circuits will depend on the current state of technology. As noted in [18], allowing
all polynomially-sized circuits could lead to misleading results with circuits much
larger than what is feasible at the time of writing.

2.4 Commutative Blinding

A feature of our protocol is the use of commutative blinding that enables two
parties to jointly shuffle a deck of cards in such a way that neither know where
a given card is. Usually a blinding scheme is nothing but an encryption scheme,
however the usual definition of a commutative encryption scheme is stricter
than what we need. As a result, we define a commutative blinding scheme as
a tuple of algorithms (KGen1,KGen2,Blind1,Blind2,Unblind1,Unblind2) with sets
(M,K1,K2, Cint, C) such that

KGen1 : {1}∗ → K1 Blind1 : M × K1 → Cint Unblind1 : C × K1 → Cint

KGen2 : {1}∗ → K2 Blind2 : Cint × K2 → C Unblind2 : Cint × K2 → M
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In order for the scheme to make sense we require

∀k1 ∈ K1 ∀k2 ∈ K2 ∀m ∈ M
Unblind2 (Unblind1 (Blind2 (Blind1 (m, k1) , k2) , k1) , k2) = m

If these functions were used in other contexts, these names could be mis-
leading. In particular, Unblind1 and Blind1 are not necessarily inverses, nor are
Unblind2 and Blind2. In most practical scenarios, the blinding and unblinding
will be inverses as well as Blind1 = Blind2 and Unblind1 = Unblind2. However,
this is not required and constructions using homomorphic encryption are likely
to need the full generality of our definition.

We say that Blind1 is COA-secure if for any PPT adversary A we have

Pr
m

$←−M
k

$←−KGen1(1
λ)

[
m ← A(c)

∣∣∣∣ c ← Blind1(m, k)
]

<
1

|M| + negl (λ)

The remaining security requirements are described in Figs. 1, 2 and 3.
We say that an adversary wins the N -KPA game (Fig. 1) if m′ = mN+1. In

the (N,P)-CPA game, we note that P is a set of permutations of N -dimensional
vectors. We say that an adversary wins the (N,P)-CPA game if σ′ = σ. In other
words, if we are presented a blinded permutation of known distinct messages,
we should not be able to tell which message corresponds to which. Finally, we
say that an adversary wins the KIND game if b′ = b.

We say that Blind1 is N -KPA secure if for any PPT adversary A, the prob-
ability that A wins the N -KPA game is at most 1

|M|−N + negl (λ).
We say that Blind2 is (N,P)-CPA secure if for any PPT adversary A, the

probability that A wins the (N,P)-CPA game is at most 1
|P| + negl (λ).

We say that Blind2 is KIND secure if for any PPT adversary A, the probability
that A wins the KIND game is at most 1

2 + negl (λ).
Explanations for these requirements will be discussed in Sect. 3.2 after we

present our protocol.

2.5 Fair Exchange

We say that a protocol Π is an ideal fair exchange of secrets between two parties
Alice and Bob if it achieves the same result as performing the exchange in an
ideal world where there is a TTP collecting the secrets and exchanging them.
Intuitively, the exchange is fair if Alice learns Bob’s s secret if and only if Bob
learns Alice’s secret. As noted in the introduction, an ideal fair exchange protocol
is not possible without a TTP or some very strong assumptions on the network
of parties. As a result, our fair exchange protocol achieves fairness only in a
probabilistic way.

Definition 1. We say that a probabilistic protocol Π achieves p-partial fairness
if the probability of an unfair run is at most p.
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Fig. 1. N -KPA game

Fig. 2. (N,P)-CPA game

Fig. 3. KIND game
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In other words, a malicious entity can obtain the other party’s secret without
revealing theirs with probability at most p. We also say that Π achieves fairness
with probability p to mean that it is (1 − p)-partially fair.

3 Protocol

Firstly, we define a few permutations that will be used in the protocol.

σd : ZN → ZN σe
d : ZN+1 → ZN+1

x �→ x + d mod N x �→
{

σd(x) if 0 ≤ x < N

N if x = N

τ b
N : XN → XN πb : XN+1 → XN+1

v �→ (
v[i(−1)b + (N − 1)b]

)
i∈ZN

v �→ (v[(i − b) mod (N + 1)])i∈ZN+1

Figure 4 is the exchange protocol.

3.1 Protocol Overview

Our protocol follows the idea used by Roscoe and Ryan [24] and Couteau et al.[6],
i.e. Alice and Bob will hide their secret among a set of dummy messages. The aim
is to prevent any party from predicting when the secrets will be exchanged or dis-
tinguish when they have sent or received a secret until all exchanges should have
finished. A key component to achieve this is delay encryption. The delayed mes-
sages DA,DB fulfil two different purposes. Firstly, they guarantee the exchanged
secrets cannot be computed as soon as the keys kA [0],kB [0] are received, but
only at the end of the protocol. Secondly, they behave as a timed commitment
to each player’s strategy. This is used to detect any active cheater1. Most of the
complexity of the protocol lies in the three setup messages that are used to hide
kA [0] and kB [0] among dummy keys. The shuffling process proceeds as follow:

1. Each party places their secret among a list of N values and permutes it. Alice
places an extra dummy value at the end of her list.

2. After exchanging these lists, each party permutes the received list.
3. Bob decides whether to place Alice’s extra dummy at the start or end of

Alice’s list.
4. Alice decides whether to reflect each list around their midpoint or not.

1 For example, if its initially declared and committed strategy obliges A to send its
own secret in message x, then not doing so would be a detectable abuse even if the
protocol is terminated before its end.
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Fig. 4. Main protocol
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In the first two steps, we restrict the permutations to rotations. This makes the
permutations commute without affecting the probability distribution of where
the secrets are. After step 2, we obtain two lists where the secrets are in the
same position. This in not enough to achieve optimality since the relative order
of the secrets is fixed. If the messages were exchanged in their form after step 2,
the secrets were in position r and Alice were the first at sending the rth blinded
value, then Bob’s secret would follow Alice’s. This would achieve a sub-optimal
fairness probability of roughly 1 − 1

N .
The last two steps have the effect of shuffling the relative order of the secrets.

If Bob places the extra dummy at the start of Alice’s list, then he is effectively
moving Alice’s secret after his. Alice’s action changes the relative order of any
pair of messages. At the end of step 4, the relative order of the secrets is uniformly
random and unknown to the parties. In particular, this represents the optimal
distribution, i.e. no probability distribution of the 2 secret messages leads to a
fairer exchange.

The last two messages O1,O2 are entirely optional and only used for compu-
tational optimisation, so that opening the delay encryption is made unnecessary.
More specifically, they contain all the information needed to retrieve the secrets
from the list of Ei’s. Therefore, a party needs to undergo the expensive compu-
tation to open the delayed messages only if the exchange is not terminated or
the other party actively cheated.

3.2 Security Requirements

After explaining the protocol, we can justify the need for the security parame-
ters we set. The requirements on the delay encryption and symmetric encryption
should be straight forward. These two primitives are only meant to hide the
messages encrypted. The hash function is used as a commitment scheme, there-
fore the need for second preimage resistance. Collision resistance is not strictly
needed but preimage resistance is required to avoid revealing something about
the committed value.

The commutative blinding scheme must satisfy more complex requirements
since it is the cornerstone of the setup phase. The scheme is required to hide
the blinded values as well as hiding the shuffling. As a result, the simple COA
requirement only ensures that nothing can be extracted from cA or cB . The
KPA requirement is needed if the protocol is aborted early before the actual
secrets are exchanged. In this scenario, after the opening of the delay message,
both parties can unblind the messages exchanged obtaining some of the dummy
kA ’s (or kB ’s). Moreover, the delayed messages reveal the shuffling used, so a
malicious party can perform a KPA on the values cA (respectively cB ).

The CPA requirements, using the set of permutations {πb ◦ σd | d ∈ ZN , b ∈
{0, 1}} (notation abuse), is needed to guarantee that Alice can’t guess dB , bB

from d. Similarly, the CPA requirement with permutations {τ b
N ◦ σd | b ∈

{0, 1}, d ∈ ZN} prevents Bob from guessing dA, bA from eB . It is worth pointing
out that our choice of using rotations instead of arbitrary permutations results
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in stronger requirements for the commutative blinding. On the other side, arbi-
trary permutations do not commute, therefore the setup phase will need to be
extended in order to keep the secrets next to each other.

Finally, the key indistinguishability requirement is used to guarantee that no
information is leaked during the exchange phase. In particular, note that mB [i]
is blinded using a key which is chosen entirely upon on bA. Therefore, Alice can
unblind messages as she receives them. However, she can’t check if the message
received contain the correct key (since the encryption of the secret is delayed)
and the KPA requirement prevents her from obtaining information from cB . On
the other side, mA [i] is blinded using a key dependent on bA and bB . Therefore,
Bob doesn’t know a priori which key is used. If he were to discover which key
is used to blind mA [i], then he would discover bA. This gives Bob knowledge of
whether kA [0] precedes or succeeds kB [0], which is an unfair advantage.

3.3 Commutative Blinding and Why It Is Needed

The commutative blinding scheme is the most complex primitive used in our
protocol. Quite a few options are available for commutative encryptions: ElGa-
mal, SRA, Pohlig-Hellman, Massay-Omura, etc. However, most do not satisfy
our requirements. For instance, ElGamal is not secure against our strong CPA
requirement since each ciphertext is paired with a “tag” that encapsulates the
random nonce used in the encryption process. On the other hand, we believe
that the Pohlig-Hellman cipher satisfies our requirements, provided it is used
carefully.2

It is important to note that all these cited commutative encryptions are based
on the hardness of either the integer factorisation problem or the discrete loga-
rithm problem. Since both are known to be vulnerable to quantum computers,
the interesting question of finding post-quantum blindings arises. Most literature
on post-quantum commutative encryption (e.g. [8,19]) is based on generalising
the discrete logarithm problem to non-abelian groups. However, this approach
may be flawed [20,27]. Other quantum resistant commutative encryption schemes
might arise from group action on sets of isogenous elliptic curves as attempted by
Stolbunov [26] or similarly to the CSIDH protocol [4]. As noted during the defini-
tion of the commutative blinding, we believe homomorphic encryption could be
used to construct this primitive. The most trivial implementation would require
the outer blinding Blind1 to be the homomorphic encryption, while the inner
blinding Blind2 can be a simple Vernam cipher. Since Blind2 is always used with
unique keys, the overall construction’s security should follow from the security
of the homomorphic encryption. In this regard, we wish to point out that most
fully homomorphic encryption schemes rely on the hardness of the Learning With
Errors problem (or its ring variant) which was proved to be at least as hard as
some worst case lattice problems [22] such as the Shortest Vector Problem. As

2 In particular, we need to prevent the ciphertexts from being recognised from their
order. Thus, the modulus picked should be a safe prime p = 2q+1 and all plaintexts
should be forced to be in the same subgroup of prime order q.
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a result, these schemes are good candidates for building quantum-safe blinding
schemes.

Given the complexity of commutative blinding, a natural question is whether
we can achieve the same results without its use. Therefore, we feel the need to
briefly justify its use. Our problem of hiding the secret messages among a list
of other dummy messages is similar to the issue of shuffling a deck of cards
for an online game of poker. No single party must know the whole shuffle and
both need to contribute to it. This “mental poker" problem is often solved using
commutative blinding, oblivious transfer or by generating cards on the fly. [12–
14,25] The last option is clearly not an option in our context. On the other hand,
the use of oblivious transfer is appealing yet we believe this is only possible
(without greatly increasing the round complexity of the protocol) if the shuffling
phase can be split into two sub-shuffles each performed independently by the
two parties. We could not find such a split, therefore we consider the existence
an efficient setup phase without commutative blinding an open question.

4 Analysis

A protocol Π M+1 is a sequence of messages 〈m0, . . . ,mM 〉. A time point t in
the protocol Π M is an integer t ∈ ZM . We say that messages mi with i ≤ t
happens before t. We write TA (and TB) for the time point after which Alice
(respectively Bob) is guaranteed to obtain sB (respectively sA). For instance,
m0 = Enck(sA) ∧ m3 = k =⇒ TB ≤ 3. A subtler example is: m0 = Enck(sA) ∧
m4 = delay(k) =⇒ TB ≤ 4. Using this simple model, we can analyse the
fairness of our protocol against passive adversaries. In this context, we define a
passive adversary as one that is only allowed to go offline unexpectedly.

In this section, we write sA ∈ mA [i] to mean that mA [i] is the blinding of
kA [0]. Essentially, mA [i] is the only important message in mA . The analogue
notation sB ∈ mB [i] will also be used.

4.1 Adversarial Model

In our adversarial model, the enemy can control Alice or Bob (but not both)
and they are allowed only to perform actions that do not reveal them as a bad
actor. We define this kind of adversary as a covert adversary. We assume com-
munications channels are authenticated, guarantee integrity and confidentiality
and are secure against reordering and replay attacks. Therefore receiving a mal-
formed message signed by the adversary constitute a proof of their misbehaviour,
however, aborting communication is not assumed to be a malicious action. To
prove the security of our protocol, we first show that it is secure against pas-
sive adversaries which are only allowed to perform side computations and abort
communication. We then show that any covert adversary is restricted to behave
like a passive adversary.
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4.2 Fairness

We will show that the protocol of Fig. 4 achieves 1
2N -partial fairness. The key

idea is that TA and TB are kept next to each other so that there is only one
successful early-termination attack among the 2N possible. Due to the use of
delay encryption, we see that TA = i + 2 if and only if Ei is the blinding of
kB [0]. Similarly, TB = i+2 if and only if Ei is the blinded kA [0]. Therefore, we
compute the distribution of TA, TB by looking at the distribution of kA [0] and
kB [0].

Theorem 1. Let Π be the fair exchange protocol from Fig. 4. Then

Pr
[
sA ∈ mA [i] ∧ sB ∈ mB [j]

]
=

{
1

2N if i = j ∨ i = j + 1
0 otherwise

(1)

Proof. Note that

mA [i] = Blind2

(
kA [σe

dA+dB
((i(−1)bA + NbA − bB) mod (N + 1))],

BB [(i(−1)bA + NbA − bB) mod (N + 1)]
) (2)

mB [i] = Blind2
(
kB [(i(−1)bA + (N − 1)bA + dA + dB) mod N ],

BA [i(−1)bA + (N − 1)bA]
) (3)

So

sA ∈ mA [i] ⇐⇒ 0 = σe
dA+dB

((i(−1)bA + NbA − bB) mod (N + 1))

sB ∈ mB [i] ⇐⇒ 0 = (i(−1)bA + (N − 1)bA + dA + dB) mod N

Hence

Pr
[
sB ∈ mB [i]

]
= Pr

ba
$←−{0,1}

dA,dB
$←−ZN

[
0 = (i(−1)bA + (N − 1)bA + dA + dB) mod N

]

=
1
2

(
Pr

d
$←−ZN

[0 = (i + d) mod N ] +

Pr
d

$←−ZN

[0 = (N − 1 − i + d) mod N ]
)
=

1
N

Assume sB ∈ mB [j], that is:

0 = (j(−1)bA + (N − 1)bA + dA + dB) mod N

We will show that sA is either in mA [j] or mA [j+1] by analysing the four cases
(bA, bB) ∈ {0, 1}2
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1. bA = bB = 0

sB ∈ mB [j] =⇒ σe
dA+dB

(j) = (j + dA + dB) mod N = 0 =⇒ sA ∈ mA [j]

2. bA = bB = 1

sB ∈ mB [j] =⇒ σe
dA+dB

(N − 1 − j) = (N − 1 − j + dA + dB) mod N = 0

=⇒ sA ∈ mA [j]

3. bA = 0 ∧ bB = 1

sB ∈ mB [j] =⇒ σe
dA+dB

(j + 1 − bB) = (j + dA + dB) mod N = 0

=⇒ sA ∈ mA [j + 1]

4. bA = 1 ∧ bB = 0

sB ∈ mB [j] =⇒
σe

dA+dB
(N − (j + 1)) = (N − j − 1 + dA + dB) mod N = 0

=⇒ sA ∈ mA [j + 1]

As a result,

Pr
bA,bB

$←−{0,1}

[
sA ∈ mA [i]

∣∣∣ sB ∈ mB [j]
]
=

{
1
2 if i = j ∨ i = j + 1
0 otherwise

The statement of the theorem follows directly from the equation

Pr
[
sA ∈ mA [i] ∧ sB ∈ mB [j]

]
=

Pr
[
sA ∈ mA [i]

∣∣ sB ∈ mB [j]
]
Pr

[
sB ∈ mB [j]

]
��

Corollary 1. Let Π be the protocol from Fig. 4. Let A be a computationally
bounded passive adversary. Then A can successfully obtain the other party’s
secret without revealing theirs with probability 1

2N .

Proof (Sketch). First, recall Eq. 1. All we have to prove is that A cannot obtain
any knowledge that gives them any better probability distribution. The parame-
ters p which determines the distributions are dA, dB , bA, bB . In Sect. 3.2, we have
described what role each security requirement plays in guaranteeing the fairness
of the protocol, but here we report briefly the key points.

Note that message S1,S2,S3 don’t reveal anything about p until the delays
open after the protocol termination. This is given by the properties: delay-COA,
H-preimage resistance, Blind1-COA and Blind2-CPA. The messages E2r−1 and
E2r do not reveal anything about p since Blind2 is key-indistinguishable and
Blind1 is KPA secure. Therefore, A only knows the parameters they picked and
these are not enough to skew the probability distribution of Eq. 1.
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Say that A stops after message Si, then they will obtain the other party’s
secret with probability 0. Say that A stops after message Ei, then they will
successfully cheat if Ei contains the other party’s secret and sA ∈ Ej with j > i.
By Eq. 1 this happens with probability 1

2N . Stopping during the disclosure phase
is pointless as sA is already transmitted. ��

4.3 Optimality

In the protocol from Fig. 4, we hide the secrets sA, sB among the messages Ei’s
and use delay encryption to guarantee that TA = i + 2 ⇐⇒ sB ∈ Ei (and
similarly for Bob). Note that the +2 is needed to account for the setup phase.
Hence, TA and TB are also hidden for the entire duration of the exchange phase.

Here, we prove that our construction is “optimal”, meaning that no exchange
phase of M messages can achieve fairness greater than 1 − 1

M−1 . However, this
leaves open the question of whether our setup phase can be shortened. In this
regard, we point out that messages S3 and E1 can be sent as one. Therefore,
the proposed protocol achieves 1

M−1 -partial fairness using M + 2 messages.

Lemma 1. A receives a message at time TA.

Proof. Assume for a contradiction that mTA
is a message from Alice to Bob. It

follows that Alice can compute mTA
from {m1, . . . ,mTA−1}. As a result, every-

thing that Alice can compute from {m1, . . . ,mTA
} can be done from {m1, . . . ,

mTA−1}. Therefore TA is not minimal. ��
Lemma 2. In the absence of third parties, TA �= TB.

Proof. This follows directly from Lemma 1. ��
Lemma 3. Assume there is no third party. If in Π messages do not alternate
between Alice and Bob, then there is another protocol Π ′ which is as fair as Π
in which the messages alternate.

Proof. Let Π be a protocol where the messages between Alice and Bob do not
alternate. Construct Π ′ from Π by collapsing consecutive messages from the
same party into one. After this process, append “dummy” messages so that Π ′

and Π have the same length. In this process, the fairness of Π is left untouched.
In particular, note that the optimal strategy of any adversary could have not
been to stop between consecutive messages and it is definitely not to stop after
dummy messages. ��
Theorem 2. Let Π be a fair exchange protocol between Alice and Bob in absence
of third parties. If Π consists of M + 1 messages, then there is an unfair run
with probability 1

M

Proof. By Lemma 3 we can assume that Π = 〈m0, . . . ,mM 〉 where Alice sends
the messages with even index, and Bob those with odd index. There are m
possible attacks on the protocol by early abortion: stop the protocol after i
messages where 0 < i ≤ M . By Lemma 2 we know that at least one of these
attacks would be successful. So, the probability of an unfair run is at least 1

M . ��
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4.4 Catching Active Cheaters

So far we have analysed the fairness of our protocol when the adversary is passive.
We now look at the case where the adversary can alter the messages they send.
Our aim is to show that any such adversary will be caught. That is, our protocol
allows the honest party to demonstrate the misbehaviour of the other party.
Since channels are authenticated a transcript of the protocol constitute a proof of
misbehaviour. Hence, covert adversary can only behave like passive adversaries.

Theorem 3. If a party misbehaves, the other can prove it (unless both misbe-
haved).

Proof. Firstly, note that inconsistencies between the delayed messages and the
shuffling “sub-messages" cA , cB ,d,eB will result in inconsistent Ei’s. We assume
that Alice and Bob have agreed on predicates (i.e. boolean functions) ExpA,ExpB

to indicate what they expect to receive. Recall Eqs. 2 and 3 and assume that both
parties have knowledge of the content of the delayed messages DA,DB , which
they eventually will. Therefore, both parties have complete knowledge of the
permutations used. Each exchange messages Ei can be unblinded and reordered
so that they are expected to match H(kA [j]) (or H(kB [j])) for some j. Finally,
the secrets can be retrieved and checked against ExpA or ExpB . Assume that
mA [i] is not correct, then Bob could be responsible only if they have wrongly
computed d. However, note that the function cA �→ d is entirely determined
by (dB , bB ,BB ). Therefore, one can verify the computation of d and, if this
is correct, prove that Alice was responsible for the issue with mA [i]. Similarly,
Alice’s computation cB �→ eB is determined by (dA, bA,BA ). It follows that
anyone holding a transcript of the protocol (and ExpA,ExpB) can check if each
Ei is correct and determine who introduced any eventual error. ��

5 Conclusion and Future Research

In this paper, we have presented a fair exchange protocol which achieves fairness
against covert adversaries with probability 1 − 1

2N in 2N + 1 exchange mes-
sages and 3 setup messages. We proved that the protocol is optimally fair up
to shortening the already-short setup phase. This impossibility result holds in
a general model which only assumes that the involved parties are not computa-
tionally unbounded. The cryptographic primitives that allow the design of the
optimally-fair protocol are delay encryption and commutative blinding. The use
of delay encryption introduces the reasonable assumption that both parties have
somewhat similar sequential computational power, a considerable improvement
on the results of [7] where similar (parallel) computing power was needed. Never-
theless, we limited the use of delay encryption to a single message which will be
opened only when a party suspects misbehaviour. This gives some leeway to use
less efficient algorithms. We showed that our protocol is secure against covert
adversaries without the need of expensive constructions and point out that all
the primitive used can be quantum safe. We overcome the bounds of [16] by
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extending the cryptographic palette and achieve a stronger fairness than [6] by
careful choice of the blinding strategy. Despite the substantial contribution of
our paper, more research is needed in the field of fair exchange. The only draw-
back of our protocol is the need for a strong commutative blinding. Therefore,
it raises the interesting question of whether our protocol can be modified so as
not to use commutative encryption without increasing the message complexity
of the setup phase. On the more practical side, an interesting problem to con-
sider is the scenario where the malicious party aborts the exchange and, if the
secrets are not exchanged, they begin another exchange with the same party and
same secrets. This seems a plausible scenario in real-world applications since the
honest party is likely to need the exchange to succeed, and they will try again if
network failures seem the cause of abortion. However, the fairness of the protocol
is different since multiple runs of the same protocol must be taken into account.
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