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Abstract. Secure message transmission (SMT) constitutes a fundamen-
tal network-layer building block for distributed protocols over incomplete
networks. More specifically, a sender S and a receiver R are connected
via ¢ disjoint paths, a subset of which are controlled by the adversary.

Perfectly-secure SMT protocols in synchronous and asynchronous net-
works are resilient up to ¢/2 and £/3 corruptions respectively. In this
work, we ask whether it is possible to achieve a perfect SMT protocol
that simultaneously tolerates ¢ts < £/2 corruptions when the network is
synchronous, and ¢, < £/3 when the network is asynchronous.

We completely resolve this question by showing that perfect SMT is
possible if and only if 2¢, + ts < . In addition, we provide a concretely
round-efficient solution for the (slightly worse) trade-off t, 4+ 2t, < £.

As a direct application of these results, following the recent work by
Appan, Chandramouli, and Choudhury [PODC’22], we obtain an n-party
perfectly-secure multi-party computation protocol with asynchronous
fallback over any network with connectivity ¢, as long as t, + 3ts < n
and 2t, + ts < L.

1 Introduction

1.1 Motivation

Secure message transmission (SMT) is a fundamental building block that allows
to run more complex distributed protocols over incomplete networks (e.g. con-
sensus protocols, secret-sharing, or secure computation protocols). It allows a
sender S and a receiver R of an incomplete network of point-to-point channels
to communicate securely [9]. Justified by the fact that in a ¢-connected graph
there are at least ¢ disjoint paths among any two nodes [15], one often consid-
ers the abstraction in which S and R are simply connected via ¢ channels (also
called wires), representing vertex-disjoint paths in the network graph. Assuming
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an adversary that can corrupt at most ¢ parties in the network, this translates
to at most ¢ of the ¢ wires being under the control of the adversary (the ones
containing a corrupted node), while the remaining ¢ — ¢ wires can be considered
secure channels. In other words, the secure message transmission problem asks
to construct a secure channel between S and R from ¢ channels of which an
unknown subset of ¢ is under full control of the adversary.

Protocols for SMT can be classified with respect to the underlying communi-
cation model. Two prominent models in the literature are the synchronous and
asynchronous models. In the synchronous model, channels are guaranteed to
deliver messages within a known delay. In contrast, in the asynchronous model,
the delivery of messages can be delayed arbitrarily by the adversary. As a con-
sequence, parties cannot wait to receive messages from all parties to proceed in
the protocol execution, as there is no way to distinguish a corrupted party who
does not send a message from an honest party whose message is delayed.

Perfectly secure SMT can be achieved in the synchronous model if up to
ts < /2 wires are corrupted [8,9,13], while perfectly secure SMT in the asyn-
chronous model can only tolerate up to t, < ¢/3 corrupted wires. It is therefore
natural to investigate whether there is a protocol that achieves (simultaneously)
security guarantees in both network models. More concretely, we ask the follow-
ing question:

Under what conditions does there exist a perfectly-secure message trans-
mission protocol that tolerates up to ts wires to be corrupted if the network
s synchronous, and also up to t, if the network is asynchronous?

We completely resolve this question by providing several feasibility and
impossibility results. More concretely, we show that 2t, + ts < ¢ is necessary
and sufficient for a perfectly-secure message transmission protocol that toler-
ates up to ts (resp. t,) corrupted wires if the network is synchronous (resp.
asynchronous).

Together with the result by Appan, Chandramouli, and Choudhury [1]
on perfectly-secure synchronous multi-party computation (MPC) with asyn-
chronous fallback, we obtain an n-party perfectly-secure synchronous MPC
with asynchronous fallback over any network with connectivity ¢, as long as
te + 3ty < n and 2t, +t, < L.

Finally, as a result of independent interest, we show that assuming the slightly
worse trade-off' of t, + 2t, < £, we can achieve a similar perfectly secure mes-
sage transmission protocol, but that runs in 3 rounds when the network is syn-
chronous. This round complexity is essentially optimal, given that in the purely
synchronous setting the optimal number of rounds is 2 [17,19].

1.2 Technical Overview

Feasibility. Our feasibility result has three main ingredients:

! This trade-off is worse given that t, < ts. Note that any protocol with asynchronous
security is also secure when run over a synchronous network.
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— A compiler, which given black-box access to a synchronous (enhanced) secure
message transmission protocol and an asynchronous one, provides a protocol
with security in both synchronous (up to ¢s corruptions) and asynchronous
(up to t, < ts corruptions) networks, assuming the trade-off 2t, + t, < £.
Intuitively, the synchronous (respectively asynchronous) protocol should pro-
vide most of the security guarantees if the network is synchronous (respec-
tively asynchronous). The synchronous protocol either runs successfully or
guarantees that the sender detects that the network is asynchronous, and can
fallback on the asynchronous protocol. The main challenge is ensuring that, if
the network is synchronous, the adversary cannot convince the sender to run
the asynchronous protocol, which only tolerates a lower corruption threshold.

— A Synchronous SMT protocol with the additional guarantees that, if the net-

work is asynchronous, either the protocol succeeds or the sender is sure that
the network is asynchronous. The construction is round-based. Intuitively, the
sender tries to send a secret pad to the receiver by secret sharing the pad and
sending each share over one of the £ wires. If too many errors were introduced
by the adversary, the receiver cannot reconstruct the pad, but can inform the
sender (via a reliable public channel that also needs to be constructed, which
we denote by RMT). The sender can then detect a faulty wire and repeat the
process excluding this wire (with a fresh pad and a lower degree sharing). If
the sender and the receiver successfully share a secret pad, the actual message
can be one-time-pad encrypted and sent over the public channel.
The main challenge to overcome is properly dealing with erasures (that can
originate from faulty wires or by delays on honest wires). In our model when
the network is asynchronous, the adversary can convince the sender to exclude
an honest wire by simply delaying a message along this wire by longer than
the round time. If the sender excludes too many (honest) wires and decreases
the degree of the sharing accordingly, eventually the shares on the ¢, actually
corrupted wires determine the secret pad, and secrecy is lost. This is where
the trade-off comes into play: we only allow the sender to eliminate up to
ts — t, wires. This fixes the problem in the asynchronous setting because the
starting degree is ts, so after removing t; — t, wires, the remaining degree is
still 5 — (ts — tq) = to. Moreover, if the network is synchronous, it is guaran-
teed that the protocol succeeds at the latest after the last wire is excluded:
there are ¢ — (ts — t,) = ¢ — ts + t, non-excluded wires (among which ¢, are
corrupted), and the sharing has degree t5 — (ts —t,) = t,. Since 2t, < { — ts,
the reconstruction is successful. In turn, if at this point the protocol does
not succeed, the sender is sure that the network is asynchronous. Therefore,
the resulting protocol runs in at most t; — ¢, rounds when the network is
synchronous.

— An Asynchronous SMT protocol. This protocol does not require any additional
properties for the higher synchronous corruption threshold of ¢4, and therefore
any protocol from the literature can be used in a black-box fashion. Due to
space constraints, we report a known construction (using our notation) and
prove its security only in the full version of this paper [7].



80 G. Deligios and C.-D. Liu-Zhang

Impossibility. We prove that our feasibility result is tight, by showing that the
trade-off assumption 2¢, + ts < ¢ on the corruption thresholds we made up to
this point is not only sufficient, but also necessary to achieve secure message
transmission in this hybrid model. Towards contradiction, consider 2t, +ts = n.
Partition the channels into three sets K, A, B of sizes |A| = |B| = t, and |K| =
ts. At a high level, the idea is as follows: the information travelling over the
channels in A and B must completely determine the message being transmitted
(even if no information is transmitted over K). This is because in the synchronous
setting, the transmission succeeds when there are ¢, corruptions. However, if the
network is asynchronous, the adversary can delay all the information via the
channels in K, and control half of the remaining channels, which are enough to
tamper with the output of the receiver. Proving this precisely requires a carefully
designed scenario-based argument, that can be found in the full version of this
paper [7].

Round-Efficient Synchronous SMT with Sub-optimal Trade-Off. We
slightly strengthen these assumptions to ¢, + 2t; < n to achieve a protocol
that almost achieves the optimal round complexity of protocols in the purely
synchronous model. Intuitively, the stronger trade-off helps for the following
reason: if the network is asynchronous, the adversary can delay messages on up
to ts-wires (and change those on up to t,), and the receiver can still not be sure
the network is asynchronous (the ¢, erasures could also originate on wires in a
synchronous network). During the transmission of a secret pad, this results in
ts + tq actual wrong shares. Under the stronger assumption, ts + t, < n — tg,
which is the number of wrong shares that can be tolerated (in the sense of at
least detected) in the purely synchronous setting. Therefore, erasures can simply
be treated as wrong values, greatly reducing the need for interaction between S
and R.

1.3 Related Work

Synchronous Protocols with Asynchronous Fallback. A recent line of
works [1-4,6,11,16] has investigated the feasibility and efficiency of distributed
protocols (consensus and secure computation protocols) that are secure in both
synchronous and asynchronous networks. All these works assume a complete
network of point-to-point channels among the parties. Our work expands upon
this line by considering the simplest building block for distributed protocols over
incomplete networks.

Secure Message Transmission. The problem of SMT in synchronous net-
works has been widely investigated [9,10,14,18-20]. Perfectly-secure SMT can
be achieved, allowing multiple rounds of interaction between the sender and the
receiver, if and only if ¢ < £/2 channels are under control of the adversary [9].
Several works focused on improving the round complexity, achieving optimal 2-
round constructions [17,19]. In the asynchronous model, the number of corrupted
channels tolerated decreases to t < n/3 for perfect security, but interestingly it
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is still possible up to ¢t < £/2 corruptions [5] when allowing a small probability of
error. In [12] the authors investigate SMT in a model where some channels are
synchronous and some are asynchronous. They prove that PSMT in this model
is impossible unless the synchronous channels alone already allow for PSMT.
This is in contrast to our model in which the parties are unaware of the network
conditions at execution time. The argument they use is similar to the one in
Sect. 4.

2 Preliminaries

2.1 Model

Adversary. We consider an active threshold adversary which is allowed to adap-
tively (based on the information gathered during the execution of the protocol)
corrupt a subset of at most ¢ of the parties (in the secure message transmis-
sion abstraction, this amounts to corrupting ¢ channels). We assume that the
adversary is computationally unbounded and we consider information theoretic
security for our protocols.

Network Topology. We consider an incomplete network of point-to-point
secure channels among parties. We identify the network as a graph, where parties
represent vertices and channels represent edges. We say a graph is ¢-connected if
£ is the minimum number of edges that must be removed in order to disconnect
any two vertices in the graph (two vertices are disconnected if there is no path
with these vertices as endpoints). The connectivity ¢ is equal to the number of
disjoint paths between any two given vertices [15]. We assume that the network
topology is fixed and known to the parties before executing a protocol.

Communication Model. We consider a model in which parties have access to
local clocks and are not a priori aware of the network conditions when execut-
ing a protocol. We distinguish two possibilities: the synchronous model and the
asynchronous model.

In the synchronous model, the local clocks are synchronized, and messages
are guaranteed to be delivered within some known time bound A. The com-
munication can then naturally be described as proceeding in rounds, where for
N > r > 1, each message received in the time slot [rA, (r + 1)A) (according to
the local clock of each party) is regarded as a round r message.

In the asynchronous model, parties do not have access to synchronized clocks.
The adversary is allowed to schedule the delivery of messages arbitrarily, but each
message sent by honest parties must eventually be delivered (this guarantee
is needed if one wishes to make statements about protocol termination). In
this setting, one describes protocols in a message-driven fashion. This means
that, upon receiving a message, a party adds this message to a pool of received
messages and checks weather a list of conditions specified from the protocol
is satisfied to decide on its next action (sending a message, producing output,
terminating, etc.).
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In our model, both descriptions can be adopted. In a round-based protocol,
if a message is received outside of the time allocated for a certain round, it
is ignored. In the secure message transmission abstraction, the assumptions on
the communication network directly translate into assumptions on the ¢ wires
connecting S and R. However, the assumed maximum delay on the resulting
channels needs to account for the delays of all channels in the corresponding
paths (meaning each wire will have a delay of d- A, where d denotes the diameter
of the network graph).

2.2 Definitions

A secure message transmission protocol allows two parties, connected by multiple
channels (wires), to communicate securely even when a subset of the channels is
under the control of an adversary.

This abstraction captures the scenario in which two parties part of an incom-
plete network of secure channels wish to communicate securely. Disjoint paths
in the network graph serve as channels. A channel is corrupted if at least one of
the parties (nodes) on the path is corrupted. Notice that all guarantees are lost
if either the sender or the receiver do not follow the protocol.

We slightly deviate from usual definitions by requiring that the sender pro-
tocol also produces a Boolean output. Intuitively, the output is 1 if the sender
knows the protocol succeeded. Similarly, the receiver is allowed to output a value
L. Intuitively, this means they could not produce a valid output.

Definition 1 (Secure Message Transmission). Let II be a protocol executed
between S (the sender) with input m € F and randomness r1 and output b €
{0,1} and R (the receiver) with randomness ro and output v € FU{L}, connected
by channels (c1,...,ce). We say I is a protocol for SMT achieving:

- (t-correctness) if whenever up to t channels are under control of the adver-
sary, if S has input m, then R outputs v =m and S outputs b =1;
~ (t-perfect® privacy) if for all m,m’, for all k > 1, for all T C {1,...,¢}
such that |Z| <t the distributions of Ty, and Tf ., are equal, where Ty
denotes the random variable whose values are the k-th messages travelling on
the channels {c;}icz when the sender has input m;
- (t-termination) if whenever up to t channels are under control of the adver-
sary, S and R terminate;
- (t-weak correctness) if whenever up to t channels are under control of the
adversary, if S has input m, then
o R outputs m or L;
o R outputs m or S outputs 0.

If IT achieves t-correctness, t-perfect privacy and t-termination, we say that IT
is t-perfectly secure.

2 By requiring the distributions Tf’m and Tf,m, to be statistically close or computa-
tionally indistinguishable one obtains the notion of statistical security and compu-
tational security. In this paper, we are only concerned with perfect security.
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In what follows, unless otherwise stated, an SMT protocol is to be understood
as perfectly secure. Depending on the assumptions made on the channels ¢;, we
will consider two cases. If the channels are synchronous (cf. Sect.2.1), we will
talk about synchronous SMT (sSMT); if the channels are asynchronous we will
talk about asynchronous SMT (aSMT).

3 Secure Message Transmission with Fallback

Throughout this section, we work in the abstract setting of an honest sender
and receiver connected by ¢ channels, ¢ of which are under full control of the
adversary, and the remaining ¢ — ¢t are secure channels.

We show an SMT protocol which is secure regardless of whether the sender
and the receiver are connected by synchronous or asynchronous channels. The
protocol tolerates up to t; < £/2 channels to be under the control of the adver-
sary if the channels are synchronous, and up to t, < ¢/3 if the channels are
asynchronous, under optimal trade-offs on the corruption thresholds 2¢, +t5 < ¢
(optimality of the trade-offs is discussed in Sect. 4).

3.1 Compiler

First, we present a compiler that combines a synchronous sSMT protocol and
an asynchronous aSMT protocol to obtain a protocol that is secure in both
communication models. The synchronous component needs to provide certain
guarantees even the channels are asynchronous, while the asynchronous one does
not require any additional guarantees. More specifically let ITsmt = (S5, Rs) be
an SMT protocol with the following properties:

— If (¢4, ..., ¢¢) are synchronous channels: t,-security.
— If (c1, ..., ¢¢) are asynchronous channels: ¢,-(perfect) privacy, t,-weak correct-
ness, t,-termination.

Moreover, let IT,smt = (Sa, Rs) be an SMT protocol with the following proper-
ties:

— If (¢1, ..., ¢¢) are asynchronous channels: t,-security.

The sender and the receiver first run the synchronous protocol. If the network is
synchronous, then ¢¢-security guarantees that the protocol succeeds. In this case,
the asynchronous protocol is not run. If the network is asynchronous, t,-weak
correctness guarantees that any output by the receiver matches the message
sent by the sender. However, in this case the protocol might also fail and the
receiver might not produce output. If this happens, t,-weak correctness of the
synchronous protocol comes to the rescue again: the sender can detect that
something went wrong and run the asynchronous protocol. Asynchronous secure
message transmission does not require interaction: if the receiver has already
produced output while running the synchronous protocol, they simply ignore
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any further messages. Otherwise, t,-security of the asynchronous component
guarantees that the protocol terminates successfully. Notice that even when the
network is asynchronous, the synchronous protocol still ¢,-provides privacy. This
idea is formalized in the following protocol. Lemmas 1 and 2 are proven in the
full version of this paper.

—[ Protocol IThsmt(Hssm, HaSMT)}

Code for S;,(m,r1):

1: b« Ss(m,r1);
2: if b=1 then
3 return b;
4: else
5: b« Sa(m,r1);
6: return b;
7: end if
Code for Ry (r2):

v — Rs(r2);

: if v # 1 then
return v;

else
v Ra(r2);
return v;

: end if

NI

Lemma 1. If (c1,...,c¢) are synchronous channels and at most ts channels are
under control of the adversary, then IIsspt achieves ts-security.

Lemma 2. If (¢1,...,¢¢) are asynchronous channels and at most t, channels are
under control of the adversary then Ilpspt achieves t,-security.

3.2 Synchronous RMT with Asynchronous Detection

Before describing our construction for IlsspmT, it will be useful to discuss the
weaker primitive of Robust Message Transmission (RMT). Intuitively, an RMT
protocol is an SMT protocol that provides no privacy guarantees (i.e. a public
channel between the sender and the receiver that the adversary cannot tamper
with). More formally, an RMT protocol is a protocol satisfying the correctness
and termination properties of Definition 1. In the context of secure message
transmission, such a primitive is often referred to as broadcast.

Consider the scenario where a sender S and a receiver R are connected by
¢ channels (cy,...,cg) of which at most ¢ < ¢/2 under control of the adversary
and the remaining ¢ — t are secure channels. Here RMT can be achieved by S
sending the same message over all channels, and R taking a majority decision
over the received messages (this is the same as encoding and decoding using an
(1, )-repetition code).
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We use RMT as a building block in our synchronous sSMT protocols. To
provide the security guarantees we are after in our synchronous model with
asynchronous fallback, we require enhanced RMT protocols. More specifically,
when the channels are asynchronous and up to ¢, are under control of the adver-
sary, we still require that either S’s message is correctly delivered to R, or that S
detects that something went wrong. This is formalized in the following protocol
and lemmas. Please refer to the full version of this paper for proofs [7].

ts
Protocol 11 g\ ,+

Code for S(m):

Initialize b := 0;

Round 1: send m over ¢; for all 1 <7 < ¥

Round 2: if ok is received over at least ts + 1 channels, set b := 1; output b and
terminate;

Code for R():

Initialize v := 1;

Round 1: if there is m € [ received over at least ¢ts + 1 channels, set v := m and
send ok over ¢; for all 1 <17 < /;

Round 2: output v and terminate;

Lemma 3. Assume that t, < ts < £/2. If (c1,...,ce) are synchronous channels
and at most ts channels are under control of the adversary, then IlsgmT achieves
ts-correctness and tg-termination.

Lemma 4. Assume that t, <ts < £/2. If (c1,...,¢¢) are asynchronous channels
and at most t, channels are under control of the adversary, then IlsgmyT achieves
tq-weak correctness and t,-termination.

3.3 Synchronous SMT with Asynchronous Detection

We show a sSMT protocol which is ts-secure when the network is synchronous
and t,-secure when the network is asynchronous, under the (provably optimal)
trade-off assumption 2t, + t5 < £.

The protocol takes after one of the first synchronous constructions introduced
by Dolev et al. [9]. The idea is the following: the sender S selects a random pad
and secret shares it using a (¢, t;)-threshold secret sharing scheme, sending each
share over a distinct channel. The receiver R tries to reconstruct the secret
from the received shares. If reconstruction fails because too many shares were
tampered with by the adversary, the receiver R sends the received messages back
to S via SRMT (the roles of sender and receiver are reversed in this sub-protocol).
The sender S identifies at least one corrupted channel, and the process is then
repeated (with a fresh pad and a lower degree sharing) excluding this faulty
channel.
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In a purely synchronous setting, in each round of interaction the number of
corrupted channels strictly decreases, so that after at most (¢, + 1)-rounds R
receives a pad correctly. Once a pad has been transmitted successfully, in the
following round S can use the pad to one-time-pad encrypt the message and
send it to R via sRMT.

In our setting things are more complicated. If the channels are asynchronous,
the adversary could convince S that a certain channel is corrupted by simply
delaying the message on this channel by longer than the round time A. By doing
so, the adversary can force S to eliminate honest channels one-at-a-time, until
the degree of the sharing of the pad is low enough that the ¢, known shares
determine the secret pad, thus violating privacy.

To overcome this problem, one must keep S from removing too many channels
(at most ts —t,), so that the degree of the sharing is never smaller than ¢,. This
solves a problem but creates others: since now we can never eliminate all the
corrupted channels even if the network is synchronous, how do we guarantee
correctness? Our trade-off assumption 2t¢, + t; < £ plays a crucial role here. To
be consistent with the rest of the presentation, we explain the protocol using the
language of error-correcting codes. Lemma 9 guarantees that, for all £ and ¢ < ¢
there exists a pair (C®), h(") where C® is an (£ —i,t, +1—1,¢ —t,)-linear MDS
code such that for all x € C(*) the scalar product h(?x” is uniformly random in F
even when up to ts —¢ symbols of x are known. Let decodec ) (y) be an (efficient)
decoding algorithm for C*) returning a pair (b, x). If decoding is successful, then
b =1 and x € C, otherwise b = 0. To ease the notation, we consider that the
sRMT protocol runs in 1 round. Lemmas 5 and 6 are proven in the full version
of this paper [7].

ts—ta
~[ Protocol IT'5ir (HstI%MT’ {C(k)’h(k)}kzl )}
Code for S(m,r1)

1: elimChannels « J;

2: b« 0; records success of pad transmission
Round 2r — 1, for r > 1 :

: k < #elimChannels;

if £ > ts — t, then prevents sender from eliminating too many channels
return b;

end if

b— II;rmT(elimChannels); tell R what channels to consider

: if b= 0 then

9: return b;

10: end if

11: x «g C®);

12: ¢; «— x4 send i-th symbol of x along ¢;

Round 2r:

13: yl — HSRMT()a;

14: if y' = ok then

PN DTG w




Synchronous Perfectly Secure Message Transmission 87

15: e —m+h®xT; one-time-pad encryption

16: b+ HSRMT(e);

17: return b;

18: end if

19: if y' = L then

20: return b;

21: end if

22: p « smallest index such that y’ # x; find one corrupted channel
23: elimChannels « elimChannels U {p};

Code for R()
24: v «— 0O;

25: b« 0; true only successfully communicating ok to the sender// true only
after successful decoding

Round 2r — 1, for r > 1:

25: elimChannels’ + ITsrmT();

26: if elimChannels’ # | then

27: k' «+ #elimChannels’;

28: for i ¢ elimChannels’ do

29: Yi < Ci only read values on good channels
30: end for

31: if y; # L for all j ¢ elimChanels’ then

32: (v,x") + decodec, (y);

33: end if

34: end if

Round 2r:

35: if b’ =1 then
36: e — IIrmt();
37 if ¢/ # 1| then

38: m — ¢ — h<k/)x'; one-time-pad decryption
39: return m’;

40: end if

41: if ¢’ = | then

42: return ¢

43: end if

44: end if

45: if v=1 then

46: b — HsrmT(0k);

47: end if

48: if v =0 then

49: b — HrmT(y); information to identify corrupted channels
50: end if

¢ By IIrmt() we denote running the protocol as the receiver.

Lemma 5. Assume 2t, +ts < £, to < ts, and ts < £/2. Then, if the channels
(c1,...,¢c0) are synchronous and at most ts are under control of the adversary,
protocol Hﬁg,\fﬁ achieves tg-security.



88 G. Deligios and C.-D. Liu-Zhang

Lemma 6. Assume 2t, +ts < £, to < ts, and ts < {/2. If the channels
(c1,...,¢¢) are synchronous and at most ts are under control of the adver-
sary, protocol H_fg,’\ﬁ,ir achieves t,-weak correctness, t,-perfect privacy, and t,-

termination.

3.4 Asynchronous SMT

We need a protocol that can be used as the asynchronous protocol II;smT in the
compiler IThsmyt of Sect.3.1. Since we do not require any ad-hoc properties, we
can employ any protocol from the literature in a black-box fashion, but we briefly
describe a protocol here, and defer a more formal description of the protocol and
a proof of its security to the full version of this paper [7]. The idea is simple: the
sender secret shares their input with a (¢, ¢,)-threshold secret sharing scheme
sending each share along a distinct channel. The receiver waits until they have
received 2t, + 1 consistent shares, and then reconstructs the secret. The idea
might seem overwhelmingly simple, but the lower number of corrupted channels
substantially simplifies matters.

4 Impossibility Result

We justify the trade-off assumptions made in the SMT constructions from pre-
vious sections, and show that the trade-off 2t, +t5 < ¢, together with the trivial
constraints t, < ts; and t5 < £/2, is necessary to achieve perfectly secure message
transmission in our hybrid model. The following Lemma is inspired by proofs
in [2,4,5], from which we also borrow some notation. Due to space constraints,
please refer to the full version of this paper for the proof [7].

Lemma 7. Let t, < ts. There exists no SMT protocol that is both ts-perfectly
secure if the channels are synchronous and t,-perfectly secure if the channels are
asynchronous, for ts + 2t, > 4.

5 Round-Efficient Synchronous SMT with Sub-optimal
Trade-Off

Assuming the trade-off t,+2t, < ¢, we show a protocol IIsspmt with the properties
required for the compiler presented in Sect.3.1 and that runs in 3 rounds when
the network is synchronous. This (almost) matches the optimal round complexity
of purely synchronous protocols (2 rounds). Our construction adapts known ideas
(cf. [17,19]) to the context of security with fallback. Due to space constraints,
we assume that the reader is familiar with the basic theory of error correcting
codes. More details can be found in the full version of this paper [7]. Below, we
report some facts that will be needed in our constructions: once again, we refer
the reader to [7] for proofs.



Synchronous Perfectly Secure Message Transmission 89

Lemma 8 ([19], Lemma 2). LetC be an (¢, k,d)-linear code over . Let H be
the parity-check matriz of C. Let E be a linear subspace of by such that w(e) < d
for alle € E. Then

olg: E—FSF

e — Hel
18 1njective.

Definition 2. Let Y C [FZ}. A pseudo-basis of YV is a subset W C Y such that
a(W) is a basis of the linear subspace (o()) of Fy=F.

Let U denote a uniformly distributed random variable over [, and let X =
(X1,...,X¢) denote a uniformly distributed random variable over C.

Lemma 9. There exists an ({,ts + 1,{ — t;)-linear code C and a vector h € Fy
such that, for all I C {1,...,0} with |I| < ts, the joint distributions ((X;)ier,U)
and ((Xi)ie[,hXT) are equal.

The intuition is the following: the receiver R picks ¢ random field elements,
encodes them using an (¢,¢s,ts + to + 1) MDS code, and then sends the i-
th coordinate of the each code-word to the sender via channel ¢;. The sender
receives these code-words with errors introduced by the adversary. Notice that,
if the network is asynchronous, the adversary can modify up to ¢, symbols of
a code-word and erase up to ts symbols. However, we can still ensure that the
ts + t, errors occur at the same coordinates for all words: if the coordinates at
which erasures happen exceed ts, then the sender knows that the channels are
asynchronous.

Once the error versions of the code-words have been received, the sender S
computes a pseudo-basis, and communicates it to R via RMT together with the
syndromes of the errors introduced on code-words that are not in the pseudo-
basis. With this information receiver R can now compute all the errors intro-
duced by the adversary on all the code-words sent to S. The code-words in the
pseudo-basis have been revealed to the adversary, but the remaining words can
now be used as shared secret randomness between S and R to one-time-pad
encrypt messages and communicate them via RMT, as their syndromes leak no
information about them.

In general, error-correcting codes need not give any privacy guarantees. For
our purposes, however, the knowledge that the adversary gains by seeing up to
ts coordinates of a code-word must not completely determine the code-word (the
remaining entropy can be extracted to use as an encryption pad). Considering
appropriate codes solves this issue: it is well-known that certain classes of codes
are equivalent to threshold-secret sharing schemes. Lastly, in order for R to
correctly compute the errors introduced by the adversary, the minimum distance
of the code used must be greater than ¢ + t,. Lemma 9 shows how to construct
a code with all the required properties, under the assumption that t, + 2t, < £.

Let PseudoBasisc (y(V),...,y(?) be an algorithm that, given g vectors as
input with ¢ > ¢ — dim(C), efficiently computes a pseudo-basis for these vectors.
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Let ComputeErrors; (W, x(1), ..., x(@, o, p) be an algorithm that, given a pseudo-
basis of some corrupted versions of x(1, ..., x(@ computes the error introduced
on x() from the syndrome o = o(e(P)). Such an algorithm can be found in the
full version of this paper [7]. Let C and h be as in Lemma 9. Lemmas 10 and 11
are proven in [7].

—[ Protocol I1/5,%(C, h)}

Code for S(m):
1: b« 0
Round 1:

erasureCounter <« 0;
:for1<:</do

(yf),--.,yz@““)) — s
if yzw missing for some j then
erasureCounter «— erasureCounter + 1;
end if
end for
9: if erasureCounter > ¢, + 1 then
10: return b;
11: end if
12: for 1 <j<t;+1do
13 y0 e (1)
14: end for
15: W « PseudoBasis¢ (y(l)7 . ,y<q));
16: y® {ym}““
Jj=
17: 0 «— H(y(p))T; the syndrome of y "/
18: pad «— h(y<p))T; the pad to use for encryption
Round 2, 3:
12: b — Hrmt (W, 8, m + pad);
13: return b;
Code for R(r2):

14: v« 1;

Round 1:

15: xM L xEHD o

16: for 1 <i< /¢ do

17: Ci — (m£1>,...,x5t5+1));
18: end for

Round 2,3:

19: W', 0',m’) — Hrmt();
20: if W' o', m’) # L then
21: p’ < index not in W';

\ W; find vector not in the pseudo-basis
1
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22: e ComputeErrors, (W’, xM o xEs ), a',p’);

23: y/(p') = x®) 4 @),
24: pad’ — h(y’<p/))T;
25: v «—m’ — pad’;

26: return v;

27: else

28: return v;

29: end if

Lemma 10. Assume t, + 2ts < € and t, < ts. If (¢1,...,ce) are synchronous

channels and at most ts channels are under control of the adversary, then protocol
ts,ta - -

I1 ¢(C, h) achieves tg-security.

Lemma 11. Assume t, + 2ts < £ and t, < ts. If (c1,...,ce) are asynchronous
channels and at most t, channels are under control of the adversary, then pro-

tocol H;g;\t;T(C, h) achieves t,-weak correctness and t,-perfect privacy.

6 Conclusions

6.1 Putting Things Together

We have investigated the feasibility and optimality of perfectly secure message
transmission protocols that achieve security in both synchronous and asyn-
chronous networks. The following corollaries summarize the main results.

Corollary 1. There exists a perfectly secure SMT protocol that is ts-secure when
run over a synchronous network, and t,-secure when run over an asynchronous
network if and only if 2t, +ts < L.

Corollary 2. There exists a perfectly secure SMT protocol that is ts-secure when
run over a synchronous network, t,-secure when run over an asynchronous net-
work, and runs in 3 rounds when the network is synchronous, if t, + 2ts < £.

Using Theorem 6.1 from [1], combined with our SMT protocol from Corol-
lary 1, we obtain an n-party perfectly-secure MPC protocol over networks with
{-connectivity, for any t, < t, satisfying 3ts +t, < n and 2t, + t; < £.

Corollary 3 ([1], Theorem 6.1; restated for incomplete networks). Let
n be the number of parties and £ be the connectivity of the network. Let t, < ts,
such that 3ts +t, < n and 2ty +ts < £. Moreover, let f : F" — F be a function
represented by an arithmetic circuit over a field F. Then, there is an n-party
MPC protocol evaluating f over any network with £ connectivity, such that:

— Correctness: (a) When the network is synchronous and there are up to ts
corruptions, all honest parties correctly evaluate the function (with all honest
inputs taken into account), and (b) when the network is asynchronous and
there are up to t, corruptions, all honest parties correctly evaluate the function
(with n — ts inputs taken into account).
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— Privacy: The view of the adversary is independent of the inputs of the honest

parties.
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