
Byzantine Generals in the Permissionless
Setting

Andrew Lewis-Pye1(B) and Tim Roughgarden2,3

1 London School of Economics, London, UK
a.lewis7@lse.ac.uk

2 Columbia University, New York, USA
3 a16z Crypto, New York, USA

troughgarden@a16z.com

Abstract. Consensus protocols have traditionally been studied in the
permissioned setting, where all participants are known to each other
from the start of the protocol execution. What differentiates the most
prominent blockchain protocol Bitcoin [15] from these previously stud-
ied protocols is that it operates in a permissionless setting, i.e. it is a
protocol for establishing consensus over an unknown network of partici-
pants that anybody can join, with as many identities as they like in any
role. The arrival of this new form of protocol brings with it many ques-
tions. Beyond Bitcoin and other proof-of-work (PoW) protocols, what
can we prove about permissionless protocols in a general sense? How
does the recent stream of work on permissionless protocols relate to the
well-developed history of research on permissioned protocols?

To help answer these questions, we describe a formal framework for
the analysis of both permissioned and permissionless systems. Our frame-
work allows for “apples-to-apples” comparisons between different cate-
gories of protocols and, in turn, the development of theory to formally
discuss their relative merits. A major benefit of the framework is that it
facilitates the application of a rich history of proofs and techniques for
permissioned systems to problems in blockchain and the study of permis-
sionless systems. Within our framework, we then address the questions
above. We consider a programme of research that asks, “Under what
adversarial conditions, and for what types of permissionless protocol, is
consensus possible?” We prove several results for this programme, our
main result being that deterministic consensus is not possible for per-
missionless protocols.

Keywords: Consensus · Proof-of-Work · Proof-of-Stake ·
Proof-of-Space

1 Introduction

The Byzantine Generals Problem [14,18] was introduced by Lamport, Shostak
and Pease to formalise the problem of reaching consensus in a context where
faulty processors may display arbitrary behaviour. The problem has subsequently
become a central topic in distributed computing. Of particular relevance to us
c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13950, pp. 21–37, 2024.
https://doi.org/10.1007/978-3-031-47754-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47754-6_2&domain=pdf
http://orcid.org/0000-0003-0228-2243
http://orcid.org/0000-0002-7163-8306
https://doi.org/10.1007/978-3-031-47754-6_2

22 A. Lewis-Pye and T. Roughgarden

here are the seminal works of Dwork, Lynch and Stockmeyer [8], who considered
the problem in a range of synchronicity settings, and the result of Dolev and
Strong [7] showing that, even in the strongly synchronous setting of reliable
next-round message delivery with PKI, f +1 rounds of interaction are necessary
to solve the problem if up to f parties are faulty.

The Permissionless Setting (and The Need for a Framework). This
rich history of analysis considers the problem of consensus in the permissioned
setting, where all participants are known to each other from the start of the
protocol execution. More recently, however, there has been significant interest
in a number of protocols, such as Bitcoin [15] and Ethereum [3], that operate in
a fundamentally different way. What differentiates these new protocols is that
they operate in a permissionless setting, i.e. these are protocols for establishing
consensus over an unknown network of participants that anybody can join, with
as many identities as they like in any role. Interest in these new protocols is
such that, at the time of writing, Bitcoin has a market capitalisation of over
$400 billion.1 Given the level of investment, it seems important to put the study
of permissionless protocols on a firm theoretical footing.

Since results for the permissioned setting rely on bounding the number of
faulty participants, and since there may be an unbounded number of faulty par-
ticipants in the permissionless setting, it is clear that classical results for the
permissioned setting will not carry over to the permissionless setting directly.
Consider the aforementioned proof of Dolev and Strong [7] that f + 1 rounds
are required if f many participants may be faulty, for example. If the number
of faulty participants is unbounded, then the apparent conclusion is that con-
sensus is not possible. To make consensus possible in the permissionless setting,
some substantial changes to the setup assumptions are therefore required. Bit-
coin approaches this issue by introducing the notion of ‘proof-of-work’ (PoW)
and limiting the computational (or hashing) power of faulty participants. A
number of papers [9,10,16] consider frameworks for the analysis of Bitcoin and
other PoW protocols. The PoW mechanism used by Bitcoin is, however, just one
approach to defining permissionless protocols. As has been well documented [2],
proof-of-stake (PoS) protocols, such as Ouroboros [13] and Algorand [6], are a
form of permissionless protocol with very different properties, and face a differ-
ent set of design challenges. As we will expand on here, there are a number of
reasons why PoS protocols do not fit into the previously mentioned frameworks
for the analysis of Bitcoin. The deeper question remains, how best to understand
permissionless protocols more generally?

Defining a Framework. Our first aim is to describe a framework that allows
one to formally describe and analyse both permissioned and permissionless pro-
tocols in a general sense, and to compare their properties. To our knowledge, our
framework is the first capable of modelling all significant features of PoW and
PoS protocols simultaneously, as well as other approaches like proof-of-space [19].

1 See www.coinmarketcap.com for a comprehensive list of cryptocurrencies and their
market capitalisations.

www.coinmarketcap.com

Byzantine Generals in the Permissionless Setting 23

This allows us to prove general impossibility results for permissionless protocols.
The framework is constructed according to two related design principles:

1. Our aim is to establish a framework capable of dealing with permissionless
protocols, but which is as similar as possible to the standard frameworks in
distributed computing for dealing with permissioned protocols. As we will
see in Sects. 3 and 4, a major benefit of this approach is that it facilitates
the application of classical proofs and techniques in distributed computing to
problems in ‘blockchain’ and the study of permissionless protocols.

2. We aim to produce a framework which is as accessible as possible for
researchers in blockchain without a strong background in security. To do
so, we blackbox the use of cryptographic methods where possible, and iso-
late a small number of properties for permissionless protocols that are the
key factors in determining the performance guarantees that are possible for
different types of protocol (such as availability and consistency in different
synchronicity settings).

In Sect. 2 we describe a framework of this kind, according to which protocols
run relative to a resource pool. This resource pool specifies a resource balance
for each participant over the duration of the execution (such as hashrate or
stake in the currency), which may be used in determining which participants are
permitted to make broadcasts updating the state.

Byzantine Generals in the Permissionless Setting. Our second aim is
to address a programme of research that looks to replicate for the permission-
less setting what papers such as [7,8,14] achieved for the permissioned case.
Our framework allows us to formalise the question, “Under what adversarial
conditions, under what synchronicity assumptions, and for what types of per-
missionless protocol (proof-of-work/proof-of-stake/proof-of-space), are solutions
to the Byzantine Generals Problem possible?” In fact, the theory of consensus
for permissionless protocols is quite different than for the permissioned case.
Our main theorem establishes one such major difference. All terms in the state-
ment of Theorem 1 below will be formally defined in Sects. 2 and 3. Roughly, the
adversary is q-bounded if it always has at most a q-fraction of the total resource
balance (e.g. a q-fraction of the total hashrate).

Theorem 1. Consider the synchronous and permissionless setting, and suppose
q ∈ (0, 1]. There is no deterministic protocol that solves the Byzantine Generals
Problem for a q-bounded adversary.

The positive results that we previously mentioned for the permissioned case
concerned deterministic protocols. So, Theorem 1 describes a fundamental dif-
ference in the theory for the permissioned and permissionless settings. With
Theorem 1 in place, we then focus on probabilistic solutions to the Byzantine
Generals Problem. We leave the details until Sects. 3 and 4, but highlight below
another theorem of significant interest, which clearly separates the functionalities
that can be achieved by PoW and PoS protocols.

24 A. Lewis-Pye and T. Roughgarden

Separating PoW and PoS Protocols. The resource pool will be defined as
a function that allocates a resource balance to each participant, depending on
time and on the messages broadcast by protocol participants. One of our major
concerns is to understand how properties of the resource pool may influence the
functionality of the resulting protocol. In Sects. 2, 3 and 4 we will be concerned,
in particular, with the distinction between scenarios in which the resource pool
is given as a protocol input, and scenarios where the resource pool is unknown.
We refer to these as the sized and unsized settings, respectively. PoS protocols
are best modelled in the sized setting, because the way in which a participant’s
resource balance depends on the set of broadcast messages (such as blocks of
transactions) is given from the start of the protocol execution. PoW protocols,
on the other hand, are best modelled in the unsized setting, because one does
not know in advance how a participant’s hashrate will vary over time. The fun-
damental result when communication is partially synchronous is that no PoW
protocol gives a probabilistic solution to the Byzantine Generals Problem:

Theorem 3. There is no permissionless protocol giving a probabilistic solution to
the Byzantine Generals Problem in the unsized setting with partially synchronous
communication.
In some sense, Theorem 3 can be seen as an analogue of the CAP Theorem [1,11]
for our framework, but with a trade-off now established between ‘consistency’
and weaker notion of ‘availability’ than considered in the CAP Theorem (and
with the unsized setting playing a crucial role in establishing this tradeoff). For
details see Sect. 4.

1.1 Related Work

In the interests of conserving space, we describe here the most relevant related
papers and refer the reader to Appendix 1 for a more detailed account.2

The Bitcoin protocol was first described in 2008 [15]. Since then, a number of
papers (see, for example, [10,12,16,17]) have considered frameworks for the anal-
ysis of PoW protocols. These papers generally work within the UC framework of
Canetti [4], and make use of a random-oracle (RO) functionality to model PoW.
As we shall see in Sect. 2, however, a more general form of oracle is required for
modelling PoS and other forms of permissionless protocol. With a PoS protocol,
for example, a participant’s apparent stake (and their corresponding ability to
update state) depends on the set of broadcast messages that have been received,
and may therefore appear different from the perspective of different participants
(i.e. unlike hashrate, measurement of a user’s stake is user-relative). In Sect. 2
we will also describe various other modelling differences that are required to be
able to properly analyse a range of attacks, such as ‘nothing-at-stake’ attacks,
on PoS protocols.

In [9], the authors considered a framework with similarities to that con-
sidered here, in the sense that ability to broadcast is limited by access to a

2 For appendices, see the arXiv version: https://arxiv.org/abs/2101.07095.

https://arxiv.org/abs/2101.07095

Byzantine Generals in the Permissionless Setting 25

restricted resource. In particular, they abstract the core properties that the
resource-restricting paradigm offers by means of a functionality wrapper, in
the UC framework, which when applied to a standard point-to-point network
restricts the ability to send new messages. However, the random oracle function-
ality they consider is appropriate for modelling PoW rather than PoS protocols,
and does not reflect, for example, the sense in which resources such as stake can
be user relative (as discussed above), as well as other significant features of PoS
protocols discussed in Sect. 2.3.

In [20], a model is considered which carries out an analysis somewhat similar
to that in [10], but which blackboxes all probabilistic elements of the process
by which processors are selected to update state. Again, the model provides
a potentially useful way to analyse PoW protocols, but does not reflect PoS
protocols in certain fundamental regards. In particular, the model does not reflect
the fact that stake is user relative (i.e. the stake of user x may appear different
from the perspectives of users y and z). The model also does not allow for analysis
of the ‘nothing-at-stake’ problem, and does not properly reflect timing differences
that exist between PoW and PoS protocols, whereby users who are selected to
update state may delay their choice of block to broadcast upon selection. These
issues are discussed in more depth in Sect. 2.

As stated in the introduction, Theorem3 can be seen as a recasting of the
CAP Theorem [1,11] for our framework. CAP-type theorems have previously
been shown for various PoW frameworks [12,17].

2 The Framework

2.1 The Computational Model

Informal Overview. We use a very simple computational model, designed to
be as similar as possible to standard models from distributed computing (e.g.
[8]), while also being adapted to deal with the permissionless setting.3 Processors
are specified by state transition diagrams. A permitter oracle is introduced as
a generalisation of the random oracle functionality in the Bitcoin Backbone
paper [10]: It is the permitter oracle’s role to grant permissions to broadcast
messages. The duration of the execution is divided into timeslots. Each processor
enters each timeslot t in a given state x, which determines the instructions for
the processor in that timeslot – those instructions may involve broadcasting
messages, as well as sending requests to the permitter oracle. The state x′ of the
processor at the next timeslot is determined by the state x, together with the
messages and permissions received at t.

Formal Description. For a list of commonly used variables and terms, see
Table 1 in Appendix 2.4 We consider a (potentially infinite) system of processors,
3 There are a number of papers analysing Bitcoin [10,16] that take the approach of

working within the language of the UC framework of Canetti [4]. Our position is
that this provides a substantial barrier to entry for researchers in blockchain who do
not have a strong background in security, and that the power of the UC framework
remains largely unused in the subsequent analysis.

4 For the appendix, see https://arxiv.org/abs/2101.07095.

https://arxiv.org/abs/2101.07095

26 A. Lewis-Pye and T. Roughgarden

some of which may be faulty. Each processor is specified by a state transition
diagram, for which the number of states may be infinite. At each timeslot t of its
operation, a processor p receives a pair (M,M∗), where either or both of M and
M∗ may be empty. Here, M is a finite set of messages (i.e. strings) that have
previously been broadcast by other processors. We refer to M as the message
set received by p at t, and say that each message m ∈ M is received by p at
t. M∗ is a potentially infinite set of pairs (m, t′), where each m is a message
and each t′ is a timeslot. M∗ is referred to as the permission set received by
p at t. If (m, t′) ∈ M∗, then receipt of the permission set M∗ means that p is
able to broadcast m at step t′: Once M∗ has been received, we refer to m as
being permitted for p at t′. To complete the instructions for timeslot t, p then
broadcasts a finite set of messages M ′ that are permitted for p at t, makes a finite
request set R, and then enters a new state x′, where x′,M ′ and R are determined
by the present state x and (M,M∗), according to the state transition diagram.
The form of the request set R will be described shortly, together with how R
determines the permission set received at the next timeslot.

Amongst the states of a processor are a non-empty set of possible initial
states. The inputs to p determine which initial state it starts in. If a variable
is specified as an input to p, then we refer to it as determined for p, refer-
ring to the variable as undetermined for p otherwise. If a variable is deter-
mined/undetermined for all p, we simply refer to it as determined/undetermined.
To define outputs, we consider each processor to have a distinguished set of out-
put states, a processor’s output being determined by the first output state it
enters. Amongst the inputs to p is an identifier Up, which can be thought of as
a name for p, and which is unique in the sense that Up �= Up′ when p �= p′. A
principal difference between the permissionless setting (as considered here) and
the permissioned setting is that, in the permissionless setting, the number of
processors is undetermined, and Up is undetermined for p′ when p′ �= p.

We consider a real-time clock, which exists outside the system and measures
time in natural number timeslots. We also allow the inputs to p to include
messages, which are thought of as having been received by p at timeslot t = 0. A
run of the system is described by specifying the initial states for all processors
and by specifying, for each timeslot t ≥ 1: (1) The messages and permission sets
received by each processor at that timeslot, and; (2) The instruction that each
processor executes, i.e., what messages it broadcasts, what requests it makes,
and the new state it enters.

We require that each message is received by p at most once for each time it
is broadcast, i.e. at the end of the run it must be possible to specify an injective
function dp mapping each pair m, t, such that m is received by p at timeslot t,
to a triple (p′,m, t′), such that t′ < t, p′ �= p and such that p′ broadcast m at t′.

In the authenticated setting, we assume the existence of a signature scheme
(without PKI), see Appendix 3 for formal details. We let mU denote the mes-
sage m signed by U. We consider standard versions (see Appendix 3) of the
synchronous and partially synchronous settings (as in [8]) – the version of the

Byzantine Generals in the Permissionless Setting 27

partially synchronous setting we consider is that in which the determined upper
bound Δ on message delay holds after some undetermined stabilisation time.

2.2 The Resource Pool and the Permitter

Informal Motivation. Who should be allowed to create and broadcast new Bit-
coin blocks? More broadly, when defining a permissionless protocol, who should
be able to broadcast new messages? For a PoW protocol, the selection is made
depending on computational power. PoS protocols are defined in the context of
specifying how to run a currency, and select identifiers according to their stake
in the given currency. More generally, one may consider a scarce resource, and
then select identifiers according to their corresponding resource balance.

We consider a framework according to which protocols run relative to a
resource pool, which specifies a resource balance for each identifier over the dura-
tion of the run. The precise way in which the resource pool is used to determine
identifier selection is then black boxed through the use of what we call the per-
mitter oracle, to which processors can make requests to broadcast, and which
will respond depending on their resource balance. To model Bitcoin, for example,
we simply allow each identifier (or rather, the processor allocated the identifier)
to make a request to broadcast a block at each step of operation. The permitter
oracle then gives a positive response with probability depending on their resource
balance, which in this case is defined by hashrate. So, this gives a straightfor-
ward way to model the process, without the need for a detailed discussion of
hash functions and how they are used to instantiate the selection process.
Formal Specification. At each timeslot t, we refer to the set of all messages
that have been received or broadcast by p at timeslots ≤ t as the message state
M of p. Each run happens relative to a (determined or undetermined) resource
pool,5 which in the general case is a function R : U × N × M → R≥0, where
U is the set of all identifiers and M is the set of all possible sets of messages
(so, R can be thought of as specifying the resource balance of each identifier at
each timeslot, possibly relative to a given message state).6 For each t and M ,
we suppose: (a) If R(U, t,M) �= 0 then U = Up for some processor p; (b) There
are finitely many U for which R(U, t,M) �= 0, and; (c)

∑
U R(U, t,M) > 0.

After receiving messages and a permission set at timeslot t, suppose p’s mes-
sage state is M0 and that, for each t′, M∗(t′) is the set of all messages that
are permitted for p at timeslots ≤ t′. We consider two settings – the timed
and untimed settings. The form of each request r ∈ R made by p at timeslot t
depends on the setting, as specified below. While the following definitions might

5 As described more precisely in Sect. 2.3, whether the resource pool is determined or
undetermined will decide whether we are in the sized or unsized setting.

6 For a PoW protocol like Bitcoin, the resource balance of each identifier will be their
(relevant) computational power at the given timeslot (and hence independent of the
message state). For PoS protocols, such as Ouroboros [13] and Algorand [6], however,
the resource balance will be determined by ‘on-chain’ information, i.e. information
recorded in the message state M .

28 A. Lewis-Pye and T. Roughgarden

initially seem a little abstract, we will shortly give some concrete examples to
make things clear.

– The untimed setting. Here, each request r made by p must be7 of the form
(M,A), where M ⊆ M0 ∪M∗(t), and where A is some (possibly empty) extra
data. The permitter oracle will respond with a (possibly empty) set M∗ of
pairs of the form (m, t + 1). The value of M∗ will be assumed to be a prob-
abilistic function8 of the determined variables, (M,A), and of R(Up, t,M),
subject to the condition that M∗ = ∅ if R(Up, t,M) = 0. (If modelling Bit-
coin, for example, M might be a set of blocks that have been received by p,
or that p is already permitted to broadcast, while A specifies a new block
extending the ‘longest chain’ in M . If the block is valid, then the permitter
oracle will give permission to broadcast it with probability depending on the
resource balance of p at time t. We will expand on this example below.)

– The timed setting. Here, each request r made by p must be of the form
(t′,M,A), where t′ is a timeslot, M ⊆ M0 ∪ M∗(t′) and where A is as in the
untimed setting. The permitter oracle will respond with a set M∗ of pairs
of the form (m, t′). M∗ will be assumed to be a probabilistic function of the
determined variables,9 (t′,M,A), and of R(Up, t′,M), subject to the condition
that M∗ = ∅ if R(Up, t′,M) = 0.

If the set of requests made by p at timeslot t is R = {r1, . . . , rk}, and if the
permitter oracle responds with M∗

1 , . . . ,M∗
k respectively, then M∗ := ∪k

i=1M
∗
i

is the permission set received by p at its next step of operation.
By a permissionless protocol we mean a pair (S, O), where S is a state tran-

sition diagram to be followed by all non-faulty processors, and where O is a
permitter oracle, i.e. a probabilistic function of the form described above. It
should be noted that the roles of the resource pool and the permitter oracle are
different, in the following sense: While the resource pool is a variable (meaning
that a given protocol will be expected to function with respect to all possible
resource pools consistent with the setting), the permitter is part of the protocol
description.

How to Understand the Form of Requests (Informal). To help explain
these definitions, we consider how to model some simple protocols.

Modelling Bitcoin. To model Bitcoin, we work in the untimed setting, and we
define the set of possible messages to be the set of possible blocks (in this paper,
we use the terms ‘block’ and ‘chain’ in an informal sense, for the purpose of giving

7 To model a perfectly co-ordinated adversary, we will later modify this definition
to allow the adversary to make requests of a slightly more general form (see the
Appendix 5).

8 See Appendix 5 for a detailed explanation of what it means to be a ‘probabilistic
function’.

9 In the authenticated setting the response of the permitter is now allowed to be a
probabilistic function also of Up. See Appendix 3 for details.

Byzantine Generals in the Permissionless Setting 29

examples). We then allow p to make a single request of the form (M,A) at each
timeslot. Here M will be a set of blocks that have been received by p, or that p is
already permitted to broadcast. The entry A will be data (without PoW attached)
that specifies a block extending the ‘longest chain’ in M . If A specifies a valid block,
then the permitter oracle will give permission to broadcast the block specified by
A with probability depending on the resource balance of Up at time t (which is p’s
hashrate, and is independent of M). So, if each timeslot corresponds to a short
time interval (one second, say), then the model ‘pools’ all attempts by p to find a
nonce within that time interval into a single request. The higher Up’s resource bal-
ance at a given timeslot, the greater the probability p will be able to mine a block
at that timeslot.10 Note that the resource pool is best modelled as undetermined
here, because one does not know in advance how the hashrate attached to each
identifier (or even the total hashrate) will vary over time.

Modelling PoS Protocols. The first major difference for a PoS protocol is that the
resource balance of each participant now depends on the message state, and may
also be a function of time.11 So, the resource pool is a function R : U ×N×M →
R≥0. A second difference is that R is determined, because one knows from the
start how the resource balance of each participant depends on the message state
as a function of time. Note that advance knowledge of R does not mean that
one knows from the start which processors will have large resource balances
throughout the run, unless one knows which messages will be broadcast. A third
difference is that, with PoS protocols, processors can generally look ahead to
determine their permission to broadcast at future timeslots, when their resource
balance may be different than it is at present. This means that PoS protocols
are best modelled in the timed setting, where processors can make requests
corresponding to timeslots t′ other than the current timeslot t. To make these
ideas concrete, let us consider a simple example.

There are various ways in which ‘standard’ PoS selection processes can work.
Let us restrict ourselves, just for now and for the purposes of this example,
to considering blockchain protocols in which the only broadcast messages are
blocks, and let us consider a longest chain PoS protocol which works as follows:
For each broadcast chain of blocks C and for all timeslots in a set T (C), the
protocol being modelled selects precisely one identifier who is permitted to pro-
duce blocks extending C, with the probability each identifier is chosen being

10 So, in this simple model, we don’t deal with any notion of a ‘transaction’. It is clear,
though, that the model is sufficient to be able to define what it means for blocks to be
confirmed, to define notions of liveness (roughly, that the set of confirmed blocks grows
over time with high probability) and consistency (roughly, that with high probability,
the set of confirmed blocks is monotonically increasing over time), and to prove liveness
and consistency for the Bitcoin protocol in this model (by importing existing proofs,
such as that in [10]).

11 It is standard practice in PoS blockchain protocols to require a participant to have
a currency balance that has been recorded in the blockchain for at least a certain
minimum amount of time before they can produce new blocks, for example. So, a
given participant may not be permitted to extend a given chain of blocks at timeslot
t, but may be permitted to extend the same chain at a later timeslot t′.

30 A. Lewis-Pye and T. Roughgarden

proportional to their wealth, which is a time dependent function of C. To model
a protocol of this form, we work in the timed and authenticated setting. We
consider a resource pool which takes any chain C and allocates to each identi-
fier Up their wealth according to C as a function of t. Then we can consider a
permitter oracle which chooses one identifier Up for each chain C and each times-
lot t′ in T (C), each identifier Up being chosen with probability proportional to
R(Up, t′, C). The owner p of the chosen identifer Up corresponding to C and t′,
is then given permission to broadcast blocks extending C whenever p makes a
request (t′, C, ∅). This isolates a fourth major difference from the PoW case: For
the PoS protocol, the request to broadcast and the resulting permission is not
block specific, i.e. requests are of the form (t′,M,A) for A = ∅, and the resulting
permission is to broadcast any from the range of appropriately timestamped
and valid blocks extending C. If one were to make requests block specific, then
users would be motivated to churn through large numbers of blocks, making the
protocol best modelled as partly PoW.

To model a BFT PoS protocol like Algorand, the basic approach will be very
similar to that described for the longest chain PoS protocol above, except that
certain other messages might be now required in M (such as authenticated votes
on blocks) before permission to broadcast is granted, and permission may now be
given for the broadcast of messages other than blocks (such as votes on blocks).

2.3 Defining the Timed/Untimed, Sized/Unsized and Single/Multi-
permitter Settings

In the previous section we isolated four qualitative differences between PoW
and PoS protocols. The first difference is that, for PoW protocols, the resource
pool is a function R : U × N → R≥0, while for PoS protocols, the resource pool
is a function R : U × N × M → R≥0. Then there are three differences in the
settings that are appropriate for modelling PoW and PoS protocols. We make
the following formal definitions:

1. The timed and untimed settings. This difference between the timed and
untimed settings was specified in Sect. 2.2.

2. The sized and unsized settings. We call the setting sized if the resource
pool is determined. By the total resource balance we mean the function T :
N×M → R>0 defined by T (t,M) :=

∑
U R(U, t,M). For the unsized setting,

R and T are undetermined, with the only restrictions being:
(i) T only takes values in a determined interval [α0, α1], where α0 > 0 (mean-

ing that, although α0 and α1 are determined, protocols will be required
to function for all possible α0 > 0 and α1 > α0, and for all undetermined
R consistent with α0, α1, subject to (ii) below).12

12 We consider resource pools with range restricted in this way, because it turns out to
be an overly strong condition to require a protocol to function without any further
conditions on the resource pool, beyond the fact that it is a function to R≥0. Bitcoin
will certainly fail if the total resource balance over all identifiers decreases sufficiently
quickly over time, or if it increases too quickly, causing blocks to be produced too
quickly compared to Δ.

Byzantine Generals in the Permissionless Setting 31

(ii) There may also be bounds placed on the resource balance of identifiers
owned by the adversary.

3. The multi-permitter and single-permitter settings. In the single-
permitter setting, each processor may submit a single request of the form
(M,A) or (t,M,A) (depending on whether we are in the timed setting or
not) at each timeslot, and it is allowed that A �= ∅. In the multi-permitter
setting, processors can submit any finite number of requests at each timeslot,
but they must all satisfy the condition that A = ∅.13

We do not define the general classes of PoW and PoS protocols (although we
will be happy to refer to specific protocols as PoW or PoS). Such an approach
would be too limited, being overly focussed on the step-by-step operations. In
our impossibility results, we assume nothing about the protocol other than basic
properties of the resource pool and permitter, as specified by the various settings
above. We model PoW protocols in the untimed, unsized, and single permitter
settings, with R : U × N → R≥0. We model PoS protocols in the timed, sized,
multi-permitter and authenticated settings, and with R : U × N × M → R≥0.
Appendix 4 expands on the reasoning behind these modelling choices. In the fol-
lowing sections, we will see that whether a protocol operates in the sized/unsized,
timed/untimed, or multi/single-permitter settings is a key factor in determining
the performance guarantees that are possible (such as availability and consis-
tency in different synchronicity settings).

2.4 The Adversary

Appendix 5 gives an expanded version of this subsection and also considers
the meaning of probabilisitic statements in detail. In the permissionless setting,
we generally consider Byzantine faults, thought of as being carried out with
malicious intent by an adversary. The adversary controls a fixed set of faulty
processors - in formal terms, the difference between faulty and non-faulty pro-
cessors is that the state transition diagram for faulty processors might not be S,
as specified by the protocol. In this paper, we consider a static (i.e. non-mobile)
adversary that controls a set of processors that is fixed from the start of the
protocol execution. We do this to give the strongest possible form of our impos-
sibility results. We place no bound on the size of the set of processors controlled
by the adversary. Rather, placing bounds on the power of the adversary in the
permissionless setting means limiting their resource balance. For q ∈ [0, 1], we
say the adversary is q-bounded if their total resource balance is always at most a
q fraction of the total, i.e. for all M, t,

∑
p∈PA

R(Up, t,M) ≤ q·
∑

p∈P R(Up, t,M),
where PA is the set of processors controlled by the adversary.

13 The names ‘single-permitter’ and ‘multi-permitter’ come from the sizes of the result-
ing permission sets when modelling blockchain protocols. For PoW protocols the the
permission set received at a single step will generally be of size at most 1, while this
is not generally true for PoS protocols.

32 A. Lewis-Pye and T. Roughgarden

2.5 The Permissioned Setting

So that we can compare the permissioned and permissionless settings, it is useful
to specify how the permissioned setting is to be defined within our framework.
According to our framework, the permissioned setting is exactly the same as
the permissionless setting that we have been describing, but with the following
differences:

– The finite number n of processors is determined, together with the identifier
for each processor.

– All processors are automatically permitted to broadcast all messages, (subject
only to the same rules as formally specified in Appendix 2 for the authenti-
cated setting).14

– Bounds on the adversary are now placed by limiting the number of faulty
processors – the adversary is q-bounded if at most a fraction q of all processors
are faulty.

3 Byzantine Generals in the Synchronous Setting

Recall from Sect. 2.2 that we write mU to denote the message m signed by U.
We consider protocols for solving a version of ‘Byzantine Broadcast’ (BB). A
distinguished identifier U∗, which does not belong to any processor, is thought of
as belonging to the general. Each processor p begins with a protocol input inp,
which is a set of messages from the general: either {0U∗}, {1U∗}, or {0U∗ , 1U∗}. All
non-faulty processors p must give the same output op ∈ {0, 1}. In the case that
the general is ‘honest’, there will exist z ∈ {0, 1}, such that inp = {zU∗} for all
p, and in this case we require that op = z for all non-faulty processors.

As we have already stipulated, processors also take other inputs beyond their
protocol input as described in the last paragraph, such as their identifier and Δ
– to distinguish these latter inputs from the protocol inputs, we will henceforth
refer to them as parameter inputs. The protocol inputs and the parameter inputs
have different roles, in that the form of the outputs required to ‘solve’ BB only
depend on the protocol inputs, but the protocol will be required to produce
correct outputs for all possible parameter inputs.

3.1 The Impossibility of Deterministic Consensus
in the Permissionless Setting

In Sect. 2.2, we allowed the permitter oracle O to be a probabilistic function. In
the case that O is deterministic, i.e. if there is a single output for each input, we
will refer to the protocol (S, O) as deterministic.

14 It is technically convenient here to allow that processors can still submit requests,
but that requests always get the same response (the particular value then being
immaterial).

Byzantine Generals in the Permissionless Setting 33

In the following proof, it is convenient to consider an infinite set of proces-
sors. As always, though, (see Sect. 2.2) we assume for each t and M , that there
are finitely many U for which R(U, t,M) �= 0, and thus only finitely many cor-
responding processors given permission to broadcast. All that is really required
for the proof to go through is that there are an unbounded number of identifiers
that can participate at some timeslot (such as is true for Bitcoin, or in any con-
text where the adversary can transfer their resource balance to an unbounded
number of possible public keys), and that the set of identifiers with non-zero
resource balance can change quickly. In particular, this means that the adver-
sary can broadcast using new identifiers at each timeslot. Given this condition,
one can then adapt the proof of [7], that a permissioned protocol solving BB for
a system with t many faulty processors requires at least t + 1 many steps, to
show that a deterministic protocol in the permissionless setting cannot always
give correct outputs. Adapting the proof, however, is highly non-trivial, and
requires establishing certain compactness conditions on the space of runs, which
are straightforward in the permissioned setting but require substantial effort to
establish in the permissionless setting.

Theorem 1. Consider the synchronous setting and suppose q ∈ (0, 1]. There is
no deterministic permissionless protocol that solves BB for a q-bounded adver-
sary.

Proof. See Appendix 6 (in the arXiv version).

Theorem 1 limits the kind of solution to BB that is possible in the per-
missionless setting. In the context of a blockchain protocol (for state machine
replication), however, one is (in some sense) carrying out multiple versions of
(non-binary) BB in sequence. One approach to circumventing Theorem1 would
be to accept some limited centralisation: One might have a fixed circle of partici-
pants carry out each round of BB (involving interactions over multiple timeslots
according to a permissioned protocol), only allowing in new participants after
the completion of each such round. While this approach clearly does not involve
a decentralised solution to BB, it might well be considered sufficiently decen-
tralised in the context of state machine replication.

3.2 Probabilistic Consensus

In light of Theorem 1, it becomes interesting to consider permissionless proto-
cols giving probabilistic solutions to BB. To this end, from now on, we consider
protocols that take an extra parameter input ε > 0, which we call the security
parameter. Now we require that, for any value of the security parameter input
ε > 0, it holds with probability > 1−ε that all non-faulty processors give correct
outputs.

Appendix 7 explains which questions remain open for probabilistic permis-
sionless protocols in the synchronous setting. For now, in the interests of con-
serving space, we just briefly mention another negative result:

34 A. Lewis-Pye and T. Roughgarden

Theorem 2. Consider the synchronous and unauthenticated setting. If q ≥ 1
2 ,

then there is no permissionless protocol giving a probabilistic solution to BB for
a q-bounded adversary.

Proof. See Appendix 7.

4 Byzantine Generals with Partially Synchronous
Communication

We note first that, in this setting, protocols giving a probabilistic solution to BB
will not be possible if the adversary is q-bounded for q ≥ 1

3 – this follows easily
by modifying the argument presented in [8], although that proof was given for
deterministic protocols in the permissioned setting. For q < 1

3 and working in
the sized setting, there are multiple PoS protocols, such as Algorand,15 which
work successfully when communication is partially synchronous.

The fundamental result with respect to the unsized setting with partially
synchronous communication is that there is no permissionless protocol giving
a probabilistic solution to BB. So, PoW protocols cannot give a probabilistic
solution to BB when communication is partially synchronous.16

Theorem 3. There is no permissionless protocol giving a probabilistic solution
to BB in the unsized setting with partially synchronous communication.

Proof. See Appendix 8.

As stated previously, Theorem 3 can be seen as an analog of the CAP Theo-
rem for our framework. While the CAP Theorem asserts that (under the threat
of unbounded network partitions), no protocol can be both available and con-
sistent, it is possible to describe protocols that give a solution to BB in the
partially synchronous setting [8]. The crucial distinction is that such solutions
are not required to give outputs until after the undetermined stabilisation time
has passed. The key idea behind the proof of Theorem3 is that, in the unsized
and partially synchronous setting, this distinction disappears. Network partitions
are now indistinguishable from waning resource pools. In the unsized setting, the
requirement to give an output can therefore force participants to give an output
before the stabilisation time has passed.
15 For an exposition of Algorand that explains how to deal with the partially syn-

chronous setting, see [5].
16 Of course, it is crucial to our analysis here that PoW protocols are being modelled

in the unsized setting. It is also interesting to understand why Theorem 3 does not
contradict the results of Sect. 7 in [10]. In that paper, they consider the form of
partially synchronous setting from [8] in which the delay bound Δ always holds,
but is undetermined. In order for the ‘common prefix property’ to hold in Lemma
34 of [10], the number of blocks k that have to be removed from the longest chain
is a function of Δ. When Δ is unknown, the conditions for block confirmation are
therefore also unknown. It is for this reason that the Bitcoin protocol cannot be
used to give a probabilistic solution to BB in the partially synchronous and unsized
setting.

Byzantine Generals in the Permissionless Setting 35

5 Concluding Comments

We close with some questions.

Question 1. What are the results for the timed/untimed, sized/unsized, and
the single/multi-permitter settings other than those used to model PoW and
PoS protocols? What happens, for example, when communication is partially
synchronous and we consider a variant of PoW protocols for which the total
resource balance (see Sect. 2.3) is determined?

While we have defined the single-permitter and multi-permitter settings, we
didn’t analyse the resulting differences in Sects. 3 and 4. In fact, this is the
distinction between PoS and PoW protocols which has probably received the
most attention in the previous literature (but not within the framework we
have presented here) in the form of the ‘nothing-at-stake’ problem [2]. In the
framework outlined in Sect. 2, we did not allow for a mobile adversary (who can
make non-faulty processors faulty, perhaps for a temporary period). It seems
reasonable to suggest that the difference between these two settings becomes
particularly significant in the context of a mobile adversary:

Question 2. What happens in the context of a mobile adversary, and how does
this depend on whether we are working in the single-permitter or multi-permitter
settings? Is this a significant advantage of PoW protocols?

In the framework we have described here, we have followed much of the
classical literature in not limiting the length of messages, or the finite number
of messages that can be sent in each timeslot. While the imagined network
over which processors communicate does have message delays, it apparently has
infinite bandwidth so that these delays are independent of the number and size of
messages being sent. While this is an appropriate model for some circumstances,
in looking to model such things as sharding protocols [21] it will be necessary to
adopt a more realistic model:

Question 3. How best to modify the framework, so as to model limited band-
width (and protocols such as those for implementing sharding)?

In this paper we have tried to follow a piecemeal approach, in which new
complexities are introduced one at a time. This means that there are a num-
ber of differences between the forms of analysis that normally take place in
the blockchain literature and in distributed computing that we have not yet
addressed. One such difference is that it is standard in the blockchain world to
consider a setting in which participants may be late joining. A number of papers
[12,17] have already carried out an analysis of some of the nuanced considera-
tions to be had here, but there is more to be done:

36 A. Lewis-Pye and T. Roughgarden

Question 4. What changes in the context of late joining? In what ways is this
different from the partially synchronous setting, and how does this relate to
Question 3? How does all of this depend on other aspects of the setting?

References

1. Brewer, E.A.: Towards robust distributed systems. In: PODC, Portland, OR, vol.
7, pp. 343477–343502 (2000)

2. Brown-Cohen, J., Narayanan, A., Psomas, A., Weinberg, S.M.: Formal barriers to
longest-chain proof-of-stake protocols. In: Proceedings of the 2019 ACM Confer-
ence on Economics and Computation, pp. 459–473 (2019)

3. Buterin, V.: What is Ethereum? Ethereum Official webpage. www.ethdocs.org/en/
latest/introduction/what-is-ethereum.html. Accessed 14 2018

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001)

5. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
super fast and partition resilient Byzantine agreement. IACR Cryptol. ePrint Arch.
2018, 377 (2018)

6. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2016)
7. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM

J. Comput. 12(4), 656–666 (1983)
8. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial

synchrony. J. ACM 35(2), 288–323 (1988)
9. Garay, J., Kiayias, A., Ostrovsky, R.M., Panagiotakos, G., Zikas, V.: Resource-

restricted cryptography: revisiting MPC bounds in the proof-of-work era. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 129–158.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 5

10. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications (2018)

11. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

12. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

13. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

15. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
16. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous

networks (2016). https://eprint.iacr.org/2016/454.pdf
17. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 2017 IEEE 30th Computer

Security Foundations Symposium (CSF), pp. 115–129. IEEE (2017)
18. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM (JACM) 27(2), 228–234 (1980)

www.ethdocs.org/en/latest/introduction/what-is-ethereum.html
www.ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2016/454.pdf

Byzantine Generals in the Permissionless Setting 37

19. Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 262–285. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53641-4 11

20. Terner, B.: Permissionless consensus in the resource model. IACR Cryptol. ePrint
Arch. 2020, 355 (2020)

21. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948 (2018)

https://doi.org/10.1007/978-3-662-53641-4_11

	Byzantine Generals in the Permissionless Setting
	1 Introduction
	1.1 Related Work

	2 The Framework
	2.1 The Computational Model
	2.2 The Resource Pool and the Permitter
	2.3 Defining the Timed/Untimed, Sized/Unsized and Single/Multi-permitter Settings
	2.4 The Adversary
	2.5 The Permissioned Setting

	3 Byzantine Generals in the Synchronous Setting
	3.1 The Impossibility of Deterministic Consensus in the Permissionless Setting
	3.2 Probabilistic Consensus

	4 Byzantine Generals with Partially Synchronous Communication
	5 Concluding Comments
	References

