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Abstract. This paper presents a general framework for the design and
analysis of exchange mechanisms between two assets that unifies and
enables comparisons between the two dominant paradigms for exchange,
constant function market markers (CFMMs) and limit order books
(LOBs). In our framework, each liquidity provider (LP) submits to the
exchange a downward-sloping demand curve, specifying the quantity of
the risky asset it wishes to hold at each price; the exchange buys and sells
the risky asset so as to satisfy the aggregate submitted demand. In gen-
eral, such a mechanism is budget-balanced (i.e., it stays solvent and does
not make or lose money) and enables price discovery (i.e., arbitrageurs
are incentivized to trade until the exchange’s price matches the external
market price of the risky asset). Different exchange mechanisms corre-
spond to different restrictions on the set of acceptable demand curves.

The primary goal of this paper is to formalize an approximation-
complexity trade-off that pervades the design of exchange mechanisms.
For example, CFMMs give up expressiveness in favor of simplicity: the
aggregate demand curve of the LPs can be described using constant
space (the liquidity parameter), but most demand curves cannot be well
approximated by any function in the corresponding single-dimensional
family. LOBs, intuitively, make the opposite trade-off: any downward-
slowing demand curve can be well approximated by a collection of limit
orders, but the space needed to describe the state of a LOB can be large.

This paper introduces a general measure of exchange complexity,
defined by the minimal set of basis functions that generate, through their
conical hull, all of the demand functions allowed by an exchange. With
this complexity measure in place, we investigate the design of optimally
expressive exchange mechanisms, meaning the lowest complexity mech-
anisms that allow for arbitrary downward-sloping demand curves to be
approximated to within a given level of precision. Our results quantify
the fundamental trade-off between simplicity and expressivity in exchange
mechanisms.

As a case study, we interpret the complexity-approximation trade-offs
in the widely-used Uniswap v3 AMM through the lens of our framework.
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1 Introduction

Decentralized exchanges are now an integral part of the broader ecosystem of
blockchains, as evidenced by their ever growing volume of transactions [24]. On
model centralized exchanges, the exchange of a risky asset for a numéraire is
typically carried out by an exchange mechanism known as an electronic limit
order book (LOB), in which market participants specify quantities of shares of
the risky asset they would like to trade at specified prices. Trades then occur as
orders are matched in a greedy way: whenever there is overlap between bid and
ask prices (i.e., between a buy and a sell), a trade is executed, and the matched
orders are cleared from the LOB. LOBs therefore maintain and update a list of
all the currently outstanding buy and sell orders.

LOBs face two types of challenges in an decentralized environment such as
the Ethereum blockchain. First, because storage and computation in such an
environment tend to be so scarce, implementing an LOB can be prohibitively
expensive. Second, LOBs are well known suffer from liquidity problems in thin
markets (markets with few buyers or sellers), for example, for “long-tail” crypto
assets.

These challenges have motivated an alternative exchange design that has
become very widely used in blockchains: automated market makers (AMMs)
and, in particular, constant function market makers (CFMMs). Uniswap [1,2] is
the most well known and widely used example of a CFMM.

AMMs address the second challenge above by offering guaranteed liquidity,
meaning at all times there is a spot price between 0 and ∞ at which the AMM
is willing to buy or sell. AMMs like Uniswap address the first challenge by using
only simple calculations and data structures. For example, for the canonical
(“xy = k”) constant product market maker, the state of mechanism can be
described by two numbers (the quantities x and y held by the pool), and there
is a simple closed-form formula (requiring only a small number of additions,
multiplications, divisions, and square roots) for computing the quantity of the
risky asset received in exchange for a specified amount of the numéraire(as a
function of x and y).

In this paper, we provide a general framework for describing and reason-
ing about exchange mechanisms, which enables “apples-to-apples” comparisons
between LOBs and AMMs on metrics such as complexity and expressiveness.
More specifically, our contributions can be delineated as follows:

1. We provide a common framework for describing exchange mechanisms
that encompasses both CFMMs and LOBs. In our general model, liquidity
providers (LPs) submit to the exchange their preferences (in the form of what
we define as demand curves for the risky asset) along with appropriate
deposits of the risky asset and numéraire (see Sect. 2 for details).

2. We formalize the sense in which some methods of exchange are simpler than
others, introducing a general notion of exchange complexity. Exchange
complexity is defined by the minimal set of basis functions that generate,
through their conical hull, all of the demand functions allowed by an exchange.
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We classify the complexity of all the prominent types of exchange mechanisms
(see Sect. 3 for details).

3. We characterize the fundamental trade-off between the complexity of an
exchange (in a sense that we define) and the expressibility of an exchange
as measured by its ability to approximate arbitrary preferences of the LPs
(i.e., arbitrary demand curves). In particular, we prove matching (up to con-
stant factors) upper and lower bounds on the minimum exchange complexity
necessary to attain a specified approximation error (see Sect. 4 for details).

4. As a case study, we interpret the complexity-approximation trade-offs in the
widely-used Uniswap v3 AMM through the lens of our framework (see Sect. 5
for details).

1.1 Literature Review

The use of AMMs for decentralized exchange mechanisms was first proposed
by Buterin [12] and Lu and Köppelmann [27]. The latter authors suggested
a constant product market maker, which was first analyzed by Angeris et al.
[7]. Angeris et al. [4,5] define and use a reparameterization of a CFMM curve
(established by Angeris and Chitra [3]) in terms of portfolio holdings of the pool
with respect to the price as a tool to replicate payoffs and compute the pool’s
value function; we use this same reparameterization for different purposes, to
define a general (i.e., not AMM-specific) framework of exchange and identify
fundamental complexity-approximation trade-offs in exchange design.

A separate line of work seeks to design specific CFMMs with good prop-
erties by identifying good bonding functions, variations and combinations of
CFMMs in a dynamic setting with a specific focus on optimizing fees, and mini-
mizing arbitrage and slippage [6,15–17,19,20,23,25,28,29,33,36,37]. While fees
could be easily integrated into our model, they have no bearing on complexity-
approximation trade-offs and thus we generally ignore them in this paper for
simplicity.

Some previous papers propose generalizations of CFMMs to somewhat wider
classes of exchanges [11,38] without considering LOBs.

CFMMs and LOBs have been compared before (in ways orthogonal to the
questions studied here) [10,13,26]. Most of these works either compare the
observed liquidities and the price efficiency of these mechanisms [13,26] or study
the same through the lens of arbitrage bounds [10]. Young [40] argues that AMMs
can be interpreted as “smooth order books” and notes a type of non-uniform
converse (with each possible state of a smooth order book represented using a
different AMM). Chitra et al. [14] compare CFMMs and LOBs in terms of the
number of arbitrage transactions necessary to recover from a liveness attack on
the underlying blockchain.

Another line of work analyzes competition between CFMMs and LOBs and
the consequent liquidity properties of both at equilibrium [8,9,13]. Goyal et al.
[21] consider the computational complexity of computing such equilibria.



Complexity-Approximation Trade-Offs in Exchange Mechanisms 329

There is a large literature on the market microstructure of limit order books;
see the textbook by O’Hara [32] and references therein. There are some examples
of on-chain LOBs on high-throughput blockchains [30,35].

Finally, Adams et al. [2] suggest that Uniswap v3’s key feature is that “LPs
can approximate any desired distribution of liquidity on the price space,” with
empirical backing provided by Huynh [22]; one application of our work is to put
this intuition on sound mathematical footing. There is also work on Uniswap v3
from the LP perspective, such as how beliefs about future prices should guide
the choice of an LP’s demand curve [18,31,39].

2 Model

2.1 Model Primitives

We begin by describing our framework for exchange design. While this paper
uses this framework specifically to study fundamental complexity-approximation
trade-offs in exchange mechanisms, we believe it can serve also as a starting point
for many future investigations.

Suppose there are two assets, a risky asset and a numéraire asset. Each LP
comes separately to the exchange, and declares the amount of risky asset they
would like to hold at each possible price p, i.e., a non-increasing, non-negative
function gi : (0,∞) → R

+. We call the function gi(·) the ith LP’s demand
curve for the risky asset, because it refers to the demand of the LP for the
risky asset (i.e., we are considering the perspective of the LP). Assuming that
the current price is p0, the LP simultaneously deposits a quantity gi(p0) of the
risky asset in the common pool, along with an amount of numéraire given by
the Riemann-Stieltjes integral

−
∫ p0

0

p dgi(p) . (1)

Note that this integral is well-defined (though possibly infinite) since gi(·) is
monotonic. Moreover, the integral is non-negative since gi(·) is non-increasing.
In cases where gi(p) is differentiable, the differential takes the form dgi(p) =
g′

i(p) dp. We will show later that this deposit of numéraire is necessary and
sufficient for the exchange to be budget-balanced or solvent, i.e., the exchange
system does not extend credit.

The exchange mechanism maintains the demand curves of the LPs, along with
the current price p0. Assuming that n liquidity providers have contributed to the
exchange their demand curves along with respective payments of risky asset and
numéraire, the aggregate demand curve (i.e., the total quantity of risky asset
that the exchange will hold at any given price) is given by the non-increasing
function

g(p) =
n∑

i=1

gi(p) . (2)
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Addition and removal of liquidity (LP “mints” and “burns”, as they are known
in practice) simply occur through additions and removals of particular gi’s to
the aggregate demand curve of the exchange. These demand curves of the LPs
can arise through bonding curves of traditional CFMMs (i.e., functions f such
that the holdings of the joint pool (x, y) satisfy f(x, y) = c for some c) but this is
not necessary; i.e., the exchange mechanisms defined by our framework strictly
generalize AMMs.

Trading. A liquidity demanding trader who wants to trade with the exchange
will do so by specifying a target (new) price p1 �= p0. The trader gets a quantity
g(p0) − g(p1) of risky asset, and pays the following amount in numéraire:

−
∫ p1

p0

p dg(p) , (3)

as determined by the aggregate liquidity of the exchange g(p) of Eq. 2. As was
the case for Eq. 1, this integral is well-defined, it is non-negative if p1 ≥ p0, and
non-positive if p1 ≤ p0.

Uniswap v2 Example. To give a simple example, the particular case of a constant
product market maker (CPMM), such as Uniswap v2, arises from our mechanism
as follows: restrict the set of allowable demand curves gi that an LP may submit
to the form

gi(p) =
ci√
p

,

for some constant ci > 0. Then, the aggregate demand curve of the exchange
will be of the form

g(p) =
n∑

i=1

gi(p) =
c√
p

,

for c =
∑n

i=1 ci > 0. A trader who will trade with this exchange at a current
price p0 with a target price p1 (or equivalently, with a specific quantity of risky
asset to be purchased, since there a one-to-one correspondence) will obtain a
quantity g(p0) − g(p1) = c

(
1√
p0

− 1√
p1

)
of risky asset, and pay in numéraire

−
∫ p1

p0

pg′(p) dp =
∫ p1

p0

c

2
√

p
dp = c (

√
p1 − √

p0) .

Comparing this to the same expressions for an “xy = k” CPMM, the trader
gets exactly the same quantity of risky asset and pays exactly the same amount
of numéraire as they would in the “xy = k” CPMM, with k = c2. Essentially,
the curve g(p) above is just a reparameterization of the CPMM curve xy = k
in terms of prices [5] where the risky asset is available in quantity x in the pool
and the amount of numéraire is y1.
1 In particular, x = g(p) = c/

√
p and y = c

√
p at all times in the pool for the

corresponding defined price p.
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Significance of LPs’ Demand Curves. In this mechanism, we view the individual
demand curves chosen by the LPs as their ideal preferences with respect to risky
asset holdings at each price in regards to their market making activity. They are
in some sense “forced” to make the market —this is tautologically the reason
that they participate in the exchange as LPs2— but exactly how they do this
is specified by the shape of their demand curves. The requirement that each gi

be non-increasing can be explained through this argument: each demand curve
of any LP has to always correspond to making the market; as the price of the
risky asset increases, a market maker may only decrease their holdings of the
asset (i.e., sell the asset), because if at any given price their holdings as defined
in the exchange mechanism marginally increased (i.e., the LP would buy the
risky asset at the marginal price), then any trader would sweep such a marginal
quantity as it is to their advantage.

2.2 Price Discovery and Budget Balance

In the previous section, we defined a framework for an exchange mechanism. In
order for an exchange to be reasonable, two properties would be necessary: (1)
price discovery should occur, i.e., given an outside market with a fixed exter-
nal market price, the exchange’s price should eventually become identical to the
market price; and (2) the exchange should at no point in time become insolvent,
i.e., any feasible trade should always keep the amount of numéraire non-negative.
(Because demand curves are non-negative, the amount of the risky asset is auto-
matically non-negative.) Equivalently, the second property is broadly known in
financial markets as a “no credit” requirement, i.e., that the exchange does not
incorporate the ability of LPs to take credit. In the remainder of the section, we
formalize and prove these properties for our model.

Proposition 1. (Price discovery). If there exists an outside market with fixed
external market price p of the risky asset with respect to the numéraire, then
external market participants (arbitrageurs) always have financial incentive to
trade with an exchange defined as per the framework of Sect. 2.1 until the price
of such exchange becomes equal to the external market price.

Proposition 2. (Budget balance). An exchange defined as in the framework
of Sect. 2.1 is budget-balanced or solvent, i.e., the amount of numéraire that the
joint pool contains at all times (with any sequence of feasible trades, or liquidity
additions/removals) is non-negative.

We defer the full proofs of these two propositions to Appendix A.

2 Note that LPs may also hold other portfolios of the risky asset, which of course
need not be restricted to be non-increasing in the asset price, but their individual
demand curves when they participating in an exchange mechanism need to reflect
exactly and only the activity of making the market.
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3 Exchange Description Complexity and Examples

Our general model in Sect. 2.1 allows LPs to submit arbitrary downward-sloping
demand curves. Such curves are not generally representable in a finite amount
of space, so practical considerations suggest restricting the space of demand
curves that LPs are allowed to submit. We will say that an exchange mechanism
is a restriction of the general exchange framework of Sect. 2.1 in which each
LP demand curve is required to belong to a set of allowable demand curves,
i.e., gi ∈ G for some class G of non-increasing, non-negative functions over the
positive reals. An exchange mechanism, then, is defined by the choice of class G.

Towards defining a measure of exchange complexity, we will be interested in
succinct ways of representing all the demand functions g in a class G. Specifically,
given an arbitrary such class G, we can consider its conical hull. This is the
smallest convex cone that contains3 G or, equivalently, the closure of G under
finite non-negative linear combinations:

cone(G) =

{
k∑

i=1

cigi(p) : gi(p) ∈ G, ci ≥ 0, k ∈ N

}
.

In our context, non-negative linear combinations can be interpreted as aggrega-
tions of multiple LP positions.

A basis of a cone is a minimum-cardinality set of elements that generates
the cone, meaning a set S such that cone(S) = cone(G). We then define the
exchange complexity of an exchange (i.e., a choice G of allowable demand
functions) as the cardinality of a basis for cone(G).4 By definition, if a set G
of demand functions has exchange complexity k, every function of G can be
represented by a k-tuple of non-negative real numbers (one coefficient for each
of the basis functions).5

Our measure of exchange complexity is, by design, well defined for an arbi-
trary collection G of allowable demand functions. In all the real-world examples
that we are aware of, this set G is already closed under non-negative linear com-
binations (i.e., is a cone). In this case, exchange complexity effectively counts an
exchange’s “primitive” LP positions from which all possible aggregations of LP
positions can be derived.

3 This definition makes sense because the intersection of convex cones is again a convex
cone; see, e.g., Rockafellar [34] for further background.

4 While our formalism in principle accommodates exchanges with infinite exchange
complexity, any practical exchange needs to be defined by a finite basis on any
compact (sub-)domain. Additionally, our results only make use of exchanges that
have a finitely generated conic closure to approximate any demand curve within a
finite approximation error under reasonable assumptions about the error metrics.

5 The focus of this work is on information-theoretic complexity – approximation trade-
offs, and we do not explicitly model computation. However, our positive results only
make use of mechanisms for which computation with basis functions is straightfor-
ward.
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This definition of exchange complexity allows us to formalize the intuition
that some exchanges are easier to represent than others (e.g., that CFMMs are
simpler than LOBs). Next, we evaluate the exchange complexity of all of the
most popular types of exchanges used to trade crypto assets.

Fig. 1. g ∈ cone(G) for three typical cases: (a) CPMM, (b) LOB, (c) Uniswap v3

CFMMs. CFMMs are generated by the restriction to non-negative scalar mul-
tiples of a single basis function, i.e., G = {c · g(p) : c ≥ 0}, where g(p) is one
reference demand curve, out of all the possible curves of the CFMM. The coeffi-
cient c of this basis function can then be interpreted as the liquidity parameter.
As an example, for the CPMM, we can choose g(p) = 1/

√
p (cf., Fig. 1a); the

coefficient can be interpreted as
√

k for the k in “xy = k.” In general, irrespective
of the bonding curve, the exchange complexity of a CFMM is 1. Under standard
assumptions (e.g., as in Angeris et al. [4]) on a CFMM’s bonding curve f , the cor-
responding basis function g can be derived from f in a mechanical way, through
optimization.

LOBs. Limit order books consist of limit orders, which are (buy or sell) orders
of quantities of the risky asset at some price. The predetermined prices at which
limit orders can be specified are called ticks. In our framework, limit orders can
be represented by a set of basis functions in which each function corresponds
to a limit order at a specific tick (i.e., a step function, where the step occurs
at the tick). According to our definition of exchange complexity above, then,
the exchange complexity of a limit order book (cf., Fig. 1b) with k ticks is k. If
we restrict our attention to a price range [pmin, pmax] with ticks pmin, pmin + ε,
pmin + 2ε, . . . , pmax, the exchange complexity of such a LOB would be (pmax −
pmin)/ε.

There is a superficial difference in convention between traditional LOBs and
our model of them in the preceding paragraph, concerning the default action
after a trade that crosses the price of a limit order. In an LOB, the matching
limit order would be automatically removed from the order book, whereas in
our framework here the corresponding LP would, in effect, automatically place
a new limit order in the opposite direction at the same price. In other words, a
LOB basis function is equivalent to both a limit buy and a limit sell at the tick
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price, and which one takes effect depends on the current price p0 and the trade
to be executed. Because limit orders can be easily added to or removed from
traditional LOBs, and because our model accommodates LP mints and burns,
there is no material difference between the two viewpoints.

Uniswap v3. Uniswap v3 (cf., Fig. 1c) can be viewed as a hybrid of a CFMM
and a LOB, with the CPMM curve applied only within a short price interval (in
between two of the pre-defined ticks). By allowing multiple intervals, Uniswap
v3 allows concentrated positions in the spirit of LOBs, a property known as
concentrated liquidity. If there are k ticks contained in the interior of an interval
[pmin, pmax], then Uniswap v3’s complexity on this interval is k. (There is one
basis function for each price segment [ti, ti+1] between two successive ticks; the
function is constant up until the interval, decreases as in a CPMM within the
interval, and is zero after the interval, as in Eq. 4).

gi(p) =

⎧⎪⎨
⎪⎩

1√
ti

− 1√
ti+1

, for p ≤ ti
1√
p − 1√

ti+1
, for ti ≤ p ≤ ti+1

0 , for p ≥ ti+1

(4)

Thus, the exchange complexity of both LOBs and Uniswap v3 is controlled by
the number of ticks (independent of the spacing between them). In practice, ticks
are sparser in Uniswap v3 than in a traditional LOB, and the former accordingly
has lower exchange complexity than the latter. For an example calculation, if
the ticks in Uniswap v3 are assumed to be of the form 1.0001i, and pmin =
1.0001s, pmax = 1.0001s+t, then Uniswap v3’s complexity in the price interval
[pmin, pmax] is

t =
log(pmax/pmin)

log 1.0001
≈ 10000.5 log(pmax/pmin) .

We note that range orders in Uniswap v3 correspond to sums of single-interval
positions (with one position per interval in the range) and are therefore auto-
matically included in the cone generated by the basis functions defined above.

4 Complexity – Approximation Trade-Offs

4.1 Notions of Approximation

Having defined the complexity of an exchange mechanism, we turn to defining the
expressiveness of such a mechanism and proving fundamental trade-offs between
complexity and expressiveness. Informally, we will measure the expressiveness
of an exchange mechanism via the extent to which its allowable demand curves
(i.e., the functions in the class G) can represent arbitrary LP preferences (i.e.,
an arbitrary demand curve).

Precisely, denote by F the class of all non-increasing functions f :
[pmin, pmax] → [fmin, fmax]. This is the most general class of bounded demand
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curves according to our framework. Any arbitrary (bounded) preference of an
LP will be some specific non-increasing function f ∈ F .6 We next define the
extent to which some allowable demand curve g ∈ G (with the same domain and
range) approximates f . (In this section we use g rather than gi to denote an
arbitrary function of G.)7

First, we introduce the weighted �p norm in the function space as a distance
metric; without loss of generality, assume we have a normalized (and integrable)
weight function w : [pmin, pmax] → R

+ such that
∫ pmax

pmin
w(p) dp = 1. Then, the

weighted �p distance of two functions f, g ∈ F is

d(f, g) =
(∫ pmax

pmin

w(s) |f(s) − g(s)|p ds

)1/p

.

The weight function w can be interpreted as a measure on the price space, for
example reflecting a belief (by an LP, the AMM designer, or the community) that
some prices may be more relevant than others. On a first read, we encourage
the reader to take w to be the constant function w(s) = 1/(pmax − pmin) for
all s ∈ [pmin, pmax].

Given this definition, we define the approximation error of the exchange
defined by G as the worst-case (over arbitrary LP preferences/demand curves
f ∈ F) distance from the best-case approximation (over allowable functions
g ∈ cone(G)) of f , as above:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
. (5)

4.2 Upper and Lower Bounds

From the AMM designer’s perspective, an “optimal” AMM would enable LPs
to have their preferences expressed closely; a bit more formally, the worst-case
approximation error through the AMM for arbitrary LP demand curves should

6 Note that in what follows f is a demand curve, as defined in Sect. 2.1, and not a
bonding curve of a CFMM.

7 The restricting to a bounded domain and range is convenient but can be relaxed
considerably. The fundamental issue is that, to meaningfully speak about function
approximations and avoid infinite distances between distinct functions, we need to
impose constraints on allowable demand functions and/or the choice of distance
function and underlying measure (on prices). Functions with bounded domain and
range are convenient because they are integrable no matter what the distance notion
and measure. Our results can be generalized by considering combinations of demand
function classes and classes of measures for which the same integrability properties
are guaranteed.

Additionally, it will be apparent from our lower bound (Theorem 2) that, if the
family of functions F was not bounded by some finite bound fmax < ∞, there would
be no finite approximation error guarantee with any finite complexity (under any
natural notion of approximation error).
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be low, and intuitively should decrease with the complexity of the exchange
mechanism: the higher exchange complexity should result in a payoff of lower
worst-case approximation error. The results below characterize this trade-off, by
identifying the best-possible worst-case approximation error as a function of the
exchange complexity. For example, for the special case in which the approxima-
tion metric between two functions is the (unweighted) �1 distance, an exchange
complexity (equivalently, number of basis functions) of Θ(1/ε) is necessary and
sufficient to achieve an ε worst-case approximation error.

Our upper bound argument also implies the (intuitive but previously unfor-
malized) fact that limit order books at appropriately defined price ticks attain
the optimal approximation error guarantee for a given level of exchange com-
plexity (up to a factor of 2). In other words, when computation and storage
are not first-order constraints, LOBs are nearly optimally expressive exchange
mechanisms.

Theorem 1. (Upper bound). For every ε > 0, there exists a limit order
book (LOB) exchange mechanism G with exchange complexity k = O(1/εp) that
attains approximation error

err(G) ≤ ε · fmax − fmin

2
.

Theorem 2. (Lower bound). For every ε > 0, every exchange mechanism G
with exchange complexity O(1/εp) suffers approximation error

err(G) ≥ ε · Ω(fmax − fmin) .

For the detailed proofs of Theorems 1, and 2 we refer to Sects. 6.1 and 6.2
respectively.

5 Uniswap V3

Next, we answer the question: to what extent do various formats in practice
come close to this complexity – approximation trade-off? Historically, constant
product market makers (CPMMs) were first built for gas efficiency purposes [1],
but when it was realized that this came often at the expense of capital efficiency,
the proposal of Uniswap v3 came around [2], which trades like a CPMM curve
inside tight intervals at a pre-defined tick spacing, which are otherwise indepen-
dent. In this section, we consider Uniswap v3, which is at the time of writing a
widely used AMM, as an enlightening example to showcase how our theory can
be applied to formally prove approximation guarantees for AMMs employed in
practice.
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More specifically, we can prove that —under a particular assumption of the
returns distribution with maximum entropy, i.e., a uniform prior in the returns
space— a variation of Uniswap v3 with variable tick spacing δ achieves an
approximation error that matches (up to a constant multiplicative factor) the
lower bound in Theorem 2. The precise formulation follows.

Theorem 3. For every ε > 0, there exists a Uniswap v3-like exchange mecha-
nism G with n = O(1/εp) ticks at prices pmin(1 + δ)i for i ∈ {0, 1, . . . , n} where
log(1 + δ) = εp log(pmax/pmin), that attains approximation error according to
Eq. 5 with a normalized weight function w(p) which assigns measure at most
O(1/n) to each of the intervals defined by these ticks, of

err(G) ≤ O(ε · (fmax − fmin)) .

The detailed proof of Theorem 3 is relegated to Sect. 6.3.

6 Proofs

6.1 Proof of Theorem 1

Let ε > 0, and a normalized weight function w : [pmin, pmax] → R
+ such that∫ pmax

pmin
w(p) dp = 1. Then, since w(p) ≥ 0 ∀p ∈ [pmin, pmax], split the interval

[pmin, pmax] into n = 1/εp equal measure (according to the weight function) sub-
intervals [ti, ti+1], ∀i ∈ {1, 2, . . . , n}, i.e., such that

∫ ti+1

ti
w(p)dp = 1

n . Define
the limit order book (LOB) exchange mechanism G = cone(G) as the conical
hull of the following set of basis functions: each basis function represents a limit
order at each price point ti above, i.e., the basis function is a unit step function
dropping from 1 to 0 at price ti. The exchange complexity of this G is therefore
1/εp.

Consider any f ∈ F , and define the following gf ∈ cone(G) that will “approx-
imate” this f :

∀p ∈ (ti, ti+1), gf (p) =
f(ti) + f(ti+1)

2
. (6)

It is true that this gf ∈ cone(G), because gf is piecewise constant, with function
value drops occurring only at the prices ti (see Fig. 1b for an example represen-
tation).

We have that

∀p ∈ (ti, ti+1), |f(p) − gf (p)| ≤ f(ti) − f(ti+1)
2

,

since f is non-increasing, and by the definition of gf in Eq. 6.
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Hence, we obtain the desired result:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
≤ sup

f∈F

(
n∑

i=1

∫ ti+1

ti

w(s) |f(s) − gf (s)|p ds

)1/p

≤ sup
f∈F

(
n∑

i=1

∫ ti+1

ti

w(s)

(
f(ti) − f(ti+1)

2

)p

ds

)1/p

=
1

2n1/p
sup
f∈F

(
n∑

i=1

[f(ti) − f(ti+1)]
p

)1/p

≤ 1

2n1/p
sup
f∈F

n∑
i=1

[f(ti) − f(ti+1)]

≤ ε · fmax − fmin

2
,

where the second-to-last inequality follows from the inequality between �1 and
�p norms in the function space.

6.2 Proof of Theorem 2

Let ε > 0, and a normalized weight function w : [pmin, pmax] → R
+ such that∫ pmax

pmin
w(p) dp = 1. Similarly to the upper bound, but with double the amount

of intervals, split the interval [pmin, pmax] into 2(n + 2) (where n = 1/εp)
equal measure (according to the weight function) sub-intervals [ti, ti+1], ∀i ∈
{1, 2, . . . , 2n + 4}, i.e., such that

∫ ti+1

ti
w(p)dp = 1

2(n+2) . Now, consider any
exchange mechanism G with exchange complexity ≤ 1

εp −1, i.e., such that cone(G)
is generated by ≤ 1

εp − 1 basis functions; suppose without loss of generality that
these are g1, g2, . . . , gn−1 ∈ cone(G).

Lemma 1. For every basis function gi (where i ∈ {1, 2, . . . , n − 1} as above),
there exists at most one interval of the form [t2l+1, t2l+3] for some l ∈ {1, . . . , n}
(where t’s are defined as in the above paragraph) such that

gi(t2l+1) − gi(t2l+3) >
gi(t3) − gi(t2n+3)

2
.

Proof. Let gi be any basis function. Assume that the lemma’s hypothesis is not
true, i.e., there exist at least two intervals [t2l+1, t2l+3] and [t2m+1, t2m+3] for
some l,m such that the lemma’s equation holds for each of these intervals. But
since gi is non-increasing, this would necessitate that

gi(t3) − gi(t2n+3) ≥ [
gi(t2l+1) − gi(t2l+3)

]
+

[
gi(t2m+1) − gi(t2m+3)

]
> gi(t3) − gi(t2n+3) ,

which completes the proof by contradiction.
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From Lemma 1 and the pigeonhole principle (there exist n odd-indexed inter-
vals of the form [t2l+1, t2l+3] for some l ∈ {1, . . . , n}, but only n − 1 basis func-
tions), we get that there exist at least one interval of the form [t2l+1, t2l+3] (for
some l ∈ {1, . . . , n}) such that for all i ∈ {1, 2, . . . , n − 1},

gi(t2l+1) − gi(t2l+3) ≤ gi(t3) − gi(t2n+3)
2

,

and because cone(G) is finitely generated, it holds that for all g ∈ cone(G),

g(t2l+1) − g(t2l+3) ≤ g(t3) − g(t2n+3)
2

. (7)

Note that the interval is not the leftmost [t1, t3] or the rightmost [t2n+3, t2n+5]
interval.

Consider the following specific fa ∈ F :

fa(p) =

{
fmax , for pmin ≤ p < t2l+2

fmin , for t2l+2 ≤ p ≤ pmax

.

Consider any g ∈ cone(G). We distinguish a few cases for the extreme values
of g outside of the outermost odd-indexed intervals, i.e., g(t3) and g(t2n+3):

– If g(t3) ≥ fmax + fmax−fmin
4 , then

∫ t3

t1

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 4p
.

– If g(t2n+3) ≤ fmin − fmax−fmin
4 , then

∫ t2n+5

t2n+3

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 4p
.

– Otherwise, we have that g(t3) − g(t2n+3) < 3
2 (fmax − fmin). We now distin-

guish 3 sub-cases:
• If g(t2l+1) ≥ fmax, then g(t2l+2) ≥ g(t2l+3) ≥ fmax+3fmin

4 by Eq. 7, thus
∫ t2l+3

t2l+2

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 21+2p
.

• If g(t2l+3) ≤ fmin, then g(t2l+2) ≤ g(t2l+1) ≤ 3fmax+fmin
4 by Eq. 7, thus

∫ t2l+2

t2l+1

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 21+2p
.

• Otherwise, for some δ1, δ2 > 0 we have that fmin < fmin+δ2 = g(t2l+3) ≤
g(t2l+1) = fmax − δ1 < fmax; then by Eq. 7 we get δ1 + δ2 ≥ fmax−fmin

4 ,
therefore∫ t2l+3

t2l+1

w(s) |fa(s) − g(s)|p ds ≥ δp
1 + δp

2

2(n + 2)
≥ (δ1 + δ2)p

(n + 2) · 2p
≥ (fmax − fmin)p

(n + 2) · 8p
,

where the second-to-last inequality follows from Hölder’s inequality.
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Hence, we obtain the desired result:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
≥ inf

g∈cone(G)

(∫ pmax

pmin

w(s) |fa(s) − g(s)|p ds

)1/p

≥ ε · Ω(fmax − fmin) .

6.3 Proof of Theorem 3

Let ε > 0, and consider ticks ti = pmin(1+ δ)i for i ∈ {0, 1, . . . , n} where log(1+
δ) = εp log(pmax/pmin), and n = log(pmax/pmin)/ log(1+δ), so that t0 = pmin and
tn = pmax. Consider the normalized weight function w : [pmin, pmax] → R

+ such
that

∫ pmax

pmin
w(p) dp = 1, with the property that for some constant C > 0, ∀i ∈

{0, 1, . . . , n − 1},
∫ ti+1

ti
w(p) dp ≤ Cp

n . Our Uniswap v3-like exchange mechanism
G = cone(G) is described with the following n + 1 basis functions: one basis
function for each of the intervals [ti, ti+1] for i ∈ {0, 1, . . . , n − 1} defined by

gi(p) =

⎧⎪⎨
⎪⎩

1√
ti

− 1√
ti+1

, for pmin ≤ p ≤ ti
1√
p − 1√

ti+1
, for ti ≤ p ≤ ti+1

0 , for ti+1 ≤ p ≤ pmax

,

along with the additional basis function gn(p) that is everywhere 18.
Consider any f ∈ F , and define the following gf ∈ cone(G) that will “approx-

imate” this f :

gf (p) = f(pmax)gn(p) +
n−1∑
i=0

f(ti) − f(ti+1)
1√
ti

− 1√
ti+1

gi(p) .

Then, it holds that

∀p ∈ (ti, ti+1), |f(p) − gf (p)| ≤ f(ti) − f(ti+1) .

Hence, we obtain the stated result by a similar argument to that of Sect. 6.1.
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A Deferred Proofs of Section 2.2

Proof. (rice discovery) Assume that the current price of the exchange is p0 �= p.
Suppose that an external market participant comes to the exchange and is willing
to trade to some price p1, and then uses the external market to trade back. We
prove that the maximum profits will be obtained at p1 = p; therefore, if the
trader does not maximize their profits, other external market participants will
continue to have an incentive to trade until the price of the exchange is p and
the conclusion follows.

Due to Eq. 3, the external market participant’s optimization problem for their
profit is:

max
p1∈R+

p(g(p0) − g(p1)) +
∫ p1

p0

pdg(p) = max
p1∈R+

(p1 − p)g(p1) −
∫ p1

0

g(p)dp

First-order conditions then prove that the optimum is attained at p1 = p.

Proof. (Budget balance). Assume that the current price of the exchange is p0.
First, we note that liquidity additions and removals, due to the linear nature of
the aggregate demand curves and the numéraire contributed/removed by Eq. 1
with respect to the curves gi(p), do not affect the rest of the joint pool, i.e., if
the amount of numéraire was non-negative before the operation, so it is after
it. Trading is the only action which is yet unclear how it affects the amount of
numéraire in the pool. In aggregate, the joint pool contains a quantity g(p0) of
risky asset, and in numéraire by Eq. 1:

n∑
i=1

−
∫ p0

0

pdgi(p) = −
∫ p0

0

pdg(p) ≥ 0 ,

because g is non-increasing (as the sum of non-increasing functions) and p0 ≥ 0.
Suppose that a trader comes and moves the pool price to p1. The new amount
of numéraire contained in the pool by the above equation and Eq. 3 is

−
∫ p0

0

pdg(p) −
∫ p1

p0

pdg(p) = −
∫ p1

0

pdg(p) ≥ 0 ,

thereby completing our argument.
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18. Fan, Z., Marmolejo-Cosśıo, F.J., Altschuler, B., Sun, H., Wang, X., Parkes, D.: Dif-
ferential liquidity provision in uniswap v3 and implications for contract design. In:
Proceedings of the Third ACM International Conference on AI in Finance, ICAIF
2022, pp. 9–17. Association for Computing Machinery, New York (2022). https://
doi.org/10.1145/3533271.3561775. https://doi.org/10.1145/3533271.3561775

19. Felekis, G., Kristensen, J.: λ - constant function markets generalizing and mixing
automated market makers. In: 2022 IEEE International Conference on Blockchain
(Blockchain), pp. 290–297 (2022). https://doi.org/10.1109/Blockchain55522.2022.
00047

20. Forgy, E., Lau, L.: A family of multi-asset automated market makers. arXiv
preprint arXiv:2111.08115 (2021)

21. Goyal, M., Ramseyer, G., Goel, A., Mazières, D.: Batch exchanges with con-
stant function market makers: axioms, equilibria, and computation. arXiv preprint
arXiv:2210.04929 (2022)

http://arxiv.org/abs/2103.14769
http://arxiv.org/abs/2111.13740
http://arxiv.org/abs/1911.03380
http://arxiv.org/abs/2112.07386
https://arxiv.org/abs/2210.01227
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
http://arxiv.org/abs/2103.08842
https://doi.org/10.1007/978-3-031-07689-3_31
http://arxiv.org/abs/2110.09872
https://doi.org/10.1145/3533271.3561775
https://doi.org/10.1145/3533271.3561775
https://doi.org/10.1145/3533271.3561775
https://doi.org/10.1109/Blockchain55522.2022.00047
https://doi.org/10.1109/Blockchain55522.2022.00047
http://arxiv.org/abs/2111.08115
http://arxiv.org/abs/2210.04929


Complexity-Approximation Trade-Offs in Exchange Mechanisms 343

22. Huynh, Y.: Providing liquidity in uniswap v3 (2022)
23. Jensen, J.R., Pourpouneh, M., Nielsen, K., Ross, O.: The homogenous properties

of automated market makers. arXiv preprint arXiv:2105.02782 (2021)
24. Kaiko: Crypto Markets Recover Despite 9.1% Inflation, July 2022. https://blog.

kaiko.com/crypto-markets-recover-despite-9-1-inflation-9d7db87ab83f
25. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic automated market makers for

decentralized cryptocurrency exchange. In: 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pp. 1–2 (2021). https://doi.org/10.1109/
ICBC51069.2021.9461100

26. Lehar, A., Parlour, C.A.: Decentralized exchanges. Technical report, Working
paper (2021)
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