
Eagle: Efficient Privacy Preserving Smart
Contracts

Carsten Baum1(B) , James Hsin-yu Chiang1 , Bernardo David2,
and Tore Kasper Frederiksen3

1 Technical University of Denmark, Kongens Lyngby, Denmark
cabau@dtu.dk, jachiang@ucla.edu

2 IT University of Copenhagen, Copenhagen, Denmark
bernardo@bmdavid.com

3 Alexandra Institute, Aarhus, Denmark

Abstract. The proliferation of Decentralised Finance (DeFi) and
Decentralised Autonomous Organisations (DAO), which in current form
are exposed to front-running of token transactions and proposal voting,
demonstrate the need to shield user inputs and internal state from the
parties executing smart contracts. In this work we present “Eagle”, an
efficient UC-secure protocol which efficiently realises a notion of privacy
preserving smart contracts where both the amounts of tokens and the
auxiliary data given as input to a contract are kept private from all par-
ties but the one providing the input. Prior proposals realizing privacy pre-
serving smart contracts on public, permissionless blockchains generally
offer a limited contract functionality or require a trusted third party to
manage private inputs and state. We achieve our results through a com-
bination of secure multi-party computation (MPC) and zero-knowledge
proofs on Pedersen commitments. Although other approaches leverage
MPC in this setting, these incur impractical computational overheads
by requiring the computation of cryptographic primitives within MPC.
Our solution achieves security without the need of any cryptographic
primitives to be computed inside the MPC instance and only require a
constant amount of exponentiations per client input.

Keywords: Blockchain · DeFi · MPC · Privacy

Carsten Baum: Part of the work was carried out while the author was visiting Copen-
hagen University and supported by Partisia. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of Partisia.
Bernardo David: The project was supported by the Concordium Foundation, by the
Independent Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C),
9131-00075B (PUMA) and 0165-00079B, and by Copenhagen Fintech.
Tore Kasper Frederiksen: The work was carried out while at the Alexandra Institute,
supported by Copenhagen Fintech as part of as part of the “National Position of
Strength programme for Finans & Fintech” funded by the Danish Ministry of Higher
Education and Science.

c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13950, pp. 270–288, 2024.
https://doi.org/10.1007/978-3-031-47754-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47754-6_16&domain=pdf
http://orcid.org/0000-0001-7905-0198
http://orcid.org/0000-0002-5126-9494
http://orcid.org/0000-0002-0358-2638
https://doi.org/10.1007/978-3-031-47754-6_16

Eagle: Efficient Privacy Preserving Smart Contracts 271

1 Introduction

Ethereum introduced the first implementation of Turing-complete smart con-
tracts for blockchains, widely adopted for financial and contracting applications
since its introduction in 2015. Smart contracts offer auditability and correct-
ness guarantees, and as a consequence expose both their state and any submit-
ted inputs to all participants of the blockchain network. This lack of privacy
not only leaks user data but also gives rise to concrete attacks. For example,
current Decentralised Finance (DeFi) and Decentralised Autonomous Organi-
sations (DAO) are vulnerable to front-running [23] in token transactions and
proposal voting. This motivates the need to shield user inputs and internal con-
tract state from the very parties who execute smart contracts in a decentralized
environment.

Challenges. Hawk [37] introduced the first notion of general-purpose privacy
preserving smart contracts, which required users to privately submit both input
strings and confidential balances to a trusted contract manager. Upon evaluation
of the contract over private inputs, the contract manager settles the confidential
outputs to a confidential ledger, proving in zero knowledge that these outputs
have been obtained according to the contract’s instructions. Importantly, in order
to accommodate real-world applications such as DeFi or DAO’s, we must extend
the Hawk notion of confidential contracts as follows:

1. Distribute the role of the trusted third party in an efficient manner, avoiding
a single point of failure without significantly sacrificing performance.

2. Only require clients to be online during a short input phase; as in the standard
client-blockchain interaction model, clients only broadcast signed inputs.

3. Allow privacy preserving smart contracts to be long-running applications over
indefinite rounds, as is the case in standard, public smart contracts.

Our Contributions. In this work we present “Eagle”, a Universally Com-
posable [17] protocol for achieving efficient privacy preserving smart contracts,
which handles all the three challenges explained above: (1) is achieved by eval-
uating the contract’s instructions via an outsourced secure multi-party computa-
tion (MPC) protocol [31], where clients provide private inputs and servers exe-
cute the bulk of the protocol to compute a function on these inputs without
learning them. We use a MPC protocol, known as insured MPC, which allows
a public verifier to identify servers aborting at the output phase, so that cheat-
ing servers can be identified and financially punished, incentivizing fairness (i.e.
if a server gets the output, all servers/clients also get it) [7]. That is, by com-
bining outsourced and insured MPC we get a protocol where client computation
and interaction is independent of the circuit computed in MPC and where reli-
ability is incentivized and security is obtained as long as only a single MPC is
honest. (2) is accomplished with a novel input protocol which pre-processes data
necessary for the servers to generate private outputs (e.g. token amounts) that
are posted directly to the public ledger but can only be read by specific clients.
(2) facilitates (3), realized by a reactive version of our MPC protocol, which main-
tains a secret off-chain state over multiple rounds. Here, we contribute a model

272 C. Baum et al.

of long-running, privacy preserving contracts, which at the onset of each round
accepts new inputs from any subset of clients. At the end of each round, clients get
public outputs and servers keep a secret internal state, allowing evaluation to take
place in a continuous, multi-round fashion, even if clients are offline (2).

Applications. Several general applications for privacy preserving smart con-
tracts have already been proposed. Auctions: can be realized securely on-chain
with privacy preserving smart contracts, as auctions implemented without privacy
are vulnerable to front-running (miners can trivially observe individual bids posted
to the ledger). Identity management: Decentralized Identity (DID) manage-
ment considers the setting where user-attributes are posted to a ledger, in a cer-
tified, yet hidden manner. DID implemented with privacy preserving smart con-
tracts enables proofs and computations on private identity attributes, facilitat-
ing their integration with blockchain applications. KYC Mixing: We can con-
struct a privacy preserving smart contract to realize a mixer that enforces Anti
Money Laundering (AML) policies. For example, such a mixer could use DID to
integrate Know Your Customer (KYC) information to either limit user permis-
sions or the quantity of mixed tokens allowed per month. Side-chains: The MPC
servers alone could be considered a privacy preserving side-chain. Multiple sets of
MPC servers could work together with a single smart contract to realize a privacy
preserving sharding scheme on any layer 1 chain with Turing complete smart con-
tracts.AMMsandDeFiviaCross-chain contracts:Using ideas of P2DEX [9],
we show that the MPC servers can interact with smart contracts on many differ-
ent ledgers. Hence, privacy preserving smart contracts can work across multiple
ledgers and different native tokens. This realizes cross-chain, front-running resis-
tant automated market makers (AMMs) with strong privacy guarantees. We dis-
cuss these applications in more detail in the full version [6].

Fig. 1. Outline of our protocol for confiden-
tial contracts. The wrapping and interac-
tion of functionalities are shown.

Our Techniques. We sketch our
protocol in Fig. 1. This only consid-
ers execution of a single instance
of a privacy preserving smart con-
tract for simplicity. We discuss the
multi-round setting in the full ver-
sion [6]. where computations are exe-
cuted continuously with different sets
of clients. We assume a set of clients
C and MPC servers P, both interact-
ing with a ledger functionality FLedger.
The ledger hosts two deployed smart
contract instances: XCLedger maintains
a confidential ledger and is extended
with XLock, which locks and redis-
tributes confidential balances, out-
put and jointly signed, by the MPC
servers. Concretely our protocol runs
the following phases:

Eagle: Efficient Privacy Preserving Smart Contracts 273

Init. Before any execution, the servers setup the system by sampling a threshold
signature key pair and provide sufficient collateral for the insured MPC execu-
tion, and setup smart contact XLock, administered by the distributed signature
key. We note that in the multi-round setting this only needs to be executed once
for the specific set of MPC servers, and is thus independent of the clients and
the amount of computations that will get carried out later.

Enroll. When a privacy preserving smart contract is to be executed, each client
who wish to participate transfers confidential tokens to XCLedger which they wish
to use as input to the confidential smart contract CContract. The client then
gives any auxiliary input, along with the opening information to the commitment
containing their confidential balance v, to the insured MPC functionality FIdent

from the work of Baum et al. [7,9], extended with a secure client input interface
to allow for outsourced MPC [31] and described in detail in the full version [6].
Each client constructs an appropriate amount of “mask” commitments; one for
each round of confidential contract computation, for which they wish their input
to be used. A masking commitment is simply a commitment to a random value.

Verify Input. The servers validate the input received from the clients using
outsourced MPC, and ensure that XLock has also received the appropriate con-
fidential tokens. The servers and the clients also execute a proof to ensure that
the opening information supplied by clients are indeed valid for the confidential
token commitments. They do this following a standard Σ-protocol where each
client commits to a random commitment a and servers select a random chal-
lenge γ and ask the client to open com(c) = com(a) ⊕ (γ � com(v)). Similarly
the servers use MPC to securely open [c] = [a] + γ · [v] and check consistency1.

Evaluate. After the checks are completed the servers evaluate the circuit
expressing the private smart contract CContract, using insured MPC. For the
clients who are supposed to get output from this round of computation, shares
of messages and randomness for a new commitment for each client are computed,
and blinded with the “masking” values the clients provided during Enroll. If this
goes well, the servers distributedly sign a message saying that they have reached
this stage and post it to XLock.

Open. For clients that receive output after this round of computation the servers
open the masked output. They publish these values and sign them, as part of the
transcript of the current round execution, and post this to XLock. Note that XLock

can generate the output coins in commitment form, due to the homomorphism of
the commitments and since it obtained the mask commitments from the clients
in Enroll. XLock can then transfer the new confidential tokens back to the client’s
address. We show an extension to our protocol in the full version [6]) that ensures
no token minting can occur even if all servers are corrupted.

Withdraw. Based on the masks they constructed, the clients who are supposed
to receive outputs can compute the coin commitment openings from their masked
outputs signed and posted to XLock by servers during Open.
1 In our full protocol we optimize this by batching client input checks.

274 C. Baum et al.

Abort. In case a server stops responding or acts maliciously, an honest server
can request the entering of an abort phase. Any server can do this, either by sub-
mitting a proof that the malicious server sent wrong information or by requesting
missing information from the accused servers. At this point the accused malicious
server has a constant amount of time left to prove to the smart contract that
they did not abort, by submitting the message that the accusing server claims
they didn’t get. If they don’t, they will have their collateral revoked and it will
be shared among the honest servers and clients, and the contract state will roll
back one round, i.e. to the contract state preceding Evaluate. Concretely XLock

will refund the clients their input funds, plus a compensation obtained from the
cheating servers’ collateral.

Related Works. A long line of work realizes notions of privacy preserv-
ing smart contracts that sacrifice privacy [21,32,35,37,41,46–48] or flexibil-
ity [14,15]. Zexe [14] extends the ZCash model of confidential transactions to
enable Bitcoin Script-like stateless privacy preserving smart contracts support-
ing only very simple logic. Zether [15] implements confidential transactions on
top of Ethereum, allowing for very simple privacy preserving applications (e.g.
auctions). Zkay [47] allows for computing on encrypted private inputs by means
of keeping data encryption on the blockchain, and using NIZKs to validate that
any updates done to the encrypted is carried out correctly. Follow-up work,
Zeestar [46] uses additively homomorphic encryption to allow for limited private
computation on data from multiple owners, without them having to share their
private data with each other. Secret Network [48] and Ekiden [21] implement
general purpose contracts but rely on notoriously vulnerable trusted execution
environments (e.g. Intel SGX [42]) for privacy and correctness. Arbitrum [32]
relies on a full quorum of parties (the servers in our setting) being honest to
achieve privacy for general purpose contracts. Finally, Kachina [35] subsumes
these approaches with a framework based on state oracles [41] that yields pri-
vacy preserving smart contracts, where either flexibility is limited (i.e. contract
state is only updated by one client’s private input at a time) or privacy is com-
promised (i.e. a trusted third party must learn clients’ private inputs in order
to update the state). The ideal functionality of Kachina is designed to permit
input concurrency, allowing honest inputs to be finalized on a global ledger in a
different order as their generation; the Kachina protocol requires private inputs
to be accompanied with NIZKs proving a valid update of the private state frag-
ment. Here, the NIZKs are not bound to a specific, public contract state and
thus remain valid even if the public contract state observed by the user was
updated by another user input in the meantime.

Combining MPC with blockchain based cryptocurrencies and smart contracts
has been investigated in a long line of works [1,2,7–12,22,27,36,38–40] aiming
at achieving fairness in the dishonest majority setting via financial punishments.
The core idea of these works is having all parties, who execute the MPC protocol,

Eagle: Efficient Privacy Preserving Smart Contracts 275

provide a collateral deposit, which is taken from them in case they are caught
cheating. Thus incentivizing honest behavior. However, this approach publicly
reveals the amount of collateral deposited by each party, which falls short of
achieving our notion of privacy preserving smart contracts, where both auxiliary
data and the amount of tokens given as input to the contract must remain
private. Notice that revealing the deposit amount is an issue in applications
where this amount is directly related to the client’s private input, e.g. in sealed-
bid auctions, where the collateral deposit must be equal to at least the client’s
private bid. An auction protocol using collateral deposits with private amounts
was proposed in [28] but it cannot be generalized to other tasks.

Hawk [37, App. G] does suggest to use MPC to achieve a decentralized con-
fidential smart contracts on both token amount and auxiliary input. However,
Hawk works in the ZCash model and thus their MPC solution would require the
computation of SNARKs to realize the ZCash transactions, within the MPC cir-
cuit. Although it has been shown [33,43] that integrating NIZKs with MPC can
be done without degrading performance too much, there is still a performance
hit. Since the construction of a single ZCash transaction SNARK still takes a
non-negligible amount of time plain, this would naturally be inefficient to realize
in MPC, as MPC is orders of magnitude slower than regular computation. Fur-
thermore, they need all users to take part in the MPC computation. zkHawk [4]
improves upon this, by forgoing the need of doing SNARKs in MPC, but still
require all users taking part in a confidential smart contract to facilitate an
MPC computation which must compute Schnorr style ZKPs on Pedersen com-
mitments to the bit-decomposition of the amount of coins each of them hold.
While V-zkHawk [5] forgoes the need of proofs of the bit-decomposed commit-
ments, they replace it with the computation of commitments in a larger fields
and a signature, in MPC instead. While more efficient, this approach would still
require MPC over a large domain and contributes non-negligible overhead. In
the full version [6]. we further discuss related works.

2 Preliminaries Table 1. Notation.

P The set of servers
C The set of clients
n Number of servers n = |P|
m Number of clients; m = |C|
l Number of bits representing balances
z Number of input/output per client
κ Computational security parameter
s Statistical security parameter

F An ideal functionality
Π A protocol
L A ledger map indexed by vk
X A smart contract program

g A smart contract in circuit form
vk A public key for signature verification
x A client input
y A client output
v̄ A token balance
v̄max The maximum permitted balance
v̄max A vector of the maximum permitted balance

Let y ←$F (x) denote running the ran-
domized algorithm F with input x and
implicit randomness, and obtaining out-
put y. Similarly, y ← F (x) is used for a
deterministic algorithm. For a set X , let
x ←$X denote x chosen uniformly at ran-
dom from X . s denotes the computational
and κ the statistical security parameter.
Let [x] denote secret x maintained in an
MPC instance: we lift the [·] notation
to any object that can be encoded over
secrets securely input to an MPC scheme,
e.g. [g], where g is an arithmetic circuit

276 C. Baum et al.

over field F. We use a group G where the discrete log problem is hard, and which
is a source group of pairing scheme. For simplicity we assume |G| = |F| = p.
Unless noted otherwise we use log to denote the logarithm to base 2, rounded
up. We use v̄max to denote the maximum amount of tokens we want to represent
and say l = log(v̄max). For simplicity, we assume |C| · v̄max < |G|, where C is the
set of participating clients. We denote set {1, 2, . . . , n} by [n] and vectors by bold
faced Latin letters, e.g. v,w.

2.1 Security Model and Building Blocks

We analyse our results in the the (Global) Universal Composability or (G)UC
framework [18,20]. We consider static malicious adversaries. Our protocols work
in a synchronous communication setting, which is modeled by assuming par-
ties have access to a global clock ideal functionality FClock as seen in multiple
works [3,34,36]. The core component of our protocols is publicly verifiable MPC
with cheater identification in the output phase, which is modelled as an ideal
functionality FIdent, which can be realized as described by Baum et al. [7,9]. This
functionality produces a proof that either a certain output was obtained after
the MPC or that a certain party has misbehaved in the output phase, while
cheating before the output phase causes an abort without cheater identification.
We further extend this functionality to handle reactive computation [25,26] and
an outsourced computation with inputs provided by clients and computation
done by servers [24,31]. Moreover, we use Pedersen Commitments [44], digital
signatures represented by an ideal functionality FSig as in [19], threshold signa-
tures represented by an ideal functionality FTSig as defined by Baum et al. [9]
and non-interactive zero knowledge proofs represented by FNIZK as defined by
Groth [30]. Further discussion on our security model and building blocks are
presented in the full version [6].

2.2 Ledgers and Smart Contracts

We model a ledger functionality FLedger in the full version [6]. featuring a smart
contract virtual machine which is adapted from an authenticated, public bulletin
board functionality, an approach adopted from the work of Baum et al. [7,9].
For this work, we emphasize accurate modelling of confidential balances, which
are implemented on a public ledger, and omit the full consensus details in our
UC model, similar to previous works [3,36].

Token Universe. FLedger supports a token universe consisting of t token types:
T = (τ1, ..., τt). A ledger in FLedger maintains a map from signature verification
key to balances of each token type: L : {0, 1}∗ → Z

t. We write v̄ = (v1, ..., vt)
for a balance over all supported token types. In addition to balances associated
to signature verification keys, FLedger also maintains token balances for each
deployed smart contract instance. The ledger functionality enforces the preser-
vation of token supplies over T.

Eagle: Efficient Privacy Preserving Smart Contracts 277

Overview of Smart Contracts. In this work, we present smart contracts as
human-readable programs and assume the presence of a compiler which trans-
lates program X to a valid circuit T and initial state γinit. The following smart
contract programs are deployed in the protocol which realizes the proposed con-
fidential contract functionality FCContract.

– XCLedger (described in the full version [6]) describes a smart contract which
implements a confidential token wrapper for each token in T supported on
the base ledger FLedger.

– XLock (described in the full version [6]) is an extension to XCLedger. It permits
the locking and redistribution of confidential balances authorized by verifying
threshold signatures generated by the servers (via global functionality FTSig).

– XCollateral (described in the full version [6]) accepts collateral deposits from
servers, which upon being identified as cheating parties lose their collateral
to clients.

2.3 Confidential Ledgers from FLedger

We briefly describe a confidential ledger functionality FCLedger, presented in full
detail in the full version [6], that can be implemented from a hybrid FLedger

functionality, enabling both confidential balances and the confidential transfer
of default tokens types T exposed by the underlying public ledger FLedger. This
modeling choice maximizes the generality of our construction, as it can be imple-
mented on any standard ledger and a basic smart contract machine.

Confidential Ledger. Confidential coins in FCLedger are identifiable by a unique
public id, and a confidential balance v̄ over T, as in [45]. Each confidential token
is publicly associated with an account verification key vk, owned by a party
that generated it with GenAcct. A confidential transfer consumes two input
coins (id1, id2) with confidential balances (v̄1, v̄2) and mints fresh output coins
(id′

1, id
′
2) with confidential balances (v̄′

1, v̄
′
2), such that (v̄1+ v̄2 = v̄′

1+ v̄′
2). Here,

coin id′
1 is now held by the owner of the receiving account, who also learns the

confidential amount v̄′
1.

Functionality FCLedger exposes Mint and Redeem interfaces: a mint activa-
tion locks a public amount of tokens T and generates a fresh confidential token
of the same balance. Conversely, a redeem activation will release the balance of
a confidential coin back to the public ledger.

Realizing a Confidential Ledger. A confidential token is realized in protocol
ΠCLedger with Pedersen Commitments [44], described in full detail in the full
version [6]. Let g, g1, ..., gt, h denote generators of group G of safe prime order
p, such that si in gi = gsi and w in h = gw are given by FSetup (parameterized
with g ∈ G) that publicly outputs g1, ..., gt, h. The commitment to a balance
v̄ = (v1, ..., vt) over tokens T with blinding r is com(v̄, r) = gv̄hr = gv1

1 ...gvt
t hr.

Pedersen commitments are additively homomorphic: com(v̄1, r1)◦com(v̄2, r2) =
com(v̄1 + v̄2, r1 + r2). Thus, during a confidential transfer, the sum equality
between consumed input and freshly constructed output coin commitments holds

278 C. Baum et al.

if total token balances are preserved and r′
1 and r′

2 are correlated such that
r1 + r2 = r′

1 + r′
2.

com(v̄1, r1) ◦ com(v̄1, r1) = com(v̄′
1, r

′
1) ◦ com(v̄′

2, r
′
2) (1)

However, since the equality above holds for any v̄1 + v̄2 ≡ v̄′
1 + v̄′

2 mod p
and correlated r′

1, r
′
2, an additional p units of each token in T can be minted:

v̄1 + v̄2 + p ≡ v̄′
1 + v̄′

2 mod p. Thus, each confidential token is associated with
NIZK π which proves R(c; v̄, r) = {c = com(v̄, r) ∧ v̄ ≤ v̄max = 2l − 1}, such
that such wrap-around never occurs undetected.

We note that ΠCLedger in itself affords a fully decentralized layer 2 confiden-
tial token transfer solution, since it is independent of the MPC servers. Thus
allowing client’s to send a receive confidential tokens in a peer-to-peer manner.
This is needed to prevent leakage of exchange orders after-the-fact by analysing
client’s non-confidential tokens given as input and withdrawn as output from a
privacy preserving smart contract execution. By allowing the privacy preserving
smart contract executions to integrate in a greater payment ecosystem reason-
ably ensures that it is possible to hide token inputs and outputs from a privacy
preserving smart contract execution by using them for confidential payment,
similar to other confidential token systems.

We present a protocol ΠCLedger which GUC-realizes FCLedger in the full ver-
sion [6], where we also prove the following statement:

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.

3 Confidential Contracts

We present our formal model of confidential contracts. We assume m clients
{C1, . . . , Cm} and servers {P1, . . . , Pn} that interact with FCContract, which
extends FCLedger. For simplicity of presentation, we first present a single-round
confidential contract functionality in Fig. 2, and subsequently illustrate how it is
easily extended to a multi-round contract functionality where clients can selec-
tively choose to participate in specific rounds.

The choice of modelling FCContract as an extension of FCLedger arises from
the relation between underlying protocols: confidential coins in ΠCLedger that are
committed to a confidential contract evaluation must be locked and subsequently
replaced by a new set of output coins reflecting a new distribution of balances,
determined by ΠCContract. However, this requires verification operations over the
homomorphic commitment representation of coins in ΠCLedger, which are not
exposed by FCLedger.

We provide a brief sketch of the interface exposed by FCLedger. Upon initial-
ization with an arithmetic circuit g encoding only the contract logic, users can
enroll, specifying input string x and a confidential coin to input, identified by its

Eagle: Efficient Privacy Preserving Smart Contracts 279

id. Upon a completed Enroll, the functionality is prompted by servers to evaluate
circuit g on both client input strings, interpreted as numerical values, and input
balances, with checks to ensure g does not mint tokens. FCLedger permits clients
to withdraw anytime to retrieve the private output string and output balance.
FCContract permits the simulator to abort and indicate cheating servers, which
are then penalized by the functionality.

Fig. 2. Functionality for Confidential Contracts

280 C. Baum et al.

Model of Confidential Contracts. Unlike public smart contracts deployed
to FLedger, an instance of FIdent permits the computation of any arithmetic circuit
on both private and public inputs. We model a confidential contract as an arith-
metic circuit over a field Fp consistent with the domain that FIdent is realized
with. A well-formed confidential contract permits the writing of both numerical
and financial inputs from each client to its input gates. Further, we enforce a
maximum circuit depth dT prior to the circuit evaluation to bound the rounds
of interaction in the MPC instance.

(
([y1], [w̄1]), ..., ([ym], [w̄m])

) ← evalg
(
([x1], [v̄1])...., ([xm], [v̄m]))

Upon confidential evaluation of a contract circuit g with well-formed depth and
gates, the following assertion must be performed at each run-time over confiden-
tial inputs and outputs of evaluated g: namely, that token supplies have been
preserved. ∑

i∈[m]

[v̄i] =?
∑

i∈[m]

[w̄i] (2)

One-Round Client-Server Interaction. Upon providing inputs to a confi-
dential contract execution, clients can go off-line and retrieve confidential outputs
with Withdraw at any later point in time.

Collateral. Our need for collateral follows the same logic as in Insured MPC [7].
The collateral contract incentivizes the servers to continue to participate in
the privacy preserving smart contract computation, and behave honestly as
they would otherwise suffer a financial loss. While the underlying maliciously
secure MPC system will ensure that a server acting maliciously will cause an
abort except with negligible probability, such an abort the adversary might have
learned the output of the computation. This can in some situations have high
value. Thus we require each server to give as collateral, strictly more than the
maximum value they could gain from learning the output of a privacy preserving
computation.

3.1 Realizing the Confidential Contract Functionality

Overview of Protocol. Having provided a high-level overview of the protocol
phase in Sect. 1, we now proceed to detail the individual protocol phases for the
single-round privacy preserving smart contract execution and refer to the full
version [6] for the full protocol description and UC-security proof.

Setup of Contracts. Servers deploy instances of XLock[XCLedger], XCollateral on
FLedger. Since wrapper XLock extends XCLedger, both are deployed and initialized
as a single contract instance on FLedger with shared contract id (cnLock) and
shared state such as the confidential ledger (LConf). Here, the function of XLock is
to lock the confidential coins of clients input to the confidential contract evalua-
tion, and to replace these with a new confidential distribution according to result
of the contract evaluation. Further, XLock is initialized with a threshold signature

Eagle: Efficient Privacy Preserving Smart Contracts 281

verification key vkTSig, jointly generated by all servers via FTSig: whenever servers
agree on a new status of the contract evaluation in FIdent, this agreement can
be settled in XLock with a threshold signature jointly generated via global func-
tionality FTSig. XCollateral is parameterized by cnLock and is activated each time
FClock progresses: it obtains collateral from all participating servers. It observes
any recorded cheating servers J stored in the state of contract instance cnLock
and enforces penalties accordingly.

Client Enrollment. Clients interact with XLock to enroll a confidential coin it
controls to the contract evaluation, and send both the coin commitment opening
and numerical input x to an instance of FIdent. Enrolled coins are removed from
the confidential ledger LConf maintained by X CLedger and moved to a dedicated
ledger LLock for funds committed to a pending MPC computation in FIdent.

Clients must also commit to a output mask during enrollment, which enables
the subsequent redistribution of confidential coins without client interaction in
the output phase of the contract evaluation. Here each client with confidential
coin input c and numerical input x performs the following:

– Samples ŷ ←$F as a numerical output mask and sends to FIdent.
– Samples ŵ ←$F

|T|, ŝ ←$F, and computes mask commitment ĉ ← com(ŵ, ŝ).
– Sends mask commitment ĉ to XLock on FLedger.
– Sends mask commitment openings (ŵ, ŝ) of ĉ to FIdent.

Here clients can also give any auxiliary input, x, needed for the privacy preserving
smart contract computation.

Client

XLock FIdent

Server

c (v̄′, r̄′)

c
?
= com(v̄′,r̄′)

(v̄′(i),r̄′(i))c

Input Verification. Upon enrollment of clients,
servers must verify that the confidential coin c
and mask commitment ĉ sent to XLock are con-
sistent with their respective openings (v̄, r̄) and
(v̂, r̂) sent to FIdent during enrollment. For sim-
plicity of presentation, we illustrate the batched
input verification of input confidential coins and
their openings assuming a token universe size of
|T| = 1, such that c = gv̄hr̄. Input verification for output masks ĉ and their
openings submitted to FIdent follow similarly.

Each server obtains both confidential coin c from XLock and additive shares
of submitted openings thereof from FIdent, namely (v̄′ (i), r̄′ (i)). We write v̄′ (i) =
(v̄+ε)(i) and similarly for r̄′ (i), where the ε denotes the error or discrepancy that
the adversary can introduce to v̄. We employ a standard technique of evaluating
a random linear combination over client inputs to verify consistency.

1. Servers jointly sample γ, α, β ←$F and open γ.
2. Each server locally computes the following on the inputs from m clients.

– v̄
′(i)
lin = α(i) +γ v̄

′(i)
1 + ... +γm v̄

′(i)
m and r

′(i)
lin = β(i) +γ r

′(i)
1 + ... +γm r

′(i)
m

– Subsequently, it sends v̄
′(i)
lin and v̄

′(i)
lin to all other servers.

3. Each server locally reconstructs v̄′
lin =

∏
i∈[n] v̄

′(i)
lin and r′

lin =
∏

i∈[n] r
′(i)
lin

282 C. Baum et al.

4. Servers locally verify:
∏

i∈[n] g
α(i)

hβ(i) ∏
j∈[m] c

γj

j
?= gv̄′

linhr′
lin

Note that v̄
′ (i)
lin and r

′ (i)
lin are shares held by servers and do not reveal the values

of user inputs. We write v̄′
lin = α+γ (v̄1+εv̄1)+ ... +γm (v̄m +εv̄m

) and similarly
for r′

lin to expose ε’s introduced by the adversary. If ε values are committed to
by the adversary before α, β, γ are sampled, we can interpret v̄′

lin − v̄lin = 0 and
r′
lin−rlin = 0 as m - degree polynomials with coefficients chosen by the adversary

that are later evaluated at some random coordinate γ: since verification step
(4) implies exactly these assertions, the probability for an undetected non-zero
error is therefore m/|G|, where m is the number of polynomial roots, by the
Schwartz-Zippel Lemma.

Execute. Servers call the Evaluate interface on FIdent to evaluate circuit g
with input gates set to client inputs.

([x1], [ŷ1], [v̄1], [r1], [ŵ1], [ŝ1]), ..., ([xm], [ŷm], [v̄m], [rm], [ŵm], [ŝm])

Upon secure evaluation, outputs in form of numerical values and balances are
written to the output gates of g:

(
([y1], [w̄1]), ..., ([ym], [w̄m])

)
. Before masking

these for opening, the servers then perform a confidential consistency check to
ensure the preservation of tokens as shown in Eq. (2).

Masked output values are obtained by applying the masking values input
by users, [y′

j] = [yj] + [ŷj] and similarly for balances, [w̄′
j] = [w̄j] + [ŵj]

and generating a joint signature σvkTSig(evaled) via FTSig, that is sent to XLock

on FLedger. Upon verification, the XLock contract updates the state of protocol
execution, reflecting completion of the Execute phase.

Open. Servers run Optimistic Reveal in FIdent to open masked numerical
outputs and balances

(
(y′

1, w̄
′
1), ..., (y

′
m, w̄′

m)
)
. Should all servers agree on the

successful completion of the contract evaluation, they jointly sign all masked
outputs and send these to XLock (on FLedger), which then computes the unmasked
confidential coins for clients with the newly computed distribution as follows.
Given the masked output balance w̄′ from FIdent and the coin mask ĉ sampled
by a client in Enroll, contract XLock computes

(a) The masked confidential coin: cout ′ ← gw̄′
h0

(b) The unmasked confidential coin: cout ← cout ′ · ĉ−1

We rewrite (b) as cout = gw̄′−ŵh−ŝ = com(w̄,−ŝ) to expose the unmasking of
the output coin without any knowledge of the final balance. XLock subsequently
stores unmasked output coin cout in the confidential ledger in XCLedger, thereby
settling the output balance distribution read from output gates of contract circuit
g. Should XLock successfully verify the signed outputs, XCollateral will infer from
the state of XLock the completion of a successful round and return the deposited
collateral to the servers.

Withdraw. Upon a successful Open, the output of the confidential contract
evaluation has completed. Each client can obtain their masked output (y′, w̄′)

Eagle: Efficient Privacy Preserving Smart Contracts 283

from XLock and newly minted cout from XCLedger anytime following a success-
ful execution of a contract evaluation. Let ŷ and (ŵ, ŝ) be the output masks
generated by the client in Enroll. The withdrawing client obtains

(a) The numerical output: y ← y′ − ŷ
(b) The opening of the output coin: (w̄, s) ← (w̄′ − ŵ,−ŝ)

Thus, their the tokens are still confidential and that clients can transfer or redeem
these using ΠCLedger described in the full version [6].

Abort. If the protocol aborts prior to the completion of the Execute phase,
client funds are simply returned by XLock and collateral deposited to XCollateral

is returned. If servers have agreed upon the completion of Execute, honest
servers can interact with FIdent to either (a) obtain shares that are verifiable and
enable reconstruction of the output or (b) identify cheating servers (functionality
described in the full version [6]). Thus, XLock as a registered public verifier, can
identify cheating servers by either verifying shares with FIdent, or obtaining the
identities of servers J that refuse to participate in revealing their shares and
allowing their verification. Cheating servers lose their collateral held by XCollateral

which is redistributed to clients.
We present the full protocol ΠCContract which GUC-realizes FCContract in the

full version [6] and prove the following statement.

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n − 1 of the n servers P statically and any minority of Q.

4 Efficiency

We note that since previous works focus on using zero knowledge proofs and
a trusted contract manager, we refrain from directly comparing our efficiency
to their works. The closest previous works to ours is the Hawk family [4,5,37].
Unfortunately neither of the works provide an efficiency analysis, making it
hard to provide a meaningful comparison. However, we note they all require
computation of cryptographic primitives (commitments and ZKPs) in MPC.
Thus requiring strictly more MPC computation, along with a larger (and hence)
slower field of computation, as this field is needed to facilitate computational
security of the cryptographic primitives they compute in MPC. In the following
analysis, we assume Bulletproofs for range proofs and standard Fiat-Shamir
Schnorr proofs of knowledge of exponents using elliptic curves. Although neither
of these are UC-secure since knowledge extraction requires rewinding, there is
evidence [29] that these techniques can be made non-malleable in the algebraic
group model. Hence, for the purpose of efficiency we believe it is reasonable to
forgo the formal UC security in this section. We use BLS threshold signatures
and for simplicity we assume the size of the group used for BLS and commitments
is the same, although it will in practice be slightly larger for BLS.

284 C. Baum et al.

Table 2. Complexity of our protocol when executing one CContract, excluding the
computation of contract circuit g in MPC. We assume |C|z > s for statistical security
parameter s, where z is the amount of input/output for each client in the set of clients
C, including the hidden token amount. n = |P| is the amount of servers and mult
denotes the number of multiplications in MPC.

Init Execution Abort

User exp 2 2 0

Server exp 2 + 2(n − 1) 6|C| + 2 0

pair 0 n − 1 0

mult 0 z|C| 0

SC comp. exp 0 2|C|z |C|
pair 0 2 0

SC call space #G elem. 3 |C|z O(n|C|z)

Comm #G elem. O(n) O(n2 · z · |C|) O(n2 · z · |C|)

We outline the amount of heavy computations needed for our core pro-
tocol in Table 2, except what is needed by the underlying MPC computation
computing the contract circuit g, reflecting the privacy preserving smart con-
tract CContract. Concretely we count the amount of group exponentiations when
assuming that the Pedersen commitments are realized using elliptic curves, along
with pairings assuming BLS [13] has been used for realizing distributed sig-
natures. The table only contains the complexity of executing one instance of
CContract, but we note that execution of multiple contracts is slightly sublin-
ear in the complexity of a single execution. The Abort column illustrates the
additional overhead associated with a cheating party.

Table 3. Complexity of CLedger in group exponentiation and amount of group elements
stored, when v̄max is the maximum amount of allowed tokens (Recall |C| · v̄max < |G|).

Mint ConfTransfer Redeem

User 4 O(log(v̄max) · log(log(v̄max))) 3

SC comp 3 O(log(v̄max)) 3

SC space 3 2 log(v̄max) + 10 4

When it comes to our confidential token layer, we outline the complexity in
Table 3. We note that the constant in the complexity of Confidential Transfer
reflects two range proofs over log(|G|/2), under the assumption that BulletProofs
are used [16]. Although if the domain of the token amounts is further limited
from G to v̄max < |G|/|C| then they can be reduced to range proofs of [0; v̄max−1]
and thus complexity O(v̄max · log(v̄max)).

Eagle: Efficient Privacy Preserving Smart Contracts 285

In both tables the amount of smart contract space is only what needs to be
submitted. The persistent space use needed is only 3+3|C| group elements, if we
assume that the storage used when posting to XLock in evaluate and open gets
overwritten the next time the servers call these methods.

The round complexity for all steps of both the confidential token layer pro-
tocols and our core protocol is constant, assuming g has constant multiplicative
depth. Otherwise, the computation of g dominates the round complexity.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press (2014). https://doi.org/10.1109/SP.
2014.35

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

4. Banerjee, A., Clear, M., Tewari, H.: zkhawk: practical private smart contracts
from mpc-based hawk. In: 2021 3rd Conference on Blockchain Research & Applica-
tions for Innovative Networks and Services (BRAINS), pp. 245–248. IEEE (2021).
https://doi.org/10.1109/BRAINS52497.2021.9569822

5. Banerjee, A., Tewari, H.: Multiverse of HawkNess: A Universally-Composable
MPC-based Hawk Variant. Cryptology ePrint Archive (2022). https://eprint.iacr.
org/2022/421

6. Baum, C., yu Chiang, J.H., David, B., Frederiksen, T.K.: Eagle: efficient privacy
preserving smart contracts. Cryptology ePrint Archive, Paper 2022/1435 (2022).
https://eprint.iacr.org/2022/1435,

7. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

8. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: CRAFT: composable
randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020). https://eprint.iacr.org/2020/784

9. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentral-
ized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021.
LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78372-3 7

10. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger
fabric with secure multiparty computation. IBM J. Res. Dev. 63(2/3), 1–3 (2019).
https://doi.org/10.1147/JRD.2019.2913621

11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1109/BRAINS52497.2021.9569822
https://eprint.iacr.org/2022/421
https://eprint.iacr.org/2022/421
https://eprint.iacr.org/2022/1435,
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://eprint.iacr.org/2020/784
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1147/JRD.2019.2913621
https://doi.org/10.1007/978-3-662-44381-1_24

286 C. Baum et al.

12. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

13. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

14. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy, pp. 947–964. IEEE Computer Society Press (2020). https://doi.org/10.
1109/SP40000.2020.00050

15. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://
doi.org/10.1109/SP.2018.00020

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

18. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001), https://doi.org/10.1109/SFCS.2001.959888

19. Canetti, R.: Universally composable signature, certification, and authentication.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28–30 June 2004, Pacific Grove, CA, USA, p. 219. IEEE Computer Society
(2004). https://doi.org/10.1109/CSFW.2004.24, http://doi.ieeecomputersociety.
org/10.1109/CSFW.2004.24

20. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

21. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P) (2019). https://doi.org/10.1109/EuroSP.2019.00023

22. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 719–728. ACM
Press (2017). https://doi.org/10.1145/3133956.3134092

23. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy, pp. 910–927. IEEE Computer Society Press (2020). https://doi.org/
10.1109/SP40000.2020.00040

24. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (Feb (2016).
https://doi.org/10.1007/978-3-662-54970-4 10

25. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

https://doi.org/10.1007/978-3-319-70697-9_15
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.24
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-642-40203-6_1

Eagle: Efficient Privacy Preserving Smart Contracts 287

26. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

27. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: an efficient poker proto-
col with payment distribution and penalty enforcement. In: Meiklejohn, S., Sako,
K. (eds.) FC 2018. LNCS, vol. 10957, pp. 500–519. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-662-58387-6 27

28. David, B., Gentile, L., Pourpouneh, M.: FAST: fair auctions via secret transactions.
In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, vol. 13269, pp. 727–747.
Springer, Heidelberg (Jun 2022). https://doi.org/10.1007/978-3-031-09234-3 36

29. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman, O.,
Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 397–
426. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3 14

30. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (JACM) 59(3), 1–35 (2012). https://doi.org/10.1145/2220357.
2220358

31. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure
computation. In: Ahn, G., Oprea, A., Safavi-Naini, R. (eds.) Proceedings of the
6th edition of the ACM Workshop on Cloud Computing Security, CCSW 2014,
Scottsdale, Arizona, USA, 7 November 2014, pp. 81–92. ACM (2014). https://doi.
org/10.1145/2664168.2664170

32. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: Enck, W., Felt, A.P. (eds.) USENIX Security
2018, pp. 1353–1370. USENIX Association (Aug 2018)

33. Kanjalkar, S., Zhang, Y., Gandlur, S., Miller, A.: Publicly auditable mpc-as-
a-service with succinct verification and universal setup. In: IEEE European
Symposium on Security and Privacy Workshops, EuroS&P 2021, Vienna, Aus-
tria, 6–10 September 2021, pp. 386–411. IEEE (2021). https://doi.org/10.1109/
EuroSPW54576.2021.00048

34. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

35. Kerber, T., Kiayias, A., Kohlweiss, M.: KACHINA - foundations of private smart
contracts. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Security Foun-
dations Symposium, pp. 1–16. IEEE Computer Society Press (2021). https://doi.
org/10.1109/CSF51468.2021.00002

36. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

37. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press
(May 2016). https://doi.org/10.1109/SP.2016.55

38. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 418–429. ACM Press (2016). https://doi.org/10.1145/2976749.
2978424

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-58387-6_27
https://doi.org/10.1007/978-3-031-09234-3_36
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2664168.2664170
https://doi.org/10.1145/2664168.2664170
https://doi.org/10.1109/EuroSPW54576.2021.00048
https://doi.org/10.1109/EuroSPW54576.2021.00048
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2976749.2978424

288 C. Baum et al.

39. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 195–206 (2015). https://doi.org/10.1145/2810103.
2813712

40. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 406–417. ACM Press (2016).
https://doi.org/10.1145/2976749.2978421

41. Lee, J., Nikitin, K., Setty, S.T.V.: Replicated state machines without replicated
execution. In: 2020 IEEE Symposium on Security and Privacy, pp. 119–134. IEEE
Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00068

42. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on intel SGX.
CoRR abs/ arXiv: 2006.13598 (2020)

43. Ozdemir, A., Boneh, D.: Experimenting with collaborative zk-SNARKs: Zero-
knowledge proofs for distributed secrets. Cryptology ePrint Archive, Report
2021/1530 (2021). https://eprint.iacr.org/2021/1530

44. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

45. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

46. Steffen, S., Bichsel, B., Baumgartner, R., Vechev, M.: ZeeStar: private Smart Con-
tracts by Homomorphic Encryption and Zero-knowledge Proofs. In: 2022 IEEE
Symposium on Security and Privacy (SP), pp. 1543–1543. IEEE Computer Soci-
ety (2022). https://files.sri.inf.ethz.ch/website/papers/sp22-zeestar.pdf

47. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.T.:
zkay: specifying and enforcing data privacy in smart contracts. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 1759–1776. ACM Press
(2019). https://doi.org/10.1145/3319535.3363222

48. Team, T.S.N.: Secret network: a privacy-preserving secret contract & decentralized
application platform (2022). https://scrt.network/graypaper

https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1109/SP40000.2020.00068
http://arxiv.org/abs/2006.13598
https://eprint.iacr.org/2021/1530
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-36178-2_26
https://files.sri.inf.ethz.ch/website/papers/sp22-zeestar.pdf
https://doi.org/10.1145/3319535.3363222
https://scrt.network/graypaper

	Eagle: Efficient Privacy Preserving Smart Contracts
	1 Introduction
	2 Preliminaries
	2.1 Security Model and Building Blocks
	2.2 Ledgers and Smart Contracts
	2.3 Confidential Ledgers from FLedger

	3 Confidential Contracts
	3.1 Realizing the Confidential Contract Functionality

	4 Efficiency
	References

