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Abstract. Blockchain protocols have revolutionized how individuals
and devices interact and transact over the internet. More recently, a
trend has emerged to harness blockchain technology as a catalyst to
enable advanced security features in distributed applications, in par-
ticular fairness. However, the tools employed to achieve these security
features are either resource wasteful (e.g., time-lock primitives) or only
efficient in theory (e.g., witness encryption). We present McFly, a proto-
col that allows one to efficiently “encrypt a message to the future” such
that the receiver can efficiently decrypt the message at the right time.
At the heart of the McFly protocol lies a novel primitive that we call
signature-based witness encryption (SWE). In a nutshell, SWE allows to
encrypt a plaintext with respect to a tag and a set of signature verifica-
tion keys. Once a threshold multi-signature of this tag under a sufficient
number of these verification keys is released, this signature can be used
to efficiently decrypt an SWE ciphertext for this tag. We design and
implement a practically efficient SWE scheme in the asymmetric bilinear
setting. The McFly protocol, which is obtained by combining our SWE
scheme with a BFT blockchain (or a blockchain finality layer) enjoys a
number of advantages over alternative approaches: There is a very small
computational overhead for all involved parties, the users of McFly do
not need to actively maintain the blockchain, are neither required to
communicate with the committees, nor are they required to post on the
blockchain. To demonstrate the practicality of the McFly protocol, we
implemented our SWE scheme and evaluated it on a standard laptop
with Intel i7 @2,3 GHz.

1 Introduction

Blockchain protocols have become increasingly popular as they revolutionized
the way peer-to-peer transactions can be made. In their most basic form, block-
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chain protocols are run by independent parties, the so-called miners, that keep
their own copy of the blockchain and verify the contents of all transactions they
receive before appending them to their own copy of the blockchain. The fact
that the content of the transactions can be verified before its inclusion in the
blockchain is fundamental to the validity of the transactions and the consis-
tency of the blockchain. However, there are many scenarios where one would
like to keep the contents of a transaction secret for some time even after inclu-
sion in the blockchain. One simple example is running sealed-bid auctions on
the blockchain; one would like for its bid to be included in the blockchain, but
at the same time such a bid should remain hidden until the end of the auction.1

Another example that recently became very relevant with the popularization
of decentralized exchanges (DEX) is the hurtful practice of transaction fron-
trunning, where malicious actors try to profit by taking advantage of possible
market fluctuations that could happen after some target transaction is added to
the ledger. To exploit this, the adversary tries to get its own transaction included
in the ledger before the target transaction, by either mining the block itself and
changing the order of transactions, or by offering considerably more fees for its
own transaction. Hiding parts of the content of the transactions until they are
final in the ledger would make it harder for adversaries to target those transac-
tions for frontrunning. A more general application for such a mechanism, that
can keep the contents of a blockchain transaction secret for some pre-defined
time, would be to simply use it as a tool to realize timed-release encryption [24]
without a trusted third party.

In previous works [3,15], solutions to the problems above were based on
time-lock primitives, such as time-lock puzzles (TLP) or verifiable delay func-
tions (VDF). An inherent problem of time-lock type primitives is that they are
wasteful in terms of computational resources and notoriously difficult to instan-
tiate with concrete parameters. Usually, a reference hardware is used to measure
the “fastest possible” time that it takes to solve a single operation of the puzzle
(e.g., modular squaring) and this reference number is used to set the security
parameters. Moreover, in a heterogeneous and decentralized system such as a
blockchain, where different hardware can have gaps in speed of many orders of
magnitude, an approach like this could render the system impractical. An oper-
ation that takes one time unit in the reference hardware could take 1000 time
units on different hardware used in the system.

Moreover, the environmental problems that proof-of-work blockchains, where
miners invest computation power to create new blocks, can cause have been
intensively debated by the community and regulators. This made the majority
of blockchain systems adopt a proof-of-stake (PoS) consensus for being a much
more sustainable solution. In PoS systems, typically a subset of users is chosen
as a committee, which jointly decides which blocks to include in the chain. This
selection can be by a lottery with winning probability proportional to the amount

1 Clearly, the auction should run on an incentive-compatible transaction ledger, where
transactions paying the required fees are guaranteed to be included in the ledger
within some fixed time.
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of coins parties hold on the chain or by the parties applying by locking a relatively
big amount of their coins, preventing them from spending them. In light of that,
any solution employing a time-lock type primitive completely defeats the purpose
of achieving a more resource-efficient and environmentally conscious system.

1.1 Our Contributions

In that vein, we diverge from the time-lock primitive approach and propose
McFly, an efficient protocol to keep the contents of a message (e.g., a blockchain
transaction) secret for some pre-specified time period. McFly is based on a new
primitive that we call signature witness encryption (SWE), that combined with a
byzantine fault tolerance (BFT) blockchain or with any blockchain coupled with
a finality layer such as Ethereum’s Casper [11] or Afgjort [16] allows users to
encrypt messages to a future point in time by piggybacking part of the decryption
procedure on the tasks already performed by the underlying committee of the
blockchain (or the finality layer) - namely voting for and signing blocks. In BFT
blockchains this happens for every new potential block to reach consensus, while
in a finality layer this is done for blocks at regular intervals to make them “final”.
We detail our contributions next.

Signature Witness Encryption. We formally define a new primitive that we
call signature-based witness encryption (SWE). To encrypt a message m, the
encryption algorithm takes a set of verification keys for a (potentially aggre-
gatable) multi-signature scheme2 and a reference message r as an input and
produces a ciphertext ct. The witness to decrypt ct consists of a multi-signature
of the reference message r under a threshold number of keys. We instantiate
SWE with an aggregatable multi-signature scheme that is a BLS scheme [6]
with a modified aggregation mechanism. We show, that this signature scheme
fulfills the same security notions as previous aggregatable BLS multi-signatures.

Concretely, the guarantees for SWE are that (1) it correctly allows to decrypt
a ciphertext given a multi-signature on the underlying reference and (2) if the
adversary does not gain access to a sufficient number of signatures on the ref-
erence then ciphertext-indistinguishability holds. The security guarantee is con-
ceptually closer related to that of identity-based encryption, rather than that of
fully-fledged witness encryption; decryption is possible when a threshold num-
ber of key holders participate to unlock. We achieve this in the bilinear group
setting from the bilinear Diffie-Hellman assumption. Also, unlike general wit-
ness encryption constructions [19] that are highly inefficient, we demonstrate
SWE to be practicable. To ensure that decryption is always possible we make
SWE verifiable by designing specially tailored proofs to show well-formedness of
ciphertexts as well as additional properties of the encrypted message.

McFly Protocol. We build an “encryption to the future” protocol by combining
SWE with a BFT blockchain or a blockchain finality layer. The main idea of this
2 This type of signature schemes allows to compress multiple signatures by different

signers on the same messages into just one verifiable signature. In aggregatable
schemes, this works even on different messages.
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is to leverage the existing committee infrastructure of the underlying blockchain
that periodically signs blocks in the chain to piggyback part of the decryption
procedure of the SWE scheme. At a high level, a message is encrypted with
respect to a specified block height of the underlying blockchain (representing
how far into the future the message should remain encrypted) and the set of
verification keys of all the committee members that are supposed to sign the
block at that height; once the block with the specified height is created by
the committee, it automatically becomes the witness required to decrypt the
ciphertext. We have the following requirements on the underlying blockchain:

– BFT-Style or Finality Layer. Every (final) block in the chain must be
signed by a committee of parties. These committees are allowed to be static
or dynamic, with the only requirement that the committee responsible for
signing a block at a particular height must be known some time in advance.
How much “time in advance” the committee is known is what we call horizon
(following the nomenclature of [20]). For simplicity, we will explicitly assume
that all blocks are immediately finalized, but our results can be easily adapted
to the more general setting where the height of the next final block is known.

– Block Structure. We assume that blocks have a predictable header, which
we will model by a block counter, and some data content. When finalizing a
block the committee signs the block as usual, but additionally, it also signs
the block counter separately.3

– Public Key Infrastructure. The public keys of the committee members
must have a proof of knowledge. This can be achieved, e.g., by registering the
keys with a PKI.

– Honest Majority Committee.4 The majority of the committee behaves
honestly. That is, there will not be a majority of committee members colluding
to prematurely sign blocks.

– Constant Block Production Rate. To have a meaningful notion of “wall-
clock time”, the blocks must be produced at a near constant rate.

A blockchain functionality modelling the above requirements and an analysis
on how to integrate our scheme with a modified version of Ethereum 2.0 can be
found in the full version. Intuitively, to make Ethereum 2.0 running with Casper
[11] compatible with our model we only need to add the public key infrastruc-
ture and require the committee members to sign a block counter separately for
each finalized block. This enables encryption up to the horizon where a future
committee is already known. Unfortunately, in Ethereum 2.0 this leads to a
maximum horizon of 12.8 minutes. If we use “sync committees” instead, which

3 They use the same keys for this. This is safe whenever the underlying signature is a
hash-and-sign scheme as is commonly the case.

4 The honest majority requirement must be strengthened to honest supermajority
(i.e. at least 2/3 of members being honest) if the underlying blockchain or finality
layer considers a partially synchronous network model. For simplicity, we choose to
describe it in the synchronous network model where honest majority plus PKI is
sufficient.
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were only introduced in Ethereum Altair [10], we can have a horizon of up to 27
hours. However, it is unclear whether sync committees enjoy the same level of
trust as standard ones.

Implementation. To demonstrate the practicality of McFly, we implement the
SWE scheme and run a series of benchmarks on a standard Macbook Pro with
an Intel i7 processor @2,3 GHz. Details can be found in the full version.

1.2 Technical Overview

As detailed above, the key ingredient and main technical challenge of the McFly
protocol is Signature Witness Encryption (SWE). In the following, we will pro-
vide an outline of our construction of practically efficient SWE.

SWE Based on BLS. Our construction of Signature-based Witness Encryp-
tion is based on the BLS signature scheme [7] and its relation to identity-based
encryption [5]. Recall that BLS signatures are defined over a bilinear group, i.e.
we have 3 groups G1,G2,GT (with generators g1, g2, gT ) of prime-order p and
an efficiently computable bilinear map e : G1 × G2 → GT . A verification key
vk is of the form vk = gx

2 , where x ∈ Zp is the corresponding signing key. To
sign a message T ∈ {0, 1}∗, we compute σ = H(T )x, where H : {0, 1}∗ → G1

is a hash function (which is modeled as a random oracle in the security proofs).
To verify a signature σ for a message T , all we need to do is check whether
e(σ, g2) = e(H(T ), vk). The BLS signature scheme is closely related to the
identity-based encryption scheme of Boneh and Franklin [5]. Specifically, in the
IBE scheme of [5] BLS verification keys take the role of the master public key, the
signing key takes the role of the master secret key and signatures take the role
of identity secret keys, where the signed messages correspond to the identities,
respectively. In this sense, the BF scheme can be seen as a witness encryption
scheme that allows to encrypt plaintexts m with respect to a verification key
vk and a message T , such that anyone in possession of a valid signature of T
under vk will be able to decrypt the plaintext m. Specifically, we can encrypt
a message m ∈ {0, 1} by computing ct = (gr

2, e(H(T ), vk)r · gm
T ). Given a sig-

nature σ = H(T )x, we can decrypt a ciphertext ct = (c1, c2) by computing
d = c2/e(σ, c1) and taking the discrete logarithm of d with respect to gT (which
can be done efficiently as m ∈ {0, 1}).

SWE for BLS Multi-signatures. The BLS scheme can be instantiated as an
aggregatable multi-signature scheme [6]. Specifically, assume that for i = 1, . . . , n
we have messages Ti with a corresponding signature σi with respect to a ver-
ification key vki. Then we can combine the signatures σ1, . . . , σn into a sin-
gle compact aggregate signature σ =

∏n
i=1 σi. Verifying such a signature can

be done by checking whether e(σ, g2) =
∏n

i=1 e(H(Ti), vki), where correctness
follows routinely. We can adapt the BF IBE scheme to aggregate signatures
in a natural way: To encrypt a plaintext m ∈ {0, 1} to messages T1, . . . , Tn

and corresponding verification keys vk1, . . . , vkn compute a ciphertext ct via
ct = (gr

2, (
∏n

i=1 e(H(Ti), vki))r · gm
T ). Such a ciphertext ct = (c1, c2) can be
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decrypted analogously to the above by computing d = c2/e(σ, c1) and taking
the discrete logarithm with respect to gT . To decrypt ct we need an aggregate
signature σ of all Ti under their respective verification keys vki. For our envi-
sioned applications this requirement is too strong, instead, we need a threshold
scheme where a t-out-of-n aggregate signature suffices as a witness to decrypt a
ciphertext. Thus, we will rely on Shamir’s secret sharing scheme [25] to imple-
ment a t-out-of-n access structure. This, however, leads to additional challenges.
Recall that Shamir’s secret sharing scheme allows us to share a message r0 ∈ Zp

into shares s1, . . . , sn ∈ Zp, such that r0 can be reconstructed via a (public) lin-
ear combination of any t of the si, while on the other hand, any set of less than t
shares si reveals no information about r0. The coefficients Lij of the linear com-
bination required to reconstruct r0 from a set of shares si1 , . . . , sit (for indices
i1, . . . , it) can be obtained from a corresponding set of Lagrange polynomials.
Given such Lij , we can express r0 as r0 =

∑t
j=1 Lijsij . We can now modify the

above SWE scheme for aggregate signatures as follows. To encrypt a plaintext
m ∈ {0, 1}, we first compute a t-out-of-n secret sharing s1, . . . , sn of the plaintext
m. The ciphertext ct is then computed by ct = (gr

2, (e(H(Ti), vki)r · gsi

T )i∈[n]).
Security of this scheme can be established from the same assumption as the BF
IBE scheme, namely from the bilinear Diffie-Hellman (BDH) assumption [21]. We
would now like to be able to decrypt such a ciphertext using an aggregate signa-
ture. For this purpose, however, we will have to modify the aggregation procedure
of the aggregatable multi-signature scheme. Say we obtain t-out-of-n signatures
σij , where σij is a signature of Tij under vkij . Let Lij be the corresponding

Lagrange coefficients. Our new aggregation procedure computes σ =
∏t

j=1 σ
Lij

ij
.

That is, instead of merely taking the product of the σij we need to raise each
σij to the power of its corresponding Lagrange coefficient Lij . We can show
that this modification does not hurt the security of the underlying aggregatable
BLS multi-signature scheme. To decrypt a ciphertext ct = (c0, c1, . . . , cn) using

such an aggregate signature σ, we compute d =
∏t

j=1 c
Lij

ij
/e(σ, c0) and take the

discrete logarithm of d with respect to gT . Correctness follows routinely.

Moving to the Source Group. While the above scheme provides our desired
functionality, implementing this scheme leads to a very poor performance profile.
There are two main reasons: (1) Each ciphertext encrypts just a single bit. Thus,
to encrypt any meaningful number of bits we need to provide a large number of
ciphertexts. Observe that each ciphertext contains more than n group elements.
Thus, encrypting k bits would require a ciphertext comprising kn group elements,
which would be prohibitively large even for moderate values of k and n. (2) Both
encryption and decryption rely heavily on pairing operations and operations in
the target group. From an implementation perspective, pairing operations and
operations in the target group are typically several times slower than operations
in one of the source groups.

To address these issues, we will design a scheme that both allows for ciphertext
packing and shifts almost all group operations into one of the two source groups
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(in our case this will be G2). This scheme is provided in Sect. 2.1 and we will
only highlight a few aspects here.

– Instead of computing a secret sharing of the plaintext m, we compute a secret
sharing of a random value r0 ∈ Zp. The value r0 can be used to randomize
many batch-ciphertext components, leading to ciphertexts comprising only
O(k + n) group elements.

– We encrypt each share si in the source group G2 instead of GT . That is,
we compute the ciphertext-component ci via ci = vkr

i · gsi
2 . This necessitates

a corresponding modification of the decryption algorithm and requires that
all messages Ti are identical, but this requirement is compatible with our
envisioned applications. Somewhat surprisingly, this modification does not
necessitate making a stronger hardness assumption, but only requires a rather
intricate random-self-reduction procedure in the security proof. That is, even
with this modification we can still rely on the hardness of the standard BDH
assumption.

– Instead of encrypting single bits m ∈ {0, 1}, we allow the message m to come
from {0, . . . , 2k − 1}. This will allow us to pack k bits into each ciphertext
component. Recall that decryption requires the computation of a discrete
logarithm with respect to a generator gT . We can speed up this computation
by relying on the Baby-Step-Giant-Step (BSGS) algorithm [27] to O(2k/2)
group operations. This leads to a very efficient implementation as a discrete
logarithm table for the fixed generator gT can be precomputed.

A Compatibility-Layer for Efficient Proof Systems. Our scheme so far
assumes that encryptors behave honestly, i.e. the ciphertext ct is well-formed.
A malicious encryptor, however, may provide ciphertexts that do not decrypt
consistently, i.e. the decrypted plaintext m may depend on the signature σ used
for decryption. Furthermore, for several of the use cases, we envision it is cru-
cial to ensure that the encrypted message m satisfies additional properties. To
facilitate this, we provide the following augmentations in the full version.

– We provide an efficient NIZK proof5 in the ROM which ensures that cipher-
texts decrypt consistently, i.e. the result of decryption does not depend on
the signature which is used for decryption.

– We augment ciphertexts with efficient proof-system enabled commitments and
provide very efficient plaintext equality proofs in the ROM. In essence, we
provide an efficient NIZK proof system that allows to prove that a ciphertext
ct and a Pedersen commitment C commit to the same value.

– We can now rely on efficient and succinct proof systems such as Bullet-
proofs [9] to establish additional guarantees about the encrypted plaintext.
For instance, we can rely on the range-proofs of [9] to ensure that the
encrypted messages are within a certain range to ensure that our BSGS
decryption procedure will recover the correct plaintext.

5 Technically speaking, since our systems are only computationally sound, we provide
non-interactive argument systems. However, to stay in line with the terminology of
[9,18] we refer to them as proof systems.
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To make this construction efficient, we add redundancy to include homomorphic
commitments into SWE ciphertexts.

1.3 Related Work

Timed-Release Crypto and “Encryption to the Future”. The notion of
timed-release encryption was proposed in the seminal paper by Rivest, Shamir
and Wagner [24]. The goal is to encrypt a message so that it cannot be decrypted,
not even by the sender, until a pre-determined amount of time has passed. This
allows to “encrypt messages to the future”. In [24] the authors propose two
orthogonal directions for realizing such a primitive. Using trusted third-parties
to hold the secrets and only reveal them once the pre-determined amount of time
has passed, or by using so-called time-lock puzzles, which are computational
problems that can not be solved without running a computer continuously for
at least a certain amount of time.

An interesting example of the latter are timed commitments [8], which are
commitments with an additional forced opening phase that requires a specified
(big) amount of computation time. This is useful in an optimistic setting, where
cooperation is usually the case, as an honest party can convince the receiver of the
comitted value without needing to do the timely decryption step. This is indeed
also possible for our SWE scheme, as its ciphertexts constitute a statistically
binding commitment, but that is not our focus, as our decryption is efficient
enough to be run. In case of one party aborting, timed commitments share all
drawbacks of time-lock puzzles, whereas our protocol works efficiently.

Our approach is closer to the paradigm of using a trusted party as in [13,14].
Simply put, these approaches set up a dedicated server that outputs tokens for
decryption at specified times. We could deploy SWE in such a scenario as well,
with the tokens being aggregated signatures on predictable messages. Specifically
both [13] and our scheme achieve that no communication needs to take place
between the trusted server and other entities. However, complete trust in a single
(or multiple) servers is a strong assumption, thus we re-use the decentralized
architecture, computation and trust structure already present in blockchains.

With the advent of blockchains, multiple proposals to realize timed-release
encryption using the blockchain as a time-keeping tool emerged, already. These
previous results, presented here, are all more of theoretical interest, while we
demonstrate practical efficiency of our scheme.

In [22] the authors propose a scheme based on extractable witness encryp-
tion using the blockchain as a reference clock; messages are encrypted to future
blocks of the chain that once created can be used as a witness for decryption.
However, extractable witness encryption is a very expensive primitive. Concur-
rently to this work, [12] proposes an “encryption to the future” scheme based
on proof-of-stake blockchains. Their approach is geared at transmitting mes-
sages from past committee members to future slot winners of the proof-of-stake
lottery and requires active participation in the protocol by the committee mem-
bers. Our results differ from this by enabling encrypting to the future even for
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encryptors and decryptors that only read the state of the blockchain and we
require no active participation of the committee beyond their regular duties,
assuming, that predictable messages like a block header are already signed in
each (finalized) block. Otherwise, all committees need to only include this one
additional signature, irrespective of pending timed-encryptions, so there is no
direct involvement between users of McFly and committees.

Another related line of work is presented in [2], where a message is kept
secret and “alive” on the chain by re-sharing a secret sharing of the message
from committee to committee. This allows to keep the message secret until an
arbitrary condition is met and the committee can reveal the message. A more
general approach is the recent YOSO protocol [20] that allows to perform secure
computation in that same setting, by using an additive homomorphic encryption
scheme, to which committees hold shares of a secret key and continuously re-
share it. While these approaches realize some form of encryption to the future,
they require massive communication from parties and are still far from practical.

A spin on timed commitments is also available using blockchains; in [1], a
blockchain contract is introduced, that locks assets of the commitment sender for
a set time based on a commitment. If the sender fails to open the commitment
within that time, their assets are made available to the receiver as a penalty -
however the commitment is not opened in that case.

BLS Signatures and Identity-Based Encryption (IBE). The BLS signa-
ture scheme, introduced in [7], is a pairing-based signature scheme with sig-
natures of one group element in size. Additionally, it is possible to aggregate
signatures of multiple users on different messages, thus saving space as shown
in [6]. Due to the very space-efficient aggregation, BLS signatures are used in
widely deployed systems such as Ethereum 2.0 [17]. Aggregation for potential
duplicate messages is achieved in [4,23].

Identity based encryption was first introduced by Shamir [26]. The initial idea
was to use the identity - e.g. a mailing address - as a public key that messages
can be encrypted to. In a sense, our scheme can be seen as a threshold IBE, as
we encrypt with respect to a committee and can only decrypt if a threshold of
the committee members collaborate.

1.4 Contents

This is a shortened conference-version of this paper including an overview of our
results, the construction of our modified BLS multi-signature scheme, as well as
definitions and constructions for both our basic SWE and McFly. Due to space
limitations, we refer readers to the full version for more details including:

– The construction of a proof compatibility layer to add verifiability to SWE.
– A blockchain functionality rigorously modelling the requirements on the

blockchain that are outlined above.
– Details and evaluations of an implementation of our scheme.
– Discussions of applications of our scheme in decentralized auctions and ran-

domness beacons.
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1.5 Preliminaries

We denote by λ ∈ N the security parameter and by x ← A(in; r) the output of the
randomized algorithm A on input in with r ← {0, 1}∗ as its randomness. We omit
this randomness when it is obvious or not explicitly required. By AO we denote,
that we run A with oracle access to O. We denote by x ←$ S an output x being
chosen uniformly at random from a set S. We denote the set {1, . . . , n} by [n].
PPT denotes probabilistic polynomial time. Also, poly(x),negl(x) respectively
denote any polynomial or negligible function in parameter x.

We assume familarity with the following cryptographic notions, for which
full definitions are included in our full version: Aggregateable multi-signatures,
Cryptographic Hash functions, Pseudo-random functions, commitment schemes,
Zero-Knowledge Proofs (of Knowledge), Secret Sharings, Reed-Solomon Codes,
Lagrange Interpolation, Bilinear Maps as well as the Co-Diffie-Hellman and
Bilinear Diffie-Hellman Assumptions.

2 Signature-Based Witness Encryption

In this section we introduce the new cryptographic primitive SWE that is the
core technical component of the McFly protocol. We formally define it next.

Definition 1 (Signature-Based Witness Encryption). A t-out-of-n SWE
for an aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,
Valid) is a tuple of two algorithms (Enc,Dec) where:

– ct ← Enc(1λ, V = (vk1, . . . , vkn), (Ti)i∈[�], (mi)i∈[�]): Encryption takes as
input a set V of n verification keys of the underlying scheme Sig, a list of
reference signing messages Ti and a list of messages mi of arbitrary length
� ∈ poly(λ). It outputs a ciphertext ct.

– m ← Dec(ct, (σi)i∈[�], U, V ): Decryption takes as input a ciphertext ct, a list
of aggregate signatures (σi)i∈[�] and two sets U, V of verification keys of the
underlying scheme Sig. It outputs a message m.

We require such a scheme to fulfill robust correctness and security.

Definition 2 (Robust Correctness). A t-out-of-n SWE scheme SWE = (Enc,
Dec) for an aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,
Prove,Valid) is correct if for all λ ∈ N and � = poly(λ) there is no
PPT adversary A with more than negligible probability of outputting an
index ind ∈ [�], a set of keys V = (vk1, . . . , vkn), a subset U ⊆ V with
|U | ≥ t, message lists (mi)i∈[�], (Ti)i∈[�] and signatures (σi)i∈[�], such that
AggVrfy(σind, U, (Tind)i∈[|U |]) = 1, but Dec(Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]), (σi)i∈[�],
U, V )ind �= mind.

Definition 3 (Security). A t-out-of-n SWE scheme SWE = (Enc,Dec) for an
aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid)
is secure if for all λ ∈ N, such that t = poly(λ), and all � = poly(λ),
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subsets SC ⊆ [�], there is no PPT adversary A that has more than negli-
gible advantage in the experiment ExpSec(A, 1λ). We define A’s advantage by
AdvA

Sec = |Pr
[
ExpSec(A, 1λ) = 1

] − 1
2 |.

Experiment ExpSec(A, 1λ)

1. Let Hpr be a fresh hash function from a keyed family of hash functions,
available to the experiment and A.

2. The experiment generates n− t+1 key pairs for i ∈ {t, . . . , n} as (vki, ski) ←
Sig.KeyGen(1λ) and provides vki as well as Sig.ProveHpr (vki, ski) for i ∈
{t, . . . , n} to A.

3. A inputs V C = (vk1, . . . , vkt−1) and (π1, . . . , πt−1). If for any i ∈ [t − 1],
Sig.Valid(vki, πi) = 0, we abort. Else, we define V = (vk1, . . . , vkn).

4. A gets to make signing queries for pairs (i, T ). If i < t, the experiment aborts,
else it returns Sig.Sign(ski, T ).

5. The adversary announces challenge messages m0
i , m

1
i for i ∈ SC, a list of

messages (mi)i∈[�]\SC and a list of signing reference messages (Ti)i∈[�]. If a
signature for a Ti with i ∈ SC was previously queried, we abort.

6. The experiment flips a bit b ←$ {0, 1}, sets mi = mb
i for i ∈ SC and sends

Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]) to A.
7. A gets to make further signing queries for pairs (i, T ). If i ≥ t and T �= Ti

for all i ∈ SC, the experiment returns Sig.Sign(ski, T ), else it aborts.
8. Finally, A outputs a guess b′.
9. If b = b′, the experiment outputs 1, else 0.

Definition 4 (Verifiable Signature-Based Witness Encryption). A
scheme SWE = (Enc,Dec,Prove,Vrfy) is a verifiable SWE for relation R, if
Enc,Dec are as above and Prove,Vrfy are a NIZK proof system for a language
given by the following induced relation R′, where V = (vk1, . . . , vkn) is a set of
keys:

(V,(Ti)i∈[�], ct), ((mi)i∈[�], w, r)) ∈ R′ ⇔
ct = Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]); r) and (m =

∑

i∈[�]

2(i−1)kmi, w) ∈ R

2.1 Construction

In the following, we describe a t-out-of-n SWE. Let two base groups G1,G2 of
prime order p with generators g1, g2 which have a bilinear map e : G1×G2 → GT

into a target group GT with generator g. Also, we assume full-domain hash
functions H : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zp and Hpr : {0, 1}∗ → Zp.

First, let us describe the underlying signature scheme Sig′.
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Protocol Sig′

Sig′.KeyGen(1λ): Randomly pick x ←$ Zp and output (vk = g2
x, sk = x).

Sig′.Sign(sk, T ): Output H(T )sk.
Sig′.Vrfy(vk, T, σ): If (e(σ, g2) = e(H(T ), vk)), output 1, else output 0.
Sig′.Agg((σ1, . . . , σk), (vk1, . . . , vkk)):

– Compute ξi = H2(vki) for i ∈ [k].

– Compute Li =
∏

j∈[k],i�=j

−ξj
ξi−ξj

for i ∈ [k].

– Output σ ← ∏
i∈[k] σ

Li
i .

Sig′.AggVrfy(σ, (vk1, . . . , vkk), (T1, . . . , Tk)):
– If e(σ, g2) =

∏
i∈[k] e(H(Ti), vki)

Li , output 1. Output 0 otherwise.

Sig′.Prove(vk, sk): Output Schnorr.ProveHpr (vk, sk).
Sig′.Valid(vk, π): Output Schnorr.ValidHpr (vk, π).

Here, Schnorr.Prove, Schnorr.Valid are the non-interactive variant of the well-
known Schnorr proofs due to Fischlin [18]. As shown in [18], they constitute an
online-extractable proof of knowledge for the key relation K = {(gx, x) : x ∈ Zp}.

Theorem 1. Sig′ is a correct aggregatable multi-signature scheme. Sig′ is
unforgeable, assuming that H is modelled as a random oracle and that the com-
putational Co-Diffie-Hellman assumption holds for (G1,G2).

The proof is given in the full version only, due to space restrictions. Now, we
can give the construction of our SWE scheme.6

Protocol SWE for signature scheme Sig′

SWE′.Enc(1λ, (vkj)j∈[n], (Ti)i∈[�], (mi)i∈[�]):
– Choose random r, rj ←$ Zp for j ∈ {0, . . . , t − 1} .
– Let f(x) =

∑t−1
j=0 rj · xj . This will satisfy f(0) = r0.

– For j ∈ [n], set ξj = H2(vkj), sj = f(ξj).
– For i ∈ [�] choose random αi ←$ Zp.
– Compute c = gr

2 , ai = cαi , ti = H(Ti)
αi for i ∈ [�].

– Choose h ← G2 uniformly at random.
– Compute c0 = hr · gr0

2 .
– For j ∈ [n], compute cj = vkr

j · g
sj
2 .

– For i ∈ [�], set c′
i = e(ti, g

r0
2 ) · gmi

T .
– Output ct = (h, c, c0, (cj)j∈[n], (c

′
i, ai, ti)i∈[�]).

SWE.Dec(ct, (σi)i∈[�], U, V ):
– Parse ct = (h, c, c0, (cj)j∈[n], (c

′
i, ai, ti)i∈[�]).

– Parse V = (vk1, . . . , vkn), U = (vk′
1, . . . , vk

′
k).

– If k < t or U �⊆ V , abort.
– Define as I the indices j ∈ [n] s.t. vkj ∈ U .

6 Notice that a previous version of this manuscript provided a slightly different pro-
tocol, which had the caveat, that all Ti needed to be distinct.
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– Compute ξj = H2(vkj) for j ∈ I.
– Compute Lj =

∏
i∈I,i�=j

−ξi
ξj−ξi

for j ∈ I.

– Compute c∗ =
∏

j∈I c
Lj

j .
– For i ∈ [�], compute

zi = c′
i · e(σi, ai)/e(ti, c

∗).
– For i ∈ [�], compute m′

i = dloggT
(zi).

– Output (m′
i)i.

Notice, that we only do the expensive computation of c∗ in SWE.Dec once.7

Further, we require that all Ti are from the range {0, . . . , 2k − 1} for some k to
enable efficient discrete log computation via the baby-step giant-step method.

Theorem 2. The following statements hold:

1. SWE for the signature scheme Sig′ has robust correctness, given that H2 is
collision resistant.

2. Assume that the hash functions H,H2,Hpr are modelled as random oracles.
Then SWE for the signature scheme Sig′ is secure under the BDH assumption
in (G1,G2,GT ). The security reduction is tight.

3. There are protocols SWE.Prove,SWE.Vrfy which extend SWE to be verifiable.

The proofs of statement 1, 2 are found in the full version only, due to
space restrictions. For statement 3, the full version includes a full construc-
tion and proofs of SWE.Prove,SWE.Vrfy which closely follows the outline given
in Sect. 1.2.

Efficiency of SWE. Our construction is specifically optimized to push as many
operations as possible into the source group G2. This leads to significant per-
formance improvements over a naive approach if we choose G2 to be the one of
the two source groups with cheaper group operations. In Table 1, we briefly ana-
lyze the number of group operations in each group required for encryption and
decryption. We regard the numbers n, � to be fixed and give upper bounds on
the operations needed. Note also, that the extraction of the discrete logarithm
does not cause a large overhead as we use the baby-step giant-step methodology.
More details and a concrete performance evaluation for an implementation of
our scheme can be found in the full version.

7 In case the sets of signers are the same for all Ti. Otherwise we compute it once per
relevant set U of signers.



McFly: Verifiable Encryption to the Future Made Practical 265

Table 1. Analysis of SWE Efficiency in Group Operations

encryption decryption

Evaluations of H, H2 �, n 0, n

Multiplications, Exponentiations in G1 0, � 0, 0

in G2 n, 2 + 2n + � n − 1, n

in GT �, � 2�, 0

Pairing Evaluations � 2�

dlog in GT 0 �

3 The McFly Protocol

In this section, we describe how to build a general-purpose time-release encryp-
tion mechanism, that we call McFly, by integrating a verifiable signature-based
witness encryption SWE with a blockchain. The time-release mechanism is avail-
able to all users of the underlying blockchain.

3.1 Formal Model and Guarantees

In the full version we introduce a simplified model for blockchains in the form
of the BCλ,H functionality reflecting the requirements introduced in Sect. 1.1. It
essentially runs a blockchain with a static committee of size n = poly(λ). The
public interface allows to retrieve the committee keys and the published blocks.
The adversary is allowed a (static) corruption threshold c < n/2. They may
control c committee members and choose the block contents to be signed.

Protocol Guarantees. Let L0 be an NP language defined by relation R0 via
m ∈ L0 ⇔ ∃w s.t. (m,w) ∈ R0. Our protocol McFly consists of five algorithms
(Setup,Enc,Dec,Prove,Vrfy) in a hybrid model where access to the public inter-
face of BC = BCλ,H is assumed. The syntax of these algorithms is as follows:

CRS ← Setup(1λ): Setup takes a security parameter λ. It outputs a common
reference string CRS.

ct ← EncBC(1λ,m, d): Encryption takes a security parameter λ, a message m
and an encryption depth d. It outputs a ciphertext ct.

m ← DecBC(ct, d): Decryption takes a ciphertext ct and an encryption depth d.
It outputs a message m.

π ← ProveBC(1λ,CRS, ct,m, d, w0, r): The proving algorithm takes a security
parameter λ, CRS, a message m, an encryption depth d, a witness w0 and
randomness r. It outputs a proof π.

b ← VrfyBC(CRS, ct, π, d): The verification algorithm takes CRS, a ciphertext ct,
a proof π and an encryption depth d. It outputs a bit b.

We prove the following security guarantees for McFly, which are inspired by
traditional time-lock puzzles:
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Definition 5 (Correctness). A protocol McFly = (Setup,Enc,Dec,Prove,
Vrfy) is correct, if for any parameter λ, message m, depth d, and algorithm
A running the adversarial interface in BC, if ct ← EncBC(1λ,m, d) is run at
any point and McFly.DecBC(ct, d) is run, when the number of finalized blocks
BC.QueryTime is at least d, it will output m, except with negligible probability.

Definition 6 (Security). A protocol McFly = (Setup,Enc,Prove,Vrfy,Dec) is
secure, if for any parameter λ and committee size n = poly(λ), corruption thresh-
old c < n/2 there is no PPT adversary A with more than negligible advantage
AdvA

Lock = |Pr [b = b′] − 1
2 | in the experiment ExpLock(A, 1λ).

Experiment ExpLock(A, 1λ)

1. The experiment computes CRS ← Setup(1λ) and outputs it to A.
2. A gets to use the adversarial interface in BC, which is run by the experiment.
3. At some point, A sends two challenge messages m0, m1 and a depth d > 0.

|m0| = |m1| must hold.
4. The experiment draws b ←$ {0, 1}.
5. Run ct ← EncBC(1λ, mb, d) and send ct to A.
6. A can submit a bit b′ while the number of finalized blocks ctr < d in BC.
7. Once ctr ≥ d on BC with no prior input from A, b′ ←$ {0, 1} is set instead.

Definition 7 (Verifiability). A protocol McFly = (Setup,Enc,Dec,Prove,Vrfy)
is verifiable for an NP language L0 with witness relation R0, if (Prove,Vrfy) is
a NIZK proof system for a language L′ given by the following relation R′:

(V =(vk1, . . . , vkn), d, ct), (m, r,w0)) ∈ R′ ⇔
ct = McFly.Enc(1λ,m, d; r, V ) ∧ (m,w0) ∈ R0.

Enc(. . . ; r, V ) denotes, that the randomness used is r and the committee keys
obtained from the blockchain are V . Note that this guarantees that (1) a receiver
of a verifying pair (ct, π) can be sure to retrieve an output in L0 after block d
was made and (2) outputting π alongside ct reveals no further information.

3.2 Protocol Description

Let COM = (Setup,Commit,Vrfy) be a Pedersen commitment, H be the hash
function in BC and H2 be another hash function. H,H2 are implicitly made
available in all calls to SWE, which is set up for parameters t = n/2 out of n. k
is the upper bound on the message lengths for SWE. We now describe McFly:
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Protocol McFly

Setup(1λ): Return COM.Setup(1λ).
McFly.EncBC(1λ, m, d):

– Get the commitee keys V by calling QueryKeys to BC.
– Split m = (mi)i∈[�] for mi ∈ {0, . . . , 2k − 1} s.t. m =

∑
i∈[�] 2

(i−1)kmi.

– Output ct ← SWE.Enc(1λ, V, (H(d))i∈[�], (mi)i∈[�]).
McFly.DecBC(ct, d):

– If QueryTime returns less than d, abort.
– Get (σ, U) by calling (QueryAt, d) and V by calling QueryKeys to BC.
– Call (mi)i∈� ← SWE.Dec(ct, (σ)i∈[�], U, V ).

– Output m =
∑

i∈[�] 2
(i−1)kmi.

McFly.ProveBC(1λ,CRS, ct, m, d, w0, r):
– Get the keys V by calling QueryKeys to BC.
– Split m = (mi)i∈[�] s.t. m =

∑
i∈[�] 2

(i−1)kmi.

– Output π ← SWE.Prove(CRS, V, (H(d))i∈[�], ct, (mi)i∈[�], w0, r).
McFly.VrfyBC(CRS, ct, π, d):

– Get the keys V by calling QueryKeys to BC.
– Output b ← SWE.Vrfy(CRS, V, (H(d))i∈[�], ct, π)

Theorem 3. McFly is correct, given that SWE has robust correctness. McFly is
secure given that SWE is secure and H is collision resistant. McFly is verifiable,
given that SWE is a verifiable SWE.

The proofs are only included in the full version due to space restrictions.

Extension for Dynamic Committees. In our model, we assumed static com-
mittees. However, finality layers advocate for a short-lived dynamic committee,
as committee members usually become targets of attacks. We can safely regard
a committee as known and static during its lifetime. Thus, our model natu-
rally extends as long as we only encrypt messages as far into the future as the
committees are currently known.
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