
Executing and Proving Over Dirty Ledgers

Christos Stefo1,2(B), Zhuolun Xiang3, and Lefteris Kokoris-Kogias1,4

1 IST Austria, Klosterneuburg, Austria
xristostefo98@gmail.com

2 National Technical University of Athens, Athens, Greece
3 Aptos Labs, Palo Alto, USA
4 Mysten Labs, Palo Alto, USA

Abstract. Scaling blockchain protocols to perform on par with the
expected needs of Web3.0 has been proven to be a challenging task with
almost a decade of research. In the forefront of the current solution is the
idea of separating the execution of the updates encoded in a block from
the ordering of blocks. In order to achieve this, a new class of protocols
called rollups has emerged. Rollups have as input a total ordering of valid
and invalid transactions and as output a new valid state-transition.

If we study rollups from a distributed computing perspective, we
uncover that rollups take as input the output of a Byzantine Atomic
Broadcast (BAB) protocol and convert it to a State Machine Replica-
tion (SMR) protocol. BAB and SMR, however, are considered equivalent
as far as distributed computing is concerned and a solution to one can
easily be retrofitted to solve the other simply by adding/removing an
execution step before the validation of the input.

This “easy” step of retrofitting an atomic broadcast solution to imple-
ment an SMR has, however, been overlooked in practice. In this paper,
we formalize the problem and show that after BAB is solved, tradi-
tional impossibility results for consensus no longer apply towards an SMR.
Leveraging this we propose a distributed execution protocol that allows

reduced execution and storage cost per executor (O(log2n
n

)) without relax-
ing the network assumptions of the underlying BAB protocol and pro-
viding censorship-resistance. Finally, we propose efficient non-interactive
light client constructions that leverage our efficient execution protocols
and do not require any synchrony assumptions or expensive ZK-proofs.

1 Introduction

The rise of blockchain technology has lead to the rapid development of a variety
of solutions for the State Machine Replication (SMR) problem. Nodes running
an SMR algorithm need to both order a set of transactions as well as execute
them to update their local state, two separate responsibilities that are usually
conflated into a single consensus protocol. Recently, the idea of separating the
total ordering of transactions from the execution has shown tremendous promise
on increasing the scalability of blockchains [9,14,27] however all existing research
focuses on the ordering layer assuming that after ordering every participant can
locally execute the transactions and update the state.
c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13950, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-47754-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47754-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-47754-6_1

4 C. Stefo et al.

In this work, we investigate the question of “how to scale execution after
the ordering is done”. In other words, given that transactions are ordered, how
scalable can an execution protocol be. Currently there exist two proposed solu-
tions. The first and most prevalent is that every consensus-node also executes
and adds a commitment to the new-state on a succeeding block [9,11,30]. The
second relies on a semi-trusted executor node that runs a “rollup” protocol [26].
The executor proposing a new state after locally executing the ordered transac-
tions either provides a sufficiently large dispute window for some honest execu-
tor to challenge the proposal with a fraud proof [2,4,7], or a zk-proof [1,10] of
correct execution. Neither of these solutions are built from first principles, the
former is merely a synchrony assumption breaking the model of the underly-
ing ordering-layer [11,12,17,21,22] whereas the later is proposed as a remedy to
that assumption which forces mostly inefficient and non-general purpose zero-
knowledge proof usage as well as allows for the executor to censor transactions.

In this paper, we take a step back and design from first principles. As a
first contribution we merely point out that decoupling of ordering from execu-
tion is nothing more than taking a Byzantine Atomic Broadcast (BAB) [15],
i.e. ensuring the total ordering of sent messages, and a deterministic execution
engine [3,16,18] to solve the SMR problem. In blockchain systems, the BAB
layer is called a dirty ledger because transactions are not checked for validity.
The nodes taking part in the network, which we call consensus nodes, commit
transactions without validation and only make sure the ledger is growing con-
sistently.

Once we define our problem we propose a novel protocol for the execution
layer of an underlying dirty ledger for both the permissioned and the Proof-of-
Stake settings. Our protocol works in an asynchronous environment, making no
extra assumptions and does not use zk-proving machinery. We merely assume
the existence of a dirty ledger, that ensures both the total ordering and the
availability of the transactions committed to it. Then, for the execution layer,
we use a set of nodes that we call executors. They validate transactions and
update the state of the system and can be a subset of the consensus nodes
or external. Surprisingly an honest majority is sufficient for the executors even
though we have no timing assumptions and only a poly-logarithmic number
of them needs to execute every block. As a result our solution provides both
better fault tolerance (f ≤ (1 − ε)n

2 instead of f < n
3) and significantly better

scalability in two dimensions, execution and storage, with expected O(log2n
n)

(instead of O(1)) cost per executor per block meaning that the system can be
truly scalable and decentralized.

Our Approach

Our protocol can be roughly split into two steps. In the first step, we elect
on expectation one executor per round by computing a VRF [25]. Then the
executor votes by computing state commitments for the next O(log2n) rounds.
Hence every round will have an O(log2n) number of executors. Their task is to

Executing and Proving Over Dirty Ledgers 5

construct verifiable certificates of the state such that a user (executor or light
client) can be convinced about the state without execution. At first glance, that
problem seems related to the consensus problem [23] since executors need to
agree on the state, but unlike the consensus problem, in each round all honest
nodes have the same input, an ordered list of transactions. Therefore, as long
as honest executors bootstrap in the correct state, a state commitment can be
considered valid if and only if at least one honest executor has voted on it.

Since nodes update the state in a distributed fashion, we must guarantee
its availability. More specifically, in each round, only the elected nodes obtain
the state. However, to vote for the following O(log2n) rounds, elected executors
must acquire the state of the previous round. For that reason, every node stores
the state of the rounds it has executed and provides it upon request.

A final general challenge for dirty ledgers is to define light client construc-
tions. Straightforward solutions such as providing inclusion proofs for the trans-
actions committed to the ledger are not sufficient since the transactions can be
invalid. To solve this challenge, we present the first non-interactive light client
construction for dirty ledgers in the asynchronous model. In a nutshell, light
clients learn information about the state by verifying the certificates produced
by the executors, i.e., the valid state commitments, along with inclusion proofs.

Our paper has the following contributions.

– We formalize the SMR problem by separating it into ordering and execution.
– We propose a solution for the SMR execution layer with O(log2(n)

n) cost per
executor and near-optimal fault tolerance f < (1 − ε)n/2, assuming the exis-
tence of the ordering layer.

– We extend our protocol for the proof-of-stake settings.
– We introduce the first non-interactive light client for dirty ledgers.

The structure of the paper is as follows. In Sect. 2 we present the related work,
model and assumptions, as well as the problem definition of scaling execution.
In Sect. 3, we overview our solutions for different settings, present the detailed
solution of Horizontal Sampling in Sect. 4, and defer the solutions of determin-
istic and Proof-of-Stake in the full version of the paper [28]. Section 5 discusses
the light client protocol and Sect. 6 discusses the data availability problem. We
provide a summary of terminologies in Sect. 7, and all proofs of the protocols
are deferred to the full version of the paper [28] due to space constraints.

2 Preliminaries

In this section, we give an overview of the related work on two components,
separating the ordering and execution of transactions and defining light client
constructions for dirty ledgers. Then, we define the model and the assumptions
that our protocols build upon. Last, we define formally an SMR architecture
composed of an ordering and an execution layer and the light client constructions.

6 C. Stefo et al.

2.1 Related Work

The natural way to separate the ordering from the execution is to let each node
execute every round and add the state commitment to a subsequent block, lead-
ing to an average cost per block execution O(1) [9,11,30]. The other promising
approach to moving the computation of the state off-chain is employing a rollup
protocol where a coordinator, updates the state of the system locally and only
posts the state commitment on the main chain. There are two directions to verify
the state commitments, optimistic rollups [5] and ZK-rollups [6].

In optimistic rollups, there is a dispute period during which executors can
prove that a state commitment posted on the main chain is invalid. However, this
technique requires synchrony assumptions and average cost per block execution
O(1) to guarantee that only valid state commitments are posted on the main
chain. On the other hand, in ZK-rollups, the coordinator commits the state
commitment along with a zero-knowledge proof (ZK-STARK) indicating that
a specific set of transactions has been applied to the state. Nevertheless, ZK-
rollups are not censorship-resistant since the coordinator can just not include
some valid transactions in this set. Furthermore, computing ZK-STARKs is a
computationally heavy for the users, and scaling general-purpose applications is
challenging due to the difficulty to express general computation.

Finally, on the light-client for dirty ledgers domain, Tas et al. [29] proposed
the first such solution in the synchronous model. In that work, a number of nodes,
which are called full nodes, are in charge of updating the state of the system and
providing state commitments to the light clients, proving their validity through
an interactive game (bisection game). Unlike this solution we propose a light-
client construction that is non-interactive, third-party verifiable (i.e., if a node
is convinced it can convince other nodes as well) and works in the asynchronous
model. This however, comes at the cost that we require an honest majority of
executors that cannot be bribed or adaptively corrupted (for the probabilistic
solution). We can also employ a fall-back mode in the protocol where any client
not happy with the assumption above, but who assumes synchrony waits for
any of the elected executors to provide a fraud-proof [8] or ask an honest full-
node for the correctness of a state-commitment through bisection games. Both
approaches have an honest minority assumption which will always be true with
overwhelming probability. As a result, our proposal can easily be adapted to a
flexible model [24] for heterogeneous clients.

2.2 Model and Assumptions

Communication Model: We assume an asynchronous environment, where any
message sent can be delayed for an unspecified, but finite, amount of time. The
link between every two honest nodes is reliable, namely when an honest node
sends a message to another honest node, the message will eventually arrive.
Cryptographic Primitives: We use κ to denote the security parameter.
We assume a large number of participants and let the security parameter be
a function of that number as we will discuss. We assume the adversary is

Executing and Proving Over Dirty Ledgers 7

computationally bounded, the communication channels are cryptographically
secure, and the existence of hash functions, signatures, and encryption schemes.
We use a computationally hiding and perfectly binding commitment scheme:
(Computecmt, V erifycmt). We require the commitment scheme to be determin-
istic and provide inclusion proofs, e.g., it can be a Merkle tree. Moreover, users
employ a Verifiable Random function (VRF) [25].
Permissioned Setting: We consider a fixed number of n nodes with their
public keys known to every participant in the network. A genesis block G which
describes the initial state of the system is provided both to the executors and to
the clients. The adversary is static and can corrupt up to f ≤ (1 − ε)n

2 nodes in
a Byzantine fashion before the protocol starts.
Proof of Stake: With the term node we refer to each identity that has an
account on the system. The point of reference in the proof-of-stake system is a
unit coin, which is the smallest amount of money existing. Each coin is a unique
string linked to its owner. We assume each node is equipped with a private-
public key pair. A genesis block G which contains the initial stake distribution
is accessible to all nodes. The stake distribution is dynamic, namely the coins
might change hands over time. We assume that the total amount of stake is
fixed and equal to W in every round. The adversary is static and can corrupt
a portion of the stake holders holding at most f coins, such that f ≤ (1 − ε)W

2
where 0 < ε < 1

2 , in a Byzantine fashion.

2.3 Problem Definition

Cohen et al. [13] introduced a modular SMR architecture, separating the data
dissemination, ordering, and execution and they investigated solutions for the
dissemination part. In this paper, we formulate the State Machine Replication
(SMR) problem by diving it into an ordering and an execution layer. Solutions
for the ordering layer include Blockchain protocols such as Byzantine Atomic
Broadcast (BAB) [11,12,21,31], in which the nodes only agree on the order of
the blocks without executing them. Our protocols are solutions for the execution
layer.
State Machine Replication (SMR): A state machine consists of a set of
state variables that encode its current state. External identities, users of the
system, can issue commands to the state machine. The state machine executes
the commands sequentially using a transition function to update the state of
the system. Furthermore, the state machine might generate an output after
executing each command. To provide fault-tolerant behavior, the state machine
replicates in multiple copies. An SMR protocol aims to maintain synchronization
between the replicas. In this paper, we illustrate that an SMR solution can be
a composition of a protocol Π1 for the ordering layer and a protocol Π2 for the
execution layer. Below, we define the ordering and the execution layers.
Ordering Layer: Consider a number of nodes, some of which can be adver-
sarial, receiving transactions from external identities. The nodes organize the
transactions in blocks. Furthermore, they employ a protocol Π1 to agree on an
order of the blocks. Each node i commits locally to a finalized ledger of blocks.

8 C. Stefo et al.

We denote the ledger to which node i commits in the round r by T i
r . The output

of the ordering protocol, i.e. the order of the blocks in which the nodes reach, is
a ledger T = b0 ← b1 ← ... ← bi. We introduce the properties that an ordering
protocol must satisfy:

– O-Safety : There is no round r for which exist two honest nodes i, j s.t. T i
r �=

T j
r .

– O-Liveness: If an honest node receives an input tx, then all honest nodes will
eventually include tx in a block of their local ledger.

Execution Layer: Consider a number of nodes where some of them can be
adversarial. Moreover, consider the ledger of blocks T = b0 ← b1 ← ... ← bi

output by the ordering layer, accessible to everyone. Each block might contain
invalid transactions. The validity of a transaction depends on the logic of the
application. The nodes are responsible for applying only the valid transactions
within the blocks committed to the ledger T . The invalid transactions within the
blocks are disregarded. Each node updates the state of the system. We denote
the state of the system in the round r according to node’s i view by Si

r.
State: As a blockchain state, we denote a structure keeping track of each user’s
possessions. The content of the state depends on the type of transactions com-
mitted to the ledger. For instance, in Ethereum, the state captures the balance
accounts of the users, while in Bitcoin the UTXO model is adopted. Furthermore,
the state can contain fragments of code, e.g., smart contracts.
Ideal Functionality Π: We illustrate the correctness of the state of the sys-
tem by introducing an ideal functionality Π. The functionality Π receives as
input the ledger T = b0 ← b1 ← ... ← bi which is an output by the order-
ing layer. Π updates the state by applying all (and only) the valid transac-
tions within the blocks committed to the ledger T . We denote the state of the
system stored by Π for the round r by S∗

r . The initial state of the system
S∗
0 equal to the genesis block, S∗

0 = G. To update the state in each round,
Π uses the deterministic transition function apply. The inputs are the state
of the previous round and the block to be executed in the current round.
More specifically, in the round r, S∗

r ← apply(br, S
∗
r−1) = Sr,len(br) where

Sr,j =
{

S∗
r−1 if j = 0

apply tx(Sr,j−1, txj) if 1 ≤ j ≤ len(br)
and br = [tx1, ..., txlen(br)]. The

state applied to the function apply tx remains unchanged when the input tx is an
invalid transaction, namely apply tx(S,tx)=S. Therefore, for the ledger T , there
exists a unique sequence of states S∗

0 , S∗
1 , ..., S∗

i defined by the state transition
function above.

In practice, nodes can employ any execution engine M that simulates the
ideal functionality Π. When receiving as inputs the correct state of r and the
block r + 1, the engine M outputs the correct state of r + 1.

An execution layer guarantees that the honest nodes simulate the ideal func-
tionality Π. We proceed with defining the properties of an execution layer:

– E-Safety : There is no round r for which exists an honest node i that commits
on a state Si

r s.t. Si
r �= S∗

r .

Executing and Proving Over Dirty Ledgers 9

– E-Liveness: For any round r where an honest node i commits a state Si
r,

there exists a round r′ > r where node i eventually commits a state Si
r′ s.t.

Si
r �= Si

r′ .

Since nodes keep updating their state without deviating from the ideal func-
tionality Π, an execution protocol is Censorship Resistant, namely it satisfies
the following property:

– Censorship Resistance: Every valid transaction tx committed to the ledger T
will eventually be applied in the state.

Note that the liveness property ensures only that each honest node will even-
tually update its state. Since not all nodes execute for every round essentially,
we do not require that the honest nodes update their states in the same rounds.
State Machine Replication: Finally, we formulate the SMR problem on top
of the ordering and execution layers. More specifically, transactions issued by
external identities constitute the input of the SMR. An SMR protocol consists
of an ordering layer protocol Π1 and an execution layer protocol Π2 satisfying
the properties O-Safety, O-Liveness and E-Safety, E-Liveness respectively. Nodes
participating in those protocols may or may not be the same. The output of Π1

which is a ledger of blocks T is the input of Π2. The output of the machine is
the output of Π2, namely an ever-growing state sequence S0, S1, S2, ..., Si.
Light Client. Consider an execution layer Πe with input a ledger T and the
average size of the state that the ideal functionality Π outputs in any round |S|.
The execution layer supports light client constructions. Light clients request suc-
cinct proofs from the participating nodes to learn desired information about the
state of the system. We capture this idea by defining the state proof certificates.

– A state proof πS for the round r is a succinct proof indicating that the state
S is the correct state of the round r. Proof πS is correct if and only if S = S∗

r ,
where S∗

r is the output of the functionality Π for the round r.
– A state proof π for the round r is succinct if it contains asymptotically less

data than the history of states, namely if len(π)
r|S| = o(1)

Assume that the light client lci receives a state proof πS for the round r
without necessarily receiving the state S. Lci evaluates whether the proof is
correct, in its perception, using a predicate acceptlci(πS , r) which yields either
True or False. The light client lci accepts πS if and only if acceptlci(πS , r) =
True. The properties which a light client execution layer protocol must satisfy
are the following:

– LC-Safety : There is no round r for which exists a light client lci that receives
a proof πS for the round r s.t. acceptlci(πS , r) = True and S �= S∗

r .
– LC-Liveness: A light client bootstrapping in the round r will eventually

receive a proof πSr′ for a round r′, r′ ≥ r s.t. acceptlci(πS′ , r′) = True.

Additional Assumptions: We assume the existence of an underlying ledger T as
an output of an ordering layer Π that satisfies the properties of O-Safety, O-
Liveness. The ledger T is accessible to every node. Furthermore, we assume that

10 C. Stefo et al.

there are no duplicate transactions committed to T . Finally, we assume that for
each round a random seed is provided by the dirty ledger, similarly to Algorand
[19], or DAG-based BFT protocols [14,20,21].

3 Overview of the Protocols

In our proposed protocols, executors update the state of the system in a dis-
tributed fashion. We decompose the protocols in two phases, an election phase
and a voting phase. The election phase will select a set of executors for every
round. Then, in the voting phase the elected executors of that round compute
and broadcast their signed state commitments. The voting phase outputs valid
state commitments, as defined:

– A state commitment is considered to be valid if and only if either it is signed
by at least one honest node or it is the genesis block.

The goal is to ensure that only correct state commitments, defined below,
will become valid.

– A state commitment cmt is the correct state commitment of round r if and
only if cmt = computecmt(S∗

r), where S∗
r is state of round r defined by the

ideal functionality of the execution layer as in Sect. 2.

There are two challenges when solving the problem. The first is to ensure that
there is provably at least one honest node that has voted a state commitment
to guarantee its validity. The second is to ensure that when elected nodes enter
the voting phase, they have the state of the previous round available. Below we
explain how we tackle these challenges for different settings.
Permissioned and Deterministic. First, we present a straightforward deter-
ministic protocol for the permissioned settings to lay the foundation of our other
solutions. We consider a total number of n = 2f+1 executors (instead of n > 3f),
with f executors corrupted by a static adversary. Every node executes for each
round, i.e., each executor starts from the genesis block and updates the state
by applying the valid transactions of the dirty ledger. For every round, execu-
tors compute, sign, and broadcast the corresponding state commitment. A state
commitment is valid if it is signed by at least f + 1 nodes so that at least one
honest node is included.
Probabilistic Solutions. The straightforward deterministic solution requires
every executor to run for every round, which is not scalable. For better scalability,
we propose probabilistic protocols for the permissioned and the Proof-of-Stake
settings. We assume up to f ≤ (1 − ε)n

2 executors can be corrupted by a static
adversary, where ε is some constant. Our protocols guarantee the validity of a
state commitment by requiring a threshold of executors to sign the state com-
mitment. To ensure safety, the number of adversarial nodes executing in each
round must be less than this threshold. To ensure liveness, in each round, there
must be enough honest nodes executing to form a valid state commitment. We

Executing and Proving Over Dirty Ledgers 11

set the threshold for the valid state commitment to be 1/2 of the number of
elected executors, and demonstrate that the aforementioned property is satisfied
with a overwhelming probability in the security parameter by electing only a
poly-logarithmic number of nodes per round.
Vertical vs Horizontal Sampling. The straightforward probabilistic solution
is to elect a committee of poly-logarithmic size per round who broadcasts signed
state commitments. A state commitment is considered valid if it is signed by
at least half of the committee members. We call this approach Vertical Sam-
pling. Each node is elected on average once per O(n

polylogn) rounds and executes
for only the respective rounds. Instead, we adopt an approach we call Horizon-
tal Sampling, in which only expected constant number (e.g. one) of nodes are
elected per round. In that solution, every node is elected on average every n
rounds and executes for O(polylogn) rounds. In both cases the cost per block
execution is O(polylogn

n). However, since nodes update their execution states in
a distributed fashion, elected nodes may need to retrieve the previous execution
state from other nodes in order to execute the current round, which incurs high
communication overhead. In Horizontal Sampling, in comparison to the Vertical
Sampling, nodes request the state less frequently, resulting in a more scalable
solution.
Permissioned and Randomized. First, we present the Horizontal Sampling
protocol for the permissioned settings. During the election phase, each executor
computes the VRF locally in each round. Only one node on average is elected per
round. The elected node starts from the state of the previous round, computes
and broadcasts state commitments for the following O(polylogn) rounds. Hence,
with only one executor elected per round, a poly-logarithmic number of nodes
will vote for each round. State commitments signed by at least half of the elected
nodes are considered valid.
Proof-of-Stake (PoS). We then extend the Horizontal Sampling protocol for
the Proof-of-Stake settings. In the permissioned settings, each node computes a
VRF for the election phase. In PoS, the adversary can create numerous accounts
to increase the probability of being elected. To make the protocol Sybil Resistant,
each node’s election probability is proportional to its stake. Concretely, nodes
compute the VRF for all of their coins in the election phase. In the voting phase,
elected nodes compute and broadcast their signed state commitments, as in the
permissioned protocol.

An extra challenge in the PoS protocol is that the stake distribution changes
over time. In every round, each node keeps track of its own stake and only
the elected nodes execute the state. Therefore, elected nodes must prove the
ownership of elected coins to the rest of the nodes. To this end, they construct
and broadcast inclusion proofs along with their signed state commitments.
State Availability. In the probabilistic protocols, not all nodes execute for
every round to acquire the respective the state of every round. For liveness,
our protocol must guarantee state availability, i.e., any node is able to acquire
the state of the previous round every time when it executes the current round.

12 C. Stefo et al.

Since any valid state commitment is signed by at least one honest node, the
corresponding state will eventually be available to any node requesting it.
Light Clients. Lastly, we introduce a non-interactive light client construction
for our protocols. We assume that at any given time, each light client is con-
nected to at least one honest executor. Briefly, a non-interactive light client can
learn information about the state of the system after receiving a valid state com-
mitment from an executor, along with an inclusion proof (e.g. Merkle proof).

4 Protocols

In this section, we present our asynchronous execution layer protocols on top
of an underlying dirty ledger. First, in the permissioned settings, we present
the deterministic protocol demonstrating how to construct verifiable certificates
that correspond to the correct state, i.e., the valid state commitments. The
deterministic protocol suggests that a majority of honest nodes is a necessary and
sufficient condition to construct valid state commitments. Due to its simplicity,
we omit the details here and refer the reader to the full version of the paper [28].
However, in the deterministic protocol, every node executes for every round
resulting in cost per block execution O(1). Next, we define a probabilistic scalable
protocol called Horizontal Sampling, where in every round we select only a poly-
logarithmic number of nodes to execute so that the majority of them are honest
with overwhelming probability. Due to space limitations, we only present the
details of the horizontal sampling protocol and some intuitive descriptions for the
Proof-of-Stake protocol in Sect. 4.2 in the main paper, and leave other protocol
details in the full version of the paper [28].

4.1 Horizontal Sampling

In the deterministic protocol, all nodes execute in every round and broadcast
their state commitments. Now, we proceed with building an efficient probabilistic
protocol, called Horizontal Sampling, illustrated in Algorithm1. We assume up
to f ≤ (1 − ε)n

2 executors can be corrupted by a static adversary where ε is
some constant, and we choose the security parameter κ = O(log2 n) for this
section. Nodes first download the genesis block G which holds the initial state.
In each round, every node checks whether it is elected (Algorithm 1, line 28).
Elected nodes propose state commitments during the voting phase. The voting
phase outputs valid state commitments, which are state commitments signed by
enough executors.
Election Phase: In each round, every node computes the VRF using its private
key, the round number, and the corresponding random seed. This computation
returns two values, a hash value of length |h| and a proof of authenticity certi-
fying this hash value (Algorithm1, line 27). We refer to this proof as the proof
of election of the leaders. All nodes with hash value in round r of less than

Xr =

{
κ 2|h|

n , if r = 1
2|h|
n , if r > 1

are elected (Algorithm 1, line 28). In that way, in the

Executing and Proving Over Dirty Ledgers 13

first round there will be expected κ elected nodes constituting the bootstrap
committee, while for r > 1 there will be only one node in expectation, which is
called the leader.
Validity of a Commitment: For the first κ rounds only the members of the
bootstrap committee are voting. For any round r ≥ κ + 1 all the elected nodes
in the interval [r − κ + 1, r] compute the state commitments. In the full version
of the paper [28], we prove that the bootstrap committee consists of at least κ

2
honest nodes and at most κ

2 −1 adversarial nodes with overwhelming probability
in n (we choose κ = O(log2 n)). The same property holds for the elected nodes
in any interval of κ consecutive rounds. As a result, in each round, at least
κ
2 honest and at most κ

2 − 1 adversarial nodes will be responsible for voting.
Therefore, a state commitment corresponding to a round r can be considered as
valid if it is signed by at least κ

2 nodes among those that are elected to execute
during the interval of rounds [max(1, r −κ+1), r] or if it is the genesis block. In
Fig. 1, on the left side we present an example of the leaders’ votes in the interval
[r, r + 3] where the malicious leader Lr+2 votes for incorrect state commitment
for rounds r +2, r +3; on the right side we present an example of the committee
members voting for the execution state commitments of different rounds, and
the malicious nodes try to create a fork on the execution state.

Fig. 1. Figure (a) illustrates the elected leaders’ votes in the round interval [r, r + 3],
resulting in the fork in the chain of the proposed state commitments illustrated in figure
(b). The set Hi (or Ai) consists of the votes of the honest (or adversarial) elected leaders
in the interval [r − κ + 3, r + 2].

Voting Phase: For the first κ rounds, the bootstrap committee members form
the respective valid state commitments. To update the state, they apply the
transactions committed to the ledger for all these rounds starting from the gen-
esis block. For every round, they compute and broadcast their signed state com-
mitments along with their proof of election.

Now consider node pi, an elected leader in some round r ≥ 2 during the
voting phase (Algorithm 1, Procedure Execute). First, pi waits until witnessing

14 C. Stefo et al.

Algorithm 1: Horizontal Sampling: Node pi with public key pki and secret
key ski

1 state(0) ← G // genesis block

2 threshold ← κ
2
, state com ← {}

3 rcur ← 1 // current round

/* verify the election proof with public key pk in the round r */

4 Predicate TimeToExecute(pk, r, u, π) :

5 target ← 2|h|
n

κ if r = 1, else 2|h|
n

// threshold for the election

process

6 return VerifyVRFpk
(u, π, seedr||r) ∧ u ≤ Target(r)

/* check whether cmt comes from a valid leader of round rl that is

responsible for executing in round r */

7 Predicate AcceptCommitment(pk, rl, u, π, r, σ, cmt) :
8 return ¬(rl > 1 ∧ r ≤ κ) ∧ (rl ≤ r ≤

rl + κ − 1) ∧ Verify(σ, pk, cmt||r) ∧ TimeToExecute(pk, rl, u, π)

/* acquiring the state of round r */

9 Procedure AcquireState(r) :
10 Wait until ∃(cmt, r) s.t.|state com[(cmt, r)]| ≥ threshold
11 if state(r) = null then
12 request state(r)
13 wait until receiving state s.t. Computecmt(state) = cmt
14 state(r) ← state

/* compute and broadcast the signed state commitments for all the

intermediate rounds within the interval [rl, rl + κ − 1] */

15 Procedure Execute(rl, (u, π)) :
16 AcquireState(rl − 1) if rl > 1
17 for r = rl, ..., rl + κ − 1 do
18 download data(r) // data within the block with height r
19 state(r) ← apply(state(r − 1), data(r))
20 continue if rl > 1 ∧ r ≤ κ // only bootstrap committee votes

21 cmt ← Computecmt(state(r))
22 σ ← Sign(cmt||r, pki, ski)
23 state com[(r, cmt)].add((pki, rl, u, π, σ))
24 Send (”state cmt”, cmt, rl, r, σ, u, π) to all nodes

/* Main loop, run leader election for each round */

25 while True do
26 (u, π) ← VRFsk(seedrcur ||rcur)
27 if u ≤ Target(rcur) then
28 Execute(rcur, (u, π))

29 rcur ← rcur + 1

30 Upon receiving(”state cmt”, cmt, rl, r, σ, u, π) from the node with public key pkj

for the first time for round rl do :
31 if AcceptCommitment(pkj , rl, u, π, r, σ, cmt) then
32 state com[(r, cmt)].add((pkj , rl, u, π, σ))

Executing and Proving Over Dirty Ledgers 15

a valid state commitment for the round r − 1. After receiving the valid state,
the leader acquires the corresponding state. If the state is not available from a
previous execution, pi requests it from all the nodes that have signed the com-
mitment (Algorithm 1, lines 13–14) (more on data availability in Sect. 6). Then,
pi downloads the data committed to the ledger for the intermediate rounds and
applies it sequentially to obtain the state of the round r+κ−1. For each round, it
constructs and signs the respective state commitment. Finally, pi broadcasts the
signed state commitments along with the proof of its election to the rest of the
nodes. We note again that only bootstrap committee members vote for the first
κ rounds (Algorithm1 line 21). The rest of the nodes accept the received com-
mitments only after confirming p′

is signature and proof of election (Algorithm1,
lines 8–9).

Due to space limitation, we defer the correctness proof of the Horizontal
Sampling algorithm to the full version of the paper [28].

4.2 Proof-of-Stake Settings

Now we extend the Horizontal Sampling protocol to the proof-of-stake setting.
Participating nodes have accounts holding stake/coins, and we use W to denote
the total amount of the stake in the system. New nodes can dynamically join the
system, and we demonstrate bootstrapping later. We assume up to f ≤ (1−ε)W

2
stake can be corrupted by a static adversary, where ε is some constant, and we
choose the security parameter κ = O(log2 W) for this section.

First, all nodes download the genesis block G which contains the initial stake
distribution. The stake distribution can change over time. More specifically, we
decompose the protocol into the following phases. In each round, every node
participates in the election phase to check whether any of its coins is elected.
During the voting phase, nodes with at least one elected coin compute state
commitments like in the permissioned protocol.
Tracking Wealth: The stake distribution changes over time and the nodes do
not necessarily acquire the execution state of each round. Hence the challenge
for a node is to check whether the transactions it receives are successful or not.
In our protocol, the node requests a proof of payment certificate from the payer,
(see Sect. 5), to verify that its state has changed as expected and therefore the
transaction was successful.
Election Phase: In each round, every node computes the VRF using its owned
coins and the randomness seed coming from the dirty ledger to generate proofs
of election for the elected coins. Similarly to the permissioned protocol, the PoS
protocol elects a bootstrap committee for the first round, and elects on average
one coin per round for every round r > 1. To keep the threshold of a valid state
commitment identical for every round, only the bootstrap committee members
are voting for the first κ rounds, while for r ≥ 2 the owner of an elected coin
in round r can vote for every round in the interval [max(r, κ + 1), r + κ − 1]. A
state commitment for the round r is valid if it is signed by the owners of at least
κ
2 of the elected coins during the interval of rounds [max(1, r − t + 1), r] or if it
is the genesis block.

16 C. Stefo et al.

Proof of Ownership: Since nodes track only their own stake, the elected nodes
must prove that they own the elected coins. Hence, they provide inclusion proofs
for their elected coins using the valid state commitment of the previous round,
e.g., the commitment can be the Merkle root in a Merkle proof. We call these
certificates proofs of ownership and the corresponding state commitment parent
commitment. To be able to verify the proofs of payment in order to track its
stake, and to compute the proofs of ownership in case of election, each node
waits for the valid state commitment of the previous round before participating
in the election phase.
Voting Phase: The voting phase is similar to the permissioned protocol. First,
the bootstrap committee members compute and broadcast their signed state com-
mitments for every round r ≤ κ to form the respective valid state commitment.
Then, every node with an elected coin in the round r, can start from the state
corresponding to the valid state commitment of the round r − 1. Moreover, the
node uses the valid state commitment to construct the proof of ownership for its
elected coin. Finally, the elected node computes and broadcasts the signed state
commitments for all the intermediate rounds along with the proof of election and
the proof of ownership in the round r. To accept a signed state commitment,
nodes first verify the related certificates. Especially for proofs of ownership, nodes
wait until the parent commitment becomes valid.
Bootstrapping: Consider Bob, a node that wishes to join the network in the
round r. We assume that Bob is connected to at least one honest executor.
Bob has received from many nodes a data structure called chain that contains
the state commitments signed by the elected nodes along with the respective
certificates (signatures, proofs of election, and proofs of ownership) for each
round.

Bob downloads the genesis block G first. For each chain, Bob applies the
following approach to evaluate whether it is the correct one. For the first round,
Bob verifies only the proofs of election of the bootstrap committee members since
the initial stake distribution is contained in G. Then, for each vote up to round
r, he verifies the signatures, the proof of ownership, and the proof of election of
the elected nodes. When Bob receives the correct chain, it acquires the last valid
state commitment in the chain and requests the corresponding state (Sect. 6).

5 Light Clients Protocol

Once we have a system where executors can verify that a payment has been made,
it is simple to transform it to the first non-interactive, asynchronous light-client
for dirty ledgers. In this section, we demonstrate how a light client can learn the
state of the system. First, we discuss how a light client can acquire and verify a
state proof. Then, we use state proofs as a building block to prove that a change
in the state occurred.
Assumptions: Each light client has access to the random seed for each round
through the dirty ledger, in order to verify the leader election. In addition, each
light client is connected to at least one honest executor. An executor uses a gossip

Executing and Proving Over Dirty Ledgers 17

protocol to obtain information necessary to react to a light client’s requests, such
as the state that corresponds to a valid state commitment.
Bootstrapping: Assume that the height of the dirty ledger equals h and a light
client lci bootstraps in the round r ≤ h. First, we illustrate how lci can verify a
state proof. A validity proof of the state commitment corresponding to the state
S constitutes the state proof πS . The light client then chooses how to connect
to the network. One option is to receive the corresponding state and derive the
desired information after downloading and applying the data committed to the
ledger on its own. Otherwise, lci can reconnect to the network whenever it needs
a proof of payment certificate.
State Proof - Permissioned Settings: To bootstrap in the round r, lci waits to
receive a valid state commitment for some round greater than or equal to the
round r. In the deterministic protocol, lci verifies that a state commitment is
signed by at least f +1 nodes. In the Horizontal Sampling protocol, a valid state
commitment in a round r′ is voted by at least κ

2 elected leaders in the interval
[max(1, r′ − κ + 1), r′]. Each leader’s vote includes their signature and proof of
election. Lci verifies this using the Predicate AcceptStateProof in Algorithm 2.

Algorithm 2: Light Client protocol - Horizontal Sampling
1 threshold ← κ

2

/* check whether there are at least κ
2

signatures for cmt by leaders

of rounds [r − t + 1, r] in Σ */

2 Predicate AcceptStateProof(cmt, r, Σ)) :
3 Remove duplicates in Σ
4 return

|AcceptCommitment(pk, rl, u, π, r, σ, cmt) : (pk, rl, u, π, σ) ∈ Σ| ≥ threshold

5 Predicate PaymentProof(cmt, r, Σ, πinclusion proof) :
6 return AcceptStateProof(cmt, r, Σ)∧ state change occurred according to

the πinclusion proof

State Proof - Proof-of-Stake Settings: The light client bootstraps as explained in
Sect. 4.2. In a nutshell, for each round, lci requires and verifies the signatures,
the proof of ownership, and the proof of election coming from the owners of the
elected coins that have voted for the valid state commitments.
Proofs of Payment: We now demonstrate how to provide certificates for suc-
cessful transactions. Consider Alice and Bob, two light clients using our system.
Bob wishes to purchase a product from Alice, triggering a transaction that will
be logged in the dirty ledger. Alice needs a proof that the payment is successful
before providing the merchandise to Bob.

Assume that the transaction of Bob paying Alice is committed at round r.
The certificate with which Bob proves that Alice’s state is changed in round
r is called proof of payment. More specifically, the certificate constitutes of a
valid state commitment for any round greater than r and a short inclusion proof

18 C. Stefo et al.

(e.g. a Merkle proof) indicating Alice’s new state. Alice uses the Predicate Pay-
mentProof in Algorithm2 to verify first the validity of the state commitment
and then the inclusion proof, using the valid state commitment, to extract her
new state. If the transaction is successful, Alice’s state is changed during this
interval.

6 Data Availability

In this section, we discuss what data executors store locally to support the
proposed protocols.
State Availability: Nodes responsible for executing in a particular round need
to acquire first the state of a previous round. It is also required by the Proof of
payment and bootstrapping in the proof-of-stake settings (Sect. 4.2).

We let the executors store every state they executed. In all of the proposed
protocols, each valid state commitment is signed by at least one honest node
which has stored the state with overwhelming probability. An executor requests
the state that corresponds to a valid state commitment from all the nodes that
have signed the respective state commitment. The honest node that has signed
the state commitment will eventually provide it to the executor. The executor
will verify that the state indeed corresponds to the valid state commitment.
Certificate Availability: To support bootstrapping protocols, executors store
the certificates related to the valid state commitments. In the deterministic pro-
tocol, they only store the signed state commitments. In the Horizontal Sampling
protocol, executors store the signed valid state commitments along with the
leaders’ proofs of election (Algorithm 1 lines: 24, 33), and in the proof-of-stake
settings, they additionally keep the proofs of ownership of the elected coins.

7 Summary of Terminologies

We summarize the terminologies used in this paper in Table 1.

Table 1. Terminologies

Notation Description

n total number of nodes in the permissioned settings

f number of adversarial nodes (or coins held by adversarial

nodes) in the permissioned settings (or in PoS)

W total amount of stake in PoS

proof of election proofs coming from the VRF computation of the elected

nodes in the probabilistic protocols

proof of ownership with parent

commitment cmt

inclusion proof with hash header cmt demonstrating that

a node pi owns a particular coin in PoS

Executing and Proving Over Dirty Ledgers 19

8 Conclusion

In this paper, we demonstrated how Horizontal Sampling converts an atomic
broadcast (BAB) solution to an SMR (or how to execute the state on top of a
dirty ledger). To this end, Horizontal Sampling is an efficient distributed execu-
tion protocol that consists of two phases. First, there is a voting phase where a
constant number of nodes are selected. Second, the selected nodes execute and
propose state commitments for the following polylogn rounds during the vot-
ing phase. Horizontal Sampling is a censorship-resistant solution that does not
violate the network assumptions of the underlying ledger. Lastly, we illustrated
how to leverage Horizontal Sampling for defining non-interactive light clients
that learn the state of the system.

Acknowledgements. Eleftherios Kokoris-Kogias is partially supported by Austrian
Science Fund (FWF) grant No: F8512-N.

References

1. Bringing the World to Ethereum | Polygon. www.polygon.technology
2. Fuel Network. www.fuel.network
3. Neon Team. Neon EVM. www.neon-labs.org/Neon EVM.pdf. Accessed 3 Aug 2022
4. Optimism. www.optimism.io
5. Optimistic rollups: How they work and why they matter (2021). www.medium.co

m/stakefish/optimistic-rollups-how-they-work-and-why-they-matter-3f677a504fcf
6. What is a zero-knowledge (ZK) rollup? (2022). www.zebpay.com/blog/what-is-a-

zero-knowledge-rollup-zk
7. Al-Bassam, M.: LazyLedger: a distributed data availability ledger with client-side

smart contracts. arXiv preprint arXiv:1905.09274 (2019)
8. Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud proofs: maximising light client

security and scaling blockchains with dishonest majorities. arXiv preprint arXiv:
1809.09044, 160 (2018)

9. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

11. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis, University of Guelph (2016)

12. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

13. Cohen, S., Goren, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Proof of
availability & retrieval in a modular blockchain architecture. Cryptology ePrint
Archive (2022)

14. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.; Narwhal and Tusk:
a DAG-based mempool and efficient BFT consensus. In: Proceedings of the Sev-
enteenth European Conference on Computer Systems, pp. 34–50 (2022)

www.polygon.technology
www.fuel.network
www.neon-labs.org/Neon_EVM.pdf
www.optimism.io
www.medium.com/stakefish/optimistic-rollups-how-they-work-and-why-they-matter-3f677a504fcf
www.medium.com/stakefish/optimistic-rollups-how-they-work-and-why-they-matter-3f677a504fcf
www.zebpay.com/blog/what-is-a-zero-knowledge-rollup-zk
www.zebpay.com/blog/what-is-a-zero-knowledge-rollup-zk
http://arxiv.org/abs/1905.09274
http://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1809.09044
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11

20 C. Stefo et al.

15. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)

16. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion concurrency con-
trol. arXiv preprint arXiv:1412.2324 (2014)

17. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and Ditto: network-adaptive efficient consensus with asynchronous fallback. In:
Eyal, I., Garay, J. (eds.) Financial Cryptography and Data Security, FC 2022.
LNCS, vol. 13411, pp. 296–315. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-18283-9 14

18. Gelashvili, R., et al.: Block-STM: scaling blockchain execution by turning ordering
curse to a performance blessing. arXiv preprint arXiv:2203.06871 (2022)

19. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling
Byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pp. 51–68 (2017)

20. Giridharan, N., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Bullshark: DAG
BFT protocols made practical. arXiv preprint arXiv:2201.05677 (2022)

21. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is DAG. In:
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pp. 165–175 (2021)

22. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing.
USENIX Association (2016)

23. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. In: Concur-
rency: The Works of Leslie Lamport, pp. 203–226 (2019)

24. Malkhi, D., Nayak, K., Ren, L.: Flexible Byzantine fault tolerance. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1041–1053 (2019)

25. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science (cat. No. 99CB37039), pp. 120–
130. IEEE (1999)

26. Polynya: Rollups, data availability layers & modular blockchains: introduc-
tory meta post (2021). www.polynya.medium.com/rollups-data-availability-layers-
modular-blockchains-introductory-meta-post-5a1e7a60119d

27. Stathakopoulou, C., David, T., Pavlovic, M., Vukolić, M.: Mir-BFT: high-
throughput robust BFT for decentralized networks. arXiv preprint arXiv:
1906.05552 (2019)

28. Stefo, C., Xiang, Z., Kokoris-Kogias, L.: Executing and proving over dirty ledgers.
Cryptology ePrint Archive (2022)

29. Tas, E.N., Zindros, D., Yang, L., Tse, D.: Light clients for lazy blockchains. arXiv
preprint arXiv:2203.15968 (2022)

30. The DiemBFT Team: State machine replication in the diem blockchain (2021).
www.developers.diem.com/docs/technical-papers/state-machine-replication-
paper

31. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356 (2019)

http://arxiv.org/abs/1412.2324
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
http://arxiv.org/abs/2203.06871
http://arxiv.org/abs/2201.05677
www.polynya.medium.com/rollups-data-availability-layers-modular-blockchains-introductory-meta-post-5a1e7a60119d
www.polynya.medium.com/rollups-data-availability-layers-modular-blockchains-introductory-meta-post-5a1e7a60119d
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/2203.15968
www.developers.diem.com/docs/technical-papers/state-machine-replication-paper
www.developers.diem.com/docs/technical-papers/state-machine-replication-paper

	Executing and Proving Over Dirty Ledgers
	1 Introduction
	2 Preliminaries
	2.1 Related Work
	2.2 Model and Assumptions
	2.3 Problem Definition

	3 Overview of the Protocols
	4 Protocols
	4.1 Horizontal Sampling
	4.2 Proof-of-Stake Settings

	5 Light Clients Protocol
	6 Data Availability
	7 Summary of Terminologies
	8 Conclusion
	References

