
Foteini Baldimtsi
Christian Cachin (Eds.)

LN
CS

 1
39

50

27th International Conference, FC 2023 
Bol, Brač, Croatia, May 1–5, 2023 
Revised Selected Papers, Part I

Financial Cryptography 
and Data Security



Lecture Notes in Computer Science 13950
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Foteini Baldimtsi · Christian Cachin
Editors

Financial Cryptography
and Data Security
27th International Conference, FC 2023
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Preface

The 27th International Conference on Financial Cryptography and Data Security, FC
2023, was held from May 1 to May 5, 2023, at the Bluesun Hotel Elaphusa in Bol, on
the island of Brač, Croatia. The conference is organized annually by the International
Financial Cryptography Association (IFCA).

We received 182 papers (165 regular ones and 17 short papers) by the submission
deadline for the conference, which was October 19th, 2022. Of these, 41 were accepted
(39 regular papers and two short papers), resulting in an acceptance rate of 22.5%. The
present proceedings volume contains revised versions of all the papers presented at the
conference.

The review process lasted approximately two months and was double-blind. Each
paper received a minimum of three reviews. The Program Committee used the HotCRP
system to organize the reviewing process. The merits of each paper were discussed
thoroughly and intensely on the online platform as we converged to the final decisions.
In the end, a number of worthy papers still had to be rejected owing to the limited number
of slots in the conference program.

The Program Committee (PC) consisted of 64 members with expertise in various
aspects of financial cryptography, including representatives from both industry and
academia. The PC additionally solicited reviews from 58 external reviewers. We are
deeply grateful to all the members of the PC and the external reviewers for their dedica-
tion and thorough work. Their valuable insights and constructive feedback considerably
strengthened the overall quality of the final program.

The main conference program lasted for four days. A half-day tutorial on the topic
of “Constant Function Market Makers” took place a day before the main conference and
a series of one-day workshops were held the day after the main conference. The main
conference started with an invited keynote talk by George Danezis, University College
London and Mysten Labs, titled “Combining broadcast and consensus in a production
blockchain system.” The accepted papers were presented in 10 sessions and there was
also a Rump Session and a General Meeting. Finally, two posters were presented during
the poster session.

We are grateful to the general chairs, Ray Hirschfeld and Carla Mascia, for an excel-
lent organization. Additionally, we appreciate the dedication of the IFCA directors and
Steering Committee for their service. We would also like to express our thankfulness to
the conference sponsors whose generous support made this event possible. Our Platinum
Sponsors: a16z Crypto Research, Casper Association, Chainlink Labs andMysten Labs.
Our Silver Sponsors: Evertas and Zcash Foundation. Finally, we would like to thank our
sponsors in kind: the Croatian National Tourist Board, the Split-Dalmatia Tourist Board,
the Bol Tourist Board, and Worldpay.

Lastly, our sincere gratitude goes to all the authors who submitted their papers to this
conference, as well as to all the attendees who contributed to making this event a truly
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intellectually stimulating experience through their active participation. Their support is
the most important factor for the success of the conference.

August 2023 Foteini Baldimtsi
Christian Cachin
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Executing and Proving Over Dirty Ledgers

Christos Stefo1,2(B), Zhuolun Xiang3, and Lefteris Kokoris-Kogias1,4

1 IST Austria, Klosterneuburg, Austria
xristostefo98@gmail.com

2 National Technical University of Athens, Athens, Greece
3 Aptos Labs, Palo Alto, USA
4 Mysten Labs, Palo Alto, USA

Abstract. Scaling blockchain protocols to perform on par with the
expected needs of Web3.0 has been proven to be a challenging task with
almost a decade of research. In the forefront of the current solution is the
idea of separating the execution of the updates encoded in a block from
the ordering of blocks. In order to achieve this, a new class of protocols
called rollups has emerged. Rollups have as input a total ordering of valid
and invalid transactions and as output a new valid state-transition.

If we study rollups from a distributed computing perspective, we
uncover that rollups take as input the output of a Byzantine Atomic
Broadcast (BAB) protocol and convert it to a State Machine Replica-
tion (SMR) protocol. BAB and SMR, however, are considered equivalent
as far as distributed computing is concerned and a solution to one can
easily be retrofitted to solve the other simply by adding/removing an
execution step before the validation of the input.

This “easy” step of retrofitting an atomic broadcast solution to imple-
ment an SMR has, however, been overlooked in practice. In this paper,
we formalize the problem and show that after BAB is solved, tradi-
tional impossibility results for consensus no longer apply towards an SMR.
Leveraging this we propose a distributed execution protocol that allows

reduced execution and storage cost per executor (O( log2n
n

)) without relax-
ing the network assumptions of the underlying BAB protocol and pro-
viding censorship-resistance. Finally, we propose efficient non-interactive
light client constructions that leverage our efficient execution protocols
and do not require any synchrony assumptions or expensive ZK-proofs.

1 Introduction

The rise of blockchain technology has lead to the rapid development of a variety
of solutions for the State Machine Replication (SMR) problem. Nodes running
an SMR algorithm need to both order a set of transactions as well as execute
them to update their local state, two separate responsibilities that are usually
conflated into a single consensus protocol. Recently, the idea of separating the
total ordering of transactions from the execution has shown tremendous promise
on increasing the scalability of blockchains [9,14,27] however all existing research
focuses on the ordering layer assuming that after ordering every participant can
locally execute the transactions and update the state.
c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13950, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-47754-6_1
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In this work, we investigate the question of “how to scale execution after
the ordering is done”. In other words, given that transactions are ordered, how
scalable can an execution protocol be. Currently there exist two proposed solu-
tions. The first and most prevalent is that every consensus-node also executes
and adds a commitment to the new-state on a succeeding block [9,11,30]. The
second relies on a semi-trusted executor node that runs a “rollup” protocol [26].
The executor proposing a new state after locally executing the ordered transac-
tions either provides a sufficiently large dispute window for some honest execu-
tor to challenge the proposal with a fraud proof [2,4,7], or a zk-proof [1,10] of
correct execution. Neither of these solutions are built from first principles, the
former is merely a synchrony assumption breaking the model of the underly-
ing ordering-layer [11,12,17,21,22] whereas the later is proposed as a remedy to
that assumption which forces mostly inefficient and non-general purpose zero-
knowledge proof usage as well as allows for the executor to censor transactions.

In this paper, we take a step back and design from first principles. As a
first contribution we merely point out that decoupling of ordering from execu-
tion is nothing more than taking a Byzantine Atomic Broadcast (BAB) [15],
i.e. ensuring the total ordering of sent messages, and a deterministic execution
engine [3,16,18] to solve the SMR problem. In blockchain systems, the BAB
layer is called a dirty ledger because transactions are not checked for validity.
The nodes taking part in the network, which we call consensus nodes, commit
transactions without validation and only make sure the ledger is growing con-
sistently.

Once we define our problem we propose a novel protocol for the execution
layer of an underlying dirty ledger for both the permissioned and the Proof-of-
Stake settings. Our protocol works in an asynchronous environment, making no
extra assumptions and does not use zk-proving machinery. We merely assume
the existence of a dirty ledger, that ensures both the total ordering and the
availability of the transactions committed to it. Then, for the execution layer,
we use a set of nodes that we call executors. They validate transactions and
update the state of the system and can be a subset of the consensus nodes
or external. Surprisingly an honest majority is sufficient for the executors even
though we have no timing assumptions and only a poly-logarithmic number
of them needs to execute every block. As a result our solution provides both
better fault tolerance (f ≤ (1 − ε)n

2 instead of f < n
3 ) and significantly better

scalability in two dimensions, execution and storage, with expected O( log2n
n )

(instead of O(1)) cost per executor per block meaning that the system can be
truly scalable and decentralized.

Our Approach

Our protocol can be roughly split into two steps. In the first step, we elect
on expectation one executor per round by computing a VRF [25]. Then the
executor votes by computing state commitments for the next O(log2n) rounds.
Hence every round will have an O(log2n) number of executors. Their task is to
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construct verifiable certificates of the state such that a user (executor or light
client) can be convinced about the state without execution. At first glance, that
problem seems related to the consensus problem [23] since executors need to
agree on the state, but unlike the consensus problem, in each round all honest
nodes have the same input, an ordered list of transactions. Therefore, as long
as honest executors bootstrap in the correct state, a state commitment can be
considered valid if and only if at least one honest executor has voted on it.

Since nodes update the state in a distributed fashion, we must guarantee
its availability. More specifically, in each round, only the elected nodes obtain
the state. However, to vote for the following O(log2n) rounds, elected executors
must acquire the state of the previous round. For that reason, every node stores
the state of the rounds it has executed and provides it upon request.

A final general challenge for dirty ledgers is to define light client construc-
tions. Straightforward solutions such as providing inclusion proofs for the trans-
actions committed to the ledger are not sufficient since the transactions can be
invalid. To solve this challenge, we present the first non-interactive light client
construction for dirty ledgers in the asynchronous model. In a nutshell, light
clients learn information about the state by verifying the certificates produced
by the executors, i.e., the valid state commitments, along with inclusion proofs.

Our paper has the following contributions.

– We formalize the SMR problem by separating it into ordering and execution.
– We propose a solution for the SMR execution layer with O( log2(n)

n ) cost per
executor and near-optimal fault tolerance f < (1 − ε)n/2, assuming the exis-
tence of the ordering layer.

– We extend our protocol for the proof-of-stake settings.
– We introduce the first non-interactive light client for dirty ledgers.

The structure of the paper is as follows. In Sect. 2 we present the related work,
model and assumptions, as well as the problem definition of scaling execution.
In Sect. 3, we overview our solutions for different settings, present the detailed
solution of Horizontal Sampling in Sect. 4, and defer the solutions of determin-
istic and Proof-of-Stake in the full version of the paper [28]. Section 5 discusses
the light client protocol and Sect. 6 discusses the data availability problem. We
provide a summary of terminologies in Sect. 7, and all proofs of the protocols
are deferred to the full version of the paper [28] due to space constraints.

2 Preliminaries

In this section, we give an overview of the related work on two components,
separating the ordering and execution of transactions and defining light client
constructions for dirty ledgers. Then, we define the model and the assumptions
that our protocols build upon. Last, we define formally an SMR architecture
composed of an ordering and an execution layer and the light client constructions.
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2.1 Related Work

The natural way to separate the ordering from the execution is to let each node
execute every round and add the state commitment to a subsequent block, lead-
ing to an average cost per block execution O(1) [9,11,30]. The other promising
approach to moving the computation of the state off-chain is employing a rollup
protocol where a coordinator, updates the state of the system locally and only
posts the state commitment on the main chain. There are two directions to verify
the state commitments, optimistic rollups [5] and ZK-rollups [6].

In optimistic rollups, there is a dispute period during which executors can
prove that a state commitment posted on the main chain is invalid. However, this
technique requires synchrony assumptions and average cost per block execution
O(1) to guarantee that only valid state commitments are posted on the main
chain. On the other hand, in ZK-rollups, the coordinator commits the state
commitment along with a zero-knowledge proof (ZK-STARK) indicating that
a specific set of transactions has been applied to the state. Nevertheless, ZK-
rollups are not censorship-resistant since the coordinator can just not include
some valid transactions in this set. Furthermore, computing ZK-STARKs is a
computationally heavy for the users, and scaling general-purpose applications is
challenging due to the difficulty to express general computation.

Finally, on the light-client for dirty ledgers domain, Tas et al. [29] proposed
the first such solution in the synchronous model. In that work, a number of nodes,
which are called full nodes, are in charge of updating the state of the system and
providing state commitments to the light clients, proving their validity through
an interactive game (bisection game). Unlike this solution we propose a light-
client construction that is non-interactive, third-party verifiable (i.e., if a node
is convinced it can convince other nodes as well) and works in the asynchronous
model. This however, comes at the cost that we require an honest majority of
executors that cannot be bribed or adaptively corrupted (for the probabilistic
solution). We can also employ a fall-back mode in the protocol where any client
not happy with the assumption above, but who assumes synchrony waits for
any of the elected executors to provide a fraud-proof [8] or ask an honest full-
node for the correctness of a state-commitment through bisection games. Both
approaches have an honest minority assumption which will always be true with
overwhelming probability. As a result, our proposal can easily be adapted to a
flexible model [24] for heterogeneous clients.

2.2 Model and Assumptions

Communication Model: We assume an asynchronous environment, where any
message sent can be delayed for an unspecified, but finite, amount of time. The
link between every two honest nodes is reliable, namely when an honest node
sends a message to another honest node, the message will eventually arrive.
Cryptographic Primitives: We use κ to denote the security parameter.
We assume a large number of participants and let the security parameter be
a function of that number as we will discuss. We assume the adversary is
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computationally bounded, the communication channels are cryptographically
secure, and the existence of hash functions, signatures, and encryption schemes.
We use a computationally hiding and perfectly binding commitment scheme:
(Computecmt, V erifycmt). We require the commitment scheme to be determin-
istic and provide inclusion proofs, e.g., it can be a Merkle tree. Moreover, users
employ a Verifiable Random function (VRF) [25].
Permissioned Setting: We consider a fixed number of n nodes with their
public keys known to every participant in the network. A genesis block G which
describes the initial state of the system is provided both to the executors and to
the clients. The adversary is static and can corrupt up to f ≤ (1 − ε)n

2 nodes in
a Byzantine fashion before the protocol starts.
Proof of Stake: With the term node we refer to each identity that has an
account on the system. The point of reference in the proof-of-stake system is a
unit coin, which is the smallest amount of money existing. Each coin is a unique
string linked to its owner. We assume each node is equipped with a private-
public key pair. A genesis block G which contains the initial stake distribution
is accessible to all nodes. The stake distribution is dynamic, namely the coins
might change hands over time. We assume that the total amount of stake is
fixed and equal to W in every round. The adversary is static and can corrupt
a portion of the stake holders holding at most f coins, such that f ≤ (1 − ε)W

2
where 0 < ε < 1

2 , in a Byzantine fashion.

2.3 Problem Definition

Cohen et al. [13] introduced a modular SMR architecture, separating the data
dissemination, ordering, and execution and they investigated solutions for the
dissemination part. In this paper, we formulate the State Machine Replication
(SMR) problem by diving it into an ordering and an execution layer. Solutions
for the ordering layer include Blockchain protocols such as Byzantine Atomic
Broadcast (BAB) [11,12,21,31], in which the nodes only agree on the order of
the blocks without executing them. Our protocols are solutions for the execution
layer.
State Machine Replication (SMR): A state machine consists of a set of
state variables that encode its current state. External identities, users of the
system, can issue commands to the state machine. The state machine executes
the commands sequentially using a transition function to update the state of
the system. Furthermore, the state machine might generate an output after
executing each command. To provide fault-tolerant behavior, the state machine
replicates in multiple copies. An SMR protocol aims to maintain synchronization
between the replicas. In this paper, we illustrate that an SMR solution can be
a composition of a protocol Π1 for the ordering layer and a protocol Π2 for the
execution layer. Below, we define the ordering and the execution layers.
Ordering Layer: Consider a number of nodes, some of which can be adver-
sarial, receiving transactions from external identities. The nodes organize the
transactions in blocks. Furthermore, they employ a protocol Π1 to agree on an
order of the blocks. Each node i commits locally to a finalized ledger of blocks.
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We denote the ledger to which node i commits in the round r by T i
r . The output

of the ordering protocol, i.e. the order of the blocks in which the nodes reach, is
a ledger T = b0 ← b1 ← ... ← bi. We introduce the properties that an ordering
protocol must satisfy:

– O-Safety : There is no round r for which exist two honest nodes i, j s.t. T i
r �=

T j
r .

– O-Liveness: If an honest node receives an input tx, then all honest nodes will
eventually include tx in a block of their local ledger.

Execution Layer: Consider a number of nodes where some of them can be
adversarial. Moreover, consider the ledger of blocks T = b0 ← b1 ← ... ← bi

output by the ordering layer, accessible to everyone. Each block might contain
invalid transactions. The validity of a transaction depends on the logic of the
application. The nodes are responsible for applying only the valid transactions
within the blocks committed to the ledger T . The invalid transactions within the
blocks are disregarded. Each node updates the state of the system. We denote
the state of the system in the round r according to node’s i view by Si

r.
State: As a blockchain state, we denote a structure keeping track of each user’s
possessions. The content of the state depends on the type of transactions com-
mitted to the ledger. For instance, in Ethereum, the state captures the balance
accounts of the users, while in Bitcoin the UTXO model is adopted. Furthermore,
the state can contain fragments of code, e.g., smart contracts.
Ideal Functionality Π: We illustrate the correctness of the state of the sys-
tem by introducing an ideal functionality Π. The functionality Π receives as
input the ledger T = b0 ← b1 ← ... ← bi which is an output by the order-
ing layer. Π updates the state by applying all (and only) the valid transac-
tions within the blocks committed to the ledger T . We denote the state of the
system stored by Π for the round r by S∗

r . The initial state of the system
S∗
0 equal to the genesis block, S∗

0 = G. To update the state in each round,
Π uses the deterministic transition function apply. The inputs are the state
of the previous round and the block to be executed in the current round.
More specifically, in the round r, S∗

r ← apply(br, S
∗
r−1) = Sr,len(br) where

Sr,j =
{

S∗
r−1 if j = 0

apply tx(Sr,j−1, txj) if 1 ≤ j ≤ len(br)
and br = [tx1, ..., txlen(br)]. The

state applied to the function apply tx remains unchanged when the input tx is an
invalid transaction, namely apply tx(S,tx)=S. Therefore, for the ledger T , there
exists a unique sequence of states S∗

0 , S∗
1 , ..., S∗

i defined by the state transition
function above.

In practice, nodes can employ any execution engine M that simulates the
ideal functionality Π. When receiving as inputs the correct state of r and the
block r + 1, the engine M outputs the correct state of r + 1.

An execution layer guarantees that the honest nodes simulate the ideal func-
tionality Π. We proceed with defining the properties of an execution layer:

– E-Safety : There is no round r for which exists an honest node i that commits
on a state Si

r s.t. Si
r �= S∗

r .
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– E-Liveness: For any round r where an honest node i commits a state Si
r,

there exists a round r′ > r where node i eventually commits a state Si
r′ s.t.

Si
r �= Si

r′ .

Since nodes keep updating their state without deviating from the ideal func-
tionality Π, an execution protocol is Censorship Resistant, namely it satisfies
the following property:

– Censorship Resistance: Every valid transaction tx committed to the ledger T
will eventually be applied in the state.

Note that the liveness property ensures only that each honest node will even-
tually update its state. Since not all nodes execute for every round essentially,
we do not require that the honest nodes update their states in the same rounds.
State Machine Replication: Finally, we formulate the SMR problem on top
of the ordering and execution layers. More specifically, transactions issued by
external identities constitute the input of the SMR. An SMR protocol consists
of an ordering layer protocol Π1 and an execution layer protocol Π2 satisfying
the properties O-Safety, O-Liveness and E-Safety, E-Liveness respectively. Nodes
participating in those protocols may or may not be the same. The output of Π1

which is a ledger of blocks T is the input of Π2. The output of the machine is
the output of Π2, namely an ever-growing state sequence S0, S1, S2, ..., Si.
Light Client. Consider an execution layer Πe with input a ledger T and the
average size of the state that the ideal functionality Π outputs in any round |S|.
The execution layer supports light client constructions. Light clients request suc-
cinct proofs from the participating nodes to learn desired information about the
state of the system. We capture this idea by defining the state proof certificates.

– A state proof πS for the round r is a succinct proof indicating that the state
S is the correct state of the round r. Proof πS is correct if and only if S = S∗

r ,
where S∗

r is the output of the functionality Π for the round r.
– A state proof π for the round r is succinct if it contains asymptotically less

data than the history of states, namely if len(π)
r|S| = o(1)

Assume that the light client lci receives a state proof πS for the round r
without necessarily receiving the state S. Lci evaluates whether the proof is
correct, in its perception, using a predicate acceptlci(πS , r) which yields either
True or False. The light client lci accepts πS if and only if acceptlci(πS , r) =
True. The properties which a light client execution layer protocol must satisfy
are the following:

– LC-Safety : There is no round r for which exists a light client lci that receives
a proof πS for the round r s.t. acceptlci(πS , r) = True and S �= S∗

r .
– LC-Liveness: A light client bootstrapping in the round r will eventually

receive a proof πSr′ for a round r′, r′ ≥ r s.t. acceptlci(πS′ , r′) = True.

Additional Assumptions: We assume the existence of an underlying ledger T as
an output of an ordering layer Π that satisfies the properties of O-Safety, O-
Liveness. The ledger T is accessible to every node. Furthermore, we assume that
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there are no duplicate transactions committed to T . Finally, we assume that for
each round a random seed is provided by the dirty ledger, similarly to Algorand
[19], or DAG-based BFT protocols [14,20,21].

3 Overview of the Protocols

In our proposed protocols, executors update the state of the system in a dis-
tributed fashion. We decompose the protocols in two phases, an election phase
and a voting phase. The election phase will select a set of executors for every
round. Then, in the voting phase the elected executors of that round compute
and broadcast their signed state commitments. The voting phase outputs valid
state commitments, as defined:

– A state commitment is considered to be valid if and only if either it is signed
by at least one honest node or it is the genesis block.

The goal is to ensure that only correct state commitments, defined below,
will become valid.

– A state commitment cmt is the correct state commitment of round r if and
only if cmt = computecmt(S∗

r ), where S∗
r is state of round r defined by the

ideal functionality of the execution layer as in Sect. 2.

There are two challenges when solving the problem. The first is to ensure that
there is provably at least one honest node that has voted a state commitment
to guarantee its validity. The second is to ensure that when elected nodes enter
the voting phase, they have the state of the previous round available. Below we
explain how we tackle these challenges for different settings.
Permissioned and Deterministic. First, we present a straightforward deter-
ministic protocol for the permissioned settings to lay the foundation of our other
solutions. We consider a total number of n = 2f+1 executors (instead of n > 3f),
with f executors corrupted by a static adversary. Every node executes for each
round, i.e., each executor starts from the genesis block and updates the state
by applying the valid transactions of the dirty ledger. For every round, execu-
tors compute, sign, and broadcast the corresponding state commitment. A state
commitment is valid if it is signed by at least f + 1 nodes so that at least one
honest node is included.
Probabilistic Solutions. The straightforward deterministic solution requires
every executor to run for every round, which is not scalable. For better scalability,
we propose probabilistic protocols for the permissioned and the Proof-of-Stake
settings. We assume up to f ≤ (1 − ε)n

2 executors can be corrupted by a static
adversary, where ε is some constant. Our protocols guarantee the validity of a
state commitment by requiring a threshold of executors to sign the state com-
mitment. To ensure safety, the number of adversarial nodes executing in each
round must be less than this threshold. To ensure liveness, in each round, there
must be enough honest nodes executing to form a valid state commitment. We
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set the threshold for the valid state commitment to be 1/2 of the number of
elected executors, and demonstrate that the aforementioned property is satisfied
with a overwhelming probability in the security parameter by electing only a
poly-logarithmic number of nodes per round.
Vertical vs Horizontal Sampling. The straightforward probabilistic solution
is to elect a committee of poly-logarithmic size per round who broadcasts signed
state commitments. A state commitment is considered valid if it is signed by
at least half of the committee members. We call this approach Vertical Sam-
pling. Each node is elected on average once per O( n

polylogn ) rounds and executes
for only the respective rounds. Instead, we adopt an approach we call Horizon-
tal Sampling, in which only expected constant number (e.g. one) of nodes are
elected per round. In that solution, every node is elected on average every n
rounds and executes for O(polylogn) rounds. In both cases the cost per block
execution is O(polylogn

n ). However, since nodes update their execution states in
a distributed fashion, elected nodes may need to retrieve the previous execution
state from other nodes in order to execute the current round, which incurs high
communication overhead. In Horizontal Sampling, in comparison to the Vertical
Sampling, nodes request the state less frequently, resulting in a more scalable
solution.
Permissioned and Randomized. First, we present the Horizontal Sampling
protocol for the permissioned settings. During the election phase, each executor
computes the VRF locally in each round. Only one node on average is elected per
round. The elected node starts from the state of the previous round, computes
and broadcasts state commitments for the following O(polylogn) rounds. Hence,
with only one executor elected per round, a poly-logarithmic number of nodes
will vote for each round. State commitments signed by at least half of the elected
nodes are considered valid.
Proof-of-Stake (PoS). We then extend the Horizontal Sampling protocol for
the Proof-of-Stake settings. In the permissioned settings, each node computes a
VRF for the election phase. In PoS, the adversary can create numerous accounts
to increase the probability of being elected. To make the protocol Sybil Resistant,
each node’s election probability is proportional to its stake. Concretely, nodes
compute the VRF for all of their coins in the election phase. In the voting phase,
elected nodes compute and broadcast their signed state commitments, as in the
permissioned protocol.

An extra challenge in the PoS protocol is that the stake distribution changes
over time. In every round, each node keeps track of its own stake and only
the elected nodes execute the state. Therefore, elected nodes must prove the
ownership of elected coins to the rest of the nodes. To this end, they construct
and broadcast inclusion proofs along with their signed state commitments.
State Availability. In the probabilistic protocols, not all nodes execute for
every round to acquire the respective the state of every round. For liveness,
our protocol must guarantee state availability, i.e., any node is able to acquire
the state of the previous round every time when it executes the current round.
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Since any valid state commitment is signed by at least one honest node, the
corresponding state will eventually be available to any node requesting it.
Light Clients. Lastly, we introduce a non-interactive light client construction
for our protocols. We assume that at any given time, each light client is con-
nected to at least one honest executor. Briefly, a non-interactive light client can
learn information about the state of the system after receiving a valid state com-
mitment from an executor, along with an inclusion proof (e.g. Merkle proof).

4 Protocols

In this section, we present our asynchronous execution layer protocols on top
of an underlying dirty ledger. First, in the permissioned settings, we present
the deterministic protocol demonstrating how to construct verifiable certificates
that correspond to the correct state, i.e., the valid state commitments. The
deterministic protocol suggests that a majority of honest nodes is a necessary and
sufficient condition to construct valid state commitments. Due to its simplicity,
we omit the details here and refer the reader to the full version of the paper [28].
However, in the deterministic protocol, every node executes for every round
resulting in cost per block execution O(1). Next, we define a probabilistic scalable
protocol called Horizontal Sampling, where in every round we select only a poly-
logarithmic number of nodes to execute so that the majority of them are honest
with overwhelming probability. Due to space limitations, we only present the
details of the horizontal sampling protocol and some intuitive descriptions for the
Proof-of-Stake protocol in Sect. 4.2 in the main paper, and leave other protocol
details in the full version of the paper [28].

4.1 Horizontal Sampling

In the deterministic protocol, all nodes execute in every round and broadcast
their state commitments. Now, we proceed with building an efficient probabilistic
protocol, called Horizontal Sampling, illustrated in Algorithm1. We assume up
to f ≤ (1 − ε)n

2 executors can be corrupted by a static adversary where ε is
some constant, and we choose the security parameter κ = O(log2 n) for this
section. Nodes first download the genesis block G which holds the initial state.
In each round, every node checks whether it is elected (Algorithm 1, line 28).
Elected nodes propose state commitments during the voting phase. The voting
phase outputs valid state commitments, which are state commitments signed by
enough executors.
Election Phase: In each round, every node computes the VRF using its private
key, the round number, and the corresponding random seed. This computation
returns two values, a hash value of length |h| and a proof of authenticity certi-
fying this hash value (Algorithm1, line 27). We refer to this proof as the proof
of election of the leaders. All nodes with hash value in round r of less than

Xr =

{
κ 2|h|

n , if r = 1
2|h|
n , if r > 1

are elected (Algorithm 1, line 28). In that way, in the
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first round there will be expected κ elected nodes constituting the bootstrap
committee, while for r > 1 there will be only one node in expectation, which is
called the leader.
Validity of a Commitment: For the first κ rounds only the members of the
bootstrap committee are voting. For any round r ≥ κ + 1 all the elected nodes
in the interval [r − κ + 1, r] compute the state commitments. In the full version
of the paper [28], we prove that the bootstrap committee consists of at least κ

2
honest nodes and at most κ

2 −1 adversarial nodes with overwhelming probability
in n (we choose κ = O(log2 n)). The same property holds for the elected nodes
in any interval of κ consecutive rounds. As a result, in each round, at least
κ
2 honest and at most κ

2 − 1 adversarial nodes will be responsible for voting.
Therefore, a state commitment corresponding to a round r can be considered as
valid if it is signed by at least κ

2 nodes among those that are elected to execute
during the interval of rounds [max(1, r −κ+1), r] or if it is the genesis block. In
Fig. 1, on the left side we present an example of the leaders’ votes in the interval
[r, r + 3] where the malicious leader Lr+2 votes for incorrect state commitment
for rounds r +2, r +3; on the right side we present an example of the committee
members voting for the execution state commitments of different rounds, and
the malicious nodes try to create a fork on the execution state.

Fig. 1. Figure (a) illustrates the elected leaders’ votes in the round interval [r, r + 3],
resulting in the fork in the chain of the proposed state commitments illustrated in figure
(b). The set Hi (or Ai) consists of the votes of the honest (or adversarial) elected leaders
in the interval [r − κ + 3, r + 2].

Voting Phase: For the first κ rounds, the bootstrap committee members form
the respective valid state commitments. To update the state, they apply the
transactions committed to the ledger for all these rounds starting from the gen-
esis block. For every round, they compute and broadcast their signed state com-
mitments along with their proof of election.

Now consider node pi, an elected leader in some round r ≥ 2 during the
voting phase (Algorithm 1, Procedure Execute). First, pi waits until witnessing
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Algorithm 1: Horizontal Sampling: Node pi with public key pki and secret
key ski

1 state(0) ← G // genesis block

2 threshold ← κ
2
, state com ← {}

3 rcur ← 1 // current round

/* verify the election proof with public key pk in the round r */

4 Predicate TimeToExecute(pk, r, u, π) :

5 target ← 2|h|
n

κ if r = 1, else 2|h|
n

// threshold for the election

process

6 return VerifyVRFpk
(u, π, seedr||r) ∧ u ≤ Target(r)

/* check whether cmt comes from a valid leader of round rl that is

responsible for executing in round r */

7 Predicate AcceptCommitment(pk, rl, u, π, r, σ, cmt) :
8 return ¬(rl > 1 ∧ r ≤ κ) ∧ (rl ≤ r ≤

rl + κ − 1) ∧ Verify(σ, pk, cmt||r) ∧ TimeToExecute(pk, rl, u, π)

/* acquiring the state of round r */

9 Procedure AcquireState(r) :
10 Wait until ∃(cmt, r) s.t.|state com[(cmt, r)]| ≥ threshold
11 if state(r) = null then
12 request state(r)
13 wait until receiving state s.t. Computecmt(state) = cmt
14 state(r) ← state

/* compute and broadcast the signed state commitments for all the

intermediate rounds within the interval [rl, rl + κ − 1] */

15 Procedure Execute(rl, (u, π)) :
16 AcquireState(rl − 1) if rl > 1
17 for r = rl, ..., rl + κ − 1 do
18 download data(r) // data within the block with height r
19 state(r) ← apply(state(r − 1), data(r))
20 continue if rl > 1 ∧ r ≤ κ // only bootstrap committee votes

21 cmt ← Computecmt(state(r))
22 σ ← Sign(cmt||r, pki, ski)
23 state com[(r, cmt)].add((pki, rl, u, π, σ))
24 Send (”state cmt”, cmt, rl, r, σ, u, π) to all nodes

/* Main loop, run leader election for each round */

25 while True do
26 (u, π) ← VRFsk(seedrcur ||rcur)
27 if u ≤ Target(rcur) then
28 Execute(rcur, (u, π))

29 rcur ← rcur + 1

30 Upon receiving(”state cmt”, cmt, rl, r, σ, u, π) from the node with public key pkj

for the first time for round rl do :
31 if AcceptCommitment(pkj , rl, u, π, r, σ, cmt) then
32 state com[(r, cmt)].add((pkj , rl, u, π, σ))
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a valid state commitment for the round r − 1. After receiving the valid state,
the leader acquires the corresponding state. If the state is not available from a
previous execution, pi requests it from all the nodes that have signed the com-
mitment (Algorithm 1, lines 13–14) (more on data availability in Sect. 6). Then,
pi downloads the data committed to the ledger for the intermediate rounds and
applies it sequentially to obtain the state of the round r+κ−1. For each round, it
constructs and signs the respective state commitment. Finally, pi broadcasts the
signed state commitments along with the proof of its election to the rest of the
nodes. We note again that only bootstrap committee members vote for the first
κ rounds (Algorithm1 line 21). The rest of the nodes accept the received com-
mitments only after confirming p′

is signature and proof of election (Algorithm1,
lines 8–9).

Due to space limitation, we defer the correctness proof of the Horizontal
Sampling algorithm to the full version of the paper [28].

4.2 Proof-of-Stake Settings

Now we extend the Horizontal Sampling protocol to the proof-of-stake setting.
Participating nodes have accounts holding stake/coins, and we use W to denote
the total amount of the stake in the system. New nodes can dynamically join the
system, and we demonstrate bootstrapping later. We assume up to f ≤ (1−ε)W

2
stake can be corrupted by a static adversary, where ε is some constant, and we
choose the security parameter κ = O(log2 W ) for this section.

First, all nodes download the genesis block G which contains the initial stake
distribution. The stake distribution can change over time. More specifically, we
decompose the protocol into the following phases. In each round, every node
participates in the election phase to check whether any of its coins is elected.
During the voting phase, nodes with at least one elected coin compute state
commitments like in the permissioned protocol.
Tracking Wealth: The stake distribution changes over time and the nodes do
not necessarily acquire the execution state of each round. Hence the challenge
for a node is to check whether the transactions it receives are successful or not.
In our protocol, the node requests a proof of payment certificate from the payer,
(see Sect. 5), to verify that its state has changed as expected and therefore the
transaction was successful.
Election Phase: In each round, every node computes the VRF using its owned
coins and the randomness seed coming from the dirty ledger to generate proofs
of election for the elected coins. Similarly to the permissioned protocol, the PoS
protocol elects a bootstrap committee for the first round, and elects on average
one coin per round for every round r > 1. To keep the threshold of a valid state
commitment identical for every round, only the bootstrap committee members
are voting for the first κ rounds, while for r ≥ 2 the owner of an elected coin
in round r can vote for every round in the interval [max(r, κ + 1), r + κ − 1]. A
state commitment for the round r is valid if it is signed by the owners of at least
κ
2 of the elected coins during the interval of rounds [max(1, r − t + 1), r] or if it
is the genesis block.
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Proof of Ownership: Since nodes track only their own stake, the elected nodes
must prove that they own the elected coins. Hence, they provide inclusion proofs
for their elected coins using the valid state commitment of the previous round,
e.g., the commitment can be the Merkle root in a Merkle proof. We call these
certificates proofs of ownership and the corresponding state commitment parent
commitment. To be able to verify the proofs of payment in order to track its
stake, and to compute the proofs of ownership in case of election, each node
waits for the valid state commitment of the previous round before participating
in the election phase.
Voting Phase: The voting phase is similar to the permissioned protocol. First,
the bootstrap committee members compute and broadcast their signed state com-
mitments for every round r ≤ κ to form the respective valid state commitment.
Then, every node with an elected coin in the round r, can start from the state
corresponding to the valid state commitment of the round r − 1. Moreover, the
node uses the valid state commitment to construct the proof of ownership for its
elected coin. Finally, the elected node computes and broadcasts the signed state
commitments for all the intermediate rounds along with the proof of election and
the proof of ownership in the round r. To accept a signed state commitment,
nodes first verify the related certificates. Especially for proofs of ownership, nodes
wait until the parent commitment becomes valid.
Bootstrapping: Consider Bob, a node that wishes to join the network in the
round r. We assume that Bob is connected to at least one honest executor.
Bob has received from many nodes a data structure called chain that contains
the state commitments signed by the elected nodes along with the respective
certificates (signatures, proofs of election, and proofs of ownership) for each
round.

Bob downloads the genesis block G first. For each chain, Bob applies the
following approach to evaluate whether it is the correct one. For the first round,
Bob verifies only the proofs of election of the bootstrap committee members since
the initial stake distribution is contained in G. Then, for each vote up to round
r, he verifies the signatures, the proof of ownership, and the proof of election of
the elected nodes. When Bob receives the correct chain, it acquires the last valid
state commitment in the chain and requests the corresponding state (Sect. 6).

5 Light Clients Protocol

Once we have a system where executors can verify that a payment has been made,
it is simple to transform it to the first non-interactive, asynchronous light-client
for dirty ledgers. In this section, we demonstrate how a light client can learn the
state of the system. First, we discuss how a light client can acquire and verify a
state proof. Then, we use state proofs as a building block to prove that a change
in the state occurred.
Assumptions: Each light client has access to the random seed for each round
through the dirty ledger, in order to verify the leader election. In addition, each
light client is connected to at least one honest executor. An executor uses a gossip
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protocol to obtain information necessary to react to a light client’s requests, such
as the state that corresponds to a valid state commitment.
Bootstrapping: Assume that the height of the dirty ledger equals h and a light
client lci bootstraps in the round r ≤ h. First, we illustrate how lci can verify a
state proof. A validity proof of the state commitment corresponding to the state
S constitutes the state proof πS . The light client then chooses how to connect
to the network. One option is to receive the corresponding state and derive the
desired information after downloading and applying the data committed to the
ledger on its own. Otherwise, lci can reconnect to the network whenever it needs
a proof of payment certificate.
State Proof - Permissioned Settings: To bootstrap in the round r, lci waits to
receive a valid state commitment for some round greater than or equal to the
round r. In the deterministic protocol, lci verifies that a state commitment is
signed by at least f +1 nodes. In the Horizontal Sampling protocol, a valid state
commitment in a round r′ is voted by at least κ

2 elected leaders in the interval
[max(1, r′ − κ + 1), r′]. Each leader’s vote includes their signature and proof of
election. Lci verifies this using the Predicate AcceptStateProof in Algorithm 2.

Algorithm 2: Light Client protocol - Horizontal Sampling
1 threshold ← κ

2

/* check whether there are at least κ
2

signatures for cmt by leaders

of rounds [r − t + 1, r] in Σ */

2 Predicate AcceptStateProof(cmt, r, Σ)) :
3 Remove duplicates in Σ
4 return

|AcceptCommitment(pk, rl, u, π, r, σ, cmt) : (pk, rl, u, π, σ) ∈ Σ| ≥ threshold

5 Predicate PaymentProof(cmt, r, Σ, πinclusion proof ) :
6 return AcceptStateProof(cmt, r, Σ)∧ state change occurred according to

the πinclusion proof

State Proof - Proof-of-Stake Settings: The light client bootstraps as explained in
Sect. 4.2. In a nutshell, for each round, lci requires and verifies the signatures,
the proof of ownership, and the proof of election coming from the owners of the
elected coins that have voted for the valid state commitments.
Proofs of Payment: We now demonstrate how to provide certificates for suc-
cessful transactions. Consider Alice and Bob, two light clients using our system.
Bob wishes to purchase a product from Alice, triggering a transaction that will
be logged in the dirty ledger. Alice needs a proof that the payment is successful
before providing the merchandise to Bob.

Assume that the transaction of Bob paying Alice is committed at round r.
The certificate with which Bob proves that Alice’s state is changed in round
r is called proof of payment. More specifically, the certificate constitutes of a
valid state commitment for any round greater than r and a short inclusion proof
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(e.g. a Merkle proof) indicating Alice’s new state. Alice uses the Predicate Pay-
mentProof in Algorithm2 to verify first the validity of the state commitment
and then the inclusion proof, using the valid state commitment, to extract her
new state. If the transaction is successful, Alice’s state is changed during this
interval.

6 Data Availability

In this section, we discuss what data executors store locally to support the
proposed protocols.
State Availability: Nodes responsible for executing in a particular round need
to acquire first the state of a previous round. It is also required by the Proof of
payment and bootstrapping in the proof-of-stake settings (Sect. 4.2).

We let the executors store every state they executed. In all of the proposed
protocols, each valid state commitment is signed by at least one honest node
which has stored the state with overwhelming probability. An executor requests
the state that corresponds to a valid state commitment from all the nodes that
have signed the respective state commitment. The honest node that has signed
the state commitment will eventually provide it to the executor. The executor
will verify that the state indeed corresponds to the valid state commitment.
Certificate Availability: To support bootstrapping protocols, executors store
the certificates related to the valid state commitments. In the deterministic pro-
tocol, they only store the signed state commitments. In the Horizontal Sampling
protocol, executors store the signed valid state commitments along with the
leaders’ proofs of election (Algorithm 1 lines: 24, 33), and in the proof-of-stake
settings, they additionally keep the proofs of ownership of the elected coins.

7 Summary of Terminologies

We summarize the terminologies used in this paper in Table 1.

Table 1. Terminologies

Notation Description

n total number of nodes in the permissioned settings

f number of adversarial nodes (or coins held by adversarial

nodes) in the permissioned settings ( or in PoS)

W total amount of stake in PoS

proof of election proofs coming from the VRF computation of the elected

nodes in the probabilistic protocols

proof of ownership with parent

commitment cmt

inclusion proof with hash header cmt demonstrating that

a node pi owns a particular coin in PoS
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8 Conclusion

In this paper, we demonstrated how Horizontal Sampling converts an atomic
broadcast (BAB) solution to an SMR (or how to execute the state on top of a
dirty ledger). To this end, Horizontal Sampling is an efficient distributed execu-
tion protocol that consists of two phases. First, there is a voting phase where a
constant number of nodes are selected. Second, the selected nodes execute and
propose state commitments for the following polylogn rounds during the vot-
ing phase. Horizontal Sampling is a censorship-resistant solution that does not
violate the network assumptions of the underlying ledger. Lastly, we illustrated
how to leverage Horizontal Sampling for defining non-interactive light clients
that learn the state of the system.
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Abstract. Consensus protocols have traditionally been studied in the
permissioned setting, where all participants are known to each other
from the start of the protocol execution. What differentiates the most
prominent blockchain protocol Bitcoin [15] from these previously stud-
ied protocols is that it operates in a permissionless setting, i.e. it is a
protocol for establishing consensus over an unknown network of partici-
pants that anybody can join, with as many identities as they like in any
role. The arrival of this new form of protocol brings with it many ques-
tions. Beyond Bitcoin and other proof-of-work (PoW) protocols, what
can we prove about permissionless protocols in a general sense? How
does the recent stream of work on permissionless protocols relate to the
well-developed history of research on permissioned protocols?

To help answer these questions, we describe a formal framework for
the analysis of both permissioned and permissionless systems. Our frame-
work allows for “apples-to-apples” comparisons between different cate-
gories of protocols and, in turn, the development of theory to formally
discuss their relative merits. A major benefit of the framework is that it
facilitates the application of a rich history of proofs and techniques for
permissioned systems to problems in blockchain and the study of permis-
sionless systems. Within our framework, we then address the questions
above. We consider a programme of research that asks, “Under what
adversarial conditions, and for what types of permissionless protocol, is
consensus possible?” We prove several results for this programme, our
main result being that deterministic consensus is not possible for per-
missionless protocols.

Keywords: Consensus · Proof-of-Work · Proof-of-Stake ·
Proof-of-Space

1 Introduction

The Byzantine Generals Problem [14,18] was introduced by Lamport, Shostak
and Pease to formalise the problem of reaching consensus in a context where
faulty processors may display arbitrary behaviour. The problem has subsequently
become a central topic in distributed computing. Of particular relevance to us
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here are the seminal works of Dwork, Lynch and Stockmeyer [8], who considered
the problem in a range of synchronicity settings, and the result of Dolev and
Strong [7] showing that, even in the strongly synchronous setting of reliable
next-round message delivery with PKI, f +1 rounds of interaction are necessary
to solve the problem if up to f parties are faulty.

The Permissionless Setting (and The Need for a Framework). This
rich history of analysis considers the problem of consensus in the permissioned
setting, where all participants are known to each other from the start of the
protocol execution. More recently, however, there has been significant interest
in a number of protocols, such as Bitcoin [15] and Ethereum [3], that operate in
a fundamentally different way. What differentiates these new protocols is that
they operate in a permissionless setting, i.e. these are protocols for establishing
consensus over an unknown network of participants that anybody can join, with
as many identities as they like in any role. Interest in these new protocols is
such that, at the time of writing, Bitcoin has a market capitalisation of over
$400 billion.1 Given the level of investment, it seems important to put the study
of permissionless protocols on a firm theoretical footing.

Since results for the permissioned setting rely on bounding the number of
faulty participants, and since there may be an unbounded number of faulty par-
ticipants in the permissionless setting, it is clear that classical results for the
permissioned setting will not carry over to the permissionless setting directly.
Consider the aforementioned proof of Dolev and Strong [7] that f + 1 rounds
are required if f many participants may be faulty, for example. If the number
of faulty participants is unbounded, then the apparent conclusion is that con-
sensus is not possible. To make consensus possible in the permissionless setting,
some substantial changes to the setup assumptions are therefore required. Bit-
coin approaches this issue by introducing the notion of ‘proof-of-work’ (PoW)
and limiting the computational (or hashing) power of faulty participants. A
number of papers [9,10,16] consider frameworks for the analysis of Bitcoin and
other PoW protocols. The PoW mechanism used by Bitcoin is, however, just one
approach to defining permissionless protocols. As has been well documented [2],
proof-of-stake (PoS) protocols, such as Ouroboros [13] and Algorand [6], are a
form of permissionless protocol with very different properties, and face a differ-
ent set of design challenges. As we will expand on here, there are a number of
reasons why PoS protocols do not fit into the previously mentioned frameworks
for the analysis of Bitcoin. The deeper question remains, how best to understand
permissionless protocols more generally?

Defining a Framework. Our first aim is to describe a framework that allows
one to formally describe and analyse both permissioned and permissionless pro-
tocols in a general sense, and to compare their properties. To our knowledge, our
framework is the first capable of modelling all significant features of PoW and
PoS protocols simultaneously, as well as other approaches like proof-of-space [19].

1 See www.coinmarketcap.com for a comprehensive list of cryptocurrencies and their
market capitalisations.

www.coinmarketcap.com
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This allows us to prove general impossibility results for permissionless protocols.
The framework is constructed according to two related design principles:

1. Our aim is to establish a framework capable of dealing with permissionless
protocols, but which is as similar as possible to the standard frameworks in
distributed computing for dealing with permissioned protocols. As we will
see in Sects. 3 and 4, a major benefit of this approach is that it facilitates
the application of classical proofs and techniques in distributed computing to
problems in ‘blockchain’ and the study of permissionless protocols.

2. We aim to produce a framework which is as accessible as possible for
researchers in blockchain without a strong background in security. To do
so, we blackbox the use of cryptographic methods where possible, and iso-
late a small number of properties for permissionless protocols that are the
key factors in determining the performance guarantees that are possible for
different types of protocol (such as availability and consistency in different
synchronicity settings).

In Sect. 2 we describe a framework of this kind, according to which protocols
run relative to a resource pool. This resource pool specifies a resource balance
for each participant over the duration of the execution (such as hashrate or
stake in the currency), which may be used in determining which participants are
permitted to make broadcasts updating the state.

Byzantine Generals in the Permissionless Setting. Our second aim is
to address a programme of research that looks to replicate for the permission-
less setting what papers such as [7,8,14] achieved for the permissioned case.
Our framework allows us to formalise the question, “Under what adversarial
conditions, under what synchronicity assumptions, and for what types of per-
missionless protocol (proof-of-work/proof-of-stake/proof-of-space), are solutions
to the Byzantine Generals Problem possible?” In fact, the theory of consensus
for permissionless protocols is quite different than for the permissioned case.
Our main theorem establishes one such major difference. All terms in the state-
ment of Theorem 1 below will be formally defined in Sects. 2 and 3. Roughly, the
adversary is q-bounded if it always has at most a q-fraction of the total resource
balance (e.g. a q-fraction of the total hashrate).

Theorem 1. Consider the synchronous and permissionless setting, and suppose
q ∈ (0, 1]. There is no deterministic protocol that solves the Byzantine Generals
Problem for a q-bounded adversary.

The positive results that we previously mentioned for the permissioned case
concerned deterministic protocols. So, Theorem 1 describes a fundamental dif-
ference in the theory for the permissioned and permissionless settings. With
Theorem 1 in place, we then focus on probabilistic solutions to the Byzantine
Generals Problem. We leave the details until Sects. 3 and 4, but highlight below
another theorem of significant interest, which clearly separates the functionalities
that can be achieved by PoW and PoS protocols.
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Separating PoW and PoS Protocols. The resource pool will be defined as
a function that allocates a resource balance to each participant, depending on
time and on the messages broadcast by protocol participants. One of our major
concerns is to understand how properties of the resource pool may influence the
functionality of the resulting protocol. In Sects. 2, 3 and 4 we will be concerned,
in particular, with the distinction between scenarios in which the resource pool
is given as a protocol input, and scenarios where the resource pool is unknown.
We refer to these as the sized and unsized settings, respectively. PoS protocols
are best modelled in the sized setting, because the way in which a participant’s
resource balance depends on the set of broadcast messages (such as blocks of
transactions) is given from the start of the protocol execution. PoW protocols,
on the other hand, are best modelled in the unsized setting, because one does
not know in advance how a participant’s hashrate will vary over time. The fun-
damental result when communication is partially synchronous is that no PoW
protocol gives a probabilistic solution to the Byzantine Generals Problem:

Theorem 3. There is no permissionless protocol giving a probabilistic solution to
the Byzantine Generals Problem in the unsized setting with partially synchronous
communication.
In some sense, Theorem 3 can be seen as an analogue of the CAP Theorem [1,11]
for our framework, but with a trade-off now established between ‘consistency’
and weaker notion of ‘availability’ than considered in the CAP Theorem (and
with the unsized setting playing a crucial role in establishing this tradeoff). For
details see Sect. 4.

1.1 Related Work

In the interests of conserving space, we describe here the most relevant related
papers and refer the reader to Appendix 1 for a more detailed account.2

The Bitcoin protocol was first described in 2008 [15]. Since then, a number of
papers (see, for example, [10,12,16,17]) have considered frameworks for the anal-
ysis of PoW protocols. These papers generally work within the UC framework of
Canetti [4], and make use of a random-oracle (RO) functionality to model PoW.
As we shall see in Sect. 2, however, a more general form of oracle is required for
modelling PoS and other forms of permissionless protocol. With a PoS protocol,
for example, a participant’s apparent stake (and their corresponding ability to
update state) depends on the set of broadcast messages that have been received,
and may therefore appear different from the perspective of different participants
(i.e. unlike hashrate, measurement of a user’s stake is user-relative). In Sect. 2
we will also describe various other modelling differences that are required to be
able to properly analyse a range of attacks, such as ‘nothing-at-stake’ attacks,
on PoS protocols.

In [9], the authors considered a framework with similarities to that con-
sidered here, in the sense that ability to broadcast is limited by access to a

2 For appendices, see the arXiv version: https://arxiv.org/abs/2101.07095.

https://arxiv.org/abs/2101.07095
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restricted resource. In particular, they abstract the core properties that the
resource-restricting paradigm offers by means of a functionality wrapper, in
the UC framework, which when applied to a standard point-to-point network
restricts the ability to send new messages. However, the random oracle function-
ality they consider is appropriate for modelling PoW rather than PoS protocols,
and does not reflect, for example, the sense in which resources such as stake can
be user relative (as discussed above), as well as other significant features of PoS
protocols discussed in Sect. 2.3.

In [20], a model is considered which carries out an analysis somewhat similar
to that in [10], but which blackboxes all probabilistic elements of the process
by which processors are selected to update state. Again, the model provides
a potentially useful way to analyse PoW protocols, but does not reflect PoS
protocols in certain fundamental regards. In particular, the model does not reflect
the fact that stake is user relative (i.e. the stake of user x may appear different
from the perspectives of users y and z). The model also does not allow for analysis
of the ‘nothing-at-stake’ problem, and does not properly reflect timing differences
that exist between PoW and PoS protocols, whereby users who are selected to
update state may delay their choice of block to broadcast upon selection. These
issues are discussed in more depth in Sect. 2.

As stated in the introduction, Theorem3 can be seen as a recasting of the
CAP Theorem [1,11] for our framework. CAP-type theorems have previously
been shown for various PoW frameworks [12,17].

2 The Framework

2.1 The Computational Model

Informal Overview. We use a very simple computational model, designed to
be as similar as possible to standard models from distributed computing (e.g.
[8]), while also being adapted to deal with the permissionless setting.3 Processors
are specified by state transition diagrams. A permitter oracle is introduced as
a generalisation of the random oracle functionality in the Bitcoin Backbone
paper [10]: It is the permitter oracle’s role to grant permissions to broadcast
messages. The duration of the execution is divided into timeslots. Each processor
enters each timeslot t in a given state x, which determines the instructions for
the processor in that timeslot – those instructions may involve broadcasting
messages, as well as sending requests to the permitter oracle. The state x′ of the
processor at the next timeslot is determined by the state x, together with the
messages and permissions received at t.

Formal Description. For a list of commonly used variables and terms, see
Table 1 in Appendix 2.4 We consider a (potentially infinite) system of processors,
3 There are a number of papers analysing Bitcoin [10,16] that take the approach of

working within the language of the UC framework of Canetti [4]. Our position is
that this provides a substantial barrier to entry for researchers in blockchain who do
not have a strong background in security, and that the power of the UC framework
remains largely unused in the subsequent analysis.

4 For the appendix, see https://arxiv.org/abs/2101.07095.

https://arxiv.org/abs/2101.07095
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some of which may be faulty. Each processor is specified by a state transition
diagram, for which the number of states may be infinite. At each timeslot t of its
operation, a processor p receives a pair (M,M∗), where either or both of M and
M∗ may be empty. Here, M is a finite set of messages (i.e. strings) that have
previously been broadcast by other processors. We refer to M as the message
set received by p at t, and say that each message m ∈ M is received by p at
t. M∗ is a potentially infinite set of pairs (m, t′), where each m is a message
and each t′ is a timeslot. M∗ is referred to as the permission set received by
p at t. If (m, t′) ∈ M∗, then receipt of the permission set M∗ means that p is
able to broadcast m at step t′: Once M∗ has been received, we refer to m as
being permitted for p at t′. To complete the instructions for timeslot t, p then
broadcasts a finite set of messages M ′ that are permitted for p at t, makes a finite
request set R, and then enters a new state x′, where x′,M ′ and R are determined
by the present state x and (M,M∗), according to the state transition diagram.
The form of the request set R will be described shortly, together with how R
determines the permission set received at the next timeslot.

Amongst the states of a processor are a non-empty set of possible initial
states. The inputs to p determine which initial state it starts in. If a variable
is specified as an input to p, then we refer to it as determined for p, refer-
ring to the variable as undetermined for p otherwise. If a variable is deter-
mined/undetermined for all p, we simply refer to it as determined/undetermined.
To define outputs, we consider each processor to have a distinguished set of out-
put states, a processor’s output being determined by the first output state it
enters. Amongst the inputs to p is an identifier Up, which can be thought of as
a name for p, and which is unique in the sense that Up �= Up′ when p �= p′. A
principal difference between the permissionless setting (as considered here) and
the permissioned setting is that, in the permissionless setting, the number of
processors is undetermined, and Up is undetermined for p′ when p′ �= p.

We consider a real-time clock, which exists outside the system and measures
time in natural number timeslots. We also allow the inputs to p to include
messages, which are thought of as having been received by p at timeslot t = 0. A
run of the system is described by specifying the initial states for all processors
and by specifying, for each timeslot t ≥ 1: (1) The messages and permission sets
received by each processor at that timeslot, and; (2) The instruction that each
processor executes, i.e., what messages it broadcasts, what requests it makes,
and the new state it enters.

We require that each message is received by p at most once for each time it
is broadcast, i.e. at the end of the run it must be possible to specify an injective
function dp mapping each pair m, t, such that m is received by p at timeslot t,
to a triple (p′,m, t′), such that t′ < t, p′ �= p and such that p′ broadcast m at t′.

In the authenticated setting, we assume the existence of a signature scheme
(without PKI), see Appendix 3 for formal details. We let mU denote the mes-
sage m signed by U. We consider standard versions (see Appendix 3) of the
synchronous and partially synchronous settings (as in [8]) – the version of the



Byzantine Generals in the Permissionless Setting 27

partially synchronous setting we consider is that in which the determined upper
bound Δ on message delay holds after some undetermined stabilisation time.

2.2 The Resource Pool and the Permitter

Informal Motivation. Who should be allowed to create and broadcast new Bit-
coin blocks? More broadly, when defining a permissionless protocol, who should
be able to broadcast new messages? For a PoW protocol, the selection is made
depending on computational power. PoS protocols are defined in the context of
specifying how to run a currency, and select identifiers according to their stake
in the given currency. More generally, one may consider a scarce resource, and
then select identifiers according to their corresponding resource balance.

We consider a framework according to which protocols run relative to a
resource pool, which specifies a resource balance for each identifier over the dura-
tion of the run. The precise way in which the resource pool is used to determine
identifier selection is then black boxed through the use of what we call the per-
mitter oracle, to which processors can make requests to broadcast, and which
will respond depending on their resource balance. To model Bitcoin, for example,
we simply allow each identifier (or rather, the processor allocated the identifier)
to make a request to broadcast a block at each step of operation. The permitter
oracle then gives a positive response with probability depending on their resource
balance, which in this case is defined by hashrate. So, this gives a straightfor-
ward way to model the process, without the need for a detailed discussion of
hash functions and how they are used to instantiate the selection process.
Formal Specification. At each timeslot t, we refer to the set of all messages
that have been received or broadcast by p at timeslots ≤ t as the message state
M of p. Each run happens relative to a (determined or undetermined) resource
pool,5 which in the general case is a function R : U × N × M → R≥0, where
U is the set of all identifiers and M is the set of all possible sets of messages
(so, R can be thought of as specifying the resource balance of each identifier at
each timeslot, possibly relative to a given message state).6 For each t and M ,
we suppose: (a) If R(U, t,M) �= 0 then U = Up for some processor p; (b) There
are finitely many U for which R(U, t,M) �= 0, and; (c)

∑
U R(U, t,M) > 0.

After receiving messages and a permission set at timeslot t, suppose p’s mes-
sage state is M0 and that, for each t′, M∗(t′) is the set of all messages that
are permitted for p at timeslots ≤ t′. We consider two settings – the timed
and untimed settings. The form of each request r ∈ R made by p at timeslot t
depends on the setting, as specified below. While the following definitions might

5 As described more precisely in Sect. 2.3, whether the resource pool is determined or
undetermined will decide whether we are in the sized or unsized setting.

6 For a PoW protocol like Bitcoin, the resource balance of each identifier will be their
(relevant) computational power at the given timeslot (and hence independent of the
message state). For PoS protocols, such as Ouroboros [13] and Algorand [6], however,
the resource balance will be determined by ‘on-chain’ information, i.e. information
recorded in the message state M .
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initially seem a little abstract, we will shortly give some concrete examples to
make things clear.

– The untimed setting. Here, each request r made by p must be7 of the form
(M,A), where M ⊆ M0 ∪M∗(t), and where A is some (possibly empty) extra
data. The permitter oracle will respond with a (possibly empty) set M∗ of
pairs of the form (m, t + 1). The value of M∗ will be assumed to be a prob-
abilistic function8 of the determined variables, (M,A), and of R(Up, t,M),
subject to the condition that M∗ = ∅ if R(Up, t,M) = 0. (If modelling Bit-
coin, for example, M might be a set of blocks that have been received by p,
or that p is already permitted to broadcast, while A specifies a new block
extending the ‘longest chain’ in M . If the block is valid, then the permitter
oracle will give permission to broadcast it with probability depending on the
resource balance of p at time t. We will expand on this example below.)

– The timed setting. Here, each request r made by p must be of the form
(t′,M,A), where t′ is a timeslot, M ⊆ M0 ∪ M∗(t′) and where A is as in the
untimed setting. The permitter oracle will respond with a set M∗ of pairs
of the form (m, t′). M∗ will be assumed to be a probabilistic function of the
determined variables,9 (t′,M,A), and of R(Up, t′,M), subject to the condition
that M∗ = ∅ if R(Up, t′,M) = 0.

If the set of requests made by p at timeslot t is R = {r1, . . . , rk}, and if the
permitter oracle responds with M∗

1 , . . . ,M∗
k respectively, then M∗ := ∪k

i=1M
∗
i

is the permission set received by p at its next step of operation.
By a permissionless protocol we mean a pair (S, O), where S is a state tran-

sition diagram to be followed by all non-faulty processors, and where O is a
permitter oracle, i.e. a probabilistic function of the form described above. It
should be noted that the roles of the resource pool and the permitter oracle are
different, in the following sense: While the resource pool is a variable (meaning
that a given protocol will be expected to function with respect to all possible
resource pools consistent with the setting), the permitter is part of the protocol
description.

How to Understand the Form of Requests (Informal). To help explain
these definitions, we consider how to model some simple protocols.

Modelling Bitcoin. To model Bitcoin, we work in the untimed setting, and we
define the set of possible messages to be the set of possible blocks (in this paper,
we use the terms ‘block’ and ‘chain’ in an informal sense, for the purpose of giving

7 To model a perfectly co-ordinated adversary, we will later modify this definition
to allow the adversary to make requests of a slightly more general form (see the
Appendix 5).

8 See Appendix 5 for a detailed explanation of what it means to be a ‘probabilistic
function’.

9 In the authenticated setting the response of the permitter is now allowed to be a
probabilistic function also of Up. See Appendix 3 for details.



Byzantine Generals in the Permissionless Setting 29

examples). We then allow p to make a single request of the form (M,A) at each
timeslot. Here M will be a set of blocks that have been received by p, or that p is
already permitted to broadcast. The entry A will be data (without PoW attached)
that specifies a block extending the ‘longest chain’ in M . If A specifies a valid block,
then the permitter oracle will give permission to broadcast the block specified by
A with probability depending on the resource balance of Up at time t (which is p’s
hashrate, and is independent of M). So, if each timeslot corresponds to a short
time interval (one second, say), then the model ‘pools’ all attempts by p to find a
nonce within that time interval into a single request. The higher Up’s resource bal-
ance at a given timeslot, the greater the probability p will be able to mine a block
at that timeslot.10 Note that the resource pool is best modelled as undetermined
here, because one does not know in advance how the hashrate attached to each
identifier (or even the total hashrate) will vary over time.

Modelling PoS Protocols. The first major difference for a PoS protocol is that the
resource balance of each participant now depends on the message state, and may
also be a function of time.11 So, the resource pool is a function R : U ×N×M →
R≥0. A second difference is that R is determined, because one knows from the
start how the resource balance of each participant depends on the message state
as a function of time. Note that advance knowledge of R does not mean that
one knows from the start which processors will have large resource balances
throughout the run, unless one knows which messages will be broadcast. A third
difference is that, with PoS protocols, processors can generally look ahead to
determine their permission to broadcast at future timeslots, when their resource
balance may be different than it is at present. This means that PoS protocols
are best modelled in the timed setting, where processors can make requests
corresponding to timeslots t′ other than the current timeslot t. To make these
ideas concrete, let us consider a simple example.

There are various ways in which ‘standard’ PoS selection processes can work.
Let us restrict ourselves, just for now and for the purposes of this example,
to considering blockchain protocols in which the only broadcast messages are
blocks, and let us consider a longest chain PoS protocol which works as follows:
For each broadcast chain of blocks C and for all timeslots in a set T (C), the
protocol being modelled selects precisely one identifier who is permitted to pro-
duce blocks extending C, with the probability each identifier is chosen being

10 So, in this simple model, we don’t deal with any notion of a ‘transaction’. It is clear,
though, that the model is sufficient to be able to define what it means for blocks to be
confirmed, to define notions of liveness (roughly, that the set of confirmed blocks grows
over time with high probability) and consistency (roughly, that with high probability,
the set of confirmed blocks is monotonically increasing over time), and to prove liveness
and consistency for the Bitcoin protocol in this model (by importing existing proofs,
such as that in [10]).

11 It is standard practice in PoS blockchain protocols to require a participant to have
a currency balance that has been recorded in the blockchain for at least a certain
minimum amount of time before they can produce new blocks, for example. So, a
given participant may not be permitted to extend a given chain of blocks at timeslot
t, but may be permitted to extend the same chain at a later timeslot t′.
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proportional to their wealth, which is a time dependent function of C. To model
a protocol of this form, we work in the timed and authenticated setting. We
consider a resource pool which takes any chain C and allocates to each identi-
fier Up their wealth according to C as a function of t. Then we can consider a
permitter oracle which chooses one identifier Up for each chain C and each times-
lot t′ in T (C), each identifier Up being chosen with probability proportional to
R(Up, t′, C). The owner p of the chosen identifer Up corresponding to C and t′,
is then given permission to broadcast blocks extending C whenever p makes a
request (t′, C, ∅). This isolates a fourth major difference from the PoW case: For
the PoS protocol, the request to broadcast and the resulting permission is not
block specific, i.e. requests are of the form (t′,M,A) for A = ∅, and the resulting
permission is to broadcast any from the range of appropriately timestamped
and valid blocks extending C. If one were to make requests block specific, then
users would be motivated to churn through large numbers of blocks, making the
protocol best modelled as partly PoW.

To model a BFT PoS protocol like Algorand, the basic approach will be very
similar to that described for the longest chain PoS protocol above, except that
certain other messages might be now required in M (such as authenticated votes
on blocks) before permission to broadcast is granted, and permission may now be
given for the broadcast of messages other than blocks (such as votes on blocks).

2.3 Defining the Timed/Untimed, Sized/Unsized and Single/Multi-
permitter Settings

In the previous section we isolated four qualitative differences between PoW
and PoS protocols. The first difference is that, for PoW protocols, the resource
pool is a function R : U × N → R≥0, while for PoS protocols, the resource pool
is a function R : U × N × M → R≥0. Then there are three differences in the
settings that are appropriate for modelling PoW and PoS protocols. We make
the following formal definitions:

1. The timed and untimed settings. This difference between the timed and
untimed settings was specified in Sect. 2.2.

2. The sized and unsized settings. We call the setting sized if the resource
pool is determined. By the total resource balance we mean the function T :
N×M → R>0 defined by T (t,M) :=

∑
U R(U, t,M). For the unsized setting,

R and T are undetermined, with the only restrictions being:
(i) T only takes values in a determined interval [α0, α1], where α0 > 0 (mean-

ing that, although α0 and α1 are determined, protocols will be required
to function for all possible α0 > 0 and α1 > α0, and for all undetermined
R consistent with α0, α1, subject to (ii) below).12

12 We consider resource pools with range restricted in this way, because it turns out to
be an overly strong condition to require a protocol to function without any further
conditions on the resource pool, beyond the fact that it is a function to R≥0. Bitcoin
will certainly fail if the total resource balance over all identifiers decreases sufficiently
quickly over time, or if it increases too quickly, causing blocks to be produced too
quickly compared to Δ.
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(ii) There may also be bounds placed on the resource balance of identifiers
owned by the adversary.

3. The multi-permitter and single-permitter settings. In the single-
permitter setting, each processor may submit a single request of the form
(M,A) or (t,M,A) (depending on whether we are in the timed setting or
not) at each timeslot, and it is allowed that A �= ∅. In the multi-permitter
setting, processors can submit any finite number of requests at each timeslot,
but they must all satisfy the condition that A = ∅.13

We do not define the general classes of PoW and PoS protocols (although we
will be happy to refer to specific protocols as PoW or PoS). Such an approach
would be too limited, being overly focussed on the step-by-step operations. In
our impossibility results, we assume nothing about the protocol other than basic
properties of the resource pool and permitter, as specified by the various settings
above. We model PoW protocols in the untimed, unsized, and single permitter
settings, with R : U × N → R≥0. We model PoS protocols in the timed, sized,
multi-permitter and authenticated settings, and with R : U × N × M → R≥0.
Appendix 4 expands on the reasoning behind these modelling choices. In the fol-
lowing sections, we will see that whether a protocol operates in the sized/unsized,
timed/untimed, or multi/single-permitter settings is a key factor in determining
the performance guarantees that are possible (such as availability and consis-
tency in different synchronicity settings).

2.4 The Adversary

Appendix 5 gives an expanded version of this subsection and also considers
the meaning of probabilisitic statements in detail. In the permissionless setting,
we generally consider Byzantine faults, thought of as being carried out with
malicious intent by an adversary. The adversary controls a fixed set of faulty
processors - in formal terms, the difference between faulty and non-faulty pro-
cessors is that the state transition diagram for faulty processors might not be S,
as specified by the protocol. In this paper, we consider a static (i.e. non-mobile)
adversary that controls a set of processors that is fixed from the start of the
protocol execution. We do this to give the strongest possible form of our impos-
sibility results. We place no bound on the size of the set of processors controlled
by the adversary. Rather, placing bounds on the power of the adversary in the
permissionless setting means limiting their resource balance. For q ∈ [0, 1], we
say the adversary is q-bounded if their total resource balance is always at most a
q fraction of the total, i.e. for all M, t,

∑
p∈PA

R(Up, t,M) ≤ q·
∑

p∈P R(Up, t,M),
where PA is the set of processors controlled by the adversary.

13 The names ‘single-permitter’ and ‘multi-permitter’ come from the sizes of the result-
ing permission sets when modelling blockchain protocols. For PoW protocols the the
permission set received at a single step will generally be of size at most 1, while this
is not generally true for PoS protocols.
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2.5 The Permissioned Setting

So that we can compare the permissioned and permissionless settings, it is useful
to specify how the permissioned setting is to be defined within our framework.
According to our framework, the permissioned setting is exactly the same as
the permissionless setting that we have been describing, but with the following
differences:

– The finite number n of processors is determined, together with the identifier
for each processor.

– All processors are automatically permitted to broadcast all messages, (subject
only to the same rules as formally specified in Appendix 2 for the authenti-
cated setting).14

– Bounds on the adversary are now placed by limiting the number of faulty
processors – the adversary is q-bounded if at most a fraction q of all processors
are faulty.

3 Byzantine Generals in the Synchronous Setting

Recall from Sect. 2.2 that we write mU to denote the message m signed by U.
We consider protocols for solving a version of ‘Byzantine Broadcast’ (BB). A
distinguished identifier U∗, which does not belong to any processor, is thought of
as belonging to the general. Each processor p begins with a protocol input inp,
which is a set of messages from the general: either {0U∗}, {1U∗}, or {0U∗ , 1U∗}. All
non-faulty processors p must give the same output op ∈ {0, 1}. In the case that
the general is ‘honest’, there will exist z ∈ {0, 1}, such that inp = {zU∗} for all
p, and in this case we require that op = z for all non-faulty processors.

As we have already stipulated, processors also take other inputs beyond their
protocol input as described in the last paragraph, such as their identifier and Δ
– to distinguish these latter inputs from the protocol inputs, we will henceforth
refer to them as parameter inputs. The protocol inputs and the parameter inputs
have different roles, in that the form of the outputs required to ‘solve’ BB only
depend on the protocol inputs, but the protocol will be required to produce
correct outputs for all possible parameter inputs.

3.1 The Impossibility of Deterministic Consensus
in the Permissionless Setting

In Sect. 2.2, we allowed the permitter oracle O to be a probabilistic function. In
the case that O is deterministic, i.e. if there is a single output for each input, we
will refer to the protocol (S, O) as deterministic.

14 It is technically convenient here to allow that processors can still submit requests,
but that requests always get the same response (the particular value then being
immaterial).
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In the following proof, it is convenient to consider an infinite set of proces-
sors. As always, though, (see Sect. 2.2) we assume for each t and M , that there
are finitely many U for which R(U, t,M) �= 0, and thus only finitely many cor-
responding processors given permission to broadcast. All that is really required
for the proof to go through is that there are an unbounded number of identifiers
that can participate at some timeslot (such as is true for Bitcoin, or in any con-
text where the adversary can transfer their resource balance to an unbounded
number of possible public keys), and that the set of identifiers with non-zero
resource balance can change quickly. In particular, this means that the adver-
sary can broadcast using new identifiers at each timeslot. Given this condition,
one can then adapt the proof of [7], that a permissioned protocol solving BB for
a system with t many faulty processors requires at least t + 1 many steps, to
show that a deterministic protocol in the permissionless setting cannot always
give correct outputs. Adapting the proof, however, is highly non-trivial, and
requires establishing certain compactness conditions on the space of runs, which
are straightforward in the permissioned setting but require substantial effort to
establish in the permissionless setting.

Theorem 1. Consider the synchronous setting and suppose q ∈ (0, 1]. There is
no deterministic permissionless protocol that solves BB for a q-bounded adver-
sary.

Proof. See Appendix 6 (in the arXiv version).

Theorem 1 limits the kind of solution to BB that is possible in the per-
missionless setting. In the context of a blockchain protocol (for state machine
replication), however, one is (in some sense) carrying out multiple versions of
(non-binary) BB in sequence. One approach to circumventing Theorem1 would
be to accept some limited centralisation: One might have a fixed circle of partici-
pants carry out each round of BB (involving interactions over multiple timeslots
according to a permissioned protocol), only allowing in new participants after
the completion of each such round. While this approach clearly does not involve
a decentralised solution to BB, it might well be considered sufficiently decen-
tralised in the context of state machine replication.

3.2 Probabilistic Consensus

In light of Theorem 1, it becomes interesting to consider permissionless proto-
cols giving probabilistic solutions to BB. To this end, from now on, we consider
protocols that take an extra parameter input ε > 0, which we call the security
parameter. Now we require that, for any value of the security parameter input
ε > 0, it holds with probability > 1−ε that all non-faulty processors give correct
outputs.

Appendix 7 explains which questions remain open for probabilistic permis-
sionless protocols in the synchronous setting. For now, in the interests of con-
serving space, we just briefly mention another negative result:
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Theorem 2. Consider the synchronous and unauthenticated setting. If q ≥ 1
2 ,

then there is no permissionless protocol giving a probabilistic solution to BB for
a q-bounded adversary.

Proof. See Appendix 7.

4 Byzantine Generals with Partially Synchronous
Communication

We note first that, in this setting, protocols giving a probabilistic solution to BB
will not be possible if the adversary is q-bounded for q ≥ 1

3 – this follows easily
by modifying the argument presented in [8], although that proof was given for
deterministic protocols in the permissioned setting. For q < 1

3 and working in
the sized setting, there are multiple PoS protocols, such as Algorand,15 which
work successfully when communication is partially synchronous.

The fundamental result with respect to the unsized setting with partially
synchronous communication is that there is no permissionless protocol giving
a probabilistic solution to BB. So, PoW protocols cannot give a probabilistic
solution to BB when communication is partially synchronous.16

Theorem 3. There is no permissionless protocol giving a probabilistic solution
to BB in the unsized setting with partially synchronous communication.

Proof. See Appendix 8.

As stated previously, Theorem 3 can be seen as an analog of the CAP Theo-
rem for our framework. While the CAP Theorem asserts that (under the threat
of unbounded network partitions), no protocol can be both available and con-
sistent, it is possible to describe protocols that give a solution to BB in the
partially synchronous setting [8]. The crucial distinction is that such solutions
are not required to give outputs until after the undetermined stabilisation time
has passed. The key idea behind the proof of Theorem3 is that, in the unsized
and partially synchronous setting, this distinction disappears. Network partitions
are now indistinguishable from waning resource pools. In the unsized setting, the
requirement to give an output can therefore force participants to give an output
before the stabilisation time has passed.
15 For an exposition of Algorand that explains how to deal with the partially syn-

chronous setting, see [5].
16 Of course, it is crucial to our analysis here that PoW protocols are being modelled

in the unsized setting. It is also interesting to understand why Theorem 3 does not
contradict the results of Sect. 7 in [10]. In that paper, they consider the form of
partially synchronous setting from [8] in which the delay bound Δ always holds,
but is undetermined. In order for the ‘common prefix property’ to hold in Lemma
34 of [10], the number of blocks k that have to be removed from the longest chain
is a function of Δ. When Δ is unknown, the conditions for block confirmation are
therefore also unknown. It is for this reason that the Bitcoin protocol cannot be
used to give a probabilistic solution to BB in the partially synchronous and unsized
setting.
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5 Concluding Comments

We close with some questions.

Question 1. What are the results for the timed/untimed, sized/unsized, and
the single/multi-permitter settings other than those used to model PoW and
PoS protocols? What happens, for example, when communication is partially
synchronous and we consider a variant of PoW protocols for which the total
resource balance (see Sect. 2.3) is determined?

While we have defined the single-permitter and multi-permitter settings, we
didn’t analyse the resulting differences in Sects. 3 and 4. In fact, this is the
distinction between PoS and PoW protocols which has probably received the
most attention in the previous literature (but not within the framework we
have presented here) in the form of the ‘nothing-at-stake’ problem [2]. In the
framework outlined in Sect. 2, we did not allow for a mobile adversary (who can
make non-faulty processors faulty, perhaps for a temporary period). It seems
reasonable to suggest that the difference between these two settings becomes
particularly significant in the context of a mobile adversary:

Question 2. What happens in the context of a mobile adversary, and how does
this depend on whether we are working in the single-permitter or multi-permitter
settings? Is this a significant advantage of PoW protocols?

In the framework we have described here, we have followed much of the
classical literature in not limiting the length of messages, or the finite number
of messages that can be sent in each timeslot. While the imagined network
over which processors communicate does have message delays, it apparently has
infinite bandwidth so that these delays are independent of the number and size of
messages being sent. While this is an appropriate model for some circumstances,
in looking to model such things as sharding protocols [21] it will be necessary to
adopt a more realistic model:

Question 3. How best to modify the framework, so as to model limited band-
width (and protocols such as those for implementing sharding)?

In this paper we have tried to follow a piecemeal approach, in which new
complexities are introduced one at a time. This means that there are a num-
ber of differences between the forms of analysis that normally take place in
the blockchain literature and in distributed computing that we have not yet
addressed. One such difference is that it is standard in the blockchain world to
consider a setting in which participants may be late joining. A number of papers
[12,17] have already carried out an analysis of some of the nuanced considera-
tions to be had here, but there is more to be done:
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Question 4. What changes in the context of late joining? In what ways is this
different from the partially synchronous setting, and how does this relate to
Question 3? How does all of this depend on other aspects of the setting?
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Abstract. Most existing Byzantine fault-tolerant State Machine Repli-
cation (SMR) protocols rely explicitly on either equivocation detection
or quorum certificate formations to ensure protocol safety. These mech-
anisms inherently require O(n2) communication overhead among n par-
ticipating servers. This work proposes the Unique Chain Rule (UCR),
a simple rule for hash chains where extending a block by including its
hash in the next block, is treated as a vote for the proposed block and its
ancestors. When a block obtains a vote from at least one correct server,
we can commit the block and its ancestors. While this idea was used
implicitly earlier in conjunction with equivocation detection or quorum
certificate generation, this work employs it explicitly to show safety.
We present three applications of UCR. We design Apollo, and Artemis:
two novel synchronous SMR protocols with linear best-case communi-
cation complexity using round-robin, and stable leaders, respectively as
the first two applications. Next, we employ UCR in a black-box fashion
toward making any SMR commits publicly verifiable, where clients will
no longer have to wait for 2t + 1 confirmations on every block, where
t is the number of Byzantine faults tolerated by the protocol, but can
instead collect a UCR proof consisting of min(κ, t) + 1 extensions on
a block, where κ is a security parameter. This results in faster syncing
times for clients as the publicly verifiable proofs can also be gossiped
with every new block extension confirming a new block.

1 Introduction

State Machine Replication (SMR) [33] is a fundamental distributed-computing
primitive that is receiving renewed attention due to its potential to support
blockchains. At its core, an SMR protocol coordinates a set of n servers run-
ning a deterministic service so that they collectively implement the abstrac-
tion of a single, correct server, even when a subset of servers turns malicious
(or Byzantine). Most SMR protocols [1–4,9,12,14–16,18,23,26,27,29,34–36,39]
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achieve this coordination of forming a sequence/chain of blocks (of instruc-
tions/transactions) using a leader server that the other servers follow, with pro-
visions to change this leader in response to some faults or regularly by design.

In the standard (bounded) synchronous communication setting with the
worst-case network delay of Δ for messages, publicly-verifiable Byzantine fault-
tolerant (BFT) SMR protocols can tolerate up to one-half Byzantine faults1.
Many synchronous SMR protocols [2,3,14,16,23,34] achieve this resilience pri-
marily using the lack of equivocation in O(Δ) time; here, confirming lack of
equivocation for a message (or a block) requires sending the message to all the
servers and then not hearing any complaints in 2Δ time. Other synchronous
protocols [16,34] that avoid the above equivocation detection use the fact that
at most one message can obtain 3n/4 votes. Nevertheless, they still require cer-
tificates with O(n) signatures, and incur quadratic in n communication.

This work explores a significantly different approach towards SMR, which is
reminiscent of proof-of-work SMR systems [31,38] such as Bitcoin. The Bitcoin
networks follow an informal rule that after observing six blocks of transactions
extending a block B, the block B is deemed as final; i.e., the probability of
the block B being rejected and replaced with another block by another correct
server is considered to be small enough. We observe that if we can ensure that
no alternate chain of blocks is possible in the permissioned SMR systems, i.e.,
the SMR chain we have is unique, then we can use the unique chain to commit
blocks. Subsequently, we ask the following question: How many blocks do we need
to observe before we are sure that a block B is final, in a permissioned network?
The answer turns out to be γ for a protocol if: (i) the γ blocks contain blocks
from at least one correct server, (ii) there is only one server that proposes a block
for a height, (iii) correct block proposals are always accepted, and (iv) we use a
tamper-resistant chain (e.g., hash-chain, where every block contains the hash of
the previous block). Based on these observations, we develop a consensus rule
called the Unique Chain Rule (UCR) (Sect. 3) and its three applications: two
novel SMR protocols: Apollo (Sect. 4) and Artemis (Sect. 5), and a protocol to
make any SMR publicly verifiable (Sect. 6).

At network speed with delay δ, our protocols commit a block every δ time,
with a constant2 per-block commit latency of (min(κ, t)+1)δ, and rely on Δ only
to detect crashed leader(s). Our protocols are the first synchronous SMR proto-
cols with certificate-free optimistically linear communication when the leader(s)
behave correctly. It also produces 2× more blocks as the time between two suc-
cessive produced blocks, i.e., block period is 1/2 of the state-of-the-art protocols
due to the lack of a round-trip communication to form quorum certificates. Our
protocols are efficient in terms of cryptography (see Table 1), making it a suitable
candidate for SMR in resource-restricted environments.

1 It is possible for SMR protocols to tolerate more than 1/2 faults. However, these
SMR protocols cannot safely convince any external observer of statements regarding
the latest state of the system due to the dishonest majority [30].

2 Many related works claim constant latency [1,3]. The correct term should be
(min(κ, t)+ 1) as leader randomization is inherently assumed and for small t round-
robin protocols are sufficient.
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Finally, we can apply UCR to make any SMR commit publicly verifiable, i.e.,
any server that observes the SMR commit data can non-interactively confirm the
correctness of the commit. Such publicly verifiable commits can be leveraged to
efficiently disseminate the state and prove the state to the clients instead of
requesting 2t + 1 acknowledgments (of which at least t + 1 are guaranteed to be
from correct servers) from the servers for every block.

1.1 An Informal Exposition of Key Ideas

Unique Chain Rule (UCR). As an example, consider a system of n servers
with up to t Byzantine servers, where the blocks proposed in every round are from
a round-robin among all the servers. Assume that the blocks use a hash-chain,
i.e., a block B proposed in round r includes the hash of its parent block from the
previous round r−1. Implicitly, this proposer is voting for all the blocks in rounds
{r, . . . , 0}. In contrast to existing SMR protocols where quorum certificates (i.e.,
a vector of signatures from more than 50% or 66.67% of the servers) were built
for every block of every round, we can use these implicit votes to form certificates
for blocks. A traditional certificate guaranteed that no other block for the same
height can get certified, while our implicit certificates guarantee that no other
chain with the same prefix can form, making the prefix a unique chain. We
present the resulting commit rule as the Unique Chain Rule (UCR).

Apollo Protocol. Using UCR, we then develop an SMR protocol. We use
random leader selection to ensure that at least one leader is correct in any
sequence of κ + 1 rounds. We add a constraint that a server must extend a
block from the previous round unless it can obtain a certificate consisting of
n/2 + 1 signatures claiming Byzantine behavior. We use this to ensure that a
block proposed by a correct server cannot be skipped by Byzantine servers. Now,
if any server (including the client) observes a chain that is κ + 1 long, it knows
that one of those servers is correct, and its block will never be skipped. Therefore,
the chain is unique and final; thus, it can be committed.

In the optimistic conditions, i.e., when the leader(s) is correct, Apollo pro-
tocol creates new blocks to increase the length of the chain and thus commit
blocks without equivocation detection. In this setting, it is sufficient for all the
servers to forward the latest block to the next leader. This gives us certificate-
free optimistic linearity and allows responsive commits, i.e., speeds independent
of Δ.

Round-robin protocols are efficient in distributing the system load across
all the participating servers and are also used to ensure chain quality, i.e., the
majority of the chain is from the correct servers. However, Byzantine servers can
slow the progress of the SMR by crashing and slowing down the pipeline.

Artemis Protocol. In order to overcome this, we present a stable leader-based
SMR protocol: Artemis protocol. In a nutshell, in Artemis protocol, there is a
dedicated leader server that creates blocks. The other servers run a modified
version of Apollo using the latest leader’s blocks. If the leader crashes, the pro-
tocol changes the view and elects a new leader. Since the latest block is used,
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a slow proposer in the inner Apollo protocol may stall for some time, but when
the next correct server proposes, it will propose the latest block thus effectively
catching up with all the servers to the highest block.

Publicly Verifiable SMR. In several permissioned widely-deployed SMR
implementations, committed blocks or states are downloaded by clients by
connecting to the servers and waiting for t + 1 acknowledgments for the
block [6,17,32,37]. This incurs a significant overhead on the servers for large
numbers of clients. If the chain is � blocks long, the cost incurred by the servers
is O(�t).

A typical approach to solving this is to add another step of quorum certificate
generation after committing in every round, and gossip this quorum certificate
to all the clients. This approach incurs O(1) signature generation overheads and
O(t) signature verification overheads for all the servers in the system. It also
incurs O(1), and O(t) certificate verification overheads respectively, with and
without the usage of threshold signatures, for the clients.

Using UCR, we can make the servers gossip a signed message after commit-
ting, in every round. On collecting any increasing sequence of κ + 1 such signed
state messages, any client (without talking to the servers) can verify that the
state is correct leading to O(1) signature generation overhead, O(1) signature
verification overheads, for all the servers in the system, and O(κ) signature verifi-
cation overheads for the clients, irrespective of the usage of threshold signatures.
This application provides a trade-off to the publicly verifiable SMR problem with
fewer overheads on the servers and more overheads to the clients.

1.2 Related Work

Recently, several permissioned SMR protocols have emerged, in the standard
synchrony [3,5,14,16,34], weak synchrony [3,23], partial synchrony [10,15,20,
21,35,36,39], and asynchronous models [18,26,27,29]3. Permissionless systems
such as Proof-of-Stake (PoS) blockchain protocols require a rotating leader based
SMR, where the leader is generally chosen randomly with probability of being
a leader for an epoch/round being directly proportional to the amount of stake
invested. Therefore, permissioned consensus protocols are of interest in this area.
We discuss the landscape of Proof-of-Work and Proof-of-Stake protocols.

PoW and PoS. In retrospect to this work, UCR can be viewed as being implicitly
applied in Proof-of-Work [31,38] and Proof-of-Stake [10,19] based systems, which
use the fact that votes on hash-chain or checkpoints in the directed acyclic hash
graph of blocks also serve as votes for prior checkpoints or blocks. In particular,
Casper [10] uses the fact that if a validator vote for two conflicting checkpoints
then its stake is slashed. Here, the conflicting checkpoint is implicitly determined
by checking two votes that differ in their ancestors.

In the next part of our literature review, we focus on works that are similar
to our work and use standard synchrony assumptions.

3 This list is not exhaustive.
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BFT-SMR Protocols. The applications of UCR in the literature have always been
in secondary roles as a helper mechanism to equivocation or quorum certificate
based commit rules [1–3,10,18,20,26,27,29,31,34,35]. For instance, the idea of
using a vote on a block in a hash-chain as votes for all its parents has been
used implicitly in [2,3,16,34]. In Sync-Hotstuff [3], Abraham et al. mention that
for a hash-chain “the voting step on a block also serves as a voting step for all
its ancestor blocks that have not been committed”. While several protocols [1–
3,10,18,20,26,27,29,34,35] use this for committing ancestors of a committed
block, none of them build an explicit protocol out of this observation. They use
a UCR-like idea whereby adding extra markers to vote messages for a block
B, the vote messages are used as endorsements (a vote) for that block and its
ancestors, and when an ancestor gets x endorsements it becomes x-strong. We
present an extended related work comparison in the full version of our draft [7].

Table 1. Comparison of the best case (i.e., all the servers are correct) and worst case
of Apollo with the related synchronous SMR works. Here κ is min(f, κ).

Protocol Best Case Worst Case

Commit Latency #Sign CC Block Period Latency #Sign CC

Dfinity [2,24] 6Δ + 2δ O(n) O(n2) 2Δ O�(κΔ) O(κn2) O(κn3)

PiLi [16] 26δ O(n) O(n2) 2δ O(κΔ) O(κn) O(κn2)

Sync HS [3] 6δ O(n) O(n2) 2δ O(p�Δ) + O(κΔ) O(κn) O(κn2)

Rot. SMR [5] 2Δ + 2δ O(n) O(n2) 2δ O(κΔ) O(κn) O(κn2)

Streamlet [14] 8Δ + 8δ O(n) O(n2) 2Δ O(κΔ) O(κn) O(κn2)

1 − Δ SMR [4] 1Δ + 2δ O(n) O(n2) 2δ O(p�Δ) + O(κΔ) O(κn) O(κn2)

OptSync [34] 2δ O(n) O(n2) 2δ O(p�Δ) + O(κΔ) O(κn) O(κn2)

Apollo (κ + 1)δ O(1) O(n) δ O(κΔ) O(κn) O(κn2)

Artemis (κ + 2)δ O(1) O(n) 0 O(κΔ) O(κn) O(κn2)

# Sign is the number of signature generated by all the servers per proposal/block. The
number of verification operations for each protocol is n times the signing complexity
as every signed message is verified by all the servers. CC stands for Communication
Complexity of the protocol. Block Period is defined as the time between two succes-
sive block proposals. O�(g) denotes O(g) with high probability. p� denotes the number
blocks proposed before the leader crashes. In Sync-HotStuff [3] and OptSync [34], a
leader is blamed only if p blocks are not proposed in (2p + 4)Δ time. If p′ blocks are
proposed by time T , then the servers wait for p� = (2p′ +4)Δ−T time before blaming
the leader.

2 Preliminaries

Our system consists of a set N := {p1, . . . , pn} of n servers with t < n/2 Byzan-
tine servers with static corruptions4. A server is correct if it is never Byzantine.
4 Our protocol is adaptively secure, but a different randomization protocol will be

needed. There is a trade-off between constant latency and increased signature com-
plexity using [11], or O(fδ) latency and constant signature complexity using round-
robin.
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Setup. We assume secure (n, n/2+1)-threshold digital signatures (e.g., BLS [8])
and denote signed messages from pi by 〈·〉pi

, and the aggregated threshold signa-
ture on the same message m as a (quorum) certificate C(m) similar to most other
SMR protocols (such as [3,15,16,24,34,39]). We assume that all the servers use
the same genesis block before starting the protocol which can be derived from a
Common Reference String (CRS) setup. We also use the CRS to randomize our
leaders as done by existing works [1–3].

We assume a fully connected standard (bounded) synchronous network which
assumes a public worst-case network delay Δ, i.e., if a correct server sends a mes-
sage to another correct server, then the message is received by the latter within
Δ time from when it was sent by the former. Similar to most recent synchronous
SMR protocols, we use two delays: Δ and δ. Δ refers to the synchrony bound,
i.e., the worst case network delay, and δ refers to the optimistic (actual/real)
network speed5. A multicast means a send-all operation where a server pi sends
a message to all servers N .

State Machine Replication—SMR. An SMR protocol (Definition 1) exe-
cutes transactions from clients using a state machine replicated across different
servers. Clients are nodes that can be the servers themselves. The SMR pro-
tocol is typically implemented by generating a linearizable log of transactions.
A secure SMR protocol guarantees two properties: safety, and liveness. Safety,
in a broad sense, ensures that the states of the servers must be consistent, i.e.,
no two correct servers output different states at any point. Liveness, in a broad
sense, argues that the system can never go into a deadlock.

Definition 1 (SMR [3]). Assume a system of n servers N := {p1, . . . , pn},
t of which are Byzantine. The SMR protocol implements a linearizable log of
transactions from clients with the following properties:

1. Safety. If two correct servers pi, pj ∈ N commit transaction tx and tx′,
respectively, at the same log height k, then tx = tx′.

2. Liveness. Each client transaction is eventually processed by the system.

Chains and Blocks. The servers agree on a chain C := {B0, . . . , B�}, which
we define as a list of blocks6, where blocks contain client transactions. The
height of a block is the index in this list or the chain. A block at height k is
Bk. In particular, the first block B0 is the genesis block with height 0. A block
Bk := 〈hk, cmds〉L includes the hash of Bk−1 as hk = H(Bk−1) along with a list
of transactions cmds. Bk−1 and Bk share a parent-child relationship. hk is the
parent hash or pointer. Block Bk′ at height k′ < k is an ancestor of Bk as long
as they have valid parent hashes linking them.

The genesis block is always valid. The child Bk of a valid block Bk−1 is valid,
if hk is correct, and it satisfies other validity conditions imposed on cmds. A valid
5 In practice, δ varies between pairs of servers, instances of time, and size of the

message. However, the analysis here assumes that a single δ value is the optimistic
delay time, a violation of which implies that we are not in the optimistic scenario.

6 We use the notation from Python.
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chain C := {B0, . . . , B�} is a list of valid blocks starting with the genesis block B0.
The chain size is the highest height of blocks in the chain, i.e., � = height(C[−1]).

Tamper-Resistance. Since the blocks in a chain are hash-linked, it is not
possible to change a block in the chain without changing all the blocks after it.
We call this the tamper-resistance property of the chain.

3 Unique Chain Rule (UCR)

A quorum [28] is a subset of servers. In distributed protocols, we typically need
a certain number of acknowledgements on a message to ensure that the other
servers are in sync. We typically deal with t + 1 sized quorums in standard
synchrony (e.g., [1,2,4,34]) or n − t quorums in non-synchronous7 networks
(e.g., [9,10,13–15,39]). In these quorums, the names of servers are not as impor-
tant, when compared to their count. A quorum certificate is a publicly verifiable
message consists of these specified number of signatures from a quorum, typically
instantiated with threshold signatures.

Synchronous SMR protocols [1,3,14,16,34] typically improve the fault tol-
erance from n > 3t to n > 2t by adding equivocation detection which involves
O(Δ) waits due to the message delivery guarantees [14]. We observe that, in
a hash chain, equivocation is a chain fork (multiple valid chains), and resolv-
ing equivocations translates into a fork-resolution problem. If we want to avoid
equivocation detection, we need a mechanism to resolve chain forks.

For a system tolerating t Byzantine servers, t + 1 quorum certificate on a
block is insufficient to remove equivocation detection of the block. A Byzantine
proposer pL can propose two blocks B and B�. If two correct servers vote for
B and B� respectively, without being aware of the existence of the other block,
then with the votes from the t Byzantine servers, both the blocks can obtain a
quorum certificate.

Unique Chains. Let γ be a parameter such that in any sequence of γ rounds,
there is at least one correct leader. Consider a protocol that uses round-robin
leaders who propose one block in every round using hash chains. Trivially, this
protocol has γ ← t+1. Consider that a server votes for a block by extending it in
its turn to propose, instead of the traditional approach of voting for every block
and building quorum certificates and detecting equivocation for them. Let chain
weight of a block be the number of unique servers extending a block. Finally,
if we can ensure that a correct proposer’s block for a round is always extended
by the correct servers, i.e., a Byzantine leader cannot propose a block without
extending the block from the previous round if the previous leader was correct,
then observe that when this chain weight exceeds γ for a block, no other valid
chain can be formed that does not extend this block. Intuitively, if this was not
true, then the Byzantine servers managed to overwrite a correct proposer’s block
thus leading to a contradiction.
7 Non-synchronous includes partial synchrony, asynchronous networks, etc. that are

not standard synchrony.
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We can ensure that a correct server’s block for a round is always extended
by the correct servers by changing the rejection condition: a valid block can
be rejected only if there are n/2 + 1 explicit complaints against it. By explicit
complaints, we mean n/2 + 1 signed (blame) messages for the round.

In the consensus literature so far, certificates consisted of signatures on a
particular message/block, and used O(1) such quorum certified blocks in the
commit rules. The examples include 3n/4 quorum with 1 certified block [3,16,34],
2n/3 quorum with 3 blocks [13,39], and n/2 + 1 quorum with 6, 13 blocks [14,
16]. However, we can look at the γ weighted chain suffix as equivalent to the
t + 1 quorum certificate for the prefix of the chain, thereby leading to implicit
certificates of size O(γ) = O(κ). Using this certificate, we can ensure that the
block, and thus the corresponding chain referenced by the block is unique, i.e., no
alternate chain can form by the protocol. Definition 2 specify the requirements
formally. We state the Unique Chain Rule formally in Theorem1 as the Unique
Chain Rule (UCR). In the rest of the paper, unless otherwise specified, we use
γ ← t + 1.

Definition 2 (γ-UCR requirements). The requirements to apply γ-UCR in
a protocol: (1) the chains built are tamper-resistant, (2) blocks are proposed by
servers such that there is at least one correct server in any sequence of γ rounds,
and (3) a correct server’s blocks are always accepted by all the correct servers.

Theorem 1 (Unique Chain Rule). Consider a protocol for n servers toler-
ating t Byzantine faults, and satisfying Definition 2. Then, on observing a valid
chain C := {B0, . . . , B�} of size � (with � > γ), commit the prefix chain C[: �−γ].

4 Apollo Protocol

In this section, we present the Apollo protocol which uses UCR (Theorem 1) to
build a pipelined, linear SMR protocol in the bounded synchrony model.

Proposer Set. We define a proposer set P consisting of all (or t+1) servers N . Let
R be a random number chosen in the setup. We use a well-known technique [14,
16] and use H(R, i) to randomly elect the leaders from P in every round. As
servers agree on misbehavior from leaders (by committing blocks that contain
proof of equivocation/no progress of leaders), we remove (or replace) the servers
from the proposer set. This allows us to eventually stabilize on a set of leaders
of size at least t + 1 (even if n �= 2t + 1) that are correct.

4.1 Overview

We give an overview of Apollo in Fig. 1 and the technical details in Fig. 2. The
protocol proceeds in rounds. p1 is the leader for the first round and performs
the Propose Step (Step 1 and blue lines) at time T = 0. It proposes a block
B1 extending the genesis block since it is the first proposer, but generally the
servers extend the block proposed by the leader for the previous round. At time
T = δ, p2 proposes the next block B2 on receiving the block B1. Note that this
gives us γ ← κ + 1 except with negligible probability.
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Fig. 1. Overview of the Apollo Protocol in the optimistic case, when all the
leaders are correct. The blue messages are block proposals. The dotted lines are
relay messages. The proposer for round r + 1 can immediately propose as soon as it
receives the block for round r. Hence, Apollo has a block period of δ, as it does not
have to collect votes and certificates for the previous block unlike existing protocols.
(Color figure online)

A Byzantine leader can try to slow down the protocol or may not send its
proposal to the next leader. To ensure that a correct leader is always able to
propose, all correct servers also forward the proposals of the current round to
the next leader (Step 2 and gray lines).

The Propose Step and the Relay Step follow each other with different leaders
drawn from P. Additionally, in every round, the correct servers commit blocks
after removing the top κ blocks from their local chains.

4.2 Handling Faults

Next, we give an intuition of fault-handling in Apollo and present a concise
technical description in Fig. 3.
Block Equivocation. A leader can equivocate by sending different blocks to
different correct servers. Unlike existing synchronous SMR protocols [1,3], Apollo
does not need to detect equivocation to preserve safety or liveness.

Consider a leader Lr equivocating in round r. At least one of the blocks
reaches the next leader Lr+1 through the Relay step. It will immediately propose
the next block. In general, an equivocation is detected by correct servers in two
ways: (1) A correct server whose head of the chain is Bk′ obtains a block Bk from
some leader Lr with k′ < k and an unknown parent hash. It will immediately
request all the blocks Bk′ , . . . , Bk−1 until Bk connects to the server’s local chain.
If Lr cannot provide valid ancestors within 2Δ, then the correct server blames Lr

by sending a blame message. A correct Lr can always respond to such queries and
therefore not get blamed by correct servers. When the parent block is received,
a correct server may realize equivocations due to conflicts with the local chain.
(2) A correct server gets two different blocks during the Relay Step (Step 2).
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Fig. 2. Rounds in Apollo protocol.

In both of these cases, the correct servers multicast the equivocations to all
the other servers if it detected it directly, or via forwarding the blame from others.
All the correct servers include the equivocation blame as a meta-transaction in
their future proposals until it is committed.

It is not secure to update the proposer set or punish the Byzantine server
on obtaining a blame certificates, until it is committed. This is because we do
not use timing guarantees, i.e., rely on Δ, to ensure that all correct servers have
detected and agreed on the equivocation. On committing a block containing
the blame certificates, we know that sufficient correct servers have extended
the block, thereby ensuring all the other correct servers will learn about the
Byzantine server.
Crashed Leader(s). Consider leaders Lr and Lr+1 for rounds r and r + 1
respectively. Let Lr not propose any block. Now, the correct servers could be
processing/waiting for blocks at different rounds ≤ r−1. The first correct server
to finish processing the block Bk for round r − 1, will wait for 4Δ time (we
will describe soon why to wait for 4Δ) after relaying Bk before blaming Lr.
Upon timing out, a correct server cannot be sure if all the correct servers are
waiting for a proposal for round r, since our protocol can proceed at network
speed. Therefore, different correct servers could be waiting for blocks from rounds
r′ < r. This case can also occur if the Byzantine leaders send the proposals to
some correct servers, who will then be ahead in round number when compared
to the servers that did not receive the proposals.

In any case, a correct server on timeout for round r, sends the latest block
Bk to all the correct servers in order to synchronize all the correct servers up
to round r − 1. This multicast is not done during the steady state in order to
obtain the desired linearity in the steady state as this step has a communication
complexity of O(n2) when t = O(n) servers time out. We know that within
another 4Δ all servers will relay the proposal to Lr and then blame when it does
not respond. On collecting t+1 such blame messages, all the correct servers build
a virtual block for round r. Using threshold signatures, this block has O(1) size.
From this point, we continue with the relay (Step 2) of this virtual block to Lr+1

just as though we received a proposal with this virtual block from Lr.
Round-Relative Timers. Apollo uses round-relative timers, i.e., blame based
on the latest round. Earlier works [3,34] use stable leaders and view-relative
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Fig. 3. Handling Byzantine behavior in Apollo protocol.

timers, where in a view v, the condition for triggering a no-progress blame is to
not receive p blocks in (2p + 4)Δ time. Assume that the first 1000 proposals are
made at network speed after which the leader crashes. In Sync-HotStuff [3] and
OptSync [34], the servers needlessly wait for 2004Δ before blaming the leader.
We overcome this, since our timers are always rooted at the last received block.
Why is 4Δ Timeout Sufficient? Say pi is the first server that enters round r
at time T . It relays the previous block to the current leader Lr which will reach
Lr by time T +Δ. A correct leader Lr may not recognize this chain, and request
the full chain. This request will reach pi by time T + 2Δ. A correct leader will
then immediately propose since it has a valid chain to extend. This proposal will
reach pi by time T + 4Δ. Therefore, waiting for a total of 4Δ after relaying the
block is always sufficient for a correct server to propose, and thus ensure that a
correct leader is never blamed a correct server.
Security Analysis. We state the security theorems here without proofs and
defer the security analysis [7].

Theorem 2 (Apollo Safety). For any height k ≥ 0, if two correct servers
commit to blocks B and B�, then B = B�.

Theorem 3 (Apollo Liveness). Assuming standard synchrony, Apollo always
makes progress, and commits blocks with a period of at most 12Δ.

5 Artemis Protocol

Round-robin protocols working at the network speed can be slower than stable
leader protocols since a slow leader can slow the system, while a stable leader
may make faster progress as evidenced in practical implementations [25]. In this
section, we construct Artemis which uses a view leader that coordinates the
chain, and still allows applying UCR by running a Apollo sub-protocol on the
chain produced by the view leader.
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Views. Like stable-leader SMR [3,9,13,34,39], our Artemis uses a view number v
to represent a period with a stable leader Lv. A change in view number indicates
a leader change.

Artemis uses two leaders: view leader Lv and round leader Lr. The view
leader Lv of view v creates blocks and builds a chain. The round leader Lr for
round r runs Apollo sub-protocol by creating proposals called votes containing
the hash of the latest block from the view leader.

5.1 Steady-State Protocol

We present an overview in Fig. 4. The view leader Lv signs blocks B1 to B8. pi

signs vote messages Vi = 〈vote, v, r,H(B)〉i. Intuitively, we can visualize Artemis
as using Lv to build a chain of blocks, and simultaneously using Apollo on vote
messages using round leaders Lr. The vote messages form a tamper-resistant
chain, and the round leaders are chosen akin to Apollo (Fig. 5).

The view leader Lv of view v collects transactions from the clients and creates
a chain of blocks. Like related works [3,15,16,34,39], we assume that there are
always sufficient transactions available8. Thus, every server must receive p blocks
in pΔ time from Lv. Due to synchrony assumptions, if block Bk is received at
time T , then Bk+1 must be received within time T + Δ. This is because Lv

does not need any interaction to create blocks in the steady-state, unlike related
works [3,5,34,39] which requires every block to contain a quorum certificate and
thus requiring a round-trip of communication.

The round-leaders can be viewed as running Apollo sub-protocol. A vote is
a block for the Apollo sub-protocol. A series of vote messages for consecutive
rounds forms a vote chain. A vote at round r for block Bk connects indirectly
to the vote at round r + 1 for block Bk+1 via the hash pointers between Bk and
Bk+1 ensuring tamper-resistance.

Fig. 4. High-level overview of Artemis (n = 5). Vi are vote messages proposed
by servers pi. We apply UCR using the vote messages resulting in block commits (in
blue). (Color figure online)

8 This assumption can be removed by slightly changing the blaming mechanism to not
blame if the local transaction buffer is empty and attempting to send transactions
to Lv on timeout first, and then blaming. An example of this implementation can
be found in Concord-BFT [22].
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Fig. 5. Steady-state protocol for Artemis.

A key difference between blocks in Apollo and in Artemis is that vote mes-
sages can produce and commit multiple blocks between each proposal. When
the view leader is correct, Byzantine servers do not affect the throughput of the
system, as the fast correct servers will collect more blocks while the Byzantine
servers slow the system down, and include the highest hash in its turn to send
the vote message. This will eventually result in committing a large volume of
transactions. In the example illustration in Fig. 4, the vote message V4 results
in the block B3 and its ancestors having κ + 1 = t + 1 = 3 children and hence
results in committing them. Artemis retains the round-relative blaming property
for the view leader from Apollo which improves the worst-case performance of
Artemis over the state-of-the-art related works [34].

5.2 Handling Byzantine Behavior

Figure 6 describes the protocol to handle Byzantine behavior in Artemis. We
discuss three cases: (i) Lv is correct, (ii) Lv crashes, and (iii) Lv is Byzantine.
Case (i). When Lv is correct, the vote chain is exactly like Apollo except that the
blocks are detached from the proposals and come from Lv. A Byzantine server
cannot forge alternate blocks, and can thus only crash or send messages slowly.
In the former case, we simply blame the server and use a blame certificate as a
virtual block for round r. The latter case does not affect throughput as other
correct servers will keep downloading the chain and proposing them during their
turn to propose, thereby ensuring all the servers catch-up to the latest chain.
Case (ii). When Lv crashes at time T , the round-relative timer kicks in for all
correct servers by time T +Δ. By time T +2Δ, all the correct servers will blame
and by T +3Δ obtain C(Blame, Lv, v), and thus quit the view v. By time T +6Δ
all the correct servers enter the view v + 1. The extra 3Δ wait is used to ensure
that all servers stop processing vote messages in the view v and synchronize their
highest chains.

In the new view v + 1, all the correct servers lock on to the highest block
known from the view v. From the safety properties of Apollo, we know that
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Fig. 6. Handling Byzantine faults in Artemis.

if a correct server commits a block, then all possible chains must extend the
committed block. The servers then send their highest view v block to Lv+1. By
time T + 7Δ, Lv+1 receives all the chains, and by time T + 9Δ, Lv+1 has all
the chains and proposes the first block for the view v + 1 which will reach all
correct servers by time T + 10Δ well within the 5Δ timer for the first block
from Lv+1 by the other correct servers. We ensure that the second block in the
view v + 1 must be certified, which guarantees that the chain selected by Lv+1

extends at least one honest server’s locked block and has provided a convincing
vote message from view v. The latter guarantees that the highest committed
block must be extended in the new view v + 1.
Case (iii). If Lv is Byzantine and tries to equivocate (via vote message or directly
sending Bk and B�

k to different servers), it will be detected by all correct servers
within O(κΔ) and thus trigger view-change. This does not affect the safety as
at least one vote in the vote chain is from a correct server whose vote pins the
blocks at that height, akin to Apollo.
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During the view-change, Byzantine servers may add votes with the help of
Lv and send them to only some correct servers. In the worst case, Byzantine
servers can add up to t more vote messages. This is not a concern, since all the
servers lock on to blocks that extends the highest known vote message. Thus,
any chain in the next view v + 1 is guaranteed to result in committing of the
highest committed block in view v.
Security Analysis. Using Theorem 4 and Theorem 5 we prove that Artemis is
a secure SMR protocol in standard synchrony. See [7] for proofs.

Theorem 4 (Artemis Safety). If two correct servers commit blocks Bk and
B�

k at height k, then Bk = B�
k.

Theorem 5 (Artemis Liveness). Assuming standard synchrony, Artemis
always makes progress, and commits blocks with a period of at most O(κΔ).

6 Publicly Verifiable SMR

A publicly verifiable SMR allows the clients to verify the state of the SMR
protocol without having to contact the servers that run the protocol. Prominent
blockchain protocols [10,31,38] are naturally publicly verifiable as their commit
rules are properties of their chains9. However, not all protocols can use the
quorum certificates generated for agreement to convince the clients that it is the
accepted block. For instance, in Sync-HotStuff [3], multiple quorum certificates
could be generated for a round without the correct clients having heard them; by
contacting a Byzantine server, a correct client can be convinced of an incorrect
state.

Permissioned protocols [3,13,34] can be made publicly verifiable (if not
already) by building quorum certificates on the state for every height. Now,
the clients can obtain the state verifiably using the state quorum certificate. For
a chain of length �, this incurs a signature complexity of O(�t) for the SMR
servers.

We can use UCR to design an improved protocol to ensure public verifia-
bility for any SMR. Intuitively, we can run Apollo (Fig. 1) protocol with the
SMR commits as input without the fault tolerance. The liveness property of the
underlying SMR automatically guarantees progress. This results in a signature
complexity for a chain of length � to O(� + κ).

Consider any SMR protocol that implements Definition 1 with n servers tol-
erating t faults. Then every log position r > 0 has some state Sr attached to it.
Committing blocks is an agreement on Sr, and clients of SMR protocols need
Slatest, where, the latest means that a state that can only be up to Δ time old
for synchronous systems10.
9 In Proof-of-Stake protocols, the stake is defined by the chain, and thus the leaders

are publicly verifiable. However, the public verifiability of the chain depends on the
underlying SMR used in the protocol.

10 We cannot discuss it in terms of block heights because any number of blocks might
be successfully committed within Δ because of the responsiveness of our protocols.
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Fig. 7. Publicly verifiable SMR.

We present a simple UCR-based publicly verifiable SMR protocol in Fig. 7
that is agnostic to the underlying details of the SMR. In this new protocol, we
first chain the states together by including the hash of the parent state using
state tuples vr = 〈H(Sr−1), Sr〉 for the log position r. A designated server with
id i = H(R, r) mod n signs and sends this to all the active clients. We can also
use gossip networks to diffuse this message as done by Bitcoin [31].

A client obtaining any κ + 1 such signed vj for j > i, from any external
source, is guaranteed that Sr is committed (see Lemma 1, [7] for proofs). Note
that, unlike Apollo, here we do not blame the server with id i if no vr are received.
The protocol can still continue because the hash chain and κ + 1 implicit votes
guarantee that no other root state Sr can get committed.

To ensure safety, we show in Lemma 1 that the commits made by any client
with access to information about the chain and vi must be the same as the state
committed by the correct servers in the underlying SMR protocol. We state the
security lemma here and defer the formal proof to [7].

Lemma 1 (Commit Safety). If a correct client commits Sr using Fig. 7 for
round r, then all the correct SMR servers must have committed Sr.

Acknowledgements. We thank Ling Ren and Ittai Abraham for helpful feedback on
the applications of UCR, Kartik Nayak for discussions regarding good-case latency,
Nibesh Shrestha for feedback on the draft, and Manish Nagaraj for early discus-
sions. This work was supported in part by NIFA award number 2021-67021-34252,
the National Science Foundation (NSF) under grant CNS1846316, the United States
Department of Agriculture, and the Army Research Lab Contract number W911NF-
2020-221.

References

1. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous Byzantine
agreement with expected O(1) rounds, expected O(n2) communication, and opti-
mal resilience. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
320–334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 20

For partially synchronous systems it is not possible to guarantee any form of the
latest state before GST.

https://doi.org/10.1007/978-3-030-32101-7_20


54 A. Bhat et al.

2. Abraham, I., Malkhi, D., Nayak, K., Ren, L.: Dfinity Consensus, Explored. IACR
Cryptology ePrint Archive, Report 2018/1153 (2018). www.eprint.iacr.org/2018/
1153

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple and
practical synchronous state machine replication. In: 2020 IEEE Symposium on
Security and Privacy (SP), Oakland, May 2020, pp. 106–118. IEEE (2020)

4. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case latency of Byzantine broad-
cast. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, July 2021, pp. 331–341. ACM, New York (2021)

5. Abraham, I., Nayak, K., Shrestha, N.: Optimal good-case latency for rotating
leader synchronous BFT. In: Bramas, Q., Gramoli, V., Milani, A. (eds.) 25th Inter-
national Conference on Principles of Distributed Systems, OPODIS 2021. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 217, pp. 27:1–27:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022)

6. Baudet, M., et al.: State machine replication in the libra blockchain (2019). www.
developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-
diem-blockchain/2020-05-26.pdf

7. Bhat, A., Bandarupalli, A., Bagchi, S., Kate, A., Reiter, M.: Unique chain rule and
its applications (2021). www.eprint.iacr.org/2021/180, full version of this draft

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297–319 (2004)

9. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus (2019)
10. Buterin, V., Griffith, V.: Casper the friendly finality gadget (2019)
11. Cachin, C., Kursawe, K., Shoup, V.: Random Oracles in Constantinople: practical

asynchronous Byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246
(2005)

12. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

13. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

14. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. In: Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies, AFT 2020,
New York, October 2020, pp. 1–11. Association for Computing Machinery (2020)

15. Chan, T.H.H., Pass, R., Shi, E.: PaLa: a simple partially synchronous blockchain.
IACR Cryptology ePrint Archive, Paper 2018/981 (2018)

16. Chan, T.H.H., Pass, R., Shi, E.: PiLi: an extremely simple synchronous blockchain.
IACR Cryptology ePrint Archive, Paper 2018/980 (2018)

17. GitHub - vmware/concord-bft: concord Byzantine fault tolerant state machine
replication library (2021). www.github.com/vmware/concord-bft

18. Danezis, G., Kogias, E.K., Sonnino, A., Spiegelman, A.: Narwhal and Tusk: A
DAG-based Mempool and Efficient BFT Consensus, vol. 1. Association for Com-
puting Machinery (2021)
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Abstract. Player-replaceability is a property of a blockchain protocol
that ensures every step of the protocol is executed by an unpredictably
random (small) set of players; this guarantees security against a fully
adaptive adversary and is a crucial property in building permissionless
blockchains. Forensic Support is a property of a blockchain protocol that
provides the ability, with cryptographic integrity, to identify malicious
parties when there is a safety violation; this provides the ability to enforce
punishments for adversarial behavior and is a crucial component of incen-
tive mechanism designs for blockchains. Player-replaceability and strong
forensic support are both desirable properties, yet, none of the existing
blockchain protocols have both properties. Our main result is to construct
a new BFT protocol that is player-replaceable and has maximum foren-
sic support. The key invention is the notion of a “transition certificate”,
without which we show that natural adaptations of extant BFT and
longest chain protocols do not lead to the desired goal of simultaneous
player-replaceability and forensic support. (The full version of paper is
available in https://eprint.iacr.org/2022/1513.)

1 Introduction

Byzantine fault tolerant state machine replication (BFT SMR) protocols allow a
group of parties to agree on a common sequence of values submitted by external
clients. The core security guarantee provided by BFT SMR is that as long as a
certain fraction of parties are honest, i.e., follow the protocol, then these parties
achieve consensus with respect to a time evolving ledger regardless of the actions
of the remaining Byzantine parties that deviate from the protocol. Of particular
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interest are secure and efficient BFT SMR protocols: efficiency is measured in
terms of commit latency and communication complexity [1,4,13,21,22,30], and
security is measured by tolerating the maximum number of Byzantine parties
under various network and cryptographic assumptions [2,13–16,18,24].

Security guarantee of BFT protocols is one-sided, addressing the scenario
when the number of Byzantine parties is less than a certain threshold. Forensic
support addresses the other side: what happens when the number of Byzantine
parties exceeds the allowable threshold? Several recent works focus on designing
secure BFT protocols that also have an additional goal of accountability, i.e.,
the ability to detect faulty behavior through an irrefutable proof upon security
violation [6,11,25,26,29]. A recent work [28] has formally defined forensic sup-
port of BFT protocols, providing a unified framework to compare and contrast
different designs; [28] provides a detailed analysis of canonical BFT protocols
(e.g., PBFT [7,8], HotStuff [30], VABA [3], and Algorand [9,10,17]) with respect
to their support for forensics on detecting Byzantine behavior. A key takeaway
from this work is that, while forensic support depends heavily on the implemen-
tation details of the protocol, deterministically secure protocols with poly(n)
communication complexity (here, n is the number of parties in the protocol)
have protocol variants with maximum forensic support, i.e., the maximum num-
ber of Byzantine parties can be identified irrefutably using simply the transcript
available at one of the honest parties.

An entirely different aspect of BFT protocols has emerged with the advent
of blockchains and the desire to support the participation of a very large number
of players (“permissionless” participation): communication-efficiency (i.e., have
sub-quadratic communication complexity) combined with security against a fully
adaptive adversary; e.g., Algorand [9] and Ouroboros Praos [12]. Such protocols
are commonly referred to as “player-replaceable” since they rely on verifiably
selecting small subgroups of truly random parties in each round, thus achieving
adaptive security and communication efficiency. Of specific interest are secure
blockchain protocols that offer both desired properties: forensic support and
player-replaceability. We begin by observing that no extant blockchain protocols
offer both properties. For instance, HotStuff excels in efficiency and forensic
support but is not player-replaceable; Algorand is player-replaceable but has non-
existent forensic support [28]. Indeed, no extant blockchain protocol appears to
have both player-replaceability and strong forensic support.

Could this status-quo be not coincidental? Player replaceability implies secu-
rity even though different players are corrupted at different rounds of the pro-
tocol; perhaps this strong property inherently rules out the ability to identify
malicious parties when security is violated? Understanding the core relationships
between player-replaceability and forensic support properties of BFT protocols
is the main goal of this paper. Our main result is dissenting: we construct a new
BFT protocol that is player-replaceable and has strong forensic support (i.e.,
detecting the maximum number of Byzantine nodes with the minimum number
of honest transcripts).
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In this paper, we divide our investigation based on two stylistically different
families of player-replaceable protocols: BFT protocols and longest-chain proto-
cols. A summary of our results is presented in Table 1.

Table 1. Comparison of forensic properties among different protocols

Protocol Byzantine threshold (t) Player replaceability Forensic support (d)

BFT Protocols Algorand [9] n/3 Yes None 0

HotStuff [30] No Strong �n/3�
Player-replaceable HotStuff (§3.1) Yes None 0

Longest-chain Protocols OBFT [19] n/3 No Moderate n − 2f

Ouroboros [20] n/2① No < (n − 2f)κ/n

Ouroboros Praos [12] Yes < (n − 2f)κ/n − T (n, κ)②

Our Result Algorithm 3 n/3 Yes Strong �λ/3�③

① In Ouroboros and Praos, forensic support is discussed even when f < t.
② κ is a parameter for longest-chain confirmation, T (n, κ) > 0.
③ λ is the expected size of committee.

Main Result: A Player-Replaceable BFT Protocol with Strong Foren-
sic Support. We first present a novel player-replaceable BFT protocol with
strong forensic support in the partially synchronous setting, where “strong”
implies that the most number of Byzantine nodes can be detected with the
least number of honest transcripts. In particular, we show that when the total
fraction of Byzantine parties is less than (1− ε)2/3 (ε is a positive constant) and
the expected committee size is λ, our forensic protocol can detect at least �λ/3�
Byzantine parties when safety violations occur. Due to idiosyncratic constraints
imposed by player-replaceability, traditional analyses of forensic support [28] do
not immediately apply. For instance, a core component of the forensic support
analysis of existing BFT protocols relies on identifying parties that perform two
or more actions that are incompatible with each other with respect to the pro-
tocol specification [28]. The forensic protocol determines appropriate quorums
and uses quorum intersection arguments to identify culpable parties. However,
with player replaceability, when n is large, it is extremely unlikely that the same
player will be selected twice; thus access to incompatible actions performed by the
same player, especially across different rounds (or views) of the protocol, may be
unavailable. One of our key innovations is the notion of “transition certificates”,
maintained and shared by each party in each round – this ensures that if Byzan-
tine parties vote incorrectly in a round resulting in a safety violation, there is
sufficient information to detect misbehavior.

Forensic Analysis for Longest-Chain Protocols. Bitcoin, the prototypical
longest-chain protocol, demonstrates ideal player-replaceability: not only is the
next proposer not predictable, but also the mined block safe from any later
tampering. Indeed, the longest chain rule has inspired both BFT and proof-of-
stake (PoS) based player-replaceable blockchain protocols, e.g., Ouroboros fam-
ily, including Ouroboros BFT (OBFT), Ouroboros, and Ouroboros Praos (referred
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to simply as Praos in this paper). We first prove that OBFT, as a binary con-
sensus protocol, can hold n − 2f replicas culpable where n and f represent the
total number of replicas and the number of actual faults respectively. On the
other hand, the number of Byzantine parties detected in Ouroboros and Praos
is bounded by 2κ(n − 2f)/n where κ is the confirmation depth. The bound is
a result of the randomized leader election process in the two protocols. It is
noteworthy that there is no forensic support when f > n/2. However, even if
Ouroboros and Praos have Byzantine threshold t < n/2, the random election
results in possible executions with safety violation when f < t. We observe that
the safety violation of longest chain protocols can be identified when an honest
replica finalizes two conflicting blocks and observes more than one longest chain.
In the case of Ouroboros family, this is used to identify malicious leaders who
propose more than one valid block in the same round.

Outline. We describe the security model and definitions in §2. §3 contains our
main result: the construction of a new BFT protocol endowed with both player-
replaceability and strong forensic support. Longest-chain protocols are naturally
aligned with the player-replaceability property and we explore their forensic sup-
port properties in §4. §5 concludes the paper with a discussion of the relationship
between player-replaceability and forensic support. The topic of this paper has not
been broached in any prior work, to the best of the authors’ knowledge. Works,
other than those already referenced, are tangential to the core content here; the
connections are discussed for completeness in Appendix A. The practicality and
parameter choices of our protocol are formally described in Appendix B.

2 Model and Definitions

We consider a network with n nodes interacting via all-to-all communication.
Prior to the protocol execution, each node generates its key pair honestly and
sends its public key to all other nodes. The adversary can adaptively corrupt
nodes at any time during the protocol execution after the trusted setup. Nodes
that are never corrupted are referred to as honest. The total number of nodes
corrupted by the adversary in an execution is denoted as f . The maximum
number of corrupted nodes the protocols can tolerate is denoted as t.

Network Setting. We consider synchronous and partially synchronous network
settings. In a synchronous protocol, a message sent at time T by a sender node is
guaranteed to arrive at the receiver node by time T + Δ, where Δ is a bounded
network delay. In a partially synchronous protocol, there exists an unknown
global stabilization time (GST), after which all transmissions between two honest
nodes arrive within a bounded network delay Δ [15].

Blockchains and State Machine Replication (SMR). The goal of
blockchains (state machine replication [27]) is to build a public ledger that pro-
vides clients a totally ordered sequence of transactions. The key security proper-
ties a blockchain protocol should provide are those of safety and liveness. Safety:
no two honest nodes finalize two different blocks at the same position in the

https://eprint.iacr.org/2022/1513
https://eprint.iacr.org/2022/1513
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ledger. Liveness: every valid transaction is eventually finalized by every honest
node. We use blockchain and SMR interchangeably and refer to nodes that run
blockchain protocols as “replicas” or “players”.

Player-Replaceability is a property of blockchain protocols. As presented by
Chen and Micali [9], a protocol is player-replaceable if each step of the proto-
col execution is conducted by an independently and randomly selected subset
of players. A player-replaceable protocol achieves both adaptivity and commu-
nication efficiency since the adaptive adversary cannot predict the committee
membership ahead of time and only a subset of parties (typically sublinear)
need to communicate in each round (hence the communication complexity is
subquadratic).

Forensic Support for Blockchains. The notion of forensic support for Byzan-
tine Agreement (BA) was introduced by [28]. Forensic support refers to the abil-
ity to identify misbehaving replicas whenever there is a safety violation (two
honest replicas finalize different blocks at the same position). The number of
replicas that can be held culpable when t < f ≤ m is captured by the parameter
d. Here, m denotes the bound on Byzantine replicas under which the forensic sup-
port can be provided. In BA, transcripts of honest parties are needed to obtain
irrefutable proof of culprits after clients detect a safety violation. The number
of transcripts to decide culpability of replicas is denoted by k. In the blockchain
setting, we adapt the definition of k to denote the number of transcripts required
to detect safety violations and construct the culpability proof.

Definition 1 (m, k, d)-Forensic Support [28]. If t < f ≤ m and there is a
safety violation, then using the transcripts of all messages received from k honest
replicas during the protocol, a client can provide an irrefutable proof of culpability
of at least d Byzantine replicas.

Cryptographic Primitives. All protocols we discuss in this paper use collision
resistant cryptographic hash functions and digital signatures (that are adaptively
secure for achieving player-replaceability). 〈x〉 denotes the signed message x.
The intersection of two aggregated signatures refers to the set of replicas who
sign both messages. We use verifiable random functions (VRFs) [23] to choose a
random subset of replicas to be the leader or committee in a round. In our model,
VRF has two functions: VRF(x) and VerifyVRFpk(msg, x). VRF(x) returns two
values: a hash and a proof π. The hash is a HASHLEN-bit value, normalized
by 2HASHLEN, i.e., hash ∈ [0, 1). It is uniquely determined by sk and x, and
indistinguishable from a random value to anyone that does not know sk. The
proof π enables anyone that knows pk to verify the value by VerifyVRFpk. In
our protocol, (hash, π) is always appended to a message and hence not explicitly
specified. VerifyVRFpk(msg, x) verifies that hash is the correct value computed
from x by using π. The appended hash value is denoted by msg.vrf. We omit the
notation of sk, pk and the appended (hash, π) when the context is clear. In some
of the protocols, VRFs may be used to elect leaders and/or committees to obtain
player-replaceability, i.e., every step of the protocol is executed by a potentially
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new set of parties. This approach was pioneered in [9] to construct protocols
secure under fully adaptive adversaries that are also efficient, i.e., subquadratic
communication complexity.

3 Main Results

Our main result is the first player-replaceable BFT protocol that has strong
(maximum) forensic support. In particular, we construct a partially synchronous,
player-replaceable BFT protocol (§3.2) that tolerates t = (1 − ε)n/3 Byzantine
faults for safety and liveness while providing forensic support with t < f ≤
(1 − ε)2n/3, where ε is a positive constant.

We start with a warm-up protocol (§3.1) that makes HotStuff [30] player-
replaceable using ideas in Algorand [9] but it is shown to lack forensic support.
Inspired by the learnings, we design our protocol which is equipped with an addi-
tional step, called certified transition, to obtain both player-replaceability and
strong forensic support. We provide the forensic protocol and formally prove that
when there is a safety violation, the protocol can hold at least �λ/3� Byzantine
replicas culpable with irrefutable proof (§3.3).

3.1 Warmup: HotStuff Made Player-Replaceable

t t

Non-player-replaceable world

Commit 
quorum for v

Voting 

2λ/3t + 1

Player-replaceable world

Commit 
quorum for v

Voting 

2λ/3

Fig. 1. Comparison of non-player-replaceable and player-replaceable worlds.

The most intuitive approach to obtain both properties is to start with a pro-
tocol with strong forensic support and make it player-replaceable. For instance,
we can start with HotStuff [30] (or Tendermint [5]) and make it player-replaceable
using techniques from Algorand [9]. Specifically, in each round of voting, repli-
cas perform cryptographic sortition to determine whether they are eligible to
vote in the current round. Such a sortition is publicly verifiable and produces a
randomly and independently selected voting committee in each round.

While the use of sortition enables player-replaceability, the protocol still falls
short of providing forensic support. In HotStuff with forensic support, when there
is a safety violation, the forensic support protocol can always map it back to a
set of culpable parties that have performed (at least) two contradictory actions,
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thus not following the protocol. Such behavior is observable even in non-trivial
violations that happen across rounds. In particular, in a non-player-replaceable
world, since a majority of honest parties guard the safety of the commit, there
does not exist enough votes for a different value when f ≤ t. When f > t, it
has been shown in [28] that we can detect t + 1 such parties whenever there is
a safety violation. Intuitively, the idea uses a quorum intersection between the
2t + 1 parties that send a commit message for the first committed value v and a
specific set of 2t+1 parties that vote on a different value v′ later (cf. left figure in
Fig. 1), where the voting quorum for a different value consists of honest parties
who hold stale states, and Byzantine parties trying to violate the safety.

Unfortunately, with player-replaceable protocols, such an argument does not
apply. Since only a small λ-sized fraction (λ is a security parameter) of parties
are chosen each time, it is highly likely that a replica is elected in the committee
only once. As is shown in Fig. 1 on the right, the quorums from the commit-
tee in two distinct rounds are mutually exclusive with high probability, due to
which the continuity of participation of a single replica is lost. In other words,
we cannot distinguish between Byzantine replicas from honest replicas with stale
states since in any of the cases, since Byzantine replicas can deliberately mimic
the behavior of honest replicas who suffer long message delays. By contradiction,
suppose forensic support is possible in some case, i.e., some Byzantine replicas
voting for a different value are made accountable, there must exist a correspond-
ing scenario where these accountable replicas are honest (and their behaviors
are simulated by Byzantine parties in the first case). Thus, we may not have any
forensic support under this circumstance when f > t while still being safe and
live when f ≤ t.

3.2 Construction of a Player-Replaceable BFT Protocol with Strong
Forensic Support

Intuition. To address the above concern, the intuition of our protocol is to
enforce replicas to wait for enough messages (2/3 of the committee size) to
form a transition certificate (TC) of each round r before entering round r + 1.
Waiting for messages of round r ensures that a replica’s state is up-to-date at
the beginning of round r +1, then the scenario where honest parties are blamed
due to message delays are no longer possible. Therefore, no honest replicas have
stale states and we can distinguish honest replicas who suffer long message delays
from Byzantine replicas, and have strong forensic support. Starting from this
intuition, we design the protocol with safety and liveness properties as well as
strong forensic support.

Protocol Overview. The protocol proceeds in a sequence of consecutive rounds
where each round lasts for at least 4Δ time (as measured by each replica’s own
clock). In each round, a set of leaders and a committee will be self-selected
from all replicas using cryptographic sortition. The role of a leader is to collect
votes from committee members and generate a quorum certificate (QC) from
the votes. It then proposes a block that contains the QC to all replicas. The role
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of a committee member is to wait for the leader’s proposal and, if it is valid, to
vote for it. We first describe the sortition process used for election, then define
the data structures used in the protocol, and finally present the protocol.

Cryptographic Sortition. We use cryptographic sortition to choose a random
subset of parties as leaders or committee members, by using VRF [23]. A replica
determines its eligibility to be the next leader or the committee member by
computing VRF from the random seed, the round, and the role (“leader” or
“committee”), i.e., VRF(seed||curRound||role), role ∈ {“leader”, “committee”}.
If the VRF hash value is smaller than a threshold, the replica is eligible and
when it fulfills its role by broadcasting a message, it accompanies the VRF
output (hash value and proof) thus allowing other replicas to verify its eligibility.
For a message m, we denote the accompanied VRF hash value as m.vrf . The
threshold is set to τ/n for leader and λ/n for committee where τ and λ are
the expected number of leaders and the committee size, respectively. Hence, to
validate cryptographic sortition of a message m, a replica calls VerifyVRF and
checks whether m.vrf < τ/n or λ/n appropriately. To ensure that some block
is proposed in each round with high probability, parameter τ should be chosen
much larger than 1, e.g., Algorand [17] chooses τ = 26. We denote tH ← �2λ/3�
as the number of votes used to form a QC.

Cryptographic sortition enables player-replaceability in a straightforward
manner. In each round, a new leader and committee are elected privately, i.e.,
only the elected parties know their eligibility before they fulfill their roles. To be
resilient to strongly adaptive adversaries, the protocol can use ephemeral keys as
in Algorand [10]. For simplicity, we use the same random seed in the genesis block
for cryptographic sortition in all rounds. The protocol can be enhanced with a
frequently refreshing random seed, as in Algorand [17]. Cryptographic sortition
also works in a proof-of-stake setting if eligibility is weighted by stakes.

Blocks and Quorum Certificates. Client requests are batched into blocks.
Each block references its predecessor (parent) with the exception of the genesis
block which has no predecessor. A block proposed in round r, denoted br, has
the following format: br := (cmd, parent, justify). cmd denotes client commands
to be committed, parent denotes the hash of the parent block of block br, and
justify stores the quorum certificate (QC) for the parent block. A QC for a
block br consists of at least tH vote messages. A QC contains the hash, the
round number of the block, and metadata such as signatures and accompanying
VRF outputs of the vote messages. Notice that we abuse the notation qc.block
to refer to the actual block instead of the block hash when the context is clear.
A block is said to be valid if its parent is valid (genesis block is always valid) and
client requests in the block meet application-level validity conditions. A block br

extends a block br′ if br′ is an ancestor of br. Note that a block extends itself.
Two blocks br and b′

r′ are conflicting if they do not extend one another.

Full Protocol. Each replica maintains a lock denoted as lockedQC initialized as
qcgenesis, and a set of (id, lockedQC) pairs for every round, where id is the replica
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identifier. Each round proceeds as follows. (The full protocol is also presented in
Algorithm 3, Appendix C.)

– Propose. A replica checks its potential leader eligibility using cryptographic
sortition (line 7). Leader can construct a new QC and update its own lock
once receiving tH votes for the same block. Then the leader collects commands
and proposes a new block extending from lockedQC.block.

– Process proposals. Unlike HotStuff, a replica waits for a fixed length period
(period [0, 2Δ)) for proposals in case there are multiple leaders eligible to
propose (line 13). When a replica receives multiple proposals, it chooses the
one with the smallest VRF hash (line 15). At time 2Δ of this round, all
replicas check the validity of the block and the safety rule to ensure the new
block extends from lockedQC.block (line 17). If the block is valid and safe,
replicas will update lockedQC, TC properly. When two consecutive QCs are
formed, the block is directly finalized, and all its previous blocks on the same
chain will also be finalized indirectly (line 35).

– Vote and timeout. Then every replica checks its eligibility to vote for the
round (line 20). The vote message is denoted as 〈Vote, r, b, lockedQC, TC[r−
1]〉, where r is the current round number, b is the hash of the block the
committee replica votes for, TC[r − 1] is the set of locks collected from the
last round (line 21). When b = ∅, the vote message serves as a timeout
message and meanwhile contains the lock of the committee replica. When b is
not empty, it is required that b.justify = lockedQC. For each round, replicas
selected as committee broadcast their votes to all replicas.

– Wait for locks. All replicas cannot enter a round r until they receive tH
locks reported by the committee in round r − 1. If a vote message in r is
received from a replica whose lock has not been received in this round, the
lock is added into a set TC[r], and if the lock is more up-to-date, the replica
updates its own lock (line 26). The replicas will also update TC[r − 1] given
TC∗[r − 1] contained in the vote. At time 4Δ or later of a round r, replicas
enter the next round r + 1 if |TC[r]| ≥ tH .

Communication Complexity. The communication complexity of Algorithm 3
is O(n · poly(λ)) where λ is a security parameter denoting the committee size.
In each round, only λ replicas in the committee broadcast messages and the TC
in messages is O(λ)-sized.

3.3 Forensic Protocol and Proof of Forensic Support

When f < (1 − ε)n/3, the safety and liveness of Algorithm 3 are formally stated
in Appendix C. When f ≥ (1 − ε)n/3, it is possible that safety is violated, at
which time the following forensic protocol in Algorithm 1 can provide forensic
support proved in Theorem1.

Theorem 1 When f ≥ (1 − ε)n/3, if two honest replicas finalize conflicting
blocks, Algorithm 1 provides ((1 − ε)2n/3, 2, �λ/3�)-forensic support.

https://eprint.iacr.org/2022/1513
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Algorithm 1. Forensic protocol for Algorithm 3
1: upon receiving conflicting blocks finalized by two honest replicas do
2: query the entire blockchain from the two honest replicas
3: find the first block finalized by consecutive QCs in each chain, denoted by br, br′

4: swap br, br′ if r′ < r � make sure r ≤ r′

5: if r + 2 > r′ then
6: find two QCr′ on each chain
7: return the intersection of two QCr′

8: else
9: query TC[r + 1] from either of the honest replicas

10: if all lockedQC in TC[r + 1] has round < r then
11: find QCr+1 that makes br be committed
12: return the intersection of TC[r + 1] and QCr+1

13: else
14: find block br∗ s.t.

(1) r + 2 ≤ r∗ ≤ r′, and
(2) br′ extends br∗ , and
(3) br conflicts with br∗ , and
(4) r∗ is the smallest round satisfying the above 3 conditions

15: find QC for br∗ , denoted by QCr∗ , return all replicas in QCr∗

Proof Suppose two conflicting blocks are finalized by two honest replicas, let
br, br′ be the first directly finalized blocks that are conflicting, w.l.o.g., suppose
r ≤ r′.

Case r + 2 > r′.
Culpability. If r ≤ r′ < r + 2, there are two quorums formed in r′, these two
QCr′ intersect in �λ/3� replicas. These replicas should be Byzantine since the
protocol requires a replica to vote for at most one block in a round.
Witnesses. In this case, the culpability proof can be constructed from two QCs
generated in the same round (line 5–7, Algorithm 3).

Case r + 2 ≤ r′.
Culpability. Since br is directly finalized in round r + 2 (by QCr+1), it must be
the case that at least tH committee replicas are locked on at least QCr (if they
are honest), and broadcast their votes with lock to all replicas. Then consider
the first block br∗ (possibly br′) that is conflicting with br and proposed after
r + 1. On the one hand, br∗ must be extended from a block older than br since
this is the first conflicting block proposed after r. On the other hand, only those
replicas whose locks are staler than QCr can vote for br∗. Remember that in
round r +1, at least tH committee replicas broadcast lock QCr (or higher lock).
And for committee replicas in r∗ to vote, they must collect a set TC[·] consisting
of at least tH locks from the committee in every round < r∗. If the lock of any one
of them is still staler than QCr, the intersection (�λ/3� replicas) of QCr+1 and
TC[r + 1] is the set of committee replicas who equivocate in round r + 1 hence
are Byzantine (line 10–12, Algorithm 3). Otherwise all the committee replicas
who vote for br∗ must be Byzantine (line 13–15, Algorithm3).
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Witnesses. In this case, there are two possible scenarios. (i) QCr+1 intersects
TC[r + 1] in �λ/3� replicas, who are culpable since their votes in QCr+1 and
TC[r + 1] are incompatible. (ii) All replicas in QCr∗ (at least tH in total) are
Byzantine because they should have received TC[r + 1] containing QCr and
update their locks to be at least QCr, but they vote for a conflicting block br∗

extending from a block older than r. These two cases indicate that with same-
round safety violation, the witnesses can detect �λ/3� replicas. If same-round
safety violation does not exist, at least tH culprits can be detected.

4 Forensic Analysis for Player-Replaceable Longest-Chain
Protocols

Longest-chain based protocols such as Bitcoin and Ouroboros are another fam-
ily of SMR protocols. Compared to BFT protocols, they do not have explicit
voting procedure and finalization of a block is probabilistic. In this section, we
show that forensic support for longest-chain protocols targets leader proposals,
and we investigate how player-replaceability influences the forensic properties by
analyzing the Ouroboros protocol family, including Ouroboros BFT (OBFT) [19],
Ouroboros [20], and Ouroboros Praos [12] (referred to as Praos).

4.1 Protocol Description

Ouroboros is a proof-of-stake blockchain protocol which tolerates up to 1/2
Byzantine stake under a synchronous network. Building on Ouroboros, Praos is
a player-replaceable protocol secure under an adaptive adversary. On the other
hand, OBFT is a deterministic permissioned derivative of Ouroboros for ledger
consensus. We start with a general simplified description of Ouroboros family.

Each of the n replicas maintain the longest blockchain C = b0 · · · br (b0 is
the genesis block and round number r ≥ 0) containing a sequence of blocks. The
length of a blockchain is the number of blocks on the chain, and the height of
a block br is the length of chain b0 · · · br. Each block br := (data, parent, proof)
proposed in round r contains block data data, the hash of the parent block
parent, and a block proof proof that replicas can use to verify the validity of
the block. The block is valid if its data and parent are valid, and it is signed by
a certified round leader. The protocol proceeds in rounds, in round j, replica i
performs the following.

– Blockchain update. The replica collects chains diffused by all valid leaders
in the current round as set C. Denote the longest valid chain (does not fork
from C more than κ blocks) among C as C ′. It updates its local longest chain
C with C ′ if C ′ is strictly longer.

– Blockchain extension. If the replica is a leader in the current round, it
generates a new block with a proof of leader (stored in proof). After the new
block is appended to the local longest chain, the replica diffuses the new chain
to other replicas.
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Algorithm 2. Forensic protocol for OBFT
1: upon receiving conflicting outputs from two honest replicas do
2: query the entire blockchain from the two honest replicas
3: r, r′ ← minimum / maximum round number among all blocks
4: S ← ∅
5: for i = r, r + 1, · · · , r′ do
6: if two conflicting blocks are generated in round i by a valid leader then
7: add leader j of round i into S � j − 1 = (i − 1) mod n in OBFT

8: return S

The key distinguishing factors between the protocols we consider are the
leader election process and the confirmation depth κ. We describe these in more
detail for each of the three protocols below. Observe that we omit details related
to message verification, stake distribution, randomness generation, etc. in our
analysis since they do not matter in terms of forensic support. In terms of stake
distribution, for our analysis we assume the stake of each of the parties are equal,
although our analysis should be generalizable when the stakes are not equal.

4.2 Forensic Support for OBFT

We start with the simplest of the three protocols, OBFT, which is a deterministic
permissioned protocol. In OBFT, leaders are elected in a round-robin manner,
i.e., in round j, if i−1 = (j −1) mod n, replica i is the round leader. Moreover,
a block is committed if it is on the longest chain that is κ = 3t + 1 blocks deep.

Security Analysis. The key property satisfied by OBFT is that the blockchain
is not forkable during a period of execution where the fraction of Byzantine
leaders over all rounds is < 1/3 [19, Proposition 3.7]. Furthermore, under covert
adversaries (who do not leave any verifiable evidence of misbehavior), the thresh-
old of Byzantine leaders’ fraction becomes 1/2.

First, observe that the adversary can simply behave as covert adversary to
fork the chain when f > n/2, in which case no cryptographic evidence will be left
behind and therefore there is no forensic support (formally stated in Theorem1).
Thus, we argue about forensic support only when n/3 ≤ f < n/2. In such a
situation, the adversary can undertake multiple malicious actions such as not
extending any chain when it is the leader, extending a smaller chain, extending
more than one chain, etc. Among these, the only detectable action is when a
Byzantine leader proposes two or more blocks in the same round. Thus, given a
safety violation (i.e., two or more chains of depth κ), if any leader proposes two
different blocks in these chains in the same round, it is a Byzantine replica. The
proof to hold it culpable are the two signed blocks.

The key part of our forensic analysis is to determine the minimum number
of rounds that must equivocate to violate safety for an execution. The following
lemma formally presents a bound on equivocating rounds (see proof in Appendix
E.1).

https://eprint.iacr.org/2022/1513
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Lemma 1 ∀i ∈ [r, r′], we define

ωi =

{
0 the leader of block in round i is unique and honest
1 otherwise

If there exist two or more longest chains that diverge from height h until h+l−1,
define RH = |{ωi = 0|r ≤ i ≤ r′}| as the number of rounds whose leader is unique
and honest (where r, r′ are the minimum/maximum round number among all
blocks with height between h and h + l − 1), RA = |{ωi = 1|r ≤ i ≤ r′}| as the
number of rounds that possibly equivocate (generate more than one block).

Denote the number of rounds whose leader generates two or more blocks (for
each chain) as X, then we have X ≥ RH − RA.

Applying the above lemma to an execution of binary consensus version of
OBFT, where the protocol terminates after 2n rounds and the majority bits of
the first n rounds of blocks will be output (the first n blocks are finalized by
κ-deep rule when n = 3t + 1), we can get the following theorem.

Theorem 2 When n/3 ≤ f < n/2, if two honest replicas output conflicting
values, Ouroboros BFT has (n/2, 2, n − 2f)-forensic support.

Proof Suppose safety fails, i.e., when protocol terminates, there exist two longest
chains finalized by honest replicas, whose majority bits among the first n
rounds are different. Since OBFT uses round-robin leader election, we can apply
Lemma 1 with R = r′−r+1 = n,RH = n−f and RA ≤ f (since some Byzantine
replicas may stay silent), then d = RH − RA ≥ n − 2f .

Notice that in Theorem 2, d = n − 2f = 0 when f = n/2, thus m = n/2.
And two honest replicas are required to provide two different longest chains for
irrefutable proof, thus k = 2. With two different chains, the forensic protocol
to detect Byzantine leaders is to find these rounds whose leaders have proposed
more than one values (Algorithm 2). Further, the impossibility for f > n/2 is
formally stated in Appendix D.

4.3 Forensic Support for Ouroboros and Praos

In Ouroboros and Praos, the leader election process is randomized. In Ouroboros,
in each round, a unique leader is elected randomly among the n replicas. In Praos,
each replica evaluates a round dependent VRF independently. The probability
of a replica i with relative stake αi to be selected as a round leader is

Pr[i is a leader] = φw(αi) = 1 − (1 − w)αi

where w is the probability of electing a replica in a round when it holds all the
stake. The probability of electing a leader with lesser stake is scaled as described
above; due to this, zero, one or multiple leaders may be elected in a round.

https://eprint.iacr.org/2022/1513
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Since the leader election process is randomized, “forkability” of the chain is
not deterministic. However, when considering a single execution after safety is
violated, since they are executed under the same longest chain rule, a similar
intuition as in OBFT is still applicable for forensic support. Even though these
protocols tolerate t < n/2 w.h.p., there may be executions with safety violation
when the fraction of adversarial rounds is < 1/2 independent of f .1 We formally
discuss this in the following theorem.

Theorem 3 For a given execution, if during rounds [r, r + R − 1], two honest
replicas finalize two conflicting blocks at height h (i.e., there exist two longest
chains that diverge from height h to h + κ − 1), then Ouroboros has (n/2, 2, d)-
forensic support where d = (1 − ε)

(
n

(
1 − (1 − 1/n)R

)
− 2fR/n

)
except with

exp(−Ω(R)) probability.

We provide a short proof here, with complete proof in Appendix E.2. Accord-
ing to Lemma 1, the expected number of rounds whose leader equivocates
E[X] ≥ E[RH−RA] ≥ (n−2f)R/n. However, some of these rounds may have the
same leaders, denote D as the number of rounds whose leader has been selected
before, then E[d] ≥ E[X−D] ≥ (n−2f)R/n−(R−n

(
1 − (1 − 1/n)R

)
). Finally,

using a Chernoff bound, we have d = (1 − ε)
(
n

(
1 − (1 − 1/n)R

)
− 2fR/n

)
for

ε > 0 except with exp(−Ω(R)) probability.

Corollary 1 When R/n = o(1), Ouroboros has (n/2, 2, d)-forensic support
where d = (1 − ε)(n − 2f)κ/n except with exp(−Ω(κ)) probability.

Proof When R/n = o(1), by binomial approximation, E[D] ∼ 0. With R ≥ κ, we
have E[d] ≥ (n−2f)κ/n. Using a Chernoff bound, we have d = (1−ε)(n−2f)κ/n
for ε > 0 except with exp(−Ω(κ)) probability.

The random leader election process of Ouroboros adds some uncertainty to the
forensic analysis due to possibly duplicated equivocating leaders, which slightly
impairs the forensic ability (though when κ/n is very small, this effect will be
negligible). In comparison, since in Praos multiple leaders may be elected in a
round, there may be equivocation even when all of them are honest. In this case,
if multiple honest leaders are elected in round i, ωi = 1 per the definition in
Lemma 1, the round may contribute to the violation of safety. But such leaders
in these rounds should not be held culpable by the forensic protocol.

Recall the probability for any replica i to be elected as a leader in a round
is defined as φw(αi). Observe that the probability that no one is elected as a
leader in some round is

p0 = Pr[no leader is elected] =
n∏

i=1

(1 − w)1/n = 1 − w

1 Our paper discusses the forensic ability after a safety violation happens. In particular,
we ignore when such a violation happens. The probability of such a safety violation
has been shown in Ouroboros [20, Figure 8].
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And the probability that only one honest or adversarial leader is elected is

pH
1 = Pr[one honest leader] = (n − f)(1 − (1 − w)1/n)(1 − w)1−1/n = (n − f)g(n)

pA
1 = Pr[one adversarial leader] = f(1 − (1 − w)1/n)(1 − w)1−1/n = fg(n)

where g(n) = (1 − (1 − w)1/n)(1 − w)1−1/n. Therefore,

Pr[multiple leaders are elected] = p2 = 1 − p0 − pH
1 − pA

1 = w − ng(n)

Based on the analysis above, Praos has the following forensic support.

Theorem 4 For a given execution, if during rounds [r, r + R − 1], two hon-
est replicas finalize two conflicting blocks at height h (i.e. there exist two longest
chains that diverge from height h until h+κ−1). Ouroboros Praos has (n/2, 2, d)-
forensic support where d = (1 − ε) ((n − 2f)g(n)R − T (n,R)) except with
exp(−Ω(R)) probability, and T (n,R) = 2(w−ng(n))R+(R−n+n(1−g(n))R) >
0.

Corollary 2 Ouroboros Praos has (n/2, 2, d)-forensic support where

d = (1 − ε)((w − w2)(n − 2f)κ/n − (1 − w + 3w2)κ)

when R/n = o(1), except with exp(−Ω(κ)) probability.

The complete proof of Theorem 4 and Corollary 2 are presented in Appendix
E.3 and E.4 respectively.

5 Discussion and Conclusion

We begin with two observations about the forensic properties for player-
replaceable protocols in both families.

First, compared to quadratic complexity protocols analyzed in [28], player-
replaceable protocols require fewer replicas to send messages; correspondingly,
only fewer replicas (O(λ) or O(κ)) can be held culpable when there is a safety
violation even if the total number of Byzantine replicas are far higher (O(n)).
For BFT style protocols, whenever forensic support is available, the number of
culpable replicas is in the same proportion to the quorum size as in the non
player-replaceable setting. Moreover, this number is independent of f . When
there is no forensic support, no replica may be held culpable. On the other hand,
since longest-chain style protocols are synchronous and can tolerate t < n/2,
our detection is applicable in the regime n/3 ≤ f < n/2. Safety violation is still
possible since these protocols are randomized. In this case, we observe that the
number of culpable replicas decreases linearly as f increases.

https://eprint.iacr.org/2022/1513
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Second, qualitatively, the key difficulty with holding replicas culpable is
related to potentially having a different set of replicas participating in each
round. In BFT protocols, voting rules stipulate how previous actions impose
restrictions on current behavior. Due to player-replaceability, voters’ behaviors
across rounds are less traceable, which can be utilized by adversary to conceal
evidence of deviation. Thus, to construct a protocol with strong forensic sup-
port, we need to reconnect across-rounds actions. In our protocol, transition
certificates serve as the link that the forensic protocol can use to identify culpa-
ble behavior. In longest-chain protocols, extending blocks are also used to certify
the previous blocks. However, there is no evidence if a Byzantine replica appends
blocks to a shorter chain. Thus the only culpable behavior our forensic protocol
can detect is when a leader double proposes blocks (equivocates) in a round. As
a consequence, the forensic analysis for longest-chain protocols only focuses on
the same-round behavior. Player-replaceability can still adversely affect forensic
analysis if multiple leaders are allowed to be elected in the same round. However,
as seen in Corollary 2, this has a limited effect when κ/n is small.

Blockchain protocols perform two distinct roles: first, they are secure against
adversarial behavior (by a fraction of participating nodes). Second, they are
imbibed with incentives that encourage participation, and furthermore via hon-
est behavior (i.e., following protocol). In this paper, forensic support of protocols
serves the implicit role of incentives (identification of Byzantine action with cryp-
tographic integrity strongly discourages deviation from following protocol). By
studying both strong security (i.e., against fully adaptive adversaries) and strong
forensic support (i.e., identifying the maximum number of Byzantine nodes from
just the transcripts of two honest nodes) we are considering both sides of the
blockchain protocol (resistance to Byzantine behavior as well as incentives to
promote honest behavior). Further, the identification of BFT protocols with
both strong security and strong forensic support properties allows us to con-
struct blockchain protocols with implicitly built incentive mechanisms. It is in
these two senses that the title of this manuscript is constructed.

Appendix

Appendix is available online in https://eprint.iacr.org/2022/1513.
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Algorithm 3. A player-replaceable, partially synchronous SMR protocol
1: tH ← �2λ/3�
2: TC[0] ← ∅, Votes[0] ← ∅
3: lockedQC ← qcgenesis � the lock variable
4: for curRound ← 1, 2, . . . do

� At time 0 of curRound
5: TC[curRound] ← ∅
6: Votes[curRound] ← ∅
7: if VRF(seed||curRound||“leader”) < τ/n then � as the leader of curRound
8: if ∃h, s.t.|Votes[curRound − 1][h]| ≥ tH ← ∅ then
9: lockedQC ← QC generated from Votes[curRound − 1][h]

10: create block b∗ where b∗.justify ← lockedQC; b∗.cmd ← commands from
clients; b∗.parent ← lockedQC.block

11: broadcast 〈proposal, curRound, b∗, TC[curRound − 1]〉
12: m ← ∅
13: upon receiving m′ ← 〈proposal, curRound, b∗, TC[curRound − 1]〉 from a

leader whose cryptographic sortition is valid do
14: if (m = ∅) ∨ (m′.vrf < m.vrf) then
15: m ← m′ � m is the proposal with the min VRF hash

� At time 2Δ of curRound
16: blockHash = ∅
17: if m is not empty and m.b∗ extends from lockedQC.block then
18: ProcessProposal(m) (line 30)
19: blockHash = H(m.b∗)

20: if VRF(seed||curRound||“committee”) < λ/n then� as a committee member of
curRound

21: broadcast 〈vote, curRound, blockHash, lockedQC, TC[curRound − 1]〉
22: while |TC[curRound]| < tH or before 4Δ of curRound do
23: wait for 〈vote, curRound, h∗, lockedQC, TC[curRound − 1]〉 whose crypto-

graphic sortition is valid

� At any time (triggered by receiving a vote)
24: upon receiving 〈vote, r, h∗, lockedQC∗, TC∗[r − 1]〉 s.t. sender’s cryptographic

sortition is valid do
25: add Vote message to set Votes[r][h∗]
26: if sender id has no entry in TC[r] then
27: TC[r] ← TC[r] ∪ {(id, lockedQC∗)}
28: lockedQC ← maxround{lockedQC∗, lockedQC} � do not update in case of a

draw
29: TC[r − 1] ← TC[r − 1] ∪ TC∗[r − 1]� do not update in case an entry for an id

exists
30: procedure ProcessProposal(〈proposal, r, b∗, TC∗[r − 1]〉)
31: lockedQC ← maxround{b∗.justify, lockedQC} � do not update in case of a draw
32: TC[r − 1] ← TC[r − 1] ∪ TC∗[r − 1]� do not update in case an entry for an id

exists
33: b′ ← b∗.parent, b ← b′.parent
34: if b, b′, b∗ are in consecutive rounds then
35: finalize block b (directly) and all blocks before b (indirectly), execute com-

mands in the finalized blocks
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Abstract. Secure message transmission (SMT) constitutes a fundamen-
tal network-layer building block for distributed protocols over incomplete
networks. More specifically, a sender S and a receiver R are connected
via � disjoint paths, a subset of which are controlled by the adversary.

Perfectly-secure SMT protocols in synchronous and asynchronous net-
works are resilient up to �/2 and �/3 corruptions respectively. In this
work, we ask whether it is possible to achieve a perfect SMT protocol
that simultaneously tolerates ts < �/2 corruptions when the network is
synchronous, and ta < �/3 when the network is asynchronous.

We completely resolve this question by showing that perfect SMT is
possible if and only if 2ta + ts < �. In addition, we provide a concretely
round-efficient solution for the (slightly worse) trade-off ta + 2ts < �.

As a direct application of these results, following the recent work by
Appan, Chandramouli, and Choudhury [PODC’22], we obtain an n-party
perfectly-secure multi-party computation protocol with asynchronous
fallback over any network with connectivity �, as long as ta + 3ts < n
and 2ta + ts < �.

1 Introduction

1.1 Motivation

Secure message transmission (SMT) is a fundamental building block that allows
to run more complex distributed protocols over incomplete networks (e.g. con-
sensus protocols, secret-sharing, or secure computation protocols). It allows a
sender S and a receiver R of an incomplete network of point-to-point channels
to communicate securely [9]. Justified by the fact that in a �-connected graph
there are at least � disjoint paths among any two nodes [15], one often consid-
ers the abstraction in which S and R are simply connected via � channels (also
called wires), representing vertex-disjoint paths in the network graph. Assuming
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an adversary that can corrupt at most t parties in the network, this translates
to at most t of the � wires being under the control of the adversary (the ones
containing a corrupted node), while the remaining � − t wires can be considered
secure channels. In other words, the secure message transmission problem asks
to construct a secure channel between S and R from � channels of which an
unknown subset of t is under full control of the adversary.

Protocols for SMT can be classified with respect to the underlying communi-
cation model. Two prominent models in the literature are the synchronous and
asynchronous models. In the synchronous model, channels are guaranteed to
deliver messages within a known delay. In contrast, in the asynchronous model,
the delivery of messages can be delayed arbitrarily by the adversary. As a con-
sequence, parties cannot wait to receive messages from all parties to proceed in
the protocol execution, as there is no way to distinguish a corrupted party who
does not send a message from an honest party whose message is delayed.

Perfectly secure SMT can be achieved in the synchronous model if up to
ts < �/2 wires are corrupted [8,9,13], while perfectly secure SMT in the asyn-
chronous model can only tolerate up to ta < �/3 corrupted wires. It is therefore
natural to investigate whether there is a protocol that achieves (simultaneously)
security guarantees in both network models. More concretely, we ask the follow-
ing question:

Under what conditions does there exist a perfectly-secure message trans-
mission protocol that tolerates up to ts wires to be corrupted if the network
is synchronous, and also up to ta if the network is asynchronous?

We completely resolve this question by providing several feasibility and
impossibility results. More concretely, we show that 2ta + ts < � is necessary
and sufficient for a perfectly-secure message transmission protocol that toler-
ates up to ts (resp. ta) corrupted wires if the network is synchronous (resp.
asynchronous).

Together with the result by Appan, Chandramouli, and Choudhury [1]
on perfectly-secure synchronous multi-party computation (MPC) with asyn-
chronous fallback, we obtain an n-party perfectly-secure synchronous MPC
with asynchronous fallback over any network with connectivity �, as long as
ta + 3ts < n and 2ta + ts < �.

Finally, as a result of independent interest, we show that assuming the slightly
worse trade-off1 of ta + 2ts < �, we can achieve a similar perfectly secure mes-
sage transmission protocol, but that runs in 3 rounds when the network is syn-
chronous. This round complexity is essentially optimal, given that in the purely
synchronous setting the optimal number of rounds is 2 [17,19].

1.2 Technical Overview

Feasibility. Our feasibility result has three main ingredients:
1 This trade-off is worse given that ta ≤ ts. Note that any protocol with asynchronous

security is also secure when run over a synchronous network.
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– A compiler, which given black-box access to a synchronous (enhanced) secure
message transmission protocol and an asynchronous one, provides a protocol
with security in both synchronous (up to ts corruptions) and asynchronous
(up to ta ≤ ts corruptions) networks, assuming the trade-off 2ta + ts < �.
Intuitively, the synchronous (respectively asynchronous) protocol should pro-
vide most of the security guarantees if the network is synchronous (respec-
tively asynchronous). The synchronous protocol either runs successfully or
guarantees that the sender detects that the network is asynchronous, and can
fallback on the asynchronous protocol. The main challenge is ensuring that, if
the network is synchronous, the adversary cannot convince the sender to run
the asynchronous protocol, which only tolerates a lower corruption threshold.

– A Synchronous SMT protocol with the additional guarantees that, if the net-
work is asynchronous, either the protocol succeeds or the sender is sure that
the network is asynchronous. The construction is round-based. Intuitively, the
sender tries to send a secret pad to the receiver by secret sharing the pad and
sending each share over one of the � wires. If too many errors were introduced
by the adversary, the receiver cannot reconstruct the pad, but can inform the
sender (via a reliable public channel that also needs to be constructed, which
we denote by RMT). The sender can then detect a faulty wire and repeat the
process excluding this wire (with a fresh pad and a lower degree sharing). If
the sender and the receiver successfully share a secret pad, the actual message
can be one-time-pad encrypted and sent over the public channel.
The main challenge to overcome is properly dealing with erasures (that can
originate from faulty wires or by delays on honest wires). In our model when
the network is asynchronous, the adversary can convince the sender to exclude
an honest wire by simply delaying a message along this wire by longer than
the round time. If the sender excludes too many (honest) wires and decreases
the degree of the sharing accordingly, eventually the shares on the ta actually
corrupted wires determine the secret pad, and secrecy is lost. This is where
the trade-off comes into play: we only allow the sender to eliminate up to
ts − ta wires. This fixes the problem in the asynchronous setting because the
starting degree is ts, so after removing ts − ta wires, the remaining degree is
still ts − (ts − ta) = ta. Moreover, if the network is synchronous, it is guaran-
teed that the protocol succeeds at the latest after the last wire is excluded:
there are � − (ts − ta) = � − ts + ta non-excluded wires (among which ta are
corrupted), and the sharing has degree ts − (ts − ta) = ta. Since 2ta < � − ts,
the reconstruction is successful. In turn, if at this point the protocol does
not succeed, the sender is sure that the network is asynchronous. Therefore,
the resulting protocol runs in at most ts − ta rounds when the network is
synchronous.

– An Asynchronous SMT protocol. This protocol does not require any additional
properties for the higher synchronous corruption threshold of ts, and therefore
any protocol from the literature can be used in a black-box fashion. Due to
space constraints, we report a known construction (using our notation) and
prove its security only in the full version of this paper [7].
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Impossibility. We prove that our feasibility result is tight, by showing that the
trade-off assumption 2ta + ts < � on the corruption thresholds we made up to
this point is not only sufficient, but also necessary to achieve secure message
transmission in this hybrid model. Towards contradiction, consider 2ta + ts = n.
Partition the channels into three sets K,A,B of sizes |A| = |B| = ta and |K| =
ts. At a high level, the idea is as follows: the information travelling over the
channels in A and B must completely determine the message being transmitted
(even if no information is transmitted over K). This is because in the synchronous
setting, the transmission succeeds when there are ts corruptions. However, if the
network is asynchronous, the adversary can delay all the information via the
channels in K, and control half of the remaining channels, which are enough to
tamper with the output of the receiver. Proving this precisely requires a carefully
designed scenario-based argument, that can be found in the full version of this
paper [7].

Round-Efficient Synchronous SMT with Sub-optimal Trade-Off. We
slightly strengthen these assumptions to ta + 2ts < n to achieve a protocol
that almost achieves the optimal round complexity of protocols in the purely
synchronous model. Intuitively, the stronger trade-off helps for the following
reason: if the network is asynchronous, the adversary can delay messages on up
to ts-wires (and change those on up to ta), and the receiver can still not be sure
the network is asynchronous (the ts erasures could also originate on wires in a
synchronous network). During the transmission of a secret pad, this results in
ts + ta actual wrong shares. Under the stronger assumption, ts + ta < n − ts,
which is the number of wrong shares that can be tolerated (in the sense of at
least detected) in the purely synchronous setting. Therefore, erasures can simply
be treated as wrong values, greatly reducing the need for interaction between S
and R.

1.3 Related Work

Synchronous Protocols with Asynchronous Fallback. A recent line of
works [1–4,6,11,16] has investigated the feasibility and efficiency of distributed
protocols (consensus and secure computation protocols) that are secure in both
synchronous and asynchronous networks. All these works assume a complete
network of point-to-point channels among the parties. Our work expands upon
this line by considering the simplest building block for distributed protocols over
incomplete networks.

Secure Message Transmission. The problem of SMT in synchronous net-
works has been widely investigated [9,10,14,18–20]. Perfectly-secure SMT can
be achieved, allowing multiple rounds of interaction between the sender and the
receiver, if and only if t < �/2 channels are under control of the adversary [9].
Several works focused on improving the round complexity, achieving optimal 2-
round constructions [17,19]. In the asynchronous model, the number of corrupted
channels tolerated decreases to t < n/3 for perfect security, but interestingly it
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is still possible up to t < �/2 corruptions [5] when allowing a small probability of
error. In [12] the authors investigate SMT in a model where some channels are
synchronous and some are asynchronous. They prove that PSMT in this model
is impossible unless the synchronous channels alone already allow for PSMT.
This is in contrast to our model in which the parties are unaware of the network
conditions at execution time. The argument they use is similar to the one in
Sect. 4.

2 Preliminaries

2.1 Model

Adversary. We consider an active threshold adversary which is allowed to adap-
tively (based on the information gathered during the execution of the protocol)
corrupt a subset of at most t of the parties (in the secure message transmis-
sion abstraction, this amounts to corrupting t channels). We assume that the
adversary is computationally unbounded and we consider information theoretic
security for our protocols.

Network Topology. We consider an incomplete network of point-to-point
secure channels among parties. We identify the network as a graph, where parties
represent vertices and channels represent edges. We say a graph is �-connected if
� is the minimum number of edges that must be removed in order to disconnect
any two vertices in the graph (two vertices are disconnected if there is no path
with these vertices as endpoints). The connectivity � is equal to the number of
disjoint paths between any two given vertices [15]. We assume that the network
topology is fixed and known to the parties before executing a protocol.

Communication Model. We consider a model in which parties have access to
local clocks and are not a priori aware of the network conditions when execut-
ing a protocol. We distinguish two possibilities: the synchronous model and the
asynchronous model.

In the synchronous model, the local clocks are synchronized, and messages
are guaranteed to be delivered within some known time bound Δ. The com-
munication can then naturally be described as proceeding in rounds, where for
N � r ≥ 1, each message received in the time slot [rΔ, (r + 1)Δ) (according to
the local clock of each party) is regarded as a round r message.

In the asynchronous model, parties do not have access to synchronized clocks.
The adversary is allowed to schedule the delivery of messages arbitrarily, but each
message sent by honest parties must eventually be delivered (this guarantee
is needed if one wishes to make statements about protocol termination). In
this setting, one describes protocols in a message-driven fashion. This means
that, upon receiving a message, a party adds this message to a pool of received
messages and checks weather a list of conditions specified from the protocol
is satisfied to decide on its next action (sending a message, producing output,
terminating, etc.).
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In our model, both descriptions can be adopted. In a round-based protocol,
if a message is received outside of the time allocated for a certain round, it
is ignored. In the secure message transmission abstraction, the assumptions on
the communication network directly translate into assumptions on the � wires
connecting S and R. However, the assumed maximum delay on the resulting
channels needs to account for the delays of all channels in the corresponding
paths (meaning each wire will have a delay of d ·Δ, where d denotes the diameter
of the network graph).

2.2 Definitions

A secure message transmission protocol allows two parties, connected by multiple
channels (wires), to communicate securely even when a subset of the channels is
under the control of an adversary.

This abstraction captures the scenario in which two parties part of an incom-
plete network of secure channels wish to communicate securely. Disjoint paths
in the network graph serve as channels. A channel is corrupted if at least one of
the parties (nodes) on the path is corrupted. Notice that all guarantees are lost
if either the sender or the receiver do not follow the protocol.

We slightly deviate from usual definitions by requiring that the sender pro-
tocol also produces a Boolean output. Intuitively, the output is 1 if the sender
knows the protocol succeeded. Similarly, the receiver is allowed to output a value
⊥. Intuitively, this means they could not produce a valid output.

Definition 1 (Secure Message Transmission). Let Π be a protocol executed
between S (the sender) with input m ∈ F and randomness r1 and output b ∈
{0, 1} and R (the receiver) with randomness r2 and output v ∈ F∪{⊥}, connected
by channels (c1, . . . , c�). We say Π is a protocol for SMT achieving:

– (t-correctness) if whenever up to t channels are under control of the adver-
sary, if S has input m, then R outputs v = m and S outputs b = 1;

– (t-perfect2 privacy) if for all m,m′, for all k ≥ 1, for all I ⊆ {1, . . . , �}
such that |I| ≤ t, the distributions of T k

I,m and T k
I,m′ are equal, where T k

I,m

denotes the random variable whose values are the k-th messages travelling on
the channels {ci}i∈I when the sender has input m;

– (t-termination) if whenever up to t channels are under control of the adver-
sary, S and R terminate;

– (t-weak correctness) if whenever up to t channels are under control of the
adversary, if S has input m, then

• R outputs m or ⊥;
• R outputs m or S outputs 0.

If Π achieves t-correctness, t-perfect privacy and t-termination, we say that Π
is t-perfectly secure.
2 By requiring the distributions T k

I,m and T k
I,m′ to be statistically close or computa-

tionally indistinguishable one obtains the notion of statistical security and compu-
tational security. In this paper, we are only concerned with perfect security.
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In what follows, unless otherwise stated, an SMT protocol is to be understood
as perfectly secure. Depending on the assumptions made on the channels ci, we
will consider two cases. If the channels are synchronous (cf. Sect. 2.1), we will
talk about synchronous SMT (sSMT); if the channels are asynchronous we will
talk about asynchronous SMT (aSMT).

3 Secure Message Transmission with Fallback

Throughout this section, we work in the abstract setting of an honest sender
and receiver connected by � channels, t of which are under full control of the
adversary, and the remaining � − t are secure channels.

We show an SMT protocol which is secure regardless of whether the sender
and the receiver are connected by synchronous or asynchronous channels. The
protocol tolerates up to ts < �/2 channels to be under the control of the adver-
sary if the channels are synchronous, and up to ta < �/3 if the channels are
asynchronous, under optimal trade-offs on the corruption thresholds 2ta+ ts < �
(optimality of the trade-offs is discussed in Sect. 4).

3.1 Compiler

First, we present a compiler that combines a synchronous sSMT protocol and
an asynchronous aSMT protocol to obtain a protocol that is secure in both
communication models. The synchronous component needs to provide certain
guarantees even the channels are asynchronous, while the asynchronous one does
not require any additional guarantees. More specifically let ΠsSMT = (Ss,Rs) be
an SMT protocol with the following properties:

– If (c1, ..., c�) are synchronous channels: ts-security.
– If (c1, ..., c�) are asynchronous channels: ta-(perfect) privacy, ta-weak correct-

ness, ta-termination.

Moreover, let ΠaSMT = (Sa,Ra) be an SMT protocol with the following proper-
ties:

– If (c1, ..., c�) are asynchronous channels: ta-security.

The sender and the receiver first run the synchronous protocol. If the network is
synchronous, then ts-security guarantees that the protocol succeeds. In this case,
the asynchronous protocol is not run. If the network is asynchronous, ta-weak
correctness guarantees that any output by the receiver matches the message
sent by the sender. However, in this case the protocol might also fail and the
receiver might not produce output. If this happens, ta-weak correctness of the
synchronous protocol comes to the rescue again: the sender can detect that
something went wrong and run the asynchronous protocol. Asynchronous secure
message transmission does not require interaction: if the receiver has already
produced output while running the synchronous protocol, they simply ignore
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any further messages. Otherwise, ta-security of the asynchronous component
guarantees that the protocol terminates successfully. Notice that even when the
network is asynchronous, the synchronous protocol still ta-provides privacy. This
idea is formalized in the following protocol. Lemmas 1 and 2 are proven in the
full version of this paper.

Code for Sh(m, r1):
1: b ← Ss(m, r1);
2: if b = 1 then
3: return b;
4: else
5: b ← Sa(m, r1);
6: return b;
7: end if

Code for Rh(r2):

1: v ← Rs(r2);
2: if v �= ⊥ then
3: return v;
4: else
5: v ← Ra(r2);
6: return v;
7: end if

Protocol ΠhSMT(ΠsSMT, ΠaSMT)

Lemma 1. If (c1, ..., c�) are synchronous channels and at most ts channels are
under control of the adversary, then ΠsSMT achieves ts-security.

Lemma 2. If (c1, ..., c�) are asynchronous channels and at most ta channels are
under control of the adversary then ΠhSMT achieves ta-security.

3.2 Synchronous RMT with Asynchronous Detection

Before describing our construction for ΠsSMT, it will be useful to discuss the
weaker primitive of Robust Message Transmission (RMT). Intuitively, an RMT
protocol is an SMT protocol that provides no privacy guarantees (i.e. a public
channel between the sender and the receiver that the adversary cannot tamper
with). More formally, an RMT protocol is a protocol satisfying the correctness
and termination properties of Definition 1. In the context of secure message
transmission, such a primitive is often referred to as broadcast.

Consider the scenario where a sender S and a receiver R are connected by
� channels (c1, . . . , c�) of which at most t < �/2 under control of the adversary
and the remaining � − t are secure channels. Here RMT can be achieved by S
sending the same message over all channels, and R taking a majority decision
over the received messages (this is the same as encoding and decoding using an
(1, �)-repetition code).
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We use RMT as a building block in our synchronous sSMT protocols. To
provide the security guarantees we are after in our synchronous model with
asynchronous fallback, we require enhanced RMT protocols. More specifically,
when the channels are asynchronous and up to ta are under control of the adver-
sary, we still require that either S′s message is correctly delivered to R, or that S
detects that something went wrong. This is formalized in the following protocol
and lemmas. Please refer to the full version of this paper for proofs [7].

Code for S(m):
Initialize b := 0;
Round 1: send m over ci for all 1 ≤ i ≤ �;
Round 2: if ok is received over at least ts + 1 channels, set b := 1; output b and
terminate;

Code for R():

Initialize v := ⊥;
Round 1: if there is m ∈ F received over at least ts + 1 channels, set v := m and
send ok over ci for all 1 ≤ i ≤ �;
Round 2: output v and terminate;

Protocol Πts
sRMT

Lemma 3. Assume that ta ≤ ts < �/2. If (c1, ..., c�) are synchronous channels
and at most ts channels are under control of the adversary, then ΠsRMT achieves
ts-correctness and ts-termination.

Lemma 4. Assume that ta ≤ ts < �/2. If (c1, ..., c�) are asynchronous channels
and at most ta channels are under control of the adversary, then ΠsRMT achieves
ta-weak correctness and ta-termination.

3.3 Synchronous SMT with Asynchronous Detection

We show a sSMT protocol which is ts-secure when the network is synchronous
and ta-secure when the network is asynchronous, under the (provably optimal)
trade-off assumption 2ta + ts < �.

The protocol takes after one of the first synchronous constructions introduced
by Dolev et al. [9]. The idea is the following: the sender S selects a random pad
and secret shares it using a (�, ts)-threshold secret sharing scheme, sending each
share over a distinct channel. The receiver R tries to reconstruct the secret
from the received shares. If reconstruction fails because too many shares were
tampered with by the adversary, the receiver R sends the received messages back
to S via sRMT (the roles of sender and receiver are reversed in this sub-protocol).
The sender S identifies at least one corrupted channel, and the process is then
repeated (with a fresh pad and a lower degree sharing) excluding this faulty
channel.
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In a purely synchronous setting, in each round of interaction the number of
corrupted channels strictly decreases, so that after at most (ts + 1)-rounds R
receives a pad correctly. Once a pad has been transmitted successfully, in the
following round S can use the pad to one-time-pad encrypt the message and
send it to R via sRMT.

In our setting things are more complicated. If the channels are asynchronous,
the adversary could convince S that a certain channel is corrupted by simply
delaying the message on this channel by longer than the round time Δ. By doing
so, the adversary can force S to eliminate honest channels one-at-a-time, until
the degree of the sharing of the pad is low enough that the ta known shares
determine the secret pad, thus violating privacy.

To overcome this problem, one must keep S from removing too many channels
(at most ts − ta), so that the degree of the sharing is never smaller than ta. This
solves a problem but creates others: since now we can never eliminate all the
corrupted channels even if the network is synchronous, how do we guarantee
correctness? Our trade-off assumption 2ta + ts < � plays a crucial role here. To
be consistent with the rest of the presentation, we explain the protocol using the
language of error-correcting codes. Lemma 9 guarantees that, for all � and i < �
there exists a pair (C(i),h(i)) where C(i) is an (�− i, ts +1− i, �− ts)-linear MDS
code such that for all x ∈ C(i) the scalar product h(i)xT is uniformly random in F
even when up to ts−i symbols of x are known. Let decodeC(i)(y) be an (efficient)
decoding algorithm for C(i) returning a pair (b,x). If decoding is successful, then
b = 1 and x ∈ C, otherwise b = 0. To ease the notation, we consider that the
sRMT protocol runs in 1 round. Lemmas 5 and 6 are proven in the full version
of this paper [7].

Code for S(m, r1)

1: elimChannels ← ∅;
2: b ← 0; // records success of pad transmission

Round 2r − 1, for r ≥ 1 :
3: k ← #elimChannels;
4: if k > ts − ta then // prevents sender from eliminating too many channels
5: return b;
6: end if
7: b̄ ← ΠsRMT(elimChannels); // tell R what channels to consider
8: if b̄ = 0 then
9: return b̄;

10: end if
11: x ←$ C(k);
12: ci ← xi; // send i-th symbol of x along ci

Round 2r:
13: y′ ← ΠsRMT()

a;
14: if y′ = ok then

Protocol Πts,ta
sSMT

(
Πts

sRMT,
{

C(k),h(k)
}ts−ta

k=1

)
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15: e ← m + h(k)xT ; // one-time-pad encryption
16: b ← ΠsRMT(e);
17: return b;
18: end if
19: if y′ = ⊥ then
20: return b;
21: end if
22: p ← smallest index such that y′ �= x; // find one corrupted channel
23: elimChannels ← elimChannels ∪ {p};

Code for R()

24: v ← 0;
25: b′ ← 0; // true only successfully communicating ok to the sender// true only

after successful decoding
Round 2r − 1, for r ≥ 1:
25: elimChannels′ ← ΠsRMT();
26: if elimChannels′ �= ⊥ then
27: k′ ← #elimChannels′;
28: for i /∈ elimChannels′ do
29: yi ← ci; // only read values on good channels
30: end for
31: if yj �= ⊥ for all j /∈ elimChanels′ then
32: (v,x′) ← decodeC0(y);
33: end if
34: end if
Round 2r:
35: if b′ = 1 then
36: e′ ← ΠsRMT();
37: if e′ �= ⊥ then
38: m′ ← e′ − h(k′)x′; // one-time-pad decryption
39: return m′;
40: end if
41: if e′ = ⊥ then
42: return e′

43: end if
44: end if
45: if v=1 then
46: b′ ← ΠsRMT(ok);
47: end if
48: if v = 0 then
49: b′ ← ΠsRMT(y); // information to identify corrupted channels
50: end if

a By ΠsRMT() we denote running the protocol as the receiver.

Lemma 5. Assume 2ta + ts < �, ta ≤ ts, and ts < �/2. Then, if the channels
(c1, . . . , c�) are synchronous and at most ts are under control of the adversary,
protocol Πta,ts

sSMT achieves ts-security.
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Lemma 6. Assume 2ta + ts < �, ta ≤ ts, and ts < �/2. If the channels
(c1, . . . , c�) are synchronous and at most ts are under control of the adver-
sary, protocol Πta,ts

sSMT achieves ta-weak correctness, ta-perfect privacy, and ta-
termination.

3.4 Asynchronous SMT

We need a protocol that can be used as the asynchronous protocol ΠaSMT in the
compiler ΠhSMT of Sect. 3.1. Since we do not require any ad-hoc properties, we
can employ any protocol from the literature in a black-box fashion, but we briefly
describe a protocol here, and defer a more formal description of the protocol and
a proof of its security to the full version of this paper [7]. The idea is simple: the
sender secret shares their input with a (�, ta)-threshold secret sharing scheme
sending each share along a distinct channel. The receiver waits until they have
received 2ta + 1 consistent shares, and then reconstructs the secret. The idea
might seem overwhelmingly simple, but the lower number of corrupted channels
substantially simplifies matters.

4 Impossibility Result

We justify the trade-off assumptions made in the SMT constructions from pre-
vious sections, and show that the trade-off 2ta + ts < �, together with the trivial
constraints ta ≤ ts and ts < �/2, is necessary to achieve perfectly secure message
transmission in our hybrid model. The following Lemma is inspired by proofs
in [2,4,5], from which we also borrow some notation. Due to space constraints,
please refer to the full version of this paper for the proof [7].

Lemma 7. Let ta ≤ ts. There exists no SMT protocol that is both ts-perfectly
secure if the channels are synchronous and ta-perfectly secure if the channels are
asynchronous, for ts + 2ta ≥ �.

5 Round-Efficient Synchronous SMT with Sub-optimal
Trade-Off

Assuming the trade-off ta+2ts < �, we show a protocol ΠsSMT with the properties
required for the compiler presented in Sect. 3.1 and that runs in 3 rounds when
the network is synchronous. This (almost) matches the optimal round complexity
of purely synchronous protocols (2 rounds). Our construction adapts known ideas
(cf. [17,19]) to the context of security with fallback. Due to space constraints,
we assume that the reader is familiar with the basic theory of error correcting
codes. More details can be found in the full version of this paper [7]. Below, we
report some facts that will be needed in our constructions: once again, we refer
the reader to [7] for proofs.
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Lemma 8 ([19], Lemma 2). Let C be an (�, k, d)-linear code over Fq. Let H be
the parity-check matrix of C. Let E be a linear subspace of Fn

q such that w(e) < d
for all e ∈ E. Then

σ|E : E → F�−k
q

e 
→ HeT

is injective.

Definition 2. Let Y ⊆ Fn
q . A pseudo-basis of Y is a subset W ⊆ Y such that

σ(W) is a basis of the linear subspace 〈σ(Y)〉 of Fn−k
q .

Let U denote a uniformly distributed random variable over Fq, and let X =
(X1, . . . , X�) denote a uniformly distributed random variable over C.

Lemma 9. There exists an (�, ts + 1, � − ts)-linear code C and a vector h ∈ Fn
q

such that, for all I ⊆ {1, . . . , �} with |I| ≤ ts, the joint distributions ((Xi)i∈I , U)
and

(
(Xi)i∈I ,hXT

)
are equal.

The intuition is the following: the receiver R picks � random field elements,
encodes them using an (�, ts, ts + ta + 1) MDS code, and then sends the i-
th coordinate of the each code-word to the sender via channel ci. The sender
receives these code-words with errors introduced by the adversary. Notice that,
if the network is asynchronous, the adversary can modify up to ta symbols of
a code-word and erase up to ts symbols. However, we can still ensure that the
ts + ta errors occur at the same coordinates for all words: if the coordinates at
which erasures happen exceed ts, then the sender knows that the channels are
asynchronous.

Once the error versions of the code-words have been received, the sender S
computes a pseudo-basis, and communicates it to R via RMT together with the
syndromes of the errors introduced on code-words that are not in the pseudo-
basis. With this information receiver R can now compute all the errors intro-
duced by the adversary on all the code-words sent to S. The code-words in the
pseudo-basis have been revealed to the adversary, but the remaining words can
now be used as shared secret randomness between S and R to one-time-pad
encrypt messages and communicate them via RMT, as their syndromes leak no
information about them.

In general, error-correcting codes need not give any privacy guarantees. For
our purposes, however, the knowledge that the adversary gains by seeing up to
ts coordinates of a code-word must not completely determine the code-word (the
remaining entropy can be extracted to use as an encryption pad). Considering
appropriate codes solves this issue: it is well-known that certain classes of codes
are equivalent to threshold-secret sharing schemes. Lastly, in order for R to
correctly compute the errors introduced by the adversary, the minimum distance
of the code used must be greater than ts + ta. Lemma 9 shows how to construct
a code with all the required properties, under the assumption that ta + 2ts < �.

Let PseudoBasisC
(
y(1), . . . ,y(q)

)
be an algorithm that, given q vectors as

input with q ≥ � − dim(C), efficiently computes a pseudo-basis for these vectors.
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Let ComputeErrorsC
(W,x(1), . . . ,x(q), σ, p

)
be an algorithm that, given a pseudo-

basis of some corrupted versions of x(1), . . . ,x(q), computes the error introduced
on x(p) from the syndrome σ = σ(e(p)). Such an algorithm can be found in the
full version of this paper [7]. Let C and h be as in Lemma 9. Lemmas 10 and 11
are proven in [7].

Code for S(m):
1: b ← 0;
Round 1:
2: erasureCounter ← 0;
3: for 1 ≤ i ≤ � do
4:

(
y
(1)
i , . . . , y

(ts+1)
i

)
← ci;

5: if y
(j)
i missing for some j then

6: erasureCounter ← erasureCounter+ 1;
7: end if
8: end for
9: if erasureCounter ≥ ts + 1 then

10: return b;
11: end if
12: for 1 ≤ j ≤ ts + 1 do
13: y(j) ←

(
y
(j)
1 , . . . , y

(j)
�

)
;

14: end for
15: W ← PseudoBasisC

(
y(1), . . . ,y(q)

)
;

16: y(p) ←
{
y(j)

}ts+1

j=1
\ W; // find vector not in the pseudo-basis

17: σ ← H(y(p))T ; // the syndrome of y(p)

18: pad ← h(y(p))T ; // the pad to use for encryption
Round 2, 3:
12: b ← ΠsRMT (W, s, m + pad);
13: return b;

Code for R(r2):

14: v ← ⊥;
Round 1:
15: x(1), . . . ,x(ts+1) ←$ C;
16: for 1 ≤ i ≤ � do
17: ci ←

(
x
(1)
i , . . . , x

(ts+1)
i

)
;

18: end for
Round 2,3:
19: (W ′, σ′, m′) ← ΠsRMT();
20: if (W ′, σ′, m′) �= ⊥ then
21: p′ ← index not in W ′;

Protocol Πts,ta
sSMT(C,h)
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22: e′(p′) ← ComputeErrorsC
(
W ′,x(1), . . . ,x(ts+1), σ′, p′

)
;

23: y′(p′) = x(p′) + e′(p′);
24: pad′ ← h(y′(p′))T ;
25: v ← m′ − pad′;
26: return v;
27: else
28: return v;
29: end if

Lemma 10. Assume ta + 2ts < � and ta ≤ ts. If (c1, ..., c�) are synchronous
channels and at most ts channels are under control of the adversary, then protocol
Πts,ta

sSMT(C,h) achieves ts-security.

Lemma 11. Assume ta + 2ts < � and ta ≤ ts. If (c1, ..., c�) are asynchronous
channels and at most ta channels are under control of the adversary, then pro-
tocol Πts,ta

sSMT(C,h) achieves ta-weak correctness and ta-perfect privacy.

6 Conclusions

6.1 Putting Things Together

We have investigated the feasibility and optimality of perfectly secure message
transmission protocols that achieve security in both synchronous and asyn-
chronous networks. The following corollaries summarize the main results.

Corollary 1. There exists a perfectly secure SMT protocol that is ts-secure when
run over a synchronous network, and ta-secure when run over an asynchronous
network if and only if 2ta + ts < �.

Corollary 2. There exists a perfectly secure SMT protocol that is ts-secure when
run over a synchronous network, ta-secure when run over an asynchronous net-
work, and runs in 3 rounds when the network is synchronous, if ta + 2ts < �.

Using Theorem 6.1 from [1], combined with our SMT protocol from Corol-
lary 1, we obtain an n-party perfectly-secure MPC protocol over networks with
�-connectivity, for any ta ≤ ts satisfying 3ts + ta < n and 2ta + ts < �.

Corollary 3 ([1], Theorem 6.1; restated for incomplete networks). Let
n be the number of parties and � be the connectivity of the network. Let ta ≤ ts,
such that 3ts + ta < n and 2ta + ts < �. Moreover, let f : Fn → F be a function
represented by an arithmetic circuit over a field F. Then, there is an n-party
MPC protocol evaluating f over any network with � connectivity, such that:

– Correctness: (a) When the network is synchronous and there are up to ts
corruptions, all honest parties correctly evaluate the function (with all honest
inputs taken into account), and (b) when the network is asynchronous and
there are up to ta corruptions, all honest parties correctly evaluate the function
(with n − ts inputs taken into account).



92 G. Deligios and C.-D. Liu-Zhang

– Privacy: The view of the adversary is independent of the inputs of the honest
parties.
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Abstract. We propose a new fair exchange protocol that takes advan-
tage of delay encryption and commutative encryption to achieve optimal
partial fairness among all protocols involving one-way messages. Our pro-
tocol consists of 3 setup messages and 2N + 1 exchange messages and it
is fair against covert adversaries with probability 1− 1

2N
. We prove that

this is optimal up to shortening the setup phase which is notably more
efficient than existing protocols.

Keywords: Fair Exchange · Timed-Release Encryption · Partial
Fairness · Commutative Blinding

1 Introduction

A fair exchange protocol allows two parties to exchange secrets fairly without
mutual trust. Given its practical importance, this problem has been studied
extensively in different contexts. Many solutions using Trusted Third Parties as
mediators (e.g. [10]) or judges (e.g. [1]) have been proposed. When in lack of
a TTP, fair exchange was first shown to be impossible by Even and Yacobi [9]
in 1980 and later by Pagnia and Gärtner [21]. Garbinato and Rickebusch [11]
analysed this result further to provide a finer classification when some trust is
present in the network. While their result is very interesting in the setting where
multiple parties are involved, in our 2-party context they conclude that one party
must be trusted.

Similar problems such as multi-party coin flipping or exchange of signatures
were also proved impossible, respectively, by Cleve [5] and by Even and Yacobi
[9]. As a result, researchers tried to design protocols that either achieve weaker
fairness properties or take advantage of stronger assumptions. For instance,
under the assumption that both parties have similar computational power, bit
commitments schemes [7] can be used to achieve weaker fairness where a party’s
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knowledge is at most one bit more than the other party’s knowledge. Using
the weaker assumption that both parties have similar sequential computational
power, Boneh and Naor [3] proposed a protocol where bit commitments were
replaced with timed commitments. Alternatively, Ben-Or et al.[2] proposed a
fair exchange of signatures where the probability that one party is committed
to a contract while the other is not can be arbitrarily small. Following the same
trend of using probabilistic definitions of fairness, Gordon and Katz [16] intro-
duced the concept of partial fairness for secure two-party computations.

A very similar concept was used in the context of two-party fair exchange
by Roscoe and Ryan [24] and later refined by Couteau et al. [6]. We follow their
approach and propose a fair exchange protocol where the probability of an unfair
run is almost inversely proportional to the number of messages exchanged. This
fairness is achieved against covert adversaries, i.e. the malicious entity will not
perform actions for which they can be blamed. We achieve a stronger form of
fairness and better bounds than the protocols of [6,16]. In particular, Gordon
and Katz [16] show that general 2 party computations cannot be performed with
polynomial partial fairness when parties are allowed to early abort the protocol
and only polynomial running time. Couteau et al. [6] escape this impossibility
result using timed-release encryption and show that any 2 party functionality
can achieve partial fairness by designing a partially fair exchange protocol.

1.1 Our Contribution and Related Work

The key idea used in the protocol by Couteau et al. as well as in [16] is to hide
the secret among a set of dummy values, then exchange them one by one. In this
paper, we explore the theoretical limits of this approach by proving an upper
bound on the partial fairness that can be achieved and then building a protocol
that reaches it. In this paper, the results and protocols of that approach are
improved significantly.

In the protocol analysed by Couteau et al., the probability that Alice receives
Bob’s secret is at most 2

N greater than Bob’s chances of receiving Alice’s secret
(and vice versa), where N is the number of messages in the exchange phase of
their protocol. However, each party could get roughly a 1

4 probability of receiv-
ing the other party’s secret without revealing theirs. In our protocol, the latter
probability is bounded above by 1

N−1 .
Similarly, Gordon and Katz’s [16] protocol hides the correct output of the

computation among a list of other random values. Our protocol improves on
theirs in three distinct ways. Firstly, in [16] each party has immediate access to
all the value already exchanged. Therefore, if a malicious entity had access to
some information on the value of the correct output, they could recognise some
random values as such. Hence, their decision on when to abort will no longer be
uniformly random. We solve this by encrypting the secrets to exchange and only
work with encryption keys. Assuming that the honest party picks truly random
keys, the adversary cannot distinguish which key is used for the secrets until
the ciphertext is available at the end of the protocol. Secondly, we propose a
concrete setup phase consisting of only 3 messages, of which the last will be sent
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together with the first exchange message. In [16], the sub-protocol preceding the
exchange phase is only described abstractly. Finally, we achieve better fairness,
i.e. we halve the probability of an unfair run of the protocol.

Like those of [6,24], our protocol relies on the unusual assumptions of the
existence of delay encryption (often called Timed-Release Encryption) [23] and
a commutative blinding scheme. The former assumption is what let our proto-
col circumvent the impossibility result proved by Gordon and Katz [16]. Only
a few delay encryption schemes have been proposed in the past 30 years. We
believe exponentiation modulo a prime [18] is a viable option in our case since it
relies only on the assumption that repeated squaring is inherently sequential and
that both parties have a somewhat similar sequential computation power. This
is much more reasonable assumptions than similarity in general (i.e. parallel)
computational power.

In Sect. 2, we present the preliminary definitions of each cryptographic prim-
itive used in the fair exchange protocol. The next section is dedicated to the
description of our protocol. In Sect. 4, we analyse the fairness of the proposed
protocol as well as showing its optimality.

2 Preliminaries

In this section, we lay out the definitions of the cryptographic primitives that
will be used in the fair exchange protocol.

2.1 Notation

In this paper we will use the following notation:

– ZN is the set {0, . . . , N − 1}
– vectors are written in bold. v[i] is the ith entry of v starting from 0.
– (ai)i∈X is a vector of length |X| whose entries are ai

– If v ∈ XN and f : X → Y , we write f(v) for (f(v[i]))i∈ZN
∈ Y N .

– x
$←− X means that x is sampled uniformly from the set X.

– mod is the usual binary function Z × N
+ → N such that a mod b ∈ Zb.

– a‖b is the concatenation of a and b by interpreting them as binary strings.

2.2 Symmetric Encryption and Hashing

We use standard symmetric encryption (KGen,Enc,Dec) [15,17] and only require
it to be secure against ciphertext-only attacks. We write Enck(m)/Deck(m) to
mean the encryption/decryption of message/ciphertext m under the key k.

Our protocol takes advantage of cryptographic hashing (H : {0, 1}∗ →
{0, 1}n) [15,17] as a commitment scheme. Therefore, both preimage resistant
and second preimage resistant are required.
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2.3 Delay Encryption

Delay encryption (sometimes called Timed-Release Encryption) is an unusual
cryptographic primitive whose aim is not to provide confidentiality of a message
from other parties, but to hide the message from anyone for some predefined
amount of time. For the reader accustomed with Timed-Release Encryption,
what we use and define is a “delay” time-lock-puzzle-based encryption scheme
rather than time-specific schemes using trusted third parties. This is justified
because, in the presence of a TTP, the fair exchange problem becomes trivial.

More formally, a delay encryption scheme is a triple of algorithms and asso-
ciated sets M, C,P:

Pgen : {1}∗ × N → P delay : M × P → C open : C × P → M
Intuitively, Pgen(1λ, T ) generates public parameters p that are used to delay a
message for time T . delayT (m) will mean that the algorithm is used on m to
delay it for elapsed time T . Similarly, we omit p and write open(c). Practically
speaking, delayT (m) will create a puzzle c so that open(c) can solve the puzzle and
obtain m only after at least T (sequential) time. A honest party with moderate
computational power should be able to run open(c) in sequential time not much
longer than T . In order for our scheme to make sense, we set the following
requirement

∀m ∈ M ∀T ∈ N open(delayT (m)) = m

We say that a delay encryption is COA-secure if for any family of circuits A
of conceivable size and depth at most λT , we have

Pr
m

$←−M
T

$←−N

[
m ← A(c, T, p)

∣∣∣∣ c ← delayT (m) ∧ p ← Pgen(1λ, T )
]

<
1

|M| +negl (λ)

Intuitively, a COA-secure delay encryption scheme correctly hides encrypted
messages for the expected amount of time. We remark that the size of such
circuits will depend on the current state of technology. As noted in [18], allowing
all polynomially-sized circuits could lead to misleading results with circuits much
larger than what is feasible at the time of writing.

2.4 Commutative Blinding

A feature of our protocol is the use of commutative blinding that enables two
parties to jointly shuffle a deck of cards in such a way that neither know where
a given card is. Usually a blinding scheme is nothing but an encryption scheme,
however the usual definition of a commutative encryption scheme is stricter
than what we need. As a result, we define a commutative blinding scheme as
a tuple of algorithms (KGen1,KGen2,Blind1,Blind2,Unblind1,Unblind2) with sets
(M,K1,K2, Cint, C) such that

KGen1 : {1}∗ → K1 Blind1 : M × K1 → Cint Unblind1 : C × K1 → Cint

KGen2 : {1}∗ → K2 Blind2 : Cint × K2 → C Unblind2 : Cint × K2 → M
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In order for the scheme to make sense we require

∀k1 ∈ K1 ∀k2 ∈ K2 ∀m ∈ M
Unblind2 (Unblind1 (Blind2 (Blind1 (m, k1) , k2) , k1) , k2) = m

If these functions were used in other contexts, these names could be mis-
leading. In particular, Unblind1 and Blind1 are not necessarily inverses, nor are
Unblind2 and Blind2. In most practical scenarios, the blinding and unblinding
will be inverses as well as Blind1 = Blind2 and Unblind1 = Unblind2. However,
this is not required and constructions using homomorphic encryption are likely
to need the full generality of our definition.

We say that Blind1 is COA-secure if for any PPT adversary A we have

Pr
m

$←−M
k

$←−KGen1(1
λ)

[
m ← A(c)

∣∣∣∣ c ← Blind1(m, k)
]

<
1

|M| + negl (λ)

The remaining security requirements are described in Figs. 1, 2 and 3.
We say that an adversary wins the N -KPA game (Fig. 1) if m′ = mN+1. In

the (N,P)-CPA game, we note that P is a set of permutations of N -dimensional
vectors. We say that an adversary wins the (N,P)-CPA game if σ′ = σ. In other
words, if we are presented a blinded permutation of known distinct messages,
we should not be able to tell which message corresponds to which. Finally, we
say that an adversary wins the KIND game if b′ = b.

We say that Blind1 is N -KPA secure if for any PPT adversary A, the prob-
ability that A wins the N -KPA game is at most 1

|M|−N + negl (λ).
We say that Blind2 is (N,P)-CPA secure if for any PPT adversary A, the

probability that A wins the (N,P)-CPA game is at most 1
|P| + negl (λ).

We say that Blind2 is KIND secure if for any PPT adversary A, the probability
that A wins the KIND game is at most 1

2 + negl (λ).
Explanations for these requirements will be discussed in Sect. 3.2 after we

present our protocol.

2.5 Fair Exchange

We say that a protocol Π is an ideal fair exchange of secrets between two parties
Alice and Bob if it achieves the same result as performing the exchange in an
ideal world where there is a TTP collecting the secrets and exchanging them.
Intuitively, the exchange is fair if Alice learns Bob’s s secret if and only if Bob
learns Alice’s secret. As noted in the introduction, an ideal fair exchange protocol
is not possible without a TTP or some very strong assumptions on the network
of parties. As a result, our fair exchange protocol achieves fairness only in a
probabilistic way.

Definition 1. We say that a probabilistic protocol Π achieves p-partial fairness
if the probability of an unfair run is at most p.
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Fig. 1. N -KPA game

Fig. 2. (N,P)-CPA game

Fig. 3. KIND game
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In other words, a malicious entity can obtain the other party’s secret without
revealing theirs with probability at most p. We also say that Π achieves fairness
with probability p to mean that it is (1 − p)-partially fair.

3 Protocol

Firstly, we define a few permutations that will be used in the protocol.

σd : ZN → ZN σe
d : ZN+1 → ZN+1

x �→ x + d mod N x �→
{

σd(x) if 0 ≤ x < N

N if x = N

τ b
N : XN → XN πb : XN+1 → XN+1

v �→ (
v[i(−1)b + (N − 1)b]

)
i∈ZN

v �→ (v[(i − b) mod (N + 1)])i∈ZN+1

Figure 4 is the exchange protocol.

3.1 Protocol Overview

Our protocol follows the idea used by Roscoe and Ryan [24] and Couteau et al.[6],
i.e. Alice and Bob will hide their secret among a set of dummy messages. The aim
is to prevent any party from predicting when the secrets will be exchanged or dis-
tinguish when they have sent or received a secret until all exchanges should have
finished. A key component to achieve this is delay encryption. The delayed mes-
sages DA,DB fulfil two different purposes. Firstly, they guarantee the exchanged
secrets cannot be computed as soon as the keys kA [0],kB [0] are received, but
only at the end of the protocol. Secondly, they behave as a timed commitment
to each player’s strategy. This is used to detect any active cheater1. Most of the
complexity of the protocol lies in the three setup messages that are used to hide
kA [0] and kB [0] among dummy keys. The shuffling process proceeds as follow:

1. Each party places their secret among a list of N values and permutes it. Alice
places an extra dummy value at the end of her list.

2. After exchanging these lists, each party permutes the received list.
3. Bob decides whether to place Alice’s extra dummy at the start or end of

Alice’s list.
4. Alice decides whether to reflect each list around their midpoint or not.

1 For example, if its initially declared and committed strategy obliges A to send its
own secret in message x, then not doing so would be a detectable abuse even if the
protocol is terminated before its end.
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Fig. 4. Main protocol
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In the first two steps, we restrict the permutations to rotations. This makes the
permutations commute without affecting the probability distribution of where
the secrets are. After step 2, we obtain two lists where the secrets are in the
same position. This in not enough to achieve optimality since the relative order
of the secrets is fixed. If the messages were exchanged in their form after step 2,
the secrets were in position r and Alice were the first at sending the rth blinded
value, then Bob’s secret would follow Alice’s. This would achieve a sub-optimal
fairness probability of roughly 1 − 1

N .
The last two steps have the effect of shuffling the relative order of the secrets.

If Bob places the extra dummy at the start of Alice’s list, then he is effectively
moving Alice’s secret after his. Alice’s action changes the relative order of any
pair of messages. At the end of step 4, the relative order of the secrets is uniformly
random and unknown to the parties. In particular, this represents the optimal
distribution, i.e. no probability distribution of the 2 secret messages leads to a
fairer exchange.

The last two messages O1,O2 are entirely optional and only used for compu-
tational optimisation, so that opening the delay encryption is made unnecessary.
More specifically, they contain all the information needed to retrieve the secrets
from the list of Ei’s. Therefore, a party needs to undergo the expensive compu-
tation to open the delayed messages only if the exchange is not terminated or
the other party actively cheated.

3.2 Security Requirements

After explaining the protocol, we can justify the need for the security parame-
ters we set. The requirements on the delay encryption and symmetric encryption
should be straight forward. These two primitives are only meant to hide the
messages encrypted. The hash function is used as a commitment scheme, there-
fore the need for second preimage resistance. Collision resistance is not strictly
needed but preimage resistance is required to avoid revealing something about
the committed value.

The commutative blinding scheme must satisfy more complex requirements
since it is the cornerstone of the setup phase. The scheme is required to hide
the blinded values as well as hiding the shuffling. As a result, the simple COA
requirement only ensures that nothing can be extracted from cA or cB . The
KPA requirement is needed if the protocol is aborted early before the actual
secrets are exchanged. In this scenario, after the opening of the delay message,
both parties can unblind the messages exchanged obtaining some of the dummy
kA ’s (or kB ’s). Moreover, the delayed messages reveal the shuffling used, so a
malicious party can perform a KPA on the values cA (respectively cB ).

The CPA requirements, using the set of permutations {πb ◦ σd | d ∈ ZN , b ∈
{0, 1}} (notation abuse), is needed to guarantee that Alice can’t guess dB , bB

from d. Similarly, the CPA requirement with permutations {τ b
N ◦ σd | b ∈

{0, 1}, d ∈ ZN} prevents Bob from guessing dA, bA from eB . It is worth pointing
out that our choice of using rotations instead of arbitrary permutations results
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in stronger requirements for the commutative blinding. On the other side, arbi-
trary permutations do not commute, therefore the setup phase will need to be
extended in order to keep the secrets next to each other.

Finally, the key indistinguishability requirement is used to guarantee that no
information is leaked during the exchange phase. In particular, note that mB [i]
is blinded using a key which is chosen entirely upon on bA. Therefore, Alice can
unblind messages as she receives them. However, she can’t check if the message
received contain the correct key (since the encryption of the secret is delayed)
and the KPA requirement prevents her from obtaining information from cB . On
the other side, mA [i] is blinded using a key dependent on bA and bB . Therefore,
Bob doesn’t know a priori which key is used. If he were to discover which key
is used to blind mA [i], then he would discover bA. This gives Bob knowledge of
whether kA [0] precedes or succeeds kB [0], which is an unfair advantage.

3.3 Commutative Blinding and Why It Is Needed

The commutative blinding scheme is the most complex primitive used in our
protocol. Quite a few options are available for commutative encryptions: ElGa-
mal, SRA, Pohlig-Hellman, Massay-Omura, etc. However, most do not satisfy
our requirements. For instance, ElGamal is not secure against our strong CPA
requirement since each ciphertext is paired with a “tag” that encapsulates the
random nonce used in the encryption process. On the other hand, we believe
that the Pohlig-Hellman cipher satisfies our requirements, provided it is used
carefully.2

It is important to note that all these cited commutative encryptions are based
on the hardness of either the integer factorisation problem or the discrete loga-
rithm problem. Since both are known to be vulnerable to quantum computers,
the interesting question of finding post-quantum blindings arises. Most literature
on post-quantum commutative encryption (e.g. [8,19]) is based on generalising
the discrete logarithm problem to non-abelian groups. However, this approach
may be flawed [20,27]. Other quantum resistant commutative encryption schemes
might arise from group action on sets of isogenous elliptic curves as attempted by
Stolbunov [26] or similarly to the CSIDH protocol [4]. As noted during the defini-
tion of the commutative blinding, we believe homomorphic encryption could be
used to construct this primitive. The most trivial implementation would require
the outer blinding Blind1 to be the homomorphic encryption, while the inner
blinding Blind2 can be a simple Vernam cipher. Since Blind2 is always used with
unique keys, the overall construction’s security should follow from the security
of the homomorphic encryption. In this regard, we wish to point out that most
fully homomorphic encryption schemes rely on the hardness of the Learning With
Errors problem (or its ring variant) which was proved to be at least as hard as
some worst case lattice problems [22] such as the Shortest Vector Problem. As

2 In particular, we need to prevent the ciphertexts from being recognised from their
order. Thus, the modulus picked should be a safe prime p = 2q+1 and all plaintexts
should be forced to be in the same subgroup of prime order q.
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a result, these schemes are good candidates for building quantum-safe blinding
schemes.

Given the complexity of commutative blinding, a natural question is whether
we can achieve the same results without its use. Therefore, we feel the need to
briefly justify its use. Our problem of hiding the secret messages among a list
of other dummy messages is similar to the issue of shuffling a deck of cards
for an online game of poker. No single party must know the whole shuffle and
both need to contribute to it. This “mental poker" problem is often solved using
commutative blinding, oblivious transfer or by generating cards on the fly. [12–
14,25] The last option is clearly not an option in our context. On the other hand,
the use of oblivious transfer is appealing yet we believe this is only possible
(without greatly increasing the round complexity of the protocol) if the shuffling
phase can be split into two sub-shuffles each performed independently by the
two parties. We could not find such a split, therefore we consider the existence
an efficient setup phase without commutative blinding an open question.

4 Analysis

A protocol Π M+1 is a sequence of messages 〈m0, . . . ,mM 〉. A time point t in
the protocol Π M is an integer t ∈ ZM . We say that messages mi with i ≤ t
happens before t. We write TA (and TB) for the time point after which Alice
(respectively Bob) is guaranteed to obtain sB (respectively sA). For instance,
m0 = Enck(sA) ∧ m3 = k =⇒ TB ≤ 3. A subtler example is: m0 = Enck(sA) ∧
m4 = delay(k) =⇒ TB ≤ 4. Using this simple model, we can analyse the
fairness of our protocol against passive adversaries. In this context, we define a
passive adversary as one that is only allowed to go offline unexpectedly.

In this section, we write sA ∈ mA [i] to mean that mA [i] is the blinding of
kA [0]. Essentially, mA [i] is the only important message in mA . The analogue
notation sB ∈ mB [i] will also be used.

4.1 Adversarial Model

In our adversarial model, the enemy can control Alice or Bob (but not both)
and they are allowed only to perform actions that do not reveal them as a bad
actor. We define this kind of adversary as a covert adversary. We assume com-
munications channels are authenticated, guarantee integrity and confidentiality
and are secure against reordering and replay attacks. Therefore receiving a mal-
formed message signed by the adversary constitute a proof of their misbehaviour,
however, aborting communication is not assumed to be a malicious action. To
prove the security of our protocol, we first show that it is secure against pas-
sive adversaries which are only allowed to perform side computations and abort
communication. We then show that any covert adversary is restricted to behave
like a passive adversary.
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4.2 Fairness

We will show that the protocol of Fig. 4 achieves 1
2N -partial fairness. The key

idea is that TA and TB are kept next to each other so that there is only one
successful early-termination attack among the 2N possible. Due to the use of
delay encryption, we see that TA = i + 2 if and only if Ei is the blinding of
kB [0]. Similarly, TB = i+2 if and only if Ei is the blinded kA [0]. Therefore, we
compute the distribution of TA, TB by looking at the distribution of kA [0] and
kB [0].

Theorem 1. Let Π be the fair exchange protocol from Fig. 4. Then

Pr
[
sA ∈ mA [i] ∧ sB ∈ mB [j]

]
=

{
1

2N if i = j ∨ i = j + 1
0 otherwise

(1)

Proof. Note that

mA [i] = Blind2

(
kA [σe

dA+dB
((i(−1)bA + NbA − bB) mod (N + 1))],

BB [(i(−1)bA + NbA − bB) mod (N + 1)]
) (2)

mB [i] = Blind2
(
kB [(i(−1)bA + (N − 1)bA + dA + dB) mod N ],

BA [i(−1)bA + (N − 1)bA]
) (3)

So

sA ∈ mA [i] ⇐⇒ 0 = σe
dA+dB

((i(−1)bA + NbA − bB) mod (N + 1))

sB ∈ mB [i] ⇐⇒ 0 = (i(−1)bA + (N − 1)bA + dA + dB) mod N

Hence

Pr
[
sB ∈ mB [i]

]
= Pr

ba
$←−{0,1}

dA,dB
$←−ZN

[
0 = (i(−1)bA + (N − 1)bA + dA + dB) mod N

]

=
1
2

(
Pr

d
$←−ZN

[0 = (i + d) mod N ] +

Pr
d

$←−ZN

[0 = (N − 1 − i + d) mod N ]
)
=

1
N

Assume sB ∈ mB [j], that is:

0 = (j(−1)bA + (N − 1)bA + dA + dB) mod N

We will show that sA is either in mA [j] or mA [j+1] by analysing the four cases
(bA, bB) ∈ {0, 1}2
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1. bA = bB = 0

sB ∈ mB [j] =⇒ σe
dA+dB

(j) = (j + dA + dB) mod N = 0 =⇒ sA ∈ mA [j]

2. bA = bB = 1

sB ∈ mB [j] =⇒ σe
dA+dB

(N − 1 − j) = (N − 1 − j + dA + dB) mod N = 0

=⇒ sA ∈ mA [j]

3. bA = 0 ∧ bB = 1

sB ∈ mB [j] =⇒ σe
dA+dB

(j + 1 − bB) = (j + dA + dB) mod N = 0

=⇒ sA ∈ mA [j + 1]

4. bA = 1 ∧ bB = 0

sB ∈ mB [j] =⇒
σe

dA+dB
(N − (j + 1)) = (N − j − 1 + dA + dB) mod N = 0

=⇒ sA ∈ mA [j + 1]

As a result,

Pr
bA,bB

$←−{0,1}

[
sA ∈ mA [i]

∣∣∣ sB ∈ mB [j]
]
=

{
1
2 if i = j ∨ i = j + 1
0 otherwise

The statement of the theorem follows directly from the equation

Pr
[
sA ∈ mA [i] ∧ sB ∈ mB [j]

]
=

Pr
[
sA ∈ mA [i]

∣∣ sB ∈ mB [j]
]
Pr

[
sB ∈ mB [j]

]
��

Corollary 1. Let Π be the protocol from Fig. 4. Let A be a computationally
bounded passive adversary. Then A can successfully obtain the other party’s
secret without revealing theirs with probability 1

2N .

Proof (Sketch). First, recall Eq. 1. All we have to prove is that A cannot obtain
any knowledge that gives them any better probability distribution. The parame-
ters p which determines the distributions are dA, dB , bA, bB . In Sect. 3.2, we have
described what role each security requirement plays in guaranteeing the fairness
of the protocol, but here we report briefly the key points.

Note that message S1,S2,S3 don’t reveal anything about p until the delays
open after the protocol termination. This is given by the properties: delay-COA,
H-preimage resistance, Blind1-COA and Blind2-CPA. The messages E2r−1 and
E2r do not reveal anything about p since Blind2 is key-indistinguishable and
Blind1 is KPA secure. Therefore, A only knows the parameters they picked and
these are not enough to skew the probability distribution of Eq. 1.
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Say that A stops after message Si, then they will obtain the other party’s
secret with probability 0. Say that A stops after message Ei, then they will
successfully cheat if Ei contains the other party’s secret and sA ∈ Ej with j > i.
By Eq. 1 this happens with probability 1

2N . Stopping during the disclosure phase
is pointless as sA is already transmitted. ��

4.3 Optimality

In the protocol from Fig. 4, we hide the secrets sA, sB among the messages Ei’s
and use delay encryption to guarantee that TA = i + 2 ⇐⇒ sB ∈ Ei (and
similarly for Bob). Note that the +2 is needed to account for the setup phase.
Hence, TA and TB are also hidden for the entire duration of the exchange phase.

Here, we prove that our construction is “optimal”, meaning that no exchange
phase of M messages can achieve fairness greater than 1 − 1

M−1 . However, this
leaves open the question of whether our setup phase can be shortened. In this
regard, we point out that messages S3 and E1 can be sent as one. Therefore,
the proposed protocol achieves 1

M−1 -partial fairness using M + 2 messages.

Lemma 1. A receives a message at time TA.

Proof. Assume for a contradiction that mTA
is a message from Alice to Bob. It

follows that Alice can compute mTA
from {m1, . . . ,mTA−1}. As a result, every-

thing that Alice can compute from {m1, . . . ,mTA
} can be done from {m1, . . . ,

mTA−1}. Therefore TA is not minimal. ��
Lemma 2. In the absence of third parties, TA �= TB.

Proof. This follows directly from Lemma 1. ��
Lemma 3. Assume there is no third party. If in Π messages do not alternate
between Alice and Bob, then there is another protocol Π ′ which is as fair as Π
in which the messages alternate.

Proof. Let Π be a protocol where the messages between Alice and Bob do not
alternate. Construct Π ′ from Π by collapsing consecutive messages from the
same party into one. After this process, append “dummy” messages so that Π ′

and Π have the same length. In this process, the fairness of Π is left untouched.
In particular, note that the optimal strategy of any adversary could have not
been to stop between consecutive messages and it is definitely not to stop after
dummy messages. ��
Theorem 2. Let Π be a fair exchange protocol between Alice and Bob in absence
of third parties. If Π consists of M + 1 messages, then there is an unfair run
with probability 1

M

Proof. By Lemma 3 we can assume that Π = 〈m0, . . . ,mM 〉 where Alice sends
the messages with even index, and Bob those with odd index. There are m
possible attacks on the protocol by early abortion: stop the protocol after i
messages where 0 < i ≤ M . By Lemma 2 we know that at least one of these
attacks would be successful. So, the probability of an unfair run is at least 1

M . ��



108 I. Maffei and A. W. Roscoe

4.4 Catching Active Cheaters

So far we have analysed the fairness of our protocol when the adversary is passive.
We now look at the case where the adversary can alter the messages they send.
Our aim is to show that any such adversary will be caught. That is, our protocol
allows the honest party to demonstrate the misbehaviour of the other party.
Since channels are authenticated a transcript of the protocol constitute a proof of
misbehaviour. Hence, covert adversary can only behave like passive adversaries.

Theorem 3. If a party misbehaves, the other can prove it (unless both misbe-
haved).

Proof. Firstly, note that inconsistencies between the delayed messages and the
shuffling “sub-messages" cA , cB ,d,eB will result in inconsistent Ei’s. We assume
that Alice and Bob have agreed on predicates (i.e. boolean functions) ExpA,ExpB

to indicate what they expect to receive. Recall Eqs. 2 and 3 and assume that both
parties have knowledge of the content of the delayed messages DA,DB , which
they eventually will. Therefore, both parties have complete knowledge of the
permutations used. Each exchange messages Ei can be unblinded and reordered
so that they are expected to match H(kA [j]) (or H(kB [j])) for some j. Finally,
the secrets can be retrieved and checked against ExpA or ExpB . Assume that
mA [i] is not correct, then Bob could be responsible only if they have wrongly
computed d. However, note that the function cA �→ d is entirely determined
by (dB , bB ,BB ). Therefore, one can verify the computation of d and, if this
is correct, prove that Alice was responsible for the issue with mA [i]. Similarly,
Alice’s computation cB �→ eB is determined by (dA, bA,BA ). It follows that
anyone holding a transcript of the protocol (and ExpA,ExpB) can check if each
Ei is correct and determine who introduced any eventual error. ��

5 Conclusion and Future Research

In this paper, we have presented a fair exchange protocol which achieves fairness
against covert adversaries with probability 1 − 1

2N in 2N + 1 exchange mes-
sages and 3 setup messages. We proved that the protocol is optimally fair up
to shortening the already-short setup phase. This impossibility result holds in
a general model which only assumes that the involved parties are not computa-
tionally unbounded. The cryptographic primitives that allow the design of the
optimally-fair protocol are delay encryption and commutative blinding. The use
of delay encryption introduces the reasonable assumption that both parties have
somewhat similar sequential computational power, a considerable improvement
on the results of [7] where similar (parallel) computing power was needed. Never-
theless, we limited the use of delay encryption to a single message which will be
opened only when a party suspects misbehaviour. This gives some leeway to use
less efficient algorithms. We showed that our protocol is secure against covert
adversaries without the need of expensive constructions and point out that all
the primitive used can be quantum safe. We overcome the bounds of [16] by
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extending the cryptographic palette and achieve a stronger fairness than [6] by
careful choice of the blinding strategy. Despite the substantial contribution of
our paper, more research is needed in the field of fair exchange. The only draw-
back of our protocol is the need for a strong commutative blinding. Therefore,
it raises the interesting question of whether our protocol can be modified so as
not to use commutative encryption without increasing the message complexity
of the setup phase. On the more practical side, an interesting problem to con-
sider is the scenario where the malicious party aborts the exchange and, if the
secrets are not exchanged, they begin another exchange with the same party and
same secrets. This seems a plausible scenario in real-world applications since the
honest party is likely to need the exchange to succeed, and they will try again if
network failures seem the cause of abortion. However, the fairness of the protocol
is different since multiple runs of the same protocol must be taken into account.
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Abstract. We study witness-authenticated key exchange (WAKE), in
which parties authenticate through knowledge of a witness to any NP
statement. WAKE achieves generic authenticated key exchange in the
absence of trusted parties; WAKE is most suitable when a certificate
authority is either unavailable or undesirable, as in highly decentralized
networks. In practice WAKE approximates witness encryption, its elu-
sive non-interactive analogue, at the cost of minimal interaction.

This work is the first to propose, model and build witness-
authenticated key exchange amongst groups of more than two parties,
as well as the first to provide practical and provably secure construc-
tions in the two-party case for general NP statements. Specifically our
contributions are:
1. both game-based and universally composable (Canetti, FOCS ’01)

definitions for WAKE along with equivalence conditions between the
two definitions,

2. a highly general compiler that introduces witness-authentication to
any key exchange protocol along with, as a direct consequence, a
three-round group WAKE protocol from DDH and signatures of
knowledge (SOK), and

3. an optimized two-round group WAKE construction from DDH and
SOK along with experimental benchmarks to demonstrate concrete
practicality.

Additionally, we study the specialized two-party case and provide a cri-
tique of prior work on this topic (Ngo et al., Financial Crypto ’21) by
pinpointing nontrivial weaknesses in the model, constructions and secu-
rity proofs seen therein. We rectify those limitations with this work,
significantly diverging in our techniques, design and approach.
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1 Introduction

Public-Key cryptography, as introduced in the seminal paper by Diffie and Hell-
man, allows two parties that have never met to confidentially exchange infor-
mation. This can be achieved non-interactively via encryption, with which mes-
sages are encrypted under a receiver’s public key [29], or interactively via key
exchange [12]. Traditionally these parties’ identities are endorsed by a trusted
certificate authority (CA) via e.g. digital signatures which bind each public key
to a corresponding identity and are published in a public key infrastructure.
Beyond this, in both the non-interactive and interactive cases there are more
flexible ways to designate the intended recipients of secure communications. For
example, in identity-based cryptography [31] public keys are replaced by arbi-
trary identity strings and in attribute-based cryptography [30] certain policies
define the set of attributes that parties must satisfy. Critically, both of these
primitives employ a trusted party to issue certificates or keys corresponding to a
party’s claimed identity or attributes and therefore can be considered to assume
the existence of a CA.

Arguably, witness-based cryptography is the most general way to specify the
intended recipient of an encrypted message. With Witness Encryption (WE) [17]
a message can be encrypted to a statement φ, an instance of some NP language L,
such that if φ ∈ L then that message can be efficiently decrypted with a witness
w to φ. With WE one can encrypt a message under a Sudoku puzzle such that
it is efficiently decryptable with any solution to that puzzle. Remarkably, WE
does not require any trusted party to certify and issue keys; in WE the secret
decryption key is the uncertified witness. Despite recent progress [1] practical
WE for all of NP from standard assumptions remains elusive.

In this work we turn our attention to a new witness-based primitive that (i)
similarly to WE, can be used in several applications where an arbitrary secret
enables secure communication,1 yet (ii) differently from WE, can be concretely
and efficiently realized under computational assumptions held today. We achieve
this by allowing an extremely low amount of interaction – in some cases only
two messages. We refer to this primitive, the interactive process by which par-
ties mutually authenticate with respect to knowledge of a witness to an NP
statement, as witness-authenticated key exchange (WAKE). We argue that this
interactive abstraction deserves to be studied in its own right due to its utility
and generality.

Just as WE is the most general form of encryption, the interactive WAKE
subsumes all efficiently verifiable means of authentication for key exchange as
special cases.

Contributions. This work is the first to propose, model and build witness-
authentication amongst groups of authenticated parties. We are also the first
to provide practical and provably secure protocols between two-parties authen-
ticating under general statements. Our contributions are as follows:
1 That is, not requiring certification by an authority and not the output of a specific

key generation algorithm.
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(1) We revisit witness-authentication: we identify shortcomings of witness-key-
agreement, as proposed by [26]—the model’s applicability, the construction’s
practicality, and the proof of security. Our discussion demonstrates a need for
new models and constructions in the two-party case, a specialization of our
general model for groups of parties.
(2) We define WAKE via both a modular and intuitive game-based formalization
and a universally composable (UC) ideal functionality. UC is the most desirable
security guarantee for authenticated key exchange and we prove the satisfaction
of the strongest variant of our game-based definition equivalent composability.
(3) We construct new protocols for group WAKE. First, we show a general
compiler that transforms any passively secure key exchange protocol into a
witness-authenticated key exchange. The main features of this general construc-
tion are it’s conceptual simplicity, modularity and efficiency. The compiler relies
on strongly simulation-extractable signatures of knowledge [20], the properties
of which can be leveraged to provide our security and efficiency guarantees. Con-
cretely we apply our compiler to the group key exchange protocol of Burmester
and Desmedt, giving a practical 3-round WAKE protocol.
(4) We optimize the 3-round protocol above to a 2-round concretely efficient
group WAKE protocol. The improved solution achieves UC security, a property
which does not follow from the security of the above compiler and demands
particular care in proving. We show that the optimized protocol remains practical
with our estimated benchmarks in Sect. 4.

The General Protocol in a Nutshell. We begin with the Katz-Yung [23]
approach to authenticated group key exchange and replace their digital signature
authentication mechanism with simulation-extractable signatures of knowledge
(SOK) [20], a primitive that enables a signer to verifiably claim knowledge of
a particular secret. The idea is fundamentally simple but modeling WAKE and
proving security of our protocols require care and should be considered our main
technical contributions.

Applications. The main application of WAKE is the establishment of secure
communication channels between groups of parties contingent upon the informa-
tion those parties provably know. The absence of a trusted CA renders WAKE
especially compelling for decentralized applications that require parties to confi-
dentially connect based on arbitrary and dynamic policies. Decoupling authenti-
cation and identity permits flexible, deniable and anonymous authentication. We
present several examples of applications for WAKE. Estimated benchmarks for
parties authenticating in both the dark pool and retrieval market applications
can be found in Sect. 4.
Dark Pool Transactions. The primary motivation for the predecessor to
WAKE [26], dark pool transactions allow for confidential and anonymous nego-
tiation. In this scenario Alice is selling an item and wants to confidentially negoti-
ate with any party holding enough funds to purchase that item. Alice determines
a minimum balance B and any party Bob can establish a key with Alice if, for a
public commitment c to his private balance b, the following relation is satisfied
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R(
(B, c), (b, r)

)
=

(
c = comm(b; r) ∧ b ≥ B

)
. Alice can remain unauthenti-

cated, as in unilateral WAKE, or Bob may wish that Alice authenticates her
ownership of the item for sale. Given our group WAKE this dark pools scenario
can be extended, providing a group chat between many parties that satisfy the
condition of holding enough funds to participate.
Retrieval Markets. In decentralized storage systems such as Filecoin [27]
and IPFS [28] files are stored by providers and addressed with content identi-
fiers (CID), typically the cryptographic hash of a file, which additionally serve
as commitments. A provider can authenticate to any client interested in retriev-
ing a file if the provider in fact holds the private file associated to the public
CID. Similarly providers storing the same file can establish a confidential group
channel via group WAKE.
Chat with the Same Wallet. Several services are offered that allow parties
to create chatrooms and schedule meetings amongst parties that hold similar
tokens in a blockchain (e.g. [25,32]). A group WAKE can be used for these tasks.
Thanks to the inherent flexibility of WAKE, existing schemes can be extended
to more general conditions, e.g. confidential group chatrooms between owners of
NFTs by a particular artist.
Decentralized Anonymous Routing. Several proposals have been put for-
ward for decentralized naming and routing protocols over the internet (see e.g.
[22] and [15]). WAKE can play an important role in securing such protocols by
providing a method by which parties can authenticate without a CA.

Table 1. Comparison to related work. Model/GB: game-based model. Model/UC:
UC-based model. Model/All NP: supports any efficiently computable relation.
Model/No CA: no certifying authority. Model/ML: supports multi-lateral authentication.
Model/grp: supports more than two parties. Protocol/O(1)-rnd: constant round pro-
tocol. Protocol/All NP: protocol supports any efficiently computable relation.

Primitive Model Protocol

GB UC All NP No CA ML Groups O(1)-rnd All NP

PAKE [2] � � � � �
CAKE [7] � � �
ABKE [24] � � � �
LAKE [21] � � � � �
WKA* [26] � � �
WAKE � � � � � � � �

Related Work. The relevant generalizations of authenticated key exchange
are summarized in Table 1. Credential-authenticated and attribute-based key
exchange (CAKE [7] and ABKE [24]), respectively, model bilateral and unilat-
eral authentication on the basis of efficiently computable relations over certified
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credentials. Thus, both CAKE and ABKE assume a CA to issue these certifi-
cates (CA) and depend upon the strong assumption of unanimous trust in an
incorruptible CA. Beyond this impracticality and the inherent certificate gover-
nance issues, no CA could possibly certify every arbitrary property potentially
desirable for authentication; any CA is a limitation against a truly general key
exchange.

In the absence of a CA, password-authenticated key exchange (PAKE) per-
mits parties to boost shared low entropy passwords into a high entropy key
[2] and has been generalized to noisy, approximately-equal passwords [14].
Even closer to the goal of witness-authentication is language-authenticated key
exchange (LAKE [21]), with which two parties establish a shared key if each
participant has knowledge of a word that lies in a language defined by their
partner. Notably, the language and the word remain secret with LAKE. In
contrast, WAKE does not straightforwardly guarantee secrecy of the statement
or language, as modeled. As the model closest to our goal, it is important to
note that the LAKE protocol exclusively supports self-randomizable algebraic
languages, the subset of languages which admit smooth projective hash func-
tions [11]. Therefore the LAKE protocol cannot support all of NP.2

Finally, in comparison to generic multiparty computation (MPC) or fully
homomorphic encryption, the state-of-the-art SNARKs we employ are both
mature and efficient. One primary observation that we wish to communicate
is the simplicity of our solutions. A custom protocol for WAKE, as in Sect. 4, is
both lighter and simpler than employing the heavy hammer that is MPC.

Analysis of Witness Key Agreement (WKA) [26]. We briefly discuss
witness-key-agreement (WKA) [26], which inspired our work and proposed inter-
esting applications.3 We identify three primary shortcomings of WKA, that we
discuss at length in the full version of our paper.4

Limitations of the WKA Model. A standard security requirement for key
exchange is that an adversary should not be able to learn anything about the
session key from the transcript of the interaction—a random key should be
indistinguishable from the real key output by the participants in the protocol.
Against active adversaries the [26] definition requires unpredictability in lieu of
indistinguishability. As a consequence this model may consider a construction in
which an active adversary is able to distinguish keys secure. As modeled, active
adversaries are unrealistically weak: they can leverage only a single session in

2 If every language in NP admits a smooth projective hash function then the polyno-
mial hierarchy collapses.

3 First, a note on terminology: WAKE and WKA aim at modeling similar settings but
the models in our work are more general. In light of the observations in this section
we chose to reflect these major differences in approach by further differentiating
WAKE from WKA in name.

4 A full version of our paper can be found on eprint: https://eprint.iacr.org/2022/382.

https://eprint.iacr.org/2022/382
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their attack. Furthermore, confidentiality in WKA neglects the case that an
adversary has some relevant witness as auxiliary input.5

Questionable Proof of WKA Protocol Security. Security of the WKA
scheme in [26] requires a more elaborate proof under stricter assumptions
than those acknowledged currently. The construction in [26] can be seen as a
designated-verifier proof system, adapted from the ideas in [4] in which sound-
ness is proven from the IND-CPA security of a linear-only encryption (LOE)
scheme where LOE ciphertexts are contained in a CRS. WKA augments the
CRS with encryptions of the randomness used to generate the ciphertexts that
appear in the CRS. As such, WKA requires a stronger variant of IND-CPA secu-
rity that accounts for randomness-dependent message (RDM) security [3], yet
the proof sketch does not discuss RDM security. A concrete instantiation of the
protocol would require a LOE scheme which is simultaneously IND-CPA and
RDM secure. We are not aware of any such schemes.
Impracticality of the WKA Protocol. A primary limitation of WKA is
that a trusted setup is required each time a new party wants to initiate the key
exchange.6 Every time a party aims to initiate an exchange the authority must be
invoked to distribute a secret (tantamount to a verification key in a designated-
verifier SNARK) for the key exchange. The trusted authority is invoked at least
once per party in the system. Such an exchange is highly impractical. Beyond
this, it is undesirable to have a trusted CA producing—and potentially leaking—
trapdoors that enable impersonation. If relied on frequently this can compromise
the entire system. On the other hand, our protocols can rely on no trusted
setup [10], one trusted setup generated per given computation (reusable in all
relevant key exchanges) [20] or a single trusted setup generated once and for
all [16].

2 WAKE: Game-Based Definition

We provide both a game-based definition and a universally composable (UC)
ideal functionality [9] for WAKE and prove the two equivalent under certain
conditions. These two approaches offer a tradeoff: game-based definitions are
modular and make explicit the security properties one intuitively expects of
a WAKE protocol whereas composable ideal functionalities are secure under
arbitrary composition with arbitrary protocols, thereby guaranteeing that the
output key can be employed arbitrarily as is desirable for key exchange.

The objective of WAKE, and our primary modeling challenge, is that any set
of participants should terminate with a shared key if each participant has knowl-
edge of a witness to their own efficiently verifiable statement. Clearly, witness

5 If Alice and Bob authenticate using witness w the adversary should not learn their
key even with knowledge of w. Our definition models this case while the definition
of WKA is silent.

6 If the same party wants to run multiple key agreements for the same relation this
setup could potentially be reused.
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encryption is not a very useful starting point for this interactive setting; WE’s
nonintuitive security-correctness gap explicitly requires semantic security only
for statements not in the language and correctness only for statements in the
language. This is at odds with the aforementioned goal. Instead, our approach
draws inspiration from the group key exchange of [23] modified to the unique
and more general case of witness-authentication.

In public key infrastructure (PKI), such as that required by [23], a partici-
pant’s certified public key is synonymous with their e.g. identity. Again a direct
analogue to the witness-based setting is not straightforward and erroneously
conflates knowledge of a witness with identity. The first incongruency is redun-
dancy; as opposed to identities statements are not necessarily unique. Secondly, a
WAKE protocol is required to guarantee secrecy of the witnesses whereas a PKI
is necessarily public. This zero-knowledge style guarantee implies that all parties
associated to the same statement are indistinguishable. Crucially, any meaningful
notion of personal identity is absent in WAKE; witness-authentication remains
agnostic to the true identity of a sender and, instead, exclusively asks: were these
protocol messages generated with knowledge of a witness?
Notation. The concatenation of two strings, a, b ∈ {0, 1}∗ or two vectors a, b ∈
F

∗ is denoted a||b. We write x ← X to denote sampling the element x either
uniformly at random from the set X or according to the distribution X and
x ← A(y) to denote running algorithm A on input y to get output x. The
security parameter is denoted by λ. A function f is negligible if |f(λ)| = λ−ω(1).
PPT is used to denote probabilistic polynomial time. For an oracle O we use
AO to denote that algorithm A has oracle access to O.

The transcript trans of a protocol execution is defined as the concatenation
of all messages sent and received by any party in that execution, and can be
subscripted to denote the transcript according to a specific party. The view of
party Pi is written viewPi

and is defined to be the entire state of that party,
including transPi

. A participant Pi is initialized with input input using square
brackets. A protocol execution between a set of � parties generating transcript
trans is written as (trans, out1, . . . , out�) ← 〈P1[input1], . . . , P�[input�]〉.
Signatures of Knowledge. A signature of knowledge (SOK) [10] is a witness-
based generalization of a traditional digital signature. Consider security param-
eter λ, NP relation R, statement φ, witness w and message m. A SOK has
three main algorithms: SSetup(1λ,R) → pp is a randomized relation-specific
setup outputting public parameters pp, SSign(pp, φ, w,m) → σ is a randomized
signing algorithm outputting signature σ and SVerify(pp, φ,m, σ) → {0, 1} is a
deterministic verification algorithm outputting 1 for acceptance.7

Correctness requires that verification will accept a signature if it was gen-
erated with a valid witness. Security requires that a signature of knowledge be
simulation-extractable. This property, at a high level, requires that there exists
a simulator which can output public parameters that are indistinguishable from
those output by the real SSetup, along with a trapdoor τ that can then be used
to simulate signatures without witnesses. An efficient adversary with access to
7 An ideal functionality for SOK can be found in the full version of our paper.
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simulated signatures cannot forge a verifying signature without knowledge of
a witness. Knowledge of a witness is modeled via the existence of an efficient
extractor that can output a witness from the view of any forging adversary.
The Model. We consider a set of participants P of size � = �(λ) authenticating
with respect to the fixed NP relation R. Each P ∈ P is associated with the
public statement φP and has an additional private input as the string wP . The
entire public statement vector is Φ = 〈φ1, . . . , φ�〉. We assume a distribution over
witnesses DΦ such that each w ← DΦ is a vector of witnesses w = 〈w1, . . . , w�〉
corresponding to the statements in Φ.8

Each P ∈ P participates in a polynomial number of protocol sessions with
arbitrary subsets of P. This is modelled via single-execution instances: Πi

P is the
ith instance of participant P . In addition to the inputs (Φ, φP ,wP ) each instance
stores a boolean acci

P indicating acceptance, a session identifier sidi
P that is set

to transP i , and the session key ski
P . First, relation-specific public parameters are

generated via a setup algorithm: pp ← SetUp(1λ,R).9 Correctness requires
that for all NP relations R and sets of participants P, all instances terminate
with a shared key if all parties have as input valid witnesses to their associated
statements and the instances store matching session identifiers.10

Adversaries. An adversary controls all communication between parties in
the network via three oracles: Send(P, i,M) sends, i.e. inputs, message M to
instance Πi

P and returns it’s response, Execute(Pi1 , j1, . . . , PiK
, jK) returns the

transcript of an honest execution of the protocol between the queried instances
{Πjk

ik
}1≤k≤K and Reveal(P, i) outputs the session key ski

P stored by instance
Πi

P . A passive adversary uses the Execute oracle to play as a wire, essentially
forwarding messages between parties, and attempts to learn information about
a session key from the session transcript. An active adversary additionally can
participate in the exchange, using the Send oracle to inject messages into a ses-
sion that were not output by any party, and attempts to authenticate to any
actual party in the exchange. Notably, a passive adversary trivially convinces
every party in the exchange to accept the session by merely forwarding protocol
messages between parties with valid witnesses, but does not do so adversarially.
Therefore, we must clearly define what adversarial behavior is admissible.

A forwarding adversary engages in passive behavior. A forwarding adver-
sary is such that for every Send query with input message M and instance Πj

Q

(except the first) there exists a preceding call to Send which output that mes-
sage M as a response. Moreover, the query which output message M must have

8 Our subscript notation is overloaded for ease of understanding; it is convenient to
associate participants Pi, statements φi and witnesses wi with the same index i when
listing or assigning values, but it is also often convenient to index statements φP and
witnesses wP by the associated participant P when discussing a single instance.

9 Our syntax requires one setup per relation but can easily be extended to a single
universal setup [19].

10 As the session identifier is the transcript of the session, two parties store matching
session identifiers if those instances have recorded the same transcript, i.e. received
the same messages, and therefore were participating in the same session.
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taken as input an instance Πi
P with a matching session identifier sidi

P ≡ sidj
Q.

For each instance Πi
P we define the impersonation set of that instance I(P, i)

as the set of instances to which the adversary impersonated Πi
P by injecting a

message “from” Πi
P that was not output by a corresponding query Send(P, i, ·).

By definition a passive adversary does not have access to the Send oracle and
therefore cannot be forwarding. Queries to Reveal can also trivially compromise
session keys; no adversary should have access to the challenge session key. This
motivates a freshness requirement: an instance is considered fresh if the adver-
sary has neither revealed the session key stored by that instance nor any instance
participating in the same session.11

An admissible adversary is an adversary that does not trivially compro-
mise the session key. An adversary A is considered admissible for an experiment
if A outputs a fresh challenge (P, i) upon which A is not forwarding. We reiter-
ate that a passive adversary cannot be forwarding; an passive adversary is only
required to output a fresh challenge instance to be considered admissible.

Fig. 1. WAKE confidentiality, authenticity and simulatability security experiments.

11 Instances are participating in the same protocol session if the stored session identi-
fiers agree on the first round messages.
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Security. Minimally a WAKE protocol should be secure in the standard unau-
thenticated key exchange sense. Confidentiality, Definition 1, is that standard
passive security notion. Confidentiality guarantees that an eavesdropping adver-
sary with access to a polynomial number of honest transcripts and session keys
cannot distinguish a random string from the real challenge session key associated
to the adversarially-chosen challenge transcript. In the confidentiality experi-
ment, ExpWAKE-confid

Π,A in Fig. 1, the adversary is given access to Execute and Reveal
and the entire vector of witnesses. This formulation strengthens confidentiality
to additionally provide forward secrecy.12

Definition 1 (Confidentiality). Consider the experiment ExpWAKE-confid
Π,A in

Fig. 1. A WAKE protocol Π is confidential if for all NP relations R, for all
statement vectors Φ, for all distributions over witnesses DΦ and for all admissible
non-uniform PPT A:

∣
∣2·Pr[ExpWAKE-confid

Π,A (λ,R, Φ,DΦ)] − 1
∣
∣ ≤ negl(λ) (1)

Simulatability, Definition 2, is the requirement that messages exchanged in a
protocol hide any witnesses used to generate them. This implies that an adver-
sary cannot learn anything about a party’s witness from the messages sent by
that party. The simulatability experiment ExpWAKE-sim

Π,A is seen in Fig. 1. Simulata-
bility stipulates the existence of a two part simulator: S = {SimSetUp,Sim}. The
simulated setup algorithm SimSetUp takes as input the security parameter and
the relation R and outputs a trapdoor τ along with simulated public parameters
that are indistinguishable from those output by SetUp. The simulated party algo-
rithm Simτ is a stateful simulator that uses the trapdoor τ to output messages
which are indistinguishable from those generated by real parties with knowledge
of witnesses. Simulatability requires that no efficient adversary can distinguish
between access to the simulated parameters and parties via Send1pp1,τ from access
to real parameters and parties via Send0pp0

. The adversary is permitted to use
the SetKeys oracle to determine which statements and witnesses are used for
authentication.

Definition 2 (Simulatability). Consider the experiment ExpWAKE-sim
Π,A in

Fig. 1, ExpWAKE-sim
Π,A . A WAKE protocol Π is simulatable if there exist efficient

algorithms (SimSetUp,Sim) (the latter stateful) such that for all relations R and
for all non-uniform PPT A:

∣
∣2·Pr[ExpWAKE-sim

Π,A (λ,R)] − 1
∣
∣ ≤ negl(λ) (2)

Authenticity, Definition 3, is the requirement that an unauthenticated party
cannot convince another party to accept the execution. In the authenticity exper-
iment, seen in Fig. 1, the active adversary is given access to Send and Reveal
with the goal of authenticating to at least one instance of one other participant.

12 Observe that this is a perhaps a slightly stronger variant of forward secrecy than
that modelled via the corruption oracle in [23].
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Authenticity guarantees that if an adversary can authenticate then is either
through forwarding (and therefore inadmissible) or knowledge of a witness. The
adversary can be said to know a witness if there exists an efficient extractor
that can output a witness from that adversary and wins the experiment if the
extractor fails.

We define two variants of authenticity that differ exclusively in the style
of extraction. In summary our authenticity definition provides the following
tradeoff: the stronger sl-BB authenticity is equivalent to UC security while the
weaker nBB authenticity admits practical protocols. The corresponding authen-
ticity experiments are ExpWAKE-auth

Π,A,E�
in Fig. 1.

A straightline-black-box extractor (sl-BB) must produce a valid witness only
given access to the adversary’s transcript and a simulation trapdoor τ , and
is therefore black-box in the adversary. A protocol admitting such an extrac-
tor satisfies the stronger notion of authenticity which is ultimately proven, in
conjunction with the other WAKE security properties, to be equivalent to UC-
security in Theorem 1. In contrast, an nBB extractor outputs a witness from the
entire view of the adversary and is therefore a weaker security requirement – in
part because an nBB extractor is adversarially-dependent. Fortunately, such an
extractor ultimately permits efficiency as discussed further in Sect. 4.

Definition 3 (Authenticity). Consider the experiments ExpWAKE-auth
Π,A,E�

in
Fig. 1. A WAKE protocol Π is nBB-witness-authenticated if for all admissible
non-uniform PPT A there exists a PPT extractor EA, such that for all relations
R, for all statement vectors Φ and for all witness distributions DΦ:

Pr[ExpWAKE-nBB-auth
Π,A,EA (λ,R, Φ,DΦ)] ≤ negl(λ) (3)

A WAKE protocol Π is sl-BB-witness-authenticated if there exists a straight-
line PPT extractor Eτ such that for all admissible non-uniform PPT A, for all
relations R, for all statement vectors Φ and for all witness distributions DΦ:

Pr[ExpWAKE-sl-BB-auth
Π,A,Eτ

(λ,R, Φ,DΦ)] ≤ negl(λ) (4)

A WAKE protocol is passively secure if it satisfies confidentiality. We
observe that the confidentiality-only security requirement corresponds to pas-
sive security in classical key exchange, though with different syntax. A WAKE
protocol achieves full security if it is passively secure and additionally satisfies
authenticity and simulatability. A WAKE protocol satisfying nBB-extraction is
also specified as nBB-WAKE secure, whereas a protocol satisfying sl-BB extrac-
tion is sl-BB-WAKE secure. As a sl-BB extractor is also a nBB extractor we note
that any sl-BB-WAKE secure protocol Π is also nBB-WAKE secure.

We remark that unilateral authentication in the two party case, and the
generalization where an arbitrary subset of the participants are unauthenticated
in the group case, is modeled by requiring that subset of parties are associated
to trivial or empty statements.13

13 This can also be seen as an adaptation of Unilaterally Authenticated Key Exchange
[13] to the witness-based setting, and is further explored in the full version of our
paper.
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Universally Composable WAKE. In the UC framework a cryptographic
task is defined with respect to an ideal functionality F , essentially a trusted party
that behaves ideally with access to every secret. Proving that a protocol Π is
indistinguishable from the ideal functionality then guarantees that the protocol
is just as good as that ideal functionality. 14 We provide a definition for WAKE
as a UC ideal functionality FWAKE in addition to our game-based definition and
prove that UC-security is equivalent to our game-based definition of WAKE with
sl-BB authenticity. UC-security ensures that our WAKE protocol remains secure
when composed with any protocol, for example symmetric encryption, as is ideal.

Theorem 1. Let Ω be a fully secure group WAKE protocol achieving sl-BB
authenticity. Then there exists a simple protocol ΠΩ which UC-realizes FWAKE in
the presence of static, malicious adversaries without the assumption of authen-
ticated channels.

3 A General Compiler to Witness-Authentication

In Fig. 2 we describe a general compiler from any passively-secure key exchange
protocol ΠKE to a fully-secure witness-authenticated key exchange protocol
ΠWAKE. Our compiler adapts that presented in [23] and can be applied to any
arbitrary passively-secure key exchange protocol. Given ΠKE, a key exchange
protocol between set of parties P, a strongly simulation-extractable signature of
knowledge Σ can be used to transform that protocol into ΠWAKE which satisfies
full WAKE security.

Fig. 2. Compiler from passively secure key exchange ΠKE to WAKE.

Each party Pi receives input (φi, wi, Φ) and uses the passively secure key
exchange ΠKE as a black box to transform ΠKE to a WAKE protocol in which
14 The UC framework is discussed in detail in the full version of our paper.
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parties P authenticate with respect to statements Φ under relation R. Compi-
lation comes at the expense of an additional round in which parties exchange
random nonces to define a session identifier. After that preliminary round parties
proceed according to ΠKE, following two additional steps: (1) each message sent
by Pi according to ΠKE is concatenated with the session identifier and signed with
a signature of knowledge under φi, and (2) all received message-signature pairs
are first verified against (Φ,R) upon receipt before Pi proceeds again according
to ΠKE. A full proof of Theorem2 appears in the full version of our paper.

Theorem 2. If ΠKE is a passively secure key exchange and Σ is a strongly
simulation-extractable signature of knowledge then the protocol ΠWAKE in Fig. 2
is a fully secure nBB-WAKE protocol for relation R.

4 Two-Round Group WAKE

Fig. 3. Π2-WAKE: optimized two-round multiparty WAKE protocol.

The two round protocol Π2-WAKE presented in Fig. 3 is provably UC-secure
when the parties are given access to the ideal functionalities for signatures of
knowledge, FSOK and common reference strings FCRS. When our protocol is
instantiated with a succinct simulation-extractable signature of knowledge it is
possible to achieve efficiency at the expense of weakening security to nBB-WAKE
from sl-BB-WAKE, and sacrificing provable universal composability. The two
round protocol Π2-WAKE directly achieves session authenticity, the guaran-
tee that senders are consistent throughout the exchange. Security is stated in
Theorem 3, which is proven in the full version of our paper.
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Most notably, the second round of Π2-WAKE requires each participant to simul-
taneously authenticate with respect to their statement and knowledge of the dis-
crete log of their first round message; party Pi signs their second message mi with
a signature of knowledge under statement φi and the ephemeral Diffie-Hellman
value zi sent in the first round: φ′

i = (φi, zi) with witness (wi, xi). The signature
of knowledge is initialized with relation R′ = R × RDLP at setup, where RDLP is
the discrete logarithm relation R(G,g)

DLP := {(h = gx, x) | h ∈ G, x ∈ ord(h)}.

Theorem 3. For any NP relation R the protocol Π2-WAKE UC-realizes FWAKE

in the (FCRS,FSOK)-hybrid model against malicious adaptive adversaries in the
unauthenticated, asynchronous setting.

Table 2. Authenticated party runtime estimation (seconds, rounded to ceil).

Setting R ∈ NP φ w T(s)

Dark Pools c̄ = Comm(s; ρ) ∧ s ≥ B̄ c̄, B̄ (ρ, s) 4

IPFS h̄ = blake3hash(F) h̄ F 68

ZKCP solvesSudoku(sol, pzl) pzl sol 1

Bug bounty Cbuggy(bug) ∧ ¬Cexpect(bug) C{buggy,expect} bug 58

Estimated benchmarks for the above protocol are presented in Table 2. The
authenticated party running time can be found in the last column. The timings
refer to our protocol instantiated through Snarky Signature [20].15 Our commu-
nication complexity is constant and estimated to be below 0.5KB in total for the
unilateral two-party case and of approximately N KB for the group authenti-
cated case with N parties. When using BLS12-381 [5] as the concrete curve a
signature is 224 bytes.16 We remark that an additional offline-online optimiza-
tion of our protocol can be applied to migrate a majority of the online running
time, i.e. the signature, to an offline phase. This example is further discussed in
the unilaterally-authenticated two-party case in the full version of our paper.

We briefly describe detail one more application scenario we benchmarks in
our table, that of Zero-Knowledge Contingent Payment (ZKCP), where a seller
wants to initiate a channel with any party claiming to have a digital good that
satisfies a certain property to negotiate a price for that good prior to a ZKCP
protocol [8,18]. We benchmark the ZKCP case of payments for Sudoku Solutions
(also used in prior work [8,18] and for the case of bug bounties. In the latter,
the software producer of a (potentially buggy) program Cbuggy can incentivize
users to find bugs bug in it. These can be checked through additional program

15 See the full version of our paper for more information on the experimental setting.
16 More specifically, 192 bytes for the group elements and 32 bytes for the SHA256.
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Cexpect, guaranteeing an expected condition for an input the program accepts
(which will be violated by the bug, a false positive).17
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Abstract. Composable protocols for Multi-Party Computation that
provide security with Identifiable Abort against a dishonest majority
require some form of setup, e.g. correlated randomness among the par-
ties. While this is a very useful model, it has the downside that the
setup’s randomness must be programmable, otherwise security becomes
provably impossible. Since programmability is more realistic for smaller
setups (in terms of number of parties), it is crucial to minimize the cor-
relation complexity (degree of correlation) of the setup’s randomness.

We give a tight tradeoff between the correlation complexity β and the
corruption threshold t. Our bounds are strong in that β-wise correlation
is sufficient for statistical security while β − 1-wise correlation is insuffi-
cient even for computational security. In particular, for strong security,
i.e., t < n, full n-wise correlation is necessary. However, for any constant
fraction of honest parties, we provide a protocol with constant correla-
tion complexity which tightens the gap between the theoretical model
and the setup’s implementation in the real world. In contrast, previous
state-of-the-art protocols require full n-wise correlation regardless of t.

1 Introduction

Secure Multi-Party Computation (MPC) is a powerful notion that allows mul-
tiple mutually distrustful parties to perform a joint computation that—loosely
speaking—ensures the privacy of the inputs and the correctness of the output.
The currently strongest security notion—that is not ruled out by some impossi-
bility result [10]—is called security with Identifiable Abort (IA) [21]. It allows an
adversary to abort the protocol (this is unavoidable) but then the honest parties
can identify the common identity of at least one malicious party. This acts as
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a deterrent against cheating by coupling cheater identification to some form of
penalty mechanism. This is especially useful in the context of blockchains where
one could require all parties to initially commit to some coins s.t. an identified
cheater’s coins are redistributed to the other parties or the cheater’s coins are
rendered void by publishing the evidence of cheating.

In the dishonest majority settings, t ≥ n/2, protocols such as the one
of Ostrovsky, and Zikas [21] that achieve IA require a setup that distributes
correlation randomness to each party in the protocol. In fact, for t ≥ n/2, a
setup is provably necessary for general MPC protocols that can be composed
arbitrarily, e.g. in the Universal Composability (UC) framework [7]. Moreover,
for the security proof to work the setup needs to be programmable to realize
certain functionalities such as commitments [8]. That is, the setup information
may not leak directly to the environment, instead, in the security proof the sim-
ulator must be able to embed a trapdoor into the setup information to extract
or equivocate the committed message. Indeed, if the setup is global, the setup
information leaks directly to the environment, then many functionalities become
provably impossible [9,25]. In particular, if in practice the setup information is
extracted from some public source, like stock market data, then the security
guarantee provided by the ID-MPC protocol is void. This leaves the option to
generate the correlated randomness via some physical means, like noisy or quan-
tum channels, or secure hardware assumptions. However, for such a means of
generating randomness the correlation complexity (CC) is the most important
parameter.

As shown in [21] the correlated randomness setup for n-parties suffices to
statistically securely realize any other functionality (or setup) of cardinality n
(with n-participants). Therefore, we equate the correlation complexity with the
minimal complete cardinality (MCC)1 as introduced by Fitzi et al. [16].

For t < n/2 pairwise correlation (even pairwise channels) suffice [3,26], while
for t ≥ n/2 protocols like [21] are quite conservative in that they require (max-
imal) n-wise correlation; even for t = n/2. Our work closes this gap between
t = n/2 and t = n − 1 by answering the question:

“What is the correlation complexity of MPC with a dishonest majority?”

We settle this question with tight bounds for the correlation complexity β ≈
2n/(n − t) depending on the max. number of corrupted parties t.

While theoretically interesting2, our results offer also two practical insights:

• If one requires maximal security t < n, then n-wise correlation is necessary,
i.e., the CC is β = n. Hence protocols like [21] are optimal w.r.t. the CC.

• If one is willing to accept any constant fraction of malicious parties t ≤ (1−ε)n
for any ε > 0, then the CC is only constant β ≈ 2/ε.

1 Throughout the paper, we require a setup among each subset of parties of size β.
2 To our knowledge this is the first full characterization of Identifiable Abort in the

dishonest majority setting.
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Table 1. Exemplary overview of the correlation complexity (CC)/minimal complete
cardinality (MCC) β and respective supported number of parties n vs. malicious parties
t for UC-secure ID-MPC given broadcast. The limitation of the overall number of
parties is only to achieve polynomial-time protocols, for more parties the protocols
remain correct and secure but require the parties to have superpolynomial runtime.
The case (∗) also covers an honest majority of parties treated in early works [3,26].

Max. malicious parties t Max. supported parties n CC/MCC β

n − 1 poly(λ) n

n − 2 poly(λ) n − 2
n − c ≤ n − 3 Θ(ln λ) ≈ 2n/c

n − Θ(ln n) O(ln(λ) ln ln(λ)/ ln ln ln(λ)) Θ(n/ ln n)
n − Θ(

√
n) O(ln2(λ)/ ln2 ln(λ)) Θ(

√
n)

n − Θ(n/ ln n) O(exp
√

ln λ) Θ(ln n)
Θ(n) poly(λ) Θ(1)
(n + 1)/2 poly(λ) 3
≤ n/2(∗) poly(λ) 2

Especially the latter case has practical implications. Due to the aforementioned
provable impossibility of composable MPC with a global setup, the setups must
be realized by non-cryptographic means such as trusted hardware [18,27] or
noisy/quantum channels [12,14]. There, the CC (the number of setup partici-
pants) is a critical parameter. To illustrate this, consider the following example:
Suppose a group of people can generate correlated randomness via some trusted
hardware in their smartphones while being online simultaneously. However, the
runtime of this supposed setup computation is exponential in the number of par-
ties involved. In this scenario, if a protocol relies on a single setup of cardinality
n, then all parties must be online together for an exponential time. In contrast,
if a protocol could be based on (polynomially) many setup instances between a
constant number of people (as is the case for our protocols for any t ≤ (1 − ε)n),
then a) being online at the same time as a constant number of parties much
more realistic and b) the runtime is only polynomial in the number of people
(Table 1).

The above example showcases that our results are particularly interesting
for applications in which mobile clients (which are not always online) perform
decentralized operations and store a common state on some form of blockchain
(which allows for monetary penalties for cheating).

1.1 Contributions and Techniques

Correlation Complexity/ID-MPC from Small Setups. Due to the com-
pleteness of the correlated randomness setup [21], we can substitute any setup
functionality of some cardinality by the correlated randomness functionality of
the same cardinality. To minimize the correlation complexity we concentrate on
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constructing n-party ID-MPC from the smallest possible (arbitrary) setups. In
other words, we can answer the question of the CC by determining the minimal
complete cardinality (MCC)3 in the sense of [16], i.e., the number of partici-
pants of a setup functionality. As a sidenote, in the full version we deal with
some definitorial issues that arise when the number of parties grows with the
security parameter which is not the case in [16]. As our main result we establish
tight bounds on the minimal complete cardinality β for general ID-MPC (given
broadcast). We assume that each subset of parties (of cardinality β) has access
to a setup functionality. Furthermore, we only require these setups to guarantee
security with Identifiable Abort—unlike many other works which don’t allow the
setups to be aborted at all. For a formal description of our setting see our full
version.

Theorem 1 (Correlation complexity bounds). The correlation complexity
for UC-secure Multi-Party Computation with Identifiable Abort (given broadcast)
is β := min(n, �n/(n − t)� + �n/(n − t)� − 2) ≈ 2n/(n − t) where n is the overall
number of parties and t is an upper bound on the number of malicious parties.

In other words, for any n-party functionality with Identifiable Abort there
exists a protocol that uses hybrid functionalities of cardinality β and broadcast,
but there exists an n-party functionality with Identifiable Abort which cannot be
realized by any protocol that uses hybrid functionalities of cardinality β − 1 and
broadcast.

Identification via Conflicts. Towards our main result we formalize an intu-
itive mechanism for cheater identification that is also used in various other
works [1,2,19,21,23,28,29] in different contexts. In our application, all parties
maintain a global data structure, namely a graph with one vertex per party
where each party can remove incident edges (we call missing edges “conflicts”)
but never add edges. Following Wan et al. [29] we call this structure “Trust
Graph” (TG). With it, we provide a ruleset for its usage which we call abort-
respecting that ensures that the Trust Graph exhibits certain useful properties:
On an intuitive level, a disconnected subgraph corresponds to an aborted setup
and vice-versa while a disconnected overall TG corresponds to the honest parties’
ability to abort by identifying malicious parties.

Lemma 1 (Informal conflict reporting). Any protocol that securely realizes
an ideal functionality F in some hybrid model can be modified such that

1. all honest parties keep a (common) Trust Graph,
2. if the Trust Graph is disconnected, then all honest parties can identify the

same malicious parties,
3. upon abort of the protocol its Trust Graph is disconnected,

3 As a side note we generalize the notion of the minimal complete cardinality (MCC)
from [16] to the setting where the number of parties varies in the security parameter
λ. This was not captured by the original definition of MCC in [16] and—to the best
of our knowledge—not formally addressed in previous literature.
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4. after abort of any setup (hybrid functionality on some subset of parties4) in the
protocol the corresponding subgraph of the Trust Graph becomes disconnected,

and the modified protocol still securely realizes the same functionality.

As a consequence, the impossibility of any abort-respecting protocol implies the
impossibility of any protocol. On the other hand, if some protocol for a given
functionality exists, then so does an abort-respecting protocol. In consequence,
we only need to consider abort-respecting protocols.

For the lower and the upper bound, we prove two complementing graph-
theoretical lemmas that link the connectivity of the overall TG to the connectiv-
ity of its subgraphs. In a nutshell, a connected graph of cardinality n can have
“many” disconnected subgraph of cardinality β − 1 but only “few” disconnected
subgraphs of cardinality β.

For our lower bound we devise a strategy for the adversary such that it can
abort many setups of cardinality β − 1 while the overall Trust Graph remains
connected. Following the proof strategy of Canetti and Fischlin [8] we can show
that against such an adversary any protocol for a commitment must violate
either the hiding or the binding property. For our upper bound we know that
any adversary can only abort “few” setups. Thus the honest parties can rely on
some “guaranteed” setups to perform the protocol.

1.2 Related and Concurrent Work

There are many works that share common aspects with this paper, among oth-
ers [1,2,16,17,19–21,23,28,29]. Here we pick only the most closely related ones
and describe their relation to this work.

• Fitzi et al. [16] initialize the study of the minimal complete cardinality
(MCC)—the cardinality of the smallest setup (least number of participants)
that suffices to securely realize any n-party functionality.

• Ishai, Ostrovsky, and Seyalioglu [20] rule out pairwise setups plus broadcast
for statistically secure ID-MPC.

• Ishai, Ostrovsky, and Zikas [21] formally define Identifiable Abort (IA), intro-
duce the Correlated-Randomness model for IA and give a computationally
secure construction from any adaptively secure OT protocol.

• Wan et al. [29] use the almost identical idea of maintaining a “Trust Graph”
(TG) in the context of constructing Byzantine broadcast (BB) while we
assume a broadcast to construct general ID-MPC. Specifically, Wan et al.
[29] give lower bounds for the round-complexity of BB. From the different
applications arises the slight difference in the two concepts, in [29] each party
maintains its own copy of the TG whereas in our work it is crucial that all
parties have a common view of the TG. Nevertheless, we use very similar
graph properties as Wan et al. [29]. Their idea is to limit the distance that

4 Throughout the paper we assume that each subset of parties of the appropriate
cardinality has access to a setup.
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information can travel within a graph in a given number of round, if the
graph’s diameter is too large, then a sender’s message may not be able to
reach all other parties. Their upper bound for the TG’s diameter d matches
our tight bound for the CC, i.e., β = �n/(n − t)� + �n/(n − t)� − 2 = d + 1
where t ≥ n − 2 is a lower bound on the number of honest parties.
We think there are interesting connections5 between our paper and [29].
While [29] assumes pairwise channels, we assume a full broadcast. We main-
tain the view that both [29] and our paper can be generalized along the dimen-
sion of the setup size, i.e., assuming a partial broadcast of size 2 ≤ k ≤ n.
Regarding the round-complexity of BB, it seems that the round-complexity
decreases as k increases because the sender’s message travels farther in each
round. Regarding the correlation complexity, it seems that the CC increases
as k increases because for larger partial broadcasts reaching a consensus on
a identified cheater seems easier.

• Simkin, Siniscalchi, and Yakoubov [28] essentially study the same question
as our paper. They give a weaker upper bound β ≤ t + 2 ≤ n − 2 of the
CC/MCC, although in the stand-alone model whereas our result holds in the
UC framework.
They construct n-party MPC from correlation of degree n − 1 and broadcast.
For this reason their work supports polynomially many parties n ∈ poly(λ)
only for n − t ∈ Θ(1). For larger expansions the supported number of parties
drops rapidly since the overall runtime grows exponentially in the number of
recursive applications of the protocol. This is not the case for our work; see
the full version for a discussion.
Their approach uses an new form of identifiable secret-sharing with public
and private shares. There, one party P is chosen and the remaining n − 1
parties obtain correlated randomness, i.e., secret-shares of their randomness,
from the setup oracle. Then the parties send their shares to the excluded
party P who reconstructs its randomness. If reconstruction fails to due faulty
shares sent by malicious parties, then party P detects whose shares where
faulty and declares conflicts with these parties. These conflicts are then used
in the next iteration. That is, conflicting parties do not obtain shares from
the setup.
It seems unclear how the approach of [28] could be generalized to setups of
cardinality n − 2 without the disadvantageous recursion blowup.

• Finally, much work [4–6,11,24] has gone into reducing the necessary length
of correlated randomness. This is highly relevant in practice. Nevertheless, to
the best of our knowledge, in these works all parties need to participate in the
correlation generation simultaneously. That is, although the overall length of
the correlated randomness is short, the degree of the correlation is maximal—
which is where our work steps in. We’d like to emphasize that our protocols
are compatible with approaches to reduce the length of the correlated strings,

5 In particular, Claim 3.1 in [29] and our Lemma 3 share the same core idea but are
stated in different terms with different applications in mind.
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Table 2. Overview of related work on the foundations of Multi-Party Computation
with Identifiable Abort in the dishonest majority setting with broadcast. SA stands
for stand-alone, UC stands for Universal Composability [7], t is the max. number of
corrupted parties, and β := min(n, �n/(n − t)� + �n/(n − t)	 − 2). πOT denotes any
adaptively secure Oblivious Transfer (OT) protocol, Fn

CRS is the Common Reference
String (CRS) functionality from [8], Fn

Corr,D is the Correlated-Randomness functionality
from [21]. Fn

COM,1:1 is a one-to-one commitment and Fn
SFE,f is the Secure Function

Evaluation functionality; both defined in the full version. Note that the impossibility
6) does not contradict 3) because 6) does not assume a CRS.

No Reference Model Result Technique

1) [20] SA {F2, Fn
BC}

stat

�2n/3 Fn

SFE,f Secret-Sharing
2) [21] UC, SA Fn

Corr,D
stat�n Fn

SFE,f Setup+Commit+Prove
3) [21] UC, SA {πOT, Fn

CRS}comp�n Fn
Corr,D Setup+Commit+Prove

4) [28] SA {Fn−1
Corr,D, Fn

BC} stat�n−2 Fn
Corr,D Secret-Sharing

5) This work UC {Fβ
Corr,D, Fn

BC} stat�t Fn
SFE,f Trust Graph

6) This work UC {Fβ−1
Corr,D, Fn

BC}
comp

�t Fn

COM,1:1 Trust Graph

and they can be used in conjunction to reduce both the length as well as the
degree of correlation.

Our results subsume or improve upon all previously listed constructions and
impossibilities in a unified way. For the minimal complete cardinality (MCC) it
holds that:

• The lower bound of 3 from [20] for t ≥ 2n/3 is raised to min(n, 5).
• The upper bound of n−1 from [28] reduced to the optimal n−2 for t ≤ n−2.
• The upper bound of n from [21] is shown to be tight for t = n − 1.

These (and more) results are summarized in Table 2. In the following we use the
short notation F �t F for the fact that the ideal functionality F can be realized
by some protocol in the F -hybrid model with up to t malicious parties.

1.3 Technical Overview

We state our results in the standard UC-framework (see [7]) in terms ideal
functionalities and protocols that realize them. Due to the large notational and
conceptual overhead of rigorous statements about MPC and the given space
limitations, we decided to give most of the formal definitions and statements in
the appendices, and instead try to convey the core idea behind our techniques
in this overview and how they are combined to obtain our main results.

The main idea behind the usage of the Trust Graph (TG) is that if the TG is
disconnected, then there are at least two partitions A and B such that all parties
in A distrust all parties in B. Now, if honest parties always trust each other (as
is the case throughout this paper), then all honest parties must be in the same
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connected component. W.l.o.g. let all honest parties be in A, then they can
jointly identify B and abort with (abort, B). In this sense the disconnectivity
of the TG is equivalent to the identification of malicious parties, and hence the
abort of a ID-MPC protocol.

To simplify our analysis we formally introduce an ideal functionality Fn
TG for n

parties in the full version. This functionality stores an (initially complete) graph
with one vertex per party. Any party P can announce “conflicts” by sending
(conflict,P′) to Fn

TG. Consequently, the edge (P,P′) is irrevocably removed
from the TG—we say P and P′ are in conflict. Any party can also query the
currently stored graph G = (P, E) (typically at the onset of each round); such
that all parties have a consistent view of the TG in each round. The functionality
Fn

TG can be viewed as syntactical sugar, as it can be perfectly securely realized
using only broadcast

Now, we give a high-level intuition of a particular set of protocol rules that
will prove useful in our results for the correlation complexity. We call this set of
six rules “abort-respecting” . One can view it as a kind of manual for how to uti-
lize the Trust Graph. Informally, abort-respecting protocols ensure in particular
the following properties:

• Honest parties are never in conflict.
• Whenever some party has strictly more than t conflicts, it must be malicious.
• Whenever some setup of cardinality β is aborted6, the subTG on the partic-

ipants of the setup becomes disconnected.
• When the protocol aborts (with (abort, C ) where C is a set of malicious

parties), the overall TG is disconnected.
• When the overall TG becomes disconnected, the protocol aborts (with

(abort, C ) where C is a set of malicious parties).

Intuitively, from these rules and the usage of Fn
TG follows Lemma 1. More for-

mally, it states that any secure protocol for some functionality in some F -hybrid
model can be transformed into a secure and abort-respecting protocol for the
same functionality in the F ∪ {Fn

TG}-hybrid model. As a corollary, we note that
to rule out all ID-MPC protocol for some functionality it suffices to rule out all
abort-respecting protocols. We will use this fact in the proof of our lower bound
on the CC.

Before, we want to elaborate a bit on the third property. When a setup with
Identifiable Abort is aborted, all participants P obtain the message (abort, C )
where C ⊆ P is some set of malicious participants. Then all honest parties
declare conflicts with C via the Fn

TG functionality. In the next round either a)
all parties P \ C declared conflicts with the identified parties C , or b) there
are some “loyalists” L ⊆ P \ C who did not declare conflicts with all identified
parties C . In the first case the subTG is clearly disconnected between P \ C and
C . In the second case b) note that loyalists noticeably deviate from the abort-
respecting rules; thus the honest parties add the loyalists L to the identified
parties C and repeat the procedure. Since in each iteration at least one loyalist
6 Recall that we only assume setups to have security with Identifiable Abort.
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gets added to the identified parties, the overall procedure terminates within at
most n iterations.

Lower Bound on the Correlation Complexity. Eventually, we show that
no protocol in the {Fn

BC, Fβ−1}-hybrid model for any functionality Fβ−1 of car-
dinality β − 1 can securely realize an ideal commitment functionality where n
is the overall number of parties, t is a upper bound on the malicious parties
and β := min(n, �n/(n − t)� + �n/(n − t)� − 2). Towards this end, we prove a
graph-theoretical lemma that relates the connectivity of the overall TG to the
connectivity of its subgraphs. More concretely, the lemma constructs a connected
graph that has “many” disconnected subgraphs of the cardinality β − 1. With
the intuition that aborts of setups correspond to disconnected subTGs (via the
abort-respecting property), this graph-theoretical lemma translates into a strat-
egy for the adversary to abort many setups in a clever way such that the overall
TG remains connected, i.e., the overall protocol cannot abort. However, after
these many setups are aborted, we follow the idea of Canetti and Fischlin [8]
to prove that any protocol that only relies on the remaining setups must either
violate the hiding or the binding property. We note that this proof strategy only
works because we want to rule out composable commitment protocols.

The high-level idea is as follows: Because “many” setups are aborted, the
sender cannot “directly” commit towards the receiver via some setup that con-
tains both the sender and the receiver. Consequently, in order to be committed
towards the receiver (binding), the sender has to send the message (information-
theoretically) to intermediate parties—even when all parties act honestly (rela-
tive to their view of the Trust Graph given the aborted setups) in the commit-
ment phase. However, this set of intermediate parties is small enough that an
alternative environment can corrupt it (because t ≥ n/2) and thus extract the
message of an honest sender during the commitment phase (not hiding).

Lemma 2 (Connected graph =⇒ many disconnected β−1-subgraphs).
Let n, t ∈ N s.t. n/2 ≤ t ≤ n−1, and let β := min(n, �n/(n−t)�+�n/(n−t)�−2).
Furthermore, let V be a set of n vertices and let v, v′ ∈ V : v = v′ be two different
vertices. There exist some edges E ⊆ (

V
≤2

)
s.t.

1. G := (V, E) is an undirected, reflexive and connected graph,
2. ∀{u, u′} ∈ E : | NG(u) ∩ NG(u′)| ≥ n − t,
3. for each V ′ ∈ M the subgraph G′ := (V ′, E ∩ (

V ′

≤2
)
) is disconnected

where

Nu :=
{

{u} , if t = n − 1
NG(u) , else

is the set of “effective” neighbors of any vertex u, and

M := {V ′ ⊆ V | V ′ ∩ Nv = ∅ ∧ V ′ ∩ Nv′ = ∅ ∧ |V ′| < β}
is the set of relevant subsets of vertices that contain both an effective neighbor
of v and an effective neighbor of v′.
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The proof is contained in the full version. For t = n − 1 the lemma states that
there exists some graph whose subgraphs G′ that contain both v and v′ are
disconnected, yet the overall graph is connected. For t ≤ n − 2 the lemma states
that there exists some graph whose subgraphs G′ that contain both a neighbor7
of v and a neighbor of v′ are disconnected while the overall graph is connected.

Application to ID-MPC. Throughout, we denote the security parameter by
λ. In the context of our impossibility proof, the graph G takes the role of the
Trust Graph, v = S will be the sender, and v′ = R will be the receiver. As such,
the lemma translates to the statement that all setups in which the sender and
the receiver (or their neighbors respectively) participate jointly can be aborted
by the adversary without causing the overall TG to become disconnected, thus
evading identification. The proof is essentially just a constructive description of
the graph G alongside a proof of its properties. This graph-theoretic statement
translates into the context of ID-MPC protocols as follows:

Corollary 1. Let n = n(λ), t = t(λ), β = min(n, �n/(n − t)� + �n/(n − t)� − 2)
s.t. 0 ≤ t < n. For any security parameter λ ∈ N let Pλ be a set of n parties,
and let vλ, v′

λ ∈ Pλ be two different parties. Furthermore, let πF be any abort-
respecting protocol for some functionality Fn in some F -model s.t. Fn

BC ∈ F .
An adversary for πF that corrupts t parties can abort all setups of cardinality at
most β − 1 in which any effective neighbor of vλ and any effective neighbor of
v′

λ participate, without disconnecting the overall Trust Graph G.

For t ≥ n/2 this follows from Lemma 2 (aborted setups correspond to dis-
connected subgraphs). Also, for t < n/2 it follows that β = 1, hence Corollary 1
follows trivially. Finally, we get the formal statement.

Theorem 2 (No transmitted commitment). Let n = n(λ), t = t(λ), β :=
min(n, �n/(n − t)� + �n/(n − t)� − 2) s.t. n/2 ≤ t < n and

(
n
β

) ∈ poly(λ).
No {F2, ..., Fβ−1, Fn

BC}-hybrid protocol can securely UC-realize Fn
COM,1:1 against

environments that (maliciously) corrupt up to t parties. Formally, we get

{F2, ..., Fβ−1, Fn
BC}

comp
�t Fn

COM,1:1 (1)

where F2, ..., Fβ−1 stand for arbitrary functionalities of the respective cardinal-
ity, and Fn

COM,1:1 is defined in the full version.
Consequently, the correlation complexity for UC-secure ID-MPC is at least β.

The proof is contained in the full version.

Corollary 2. Let n = n(λ). In particular, we find {F2, ..., Fn−3, Fn
BC}

comp
� n−2

Fn
COM,1:1 where F2, ..., Fn−3 stand for arbitrary functionalities of the respective

cardinality. This shows that the result {Fn−1
Corr,D, Fn

BC} stat� n−2 Fn
Corr,D from [28] is

tight up to a constant of 1.8

7 Note that is vertex is their own neighbor because the graph is reflexive.
8 We note that [28] state their results in the stand-alone model.
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Upper Bound on the Correlation Complexity. Towards our construction,
we first prove a complementary graph-theoretical lemma that relates the con-
nectivity of the overall TG to the connectivity of its subgraphs. More concretely,
the lemma states that any graph with “many” disconnected subgraphs of the
cardinality β must be disconnected.

Lemma 3 (Connected graph =⇒ few disconnected β-subgraphs). Let
n, t ∈ N s.t. n/2 ≤ t ≤ n − 2, and let β := �n/(n − t)� + �n/(n − t)� − 2. Let V be
a set of n vertices and let v, v′ ∈ V : v = v′ be two different vertices. Moreover,
let E ⊆ (

V
≤2

)
be a set of edges s.t. G := (V, E) is an undirected, reflexive graph,

and let Nu := NG(u) be the set of neighbors of any vertex u, let

M := {V ′ ⊆ V | V ′ ∩ Nv = ∅ ∧ V ′ ∩ Nv′ = ∅ ∧ |V ′| = β}

be the set of relevant subsets of vertices that contain both a neighbor of v and a
neighbor of v′, and let

E∗ := {{u, u′} ∈ E | |Nu ∩ Nu′ | ≥ n − t}

be the set of postprocessed9 edges. If for all V ′ ∈ M the subgraph G′ := (V ′, E ∩(
V ′

≤2
)
) is disconnected, then G∗ := (V, E∗) is disconnected. Furthermore, the map

φ : G �→ G∗ is efficiently computable.

This lemma tightly complements Lemma 2. It states that as soon as all sub-
graphs G′ that contain both a neighbor of v and a neighbor of v′ are disconnected,
the overall postprocessed graph G∗ must be disconnected as well. The proof is
contained in the fullversion.

Application to ID-MPC. In the context of our construction, the graph G
takes the role of the TG, v = S will be the sender, and v′ = R will be some
receiver. As such, the lemma translates to the statement that at least one (not
necessarily fixed) setup in which the sender and the receiver (or their neighbors
respectively) participate jointly cannot be aborted by the adversary without
causing the overall TG to become disconnected. This “guaranteed” setup can
then reliably perform the commitment (resp. OT) between the sender and the
receiver (resp. their neighbors).

The proof is by contradiction. Suppose all subgraphs G′ are disconnected,
yet G∗ were connected. Then there must be a path W from any neighbor u ∈ Nv

to any neighbor u′ ∈ Nv′ with length ΔG∗(u, u′) > β. Note that, by definition of
E∗, all adjacent parties in G∗ must have at least n − t common neighbors. This
means that the parties along the path W must have many auxiliary neighbors.
Counting the overall number of parties yields a contradiction. We formalize this
in the full version. This graph-theoretic statement translates into the context of
ID-MPC protocols as follows:

9 The postprocessing φ corresponds to removing edges from parties with strictly more
than t conflicts.
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Corollary 3. Let n = n(λ), t = t(λ), β := �n/(n − t)� + �n/(n − t)� − 2 s.t.
n/2 ≤ t ≤ n − 2. For any security parameter λ ∈ N let Pλ be a set of n parties,
and let vλ, v′

λ ∈ Pλ be two different parties. Furthermore, let πF be any abort-
respecting protocol for some functionality Fn in some F -model s.t. Fn

BC ∈ F . If
an adversary for πF that corrupts at most t parties aborts all setups of cardinality
β in which any neighbor of vλ and any neighbor of v′

λ participate, then the overall
Trust Graph becomes disconnected, i.e., the protocol πF aborts.

This follows from Lemma 3 (aborted setups correspond to disconnected sub-
graphs).

In particular, in our protocols we require all honest parties to locally postpro-
cess G∗ = φ(G) from Lemma 3 when querying the TG G from Fn

TG. Moreover,
we require all parties to abort according to G∗ instead of G. This modification of
the abort condition is justified because the additional (specific) conflicts intro-
duced by the postprocessing φ preserve the invariant that no two honest parties
are in conflict.

Committed Oblivious Transfer. Before we proceed with a more detailed
description of our protocols we have to introduce a committed variant of Oblivi-
ous Transfer (OT) [13,15] where the sender, the receiver and some witnesses par-
ticipate. We call this variant Fully Committed Oblivious Transfer (FCOT). As
in the standard 1-out-of-2 OT, the sender inputs two messages and the receiver
inputs a choice bit, then the receiver obtains its chosen message while the receiver
remains oblivious to the choice bit. The committed variant additionally allows
the sender and the receiver to later open their inputs to all other parties (called
witnesses).

The purpose of this FCOT can be state as follows.

Lemma 4 (Completeness of committed OT (informal)). There is a pro-
tocol in the Fn

FCOT-hybrid model that realizes any ideal n-party functionality.

We can replace the standard OT setups in the IPS-compiler [22]. The IPS-
compiler is an OT-hybrid protocol in the client-server-model that realizes gen-
eral MPC guaranteeing security with (non-identifiable) abort against malicious
(active) adversaries. In this protocol each party sets up a watchlist for each
server such that other parties can monitor a small subsets of servers to detect
tampering with overwhelming probability. Once a party detects misbehavior on
some server it announces a complaint and all parties abort the protocol (without
identifying malicious parties). For this reason, the standard IPS-compiler only
enjoys security with (non-identifiable) abort. Substituting all calls to classical
OT setups with calls to FCOT setups allows the parties to open all messages
regarding the server in question. This way all parties can retrace which party
misbehaved, thus identifying at least one malicious party, hence the resulting
protocol enjoys security with Identifiable Abort.

We continue with a high-level overview of our two protocols that utilize the
guaranteed setups mentioned above. The two constructions are
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• n-party commitment from β-party commitments and n-party broadcast, and
• n-party FCOT from β-party FCOT, n-party commitments and broadcast.

Commitment Expansion

Theorem 3 (COM expansion). Let n = n(λ), t = t(λ), β := �n/(n − t)� +
�n/(n − t)� − 2 s.t. n/2 ≤ t ≤ n − 2 and

(
n
β

) ∈ poly(λ). There is an efficient pro-
tocol πCOM that statistically securely UC-realizes Fn

COM in the {F2
SMT, Fβ , Fn

BC}-
hybrid model against environments that (maliciously) corrupt up to t parties.
Formally,

{F2
SMT, Fβ , Fn

BC} stat�t Fn
COM . (2)

On a high level our one-to-many commitment protocol follows a commit-and-
prove approach. Without going into too much detail, we outline the idea of the
protocol. The sender inputs its message m—in the form of a threshold shar-
ing μ—into all setups10 and gives (secret-shared) masks ξj to its neighbors
Rj ∈ NG(S) who, in turn, also commit to their sharings in all commitment setups.
Additionally, the sender broadcasts the message’s sharing μ masked with the
masks’ sharings σ := μ ⊕ ⊕

Rj∈N(S) ξj . Subsequently, all parties broadcast some
randomly drawn “probing indices” on which the sender (resp. neighbors) broad-
cast the resp. share and open the setup commitment for the resp. share. Then
all parties check for inconsistencies. Indeed, all setups (intended for the same
value) contain sharings of the same (possibly masked) value with overwhelming
probability. If shares differ significantly, this discrepancy will be detected with
overwhelming probability; then the affected setup is considered aborted by iden-
tifying the committer as malicious. If shares differ only on a few indices, then
the sharing’s error-detection will allow the parties to notice that the shares are
invalid. Again, the affected setup is considered aborted by identifying the com-
mitter as malicious. Moreover, due to the privacy of the secret-sharing opening
a few shares does not reveal anything about the encoded value.

Lemma 3 guarantees that at least one setup of cardinality β that contains
both a neighbor of the sender and a neighbor of the receiver must succeed.
Otherwise, if all such setups are aborted, then the TG becomes disconnected by
Lemma 3 and the honest parties can abort the protocol.

To open the message, all parties open all commitment setups and at least one
honest receiver is able to recover the message either directly from the sender’s
sharing μ of the message, or from the opened masks ξj and the previously broad-
casted masked sharing σ. Those receivers then broadcast the recovered message.
Any honest receiver that did not receive any opening information—because all
its setups have been aborted—then it outputs the majority of its neighbors’
broadcasted messages. To see why such “cut-off” receivers output the correct
message we have to see the following fact. Whenever all setups containing both
a neighbor of the sender and a neighbor of the receiver are aborted, then an

10 The sender inputs the same shares into each setup that it participates in.
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honest receiver has a majority of honest neighbors that could reconstruct the
message. This statement follows from graph-theoretical considerations. An intu-
itive explanation is that if all such setups are aborted, then the sender and the
cut-off receiver have a large distance of at least β in the TG. In that case the
cut-off receiver cannot have too many malicious neighbors, yet honest parties
always remain neighbors.

Skipping ahead to the proof of security, the simulator will extract the com-
mitted message from the sharings input into the partial commitment setups.
As the verification step ensures consistency among the committed messages the
simulator’s extracted message is uniquely defined and correct.

Committed OT Expansion

Theorem 4 (FCOT expansion). Let n = n(λ), t = t(λ), β := �n/(n −
t)� + �n/(n − t)� − 2 s.t. n/2 ≤ t ≤ n − 2 and

(
n
β

) ∈ poly(λ). There is
an efficient protocol πFCOT that statistically securely UC-realizes Fn

FCOT in the
{F2

SMT, Fβ
SFE,f , Fn

COM, Fn
BC}-hybrid model against environments that (maliciously)

corrupt up to t parties. Formally, for some specific functionality Fβ we get

{F2
SMT, Fβ , Fn

COM, Fn
BC} stat�t Fn

FCOT . (3)

Recall that in the FCOT functionality there exists a sender, a receiver and n−2
witnesses. Let Fβ

SFE,f be some Secure Function Evaluation (SFE) setup for β-
parties for some function fOT that allows for an FCOT but whose details we
omit at this point. In our FCOT protocol the sender and the receiver try to
perform the global FCOT directly, i.e., via some setup in which both the sender
and the receiver and n − β witnesses (w.r.t. the overall FCOT) are left out.
To ensure consistency with the excluded witnesses the sender and the receiver
globally commit to their inputs (again as secret-sharings) via Fn

COM. Accordingly,
the setup Fβ

SFE,f also takes the same sharing as inputs. As in the commitment
protocol the sender and the receiver open their shares, in the Fβ

SFE,f setup and the
global commitments, on some random probing indices to detect inconsistencies.

To open, the sender and the receiver can simply open the global commitments
to their respective inputs.

In the security proof the simulator extracts the sender’s messages and the
receiver’s choice bit from their inputs to their global commitments. Again, the
verification step (commit-then-prove by probing random shares) guarantees that
the simulator’s extracted inputs match the ones output be the honest parties in
the real protocol execution with overwhelming probability.

As in the previous construction, we leverage Lemma 3 which guarantees
essentially that some such “direct” SFE setup must not be aborted, if the pro-
tocol is not to abort. Here lies the technical difficulty of our protocol because
Lemma 3 only guarantees such a setup between a neighbor of the sender and a
neighbor of the receiver (not the sender and the receiver themselves). To remedy
this issue we make the following observation: In the seemingly hopeless scenario
where the adversary chooses to abort the setups in such a way that the sender
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and the receiver themselves are not able to perform the direct setup, then one of
them (the honest one) has many honest neighbors. In this case the sender and
receiver use their neighbors respectively to carry out the OT for them. Here,
the sender and the receiver secret-share their inputs to retain their privacy and
distribute them to their neighbors. While for the sender’s messages the shar-
ing seems straightforward (additive sharing), it may not be obvious how the
receiver’s choice bit can be shared s.t. the receiver obtains its chosen message.
To this end we invoke a technique akin to the one used by Wolf and Wullschleger
[30] which they used to show the symmetry of OT. This allows the receiver to
only distribute additive shares of its choice bit (ensuring privacy) but still obtain
the chosen message.

Equivalence of SFE-Complete Setups. In the full version we prove that
the setups Fully Committed Oblivious Transfer (FCOT) Fn

FCOT, Secure Function
Evaluation (SFE) Fn

SFE,f , and Correlated-Randomness from [21] Fn
Corr,D can be

efficiently realized from each other with statistical security; so we can substitute
one with the other by the Universal Composability Theorem of [7].

Putting the Results Together. For brevity we use the short notation F �t F
to describe the construction of UC-secure protocols for the ideal functionality F
in the F -hybrid model against at most t corruptions.
Corollary 4 (Composition of constructions). The correlation complexity
for UC-secure ID-MPC is at most β. We observe

{Fβ
FCOT} stat�β Fβ

SFE,f (4)

{F2
SMT, Fβ

SFE,f , Fn
BC} stat�t Fn

FCOT (5)
stat�n Fn (6)

where Fn is any arbitrary functionality. Equation (5) follows from the combi-
nation of Theorems 3 and 4, and Eqs. (4) and (6) follows from the ID-MPC-
completeness of FCOT. For statistical security we get

{Fβ
Corr,D} stat�β Fβ

FCOT (7)

=⇒ {F2
SMT, Fβ

Corr,D, Fn
BC} stat�t Fn (8)

where Fn is any arbitrary functionality. Equation (7) follows from the ID-MPC-
completeness of the correlated randomness setup (Theorem 6 in [21]). For com-
putational security we get

{πOT, Fβ
CRS, Fβ

BC}comp�β Fβ
FCOT (9)

=⇒ {πOT, F2
SMT, Fβ

CRS, Fn
BC}comp�t Fn (10)

where Fn is any arbitrary functionality, πOT is any adaptively secure OT protocol
and Fβ

CRS is the Common Reference String functionality from [8]. Equation (9)
follows from the computational construction in Theorem 12 in [21].
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For ID-MPC with statistical security this reduces the required correlation
complexity from n to β. For ID-MPC with computational security this reduces
the required cardinality of the CRS for the computationally secure offline phase
of the construction in [21] from n to β.

Theorem 1 (Correlation complexity bounds). The correlation complexity
for UC-secure Multi-Party Computation with Identifiable Abort (given broadcast)
is β := min(n, �n/(n − t)� + �n/(n − t)� − 2) ≈ 2n/(n − t) where n is the overall
number of parties and t is an upper bound on the number of malicious parties.

In other words, for any n-party functionality with Identifiable Abort there
exists a protocol that uses hybrid functionalities of cardinality β and broadcast,
but there exists an n-party functionality with Identifiable Abort which cannot be
realized by any protocol that uses hybrid functionalities of cardinality β − 1 and
broadcast.

Proof. The theorem follows directly from Theorem 2 and Corollary 4. ��
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Abstract. Platforms are nowadays typically equipped with trusted exe-
cution environments (TEEs), such as Intel SGX or ARM TrustZone.
However, recent microarchitectural attacks on TEEs repeatedly broke
their confidentiality guarantees, including the leakage of long-term cryp-
tographic secrets. These systems are typically also equipped with a cryp-
tographic coprocessor, such as a TPM or Google Titan. These copro-
cessors offer a unique set of security features focused on safeguarding
cryptographic secrets. Still, despite their simultaneous availability, the
integration between these technologies is practically nonexistent, which
prevents them from benefitting from each other’s strengths.
In this paper, we propose TALUS , a general design and a set of three
main requirements for a secure symbiosis between TEEs and crypto-
graphic coprocessors. We implement a proof-of-concept of TALUS based
on Intel SGX and a hardware TPM. We show that with TALUS , the
long-term secrets used in the SGX life cycle can be moved to the TPM.
We demonstrate that our design is robust even in the presence of tran-
sient execution attacks, preventing an entire class of attacks due to the
reduced attack surface on the shared hardware.

1 Introduction

The need for stronger protection of data and computations has led to the
advent of secure enclaves, CPU-provided isolated Trusted Execution Environ-
ments (TEE) that secure general-purpose computations. Prevalent technologies
are Intel SGX [16,20,27], ARM TrustZone [1], or Keystone [42] and MI6 [5] for
RISC-V.

The security offered by these secure enclaves for code and data isola-
tion depends on several high value cryptographic credentials (e.g., Launch
and Provisioning Key for Intel SGX, AMD PSP infrastructure key for AMD
SEV, manufacturer root keys for ARM TrustZone). Enclave programs, in
turn, depend on credentials derived from those long-term secrets, e.g., for
secure storage of enclave data. Unfortunately, enclave technology shares hard-
ware, e.g., CPU cores, between trusted and untrusted code, opening an attack
surface. Especially for Intel SGX, this attack surface has been exploited in
microarchitectural attacks [49], some of which leak confidential data from CPU
buffers [4,7,63,64,72].
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Our key observation is that virtually all platforms today are additionally
equipped with specialized cryptographic or security-oriented coprocessors that
protect cryptographic credentials, access control secure storage, or monotoni-
cally count. For instance, Trusted Platform Modules (TPM) [68] are available on
effectively all desktop and server machines, and more solutions become available,
such as Google’s Titan, Microsoft’s Cerberus, or AMD’s PSP [76]. In contrast to
general purpose application processors with security extensions for TEEs, those
coprocessors have been designed for the primary goal to safeguard cryptographic
credentials and secret data. Integration between secure enclaves and crypto-
graphic coprocessors creates a stronger security solution in which enclaves can
use the complementary coprocessor features. Concrete use-cases would benefit
from this integration, e.g., impeding microarchitectural attacks against enclaves
based on TPM features. Unfortunately, such an integration is currently, if it
exists, very limited. We ask the following fundamental questions: Which security
guarantees does the combination of CPU-provided TEEs with secure coprocessors
provide that each of the technologies cannot provide on their own? What are the
requirements to combine the advantages of both technologies without introducing
new security problems or large performance overheads?

To answer these questions, we introduce a hardware/software co-design,
TALUS , to combine CPU-provided TEEs with cryptographic coprocessors.
Enclave code can directly invoke the coprocessor only via the CPU firmware
and bus connections to make use of the coprocessor’s facilities, such as counters
or key management. We identify three core requirements to realize our idea:
a secure communication channel between processors and coprocessors, vertical
access control to distinguish between enclave and non-enclave code, and hori-
zontal access control to distinguish between different enclaves. To understand
how SGX can be integrated with an on-board hardware TPM, we built a proof-
of-concept integration between Intel SGX and a hardware TPM on commodity
hardware. We show that a combination of Intel SGX (emulated through KVM-
SGX [34] and QEMU-SGX [35]) with hardware TPM is feasible with firmware
changes and demonstrate through different use cases the security benefits of this
symbiosis.

We show that TPM fills a gap in the trusted-computing features of SGX that
is due to a lack of replay-protected secure non-volatile memory. Several previ-
ously published defenses for attacks against SGX provide their full strength
only if such building blocks are available [13,57,65]. Furthermore, preventing
recent microarchitectural attacks against TEEs [7,63,64,75], including under-
volting [38,56,61] is only effective if an enclave can store a persistent state to
limit the number of attack attempts. In addition to the possibility of preventing
attacks against enclaves, we demonstrate that all high-value secrets used during
the lifetime of enclaves can be safely stored in the TPM without ever reaching a
shared hardware element. We can actively mitigate existing attacks and harden
an enclave against potential future attacks by reducing the amount of high-value
secrets stored in the enclave. Our proof-of-concept implementation shows that
the expected overhead of an average 21.6% is amortized in typical use cases, as
only rarely used operations suffer from a slowdown of several milliseconds.



TALUS: Reinforcing TEE Con Dentiality with Cryptographic Coprocessors 149

In summary, we make the following contributions:

1. We introduce TALUS , a hardware/software co-design to combine CPU-
provided TEEs with cryptographic coprocessors.

2. We show that TALUS provides extended features, like rollback protected
TPM NV-storage for persistent counters to limit execution control attacks
against enclaves.

3. We demonstrate that TALUS significantly reduces the attack surface for
microarchitectural attacks.

4. We analyze TALUS for real use cases, showing that its performance overhead
is amortized in many use cases while providing strong security guarantees.

2 Background

2.1 Intel Software Guard eXtension (SGX)

SGX is an extension to the x86 instruction set that allows a user-space process to
create and manage a protected isolated memory region called an enclave within
its own address space, even protected from OS and hypervisor access [26,48].
SGX assumes that the CPU, including its microcode, is the only trusted element
in the system. Enclave data are stored encrypted in DRAM and unencrypted
in the CPU caches and registers. An external party can verify an enclave by
(remote) attestation of the enclave code and meta-data [6,66].

Intel supplies two infrastructure enclaves, the launch enclave (LE) and quot-
ing enclave (QE), on which SGX is heavily dependent. The LE is responsible
for handling and launching user-space enclaves with a token called EINITTOKEN

that is generated using i) the measurement of the static content of the enclave
(MRENCLAVE) and ii) the enclave-author validation (MRSIGNER). The LE requires a
128-bit Launch Key (LK) to derive the EINITTOKEN. The QE is designed to vali-
date local attestation reports by enclaves generated with an asymmetric private
key that a remote verifier can verify. Both the LE and the QE are entrusted with
long-term high-value cryptographic credentials.

2.2 Trusted Platform Module (TPM)

TPM by the Trusted Computing Group is the most widely deployed trusted
computing technology on commodity platforms used by, e.g., Microsoft Windows
management instrumentation, Intel Trusted eXecution Technology (TXT) [31],
Microsoft Bitlocker [51], or Google Chrome [19]. A TPM contains a small non-
volatile memory block, a set of platform configuration registers (PCR), an
onboard processor to execute TPM code in isolation from the other hardware, co-
processing for standard cryptographic algorithms, a secure clock, and a random
number generator. TPMs can reliably report internal data to a third-party veri-
fier, i.e., remote attestation based on a pre-installed endorsement key. Typically,
a TPM is available as a hardware chip soldered to the mainboard, traditionally
connected via the Low Pin Count (LPC) bus or on newer platforms via the SPI
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bus, making it only available through memory-mapped I/O (MMIO) registers
protected by the chipset. Intel also implements a firmware TPM called Platform
Trust Technology (Intel-PTT) [25] housed inside Intel CSME [28].

3 Requirements Analysis

In this section, we define three fundamental requirements for a secure integra-
tion of CPU-provided Trusted Execution Environments with onboard secure
coprocessors: secure communication channel, horizontal access control, and ver-
tical access control. We systematically compare how SGX and TPM meet
those requirements and how well these two technologies can be integrated, as
demonstrated later by our proof-of-concept implementation. In the full technical
report [11], we have extended this comparison further to other secure coproces-
sors and TEEs.

Communication Channel (CC). For a secure integration between the secu-
rity coprocessor and the application processor (AP), the communication chan-
nel between them must be secured from eavesdropping even in case of physi-
cal attacks, e.g., bus sniffing (CC1), and there should not be any dependen-
cies on buffers vulnerable to microarchitectural attacks that can leak sensitive
data transferred via the channel (CC2). TPM and SGX fulfill CC1 since TPM
and Intel CPUs support end-to-end encryption of the communication between
them [17,31,68]. However, this channel does not avoid insecure buffers, and
decrypted data on the CPU side might still pass through such buffers. As demon-
strated by recent attacks, none of the TEEs, including SGX, is free of insecure
buffers. Therefore, SGX inherently fulfills not CC2, and we show in Sect. 5 how
we overcome this limitation in combination with TPM.

Horizontal Access Control (HC). TEEs can host multiple tenants. For exam-
ple, SGX supports multiple (parallel) enclaves. Horizontal access control ensures
that the AP and the coprocessor can distinguish between requests from mutually
untrusted tenants inside a TEE. For instance, one enclave should not be able
to access another enclave’s data within the coprocessor. A trusted entity, such
as an AP, must create access or identity tokens that can identify TEE tenants.
The tokens must be securely communicated to the coprocessor. The coproces-
sor must also understand those tokens to control access to managed data and
secrets. Hardware TPM and firmware TPM employ extended authorization poli-
cies (EAP) that can use these access tokens for access control to TPM-managed
objects, like TPM-internal storage and keys. All AP-based TEEs can fulfill this
requirement because they can uniquely identify the different enclave codes they
host. They can provide this information on calls to the coprocessor. For example,
in SGX, this would be the code measurement of the enclave by the CPU.

Vertical Access Control (VC). AP-based TEE technologies and the coproces-
sor should support access control based on different security levels (e.g., applica-
tion, OS, or hardware) to prevent non-enclave code from accessing enclave-owned
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entities in the coprocessor. The access token to distinguish between different
security levels needs to be generated and handled by a secure piece of code and
be securely communicated to the coprocessor. Hardware and firmware TPM offer
Locality to distinguish between TPM commands originating from different secu-
rity levels. Still, the locality of a command must be communicated to the TPM
by the CPU or firmware. Furthermore, SGX registers when it executes in enclave
mode, but this security level is only used CPU-internally and not for Locality.

TALUS: Integrating Intel SGX and Hardware TPM. The main issue
of vanilla SGX is the lack of confidentiality- and integrity-protected tamper-
resistant storage. As we are unaware of any non-volatile memory inside a CPU,
we do not see how SGX can be improved by only updating the firmware and
without adding new components (like a TPM) to the TCB. Vanilla SGX can use
PTT for certain trusted computing use cases. However, PTT is housed inside
the CSME [28] and connected through the DMI interface without any security
around the communication channel. Moreover, although CSME employs its own
OS with its own security ring, completely segregated from the platform secu-
rity, the command buffer for PTT is configured by untrusted software, such as
the OS, and PTT recently suffered from access control errors [29,30] that com-
pletely undermine its security and are currently unfixable in production devices.
Additionally, secrets typically flow through the memory hierarchy on the CPU
where untrusted code can run in parallel, observing side effects of the secret
processing, e.g., when unsealing data from disk. Furthermore, in SGX, support
for counters depends on the Platform Service Enclave and Intel ME, which are
often not available in SGX production deployments and have already been dep-
recated [32]. Moreover, these counters can be reset by reinstalling the SGX plat-
form software [46]. As SGX stores counters inside the BIOS flash storage, they
do not persist across system resets [46]. The unavailability of integrity-protected,
tamper-resistant storage does not allow SGX to store a secure counter, which
limits the possibility of enclaves to enforce a number of enclave executions, as
exploited in interrupt-based attacks [7].

Based on our requirements analysis, we found that the combination of SGX
with hardware TPM is highly amenable for integration and allows to fill those
gaps in SGX with TPM functionality. Due to the historical relationships between
Intel CPUs and TPM, they can create an encrypted channel between them. Addi-
tionally, SGX can identify (i.e., measure) enclave code while TPM can use this
identity in its access control policies. Therefore, our proof-of-concept implemen-
tation for our TALUS design is based on SGX and a hardware TPM.

4 High-Level TALUS Overview

Our systematization (Sect. 3) underlines the intuition that the TPM, when inte-
grated as a coprocessor with SGX, can provide desirable features to secure
enclaves, such as physically isolated processing of cryptographic secrets, a secure
clock, or persistent counters. The basic idea is to retrofit SGX with a direct
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communication channel to the TPM chip without going through the host OS.
With such a communication channel, enclaves can leverage the TPM facilities
as building blocks, e.g., to implement secure monotonic counters (cf. Sect. 5).
This section provides more details on the security benefits, requirements, and
challenges of integrating SGX enclaves with a TPM. The high-level overview of
TALUS is available in the extended version of the paper [11].

4.1 Threat Model

The threat model for TALUS is the union of the coprocessor and enclave threat
model. Only the coprocessor (including firmware) and the processor (including
microcode) are trusted. We assume that the coprocessor does not suffer from
implementation [54] or platform integration flaws [22]. Similarly, we assume that
the enclaves are not malicious [50] and are free of classical software vulnerabili-
ties [14,43,71,74]. Microarchitectural attacks [69], such as classical side channels
and transient execution attacks, are in scope. We allow physical attacks in line
with the TPM and SGX specifications, e.g., bus tapping, bus sniffing, or sim-
ilar physical layer attacks [3,37,40]. We exclude physical attacks outside of a
reasonable attacker model for SGX and consumer-grade hardware, such as bus
snooping on high-speed or address buses [41], against which SGX also fails to
defend.

4.2 Design of TALUS

Integrating a coprocessor (e.g., TPM) with a secure enclave technology, such as
SGX, poses both security (SC) and functional (FC) challenges. In this section, we
detail the challenges and how we design TALUS to solve these challenges.

SC1. Secure Communication Channel. CPU and coprocessor must
exchange data securely. Ideally, the coprocessor is physically integrated with
the CPU package (e.g., similar to AMD PSP), and the communication channel
is physically secured against eavesdropping. If the coprocessor is an additional
hardware element, a secure connection via the usually insecure bus is required.
For TPM and SGX, TPM is connected to the CPU via the unprotected LPC
or SPI bus. Thus, TALUS relies on symmetric authenticated cryptography to
establish a secure channel between the coprocessor and the CPU while ensuring
confidentiality and integrity despite an untrusted OS and a physical attacker.

SC2. Authorization of Commands. A coprocessor, such as TPM, is
often shared between various entities on the system, such as firmware, OS, and
user-space applications. Further, the enclave technology might support multiple
mutually-untrusted tenants. Thus, the coprocessor has to manage the credentials
for different enclaves (differentiated using, e.g., MRSIGNER, MRENCLAVE, PRODID and
SVN). Moreover, the coprocessor is also used by non-enclave code, e.g., the OS,
firmware, or user-space application. Consequently, it is crucial to have authoriza-
tion of coprocessor commands to control access to coprocessor entities (like keys
or NVM) to ensure that every enclave and non-enclave code only ever has access
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to its own coprocessor entities. TALUS with SGX and TPM ensures authoriza-
tion using locality and EAP. Authorization to TPM entities between different
actors in the system, e.g., OS, third-party software, or hardware, is based on the
TPM locality. Different enclaves running on the same system authorize via their
identities through TPM EAP [11].

SC3. Avoiding Shared Hardware. It is often necessary to securely (SC1)
send secret data, e.g., session keys, to the CPU while reducing the amount
of shared hardware involved in the communication. Recent transient-execution
attacks showed that a software-only attacker can read stale entries in vari-
ous internal CPU buffers [7,9,62–64]. Thus, TALUS provides strict isolation
of coprocessor-released data, ensuring that data does not pass (in plaintext)
through shared hardware elements with (known) vulnerabilities. TALUS imple-
ments the entire communication using only CPU registers as storage.

Besides those security challenges, we identify the following functional chal-
lenges (FC) that influence TALUS .

FC1. Functionality Mapping. Enclave functionalities require a corre-
sponding faithful command mapping offered by the coprocessor, e.g., to generate
and use keys with the same authorization policies. The coprocessor driver logic
for these commands can be implemented in CPU microcode [33] without requir-
ing hardware changes. The microcode changes have to support only minimal
amounts of ephemeral storage for policy sessions and session handles, both of
which can be stored in the insecure BIOS flash.

FC2. Attestation. Enclaves depend on attestation to convince (remote)
parties that they are communicating with the intended enclave. If the coproces-
sor supports attestation and management of attestation secrets, the attestation
can be outsourced to the coprocessor. Thus, attestation secrets are never stored
in shared hardware. A TPM supports remote attestation of TPM internal data.
However, this poses the challenge of faithfully integrating the TPM attestation
protocols with SGX. TALUS achieves this by extending TPM PCR21 with a
measurement of an SGX secret (e.g., measurement of the QE). PCR21 is pro-
tected using EAP to ensure that only the microcode can access it, and the PCR21
measurement is attested through TPM-based attestation to a remote verifier.

FC3. Asynchronous Execution. When outsourcing cryptographic com-
mands to a potentially much slower coprocessor, we face the problem that the
coprocessor execution is asynchronous to the enclave execution. For example, the
enclave might be interrupted before the coprocessor finishes executing an issued
command by the enclave. Thus, TALUS ensures proper scheduling between
enclave execution and coprocessor execution to handle asynchronous execution
by storing secrets in the special-purpose registers and encrypting them during
interrupts, preventing the register content from leaking through unprotected
buffers. Interrupts already require a significant amount of microcode execution
in the CPU, e.g., SGX stores registers in the SSA and resets the register values
to non-secret values. Hence, adding encryption is feasible in microcode.
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5 TALUS Implementation

This section briefly introduces the implementation details of a proof-of-concept
of TALUS based on SGX and a hardware TPM. An in-depth discussion is avail-
able in the extended version [11]. We show the functionality and all the security
guarantees using the Intel SGX emulator [45] and a hardware TPM, allowing
us to implement the entire design of TALUS . For the performance evaluation,
we instead use a hardware SGX enclave in combination with the same hard-
ware TPM, with the limitation that the communication channel is not protected
against a malicious OS. All evaluations are performed on an Intel i7-7820X run-
ning Ubuntu 16.04.04 with kernel 5.0.0. As the TPM, we use an Infineon SLB
9670 that supports TPM 2.0 (HTPM). The size of the enclave used for perfor-
mance evaluation is 52 kB.

5.1 Connecting SGX and TPM

Channel Between SGX and TPM (SC1). Typically, the OS provides the
TPM as an MMIO device to the system and user-space software. However,
TALUS cannot rely on the untrusted OS for communication. For our proof-of-
concept implementation, we rely on the end-to-end encrypted programmed I/O
channel between the CPU and the hardware TPM. To prevent untrusted sys-
tem software from interfering with the channel, we distinguish between MMIO
and DMA requests. The channel is controlled by Intel TXT using an access
control mechanism called Locality offered by the TPM through TPM Local-
ity Address Mapping [31]. TPM localities indicate the source of the command
within the platform. Locality 0 is full public access, locality 1 is the OS, and
higher localities (up to locality 4) correspond to the highest privilege levels, i.e.,
hardware and microcode, including SGX. In TALUS , localities ensure the ver-
tical access control to the TPM (e.g., software, OS), while command authoriza-
tion (cf. Sect. sec:integration) ensures the horizontal access control (i.e., different
enclaves).

The channel directly stores data in the CPU registers. Cole and Prakash [15]
showed that, in addition to general-purpose registers, sensitive data can also be
stored in the Intel MPX bnd registers. As Linux or GCC no longer supports Intel
MPX [60], these registers can be used by an enclave without conflicting with any
other existing software.

Interrupt Handling (FC3). On an interrupt, SGX performs an Asyn-
chronous Enclave Exit (AEX) to save the enclave execution state in the State Save
Area (SSA) before invoking the OS exception handling. Although architecturally
secure, RIDL [63], ZombieLoad [64], and ÆPIC [4] showed that storing registers
in the SSA leaves copies of the values in internal CPU buffers from where they
can be leaked. Forcing SGX to dump registers to the SSA is always possible, as
an attacker can inject interrupts at any time during enclave execution [70].

TALUS does not allow the registers (BND0-BND3) holding potentially secret
data to be saved directly to the SSA. In our proof-of-concept implementation,
we encrypt the registers on EEXIT, EREMOVE, or AEX before storing them. We use
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AES in counter mode, with the SGX sealing key as the encryption key and the
number of asynchronous exits as the counter. Using the number of asynchronous
exits as a counter has the advantage that an attacker has only one shot at
leaking the (encrypted) secret, and the attacker cannot even detect if the secret
has changed between two interrupts [44].

Fig. 1. Design and implementation of TALUS

As computations with secrets often require multiple general-purpose or SIMD
registers [18,55], it is also beneficial to prevent other registers from spilling
secrets into the SSA. Similarly to protecting enclaves from traditional side-
channel attacks, we see that responsibility with the enclave developer. Without
TALUS , a developer cannot write code so that secrets are not leaked through
transient-execution attacks. If TSX is available, it is possible to protect interme-
diate results from spilling into the architectural domain by relying on a compiler
extension [21]. However, since TSX is deprecated, transient execution can be
used as a (less efficient) alternative, as shown in recent work [64,73,77].

5.2 Porting SGX Functionality to TPM

In this section, we demonstrate that SGX functionality can be mapped to the
TPM using command authorization.

TPM Command Mapping (FC1). Figure 1.a shows the TALUS workflow
to use the TPM as the backend for the SGX SDK functions that handle keys.
Other operations, such as reading a persistent counter from the TPM, follow
the same idea. For persistent secure storage of the wrapped keys, an enclave can
rely on the OS to store the data on the hard disk. Creating and using counters
is similar to key handling. As TPM counters are implemented in the TPM’s
NVM, creating a new counter equals creating a new dedicated NVM space with
TPM NVDefineSpace and returning a handle to the enclave. Via this handle, the
enclave can read or increment the TPM-managed counter. To retrieve the time,
TPM’s GetTime or Readclock can be used. TPM provides a secure clock signal
with the granularity of 30 ns (LPC bus bandwidth is 33 MHz).
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For key handling, TPM offers adequate secrets and functionalities to
achieve the same bindings of keys as SGX (cf. Fig. 1.b). For example, TPM’s
TPM2 OWNERSHIP can replace the SGX OWNERSHIP or the CPU can share the
CPUSVN with the TPM that can be used as KDF input (Fig. 1.b). TPM-generated
keys can be bound to the specific TPMs through TPM secret seeds (i.e.,
TPM2 CreatePrimary or TPM2 Create for non-migratable keys). To bind gen-
erated keys in TALUS to both CPU and TPM, SGX sends a secret derived from
SEAL FUSES to the TPM as input to the TPM key generation. Other enclave-
related information are available in the SECS created by SGX for every enclave.
More details on the command mapping between SGX and TPM are available in
the extended version [11].

Enclave Authorization (SC2). TALUS uses TPM’s extended authoriza-
tion policies (EAP) to ensure that one enclave cannot have unauthorized access
to another enclave’s TPM entities. EAP policies are set during the creation of a
TPM entity, such as a key. The CPU in TALUS dictates the EAP of newly cre-
ated TPM entities. It handles the policy sessions with the TPM, supplying the
necessary information for authorization from the key-derivation material. With
EAP, we can represent the same policies reflected in the key-derivation material
selection in default SGX. For example, if a key is created with MRSIGNER selected
but not MRENCLAVE, i.e., it can be derived by all enclaves of the same developer,
we represent this in an EAP that requires the enclave’s MRSIGNER value. When
using the key, the CPU supplies the current enclave’s MRSIGNER value to the TPM
policy session. Only if it matches the value set in the EAP at key creation time
can that enclave use the key.

5.3 Limitations of the TALUS Implementation

Our proof-of-concept implementation demonstrates that TPM and SGX are
very amenable for integration, leading to improved enclave security (cf. Sect. 6).
Our security discussion motivates further research into more secure integra-
tion of coprocessors with CPUs. In our proof-of-concept implementation, the
CPU uses an end-to-end encrypted channel with pre-shared keys to the TPM
(TPM TakeOwnership). Hence, we rely on a non-compromised chipset to, e.g.,
prevent cuckoo attacks [58]. A coprocessor physically integrated into the CPU,
such as Microsoft Pluton [52], can remove the dependency on the chipset for a
secure, authenticated connection. While we did not attempt such a tighter inte-
gration for the proof-of-concept in this paper, we provide functional objectives
and requirements for a secure integration between a coprocessor and an enclave.
More details are available in the extended version [11].

6 Case Studies

In this section, we present two case studies using TALUS . We demonstrate how
TALUS protects the enclave life cycle by storing all long-term secrets in the
TPM. We also show how to strengthen mitigations against microarchitectural
attacks by reducing the amount of data to protect and limiting enclave restarts.
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6.1 TALUS-Backed Enclave Management

Enclave Creation. Figure 2.a shows the two-step process of TPM-backed
enclave creation: (i) allocating enclave pages in EPC and addition of code and
data to those pages, and (ii) measuring page contents (MRENCLAVE) and veri-
fication of the measurement against a signed reference value. With TALUS ,
the TPM creates and verifies MRSIGNER and MRENCLAVE. These operations require
hashing of MRSIGNER using TPM commands like TPM2 HashSequenceStart,
TPM2 HashSequenceUpdate and lastly TPM2 HashSequenceComplete. The TPM
returns the hash of the measured enclave pages, i.e., MRENCLAVE. SGX verifies the
measurement of the enclave code (using the command TPM2 VerifySignature)
with the reference value signed by the creator of the enclave using the creator’s
public key. If the values are the same, the enclave creation is successful.

Fig. 2. Enclave-related use-cases for TALUS

Enclave Launch. A successfully created enclave is launched using the EINIT

command. Vanilla SGX employs a complex launch-control mechanism involving
the LE, which requires a launch key (LK) [16]. By default, the LK is derived
using the same key derivation used for sealing keys, and transferred between
the trusted runtime and LE via microarchitectural buffers. Transient-execution
attacks [7,64] attacked these buffers to extract the launch key. TALUS replaces
this unprotected buffer transfer by encapsulating the key inside the TPM and
releasing it upon successful authorization. We implement the launch control
using TPM (cf. Fig. 2.b). The launch process starts when EINIT requests an
enclave initialization (cf. Fig. fig:usecaseenclacveverification.b) from the LE. The
LE issues an LK request to the TPM with the TPM2 CreatePrimary command.
Note that this process can also be ported to Intel DCAP.

The related enclave information from Enclave SECS is passed to the TPM.
The TPM creates a key using the EINITTOKEN KDM as supplied by the CPU.
SGX also resets TPM PCRs and extends the enclave information into those
PCRs (e.g., PCR 11–13). The PCR extension is a well-known procedure used in,
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e.g., Flicker [47], other solutions for proof-of-execution [59], and measured boot
mechanisms [31]. After the TPM returns a key handle, an EINITTOKEN generation
request is issued, wrapped in an EAP session using the enclave identity informa-
tion as policy. Therefore, the authorization succeeds only if the correct enclave
information was extended into the PCRs. The TPM creates the EINITTOKEN, an
HMAC of the enclave identity information, using the launch key loaded into the
TPM. The EINITTOKEN is returned to EINIT ( D ) from the LE. EINIT receives
the EINITTOKEN and sends it to the TPM for verification ( F ). After verifica-
tion, the TPM returns an acknowledgment of success to EINIT ( G ) to proceed,
setting the enclave’s INIT attribute to true. This enables a ring 3 application to
execute the enclave’s code using SGX instructions. The used PCRs are reset to
their predefined values, which is possible because the code runs at locality 4.

Fig. 3. TALUS performance evaluation

Performance of Enclave Management Using TALUS . Figure 3.b shows the
performance of the TPM-backed functions. Enclave creation, which includes allo-
cating enclave pages, measuring page contents, and verifying the measurements,
takes on average 624.16 ms with TALUS and a hardware TPM (QEMU-HTPM).
Compared to vanilla SGX, which also takes 97.75 ms, this is only an overhead of
526.41 ms. Given that the creation of an enclave is a one-time event in the life
cycle of an enclave and does not affect any operation at runtime, this overhead
is likely amortized over the runtime of the enclave.

SGX Attestation (FC2). For SGX, attestation is implemented in the QE.
SGX employs local attestation to prove an enclave’s identity to the QE. The
QE uses the attestation keys provisioned to the platform to attest the platform
information and the attested enclave’s MRENCLAVE. A TPM naturally supports
attestation using attestation keys, however, only of TPM-internal data (e.g.,
PCR values or TPM entities). With TALUS , we adapt the mechanism imple-
mented by Intel and AMD for DRTM/Late-launch, where the platform attests
with the TPM a small piece of code measured by the CPU. DRTM uses PCR17
of the TPM for measurement attestation. The CPU can only reset PCR17 at
locality 4. Hence, a verifier is assured that the attested measurement in PCR17
can only come from the CPU during DRTM. In TALUS , we designate PCR21 for
SGX attestation and set an EAP on this PCR that allows only locality 4 to read,
extend, and reset this PCR. The TPM can attest this policy to a remote verifier
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to ensure them about this policy. During SGX attestation, the microcode resets
PCR21 and extends it with the measurement of the QE (i.e., MRENCLAVE of the
QE) and the report generated by the QE. A remote verifier can use the attested
PCR21 value to check for a trusted QE and the proper report, i.e., MRENCLAVE

and optionally supplied data to the report. Note that the EPID attestation used
by SGX [66] is an extended version of TPM’s DAA and can be modeled entirely
using DAA [6]. Simply extending the enclave MRENCLAVE into a PCR and attest-
ing this PCR is insufficient without ensuring that the MRENCLAVE is correct and
reported by a trusted entity.

Fig. 4. The total runtime of the commands split into base execution time and the
overhead added by QEMU.

Performance of Other Co-processor Functions We evaluate the runtime
of Sign Enclave, Get Key, Quote, Load key, Get Time and Read Counter provided
by TALUS . As a baseline, we measure the time it takes the hardware TPM
(HTPM) to execute these primitives. Figure 3.a shows the average execution
time over 1000 measurements and a 95 % confidence interval. Communication
between the TPM and SGX adds a small average overhead between 0.49 ms
(generating a 2048-bit RSA key) and 50.77 ms (enclave signing).

TALUS running with a hardware TPM adds an average overhead of 98.61 ms
± 1.95 ms. Note that the overall runtime overhead of an enclave depends on its
workload, i.e., how often these commands are executed.

Data Encryption using TALUS. We evaluate a real-world use case that
encrypts data using AES without leaking the key, even in the presence of tran-
sient execution attacks (cf. Sect. 6.2). Our application uses a 128-bit AES key
securely stored in the TPM, only fetched when encrypting user-provided data.
To ensure no leakage of round keys via the SSA [64], we execute the round-key
derivation and encryption within a hardware transaction [21]. The total runtime
of encrypting 4 kB of data and cleaning up any secret state is 1.66 µs±0.001 µs,
excluding fetching the key from the TPM. The overhead from TALUS , i.e.,
securely getting the key, is 58.43 ms±1.45 ms. As a baseline, we compare the run-
time to a variant where the key is not fetched from the TPM but unsealed from
the disk. This (insecure) variant has an average runtime of 199.21 µs±0.45 µs.
Note that the one-time overhead is amortized if the enclave runtime increases,
e.g., if larger amounts of data are encrypted.
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Since only Intel can implement a native version of TALUS , and there is no
cycle-accurate emulator that supports SGX, we can only provide an estimate for
such a version. Figure 4 shows the overhead added by QEMU for the TALUS
commands, adding an overhead between 5 ms to 10 ms (avg. of 6.82 ms). This
overhead constitutes between 2.21% to 38.77% (avg. of 21.60 %). We assume
that commands in a native TALUS implementation are around 20 % faster.

6.2 Impeding Microarchitectural Attacks

SGX enclaves are a constant target of microarchitectural attacks [49,69]. The
property that enclaves can be started arbitrarily often makes it challenging
to write side-channel-resilient code [49]. Furthermore, with transient-execution
attacks such as Foreshadow [7], Spectre [39], RIDL [63], ZombieLoad [64], and
architectural vulnerabilities such as ÆPIC [4], attackers can leak sensitive data
from internal CPU buffers despite side-channel-resilient code.

Preventing Transient-Execution Attacks. TPMs are assumed to be resilient
against other forms of microarchitectural attacks since no untrusted code can
access the hardware of a TPM. Further, by design, TPM does not release
any secret keys managed by TPM to the outside, but only key handles. How-
ever, sometimes the TPM needs to release secret data to the enclave (e.g., a
decrypted symmetric key). With TALUS , data is loaded directly into CPU reg-
isters. No transient-execution attack against CPU general-purpose registers has
been demonstrated [8]. Note that Meltdown attacks were only shown against sys-
tem registers [8,23] and floating-point and the upper half of SIMD registers in
specific scenarios [24,53,67]. Hence, as long as a secret is only stored in, e.g., an
MPX register (BND0-BND3), it cannot be leaked using a transient-execution attack.
Otherwise, Meltdown mitigations, such as KPTI, would also be ineffective.

Proof-of-Concept Evaluation. As a proof of concept, we reproduce the AES-
NI encryption from ZombieLoad [64]. With TALUS , we can load the AES key
from the TPM directly into the CPU registers without requiring a memory load.
Hence, the attack vector used by Schwarz et al. [64] is mitigated. To mitigate the
remaining attack vector, the storing and loading of the XMM registers in the SSA,
we rely on Cloak [21] to not leak any intermediate results from the registers
to memory. We verify that the plain AES key is never stored in memory by
inspecting the memory. Further, we are certain that the key is not stored in any
vulnerable microarchitectural element used for interacting with the memory, such
as the store buffer or line-fill buffer, preventing leakage via transient-execution
attacks. However, we cannot exclude the existence of unknown buffers that are
on the data path in Cloak [21] and that might become vulnerable in the future.

Limiting Precise Execution Control & Strengthening Countermea-
sures. Due to the strong attacker model, SGX enclaves can be interrupted at
an arbitrary point, allowing precise execution control [49]. With SGX-step [70],
enclaves can be interrupted after every instruction, allowing to amplify side-
channel leakage. Constant interruptions result in constantly storing and loading
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of the enclave state, resulting in more reliable transient-execution attacks [7,64].
By design, TALUS does not store secrets stored in the MPX registers in plain
memory, preventing leakage of these values (cf. Sect. 5.1). While TALUS cannot
directly prevent precise execution control, its persistent storage can track how
often an enclave was interrupted. Although enclaves can detect interrupts via
overwritten values in the SSA [12,57], they cannot store this information across
enclave restarts. With TALUS , an enclave can track the number of interrupts
across enclave restarts. Due to this persistent storage, an enclave can refuse to
start if it suffers from an excessive number of interrupts.

Generally, TALUS allows enclaves to keep information across restarts,
strengthening state-of-the-art countermeasures against microarchitectural
attacks. T-SGX [65], Varys [57], or Déjà Vu [13] drastically reduce the observable
leakage during one enclave run. However, since they cannot prevent arbitrary
enclave restarts, leakage is still possible [36]. Using secure counters of TALUS
strengthens such countermeasures to prevent an enclave from starting if too
many abnormal events have been observed during execution.

Proof-of-Concept Evaluation. We implement the restart limitation in the
sample enclave of T-SGX [65]. The enclave first increments a counter stored in
the TPM and retrieves the current value. This value is the number of times the
enclave has been started. Only if the current counter value is below an enclave-
defined threshold the enclave continues to provision the secrets. The limit can
be obtained from a remote server to increase the number of allowed execu-
tions over time gradually. Contrary to the number of enclave executions, storing
this threshold in a sealed data blob is possible. A rollback attack would only
decrease the number of remaining enclave executions, providing no advantages
to an attacker. As the check only happens once at enclave startup, this is a one-
time overhead. With T-SGX, the time it takes to create and launch the enclave
is 19.66 ms± 0.016 ms (n = 1000). Increasing, reading, and comparing the timer
with TALUS takes on average 17.45 ms± 0.23 ms.

7 Other Platforms

TALUS shows how a co-processor can be integrated with a TEE on x86. Other
platforms, such as ARM and RISC-V, can also benefit from our requirement
analysis. For example, ARM TrustZone supports co-processors such as Google
Titan or Apple T2 but with limited use cases such as disk encryption, key gen-
eration or encryption. On RISC-V, Keystone Enclaves and RoCC (Rocket chip
coprocessor) are available on the Boom core [10] and Rocket core [2]. Hence, also
on RISC-V, integrating the co-processor with enclaves can provide better secu-
rity guarantees. A detailed discussion on how other platform can benefit from a
TALUS implementation is available in the extended version [11].

8 Conclusion

We showed that secure enclaves, such as SGX, can benefit from secure copro-
cessors, such as a TPM, if they are securely integrated. With TALUS , we
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presented a design that supports secure side-channel-resilient communication
between TEEs and cryptographic coprocessors. We presented a proof-of-concept
implementation based on a hardware TPM and SGX, demonstrating how a
TPM can protect the SGX infrastructure credentials during enclave building
and launching, and how such a design impedes microarchitectural attacks on
SGX. From our prototype, we derive crucial requirements for secure integration
between TEEs and coprocessors. We believe that the identified and solved chal-
lenges leading to our design of TALUS are valuable for future systems, such
as integrating Microsoft’s Pluton with enclaves, and can be transferred to other
combinations of enclave technology and coprocessors, such as AMD PSP or ARM
TrustZone.
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Abstract. Trick-taking games are traditional card games played all over
the world. There are many such games, and most of them can be played
online through dedicated applications, either for fun or for betting money.
However, these games have an intrinsic drawback: each player plays its
cards according to several secret constraints (unknown to the other play-
ers), and if a player does not respect these constraints, the other players
will not realize it until much later in the game.

In 2019, X. Bultel and P. Lafourcade proposed a cryptographic pro-
tocol for Spades in the random oracle model allowing peer-to-peer trick-
taking games to be played securely without the possibility of cheating,
even by playing a card that does not respect the secret constraints. How-
ever, to simulate card shuffling, this protocol requires a custom proof of
shuffle with quadratic complexity in the number of cards, which makes
the protocol inefficient in practice. In this paper, we improve their work
in several ways. First, we extend their model to cover a broader range
of games, such as those implying a set of cards set aside during the deal
(for instance Triomphe or French Tarot). Then, we propose a new effi-
cient construction for Spades in the standard model (without random
oracles), where cards are represented by partially homomorphic cipher-
texts. It can be instantiated by any standard generic proof of shuffle,
which significantly improves the efficiency. We demonstrate the feasibil-
ity of our approach by giving an implementation of our protocol, and we
compare the performances of the new shuffle protocol with the previous
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one. Finally, we give a similar protocol for French Tarot, with comparable
efficiency.

1 Introduction

Trick-Taking Games. With the development of computers, many traditional
games have been adapted into electronic versions. The emergence of the Inter-
net has naturally made it possible to play these games online with opponents
from all over the world. This is particularly the case for card games, and it is
now possible to play Poker, Bridge, Blackjack, Ramis, Triomphe, Écarté, Euchre
or Tarot with human opponents at any time and any place, thanks to the use of
dedicated applications on computers or smartphones. While these applications
allow users to play for fun, many of them offer to play for money. In this case,
there are several security issues to consider, since an application that allows play-
ers to cheat would illegitimately make honest players lose money. For this reason,
several works, initiated in the seminal paper of Goldwasser and Micali [13], have
proposed cryptographic protocols allowing to play cards securely.

Trick-taking games are a family of card games that all have the same struc-
ture: the cards are dealt to the players, then the game is divided into several
rounds; in each round, players take turns playing a card, and the player with the
highest value card wins the round. However, players cannot play any card from
their hand and must follow several constraints defined by the rules. For example,
in Whist and its variant Spades (which appeared in the 40’s), players must play
a card of the same suit as the first card of the round if they can. There are many
popular trick-taking games around the world such as Belote, Bridge, Tarot, Skat
or Whist. Some of them are gambling, and can be played in online casinos, such
as Spades, Bourré or Oh Hell Stackpot (a gambling version of Oh Hell).

Unlike other card games, trick-taking games allow players to cheat without
it being immediately detectable: since the players’ cards are hidden, it is not
possible to know if a player respects the rules at the time it plays its card.
The cheating is detected later in the game, when the cheater plays a card it
is not supposed to have. In this case, the game is cancelled at the detriment
of the other players which have lost time and energy. In addition, trick-taking
games are often played in teams, and the cheater’s teammates must then take
responsibility of the cheater’s behavior. While this may be embarrassing in the
presence of the other players, it is much easier to deal with online when players
are anonymous. To avoid this situation, online trick-taking game applications
prevent illegal plays. However, to do this control, the application must have
access to the cards of all players, which must therefore trust the application by
assuming that it is not rigging the games.

Since such cheating is possible with a physical deck of cards, the classical
cryptographic card game protocols do not prevent it. In [5], Bultel and Lafour-
cade introduce the secure trick-taking game protocols, which allows to detect
when a player does not respect the rules of the game, without learning anything
from its cards. Such protocols have the following properties:
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Unpredictability: the cards are dealt at random.
Theft and cheating resistance: a player cannot play a card that is not in its

hand, and cannot play a card that does not follow the rules of the game.
Hand and game privacy: players do not know the hidden cards of their adver-

saries at the beginning of the game, then at each step of the game, the protocol
does not reveal anything else than the cards that have been played.

Unfortunately, the security model from [5] cannot be applied to games in which
not all cards are used by the players, because the challenger deduces the oppo-
nent’s hand from the knowledge of the honest players’ hands, which is not pos-
sible if cards are discarded. This excludes some very famous games, such as the
well-known French Tarot, the Skat game, considered as the national card game
of Germany, as well as one of the oldest trick-taking games, Triomphe, which
dates back to the 15th century and is at the origin of both the word trump and
many other games, like Écarté and Euchre. As with Spades, for sake of clarity,
we choose to focus here on Tarot, but our approach is easily generalized.

Furthermore, the card distribution mechanism of the protocol in [5] suffers
from two drawbacks inherent to its design. In a nutshell, each player chooses a
secret key sk and computes the corresponding public key pk for each of its cards.
It then alters its public key (and other parameters) using a random value, and
shuffles the generator/key pairs (with a proof of correctness). At the end of this
step, each generator/key pair is assigned a random card thanks to a random
value the players need to agree on. The first issue is that this approach is highly
dependent on the random oracle model, the second is that the shuffle proof
proposed in [5] is not efficient since its complexity is in O(n2) in the number of
cards, which is 32, 54, 78 or even 104 cards depending on the game.

Contributions. In this paper, we first extend the security model from [5] to cover
the French Tarot (see Sect. 4). French Tarot being the most complex of the games
with Cards Set Aside, it is easy to simplify our model to adapt it to other games
having this property.

Then, we propose two new secure Trick-taking protocols based on a common
idea (as in [5], for the sake of clarity, we base one of our protocols on Spades,
but it can be adapted to any game having the same structure, such as Whist,
Bridge, etc., the other is based on Tarot for similar reasons). Their card rep-
resentations differ from [5] (and is closer to classical cryptographic card game
protocols), which allows us to address both of the above drawbacks. Each card
is encrypted by a key shared by all players using a partially homomorphic public
key encryption scheme, such that all shares are needed to decrypt a card. To
shuffle the deck, the players randomise and shuffle these encrypted cards in turn,
then each player is given its encrypted cards, and each player uses its key share
to partially decrypt the other players’ cards. Thus, at the end of this process,
the cards are only encrypted by their owner’s key share. This method has the
advantage of shuffling the cards directly instead of shuffling keys associated with
cards assigned a posteriori, so it is no longer necessary to use a random oracle
to assign the cards randomly. Moreover, the shuffle is done on a partially homo-
morphic encryption scheme, and there are many efficient generic zero-knowledge
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proofs to prove the correctness of such a shuffle in the literature with linear com-
plexity in the number of ciphertexts [2,11,15]. This allows us to instantiate our
protocols much more efficiently than in [5], and to propose practical yet secure
trick-taking protocols. Details are given in Sect. 5 and proofs are presented in
the full version [3]. We also give a protocol for Tarot, with similar complexity
(see Sect. 6 and the full version [3]).

The goal is to reduce this additional cost to a point where cryptographic
operations would no longer cause delays during the game. The efficiency of our
Trick-taking protocols is assessed in [3], along with an implementation in Rust
to demonstrate their practicality. Most of the complexity cost comes from the
proofs (that everything was done correctly), and especially in the shuffle phase
(Proof 1 in Sect. 5). A first improvement is that we can implement two designs
for this proof. In order to show the advantage of our approach, we evaluate the
performance of our protocols when instantiated either with a specific proof built
from the same method (and a similar execution time) as [5] (5.64 s for the proof
and 5.72 s for the verification), or with the efficient generic proof proposed by
Groth in [15] (234.70 ms for the proof and 175.23 ms for the verification), which
is unapplicable to [5]. Provided with a linear execution time, usage of this design
makes our protocol practical even if used with more cards and/or more players
as its overall complexity is linear in the number of cards and in the number of
players.

Related Work. There are several cryptographic protocols in the literature for
securing online card games [1,4,8–10,13,16,18,20], but most of them do not
prevent illegal moves in trick-taking games. To the best of our knowledge, the
only protocol with this property is [5]. It is also possible to use generic tools
to obtain similar properties such as multiparty computation [7] or proofs of
circuits [12], but these approaches are too generic and inefficient. Finally, another
line of research, complementary to ours, studies ways to detect cheating in trick-
taking games by analysing the behavior of players [19]. The idea is to determine
if a player knows its opponent’s cards by analysing its playing style.

2 Technical Overview

2.1 Rules of Trick-Taking Games: The Example of Spades

The traditional version of Spades is played by 4 players divided into two teams
of 2 players, but the rules can be adapted for more players. It uses the traditional
deck of 52 cards divided into the 4 Latin suits, which are swords (spades ♠),
cups (hearts ♥), coins (diamonds ♦) and clubs (♣) and its rules are as follows:

Draw. All 52 cards are handed out equally to each player for a total of 13 cards
each. Each player then bids on the number of tricks it plans to win.

A round. The first player of a new game is chosen randomly, the others following
in a determined order. The game consists of a sequence of rounds, requiring
all 4 players to play a card in turn. In each round, the suit of the first card
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played is called the leading suit and the player that plays the highest card
wins the tricks (the 4 cards played), and starts the next round.

Rank of cards. The cards of the same suit are ranked from highest to lowest
as follows: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. The cards of the
spade suit have a higher value than the cards of the leading suit.

Priority of cards. A player must play a card from the leading suit if it can.
Otherwise, it can play any card it wants. Note that since the players’ cards
are hidden, the other players cannot check if a player is following this rule
at the moment it plays the card. We address this limitation (among others)
with our secure trick-taking game protocol.

Objective. If the number of tricks exceeds a team’s bet, its players win 10
points per trick, plus 1 point for each additional trick, otherwise 0 points.

Most trick-taking games, including Bridge, Whist, Belotte, Bourré, Coinche,
Pinochle, Ho Hell and many others follow the same structure as Spades. The
differences are in the number of players or cards, the way scores are calculated,
the ranking and the priority of the cards. The rules of priority can be complex,
requiring cards of higher and higher values for a given suit, or requiring a par-
ticular suit when a player does not have a card of the leading suit. However, as
a general rule, at the time the card is played, it is always possible to determine
which cards should have been played first if the player had them. Our protocol
is based only on this property, so it can be easily generalized.

2.2 The Particularity of French Tarot

By describing Spades, we have given a quite general framework, powerful enough
to be adapted to almost any trick-taking game. But one particular case has never
been addressed: the case where a set of cards is set aside during the deal, such
as the dog (chien) in French Tarot. The dealing of this game generates another
hand: While played with 4 players, 6 cards are put aside in a fifth hand until
the bets are over. Once the cards are dealt, the bids start. The taker (the player
that bets the highest) then plays against the 3 other players and needs to obtain
a certain amount of points in its tricks to win. A player that does not bid passes.
If all players pass, new cards are dealt. Presented below in increasing importance,
the bids implies various dealing procedures for the dog:

Petite (“small”): the “dog” is revealed to all players and added to the hand of
the taker. The latter confidentially sets aside the same number of cards from
its hand and puts them aside to form the beginning of its score pile.

Garde (“guard”): same as petite, and points earned by the taker are double.
Garde sans (“guard without” the dog): the dog goes directly into the taker’s

score pile, no one gets to see it. The point multiplier is set to four.
Garde contre (“guard against” the dog): the dog goes directly into the opposing

score pile. The score is worth six times the base score.

The deck in Tarot consists of 78 cards of 3 types: 52+4 normal cards (Ace,
King, Queen, Knight, Jack, 10 down to 2, nearly as in Spades) and 22 trumps
(from 1 to 21, and an Excuse). Excuse, 1 (Petit) and 21 of trumps are special
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Fig. 1. Dealing cards in our trick-taking protocol. id : cards, pk : a public key, ri,j :
random numbers, permutations δi(j) ∈ �1, 52� for all i ∈ �0, 3�, j ∈ �1, 52�.

cards and called the oudlers. On a petite or garde, the taker may not set aside
in the dog a king or a trump, except if it cannot discard anything else; In this
case, the trumps put in the dog must be displayed. In any case, it is forbidden to
discard oudler trumps. Without entering into details of the game, Tarot follows
the general rule that at the time the card is played, it is always possible to
determine which cards should have been played first if the player had them.

Note that unlike Tryomphe or Euchre, this game has very specific rules giving
rise to several particular cases. We treat the case of the French Tarot because its
model and protocol can be adapted easily to other games with cards set aside.

2.3 An Overview of Our Protocols

To ensure that honest users can play online while no cheater can proceed for
more than one round, our trick-taking protocols (formally presented in Defini-
tions 3 and 4) require the following properties: First, at each step of the game,
the previous plays should have been valid for the rounds to continue. Secondly,
no player or central authority must have been trusted to reach the first require-
ment. Finally, maybe the most important of the conditions, the algorithm has
to be practical, since a significant computational overhead would prevent any
attempt of a player to play the game. To achieve this level of security, we choose
a model in which at each round, for each of the played cards, the players must
provide a proof for each of their actions, that their fellows verify before pro-
ceeding. These proofs have to be zero-knowledge, i.e., reveal nothing about the
players’ hands.

Card Dealing. Before playing, the cards must have been shuffled and drawn
(proofs ensuring each player that everything was executed correctly). We use
randomisable encryption (that allows to randomise the ciphertext). A first phase
(graphically represented in Fig. 1, for a standard set of cards) allows to give each
player its (encrypted) hand. A second phase allows it to recover its hand.

Setup. Each player Pi starts the game by (1.i) generating a key pair (pki, ski)
from which a global public key pk is generated. The canonical deck (with
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predefined order) is denoted as D = (id1, . . . , id52). Proofs ensure that the
keys were generated correctly.

Generation of the Ciphertexts. Each player (1.ii) computes on his side ad
hoc randomisable (ElGamal) ciphertexts (c0,j)j=1,...,52 of all cards in D with
the common public key pk.

Shuffle. To shuffle this set of encrypted cards, each player Pi in turn (1.iii)
sequentially applies a random permutation (δi,j) to the ciphertexts and ran-
domise them using a secret random vector (ri,j) and the randomisation
algorithm of ElGamal presented in Sect. 2.3. Each of these steps is associ-
ated with a proof. Cards are now shuffled and distributed in between the
players. For i ∈ {1, 2, 3, 4}, player Pi receives the ciphertexts of indices in
{13 · (i − 1) + 1, 13 · i}.

Hand Recovery. All players (2.i) broadcast some values θi,j (beside a proof) for
the 39 ciphertexts they have not been attributed. This allows each player Pi

to (2.ii) remove the randomness on the other players’ keys on the ciphertexts
to recover a vector of ciphertexts only encrypted by pki. Its cards remain
oblivious to the other players as they are still encrypted with its key. It can
finally obtain its cards by decrypting these values using ski.

Dog Generation. The rules of a trick-taking game may require some cards to be
set aside during the shuffle. To keep these cards secret, some ciphertext indices
are associated to the dog and the matching θi,j may not be revealed by the
players. Unrevealed cards form the dog, based on the rules, they can later be
revealed (through a similar process as part 2 of the shuffle), permuted or shuffled
with some other cards (as in 1.iii). All outputs of these operations are produced
alongside the associated proofs. As highlighted in Sect. 2.2, in French Tarot,
kings and trumps may not be placed in the dog unless it is impossible to proceed
otherwise. For later use, we define a set O ⊂ D ∈ Deck composed of the cards
id that may not be discarded. To guaranty that rules are followed, one has to
prove that none of the cards placed in the dog do belong to O.

Card Playing. How a card is picked is not specified in our protocol, but it ensures
that it follows the rules of the game. When player Pi picks one of its cards to be
played, it first proves that the played card is indeed in its hand (by showing it
matches one of its ciphertexts). Then it shows that the played card follows the
rules of the game: if it does not follow the leading suit, it has to prove that none
of its remaining ciphertexts encrypt cards that could have followed this suit.
Immediate verification of the proofs by the other players remove all potential
doubts on the validity of the new play.

3 Cryptographic Tools

First we recall the Decision Diffie-Hellman hypothesis (DDH): Let G be a group.
The DDH assumption states that given (g, ga, gb, gz) ∈ G

4, there exists no
polynomial-time algorithm able to decide whether z = a · b or not. Our schemes
uses the ElGamal encryption scheme defined by the following algorithms:
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KeyGen(K): Picks dk
$← Z

∗
q (draw uniformly in the specified set) and computes

ek = gdk. Returns (ek, dk).
Enc(m, ek): Draws y

$← Z
∗
q , returns c = (c1 = gy, c2 = m · eky).

Dec(c, dk): Parses c as (c1, c2) and returns m = c2 · c−dk
1 .

ElGamal is IND-CPA secure (indistinguishable under chosen plaintext attack)
under DDH [17], moreover it is partially homomorphic and randomizable, which
means that there exists an algorithm Rand that changes a ciphertext c into a
new ciphertext c′ of the same plaintext:

Rand(c, r, ek): Parses c as (c1, c2) and returns c′ = (c′
1 = c1 · gr, c′

2 = c2 · ekr).

Our construction also uses Non-Interactive Zero-Knowledge Proofs of Knowl-
edge (NIZKP) [14]. Let R a binary relation and s, w two elements verifying
(s, w) ∈ R. A (NIZKP) is a cryptographic primitive allowing a prover knowing
a witness w to show that w and s verify the relation R leaking no information
on w. Throughout this paper, we use the Camenisch and Stadler notation [6],
i.e., ZK{w : (w, s) ∈ R} denotes the proof of knowledge of w for the statement s
and the relation R, and Ver(s, π) returns 1 if the proof π is correct, 0 otherwise.

Let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A NIZKP is said to
be sound when there is no polynomial-time adversary A such that A(L) outputs
(s, π) such that Ver(s, π) = 1 and s �∈ L with non-negligible probability. It is said
to be extractable when there exist a polynomial-time knowledge extractor Ext
and a negligible function εSoK such that, for any algorithm ASim(·,·) that outputs
a fresh statement (s, π) with Ver(s, π) = 1 such that A has access to a simulator
that forges proofs for chosen statements, ExtA outputs w such that (s, w) ∈ R
having access to A with probability 1 − εextract. It is said to be Zero-knowledge
when a proof leaks no information, i.e., there exists a polynomial-time algorithm
Sim called the simulator such that ZK{w : (s, w) ∈ R} and Sim(s) follow the
same probability distribution.

4 Models for Trick-Taking Game Revisited

4.1 Formal Definitions of Trick-Taking Scheme and Protocol

Trick-taking schemes and protocols were formalised in [5], but their definitions
miss the French Tarot. Here we extend them to cover this additional game while
staying consistent with the existing. We introduce a new definition covering both
the existing and our work, for that we merge algorithms DeckGen and GKeyGen
as it could have been in [5]. Only DeckGen is kept for the shuffle. In order to
cover the dog in French Tarot, we also add up an algorithm named MakeDog.

Trick-Taking Game Scheme. In trick-taking games, a card is defined based on
two attributes: a suit and a number, such that id = (suit, val) ∈ Suits × Values
is a card. A deck of k cards is modeled by a k-tuple D = (id1, . . . , idk), where
∀i, j ∈ �1, k�, idi �= idj . The set of all possible decks is denoted by Decks. A deck
D might contains a subset O of cards that may not be discarded in the dog.
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We first define trick-taking schemes, which contain all the algorithms that are
used by the players. KeyGen allows each player to generate its public/secret key.
DeckGen is a protocol that distributes the cards. MakeDog allows to manipulate
a dog. GetHand determines the hand of a given player from its secret key and
the game key. Play allows a player to play a card, and to prove that it follows
the rules of the game. Verif allows the other players to check this proof. Finally,
GetSuit returns the leading suit of the current round. Formally:

Definition 1. A trick-taking scheme W , definied as a tuples composed
of algorithms (Init,KeyGen,VerifKey,DeckGen,GetHand,Play,Verif,GetSuit) exe-
cuted between m participants is defined as follows:

Init(K): It returns a setup parameter setup.
KeyGen(setup): It returns a key pair (pk, sk).
DeckGen: It is a m-party protocol, where for all i ∈ �1,m� the ith party, denoted

as Pi, takes as input (ski, {pkl}1≤l≤m). This protocol returns a deck D and a
game public key PK, or the bottom symbol ⊥.

GetHand(n, sk, pk,PK): It returns a set of cards H ⊂ D called a hand if the
player index n matches the keys.

Play(n, id, sk, pk, st,PK): It takes as input a player index n ∈ �1,m�, a card id, a
pair of secret/public key, a global state st that stores the relevant information
about the previous plays, the game public key PK and returns a proof Π, and
the updated global state st′.

Verif(n, id,Π, pk, st, st′,PK): It takes as input a player index n ∈ �1,m�, a card
identity id, a proof Π generated by the algorithm Play, the global state st
and the updated global state st′, the game public key PK and returns a bit b.
If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ Suits from the current global state of the game
st, where suit is the leading suit for the current turn.

An additional algorithm can be added to trick-taking schemes to support a dog:

MakeDog(n,PK): This is an m-party protocol outputting an updated game public
key PK based on the previously derived key and a player index n.

Trick-Taking Protocol. We now present the trick-taking protocol, which defines
the order of execution of the above algorithms. It is divided into three phases:
keys generation, shuffle and splitting of the card, and finally the game phase.

Definition 2. Let W be a trick-taking scheme potentially with a MakeDog algo-
rithm and K ∈ N be a security parameter. Let P1, . . . ,Pm be m polynomial-time
algorithms. The trick-taking protocol instantiated by W between P1, . . . ,Pm is
the following protocol:

Keys generation phase: P1 runs setup ← Init(K) and broadcasts setup. The
players set st =⊥. Each player Pi runs (pki, ski) ← KeyGen(setup) and broad-
casts pki.
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Shuffle phase: All the players start by checking the other players’ proofs. Then
P1 generates a deck D ∈ Decks and broadcasts it. The players generate PK
by running the protocol DeckGen together. For all i ∈ �1,m�, Pi runs Hi ←
GetHand(n, sk, pk,PK). Then if instantiated, the players run MakeDog based
on the derived game public key PK and for a common index n.

Game phase: This phase is composed of k (sequential) steps (corresponding
to the number of cards played in a game). The players initialize the current
player index p = 1. At each turn, Pp designates the player which plays. Each
step proceeds as follows:
– Pp chooses id ∈ Hp, then runs (Π, st′) ← Play(p, id, skp, pkp, st,PK).
– For all i ∈ �1,m�\ {p}, Pp sends (id,Π, st′) to Pi.
– Each Pi then checks that Verif(p, id,Π, pkp, st, st

′,PK) = 1, otherwise,
Pi sends error to Pp, which repeats this step.

– If Verif(p, id,Π, pkp, st, st
′,PK) = 1, all players update the state st := st′,

and update the index p that points to the next player according to the rule
of the game.

4.2 Security Properties

We now recall the security model of trick-taking protocols introduced in [5]. We
give a high-level description of its properties, the full formalism is given in the
full version [3]. Note that we adjusted some parts to make them more generic to
cover both the protocol of [5] and our Spades protocol (the model proposed in [5]
being too specific to the design of the related protocol). To formalise the security
of our French Tarot protocol, that does not fall within the general model, an ad
hoc model is depicted at the end of this section and detailed in [3].

In general, we consider a security experiment where a challenger interacts
with an adversary. The adversary simulates the behaviour of a malicious player
and its teammate, which we will refer to as an accomplice (we therefore consider
strong attacks where the adversary colludes with its teammate). The adversary
chooses the secret key of the malicious player and shares its public key after the
challenger has sent the public keys of the other three players, then the adversary
chooses its accomplice, and the challenger reveals the key of the accomplice to
the adversary. They then perform the shuffle phase, where the adversary plays
the role of the malicious user and its accomplice, and the challenger simulates
the behaviour of the other two players. Note that the challenger knows the secret
keys of three players, so it can determine their hands, and thus deduce the hand
of the malicious user. Finally, the adversary and the challenger simulate the
game phase, where the adversary plays the role of the malicious user and its
accomplice, and the challenger plays the role of the other two honest players.
Of course, the security properties we describe must be proven regardless of the
algorithm the challenger uses to simulate the two honest players.

Theft and Cheating Resistance: A protocol is theft-resistant when a player can-
not play a card that is not in its hand. To attack the theft-resistance, the adver-
sary must make the challenger accept a card that is not in the hand of the



176 R. Bella et al.

malicious player during the experiment with non-negligible probability. A pro-
tocol is cheating-resistant when a player cannot play a card that does not follow
the rules of the game. To attack the cheating-resistance in a trick-taking pro-
tocol, the adversary must make the challenger accept a card that is not of the
leading suit from the malicious player during the experiment with non-negligible
probability, even though it has such cards in its hand.

Unpredictability: The unpredictability ensures that the cards are dealt at ran-
dom. The adversary breaks this property if it can alter the shuffle in such a way
that a card chosen at the beginning of the experiment ends up in one chosen
hand with a significantly different probability than the usual distribution. Thus,
unpredictable holds if no adversary succeeds this attack for any chosen card
with a significant advantage. We have slightly modified this property to achieve
a stronger version that the one originally presented in [5]. Here, our adversary
chooses the card and the hand where it expects the card to be distributed.

Hand-Privacy: The hand-privacy ensures that the players do not know the hand
of the other players at the beginning of the game. This time, the adversary has
no accomplice, and the original experiment is truncated before the game phase.
The challenger then chooses two out of the three honest players, and randomly
picks one of their cards. To break the hand-privacy, the adversary must guess
which player owns this card with a non-negligible advantage.

Game-Privacy: A protocol is game-private when at each step of the game phase,
the players learn nothing else than the previously played cards. This property is
defined by a real/simulated experiment. In the real setting, the adversary plays
the real protocol with a challenger as in the experiment described above (again,
the adversary has no accomplice). In the ideal one, the protocol is simulated
using the public parameters of the honest users only. If there is a simulator such
that the adversary cannot distinguish whether it is playing a real or simulated
experiment with a non-negligible advantage, then the protocol is game-private.
Intuitively, this means that a player could have simulated the protocol itself
convincingly, which means that an adversary does not learn anything private
during the game. Note that the combination of hand-privacy and game-privacy
shows that the players have no information about the other players’ hands except
for all the cards they have already played.

Particularity of Dog’s Security. One would expect a dog (or any set of card set
aside in general) to behave as one of the player’s hands: it should not be possible
to steal (covered by theft resistance), to predict (unpredictability), to influence
(theft-resistance) nor learn the cards in the dog (hand and game privacy) at
the end of the shuffle. Despite fitting the model in terms of required properties,
games with dogs do not allow us to rely completely on what exists. As specified
above, the challenger must deduce the adversary’s hand from its knowledge of
the other three. With the dog, since some cards are not in the players’ hands,
this is no longer possible. The model must therefore be refined, at the expense
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of its genericity. Since the hand can no longer be implicitly inferred, we need to
add an extractable NIZK of the players’ secret keys to the formal definition to
allow the challenger to explicitly retrieve the hand of the adversary. A less ad
hoc model is left as an open problem.

In addition, to empower our adversary we let it decide which player takes
and its bet. A second accomplice is also granted. Based on the rules of the Tarot
game, the security of the dog should be insured through an additional property.
The rules disallow to place some cards in the dog during the MakeDog algorithm.
The latter is ensured through a property that we call Dog security.

5 Our Spades Protocol

We first define our new Spades protocol based on the randomisation of ElGamal.
Here the deck D contains 52 cards, and each of the 4 players hands 13 cards.

Definition 3. Algorithms of our Spades scheme are instantiated as follows:

Init(K): It generates a group G of prime order q, a generator g ∈ G and returns
setup = (G, q, g).

KeyGen(setup): It picks dk
$← Z

∗
q and computes ek = gdk. Then a proof of knowl-

edge Πek = ZK{dk : ek = gdk} is computed and (sk = dk, pk = (ek,Πpk)) is
returned.

DeckGen: It is a 4-party protocol, where for all i ∈ �1, 4� the ith party is denoted
as Pi, and takes as input his/her secret keys ski and the public keys of all the
players {pkl}1≤l≤4. This protocol returns a game public key PK, or ⊥.
Phase 1:
– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id52) and computes pk =

∏4
i=1 eki, then

for all j ∈ �1, 52� each player computes c0,j ← (g, pk · idj) and set c0 ←
(c0,j)1≤j≤52.

– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a per-
mutation δi ∈ �1, 52�52, and (ri,j)1≤j≤52

$← (Z∗
q)

52. Pi then computes
ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤52) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
. (1)

Finally, Pi sets ci ← (ci,j)1≤j≤52 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:
– For all i ∈ �1, 4�, player Pi parses c4 = (c4,j)1≤j≤52 and c4,j = (xj , yj).
– For all j ∈ �1, 52�\�13 · (i − 1) + 1, 13 · i�, each Pi computes θ(i,j) = xski

j ,

πi,2 ← ZK

{

ski :
∧

j∈�1,52�\�13·(i−1)+1,13·i�
θ(i,j) = xski

j ∧ pki = gski

}

, (2)

then Pi broadcasts (θ(i,j))j∈�1,52�\�13·(i−1)+1,13·i� and πi,2.
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– For all i ∈ �1, 4�, for all l ∈ �1, 4�, for all j ∈ �13 · (l − 1) + 1, 13 ·
l�, each Pi computes c∗

j ←
(
xj ,

yj∏
1≤γ≤4;γ �=l θ(γ,j)

)
, and verifies the proofs

(πγ,2)γ∈�1,4�\{i}.
– Each player returns PK ← (c∗

j )1≤j≤52.
GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗

j )1≤j≤52 and returns a
hand H ← {Decsk(c∗

j )}j∈�13·(n−1)+1,13·n�.
Play(n, id, sk, pk, st,PK): It parses PK = (c∗

j )1≤j≤52 and the state element st =
(α, suit, U1, U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4.
Let t ∈ �13 · (n − 1) + 1, 13 · n� be the integer such that id = Decsk(c∗

t ). It sets
U ′

n = Un ∪ {t}. Note that at each step of the game, the set Un contains the
indices of all the (c∗

j )j∈�13·(n−1)+1,13·n� that have already been used by player n
to play a card. For all i ∈ �1, 4�\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states which
suit is the leading suit of the round, given by the first card played in the round.
This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c∗
t )} , (3)

which proves that the played card id matches one of the ciphertexts in PK
attributed to the player n. Let L ⊂ �1, 52� be a set such that for all l ∈ L,
suit′ �= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit this round. Then it produces:
– If suit′ = id.suit or if |Un ∪ {t}| = 13, it sets Π1 ←⊥ (if the card id is of

the leading suit, then the player can play it in any case).
– If suit′ �= id.suit and |Un ∪ {t}| < 13, it generates

Π1 = ZK

{

sk :
∧

j∈�13·(n−1)+1,13·n�
j �∈Un∪{t}

∨

l∈L

idl = Decsk(c∗
j )

}

. (4)

Which proves that the player n cannot play a card of the leading suit.
Finally, it returns the proof Π = (t,Π0,Π1), and the updated value st′.

Verif(n, id,Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,
suit′, U ′

1, U
′
2, U

′
3, U

′
4), the key PK as (c∗

j )1≤j≤52, and Π as (t, Π0,Π1). First
checks if t ∈ �13 · (n − 1) + 1, 13 · n�, if not return 0. If st =⊥, it sets four
empty sets U1, U2, U3 and U4. Let L ∈ �1, 52� be a set such that for all l ∈ L,
suit′ �= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit. This algorithm first checks that the state st is correctly updated:
– If there exists i ∈ �1, 4�\ {n} such that U ′

i �= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} �= U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ �= 1 or suit′ �= id.suit, then it returns 0.
– If α �= 4 and suit �=⊥, and α′ �= α + 1 or suit′ �= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat
by playing a card it has not, or by playing a card that is not of the leading
suit even though it could play a card of the leading suit.
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– If Π0 is not valid then it returns 0.
– If suit′ �= id.suit and there exists an integer j ∈ �1, 13� such that (13 · (n−

1) + j) �∈ Un and Π1 is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

Security. This Spades protocol relies on the unpredictability of the randomness
introduced by the players, security of the ZKP and the DDH hypothesis.

Theorem 1. Given proofs of knowledge with soundness, extractability and
zero-knowledge, our protocol is theft-resistant, cheating-resistant, hand-private,
unpredictable, and game-private under the DDH assumption.

For lack of space, the proof of this theorem is given in the full version [3].

6 Our French Tarot’s Protocol

We now show how to achieve a protocol that contains a dog through highlighting
an instantiation of a Tarot protocol. Adapted from our previously presented
Spades scheme of Sect. 5, we need to address the MakeDog algorithm based on
the rules of this game. We present this protocol for 4 players and a regular deck
of 78 cards. Based on the rules this leads to 18 cards for each player and a dog
composed 6 cards. We assume that cards indexed by i ∈ �73, 78� are reserved for
the dog and that O contains the cards that may not be discarded in the dog.

Definition 4. Our French Tarot protocol is defined similarly to Definition 3
(the few differences are implied trivially by the specificity of the rules) except for
the algorithm MakeDog defined as follows (see the full version [3] for details).

MakeDog: It is a 4-party protocol taking as input the index n of a player.
– For all i ∈ �1, 4�, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).
– For all j ∈ �73, 78�, each Pi send θ(i,j) = xski

j , as well as a proof π′
i,2 ←

ZK
{
ski :

∧
j∈�73,78� θ(i,j) = xski

j ∧ pki = gski

}
.

– For all i ∈ �1, 4�, j ∈ �73, 78�, each Pi recovers id∗
j ←

(
yj∏

1≤γ≤4 θ(γ,j)

)
, the

cards of the dog, and verifies the proofs (π′
γ,2)γ∈�1,4�\{i}.

– Pn shuffles its cards with the dog: first sets c∗
j = (g, pk·idj) for j ∈ �73, 78�,

then let K = �18 · (n − 1) + 1, 18 · n� ∪ �73, 78�. It picks a permutation
δ ∈ K24, and (rj)j∈K

$← (Z∗
q)

24, computes c5,j ← Rand(c∗
δ(j), rj , pk) for

j ∈ K and a proof π5 ← ZK
{
(δ, (rj)j∈K) : c∗

5,j = Rand(c∗
δ(j), rj , pk)

}
. For

all j ∈ �1, 78� \ K, set c5,j ← c∗
j . Player Pn sets c∗ ← (c5,j)1≤j≤78.

– Pn shows that it follows the rules and did not put unauthorized card in
the dog by producing the proof:

Πn ←− ZK

{

skn :
∧

j∈�73,78�

∨

l/∈O

idl = Decskn
(c5,j)

}

, (5)
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then it sends (c∗, π5,Πn). If Pn has no choice but to put l trumps in
the dog, then it cannot produce this proof. Let j1, . . . , jl ∈ �73, 78� be the
indices of these cards. In this case, Pn produces the tokens θjk

= xskn
jk

and

the proofs πjk
← ZK

{
skn : θjk

= xskn
jk

∧ pki = gski

}
for 1 ≤ k ≤ l. It also

proves than it cannot proceed otherwise:

Π ′
n ←− ZK

{

skn :
∧

j∈�18·(j−1)+1,18·j�

∨

l∈O

idl = Decskn
(c5,j)

}

, (6)

and then produces proof 5, with j ∈ �73, 78� \ {j1, . . . , jl}. Player Pn then
broadcasts (c∗, π5,Πn) and (Π ′

n, {θjk
, πjk

}1≤k≤l).
– Each Pi for i ∈ �1, 4� \ {n}, checks all the received proofs and checks

that for all j ∈ �1, 78� \ K, c5,j = c∗
l . In case Pn has revealed a card, Pi

computes idjk
← yjk

/θjk
and checks idjk

is an authorised oudler.
– Each player returns PK ← c∗.

Theorem 2. Given proofs of knowledge with soundness, extractability and zero-
knowledge, our tarot protocol is theft-resistant, cheating-resistant, hand-private,
unpredictable, game-private and dog-secure under the DDH assumption.

This theorem is based on similar arguments as exposed in Sect. 5. The proof
is available in the full version [3].

7 Conclusion

In this paper, we modify and expand the security model for trick-taking games.
It encompasses the security for a broader range of protocols and enables to
put aside some cards after the shuffle and appoint them to a player later in
the game. Two new trick-taking schemes with security in the standard model
are proposed. These protocols can be instantiated with any proof of shuffle on
partially homomorphic encryption, which makes them efficient and usable.

Future work would consist in implementing them in real conditions, with real
and not simulated interactions between the players.
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Abstract. While the integrity of digital data can be ensured via digital
signatures, ensuring the integrity of physical data, i.e., objects, is a more
challenging task. For example, constructing a digital signature on data
extracted from an object does not necessarily guarantee that an adver-
sary has not tampered with the object or replaced this with a cleverly
constructed counterfeit. This paper proposes a new concept called signa-
tures for objects to guarantee the integrity of objects cryptographically.
We first need to consider a mechanism that allows us to mathemati-
cally treat objects which exist in the physical world. Thus, we define a
model called an object setting in which we define physical actions, such
as a way to extract data from objects and test whether two objects are
identical. Modeling these physical actions via oracle access enables us
to naturally enhance probabilistic polynomial-time algorithms to algo-
rithms having access to objects—we denote these physically enhanced
algorithms (PEAs). Based on the above formalization, we introduce two
security definitions for adversaries modeled as PEAs. The first is unforge-
ability, which is the natural extension of EUF-CMA security, meaning
that any adversary cannot forge a signature for objects. The second is
confidentiality, which is a privacy notion, meaning that signatures do
not leak any information about signed objects. With these definitions
in hand, we show two generic constructions: one satisfies unforgeability
by signing extracted data from objects; the other satisfies unforgeability
and confidentiality by combining a digital signature with obfuscation.
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1 Introduction

Cryptography provides a formal ground to authenticate and secure digital data.
For instance, by using a signature scheme to sign a (digital) message, the verifier
can detect fraudulent activities such as message injections and impersonation
attacks, while further providing a mechanism to hold the signer accountable for
the message.

On the other hand, authenticating physical data (or what we simply call
objects) are much more challenging. Consider a hardware vendor shipping a
microchip to a client. While the client may hold a digital receipt of the transac-
tion, this does not prevent an adversary from substituting the product from a
counterfeit. Unless the counterfeit is obviously non-functional, it would be diffi-
cult for an average consumer to detect the authenticity of the received product.
Moreover, even if the product was non-functional, the client would not know if
it was an inferior vendor or if a substitution attack occurred since the sender of
the product cannot be held accountable by cryptographic means.

The inability to authenticate objects has had a grave economic impact. This
is exacerbated by the globalization of supply chains: since each component of
a product can be made in different regions and countries, protecting against
substitution attacks becomes increasingly difficult. The OECD and the EU’s
Intellectual Property Office report that 3.3% of global trade, which amounts to
509 Billion USD, is counterfeit or pirated goods [23] out of which the market
for counterfeit electronic is 169 Billion USD according to Havocscope [1]. In
2019, the United States Department of Homeland Security reports the estimated
manufacture’s suggested retail price (MSRP) for seized electronic goods to be 106
Billion USD [2]. The amount of damage could be amplified if we consider indirect
consequences of such counterfeit electronics. For example, a tiny microchip was
injected in the server’s motherboard of Elemental during manufacturing [27];
the server was obliviously used by the Department of Defense data centers, the
CIA’s drone operations, and the onboard networks of Navy warships.

While various countermeasures are taken by companies and state actors to
digitally and physically secure the global supply chains, there is still much to
be improved. In the above example, once a counterfeit makes it into the supply
chain and received by a consumer, it seems difficult to detect such substitution
within the current systems. An ambitious goal would be to cryptographically
secure the supply chains by authenticating objects as we do digital data. In
other words, can we use cryptography to formally prove that it is difficult for
adversaries to modify an object without being detected, while further holding
the sender of an object accountable? This is the question we tackle in this work.

1.1 Our Contribution

In this work, we lay the foundation of digitally authenticating objects (i.e., phys-
ical data) and propose a new concept called signatures for objects (SfO). The
combination of a SfO and a standard signature for digital data brings us one
step closer to the sought-after goal of cryptographically securing the entire global
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supply chain: any injection of forged objects and digital data become detectable
and the original signer (i.e., sender) of these objects and digital data can be held
accountable.

Concretely, we first introduce new tools to formally handle objects in a cryp-
tographically sound manner. To give an idea, an object exists in the physi-
cal world while a signature produced by a Turing machine (or a probabilistic
polynomial-time (PPT) algorithm) exists in the digital world. Therefore, at the
minimum, there needs to be a mechanism to translate objects into digital data
which a Turing machine can operate on. While there have been several research
aiming to bridge the digital world and the physical world (e.g., [15,24,30]) , we
are the first to formalize physically-enhanced algorithms (PEA)—a new compu-
tational model that enhances standard PPT algorithms by physical properties.

With PEA formalized, we define a signature of objects with an intuitive
unforgeability security notion analogous to standard digital signatures. That is,
(informally) an adversary should not be able to forge a signature on an object
that has not been signed before. We then provide a simple and efficient generic
construction based on any standard signature scheme. We further explore a
potentially relevant security notion of confidentiality—again analogous to those
considered for standard signature schemes [8]—and construct an SfO scheme
satisfying this security notion based on obfuscation [3,4]. We elaborate on our
contributions below.

How to Treat Objects. To treat physical object in a cryptographically sound
manner, we need to answer the following fundamental questions: (A) how to
capture objects in a well-defined way, (B) how to translate objects into digital
data, and (C) how to enhance the definition of PPT algorithms to handle objects.
Answering these questions will be the main theoretical contribution of our work.

We first define an object setting to answer the questions (A) and (B). Infor-
mally, an object setting is defined with respect to a relation function and a
sensing function. At a high level, the (possibly non-efficient) relation function
decides whether two objects are the same, e.g., two laptops may be considered
the same object if they are the same model, or they may be considered differ-
ent with different MAC addresses for each individual. A sensing function on the
other hand takes an object as input and outputs a digital digest of the object.
For instance, a sensing function could be a photograph of an object along with its
weight, size, and color. The concrete definition of an object setting is necessarily
application dependent.

We then define physically-enhanced algorithms (PEAs) to answer the ques-
tion (C). A PEA should capture all the intuitive and natural capability of an
algorithm having access to an object. Continuing with the above example, given
a laptop, we can consider taking some pieces out from the laptop. Formally,
we capture these capabilities by enhancing the definition of a PPT algorithm
by further giving it oracle access that embeds an object. For instance, a PPT
algorithm can query a bit string that represents, say “open a laptop”, to the
oracle and the oracle will modify the embedded laptop accordingly. Impor-
tantly, only giving handles to objects and not the object itself is what allows to
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naturally enhance PPT algorithms to PEAs. We also introduce a sub-class of
PEAs that we call sensing algorithms, whose only physical action is to use the
sensing function. More details are provided in Sect. 3.2. With object settings and
PEAs formally defined, we are ready to modify standard cryptographic primi-
tives defined against PPT algorithms to PEAs.
How to Sign Physical Data: Signature for Objects. In this work, we pro-
pose a new cryptographic primitive called signature for objects (SfO). At a high
level, it is defined analogously to standard digital signatures, where the differ-
ence is that signing and verification is done with respect to objects. To formally
define such an idea, we rely on an object setting, PEAs, and sensing algorithms
as defined above. Specifically, the signing algorithm of a SfO is a sensing algo-
rithm, instead of the usual PPT algorithm, which has oracle access to a sensing
function: given an object, the signing algorithm can query the sensing function
to obtain a digital digest of the object and finally outputs a digital signature.1
The verification algorithm, which is also a sensing algorithm, is defined similarly.
It takes a digital signature along with an object as input and verifies the validity
of the signature.

Correctness of SfO is defined using the relation function defined above. If the
two objects that the signing and verification algorithms take as input are iden-
tical under the relation function, then the signature should verify. In particular,
unlike digital data where equivalence is easy to check (i.e., check if the bit strings
are identical), we require relation functions to check equivalence of objects.

Security of SfO is captured by existential unforgeability under chosen-object
attacks (EUF-COA security), which is analogous to existential unforgeability
against chosen-message attacks (EUF-CMA) for an ordinary digital signature
scheme. The adversary is a PEA and we allow it to query for signatures on
different objects. However, the definition requires subtle care since we cannot
allow the adversary to query arbitrary objects. For instance, we can consider an
adversary that queries a device solving factorization in polynomial time. While
such a pathological adversary can break any cryptographic scheme based on the
hardness of factorization, it does not appropriately capture a practical adversary.
To remove these pathological adversaries, we restrict the adversary so that it can
obtain signatures on objects that can be obtained by performing some action
(e.g., turning in some other direction, heating it up) on the challenge object.
Specifically, the adversary can only perform actions on the challenge object by
means of oracle calls, where the set of allowed actions will be defined by the
object setting. In reality, this reflects the intuition that a counterfeit can be
created through modifying the original product.

Finally, once all the definitions of a SfO are formalized, the construction of
a SfO is simple and intuitive. We provide an efficient generic construction of an
SfO signature scheme that satisfies EUF-COA security, based on any standard

1 Recall that the input and output of a sensing algorithm are the same as PPT. The
only difference is that it also has oracle access to sensing functions, which allows to
indirectly operate on objects.



186 R. Hayashi et al.

digital signature scheme. See Sect. 3.2 for the definition of sensing algorithms and
PEAs, Sect. 3.3 for the definitions for SfO, and Sect. 3.4 for the construction.
Adding Confidentiality. In some applications of SfO, it is possible that the
signature on a particular object gets leaked to the public. If the object being
signed is sensitive, e.g., an unpublicized hardware, then we would like the signa-
ture to leak no information of the object.

To this end, we consider an additional security notion for SfO called confiden-
tiality under chosen-object attacks (Conf-COA security). This is a simulation-
based security definition, similar to the semantic security of public-key encryp-
tion [13] and virtual black-box security of obfuscation [3,4]. Informally, we say
that a SfO scheme is Conf-COA secure if for any PEA adversary A that, given a
signature of some object, tries to guess some information about the data of object
being signed, there exists a PEA simulator S that can succeed the guess without
seeing the signature. We then show a generic construction and instantiation of
an EUF- and Conf-COA secure scheme by combining a standard signature and
an obfuscation. See Sect. 4 for the details.

1.2 Related Works

Relationship to Existing Digital Signature Schemes. Some existing works
considered confidentiality for standard signature schemes [8,10]. In our setting,
data to be signed is fuzzy (i.e., sensing outputs can be different every time), so
there are challenges in applying these technologies to our model. There also exist
some works that use fuzzy data for creating signing keys [20,31,33]. However,
we sign on fuzzy data rather than generating signing keys from it, so our model
is orthogonal to theirs.
Relationship to Existing Physical Cryptographic Protocols. Some works
have proposed cryptographic protocols that consider physical actions (e.g., posi-
tion based cryptography [7], physical zero-knowledge [9], card-based cryptogra-
phy [21]). These works construct protocols using physical information, but they
do not formalize physical things in a cryptographically sound manner. Another
related work by Ishai et al. [15] studied sensing as a cryptographic function. We
again note that we are the first to formalize physical actions cryptographically.
Implementation of Sensing and Identification of Objects. To realize a
signature for objects scheme, we need to implement a sensing function which
allows us to extract data from objects (e.g., photographic images) with which
we can identify objects. We can use object detection/recognition tools as sens-
ing, which have been proposed since the recent progress of machine learning
(e.g., [14,18,19,25,26]). Another candidate technique to realize sensing and iden-
tification of objects is via a physically unclonable function (PUF) [12,24]. (See
the paragraph Examples. in Sect. 3.1.)
Supply Chain Security. There has been much interest in supply chain secu-
rity. Lee et al. [17] showed that a safer supply chain could be achieved at a
lower cost by re-designing appropriate management and operational design using
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information technology. In recent years, research has been conducted using the
latest technologies, such as blockchain (e.g., [16,22,28]) and machine learning
(e.g., [5,29,32]), to configure more secure supply chains. However, discussions of
security in these studies are heuristic and typically there are no formal security
models and/or proofs.

2 Preliminaries

In this section, we review basic notation and existing cryptographic notions used
in this paper.

Basic Notation. N, Z, and R denote the sets of all natural numbers, integers,
and real numbers, respectively. For n ∈ N, we define [n] := {1, . . . , n}. For a set
S, |S| denotes its size. For two strings x and y, (x ?= y) is defined to be 1 if
x = y and 0 otherwise. For a probabilistic algorithm A, we write x ← A(y) to
mean that A on input y outputs x, and when we need to make the randomness
r used by A explicit, we write x ← A(y; r) (in which case the computation of A
is deterministic with respect to the inputs y and r). We say that a non-negative
function f : N → R is negligible if for all c ∈ N there exists λ0 ∈ N such that
f(λ) ≤ λ−c for all λ ≥ λ0. “negl” denotes an unspecified negligible function, and
“poly” denotes an unspecified positive polynomial. PPT stands for probabilistic
polynomial-time.

2.1 Digital Signature

Here we briefly recall the definition of an ordinary digital signature scheme. A
digital signature scheme DS consists of the following three PPT algorithms.

DS.KG(1λ) → (vk, sk): This is the key generation algorithm, which takes the
security parameter 1λ as input, and outputs a verification/signing key pair
(vk, sk).

DS.Sign(sk,m) → σ: This is the algorithm for generating a signature, which takes
a signing key sk and a message m as input, and outputs a signature σ.

DS.Ver(vk,m, σ) → 1/0: This is the algorithm for verifying a signature, which
takes a verification key vk, a message m, and a signature σ as input, and
outputs 1 (accept) or 0 (reject).

As the correctness condition, we require that for all λ ∈ N, (vk, sk) ←
DS.KG(1λ), m ∈ {0, 1}∗, and σ ← DS.Sign(sk,m), we have DS.Ver(vk,m, σ) = 1.

We recall the definition of existential unforgeability under chosen-message
attacks (EUF-CMA security). For a digital signature scheme DS = (DS.KG,
DS.Sign,DS.Ver) and a PPT adversary A, we consider the following experiment:

ExptEUF-CMA
DS,A (λ) :

⎡
⎢⎢⎣
Msg ← ∅; (vk, sk) ← DS.KG(1λ);
(m′, σ′) ← ADS.Sign(sk,·)(vk);
If DS.Ver(vk,m′, σ′) = 1 ∧ m′ 	∈ Msg
then return 1 else return 0

⎤
⎥⎥⎦
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Fig. 1. The experiments for defining distributional VBB security of an obfuscator Obf.
In the simulator’s experiment ExptdVBB-SimObf,S,P (λ), SC means that S has oracle access to
the circuit C.

where DS.Sign(sk, ·) is the signing oracle that takes a message m as input and
operates as follows: it updates Msg by Msg ← Msg∪ {m}, computes a signature
σ ← DS.Sign(sk,m), and returns σ to A.

Definition 1 (EUF-CMA). We say that a digital signature scheme DS is
EUF-CMA secure if for any PPT adversary A, we have AdvEUF-CMA

DS,A (λ) :=
Pr[ExptEUF-CMA

DS,A (λ) = 1] = negl(λ).

2.2 Obfuscation

Here, we recall the definitions for obfuscation (for circuits) [4] that we use in this
paper.

Let C = {Cλ}λ∈N be a class of polynomial-size circuits. Let Obf be a PPT
algorithm that takes the security parameter 1λ and a circuit C ∈ Cλ as input,
and outputs some circuit C̃ (called an “obfuscated circuit”). Obf is said to be
an obfuscator for C if it satisfies the following functional requirements: For all
λ ∈ N and C ∈ Cλ, we have

– (Correctness (a.k.a. functionality preservation):) If C̃ ← Obf(1λ, C), we have
that C(x) = C̃(x) for all inputs x (in the domain of C).

– (Polynomial slowdown:) |C̃| = poly(λ, |C|).
For a security notion for obfuscation, we will consider distributional virtual

black-box (VBB) security [3], which is sufficient for our purpose.

Definition 2 (Distributional Virtual Black-Box Security). Let Obf be
an obfuscator for a circuit class C = {Cλ}λ∈N. Let D = {Dλ}λ∈N be a class of
distributions such that Dλ is a distribution over Cλ for each λ ∈ N. We say
that Obf is distributional virtual black-box (VBB) secure for D if the following
holds: For any PPT adversary A, there exists a PPT simulator S such that for
any PPT predicate P, we have AdvdVBBObf,A,S,P(λ) := |Pr[ExptdVBB-RealObf,A,P (λ) = 1] −
Pr[ExptdVBB-SimObf,S,P (λ) = 1]| = negl(λ), where the real experiment ExptdVBB-RealObf,A,P (λ)
and the simulator’s experiment ExptdVBB-SimObf,S,P (λ) are defined as in Fig. 1.
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3 Signature for Objects: Definition and Basic
Construction

This section provides the definitions for signature for objects (SfO). An SfO
scheme enables us to generate a signature on an object and to detect a replace-
ment for a fake one by verifying a signature.

We note that in order for this type of signature primitive to be possible,
there must first exist some mechanism to (1) extract some digital data from an
object, and (2) judge whether two objects are the same or not. (For example,
imagine a setting of identifying objects based on photographic images of the
objects (taken by a camera) by using some technology of image recognition and
machine learning.) In this paper, we assume that such a mechanism is given, and
define an SfO scheme on top of such a mechanism. Therefore, we first formalize
such a mechanism for extracting digital data of objects as well as identifying
objects as an object setting, and then give a formalization for SfO. For defining
the security of SfO, we would like to consider a class of adversaries that can
perform some physical actions on objects. To this end, we also introduce the
notion of physically-enhanced algorithms (PEAs) that captures such a class of
adversaries.

The rest of this section is as follows: In Sect. 3.1, we give a formalization for
an object setting. In Sect. 3.2, we give definitions for a class of algorithms that
can handle objects. Then, in Sect. 3.3, we give definitions for an SfO scheme.
Finally, in Sect. 3.4, we show our basic construction of SfO as well as its proof
of security.

3.1 Object Setting

Here, we give the definition for an object setting in which (1) how to extract
data from an object, and (2) how to identify two objects, are defined. Looking
ahead, an SfO scheme as well as the class of adversaries for it will be based on
top of this setting.

Definition 3 (Object Setting). An object setting OS consists of (X,V,X ,D,
Sen, RX, RD,C), each of which is defined as follows:

X: This is the set of all objects that can be treated by the sensing function Sen
explained below.

V (⊆ X): This is a subset of X. We will refer to the elements in V as valid
and will require that for the sensing function Sen defined below, it holds that
Sen(x) 	= ⊥ if and only if x ∈ V.

X : This is a distribution over V. When a new object is created, it follows this
distribution.

D (⊆ {0, 1}∗): This is the set of all (digital) data that could be generated by the
sensing function Sen explained below.

Sen: This is a “sensing” function that takes an object x ∈ X as input, and outputs
data D ∈ D or the special invalid symbol ⊥ /∈ D. This models some device
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that “extracts” digital information from an object.

As highlighted above, we require that for all x ∈ V we have Sen(x) 	= ⊥
whereas for all x ∈ X \ V, we have Sen(x) = ⊥.

RX : X×X → {0, 1}: This is a relation between two objects for identifying if two
objects are identical. That is, x, x′ ∈ X are considered the same objects if and
only if RX(x, x′) = 1.
(We note that such a relation may not be efficiently computable in general,
depending on a setting.)
We require RX(x, x) = 1 for all x ∈ X.

RD : D × D → {0, 1}: This is a relation between data.

We require that this is computable by a deterministic PT algorithm. We also
require that for all x, x′ ∈ V, we have RX(x, x′) = RD(Sen(x),Sen(x′)).

C: This is the set of “command” functions, which models physical actions to
objects. A command function may be a probabilistic function, and takes an
object (or multiple objects2) as input, and outputs a new object x′ ∈ X ∪ {⊥}
and some auxiliary (digital) information z ∈ {0, 1}∗ about x and x′. Put
differently, if cmd ∈ C, then cmd : X∗ → (X ∪ {⊥}) × {0, 1}∗.
Note that Sen can be naturally cast as a command function that takes an
object x ∈ X as input, and outputs (no object and) data D ∈ D as auxiliary
information of x, and with this interpretation, we require that C contain Sen.
We also require that C contain the special command Create that, when invoked,
generates and returns a new object x ∈ V by x ← X (and no auxiliary
information).

On the Relationship Between RX and RD. Note that we require that for all
x, x′ ∈ V, we have RX(x, x′) = RD(Sen(x),Sen(x′)). This might seem a somewhat
too idealized condition, say if we think of a setting where objects are identified
by some image recognition technology based on machine learning, which may not
necessarily support error-less identification of two objects by their corresponding
data. One possible interpretation of our treatment is that we implicitly assume
the identification of objects using solely their corresponding data taken via Sen.
For simplicity, we stick to the above treatment, but it will be interesting to
investigate whether some relaxation for the relation between RX and RD can be
introduced.

Examples. Here, we give some examples of an object setting. Consider a setting
where electric chips are manufactured in a factory. Suppose the chips can be
identified with some photographic images taken by a camera using some tech-
nology of image recognition (say, based on machine learning). Then, the set of
valid objects V corresponds to the chips produced in the factory, and Sen corre-
sponds to the camera for taking a photographic image. The set of all data D is
then photographic images that can be generated by the camera (i.e., Sen). RX

2 We assume that the arity of an input is specified for each command function.
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identifies two chips x and x′ iff x and x′ are the same chip, and RD judges if they
are the same in the images taken by Sen. X corresponds to the way a new chip
is produced in the factory. C may contain any action that can be physically per-
formed on a chip, say turning in some other direction, heating it up, and cutting
it into two, etc. (Note that C could contain actions that destroy an object.)

In another example, where an electric chip admits a physically unclonable
function (PUF) [12,24] that can be used for identifying two objects, Sen cor-
responds to obtaining the PUF-value of a given chip, and RD will identify two
objects to be identical if the given PUF-values are “close” (where the features of
the PUF will determine the closeness). Other components will remain the same.

3.2 Algorithms that Can Interact with Physical Objects

As a preparation for defining SfO, we introduce two types of algorithms that can
treat physical objects, a sensing algorithm and a physically-enhanced algorithm,
which are both associated with an object setting OS. Informally, a sensing algo-
rithm models an algorithm that can extract digital data from a physical object
via a sensing function Sen supported in OS. On the other hand, a physically
enhanced algorithm (PEA) models an algorithm that can indirectly interact
with objects via command functions cmd ∈ C supported in OS.

Our main idea behind the formalization here is that interactions between
algorithms and physical objects are done only via the sensing function (in the
case of a sensing algorithm) or command functions (in the case of a PEA), and
are conducted outside algorithms. Looking ahead, sensing algorithms are a class
of algorithms to which the signing and verification algorithms for an SfO scheme
belong, while PEAs are a class of algorithms to which an adversary against the
security of an SfO scheme belongs.

The formal definitions of these notions are as follows.

Definition 4 (Sensing Algorithm and Physically-Enhanced Algo-
rithm). Let OS = (X,V,X ,D,Sen, RX, RD,C) be an object setting.

– A sensing algorithm with respect to OS is a PPT algorithm that has access
to an object x ∈ X given as an input via the sensing function Sen with which
data D ∈ D from the object x can be extracted.
In order to distinguish an object from ordinary (digital) inputs given as an
input to a sensing algorithm, we will use the boxed notation. For example, if
A is a sensing algorithm and is given an object x ∈ X as an input, we write
A( x ).

– A physically-enhanced algorithm (PEA) with respect to OS is a PPT algo-
rithm that has access to the command oracle OC explained next.
The command oracle OC maintains a counter c (initially 0) and an ordered
list LX of objects (initially empty). OC accepts a “command” query consisting
of (the name of) a command function cmd ∈ C and optionally a set of indices
(i1, . . . , in) ∈ [c]n (where n is the number of inputs that is specified by cmd).
Then, it sets c ← c+1, computes (xc, zc) ← cmd(xi1 , . . . , xin), appends xc to
the end of the list LX, and returns zc to the caller.
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We will omit “with respect to OS” when it is clear from context.

3.3 Signature for Objects

Let OS = (X,V,X ,D,Sen, RX, RD,C) be an object setting. A signature for
objects (SfO) scheme SfO with respect to OS consists of the following algo-
rithms.

SfO.KG(1λ) → (VK,SK): This is a PPT algorithm for key generation. It takes
the security parameter 1λ as input, and outputs a key pair (VK,SK).

SfO.Sign(SK, x ) → σ: This is a sensing algorithm for generating a signature. It
takes as input a signing key SK and an object x ∈ X as input, and outputs a
signature σ.

SfO.Ver(VK, x , σ) → 1/0: This is a sensing algorithm for verifying a signature.
It takes a verification key VK, an object x ∈ X, and a signature σ as input,
and outputs 1 (accept) or 0 (reject).

As the correctness condition, we require that for all λ ∈ N, x, x′ ∈ V such
that RX(x, x′) = 1, (VK,SK) ← SfO.KG(1λ), and σ ← SfO.Sign(SK, x ), we have
SfO.Ver(VK, x′ , σ) = 1.

Basic Security Definition: Unforgeability. Here, we introduce a natural adoption
of EUF-CMA security for ordinary signatures to the setting of SfO schemes,
which we call existential unforgeability under chosen-objects attacks (EUF-COA
security). Similarly to EUF-CMA security for an ordinary signature scheme,
EUF-COA security guarantees that it is hard for any PEA adversary to forge a
signature on objects for which they have never obtained signatures. Note that a
PEA adversary may generate a new object via queries to the command oracle
OC, and it is allowed to obtain signatures for any objects in the object list LX

maintained in OC.
Formally, the EUF-COA security for an SfO scheme is defined as follows. Let

OS = (X,V,X ,D,Sen, RX, RD,C) be an object setting, and let SfO = (SfO.KG,
SfO.Sign,SfO.Ver) be an SfO scheme with respect to OS. Consider the following
experiment ExptEUF-COA

SfO,A (λ) in which a PEA adversary A is executed3:

ExptEUF-COA
SfO,A (λ) :

⎡
⎢⎢⎣

c ← 0; LX ← ∅; Ind ← ∅;
(VK,SK) ← SfO.KG(1λ); (i′, σ′) ← AOC,OSign(VK);
If SfO.Ver(VK, xi′ , σ′) = 1 ∧ ∀j ∈ Ind : RX(xi′ , xj) = 0
then return 1 else return 0

⎤
⎥⎥⎦

where OC is the command oracle for A defined in Definition 4 (which updates
the counter c and the object list LX upon a query from A), and OSign is the
signing oracle that takes an index i ∈ [c] as input, and operates as follows: it
updates Ind by Ind ← Ind ∪ {i}, computes a signature σ ← SfO.Sign(SK, xi ),
and returns σ.
3 We remind the reader that as defined in Definition 4, a PEA has access to the

command oracle OC that internally maintains the counter c and the object list LX,
which we use for defining A’s winning condition here.
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Fig. 2. The SfO scheme SfO1.

Definition 5 (EUF-COA). We say that an SfO scheme SfO with respect to
an object setting OS is EUF-COA secure if for any PEA adversary A, we have
AdvEUF-COA

SfO,A (λ) := Pr[ExptEUF-COA
SfO,A (λ) = 1] = negl(λ).

On Security of Ordinary (Non-physical) Cryptographic Primitives Against PEA
Adversaries. In this paper, we will construct an SfO scheme using ordinary (non-
physical) cryptographic primitives as building blocks, and in the security proof,
we would like to reduce the security of the proposed signature for objects schemes
to that of the building blocks. However, one can quickly realize that there is a
subtle technical problem: Although the security of an SfO scheme is defined with
respect to PEA adversaries, that of ordinary cryptographic primitives is defined
with respect to standard PPT adversaries that cannot deal with physical objects,
and thus there is a mismatch regarding the class of adversaries. To circumvent
this subtle problem, we simply assume that the ordinary cryptographic primitives
used as building blocks are secure against PEA adversaries. We believe that this
is a reasonable assumption, since ordinary cryptographic primitives are defined
(and their security are proved) independently of any object setting. (It will be
a ground-breaking finding if there is a cryptographic primitive whose security
is defined with respect to PPT adversaries can be attacked if an adversary can
perform some physical action.)

3.4 Basic Construction

Here we show our first construction SfO1, which is constructed by simply com-
bining an ordinary digital signature scheme DS and the relation function RD

supported in an underlying object setting OS.
OS = (X,V,X ,D,Sen, RX, RD,C) be an object setting. Let DS = (DS.KG,

DS.Sign,DS.Ver) be an ordinary digital signature scheme. Then, using DS as a
building block, we construct an SfO scheme SfO1 as described in Fig. 2.

It is straightforward to see that SfO1 satisfies correctness. By the prop-
erty of RX and RD, if x ∈ V used in signing and x′ ∈ V used in verifica-
tion satisfy RX(x′, x) = 1, we have RD(D′,D) = 1, where D ← Sen(x) and
D′ ← Sen(x′). As long as the digital signature scheme DS satisfies correct-
ness, we always have DS.Ver(VK,D, σD) = 1, where (VK,SK) ← DS.KG(1λ) and
σD ← DS.Sign(SK,D).
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The security of SfO1 is guaranteed by the following theorem, which is also
straightforward to prove.

Theorem 1. If the digital signature scheme DS is EUF-CMA secure against
PEA adversaries with respect to OS, then SfO1 is EUF-COA secure.

We defer the formal proof of this theorem to the full version. Informally, if a
PEA adversary A attacking the EUF-COA security wins, then it outputs a valid
signature for data extracted from unqueried objects. Therefore, we can construct
another adversary attacking the EUF-CMA security of DS using A.

4 Conf-COA Security and Construction

In this section, we introduce a security definition for SfO concerning privacy
of objects that we call confidentiality under chosen object attacks (Conf-COA
security). This security notion ensures that given a signature on an object that
is generated according to the distribution X supported in an object setting, it
is hard to gain any information on the data corresponding to the object. This
security notion is naturally desirable in a supply chain scenario where an object
being signed is a product of a company which itself and/or its corresponding
data could contain some confidential information, and a signer would like to
prevent its information from leaking from a signature to those who are outside
the supply chain and need not verify the signature. We note that this security
notion is orthogonal to EUF-COA security.

This section provides the security definition of Conf-COA in Sect. 4.1 and a
provably secure construction that satisfies EUF-COA and Conf-COA using an
obfuscation in Sect. 4.2. Moreover, we consider an instantiation of our scheme in
Sect. 4.3.

4.1 Security Definition: Conf-COA

Here, we give a formal definition of Conf-COA security.
Let OS = (X,V,X ,D,Sen, RX, RD,C) be an object setting, and let SfO =

(SfO.KG,SfO.Sign,SfO.Ver) be an SfO scheme with respect to OS. For PEA algo-
rithms A, S, and a predicate P, consider the real experiment ExptConf-COA-Real

SfO,A,P (λ)
and the simulated experiment ExptConf-COA-Sim

SfO,S,P (λ) as described in Fig. 3. In the
experiments, where OC and OSign are the command oracle and signing oracle,
respectively, that are defined in the same way as in the EUF-CMA experiment.
We stress that the “challenge object” x∗ is not included in the object list LX

maintained in OC in both experiments, and thus A and S have no control over
it as well as the data D∗ extracted from x∗.

Definition 6 (Conf-COA). We say that an SfO scheme SfO with respect to
an object setting OS is Conf-COA secure if for any PEA adversary A, there
exists a PEA simulator S such that for any PPT-computable predicate P, we
have AdvConf-COA

SfO,A,S,P(λ) := |Pr[ExptConf-COA-Real
SfO,A,P (λ) = 1] − Pr[ExptConf-COA-Sim

SfO,S,P (λ) =
1]| = negl(λ).
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Fig. 3. The experiments for defining Conf-COA security for an SfO scheme SfO.

Fig. 4. The SfO scheme SfO2.

4.2 Our Construction Based on Obfuscation

Here we show our second construction SfO2. This is a simple variant of our first
construction SfO1, where instead of directly signing the data D in the signing
algorithm, we now sign an obfuscated circuit R̂ ← Obf(1λ, RD(·,D)), and the
relation RD over the data D contained in a signature and D′ computed in the
verification is now done using an obfuscated circuit R̃.

Formally, our construction is as follows. Let OS = (X,V,X ,D,Sen, RX, RD,
C) be an object setting. Let R be the class of circuits {RD(·) := RD(·,D)}D∈D,
where RD(·,D) denotes a circuit which has D hardwired, and takes some data
D′ as input, and returns RD(D′,D). We assume that there is a one-to-one cor-
respondence between a circuit RD ∈ R and D ∈ D, and D can be extracted
in the clear from RD. Let Obf be an obfuscator for R, and let DS = (DS.KG,
DS.Sign,DS.Ver) be an ordinary digital signature scheme. Then, using Obf and
DS as building blocks, we construct an SfO scheme SfO2 as described in Fig. 4.

The correctness of SfO2 can be seen similarly to SfO1. As explained earlier,
the only essential difference of SfO2 from SfO1 is that in the former, the check
of RD(D′,D) is done using the obfuscated circuit R̃ which is computed as R̃ ←
Obf(1λ, RD) and RD(·) := RD(·,D). Then the correctness of Obf ensures that if
RD(D′,D) = 1 then R̃(D′) = 1. The rest is unchanged from SfO1.

We now show how the EUF-COA and Conf-COA security of SfO2 can be
established.

Theorem 2. If the digital signature scheme DS is EUF-CMA secure against
PEA adversaries, then SfO2 is EUF-COA secure.
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We defer the formal proof of this theorem to the full version. Informally,
if a PEA adversary A attacking the EUF-COA security wins, then it outputs
the index i∗ of an object xi∗ and a valid signature for an obfuscated circuit R̃
such that R̃(D∗) = 1 where D∗ ← Sen(xi∗). From the winning condition for A,
we have R̃j(D∗) = 0 for all j ∈ Ind, which means that A does not know any
signature of R̃ that it obtained via signing queries. Therefore, we can construct
another adversary attacking the EUF-CMA security of DS using A.

For the Conf-COA security of SfO2, we need the property that the dis-
tribution of the data taken from a newly generated object via Sen, namely
{x ← X ;D ← Sen(x) : D}, has sufficient amount of entropy, so that for any
data D′ ∈ D, the probability that RD(D,D′) = 1 occurs is sufficiently small.
Following [3,11], we call such a property of a distribution evasive, and define it
as a property of an object setting.

Definition 7 (Evasiveness). We say that an object setting OS = (X,V,X ,
D,Sen, RX, RD,C) is ε-evasive if for any D′ ∈ D, Pr[x ← X ;D ← Sen(x) :
RD(D,D′) = 1] ≤ ε.

Theorem 3. If the obfuscator Obf satisfies distributional VBB security for the
distribution {x ← X ;D ← Sen(x) : D} against PEA adversaries4, and the
distribution {x ← X ;D ← Sen(x) : D} is ε-evasive for some negligible ε = ε(λ),
then SfO2 is Conf-COA secure.

The formal proof of this theorem is given in the full version. We briefly give
a proof sketch. From a Conf-COA adversary A, we construct an adversary B
against the distributional VBB security of Obf. B is initially given as input
an obfuscated program R̃∗ that is generated as x∗ ← X , D∗ ← Sen(x∗), and
R̃∗ ← Obf(1λ, RD∗), and perfectly simulates the real Conf-COA experiment for
A. Due to the distributional VBB security of Obf, there exists a simulator SB
such that its output distribution is negligibly close to that of B (and hence
that of A). Then, from SB, we construct a simulator S for A. The SB is a
simulator and can submit a query to the circuit RD∗(·), but the evasiveness of the
distribution allows S to answer it to always 0, which ensures that the distribution
of the output of SB and that of S are negligibly close. Then, combining all the
arguments, we can conclude that the output distribution of A is negligibly close
to that of S.

4.3 Instantiation

Unfortunately, no obfuscator can obfuscate all polynomial-sized circuits with
(worst-case) VBB security [4]. However, this impossibility result does not rule

4 When we consider distributional VBB security for an obfuscator against PEA adver-
saries, we consider not only an adversary but also a simulator to be PEA algorithms.
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out the existence of an obfuscator for a particular class of circuits, in particular
the one considered in the previous subsection.5

For example, Galbraith and Zobernig [11] showed a distributionally VBB
secure obfuscator for “fuzzy Hamming distance” predicates (from the hardness
of so-called the decisional distributional modular subset product problem). Here,
a fuzzy Hamming distance predicate is a circuit RD(·) such that RD(D′) = 1
iff the Hamming distance of the input D′ is close (within some pre-determined
distance r) to the value D that is hardcorded in the circuit RD. By using their
obfuscator, our construction SfO2 yields a Conf-COA secure SfO scheme for an
object setting where the relation RD just tests the closeness of the inputs by the
Hamming distance.

We do not claim this scheme can be used in a realistic scenario (such as a
supply-chain scenario), but hopefully techniques of obfuscation will be developed
and more complicated classes of circuits can be obfuscated with distributionally
VBB security in the future, so that our Conf-COA secure construction can be
instantiated for a wider class of object settings.
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Abstract. The proof of work mechanism by which many blockchain-
based protocols achieve consensus may be undermined by the use of
quantum computing in mining—even when all cryptographic primitives
are replaced with post-quantum secure alternatives. First, we offer an
impossibility result: we prove that quantum (Grover) speedups in solv-
ing a large, natural class of proof-of-work puzzles cause an inevitable
incentive incompatibility in mining, by distorting the reward structure
of mining in proof-of-work-based protocols such as Bitcoin. We refer to
such distortion as the Superlinearity Problem. Our impossibility result
suggests that for robust post-quantum proof-of-work-based consensus,
we may need to look beyond standard cryptographic models. We thus
propose a proof-of-work design in a random-beacon model, which is tai-
lored to bypass the earlier impossibility. We conclude with a discussion of
open problems, and of the challenges of integrating our new proof-of-work
scheme into decentralised consensus protocols under realistic conditions.

1 Introduction

Blockchain-based technologies have gained remarkable traction since the pro-
posal of the Bitcoin protocol in 2009 [37]. Today, blockchains and cryptocurren-
cies are familiar topics in mainstream media and among government regulators
(e.g., [6,21,28,31]), and the top two cryptocurrencies’ collective market cap is
around 500 billion U.S. dollars [19].

At the same time, progress in quantum computing has been rapidly advanc-
ing. Recent experiments have shown that quantum computers can perform cer-
tain (contrived) tasks faster than the largest classical supercomputers available
[3].

Much has been written on the potential impact of quantum computing on
blockchain-based technologies [1,10,25], primarily focused on the fact that exist-
ing blockchains tend to rely on pre-quantum cryptography (primarily signature
schemes) that is breakable using sufficiently powerful quantum computers [33].

Certainly, today’s blockchains would become insecure if a sufficiently power-
ful quantum computer were developed. This will not happen overnight: quantum
computers that can break today’s pre-quantum cryptography are widely believed
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to be more than a decade away [36]. Moreover, this is an aspect of a much broader
phenomenon, relevant not only to blockchains but to all of the essential Internet
infrastructure that relies on pre-quantum cryptography, including protocols such
as HTTPS and SSL that are used for viewing most websites, and to secure online
banking and shopping. As such, secure and efficient post-quantum alternatives
to such pre-quantum cryptography are already well studied, and implementa-
tion and standardization processes are well underway [38]. These processes are
designed to ensure that by the time that quantum computers become viable,
any infrastructure that relies on pre-quantum cryptography will have replaced
it with secure, standardized post-quantum alternatives.

However, quantum computing poses another lesser studied but potentially
more impactful threat to many existing blockchain technologies. The proof of
work mechanism by which many blockchain-based protocols achieve the crucial
property of consensus may be undermined by protocol participants’ (miners’)
use of quantum computers. In a nutshell, a proof of work is a moderately hard
computational puzzle, which many protocol participants (miners) attempt until
someone “wins” by finding a solution to the latest puzzle for a given blockchain.
The “winning” miner then appends some information (a block) to the blockchain.

Proofs of work rely on cryptographic hash functions, which are believed to
already be post-quantum secure, so they would remain moderately hard (as
intended) for quantum computers. However, the relative power of different min-
ers in a blockchain network would change impactfully if some or all of them had
quantum computers. This causes two key problems.
I. Quantum Advantage Problem (Nearer Future). Efficient quantum computers
would speed up quantum miners’ production of proofs of work compared to
classical miners,1 likely discouraging those without quantum computers from
participating in mining. However, this would not be problematic if and when
quantum computers become widely available.
II. Quantum Superlinearity Problem (Farther Future). Because the quantum
speedup is quadratic, more computationally powerful quantum miners would gain
a disproportionate speedup, eliminating the incentive for less powerful quantum
miners — as well as those who lack quantum computers entirely—to partici-
pate at all. The result could be a destablising concentration of network control
among just the most computationally powerful miners in proof-of-work-based
blockchains, weakening the networks’ security and consensus properties, as well
as undermining the vision of fairness and distributed governance that motivate
many blockchain-based systems today. As a concrete example, the famous “51%
attack” on Bitcoin — thus named because it requires control of 51% of network
hash power — would become possible through control of just over a quarter of
hash power, under certain conditions.2

1 Classical means computing without quantum computers.
2 Classical network takeover attacks are also possible with the collusion of much less

than half of mining power [24]. The Quantum Superlinearity Problem worsens those
attacks too: basically, an attack that requires a certain fraction of classical mining
power may require a much smaller fraction of quantum mining power.
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The Quantum Superlinearity Problem has a natural classical variant, which
we call the Classical Superlinearity Problem: namely, similar problems arise
when more powerful classical miners have a disproportionate advantage over
less powerful classical miners. Bitcoin and other major blockchains that use
proofs of work are designed to yield mining advantage proportionate to miners’
hash power. Even so, significant (and much critiqued) concentration of power has
already occurred in existing proof-of-work-based blockchains due to economies
of scale, specialized mining hardware, geographic disparities, and other factors
[12,14,27,34,48], due to which some larger miners’ advantage is disproportion-
ate in terms of economic investment even if it is proportionate in terms of their
hash power. Our results suggest that the impact of quantum superlinearity could
be an order of magnitude worse than the classical counterparts, as discussed in
more detail below.

We write simply Superlinearity Problem when referring to both the Quantum
and Classical Superlinearity Problems.

These problems raise a natural question, which is the focus of this paper:

Can we design a proof of work that avoids the Quantum Advantage and
Quantum Superlinearity Problems, and thus preserve the incentive struc-
ture that currently supports proof-of-work-based systems such as Bitcoin?

We answer this question in the negative for a large and natural class of proofs
of work encompassing all prior constructions to our knowledge, as summarized in
the informal theorem below. Then, we highlight several potential directions for
positive results outside the scope of our impossibility, and provide a partial posi-
tive result: a new proof-of-work construction that provably avoids the Quantum
Advantage and Quantum Superlinearity problems, in a random beacon model.

Theorem (Informal). For a large, natural class of proofs of work (which
includes the Hashcash [4] and Equihash [8] methods that underlie Bitcoin and
most proof-of-work blockchains today):

– the Quantum Superlinearity Problem is inherent (i.e., unavoidable), and
– the Quantum Advantage Problem is not solvable without exacerbating the

Classical Superlinearity Problem.

Interpreting this impossibility in light of prior theoretical and empirical anal-
yses of centralization in Bitcoin, it appears that the impact from widespread
quantum computing could be an order of magnitude worse than the effects of
superlinearity already present in the classical setting. Gencer et al. estimated
recently that more than 50% of Bitcoin mining power is controlled by eight min-
ers, and 90% is controlled by sixteen miners [27]—already a concerning central-
ization trend. However, Arnosti and Weinberg’s theoretical model of the impact
of superlinear rewards [2], together with our results, indicates that the equilib-
rium number of miners in the post-quantum setting may be just two for the large
class of proof-of-work protocols this paper considers.

Our impossibility results suggest that to design a proof of work that avoids
the Quantum Advantage and Quantum Superlinearity Problems, we may need
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to look beyond standard cryptographic models. We analyze our impossibility
theorem in detail to highlight seven potential research directions towards post-
quantum blockchains that do not suffer from the Quantum Advantage and Quan-
tum Superlinearity Problems. Then, focusing on one of these seven directions,
we propose a proof-of-work design in a random-beacon model, tailored to bypass
the above impossibilities. Finally, we prove the security of our proof-of-work con-
struction, and discuss the significant challenges that seem to remain to integrate
a proof of work like ours into a realistic blockchain protocol.

Proof-of-Work Alternatives. Given that the Quantum Advantage and Superlin-
earity Problems are inherent to a large class of proofs of work, it is also natural
to consider whether alternatives to proofs of work could resolve these problems.
That is: can we develop alternative consensus mechanisms not involving proofs of
work, that preserve the incentive structure that currently supports proof-of-work-
based systems such as Bitcoin, even in the presence of quantum computers?

This paper’s main focus is to examine what is possible and impossible within
the proof-of-work approach. As such, we make just a few remarks on proof-of-
work alternatives, and leave this question open as an important direction for
future work. Despite significant environmental and efficiency concerns about
proof-of-work-based consensus (e.g., [9,32,42,50,52]), it remains the dominant
consensus model in blockchains today. The main competing approach of proof
of stake [30,41] has not yet gained traction competitive with Bitcoin’s original
proof-of-work model. However, this may be changing, with the very recent shift
(in early 2022) of the second-biggest cryptocurrency, Ethereum, to a proof-of-
stake model [15,23]. Yet other alternatives to proof of work exist as well, with
much less adoption than proof of stake (e.g., [18,43–45,47,51]).

Existing efficient implementations of proofs of stake rely on pre-quantum
cryptography much more advanced3 than the cryptography typically used in
proof-of-work blockchains. While post-quantum alternatives to these advanced
cryptographic tools exist in theory, current standalone constructions would entail
impractical computational overhead (e.g., in the order of 1000–10000× for certain
operations [13]). An key research direction to make proof-of-stake blockchains
practical for post-quantum use is to improve this overhead.

Prior Work on the Quantum Advantage Problem. Past research has consid-
ered the extent to which the Quantum Advantage Problem is an issue and how
it can be mitigated. Aggarwal et al. [1] conclude that the Hashcash proof of
work used by Bitcoin is “relatively resistant to substantial speedup by quan-
tum computers in the next 10 years”. This is because, even given optimistic
estimates about the near-term development of quantum computers, classical
ASIC mining will continue to outperform quantum mining despite the quadratic
speedup offered by Grover search. Nonetheless, in the medium term it remains
possible that quantum computers will comprise a significant portion of min-
ing power. Aggarwal et al. suggest a potential mitigation using an alterna-
tive proof of work called Momentum, which is based on finding collisions in
3 E.g., verifiable random functions and verifiable delay functions.
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a hash function. This is a more “quantum-resistant” proof of work, in the sense
that there is a classical algorithm for finding collisions in a random function
{0, 1}m → {0, 1}n in time T = O(2n/2), whereas any quantum algorithm requires
at least Ω(2n/3) = Ω(T 2/3) queries, giving a somewhat smaller speedup than for
the Hashcash proof of work. However, this proposal has a significant drawback.
The best algorithms for finding collisions [46] have the property that the prob-
ability of finding a collision increases quadratically in the running time of the
algorithm. As a result, the Momentum proof of work suffers from the Superlin-
earity Problem in both the quantum and the classical settings.

Behnia et al. [7] proposes an alternative to Momentum based on the fact that
the best known classical and quantum algorithms for the problem of finding a
short vector in a lattice (in certain parameter regimes) have similar time com-
plexities: 1.22n and 1.20n, respectively. Unlike for preimage and collision finding,
the success probability of the “sieving” algorithms achieving these complexities
has not been analysed as a function of running time. Nonetheless, it is easily
seen that this function is at least quadratic.

Cojocaru et al. [20] give a formal asymptotic analysis of the security of the
“Bitcoin backbone” protocol against quantum adversaries. They conclude that
the protocol remains secure so long as malicious quantum parties control a very
small fraction of the total computing power. We note that this fraction actually
becomes smaller as the puzzle becomes more difficult, suggesting that an increase
in classical computational power may help quantum attackers.

Prior Work on the Superlinearity Problem. We are not aware of any prior work
that considers the Quantum Superlinearity Problem. However, prior work has
considered why superlinearity in general is a problem in blockchain protocols.
Chen, Papadimitriou, and Roughgarden [17] conduct a game-theoretic analysis
of allocation rules in proof-of-work blockchains. An allocation rule is proportional
if each miner (in expectation) receives reward proportional to their contribution
relative to total network power. They show that the proportional allocation rule
is the unique rule which satisfies both sybil- and collusion-resistance.

Nerem and Gaur [39] give another analysis of the impact of quantum mining
on Bitcoin. Their analysis considers a simple Markov model of a single quantum
miner Q competing with classical miners, and shows that when Q holds a very
small fraction of total network power, Q only has a linear speedup over classical
mining. They note that this analysis arises from an approximation that holds
only if Q is weak compared to the network; that is, a quantum computer with a
constant fraction of network power can still get superlinear rewards.

1.1 Technical Overview

Next, we briefly summarise the techniques underlying our results.
Impossibility Result. First, recall the Hashcash proof of work, and why it is sub-
ject to superlinear quantum attack. A Hashcash challenge consists of a hash
function h : {0, 1}λ → {0, 1}λ and a target set S ⊆ {0, 1}λ. A proof π is some
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x such that h(x) ∈ S. If h is pseudorandom, then by evaluating h at t random
points, we find such an x with probability roughly t|S|/2λ. Moreover, no classi-
cal algorithm does better than this. But there is a quantum algorithm (Grover
search) that makes t calls to h and finds such an x with probability Ω(t2|S|/2λ).

In general, a proof-of-work scheme may not have this form; indeed, the alter-
native constructions described above are quite different. Our key observation is
that the Grover attack applies to all proportional proofs of work; i.e., where the
probability of producing a valid proof scales linearly with the amount of work.

More precisely, let Work(c, t; r) denote the “honest” proof of work algo-
rithm, for challenge c with time bound t using randomness r, and let Verify(c, π)
be the verification algorithm. By proportionality, Prr[Verify(c,Work(c, t; r))] =
Θ(t).4 To construct a quantum attack, we define a function fc(r) =
Verify(c,Work(c, t0; r)), where t0 is the smallest time such that Work outputs a
proof with positive probability p. Then by running t iterations of Grover search
on fc we obtain with probability Ω(t2) a string r such that Work(c, t0; r) is a
valid proof of work.
New Proof-of-Work Construction. We present a proof-of-work construction in the
random beacon model which avoids both the Quantum Advantage and Super-
linearity Problems. Similarly to Hashcash, we compute h(x) for many random x.
We store each pair (x, h(x)) in a data structure sorted by h(x). When the bea-
con value β ∈ {0, . . . , 2λ − 1} arrives, we search through the data structure for
x such that |β −h(x)| is minimized, and publish x as the proof. The verification
algorithm accepts if |β − h(x)| is below some specified difficulty threshold.

Intuitively, this circumvents the impossibility because proofs cannot be veri-
fied until after the beacon value arrives. We show this formally in Theorem 3 by
modelling h as a quantum-accessible random oracle, using Zhandry’s compressed
oracle technique. In other words, we show that the honest classical mining algo-
rithm is asymptotically optimal for both classical and quantum miners.

1.2 Summary of Contributions

1. We identify and initiate the study of the Quantum Superlinearity Problem.
2. Impossibility. We prove an impossibility, namely, that the Superlinearity

Problem is inherent in a large class of proofs of work, encompassing all exist-
ing definitions and constructions to our knowledge (Sect. 2).

3. Possibilities. We analyse our impossibility theorem to systematically high-
light new proof-of-work approaches and other alternatives that may avoid
the Superlinearity Problem, as open directions for future work (Sect. 3).

4. Construction. We offer a new proof-of-work construction in a random-beacon
model that provably avoids the Superlinearity Problem, and discuss remaining
challenges of integrating it into a consensus protocol (Sect. 4).

4 This is not strictly true: the left hand side is bounded by 1 whereas t grows without
bound. A refined definition of proportionality (Definition 4) handles this issue.
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2 The Quantum Superlinearity Problem Is Inherent

In this section, we show that the Superlinearity Problem is inherent in a broad
class of proofs of work. Section 2.1 introduces the necessary definitions, and
Sect. 2.2 presents the impossibility theorem and proof.

2.1 A Broad Definition of Proofs of Work

Our aim in this context is not to propose a canonical definition of proof of work
that is somehow better than the scattered existing definitions in the literature,
but rather, to be as as inclusive as possible—since the broader the definition,
the stronger the impossibility.

Relation to Existing Proof-of-Work Definitions. Our definition generalizes many
existing definitions of proofs of work from the literature, including Dwork and
Naor’s seminal “pricing functions” [22], Chen et al.’s “client puzzles” [16], Miller
et al.’s “scratch-off puzzles” [35], Garay et al.’s “signatures of work” [26], and
Ball et al’s proofs of work [5].

Our definition is also compatible with Jakobsson and Juels’ proofs of work
[29], which additionally discusses interactive proofs of work. Our definition is
incomparable with Stebila et al.’s “client puzzles” [49], which have a non-public
verification algorithm. Section 3 provides further discussion of these and other
model variants not captured by our definition.

Finally, our definition captures all proof-of-work constructions for blockchains
of which we are aware, including Hashcash [4] and Equihash [8].

Definition 1. A proof of work is parametrized by a proof space Π = {Πλ}λ∈N

and a challenge space C = {Cλ}λ∈N, and consists of a triple of algorithms POW =
(Gen,Work,Verify) with the following syntax. Gen and Work may be randomized;
Verify is deterministic. Gen and Verify must be efficient (i.e., polynomial time).

– Gen(1λ, γ) takes as input a security parameter λ (in unary) and difficulty
parameter γ ∈ [0, 1] and outputs a challenge c ∈ Cλ.

– Work(c, t) takes as input a challenge c ∈ Cλ and time parameter t ∈ N, and
outputs a proof of work π ∈ Πλ. The time complexity of Work is t · Wγ(λ),
where Wγ is a polynomial.

– Verify(c, π) takes as input a challenge c ∈ Cλ and a candidate proof of work
π ∈ Πλ and outputs b ∈ {0, 1}.

Remark 1. We can omit λ and γ from the input to Work,Verify since we can
assume that c includes them both without loss of generality. We sometimes
write Work(c, t; r) to explicitly denote the randomness r of the Work algorithm.

Remark 2. Wγ(λ) may be thought to represent the minimum time required to
produce a valid proof for difficulty parameter γ with positive probability.

Next, we define the reward function of a proof of work (Definition 2), which
relates the likelihood of obtaining a valid proof to (honest) work done.
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Definition 2. A proof of work POW has reward function ρ if the probability of
generating a valid proof by running Work with time parameter t with respect to
difficulty parameter γ is negligibly close to ρ(γ, t) with overwhelming probability.
That is, for any λ, t ∈ N, γ ∈ [0, 1], there exists a negligible function ε such that

Pr
c←Gen(1λ,γ)

[∣∣∣∣Pr
r

[
b = 1 :

π ← Work(c, t; r)
b ← Verify(c, π)

]
− ρ(γ, t)

∣∣∣∣ ≥ ε(λ)
]

≤ ε(λ) . (1)

The bound (1) states (in the contrapositive) that with all but negligible
probability over challenges, the probability of obtaining a valid proof in time t
is very close to ρ(γ, t), where γ is the difficulty parameter.

Next, we define smoothness and proportionality of reward functions. Infor-
mally, a reward function is smooth if no matter how hard the difficulty is set
(γ → 0), there is a positive probability of obtaining a valid proof after one time-
step of computation.5 A reward function is proportional if for all small enough γ
(i.e., for all hard enough difficulty settings), the probability of obtaining a valid
proof scales approximately linearly with computation, up to a positive upper
bound.6 Note that proportionality implies smoothness.

Definition 3. For α, β ∈ (0, 1], we say a reward function ρ is (α, β)-smooth if
for any γ ∈ [0, β], ρ(γ, 1) ≥ α · γ.

Definition 4. We say a reward function ρ is proportional if there exist α, β ∈
(0, 1] such that for any γ ∈ [0, β], α · min(γt, 1) ≤ ρ(γ, t) ≤ γt.

Remark 3. Hashcash-like “progress-free” [8] proofs of work have ρ(γ, t) = 1 −
(1 − γ)t: a proportional reward structure according to our definition.

Finally, we define the hardness of a proof of work. Informally, POW is classi-
cally (resp., quantumly) (μC , ρ′)-hard if any classical (resp. quantum) algorithm
running in time μC computes a valid proof of work with probability ρ′.

Definition 5 (Classical hardness). A proof of work POW is classically
(μC , ρ′)-hard if for any classical two-part adversary A = (A1,A2) such that
A1 runs in polynomial time and A2 runs in time at most μC(t), for any t ∈ N,
and γ ∈ [0, 1], there is a negligible function ε such that

Pr

⎡
⎢⎢⎣ b = 1 :

z ← A1(1λ, t, γ)
c ← Gen(1λ, γ)
π ← A2(z, c)
b ← Verify(c, π)

⎤
⎥⎥⎦ ≤ ρ′(γ, t) + ε(λ) . (2)

Definition 6 (Quantum hardness). A proof of work POW is quantumly
(μC , ρ′)-hard if for any quantum adversary A = (A1,A2) such that A1 runs
in polynomial time and A2 runs in time at most μQ(t), for any t, n ∈ N and
γ ∈ [0, 1], there is a negligible function ε such that (2) holds.

5 This rules out deterministic proofs of work (whose reward functions are 0–1).
6 The upper bound is necessary since probabilities are upper-bounded by 1.
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Definition 7 (Hardness). A proof of work POW is (μC , μQ, ρ′)-hard if it is
classically (μC , ρ′)-hard and quantumly (μQ, ρ′)-hard.

2.2 Impossibility Result

Our impossibility result relates reward functions to achievable quantum speedup.
Any proof of work with a smooth reward function must allow quantum adver-
saries a probability of obtaining a valid proof that is quadratic in work done
(Theorem 1). It follows that any proof of work with a proportional reward func-
tion must admit a quadratic quantum speedup (Corollary 1).

Theorem 1. If a proof of work with an (α, β)-smooth reward function is quan-
tum (μQ, ρ′)-hard then there exists κ ∈ [0, 1] such that for all γ ∈ [0, β] and all
sufficiently large t ∈ N, ρ′(γ, t) ≥ κ · min(μQ(t)2αγ, 1).

Proof. Let POW = (Gen,Work,Verify) be a proof of work with reward struc-
ture ρ. A quantum attack on POW proceeds as follows. Consider the algorithm
fc(r) = Verify(c,Work(c, 1; r)). A single invocation of fc runs in time poly(λ). By
Eq. (1), Prr[fc(r) = 1] ≥ p(γ, 1) − negl(λ); denote this probability by p0.

We use Grover search to find r such that fc(r) = 1, stopping at time μQ(t).
This algorithm makes μQ(t)/poly(λ) queries to the fc-oracle. Denote the proba-
bility that this algorithm finds a winning choice of r by p(λ, γ, t). By the standard
analysis of Grover search, we have that p(λ, γ, t) ≥ κ(λ) · min(μQ(t)2p0, 1) for
some κ(λ) : N → [0, 1] and all sufficiently large t.

Suppose that POW is (μQ, ρ′)-hard; then there exists λ0 such that for all
λ ≥ λ0 and all γ, t it holds that p(λ, γ, t) ≤ ρ′(γ, t). Hence in particular for all
sufficiently large t it holds that ρ′(γ, t) ≥ κ(λ0) · min(μQ(t)2p0, 1). Noting that
p0 ≥ p(γ, 1)/2 for large enough λ yields the theorem.

Corollary 1. If a proof of work with proportional reward function ρ is quantum
(μQ, ρ)-hard then μQ = O(

√
t).

Proof. Let POW be a proof of work with proportional reward function ρ that
is quantum (μQ, ρ)-hard. Let α, β be as in Definition 4. By Theorem 1, there
exist κ ∈ [0, 1], t0 ∈ N such that for all γ ∈ [0, β] and t ≥ t0, γt ≥ ρ(γ, t) ≥
κ · min(μQ(t)2 · α · γ, 1). Setting γ = 1/μQ(t)2 we see that there exists t′0 such
that for all t ≥ t′0, t ≥ κ · μQ(t)2.

3 Towards Bypassing the Superlinearity Problem

In this section, we analyze the scope of our impossibility to identify potential
paths forward. Informally restated, Theorem 1 tells us that the Superlinearity
Problem is inherent in any proof of work that has all of the following properties:

1. the prover takes some input,
2. then performs classical computational work for a time t
3. to output a proof π of polynomial size,
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4. which verifies successfully with a probability (over Work) increasing in t,
5. using a verification algorithm that is deterministic, runs in polynomial time,

and takes (only) c and π as input,
6. in the standard model or a quantum-accessible-oracle-based model.

Towards bypassing the Superlinearity Problem, then, we consider how proofs
of work could be designed not to satisfy any of the properties listed above—since
such proof-of-work schemes would fall outside the scope of Theorem 1.

Let us consider each of the listed properties in turn. Property 1—namely,
that the prover takes some input—admits no meaningful modification.

Property 2 is arguably inherent to the concept of a proof of (classical com-
putational) work; as such, it highlights the possibilities of avoiding the Super-
linearity Problem by turning to proofs of resources other than classical com-
putational work. One option is to consider proofs of quantum computational
work; this would preclude classical mining, of course, but might be acceptable
in scenarios where efficient quantum computers are sufficiently widely available.
More broadly, as also noted in Sect. 1, proof-of-work alternatives are an already
thriving research area for which our results offer novel additional motivation.

Property 3 states that there is a proof string of polynomial size, raising the
possibilities of having an interactive proof or having a proof string of super-
polynomial size. Interactive proofs are not suitable for existing blockchain-based
consensus systems, and would often incur prohibitive communication overhead;
that said, interactive proofs of work could still be an interesting direction for
future work.7 Superpolynomial size, however, is unacceptable for efficiency.

Property 4 states the chance of obtaining a valid proof increases with work, a
condition that seems inherent to the notion of a proof of work in the blockchain
context. That is, for incentive-compatible mining in blockchain systems, the
probability of obtaining a valid proof must increase with work. Property 4 raises
the possibility of a proof of work where the probability of obtaining a valid proof
still increases with work, but does not depend only on the random coins of Work.
(For example, it might also depend on a miner’s private information or on the
randomness of an oracle.)

Property 5 seems arguably necessary in the blockchain context as existing
blockchain networks rely crucially on verification being efficiently publicly com-
putable and agreed on by everyone. Still, alternative models where Verify is not
publicly computable (say, because it is keyed) may be worth exploring.8

Property 6 means that oracle-based cryptographic models such as the ran-
dom oracle model and the common reference string (CRS) model will not take
us outside the scope of Theorem 1’s impossibility. However, other common non-
standard cryptographic models could—such as a timed random beacon model
or assuming a sybil-free public-key infrastructure (PKI)—as could oracle-based
models that are not quantum-accessible. The latter would include, for example,
oracles implemented under certain trusted hardware models, or oracles imple-
mented by third parties (or networks of parties).
7 Jakobsson and Juels proposed a definition that includes interactive protocols [29].
8 Stebila et al. proposed a definition where verification is keyed [49].
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In summary, we have highlighted the following preliminary avenues for explo-
ration towards designing a proof of work that falls outside the scope of our
impossibility result (and thus may not suffer from the Superlinearity Problem).
In Sect. 4, we elaborate a preliminary proposal based on F.

A. Proofs of quantum work
B. Proof-of-work alternatives
C. Interactive proofs of work
D. Probability of obtaining a valid proof does not depend only on Work
E. Proofs of work with non-public verification
F. Non-standard non-oracle-based cryptographic models (e.g., beacon; PKI)
G. Oracle-based cryptographic models that are not quantum-accessible

4 A New Proof of Work in a Random Beacon Model

We provide a proof-of-work construction in a timed random beacon model that
provably avoids the Superlinearity Problem. Our protocol relies on the existence
of a “beacon” that outputs a random string at regular time intervals. We prove
our protocol’s security in the quantum random oracle model (QROM). Then, in
Sect. 4.1, we highlight the significant challenges that seem inherent in integrating
our proof of work into a realistic blockchain.
Model. We define variants in the random beacon model of proof of work (Defi-
nition 8), reward structure (Definition 9), and (ρ, μ)-hardness (Definition 10).

Definition 8 (Proof of work with beacon). A proof of work is parametrized
by a proof space Π and a challenge space C, and consists of a triple of algorithms
POW = (Gen,Work,Verify) with the following syntax. All the algorithms may be
randomized. Gen and Verify must be efficient; Work need not be.

– Gen(1λ, γ) takes as input a security parameter λ (in unary) and public param-
eters γ ∈ [0, 1] and outputs a challenge c ∈ C.

– Work(c, t) takes as input a challenge c ∈ C and time parameter t ∈ N, runs
for time at most t · Wγ(λ) for some polynomial Wγ , and outputs a private
state D ∈ {0, 1}∗.

– ChooseD(β) takes as input a state D (as an oracle) and an auxiliary input
β ∈ {0, 1}poly(λ) and outputs a proof of work π ∈ Π.

– Verify(c, π, β) takes as input a challenge c ∈ C, a candidate proof of work
π ∈ Π, beacon input β ∈ {0, 1}poly(λ) and outputs b ∈ {0, 1}.

– Beacon(1λ) takes as input security parameter λ (in unary) and outputs a
beacon value β ∈ {0, 1}poly(λ).

Definition 9 (Reward function with beacon). A proof of work and alloca-
tion algorithm POW has reward function ρ if for any t ∈ N and γ ∈ [0, 1], there
is a negligible function ε such that

Pr
c←Gen(1λ,γ)

⎡
⎢⎢⎣

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣ b = 1 :

D ← Work(c, t)
β ← Beacon(1λ)
π ← ChooseD(β)
b ← Verify(c, π, β)

⎤
⎥⎥⎦ − ρ(γ, t)

∣∣∣∣∣∣∣∣
> ε(λ)

⎤
⎥⎥⎦ < ε(λ) . (3)
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Definition 10 (Hardness with beacon). A proof of work with beacon POW
is classically (μC,2, μC,3, ρ

′)-hard if for any classical three-part adversary A =
(A1,A2,A3) such that A1 runs in polynomial time, A2 runs in time at most
μC,2(t) · W (λ) and A3 runs in time at most μC,3(t) · W (λ), and γ ∈ [0, 1], there
is a negligible function ε such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b = 1 :

z1 ← A1(1λ, γ)
c ← Gen(1λ, γ)
z2 ← A2(z1, c)
β ← Beacon(1λ)
π ← Az2

3 (c, β)
b ← Verify(c, π, β)

⎤
⎥⎥⎥⎥⎥⎥⎦

< ρ′(γ, t) + ε(λ) . (4)

We define quantum (μQ,2, μQ,3, ρ
′)-hardness analogously.

Next we give our construction of a proof of work in the random beacon model,
and then prove that it satisfies Definitions 9 and 10.

Construction 2 Challenge space C = {0, 1}λ × N; proof space Π = {0, 1}2λ.

– Gen(1λ, γ) samples uniform α ← {0, 1}λ, computes τ = γ · 2λ−1, and outputs
c = (1λ, τ, α).

– Work(c, t) repeats the following t times: choose a random nonce r ∈ {0, 1}λ,
compute y = hα(r), and store (r, y) in a table D sorted by y (interpreted as
an integer). It then outputs D.

– ChooseD(β) outputs π = arg min(r,y)∈D |y − β| (interpreting y, β as integers.
– Verify(c, (r, y), β) accepts if y = hα(r) and |y − β| < τ .
– Beacon(1λ) outputs uniformly random β ∈ {0, 1}λ.

Lemma 1. When h is pseudorandom and runs in time th(λ), Theorem 2 is
a proof of work with reward structure ρ(γ, t) = 1 − (1 − γ)t, which achieves
proportional representation.

Proof. We show that replacing hα with a random function h yields reward
structure ρ. For a random h, the probability that for a random r and any β
that |h(r) − β| < τ is γ. The probability that at least one proof succeeds out
of t is then 1 − (1 − γ)t, since these are independent events. We now show
that ρ achieves proportional representation. For the upper bound, observe that
for all γ, t, ρ(γ, t) ≤ γt. For the lower bound, suppose first that γ ≥ 1/t;
then (1 − γ)t ≤ (1 − 1/t)t ≤ 1/e. Now suppose instead that γt < 1; then
1 − (1 − γ)t ≥ γt − 1

2 (γt)2 ≥ γt/2.

QROM Preliminaries. We introduce the technical background for our security
proof in the quantum random oracle model (QROM) [11]. We omit standard
quantum information definitions (e.g., states, unitaries) (see [40, §I.2]).

Let A be an algorithm that makes t quantum queries to an oracle h : X →
{0, 1}λ and outputs a pair (x, y) ∈ X × {0, 1}λ. Then there exist unitary trans-
formations U1, . . . , Ut and a quantum state |ψ0〉 such that for any h, x, y,

Pr[(x, y) ← Ah] = ‖〈x, y| UtOhUt−1Oh · · · U1Oh |ψ0〉‖2 ,
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where Oh is the unitary with action Oh |x, y〉 = |x, y ⊕ h(x)〉 for all x, y and ⊕
is the bitwise XOR.

Compressed Oracle Technique. We make use of Zhandry’s compressed oracle
technique [53]. Let X ⇀ {0, 1}λ be the set of partial functions from X to {0, 1}λ.
For D : X ⇀ {0, 1}λ, let supp(D) be the set of x ∈ X for which D(x) is defined.
Let D be a quantum register supported on states |D〉 for D : X ⇀ {0, 1}λ. The
key lemma of the compressed oracle technique follows.

Lemma 2 ([53]). There exists a unitary O such that for all R ⊆ X × {0, 1}λ,
letting ΠR =

∑
D,∃(x,y)∈R,D(x)=y |D〉〈D|D, AO = UtO · · · U1O:

Pr
[

(x, y) ∈ R
∧ h(x) = y

∣∣∣∣ h ← (X → {0, 1}λ)
(x, y) ← Ah

]
≤ ‖ΠRAO |ψ0〉 |⊥〉D‖2 + O(2−λ) .

Moreover, let pR = maxx Pry[(x, y) ∈ R]. Then ‖[ΠR]O‖ = O(
√

pR).

Theorem 3. In the (quantum) random oracle model, Theorem 2 is (ρ, μC , μQ)-
hard for μC,2, μC,3 = Θ(t), μQ,2 = Θ(t), μQ,3 = Θ(

√
t).

Proof. The classical hardness proof is straightforward, and so we omit it.
Let A = (A1,A2,A3) be quantum oracle algorithms making at most t1, t2, t3

queries respectively. Let R(α, β) = {((α, x), y) : |y − β| ≤ τ}; note that for all
α, β, pR(α,β) = pR = 2τ/2λ. By Lemma 2 the probability that A produces a
valid proof of work is at most

δ = Eα,β‖ΠR(α,β)AO
3 (c,B)AO

2 (c)AO
1 |ψ0〉 |⊥〉 ‖2 + O(2−λ) .

Let S(α) = {((α, x), y) : x, y ∈ {0, 1}λ} and Π̄ = I − Π. Then

‖ΠR(α,β)AO
3 (α, β)AO

2 (α)AO
1 |ψ0〉 |⊥〉 ‖

≤‖ΠR(α,β)AO
3 (α, β)Π̄R(α,β)AO

2 (α)AO
1 |ψ0〉 |⊥〉 ‖

+‖ΠR(α,β)AO
2 (α)Π̄S(α)AO

1 |ψ0〉 |⊥〉 ‖ + ‖ΠS(α)AO
1 |ψ0〉 |⊥〉 ‖

by the triangle inequality. Now we bound each term in turn. For all α, β,

‖ΠR(α,β)AO
3 (α, β)Π̄R(α,β)AO

2 (α)AO
1 |ψ0〉 |⊥〉 ‖

≤ ‖ΠR(α,β)AO
3 (α, β)Π̄R(α,β)‖

≤ ‖AO
3 (α, β)ΠR(α,β)Π̄R(α,β)‖ + t3 · ‖[ΠR]O‖ = O(t3

√
pR),

where the final equality follows by Lemma 2 and because ΠR(α,β)Π̄R(α,β) = 0.
For the second term, observe that for any α and any state |ϕ〉 in the image

of I − ΠS(α), the support of D in AO
2 (α) |ϕ〉 is contained in the set

S = {D : |supp(D) ∩ {α‖x : x ∈ {0, 1}λ}| ≤ t2} .

Hence if we measure D, we obtain D ∈ S with probability 1. For all such D,
Prβ [∃x,D(α‖x) = β] ≤ t2 · pR. Hence for all α,

Eβ‖ΠR(α,β)AO
2 (α)Π̄S(α)AO

1 |ψ0〉 |⊥〉 ‖2 ≤ t2 · pR .
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A similar argument shows that Eα‖ΠS(α)AO
1 |ψ0〉 |⊥〉 ‖2 = O(t1/2λ). Then

δ = O((t1 + τt2 + τt23)/2λ) = O((t2 + t23) · τ

2λ
) + negl(λ) .

4.1 Challenges of Protocol Integration

Given our new proof-of-work construction, one might hope to “plug it in” to
a Bitcoin-like protocol and thus resolve the Quantum Superlinearity Problem.
Unfortunately, integrating our proof of work into a decentralised consensus pro-
tocol seems to present non-trivial further challenges. Next, we briefly elaborate
on these, guided by sketches of simple but natural failed attempts.

Why not, for instance, rely on the beacon to keep time (say, one block per
beacon output) and have miners publish proofs of work after each beacon value?

A fundamental issue with this approach is takeover attacks: a malicious miner
could create an alternate history on a fork or an entire alternate chain knowing
the beacon values after the fact, and obtain a chain indistinguishable from—or of
higher quality than—the honestly derived chain for any network participant who
is newly joining or joining after an offline period. This problem seems difficult
to mitigate when network participants are not almost always online.

Inspired by this observation, we might propose a variant protocol that
requires miners to publish commitments to their candidate proofs in each time-
step, and only considers valid those proofs that miners can prove were committed
“on-chain”. To achieve this, individual miners must be able to decommit their
own proofs (in a publicly verifiable way). This constraint appears to preclude the
natural approach of committing to all miners’ commitments with a single Merkle
root. But then, storing commitment information on-chain that scales with the
total number of miners would incur an impractical bandwidth cost.

When the validity of a proof of work is effectively dependent on when it was
computed, and participants are not always online, it is arguably inherent that a
consensus protocol dependent on such a proof of work must record some timing
information. The problem we have highlighted lies in recording timing informa-
tion even for unsuccessful attempts at block mining, which creates impractical
bandwidth demands. We would be interested to see future work exploring new
approaches to integrating timing-dependent proofs of work into blockchains.

5 Conclusion

We have identified the Quantum Superlinearity Problem in post-quantum proof-
of-work blockchains and proven that it is inherent in a large class of proofs of
work encompassing existing approaches. By analyzing our impossibility result,
we have suggested a range of approaches or alternatives to proofs of work that
may have the potential to avoid the Superlinearity Problem. We have explored
one such approach in more detail, proposing a new proof-of-work construction
in a random-beacon model that provably avoids the Superlinearity Problem;



214 S. Park and N. Spooner

and we provide discussion of the significant challenges that seem to remain in
integrating our new proof of work into a realistic consensus protocol.

Finally, we have highlighted several open problems and directions for future
research to improve our understanding of post-quantum blockchains in light of
the Superlinearity Problem, as follows.

1. Explore new models of proofs of work that avoid the Superlinearity Problem
(including, but not limited to, the directions A–G noted in Sect. 3).

2. Explore how such new proofs of work (including, but not limited to, our con-
struction in Sect. 4) can be integrated into decentralised consensus protocols
that avoid the Superlinearity Problem.

3. Explore post-quantum implementations of a public random beacon.
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Abstract. The security of many protocols such as voting and
blockchains relies on a secure source of randomness. Decentralised Ran-
domness Beacon (DRB) has been considered as a promising approach,
where a set of participants jointly generates a sequence of random out-
puts. While the DRBs have been extensively studied, they failed to cap-
ture the advantage that some participants learn random outputs ear-
lier than other participants. In time-sensitive protocols whose execution
depends on the randomness from a DRB, such an advantage allows the
adversary to behave adaptively according to random outputs, compro-
mising the fairness and/or security in these protocols.

In this paper, we formalise a new property, delivery-fairness, to quan-
tify the advantage. In particular, we distinguish two aspects of delivery-
fairness, namely length-advantage, i.e., how many random outputs an
adversary can learn earlier than correct participants, and time-advantage,
i.e., how much time an adversary can learn a given random output ear-
lier than correct participants. In addition, we prove the lower bound
of delivery-fairness showing optimal guarantee. We further analyse the
delivery-fairness guarantee of state-of-the-art DRBs and discuss insights,
which, we show through case studies, could help improve delivery-fairness
of existing systems to its optimal.

1 Introduction

Decentralised Randomness Beacon (DRB) is a protocol where a set of partic-
ipants jointly generates a sequence of random outputs. It has been a promis-
ing approach to provide secure randomness to other protocols and applications.
There have been emerging DRB proposals [6,20,26,37] and deployed DRB sys-
tems [3,5], and DRBs have been used by many high-financial-stake applications
such as blockchains [19,27,30,32], lotteries [11], games [14,17], and non-fungible
tokens (NFTs) [1,4].

Applications have two common approaches to use a DRB, namely 1) by
using a random output at a certain height which the DRB has not reached yet,
and 2) by using a random output produced near a certain time in the future.
For example, Polygon Hermez [13] and Celo [2] used the 697500-th random

c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13950, pp. 218–234, 2024.
https://doi.org/10.1007/978-3-031-47754-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47754-6_13&domain=pdf
http://orcid.org/0000-0002-9281-329X
http://orcid.org/0000-0001-8006-7392
https://doi.org/10.1007/978-3-031-47754-6_13


Fair Delivery of Decentralised Randomness Beacon 219

output [10] and the random output produced near 29/10/2021 9am UTC [12] of
Drand [6] for their zkSNARK trusted setup, respectively.

Existing DRBs are designed with three main security properties in consid-
eration, namely consistency, liveness and unpredictability [20,26]. Consistency
states that all correct participants (who generate random outputs) share the
same view on a unique ledger, i.e., sequence of random outputs. Liveness states
that all correct participants produce random outputs no slower than a certain
rate. Unpredictability states that no participant can distinguish a future random
output from a uniformly sampled random string of the same length.

However, existing adversary models and security properties do not cover
the unfair case resulted by the difference in the timing of learning a random
output. In particular, when a random output is generated, the first “creator”,
or “observer”, learns its value earlier than others. Such an advantage is not
desired in practice. In time-sensitive protocols whose execution depends on the
randomness from a DRB, the advantage allows an adversary to behave adaptively
according to random outputs, compromising the fairness and/or security in these
protocols. In the above example of zkSNARK trusted setup, if the adversary
learns the random output before the trusted setup starts, then Hermez’s and
Celo’s trusted setup will be insecure against an adaptive adversary [10,15,22].
Another example is the on-chain lottery which determines the winner out of
all players by using random outputs from a DRB. If the adversary learns the
random output before the lottery starts, then it learns whether it will win the
lottery in advance, and thus can decide whether to participate in the lottery
according to its outcome.

1.1 Related Works

A systematic and formal study on the advantage of learning random outputs
faster in DRB is still missing. Existing DRB models only focus on certain attacks
leading to certain aspects in this advantage [20,27]. Related security properties
in other primitives do not cover this advantage, as they either concern eventual
delivery without quantifying the advantage [24], or concern the advantage among
correct participants excluding Byzantine participants [25,33–35].

Related Properties in DRBs. Previous research either informally studies
such advantage, or formally studies certain attacks leading to this advantage.
Ouroboros Praos [27] states that a DRB is leaky if the leader can learn the
random output in the next epoch. However, the “leaky” definition is embedded in
the ideal functionality of DRB rather than stated separately, disallowing specific
analysis.

RandPiper [20] combines the “leaky” property into the unpredictability prop-
erty, yielding d-unpredictability. It states that in the beginning of an epoch, the
adversary can learn at most d future random outputs in advance. However, d-
unpredictability only captures length-advantage, i.e., how many random outputs
the adversary can learn earlier than correct participants, but not time-advantage,
i.e., how much time the adversary can learn a given random output earlier
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than correct participants. In addition, RandPiper only studies d-unpredictability
under the private beacon attack where the adversary solely samples random out-
puts, neglecting other possible attacks on delivery-fairness.

SPURT [26] defines the “nearly simultaneous beacon output” as a part of the
unpredictability property. It states that all correct participants learn a random
output within a constant time after the adversary learns it. The “nearly simulta-
neous” notion only captures the time-advantage but not the length-advantage.
It also falls short of quantifying the time-advantage only asymptotically, and
thus does not support concrete analysis.

Guaranteed Output Delivery and Fairness in Multiparty Computa-
tion. Guaranteed output delivery (GOD) and fairness are properties of multi-
party computation (MPC) protocols, where participants jointly compute a func-
tion of their inputs securely under a subset of corrupted participants. GOD spec-
ifies that corrupted participants cannot prevent the correct participants from
receiving the function’s output. Fairness specifies that corrupted participants
should receive the function’s output if and only if correct participants receive
it. GOD and fairness are equivalent when broadcast channels are accessible [24],
which is our setting. However, these two properties are usually analysed under
discrete time models which only concern eventual delivery, and thus do not allow
quantitative analysis.

Consistent Length in Blockchain. Blockchain protocols allow participants
to jointly maintain a blockchain. The consistent length property [25,33–35] of
blockchain protocols specify that if a correct participant’s blockchain is of length
� at time t, then any correct participant’s blockchain at time t + ψ is of length
at least �. Blockchains trivially satisfy the property in synchronous networks, as
a correct participant will send its chain to other correct participants within the
synchronous latency Δ.

Adapting the consistent length property from blockchain protocols to DRBs
suffers from two limitations. First, it only considers the advantage between cor-
rect participants rather than the advantage of an adversary. In particular, the
adversary may grow its blockchain faster than correct participants, while with-
holding its blockchain. This makes it a liveness property rather than a security
property. Second, it only concerns the time advantage, i.e., how much time the
adversary learns blocks earlier than correct participants, but does not concern
how many blocks the adversary can learn earlier than correct participants.

1.2 Our Contributions

In this paper, we initiate the study of delivery-fairness, a new security property
capturing the advantage that some participants learn random outputs earlier
than other participants in DRBs. We formalise delivery-fairness, prove its lower
bound, and analyse the delivery-fairness guarantee of state-of-the-art DRBs,
including Drand [6], HydRand [37], GRandPiper [20] and SPURT [26]. Through
the analysis, we identify attacks on delivery-fairness and obtain several insights
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Table 1. Summary of evaluation results under synchronous networks.

Protocol No DKG Fault tolerance Comm. compl. Latency Delivery-fairness¶

Best Worst Best Worst ω ψ

Existing work Drand [6] ✗ n = 2f + 1 O(n2) O(n2) δ Δ Δ
δ

− 1 Δ − δ

Lock-step Drand [7] ✗ n = 2f + 1 O(n2) O(n2) Δ Δ 1 Δ − δ

HydRand [37] ✓ n = 3f + 1 O(n2) O(n3)† 3δ 3Δ Δ
3δ

+ f (3f + 1)Δ − δ

GRandPiper [20] ✓ n = 2f + 1 O(n2) O(n2) 11Δ 11Δ f + 1 (11f + 1)Δ − δ

SPURT [26] ✓ n = 3f + 1 O(n2) O(n2) 7δ (f + 7)Δ∗ Δ
7δ

Δ − δ

This paper Lock-step HydRand ✓ n = 3f + 1 O(n2) O(n3)† 3Δ 3Δ f + 1 (3f + 1)Δ − δ

Lock-step SPURT ✓ n = 3f + 1 O(n2) O(n2) 7Δ (f + 7)Δ∗ 1 Δ − δ

¶ In (ω, ψ)-delivery-fairness (Definition 5), the delivery-fairness is better when ω and
ψ are smaller. When ω = 1 and ψ = Δ − δ, the delivery-fairness is optimal, where δ
and Δ are the actual network latency and the latency upper bound, respectively. In
practice, δ << Δ.
† In the worst case, the adversary does not reveal its committed secrets for f consecutive
epochs. In the next epoch, the correct leader needs to broadcast f O(n)-size recovery
certificates to all participants, leading to O(n3) communication complexity.
∗ In the worst case, the adversary controls f consecutive leaders and aborts these f
consecutive epochs before a correct epoch with 7Δ, leading to (f + 7)Δ worst-case
latency.

for improving delivery-fairness. The insights allow us to suggest lock-step vari-
ants for HydRand and SPURT with better delivery-fairness (where SPURT
achieves the optimal value), without affecting system models or security prop-
erties. Table 1 summarises our results.

Delivery-Fairness and Its Lower Bound. We base our study on existing
DRB models [20,26,28]. As specified in Sect. 2, we consider a fixed set of n
participants and an adversary who can corrupt up to f of them, where f is
protocol-specific. The network is synchronous, where messages are delivered in
at least the actual network latency δ and at most a known upper bound Δ. Par-
ticipants jointly execute the DRB protocol to agree on a unique ledger contain-
ing a sequence of random outputs securing three properties, namely consistency,
liveness and unpredictability.

Atop the DRB model, we provide the first formal definition of delivery-
fairness in Sect. 3. The delivery-fairness concerns two aspects of advantage,
namely the length-advantage, i.e., how many random outputs an adversary can
learn earlier than correct participants, and the time-advantage, i.e., how much
time an adversary can learn a given random output earlier than correct partici-
pants.

Definition 1 (Delivery-fairness, informal; formalised in Definition 5).
A DRB protocol satisfies (ω, ψ)-delivery-fairness if the following holds for any
two participants (pi, pj) and any time t, except for negligible probability:

– ω-length-advantage: at time t, pi’s ledger pruning the last ω random outputs
precedes or is equal to pj’s ledger; and

– ψ-time-advantage: pi’s ledger at time t precedes or is equal to pj’s ledger
at time t + ψ.
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When ω and ψ are smaller, the length-advantage and time-advantage of any
participant over the other participants are smaller, thus the DRB provides better
delivery-fairness. We stress that delivery-fairness is achievable in synchronous
networks, where messages are delivered in at least the actual network latency δ
and at most a known upper bound Δ. Otherwise, the adversary can arbitrarily
delay messages in asynchronous networks or the asynchrony period in partially
synchronous networks, increasing ω and ψ to values that are impractical.

We then prove the lower bound of delivery-fairness in synchronous networks,
where ω and ψ are at least 1 and Δ − δ, respectively. The intuition behind the
proof is that, if the time difference of learning a random output between any two
participants is smaller than Δ− δ, then the group of Byzantine participants can
produce valid random outputs without communicating with correct participants,
contradicting to unpredictability or consistency.

Theorem 1 (Delivery-fairness lower bound, informal; formalised in
Theorem 2). There does not exist a secure DRB protocol that achieves (ω, ψ)-
delivery fairness with ω < 1 or ψ < Δ − δ under synchronous networks.

Analysis of Delivery-Fairness of Existing DRBs. With the formalisa-
tion, we analyse the delivery-fairness of state-of-the-art DRB protocols, namely
Drand [6], HydRand [37], GRandPiper [20] and SPURT [26], in Sect. 4. Table 1
summarises the results. Through the analysis, we identify attacks on delivery-
fairness and obtain several insights for improving delivery-fairness. Specifically,
we identify a new attack called latency manipulation attack that can weaken the
delivery-fairness in the original versions of Drand, HydRand and SPURT. This
attack is rooted in their non-lock-step design that participants can make progress
once receiving sufficient messages, without the need of waiting for a fixed time
period. Following this observation, we suggest lock-step variants for HydRand
and SPURT that resist against the latency manipulation attack and thus achieve
the better delivery-fairness (where SPURT achieves the optimal value), without
affecting system models or security properties. In addition, a previously known
unpredictability-focused attack, which we call private beacon attack, can also
weaken the delivery-fairness of HydRand and GRandPiper. The private beacon
attack is rooted in their design that the epoch leader solely samples the entropy
for the random output. To resist against the attack, the entropy should instead
be sampled by a group of at least f + 1 participants, where f is the number of
Byzantine participants.

2 Model

2.1 System Model

Participants. We consider a fixed number of n participants. Each participant
pk ∈ [pn] generates a pair of secret key and public key (skk, pkk), and is uniquely
identified by its public key in the system. We assume each participant has the
knowledge of other participants’ public keys.
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Adversary. We consider a static adversary A. In the beginning of the protocol,
A can corrupt at most f participants, where f is a corruption parameter sub-
jected to the protocol design. After that, A cannot change the set of corrupted
participants or corrupt more participants. A fully controls corrupted partici-
pants, including observing the participant’s internal state and controlling its
messages and outputs, without any latency. A can read all messages between
participants, but cannot modify or drop messages sent by correct participants.
We also refer to a corrupted participant as Byzantine participant. We assume
A is probabilistically polynomial-time (PPT), and thus cannot break standard
cryptographic primitives.

Network Model. We assume synchronous networks: A can decide to deliver
any message in at least the actual network delay δ and at most a known upper
bound Δ. In practice, δ << Δ.

We will conduct analysis assuming synchronous networks for all DRBs,
although some of them can work in relaxed network models. The reason is that
the delivery-fairness is a concrete measure and is meaningful only in synchronous
networks. Otherwise, in asynchronous networks or the asynchrony period in par-
tially synchronous networks, the adversary can arbitrarily delay messages to
increase its advantage, leading to impractical delivery-fairness guarantee. Conse-
quently, applications that require time-sensitive random outputs will be insecure
or unfair. Thus, when the application scenarios demand a delivery-fair DRB, the
application and DRB have to be deployed in synchronous networks.

2.2 Components of DRBs

The set of n participants continuously execute the DRB protocol Π to produce a
sequence of random outputs. Specifically, participants jointly produce and agree
on a ledger formed as a sequence of blocks. Each agreed block has to meet
a verification predicate. Each block deterministically derives a random output,
which can be extracted via a random output extraction function. The verification
predicate and random output extraction function are accessible to anyone inside
and outside the system, and their instantiation depends on the concrete protocol
design.

Ledger. A ledger T is formed as a sequence of blocks. Let T [e] be the e-th
block in the ledger T . Let |T | be the length of ledger T . Let T [p : q] be the
ledger from p-th block to (q − 1)-th block of ledger T . Parameter p and q can
be set empty, indicating the beginning and the end of the ledger, respectively.
Let T �� = T [: −�] be the ledger from pruning the last � blocks of ledger T . We
denote a ledger T is a prefix of or equals to another ledger T ′ as T � T ′.

Epoch. DRBs are executed in epochs. In each epoch, participants are expected
to produce and agree on a new block. The time period of an epoch can be fixed
by the protocol design, or be variant depending on Byzantine behaviours and/or
actual network delay. In leader-based DRBs, in each epoch, a leader is elected
to drive the protocol execution. In some leader-based DRBs (e.g., SPURT [26]),
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a Byzantine epoch leader can abort the protocol, so that no block is produced
in that epoch.

Verification Predicate. To be agreed, a block has to meet the verification
predicate FV (·). In FV (κ, T,B) → {0, 1}, given security parameter κ, ledger T
and block B as input, outputs 1 if B is a valid successor block of T . A ledger T
is valid in κ if for all � ∈ [|T | − 1], FV (κ, T [: �], T [�]) = 1. Let T t

i be participant
pi’s longest valid ledger at time t.

Random Output Extraction Function. Each block contains a random out-
put, which can be extracted by the random output extraction function FR(·). In
FR(κ, T ) → Re, given security parameter κ and a ledger T of length |T | = (e−1)
as input, FR(κ, T ) can derive a random output Re. That is, every block Be is
associated with a random output Re.

2.3 Security Properties of DRBs

A DRB protocol Π should satisfy the following properties, namely consistency,
liveness, and unpredictability.

Consistency. Consistency ensures that correct participants agree on a unique
ledger, and thus a unique sequence of random outputs. The consistency defini-
tion follows the common prefix property in blockchain protocols [29], where the
ledgers of any two correct participants are same except for the last � blocks.

Definition 2 (�-consistency, from [29]). For any κ, there exists a negligible
function negl(·) such that the following holds except for probability negl(κ). For
any two correct participants pi and pj (i = j is possible) at time t,

(T t
i )�� � T t

j ∨ (T t
j )�� � T t

i

Liveness. Liveness ensures that correct participants produce new random out-
puts at an admissible rate. The liveness definition follows the chain growth prop-
erty in blockchain protocols [31], where for any period of t time a correct par-
ticipant’s ledger grows at least t · τ blocks.

Definition 3 ((t, τ)-liveness, from [31]). For any κ, there exists a negligible
function negl(·) such that the following holds except for probability negl(κ). For
any correct participant pi and time t′ ≥ t,

|T t′
i | − |T t′−t

i | ≥ t · τ

Unpredictability. Each random output should be unpredictable: given an
agreed ledger, the adversary cannot predict the next random output before it is
produced. If the adversary can predict future random outputs, then it may take
advantage in randomness-based applications. The unpredictability definition fol-
lows the paradigm that without protocol transcripts from correct participants,
no adversary can distinguish between a future random output of the DRB and
a randomly sampled string of the same length [26,28].
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Definition 4 (Unpredictability, from [26]). A DRB protocol Π is unpre-
dictable if for every κ, there exists a negligible function negl(·) such that the
following holds. Assuming all participants have agreed on a ledger of e consecu-
tive random outputs R1, . . . , Re. For any future random output Re′ where e′ > e
and any probabilistic polynomial-time (PPT) adversary A, if A does not have the
knowledge of protocol transcripts associated with Re′ from correct participants,
then

|Pr[A(Re′) = 1] − Pr[A(r) = 1]| ≤ negl(κ)

, where r is a randomly sampled κ-bit string, and A(x) → {0, 1} outputs 1 if A
guesses x to be the random output in epoch e′ and otherwise 0.

2.4 Performance Metrics

DRBs concern two performance metrics, namely communication complexity and
latency.

Communication Complexity. Communication complexity is the total amount
of communication required to complete a protocol [39]. In DRBs, the communi-
cation complexity is quantified as the amount of bits transferred among partici-
pants for generating a random output. A protocol may have different communi-
cation complexity in the best-case and worst-case executions.

Latency. Latency is the time required to complete a protocol. In the context
of DRBs, the latency is quantified as the time participants take to generate a
random output. Similarly, a protocol may have different latencies in the best-case
and worst-case executions.

3 Delivery-Fairness Property

In this section, we formally define the delivery-fairness property. The delivery-
fairness concerns two aspects of the advantage: length-advantage and time-
advantage. Length-advantage concerns how many random outputs the adversary
can learn earlier than correct participants. Time-advantage concerns how much
time the adversary can learn a random output earlier than correct participants.
We also prove the lower bound of the delivery-fairness, representing the optimal
guarantee.

3.1 Defining Delivery-Fairness

We define delivery-fairness through two strawman definitions that are intuitive
but incomplete. We begin with the fairness notion in multiparty computation
(MPC) protocols that, if the adversary receives the output, then correct partic-
ipants eventually receive the output [36]. We then generalise the fairness notion
to the continuous time model, making it consistent with the DRB settings.

Attempt #1: Time Advantage. We first consider relaxing the round-based
fairness definition to the continuous time model by introducing a time parameter
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ψ. Namely, if a participant learns a random output at time t, then all other
participants learn this random output no later than time t + ψ. However, this
definition fails to capture that the adversary may learn more than one random
outputs in advance than correct participants.

Attempt #2: Length and Time Advantage. We then consider capturing
both length and time advantage. Let ω be the length parameter and ψ be the
time advantage parameter. A DRB protocol satisfies (ω, ψ)-delivery-fairness if
for any two participants pi, pj : 1) pi’s ledger is longer than pj ’s ledger by no
more than ω random outputs, and 2) pj ’s ledger at time t+ψ is no shorter than
pi’s ledger at time t.

However, the definition does not specify whether the last ω random outputs
of pj at time t+ψ should be identical to the last ω random outputs of pi at time
t or not. If not, then this contradicts to the consistency property.

Final Definition: Length and Time Advantage with Consistency. We
then add the consistency guarantee to the definition in attempt #2, leading to
our final definition. Specifically, delivery-fairness concerns the adversary’s length
advantage and time advantage, parameterised by ω and ψ, respectively. The ω-
length-advantage states that the longest valid ledger pruning the last ω blocks
is a prefix of the valid ledger in any participant’s view at any time. The ψ-time-
advantage states that the shortest valid ledger at time t should “catch up with”
all participants’ ledgers at time t after the time period of ψ. When ω and ψ are
smaller, the DRB provides stronger delivery-fairness guarantee.

Definition 5 ((ω, ψ)-Delivery-Fairness). A DRB protocol Π satisfies (ω, ψ)-
delivery-fairness if for every κ, there exists a negligible function negl(·) such
that the following holds for any two participants pi, pj and any time t except for
probability negl(κ):

– ω-length-advantage: (T t
i )�ω � T t

j

– ψ-time-advantage: T t
i � T t+ψ

j

3.2 Lower Bound of Delivery-Fairness

We prove that (1,Δ − δ)-delivery-fairness is the optimal delivery-fairness guar-
antee. Specifically, we prove the following theorem.

Theorem 2 (Delivery-fairness lower bound of DRB). There does not exist
a DRB protocol that simultaneously satisfies the following in synchronous net-
works:

– consistency, liveness and unpredictability as in Sect. 2; and
– (ω, ψ)-delivery fairness with ω < 1 or ψ < Δ − δ

Proof. Assuming such a DRB protocol exists. Assuming at time t, all partici-
pants have agreed on a ledger of e consecutive random outputs R1, . . . , Re, and
start producing Re+1. A sets the latency among correct participants to be Δ, the
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latency of messages from any corrupted participant to any correct participant
to be Δ, and the latency of messages from any correct participant to any cor-
rupted participant to be δ. By unpredictability, without messages from correct
participants, corrupted participants cannot learn the value of Re+1. Thus, the
fastest possible way for corrupted participants to learn a random output is to
get messages from correct participants, which is at least t+ δ. Given the latency
set by A, a correct participant receives messages only at t + Δ.

By the assumption that the time-advantage between correct and corrupted
participants is smaller than Δ− δ, correct participants learn the random output
Re+1 before t + Δ. Thus, a correct participant has to learn the random output
R′

e+1 that satisfies the verification predicate. If R′
e+1 = Re+1, then this means

that a participant can solely produce random outputs without interacting with
the other participants. Thus, f corrupted participants can also produce random
outputs without interacting with the other correct participants, contradicting to
the unpredictability property. If R′

e+1 �= Re+1, then this means that f corrupted
participants can produce valid random outputs conflicted with those from the
other participants, contradicting to the consistency property.

4 Delivery-Fairness Analysis of Existing DRBs

4.1 Drand

Summary of Design. Drand a DRB protocol based on the BLS threshold
signature [21]. It allows a threshold number of participants in a group to jointly
sign a message, where the signature is publicly verifiable.

In Drand design, participants perform a distributed key generation (DKG) to
generate secret keys, and agree on an initial signature σ0. Then, for each epoch
e, participants jointly generate a BLS threshold signature σe over e and the last
epoch’s BLS signature σe−1 (or σ0 at the first epoch). An epoch’s random output
Re is the calculated as H(σe), where H(·) is a hash function. Drand requires a
DKG due to the usage of threshold signature, and achieves the fault tolerance
capacity of n = 2f + 1.

Drand has two variants, namely the non-lock-step ΠDrand specified in the
documentation [8] and the lock-step ΠLS

Drand in the actual implementation [7].
Compared to ΠDrand, ΠLS

Drand requires participants to wait for a time period during
the phase of broadcasting signatures for each epoch e. In synchronous networks,
the time period is at least Δ. In Drand’s implementation ΠLS

Drand [7], the default
time period (named DefaultBeaconPeriod) is 60 s.

Latency Manipulation Attack. We identify a new attack latency manipula-
tion attack that can increase the adversary’s advantage of delivery-fairness in the
non-lock-step ΠDrand. The latency manipulation attack only requires the adver-
sary to manipulate the latency among participants (subjected to the network
model), and does not require equivocating or withholding messages. Thus, the
attack is unaccountable and does not affect other security properties or perfor-
mance metrics (Fig. 1).
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Fig. 1. Latency manipulation attack on leaderless DRBs.

The adversary A follows the protocol with n − 2f (which is 1 in Drand)
correct participants while delaying all messages from and to the other f correct
participants. During the first Δ under latency manipulation attack, A and n−2f
correct participants learn a random output for every δ, while the other f correct
participants learn a random output only at the end of this Δ.

Delivery-Fairness of Non-Lock-Step Drand. At the end of this Δ, A and
n−2f correct participants have learned Δ

δ +1 random outputs, while the other f
correct participants only learn two random outputs, leading to length-advantage
degree ω = Δ

δ − 1. In real-world networks, Δ >> δ, which leads to large value
of ω. For each of these random outputs (except for the first one), A and n − 2f
correct participants learn it earlier than the other f correct participants by Δ−δ,
leading to time-advantage degree ψ = Δ−δ. Therefore, the non-lock-step Drand
ΠDrand achieves (ω, ψ)-delivery-fairness where ω = Δ

δ − 1 and ψ = Δ − δ.

Delivery-Fairness of Lock-Step Drand. We analyse the delivery-fairness
guarantee of ΠLS

Drand, and show that ΠLS
Drand achieves optimal (1,Δ − δ)-delivery-

fairness. The improvement compared to the non-lock-step ΠDrand is due to the
lock-step design, where correct participants will wait for Δ before entering the
next epoch and broadcasting signature shares, even learning the random output
of this epoch in advance.

Gained Insights. Through the analysis, we obtain an insight on improving
the delivery-fairness. Namely, the lock-step execution is necessary to bound the
adversary’s length-advantage to 1. Otherwise, without the lock-step execution,
the latency manipulation attack can always allow the adversary to grow its ledger
faster than correct participants within a Δ, and thus increase its advantage in
length and time.

4.2 HydRand and GRandPiper

We analyse the delivery-fairness of HydRand [37] and GRandPiper [20], two
DRB protocols based on the rotating leader paradigm and PVSS. We observe
that a previously known unpredictability-focused attack, which we call private
beacon attack, weakens the delivery-fairness of HydRand and GrandPiper. The
attack is rooted in their design is that the entropy of a random output is solely
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Fig. 2. Latency manipulation attack on leader-based DRBs. Extra specification com-
pared to the latency manipulation attack on leaderless DRBs is labelled in blue. (Color
figure online)

provided by the epoch leader. To resist against the attack, the entropy should
instead be provided by a group of at least f + 1 participants.

Summary of HydRand. HydRand is a DRB protocol based on leader elec-
tion, accumulator and publicly verifiable secret sharing (PVSS) [23,38]. Leader
election allows a group of participants to elect a leader for every epoch. Accumu-
lator [18] allows to compress a set of values into a short accumulation value, and
prove the inclusion of each value given the accumulation value and a short wit-
ness. PVSS [23,38] allows one to distribute a secret with a group of participants,
in which a threshold number of participants can collaboratively reconstruct the
secret.

In HydRand design, participants employ the round-robin leader election to
elect a leader for every epoch. In each epoch, the leader solely samples a random
input, generates the commitment of this random input, uses PVSS to generate
secret shares for this random input, and use the accumulator to generate an accu-
mulation value for these secret shares. Then, the leader broadcasts the commit-
ment, a secret share, and the accumulation value to each participant. Meanwhile,
the leader can choose whether to reveal its last random input, which, together
with the last f random outputs, determines this epoch’s random output. If the
leader is Byzantine and does not reveal it, then all participants reconstruct the
last random input via broadcasting secret shares. HydRand does not require dis-
tributed key generation and achieves the fault tolerance capacity of n = 3f + 1.

The original HydRand protocol ΠHydRand in the paper [37] and implementa-
tion [9] is non-lock-step. We also study its lock-step variant ΠLS

HydRand that resists
against the latency manipulation attacks and achieves better delivery-fairness.

Latency Manipulation Attack on Leader-Based DRBs. Recall that the
latency manipulation attack on leaderless DRBs (e.g., Drand) allows the adver-
sary A to learn random outputs faster than f correct participants with Δ latency,
within a time period of Δ. However, the latency manipulation attack in leader-
based DRBs faces a different scenario: during this Δ, if one of these f correct
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Fig. 3. Private beacon attack on DRBs.

participants becomes the leader in an epoch, then A cannot learn any new ran-
dom output until this leader reaches this epoch. Consequently, A has to stop the
attack, leading to less advantage compared to the attack in leaderless protocols
like Drand. Figure 2 presents the latency manipulation attack on leader-based
DRBs.

Private Beacon Attack. Bhat et al. [20] observes an attack on the unpre-
dictability of HydRand and GRandPiper. This attack, which we call private
beacon attack, can also weaken the delivery-fairness of HydRand (including both
ΠHydRand and ΠLS

HydRand) and GRandPiper. In this attack, the adversary grows
its own ledger to learn random outputs earlier than correct participants. As
HydRand allows the epoch leader to solely sample the entropy, the epoch leader
can learn the random output instantly without communicating with others.
When c consecutive leaders are corrupted, the adversary can learn c future ran-
dom outputs. With round-robin leader election used in HydRand, GRandPiper
and SPURT, c is at most f . Same as the latency manipulation attack, the private
beacon attack does not require equivocating or withholding messages, and thus
remains unaccountable. The private beacon attack is presented in Fig. 3.

Delivery-Fairness of Non-Lock-Step HydRand. Both the latency manip-
ulation attack and the private beacon attack can be applied to the non-lock-
step ΠHydRand. Under both attacks, the non-lock-step Hydrand ΠHydRand achieves
(ω, ψ)-delivery-fairness where ω = Δ

3δ + f and ψ = (3f + 1)Δ − δ.

Delivery-Fairness of Lock-Step HydRand. The lock-step execution rules
out the latency manipulation attack. Under the private beacon attack, the lock-
step HydRand ΠLS

HydRand achieves (ω, ψ)-delivery-fairness where ω = f + 1 and
ψ = (3f + 1)Δ − δ.

Summary of GRandPiper. GRandPiper is a DRB based on leader election,
Byzantine broadcast and publicly verifiable secret sharing (PVSS). Byzantine
broadcast ΠBB allows a designated broadcaster broadcasts a value to a group
of participants, such that all correct participants will commit the same value. If
the broadcaster is correct, then all correct participants will commit the broad-
casted value. GRandPiper employs a Byzantine broadcast protocol with O(n2)
communication complexity and latency tBB = 11Δ.

GRandPiper [20] follows the HydRand’s approach with three major mod-
ifications. First, GRandPiper enforces participants to recover the secret ran-
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dom input committed by the leader, without allowing the leader to reveal it by
itself. Second, GRandPiper replaces the Acknowledge and Vote-confirm phase
in HydRand with an explicit Byzantine broadcast protocol ΠBB. Note that the
Byzantine broadcast and the round-robin leader election constitute a SMR pro-
tocol, as described in the RandPiper paper. Third, GRandPiper formalises the
Hydrand’s idea of separating the process of committing and revealing random
inputs as a queue-based mechanism, where each participant buffers previously
committed secret values and pops one value to reconstruct for each epoch.
GRandPiper does not require distributed key generation and achieves the fault
tolerance capacity of n = 2f + 1.

Delivery-Fairness of GRandPiper. GRandPiper is lock-step and thus rules
out the latency manipulation attack. Under the private beacon attack, GRand-
Piper achieves (ω, ψ)-delivery-fairness where ω = f +1 and ψ = (11f +1)Δ− δ.

Gained Insights. In HydRand and GRandPiper, the entropy of a random
output is provided by a sole leader. In this case, the adversary can always launch
the private beacon attack as long as the leader is Byzantine. To mitigate the
private beacon attack, the protocol should prevent the adversary from controlling
the entropy for a random output. To this end, the entropy should instead be
provided by a group of at least f+1 participants rather than a single participant.

4.3 SPURT

Summary of Design. SPURT is a DRB based on leader election, Byzantine
broadcast, and a specialised PVSS protocol Πuniform

PVSS . The used Byzantine broad-
cast protocol a variant of HotStuff [40] with best-case latency of 4δ and worst-
case latency tBB = 4Δ.

In the SPURT design, each participant samples a random input, uses PVSS
to generate secret shares, encrypted secret shares and inclusion proofs of this
random input, and sends all encrypted shares and inclusion proofs to the leader
elected via a round-robin leader election. Then, the leader homomorphically
aggregates all received commitments and inclusion proofs column-wise, and trig-
gers a Byzantine broadcast over the aggregated encrypted shares and inclusion
proofs, such that all participants agree on the entropy for the random output.
After Byzantine broadcast, each participant decrypts one of the encrypted shares
and broadcasts the decrypted share, such that all participants can reconstruct
the secret from received decrypted shares. SPURT [26] does not require dis-
tributed key generation and achieves the fault tolerance capacity of n = 3f + 1.

The original SPURT protocol ΠSPURT in the paper [26] and implementa-
tion [16] is non-lock-step. We also study its lock-step variant ΠLS

SPURT that resists
against the latency manipulation attacks and achieves optimal delivery-fairness.

Delivery-Fairness of Non-Lock-Step SPURT. SPURT resists against the
private beacon attack, as the entropy of a random output is jointly provided by
f +1 participants. However, similar to HydRand, the non-lock-step ΠSPURT does
not resist against the latency manipulation attack in Fig. 2. Specifically, A sets
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the latency among its corrupted participants and n− 2f = f +1 correct partici-
pants as δ, while the latency from, to and among the rest correct participant as Δ.
Recall that SPURT achieves the 7δ best-case latency and 7Δ worst-case latency.
Similar to non-lock-step HydRand ΠHydRand, after a Δ of the latency manipu-
lation attack, A and f + 1 correct participants learn Δ

7δ + 1 random outputs,
while the rest correct participant only knows a single random output, leading to
Δ
7δ length-advantage and Δ− δ time-advantage. Thus, the non-lock-step ΠSPURT

achieves (ω, ψ)-delivery-fairness with ω = Δ
7δ and ψ = Δ − δ.

Delivery-Fairness of Lock-Step SPURT. We then analyse the delivery-
fairness guarantee of ΠLS

SPURT, and show that ΠLS
SPURT achieves the optimal (1,Δ−

δ)-delivery-fairness.
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Abstract. We introduce Bicorn, an optimistically efficient distributed
randomness protocol with strong robustness under a dishonest majority.
Bicorn is a “commit-reveal-recover” protocol. Each participant commits
to a random value, which are combined to produce a random output. If
any participants fail to open their commitment, recovery is possible via
a single time-lock puzzle which can be solved by any party. In the opti-
mistic case, Bicorn is a simple and efficient two-round protocol with no
time-lock puzzle. In either case, Bicorn supports open, flexible participa-
tion, requires only a public bulletin board and no group-specific setup or
PKI, and is guaranteed to produce random output assuming any single
participant is honest. All communication and computation costs are (at
most) linear in the number of participants with low concrete overhead.

1 Introduction

Distributed randomness beacons (DRBs) aim to enable a group of n participants
to jointly compute a random output (which we denote Ω) such that no partic-
ipant or coalition of participants can predict or influence the outcome. Among
many other applications, they are useful for cryptographically verifiable lotteries
or leader election in efficient distributed consensus protocols.

A classic approach is commit-reveal [9]. First, all participants publish a com-
mitment ci = Commit(ri) to a random value ri. Next, participants reveal their
ri values and the result is Ω = Combine(r1, . . . , rn) for some suitable combi-
nation function (such as exclusive-or or a cryptographic hash). Commit-reveal
protocols are simple, efficient, and secure as long as one participant chooses a
random ri value—assuming all participants open their commitments. However,
the output can be biased by the last participant to open their commitment (a
so-called last-revealer attack), as that participant will know all other ri values
and can compute Ω early. If the last revealer doesn’t like the impending value
of Ω, they can refuse to open, forcing the protocol to abort. Even if the last
revealer is removed from subsequent protocol runs, this enables one bit of bias.

Related Work. Several approaches exist to avoid last-revealer attacks. Commit-
reveal-punish protocols impose a financial penalty on any participant who fails
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to open their commitment. This penalty can be automatically enforced using
modern cryptocurrencies [2,32], but this requires locking up capital and security
relies on economic assumptions about the value of manipulation to the attacker.

Other protocols relax the security model of commit-reveal and assume an
honest majority of participants. Many constructions enable a majority of par-
ticipants to recover the input of a malicious minority of participants [7,8,19,20,
24,26,27,34,35,37], using cryptographic tools such as publicly verifiable secret
sharing (PVSS). Typically, these constructions can tolerate some threshold t of
malicious participants failing to complete the protocol, with the trade-off that
any coalition of t+1 participants can (secretly) learn the impending output early
and potentially bias the protocol, leading to a requirement that t < n

2 (honest
majority). These protocols are also often quite complex, with communication
and computation costs superlinear in n. Another approach is to rely on thresh-
old cryptography for participants to jointly compute a cryptographic function
which produces Ω, such as threshold signatures in Dfinity [18], threshold encryp-
tion [22], or threshold inversion in RSA groups [3,4]. The drand DRB [1], which
uses a chain of threshold BLS signatures, is now deployed publicly with a group
of 16 participating nodes producing a new random output every 30 s.

A very different approach to constructing DRBs uses time-based cryptog-
raphy, specifically using delay functions to prevent manipulation. The simplest
example is Unicorn [28], a one-round protocol in which participants directly pub-
lish (within a fixed time window) a random input ri. The result is computed as
Ω = Delay(Combine(r1, . . . , rn)). By assumption, a party cannot compute the
Delay function before the deadline to publish their contribution ri and therefore
cannot predict Ω or choose ri in such a way as to influence it. This protocol
retains the strong n − 1 (dishonest majority) security model of commit-reveal,
but with no last-revealer attacks. It is also simple and, using modern verifiable
delay functions1 (VDFs) [10], the result can be efficiently verified. The downside
is that a delay function must be computed for every run of the protocol.

Our Approach. We introduce the Bicorn family of DRB protocols, which retain
the advantages of Unicorn while enabling efficient computation of the result (with
no delay) if all participants act honestly. The general structure is:

• Each of n participants chooses a random value ri and publishes ci = TCom(ri)
using a timed commitment scheme [14] TCom before some deadline T1.

• In the optimistic case, every participant opens their commitment by publish-
ing ri. The DRB output is Ω = Combine(r1, . . . , rn). In this case, the protocol
is equivalent to a classic commit-reveal protocol.

• If any participant does not publish their ri value, it can be recovered by
computing ri = ForceOpen(ci), a slow function requiring t steps of sequential
work which cannot be evaluated quickly enough for a malicious coalition of
participants to learn honest participants’ committed values early. The result
Ω is the same as in the optimistic case, even if all participants don’t reveal
their committed values.

1 The original Unicorn proposal used modular square roots in a prime-order group.
We consider using a modern VDF instead.
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This protocol structure was used in a recent proposal by Thyagarajan et
al. [38]. They observe that by using a homomorphic commitment scheme, the
commitments can be combined and only a single forced opening is required,
instead of opening every withholding participant’s commitment separately.
Asymptotically, their protocols require linear (O(n)) communication and com-
putation costs when run with n participants.

However, Thyagarajan et al. use a general-purpose CCA-secure timed com-
mitment scheme suitable for committing to arbitrary messages, which introduces
significant practical complexity and overhead. Our key insight is that construct-
ing a DRB does not require a general-purpose commitment scheme; it is sufficient
to use a special restricted commitment scheme which only enables committing
to a pseudorandom message. As a result, our protocols are considerably simpler
and offer much better concrete performance.

Contributions. We introduce the Bicorn family of protocols, which comes in
three flavors with slightly different security proofs and practical implications:

• Bicorn-ZK, which requires each participant to publish a zero-knowledge proof
of knowledge of exponent. This imposes the highest practical overhead but
offers the simplest security proof.

• Bicorn-PC, in which participants “pre-commit” their contribution before the
protocol. This is the simplest version, though it adds an extra communication
round (which can be amortized over multiple runs).

• Bicorn-RX, which utilizes a randomized exponent to prevent manipulation
attacks. This is the most efficient version in practice, though the security
proof relies on stronger assumptions.

In Sect. 3, we prove security of our constructions by reducing to the RSW
assumption [33] in the algebraic group model (AGM) [25], except for Bicorn-ZK
where we assume a zero-knowledge proof of knowledge of exponent (ZK-PoKE)
exists. The Bicorn-RX variant assumes a random oracle. In Sect. 6, we report
on concrete implementations of these protocols in Ethereum, showing that our
constructions are practical and incur 3–8× increase in per-user cost compared
to commit-reveal (but with no manipulation due to aborts) and 5–7× compared
to Unicorn (but with no delay function required in the optimistic case).

2 Overview

2.1 Protocol Outline

We specify all three of our protocol variants in Protocol 1. Our protocols are
initialized via a security parameter λ and a delay parameter t, and work over
a group of unknown order, which we denote G (see preliminaries in Sect. 3). In
addition to the group G, the public parameters include a pair (g, h), where g is a
generator of the group and h = g2

t

. If desired, a Wesolowski [41] or Pietrzak [30]
proof of exponentiation can enable efficient verification that h was computed
correctly. Note that this setup only needs to be run once ever (for a specific



238 K. Choi et al.

delay parameter t) and can be used repeatedly (and concurrently) by separate
protocol instances; the number of participants does not need to be known and
may dynamically change over time.

The common structure of Bicorn protocols is:

• Each of n participants chooses a random value αi and publishes ci = gαi . The
value ci can be viewed as the input to a VDF whose output is (ci)2

t

, with αi

serving as a trapdoor to quickly compute (ci)2
t

= (gαi)2
t

= (g2
t

)αi = hαi .
Without knowledge of αi this value is slow to compute. Depending on the
security assumptions made, αi can be sampled from different distributions.
We abstract this choice by parameterizing by a uniform distribution B from
which αi is sampled.

• Participants “open” their commitment ci by revealing a value α̃i. It can be
quickly verified that α̃i is the correct αi by verifying that ci = gα̃i .

• Optimistic case: Given all correct αi values, the DRB output Ω is the product
Ω =

∏
i∈[n] h

αi , which is unpredictable as long as at least one of the αi values
was randomly chosen and is easy to compute if all αi values are correctly
revealed.

• Pessimistic case: If any participant withholds αi (or chose ci without knowl-
edge of the corresponding αi), then the missing value hαi can be recovered
(slowly) by computing hαi = (ci)2

t

, equivalent to evaluating a VDF. If mul-
tiple participants withhold αi, naively one must compute each missing value
hαi individually. A more efficient approach (which works even if all partic-
ipants withhold αi) is to first combine each participant’s contribution into
the value ω =

∏
i∈[n] ci. The output can then be computed via a single slow

computation as Ω = ω2t

, which is identical to the output Ω =
∏

i∈[n] h
α̃i

computed in the optimistic case.

By itself this protocol is insecure, because a malicious participant need not
choose ci by choosing a value αi and computing gαi . An adversary j who has pre-
computed a desired output Ω∗ = (ω∗)2

t

and is able to publish last can compute
a malicious contribution:

cj = ω∗ ·
⎛

⎝
∏

i∈[n],i �=j

ci

⎞

⎠

−1

(1)

This will cancel out every other participant’s contribution and force the out-
put value Ω∗. There are three ways to prevent this attack, each leading to
a protocol variant with slightly different properties, which we will present in
the following subsections. We present the protocols combined for comparison in
Protocol 1.
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Setup(λ, t) (run once for all protocol runs)

1. Run (G, g, A,B) $←− GGen(λ) to generate a group of unknown order
2. Compute h ← g2

t

, optionally with πh = PoE(g, h, 2t)
3. Output (G, g, h, πh, A,B)

Prepare() (run by each participant i)

αi
$←− B

ci ← gαi

πi ← ZK-PoKE(g, ci, αi)

αi
$←− B

ci ← gαi

di ← H(ci)

αi
$←− B

ci ← gαi

Precommit(di) (run by each participant i)

− Publish di −

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T0 . . .

Commit(ci, πi) (run by each participant i)

Publish ci, πi Publish ci Publish ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T1 . . .

Reveal(αi) (run by each participant i)

Publish αi Publish αi Publish αi

Finalize({(α̃i, ci, di, πi)}n
i=1) (optimistic case, once per protocol run)

1. ∀j Verify proof πj

– else: remove user j

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏

i∈[n]

hα̃i

1. ∀j Verify dj = H(cj)

– else: remove user j

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏

i∈[n]

hα̃i

1. b∗ ← H (c1|| . . . ||cn)

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏

i∈[n]

(
hH(ci‖b∗)

)α̃i

Recover({(ci, di, πi)}n
i=1) (pessimistic case, once per protocol run)

Ω =

⎛

⎝
∏

i∈[n]

ci

⎞

⎠
2t

Ω =

⎛

⎝
∏

i∈[n]

ci

⎞

⎠
2t

Ω =

⎛

⎝
∏

i∈[n]

c
H(ci‖b∗)
i

⎞

⎠
2t

Protocol 1: All Bicorn protocol variants: Bicorn-ZK (left column), Bicorn-PC
(center column), and Bicorn-RX (right column).
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2.2 Bicorn-ZK: Using Zero-Knowledge Proofs

The conceptually simplest fix is for each user to publish, along with their com-
mitment ci, a zero-knowledge proof-of-knowledge πi = ZK-PoKE(g, ci, αi) of the
discrete logarithm of ci to the base gi (i.e. αi). This version (Bicorn-ZK) is
specified in Protocol 1 (left). This removes the attack above, as an adversary
who computes cj via Eq. 1 will not know the discrete log of cj to the base g.
Such proofs can be done in groups of unknown order particularly efficiently in
this case. The use of a fixed base g enables the simpler ZKPoKRep protocol of
Boneh et al. [11] (possibly in combination with their proof aggregation PoKCR
protocol).

Participants publishing invalid proofs are removed, and the protocol can con-
tinue and still produce output. Attempting to participate with an invalid proof
is equivalent to not participating at all (though participants who do so might
need to be blocked or penalized financially to deter denial-of-service attacks).

It might be tempting to optimize the protocol by not verifying each proof πi

in the optimistic case, instead checking directly that ci = gα̃i using the revealed
value α̃i. However, this would introduce a subtle attack: a malicious participant
could publish a correctly generated (ci, α̃i) pair but with an invalid proof π̃i.
Next, after all other participants have revealed their α values, the attacker can
compute the impending result Ω with their own contribution included, as well
as the alternative Ω′ if it is removed. They could then choose which output is
produced, introducing one bit of bias into the protocol: by publishing α̃i, they
will remain in the protocol (as π̃i is not checked) and Ω will result, whereas by
withholding α̃i they will force the pessimistic case, in which they will be removed
on account of the faulty π̃i and Ω′ will result. Thus, it is important to verify
every participant’s proof πi in both cases to prevent this attack.

2.3 Bicorn-PC: Using Precommitment

Another approach to prevent manipulation is to add an initial precommitment
round where participants publish di = H(ci), preventing them from choosing
ci in reaction to what others have chosen. This version (Bicorn-PC) is specified
in Protocol 1 (center). Participants can decline to reveal their committed ci,
in which case they are removed and the protocol can continue safely. Because
participants will not have time to compute the impending output before choosing
whether to reveal, this does not introduce any opportunity for manipulation.

Note that the precommitted values di can be published at any point prior
to T0 (the point at which participants start revealing their actual commitment
ci). If the protocol is run iteratively, it is possible for participants to publish any
number of precommitments di in advance (or a single commitment to a set of di

values using a set commitment construction such as a Merkle Tree), making the
protocol a two-round protocol on an amortized basis.
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Table 1. A brief comparison of the Bicorn variants. See Fig. 1 for notation (〈G〉 and
〈B〉 are the sizes of elements from G and B, respectively) and Sect. 3 for a background
on the RSW assumptions, the algebraic group model (AGM), the random oracle model
(ROM), and zero-knowledge proof of knowledge of exponent (ZK-PoKE).

Protocol Rounds Communication Assumptions

Sect. 2.2 Bicorn-ZK 2 n(〈G〉 + 〈B〉 + |π|) RSW, ZK-PoKE
Sect. 2.3 Bicorn-PC 3 n(〈G〉 + 〈B〉 + λ) RSW, AGM
Sect. 2.4 Bicorn-RX 2 n(〈G〉 + 〈B〉) RSW, AGM, ROM

2.4 Bicorn-RX: Using Pseudorandom Exponents

Finally, we can prevent manipulation by raising each participant’s contribu-
tion ci to a unique (small) exponent which depends on all other partici-
pants’ contributions. Specifically, we define b∗ to be the hash of all ci values:
b∗ = H (c1||c2|| . . . ||cn). We then raise each value ci to the pseudorandom expo-
nent bi = H(ci ‖ b∗). The intuition is that modifying any contribution ci

will induce new exponents on each participant’s contribution which prevents
an adversary from forcing the value ω =

∏
i∈[n] c

H(ci‖b∗)
i to a fixed value. A

similar technique was used by Boneh et al. [13] to prevent rogue-key attacks in
BLS multi-signatures. This version (Bicorn-RX) is specified in Protocol 1 (right)
(Table 1).

2.5 Comparison

Each of these leads to a secure protocol, albeit reducing to slightly different com-
putational assumptions, as we will prove in Sect. 5. All of our protocols reduce
to the RSW assumptions with Bicorn-PC and Bicorn-RX requiring the algebraic
group model (AGM) for the security reductions and Bicorn-RX also assuming
a random oracle. Bicorn-ZK doesn’t require the AGM explicitly but instead
assumes a secure zero-knowledge proof of knowledge of exponent (ZK-PoKE)
for which efficient existing protocols are proven secure only in the AGM [11].

Each protocol also offers slightly different performance trade-offs, though
asymptotically all require O(n) broadcast communication by participating nodes
and O(n) computation to verify the result. While Bicorn-PC incurs an extra
round, Bicorn-ZK incurs extra computational overhead which may be significant
in some scenarios (e.g. smart contracts). Bicorn-RX requires only two rounds and
does not require the user to produce proofs but requires extra group exponenti-
ations which incur slightly higher costs than Bicorn-PC.

3 Preliminaries

Algebraic Group Model. In some of our security proofs, we consider security
against algebraic adversaries which we model using the algebraic group model,
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Fig. 1. Security games for the repeated squaring hardness assumptions: computational
RSW (left), computational power-of-RSW (center), and decisional RSW (right).

following the treatment of [25]. We call an algorithm A algebraic if for all group
elements Z that are output (either as final output or as input to oracles), A addi-
tionally provides the representation of Z relative to all previously received group
elements. The previously received group elements include both original inputs to
the algorithm and outputs received from calls to oracles. More specifically, if [X]i
is the list of group elements [X0, . . . , Xn] ∈ G that A has received so far, then,
when producing group element Z, A must also provide a list [z]i = [z0, . . . , zn]
such that Z =

∏
i Xzi

i .

Groups of Unknown Order and RSW Assumptions. Our protocols will
operate over cyclic groups of unknown order. We assume an efficient group gen-
eration algorithm GGen(λ) that takes as input security parameter λ and outputs
a group description G, generator g, and range [A,B] where A, B, and B −A are
all exponential in λ; the group G has order in range [A,B]. We assume efficient

algorithms for sampling from the group (g $←− G) and for testing membership.
There are a few currently known options with which to instantiate a group

of unknown order. One option that requires only a transparent setup is through
class groups of imaginary quadratic order [15]. However, class groups typically
incur high concrete overheads. Instead, one may opt for more efficient RSA
groups, which require a trusted setup or multiparty computation “ceremony” [21]
to compute the modulus N = pq without revealing safe primes p, q. Looking
forward, we will require our group to additionally be cyclic and satisfy the low
order assumption [12]. So instead we will use the group QR

+
N , the group of signed

quadratic residues modulo N (we refer to Pietrzak for more details [30]).
The security of our constructions is based on the assumption, originally pro-

posed by RSW [33], that, given a random element x ∈ G, the fastest algorithm
to compute y = x(2t) takes t sequential steps. We use three RSW assumptions;
we provide security games in Fig. 1.

Randomizing Exponent Sizes. We recall a useful lemma for randomizing
group elements [29].
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Lemma 1. For any cyclic group G and generator g, if r
$←− B is chosen uni-

formly at random, then the statistical distance between gr and the uniform dis-
tribution over G is at most |G|

2|B| .

Looking forward, we will use this lemma in our security proofs to replace a
generator taken to the power of a large exponent of size |B| ≈ 22λ · |G| with
a random element. Alternatively, one may opt for the stronger short exponent
indistinguishability (SEI) assumption [23] which asserts that an adversary cannot
computationally distinguish between a uniformly random element of G and gr

for r
$←− [0, 22λ]. The latter assumption enables significant efficiency gains in

practice, with participants publishing 32-byte α values instead of 288 bytes.

Non-interactive Zero-knowledge Proofs. A non-interactive proof system for
a relation R over statement-witness pairs (x,w) enables producing a proof, π ←
Prove(pk, x, w), that convinces a verifier ∃w : (x,w) ∈ R, 0/1 ← Verify(vk, π, x);
pk and vk are proving and verification keys output by a setup, (pk, vk) ←
Keygen(R). A non-interactive argument of knowledge further convinces the ver-
ifier not only that the witness w exists but also that the prover knows w, and if
proved in zero-knowledge, the verifier does not learn any additional information
about w. In this work, we will make use of proof systems for two relations. First,
we use PoE for the following relation for proofs of exponentiation in groups of
unknown order [11,30,41]: {((x, y ∈ G, α ∈ Z),⊥) : y = xα}. Second, we use ZK-
PoKE (realized by ZKPoKRep from [11]) for zero-knowledge proofs of knowledge
of exponent in groups of unknown order: {((x, y ∈ G), α ∈ Z) : y = xα}.

4 Timed DRBs: Syntax and Security Definitions

We first define a timed DRB using a generalized syntax which captures all of
our protocol variants. A timed DRB protocol DRB with time parameter t is a
tuple of algorithms (Setup,Prepare,Finalize,Recover). We describe them below
for a run of the protocol with n participants:

• Setup(λ, t) $−→ pp: The setup algorithm takes as input a security parameter λ
and a time parameter t and outputs a set of public parameters pp.

• Prepare(pp) $−→ (αi, ci, di, πi): The prepare algorithm is run by each partic-
ipant and outputs a tuple of opening, commitment, precommitment, and
proof. The precommitment is contributed during the Precommit phase (see
Protocol 1). The commitment and proof are contributed during the Commit
phase, and the opening is contributed during the Reveal phase. The length of
the Commit phase is dictated by the time parameter t.

• Finalize(pp, {(αi, ci, di, πi)}n
i=1) → Ω: The finalize algorithm is run after the

Reveal phase and verifies the contributions of participants to optimistically
produce a final output Ω or returns ⊥ indicating the need to move to the
pessimistic case.

• Recover(pp, {(ci, di, πi)}n
i=1) → Ω: The recover algorithm performs the timed

computation to recover the output Ω without any revealed α values.
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Fig. 2. Security games for our three main security properties: consistency (left), t-
unpredictability (center), and t-indistinguishability (right).

We require Finalize to be a deterministic algorithm running in time polylog(t)
(the fast optimistic case), and Recover to be a deterministic algorithm running
in time (1+ε)t for some small ε. We also require the following security properties
of a timed DRB (given in pseudocode in Fig. 2):

Consistency. Our first security property is a form of correctness. We require
that it is not possible for the optimistic and pessimistic paths to return different
outputs. The adversary is tasked with providing an accepting set of contribu-
tions that results in different outputs from Finalize and Recover. We define the
advantage of an adversary as AdvconsistA,t,n,DRB(λ) = Pr

[
Gconsist

A,t,n,DRB(λ) = 1
]
.

t-Unpredictability. The t-unpredictability game tasks an adversary with pre-
dicting the final output Ω exactly, allowing it control of all but a single honest
protocol participant (which publishes first). We define the advantage of an adver-
sary as AdvunpredA,t,n,DRB(λ) = Pr

[
Gunpred

A,t,n,DRB(λ) = 1
]
.

t-Indistinguishability. The t-unpredictability property does not guarantee
the output is indistinguishable from random. For that, we provide a stronger
t-indistinguishability property in which the adversary must distinguish an
honest output from a random output, again allowing the adversary con-
trol of all but one participant. We define the advantage of an adversary as:
AdvindistA,t,n,DRB(λ) =

∣
∣
∣Pr

[
Gindist

A,t,n,1,DRB(λ) = 1
]

− Pr
[
Gindist

A,t,n,0,DRB(λ) = 1
]∣
∣
∣. A timed

DRB that satisfies t-unpredictability can be transformed generically into one
with t-indistinguishability by applying a suitable randomness extractor [39,40]
or hash function (modeled as a random oracle) to the output. A nice feature
of our DRBs is that they satisfy t-indistinguishability with respect to the group
output space (without applying a randomness extractor) under the suitable deci-
sional RSW assumption.

Discussion. In t-unpredictability and t-indistinguishability, the adversaries A1

and A2 are restricted to run in fewer than t sequential steps. This is a slight
simplification of the (p, σ)-sequentiality assumption in VDFs [10], which is suit-
able for working in the AGM in which parallelism is not helpful in computing
group operations.
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Note that our syntax and security definitions encompass all three of our
protocol variants. Except for Bicorn-ZK, the proofs πi can be set to ⊥ and are
ignored; except for Bicorn-PC, the precommitment values di can be set to ⊥
and are ignored. Also note that there are n′ (≥ n) values of di output by the
adversary; they have the option in Bicorn-PC to choose which to use in later
steps. The implementation of Recover is unique to each protocol.

We observe that the consistency property holds unconditionally for all Bicorn
variants, as Finalize and Recover are deterministic and algebraically equivalent.
It remains to prove unpredictability and indistinguishability for each variant.

5 Security of Bicorn-RX

We present a proof of t-unpredictability for Bicorn-RX here, as it is representa-
tive of the techniques used for all other proofs.

Theorem 1 (t-Unpredictability of Bicorn-RX). Let Abrx = (Abrx,0,
Abrx,1) be an algebraic adversary against the t-unpredictability of BRX with ran-
dom exponent space B = [22λ ·B] where hash function H is modeled as a random
oracle. Then we construct an adversary Arsw = (Arsw,0,Arsw,1) such that

AdvunpredAbrx,t,n,BRX(λ) ≤ AdvC-RSWe

Arsw,t,GGen(λ) +
2(q2ro + n) + 1

22λ+1
+

�∏

i=1

I 1
pi

(ri, n) ,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order (|G| =

∏�
i=1 pri

i for distinct primes p1, . . . , p�) used by BRX, qro is the number of queries
made to the random oracle, n is the number of participants, and I 1

p
(r, n) =

(1 − 1
p )n

∑∞
j=r

(
n+r−1

r

)
p−j is the regularized beta function. The running time of

T (Arsw,0) ≈ T (Abrx,0) + 2t and T (Arsw,1) ≈ T (Abrx,1).

Proof. At a high level, our proof strategy will be to replace the initial commit-
ment c1 provided by the single honest participant with a random group element.
If Abrx can win with non-negligible probability, then we show that due to unpre-
dictability of the random exponents applied in Bicorn-RX, it must be that a
nontrivial large exponent of c1 was computed which we can use to win the com-
putational power-of-RSW game.

More specifically, we bound the advantage of Abrx by bounding the advantage
of a series of game hops, using the fundamental lemma of game playing and
its identical-until-bad argument [6]. We define G = Gunpred

Abrx,t,n,BRX(λ) and hybrids
G1,G2,G3 for which we justify the following claims leading to the inequality above:

• |Pr [G(λ) = 1] − Pr [G1(λ) = 1]| ≤ 1
22λ+1

• |Pr [G1(λ) = 1] − Pr [G2(λ) = 1]| ≤ q2ro
22λ

• |Pr [G2(λ) = 1] − Pr [G3(λ) = 1]| ≤ n
22λ +

∏�
i=1 I 1

pi

(ri, n)

• Pr [G3(λ) = 1] = AdvC-RSWe

Arsw,t,GGen(λ)
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G → G1. Hybrid G1 is defined the same as G except G1 samples c1 in Prepare at
random from G instead of through an exponent sampled from B. By Lemma 1,
the statistical distance between G and G1 is at most 1/22λ+1.

We can view G1 as computing the beacon output Ω using the representations
of {ci}n

i=2 provided by the algebraic adversary. Since Abrx is algebraic, it will
provide a representation for each ci in terms of elements (c1, g, h). That is, the
adversary outputs [(ei,0, ei,1, ei,2)]ni=2 such that ci = c

ei,0
1 gei,1hei,2 .

Given a value ĥ = h2t

, we can compute Ω as follows. Consider the random
exponents bi = H(ci ‖ b∗) where b∗ = H (c1|| . . . ||cn), and let b = (b1, . . . , bn).
Using these, we have:

Ω =

(
n∏

i=1

cbi
i

)2t

=

(

cb1
1 ·

n∏

i=2

(
c
ei,0
1 gei,1hei,2

)bi

)2t

=
(
c
b1+

∑n
i=2 biei,0

1 g
∑n

i=2 biei,1h
∑n

i=2 biei,2

)2t

By letting e = (1, e2,0, . . . , en,0), m1 =
n∑

i=2

biei,1, and m2 =
n∑

i=2

biei,2,

=
(
c
〈b,e〉
1 gm1hm2

)2t

= (c2
t

1 )〈b,e〉 · hm1 · ĥm2

Thus if Abrx wins, i.e., Ω̃ = Ω, then we have

(c2
t

1 )〈b,e〉 = Ω̃ · h−m1 · ĥ−m2

and we build Arsw to win the computational power-of-RSW game by setting c1
equal to challenge element x and returning this value along with 〈b, e〉. All that
is left to show is that 〈b, e〉 = 0 which we can do through an application of
the Schwartz-Zippel lemma modulo a composite [17,36,43]. Define a non-zero
polynomial f(x1, . . . , xn) = x1 +

∑n
i=2 xiei,0. Note that f(b) = 〈b, e〉.

G1 → G2. To apply the Schwartz-Zippel lemma modulo a composite, we must first
have that the evaluation point b does not coincide with values precomputed by
the adversary. To do this, we step through G2 in which we disallow the output of
the random oracle H from colliding with (the trailing substring of) any previous
inputs to the random oracle. This ensures that the adversary has not made
any previous queries that include b∗ and ultimately ensures that the bi values
are chosen randomly after the polynomial is decided. We can apply a standard
birthday analysis to bound the probability of collision among the qro queries
made to q2ro/22λ, to bound the distinguishing advantage between G1 and G2.

G2 → G3. After we have that the evaluation point b does not coincide with
precomputed values, we transition to G3 which is identical to G2 except it
aborts if f(b) = 0. We bound the distinguishing advantage to probability

n
22λ +

∏�
i=1 I 1

pi

(ri, n) by applying Schwartz-Zippel modulo a composite [17].
Adversary Arsw can simulate G3 perfectly, simulating the setup and comput-
ing ĥ with 2t work, and wins the RSW game with the same advantage as G3.



Bicorn: An Optimistically Efficient Distributed Randomness Beacon 247

Table 2. Ethereum gas costs and main operations involved for each Bicorn variant
as well as Unicorn and Commit-Reveal DRBs. For Bicorn-PC, the Commit cost is
split to show Precommit and Commit costs. The operations are: storeG/2λ, storing a
group element or 2λ-bit value; mul, multiplication of two group elements; exp, raising
a group element to a power of size 2λ bits; poe.v and zk-poke.v, verifying a proof of
exponentiation and proof of knowledge of exponent, respectively. Concrete costs are
given with G = QR

+
N within an RSA-2048 group and λ = 128.

Gas Costs (×103), Operations Involved
Commit/user Reveal/user Recover

Commit-Reveal50 store2λ 60 xor, hash -
[28] Unicorn 55 store2λ - 30n n·hash ⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

+2,330
poe.v

Sect. 2.2 Bicorn-ZK 2,950 zk-poke.v, storeG 300 exp, mul (negligible)
Sect. 2.3 Bicorn-PC 155; 180 mul, storeG 300 exp, mul (negligible)
Sect. 2.4 Bicorn-RX 145 mul, storeG 425 2·exp, mul 170n n·exp

6 Implementation

We implemented all three variants of Bicorn in Solidity and measured the associ-
ated gas costs in Ethereum [42]. Our results are presented in Table 2. We instan-
tiate G as an RSA group with a 2048-bit modulus (specifically, it is the quadratic
residue subgroup QR

+
N [30]). Multiplying two group elements costs ∼90,000 gas

and raising a group element to a power of size 32 bytes costs ∼150,000 gas.
As mentioned in Sect. 3, we use the short exponent indistinguishability (SEI)
assumption [23] to reduce the size of the exponent required in practice from
288 to 32 bytes. The largest costs for each protocol are verifying a proof of
exponentiation (PoE) for the VDF computation in the pessimistic Recover case
and verifying a zero-knowledge proof of knowledge of exponent needed for each
commitment in Bicorn-ZK. We implemented both proofs using non-interactive
variants of Wesolowski proofs (ZKPoKRep from [11] for the latter), which requires
a prime challenge to be sampled. Verifying this “hash-to-prime” operation costs
between 2.3–4 million gas.2

Comparison to other DRBs. Per-user Costs: We find that the user operations
for Bicorn-RX are practical on Ethereum with them costing 3× for Commit
and 7× for Reveal when compared to the standard Commit-Reveal and Unicorn
protocols. In total, the sum of these operations per user per run comes to under
600,000 gas, or $6 USD when 1 Eth = $1,000 USD and 1 gas = 10 Gwei.
Pessimistic Costs: In the pessimistic case, a single call to Recover is required in
all versions of Bicorn, costing millions of gas. This pessimistic case is roughly
equivalent to every run of Unicorn. As the number of users grows large and the
chances of Bicorn’s optimistic case occurring decrease though, at some point it

2 Verifying “hash-to-prime” involves testing the primality of a number on-chain using
Pocklington certificates. This costs between 2.3–4 million gas, depending on the size
of the certificate. Table 2 reports costs with the smallest possible certificate.
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may make more sense to switch to Unicorn and avoid the overheads of Commit
and Reveal that Bicorn protocols incur.

7 Discussion

Last Revealer Prediction. All Bicorn variants come with a fundamental secu-
rity caveat: if participant j withholds their αj value, but all others publish, then
participant j will be able to simulate the optimistic case and learn Ω quickly,
while the honest participants will need to execute the pessimistic case and com-
pute the delay function to complete before learning Ω. Similarly, a coalition of
malicious participants can share their α values and privately compute Ω. This
issue appears fundamental; in any protocol with a fast optimistic case and a slow
pessimistic case, a unified malicious coalition can simulate the optimistic case.

This does not undermine t-unpredictability or t-indistinguishability and does
not allow an adversary to manipulate the outcome. As a result, any protocol
built on top of Bicorn should consider the output Ω to be potentially available
to adversaries as of the deadline T1, even if the result is not publicly known until
T1 + t if the pessimistic case is triggered. For example, in a lottery application
all wagers must be locked in before time T1.

Incentives and Punishment. While all Bicorn variants ensure malicious par-
ticipants cannot manipulate the output, they can waste resources by forcing the
protocol into the more-expensive recovery mode. The protocol provides account-
ability as to which nodes published an incorrect αi value or other minor devia-
tions which lead to removal (i.e. publishing an incorrect ci such that H(ci) = di

in Bicorn-PC or publishing an incorrect πi in Bicorn-ZK). If signatures are added
to each message, efficient fraud proofs are possible. In a blockchain setting, finan-
cial penalties can be used to punish incorrect behavior.

Batch Verification Optimization. In the optimistic case, the n exponenti-
ations required to verify that ci = gα̃i for each participant can be streamlined
via batch verification [5,16]. The general idea is that gx = 1 ∧ gy = 1 can be

verified more efficiently by checking gr·x+y = 1 for a random r
$←− R, as the

latter equation implies the former with high probability given a large enough
R. In our case, to verify that c1 = gα̃1 ∧ c2 = gα̃2 ∧ . . . ∧ cn = gα̃n , we gen-
erate random values ri

$←− R and verify that g
∑

ri·α̃i =
∏

cri
i . Thus, instead

of computing n exponentiations each with an exponent of size |B|, verification
requires only one exponentiation with an exponent of size n|B||R| and one n-way
multi-exponentiation [31].

Lowering Costs with Rollup Proofs. Practical costs can become significant
if all users must post data to the blockchain to participate. For example, each
run of Bicorn-RX costs about $6 USD per user even in the optimistic case. An
alternative solution is to perform Bicorn mediated via a rollup server (Rollup-
Bicorn) which gathers every participant’s ci value and publishes:
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• A commitment s = SetCommitment(C) to the set C = {c1, . . . , cn} of all
participant contributions. For example, s might be a Merkle Tree root.

• The value c∗ =
∏

i∈[n] ci, the product of all participants’ commitments.
– For Bicorn-RX, c∗ will be adjusted with each party’s exponent H(ci||b∗).• A succinct proof (SNARK) πrollup-commit that c∗ has been computed consis-

tently with the set S. This proof does not need to be zero-knowledge.
– For Bicorn-ZK, the proof must recursively check each proof πi.
– For Bicorn-PC, the proof must check ci was correctly precommitted.
– For Bicorn-RX, the proof must check ci was raised to the power bi.

In the optimistic case, if all participants reveal their private value αi, then
the rollup server can finalize the protocol by posting:
• The output Ω and a succinct proof (SNARK) πrollup-finalize that states that:

– The prover knows a set A = {α1, . . . , αn}
– For each ci ∈ C, it holds that ci = gαi

– The output Ω was computed correctly given the set A.
In the pessimistic case, if the rollup server goes offline without supplying the

second proof (or some participants don’t publish αi), anybody can still compute
Ω = c

(2t)
∗ . A single proof could be used which is a disjunction of verifying the

rollup server’s proof πrollup-finalize or verifying a PoE proof that Ω = c2
t

∗ . The end
result is that Bicorn can be run with O(1) cost for any number of participants.

Lowering Cost with Delegation. While the rollup approach requires only
constant overhead on the blockchain regardless of the number of participants,
the primary downside (in common with most rollup systems) is that the rollup
server can censor by refusing to include any participant’s ci in the protocol. In
the worst case, a malicious rollup server might only allow participants from a
known cabal to participate, who are then able to manipulate the DRB output.

To achieve the best of both worlds (the efficiency of rollup servers for large
protocol runs as well as robustness against censorship), we might design a del-
egated Bicorn protocol. In a delegated protocol, users can choose between mul-
tiple rollup servers or directly participate as an untrusted (possibly singleton)
rollup server. This works like delegated proof-of-stake protocols: participants
can delegate for efficiency if they want or participate individually if no server
is considered trustworthy. This is straightforward for Bicorn-PC and Bicorn-
ZK, as each rollup server can simply compute a partial product c∗ which are
multiplied together to obtain the final output Ω. Such a protocol for Bicorn-RX
would require additional rounds of exponent randomization, to ensure each user’s
exponent is randomized by contributions from users at other rollup servers.
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Abstract. Blockchain protocols have revolutionized how individuals
and devices interact and transact over the internet. More recently, a
trend has emerged to harness blockchain technology as a catalyst to
enable advanced security features in distributed applications, in par-
ticular fairness. However, the tools employed to achieve these security
features are either resource wasteful (e.g., time-lock primitives) or only
efficient in theory (e.g., witness encryption). We present McFly, a proto-
col that allows one to efficiently “encrypt a message to the future” such
that the receiver can efficiently decrypt the message at the right time.
At the heart of the McFly protocol lies a novel primitive that we call
signature-based witness encryption (SWE). In a nutshell, SWE allows to
encrypt a plaintext with respect to a tag and a set of signature verifica-
tion keys. Once a threshold multi-signature of this tag under a sufficient
number of these verification keys is released, this signature can be used
to efficiently decrypt an SWE ciphertext for this tag. We design and
implement a practically efficient SWE scheme in the asymmetric bilinear
setting. The McFly protocol, which is obtained by combining our SWE
scheme with a BFT blockchain (or a blockchain finality layer) enjoys a
number of advantages over alternative approaches: There is a very small
computational overhead for all involved parties, the users of McFly do
not need to actively maintain the blockchain, are neither required to
communicate with the committees, nor are they required to post on the
blockchain. To demonstrate the practicality of the McFly protocol, we
implemented our SWE scheme and evaluated it on a standard laptop
with Intel i7 @2,3 GHz.

1 Introduction

Blockchain protocols have become increasingly popular as they revolutionized
the way peer-to-peer transactions can be made. In their most basic form, block-
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chain protocols are run by independent parties, the so-called miners, that keep
their own copy of the blockchain and verify the contents of all transactions they
receive before appending them to their own copy of the blockchain. The fact
that the content of the transactions can be verified before its inclusion in the
blockchain is fundamental to the validity of the transactions and the consis-
tency of the blockchain. However, there are many scenarios where one would
like to keep the contents of a transaction secret for some time even after inclu-
sion in the blockchain. One simple example is running sealed-bid auctions on
the blockchain; one would like for its bid to be included in the blockchain, but
at the same time such a bid should remain hidden until the end of the auction.1

Another example that recently became very relevant with the popularization
of decentralized exchanges (DEX) is the hurtful practice of transaction fron-
trunning, where malicious actors try to profit by taking advantage of possible
market fluctuations that could happen after some target transaction is added to
the ledger. To exploit this, the adversary tries to get its own transaction included
in the ledger before the target transaction, by either mining the block itself and
changing the order of transactions, or by offering considerably more fees for its
own transaction. Hiding parts of the content of the transactions until they are
final in the ledger would make it harder for adversaries to target those transac-
tions for frontrunning. A more general application for such a mechanism, that
can keep the contents of a blockchain transaction secret for some pre-defined
time, would be to simply use it as a tool to realize timed-release encryption [24]
without a trusted third party.

In previous works [3,15], solutions to the problems above were based on
time-lock primitives, such as time-lock puzzles (TLP) or verifiable delay func-
tions (VDF). An inherent problem of time-lock type primitives is that they are
wasteful in terms of computational resources and notoriously difficult to instan-
tiate with concrete parameters. Usually, a reference hardware is used to measure
the “fastest possible” time that it takes to solve a single operation of the puzzle
(e.g., modular squaring) and this reference number is used to set the security
parameters. Moreover, in a heterogeneous and decentralized system such as a
blockchain, where different hardware can have gaps in speed of many orders of
magnitude, an approach like this could render the system impractical. An oper-
ation that takes one time unit in the reference hardware could take 1000 time
units on different hardware used in the system.

Moreover, the environmental problems that proof-of-work blockchains, where
miners invest computation power to create new blocks, can cause have been
intensively debated by the community and regulators. This made the majority
of blockchain systems adopt a proof-of-stake (PoS) consensus for being a much
more sustainable solution. In PoS systems, typically a subset of users is chosen
as a committee, which jointly decides which blocks to include in the chain. This
selection can be by a lottery with winning probability proportional to the amount

1 Clearly, the auction should run on an incentive-compatible transaction ledger, where
transactions paying the required fees are guaranteed to be included in the ledger
within some fixed time.
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of coins parties hold on the chain or by the parties applying by locking a relatively
big amount of their coins, preventing them from spending them. In light of that,
any solution employing a time-lock type primitive completely defeats the purpose
of achieving a more resource-efficient and environmentally conscious system.

1.1 Our Contributions

In that vein, we diverge from the time-lock primitive approach and propose
McFly, an efficient protocol to keep the contents of a message (e.g., a blockchain
transaction) secret for some pre-specified time period. McFly is based on a new
primitive that we call signature witness encryption (SWE), that combined with a
byzantine fault tolerance (BFT) blockchain or with any blockchain coupled with
a finality layer such as Ethereum’s Casper [11] or Afgjort [16] allows users to
encrypt messages to a future point in time by piggybacking part of the decryption
procedure on the tasks already performed by the underlying committee of the
blockchain (or the finality layer) - namely voting for and signing blocks. In BFT
blockchains this happens for every new potential block to reach consensus, while
in a finality layer this is done for blocks at regular intervals to make them “final”.
We detail our contributions next.

Signature Witness Encryption. We formally define a new primitive that we
call signature-based witness encryption (SWE). To encrypt a message m, the
encryption algorithm takes a set of verification keys for a (potentially aggre-
gatable) multi-signature scheme2 and a reference message r as an input and
produces a ciphertext ct. The witness to decrypt ct consists of a multi-signature
of the reference message r under a threshold number of keys. We instantiate
SWE with an aggregatable multi-signature scheme that is a BLS scheme [6]
with a modified aggregation mechanism. We show, that this signature scheme
fulfills the same security notions as previous aggregatable BLS multi-signatures.

Concretely, the guarantees for SWE are that (1) it correctly allows to decrypt
a ciphertext given a multi-signature on the underlying reference and (2) if the
adversary does not gain access to a sufficient number of signatures on the ref-
erence then ciphertext-indistinguishability holds. The security guarantee is con-
ceptually closer related to that of identity-based encryption, rather than that of
fully-fledged witness encryption; decryption is possible when a threshold num-
ber of key holders participate to unlock. We achieve this in the bilinear group
setting from the bilinear Diffie-Hellman assumption. Also, unlike general wit-
ness encryption constructions [19] that are highly inefficient, we demonstrate
SWE to be practicable. To ensure that decryption is always possible we make
SWE verifiable by designing specially tailored proofs to show well-formedness of
ciphertexts as well as additional properties of the encrypted message.

McFly Protocol. We build an “encryption to the future” protocol by combining
SWE with a BFT blockchain or a blockchain finality layer. The main idea of this
2 This type of signature schemes allows to compress multiple signatures by different

signers on the same messages into just one verifiable signature. In aggregatable
schemes, this works even on different messages.
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is to leverage the existing committee infrastructure of the underlying blockchain
that periodically signs blocks in the chain to piggyback part of the decryption
procedure of the SWE scheme. At a high level, a message is encrypted with
respect to a specified block height of the underlying blockchain (representing
how far into the future the message should remain encrypted) and the set of
verification keys of all the committee members that are supposed to sign the
block at that height; once the block with the specified height is created by
the committee, it automatically becomes the witness required to decrypt the
ciphertext. We have the following requirements on the underlying blockchain:

– BFT-Style or Finality Layer. Every (final) block in the chain must be
signed by a committee of parties. These committees are allowed to be static
or dynamic, with the only requirement that the committee responsible for
signing a block at a particular height must be known some time in advance.
How much “time in advance” the committee is known is what we call horizon
(following the nomenclature of [20]). For simplicity, we will explicitly assume
that all blocks are immediately finalized, but our results can be easily adapted
to the more general setting where the height of the next final block is known.

– Block Structure. We assume that blocks have a predictable header, which
we will model by a block counter, and some data content. When finalizing a
block the committee signs the block as usual, but additionally, it also signs
the block counter separately.3

– Public Key Infrastructure. The public keys of the committee members
must have a proof of knowledge. This can be achieved, e.g., by registering the
keys with a PKI.

– Honest Majority Committee.4 The majority of the committee behaves
honestly. That is, there will not be a majority of committee members colluding
to prematurely sign blocks.

– Constant Block Production Rate. To have a meaningful notion of “wall-
clock time”, the blocks must be produced at a near constant rate.

A blockchain functionality modelling the above requirements and an analysis
on how to integrate our scheme with a modified version of Ethereum 2.0 can be
found in the full version. Intuitively, to make Ethereum 2.0 running with Casper
[11] compatible with our model we only need to add the public key infrastruc-
ture and require the committee members to sign a block counter separately for
each finalized block. This enables encryption up to the horizon where a future
committee is already known. Unfortunately, in Ethereum 2.0 this leads to a
maximum horizon of 12.8 minutes. If we use “sync committees” instead, which

3 They use the same keys for this. This is safe whenever the underlying signature is a
hash-and-sign scheme as is commonly the case.

4 The honest majority requirement must be strengthened to honest supermajority
(i.e. at least 2/3 of members being honest) if the underlying blockchain or finality
layer considers a partially synchronous network model. For simplicity, we choose to
describe it in the synchronous network model where honest majority plus PKI is
sufficient.
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were only introduced in Ethereum Altair [10], we can have a horizon of up to 27
hours. However, it is unclear whether sync committees enjoy the same level of
trust as standard ones.

Implementation. To demonstrate the practicality of McFly, we implement the
SWE scheme and run a series of benchmarks on a standard Macbook Pro with
an Intel i7 processor @2,3 GHz. Details can be found in the full version.

1.2 Technical Overview

As detailed above, the key ingredient and main technical challenge of the McFly
protocol is Signature Witness Encryption (SWE). In the following, we will pro-
vide an outline of our construction of practically efficient SWE.

SWE Based on BLS. Our construction of Signature-based Witness Encryp-
tion is based on the BLS signature scheme [7] and its relation to identity-based
encryption [5]. Recall that BLS signatures are defined over a bilinear group, i.e.
we have 3 groups G1,G2,GT (with generators g1, g2, gT ) of prime-order p and
an efficiently computable bilinear map e : G1 × G2 → GT . A verification key
vk is of the form vk = gx

2 , where x ∈ Zp is the corresponding signing key. To
sign a message T ∈ {0, 1}∗, we compute σ = H(T )x, where H : {0, 1}∗ → G1

is a hash function (which is modeled as a random oracle in the security proofs).
To verify a signature σ for a message T , all we need to do is check whether
e(σ, g2) = e(H(T ), vk). The BLS signature scheme is closely related to the
identity-based encryption scheme of Boneh and Franklin [5]. Specifically, in the
IBE scheme of [5] BLS verification keys take the role of the master public key, the
signing key takes the role of the master secret key and signatures take the role
of identity secret keys, where the signed messages correspond to the identities,
respectively. In this sense, the BF scheme can be seen as a witness encryption
scheme that allows to encrypt plaintexts m with respect to a verification key
vk and a message T , such that anyone in possession of a valid signature of T
under vk will be able to decrypt the plaintext m. Specifically, we can encrypt
a message m ∈ {0, 1} by computing ct = (gr

2, e(H(T ), vk)r · gm
T ). Given a sig-

nature σ = H(T )x, we can decrypt a ciphertext ct = (c1, c2) by computing
d = c2/e(σ, c1) and taking the discrete logarithm of d with respect to gT (which
can be done efficiently as m ∈ {0, 1}).

SWE for BLS Multi-signatures. The BLS scheme can be instantiated as an
aggregatable multi-signature scheme [6]. Specifically, assume that for i = 1, . . . , n
we have messages Ti with a corresponding signature σi with respect to a ver-
ification key vki. Then we can combine the signatures σ1, . . . , σn into a sin-
gle compact aggregate signature σ =

∏n
i=1 σi. Verifying such a signature can

be done by checking whether e(σ, g2) =
∏n

i=1 e(H(Ti), vki), where correctness
follows routinely. We can adapt the BF IBE scheme to aggregate signatures
in a natural way: To encrypt a plaintext m ∈ {0, 1} to messages T1, . . . , Tn

and corresponding verification keys vk1, . . . , vkn compute a ciphertext ct via
ct = (gr

2, (
∏n

i=1 e(H(Ti), vki))r · gm
T ). Such a ciphertext ct = (c1, c2) can be
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decrypted analogously to the above by computing d = c2/e(σ, c1) and taking
the discrete logarithm with respect to gT . To decrypt ct we need an aggregate
signature σ of all Ti under their respective verification keys vki. For our envi-
sioned applications this requirement is too strong, instead, we need a threshold
scheme where a t-out-of-n aggregate signature suffices as a witness to decrypt a
ciphertext. Thus, we will rely on Shamir’s secret sharing scheme [25] to imple-
ment a t-out-of-n access structure. This, however, leads to additional challenges.
Recall that Shamir’s secret sharing scheme allows us to share a message r0 ∈ Zp

into shares s1, . . . , sn ∈ Zp, such that r0 can be reconstructed via a (public) lin-
ear combination of any t of the si, while on the other hand, any set of less than t
shares si reveals no information about r0. The coefficients Lij of the linear com-
bination required to reconstruct r0 from a set of shares si1 , . . . , sit (for indices
i1, . . . , it) can be obtained from a corresponding set of Lagrange polynomials.
Given such Lij , we can express r0 as r0 =

∑t
j=1 Lijsij . We can now modify the

above SWE scheme for aggregate signatures as follows. To encrypt a plaintext
m ∈ {0, 1}, we first compute a t-out-of-n secret sharing s1, . . . , sn of the plaintext
m. The ciphertext ct is then computed by ct = (gr

2, (e(H(Ti), vki)r · gsi

T )i∈[n]).
Security of this scheme can be established from the same assumption as the BF
IBE scheme, namely from the bilinear Diffie-Hellman (BDH) assumption [21]. We
would now like to be able to decrypt such a ciphertext using an aggregate signa-
ture. For this purpose, however, we will have to modify the aggregation procedure
of the aggregatable multi-signature scheme. Say we obtain t-out-of-n signatures
σij , where σij is a signature of Tij under vkij . Let Lij be the corresponding

Lagrange coefficients. Our new aggregation procedure computes σ =
∏t

j=1 σ
Lij

ij
.

That is, instead of merely taking the product of the σij we need to raise each
σij to the power of its corresponding Lagrange coefficient Lij . We can show
that this modification does not hurt the security of the underlying aggregatable
BLS multi-signature scheme. To decrypt a ciphertext ct = (c0, c1, . . . , cn) using

such an aggregate signature σ, we compute d =
∏t

j=1 c
Lij

ij
/e(σ, c0) and take the

discrete logarithm of d with respect to gT . Correctness follows routinely.

Moving to the Source Group. While the above scheme provides our desired
functionality, implementing this scheme leads to a very poor performance profile.
There are two main reasons: (1) Each ciphertext encrypts just a single bit. Thus,
to encrypt any meaningful number of bits we need to provide a large number of
ciphertexts. Observe that each ciphertext contains more than n group elements.
Thus, encrypting k bits would require a ciphertext comprising kn group elements,
which would be prohibitively large even for moderate values of k and n. (2) Both
encryption and decryption rely heavily on pairing operations and operations in
the target group. From an implementation perspective, pairing operations and
operations in the target group are typically several times slower than operations
in one of the source groups.

To address these issues, we will design a scheme that both allows for ciphertext
packing and shifts almost all group operations into one of the two source groups
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(in our case this will be G2). This scheme is provided in Sect. 2.1 and we will
only highlight a few aspects here.

– Instead of computing a secret sharing of the plaintext m, we compute a secret
sharing of a random value r0 ∈ Zp. The value r0 can be used to randomize
many batch-ciphertext components, leading to ciphertexts comprising only
O(k + n) group elements.

– We encrypt each share si in the source group G2 instead of GT . That is,
we compute the ciphertext-component ci via ci = vkr

i · gsi
2 . This necessitates

a corresponding modification of the decryption algorithm and requires that
all messages Ti are identical, but this requirement is compatible with our
envisioned applications. Somewhat surprisingly, this modification does not
necessitate making a stronger hardness assumption, but only requires a rather
intricate random-self-reduction procedure in the security proof. That is, even
with this modification we can still rely on the hardness of the standard BDH
assumption.

– Instead of encrypting single bits m ∈ {0, 1}, we allow the message m to come
from {0, . . . , 2k − 1}. This will allow us to pack k bits into each ciphertext
component. Recall that decryption requires the computation of a discrete
logarithm with respect to a generator gT . We can speed up this computation
by relying on the Baby-Step-Giant-Step (BSGS) algorithm [27] to O(2k/2)
group operations. This leads to a very efficient implementation as a discrete
logarithm table for the fixed generator gT can be precomputed.

A Compatibility-Layer for Efficient Proof Systems. Our scheme so far
assumes that encryptors behave honestly, i.e. the ciphertext ct is well-formed.
A malicious encryptor, however, may provide ciphertexts that do not decrypt
consistently, i.e. the decrypted plaintext m may depend on the signature σ used
for decryption. Furthermore, for several of the use cases, we envision it is cru-
cial to ensure that the encrypted message m satisfies additional properties. To
facilitate this, we provide the following augmentations in the full version.

– We provide an efficient NIZK proof5 in the ROM which ensures that cipher-
texts decrypt consistently, i.e. the result of decryption does not depend on
the signature which is used for decryption.

– We augment ciphertexts with efficient proof-system enabled commitments and
provide very efficient plaintext equality proofs in the ROM. In essence, we
provide an efficient NIZK proof system that allows to prove that a ciphertext
ct and a Pedersen commitment C commit to the same value.

– We can now rely on efficient and succinct proof systems such as Bullet-
proofs [9] to establish additional guarantees about the encrypted plaintext.
For instance, we can rely on the range-proofs of [9] to ensure that the
encrypted messages are within a certain range to ensure that our BSGS
decryption procedure will recover the correct plaintext.

5 Technically speaking, since our systems are only computationally sound, we provide
non-interactive argument systems. However, to stay in line with the terminology of
[9,18] we refer to them as proof systems.
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To make this construction efficient, we add redundancy to include homomorphic
commitments into SWE ciphertexts.

1.3 Related Work

Timed-Release Crypto and “Encryption to the Future”. The notion of
timed-release encryption was proposed in the seminal paper by Rivest, Shamir
and Wagner [24]. The goal is to encrypt a message so that it cannot be decrypted,
not even by the sender, until a pre-determined amount of time has passed. This
allows to “encrypt messages to the future”. In [24] the authors propose two
orthogonal directions for realizing such a primitive. Using trusted third-parties
to hold the secrets and only reveal them once the pre-determined amount of time
has passed, or by using so-called time-lock puzzles, which are computational
problems that can not be solved without running a computer continuously for
at least a certain amount of time.

An interesting example of the latter are timed commitments [8], which are
commitments with an additional forced opening phase that requires a specified
(big) amount of computation time. This is useful in an optimistic setting, where
cooperation is usually the case, as an honest party can convince the receiver of the
comitted value without needing to do the timely decryption step. This is indeed
also possible for our SWE scheme, as its ciphertexts constitute a statistically
binding commitment, but that is not our focus, as our decryption is efficient
enough to be run. In case of one party aborting, timed commitments share all
drawbacks of time-lock puzzles, whereas our protocol works efficiently.

Our approach is closer to the paradigm of using a trusted party as in [13,14].
Simply put, these approaches set up a dedicated server that outputs tokens for
decryption at specified times. We could deploy SWE in such a scenario as well,
with the tokens being aggregated signatures on predictable messages. Specifically
both [13] and our scheme achieve that no communication needs to take place
between the trusted server and other entities. However, complete trust in a single
(or multiple) servers is a strong assumption, thus we re-use the decentralized
architecture, computation and trust structure already present in blockchains.

With the advent of blockchains, multiple proposals to realize timed-release
encryption using the blockchain as a time-keeping tool emerged, already. These
previous results, presented here, are all more of theoretical interest, while we
demonstrate practical efficiency of our scheme.

In [22] the authors propose a scheme based on extractable witness encryp-
tion using the blockchain as a reference clock; messages are encrypted to future
blocks of the chain that once created can be used as a witness for decryption.
However, extractable witness encryption is a very expensive primitive. Concur-
rently to this work, [12] proposes an “encryption to the future” scheme based
on proof-of-stake blockchains. Their approach is geared at transmitting mes-
sages from past committee members to future slot winners of the proof-of-stake
lottery and requires active participation in the protocol by the committee mem-
bers. Our results differ from this by enabling encrypting to the future even for



260 N. Döttling et al.

encryptors and decryptors that only read the state of the blockchain and we
require no active participation of the committee beyond their regular duties,
assuming, that predictable messages like a block header are already signed in
each (finalized) block. Otherwise, all committees need to only include this one
additional signature, irrespective of pending timed-encryptions, so there is no
direct involvement between users of McFly and committees.

Another related line of work is presented in [2], where a message is kept
secret and “alive” on the chain by re-sharing a secret sharing of the message
from committee to committee. This allows to keep the message secret until an
arbitrary condition is met and the committee can reveal the message. A more
general approach is the recent YOSO protocol [20] that allows to perform secure
computation in that same setting, by using an additive homomorphic encryption
scheme, to which committees hold shares of a secret key and continuously re-
share it. While these approaches realize some form of encryption to the future,
they require massive communication from parties and are still far from practical.

A spin on timed commitments is also available using blockchains; in [1], a
blockchain contract is introduced, that locks assets of the commitment sender for
a set time based on a commitment. If the sender fails to open the commitment
within that time, their assets are made available to the receiver as a penalty -
however the commitment is not opened in that case.

BLS Signatures and Identity-Based Encryption (IBE). The BLS signa-
ture scheme, introduced in [7], is a pairing-based signature scheme with sig-
natures of one group element in size. Additionally, it is possible to aggregate
signatures of multiple users on different messages, thus saving space as shown
in [6]. Due to the very space-efficient aggregation, BLS signatures are used in
widely deployed systems such as Ethereum 2.0 [17]. Aggregation for potential
duplicate messages is achieved in [4,23].

Identity based encryption was first introduced by Shamir [26]. The initial idea
was to use the identity - e.g. a mailing address - as a public key that messages
can be encrypted to. In a sense, our scheme can be seen as a threshold IBE, as
we encrypt with respect to a committee and can only decrypt if a threshold of
the committee members collaborate.

1.4 Contents

This is a shortened conference-version of this paper including an overview of our
results, the construction of our modified BLS multi-signature scheme, as well as
definitions and constructions for both our basic SWE and McFly. Due to space
limitations, we refer readers to the full version for more details including:

– The construction of a proof compatibility layer to add verifiability to SWE.
– A blockchain functionality rigorously modelling the requirements on the

blockchain that are outlined above.
– Details and evaluations of an implementation of our scheme.
– Discussions of applications of our scheme in decentralized auctions and ran-

domness beacons.
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1.5 Preliminaries

We denote by λ ∈ N the security parameter and by x ← A(in; r) the output of the
randomized algorithm A on input in with r ← {0, 1}∗ as its randomness. We omit
this randomness when it is obvious or not explicitly required. By AO we denote,
that we run A with oracle access to O. We denote by x ←$ S an output x being
chosen uniformly at random from a set S. We denote the set {1, . . . , n} by [n].
PPT denotes probabilistic polynomial time. Also, poly(x),negl(x) respectively
denote any polynomial or negligible function in parameter x.

We assume familarity with the following cryptographic notions, for which
full definitions are included in our full version: Aggregateable multi-signatures,
Cryptographic Hash functions, Pseudo-random functions, commitment schemes,
Zero-Knowledge Proofs (of Knowledge), Secret Sharings, Reed-Solomon Codes,
Lagrange Interpolation, Bilinear Maps as well as the Co-Diffie-Hellman and
Bilinear Diffie-Hellman Assumptions.

2 Signature-Based Witness Encryption

In this section we introduce the new cryptographic primitive SWE that is the
core technical component of the McFly protocol. We formally define it next.

Definition 1 (Signature-Based Witness Encryption). A t-out-of-n SWE
for an aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,
Valid) is a tuple of two algorithms (Enc,Dec) where:

– ct ← Enc(1λ, V = (vk1, . . . , vkn), (Ti)i∈[�], (mi)i∈[�]): Encryption takes as
input a set V of n verification keys of the underlying scheme Sig, a list of
reference signing messages Ti and a list of messages mi of arbitrary length
� ∈ poly(λ). It outputs a ciphertext ct.

– m ← Dec(ct, (σi)i∈[�], U, V ): Decryption takes as input a ciphertext ct, a list
of aggregate signatures (σi)i∈[�] and two sets U, V of verification keys of the
underlying scheme Sig. It outputs a message m.

We require such a scheme to fulfill robust correctness and security.

Definition 2 (Robust Correctness). A t-out-of-n SWE scheme SWE = (Enc,
Dec) for an aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,
Prove,Valid) is correct if for all λ ∈ N and � = poly(λ) there is no
PPT adversary A with more than negligible probability of outputting an
index ind ∈ [�], a set of keys V = (vk1, . . . , vkn), a subset U ⊆ V with
|U | ≥ t, message lists (mi)i∈[�], (Ti)i∈[�] and signatures (σi)i∈[�], such that
AggVrfy(σind, U, (Tind)i∈[|U |]) = 1, but Dec(Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]), (σi)i∈[�],
U, V )ind �= mind.

Definition 3 (Security). A t-out-of-n SWE scheme SWE = (Enc,Dec) for an
aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid)
is secure if for all λ ∈ N, such that t = poly(λ), and all � = poly(λ),
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subsets SC ⊆ [�], there is no PPT adversary A that has more than negli-
gible advantage in the experiment ExpSec(A, 1λ). We define A’s advantage by
AdvA

Sec = |Pr
[
ExpSec(A, 1λ) = 1

] − 1
2 |.

Experiment ExpSec(A, 1λ)

1. Let Hpr be a fresh hash function from a keyed family of hash functions,
available to the experiment and A.

2. The experiment generates n− t+1 key pairs for i ∈ {t, . . . , n} as (vki, ski) ←
Sig.KeyGen(1λ) and provides vki as well as Sig.ProveHpr (vki, ski) for i ∈
{t, . . . , n} to A.

3. A inputs V C = (vk1, . . . , vkt−1) and (π1, . . . , πt−1). If for any i ∈ [t − 1],
Sig.Valid(vki, πi) = 0, we abort. Else, we define V = (vk1, . . . , vkn).

4. A gets to make signing queries for pairs (i, T ). If i < t, the experiment aborts,
else it returns Sig.Sign(ski, T ).

5. The adversary announces challenge messages m0
i , m

1
i for i ∈ SC, a list of

messages (mi)i∈[�]\SC and a list of signing reference messages (Ti)i∈[�]. If a
signature for a Ti with i ∈ SC was previously queried, we abort.

6. The experiment flips a bit b ←$ {0, 1}, sets mi = mb
i for i ∈ SC and sends

Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]) to A.
7. A gets to make further signing queries for pairs (i, T ). If i ≥ t and T �= Ti

for all i ∈ SC, the experiment returns Sig.Sign(ski, T ), else it aborts.
8. Finally, A outputs a guess b′.
9. If b = b′, the experiment outputs 1, else 0.

Definition 4 (Verifiable Signature-Based Witness Encryption). A
scheme SWE = (Enc,Dec,Prove,Vrfy) is a verifiable SWE for relation R, if
Enc,Dec are as above and Prove,Vrfy are a NIZK proof system for a language
given by the following induced relation R′, where V = (vk1, . . . , vkn) is a set of
keys:

(V,(Ti)i∈[�], ct), ((mi)i∈[�], w, r)) ∈ R′ ⇔
ct = Enc(1λ, V, (Ti)i∈[�], (mi)i∈[�]); r) and (m =

∑

i∈[�]

2(i−1)kmi, w) ∈ R

2.1 Construction

In the following, we describe a t-out-of-n SWE. Let two base groups G1,G2 of
prime order p with generators g1, g2 which have a bilinear map e : G1×G2 → GT

into a target group GT with generator g. Also, we assume full-domain hash
functions H : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zp and Hpr : {0, 1}∗ → Zp.

First, let us describe the underlying signature scheme Sig′.
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Protocol Sig′

Sig′.KeyGen(1λ): Randomly pick x ←$ Zp and output (vk = g2
x, sk = x).

Sig′.Sign(sk, T ): Output H(T )sk.
Sig′.Vrfy(vk, T, σ): If (e(σ, g2) = e(H(T ), vk)), output 1, else output 0.
Sig′.Agg((σ1, . . . , σk), (vk1, . . . , vkk)):

– Compute ξi = H2(vki) for i ∈ [k].

– Compute Li =
∏

j∈[k],i�=j

−ξj
ξi−ξj

for i ∈ [k].

– Output σ ← ∏
i∈[k] σ

Li
i .

Sig′.AggVrfy(σ, (vk1, . . . , vkk), (T1, . . . , Tk)):
– If e(σ, g2) =

∏
i∈[k] e(H(Ti), vki)

Li , output 1. Output 0 otherwise.

Sig′.Prove(vk, sk): Output Schnorr.ProveHpr (vk, sk).
Sig′.Valid(vk, π): Output Schnorr.ValidHpr (vk, π).

Here, Schnorr.Prove, Schnorr.Valid are the non-interactive variant of the well-
known Schnorr proofs due to Fischlin [18]. As shown in [18], they constitute an
online-extractable proof of knowledge for the key relation K = {(gx, x) : x ∈ Zp}.

Theorem 1. Sig′ is a correct aggregatable multi-signature scheme. Sig′ is
unforgeable, assuming that H is modelled as a random oracle and that the com-
putational Co-Diffie-Hellman assumption holds for (G1,G2).

The proof is given in the full version only, due to space restrictions. Now, we
can give the construction of our SWE scheme.6

Protocol SWE for signature scheme Sig′

SWE′.Enc(1λ, (vkj)j∈[n], (Ti)i∈[�], (mi)i∈[�]):
– Choose random r, rj ←$ Zp for j ∈ {0, . . . , t − 1} .
– Let f(x) =

∑t−1
j=0 rj · xj . This will satisfy f(0) = r0.

– For j ∈ [n], set ξj = H2(vkj), sj = f(ξj).
– For i ∈ [�] choose random αi ←$ Zp.
– Compute c = gr

2 , ai = cαi , ti = H(Ti)
αi for i ∈ [�].

– Choose h ← G2 uniformly at random.
– Compute c0 = hr · gr0

2 .
– For j ∈ [n], compute cj = vkr

j · g
sj
2 .

– For i ∈ [�], set c′
i = e(ti, g

r0
2 ) · gmi

T .
– Output ct = (h, c, c0, (cj)j∈[n], (c

′
i, ai, ti)i∈[�]).

SWE.Dec(ct, (σi)i∈[�], U, V ):
– Parse ct = (h, c, c0, (cj)j∈[n], (c

′
i, ai, ti)i∈[�]).

– Parse V = (vk1, . . . , vkn), U = (vk′
1, . . . , vk

′
k).

– If k < t or U �⊆ V , abort.
– Define as I the indices j ∈ [n] s.t. vkj ∈ U .

6 Notice that a previous version of this manuscript provided a slightly different pro-
tocol, which had the caveat, that all Ti needed to be distinct.
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– Compute ξj = H2(vkj) for j ∈ I.
– Compute Lj =

∏
i∈I,i�=j

−ξi
ξj−ξi

for j ∈ I.

– Compute c∗ =
∏

j∈I c
Lj

j .
– For i ∈ [�], compute

zi = c′
i · e(σi, ai)/e(ti, c

∗).
– For i ∈ [�], compute m′

i = dloggT
(zi).

– Output (m′
i)i.

Notice, that we only do the expensive computation of c∗ in SWE.Dec once.7

Further, we require that all Ti are from the range {0, . . . , 2k − 1} for some k to
enable efficient discrete log computation via the baby-step giant-step method.

Theorem 2. The following statements hold:

1. SWE for the signature scheme Sig′ has robust correctness, given that H2 is
collision resistant.

2. Assume that the hash functions H,H2,Hpr are modelled as random oracles.
Then SWE for the signature scheme Sig′ is secure under the BDH assumption
in (G1,G2,GT ). The security reduction is tight.

3. There are protocols SWE.Prove,SWE.Vrfy which extend SWE to be verifiable.

The proofs of statement 1, 2 are found in the full version only, due to
space restrictions. For statement 3, the full version includes a full construc-
tion and proofs of SWE.Prove,SWE.Vrfy which closely follows the outline given
in Sect. 1.2.

Efficiency of SWE. Our construction is specifically optimized to push as many
operations as possible into the source group G2. This leads to significant per-
formance improvements over a naive approach if we choose G2 to be the one of
the two source groups with cheaper group operations. In Table 1, we briefly ana-
lyze the number of group operations in each group required for encryption and
decryption. We regard the numbers n, � to be fixed and give upper bounds on
the operations needed. Note also, that the extraction of the discrete logarithm
does not cause a large overhead as we use the baby-step giant-step methodology.
More details and a concrete performance evaluation for an implementation of
our scheme can be found in the full version.

7 In case the sets of signers are the same for all Ti. Otherwise we compute it once per
relevant set U of signers.
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Table 1. Analysis of SWE Efficiency in Group Operations

encryption decryption

Evaluations of H, H2 �, n 0, n

Multiplications, Exponentiations in G1 0, � 0, 0

in G2 n, 2 + 2n + � n − 1, n

in GT �, � 2�, 0

Pairing Evaluations � 2�

dlog in GT 0 �

3 The McFly Protocol

In this section, we describe how to build a general-purpose time-release encryp-
tion mechanism, that we call McFly, by integrating a verifiable signature-based
witness encryption SWE with a blockchain. The time-release mechanism is avail-
able to all users of the underlying blockchain.

3.1 Formal Model and Guarantees

In the full version we introduce a simplified model for blockchains in the form
of the BCλ,H functionality reflecting the requirements introduced in Sect. 1.1. It
essentially runs a blockchain with a static committee of size n = poly(λ). The
public interface allows to retrieve the committee keys and the published blocks.
The adversary is allowed a (static) corruption threshold c < n/2. They may
control c committee members and choose the block contents to be signed.

Protocol Guarantees. Let L0 be an NP language defined by relation R0 via
m ∈ L0 ⇔ ∃w s.t. (m,w) ∈ R0. Our protocol McFly consists of five algorithms
(Setup,Enc,Dec,Prove,Vrfy) in a hybrid model where access to the public inter-
face of BC = BCλ,H is assumed. The syntax of these algorithms is as follows:

CRS ← Setup(1λ): Setup takes a security parameter λ. It outputs a common
reference string CRS.

ct ← EncBC(1λ,m, d): Encryption takes a security parameter λ, a message m
and an encryption depth d. It outputs a ciphertext ct.

m ← DecBC(ct, d): Decryption takes a ciphertext ct and an encryption depth d.
It outputs a message m.

π ← ProveBC(1λ,CRS, ct,m, d, w0, r): The proving algorithm takes a security
parameter λ, CRS, a message m, an encryption depth d, a witness w0 and
randomness r. It outputs a proof π.

b ← VrfyBC(CRS, ct, π, d): The verification algorithm takes CRS, a ciphertext ct,
a proof π and an encryption depth d. It outputs a bit b.

We prove the following security guarantees for McFly, which are inspired by
traditional time-lock puzzles:
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Definition 5 (Correctness). A protocol McFly = (Setup,Enc,Dec,Prove,
Vrfy) is correct, if for any parameter λ, message m, depth d, and algorithm
A running the adversarial interface in BC, if ct ← EncBC(1λ,m, d) is run at
any point and McFly.DecBC(ct, d) is run, when the number of finalized blocks
BC.QueryTime is at least d, it will output m, except with negligible probability.

Definition 6 (Security). A protocol McFly = (Setup,Enc,Prove,Vrfy,Dec) is
secure, if for any parameter λ and committee size n = poly(λ), corruption thresh-
old c < n/2 there is no PPT adversary A with more than negligible advantage
AdvA

Lock = |Pr [b = b′] − 1
2 | in the experiment ExpLock(A, 1λ).

Experiment ExpLock(A, 1λ)

1. The experiment computes CRS ← Setup(1λ) and outputs it to A.
2. A gets to use the adversarial interface in BC, which is run by the experiment.
3. At some point, A sends two challenge messages m0, m1 and a depth d > 0.

|m0| = |m1| must hold.
4. The experiment draws b ←$ {0, 1}.
5. Run ct ← EncBC(1λ, mb, d) and send ct to A.
6. A can submit a bit b′ while the number of finalized blocks ctr < d in BC.
7. Once ctr ≥ d on BC with no prior input from A, b′ ←$ {0, 1} is set instead.

Definition 7 (Verifiability). A protocol McFly = (Setup,Enc,Dec,Prove,Vrfy)
is verifiable for an NP language L0 with witness relation R0, if (Prove,Vrfy) is
a NIZK proof system for a language L′ given by the following relation R′:

(V =(vk1, . . . , vkn), d, ct), (m, r,w0)) ∈ R′ ⇔
ct = McFly.Enc(1λ,m, d; r, V ) ∧ (m,w0) ∈ R0.

Enc(. . . ; r, V ) denotes, that the randomness used is r and the committee keys
obtained from the blockchain are V . Note that this guarantees that (1) a receiver
of a verifying pair (ct, π) can be sure to retrieve an output in L0 after block d
was made and (2) outputting π alongside ct reveals no further information.

3.2 Protocol Description

Let COM = (Setup,Commit,Vrfy) be a Pedersen commitment, H be the hash
function in BC and H2 be another hash function. H,H2 are implicitly made
available in all calls to SWE, which is set up for parameters t = n/2 out of n. k
is the upper bound on the message lengths for SWE. We now describe McFly:
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Protocol McFly

Setup(1λ): Return COM.Setup(1λ).
McFly.EncBC(1λ, m, d):

– Get the commitee keys V by calling QueryKeys to BC.
– Split m = (mi)i∈[�] for mi ∈ {0, . . . , 2k − 1} s.t. m =

∑
i∈[�] 2

(i−1)kmi.

– Output ct ← SWE.Enc(1λ, V, (H(d))i∈[�], (mi)i∈[�]).
McFly.DecBC(ct, d):

– If QueryTime returns less than d, abort.
– Get (σ, U) by calling (QueryAt, d) and V by calling QueryKeys to BC.
– Call (mi)i∈� ← SWE.Dec(ct, (σ)i∈[�], U, V ).

– Output m =
∑

i∈[�] 2
(i−1)kmi.

McFly.ProveBC(1λ,CRS, ct, m, d, w0, r):
– Get the keys V by calling QueryKeys to BC.
– Split m = (mi)i∈[�] s.t. m =

∑
i∈[�] 2

(i−1)kmi.

– Output π ← SWE.Prove(CRS, V, (H(d))i∈[�], ct, (mi)i∈[�], w0, r).
McFly.VrfyBC(CRS, ct, π, d):

– Get the keys V by calling QueryKeys to BC.
– Output b ← SWE.Vrfy(CRS, V, (H(d))i∈[�], ct, π)

Theorem 3. McFly is correct, given that SWE has robust correctness. McFly is
secure given that SWE is secure and H is collision resistant. McFly is verifiable,
given that SWE is a verifiable SWE.

The proofs are only included in the full version due to space restrictions.

Extension for Dynamic Committees. In our model, we assumed static com-
mittees. However, finality layers advocate for a short-lived dynamic committee,
as committee members usually become targets of attacks. We can safely regard
a committee as known and static during its lifetime. Thus, our model natu-
rally extends as long as we only encrypt messages as far into the future as the
committees are currently known.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014. https://doi.org/10.1109/
SP.2014.35

2. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

3. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-319-96884-1_25
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15. Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Minting
mechanism for proof of stake blockchains. In: Conti, M., Zhou, J., Casalicchio, E.,
Spognardi, A. (eds.) ACNS 20, Part I. LNCS, vol. 12146, pp. 315–334. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-57808-4 16

16. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: a
partially synchronous finality layer for blockchains. Cryptology ePrint Archive,
Report 2019/504 (2019). https://ia.cr/2019/504

17. ethereum.org: Ethereum 2.0 keys (2022). https://kb.beaconcha.in/ethereum-2-
keys

18. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–
476. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488667

https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1109/SP.2018.00020
https://notes.ethereum.org/@vbuterin/HF1_proposal
https://ia.cr/2021/1423
https://ia.cr/2021/1423
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1145/1330332.1330336
https://doi.org/10.1007/978-3-030-57808-4_16
https://ia.cr/2019/504
https://kb.beaconcha.in/ethereum-2-keys
https://kb.beaconcha.in/ethereum-2-keys
https://doi.org/10.1007/11535218_10
https://doi.org/10.1145/2488608.2488667


McFly: Verifiable Encryption to the Future Made Practical 269

20. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov,
S.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-84245-1 3

21. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

22. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Cryptogr. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-
018-0461-x

23. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

24. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, USA (1996)

25. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (1979)

26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

27. Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. of Symp.
Math. Soc., 1971, vol. 20, pp. 41–440 (1971)

https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/3-540-39568-7_5


Eagle: Efficient Privacy Preserving Smart
Contracts

Carsten Baum1(B) , James Hsin-yu Chiang1 , Bernardo David2,
and Tore Kasper Frederiksen3

1 Technical University of Denmark, Kongens Lyngby, Denmark
cabau@dtu.dk, jachiang@ucla.edu

2 IT University of Copenhagen, Copenhagen, Denmark
bernardo@bmdavid.com

3 Alexandra Institute, Aarhus, Denmark

Abstract. The proliferation of Decentralised Finance (DeFi) and
Decentralised Autonomous Organisations (DAO), which in current form
are exposed to front-running of token transactions and proposal voting,
demonstrate the need to shield user inputs and internal state from the
parties executing smart contracts. In this work we present “Eagle”, an
efficient UC-secure protocol which efficiently realises a notion of privacy
preserving smart contracts where both the amounts of tokens and the
auxiliary data given as input to a contract are kept private from all par-
ties but the one providing the input. Prior proposals realizing privacy pre-
serving smart contracts on public, permissionless blockchains generally
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manage private inputs and state. We achieve our results through a com-
bination of secure multi-party computation (MPC) and zero-knowledge
proofs on Pedersen commitments. Although other approaches leverage
MPC in this setting, these incur impractical computational overheads
by requiring the computation of cryptographic primitives within MPC.
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1 Introduction

Ethereum introduced the first implementation of Turing-complete smart con-
tracts for blockchains, widely adopted for financial and contracting applications
since its introduction in 2015. Smart contracts offer auditability and correct-
ness guarantees, and as a consequence expose both their state and any submit-
ted inputs to all participants of the blockchain network. This lack of privacy
not only leaks user data but also gives rise to concrete attacks. For example,
current Decentralised Finance (DeFi) and Decentralised Autonomous Organi-
sations (DAO) are vulnerable to front-running [23] in token transactions and
proposal voting. This motivates the need to shield user inputs and internal con-
tract state from the very parties who execute smart contracts in a decentralized
environment.

Challenges. Hawk [37] introduced the first notion of general-purpose privacy
preserving smart contracts, which required users to privately submit both input
strings and confidential balances to a trusted contract manager. Upon evaluation
of the contract over private inputs, the contract manager settles the confidential
outputs to a confidential ledger, proving in zero knowledge that these outputs
have been obtained according to the contract’s instructions. Importantly, in order
to accommodate real-world applications such as DeFi or DAO’s, we must extend
the Hawk notion of confidential contracts as follows:

1. Distribute the role of the trusted third party in an efficient manner, avoiding
a single point of failure without significantly sacrificing performance.

2. Only require clients to be online during a short input phase; as in the standard
client-blockchain interaction model, clients only broadcast signed inputs.

3. Allow privacy preserving smart contracts to be long-running applications over
indefinite rounds, as is the case in standard, public smart contracts.

Our Contributions. In this work we present “Eagle”, a Universally Com-
posable [17] protocol for achieving efficient privacy preserving smart contracts,
which handles all the three challenges explained above: (1) is achieved by eval-
uating the contract’s instructions via an outsourced secure multi-party computa-
tion (MPC) protocol [31], where clients provide private inputs and servers exe-
cute the bulk of the protocol to compute a function on these inputs without
learning them. We use a MPC protocol, known as insured MPC, which allows
a public verifier to identify servers aborting at the output phase, so that cheat-
ing servers can be identified and financially punished, incentivizing fairness (i.e.
if a server gets the output, all servers/clients also get it) [7]. That is, by com-
bining outsourced and insured MPC we get a protocol where client computation
and interaction is independent of the circuit computed in MPC and where reli-
ability is incentivized and security is obtained as long as only a single MPC is
honest. (2) is accomplished with a novel input protocol which pre-processes data
necessary for the servers to generate private outputs (e.g. token amounts) that
are posted directly to the public ledger but can only be read by specific clients.
(2) facilitates (3), realized by a reactive version of our MPC protocol, which main-
tains a secret off-chain state over multiple rounds. Here, we contribute a model
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of long-running, privacy preserving contracts, which at the onset of each round
accepts new inputs from any subset of clients. At the end of each round, clients get
public outputs and servers keep a secret internal state, allowing evaluation to take
place in a continuous, multi-round fashion, even if clients are offline (2).

Applications. Several general applications for privacy preserving smart con-
tracts have already been proposed. Auctions: can be realized securely on-chain
with privacy preserving smart contracts, as auctions implemented without privacy
are vulnerable to front-running (miners can trivially observe individual bids posted
to the ledger). Identity management: Decentralized Identity (DID) manage-
ment considers the setting where user-attributes are posted to a ledger, in a cer-
tified, yet hidden manner. DID implemented with privacy preserving smart con-
tracts enables proofs and computations on private identity attributes, facilitat-
ing their integration with blockchain applications. KYC Mixing: We can con-
struct a privacy preserving smart contract to realize a mixer that enforces Anti
Money Laundering (AML) policies. For example, such a mixer could use DID to
integrate Know Your Customer (KYC) information to either limit user permis-
sions or the quantity of mixed tokens allowed per month. Side-chains: The MPC
servers alone could be considered a privacy preserving side-chain. Multiple sets of
MPC servers could work together with a single smart contract to realize a privacy
preserving sharding scheme on any layer 1 chain with Turing complete smart con-
tracts.AMMsandDeFiviaCross-chain contracts:Using ideas of P2DEX [9],
we show that the MPC servers can interact with smart contracts on many differ-
ent ledgers. Hence, privacy preserving smart contracts can work across multiple
ledgers and different native tokens. This realizes cross-chain, front-running resis-
tant automated market makers (AMMs) with strong privacy guarantees. We dis-
cuss these applications in more detail in the full version [6].

Fig. 1. Outline of our protocol for confiden-
tial contracts. The wrapping and interac-
tion of functionalities are shown.

Our Techniques. We sketch our
protocol in Fig. 1. This only consid-
ers execution of a single instance
of a privacy preserving smart con-
tract for simplicity. We discuss the
multi-round setting in the full ver-
sion [6]. where computations are exe-
cuted continuously with different sets
of clients. We assume a set of clients
C and MPC servers P, both interact-
ing with a ledger functionality FLedger.
The ledger hosts two deployed smart
contract instances: XCLedger maintains
a confidential ledger and is extended
with XLock, which locks and redis-
tributes confidential balances, out-
put and jointly signed, by the MPC
servers. Concretely our protocol runs
the following phases:
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Init. Before any execution, the servers setup the system by sampling a threshold
signature key pair and provide sufficient collateral for the insured MPC execu-
tion, and setup smart contact XLock, administered by the distributed signature
key. We note that in the multi-round setting this only needs to be executed once
for the specific set of MPC servers, and is thus independent of the clients and
the amount of computations that will get carried out later.

Enroll. When a privacy preserving smart contract is to be executed, each client
who wish to participate transfers confidential tokens to XCLedger which they wish
to use as input to the confidential smart contract CContract. The client then
gives any auxiliary input, along with the opening information to the commitment
containing their confidential balance v, to the insured MPC functionality FIdent

from the work of Baum et al. [7,9], extended with a secure client input interface
to allow for outsourced MPC [31] and described in detail in the full version [6].
Each client constructs an appropriate amount of “mask” commitments; one for
each round of confidential contract computation, for which they wish their input
to be used. A masking commitment is simply a commitment to a random value.

Verify Input. The servers validate the input received from the clients using
outsourced MPC, and ensure that XLock has also received the appropriate con-
fidential tokens. The servers and the clients also execute a proof to ensure that
the opening information supplied by clients are indeed valid for the confidential
token commitments. They do this following a standard Σ-protocol where each
client commits to a random commitment a and servers select a random chal-
lenge γ and ask the client to open com(c) = com(a) ⊕ (γ � com(v)). Similarly
the servers use MPC to securely open [c] = [a] + γ · [v] and check consistency1.

Evaluate. After the checks are completed the servers evaluate the circuit
expressing the private smart contract CContract, using insured MPC. For the
clients who are supposed to get output from this round of computation, shares
of messages and randomness for a new commitment for each client are computed,
and blinded with the “masking” values the clients provided during Enroll. If this
goes well, the servers distributedly sign a message saying that they have reached
this stage and post it to XLock.

Open. For clients that receive output after this round of computation the servers
open the masked output. They publish these values and sign them, as part of the
transcript of the current round execution, and post this to XLock. Note that XLock

can generate the output coins in commitment form, due to the homomorphism of
the commitments and since it obtained the mask commitments from the clients
in Enroll. XLock can then transfer the new confidential tokens back to the client’s
address. We show an extension to our protocol in the full version [6]) that ensures
no token minting can occur even if all servers are corrupted.

Withdraw. Based on the masks they constructed, the clients who are supposed
to receive outputs can compute the coin commitment openings from their masked
outputs signed and posted to XLock by servers during Open.
1 In our full protocol we optimize this by batching client input checks.
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Abort. In case a server stops responding or acts maliciously, an honest server
can request the entering of an abort phase. Any server can do this, either by sub-
mitting a proof that the malicious server sent wrong information or by requesting
missing information from the accused servers. At this point the accused malicious
server has a constant amount of time left to prove to the smart contract that
they did not abort, by submitting the message that the accusing server claims
they didn’t get. If they don’t, they will have their collateral revoked and it will
be shared among the honest servers and clients, and the contract state will roll
back one round, i.e. to the contract state preceding Evaluate. Concretely XLock

will refund the clients their input funds, plus a compensation obtained from the
cheating servers’ collateral.

Related Works. A long line of work realizes notions of privacy preserv-
ing smart contracts that sacrifice privacy [21,32,35,37,41,46–48] or flexibil-
ity [14,15]. Zexe [14] extends the ZCash model of confidential transactions to
enable Bitcoin Script-like stateless privacy preserving smart contracts support-
ing only very simple logic. Zether [15] implements confidential transactions on
top of Ethereum, allowing for very simple privacy preserving applications (e.g.
auctions). Zkay [47] allows for computing on encrypted private inputs by means
of keeping data encryption on the blockchain, and using NIZKs to validate that
any updates done to the encrypted is carried out correctly. Follow-up work,
Zeestar [46] uses additively homomorphic encryption to allow for limited private
computation on data from multiple owners, without them having to share their
private data with each other. Secret Network [48] and Ekiden [21] implement
general purpose contracts but rely on notoriously vulnerable trusted execution
environments (e.g. Intel SGX [42]) for privacy and correctness. Arbitrum [32]
relies on a full quorum of parties (the servers in our setting) being honest to
achieve privacy for general purpose contracts. Finally, Kachina [35] subsumes
these approaches with a framework based on state oracles [41] that yields pri-
vacy preserving smart contracts, where either flexibility is limited (i.e. contract
state is only updated by one client’s private input at a time) or privacy is com-
promised (i.e. a trusted third party must learn clients’ private inputs in order
to update the state). The ideal functionality of Kachina is designed to permit
input concurrency, allowing honest inputs to be finalized on a global ledger in a
different order as their generation; the Kachina protocol requires private inputs
to be accompanied with NIZKs proving a valid update of the private state frag-
ment. Here, the NIZKs are not bound to a specific, public contract state and
thus remain valid even if the public contract state observed by the user was
updated by another user input in the meantime.

Combining MPC with blockchain based cryptocurrencies and smart contracts
has been investigated in a long line of works [1,2,7–12,22,27,36,38–40] aiming
at achieving fairness in the dishonest majority setting via financial punishments.
The core idea of these works is having all parties, who execute the MPC protocol,
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provide a collateral deposit, which is taken from them in case they are caught
cheating. Thus incentivizing honest behavior. However, this approach publicly
reveals the amount of collateral deposited by each party, which falls short of
achieving our notion of privacy preserving smart contracts, where both auxiliary
data and the amount of tokens given as input to the contract must remain
private. Notice that revealing the deposit amount is an issue in applications
where this amount is directly related to the client’s private input, e.g. in sealed-
bid auctions, where the collateral deposit must be equal to at least the client’s
private bid. An auction protocol using collateral deposits with private amounts
was proposed in [28] but it cannot be generalized to other tasks.

Hawk [37, App. G] does suggest to use MPC to achieve a decentralized con-
fidential smart contracts on both token amount and auxiliary input. However,
Hawk works in the ZCash model and thus their MPC solution would require the
computation of SNARKs to realize the ZCash transactions, within the MPC cir-
cuit. Although it has been shown [33,43] that integrating NIZKs with MPC can
be done without degrading performance too much, there is still a performance
hit. Since the construction of a single ZCash transaction SNARK still takes a
non-negligible amount of time plain, this would naturally be inefficient to realize
in MPC, as MPC is orders of magnitude slower than regular computation. Fur-
thermore, they need all users to take part in the MPC computation. zkHawk [4]
improves upon this, by forgoing the need of doing SNARKs in MPC, but still
require all users taking part in a confidential smart contract to facilitate an
MPC computation which must compute Schnorr style ZKPs on Pedersen com-
mitments to the bit-decomposition of the amount of coins each of them hold.
While V-zkHawk [5] forgoes the need of proofs of the bit-decomposed commit-
ments, they replace it with the computation of commitments in a larger fields
and a signature, in MPC instead. While more efficient, this approach would still
require MPC over a large domain and contributes non-negligible overhead. In
the full version [6]. we further discuss related works.

2 Preliminaries Table 1. Notation.

P The set of servers
C The set of clients
n Number of servers n = |P|
m Number of clients; m = |C|
l Number of bits representing balances
z Number of input/output per client
κ Computational security parameter
s Statistical security parameter

F An ideal functionality
Π A protocol
L A ledger map indexed by vk
X A smart contract program

g A smart contract in circuit form
vk A public key for signature verification
x A client input
y A client output
v̄ A token balance
v̄max The maximum permitted balance
v̄max A vector of the maximum permitted balance

Let y ←$F (x) denote running the ran-
domized algorithm F with input x and
implicit randomness, and obtaining out-
put y. Similarly, y ← F (x) is used for a
deterministic algorithm. For a set X , let
x ←$X denote x chosen uniformly at ran-
dom from X . s denotes the computational
and κ the statistical security parameter.
Let [x ] denote secret x maintained in an
MPC instance: we lift the [ · ] notation
to any object that can be encoded over
secrets securely input to an MPC scheme,
e.g. [ g ], where g is an arithmetic circuit
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over field F. We use a group G where the discrete log problem is hard, and which
is a source group of pairing scheme. For simplicity we assume |G| = |F| = p.
Unless noted otherwise we use log to denote the logarithm to base 2, rounded
up. We use v̄max to denote the maximum amount of tokens we want to represent
and say l = log(v̄max). For simplicity, we assume |C| · v̄max < |G|, where C is the
set of participating clients. We denote set {1, 2, . . . , n} by [n] and vectors by bold
faced Latin letters, e.g. v,w.

2.1 Security Model and Building Blocks

We analyse our results in the the (Global) Universal Composability or (G)UC
framework [18,20]. We consider static malicious adversaries. Our protocols work
in a synchronous communication setting, which is modeled by assuming par-
ties have access to a global clock ideal functionality FClock as seen in multiple
works [3,34,36]. The core component of our protocols is publicly verifiable MPC
with cheater identification in the output phase, which is modelled as an ideal
functionality FIdent, which can be realized as described by Baum et al. [7,9]. This
functionality produces a proof that either a certain output was obtained after
the MPC or that a certain party has misbehaved in the output phase, while
cheating before the output phase causes an abort without cheater identification.
We further extend this functionality to handle reactive computation [25,26] and
an outsourced computation with inputs provided by clients and computation
done by servers [24,31]. Moreover, we use Pedersen Commitments [44], digital
signatures represented by an ideal functionality FSig as in [19], threshold signa-
tures represented by an ideal functionality FTSig as defined by Baum et al. [9]
and non-interactive zero knowledge proofs represented by FNIZK as defined by
Groth [30]. Further discussion on our security model and building blocks are
presented in the full version [6].

2.2 Ledgers and Smart Contracts

We model a ledger functionality FLedger in the full version [6]. featuring a smart
contract virtual machine which is adapted from an authenticated, public bulletin
board functionality, an approach adopted from the work of Baum et al. [7,9].
For this work, we emphasize accurate modelling of confidential balances, which
are implemented on a public ledger, and omit the full consensus details in our
UC model, similar to previous works [3,36].

Token Universe. FLedger supports a token universe consisting of t token types:
T = (τ1, ..., τt). A ledger in FLedger maintains a map from signature verification
key to balances of each token type: L : {0, 1}∗ → Z

t. We write v̄ = (v1, ..., vt)
for a balance over all supported token types. In addition to balances associated
to signature verification keys, FLedger also maintains token balances for each
deployed smart contract instance. The ledger functionality enforces the preser-
vation of token supplies over T.
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Overview of Smart Contracts. In this work, we present smart contracts as
human-readable programs and assume the presence of a compiler which trans-
lates program X to a valid circuit T and initial state γinit. The following smart
contract programs are deployed in the protocol which realizes the proposed con-
fidential contract functionality FCContract.

– XCLedger (described in the full version [6]) describes a smart contract which
implements a confidential token wrapper for each token in T supported on
the base ledger FLedger.

– XLock (described in the full version [6]) is an extension to XCLedger. It permits
the locking and redistribution of confidential balances authorized by verifying
threshold signatures generated by the servers (via global functionality FTSig).

– XCollateral (described in the full version [6]) accepts collateral deposits from
servers, which upon being identified as cheating parties lose their collateral
to clients.

2.3 Confidential Ledgers from FLedger

We briefly describe a confidential ledger functionality FCLedger, presented in full
detail in the full version [6], that can be implemented from a hybrid FLedger

functionality, enabling both confidential balances and the confidential transfer
of default tokens types T exposed by the underlying public ledger FLedger. This
modeling choice maximizes the generality of our construction, as it can be imple-
mented on any standard ledger and a basic smart contract machine.

Confidential Ledger. Confidential coins in FCLedger are identifiable by a unique
public id, and a confidential balance v̄ over T, as in [45]. Each confidential token
is publicly associated with an account verification key vk, owned by a party
that generated it with GenAcct. A confidential transfer consumes two input
coins (id1, id2) with confidential balances (v̄1, v̄2) and mints fresh output coins
(id′

1, id
′
2) with confidential balances (v̄′

1, v̄
′
2), such that (v̄1+ v̄2 = v̄′

1+ v̄′
2). Here,

coin id′
1 is now held by the owner of the receiving account, who also learns the

confidential amount v̄′
1.

Functionality FCLedger exposes Mint and Redeem interfaces: a mint activa-
tion locks a public amount of tokens T and generates a fresh confidential token
of the same balance. Conversely, a redeem activation will release the balance of
a confidential coin back to the public ledger.

Realizing a Confidential Ledger. A confidential token is realized in protocol
ΠCLedger with Pedersen Commitments [44], described in full detail in the full
version [6]. Let g, g1, ..., gt, h denote generators of group G of safe prime order
p, such that si in gi = gsi and w in h = gw are given by FSetup (parameterized
with g ∈ G) that publicly outputs g1, ..., gt, h. The commitment to a balance
v̄ = (v1, ..., vt) over tokens T with blinding r is com(v̄, r) = gv̄hr = gv1

1 ...gvt
t hr.

Pedersen commitments are additively homomorphic: com(v̄1, r1)◦com(v̄2, r2) =
com(v̄1 + v̄2, r1 + r2). Thus, during a confidential transfer, the sum equality
between consumed input and freshly constructed output coin commitments holds
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if total token balances are preserved and r′
1 and r′

2 are correlated such that
r1 + r2 = r′

1 + r′
2.

com(v̄1, r1) ◦ com(v̄1, r1) = com(v̄′
1, r

′
1) ◦ com(v̄′

2, r
′
2) (1)

However, since the equality above holds for any v̄1 + v̄2 ≡ v̄′
1 + v̄′

2 mod p
and correlated r′

1, r
′
2, an additional p units of each token in T can be minted:

v̄1 + v̄2 + p ≡ v̄′
1 + v̄′

2 mod p. Thus, each confidential token is associated with
NIZK π which proves R(c; v̄, r) = {c = com(v̄, r) ∧ v̄ ≤ v̄max = 2l − 1}, such
that such wrap-around never occurs undetected.

We note that ΠCLedger in itself affords a fully decentralized layer 2 confiden-
tial token transfer solution, since it is independent of the MPC servers. Thus
allowing client’s to send a receive confidential tokens in a peer-to-peer manner.
This is needed to prevent leakage of exchange orders after-the-fact by analysing
client’s non-confidential tokens given as input and withdrawn as output from a
privacy preserving smart contract execution. By allowing the privacy preserving
smart contract executions to integrate in a greater payment ecosystem reason-
ably ensures that it is possible to hide token inputs and outputs from a privacy
preserving smart contract execution by using them for confidential payment,
similar to other confidential token systems.

We present a protocol ΠCLedger which GUC-realizes FCLedger in the full ver-
sion [6], where we also prove the following statement:

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.

3 Confidential Contracts

We present our formal model of confidential contracts. We assume m clients
{C1, . . . , Cm} and servers {P1, . . . , Pn} that interact with FCContract, which
extends FCLedger. For simplicity of presentation, we first present a single-round
confidential contract functionality in Fig. 2, and subsequently illustrate how it is
easily extended to a multi-round contract functionality where clients can selec-
tively choose to participate in specific rounds.

The choice of modelling FCContract as an extension of FCLedger arises from
the relation between underlying protocols: confidential coins in ΠCLedger that are
committed to a confidential contract evaluation must be locked and subsequently
replaced by a new set of output coins reflecting a new distribution of balances,
determined by ΠCContract. However, this requires verification operations over the
homomorphic commitment representation of coins in ΠCLedger, which are not
exposed by FCLedger.

We provide a brief sketch of the interface exposed by FCLedger. Upon initial-
ization with an arithmetic circuit g encoding only the contract logic, users can
enroll, specifying input string x and a confidential coin to input, identified by its
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id. Upon a completed Enroll, the functionality is prompted by servers to evaluate
circuit g on both client input strings, interpreted as numerical values, and input
balances, with checks to ensure g does not mint tokens. FCLedger permits clients
to withdraw anytime to retrieve the private output string and output balance.
FCContract permits the simulator to abort and indicate cheating servers, which
are then penalized by the functionality.

Fig. 2. Functionality for Confidential Contracts
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Model of Confidential Contracts. Unlike public smart contracts deployed
to FLedger, an instance of FIdent permits the computation of any arithmetic circuit
on both private and public inputs. We model a confidential contract as an arith-
metic circuit over a field Fp consistent with the domain that FIdent is realized
with. A well-formed confidential contract permits the writing of both numerical
and financial inputs from each client to its input gates. Further, we enforce a
maximum circuit depth dT prior to the circuit evaluation to bound the rounds
of interaction in the MPC instance.

(
([ y1 ], [ w̄1 ]), ..., ([ ym ], [ w̄m ])

) ← evalg
(
([x1 ], [ v̄1 ])...., ([xm ], [ v̄m ]))

Upon confidential evaluation of a contract circuit g with well-formed depth and
gates, the following assertion must be performed at each run-time over confiden-
tial inputs and outputs of evaluated g: namely, that token supplies have been
preserved. ∑

i∈[m]

[ v̄i ] =?
∑

i∈[m]

[ w̄i ] (2)

One-Round Client-Server Interaction. Upon providing inputs to a confi-
dential contract execution, clients can go off-line and retrieve confidential outputs
with Withdraw at any later point in time.

Collateral. Our need for collateral follows the same logic as in Insured MPC [7].
The collateral contract incentivizes the servers to continue to participate in
the privacy preserving smart contract computation, and behave honestly as
they would otherwise suffer a financial loss. While the underlying maliciously
secure MPC system will ensure that a server acting maliciously will cause an
abort except with negligible probability, such an abort the adversary might have
learned the output of the computation. This can in some situations have high
value. Thus we require each server to give as collateral, strictly more than the
maximum value they could gain from learning the output of a privacy preserving
computation.

3.1 Realizing the Confidential Contract Functionality

Overview of Protocol. Having provided a high-level overview of the protocol
phase in Sect. 1, we now proceed to detail the individual protocol phases for the
single-round privacy preserving smart contract execution and refer to the full
version [6] for the full protocol description and UC-security proof.

Setup of Contracts. Servers deploy instances of XLock[XCLedger], XCollateral on
FLedger. Since wrapper XLock extends XCLedger, both are deployed and initialized
as a single contract instance on FLedger with shared contract id (cnLock) and
shared state such as the confidential ledger (LConf). Here, the function of XLock is
to lock the confidential coins of clients input to the confidential contract evalua-
tion, and to replace these with a new confidential distribution according to result
of the contract evaluation. Further, XLock is initialized with a threshold signature
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verification key vkTSig, jointly generated by all servers via FTSig: whenever servers
agree on a new status of the contract evaluation in FIdent, this agreement can
be settled in XLock with a threshold signature jointly generated via global func-
tionality FTSig. XCollateral is parameterized by cnLock and is activated each time
FClock progresses: it obtains collateral from all participating servers. It observes
any recorded cheating servers J stored in the state of contract instance cnLock
and enforces penalties accordingly.

Client Enrollment. Clients interact with XLock to enroll a confidential coin it
controls to the contract evaluation, and send both the coin commitment opening
and numerical input x to an instance of FIdent. Enrolled coins are removed from
the confidential ledger LConf maintained by X CLedger and moved to a dedicated
ledger LLock for funds committed to a pending MPC computation in FIdent.

Clients must also commit to a output mask during enrollment, which enables
the subsequent redistribution of confidential coins without client interaction in
the output phase of the contract evaluation. Here each client with confidential
coin input c and numerical input x performs the following:

– Samples ŷ ←$F as a numerical output mask and sends to FIdent.
– Samples ŵ ←$F

|T|, ŝ ←$F, and computes mask commitment ĉ ← com(ŵ, ŝ).
– Sends mask commitment ĉ to XLock on FLedger.
– Sends mask commitment openings (ŵ, ŝ) of ĉ to FIdent.

Here clients can also give any auxiliary input, x, needed for the privacy preserving
smart contract computation.

Client

XLock FIdent

Server

c (v̄′, r̄′)

c
?
= com(v̄′,r̄′)

(v̄′(i),r̄′(i))c

Input Verification. Upon enrollment of clients,
servers must verify that the confidential coin c
and mask commitment ĉ sent to XLock are con-
sistent with their respective openings (v̄, r̄) and
(v̂, r̂) sent to FIdent during enrollment. For sim-
plicity of presentation, we illustrate the batched
input verification of input confidential coins and
their openings assuming a token universe size of
|T| = 1, such that c = gv̄hr̄. Input verification for output masks ĉ and their
openings submitted to FIdent follow similarly.

Each server obtains both confidential coin c from XLock and additive shares
of submitted openings thereof from FIdent, namely (v̄′ (i), r̄′ (i)). We write v̄′ (i) =
(v̄+ε)(i) and similarly for r̄′ (i), where the ε denotes the error or discrepancy that
the adversary can introduce to v̄. We employ a standard technique of evaluating
a random linear combination over client inputs to verify consistency.

1. Servers jointly sample γ, α, β ←$F and open γ.
2. Each server locally computes the following on the inputs from m clients.

– v̄
′(i)
lin = α(i) +γ v̄

′(i)
1 + ... +γm v̄

′(i)
m and r

′(i)
lin = β(i) +γ r

′(i)
1 + ... +γm r

′(i)
m

– Subsequently, it sends v̄
′(i)
lin and v̄

′(i)
lin to all other servers.

3. Each server locally reconstructs v̄′
lin =

∏
i∈[n] v̄

′(i)
lin and r′

lin =
∏

i∈[n] r
′(i)
lin
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4. Servers locally verify:
∏

i∈[n] g
α(i)

hβ(i) ∏
j∈[m] c

γj

j
?= gv̄′

linhr′
lin

Note that v̄
′ (i)
lin and r

′ (i)
lin are shares held by servers and do not reveal the values

of user inputs. We write v̄′
lin = α+γ (v̄1+εv̄1)+ ... +γm (v̄m +εv̄m

) and similarly
for r′

lin to expose ε’s introduced by the adversary. If ε values are committed to
by the adversary before α, β, γ are sampled, we can interpret v̄′

lin − v̄lin = 0 and
r′
lin−rlin = 0 as m - degree polynomials with coefficients chosen by the adversary

that are later evaluated at some random coordinate γ: since verification step
(4) implies exactly these assertions, the probability for an undetected non-zero
error is therefore m/|G|, where m is the number of polynomial roots, by the
Schwartz-Zippel Lemma.

Execute. Servers call the Evaluate interface on FIdent to evaluate circuit g
with input gates set to client inputs.

([x1 ], [ ŷ1 ], [ v̄1 ], [ r1 ], [ ŵ1 ], [ ŝ1 ]), ..., ([xm ], [ ŷm ], [ v̄m ], [ rm ], [ ŵm ], [ ŝm ])

Upon secure evaluation, outputs in form of numerical values and balances are
written to the output gates of g:

(
([ y1 ], [ w̄1 ]), ..., ([ ym ], [ w̄m ])

)
. Before masking

these for opening, the servers then perform a confidential consistency check to
ensure the preservation of tokens as shown in Eq. (2).

Masked output values are obtained by applying the masking values input
by users, [ y′

j ] = [ yj ] + [ ŷj ] and similarly for balances, [ w̄′
j ] = [ w̄j ] + [ ŵj ]

and generating a joint signature σvkTSig(evaled) via FTSig, that is sent to XLock

on FLedger. Upon verification, the XLock contract updates the state of protocol
execution, reflecting completion of the Execute phase.

Open. Servers run Optimistic Reveal in FIdent to open masked numerical
outputs and balances

(
(y′

1, w̄
′
1), ..., (y

′
m, w̄′

m)
)
. Should all servers agree on the

successful completion of the contract evaluation, they jointly sign all masked
outputs and send these to XLock (on FLedger), which then computes the unmasked
confidential coins for clients with the newly computed distribution as follows.
Given the masked output balance w̄′ from FIdent and the coin mask ĉ sampled
by a client in Enroll, contract XLock computes

(a) The masked confidential coin: cout ′ ← gw̄′
h0

(b) The unmasked confidential coin: cout ← cout ′ · ĉ−1

We rewrite (b) as cout = gw̄′−ŵh−ŝ = com(w̄,−ŝ) to expose the unmasking of
the output coin without any knowledge of the final balance. XLock subsequently
stores unmasked output coin cout in the confidential ledger in XCLedger, thereby
settling the output balance distribution read from output gates of contract circuit
g. Should XLock successfully verify the signed outputs, XCollateral will infer from
the state of XLock the completion of a successful round and return the deposited
collateral to the servers.

Withdraw. Upon a successful Open, the output of the confidential contract
evaluation has completed. Each client can obtain their masked output (y′, w̄′)
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from XLock and newly minted cout from XCLedger anytime following a success-
ful execution of a contract evaluation. Let ŷ and (ŵ, ŝ) be the output masks
generated by the client in Enroll. The withdrawing client obtains

(a) The numerical output: y ← y′ − ŷ
(b) The opening of the output coin: (w̄, s) ← (w̄′ − ŵ,−ŝ)

Thus, their the tokens are still confidential and that clients can transfer or redeem
these using ΠCLedger described in the full version [6].

Abort. If the protocol aborts prior to the completion of the Execute phase,
client funds are simply returned by XLock and collateral deposited to XCollateral

is returned. If servers have agreed upon the completion of Execute, honest
servers can interact with FIdent to either (a) obtain shares that are verifiable and
enable reconstruction of the output or (b) identify cheating servers (functionality
described in the full version [6]). Thus, XLock as a registered public verifier, can
identify cheating servers by either verifying shares with FIdent, or obtaining the
identities of servers J that refuse to participate in revealing their shares and
allowing their verification. Cheating servers lose their collateral held by XCollateral

which is redistributed to clients.
We present the full protocol ΠCContract which GUC-realizes FCContract in the

full version [6] and prove the following statement.

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n − 1 of the n servers P statically and any minority of Q.

4 Efficiency

We note that since previous works focus on using zero knowledge proofs and
a trusted contract manager, we refrain from directly comparing our efficiency
to their works. The closest previous works to ours is the Hawk family [4,5,37].
Unfortunately neither of the works provide an efficiency analysis, making it
hard to provide a meaningful comparison. However, we note they all require
computation of cryptographic primitives (commitments and ZKPs) in MPC.
Thus requiring strictly more MPC computation, along with a larger (and hence)
slower field of computation, as this field is needed to facilitate computational
security of the cryptographic primitives they compute in MPC. In the following
analysis, we assume Bulletproofs for range proofs and standard Fiat-Shamir
Schnorr proofs of knowledge of exponents using elliptic curves. Although neither
of these are UC-secure since knowledge extraction requires rewinding, there is
evidence [29] that these techniques can be made non-malleable in the algebraic
group model. Hence, for the purpose of efficiency we believe it is reasonable to
forgo the formal UC security in this section. We use BLS threshold signatures
and for simplicity we assume the size of the group used for BLS and commitments
is the same, although it will in practice be slightly larger for BLS.
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Table 2. Complexity of our protocol when executing one CContract, excluding the
computation of contract circuit g in MPC. We assume |C|z > s for statistical security
parameter s, where z is the amount of input/output for each client in the set of clients
C, including the hidden token amount. n = |P| is the amount of servers and mult
denotes the number of multiplications in MPC.

Init Execution Abort

User exp 2 2 0

Server exp 2 + 2(n − 1) 6|C| + 2 0

pair 0 n − 1 0

mult 0 z|C| 0

SC comp. exp 0 2|C|z |C|
pair 0 2 0

SC call space #G elem. 3 |C|z O(n|C|z)

Comm #G elem. O(n) O(n2 · z · |C|) O(n2 · z · |C|)

We outline the amount of heavy computations needed for our core pro-
tocol in Table 2, except what is needed by the underlying MPC computation
computing the contract circuit g, reflecting the privacy preserving smart con-
tract CContract. Concretely we count the amount of group exponentiations when
assuming that the Pedersen commitments are realized using elliptic curves, along
with pairings assuming BLS [13] has been used for realizing distributed sig-
natures. The table only contains the complexity of executing one instance of
CContract, but we note that execution of multiple contracts is slightly sublin-
ear in the complexity of a single execution. The Abort column illustrates the
additional overhead associated with a cheating party.

Table 3. Complexity of CLedger in group exponentiation and amount of group elements
stored, when v̄max is the maximum amount of allowed tokens (Recall |C| · v̄max < |G|).

Mint ConfTransfer Redeem

User 4 O(log(v̄max) · log(log(v̄max))) 3

SC comp 3 O(log(v̄max)) 3

SC space 3 2 log(v̄max) + 10 4

When it comes to our confidential token layer, we outline the complexity in
Table 3. We note that the constant in the complexity of Confidential Transfer
reflects two range proofs over log(|G|/2), under the assumption that BulletProofs
are used [16]. Although if the domain of the token amounts is further limited
from G to v̄max < |G|/|C| then they can be reduced to range proofs of [0; v̄max−1]
and thus complexity O(v̄max · log(v̄max)).
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In both tables the amount of smart contract space is only what needs to be
submitted. The persistent space use needed is only 3+3|C| group elements, if we
assume that the storage used when posting to XLock in evaluate and open gets
overwritten the next time the servers call these methods.

The round complexity for all steps of both the confidential token layer pro-
tocols and our core protocol is constant, assuming g has constant multiplicative
depth. Otherwise, the computation of g dominates the round complexity.
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Abstract. Tor, a peer-to-peer anonymous communication system, is
one of the most effective tools in providing free and open communication
online. Many of the attacks on Tor’s anonymity occur when an adver-
sary can intercept a user’s traffic; it is thus useful to limit how much of a
user’s traffic can enter potentially adversarial networks. Recent work has
demonstrated that careful circuit creation can allow users to provably
avoid geographic regions that a user expects to be adversarial. These
prior systems leverage the fact that a user has complete control over the
circuits they create. Unfortunately, that work does not apply to onion
services (formerly known as “hidden services”), in which no one entity
knows the full circuit between user and hidden service. In this work,
we present the design, implementation, and evaluation of DeTorOS , the
first provable geographic avoidance system for onion services. We demon-
strate how recent work to build and deploy programmable middleboxes
onto the Tor network allows us to take existing techniques like these and
deploy them in scenarios that were not possible before. DeTorOS is imme-
diately deployable as it is built using programmable middleboxes, mean-
ing it does not require either the Tor protocol or its source code to be
modified. This work also raises a number of interesting questions about
extensions of provable geographical routing to other scenarios and threat
models, as well as reinforces how the notion of programmable middle-
boxes can allow for the deployment of both existing and new techniques
in novel ways in anonymity networks.

Keywords: Programmable anonymity networks · Tor · Onion
Services · Privacy

1 Introduction

The ability to achieve freedom of speech anonymously and access resources pri-
vately has now become an important part of our society. Tor, one of the most
popular and widely used anonymous communication networks today, is used by
people across the globe who wish to share or access systems without revealing
their identity. In addition, Tor’s onion services let users host content anony-
mously (i.e. without disclosing the host server’s IP). This is critically important
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not just in the face of internet censorship and hosting of services like anonymous
dropboxes for whistleblower submissions, but also for regular users who might
want to protect their privacy online.

Tor is designed under the realistic assumption that no adversary has a global
view of the network [5]. However, even under this relaxed threat model, there are
still very powerful routing-capable nation-state adversaries that can manipulate,
inspect, and correlate traffic crossing their borders. In other words, these attack-
ers can censor Tor traffic and launch powerful deanonymization attacks against
Tor users (including onion service hosts). Some of the first known attacks on
onion services include timing analysis, service location attacks, and distance
attacks, which expose the location of a server hosting an onion service [12,20].
Further, circuit fingerprinting attacks [14] attempt to recognize the circuits
involved in communicating with an onion service and then perform a website
fingerprinting attack [27] on the identified circuits to deanonymize the target
service with high accuracy.

While, for Tor clients, some work has sought to deal with such attackers by
making traffic appear innocuous to them, others have proposed avoiding these
attackers altogether [13,15,17]. Although the Tor protocol provides a way to
allow users to specify certain countries to avoid, this avoidance is not certain
[21]. For instance, one study found that circuits excluding US Tor nodes only
bypassed the US 12% of the time [17].

These efforts have led to techniques that allow users to specify forbidden
geographic regions, and to construct circuits that provably bypass these regions.
After a round-trip of communication, the idea is to return a proof verifying
that packets could not have traversed the forbidden region. This proof combines
proof of some of the places where the packet did go, combined with the fact that
information cannot travel faster than the speed of light as an “alibi,” thereby
showing where the packet could not have gone.

Unfortunately, no prior work has managed to extend these provable avoidance
techniques to onion services. In general, extending such architectures to onion
services seems to inherently be a hard problem given the design of the interaction
between clients and an onion service. As shown in Fig. 1, there is a 6-hop circuit
between a client and an onion service, of which both the parties know only their
side of the respective 3-hop circuit. Since both parties involved are unaware of
the other side’s respective circuit to ensure anonymity, it is a challenge for either
side to gain assurances of the other half without a loss of anonymity.

Our proposed approach, which we call DeTorOS , allows an onion service
host as well as their respective users to verify whether their traffic successfully
evaded certain regions. We are able to extend this functionality to onion services
by leveraging recent advances that introduce programmability to Tor (and other
similar anonymity systems), which allows a user to upload and execute code on
willing Tor relays [22]. This paradigm allows us to do something that was not
possible before: build DeTorOS as a (trusted) function which can compute on
data from both parties in a confidential manner. Our design also has the benefit
of being immediately deployable. Because DeTorOS leverages programmable
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Fig. 1. Whereas a user knows every hop in the circuit they create, circuits to onion
services are created collaboratively, and thus no one entity knows the full circuit. This
makes provable avoidance difficult to achieve.

anonymity networks, no changes are required to the underlying Tor source code
or protocol. We also show that, under reasonable assumptions, it protects the
anonymity of both the onion services and their users.

Contributions. Our contributions in this work are as follows. We aim to
improve the usability of Tor’s onion services for its host as well as its respec-
tive users. We achieve this by providing the first realization for provable geo-
graphic avoidance for onion services that is immediately deployable and requires
no changes to the underlying Tor code. We present the design, implementation,
and evaluation of DeTorOS , a set of techniques that aim to provably guarantee
avoidance for onion services. While we leverage existing techniques to provide
provable avoidance, we are the first to demonstrate how this can be done for
onion services.

Roadmap. The organization of this paper is as follows. In Sect. 2, we provide
a brief discussion on related work and background knowledge of the core ideas
in the paper, as well as discuss the threat model for our architecture. Next, we
discuss the design of DeTorOS in Sect. 3 and its security analysis in Sect. 4. We
evaluate our work in Sect. 5. We discuss the implications of our design and pave
a path for future directions in Sect. 6, discuss ethical considerations in Sect. 7,
and conclude in Sect. 8.

2 Background and Related Work

Tor. Tor is a peer-to-peer overlay network based on onion routing that allows
its users to browse the internet anonymously. This low-latency TCP-based com-
munication service lets a client, who runs an Onion Proxy (OP), build a circuit
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(3-hop by default) consisting of volunteer Tor relays called an Onion Router
(OR)- guard (connects the source), middle, and exit (connects the destination)
nodes. See Fig. 1a. The idea is to then encrypt the client’s message (that needs to
be sent to the destination) first with the unique symmetric key shared with the
exit node followed by middle and guard node. This triple-encrypted ciphertext
is then passed to the guard node, which decrypts (“peels off”) it using the same
shared symmetric key. The middle and exit nodes then “peel off” their respec-
tive layers until the message reaches the destination. This technique, therefore,
maintains the confidentiality of the message, obscuring it from anyone trying
to intercept it between two ORs. The Tor protocol by default prioritizes high-
bandwidth relays for circuit construction and selects them from different subnets.
The client constructs these circuits preemptively and is aware of all the chosen
relays, whereas the ORs are only aware of their immediate successor or prede-
cessor in the circuit. The OP is responsible for multiplexing TCP streams across
circuits. Many such streams can share the same circuit. Tor protocol chooses
ORs (almost) uniformly at random to construct its circuits.

Onion Services. An onion service allows its host to share information across
the internet while maintaining its anonymity i.e. without revealing the identity
or location of the host server. To establish an onion service, its host Alice first
generates a public key pair and selects Tor relays to be its introduction points
(IPs). Alice then publicizes her service (signing it with her private key) and
forms a circuit to her IPs. Bob, who wants to visit Alice’s service, does so via
Tor. To establish a connection to the onion service, first, he would select an onion
router (OR), which is a Tor relay, to be his rendezvous point (RP). Bob then
sends a cookie to the RP and builds a circuit to Alice’s IP sending it a message
encrypted with Alice’s public key and starting a DH (Diffie Hellman) handshake.
This message, which contains Bob’s cookie, and information about himself and
RP, is forwarded to Alice who can then connect with Bob anonymously by
building a circuit to RP. In this case, Alice would send the second half of the DH
handshake, cookie, and hash of the session key. This establishes the anonymous
stream between Alice and Bob. See Fig. 1b.

Bento. Bento [22] introduces programmability to anonymity networks (Tor as
of now) by allowing users to execute tiny code snippets (called functions) on Tor
relays thus improving a user’s anonymity and performance and Tor’s usability.
This architecture runs on top of Tor and is immediately deployable. These in-
network middleboxes can support numerous jobs like load-balancing, sending
cover traffic, sharding files, and browsing the web with just a few lines of code.
Bento also introduces a middlebox node policy that specifies resources and tasks
that a Bento server can provide to its users. This ensures that Tor relays enacting
as Bento servers are protected from the functions they run. Similarly, this system
considers that some Tor relays support trusted execution environments (TEEs)
which therefore prevent a third-party Bento server to introspect on any user
function or its relevant data, as well as enforce correctness of execution for the
function [8].
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Provable Geographical Avoidance. Powerful nation-state adversaries can
influence Tor routing into and out of their borders [26]. This allows them to
censor and deanonymize traffic through correlation attacks [10,16]. Li et al. [17]
introduced DeTor, a technique for constructing Tor circuits that provably avoids
geographic regions of the user’s choosing, based on Alibi routing [15]. Kohl et
al. [13] and Ryan et al. [25] overcame some of DeTor’s limitations by extending
to asymmetric paths and providing more accurate node locations, which was
later further refined by Ryan et al. [25]. At a high level, all of these make use
of the same basic proof structure: clients prove where the traffic did go (based
on the locations of the relays on the circuit), and combine that with latency
information to infer where the traffic could not have gone (based on the fact
that information cannot travel faster than the speed of light).

These proofs are calculated as

min
f∈F

[R(s, f) + R(f, a)] + R(a, t) ≥
3
2c

·
(

min
f∈F

[2 · D(s, f) + 2 · D(f, a)] + 2 · D(a, t)
) (1)

where D(x, y) is the great circle distance between hosts located at x and y;
R(x, y) denotes the RTT between x and y; F represents a forbidden region and
f ∈ F refers to a forbidden geographic coordinate; a is a relay that is not in F ;
s and t represent a source and destination node respectively.

DeTor provides proof for two modes of avoidance [17]. Never-once, which
desires to fight fingerprinting [14] and censorship attacks [19] by verifying that a
packet, passing through a Tor circuit, never transited a particular geographic
region, even once. And Never-twice, which aims to resist deanonymization
attacks [3,9,10,18], wherein an adversary needs to witness a packet twice: at
the entry leg (from client to entry node) and the exit leg (from exit to des-
tination). This technique confirms that an adversary does not appear on two
non-contiguous portions of the Tor circuit.

2.1 Threat Model

Our network-level threat model is similar to Tor’s. We consider our attacker
to be a powerful nation-state adversary. Such a routing-capable adversary is
unable to have a global view of the Tor traffic, but can observe, control and
censor traffic in their respective local geographic regions. They may be able to
achieve this by advertising themselves as Tor relays. In addition, this adversary
is not restricted to a specific region or nation and may be able to collude with
other (non-neighboring) countries.

Bento involves executing functions on a third-party machine (the Bento
server). Following the original Bento design, we assume that the host node itself
could be malicious, meaning that it can both try to tamper with or gain infor-
mation about the avoidance computation and its inputs and outputs, as well
as try to manipulate the inputs to alter the results. We assume that some of
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these servers will have secure TEEs, such as Intel SGX1, prohibiting the host
machine to access the executing function and its relevant data, as well as ensur-
ing correctness of execution. As thus far all known TEE vulnerabilities have been
patched by their respective vendors, we therefore assume that these TEEs are
not fundamentally flawed, and that such an environment can indeed provide a
secure enclave and is safe for running code, denying a malicious attacker/host
the ability to introspect the executing function. We discuss the implications of
the use of TEEs further in Sect. 6, but note that in this work we do not rely
on any additional assumptions from the TEE, and inherit (and can make use
of) Bento’s support for remote attestation [1,11], which allows a client to verify
that the Bento server is truly running inside an enclave and that the current
TCB version as been patched against all known vulnerabilities.

The DeTorOS architecture itself employs an honest-but-curious model for the
client and server. We therefore assume that both the client and the onion service
are faithful to the DeTorOS protocol even though they attempt to learn what
information they can.

3 DeTorOS Design

DeTorOS extends the DeTor proofs and computations [17] to onion services.
This work introduced the idea of never-once proofs, which involved calculating
Dmin(x1, . . . , xn): the shortest possible great-circle (geographic) distance along
a circuit x1 → · · · → xn, and converting this into the shortest possible traver-
sal time by dividing it by 2c/3 (the fastest speed at which information travels
on the Internet). They also introduced never-twice proofs, which involve com-
puting geographic ellipses denoting where in the world the packets could have
traversed over each leg of the circuit, and then determining whether the entry and
exit leg ellipses intersect. If they did not intersect, then never-twice avoidance
was successful (see [17] for more details on the exact calculations). Performing
these computations requires knowing the precise locations of each hop on the
circuit. While this is straightforward for traditional Tor circuits as the client
chooses these nodes, when working with onion services, the client cannot know
the entire combined circuit (namely the onion service’s half of the circuit is hid-
den from them), making this a hard problem. This section presents the solution
for this problem, that is, the design for the DeTorOS never-once and never-twice
functions.

3.1 DeTorOS Overview

The central idea behind DeTorOS is to use a semi-trusted Bento function that
sits between the client and onion service to which both can upload their half-
knowledge of the circuit, and that can then perform the computations and deter-
mine whether the circuit achieved never-once or never-twice avoidance. Critically,
1 We note that, as discussed in [22], the Bento architecture is not bound to SGX and

can work with any TEE that supports similar functionality [2].
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although the function reveals whether or not avoidance was achieved, it does not
reveal either side’s inputs (much like secure multiparty computation). The over-
all design is presented in Fig. 2.

We break this design down into two different sub-functions, one for never-
once avoidance and one for never-twice avoidance, though the core protocol is the
same for both. A client, Alice, first either identifies a Bento node that is running
the DeTorOS function or else uploads it to a chosen node. Before running the
DeTorOS protocol, both Alice and Bob first perform a TLS handshake with the
DeTorOS function to establish a secure channel against a malious node operator
(see Sect. 3.4), and, optionally, ask the Bento server to attest to the correctness
of its code base. This provides them with strong guarantees of the correctness
and confidentiality of their subsequent proofs of avoidance. Alice would then run
the desired DeTorOS protocol (presented in detail in Sects. 3.2 and 3.3) as part
of connection establishment with Bob’s onion service before communicating with
it further2.

Computation Models. We also introduce two different models of computa-
tion: the Bento-side computation model and the local computation model. In
the Bento-side computation model, the client and OS simply upload all nec-
essary circuit information to the DeTorOS function, which then performs the
computations and returns the result. In the local computation model, the client
and OS perform the bulk of the avoidance proof locally and then upload only
their results to the DeTorOS function, which then computes the final result.
We discuss each of these models further in the respective never-once and never-
twice sections. These different models trade off trust in the DeTorOS function
and Bento server for increased computation for the client and OS.

3.2 DeTorOS Never-Once function

The main objective of the never-once avoidance technique is to gain assurance
that a packet or its response could not have passed a user-specified forbidden
region F during a round-trip transmission. The idea is to first obtain the end-
to-end round-trip time Re2e of packets traversed through the selected Tor relays
(entry (e), middle (m), and exit (x)). We also take into consideration the case
where the packets could have gone through the forbidden region, calculating the
shortest possible time necessary to go through each circuit and the forbidden
region Rmin as

Rmin =
3
2c

· min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 · Dmin(s, F, e,m, x, t)
2 · Dmin(s, e, F,m, x, t)
2 · Dmin(s, e,m, F, x, t)
2 · Dmin(s, e,m, x, F, t)

(2)

2 Assuming Bob’s OS supports the DeTorOS protocol. In our current honest-but-
curious model, we can provide no guarantees if the OS refuses to participate.
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where δ acts as an extra buffer against irregular delays. We then check if

(1 + δ) · Re2e < Rmin (3)

is satisfied, which, therefore, proves that the packets could not have possibly
transmitted through F . Otherwise, one cannot decipher if the packets traversed
the F or simply suffered a delay. We now present our never-once design for
onion services and how it incorporates these computations, referencing the steps
in Fig. 2.

The DeTorOS never-once function, when loaded and executed by a client on
a Bento server, first accepts both client- and onion service-side circuits. In other
words, a client Alice, who wishes to communicate with Bob’s onion service, would
first send her entry and middle nodes and the RP to the DeTorOS function that
she has uploaded to a Bento server, along with her desired forbidden regions.
Simultaneously, Bob would also send his part of the circuit, comprising of his
entry, middle, and exit nodes to the DeTorOS function (Step 1 ). The DeTorOS

function then performs the aforementioned never-once computations for the for-
bidden region as specified by the client (Step 2 ). The function then attests to
whether Alice’s communication with Bob would avoid the forbidden region as
specified by her (Step 3 ). Alice would then receive an attestation of avoidance.
Alice and Bob communicate normally after a successful attestation (Step 4 ).
This realizes our Bento-side computation model.

Optionally, Alice and Bob may also choose to perform the never-once com-
putations locally (the local computation model), and then only upload the result
of this in Step 2. This trades off trust in the DeTorOS function and Bento server
(as neither party needs to send their circuit information now) for increased com-
putation (as they must now do the calculations on their own).

3.3 DeTorOS Never-Twice function

The main objective of the never-twice avoidance technique is to gain assurance
that a packet or its response could not have passed a user-specified forbidden
country C on both the entry (Ce) and exit legs (Cx) of the Tor circuit. To prove
this case, one needs to verify that the entry (focal point s and e and radius
3
c · (Re2e − Rm) − D(x, t), where Rm = 3

c · D(e,m, x)) and exit leg (focal point
x and t and radius 3

c · (Re2e − Rm) − D(s, e)) ellipses do not intersect, thereby,
denying the possibility for the same country to have been traversed twice. If
these entry and exit leg ellipses intersect then one must additionally verify the
following condition to prove that same countries were not traversed twice.

∀F ∈ Ce∩Cx : (1+δ)·Re2e <
3
c
·(Dmin(s, F, e)+D(e,m, x)+Dmin(x, F, t)) (4)

Similar to never-once, we accomplish never-twice avoidance for onion services
by building it as a function that is uploaded to a Bento server. The DeTorOS

never-twice function first accepts both the entry legs of the client- and onion
service-side circuits (Step 1 ). The DeTorOS function then computes the set of
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Fig. 2. The DeTorOS Protocol for never-once and never-twice avoidance. Both parties
send their circuit information to a Bento server which is running the DeTorOS function.
The server then computes the desired avoidance proof and sends it to the client. If
successful, the client then begins communicating with the onion service.

countries that Alice and Bob’s entry legs could have gone through (Step 2 ), and
then returns the intersection of the two sets (Step 3 ). Alice then receives the
intersection. If this intersection is empty, Alice and Bob communicate normally
(Step 4 ), otherwise Alice can choose to run never-once for the countries in the
intersection to gain additional information.

In the case of the local computation model, the client and onion service each
compute the set of countries that the entry legs of their circuits go through and
upload these sets to the function (Step 2 ), which then computes the intersection.

3.4 Ensuring Correctness of Input Data

As we do assume the Bento operator (i.e., the host Tor node and other network-
ing infrastructure) itself can be malicious, we must also ensure that the correct
data and circuit information is able to reach our DeTorOS function, and that a
corrupt operator cannot substitute it for their own data and thus corrupt the
enclave calculations. We can achieve this by simply having the client and OS both
establish a TLS connection with the DeTorOS function (running in the protected
enclave3) prior to passing in the circuit information, thus allowing them to pass
all data directly to the enclave and DeTorOS through this secure channel. This
can be done as part of the initial (pre-computation) setup process, in addition
to the optional attestation process which ensures both client and OS that the
Bento node is patched and up-to-date. This additional communication does not
alter or affect anything with the underlying Tor protocol, as all information is
just passed as data through established Tor circuits to the Bento node.

4 Security Analysis

In this section, we discuss the security implications of our proposal and argue
that it inherits strong guarantees of correctness, confidentiality, and integrity
from its design.
3 That has been provisioned with a TLS certificate as part of the Bento setup.
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Bento-Side Computation Model. The client and onion service send their cir-
cuits to the DeTorOS function running on a Bento server. By the Bento design,
the DeTorOS function is executed within a TEE, and the server is, therefore,
unable to learn the circuit information provided (or even the result of the cal-
culation). And as the client only receives the result of the calculation, neither
the onion service nor the client learn anything new about each other beyond
the computation output. In other words, the client and the onion service do not
compromise their anonymity by participating in DeTorOS (beyond the obvious
and unavoidable fact that in never-once the client learns that the onion service
cannot be in the forbidden region).

It is worth noting that a curious client could try to use this fact to attempt
to locate an onion service. Through numerous never-once queries with different
forbidden regions, a client can attempt to learn which regions an onion service
might be near based on what regions it cannot avoid. To thwart such an attack,
one could envision extending the never-once function in such a way that it is
able to let an onion service know if a single client has made numerous never-once
queries about it; the onion service could then choose not to participate in future
never-once queries to protect its privacy. We leave such an extension for future
work at this time, but discuss potential solutions in more depth in Sect. 6.

Local Computation Model. In our second scenario, much of the sensitive
computation is done on the client and onion service respectively, which allows
all involved parties to never need to export their circuit information to anyone.
For never-once avoidance, the client and the onion service calculate never-once
on their own circuits and send only the result of this computation (a boolean
which denotes whether avoidance was achieved or not) to the Bento server.
Thus even if the Bento server was not using a TEE, it only learns the boolean
values and the result of the AND. This decreases the level of trust required in
the DeTorOS function, but comes at a cost of increased computation for both
parties involved. In never-twice avoidance, even though much of the computation
is done client-side on the respective circuits, we still rely on the Bento server to
compute the intersection of the countries and return the result. Thus we again
lean on the fact that our DeTorOS function will be running in a TEE, protecting
the confidentiality of any data.

Integrity and Correctness. The final important properties that we must guar-
antee are integrity of the data and correctness of the avoidance computation. We
again rely heavily on the guarantees provided to us by the programmable Bento
architecture. Because DeTorOS is running within a TEE on a Bento node, data
(such as circuit and relay information) is protected from any tampering by the
middlebox operator. This model also allows both the client and onion service
to be assured of the correctness of the computation on the given data, as the
DeTorOS function must be correctly executed. Additionally, we must ensure
the correctness of the inputs to the avoidance computation. As both the client
and OS have established a TLS connection that terminates inside the enclave
where the DeTorOS function is running, this provides a secure channel for both
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to transfer information to DeTorOS while preventing tampering by the node
operator.

5 Evaluation

In this section, we present the evaluation of DeTorOS for both never-once and
never-twice avoidance. We aim to show that these techniques are feasible for 6-
hop circuits, that is, that even with these provable avoidance techniques in place,
a client still is able to (easily) find a circuit to connect to the onion service. For
both never-once and never-twice avoidance, we use the same experimental setup
and dataset as Li et al. [17], i.e., choosing our source-destination pairs from the
Ting set of 50 relays and utilizing their latency measurements [4], but we do
so for circuits with 6 hops to replicate the connection to a Tor onion service.
Because adding three extra hops to a circuit exponentially increases the number
of possible circuits to test4, we elect to randomly sample one million circuits
per source-destination pair (where each end of these pairs resides in a different
country) rather than evaluating every possible circuit. We assume that Bento
nodes have roughly the same geographic distribution as regular Tor relays.

5.1 Never-Once

We evaluate how successful DeTorOS is at avoiding various regions around the
world, using a δ of 0.5 (recall that δ is a user configurable value 0 ≤ δ ≤ 1 where
the higher the δ, the fewer potential compliant circuits will exist because of the
higher burden of proof of avoidance). We do so by considering eight countries
that are either very prominent for being on common routes, have many Tor
relays, or are known to practice censorship, and comparing their success rates
for the source-destination pair. Note that except for China, Japan, and North
Korea, our results (i.e. success/failure) are proportional to [17], even if the overall
success rates are slightly lower due to the 6-hop architecture.

We present our success rates in Fig. 3. Each bar represents, for one of the
aforementioned forbidden regions, the fraction of source-destination pairs that:
successfully avoid the forbidden region over at least one circuit (green); terminate
in the forbidden region and thus cannot achieve provable avoidance (black); and
circuits that fail provable avoidance with real RTTs (although they theoretically
avoid the forbidden region) (red).

Overall, our success rates are slightly lower than for DeTor’s original evalua-
tion over three-hop circuits. This is to be expected though. In the onion service
setting, we are traversing six hops, and adding more hops in the circuit increases
the chances that it will cross a forbidden region. Additionally, because of the
extra time it takes for a packet to cross the six hop circuit, we are less certain
of a circuit’s ability to avoid the forbidden region. The fact that we are able
4 Since there are 50 possible Tor relays in the dataset and we choose 6 without replace-

ment, this gives us over 36 billion circuits, which was infeasible to evaluate for never-
once.
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Fig. 3. Success of DeTorOS at never-once avoidance of various forbidden regions. Each
bar represents the avoidance rate of the given country for the one million sampled
source-destination pairs.

to achieve even modest success rates for many forbidden regions is surprisingly
positive. It is also worth noting that as we randomly sampled circuits to achieve
a feasible experimental setup, this dataset is a small fraction of the actual Tor
relays that are deployed today. Because the overall Tor network is denser and
has a larger diversity of hosts, we anticipate that DeTorOS will actually perform
much better in practice.

We also note that the Ting dataset is modeled based on the real configuration
of the Tor network (albeit a slightly older configuration). This, of course, means
that a large portion of this dataset has relays that reside in locations like the
United States and Europe. As a result of this, it is difficult to, for example, find
circuits that avoid the United States. However, it is worth noting that of the
circuits where the entry and exit node are not in the United States, DeTorOS

avoids the United States around 50% of the time, which is quite encouraging.

5.2 Never-Twice

We evaluate how successful DeTorOS is at never-twice avoidance by generating
candidate circuits for our one million previously sampled source-destination pairs
from the Ting dataset [4] where both the source and destination are in different
countries, as never-twice is impossible when the source and destination nodes
are in the same country.

We then sample 1000 circuits from each source-destination pair and see if
they can provide a proof of never-twice avoidance. Doing this showed that 72.4%
of our sampled source-destination pairs have a successful proof of never-twice
avoidance. While this number is very encouraging, it too is lower than in DeTor’s
original three-hop experiments (which achieved about 98% success rates for a
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similar never-twice avoidance experiment). This, too, is expected; with the extra
three nodes added to a circuit, if the ellipses’ of a circuit’s entry and exit legs go
through at least one common country, the added round trip time due to various
network factors increases the difficulty of providing a proof of avoidance. We also
hypothesize that we would have better performance if deployed on the live Tor
network as the set of clients and destinations are exponentially greater than the
combinations within the dataset.

5.3 Performance

We finish our evaluation by briefly discussing the performance of DeTorOS and
its potential impacts on latency.

The use of DeTorOS will add additional connection establishment latency
for a user who wishes to run it before they connect to an onion service. To
test this, we ran our DeTorOS function ten times on a Bento node running in
the US, using randomly generated circuits with actual Tor relays, with a client
located in the US and an OS located in Germany. On average, it took 64.85 s for
our function to compute the never-once avoidance proof. While this time is not
insignificant, as our function must take various network timing measurements
for six Tor relays and then also compute the avoidance proof, we note that a user
will only need to run this once for a specific circuit/OS pair (and that it often
takes this long to access an onion service itself even without these computations).
Besides the additional computational overhead incurred by using DeTorOS to
verify never-once or never-twice for both the onion service and the client, there
is next to no additional latency involved. In fact, as observed in [17], because
circuits with a lower round trip time are more likely to be DeTorOS compliant,
there is likely less latency than if the client were to use a Tor generated circuit
to connect to the onion service.

A potential source of additional performance overhead (and hence latency)
is the use of Bento (and hence conclaves and SGX) to realize DeTorOS . We
note that the overhead induced by this should be nominal on DeTorOS itself.
SGX runs computations at essentially native speed, which means that it has
little effect on the performance of DeTorOS computations. The largest overhead
incurred for this model is context switching, and a comprehensive analysis of
conclaves and SGX overhead in [7] demonstrated that this overhead was reason-
able for even a CDN-like latency sensitive application5. As such, we believe that
such minimal overhead should not be impactful or add to the overall latency
induced by DeTorOS .

6 Discussion and Future Work

Provable geographic avoidance for onion services was once thought to be impos-
sible, since no one entity was able to safely know and evaluate every hop on
5 Given this, we do not repeat similar experiments here and instead refer the interested

reader to [7,22] for more information.
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the path. We have demonstrated that through the application of secure, pro-
grammable middleboxes, provable avoidance is possible and surprisingly effec-
tive. We believe this opens up several interesting and immediate avenues for
future work.

First, our current protocol only operates under the honest-but-curious model,
assuming that the onion service correctly reports its path to the DeTorOS func-
tion and does not lie to the client or try to actively subvert the protocol in some
way. While in practice there are likely large numbers of honest onion services
that are deployed to benefit users and will follow such a protocol, and we believe
it is valuable to demonstrate that geographical avoidance is possible at all with
onion services, we also desire our geographical avoidance protocol to work in the
face of active adversarial involvement. While this could be trivially addressed by
also requiring a TEE on the onion service side that could directly communicate
with the Bento function, this is a strong assumption that we would like to avoid.
Without the use of TEEs, this seems like a challenging problem to address, and
one that might involve inherent changes to the underlying DeTorOS protocol
and computations.

Second, we inherit the use of TEEs from the design of Bento and rely on
them to ensure the privacy and correctness of the computations. While we have
seen a number of attacks on TEEs thus far, we have also seen TEE vendors
provide patches and updates for all such attacks, and remote attestation mecha-
nisms allow for users to gain assurance that a computer is fully patched against
all known vulnerabilities. However, we still briefly discuss the impacts of a TEE
compromise on DeTorOS . Since we rely on the TEE for both correctness and
confidentiality, a breach would likely harm both of these properties, resulting in
the potential leakage of circuit information to the node operator and a weakening
of the correctness guarantees of the computations. This is where the difference
in the Bento-side versus local computation model can be beneficial, as the infor-
mation leakage can be minimized with local computation (though we still lose
strong correctness guarantees on the returned result). As such, an interesting
avenue of future work would be to explore mechanisms, such as multi-party
computation, that would allow us to still leverage the idea of programmable
anonymity networks, without relying on the need for TEEs.

Third, as we discussed briefly in Sect. 4, our current protocol does not protect
an onion service from a malicious client that wishes to try to deanonymize it
through repeated queries about avoidance of distinct geographic regions. We
envision that one simple way to mitigate this would be to extend the DeTorOS

function to track the number of times a user invokes it with regards to a specific
onion service, and either rate-limit queries or notify the onion service of repeated
queries, allowing it to decide whether to participate in the protocol or now.
One way to achieve this rate-limiting in a privacy-preserving manner would be
through issuing k-show anonymous credentials [6,24]. A client wishing to visit an
onion service would then first obtain an anonymous credential (which refreshes
every day) from the issuer (which could be a Bento server). The client would
then show this anonymous token every time she wants to execute DeTorOS . This
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limits the client’s access to the onion service since the client can execute DeTorOS

only k times per day. However, as the DeTorOS function is user-controlled, the
onion service itself would also need to, through the Bento attestation process or
other mechanism, ensure itself that the deployed function it is interacting with
contains these protections. Another interesting piece of future work would be to
investigate if there are other avenues to thwart such an attack.

Fourth, while the results of both never-once and never-twice for DeTorOS are
promising, it is critical to come up with ways to reduce the additional latency
added by adding the three extra hops required to connect to a hidden service. It
is also imperative to find new ways to speed up the calculations that DeTorOS

(and the original detor paper [17]) use in order to reduce the computational
overhead required.

Finally, taking a step back, Bento’s programmable middleboxes made prov-
able avoidance possible by outsourcing a sensitive computation to a mutually
trusted third party. We wonder: what other services could be run in a simi-
lar fashion? Perhaps it is possible to build disaggregated services on top of a
programmable anonymity network by disseminating pieces of code across the
network, so that even if one part of it is compromised other parts can replicate
and recover. Perhaps it is possible to randomize where any computation in the
network occurs, so that the onion service is hidden even from the user who is
running it. Our hope is that this work spurs such considerations, and to assist
in future work we have made our code publicly available6.

7 Ethical Considerations

All of the data in our experiments comprised only our own traffic: not any actual
users’ data. Our never-once performance evaluation was performed on the actual
Tor network. However, this only involved collecting latency times for various
nodes and circuits on the network, and data was gathered in a rate-limited
fashion to ensure that our experiments would not impact the performance of the
Tor network. Also, we deployed both our own Tor node and Bento node, which
was limited to only our own traffic so as not to affect the larger Tor network.

8 Conclusion

In this work we present DeTorOS , the first technique that is able to provide
provable geographic avoidance for onion services. We achieve this by leveraging
recent advances in programmable anonymity networks, which allow the user and
onion service to jointly compute on their circuits, without leaking information
to the other party. While we implement this work primarily with the Bento
architecture, we believe the overall design of DeTorOS can be used with any
architecture that supports such programmability in anonymity networks [23].
We showed that our design and implementation is able to achieve never-once and

6 https://bento.cs.umd.edu.

https://bento.cs.umd.edu


304 A. Arora et al.

never-twice avoidance at rates that are encouraging. We also discuss a number
of avenues of future work that this first deployment opens up.
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Abstract. Payment channel networks (PCNs) are a promising technol-
ogy to improve the scalability of cryptocurrencies. PCNs, however, face
the challenge that the frequent usage of certain routes may deplete chan-
nels in one direction, and hence prevent further transactions. In order to
reap the full potential of PCNs, recharging and rebalancing mechanisms
are required to provision channels, as well as an admission control logic
to decide which transactions to reject in case capacity is insufficient. This
paper presents a formal model of this optimisation problem. In partic-
ular, we consider an online algorithms perspective, where transactions
arrive over time in an unpredictable manner. Our main contributions
are competitive online algorithms which come with provable guarantees
over time. We empirically evaluate our algorithms on randomly gener-
ated transactions to compare the average performance of our algorithms
to our theoretical bounds. We also show how this model and approach
differs from related problems in classic communication networks.

1 Introduction

Blockchain consensus protocols are notoriously inefficient: for instance, Bitcoin
can only support 7 transactions per second on average which makes it unre-
alistic to use in everyday situations. Payment channel networks like Bitcoin’s
Lightning Network [17] and Ethereum’s Raiden [1] have been proposed as scala-
bility solutions to blockchains. Instead of sending transactions to the blockchain
and waiting for the entire blockchain (which can comprise of millions of users)
to achieve consensus, any two users that wish to transact with each other can
simply open a payment channel between themselves. Opening a payment channel
requires an initial funding transaction on the blockchain where both users lock
some funds only to use in the channel. Once a payment channel is opened, the
channel acts as a local, two-party ledger: payments between the users of channel
simply involve decreasing the balance of the payer by the payment amount, and
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increasing the balance of the payee correspondingly. As these local transactions
only involve exchanging signatures between the two users and do not involve the
blockchain at all, they can be almost instantaneous. As long as there is suffi-
cient balance, payments can occur indefinitely between two users, until the users
decide to close the channel. This would involve going back to the blockchain
and takes, in the worst case, a small constant number of transactions. Thus,
with only a small constant number of on-chain transactions, any two users can
potentially make arbitrarily many costless transactions between themselves.

Apart from joining a payment channel network to efficiently transact with
other users, an additional financial incentive to joining the network is to profit
from forwarding transactions. Any two users that are not directly connected can
transact with each other in a multi-hop fashion as long as they are connected by
a path of payment channels. To incentivise the intermediary nodes on the path
to forward the payment, the network typically allows these nodes to charge a
transaction fee. Thus, it is common for users to join the network specifically to
play the role of an intermediary node that routes transactions, creating channels
and fees optimally and selecting the most profitable transactions to maximise
their profit from transaction fees [4,10].

However, greedily accepting and routing incoming transactions could rapidly
deplete a user’s balance in their channels. In particular, if certain routes are pri-
marily used in one direction, their channels can get depleted, making it impos-
sible to forward further transactions. Accounting for this problem can be non-
trivial since demand patterns are hard to predict and often confidential.

To resolve this issue, PCNs typically support two mechanisms:

– On-chain recharging: A user can close and reopen a depleted channel with
more funds on-chain.

– Off-chain rebalancing: An alternative solution is to extend the lifetime of
a depleted channel without involving the blockchain, by finding a cycle of
payment channels in the network to shift funds from one channel to another.

Both cases, however, entail a cost. Intermediaries need to consider the tradeoff
between admitting transactions and potential recharging and rebalancing costs.
This decision making process is especially important to big routers which are the
primary maintainers of payment channel networks like the Lightning Network.

In this work, we focus on the problem of admission control, recharging and
rebalancing in a single payment channel from the perspective of an intermediary
node that seeks to route as many transactions as possible with minimal costs.
Specifically, we address the following research question:

Can we design efficient online algorithms for deciding when to accept/reject
transactions, and when to recharge or rebalance in a single payment channel?

We seek to address this problem with as few restrictions on user actions in
order to ensure that our work remains realistic. Thus, we assume a fixed PCN
topology with some recharging and rebalancing costs, and a global fee function
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that is linear in the transaction size. We also assume users incur a rejection cost
in the form of opportunity cost when they reject to route a transaction.

We are interested in robust solutions which do not depend on any knowledge
or assumptions on the demand. Accordingly, we assume that transactions can
arrive in an arbitrary order at a channel, and aim to design online algorithms
which provide worst-case guarantees. We are in the realm of competitive analysis,
and assume that an adversary with knowledge of our algorithms chooses the most
pessimal online transaction sequence. Our objective is to optimise the competitive
ratio [7]: we compare the performance of our online algorithms (to which the
transaction sequence is revealed over time) with the optimal offline algorithm
that has access to the entire transaction sequence in advance.

1.1 Our Contributions

We initiate the study of a fundamental resource allocation problem in payment
channel networks, from an online algorithms perspective. Our main result is
a competitive online algorithm to admit transaction streams arriving at both
sides of a payment channel, and also to recharge and rebalance the channel, in
order to maximise the throughput over the channel while accounting for costs.
In particular, our algorithm achieves a competitive ratio of 7 + 2�log C� where
C + 1 is the length of the rebalancing cycle used to replenish the funds on the
channel off-chain. We also provide lower bounds on the amount of funds needed
in a channel in order to ensure our algorithm is c-competitive for c < log C

log log C .
In order to prove our main theorem, we decompose the problem into two

simpler sub problems that may also be of independent interest:

1. Sub problem 1: The first and most restrictive sub problem considers a trans-
action stream coming only from one direction across a payment channel, and
users do not have the option to reject incoming transactions. We present a
2-competitive algorithm for this problem, which is optimal in the sense that
no deterministic online algorithm can achieve a lower competitive ratio.

2. Sub problem 2: As a relaxation, our second sub problem allows users to reject
transactions although all transactions are still restricted to come from one
direction along a payment channel. We show that our algorithm achieves a
competitive ratio of 2 +

√
5−1
2 for this sub problem. We stress that our lower

bound of 2 we achieve in sub problem 1 also holds in this sub problem, hence
our competitive ratio of 2 +

√
5−1
2 is close to optimal.

All intermediate and main results are summarised in Table 1. The algorithms
and analysis designed to address these sub problems are eventually used as build-
ing blocks for our main algorithm and main theorem.

We complement our theoretical worst-case analysis by performing an empiri-
cal evaluation of the performance of our algorithm on randomly generated trans-
action sequences. We observe that our algorithms perform much better on aver-
age compared to our theoretical worst-case bound.
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Table 1. Summary of the theoretical results in our paper. The first column presents
each sub problem we analyse in our paper and the second column shows the competitive
ratio achieved by our algorithms for each sub problem

Sub problem Competitive ratio

Unidirectional stream without rejection 2
Unidirectional stream with rejection 2 +

√
5−1
2

Bidirectional stream 7 + 2�logC�

1.2 Related Work

Maintaining Balanced Payment Channels. As channel balances are typically
private, classic transaction routing protocols on payment channel networks
like Flare [18], SilentWhispers [15] and SpeedyMurmurs [19] focus mainly on
throughput and ignore the issue of balance depletion. Recently, several works
shift the focus on maintaining balanced payment channels for as long as possible
while ensuring liveness of the network. Revive [12] initiated the study rebal-
ancing strategies, Spider [21] uses multi-path routing to ensure high transac-
tion throughput while maintaining balanced payment channels, the Merchant
[9] utilises fee strategies to incentivise the balanced use of payment channels,
and [13] uses estimated payment demands along channels to plan the amount of
funds to inject into a channel during channel creation, to just give a few exam-
ples. Our work focuses on minimising costs incurred in the process of handling
transactions across a channel and thus we also indirectly seek to maintain bal-
anced payment channels. Moreover, in contrast to previous works which typically
assume some form of offline knowledge of the transaction flow in the network,
we provide an algorithm which comes with provable worst-case guarantees.

Off-Chain Rebalancing. Off-chain rebalancing has been studied as a cheaper
alternative to refunding a channel by closing and reopening it on the blockchain.
In the Lightning Network, there are already several off-chain rebalancing plu-
gins for c-lightning1 and lnd2. An automated approach to performing off-chain
rebalancing using the imbalance measure as a heuristic has been proposed in
[16]. Our work similarly studies when to rebalance payment channels, however
we make the decision in tandem with other decisions like accepting or reject-
ing transactions. Recently, [5] and [12] propose a global approach to off-chain
rebalancing where demand for rebalancing cycles is aggregated across the entire
network and translated to an LP which is subsequently solved to obtain an opti-
mal rebalancing solution. These approaches are orthogonal and complementary
to ours as our focus concerns decision making in a single payment channel and
not the entire network.
1 https://github.com/lightningd/plugins/tree/master/rebalance.
2 https://github.com/bitromortac/lndmanage.

https://github.com/lightningd/plugins/tree/master/rebalance
https://github.com/bitromortac/lndmanage
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Online Algorithms for Payment Channel Networks. Online algorithms for pay-
ment channel networks have also been studied in [3] and [11]. Avarikioti et al.
[3] establish impossibility results against certain classes of adversaries, however
they only consider a limited problem setting where their algorithms can only
accept or reject transactions (with constant rejection cost). Fazli et al. [11] con-
siders the problem of optimally scheduling on-chain recharging given a sequence
of transactions. In contrast to previous work, our work considers a more general
problem setting where our algorithms can not only accept or reject transactions,
but also recharge and rebalance channels off chain. We also extend the cost of
rejection to take into account the size of the transaction.

Relationship to Classic Communication Networks. Admission control problems
such as online call admission [2,14] are fundamental and have also received much
attention in the context of communication networks. However, in classic com-
munication networks the available capacity of a link in one direction is indepen-
dent of the flows travelling in the other direction, and moreover, link capacities
are only consumed by the currently allocated flows. In contrast, the capacities
of links in payment-channel networks are permanently reduced by transactions
flowing in one direction, but can be topped up by flows travelling in the other
direction. The resulting rebalancing opportunity renders the underlying algo-
rithmic problem significantly different.

2 Model

Payment Channels. We model the payment channel network as an undirected
graph G = (V,E). A payment channel between users � (left) and r (right) in the
network is an edge (�, r) ∈ E. We denote the balance of user � (resp. r) in the
channel (�, r) by b(�) (resp. b(r)). The capacity of the channel is the total amount
of funds locked in the channel. That is, for a channel (�, r), the capacity of (�, r)
is b(�) + b(r). A left-to-right transaction of amount x decreases �’s balance by x
and increases r’s balance by x and vice versa for a right-to-left transaction of x.

Recharging and Rebalancing Payment Channels. When a user in a channel does
not have sufficient funds to accept a transaction, the user can either reject the
transaction, recharge the channel, or rebalance the channel. Recharging the chan-
nel happens on-chain and corresponds to closing the payment channel on the
blockchain and opening a new channel with more funds. In contrast, rebalancing
the channel happens entirely off-chain (refer to Fig. 1 for an example). Here,
users find a cycle of payment channels to shift funds from one of their other
channels to refund the depleted channel.

Transactions. We consider a transaction sequence Xt = (x1, ..., xt), xi ∈ R+,
that arrives at a payment channel online. Each transaction xi has both a value
and a direction along a payment channel. The value of a transaction is simply
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the amount that is being transferred. The direction of a transaction across a
payment channel (�, r) determines who is the sender and who is the receiver.
When we have a sequence of transactions that go in both directions along a
payment channel, we use −→x to denote a transaction that goes from left-to-right
and ←−x to denote a transaction that goes from right-to-left. We say a user, wlog
�, accepts a transaction of size x coming from the left to right direction along
the channel (�, r) if � agrees to forward x to r. Similarly, we say a user � rejects
a transaction x coming from the left to right direction along the channel (�, r)
when � does not forward the transaction to r. When it is clear which channel
and direction we are referring to, we simply say � accepts or rejects x.

Costs. We consider three types of costs in our problem setting:

1. Rejecting transactions: For a user �, the revenue in terms of transaction
fees from forwarding a payment of size x is Rx+f2, where R, f2 ∈ R+. Conse-
quently, the cost of rejecting a transaction of size x is simply the opportunity
cost of gaining revenue from accepting the transaction, i.e. Rx + f2.

2. On-chain recharging: For any user �, the cost of recharging a channel on-
chain is F + f1, where F is some function of the amount of funds � puts into
the new channel (this captures the opportunity cost of locking in the funds
in the channel) and f1 ∈ R+ is an auxiliary cost independent of F which
captures the on-chain recharging transaction fee.

3. Off-chain rebalancing: For any user �, the cost of off-chain rebalancing for
an amount x is C · (Rx + f2), where C is the length of the cycle along which
funds are sent −1. In the example of off-chain rebalancing in Fig. 1, the length
of the rebalancing cycle is 3 and thus C = 2.

Let us denote by OFF the optimal offline algorithm and ON an online deter-
ministic algorithm. We denote by CostON(Xt) (resp. CostOFF(Xt)) the total
cost of ON (resp. OFF) given the transaction sequence Xt.

Fig. 1. Example of off-chain rebalancing with users �, h, and r. The graph on the right
depicts the channel balances after off-chain rebalancing.

Competitive Ratio. We say an online algorithm ON is c-competitive if for every
transaction sequence Xt generated by the adversary,

CostON(Xt) ≤ c · CostOFF(Xt)
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Fig. 2. Example of actions users � and r can take in the general bidirectional stream
setting. Each square represents 1 coin.

Main Problem. Our main problem is to design a competitive deterministic
online algorithm that determines when to accept/reject transactions and when
to recharge or rebalance the channel given a bidirectional stream of transactions
across a payment channel. More precisely, we consider a stream of transactions
that can arrive from both right to left or left to right in a given payment channel
(�, r). � (resp. r) can choose to accept or reject transactions coming in the left-
to-right (resp. right-to-left) direction in the stream. Either user would incur a
cost of Rx+f2 for rejecting a transaction of size x. Both users can also recharge
the channel on-chain at any point, incurring a cost of F� +Fr + f1 where F� and
Fr are functions of the funds put into the channel by � and r respectively. Since
transactions are streaming in both directions in this model, both users would
incur costs in this setting. Thus, we seek to design an algorithm that minimises
the cost of the entire channel. Refer to Fig. 2 for examples of the actions that a
user can take in our main bidirectional transaction stream setting.

To this end, we give a formal definition of two sub problems of decreasing
restrictiveness on user actions. We present these sub problems as the algorithms
and analysis used to solve these sub problems are used in developing the algo-
rithm and analysis for our main problem.

Unidirectional Stream without Rejection. In this model, transactions stream only
in one direction along a given payment channel. Here, we assume users cannot
reject incoming transactions. Formally, given a channel (�, r) and a transaction
stream from wlog left to right, user � only accepts a transaction x if b(�) > x.
Otherwise, � has to recharge the channel on-chain with more funds, incurring a
cost of F + f1 where F is some function of the amount of funds � adds to the
channel. As we only consider transactions streaming in one direction, only one
user would incur costs in this setting (the user that has to decide whether to
accept or reject transactions). A real world example that motivates this setting
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is a company which wants to position itself as a “routing hub” in a payment
channel network, providing a routing service in return for transaction fees. As
such, the company would want to accept as many transactions possible to acquire
the reputation of a hub that is constantly available.

Unidirectional Stream with Rejection. In this model, we still restrict the trans-
action stream from wlog left to right in a payment channel (�, r). However, in
addition to accepting transactions and recharging, � can now also reject trans-
actions, incurring a rejection cost of Rx + f2 for a transaction of size x.

3 Algorithmic Building Blocks

Before we describe and analyse the performance of our algorithms in the various
problem settings, we first introduce two algorithmic building blocks that we use
extensively in our work. The first building block is an algorithm Funds. It takes
a sequence of transactions as an input and returns the amount of funds that an
optimal algorithm uses on this sequence. The purpose of the algorithm is to track
the funds OFF has in their channel assuming that the sequence of transactions
ends at this point. For the first two sub problems we show how to compute
Funds. For the main problem, we propose a dynamic programming approach.
The second building block is a general recharging online algorithm that calls
Funds as a subroutine and uses the output to decide when and how much to
recharge the channel. The intuition behind the recharging online algorithm is to
recharge whenever the amount of funds in OFF’s channel “catches up” to the
amount of funds ON has in their channel.

Building Block 1: Tracking Funds of OFF. For a given transaction sequence
Xt = (x1, . . . , xt), let us denote A(Xi) to be the amount of funds OFF would use
in the channel if OFF gets the sequence Xi = (x1, . . . , xi) (i.e. the length i prefix
of Xt) as input. By appending subsequent transactions xi+1, . . . , xt from Xt to
Xi, we can view A(Xi) as a partial solution to the online optimisation problem
that gets updated with any new transaction. In the unidirectional transaction
stream (with or without rejection) setting, A(Xi) refers to the funds a user locks
into a payment channel. In the bidirectional transaction stream setting, A(Xi)
refers to the total balance of both users in the channel. We assume that given an
input sequence Xt, Funds(Xt) performs the necessary computations and returns
A(Xt). For our main problem, computing Funds(Xt) is generally NP-hard, but
we can approximate it to a constant factor, see [20] for more details.

Building Block 2: Using Tracking for Recharging. In Algorithm 1, we describe
an online (γ, δ)-recharging algorithm ON that uses Funds as a subroutine to
decide when and how much to recharge the channel. ON is run by one user (wlog
�) in a payment channel (�, r). ON calls Funds after each transaction to check
if the new transaction sequence results in a significant increase in the amount of
funds OFF has in their channel. Whenever ON notices that OFF’s funds have
increased above a threshold (Line 4), ON recharges the channel with an amount
of γ(A(Xi) + δ) where A(Xi) is the amount of funds OFF has in their channel.
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Algorithm 1: (γ, δ)-recharging
Initialise: Ftracker,X ← 0, ∅

1 for transaction x in order of arrival do
2 concatenate x to X
3 F ′

tracker ← Funds(X)
4 if F ′

tracker > Ftracker then
5 Ftracker ← F ′

tracker + δ
6 recharge to γFtracker

Let us denote At := maxi≤t A(Xi). Now we state (proof in our extended
version [6]) two important properties of the (γ, δ)-recharging algorithm.

Lemma 1. Algorithm 1 with parameters (γ, δ) ensures that ON always has at
least γ times the amount of funds OFF has and ensures that ON incurs a cost
of at most γ(At + δ) + f1 · �At

δ �.
Next, we show a simple lower bound in terms of At for the cost of OFF given

a sequence of transactions Xt.

Lemma 2. If At > 0, then CostOFF(Xt) is at least At + f1.

4 Unidirectional Transaction Stream Without Rejection

In this section we consider the first sub problem where, given a payment channel
(�, r), transactions stream along the channel in only one direction (wlog left to
right). Moreover, � has to accept an incoming transaction of size x and forward it
to r if �’s balance b(�) ≥ x. Otherwise, � needs to recharge the channel on-chain
(and accept the transaction after).

The optimal offline algorithm OFF follows a simple strategy: since it knows
the entire stream of transactions in advance, it makes a single recharging action
at the beginning of the transaction sequence Xt of size

∑t
i=1 xi. The cost incurred

by OFF is thus f1 +
∑t

i=1 xi.
Now, we present in Line 2 a 2-competitive online algorithm ON for this sub

problem. ON uses (γ, δ)-recharging with parameters γ = 1 and δ = f1. The
algorithm accepts all transactions and the recharging ensures that ON always
has enough funds.

Theorem 1. The algorithm described above is 2-competitive in the unidirec-
tional transaction stream without rejection.

In addition, we note that ON is optimal in this setting. The next theorem
(proof in our extended version [6]) proves that no deterministic algorithm can
achieve a strictly smaller competitive ratio compared to ON. In particular, our
proof shows that ON cannot lock too much funds into the channel, otherwise
ON’s cost is too high, but if ON locks too little funds, it needs to recharge often.
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Algorithm 2: Unidirectional transaction stream without rejection
Initialise: tracker Ftracker,X ← 0, ∅
Initialise: balance b = 0

1 for transaction x in order of arrival do
2 concatenate x to X
3 F ′

tracker ← Funds(X)
4 if F ′

tracker > Ftracker then
5 Ftracker ← F ′

tracker + f1
6 recharge to Ftracker

7 Accept x

Theorem 2. There is no deterministic algorithm that is c-competitive for c < 2
in the unidirectional transaction stream without rejection sub problem.

5 Unidirectional Transaction Stream with Rejection

In this section we consider the second sub problem where transactions are still
streaming along a given payment channel (�, r) in one direction (wlog left to
right). This time though, a user can choose to reject incoming transactions. We
describe an algorithm Algorithm 3 with competitive ratio 2 +

√
5−1
2 . We note

that the competitive ratio for this setting is larger than the competitive ratio we
achieve in the previous setting as OFF has a wider range of decisions.

Let us call a transaction of size x big if x > Rx + f2 and small otherwise.
We first observe that OFF in this setting always rejects big transactions.

Lemma 3. OFF rejects all big transactions in the unidirectional transaction
stream with rejection.

Thus, the strategy of OFF in this setting is to simply reject all big
transactions. Moreover, if there are sufficiently many small transactions in
the sequence to offset the cost of recharging, OFF makes a single recharging
action at the beginning of the sequence of size

∑
x∈Xt,x is small x for a cost of

f1 +
∑

x∈Xt,x is small x.

The online algorithm performs (1,
√
5−1
2 f1)-recharging and it accepts a trans-

action x if it has enough funds and x is small. The following theorem (proof in our
extended version [6]) states that ON is (2 +

√
5−1
2 )-competitive in this problem

setting.

Theorem 3. The algorithm described above is (2 +
√
5−1
2 )-competitive in the

unidirectional transaction stream with rejection sub problem.
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Algorithm 3: Unidirectional transaction stream with rejection
Initialise: tracker Ftracker,X ← 0, ∅
Initialise: balance b = 0

1 for transaction x in order of arrival do
2 concatenate x to X
3 F ′

tracker ← Funds(X)
4 if F ′

tracker > Ftracker then
5 Ftracker ← F ′

tracker +
√
5−1
2 f1

6 recharge to Ftracker

7 if b ≥ x and x is small then
8 Accept x
9 else

10 Reject x

Before analysing the optimality of ON, we first observe, as a simple corollary
of Theorem 2, that the lower bound of 2 also holds for this sub problem.

Corollary 1. There is no deterministic algorithm that is c-competitive for c < 2
in the unidirectional transaction stream with rejection sub problem.

We conjecture that no other deterministic algorithm can perform better that
ON in this setting. Moreover, we sketch an approach to prove the conjecture in
our extended technical report [6].

Conjecture 1. There is no deterministic algorithm that is c-competitive for c <

2 +
√
5−1
2 in the unidirectional transaction stream with rejection setting.

6 Bidirectional Transaction Stream

In this section, we consider the most general problem setting, where for a given
payment channel (�, r), transactions stream along the channel (�, r) in both direc-
tions. A user � (resp. r) can accept or reject incoming transactions that stream
from left to right (resp. right to left). Either user would incur a cost of Rx + f2
for rejecting a transaction of size x. � does not need to take any action when
encountering transactions that stream from right to left as they simply increase
the balance of � in the channel (�, r). Both users can also decide at any point to
recharge their channel on-chain, or rebalance their channel off-chain.

Our main online algorithm ON for the bidirectional transaction stream set-
ting is detailed in Algorithm 6. For simplicity, we assume that R = 0 in the
rejection cost. This means that the cost of rejecting a single transaction of size
x is simply f2, and rebalancing an amount of x off-chain now only incurs a
cost of Cf2. Our algorithm is run by both users on a payment channel and
is composed of three smaller algorithms: the first is a recharging algorithm to
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determine when and how much to recharge the channel on-chain. The second
algorithm (Algorithm 4) decides whether to accept or reject new transactions
and when to perform off-chain rebalancing. The last algorithm (Algorithm 5)
describes how to store the funds received from the other user of the channel.

(4+2�log C�, f1)-recharging. ON runs an on-chain recharging algorithm sim-
ilar to Algorithm 1 (see Line 3 and Line 6 in Algorithm 6) but with parameters
γ = 4+2�log C� and δ = f1. Since we are in the bidirectional transaction stream
setting, Funds returns the amount of funds OFF has inside the entire channel
(i.e. b(�) + b(r)) given a transaction sequence.

Let us look at the period between the on-chain recharging instances of ON.
From Line 6 in Algorithm 6, we know that ON ensures that it has more than
4 + 2�log C� times more funds than OFF locked in the channel. These funds
are distributed in the following way: ON initialises �log C� + 2 “buckets” on
each end of the channel. We denote set of left-side buckets as B� and it consists
of B�

s, B
�
1, . . . , B

�
	log C
, B

�
o. Likewise, the set of right-side buckets is Br and it

consists of Br
s , Br

1 , . . . , B
r
	log C
, B

r
o .

After recharging, users decide how to distribute funds in the channel, so the
buckets B�

s and Br
s are filled with 2Ftracker funds. Buckets B�

o and Br
o are empty

(0 funds). Other buckets contain Ftracker funds.
Looking ahead, the funds in the i-th bucket on both sides are used to accept

transactions x with a size in the interval
[

Ftracker

2i , Ftracker

2i−1

)
. The funds in Bs are

used to accept transactions with a size less than Ftracker

C . Finally, Bo stores excess
funds coming from payments from the other side when all other buckets are full.

Transaction Handling. When a transaction arrives at the channel, based on
the direction of the transaction, either � or r executes Algorithm 4 to decide
whether to accept the transaction. Wlog let us assume � encounters transaction
−→x . If Ftracker

2i < x ≤ Ftracker

2i−1 for some i ∈ [�log C�] and B�
i has sufficient funds, the

funds from B�
i are used to accept the transaction. If B�

i lacks sufficient funds for
accepting x, � rejects x.

Now, we consider the case where x ≤ Ftracker

C . If B�
s has sufficient funds, � uses

the funds from B�
s to accept x. If B�

s has insufficient funds to accept x, � performs
off-chain rebalancing with an amount such that after deducting x from B�

s, there
would still be 2Ftracker funds left in B�

s. � subsequently accepts x. The required
funds for off-chain rebalancing are transferred from Br

o and Br
s (see Line 15 and

Line 16 in Algorithm 4). Whenever B�
o > 0 and some bucket in B� gets under

its original capacity, funds are reallocated from B�
o to fill the bucket.

Handling Funds Coming from the Other Side. When a transaction x is accepted
by wlog �, ON calls Algorithm 5 to distribute the transferred funds among
r’s buckets in the following way: r first uses x to fill Br

s up to its capacity of
2Ftracker (see Line 2 in Algorithm 5). If there are still funds left, r refills the Br

i

buckets in descending order from i = �log C� to i = 1. Intuitively, the reason
why buckets are refilled in descending order is due to our simplified cost model
for this problem where we assume the cost of rejection for any transaction is f2.
Thus, rejecting three small transactions size x costs thrice as much as rejecting
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Algorithm 4: Decision on transaction

1 Decide(Ftracker, x,Bsdr, Brcv)
2 Status ← Accept

3 if Ftracker

2i < x ≤ Ftracker

2i−1 and x ≤ Bsdr
i then

4 Accept x

5 X ← min(Ftracker, B
sdr
i − x + Bsdr

o )
6 Bsdr

o ← max(0, Bsdr
i − x + Bsdr

o − Ftracker)
7 Bsdr

i ← X

8 else if xi ≤ Ftracker

C and x ≤ Bsdr
s then

9 Accept x

10 X ← min(2Ftracker, B
sdr
s − x + Bsdr

o )
11 Bsdr

o ← max(0, Bsdr
s − x + Bsdr

o − 2Ftracker)
12 Bsdr

s ← X

13 else if xi ≤ Ftracker

C and x > Bsdr
s then

14 Do off-chain rebalancing to fill Bs and pay f2C.
15 Brcv

o ← Brcv
o − (2Ftracker − Bsdr

s ).
16 Brcv

s ← Brcv
s − x.

17 Accept x

18 Bsdr
s ← 2Ftracker.

19 else
20 Reject x
21 Status ← Reject

22 return (Bsdr, Brcv, Status)

a larger transaction of size 3x. Finally, if there are still some funds left, they are
added to Br

o .

Algorithm 5: Handling funds coming from the other side
1 HandleFunds(Ftracker, x,B)
2 X ← min(2Ftracker, Bs + x)
3 x ← max(x + Bs − 2Ftracker, 0)
4 Bs ← X
5 for i ∈ [�log C�] in decreasing order do
6 if x > 0 then
7 X ← min(Ftracker, Bi + x)
8 x ← max(x + Bi − Ftracker, 0)
9 Bi ← X

10 Bo ← Bo + x return (B)
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Algorithm 6: Main algorithm

Initialise: left side buckets B�

Initialise: right side buckets Br

Initialise: tracker Ftracker,X ← 0, ∅
1 for transaction x in order of arrival do
2 concatenate x to X
3 F ′

tracker ← Funds(X)
4 if F ′

tracker > Ftracker then
5 Ftracker ← F ′

tracker + f1
6 recharge to 2(2 + �log C�)Ftracker

7 sdr, rcv ← �, r
8 if x is from right to left then
9 sdr, rcv ← r, �

10 Bsdr, Brcv, Status ← Decide(Ftracker, x,Bsdr, Brcv)
11 if Status == Accept then
12 Brcv ← HandleFunds(Ftracker, x,Brcv)

Our main theorem (proof in our extended version [6]) shows that our main
algorithm is 7 + 2�log C� competitive.

Theorem 4. Algorithm 6 is 7 + 2�log C� competitive.

Finally, we also analyse in the next lemma (proof in our extended version [6])
how much funds ON needs to lock in the channel to have a chance to be c-
competitive. We make the construction for A, the amount of funds that OFF
locked in the channel. Observe that OFF would rather reject transactions that
have average size > A

C than perform off-chain rebalancing to accept them.

Lemma 4. For any A, if ON’s cost for rejection is at most c times OFF’s
cost for rejection (for c < log C

log log C ), any deterministic ON needs to lock at least

σ = A ·
( 1

c+1 log C

log c+1 + 1
)

funds in the channel.

Theorem 5. There is no deterministic c-competitive algorithm for c ∈
o(

√
log C).

Proof. From Lemma 4 for any A, ON needs A · (
1

c+1 log C

log c+1 + 1) funds to have its
rejection cost c-competitive. But ON also needs to lock some funds in the chan-
nel. The total cost is then c + A(

1
c+1 log C

log c+1 + 1), which is bigger than O(
√

log C).

7 Empirical Evaluation

Methodology. We consider the performance of Algorithm 6 on randomly gener-
ated transaction sequences. We compare it with the optimal offline algorithm
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OFF. Since computing the optimal solution is NP-hard [20], we use dynamic
programming to compute the cost (see the full algorithm in our extended ver-
sion [6]).
Average Performance of ON. We sample 50 random transaction sequences of
length 50 each. In each sequence, transaction sizes are sampled independently
from a folded Gaussian with mean 0 and standard deviation 3, and then we
assign its direction (left-to-right or right-to-left) uniformly at random. Finally,
we quantise the size of the transaction to the closest integer. We run both OFF
and ON on the generated sequences and compute five important metrics.

We present our results in Table 2. As we can see from the cost of ON vs OFF
in Table 2, the competitive ratio is generally lower than the 7+2�log C� bound as
suggested by our conservative worst-case analysis in Theorem 4. In addition, we
notice that when we use some heuristics to make further minor modifications to
ON, we achieve even better performance. In our extended technical report [6], we
also compare the average-case performance of ON and OFF with these modified
algorithms, and also on sequences sampled from different distributions.

Table 2. Comparison between OFF and ON for f1 = 3 and R = 0. A(X) is the total
amount of funds in the channel. “Accept rate” shows the fraction of transactions that
were accepted. “Off-chain rebalancing” shows how much funds on was moved along the
channel using off-chain rebalancing. “Rechargings” shows the number of rechargings
performed. Note that OFF recharges only once.

Param OFF ON

C f2 Cost A(X) Accept rate Off-chain rebalancing Rechar-gings Cost A(X) Accept rate Off-chain rebalancing Rechar-gings
2 0.5 15.02 6.4 0.78 0.8 1 63.3 44.26 0.50 0.9 2.18
8 0.5 15.21 6.38 0.77 0 1 87.79 69.06 0.50 0 2.04
2 2 23.6 14.26 0.95 5.36 1 127.02 100.2 0.91 0.38 5.86
8 2 24.5 13.9 0.92 0 1 184.32 156.6 0.9 0 5.84

Case Study: Lightning Network. We conclude our evaluation section with a case
study of the Lightning network. We first run our experiments with realistic
parameters taken from Lightning Network data. In the Lightning Network, f1
is the on-chain transaction fee (roughly 1000 satoshi) which is a lot larger than
f2, the base fee one receives when forwarding a payment (around 1 satoshi).

From analysis of the Lightning Network (We use snapshot from September
2021) [8], we know that the average cycle length is 4.15 (after excluding roughly
10% of vertices that are not part of any cycle). That means the value of C in
Theorem 4 is just slightly above 4. Details are in Table 3.

Table 3. Frequency of the length of shortest cycle between all users in the Lightning
Network. The last column shows the frequency of channels that are not part of any
cycle (N.A. not applicable) The average cycle length is 4.15

Cycle length ≤ 4 5 6 7 N.A

Frequency 49, 424(77.44%) 7, 758(12.16%) 469(0.73%) 12(0.02%) 6, 157(9.65%)
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8 Conclusion

This paper presents competitive strategies to maintain minimise cost while max-
imising liquidity and transaction throughput in a payment channel. Our algo-
rithms come with formal worst-case guarantees, and also perform well in realistic
scenarios in simulations.

We believe that our work opens several interesting avenues for future
research. On the theoretical front, it would be interesting to close the gap in
the achievable competitive ratio, and to explore the implications of our app-
roach on other classic online admission control problems. Furthermore, while in
our work we have focused on deterministic algorithms, it would be interesting
to study the power of randomised approaches in this context, or to consider
different adversarial models.
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Abstract. This paper presents a general framework for the design and
analysis of exchange mechanisms between two assets that unifies and
enables comparisons between the two dominant paradigms for exchange,
constant function market markers (CFMMs) and limit order books
(LOBs). In our framework, each liquidity provider (LP) submits to the
exchange a downward-sloping demand curve, specifying the quantity of
the risky asset it wishes to hold at each price; the exchange buys and sells
the risky asset so as to satisfy the aggregate submitted demand. In gen-
eral, such a mechanism is budget-balanced (i.e., it stays solvent and does
not make or lose money) and enables price discovery (i.e., arbitrageurs
are incentivized to trade until the exchange’s price matches the external
market price of the risky asset). Different exchange mechanisms corre-
spond to different restrictions on the set of acceptable demand curves.

The primary goal of this paper is to formalize an approximation-
complexity trade-off that pervades the design of exchange mechanisms.
For example, CFMMs give up expressiveness in favor of simplicity: the
aggregate demand curve of the LPs can be described using constant
space (the liquidity parameter), but most demand curves cannot be well
approximated by any function in the corresponding single-dimensional
family. LOBs, intuitively, make the opposite trade-off: any downward-
slowing demand curve can be well approximated by a collection of limit
orders, but the space needed to describe the state of a LOB can be large.

This paper introduces a general measure of exchange complexity,
defined by the minimal set of basis functions that generate, through their
conical hull, all of the demand functions allowed by an exchange. With
this complexity measure in place, we investigate the design of optimally
expressive exchange mechanisms, meaning the lowest complexity mech-
anisms that allow for arbitrary downward-sloping demand curves to be
approximated to within a given level of precision. Our results quantify
the fundamental trade-off between simplicity and expressivity in exchange
mechanisms.

As a case study, we interpret the complexity-approximation trade-offs
in the widely-used Uniswap v3 AMM through the lens of our framework.
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1 Introduction

Decentralized exchanges are now an integral part of the broader ecosystem of
blockchains, as evidenced by their ever growing volume of transactions [24]. On
model centralized exchanges, the exchange of a risky asset for a numéraire is
typically carried out by an exchange mechanism known as an electronic limit
order book (LOB), in which market participants specify quantities of shares of
the risky asset they would like to trade at specified prices. Trades then occur as
orders are matched in a greedy way: whenever there is overlap between bid and
ask prices (i.e., between a buy and a sell), a trade is executed, and the matched
orders are cleared from the LOB. LOBs therefore maintain and update a list of
all the currently outstanding buy and sell orders.

LOBs face two types of challenges in an decentralized environment such as
the Ethereum blockchain. First, because storage and computation in such an
environment tend to be so scarce, implementing an LOB can be prohibitively
expensive. Second, LOBs are well known suffer from liquidity problems in thin
markets (markets with few buyers or sellers), for example, for “long-tail” crypto
assets.

These challenges have motivated an alternative exchange design that has
become very widely used in blockchains: automated market makers (AMMs)
and, in particular, constant function market makers (CFMMs). Uniswap [1,2] is
the most well known and widely used example of a CFMM.

AMMs address the second challenge above by offering guaranteed liquidity,
meaning at all times there is a spot price between 0 and ∞ at which the AMM
is willing to buy or sell. AMMs like Uniswap address the first challenge by using
only simple calculations and data structures. For example, for the canonical
(“xy = k”) constant product market maker, the state of mechanism can be
described by two numbers (the quantities x and y held by the pool), and there
is a simple closed-form formula (requiring only a small number of additions,
multiplications, divisions, and square roots) for computing the quantity of the
risky asset received in exchange for a specified amount of the numéraire(as a
function of x and y).

In this paper, we provide a general framework for describing and reason-
ing about exchange mechanisms, which enables “apples-to-apples” comparisons
between LOBs and AMMs on metrics such as complexity and expressiveness.
More specifically, our contributions can be delineated as follows:

1. We provide a common framework for describing exchange mechanisms
that encompasses both CFMMs and LOBs. In our general model, liquidity
providers (LPs) submit to the exchange their preferences (in the form of what
we define as demand curves for the risky asset) along with appropriate
deposits of the risky asset and numéraire (see Sect. 2 for details).

2. We formalize the sense in which some methods of exchange are simpler than
others, introducing a general notion of exchange complexity. Exchange
complexity is defined by the minimal set of basis functions that generate,
through their conical hull, all of the demand functions allowed by an exchange.
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We classify the complexity of all the prominent types of exchange mechanisms
(see Sect. 3 for details).

3. We characterize the fundamental trade-off between the complexity of an
exchange (in a sense that we define) and the expressibility of an exchange
as measured by its ability to approximate arbitrary preferences of the LPs
(i.e., arbitrary demand curves). In particular, we prove matching (up to con-
stant factors) upper and lower bounds on the minimum exchange complexity
necessary to attain a specified approximation error (see Sect. 4 for details).

4. As a case study, we interpret the complexity-approximation trade-offs in the
widely-used Uniswap v3 AMM through the lens of our framework (see Sect. 5
for details).

1.1 Literature Review

The use of AMMs for decentralized exchange mechanisms was first proposed
by Buterin [12] and Lu and Köppelmann [27]. The latter authors suggested
a constant product market maker, which was first analyzed by Angeris et al.
[7]. Angeris et al. [4,5] define and use a reparameterization of a CFMM curve
(established by Angeris and Chitra [3]) in terms of portfolio holdings of the pool
with respect to the price as a tool to replicate payoffs and compute the pool’s
value function; we use this same reparameterization for different purposes, to
define a general (i.e., not AMM-specific) framework of exchange and identify
fundamental complexity-approximation trade-offs in exchange design.

A separate line of work seeks to design specific CFMMs with good prop-
erties by identifying good bonding functions, variations and combinations of
CFMMs in a dynamic setting with a specific focus on optimizing fees, and mini-
mizing arbitrage and slippage [6,15–17,19,20,23,25,28,29,33,36,37]. While fees
could be easily integrated into our model, they have no bearing on complexity-
approximation trade-offs and thus we generally ignore them in this paper for
simplicity.

Some previous papers propose generalizations of CFMMs to somewhat wider
classes of exchanges [11,38] without considering LOBs.

CFMMs and LOBs have been compared before (in ways orthogonal to the
questions studied here) [10,13,26]. Most of these works either compare the
observed liquidities and the price efficiency of these mechanisms [13,26] or study
the same through the lens of arbitrage bounds [10]. Young [40] argues that AMMs
can be interpreted as “smooth order books” and notes a type of non-uniform
converse (with each possible state of a smooth order book represented using a
different AMM). Chitra et al. [14] compare CFMMs and LOBs in terms of the
number of arbitrage transactions necessary to recover from a liveness attack on
the underlying blockchain.

Another line of work analyzes competition between CFMMs and LOBs and
the consequent liquidity properties of both at equilibrium [8,9,13]. Goyal et al.
[21] consider the computational complexity of computing such equilibria.
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There is a large literature on the market microstructure of limit order books;
see the textbook by O’Hara [32] and references therein. There are some examples
of on-chain LOBs on high-throughput blockchains [30,35].

Finally, Adams et al. [2] suggest that Uniswap v3’s key feature is that “LPs
can approximate any desired distribution of liquidity on the price space,” with
empirical backing provided by Huynh [22]; one application of our work is to put
this intuition on sound mathematical footing. There is also work on Uniswap v3
from the LP perspective, such as how beliefs about future prices should guide
the choice of an LP’s demand curve [18,31,39].

2 Model

2.1 Model Primitives

We begin by describing our framework for exchange design. While this paper
uses this framework specifically to study fundamental complexity-approximation
trade-offs in exchange mechanisms, we believe it can serve also as a starting point
for many future investigations.

Suppose there are two assets, a risky asset and a numéraire asset. Each LP
comes separately to the exchange, and declares the amount of risky asset they
would like to hold at each possible price p, i.e., a non-increasing, non-negative
function gi : (0,∞) → R

+. We call the function gi(·) the ith LP’s demand
curve for the risky asset, because it refers to the demand of the LP for the
risky asset (i.e., we are considering the perspective of the LP). Assuming that
the current price is p0, the LP simultaneously deposits a quantity gi(p0) of the
risky asset in the common pool, along with an amount of numéraire given by
the Riemann-Stieltjes integral

−
∫ p0

0

p dgi(p) . (1)

Note that this integral is well-defined (though possibly infinite) since gi(·) is
monotonic. Moreover, the integral is non-negative since gi(·) is non-increasing.
In cases where gi(p) is differentiable, the differential takes the form dgi(p) =
g′

i(p) dp. We will show later that this deposit of numéraire is necessary and
sufficient for the exchange to be budget-balanced or solvent, i.e., the exchange
system does not extend credit.

The exchange mechanism maintains the demand curves of the LPs, along with
the current price p0. Assuming that n liquidity providers have contributed to the
exchange their demand curves along with respective payments of risky asset and
numéraire, the aggregate demand curve (i.e., the total quantity of risky asset
that the exchange will hold at any given price) is given by the non-increasing
function

g(p) =
n∑

i=1

gi(p) . (2)
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Addition and removal of liquidity (LP “mints” and “burns”, as they are known
in practice) simply occur through additions and removals of particular gi’s to
the aggregate demand curve of the exchange. These demand curves of the LPs
can arise through bonding curves of traditional CFMMs (i.e., functions f such
that the holdings of the joint pool (x, y) satisfy f(x, y) = c for some c) but this is
not necessary; i.e., the exchange mechanisms defined by our framework strictly
generalize AMMs.

Trading. A liquidity demanding trader who wants to trade with the exchange
will do so by specifying a target (new) price p1 �= p0. The trader gets a quantity
g(p0) − g(p1) of risky asset, and pays the following amount in numéraire:

−
∫ p1

p0

p dg(p) , (3)

as determined by the aggregate liquidity of the exchange g(p) of Eq. 2. As was
the case for Eq. 1, this integral is well-defined, it is non-negative if p1 ≥ p0, and
non-positive if p1 ≤ p0.

Uniswap v2 Example. To give a simple example, the particular case of a constant
product market maker (CPMM), such as Uniswap v2, arises from our mechanism
as follows: restrict the set of allowable demand curves gi that an LP may submit
to the form

gi(p) =
ci√
p

,

for some constant ci > 0. Then, the aggregate demand curve of the exchange
will be of the form

g(p) =
n∑

i=1

gi(p) =
c√
p

,

for c =
∑n

i=1 ci > 0. A trader who will trade with this exchange at a current
price p0 with a target price p1 (or equivalently, with a specific quantity of risky
asset to be purchased, since there a one-to-one correspondence) will obtain a
quantity g(p0) − g(p1) = c

(
1√
p0

− 1√
p1

)
of risky asset, and pay in numéraire

−
∫ p1

p0

pg′(p) dp =
∫ p1

p0

c

2
√

p
dp = c (

√
p1 − √

p0) .

Comparing this to the same expressions for an “xy = k” CPMM, the trader
gets exactly the same quantity of risky asset and pays exactly the same amount
of numéraire as they would in the “xy = k” CPMM, with k = c2. Essentially,
the curve g(p) above is just a reparameterization of the CPMM curve xy = k
in terms of prices [5] where the risky asset is available in quantity x in the pool
and the amount of numéraire is y1.
1 In particular, x = g(p) = c/

√
p and y = c

√
p at all times in the pool for the

corresponding defined price p.
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Significance of LPs’ Demand Curves. In this mechanism, we view the individual
demand curves chosen by the LPs as their ideal preferences with respect to risky
asset holdings at each price in regards to their market making activity. They are
in some sense “forced” to make the market —this is tautologically the reason
that they participate in the exchange as LPs2— but exactly how they do this
is specified by the shape of their demand curves. The requirement that each gi

be non-increasing can be explained through this argument: each demand curve
of any LP has to always correspond to making the market; as the price of the
risky asset increases, a market maker may only decrease their holdings of the
asset (i.e., sell the asset), because if at any given price their holdings as defined
in the exchange mechanism marginally increased (i.e., the LP would buy the
risky asset at the marginal price), then any trader would sweep such a marginal
quantity as it is to their advantage.

2.2 Price Discovery and Budget Balance

In the previous section, we defined a framework for an exchange mechanism. In
order for an exchange to be reasonable, two properties would be necessary: (1)
price discovery should occur, i.e., given an outside market with a fixed exter-
nal market price, the exchange’s price should eventually become identical to the
market price; and (2) the exchange should at no point in time become insolvent,
i.e., any feasible trade should always keep the amount of numéraire non-negative.
(Because demand curves are non-negative, the amount of the risky asset is auto-
matically non-negative.) Equivalently, the second property is broadly known in
financial markets as a “no credit” requirement, i.e., that the exchange does not
incorporate the ability of LPs to take credit. In the remainder of the section, we
formalize and prove these properties for our model.

Proposition 1. (Price discovery). If there exists an outside market with fixed
external market price p of the risky asset with respect to the numéraire, then
external market participants (arbitrageurs) always have financial incentive to
trade with an exchange defined as per the framework of Sect. 2.1 until the price
of such exchange becomes equal to the external market price.

Proposition 2. (Budget balance). An exchange defined as in the framework
of Sect. 2.1 is budget-balanced or solvent, i.e., the amount of numéraire that the
joint pool contains at all times (with any sequence of feasible trades, or liquidity
additions/removals) is non-negative.

We defer the full proofs of these two propositions to Appendix A.

2 Note that LPs may also hold other portfolios of the risky asset, which of course
need not be restricted to be non-increasing in the asset price, but their individual
demand curves when they participating in an exchange mechanism need to reflect
exactly and only the activity of making the market.
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3 Exchange Description Complexity and Examples

Our general model in Sect. 2.1 allows LPs to submit arbitrary downward-sloping
demand curves. Such curves are not generally representable in a finite amount
of space, so practical considerations suggest restricting the space of demand
curves that LPs are allowed to submit. We will say that an exchange mechanism
is a restriction of the general exchange framework of Sect. 2.1 in which each
LP demand curve is required to belong to a set of allowable demand curves,
i.e., gi ∈ G for some class G of non-increasing, non-negative functions over the
positive reals. An exchange mechanism, then, is defined by the choice of class G.

Towards defining a measure of exchange complexity, we will be interested in
succinct ways of representing all the demand functions g in a class G. Specifically,
given an arbitrary such class G, we can consider its conical hull. This is the
smallest convex cone that contains3 G or, equivalently, the closure of G under
finite non-negative linear combinations:

cone(G) =

{
k∑

i=1

cigi(p) : gi(p) ∈ G, ci ≥ 0, k ∈ N

}
.

In our context, non-negative linear combinations can be interpreted as aggrega-
tions of multiple LP positions.

A basis of a cone is a minimum-cardinality set of elements that generates
the cone, meaning a set S such that cone(S) = cone(G). We then define the
exchange complexity of an exchange (i.e., a choice G of allowable demand
functions) as the cardinality of a basis for cone(G).4 By definition, if a set G
of demand functions has exchange complexity k, every function of G can be
represented by a k-tuple of non-negative real numbers (one coefficient for each
of the basis functions).5

Our measure of exchange complexity is, by design, well defined for an arbi-
trary collection G of allowable demand functions. In all the real-world examples
that we are aware of, this set G is already closed under non-negative linear com-
binations (i.e., is a cone). In this case, exchange complexity effectively counts an
exchange’s “primitive” LP positions from which all possible aggregations of LP
positions can be derived.

3 This definition makes sense because the intersection of convex cones is again a convex
cone; see, e.g., Rockafellar [34] for further background.

4 While our formalism in principle accommodates exchanges with infinite exchange
complexity, any practical exchange needs to be defined by a finite basis on any
compact (sub-)domain. Additionally, our results only make use of exchanges that
have a finitely generated conic closure to approximate any demand curve within a
finite approximation error under reasonable assumptions about the error metrics.

5 The focus of this work is on information-theoretic complexity – approximation trade-
offs, and we do not explicitly model computation. However, our positive results only
make use of mechanisms for which computation with basis functions is straightfor-
ward.
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This definition of exchange complexity allows us to formalize the intuition
that some exchanges are easier to represent than others (e.g., that CFMMs are
simpler than LOBs). Next, we evaluate the exchange complexity of all of the
most popular types of exchanges used to trade crypto assets.

Fig. 1. g ∈ cone(G) for three typical cases: (a) CPMM, (b) LOB, (c) Uniswap v3

CFMMs. CFMMs are generated by the restriction to non-negative scalar mul-
tiples of a single basis function, i.e., G = {c · g(p) : c ≥ 0}, where g(p) is one
reference demand curve, out of all the possible curves of the CFMM. The coeffi-
cient c of this basis function can then be interpreted as the liquidity parameter.
As an example, for the CPMM, we can choose g(p) = 1/

√
p (cf., Fig. 1a); the

coefficient can be interpreted as
√

k for the k in “xy = k.” In general, irrespective
of the bonding curve, the exchange complexity of a CFMM is 1. Under standard
assumptions (e.g., as in Angeris et al. [4]) on a CFMM’s bonding curve f , the cor-
responding basis function g can be derived from f in a mechanical way, through
optimization.

LOBs. Limit order books consist of limit orders, which are (buy or sell) orders
of quantities of the risky asset at some price. The predetermined prices at which
limit orders can be specified are called ticks. In our framework, limit orders can
be represented by a set of basis functions in which each function corresponds
to a limit order at a specific tick (i.e., a step function, where the step occurs
at the tick). According to our definition of exchange complexity above, then,
the exchange complexity of a limit order book (cf., Fig. 1b) with k ticks is k. If
we restrict our attention to a price range [pmin, pmax] with ticks pmin, pmin + ε,
pmin + 2ε, . . . , pmax, the exchange complexity of such a LOB would be (pmax −
pmin)/ε.

There is a superficial difference in convention between traditional LOBs and
our model of them in the preceding paragraph, concerning the default action
after a trade that crosses the price of a limit order. In an LOB, the matching
limit order would be automatically removed from the order book, whereas in
our framework here the corresponding LP would, in effect, automatically place
a new limit order in the opposite direction at the same price. In other words, a
LOB basis function is equivalent to both a limit buy and a limit sell at the tick
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price, and which one takes effect depends on the current price p0 and the trade
to be executed. Because limit orders can be easily added to or removed from
traditional LOBs, and because our model accommodates LP mints and burns,
there is no material difference between the two viewpoints.

Uniswap v3. Uniswap v3 (cf., Fig. 1c) can be viewed as a hybrid of a CFMM
and a LOB, with the CPMM curve applied only within a short price interval (in
between two of the pre-defined ticks). By allowing multiple intervals, Uniswap
v3 allows concentrated positions in the spirit of LOBs, a property known as
concentrated liquidity. If there are k ticks contained in the interior of an interval
[pmin, pmax], then Uniswap v3’s complexity on this interval is k. (There is one
basis function for each price segment [ti, ti+1] between two successive ticks; the
function is constant up until the interval, decreases as in a CPMM within the
interval, and is zero after the interval, as in Eq. 4).

gi(p) =

⎧⎪⎨
⎪⎩

1√
ti

− 1√
ti+1

, for p ≤ ti
1√
p − 1√

ti+1
, for ti ≤ p ≤ ti+1

0 , for p ≥ ti+1

(4)

Thus, the exchange complexity of both LOBs and Uniswap v3 is controlled by
the number of ticks (independent of the spacing between them). In practice, ticks
are sparser in Uniswap v3 than in a traditional LOB, and the former accordingly
has lower exchange complexity than the latter. For an example calculation, if
the ticks in Uniswap v3 are assumed to be of the form 1.0001i, and pmin =
1.0001s, pmax = 1.0001s+t, then Uniswap v3’s complexity in the price interval
[pmin, pmax] is

t =
log(pmax/pmin)

log 1.0001
≈ 10000.5 log(pmax/pmin) .

We note that range orders in Uniswap v3 correspond to sums of single-interval
positions (with one position per interval in the range) and are therefore auto-
matically included in the cone generated by the basis functions defined above.

4 Complexity – Approximation Trade-Offs

4.1 Notions of Approximation

Having defined the complexity of an exchange mechanism, we turn to defining the
expressiveness of such a mechanism and proving fundamental trade-offs between
complexity and expressiveness. Informally, we will measure the expressiveness
of an exchange mechanism via the extent to which its allowable demand curves
(i.e., the functions in the class G) can represent arbitrary LP preferences (i.e.,
an arbitrary demand curve).

Precisely, denote by F the class of all non-increasing functions f :
[pmin, pmax] → [fmin, fmax]. This is the most general class of bounded demand
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curves according to our framework. Any arbitrary (bounded) preference of an
LP will be some specific non-increasing function f ∈ F .6 We next define the
extent to which some allowable demand curve g ∈ G (with the same domain and
range) approximates f . (In this section we use g rather than gi to denote an
arbitrary function of G.)7

First, we introduce the weighted �p norm in the function space as a distance
metric; without loss of generality, assume we have a normalized (and integrable)
weight function w : [pmin, pmax] → R

+ such that
∫ pmax

pmin
w(p) dp = 1. Then, the

weighted �p distance of two functions f, g ∈ F is

d(f, g) =
(∫ pmax

pmin

w(s) |f(s) − g(s)|p ds

)1/p

.

The weight function w can be interpreted as a measure on the price space, for
example reflecting a belief (by an LP, the AMM designer, or the community) that
some prices may be more relevant than others. On a first read, we encourage
the reader to take w to be the constant function w(s) = 1/(pmax − pmin) for
all s ∈ [pmin, pmax].

Given this definition, we define the approximation error of the exchange
defined by G as the worst-case (over arbitrary LP preferences/demand curves
f ∈ F) distance from the best-case approximation (over allowable functions
g ∈ cone(G)) of f , as above:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
. (5)

4.2 Upper and Lower Bounds

From the AMM designer’s perspective, an “optimal” AMM would enable LPs
to have their preferences expressed closely; a bit more formally, the worst-case
approximation error through the AMM for arbitrary LP demand curves should

6 Note that in what follows f is a demand curve, as defined in Sect. 2.1, and not a
bonding curve of a CFMM.

7 The restricting to a bounded domain and range is convenient but can be relaxed
considerably. The fundamental issue is that, to meaningfully speak about function
approximations and avoid infinite distances between distinct functions, we need to
impose constraints on allowable demand functions and/or the choice of distance
function and underlying measure (on prices). Functions with bounded domain and
range are convenient because they are integrable no matter what the distance notion
and measure. Our results can be generalized by considering combinations of demand
function classes and classes of measures for which the same integrability properties
are guaranteed.

Additionally, it will be apparent from our lower bound (Theorem 2) that, if the
family of functions F was not bounded by some finite bound fmax < ∞, there would
be no finite approximation error guarantee with any finite complexity (under any
natural notion of approximation error).
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be low, and intuitively should decrease with the complexity of the exchange
mechanism: the higher exchange complexity should result in a payoff of lower
worst-case approximation error. The results below characterize this trade-off, by
identifying the best-possible worst-case approximation error as a function of the
exchange complexity. For example, for the special case in which the approxima-
tion metric between two functions is the (unweighted) �1 distance, an exchange
complexity (equivalently, number of basis functions) of Θ(1/ε) is necessary and
sufficient to achieve an ε worst-case approximation error.

Our upper bound argument also implies the (intuitive but previously unfor-
malized) fact that limit order books at appropriately defined price ticks attain
the optimal approximation error guarantee for a given level of exchange com-
plexity (up to a factor of 2). In other words, when computation and storage
are not first-order constraints, LOBs are nearly optimally expressive exchange
mechanisms.

Theorem 1. (Upper bound). For every ε > 0, there exists a limit order
book (LOB) exchange mechanism G with exchange complexity k = O(1/εp) that
attains approximation error

err(G) ≤ ε · fmax − fmin

2
.

Theorem 2. (Lower bound). For every ε > 0, every exchange mechanism G
with exchange complexity O(1/εp) suffers approximation error

err(G) ≥ ε · Ω(fmax − fmin) .

For the detailed proofs of Theorems 1, and 2 we refer to Sects. 6.1 and 6.2
respectively.

5 Uniswap V3

Next, we answer the question: to what extent do various formats in practice
come close to this complexity – approximation trade-off? Historically, constant
product market makers (CPMMs) were first built for gas efficiency purposes [1],
but when it was realized that this came often at the expense of capital efficiency,
the proposal of Uniswap v3 came around [2], which trades like a CPMM curve
inside tight intervals at a pre-defined tick spacing, which are otherwise indepen-
dent. In this section, we consider Uniswap v3, which is at the time of writing a
widely used AMM, as an enlightening example to showcase how our theory can
be applied to formally prove approximation guarantees for AMMs employed in
practice.
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More specifically, we can prove that —under a particular assumption of the
returns distribution with maximum entropy, i.e., a uniform prior in the returns
space— a variation of Uniswap v3 with variable tick spacing δ achieves an
approximation error that matches (up to a constant multiplicative factor) the
lower bound in Theorem 2. The precise formulation follows.

Theorem 3. For every ε > 0, there exists a Uniswap v3-like exchange mecha-
nism G with n = O(1/εp) ticks at prices pmin(1 + δ)i for i ∈ {0, 1, . . . , n} where
log(1 + δ) = εp log(pmax/pmin), that attains approximation error according to
Eq. 5 with a normalized weight function w(p) which assigns measure at most
O(1/n) to each of the intervals defined by these ticks, of

err(G) ≤ O(ε · (fmax − fmin)) .

The detailed proof of Theorem 3 is relegated to Sect. 6.3.

6 Proofs

6.1 Proof of Theorem 1

Let ε > 0, and a normalized weight function w : [pmin, pmax] → R
+ such that∫ pmax

pmin
w(p) dp = 1. Then, since w(p) ≥ 0 ∀p ∈ [pmin, pmax], split the interval

[pmin, pmax] into n = 1/εp equal measure (according to the weight function) sub-
intervals [ti, ti+1], ∀i ∈ {1, 2, . . . , n}, i.e., such that

∫ ti+1

ti
w(p)dp = 1

n . Define
the limit order book (LOB) exchange mechanism G = cone(G) as the conical
hull of the following set of basis functions: each basis function represents a limit
order at each price point ti above, i.e., the basis function is a unit step function
dropping from 1 to 0 at price ti. The exchange complexity of this G is therefore
1/εp.

Consider any f ∈ F , and define the following gf ∈ cone(G) that will “approx-
imate” this f :

∀p ∈ (ti, ti+1), gf (p) =
f(ti) + f(ti+1)

2
. (6)

It is true that this gf ∈ cone(G), because gf is piecewise constant, with function
value drops occurring only at the prices ti (see Fig. 1b for an example represen-
tation).

We have that

∀p ∈ (ti, ti+1), |f(p) − gf (p)| ≤ f(ti) − f(ti+1)
2

,

since f is non-increasing, and by the definition of gf in Eq. 6.
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Hence, we obtain the desired result:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
≤ sup

f∈F

(
n∑

i=1

∫ ti+1

ti

w(s) |f(s) − gf (s)|p ds

)1/p

≤ sup
f∈F

(
n∑

i=1

∫ ti+1

ti

w(s)

(
f(ti) − f(ti+1)

2

)p

ds

)1/p

=
1

2n1/p
sup
f∈F

(
n∑

i=1

[f(ti) − f(ti+1)]
p

)1/p

≤ 1

2n1/p
sup
f∈F

n∑
i=1

[f(ti) − f(ti+1)]

≤ ε · fmax − fmin

2
,

where the second-to-last inequality follows from the inequality between �1 and
�p norms in the function space.

6.2 Proof of Theorem 2

Let ε > 0, and a normalized weight function w : [pmin, pmax] → R
+ such that∫ pmax

pmin
w(p) dp = 1. Similarly to the upper bound, but with double the amount

of intervals, split the interval [pmin, pmax] into 2(n + 2) (where n = 1/εp)
equal measure (according to the weight function) sub-intervals [ti, ti+1], ∀i ∈
{1, 2, . . . , 2n + 4}, i.e., such that

∫ ti+1

ti
w(p)dp = 1

2(n+2) . Now, consider any
exchange mechanism G with exchange complexity ≤ 1

εp −1, i.e., such that cone(G)
is generated by ≤ 1

εp − 1 basis functions; suppose without loss of generality that
these are g1, g2, . . . , gn−1 ∈ cone(G).

Lemma 1. For every basis function gi (where i ∈ {1, 2, . . . , n − 1} as above),
there exists at most one interval of the form [t2l+1, t2l+3] for some l ∈ {1, . . . , n}
(where t’s are defined as in the above paragraph) such that

gi(t2l+1) − gi(t2l+3) >
gi(t3) − gi(t2n+3)

2
.

Proof. Let gi be any basis function. Assume that the lemma’s hypothesis is not
true, i.e., there exist at least two intervals [t2l+1, t2l+3] and [t2m+1, t2m+3] for
some l,m such that the lemma’s equation holds for each of these intervals. But
since gi is non-increasing, this would necessitate that

gi(t3) − gi(t2n+3) ≥ [
gi(t2l+1) − gi(t2l+3)

]
+

[
gi(t2m+1) − gi(t2m+3)

]
> gi(t3) − gi(t2n+3) ,

which completes the proof by contradiction.
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From Lemma 1 and the pigeonhole principle (there exist n odd-indexed inter-
vals of the form [t2l+1, t2l+3] for some l ∈ {1, . . . , n}, but only n − 1 basis func-
tions), we get that there exist at least one interval of the form [t2l+1, t2l+3] (for
some l ∈ {1, . . . , n}) such that for all i ∈ {1, 2, . . . , n − 1},

gi(t2l+1) − gi(t2l+3) ≤ gi(t3) − gi(t2n+3)
2

,

and because cone(G) is finitely generated, it holds that for all g ∈ cone(G),

g(t2l+1) − g(t2l+3) ≤ g(t3) − g(t2n+3)
2

. (7)

Note that the interval is not the leftmost [t1, t3] or the rightmost [t2n+3, t2n+5]
interval.

Consider the following specific fa ∈ F :

fa(p) =

{
fmax , for pmin ≤ p < t2l+2

fmin , for t2l+2 ≤ p ≤ pmax

.

Consider any g ∈ cone(G). We distinguish a few cases for the extreme values
of g outside of the outermost odd-indexed intervals, i.e., g(t3) and g(t2n+3):

– If g(t3) ≥ fmax + fmax−fmin
4 , then

∫ t3

t1

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 4p
.

– If g(t2n+3) ≤ fmin − fmax−fmin
4 , then

∫ t2n+5

t2n+3

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 4p
.

– Otherwise, we have that g(t3) − g(t2n+3) < 3
2 (fmax − fmin). We now distin-

guish 3 sub-cases:
• If g(t2l+1) ≥ fmax, then g(t2l+2) ≥ g(t2l+3) ≥ fmax+3fmin

4 by Eq. 7, thus
∫ t2l+3

t2l+2

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 21+2p
.

• If g(t2l+3) ≤ fmin, then g(t2l+2) ≤ g(t2l+1) ≤ 3fmax+fmin
4 by Eq. 7, thus

∫ t2l+2

t2l+1

w(s) |fa(s) − g(s)|p ds ≥ (fmax − fmin)p

(n + 2) · 21+2p
.

• Otherwise, for some δ1, δ2 > 0 we have that fmin < fmin+δ2 = g(t2l+3) ≤
g(t2l+1) = fmax − δ1 < fmax; then by Eq. 7 we get δ1 + δ2 ≥ fmax−fmin

4 ,
therefore∫ t2l+3

t2l+1

w(s) |fa(s) − g(s)|p ds ≥ δp
1 + δp

2

2(n + 2)
≥ (δ1 + δ2)p

(n + 2) · 2p
≥ (fmax − fmin)p

(n + 2) · 8p
,

where the second-to-last inequality follows from Hölder’s inequality.
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Hence, we obtain the desired result:

err(G) = sup
f∈F

{
inf

g∈cone(G)
d(f, g)

}
≥ inf

g∈cone(G)

(∫ pmax

pmin

w(s) |fa(s) − g(s)|p ds

)1/p

≥ ε · Ω(fmax − fmin) .

6.3 Proof of Theorem 3

Let ε > 0, and consider ticks ti = pmin(1+ δ)i for i ∈ {0, 1, . . . , n} where log(1+
δ) = εp log(pmax/pmin), and n = log(pmax/pmin)/ log(1+δ), so that t0 = pmin and
tn = pmax. Consider the normalized weight function w : [pmin, pmax] → R

+ such
that

∫ pmax

pmin
w(p) dp = 1, with the property that for some constant C > 0, ∀i ∈

{0, 1, . . . , n − 1},
∫ ti+1

ti
w(p) dp ≤ Cp

n . Our Uniswap v3-like exchange mechanism
G = cone(G) is described with the following n + 1 basis functions: one basis
function for each of the intervals [ti, ti+1] for i ∈ {0, 1, . . . , n − 1} defined by

gi(p) =

⎧⎪⎨
⎪⎩

1√
ti

− 1√
ti+1

, for pmin ≤ p ≤ ti
1√
p − 1√

ti+1
, for ti ≤ p ≤ ti+1

0 , for ti+1 ≤ p ≤ pmax

,

along with the additional basis function gn(p) that is everywhere 18.
Consider any f ∈ F , and define the following gf ∈ cone(G) that will “approx-

imate” this f :

gf (p) = f(pmax)gn(p) +
n−1∑
i=0

f(ti) − f(ti+1)
1√
ti

− 1√
ti+1

gi(p) .

Then, it holds that

∀p ∈ (ti, ti+1), |f(p) − gf (p)| ≤ f(ti) − f(ti+1) .

Hence, we obtain the stated result by a similar argument to that of Sect. 6.1.
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A Deferred Proofs of Section 2.2

Proof. (rice discovery) Assume that the current price of the exchange is p0 �= p.
Suppose that an external market participant comes to the exchange and is willing
to trade to some price p1, and then uses the external market to trade back. We
prove that the maximum profits will be obtained at p1 = p; therefore, if the
trader does not maximize their profits, other external market participants will
continue to have an incentive to trade until the price of the exchange is p and
the conclusion follows.

Due to Eq. 3, the external market participant’s optimization problem for their
profit is:

max
p1∈R+

p(g(p0) − g(p1)) +
∫ p1

p0

pdg(p) = max
p1∈R+

(p1 − p)g(p1) −
∫ p1

0

g(p)dp

First-order conditions then prove that the optimum is attained at p1 = p.

Proof. (Budget balance). Assume that the current price of the exchange is p0.
First, we note that liquidity additions and removals, due to the linear nature of
the aggregate demand curves and the numéraire contributed/removed by Eq. 1
with respect to the curves gi(p), do not affect the rest of the joint pool, i.e., if
the amount of numéraire was non-negative before the operation, so it is after
it. Trading is the only action which is yet unclear how it affects the amount of
numéraire in the pool. In aggregate, the joint pool contains a quantity g(p0) of
risky asset, and in numéraire by Eq. 1:

n∑
i=1

−
∫ p0

0

pdgi(p) = −
∫ p0

0

pdg(p) ≥ 0 ,

because g is non-increasing (as the sum of non-increasing functions) and p0 ≥ 0.
Suppose that a trader comes and moves the pool price to p1. The new amount
of numéraire contained in the pool by the above equation and Eq. 3 is

−
∫ p0

0

pdg(p) −
∫ p1

p0

pdg(p) = −
∫ p1

0

pdg(p) ≥ 0 ,

thereby completing our argument.
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Abstract. Liquidations in Decentralized Finance (DeFi) are both a
blessing and a curse—whereas liquidations prevent lenders from capital
loss, they simultaneously lead to liquidation spirals and system-wide fail-
ures. Since most lending and borrowing protocols assume liquidations are
indispensable, there is an increased interest in alternative constructions
that prevent immediate systemic-failure under uncertain circumstances.

In this work, we introduce reversible call options, a novel financial
primitive that enables the seller of a call option to terminate it before
maturity. We apply reversible call options to lending in DeFi and devise
Miqado, a protocol for lending platforms to replace the liquidation
mechanisms. To the best of our knowledge, Miqado is the first pro-
tocol that actively mitigates liquidations to reduce the risk of liquida-
tion spirals. Instead of selling collateral, Miqado incentivizes external
entities, so-called supporters, to top-up a borrowing position and grant
the borrower additional time to rescue the debt. Our simulation shows
that Miqado reduces the amount of liquidated collateral by 89.82% in
a worst-case scenario.

Keywords: DeFi · Liquidation · Reversible call option

1 Introduction

Recently, there has been an increasing interest in Decentralized Finance (DeFi),
a financial ecosystem where users exercise cryptographic control over their finan-
cial assets. Commonly, DeFi is enabled by blockchains that support smart con-
tracts (e.g., Ethereum), and financial primitives are instantiated as publicly
accessible decentralized applications. A wide variety of traditional financial ser-
vices that are implemented in DeFi, ranging from asset exchanges, to market
making, as well as lending and borrowing platforms [15]. DeFi differs from the
traditional, centralized financial system in multiple aspects. For instance, most
DeFi services are open-source, such that traders can inspect the protocol rules
encoded within immutable smart contracts.

With over 15B USD of total value locked (TVL), DeFi’s lending and borrow-
ing services account for 30% of DeFi’s locked up assets. Just as in the traditional
c© International Financial Cryptography Association 2024
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centralized finance domain, debt in DeFi is prone to liquidation events upon
price-swings of the debts’ security deposit (subsequently referred to as collat-
eral). A borrowing position becomes “unhealthy” (i.e., liquidatable), whenever
the collateral is deemed insufficient to cover the debt, corresponding to a health
factor inferior to one. The most prevalent liquidation mechanism, fixed spread
liquidation (FSL), allows a liquidator to repay a fraction of the borrower’s debt
and acquire its collateral at a discount. The fraction at which the borrowers’
debt is repaid in a liquidation is limited to an upper bound, commonly referred
to as the close factor (e.g., 50%). As such, liquidations intend to protect the
lender by preventing a loss of capital by selling a sufficient amount of collateral.
However, liquidations serve as a double-edged sword. Selling off collateral causes
a price decrease, which potentially leads to further liquidations and market-wide
panic [11]. Quantifying the extent of liquidations in DeFi, a recent two-year
longitudinal study (April 2019 to April 2021) by Qin et al. [16] finds that liqui-
dation events on the Ethereum blockchain amount to over 800M USD in volume,
yielding a staggering 64M USD profit to liquidators. Such liquidation profit con-
stitutes a source of miner extractable value (MEV) [5], which grants miners a
risk-free opportunity to extract financial profit. MEV, however, negatively affects
blockchain consensus security by incentivizing blockchain forks [17].

In this work, we propose Miqado, a mechanism designed to mitigate liq-
uidation events to (i) protect borrowers from excessive collateral liquidation,
(ii) alleviate MEV sourcing, and (iii) mitigate liquidation spirals. To this end, we
introduce reversible call options, a novel financial primitive that enables the seller
of a call option to terminate it at a premium before reaching maturity. Miqado
applies reversible call options to incentivize external support for “unhealthy”
borrowing positions, while the original borrower is granted additional time to
protect its borrowing position and limit the potential loss.

Thereby, we summarize the contributions of this work as follows.

1. Quantifying Liquidation Spiral. We quantify the liquidation spiral caused
by the FSL mechanism by analyzing 48,364 past liquidation events over a
time-frame of 41 months, capturing 2.32B USD of collateral liquidated. We
find the existence of 18,305 short liquidations, where a liquidator immediately
sells the acquired collateral. These liquidations account for 1.33B USD sold
collateral and a maximal collateral price decline of 26.90%.

2. A Novel Financial Primitive. We introduce reversible call options, a novel
financial primitive where the seller of a European call option can pay a pre-
mium to the buyer to terminate the option before its maturity.

3. AProtocol forLiquidationMitigation.We proposeMiqado, the first pro-
tocol that protects DeFi borrowers from excessive liquidation losses. By real-
izing a reversible call option, Miqado incentivizes external actors to support
“unhealthy” borrowing positions, mitigating liquidations by design. Miqado
serves as a plug-and-play mechanism, which can be integrated into any existing
lending platform. We evaluate Miqado by simulating how it would have per-
formed in past liquidation events. We find that Miqado reduces the amount of
liquidated collateral by 89.82% in a worst-case scenario.

https://docs.aave.com/developers/v/2.0/guides/liquidations#0.-prerequisites
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2 Background

2.1 Blockchain and Smart Contract

In essence, a blockchain is a distributed ledger operating on top of a peer-to-
peer (P2P) network [4]. The core blockchain functionality is that participants can
transfer financial assets (i.e., cryptocurrencies) without any trusted third-party
custodian [13]. To send cryptocurrencies, one broadcasts a signed transaction
through the blockchain P2P network. The so-called miners collect, verify and
package transactions into a block which is appended onto the already confirmed
blocks forming a linear chain. All peers in the blockchain network are expected to
follow a specific consensus mechanism (e.g., Nakamoto consensus [13]) to achieve
the consistency of the ledger.

Beyond the simple cryptocurrency transfer, more versatile blockchains (e.g.,
Ethereum [23]) enable advanced transaction logic throughpseudo-Turing complete
smart contracts. Similar to regular user accounts, smart contracts can own cryp-
tocurrencies. In addition, every smart contract is bound to a piece of immutable
code upon its creation. Users can send a transaction to a smart contract account
and trigger the execution of the associated smart contract code. We refer readers
to [4] for more detailed explanations of blockchains and smart contracts.

2.2 Decentralized Finance

Smart contracts enable the creation of cryptocurrencies (also known as tokens) on
a blockchain in addition to the native cryptocurrency (e.g., ETH on Ethereum). A
token smart contract serves as a balance sheet recording the balance of every token
holder account. Smart contracts also allow anyone to create any type of imaginable
financial product on-chain, by enforcing the rules through the smart contracts’
immutable code. The ecosystem as a whole, composed of these tokens and smart
contract-based financial products, is referred to as DeFi. At the time of writing,
the scale of DeFi has reached over 50B USD, with an abundance of applications
such as exchanges, lending platforms, and derivatives.1

2.3 Lending/Borrowing in DeFi

Lending and borrowing, with over 15B USD TVL, is one of the most popular
DeFi use cases. In a DeFi lending system, a smart contract called lending pool,
manages the borrowing positions. Lenders provide assets to the lending pool
to earn interests from borrowers. To minimize the lenders’ risk of losing funds,
every borrower is required to provide collateral as a guarantee. The lending and
borrowing interests are programmatically determined by the contract code.

Lending in DeFi can be divided into over-collateralized and under-
collateralized lending. In over-collateralized lending, the borrower provides a secu-
rity deposit (i.e., collateral) which exceeds the lent assets by a factor of 1.1× to

1 https://defillama.com/.

https://defillama.com/
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2× depending on the respective protocol [16]. The borrower may then choose to
freely use the lent asset in any capacity. Contrary to over-collateralized lending,
in under-collateralized lending, the borrower only provides a fraction of the lent
assets as security, hence achieving a leverage factor beyond 1×. For this leveraged
borrowing to remain secure, the assets granted through under-collateralization
can only be utilized in very specific, hard-coded settings encoded in immutable
smart contracts, such that the lending pools stay in control of the lent assets. In
this work, we primarily focus on over-collateralized lending.

We refer to the debts of a borrower together with the collateral securing these
debts as a borrowing position. Due to asset price fluctuations, the collateral of a
borrowing position may become insufficient to cover the debt. Therefore, lending
pools typically set a threshold for the borrowing positions, at which a position
becomes liquidatable. When the collateral value of a borrowing position declines
below this threshold, lending pools can then allow the so-called liquidators, to
repay the debt for the position, commonly referred to as liquidation. In return,
the liquidator is eligible to acquire parts of the collateral from the borrowing
position. The acquired collateral exceeds the repaid debt in value, which incen-
tivizes the liquidator to realize a profit.

2.4 Call Options

Call options are financial contracts that grant buyers the right, but not the
obligation, to buy an underlying asset (e.g., stocks) at an agreed-upon price
(i.e., the exercise price or strike price) and date (i.e., the expiration date or
maturity) [8,20]. In general, options are priced using a mathematical model,
such as the Black-Scholes [3] or the Binomial pricing model [19]. On a high
level, an options price is determined by (i) its intrinsic value and (ii) its time
value. The intrinsic value is a measure of the profitability of an option if it were
to be exercised immediately. The time value measures the value of an option
arising from the time left to maturity (i.e., volatility). When the strike price of
an option increases, the price of the call option consequently increases as well.
In traditional finance, there are two styles of option contracts: (i) American
options can be executed (or exercised) at any time up to the expiration date;
(ii) European options can be exercised only on the expiration date [8].

3 Preliminaries

In the following, we formalize a collateralized debt model and the fixed spread
liquidation, which is the prevalent DeFi liquidation mechanism.

3.1 Collateralized Debt Model

We assume the existence of an on-chain lending pool L = {P1, P2, ..., Pn}, where
Pi is the i-th borrowing position in the lending pool. Each borrowing position
P = 〈Dt, Ct〉 is parametrized by the debt Dt the borrower owes, and the collat-
eral Ct the borrower owns at time t. We denote the price of the debt cryptocur-
rency towards the collateral cryptocurrency, provided by an oracle [7], as pt. In
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the following, we consider the case where each borrowing position consists of a
single debt cryptocurrency and a single collateral cryptocurrency. In practice,
a lending pool may allow for mixed borrowing positions by including multiple
cryptocurrencies as either debt or collateral. We further assume that a borrower
only opens a single borrowing position.

Whether or not a borrowing position is liquidatable is determined by the
health factor.

HFt(P) =
Ct · pt · θ

Dt
(1)

Ct · pt represents the value of the collateral, whereas Dt represents the value
of the debt denoted in the same cryptocurrency. θ is the collateral discount,
s.t. 0 < θ < 1. The collateral discount is configured as a safety margin to
ensure the over-collateralization of a position, i.e., the value of the collateral is
discounted when calculating the health factor. If HFt(P) < 1, e.g., due to price
fluctuations, P is deemed “unhealthy” making it available for liquidations under
existing prevalent designs of DeFi lending protocols. Internally, the health factor
of a borrowing position relies on the collateralization ratio

CRt(P) =
Ct · pt

Dt
. (2)

The collateralization ratio determines whether a position is over-collateralized
or under-collateralized. If CRt(P) > 1 at time t, a position is over-collateralized,
and under-collateralized otherwise.

3.2 Fixed Spread Liquidation

We denote a decentralized application for lending and borrowing that applies a
fixed spread liquidation mechanism as protocol protFSL. For ease of exposition,
we assume that protFSL hosts a single lending pool L. The liquidation of a
position P = 〈Dt, Ct〉 is determined by a set of variables, including the previously
introduced collateral discount θ, the close factor kCF (s.t. 0 < kCF ≤ 1) and the
liquidation spread S.

protFSL = 〈L, θ, kCF , S〉 (3)

The close factor kCF describes the percentage of debt that the liquidator can
repay in a single fixed spread liquidation. The spread S is the discount at which
the liquidator can obtain the collateral. S is fixed throughout the execution
of the protocol (i.e., the name fixed spread liquidation). With the liquidation
spread, one can calculate the maximal collateral claimable by the liquidator Q
as (Dt ·kCF ) · (1+S). Without consideration of gas fees, the maximal obtainable
profit by Q is (Dt · kCF ) · S. As the protocol is overall a zero-sum game, and
under the assumption of non-existant slippage, the profit of the liquidator is
equivalent to the borrowers loss, if denoted in the same cryptocurrency.

Other liquidation mechanisms, though operated differently from the fixed
spread liquidations, follow similar high-level designs—debts are repaid in
exchange for collateral from the liquidated borrowing position. For example,
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in MakerDAO auction liquidations, liquidators bid for the liquidation opportu-
nity by submitting transactions [16]. In such a setting, the liquidation spread
can hence be considered dynamic during the auction execution.

4 Motivation

We proceed to outline the design flaws of liquidation mechanisms and motivate
why mitigating liquidations is necessary.

1. Over-Liquidation. DeFi borrowers are exposed to an unnecessarily over-
whelming liquidation risk. In regular FSL configurations, 50% ∼ 100% of a
borrowing position is liquidated within a single transaction [16,21].

2. MEV. Liquidation is one of the major sources of MEV, which disrupts miner
incentives and endangers the consensus security of a blockchain [17].

3. Liquidation Spiral. A liquidation increases the supply of the collateral cryp-
tocurrencies available for sale. This supply inflation imposes a negative impact
on the collateral prices [22] and may result in further liquidations (possibly
liquidation spiral [11]). We provide a case study of a real liquidation event to
present the impact of liquidations on collateral prices.

Fig. 1. A real liquidation event with a subsequent downward price trend of the col-
lateral asset. The liquidator Q immediately sold parts of the redeemed ETH collateral
from a Compound liquidation, which decreased the ETH price on Uniswap by 6.95%.

Case Study 1 (Liquidation Spiral). As shown in Fig. 1, two DeFi platforms
were involved in this liquidation: (i) Compound, an over-collateralized lending
platform; (ii) Uniswap, an on-chain exchange. USDC is a stablecoin, of which
the value is pegged to USD.2 In the studied liquidation, the liquidator mainly took
the following three steps.

1. The liquidator repaid 4.61M USDC for a Compound borrowing position.
2. In return, the liquidator was allowed to redeem 2, 034.64 ETH of collateral.
3. The liquidator bought 1, 933.43 ETH from the redeemed collateral and

exchanged the ETH for 4.61M USDC to cover its repayment cost in Step
1. The liquidator realized a profit of 101.20 ETH through this liquidation.

In the third step, the exchange from ETH to USDC on Uniswap USDC/ETH
triggered a price decline from 2, 477.96 USDC/ETH to 2, 305.85 USDC/ETH
(−6.95%). This event shows that even a single liquidation can decrease the col-
lateral price significantly.
2 Transaction hash: 0xe7b6fac6502be7c6659880ff5d342ec470429c6f49cd457945bf07266

67eb689. Note that we ignore the irrelevant execution details to ease understanding.

0xe7b6fac6502be7c6659880ff5d342ec470429c6f49cd457945bf0726667eb689
0xe7b6fac6502be7c6659880ff5d342ec470429c6f49cd457945bf0726667eb689
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Why Collateralization Instead of Liquidation? In this work, Miqado
requires additional collateral to be locked in the lending pool, reducing the liquid
collateral asset supply. Hence, we conclude that Miqado behaves more positively
than a liquidation mechanism on stabilizing lending markets, effectively acting
like a price “softening buffer”. We empirically confirm this effect in Sect. 6.

5 Miqado

In this section, we introduce Miqado. Miqado is a debt management mecha-
nism for DeFi lending protocols. It mitigates liquidations through a set of incen-
tives that decrease the likelihood of liquidation spirals. Miqado relies on sup-
porters, which are entities that are willing to top up unhealthy borrowing posi-
tions. To enable Miqado, we introduce reversible call options, a novel financial
primitive where the seller of a call option can pay a premium to terminate the
contract before maturity.

5.1 Reversible Call Option

Recall the notion of European call options as introduced in Sect. 2.4. In a Euro-
pean call option, the seller offers the option contract whereas the buyer acquires
the option to exercise the right to buy an asset at a specific price by buying
said option at a premium (i.e., the option price). The outcome of a European
call option contract at maturity is binary—(i) the buyer exercises its right to
buy or (ii) the buyer does not exercise its right to buy. We now introduce the
reversible European call option, which augments the traditional European call
option with an additional outcome to the option contract, where the seller is
able to terminate the contract at a premium.

We say that a reversible European call option contract gives the buyer CB

the option, but not the obligation, to buy a specified amount N of an asset A
at a specified price K at maturity T , and the seller CS the option to terminate
the contract at pre-Maturity t0 < t < T . The buyer CB pays a premium φ at t0
for the option to exercise the contract at maturity T .

Formally, we define reversible call option as follows:

Definition 1 (Reversible Call Option). A reversible call option is parame-
terized by an asset A, the asset amount N , the strike price K, the reimbursement
factor k, and the time of maturity T . The mechanics are as follows:

t0: (i) The contract is agreed upon between CB and CS.
(ii) The buyer CB pays a premium φ to the seller CS.

t0 < t < T : The seller CS of the option can choose to terminate the contract
by reimbursing the buyer CB with φ · k.

T : The buyer CB can acquire N units of asset A at strike price K.

Payoff Analysis. The buyer CB is the entity which is entitled to execute the
option contract at maturity. We assume that CB always acts rationally, such that
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Fig. 2. Payoff & Loss (P&L) analysis for the Buyer CB of the reversible call option. In
case of reversion, the payoff for the CB is constant. In case of maturity, the payoff is
equal to a traditional call option.

their financial benefit is maximized. In the case of a reversible call option, the
payoff which CB receives can be categorized into two cases—(i) CS terminates the
option at pre-maturity or (ii) the contract is not terminated until maturity at
time T . In the first case, the payoff for CB is constant, as the seller CS reimburses
the buyer CB with φ · k, where k > 1. If the seller CS does not terminate the
contract, the payoff for CB is equivalent to

PCB
=

{
A(T ) − K − φ if A(T ) ≥ K

−φ if A(T ) < K
(4)

Note, that the payoff in this case is equivalent to a traditional European style
call option. The visualized payoff curves for CB are presented in Fig. 2.

5.2 The Miqado Protocol

We present the Miqado protocol in the following. On a high-level, Miqado
seeks to mitigate liquidations through supporters that top-up the collateral of
an unhealthy borrowing position (i.e., the health factor declined below one).
Miqado allows any external entity to become such a supporter. We start with
an overview of Miqado by outlining the equivalence to reversible call options.

Overview. An overview of Miqado is presented in Fig. 3. On a high-level,
Miqado is separated into three phases—(i) Initialization, (ii) pre-Maturity, and
(iii) Maturity. We first assume that Miqado replaces the liquidation mechanism
in our exemplary lending/borrowing protocol. We defer practical considerations
for co-existence of Miqado and liquidations to Sect. 5.4.

1) Initialization. We assume the existence of an on-chain lending pool L with
a single borrowing position P = 〈Dt, Ct〉 initialized by the borrower B. The
supporter can engage at time t0, if the following condition holds:
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Fig. 3. High-level overview of the Miqado protocol which realizes a reversible call
option in DeFi. Once the borrowing position opened by the borrower B is unhealthy,
yet not liquidated, the supporter S is able to top up the collateral in position P.

HFt0(P) =
Ct0 · pt0 · θ

Dt0

< 1 (5)

In words, the health factor should be lower than one. Note that the position
may be over-collateralized (CRt0(P) > 1) or under-collateralized (CRt0(P) <
1), depending on the steepness of the price decline that yields a borrowing
position unhealthy. At this point, S buys a reversible call option by topping-
up λ · Ct0 into P, which grants the right to take over the borrowing position
P at maturity T . The price of the reversible call option hence is λ · Ct0 .
Note that the premium factor λ is a protocol parameter that can be ruled in
the lending pool contract. To decide whether to deposit, a supporter would
need to price the reversible call option and estimate its potential profitability,
which we detail in Sect. 5.3.

2) pre-Maturity. Once S acquires a Miqado option with maturity T , the pre-
maturity stage starts. At any point t0 < t < T , the borrower B can terminate
the Miqado protocol by repaying S the premium λ · Ct0 multiplied by a
constant factor kre that incentivizes the initial support of S, hence

Cre = λ · Ct0 · (1 + IL) · kre (6)

where 0 < IL < 1 is the interest rate which B agreed to pay for its loan
when initiating the position P. The factor 0 < kre < 1 is implementation
dependent and should account for the risk S has to take when supporting a
position.

3) Maturity. At Maturity, there are two possible options how the Miqado pro-
tocol may terminate. The payoff for the supporter S in the case of maturity
is depicted in Fig. 2.
1. Full Takeover. In general, Miqado option contracts have an “Out-

of-the-Money” strike price K, such that the strike is greater than the
collateralization ratio upon initiation of the position P by B. Essentially,
as the health factor is lower than one, the intrinsic value of the option is
low, whereas the time value based on volatility and time of expiration is
high.

2. Default. The supporter defaults and does not exercise the option, hence
loses the premium φ (cf. Fig. 2), if the price at Maturity is below the



Mitigating Decentralized Finance Liquidations with Reversible Call Options 353

strike price K. In this case, where Miqado fully replaces the liquidation
mechanism, another round of Miqado initiates. Rational supporters ini-
tiate a Miqado session if the condition presented in 1.) Initialization is
fulfilled.

Incentive Discussion. A common question is why a supporter would actually
engage in the Miqado protocol and top up liquidity positions that are unhealthy.
In general, whether a supporter is incentivized to engage in a Miqado option in
a FSL liquidity pool depends on the price volatility and the selected strike price.
Given the volatility of various cryptocurrencies, it is infeasible to draw a general
conclusion fitting all scenarios. Supporters can price the Miqado options and
compare to the required cost (i.e., the premium) to evaluate the potential risks.
We outline a pricing model for reversible call options in Sect. 5.3. In practice, we
assume that supporters taking a low risk will face termination at pre-maturity
by B, yielding a smaller payoff for S. We empirically evaluate Miqado’s ability
to prevent liquidation spirals by replacing the liquidation mechanism in Sect. 6.

5.3 Pricing Reversible Call Option

The reversible call option is equivalent to an European call option in the case
of maturity. Therefore, we can apply the widely adopted Black-Scholes pricing
model [8] for European call options to Miqado. We outline the B-S model details
in Appendix A. We assume that at initialization t0, the supporter S buys a
Miqado option by supplying λ ·Ct0 of additional collateral priced at λ ·Ct0 ·pt0 .
The spot exchange rate is equivalent to pt0 , whereas the domestic interest rate
r is equivalent to the borrowing interest rate of the protocol IL. The foreign
interest rate rf remains the same. The volatility σ can be calculated from the
price history. Henceforth, the optimal factor λ∗ following the B-S model can be
calculated as

λ∗ =
pt0e

−rf ·TN(d1) − Ke−IL·TN(d2)
Ct0 · pt0

(7)

with equations for d1 and d2 outlined in Appendix A. A supporter then compares
the actual premium factor λ set by the lending protocol to λ∗ and evaluates the
profitability. In practice, a supporter would have a personalized pricing model
based on the supporter’s predictions on the price dynamics and risk preference.

5.4 Practical Instantiation

When there is no supporter S willing to purchase a reversible call option or
when a supporter defaults, the lender E faces a loss as the borrower B is not
incentivized to repay the outstanding debt and S is not incentivized to take over
the position P. In a practical instantiation (cf. Fig. 4), a protocol operator may
want to operate Miqado options on top of a traditional liquidation mechanism
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Fig. 4. Practical Instantiation of Miqado on top of a traditional liquidation mecha-
nism. The supporter S has an advantage over the liquidator Q to support a temporarily
unhealthy position.

in order to prevent this. As such, the protocol can employ a buffer to derive an
additional support factor kSF , such that S can engage in a Miqado option if

kSF = CRt0(P) · (θ + B) < 1 (8)

where B is the buffer parameter, s.t. B > 1.
A liquidator can additionally engage when the health factor is lower than

one, as traditionally assumed and presented in Eq. 5. With this construction,
the supporter has an advantage over the liquidator to support a temporarily
unhealthy position and make a profit. Effectively, this construction similarly
mitigates liquidation spirals, dependent on the buffer B.

5.5 Remarks

Miqado enhances Fixed Spread Liquidations in the following aspects:

Rescue Opportunity. The reversible call option of Miqado offers a time win-
dow for a borrower to rescue its borrowing position. With a fixed spread
liquidation, the close factor is usually larger than necessary such that more
collateral is sold off at a discount, which negatively impacts the borrowers
financial interests. With Miqado options, this risk is alleviated, such that
over-liquidation is not a concern and the borrower has to pay less to rescue
its position.

Collateral Restraint. Miqado absorbs additional collateral and locks it in
the lending pool until the reversible call option’s maturity. This mitigates
the possible liquidation spiral, which we quantitatively show in Sect. 6.

MEV Mitigation. FSL liquidations provides deterministic and cost-free oppor-
tunities for miners to profit through manipulating transaction order and
front-running other liquidators. In Miqado, if a miner deems a reversible
call option profitable, it still has an advantage over other supporters. This
is because a miner can single-handedly front-run any competing transaction
and be the first to initiate Miqado. Nevertheless, as shown in Sect. 6.2, a
Miqado reversible call option does not guarantee a profit. Moreover, a sup-
porter bears a capital cost while locking the premium in the lending pool.
We hence conclude that Miqado mitigates the MEV problem.
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6 Empirical Evaluation

In this section, we evaluate the Miqado protocol by comparing Miqado to
the dominant liquidation mechanism FSL. To this end, we collect all liquidation
events on Aave (both V1 and V2) and Compound from the 1st of May, 2019
to the 30th of September, 2022. Aave and Compound are the top two lending
protocols on Ethereum in terms of TVL, according to defillama.com. Both of the
two lending protocols follow the FSL mechanism (cf. Sect. 3.2). In total, we col-
lect 48,364 liquidations (Aave V1: 5,765; Aave V2: 25,576; Compound: 17,023).

6.1 Quantifying Liquidation Spiral

Collateral Release. A lending protocol that applies FSL directly sells the
liquidated collateral to the liquidator at a discount. This aggravates the price
downtrend of the liquidated cryptocurrency as liquidators may immediately sell
of the acquired collateral, which was locked in the lending protocol, to secondary
markets. Precisely measuring the impact of FSL on the liquidated collateral price
is challenging. We need to devise an accurate economic model to exclude the
impact of other factors, such as the demand change for the collateral. We also
need to model the liquidity dynamics on various centralized and decentralized
exchanges at the time of liquidation. These challenges are however beyond the
scope of this study and are left for future work. Therefore, we choose to present
the value of collateral that is released in the FSL liquidations (cf. Metric 1) to
intuitively quantify the liquidation spiral introduced by the FSL mechanism.

Metric 1 (FSL Collateral Release). The value of collateral released to the
markets in a FSL liquidation.

Figure 5 presents the monthly collateral release in the past 48,364 FSL liquida-
tions. The total collateral release amounts to 2.32B USD over the 41 months.

Direct Price Decline. In Case Study 1 (cf. Sect. 4), we show that a liquidator
can choose to sell the collateral acquired from the borrower within the liquidation
transaction. We observe that such a “sell-after-liquidation” strategy is prevalent,
which we define as a short liquidation (cf. Definition 2).

Definition 2 (Short Liquidation). In a short liquidation, Q sells (fully or
partially) the collateral acquired from B within the liquidation transaction.

To identify a short liquidation, we first gather the ERC-20 transfer and asset
swap events from a liquidation transaction.3 With these events, we then filter
3 ERC-20 is a fungible token standard, which is extensively adopted in the Ethereum

DeFi ecosystem. An event refers to a log emitted by a smart contract during its
execution. These events are identifiable by a unique topic hash and can represent
various actions, such as an asset swap on a decentralized exchange. In this work, for
asset swap events, we captured the most liquid exchanges on Ethereum including
Uniswap V1, V2, V3, Sushiswap, and Curve.

https://defillama.com/protocols/lending/Ethereum
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Fig. 5. Over a time-frame of 41 months (from the 1st of May, 2019 to the 30th
of September, 2022), the collateral release by the FSL mechanism accumulates
to 2.32B USD, with a monthly peak of 653.11M USD in May, 2021. On the con-
trary, our Miqado protocol restrains additional collateral in the lending pool instead
of releasing and further mitigates the liquidation spiral. The accumulative collateral
restraint by Miqado (cf. Metric 3, Sect. 6.2) amounts to 5.63B USD when the premium
factor λ is set to 20%.

the exchange contracts that are potentially used for collateral selling. The filter-
ing process is based on two criteria: (i) the contract emits an asset swap event
during the transaction execution; (ii) the contract receives the liquidated col-
lateral token (fully or partially). If such an exchange contract is detected, the
liquidation transaction is classified as a short liquidation. From the 48,364 stud-
ied liquidations, we identify 18,305 short liquidations. In total, 1.33B USD of
collateral is sold directly by the liquidators in these short liquidations. We find
that in 3,365 of the short liquidations, the acquired collateral is fully sold. On
average, 95.95% of the collateral is sold in a short liquidation.

A short liquidation directly leads to a collateral price decline on the exchange
where the liquidator sells the acquired collateral. Although a significant price
change in a single market will eventually be evened out by arbitrageurs4 among
all available markets, while the negative impact on the collateral price remains.
We therefore apply such a price decline as a metric of how FSL liquidations
destabilize lending protocols (cf. Metric 2).

Metric 2 (Direct Price Decline). In a short liquidation, the spot price
decline on the exchange where the liquidator sells the acquired collateral.

We find that the average collateral price decline led by the 18,305 short liquida-
tions is 0.38%, while the maximal decline reaches 26.90%.5

4 Entities who profit by leveraging price differences across different markets.
5 Cf. 0xff2d484638b846a46b203a22b02d71df44bf78346c72b954ad0ad05f34b134c8.

https://etherscan.io/tx/0xff2d484638b846a46b203a22b02d71df44bf78346c72b954ad0ad05f34b134c8
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6.2 Miqado Evaluation

In the following, we assume that Aave and Compound had adopted Miqado
and simulate how Miqado could have outpaced FSL in the past liquidation
events. Our simulation is constrained to every single liquidation event, while
ignoring the long-term impact of Miqado. For example, Miqado mitigates
the price downtrend and hence could have prevented follow-up liquidations in a
liquidation spiral, which we leave for future research.

The performance of Miqado is influenced by its parameters. In our sim-
ulation, we assume that Miqado follows the corresponding lending protocol’s
configuration for the collateral discount θ at the time of each liquidation. This
implies that Miqado shares the same triggering condition as FSL (i.e., when
the health factor declines below one) and hence applies to every liquidated bor-
rowing position. We also need to parameterize the premium factor λ and the
time to maturity ΔT for the reversible call option. Similar to how the parame-
ters for lending protocols evolve,6 these two parameters need to be empirically
determined and dynamically adjusted given various market conditions (e.g., the
price volatility). We therefore simulate on various specific settings to show how
Miqado performs under different configurations.

Collateral Restraint. Miqado absorbs additional collateral, which is restrai-
ned in the lending pool during the protocol execution. This collateral restraint,
contrary to FSL’s supply release (cf. Metric 1), imposes a positive impact on sta-
bilizing collateral price (cf. Metric 3).

Metric 3 (Miqado Collateral Restraint). The value of collateral deposited
by the supporter in a Miqado execution.

We visualize the monthly comparison between the collateral restraint by
Miqado and the collateral release by FSL in Fig. 5. The accumulative collateral
restraint with different parameters is outlined in Table 1, Appendix B. We find
that when λ is 20%, the accumulative collateral restraint reaches 5.63B USD.
Notably, as a by-product, the restrained additional collateral is counted towards
the lending pool’s TVL, which is a common protocol success metric.

Health Factor Recovery. One shared target of Miqado and FSL is to
increase the health factor of a borrowing position. In Fig. 6, we present the
health factor distributions before and after the studied FSL liquidations. We fur-
ther simulate how Miqado could have increased the health factor with different
parameters. We find that, 82.25% of the liquidated positions become healthy
(the health factor is increased above one) after a FSL liquidation. When λ is
set to 5%, Miqado achieves the same performance (82.22% of the borrowing
positions become healthy after the supporter deposits).

6 https://docs.aave.com/risk/asset-risk/risk-parameters.

https://docs.aave.com/risk/asset-risk/risk-parameters
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Fig. 6. The health factor distributions pre- and post-FSL liquidations. We also visualize
how Miqado increases the health factor with different premium factors.

Payoffs for Supporter. We proceed to simulate the payoffs of Miqado sup-
porters. In this section, we assume that the borrowers would not terminate the
reversible call options. We parameterize ΔT to 1, 6, and 24 hours and apply
the real market price to value every reversible call options at maturity. A sup-
porter then chooses to exercise the option when the value of collateral exceeds
the outstanding debt at maturity, and defaults otherwise (cf. Fig. 2). In Table 2,
Appendix B, we outline the probability that a supporter (i) exercises the call
option and profits, (ii) exercises the call option but loses, (iii) defaults, under
different parameters. We also present the average profit for every supporter.
We show that, to our surprise, the Miqado premium factor does not impact
the probability of the reversible call option in practice. Notably, in Table 2, we
assume that the borrowers would not rescue their debts and therefore conjecture
that the actual payoffs for supporters would be lower than the presented results.

Collateral Release Reduction. In practice, the probability that a Miqado
supporter may default on the reversible call option is up to 13.48%. This
implies that the associated borrowing position is under-collateralized at matu-
rity and may be further available for FSL (cf. Sect. 5.4). We simulate that, in the
worst case, the collateral release by FSL after Miqado (cf. Metric 1) amounts
to 236.40M USD, which is a reduction of 89.82% compared the 2.32B USD col-
lateral release by FSL only (cf. Sect. 6.1).

7 Related Work

Various works in DeFi focus on lending & borrowing protocols from diverse
perspectives such as economics, security and formal modeling. Kao et al. [9]
evaluate the economic security of Compound by using agent-based simulation.
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Darlin et al. [6] investigate the optimal bidding strategies for auction liquida-
tions. Perez et al. [14] present an empirical analysis of liquidations on Com-
pound. Qin et al. [16] perform a longitudinal study on the liquidation events
of four major Ethereum lending pools (i.e., Aave, Compound, dYdX, and Mak-
erDAO), while showing the over-liquidation problem of the fixed spread liqui-
dations. In this work, we show that the proposed Miqado protocol mitigates
these problems. Bartoletti et al. systematize DeFi lending pools [2] and further
provide a formal analysis of DeFi lending pools [1]. Wang et al. [21] study under-
collateralized DeFi lending platforms showing the three main risks of a leverage-
engaging borrower, namely, impermanent loss, arbitrage loss, and collateral liq-
uidation. Select stablecoin designs leverage lending and borrowing mechanisms
(e.g., DAI from MakerDAO), as studied in [10–12].

Besides DeFi lending and borrowing, further studies focus on decentralized
exchanges and the security of the DeFi ecosystem [5,17,18,24,25]. Most recently,
Zhou et al. [25] systematize attacks on DeFi and highlight the need for further
research on the protocol layer due to 59% of attacks on lending & borrowing
platforms yielding from insufficient protocol design.

Further, there are various non-academic works that offer call options in decen-
tralized applications. Hegic offers gas-free option trading for ETH and BTC.
Ribbon supports on-chain options, where the option price, or premium, is set
through an auction. However, none of the existing decentralized applications
applies an equivalent financial primitive to lending & borrowing platforms to
mitigate liquidations.

8 Conclusion

We presented Miqado, the first liquidation mitigation protocol. Whereas exist-
ing lending and borrowing protocols rely on plain liquidation mechanisms,
Miqado secures borrowing positions by incentivizing external entities to provide
additional collateral. To facilitate Miqado, we introduce reversible call options,
a novel financial primitive with promising properties for application in Miqado.
To highlight the need for Miqado, we show that fixed spread liquidations trig-
ger liquidation spirals and destabilize lending markets. We evaluate Miqado by
executing Miqado logic on past blockchain states. We show that by applying
Miqado, the amount of liquidated collateral can be reduced by 89.82%. By pro-
viding a plug-in replacement to existing liquidation mechanisms, Miqado can
prevent systemic-failures without extensive overhead.

https://www.hegic.co/
https://www.ribbon.finance/
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A Black-Scholes Model

We apply the Black-Scholes model [3] to price call options under optimal assump-
tions, such as the non-existence of dividend payouts. The option premium is
calculated for European call options on a per-share basis. The payoff for CS

introduced in Fig. 2 is trivial to grasp but it does not yield any insights on the
pricing of the option. With the BS model for a European call option determines
the option price as

c = S0e
−rf ·TN(d1) − Ke−r·TN(d2) (9)

where

d1 =
ln(S0K) + (r − rf + σ22) · T

σ · √
T

(10)

and
d2 = d1 − σ ·

√
T . (11)

S0 is the spot exchange rate, rf is the foreign interest rate, r is the domestic
interest rate and σ is the volatility of the underlying asset. For a detailed intro-
duction to the Black-Scholes pricing model for European call options, we refer
the interested reader to [8].

We remark that the B-S model does not take into account the decrease in risk
and lowered average payoff due to termination by CS . We defer a more precise
pricing model for reversible call options that to future work.

B Tables

Table 1. Accumulative collateral restraint by Miqado over a time-frame of 41 months.

Miqado Premium Factor λ 1% 2% 5% 10% 20%

Accumulative Collateral Restraint (USD) 281.70M 563.40M 1.41B 2.82B 5.63B
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Table 2. Payoffs for Miqado supporters at maturity assuming that borrowers would
not rescue. We present the probability that a supporter (i) exercises the call option
and profits, (ii) exercises the call option but loses, (iii) defaults. We also simulate the
average profit for supporters. our simulations are based on the real market prices.

λ 1% 2% 5% 10% 20% ΔT

+ 87.46% 87.46% 87.46% 87.46% 87.46% 1hour
− 0.29% 0.58% 1.41% 2.47% 4.14%

# 12.25% 11.96% 11.13% 10.08% 8.41%

$ 125.51K±1.52M 125.51K±1.52M 125.50K±1.52M 125.49K±1.52M 125.48K±1.52M
+ 87.19% 87.19% 87.19% 87.19% 87.19% 6 h
− 0.30% 0.60% 1.50% 2.68% 4.44%

# 12.51% 12.21% 11.31% 10.13% 8.37%

$ 154.01K±2.19M 154.01K±2.19M 154.00K±2.19M 154.00K±2.19M 154.98K±2.19M
+ 85.95% 85.95% 85.95% 85.95% 85.95% 24 h
− 0.56% 1.03% 2.16% 3.62% 5.59%

# 13.48% 13.02% 11.89% 10.42% 8.45%

$ 144.42K±1.83M 144.40K±1.83M 144.36K±1.83M 144.32K±1.83M 144.29K±1.83M
+ exercise and profit – exercise but lose # default
$ average profit for supporters in USD (mean±std)
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Abstract. DeFi has attracted legitimate investors and scammers alike.
The paper presents an empirical investigation into the prevalence of rug-
pulls, a scam where cryptocurrency project developers exit without fully
delivering and leave investors in the wind. Using forum data, 101 rug-
pulls from 6 different types of DeFi services are documented. ICOs form
the majority of the rugpulls, most of which were active for less than six
months before scamming out. ICOs rugpulled in 2021 were active for
a much longer time than those that were rugpulled later on, perhaps
pointing to new entrants intending to pull the rug. Through qualitative
thematic analysis, we discover that these schemes primarily use author-
itative and financial lures at the announcement stage of the project to
mimic legitimate projects.

Keywords: cryptocurrency fraud · DeFi · cybercrime measurement ·
Ethereum

1 Introduction

With the rise of many types of cryptocurrency projects, it has become increas-
ingly difficult for ordinary consumers to assess the validity of any particular
project. With decentralized finance (DeFi) becoming increasingly popular, more
and more consumers are brought to the cryptocurrency ecosystem. In turn, scam-
mers have capitalized on investment scams, using consumers’ lack of knowledge
and the relative lack of consumer protections to earn millions of dollars.

Exit scams are scams where project developers abandon the project and run
away with investors’ funds. Unlike Ponzi schemes, these do not offer ludicrous
rates of returns as a whole. Rather, they promise a good or service that they do
not deliver. Rugpulls are exit scams in DeFi.

Exit scams, more broadly, are quite profitable – Chainalysis found that 37%
of scam revenue in 2021 was from exit scams [2]. In 2021, operators of a Turk-
ish cryptocurrency exchange, Thodex, ran away with $2 billion after closing
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overnight. In March 2022, the US Department of Justice charged two people in
a rugpull NFT scam that they anticipated would earn around $1.5M [17].

Our work investigates the incidences of rugpulls over time across different
categories of projects in DeFi. To measure this comprehensively across these
different categories, we use reports of rugpulls from a discussion forum to create
a list of 101 different services which were rugpulled, mostly from 2020–2022. We
provide the following contributions:

– We detail our comprehensive methodology that identifies rugpulls across six
different categories of projects over more than two years in Sect. 3. The dataset
is available at https://doi.org/10.7910/DVN/SMGMW8.

– We show the variety of types of rugpulls in Sect. 4. We relate this back to
other occurrences in the ecosystem during this time to decipher why this
happens.

– Using qualitative thematic analysis, we work towards understanding the lures
when the projects are first announced in Sect. 5. This helps explain how scam
projects draw in victims.

2 Related Work

There exists a burgeoning research direction in measuring exit scams on
blockchains. Mazorra et al. [9] and Xia et al. [19] both detect over 10,000 rugpull
scam tokens on the Uniswap platform, which defrauds users out of millions of
dollars. Trozze et al. investigate five of these rugpulled tokens using investigative
tools [16].

Mackenzie analyzes cryptocurrency scams through a criminological lens and
divides rugpulls into two types: slow and fast [8]. Slow rugpulls are scams where
the organizers start, e.g., an Initial Coin Offering (ICO), premine a large sum
of the currency, and then slowly sell off their stock of coins. This contrasts with
fast rugpulls of the sort that Mazorra et al. and Xia et al. uncover, which exploit
quick liquidity hits on DeFi platforms like Uniswap. Xu et al. formalizes fast
rugpulls [22]. Our work collects information on primarily the slower type.

Others have explored different areas in the cryptocurrency ecosystem and
showed the impact of exit scams. Soska and Christin showed the impact of exit
scam behavior both by exchange operators and on individual vendors on the
reputation of the dark net market ecosystem [13]. In 2020, Xia et al. found
that many COVID-influenced ICOs ended up performing exit scams [20]. Oost-
hoek and Doerr and Moore et al. separately analyzed security behavior on
cryptocurrency exchanges and considered (but did not independently measure)
exit scams [10,12]. This work fits broadly into the literature on cryptocurrency
scams [1,5,18,21].

3 Methodology

In this section, we describe our approach to collecting our rich dataset on
reported rugpulls.

https://doi.org/10.7910/DVN/SMGMW8
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3.1 Quantitative Methods

Collecting Rugpulls. Rugpulls are a relatively new form of cryptocurrency fraud,
and no comprehensive list of these exists. To curate a more diverse listing of
these scams, we use the discussion forum, bitcointalk.org. This forum, started
by Satoshi themself, has historically been used to talk about cryptocurrencies
more broadly. Currently, it remains a source for cryptocurrency beginners and
often attracts scammers (and then talks about scams). This source is by no means
comprehensive, but it does yield an insight into scams particularly targeting new
users. We evaluated other open source listings of rugpull scams and could not
find another set of listings of not just large rugpulls that make the news, but
also smaller ones that influence not just new users’ wallets, but also their trust
in the community.

We use the Google Custom Search API1 and identify all posts between Jan
2018 and Sept 2022 which include the keywords “rug pull” or “rugpull.” We find
551 pages consisting of 335 distinct threads. For each thread, we fetch a local
copy of all the posts in that thread.

Rugpull is a relatively new term and many users used it out of context,
increasing the number of false positive threads. For instance, some threads spec-
ulate if a particular project will rugpull in the future, new users ask advice
on various identification strategies for a rugpull, and investment advertisements
claim to be ‘rugpull proof.’ Therefore, we manually review all the 335 distinct
threads and identify 101 unique rugpulled projects. By inspecting the related
threads and archived versions of the linked project websites, we categorize them
into six different service categories. Table 1 shows an overview of the collected
information.

Table 1. DeFi service types by quantity of observed rugpulls (N = 101).

Service Type Definition Obs.

Initial Coin Offerings (ICO) Raising money to create a new ERC20 token 73

Yield farms Lending crypto assets to earn interest on the loan 16

Exchanges Platforms for users to buy/sell cryptocurrency 5

Non-Fungible Tokens (NFT) Unique, non-interchangeable digital asset that can be bought and sold 5

Initial Dex Offerings (IDO) Similar to ICO, but on a decentralized exchange 1

Cloud mining Fractional shares of a mining operation 1

Collecting Supplementary Data. To find the corresponding start date of each
project (since many projects did not exist on third-party aggregator websites),
we collect the dates when the services were first introduced on the forum. These
project announcements, aka ANN threads, are threads where people announce
their upcoming projects. Users often link the ANN threads in the same thread

1 https://developers.google.com/custom-search/v1/overview.

https://bitcointalk.org/
https://developers.google.com/custom-search/v1/overview


366 S. Agarwal et al.

where the rugpull was reported. Other times, rugpull report thread is an ANN
thread where the incidence of rugpull was mentioned in a later post on the
thread. For the remainder, we query the bitcointalk forum using the rugpull’s
name to find its first occurrence. We manually verify that the mentioned service
was indeed the same. To this end, we identify 63 rugpulls’ first occurrence date.

To supplement our data on rugpulled services, we collect data on ICOs,
the most common identified rugpull. We collate 2177 ICOs introduced between
2014 and September 2022 from the aggregator website coincodex.com. We
omit 57 without a start date. We augment this with the available listings on
coinmarketcap.com, resulting in 2227 total ICOs. Additionally, we use the his-
torical data for the price of Bitcoin and Ethereum in USD from coincodex.com.

3.2 Qualitative Thematic Method

Cybercriminals use social engineering techniques to attract and deceive investors.
It is essential to understand these techniques so investors can detect and avoid
falling prey to fraudulent schemes. Therefore, we perform a qualitative thematic
analysis [6] of project announcements in bitcointalk before they are reported to
be rugpulled. We extract the content of posts identified as rugpulls and perform
a manual thematic categorization of the text used in the announcement of these
projects. We compare this to an analysis of an equal number of project announce-
ments, selected from similar date ranges, that were not claimed to have been
rugpulled. We use one coder to classify the data following a “concept-driven”
[6] approach and adapt Stajano and Wilson’s [14] scam lure principles as the
framework for our analysis. We apply this framework’s seven principles (shown
in Table 2) as the codebook used for matching announcements; our results in
Sect. 5 have been paraphrased to anonymize the source.

Table 2. Description of lure principles adapted from Stajano and Wilson [14]

Lure Principle Description

Authority Cybercriminals aim to provide trust to investors by showing

technical knowledge and making references to legitimate entities

Dishonesty Fraudsters invite users to participate willingly and knowingly

into a fraudulent scheme

Distraction Scammers aim to confuse users by giving many unrelated details

Financial Cybercriminals leverage users’ ‘greed’ and offer attractive monetary

benefits, so users make an investment

Herd Scammers encourage investors to not miss out on opportunities by

relating to the popularity of the scheme

Kindness Fraudsters leverage the willingness of people to help others

Time Scammers pressure users to make decisions quickly

https://coincodex.com/
https://coinmarketcap.com/
https://coincodex.com/
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Ethical Considerations: We constructed our study design and data collection to
minimize harm to forum participants. We did not store potential PII. We went
through the ethics oversight process through the department of Security and
Crime Science at UCL and received approval.

4 Quantitative Findings

While almost every cryptocurrency platform has had scam services confusing
potential customers, scams tend to concentrate on specific sectors based on the
scam type. Rugpulls are, by definition, related to DeFi services which naturally
limits their scope. However, we wish to uncover which services disproportionately
fall prey to this scam and if this trend changes as new technology in the DeFi
space is released over time or if other factors, such as the price of Ethereum,
change the incentives for scammers to decide to pull the rug at a given time.

4.1 Rugpulls over Time and by Service

Fig. 1. Rugpulls reported between Jan
2020 and Sept 2022 (N = 98), split by
type of service.

Fig. 2. Cumulative distribution for the
number of days rugpull services were
active (N = 63).

We start by understanding how reports of rugpulls have evolved. There were
four reported rugpulls before mid-2020: one exchange and three ICOs. However,
the start of this phenomenon really kicks off starting the second half of 2020, as
shown in Fig. 1. This follows the rise of DeFi services; scammers enter the market
after its popularity increases, and new services (which might have otherwise
failed) “cash out” using this scam.
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Yield farming services suddenly gained attraction in the summer of 2020 [3].
We see a peak in yield farm rugpulls in March 2021 after fifteen such scams were
reported in a single thread on the forum. We only observed one other occurrence
of rugpulls of yield farming services beyond this. This is likely an artifact of
our data – bitcointalk tends towards less sophisticated users. For instance, an
aggregator website of yield farming scams2 lists 41 different scams (ranging from
fake air drops to rugpulls) from Oct 2020 through Jan 2021.

To understand the number of days between the projects being announced
and subsequently rugpulled, we analyze the distribution of their lifetime as seen
in Fig. 23. While 68% of the rugpulled projects were active for less than six
months, 23.8% were active for more than two years. We hypothesize that the
longer-running projects wait for a reasonable ETH exchange rate before pulling
the rug. We observe this in Fig. 4. The positive Spearman’s correlation coefficient
between the monthly price of Ethereum and the monthly frequency of rugpull
projects supports this hypothesis (rs = 0.606, p < 0.001).

We also find that the projects rugpulled before September 2021 were active
for a long time (median 384 d): the most long-lasting project was active for
2551 d. However, in 2022, rugpulled projects were active for only a short time
(< 180 days, median 110.5 d). This likely demonstrates that these products
started to engage in a rugpull scam after seeing the earlier success of their pre-
2022 analogues. For instance, ‘WX Coin’ started in 2018 with some reputation
mechanisms like a GitHub repo and whitepaper, but after 3 years, were possi-
bly tempted by financial gains and rugpulled. On the other hand, ‘Squid Coin,’
based on a famous TV show in Oct 2021, was designed to attract investors and
then rugpull within days once the token’s price dramatically increased [15].

4.2 Rugpulls in ICOs

Fig. 3. Comparison of ICOs introduced
(n = 2227) over time with the number
of scam ICOs (N = 127).

Fig. 4. Exchange rate of Bitcoin and
Ethereum compared to rugpulls (N =
98) between Jan 2020 to Sept 2022.

2 https://defiyield.info/yield-farming-scam-database.
3 We only consider those that we have start dates for. See Sect. 3.1.

https://defiyield.info/yield-farming-scam-database
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ICOs form the majority of the rugpulls in our data. Most of these are considered
in the literature to be slow rugpulls [8], where the scam is rolled out over periods
of months or years rather than hours. However, this term used to discuss token
ICOs is relatively new, and ICOs are becoming less frequent with time.

The word “rugpull” is a relatively new term whose usage can overlap collo-
quially with the word “exit scam” since rugpulls are a subset of exit scams that
particularly refer to DeFi projects. Using the same methodology described in
Sect. 3.1, we collect the posts on bitcointalk using the keyword “exit scam” and
find 940 unique threads between 2018 and 2022. We further refine to find the
ones that contain the keyword “ICO”. After a manual review of these threads,
we identify 54 exit scam ICOs.

To understand this interaction, we compare the number of ICOs introduced
with ICOs rugpulled over time. We find that the increase in rugpulled ICOs
broadly follows the increase in ICOs introduced, as seen in Fig. 3. We observe
that while the peak in ICO announcements occurred in October 2018, rugpulls
started to peak two years later. This could be due to the lifetime of a legitimate
ICO – it takes time for projects to turn a product and similarly, scammers can
then accept money for longer periods of time. We also hypothesize this could
be due to companies that started with legitimate, but perhaps overhyped and
underresourced ideas, and ended up selling to scammers to get out. We also see
from Trozze et al. how token scams are often interconnected [16] and this post
2020 peak could be due to increased activity elsewhere.

We find that the number of rugpulled ICOs has decreased since the second
half of 2022. This is likely due to the decrease of the popularity of ICOs waning
with time with scammers and legitimate project owners moving other to new
DeFi attractions like IDOs and NFTs. This could also be due to volatility.

5 Qualitative Thematic Analysis

As mentioned in Sect. 4.2, many rugpull projects are associated with ICOs, which
use marketing tools to attract investors and provide credibility. ICO rugpulls
also aim to follow these processes, at least to some extent, to convince potential
victims of their purported legitimacy.

We identify the authority principle being used in some of these projects. Our
dataset includes schemes that provide details of their corresponding founders,
proposed algorithms, and links to code in GitHub repositories. Many include
this information in whitepapers, some of which turn out to be plagiarized [11].
For example, one project claims to provide a better consensus protocol. Another
project claims to be sponsored by reputable fund providers. We found similar
examples of legitimate projects that provide analogous information when they
are introduced in the forum. This shows the difficulty that investors might have
to differentiate scams from legitimate projects when scammers use this principle.

We also uncover the financial principle in rugpulled projects. For instance,
one promises an outstanding rate of passive return on a guaranteed and effortless
basis. We discover a combination of the time and herd principles used in some
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other projects. For example, one of the schemes encourages users not to miss an
opportunity to see their tokens’ price increase, which will happen if more people
join the project. We did not find these types of strategies used to advertise
legitimate projects. Therefore, these examples provide some indications of the
warnings that investors should be aware of to avoid falling prey to rugpulls.

Our analysis shows that investors should be skeptical of projects that employ
financial, time, and herd principles to lure investors since these are not frequently
found in legitimate projects. We do not observe the use of dishonesty, distraction,
or kindness principles in the rugpulled project announcements. This fits into the
work of Jahani et al. on discussions about “less serious” coins on bitcointalk
where users hype up the coin rather than seeking for truth about it [7].

6 Conclusion

We have presented the dynamics of rugpull scams using a mixed method app-
roach, with the aim of empirically analyzing the phenomena. While the early
rugpull scams were using services that have been active for a long time, the
later peaks have consisted of very new services. This indicates that, while at
the beginning rugpull scams were perhaps not planned but rather opportunistic,
more recent scams were likely planned and operated with malicious intent due
to the easy earnings. This highlights not only how users flock to invest in DeFi
after particular types of services are hyped, but also how scammers follow the
money.

In this paper, we have established the prevalence of rugpull scams during
the prolonged regulatory void. However, the situation is expected to change
with the upcoming MiCA (Markets in Crypto-Assets [4]) regulation which is set
to harmonize rules for cryptocurrencies across the EU. The framework intends
to alleviate existing uncertainties in many ways, including the enhancement of
consumer protection and bringing those such as token issuers under a proper form
of standards. In particular, the rules will require issuers to be legal entities that
draft, notify, and publish a detailed whitepaper that not only includes clear and
transparent information about the project and the marketing communications4,
but also on the issuers/offerors themselves (art. 4, 5, 6, 7, 8). MiCA will also
grant consumers5 the right to withdraw their funds or even be reimbursed when
possible (art. 12). Consequently, it will be harder for scammers to run and get
away with schemes such as rugpulls.

In the interim, our qualitative analysis highlights how criminals use the
promise of financial gain (financial principle) and the unmissable opportunity
(time principle) to lure investors and scam them. Note that these principles are
of differing effectiveness as some savvy investors highlight these lures as suspi-
cious behavior. We encourage those operating platforms for beginning investors,

4 Marketing must also follow the notification and publication process where applicable.
5 The right to withdraw and reimbursement only applies to retail holders and not to

qualified investors.

https://bitcointalk.org/
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such as those moderating discussion forums to alert novices to these potential
lures and exercise caution.
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