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Preface

The 27th International Conference on Financial Cryptography and Data Security, FC
2023, was held from May 1 to May 5, 2023, at the Bluesun Hotel Elaphusa in Bol, on
the island of Brač, Croatia. The conference is organized annually by the International
Financial Cryptography Association (IFCA).

We received 182 papers (165 regular ones and 17 short papers) by the submission
deadline for the conference, which was October 19th, 2022. Of these, 41 were accepted
(39 regular papers and two short papers), resulting in an acceptance rate of 22.5%. The
present proceedings volume contains revised versions of all the papers presented at the
conference.

The review process lasted approximately two months and was double-blind. Each
paper received a minimum of three reviews. The Program Committee used the HotCRP
system to organize the reviewing process. The merits of each paper were discussed
thoroughly and intensely on the online platform as we converged to the final decisions.
In the end, a number of worthy papers still had to be rejected owing to the limited number
of slots in the conference program.

The Program Committee (PC) consisted of 64 members with expertise in various
aspects of financial cryptography, including representatives from both industry and
academia. The PC additionally solicited reviews from 58 external reviewers. We are
deeply grateful to all the members of the PC and the external reviewers for their dedica-
tion and thorough work. Their valuable insights and constructive feedback considerably
strengthened the overall quality of the final program.

The main conference program lasted for four days. A half-day tutorial on the topic
of “Constant Function Market Makers” took place a day before the main conference and
a series of one-day workshops were held the day after the main conference. The main
conference started with an invited keynote talk by George Danezis, University College
London and Mysten Labs, titled “Combining broadcast and consensus in a production
blockchain system.” The accepted papers were presented in 10 sessions and there was
also a Rump Session and a General Meeting. Finally, two posters were presented during
the poster session.

We are grateful to the general chairs, Ray Hirschfeld and Carla Mascia, for an excel-
lent organization. Additionally, we appreciate the dedication of the IFCA directors and
Steering Committee for their service. We would also like to express our thankfulness to
the conference sponsors whose generous support made this event possible. Our Platinum
Sponsors: a16z Crypto Research, Casper Association, Chainlink Labs andMysten Labs.
Our Silver Sponsors: Evertas and Zcash Foundation. Finally, we would like to thank our
sponsors in kind: the Croatian National Tourist Board, the Split-Dalmatia Tourist Board,
the Bol Tourist Board, and Worldpay.

Lastly, our sincere gratitude goes to all the authors who submitted their papers to this
conference, as well as to all the attendees who contributed to making this event a truly
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intellectually stimulating experience through their active participation. Their support is
the most important factor for the success of the conference.

August 2023 Foteini Baldimtsi
Christian Cachin
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SNACKs for Proof-of-Space Blockchains

Hamza Abusalah(B)

IMDEA Software Institute, Madrid, Spain

hamza.abusalah@imdea.org

Abstract. SNACKs are succinct non-interactive arguments of chain
knowledge. They allow for efficient and generic solutions to blockchain
light-client bootstrapping. Abusalah et al. construct SNACKs in the
random oracle model for any single-chain blockchain from any graph-
labeling proof of sequential work (PoSW) scheme. Their SNACK con-
struction is a PoSW-like protocol over the augmented blockchain.

Unlike single-chain blockchains, such as proof-of-work and proof-of-
stake blockchains, proof-of-space (PoSpace) blockchains are composed of
two chains: a canonical proof chain and a data chain. These two chains
are related using a signature scheme.

In this work, we construct PoSW-enabled SNACKs for any PoSpace
blockchain. Combined with the results of Abusalah et al., this gives the
first solution to light-client bootstrapping in PoSpace blockchains. The
space cost of our construction is two hash values in each augmented
PoSpace block. Generating SNACK proofs for a PoSpace blockchain is
identical to generating SNACK proofs for single-chain blockchains and
amounts to looking up a succinct number of augmented blocks.

1 Introduction

Consider a blockchain protocol Π, say Bitcoin or the Chia Network, and a light
client V, which is assumed to hold only minimal information about Π, say its
genesis block ψ. A bootstrapping protocol [3,6] for a blockchain allows such V to
hold a commitment to its stable prefix.

A succinct non-interactive argument of chain knowledge (SNACK) system is
a computationally-sound proof system (P,V) that allows a prover P to give a
succinct non-interactive proof that convinces a verifier V that P knows a chain
of certain weight. Crucially, the SNACK proof is succinct, i.e., poly-logarithmic
in the length of the blockchain.

In [3], secure bootstrapping is formalized and instantiated for any blockchain
protocol Π for which (1) we have a secure SNACK system and (2) a natural
and previously used assumption [6] on the adversarial mining power holds. This
is captured in the (c, �, ε)-fork assumption, which informally says that, except
with probability ε, no adversary can produce a fork containing � consecutive

c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13951, pp. 3–17, 2024.
https://doi.org/10.1007/978-3-031-47751-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47751-5_1&domain=pdf
http://orcid.org/0000-0002-7524-3133
https://doi.org/10.1007/978-3-031-47751-5_1
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blocks with more than a c-fraction of them being valid.1 Furthermore, Abusalah
et al. [3] construct SNACKs for single-chain blockchains, like Bitcoin, generically
from any graph-labeling proof of sequential work (PoSW) scheme assuming the
(c, �, ε)-fork assumption holds for such chains.

SNACKs for PoSpace Blockchains. In this paper, we study SNACKs for PoSpace
blockchains [8,12]. These blockchains are composed of two chains in tandem: a
proof chain and a data chain – see Fig. 1. Both chains are bound by a signature
scheme. The proof chain contains only canonical data, such as (unique) proofs
of space [1,10] and verifiable-delay function [5] computations. The data chain
contains transactions and any arbitrary data the blockchain protocol allows.
The dual nature of these chains and the requirement that the proof chain must
remain canonical make designing SNACKs for such chains more involved than
their single-chain blockchain counterparts, say Bitcoin.

Contributions. In this work, we extend the framework of [3] and construct
SNACKs for any PoSpace blockchain from any graph-labeling PoSW scheme.
The cost of our construction is two hash values in each augmented block, one in
the augmented proof block, and one in the augmented data block. Generating
a SNACK proof is as efficient as generating a PoSW proof, which amounts to
looking up a succinct2 number of blocks.

(We mention that simply defining the PoSpace SNACK to be two SNACK
systems, one for the proof chain, and one for the data chain, doesn’t result in a
secure SNACK, and extra care needs to be exercised in order to prove security
of the SNACK and maintain the security of the underlying PoSpace blockchain.)

Therefore, by the results of [3], by plugging in our PoSpace SNACK con-
struction into their generic bootstrapping protocol, we get, to the best of our
knowledge, the first solution to bootstrapping in PoSpace blockchains that avoids
setup assumptions. Our protocol, as outlined above, is also practically efficient.3

2 Preliminaries

In this section, we review the SNACK-related definitions from [3].

Notation. For a directed acyclic graph (DAG) G = (V,E) on n + 1 vertices,
we always number its vertices V = [n]0 in topological order and often write
Gn to make this explicit. For v ∈ [n]0, we denote the parent vertices of v in
G by parentsG(v), and their number (i.e., the indegree of v) by degG(v); thus,
parentsG(v) = (v1, . . . , vdegG(v)). We also let deg(G) := maxv∈V {degG(v)}. We
drop the subscript G when it’s clear from context.
1 This assumption was first introduced in [6] in the PoW-blockchain setting and

adopted in [3] generically, i.e., without reference to the Sybil-mechanism of the under-
lying blockchain protocol. Studying the (c, �, ε)-fork assumption in various blockchain
protocols, and possibly deriving it from their underlying security assumptions, is an
interesting open problem that we don’t address in this work.

2 Depending on the PoSW scheme used, this number maybe O(t log n) where n is the
length of the blockchain and t a security parameter.

3 SNACKs are on par with Flyclient in terms of practical efficiency [3].
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Graph Labeling. A chain graph is a DAG on [n]0 vertices such that its edge set
E contains a path P := (0, . . . , n) which goes through all [n]0.

Definition 1 (Chain graphs). A DAG Gn = ([n]0, En) is a chain graph if
En ⊇ {(i − 1, i) : i ∈ [n]}.

A DAG is weighted if its vertices have arbitrary weights that sum to 1. In
SNACK constructions, the verifier’s challenges are sampled according to the
distribution induced by the weights of the underlying DAG.

Definition 2 (Weighted DAGs). We call Γn = (Gn, Ωn) a weighted DAG if
Gn = ([n]0, En) is a DAG and Ωn : [n]0 → [0, 1] is a function s.t. Ωn([n]0) = 1,
where for S ⊆ [n]0, Ωn(S) :=

∑
s∈S Ωn(s).

SNACK constructions are over labeled chain graphs. An augmented data
corresponding to arbitrary blockchain data is infused into the random-oracle-
based labeling of chain graphs that underlie SNACKs.

Definition 3 (Oracle-based graph labeling). Let Gn = ([n]0, En) be a DAG
and τ = (τi)i∈[n]0 be a tuple of oracles, with each τi : {0, 1}∗ → {0, 1}λ. For any
X = (x0, . . . , xn) ∈ ({0, 1}∗)n+1 the X-augmented τ -labeling Lτ : [n]0 → {0, 1}∗

of Gn is recursively defined as

Lτ (i) :=

{
τi(ε)‖xi if parents(i) = ∅,

τi

(
Lτ (parents(i))

)‖xi otherwise,
(1)

where Lτ (parents(i)) := Lτ (i1)‖ · · · ‖Lτ (ik) for (i1, . . . , ik) := parents(i). If X =
(ε, . . . , ε), we call Lτ the τ -labeling of Gn.

SNACKs. A valid path is a labeled path whose labels are locally valid according
to some poly-time relation R and globally consistent as in (2).

Definition 4 (Valid paths). Let Gn = ([n]0, En) be a DAG, and R ⊆
N0 × ({0, 1}∗)2 a relation. Furthermore, let P be a path in Gn , LP a label-
ing of P , and (pv)v∈P ∈ ({0, 1}∗)|P | a |P |-tuple of bitstrings with pv =
(pv[1], . . . , pv[deg(v)]). We say that (P,LP , (pv)v∈P ) is an R-valid path in Gn

if ∀v ∈ P with (v1, . . . , vdeg(v)) := parents(v), we have

R
(
v, LP (v), pv

)
= 1 and ∀i ∈ [deg(v)] if vi ∈ P then pv[i] = LP (vi). (2)

For a weighted DAG Γn = (Gn = ([n]0, En), Ωn), we say (P,LP , (pv)v∈P ) is
(α,R)-valid in Γn if in addition Ωn(P ) ≥ α.

The language over which SNACKs are defined LΓ,R,Com is defined via
a parameter-dependent ternary polynomial-time (PT) relation RΓ,R,Com over
tuples (prm, η, w), where prm is generated by a parameter generation G algo-
rithm. A statement η = (φ, n) in LΓ,R,Com consists of a position-binding Com
commitment φ to an R-valid labeling of the graph Γn ∈ Γ . The labeling together
with an opening of φ constitutes a witness w for η.
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Definition 5 (Chain commitment language). Let Γ = (Γn)n≥0 be a family
of weighted DAGs and Com a vector commitment scheme, define

R(α)
Γ,R,Com :=

{(
prm, η=(φ, n),
w=(P,LP , (pi)i∈P , ρ)

) :
(P,LP , (pi)i∈P ) is (α,R) − valid in
Γn ∧ Com.ver(pp, φ, LP , P, ρ) = 1

}

(3)
where R ⊆ N0 × ({0, 1}∗)2 is a PT relation that depends on prm. We let
RΓ,R,Com := R(1)

Γ,R,Com and LΓ,R,Com denote the language defined by RΓ,R,Com.

A SNACK system (P,V) for LΓ,R,Com in a non-interactive argument sys-
tem satisfying completeness, (α, ε)-knowledge soundness, and succinctness. Com-
pleteness guarantees that an honest P holding a witness for a statement (φ, n) ∈
LΓ,R,Com makes V accept. For an α ∈ (0, 1], (α, ε)-knowledge-soundness guar-
antees that from any convincing prover for a statement (φ, n) one can extract,
except with probability ε, an R-valid labeling of a path P in Γn of weight at
least α. In our SNACK constructions, due to the use of random-oracle graph-
labeling, the labels of R will be guaranteed to be computed sequentially. Suc-
cinctness requires that the proof size as well as its verification time are poly-
logarithmic in n and polynomial in the security parameter.

Definition 6 (SNACK). A tuple of PPT algorithms (P,V) is a succinct non-
interactive argument of chain knowledge (SNACK) for LΓ,R,Com with parameter
generator G from Definition 5 if the following properties hold:

Completeness: ∀λ ∈ N, prm ← G(1λ), η, w ∈ {0, 1}∗ with (prm, η, w) ∈
RΓ,R,Com, we have Pr

[
π ← P(prm, η, w) : V(prm, η, π) = 1

]
= 1.

(α, ε)-Knowledge soundness: For every PPT prover P̃ there exists a PPT
extractor E such that

Pr

⎡
⎢⎣
prm ← G(1λ); r

$← {0, 1}poly(λ)(
η, π

)
:= P̃(prm; r);

w′ ← E(prm, r)

:
V(prm, η, π) = 1 ∧

R(α)
Γ,R,Com

(
prm, η, w′) = 0

⎤
⎥⎦ ≤ ε(λ) , (4)

with R(α)
Γ,R,Com from (3).

Succinctness: For all prm ← G(1λ), (prm, η, w) ∈ RΓ,R,Com and π ← P(n, t
η, w), we have |π| ≤ poly(λ, log n), P runs in time poly(λ, n), and V runs in
time poly(λ, log n).

Our SNACK construction relies on graph-labeling PoSW [3]. For lack of space, we
give a high-level overview here and refer the reader to either [3] or the full version.
A graph-labeling PoSW scheme PoSW = (PoSW.P := (PoSW.label,PoSW.open),
PoSW.V) is an (interactive) proof system in which PoSW.P on common input
a weighted DAG (Gn, Ωn) and a statement χ sampled by the verifier, com-
putes a proof that convinces the verifier that a certain number of sequential
computational steps with weight 1 according to Ωn have been performed since
χ was received. In particular, PoSW.label computes a τ labeling L of Gn and
sends a vector commitment of L to PoSW.V, which sends challenges to PoSW.P,



SNACKs for Proof-of-Space Blockchains 7

where PoSW.open replies by giving, among other things, commitment openings
to these challenges. Finally PoSW.V accepts or rejects. (α, ε)-knowledge sound-
ness of PoSW guarantees that from any convincing prover, a sequentially-labeled
path of total weight ≥ α, can be extracted except with probability ε.

3 SNACKs for Proof-of-Space Blockchains

We extend the PoSW-enabled SNACK construction of [3] to the context of
PoSpace blockchains. Our construction in a nutshell follows the simple outline
of (1) defining an appropriate DAG (2) labeling it and (3) running a PoSW-like
protocol over it.

0C8 : 1 2 3 4 5 6 7 8

0D8 : 1 2 3 4 5 6 7 8

Fig. 1. Example DAGs C8 = ([8]0, EC) and D8 = ([8]0, ED).

3.1 Proof-of-Space Blockchains

We are aware of two PoSpace blockchains: SpaceMint [12] and Chia [8] and our
treatment covers them both.

Unlike blockchains based on either proofs of work (PoW) or proofs of stake
(PoS), proofs of space (PoSpace) based blockchains are composed of two chains:
a canonical proof chain and a data chain. The proof chain contains unique proofs
and hence is canonical. The data chain contains transactions and any arbitrary
data that the blockchain permits. The data chain is bound to the proof chain
by means of digital signatures.

Without loss of generality we can view a PoSpace blockchain as a tuple of
labeled chains whose underlying DAG is Bn = (Cn,Dn) where Cn = ([n]0, EC)
and Dn = ([n]0, ED) are the chain graphs underlying the canonical proof and
data chains, respectively. Both Cn and Dn are chain graphs in the sense of
Definition 1, and we stress that EC and ED need not be equal. Furthermore,
Cn is bound to Dn by a digital signature scheme SIG = (Gen,Sign,Vrfy) in a
simple manner that we explain shortly below. Example chain graphs for Cn,Dn

are shown in Fig. 1.
We view blockchain mining as the process of labeling the vertices of these

chains. We let (bi := (ci, di))i∈[n]0 denote the labels of these chains, where ci and
di denote the ith labels of the canonical and data blocks, respectively. Although
our treatment allows for arbitrary labeling, ci and di, for simplicity of exposi-
tion, can be assumed to have the following format (which is faithful to existing
PoSpace blockchains):
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– ci = (i, πi) where πi is a canonical computation that depends on the labels of
parent proof blocks (ci1 , . . . , ciq

) where (i1, . . . , iq) = parentsC(i). For simplic-
ity, we assume that π = (δi, (VDFi

v,VDFi
p)) where δi is a proof of space [1,10]

and (VDFi
v,VDFi

p) is a verifiable delay function [5] computation/proof pair.
– di = (si, datai) where si ← Signsk(di1‖ . . . ‖dip

‖datai‖ci) is a signature on the
parents data blocks di1‖ . . . ‖dip

where (i1, . . . , ip) = parentsD(i), the current
data datai, and the current proof block ci.

These simplifying assumptions are without loss of generality. For example, in
both Chia and SpaceMint, πi contains a unique PoSpace δi. The PoSpace chal-
lenge chali for δi is uniquely determined by the labels of its parents parentsC(i).
The value of δi is defined by chali and the public key pk associated with the
signing key sk of SIG. In Chia, πi additionally contains (VDFi

v,VDFi
p) where

VDFi
v is a verifiable delay function evaluation on input xi for a time parameter

ti and VDFi
p is a unique proof of correctness of VDFi

v; both xi and ti are uniquely
defined by parentsC(i).4

3.2 SNACKs for PoSpace Blockchains: An Overview

Constructing SNACKs for PoSpace blockchains is more subtle than for PoW
blockchains, mainly due to the requirement that proof chain blocks must remain
canonical. That the proof chain must be canonical (non-grindable) is crucial for
the security of PoSpace blockchains [8,12].5 (If such a requirement is relaxed,
then simpler solutions are possible – see the full version.)

In the full version, we give a detailed account of the generic PoSW-enabled
SNACK for single-chain blockchains of [3]. We give here a high-level overview.
Let Hn = ([n]0, EH) be the underlying chain graph of the blockchain in question
and Gn = ([n]0, EG) the chain graph of any (graph-labeling) PoSW scheme.
Then, the SNACK construction works by first defining an augmented chain graph
Kn = ([n]0, EK = EH ∪ EG) whose ith augmented label is ki = (gi, hi) where gi

is defined by the underlying PoSW scheme and hi contains the actual content of
the block including the publicly verifiable (say PoW) proof πi. The SNACK then
would essentially be a non-interactive augmented PoSW on this labeled Kn. The
(α, ε)-knowledge soundness guarantees imply that from any successful prover, we
can extract, except with probability ε, an (α,R)-valid path (P,LP , (pv)v∈P ) as
defined in Definition 4, such that the labels of LP are sequentially computed and
have total weight α.

For notational simplicity, we refer to (α,R)-valid paths (P,LP , (pv)v∈P ) by
(P,LP ), and when R is either clear from the context or irrelevant for the discus-
sion, we call an (α,R)-valid path, α-valid.

4 In fact, in Chia, the pair (VDFi
v,VDFi

p) is a pair of tuples, i.e., VDFi
v = (yi1 , . . . , yik )

and VDFi
p = (ρi1 , . . . , ρik) where (yij , ρij ) is a VDF evaluation/proof pair on a

challenge and time parameter pair (xij , tij ), which is uniquely defined by the proof
chain so far (c0, . . . , ci−1).

5 In the full version, we highlight the need for canonical proofs in PoSpace blockchains.
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(In the full version, we explore a few (insecure) natural approaches that
resemble the PoSW-enabled SNACK construction for single-chain blockchains.)

Our SNACK. We construct a SNACK for Bn = (Cn,Dn), by constructing two
SNACKs simultaneously, one for Cn, call it CS, and one for the data chain Dn,
call it DS. Both CS and DS are generic PoSW-enabled constructions following
the blueprint of [3]. They also satisfy:

1. CS and DS both use PoSW, i.e., the same underlying PoSW scheme
2. PoSW uses a deterministic Com, and
3. CS is embedded into DS.

The final PoSpace SNACK is simply DS. The soundness guarantees of DS is
that from any convincing prover, we can extract an α-valid path (P,LP ) where
LP = ((ci1 , di1), . . . , (cik

, dim
)) is such that (cij

, dij
) is a valid blockchain block

and that (ci1 , . . . , cim
) and (di1 , . . . , dim

) are both sequentially computed. These
are the guarantees that a SNACK should provide for a blockchain: sequentiality
of its blocks.

Let’s justify the design choice made above. Note that assuming the same
PoSW chain graph in CS and DS simplifies the final construction, and requiring
Com to be deterministic is necessary to preserve the canonical nature of the
augmented proof chain.6 To see the necessity of embedding CS into DS, let’s see
what guarantees one would get from these SNACKs individually, and why these
guarantees falls short of our goal of ensuring the sequentiality of the combined
PoSpace blockchain blocks.

From α-valid paths (Pc, LPc
) and (Pd, LPd

) extracted from CS and DS respec-
tively, we would like to construct an α-valid path (P,LP ) as above. However,
as it may be the case that Pc �= Pd, i.e., Pc, Pd may not coincide, constructing
(P,LP ) with weight α out of (Pc, LPc

) and (Pd, LPd
) may not be possible.

A natural first idea towards ensuring Pc = Pd would be to fix the same
PoSW scheme in both CS and DS. That is, we augment both Cn and Dn with
the same PoSW chain graph Gn to arrive at augmented chain graphs Kc

n and
Kd

n, respectively. However, this doesn’t mean that Kc
n = Kd

n as Cn need not
be equal to Dn, and hence, the extracted paths may be such that Pc �= Pd.
But as we will show in Lemma 1 below, in any PoSW-enabled SNACK, over an
augmented chain graph, say Kc

n = ([n]0, EK = EC ∪EG), any extractable α-valid
path (Pc, LPc

) is such that Pc lies in Gn. Still, that Pc and Pd lie in Gn doesn’t
mean they coincide, but now we are a step closer towards ensuring they do.

6 We remark that all PoSW schemes in the ROM [2–4,7,9,11] use deterministic Com
anyway.
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0G8 : 1 2 3 4 5 6 7 8

Fig. 2. An illustrative example DAG of a skiplist-based PoSW [3,4].

To be able to compose an α-valid path (P,LP ) from α-valid paths (Pc, LPc
)

and (Pd, LPd
), not only we want to ensure that Pc = Pd, but also that their labels

are valid and bound, i.e., let LPc
= (ci1 , . . . , cim

) and LPd
= (di1 , . . . , dim

), then
it must hold that (cij

, dij
) is a valid blockchain block including that dij

contains
a signature on cij

. Recall that SIG binds Cn to Dn. Now because cij
is needed

to validate dij
, DS can’t simply be independent of CS.

To resolve all issues at once, that is, to make sure Pc = Pd and that LP :=
((ci1 , di1), . . . , (cim

, dim
)) is valid, where P := Pc = Pd, we require that CS and

DS use the same underlying PoSW scheme, and furthermore, embed CS into
DS. By embedding the augmented labeled proof chain Kc

n into the augmented
labeled data chain Kd

n, and relying on Lemma 1 below, we ensure that the same
labeled path in Kd

n contains a valid labeling in Kc
n at the same time.

3.3 SNACK for PoSpace Blockchains: The Main Construction

For simplicity, fix an integer n and let PoSW be any (graph-labeling) PoSW
scheme and Γn = (Gn = ([n]0, EG), Ωn) its underlying weighted chain graph,
where Gn is a chain graph and Ωn : [n]0 → [0, 1] s.t. Ωn([n]0) = 1 is a weight
function. We will use the PoSW from [3,4] in our illustrative examples. Its under-
lying DAG is depicted in Fig. 2. (We emphasize the our SNACK construction
works for any graph-labeling PoSW scheme whose underlying graph is a chain
graph.)

Furthermore, let Bn = (Cn,Dn) be a PoSpace blockchain with ψ being its
genesis block, and Rc

ψ and Rd
ψ be the polynomial-time validity relations for

the (labeled) proof and data chains, respectively. That is, let (i1, . . . , ip) :=
parentsC(i), then

Rc
ψ(i, ci, (ci1 , . . . , cip

)) = 1 (5)

iff ci is a valid proof chain block, and for (i1, . . . , iq) := parentsD(i):

Rd
ψ(i, (ci, di := (si, datai)), (di1 , . . . , diq

)) = 1 (6)

iff di is a valid data chain block. In particular, (6) implies that

Vrfypk(di1‖ . . . ‖diq
‖datai‖ci, si) = 1 . (7)

The validity relation for Bn is simply the relation that checks that both (5) and
(6) hold simultaneously. These validity relations are blockchain specific and they
can be augmented or redefined to suite the specific instantiation of the PoSpace
blockchain in question.
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Fig. 3. Example Kc
8 and Kd

8 defined in (8) and (9) where Cn and Dn are from Fig. 1
and G8 is from Fig. 2. CS and DS are w.r.t. Kc

8 and Kd
8 , respectively. The dashed arrows

indicate the labels of the source are embedded into the labels of the target. The labels
of these graphs are computed by SInit and SMine of Fig. 4.

Augmented Blockchains. We define augmented chain graphs Kc
n and Kd

n that
respectively underlie CS and DS as follows:

Kc
n = ([n]0, EKc) with EKc = EG ∪ EC (8)

Kd
n = ([n]0, EKd) with EKd = EG ∪ ED ∪ EC (9)

Note that while Kc
n augments Cn with Gn, Kd

n augments the union of Cn and Dn

with Gn. The reason for this is that we would like the DS extractor to succeed
in extracting a labeled path in (the labeled) Kd

n such that it contains a labeled
path in Kc

n, and for this to be possible, we make sure that (1) the (augmented)
labels of Kc

n are embedded (as data) in the (augmented) labels of Kd
n and that

(2) EKd ⊇ EKc . Examples of these graphs are depicted in Fig. 3.
Let τ be an oracle and χ a bitstring to be defined later, we define ora-

cles (τi)i∈[n]0 as τi(·) := τ(i, χ, ·) and use these oracles to label our augmented
blockchain.

The augmented blockchain is obtained by labeling the augmented chain
graphs Kc

n and Kd
n at once, and furthermore, embedding Kc

n in Kd
n as data.

This labeling is done using oracles (τi)i∈[n]0 , where τi(·) := τ(i, χ, ·) for a ran-
dom oracle τ and random bitstring χ.

This labeling is formalized by the augmented mining algorithms Init and
SMine, in Fig. 4. In particular, from an initial genesis block ψ, we define in Init,
an augmented genesis block σ := LK(0), which contains, in addition to ψ and
pk0, PoSW-related data such as χ and pp.

SMine, on input (kd
j := (gd

j , dj)j∈[i−1]0 , i.e., the augmented labels of the first
i vertices of Kd

n, as well as the current data datai including transactions and
the signing/verification key pair (sk, pk) of an arbitrary space farmer, and some
auxiliary information auxc

i−1, auxd
i−1 related to the commitment opening (which

we explicitly state in Fig. 4, but ignore in this informal discussion for simplicity),
computes the augmented labels of both the proof and data chain as follows.
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Algorithm SInit :
On input 1λ and ψ:

Computing kc
0:

1. χ ← {0, 1}λ

2. �c
0 := τ0(ε)

3. pp ← Com.setup(1λ)

4. (φc
0, auxc

0) := Com.commit(pp, �c
0)

5. gc
0 := (�c

0, φc
0)

6. (sk0, pk0) ← Gen(1λ)

7. π0 := (ψ, χ, pp, pk0)
By definition Rc

ψ 0, (gc
0, π0), ε

)
= 1

8. c0 := (0, π0)

9. LKc (0) := kc
0 := (gc

0, c0)

Computing kd
0 :

1. �d
0 := τ0(ε)

2. (φd
0, auxd

0) := Com.commit(pp, �d
0)

3. gd
0 := (�d

0, φd
0)

4. data0 := (ψ, kc
0)

5. s0 ← Signsk0 (g
d
0‖data0)

6. d0 := (s0, data0)

7. kd
0 := (gd

0 , d0)

8. LKd (0) := kd
0

return (σ := LKd (0)), auxc
0, auxd

0)

Algorithm SMine:
On input sk, pk, datai, (kd

j := (gd
j , dj))j∈[i−1]0 )

)
:

Parse (kc
j )j∈[i−1]0 out of (kd

j )j∈[i−1]0
See Line 4 in kd

i below.
Computing kc

i :

1. �c
i := τi(LKc (parentsKc (i)))

2. (φc
i , auxc

i ) := Com.commit(pp, (kc
j )j∈[i−1]0‖�c

i )

3. gc
i := (�c

i , φc
i )

4. Let πi be s.t.
Rc

σ i, (gc
i , πi), LKc (parentsC(i))

)
= 1

πi is associated with pk for (sk, pk) ∈ [Gen(1λ)]

5. ci := (i, πi)

6. kc
i := (gc

i , ci)

Computing kd
i :

1. �d
i := τi(LKd (parentsKd (i)))

2. (φd
i , auxd

i ) := Com.commit(pp, (kd
j )j∈[i−1]0‖�d

i )
3. gd

i := (�d
i , φd

i )
4. datai = (datai, k

c
i )

5. si ← Signsk(LKd (parentsD(i))‖gd
i ‖datai)

6. di := (si, datai)
7. LKd (i) := kd

i := (gd
i , di)

kd
i = (�d

i , φd
i , si, datai, k

c
i )

Note: Rd
σ i, LKd (i), LKd (parentsD(i))

)
= 1

return (LKd (i), auxc
i , auxd

i )

Fig. 4. The mining algorithms Init and SMine for PoSpace-augmented blockchains.

As for the ith augmented proof chain label, SMine computes the PoSW
label �c

i using the random oracle τi and the graph structure of Kc
n, computes

a deterministic commitment φc
i of the labels (kc

j := (gc
j , cj))j∈[i−1]0 and �c

i , and
defines the label gc

i := (�c
i , φ

c
i ). We stress that the commitment φc

i must be
deterministic, for otherwise the proof chain becomes grindable. The label of the
proof chain is defined as ci := (i, πi) and the augmented label is defined as
LKc(i) := kc

i := (gc
i , ci). For the sequentiality guarantees of the PoSW to carry

on to the SNACKs, we must ensure that in the augmented blockchain, πi is
computed after φc

i – see [3] for a detailed discussion on this point. However,
note that Line 4 in Fig. 4 doesn’t make this explicit, as ensuring this condition
is blockchain-specific.

As for the ith augmented data chain label, SMine computes the PoSW
label �d

i using τi and the graph structure of Kd
n, computes a commitment

φd
i of the labels (kd

j := (gd
j , dj))j∈[i−1]0 and �d

i , and defines the label gd
i :=

(�d
i , φ

d
i ). A space farmer/miner who generates a PoSpace proof δi using pk,

computes a digital signature si, using the corresponding signing key sk, on
(LKd(parentsD(i))‖gd

i ‖datai), where LKd(parentsD(i)) are the augmented labels
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of the parents of i in D, datai is the current data including (the now embedded)
kc

i , transactions, and any arbitrary data that the original mining protocol allows.
Finally set di := (si, datai) and LKd := kd

i := (gd
i , di).

Blockchain validity must be adapted to accommodate the augmentation.
Therefore, we define the augmented validity relations Rc

σ and Rd
σ of the proof

and data chains, by overriding Rc
ψ and Rd

ψ, respectively. Both Rc
σ and Rd

σ still
consider the same graph structure as Rc

ψ and Rd
ψ but expect augmented labels.

Concretely, we override Rc
ψ from (5) as

Rc
σ

(
i, LKc(i), LKc(parentsC(i))

)
= 1 , (10)

iff the augmented block is valid. Note that σ is defined by SInit and is the
augmented genesis block. As before, this validity is blockchain specific. Similarly,
we override Rd

ψ from (6) as

Rd
σ

(
i, LKd(i), LKd(parentsD(i))

)
= 1 (11)

iff the augmented data block is valid, which in particular, implies that

Vrfypk(LKd(parentsD(i))‖gd
i ‖datai, si) = 1 . (12)

Note that Rd
σ doesn’t verify transaction consistency in datai. The consistency of

datai is assumed, i.e., we assume honest miners would not finalize block i that
contains datai that is inconsistent with data0, . . . , datai−1. The consistency of
data in orthogonal to the SNACK construction.

As the ith augmented (proof/data) block contains, not only blockchain-
specific, but also PoSW-specific data, we define augmented validity relations
R̃c

σ and R̃d
σ that check the validity of (a) the blockchain-specific data using Rc

σ

and Rd
σ, respectively, and check (b) the PoSW data. Concretely, define R̃c

σ, R̃d
σ

and Rσ:

R̃c
σ

(
i, LKc(i), LKc(parentsKc(i))

)
= 1 ⇔ ∃xi s.t. (13)

Rc
σ

(
i, LKc(i), LKc(parentsC(i))

)
= 1 ∧ LKc(i) = τi(LKc(parentsKc(i)))‖xi.

R̃d
σ

(
i, LKd(i), LKd(parentsKd(i))

)
= 1 ⇔ ∃xi s.t. (14)

LKd(i) = τi(LKd(parentsKd(i)))‖xi ∧ Rd
σ

(
i, LKd(i), LKd(parentsD(i))

)
= 1.

Rσ

(
i, LKd(i), LKd(parentsKd(i))

)
= 1 ⇔

R̃c
σ

(
i, LKc(i), LKc(parentsKc(i))

)
= 1 ∧ R̃d

σ

(
i, LKd(i), LKd(parentsKd(i))

)
= 1 .
(15)

where by construction (see Fig. 4), LKc(i) is contained in LKd(i) as part of datai

and parentsKc(i) is contained in parentsKd(i) by definition of Kd
n (9).
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Algorithm PoSW.verKc :
On input (χ, ιi, oi):

1. Run bi := PoSW.ver(χ, ιi, oi) modi-
fied as follows: whenever it queries
τj(LKc (parentsG(j))) for some j, issue
query τj(LKc (parentsKc (j))) instead.
(Missing labels are provided in oi,2.)

2. return bi

Algorithm PoSW.openKc :
On input (χ, pp, φn, auxn, L, ιi):
1. oi,1 ← PoSW.open(χ, pp, φn, auxn, L, ιi)

(PoSW.open acts based on edges EG.)
2. J :=

{
j ∈ [n]0 : LKc (parentsG(j))

which appear in oi,1
}

3. oi,2 := {(j, LKc (parentsC(j)))}j∈J
4. return oi := oi,1, oi,2

Fig. 5. Algorithms PoSW.openKc and PoSW.verKc defined based on PoSW.open and
PoSW.ver, respectively. Algorithms PoSW.openKd and PoSW.verKd are defined analo-
gously by changing every occurrence of c to d and C to D.

Arguments for Augmented PoSpace Blockchains. We first define the
witness relation R with respect to which we construct our SNACK.

Definition 7 (Augmented PoSpace chain language). We define the aug-
mented PoSpace chain relation R(1)

Γ d
n ,Rσ,Com

for any α ∈ (0, 1] as

R(α)

Γ d
n ,Rσ ,Com

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(prm := (σ, pp), η := ((φc, φd), n),

w := (P, Ld
P , (pd

i )i∈P , ρc, ρd)
)
s.t.

(P, Ld
P , (pd

i )i∈P ) is an (α, Rσ) − valid path in Γ d
n

∧Com.ver(pp, φc, Lc
P , P, ρc) = 1

∧ Com.ver(pp, φd, Ld
P , P, ρd) = 1

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (16)

where Rσ is defined in (15) and Γ d
n := (Kd

n, Ωn) for Kd
n as in (9) and Ωn from

the underlying PoSW scheme PoSW. We let LΓ d,Rσ,Com (cf. Definition 5) be the
language associated with R(1)

Γ d
n ,Rσ,Com

.

Having formalized LΓ d,Rσ,Com, we now build for it a succinct Argument of
Chain Knowledge7 (ACK) system ACK := (ACK.P,ACK.V), which we later Fiat-
Shamir to get our final DS. The ACK is given in Fig. 6. Note that the prover takes
as input the labeling of Kd

n as its witness. Additionally, the SNACK parameter
generator G outputs prm. Syntactically, ACK can be seen as two copies of the
respective ACK construction of [3], one for the proof chain and one for the data
chain. The difference is that we embed Kc

n into Kd
n, use the same underlying

PoSW scheme as well as the same verifier challenges in these two copies.

Theorem 1. Let SNACK := (SNACK.P,SNACK.V) be the non-interactive coun-
terpart of ACK from Fig. 6, then in the ROM, SNACK is an (α, ε)-knowledge-
sound SNACK for LΓ d,Rσ,Com as in Definition 7 if PoSW is an (α, ε)-knowledge-
sound τ -based GL-PoSW as in [3] with Com being its underlying deterministic
commitment scheme, (Gn = ([n]0, EG), Ωn)n∈N its weighted graph family, and τ
modeled as a random oracle.

7 A SNACK is a succinct and non-interactive ACK.
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Verifier ACK.V = (V1,V2)

Stage V1: On input (1λ, η):

1. ∀i ∈ [t] do ιi
$← Ωn

2. ι0 := 0
3. send ι := (ιi)i∈[t]0 to P

Stage V2: On input γ := (γi)i∈[t]0 :

1. ∀i ∈ [t] do:
(a) bc

i,1 := R̃c
σ ιi, k

c
ιi

, pc
ιi

)

(b) bc
i,2 := PoSW.verKc (χ, ιi, o

c
i )

(c) bc
i,3 := Com.ver(pp, φc

n, kc
ιi

, ιi, ρ
c
i )

(d) bd
i,1 := R̃d

σ ιi, k
d
ιi

, pd
ιi

)

(e) bd
i,2 := PoSW.verKd (χ, ιi, o

d
i )

(f) bd
i,3 := Com.ver(pp, φd

n, kd
ιi

, ιi, ρ
d
i )

2. output
∧t

i=0 bc
i,1 ∧ bc

i,2 ∧ bc
i,3 ∧

bd
i,1 ∧ bd

i,2 ∧ bd
i,3

Prover ACK.P:

On input (1λ, (η, (kd
j )j∈[n]0 , (auxc

n, auxd
n), ι):

1. Parse η as ((σ, pp), (φc
n, φd

n, n))

2. Parse (kc
j )j∈[n]0 out of (kd

j )j∈[n]0

3. ∀i ∈ [t]0 do:

(a) oc
i ← PoSW.openKc

(χ, pp, φc
n, auxc

n, (kc
j )j∈[n]0 , ιi)

(b) od
i ← PoSW.openKd

(χ, pp, φd
n, auxd

n, (kd
j )j∈[n]0 , ιi)

We assume od
i contains both LKd (ιi)

and pd
ιi

:= LKd (parentsKd (ιi)).
Similarly for oc

i .

(c) ρc
i ← Com.open(pp, φc

n, auxc
n, kc

ιi
, ιi)

(d) ρd
i ← Com.open(pp, φd

n, auxd
n, kd

ιi
, ιi)

(e) γi := ((oc
i , od

i ), (ρ
c
i , ρd

i ))

4. send γ := (γi)i∈[t]0 to V2

Fig. 6. The interactive proof system ACK which underlies our SNACK construction.

SNACK’s Cost and Guarantees. We started with an underlying chain Bn =
(Cn,Dn) of a PoSpace blockchain, and augmented it to (Kc

n,Kd
n), on which we

run ACK, whose non-interactive counterpart SNACK is the SNACK construction
for the PoSpace blockchain. The space cost of SNACK is storing in each block in
Kc

n a PoSW label and a commitment pair (�c
i , φ

c
i ). The same holds for Kd

n. (Note
that the embedding of LKc(i) into LKd(i) doesn’t mean that we actually store
LKc(i) twice, in Kc

n and Kd
n; all what it means is that computing and verifying

LKd(i) requires having LKc(i) explicitly given as input.) If we instantiate PoSW
from either PoSW schemes in [3], then φc

i = �c
i and φd

i = �d
i and hence the

space cost is �c
i and �d

i per (PoSpace) block. Setting |�c
i | = |�d

i | = 256 bits is
a reasonable instantiation. Furthermore, modeling a hash function as a RO, �c

i

and �d
i are efficient hash computations.

Generating SNACK proofs is identical to generating PoSW proofs in the
underlying PoSW scheme when EC = ED = {(i − 1, i) : i ∈ [n]}. The more
edges EC and ED contain, the bigger the proof size. Furthermore optimizations
similar to those given in [3] are possible.

At this storage and computation costs, we get sequentiality guarantees on
the blockchain: Fix prm and a statement (φc, φd, n) ∈ LΓ d,Rσ,Com, then from any
convincing SNACK prover, a witness w can be extracted, and such a witness
contains an (α,Rσ)-valid path in Γ d

n , which is sequentially computed. That the
extracted path lies in Kd

n is clear, but that it also lies in Kc
n is not. In the sequel,

we show that extracted paths must be in Kc
n as well, and hence this shows that

the extracted path contains valid blocks in the combined augmented blockchain.
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This, in turn, allows us to talk of the PoSpace blockchain as a single sequentially
mined chain.

Lemma 1 says that if P is a path extracted by the knowledge-soundness of
SNACK from Theorem 1, then the edges of P lie in Gn.

Lemma 1. Let SNACK be as in Theorem 1 and let
(
σ, η := (φc, φd, n), w := (P,Ld

P , (pd
i )i∈P , ρc, ρd)

) ∈ R(α)

Γ d
n ,Rσ,Com

be such that w is output by the extractor guaranteed by the (α, ε)-knowledge
soundness of SNACK, then P is a path in Gn.

The following lemma shows that SNACK contains an embedded SNACK sys-
tem for LΓ c

n,R̃c
σ,Com, where LΓ c

n,R̃c
σ,Com is as in Definition 5 and R̃c

σ as in (13).

Lemma 2. Let
(
prm, (φc, φd, n), (P,Ld

P , (pd
i )i∈P , ρc, ρd)

) ∈ R(α)

Γ d
n ,Rσ,Com

and P

be a path in Gn, then (prm, (φc, n), (P,Lc
P , (pc

i )i∈P , ρc)) ∈ R(α)

Γ c
n,R̃c

σ,Com
, where

R(α)

Γ c
n,R̃c

σ,Com
is defined as in Definition 5 and Lc(i), pc

i are embedded in and

extracted from Ld(i), pd
i .

Theorem 1 and Lemma 2 imply Corollary 1, which shows that SNACK proves
knowledge of sequentially computed and valid PoSpace blockchain.

Corollary 1. Let SNACK be as in Theorem 1 and let
(
σ, η := (φc, φd, n), w := (P,Ld

P , (pd
i )i∈P , ρc, ρd)

) ∈ R(α)

Γ d
n ,Rσ,Com

be s.t. w is output by the extractor guaranteed by the (α, ε)-knowledge soundness
of SNACK, then (P,Ld

P ) is a sequentially-computed path containing valid PoSpace
blocks, i.e., let P = (i0, . . . , ik), then ∀j ∈ [k]0, Ld

P (ij) contains a valid augmented
data chain block which contains a signature on a valid augmented proof chain
block Lc

P (ij), and for every j ∈ [k], Lc
P (ij) is computed after Lc

P (ij−1) and
Ld

P (ij) after Ld
P (ij−1).

Proofs of Theorem 1 and Lemmas 1 and 2 are, due to space constrains, given
the full version.
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3. Abusalah, H., Fuchsbauer, G., Gaži, P., Klein, K.: Snacks: leveraging proofs of
sequential work for blockchain light clients. Cryptology ePrint Archive, Paper
2022/240 (2022). https://eprint.iacr.org/2022/240

4. Abusalah, H., Kamath, C., Klein, K., Pietrzak, K., Walter, M.: Reversible proofs
of sequential work. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II.
LNCS, vol. 11477, pp. 277–291. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 10

5. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

6. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: super-light clients for cryp-
tocurrencies. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18–21, 2020, pp. 928–946. IEEE (2020). https://doi.
org/10.1109/SP40000.2020.00049

7. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 451–467. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 15

8. Cohen, B., Pietrzak, K.: The chia network blockchain (2019). https://www.chia.
net/assets/ChiaGreenPaper.pdf
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Abstract. Blockchain-based payment systems utilize an append-only
log of transactions whose correctness can be verified by any observer.
Classically, verification costs grow linearly in either the number of trans-
actions or blocks in the blockchain (often both). Incrementally Verifiable
Computation (IVC) can be used to enable constant-time verification, but
generating the necessary proofs is expensive. We introduce the notion of
Proof of Necessary Work (PoNW), in which proof generation is an inte-
gral part of the proof-of-work used in Nakamoto consensus, producing
proofs using energy that would otherwise be wasted. We implement and
benchmark a prototype of our system, enabling stateless clients to verify
the entire blockchain history in about 40 milliseconds.

Keywords: proof-of-work · zero-knowledge proofs · consensus
algorithms

1 Introduction

Balancing throughput with decentralization is a major challenge in modern cryp-
tocurrencies. Current systems such as Bitcoin require participants to process the
entire system history to verify that the current state (the most recent block in
the chain) is correct. Despite strict limits on blockchain growth which cap total
system throughput, verification costs are prohibitive for many clients. Joining
the system requires downloading and verifying over 450 GB of blockchain history
(as of 2022) which takes days on a typical laptop. In practice, most clients don’t
perform independent verification and rely on a trusted third party instead.

Succinct blockchains aim to support efficient verification of the system’s
entire history by any participant without trusting any third parties. Participants
only need to obtain some fixed public parameters from a trusted source (e.g. the
genesis block and the system’s rules). Participants can then join the system at
any time and receive a succinct validity proof for the most recent block in the
system using minimal bandwidth and time. These proofs demonstrate both that
there exists a sequence of valid transactions from the genesis state S0 to the
state committed in the current block, and that the block’s branch (the sequence
of predecessor blocks) is of quality q according to the consensus protocol. In this
work we focus on aggregate proof-of-work (PoW) difficulty as the measure of
c© The Author(s) 2024
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branch quality, as used in Bitcoin consensus. Currently, systems such as Bitcoin
require O(t + h) work to completely verify a branch containing t transactions
and h blocks. Succinct proofs enable optimal asymptotic performance of O(1)
verification costs for a client joining the system at any point in its history.

A key challenge for succinct blockchains is incentivizing the expensive costs of
computing a validity proof for each block. Meanwhile, Bitcoin employs proof-of-
work (PoW), which provides system security by verifying energy consumption.
This energy, while necessary for the consensus protocol, is not used for anything
else and hence is often described as ‘wasted.’ We propose a new approach to
useful PoW in which the work aids in the verification of the system itself. We
denote this as proof of necessary work (PoNW) and show how it can be used
within a succinct blockchain architecture as a suitable PoW puzzle.

A synergistic benefit is directly incentivizing hardware acceleration of zero-
knowledge proofs. This is relevant for many distributed payment systems in
which proof generation time is a critical bottleneck limiting transaction through-
put and/or latency [6,7,15,20]. Indeed, recent industry developments [2] based
on our work have yielded interest in dedicating resources toward an industry-
wide effort to maximize the performance of zero-knowledge proof systems. We
believe this to be beneficial not only for distributed payments, but also for any
application where high-throughput, low-latency and low-energy zero-knowledge
proof generation is required.

Building a consensus algorithm which produces validity proofs for each block
as a useful byproduct requires carefully designing the PoW process to repli-
cate the security properties of Bitcoin’s non-useful puzzle. Our main technical
contribution is a method to deeply embed a nonce into the proof computation
process, making it suitable as a progress-free PoW puzzle. We formalize this
intuition by introducing the notion of ε-amortization resistance and propose a
protocol which achieves this. Our results are based on the average-case hard-
ness of multiexponentiation in the Generic Group Model (GGM) [32]. We build
a prototype allowing a stateless client to rapidly verify a block (and thus its
complete history) in milliseconds with 500 bytes of data downloaded. This also
assists miners in quickly validating new blocks broadcast on the network, which
may reduce the risk of block collisions and enable faster block frequency.

2 Proof of Necessary Work

To allow proof generation to serve as a PoW puzzle, we require (a) a proof πi

whose generation algorithm P is moderately difficult to compute and (b) a PoW
puzzle PH,d

V that requires the miner to fully recompute P to test a potential
solution. The second property is necessary for the puzzle to be progress-free for
fairness to miners of differing size. Indeed, if generating unique proofs πi based
on randomly sampled nonces ni is sufficiently ‘hard’, then using PH,d

V instead
of a generic puzzle (such as computing the double SHA256 digest in Bitcoin)
would allow us to not only perform PoW with the same theoretical guarantees,
but also compute a valid proof πi in the process.



20 A. Kattis and J. Bonneau

We do not formally analyze any consensus properties, since our goal is not
to design a new consensus protocol but to retain that used by Bitcoin (and
similar systems) and inherit its properties. However, we would like the work
done to be useful by producing proofs of each block’s validity. We introduce
the notion of performing PoW by proving the validity system state, denoted by
Proof of Necessary Work (PoNW).

Definition 1. (Proof of Necessary Work). Given a pseudorandom function
H and a proof πi ∈ Z in some RSM with transition tuple (NewState,VerifyState),
we define the verification puzzle PH,d

V : S × S × Z → {0, 1} with difficulty d as
the solution to the following function:

PH
V (Si,Si+1, πi+1) = 1

[
VerifyState(Si,Si+1, πi+1) = 1

H(πi+1) < d

]
,

where 1[·] is the indicator function.

By having access to a proof generating algorithm P(t,Si,Si+1, ni) → πi+1

that generates unique (yet valid) πi+1 for each ni, we can generate πi+1 for
Si+1 = NewState(t,Si, πi) using a uniformly randomly sampled ni until the
puzzle condition is satisfied:

PH
V (Si,Si+1,P(t,Si,Si+1, ni)) = 1.

Then πi+1 suffices for public verification that PoW has been performed. This is
because our prover will always fail with constant probability (when H(πi+1) ≥
d), so iteratively sampling new proofs (by sampling new ni) until a valid one is
found can be shown, under the assumption that P is the most efficient way to find
such an ni, to be a memoryless exponential process and hence fair. Note that,
by construction, we also guarantee that πi+1 is a valid witness for the RSM.
The number of transactions verified is always fixed (with empty transactions
still ‘added’) as otherwise miners would be incentivized to mine puzzles with the
smallest blocks.

Like Nakamoto consensus, our puzzle needs the property that solutions are
equally hard to test even after testing an arbitrary number of previous solutions.
In other words, a miner should not be able to amortize costs while testing mul-
tiple potential solutions. This property is defined more formally below based on
the μ-Incompressibility of [26], although we work in the bounded-size precom-
putation model. We model PoNW as a function fO with limited access to some
oracle O that performs a hard computation in an encoding of some group G.

Definition 2. (ε-Amortization Resistance). For inputs of length λ and
ouputs q ∈ poly(λ), function fO = {fO(n)}n∈N is ε-amortization resistant on
average with respect to a sampler S if for all adversaries A = (AO

1 ,AO
2 ) with

A performing less than (1 − ε)qN queries to the oracle O on average, where N
number of queries required for one evaluation of fO(n) on average, the following
is negligible in λ:
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Pr

⎡
⎣ {ni}q

i=1 ← n, (n, aux) ← S(1λ)
∀i ∈ [q], πi = fO(ni) precomp ← AO

1 (1λ, aux)
{πi}q

i=1 ← AO
2 (1λ, n, precomp)

⎤
⎦ .

This definition captures the fact that computing multiple proofs does not
come with marginal gains: indeed, provers cannot use larger computational
resources to batch process proofs and achieve disproportionate performance
improvements. By preventing large miners from achieving algorithmic returns-
to-scale, this property is crucial in ensuring fairness. With the above objectives
in mind, we now look at how to adapt our implementation to realize such a
system.

Before we look at designing an amortization resistant PoNW system, we
summarize the computationally expensive components of proof generation in
the Quadratic Arithmetic Program (QAP) Non-Interactive Proof (NIPs) of [27]
compiled with [21]. For an �-size statement with m internal variables and n con-
straints, the prover P needs to (1) update inputs and witnesses, and (2) perform
9m + n exponentiations in G using elements from the proving key as bases.
Since updating variable assignments is orders-of-magnitude faster, amortization
resistance requires P to recompute (almost) all exponentiations for each new
nonce.

Amortization of Multiexponentiation. Multiexponentiation is inherently
amortizable [16,19] given enough memory, although space requirements scale
exponentially with the number of computed elements. This is because we can
precompute the exponents of specific basis elements and perform look-ups that
can be used by multiple evaluations at once. We make precise the relationship
between size and amortization gain to demonstrate that non-negligible amorti-
zation gains require an infeasibly large amount of space. Since we are interested
in average-case guarantees, all input elements to the multiexponentiation algo-
rithm (i.e. the enumerated exponents, or puzzle instances) are sampled uniformly
randomly from some S.

We consider amortization in Shoup’s Generic Group Model (GGM) [32],1 in
which the adversary can only compute products based on existing group elements
(with non-negligible probability), or directly query the exponentiation of some
index. The adversary has access to a multiplication oracle O : G×G → G, which
returns the multiplication of the input elements over some random encoding
σ : Zp → G. This oracle computes O(σ(i), σ(j)) = σ(i + j). The adversary
may also use a polynomially-sized precomputation string. Since they don’t have
access to the exponents of the bases that are being multiplied together (so as to
perform a direct look-up), computing some σ(k) requires the generation of an
addition chain ending with σ(k).

However, this is the only assumption underlying the lower-bound results
which prove the optimality of (the generalized) Pippenger’s algorithm [19], as
they obtain lower-bounds on the length of the minimal addition chain needed to

1 Maurer proposed a slightly different GGM definition [25], for a comparison see [35].
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compute some element. In short, our main formal contribution relies on adapting
the packing lower-bound ideas of [14,28] to formalize the relationship between
amortization of multiexponentiation of random indices and the amount of space
available to the adversary. We do this by making explicit the average-case lower
bounds for multiexponentiation, which were only stated (but not proven) in
[14,28] to be a constant term away from the worst-case lower bounds.

Note that the notion of average-case hardness requires an underlying prob-
ability distribution over which the input indices are sampled. Obviously, the
distribution of the sampled puzzle instances can affect the average-case bounds
if, for example, the sampler provides structured output with high probability.
Therefore, all results have to be taken with respect to the underlying distribution
of the inputs, which is in turn specified by the choice of sampling algorithm S.
Where this S is taken to be uniform (as in this work), the notion of average-case
hardness defaults to the traditional average-case lower bound results.

In order to make formal statements about the amortization resistance of com-
puting multiple NIPs, we need to show that there exists some sampling algorithm
SNIP outputting instance-witness pairs (φ,w) so that, on average over its public
coins, these output puzzle instances require a minimum number of oracle calls
each for computation of their corresponding proof π. Firstly, we construct the
equivalent multiexponentiation problem that the above will reduce to. In the
following, we restrict ourselves to the NIP of [27], in which the valid output
proof consists of 9 group elements of the form

∑κ
k=1 wkGi

k for i ∈ [9], wk ∈ [N ]
and an additional element

∑μ
m=1 g(w1, ..., wκ)mHm, where g an m-dimensional

n-variable polynomial encoding the instance’s witness and Gi,Hm ∈ G.
Since the hardness of the above computation depends on the structure of

w and g, it becomes apparent that we need to restrict the types of predicates
that we are looking at. In subsequent sections, we make precise the following
construction: a circuit with an efficient sampler S such that (1) accepting witness
elements w1, ..., wκ ∈ [N ] are randomly distributed, (2) for each valid instance
φ there exists only one valid w, and (3) for each valid w, there exists a unique
valid g. Note that (1) and (2) are properties of the predicate, while (3) requires a
stronger result on the NIP’s knowledge guarantees. We will show that predicates
satisfying (1) and (2) are enough to reduce the computation of a NIP from
[27] (which satisfies (3)) to a multiexponentiation problem (Definition 3) whose
amortization we can bound.

Definition 3. The (κ, μ)-length MultiExp function f : [N ]κ → G
ν of dimension

ν for {G
(1)
i , ..., G

(ν−1)
i }κ

i=1, {G
(ν)
i }μ

i=1, and function g : [N ]κ → K ⊆ [N ]μ is

f(x1, ..., xκ) :=

(
κ∑

i=1

xiG
(1)
i , ...,

κ∑
i=1

xiG
(ν−1)
i ,

μ∑
i=1

g(x)iG
(ν)
i

)
,

where the xi are given by sampler S, based on its random coins.

In order to provide a reduction that exactly captures the average-case hard-
ness of the above problem, the structure of g becomes important. This requires
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a more technical treatment, so here we work in the case where g is a weakly
collision-resistant map from the witness elements x = (x1, ..., xκ) to the values
(g(x)1, ..., g(x)μ) ∈ K ⊆ [N ]μ. This defines a computationally unique correspon-
dence between witness elements and representations of μ-degree polynomials
with coefficients in [N ]. We specifically require the mapping g : [N ]κ → K ⊆
[N ]μ to be collision-resistant in each of its output coordinates, or that the fol-
lowing probability is negligible for all PPT adversaries A:

Pr [∃i s.t. g(A(z))i = zi; z ← g(x), x ←R [N ]κ] ≈ 0,

where zi denotes the i-th coordinate of z. This is enough to provide multiexpo-
nentiation amortization bounds, which are given below for the case when κ = μ.
Note that the general case for μ > κ can also be calculated in the exact same
way, but has been omitted for simplicity.

Theorem 1. The (κ, κ)-length MultiExp function (c.f. Definition 3) of dimen-
sion ν over index size λ := log (N), group G with |G| = 2λ, and storage size q
is ε-amortization resistant with respect to the uniform sampler for all collision-
resistant g, and for large enough κ, λ, ν, q satisfies:

ε ≤ log (q) + o(1)
log (q) + log (κ) + log (ν) + log (λ)

.

We prove Theorem 1 in Appendix A. This amortization gain is unavoidable for
NIPs that reduce to multiexponentiation; such as by compilation with [21].

2.1 Amortization Resistance and Efficiency

We modify the DPS predicate Π to ensure that most of the proof variables
change unpredictably with modifications of the nonce or state. This gives amor-
tization resistance in exchange for increasing the number of variables and con-
straints in the predicate. The performance overhead originates from the need to
commit to state and ‘mask’ the computation, which can be expensive for large
predicates.

The naive approach would be to isolate each of the different circuits in the
system and show that they can be modified to change unpredictably based on
some seed. The design challenge here is how to make this happen while conserv-
ing the proof’s correctness guarantees. For this, we ideally want to leverage a
property specific to our predicate in order to ‘mask’ the computations and treat
the proving system as a black box. We leverage the Pedersen hash function to
transform our predicate Π to an amortization resistant version in Sect. 4.

Given some nonce n, the prover might only change a part of the input in order
to (re)check difficulty. This is an issue if the same nonce can be used with many
inputs (in our case, transactions), as an adversarial prover would compute a proof
and then only switch out a single transaction (or bit!), rechecking difficulty with
no expensive recomputation. Define ρ := PRFn(state) that commits to state
where PRF a pseudorandom function family. We need to commit to all block
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transactions, ensuring that changing one transaction changes ρ. This can be
expensive if we exploit no information about the underlying predicate, since
PRF would have to commit to every single original variable.

Fortunately, for our predicate the input to PRF is small: we use ρ = PRFn(rt)
where rt the root of the new state and n the given nonce. Since this input
will anyways be computed as part of the protocol, we don’t actually suffer any
overhead apart from having to verify the above computation. Note that this is
actually constant in predicate size. In the GGM, we can replace the PRF by a
collision resistant hash function CRT instead, since the randomness of the group
encoding is sufficient for the witness elements to look random to an adversary.

We can force unique changes to the Merkle path updating the account if we
require n to be part of the leaf: since a change in the block (or nonce) would
lead to a new n, all update paths need to be recomputed if any transaction
is changed. However, we also need to enforce change to the old Merkle path
checking account existence. This technique is thus not ideal, since these paths
do not depend on the current nonce (or state) at all, meaning that around half
our variables will remain the same, giving ε ≈ 1/2.

To get around this, we opt for a different approach. We ‘mask’ the input
variables to H by interaction with ρ (which also commits to n) and transform the
constraints of the hash function subcircuit CH into a new circuit that retains the
original Proof of Knowledge (PoK) guarantees by verifying the same underlying
computation. By the unpredictability of ρ and randomness of n, we hope to
achieve upper bounds for amortization resistance based on the security of the
CRT. In this case, the sampler would need to provide valid witnesses for CH of
the form w = (w1, ..., wm) whose encodings are indistinguishable from random,
given n sampled uniformly randomly and access to a multiplication oracle O for
a randomized encoding of some G.

3 Implications for Nakamoto Consensus

PoNW introduces two novel effects on the consensus protocol due to the fact
that checking a nonce (on the order of seconds to minutes) can now take a
significant fraction of the average block frequency (ten minutes in the case of
Bitcoin), whereas it was negligible for traditional PoW puzzles. We can evaluate
these effects assuming a single puzzle solution takes time τ to check (with the
mean block arrival time normalized to 1). When τ becomes a significant fraction
of the average block generation time (τ ∼ 1), miners face a loss of efficiency as
they will often be forced to discard a partially-checked puzzle solution when a
block is broadcast while checking previous solutions. We prove the scale of this
efficiency loss in a short theorem:

Theorem 2. A miner in a PoW protocol with puzzle checking time τ will discard
a fraction 1 − τ

eτ −1 of their work due to newly broadcast solutions.

Note that as τ → 0 (fast puzzle checking time relative to block interval),
the fraction of wasted work drops to 0. This is why this effect has never been
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considered in prior work. In the reverse direction, as τ → ∞ the fraction of
wasted work approaches 1. For τ = 1 (solutions take as long to check as the
mean block interval), the fraction of wasted work is e−2

e−1 ≈ 0.42, suggesting
that we should aim to keep the time (even for slow miners) to get a solution
significantly shorter than the mean block time.

Slow puzzle checking time also introduces a concern that miners might refuse
to stop working on a partially-checked solution (and hence discard partial work)
even if a valid solution is found and broadcast. These stubborn miners might
cause collisions in the blockchain (two blocks being found at the same height in
the chain). We can analyse a worst-case scenario in which all miners are syn-
chronized with identical proving time, in effect making all miners stubborn and
maximizing the probability of simultaneous solutions. If miners aren’t synchro-
nized, they may opt to finish their current effort after a block is found, but even
if all miners do so this reduces to the above case where all miners finish checking
a solution simultaneously. We call each synchronized period in which all miners
check a solution a round.

Theorem 3. The expected number of solutions in a synchronized mining round
is defined by a Poisson distribution with λ = τ . The proportion of rounds with
multiple solutions (of rounds with any solution) is upper bounded by τ/2.

By Theorem 3, our prototype unoptimized 100 s proving time (and 10 min block
time) leads to less than 1

12 worst case collisions.

4 Design and Instantiation

We prototype our system using libsnark [31], a C++ library implementing the
IVC system in [4] using the construction from [27]. This is done using Succinct
Non-Interactive Arguments of Knowledge (SNARKs) [3], non-interactive proofs
of knowledge with the additional property of succinctness: producing constant-
sized proofs that can be instantly verified. We can equivalently consider ΠS as
an arithmetic circuit CΠ , evaluating to 1 on some input Bi if and only if Bi is
a valid commitment to the output of UpdateState given some transaction set t
and Si−1. In our implementation, CΠ is a QAP. Since this construction depends
on SNARKs over pairs of elliptic curves that form IVC-friendly cycles, we use
the same pair of non-supersingular curves of prime order as [4] with 80 bits of
security and field size log p ≈ 298.

A tree depth of 32 for our implementation allows for 4.2 billion accounts. We
compare this to 32 million unique used wallets on the Bitcoin blockchain after
10 years of operation. This requires 32 ·4 = 128 hash checks for each transaction.
We use the circuits in libsnark to verify such proofs of inclusion and modification.
We modify the Pedersen hash [13] to compute

∏D
i=1 G1−2xi

i where {xi}D
i=1 is the

bit representation of the input x and {Gi}D
i=1 is a set of primitive roots for an

elliptic curve group E(Fp). We use Schnorr signatures [30] over the same elliptic
curve (EC), based on the hardness of DLP.
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In addition to some input x of length n bits, our evaluation requires a pseu-
dorandom seed ρ ∈ {0, 1}n. Consider the following modification, which can be
thought of as masking the underlying evaluation by using two sets of input vari-
ables: HG(ρ)2 · HH(ρ) and xi for i ∈ [n], where HG(·) the evaluation of the
Pedersen function HG(x) =

∏n
i=1 G1−2xi

i .
The variable h0 = HG(ρ)2 · HH(ρ) forms the ‘starting point’ of the eval-

uation. In the beginning, the prover will have access to generator constants
{Hi,H

−1
i , G−2

i H−1
i , G2

i Hi} for the specific instance of the problem. It would
then perform a 2-bit lookup based on xi and ρi, multiplying the intermediate
variable ci by one of the above. By carefully choosing these qi, we can design
the circuit in such a way that unpredictability based on the seed is retained by
all intermediate variables except the output y, which we ensure equals HG(x).

Algorithm 1. MaskedPedersen
Require: x, ρ ∈ {0, 1}n, G, H ∈ G

n

Ensure: y ∈ G

1: procedure CacheGenerators(ρ, G, H)
2: Parse {ρi}n

i=1 ← ρ
3: Compute h ← H(ρ, G), h2 ← H(ρ, H), h0 = h2 · h2

4: return h0, h
5: end procedure
6: procedure MaskedHash(x, ρ, h0, h)
7: Parse {xi}n

i=1 ← x, {ρi}n
i=1 ← ρ

8: Define q = {qi}n
i=1, c = {ci}n

i=0 and set c0 = h0

9: for i ≤ n do
10: if ρi = 0, xi = 0 then qi = H−1

i

11: else if ρi = 0, xi = 1 then qi = G−2
i · H−1

i

12: else if ρi = 1, xi = 0 then qi = G2
i · Hi

13: else if ρi = 1, xi = 1 then qi = Hi

14: end if
15: ci = ci−1 · qi
16: end for
17: y = cn · h−1

18: return y
19: end procedure

Correctness follows from the following observation: at step 0, the vari-
able c0 = HH(ρ) · HG(ρ)2 = HG(ρ) · ∏n

i=1 G1−2ρi

i · H1−2ρi

i is initialized as
the hash of the seed. For all intermediate steps j < n, we have that cj =

HG(ρ) ·
(∏j

i=1 G1−2xi
i

)
·
(∏n

i=j+1 G1−2ρi

i H1−2ρi

i

)
. Finally, after the n-th bit

has been processed the final intermediate variable cn is equal to the Peder-
sen hash of the original input x multiplied by (the unpredictable) HG(ρ). By
multiplying with HG(ρ)−1, we get HG(x). This follows easily from the fact that
at every step we are performing the following operation: ci = ci−1 ·(Hi ·1[ρi, xi =
1] + H−1

i · 1[ρi, xi = 0] + G−2
i H−1

i · 1[ρi = 0, xi = 1] + G2
i Hi · 1[ρi = 1, xi = 0]).
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It can be quickly checked that this computation ensures the previous recursive
property when initialized with c0 = HH(ρ) · HG(ρ)2. By induction, this implies
that after the n-th bit, only HG(ρ) and the exponentiations due to the bits of x
remain in the output variable i.e. cn = HG(ρ) · ∏n

i=1 G1−2xi
i .

Where we know that the variable ai has small support (when, for example,
it is boolean ai ∈ {0, 1}), the prover can always precompute once and use the
same answers without performing exponentiations. This is not a problem since all
miners would know what the precomputed answers are from the very beginning
and can incorporate them with a small memory cost. The problem with creating
variables that become more and more ‘deterministic’ is that at some point their
support becomes so small that an adversary will be able to precompute some
oracle queries. However, since the end value of the sequence of variables {ci}n

i=1

is h ·HG(x) which is also unpredictable due to h, it is not feasible to predict any
index i ∈ [n] without violating the security of the operation HG(ρ) = h even
if HG(x) is previously known. Note that h can be ‘offset’ by a random element
I as h

′
i = h + Ii for each path i ∈ [N ]. This provides independence between

authentication paths using the same nonce.
We must restrict the proof systems used because certain constructions are

inherently insecure: Groth16 [17] can easily be re-randomized, for example, with
only a few additional group multiplications. We thus need a notion akin to non-
malleability, ensuring that we cannot construct proofs given access to previous
valid proofs. To achieve this, we show that Pinocchio [27] satisfies unique witness
extractability. This property requires the proof system to output proofs with
unique encodings for each distinct statement-witness pair, and hence rules out
malleability.

Definition 4. Let NIP := (Setup,Prove,Verify,Simulate) denote a NIP for rela-
tion R. Define the PPT algorithm A with extractor χA, Advuwe

BG,R,A,χA(λ) =
Pr[Guwe

BG,R,A,χA(λ)], and Guwe
BG,R,A,χA(λ) as:

Main Guwe
BG,R,A,χA(λ)

(p,G1,G2,GT , e, g) ← BG(1λ)
(crs, τ) ← Setup(R)
(φ, π1, π2) ← AO(crs)
(w1, w2) ← χA(trA)
b1 ← (w1 = w2) ∪ (R(φ,w1) �= 1) ∪ (R(φ,w2) �= 1)
b2 ← Verify(crs, φ, π1) ∩ Verify(crs, φ, π2) ∩ ((φ, π1) �∈ Q) ∩ ((φ, π1) �∈ Q) ∩ (π1 �= π2)
Return b1 ∩ b2
O(φ)
π ← Simulate(crs, τ, φ)
Q = (φ, π) ∪ Q
Return π

NIP is unique witness extractable if ∀ A ∃χA s.t. Advuwe
BG,R,A,χA(λ) ∈ negl(λ).

Theorem 4. Assume the q-PDH, 2q-SDH and d-PKE assumptions hold for q ≥
max (2d − 1, d + 2). [27] satisfies unique witness extractability.
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The ability to resample witnesses for a statement-witness pair is advanta-
geous to an adversary, since an ‘easy’ witness could be found by repeated sam-
pling. We follow the definition of 2-hard instances in [12] and define single witness
hard languages, for which it is hard to find a new witness given an existing one.

Definition 5. Let RL be a relation, and L = {φ|∃w s.t. RL(φ,w) = 1} an NP
language. L is a hard single-witness language if:

1. Efficient Sampling: There exists a PPT sampler S(1λ) outputting a
statement-witness pair 〈Sx,Sw〉 with Sx ∈ {0, 1}λ and (Sx,Sw) ∈ RL.

2. Witness Intractability: For every PPT A there exists a negligible function
μ(·) such that:

Pr
[(
Sx(1λ),A(S(1λ), 1λ)

) ∈ RL,A(S(1λ), 1λ) �= Sw(1λ)
] ≤ μ(λ).

A relation whose statements are outputs of a CRT hash function H defines a hard
single-witness language. We show this for L(HP ) = {φ : ∃w s.t. HG

P,|w|(w) = φ}
where HG

P,n a weakly collision-resistant hash function.
We show that computing a [27] proof for the evaluation of MaskedHash (and

our DPS predicate) will take on average a similar number of queries as a suit-
ably parametrized MultiExp instance. We restrict to the case of outputs from a
sampler S which samples a ρ randomly and generates valid witnesses. Since we
are working in the GGM, the witness variables of the MaskedHash instance have
an encoding that is indistinguishable from random. Therefore, the amortization
bounds of Theorem 1 apply.

Theorem 5. There exists a sampler S and QAP R evaluating N parallel
instances of k-bit inputs of MaskedHash for which the [27] prover and the
(4N(k +1), 8N(k +1)+2k)-length MultiExp problem of dimension 10 are equiv-
alent up to constant terms with respect to multiplicative hardness.

The vast majority of the constraints and variables in the predicate of the
designed system are hash evaluations, so Theorem 5 can be used to show that
there exists a proof system verifying state transitions for the DPS with bounded
amortization-resistance guarantees. This is because the DPS predicate spends
the vast majority of its time computing a proof whose hardness can be bounded
by Theorem 5, since it is a sequence of iterated Pedersen hashes over a unique
simulation extractable NIP.

Corollary 1. There exists a DPS with block size T , state tree depth d, and index
size λ that admits a Proof of Necessary Work that is ε-amortization resistant
w.r.t. a multiplication oracle and for which:

ε � log (q)
log (q) + log (dTλ) + log (λ)

,

where q is memory size measured in proof elements.
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Table 1. Prototype Times and Key Sizes for Predicates verifying different numbers
of transactions: Average running times for setup G, prover P and verifier V over 10
iterations are shown alongside proving/verification key and proof sizes.

Txs Constraints Generator Prover Verifier Size

# # Avg (s) Avg (s) Avg (ms) pk (GB) vk (kB) π (B)

3 3658281 53.99 24.57 16.0 0.74 0.76 373

10 10071527 161.24 88.14 1.96

20 19233307 268.93 185.10 3.74

30 28395087 354.83 198.61 5.61

40 37556867 485.52 286.50 7.15

50 46718647 570.09 358.95 9.01

We construct the DPS based on the above specifications and investigate its
running time and memory consumption. Results are displayed in Table 1. Our
benchmark machine was an Amazon Web Services (AWS) c5.24xlarge instance,
with 96 vCPUs and 192GiB of RAM. The security properties of the DPS are
based on the guarantee of Π-compliance provided by IVC. It is apparent that
setup and proving times dominate both the running time and memory consump-
tion in the protocol. Setup takes place once by a trusted third-party and hence
is less critical for day-to-day system performance.

The prover is run by the miners, or full nodes. These generate PoW solutions
repeatedly and would compute proof instances for many input nonces. Thus,
larger storage requirements (∼ 5.42GB key sizes) could be easily met by these
nodes, as could the need for more parallelism and better computing power to
bring down the proving rate. We normalize the block time to achieve τ = 1/3
in the sense of Theorem 2 for a proof including 30 transactions. This gives us
that a miner will discard in expectation 15.59% of their work for an efficiency of
∼ 84% if all miners operated based on the above benchmarks. Theorem 3 then
gives an upper bound on the block orphan rate (or likelihood of block collisions)
of 16.65%. Since we are keeping block times constant at 10 minutes, we note
that any improvements in SNARK proof generation times will correspondingly
decrease the amount of wasted work and orphan rate. Moreover, this does not
depend on the way that the proofs are generated: distributed techniques among
many participants (such as [34]) would also benefit efficiency through the corre-
sponding decrease of average proof time.

5 Related Work

Several proposals have aimed to reduce verification costs for light clients; Chatzi-
giannis et al. provide a survey [9]. Most relevant to our work are Vault [24] and
MimbleWimble [29] which speed up verifying transaction history and NIPoPoW
[22] and FlyClient [8] which speed up verifying consensus. None of these propos-
als achieve constant-time verification, though they require significantly less work
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from provers. Succinct blockchains, which provide optimal O(1) bandwidth and
computation costs to verify both history and consensus, were proposed in 2020,
simultaneously by this work and the Mina project [5] (formerly Coda). Mina
takes a similar high-level approach, encoding state transitions in a recursive
proof system for asymptotically optimal verification time. The two proposals
vary in a number of technical details, but the main conceptual differences lie
in our choice of consensus protocol. Mina implements proof-of-stake consensus,
specifically a variant of Ouroboros [23] designed for succinct proofs, but does not
incentivize efficient proof generation. By contrast, we implement a PoW variant
specifically designed to incentivize proving efficiency.

Subsequent work has provided novel and efficient constructions for succinct
blockchains, though not focused directly on prover incentivization. Chen et
al. [10] propose a general framework for succinct blockchains over arbitrary tran-
sition functions, alongside benchmarks using the Marlin [11] proof system. Hegde
et al. [18] tackle a related but critical problem: that of minimizing the total mem-
ory requirements of full nodes. Vesely et al. [33] propose Plumo, which leverages
offline signature aggregation to design a cost and latency optimized light client
for the Celo [33] blockchain. Abusalah et al. [1] propose SNACKS, a formal
framework that adds knowledge extraction guarantees to Proofs of Sequential
Work. We note that these contributions are orthogonal to our main focus of
incentivizing efficient proving, and all could be incorporated in a practical PoNW
implementation.

A Security Proofs

Proof. (Proof of Theorem 2). Assume that a blocks are found in a Poisson process
with a mean of λ = 1 and an individual miner can check one puzzle solution
in time τ . Consider the expected number of blocks this individual miner is able
to check before the network broadcasts a solution. A block will be found by the
network in less than time τ with probability

∫ τ

0
e−xdx = 1 − eτ . In this case,

the miner will not even finish checking a single block. If the network does not
broadcast a block within time τ , the miner will check at least one block. The
Poisson process then repeats, since it is memoryless. So the expected number of
blocks checked is Eblocks = (1 − eτ ) · 0 + e−τ · (1 + Eblocks) or:

eτ · Eblocks = 1 + EblocksEblocks =
1

eτ − 1
.

If no partially-checked solutions were wasted, the miner would always expect
to check 1

τ solutions. Thus, the fraction of wasted work is:

1 −
1

eτ −1
1
τ

= 1 − τ

eτ − 1
.

Proof. (Proof of Theorem 3). Since solutions are Poisson random variables:

Pr [collision] = [1 − Po(1, τ)/(1 − Po(0, τ))] ≤ τ/2.
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We borrow notation from [28] and parametrize with q input indices, p outputs
and maximum index size 2λ. Where not specified, H = pqλ. Let L(y) be the
minimum number of multiplications to compute y = (y1, ..., yp) with yi ∈ [2λ]q

and [2λ] = {1, ..., 2λ − 1} from the inputs and unit vectors and L(p, q, 2λ) be the
maximum over all of them.

Lemma 1. For any value of c ≤ L(p, q,N), there are at most:
(

H2

c

)c

2q+1ec(q + 1)2O(1),

addition chains of length at most c.

Lemma 2. Define H := κqνλ, φ(q, κ, ν, λ) :=

qκν log (qκν) + κ log (H) + q + log (q + 1) + 1,

and fix μ := δH, corresponding to:

cδ :=
(1 − δ)H − φ(q, κ, ν, λ)

log (H) − log (e) + log (μ) + log (1/δ)
.

For the (κ, κ)-length MultiExp function of dimension ν for CRT g:

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(f(x1), ..., f(xq)) ≤ cδ] ≤
(

1
2

)μ

.

Proof. Write G
(j)
k = rjkG. As the xi ∈ [2λ]κ and rjk ∈ [2λ] are sampled ran-

domly, the values xikG
(j)
k = xikrjkG for i ∈ [q], j ∈ [ν−1], k ∈ [κ] will be distinct

w.h.p. The κ · q values g(xi)k · rνkG will also be distinct w.h.p. as g is collision
resistant in each of its κ output coordinates.

Let M be the q×(κν) sized matrix with these values as entries. As each entry
is an element in [2λ], the number of matrices M with qκν distinct elements is:

(
2λ

qκν

)
≥ 2λqκν

(qκν)qκν
,

and to each M there corresponds a unique matrix F = (f(x1), ..., f(xq)) with
dimension q × ν, where the κ products over random bases for each xi have been
computed. Note that L(F ) = L(M) + κ − 1.

We can thus upper bound the minimal addition chain size L(F ) using L(M)
and the number of matrices M :

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(F ) ≤ c] ≤ |{z : L(z) ≤ c}|
2H−qκν log (qκν)

.

The numerator is upper bounded by Lemma 1 and the fact that a single chain
corresponds to at most Hκ matrices, giving:

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(F ) ≤ c] ≤
(

1
2

)H−ψ(c)

,
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where ψ(c) := c(2 log H + log e) + φ(q, κ, ν, λ) − c log (c).
Suffices to show that for c ≤ cδ, ψ(c) ≤ (1 − δ)H. Since ψ(c) is increasing for

c ≤ L(κ, νq, 2λ), required to show that ρ ≥ cδ for ψ(ρ) = (1 − δ)H :

ρ(2 log H + log e) + φ(q, κ, ν, λ) ≥ (1 − δ) · H,

log ρ ≥ log ((1 − δ) · H − φ(q, κ, ν, λ)) − log (2 log H − log (e)),

∴ ρ ≥ (1 − δ)H − φ(q, κ, ν, λ)
log H − log (e) + log (μ) + log (1/δ)

,

since μ = δH.

Corollary 2. Fix δ > 0 and let ψ(ρδ) − (1 − δ) · H = 0.

E[L(f(x1), ..., f(xq))] ≥ ρδ · (1 − 2−δH).

Proof. By Markov’s inequality:

Pr[L(f(x1), ..., f(xq)) ≥ ρδ] · ρδ ≤ E[L(x)],

(1 − Pr[L(f(x1), ..., f(xq)) < ρδ]) · ρδ ≤ E[L(f(x1), ..., f(xq))].

Proof. (Proof of Theorem 1). Required to compute q iterations of the MultiExp
function. Each iteration includes ν multiproducts over random bases, with the
indices also sampled from [2λ].

Using c oracle queries to do this corresponds to knowledge of an addition
chain of length c containing all of F = (f(x1), ..., f(xq)) with xi ∈ [2λ]κ. There-
fore, the probability that we compute F for x ∈R [2λ]κ×q with less than c queries
is upper bounded by the probability that L(F ) ≤ c.

Fix δ > 0. Lemma 2 states that ∃cδ s.t. this probability is negligible in
μ := δκνqλ for c ≤ cδ. One function computation of dimension ν with κ inputs
has an upper bound on the expected number of multiplications of:

min (κ, ν) · λ +
κνλ

log (κνλ)
· (1 + o(1)).

Corollary 2 implies that:

ε ≤ 1 − q−1 ·
(

min (κ, ν) · λ +
κνλ

log (κνλ)
· (1 + o(1))

)−1

· (1 − 2−δκνqλ) · cδ

≤ log (q) + δ log(κνλ) + o(1)
log (κνqλ)

≤ log (q) + o(1)
log (κνqλ)

,

where we have taken δ ≤ 1/ log (κνλ).

Proof. (Proof of Theorem 4). We know that the NIP has a PKE extractor from
its security proof and so A can extract two witnesses almost surely using extrac-
tor χPKE

A . If the polynomials are distinct, so are their witnesses. This follows
directly from the fact that, since π1 �= π2, either (1) one of ui(X), vi(X), wi(X)
differs in one of the proofs, or (2) the extracted witnesses differ. Since the pred-
icate is the same, it follows that the witnesses must differ.
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Lemma 3. Let HP = {HG
P,λ}λ∈N+ be a family of efficiently computable func-

tions for which each HG
P,λ : {0, 1}λ → G is weakly collision-resistant. L(HP ) is

hard single-witness.

Proof. (Proof of Lemma 3). Define S in the natural way: fix λ ∈ N+ and define
S to randomly sample an element x ∈ {0, 1}λ, outputting (HP,λ(x), x). The
sampler is efficient by the efficiency of HP,λ(x), and (HP,λ(x), x) ∈ RL(HP,λ)}
by definition. Witness intractability (WI) follows from the collision resistance of
HP,λ on constant-size inputs. If some A exists that violates WI, then running S
on 1λ and then A on S(1λ) and 1λ, we non-negligibly find a collision in HG

P,λ.

Proof. (Proof of Theorem 5). The MaskedHash QAP has 4N(k + 1) interme-
diate witness variables (and 8N(k +1)+2k constraints) which admits witnesses
from a sampler S where the seed ρ is uniformly random and so all witness
variables (with full support) also look random by the randomness of the group
encoding. This is as the intermediate values are distinct powers of a group ele-
ment that is random due to ρ and the independence of the Ij index elements. By
unique witness extractability and single witness hardness of CRT functions, all
valid witnesses have a unique encoding and hence a unique witness polynomial
h.

We start with � instances of N k-bit hash evaluations from S, and require �
valid proofs. We reduce to the 4N(k+1)-length MultiExp problem for � instances
and g equal to the function evaluating the representation of h given the witness
elements. We provide � of the 4N(k + 1) intermediate witness variables and the
corresponding 9 sets of bases to the MultiExp function. The representation of h
will be unique w.r.t. the witness (since the instance is single witness hard) and
thus look random due to the inputs. Note that μ = 8N(k + 1) + 2k. We finally
perform a linear in � number of multiplications to add any witness variables
that were not included (i.e. not randomly distributed). Since the MultiExp index
distributions are also random, a proof verifies iff the MultiExp solution is valid.

Conversely, given � (4N(k + 1), 8N(k + 1) + 2k)-length MultiExp instances
of dimension 10 with inputs and bases sampled from the QAP’s sampler and
proving key respectively, we reduce to computing � proofs for N k-bit hash
evaluations. This is because the unassigned witness variables can be discerned
from the auxiliary input to g, which comes from the QAP sampler. By the
uniqueness of the proof’s encoding, the set of � valid proofs will have to equal the
MultiExp instances after a linear in � number of operations to ‘undo’ products
by any of the additional variables.
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Abstract. This paper explores a modular design architecture aimed at
helping blockchains (and other SMR implementation) to scale to a very
large number of processes. This comes in contrast to existing mono-
lithic architectures that interleave transaction dissemination, ordering,
and execution in a single functionality. To achieve this we first split the
monolith to multiple layers which can use existing distributed comput-
ing primitives. The exact specifications of the data dissemination part
are formally defined by the Proof of Availability & Retrieval (PoA&R)
abstraction. Solutions to the PoA&R problem contain two related sub-
protocols: one that “pushes” information into the network and another
that “pulls” this information. Regarding the latter, there is a dearth of
research literature which is rectified in this paper. We present a family
of pulling sub-protocols and rigorously analyze them. Extensive simula-
tions support the theoretical claims of efficiency and robustness in case
of a very large number of players. Finally, actual implementation and
deployment on a small number of machines (roughly the size of sev-
eral industrial systems) demonstrates the viability of the architecture’s
paradigm.

1 Introduction

Blockchain systems are currently supporting a trillion-dollar economy. New use
cases emerge every day and with the promise of “Web 3.0” powering the future
digital societies, the number of users grows rapidly. Nevertheless, more than
a decade after Bitcoin’s invention, blockchains’ scalability remains one of the
prevalent problems. This problem exists in two dimensions. First, the number of
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transactions per second a blockchain can process with low latency, enabling real-
time payments as well as robustness under high load. Second, the level of decen-
tralization of the system that manages to achieve that high performance. This
is important even in permissioned settings since to increase trust blockchains
should be as decentralized as possible.

Most of the implementations of blockchain protocols in a permissioned set-
ting are currently using leader-based SMR protocols such as PBFT [12], Ten-
dermint [7], Hotstuff [40], and Jolteon [23]. Although Tendermint and Hotstuff
reduce the total load of the system when the leader is good to O(n), they are still
challenging to scale. This is because of the monolithic architecture proposed by
current SMR designs, where the leader is expected to propose already executed
valid operations and disperse them directly to all nodes on the critical path,
quickly using up the computing, storage, and networking resources of the leader
node.

One good approach to tackle the network bottleneck is to reduce the traf-
fic on the critical path by running consensus on the metadata instead of on
the full blocks. This is evident by its abundant use in literature and industry
(e.g., [5,7,12,17]). In many works, achieving consensus on the metadata and dis-
seminating the full blocks are deeply intertwined (which may help performance
in a particular system but hinders attempts to reuse in other systems). Some
works gain efficiency mostly thanks to not being deployed in real adversarial
settings. If, for example, we use a gossip network to disseminate the block like
Tendermint [7] or Filecoin [39] then the liveness of the consensus is dependant
on the performance and robustness of the gossip network which in their majority
are not Byzantine Fault tolerant

Nevertheless, the idea of splitting responsibilities is a natural one, for exam-
ple, Narwhal [17,37] embed a mechanism to disseminate the data to ensure
its future availability and then causally order the meta data to form a mem-
pool for consensus. Narwhal reports a tremendous speedup over the standard
approach, however, since the data dissemination mechanism is deeply embed-
ded in the code it is not trivial to modify it and to explore possible trade offs
with other implementations. In this paper, we explore a modular SMR architec-
ture that composes existing sub-protocols towards building an SMR. This allows
for better usage of resources and exposes a key unexplored bottleneck, that of
post-ordering retrieval of data. Specifically, we split the responsibilities of data
dissemination, data ordering, and data execution into different modules. Data
dissemination is done through a disperse&retrieve module that can be imple-
mented by any Asynchronous Verifiable Information Dispersal (AVID) proto-
col [10]. Data ordering is done through any kind of Byzantine Atomic Broadcast
(AB) protocol [10,19,28,35] and execution is done through any deterministic
execution engine [1,4,26,38].

Once we have this explicit layering it becomes apparent that there is
a gap of research on the retrieval step. This step is supposed to take the
totally ordered proofs of availability that the AB outputs and retrieve the
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actual data to be executed. Current AVID protocols focus on scaling the dis-
perse phase, but the retrieval protocols either ask the initial source for the
data or collect from a supermajority of parties error-corrected chunks. Both
of these protocols impose an O(n) cost per node for retrieval and do not
try to load-balance. We address this gap in the literature with our scalable
retrieval protocol; we investigate how to efficiently run the retrieve sub-protocol
of AVID. Unlike existing designs that cost O(n) messages per node, we show
how, using a probabilistic retrieval algorithm, we achieve complete retrieval
with an expected O(log n) messages per node.

The Proof of Availability and Retrieval Problem
In a nutshell, the PoA&R problem detaches the act of “sending” a block from
the part in which nodes “receive” it. Thus, a significant amount of the costs is
transferred from the critical path to a time of the recipient’s choice. To do so,
each block is translated into a (short) proof π and when a node aims to inform
the network of a new block of information (or transactions in our blockchain
example) it disseminates π instead of the actual block. This can be done, for
example, by broadcasting π, which is cheaper than broadcasting the block itself
when using an efficient proof generator. A node that receives π stores it and is
essentially convinced that when the actual block is needed it will be retrievable.1

To obtain the block itself, processes can retrieve it at their own time. In this
sub-protocol they reconstruct the initial block, using the stored proof π. Since
we alleviate the costs of dispersing the block’s evidence into the network, the
act of retrieving the block must incur additional costs. However, this kind of
paradigm equips systems designers with the flexibility to decide when to under-
take such costs. Specifically in blockchains systems, in times of congestion pro-
cesses can progress by making consensus decisions on proofs alone, whereas the
block retrieval and execution can be updated when the load decreases. Retrieval
can also catch up when leaders are slow or changing.

In our proposed solution, the creation of the proof π is done using an erasure
code scheme and a vector commitment scheme. When a process aims to share a
block, it uses erasure coding to create a vector of n code words. It then creates
a commitment that binds each word to the entire vector and sends each word
(together with the commitment) to a different process. Processes that receive a
commitment return a signature to the sender. Once the sender collects “enough”
signatures, it forms the proof π that the block can be reconstructed. This is the
basic “push” part in several AVID protocols [10,19,35].

In existing AVID protocols, retrieving the block (corresponding to the
proof π) from the network is done via collecting a large number of code words
and reconstructing the block. This might be too costly in large-scale systems.
Instead, for the retrieval part, we propose a randomized solution that is deter-
ministically safe and provides liveness with probability 1. Our proposed protocol
incorporates vector reconstruction with random sampling. That is, a process that
attempts to retrieve a block, occasionally samples a random subset of processes
1 Notice that, unlike for AVID, the node does not need to reliably broadcast π. The

AB layer takes care of that.
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and asks them for the block. Clearly, when processes first try to retrieve the
block, the creator of the block is the only process that knows it, thus, more com-
munication rounds are needed. However, the spread of information is typically
very fast. This intuitive claim is formally proved in Sect. 5. Moreover, we analyze
different sample sizes that allow for different trade-offs in the cost structure.

Main Contributions

– Considering a modular architecture for the design of blockchains, we recognize
a gap in research regarding the retrieval sub-protocol and present a family of
(possibly) probabilistic protocols that offer a variety of cost structures. In
particular, by using a probabilistic approach, we can reduce the expected cost
of messages per node from Θ(n) to Θ(log n).

– We analyze the behavior of our protocols both theoretically and with extensive
simulations for large-scale systems. For smaller-sized systems, we implement
and deploy our architecture on a network of AWS machines and show its
viability in practice.

2 Model

We consider a standard asynchronous message-passing model with Byzantine
faults and a computationally bounded adversary [8,9,32]. There is a fixed set Π
of n = 3f +1 processes, at most f of them are faulty. These faulty processes are
called Byzantine and are not bound to the protocol. The rest of the processes are
correct and act according to the protocol. Until a process first deviates from the
protocol, it is called so-far correct. Each pair of processes is connected via reliable
albeit asynchronous links. That is, messages among correct processes eventually
arrive but there is no bound on message delays. We consider an adversary that
is exposed to all of the network communication, fully controls the Byzantine
processes, and can adaptively choose which processes to corrupt. In particular,
even after a so-far correct process has sent a message, if the message is yet to
be delivered the adversary can view this message, choose to corrupt the sending
process, and change/delete the message.

We model the computations made by all system components as probabilistic
Turing machines and bound the number of computational basic steps allowed
by the adversary by a polynomial in a security parameter λ. We further assume
a trusted setup, namely, before the start of the protocol, each party is dealt its
own secret key share and the public keys as internal states. This can be achieved
by a trusted dealer or distributed key generation protocols [2,18,25,30].

Our protocols employ several standard cryptographic primitives with the
following abstractions. (A reference to a full definition is given per primitive.)
Erasure Code. We use an erasure code scheme that consists of two algorithms,
EC.encode and EC.decode. EC.encode takes a block b and returns a vector of n
code words such that any n − 2f out of the n code words suffice for EC.decode
to fully reconstruct the original block b. (See [6].)
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Threshold Signature. This scheme allows processes to combine different sig-
natures on the same message, into a single compact signature. It consists of
the SignShare and Combinet algorithms. The first is used by each individual
to produce its individual signature, while Combinet is used to produce a single
compact signature from t valid individual signatures. Individual/full signatures
are O(λ)-bit long. (See [31].)
Vector Commitment. The vector commitment (VC) scheme is comprised of
three algorithms: 1) VectorCommit(c) which takes an n-element vector c and
returns a commitment to that vector vcsig; 2) PositionalCommitProof(c, vcsig,
ci, i) which takes the vector c, its commitment vcsig, the element ci and its posi-
tion i in c, and returns a positional proof πi; and 3) VerifyElement(vcsig, ci, πi)
that uses the proof πi to check whether ci is indeed the ith element in the vector
whose commitment is vcsig. Both vcsig and πi bit lengths are in O(λ). (See [13].)

3 Modular SMR Architecture

We propose a layered architecture for SMR that enables plug-and-play use of
PoA&R, Atomic Broadcast, and deterministic execution protocols (see Fig. 1).
We first define the proof of availability & retrieval abstraction that is required for
our architecture in a format that conforms with distributed-computing literature.
A similar definition, in a more information-theoretic format, can be found in a
concurrent work [35]. The rest of the paper focuses on the PoA&R protocol.
For completeness, we also briefly describe below the rest of the layers in the
architecture.

3.1 The Proof of Availability and Retrieval Problem Definition

In this section, we formally define the Proof of Availability & Retrieval (PoA&R)
abstraction. This abstraction should capture the ability to disseminate a block
in a fashion that enables reducing the cost on the critical path (the consensus
module). Roughly speaking, we detach the act of “sending” a block from the
part in which processes “receive” it. Thus, a significant amount of the costs can
be transferred from the critical path to a time of the recipient’s choice. The
PoA&R abstraction exposes an interface with two operations and two callbacks:

PoA push(b): an operation invoked by a process to push (disseminate) a proof
for block b.
PoA commit(π): a callback triggered to commit a proof π. (For the availability
of a block b.)
PoA pull(π): an operation invoked by a process to pull (retrieve) a block that
corresponds to the proof π.
PoA deliver(b): a callback triggered to handle the delivery of a block b.

We only define the single-sender problem (with a given known sender ps),
since this specification can easily be extended to the case with multiple senders
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that push/pull blocks. For the multiple-senders problem, many single-senders
instances can be active in parallel (by using source tags, for example).

We assume the existence of two functions CreateProof and Verify that
satisfy the following conditions. For any arbitrary blocks b, b1 and b2, it holds
that CreateProof(b1) = CreateProof(b2) iff b1 = b2, and Verify(b, π) = true
if π = CreateProof(b) and Verify(b, π) = false otherwise. Given these stan-
dard cryptographic functions, the PoA&R problem is defined by the following
properties that must be satisfied at all the possible executions.

Definition 1. Proof of Availability & Retrieval:

– Push-Validity: If ps is correct and invokes PoA push(b), then every correct
process eventually performs PoA commit(π) such that Verify(b, π) = true.

– Pull-Validity: If a correct process pi had performed PoA commit(π) and
invokes PoA pull(π), then:

(liveness) – pi eventually performs PoA deliver(b) with probability 1.
Moreover,
(safety) – b and π satisfy Verify(b, π) = true.

Our definition separates the Pull property into a safety part and a live-
ness part. This facilitates the analysis of deterministically safe protocols that
are probabilistically live. Most notably, since PoA&R is defined as part of a
blockchain architecture, we are able to capture exactly what is necessary with-
out redundant properties. For example, we do not need the agreement property
of AVID, which in turn enables us to design more efficient protocols.

Complexity Measures. A PoA&R protocol satisfies the validity and termination
properties even in cases of asynchrony and Byzantine faulty processes, which
means it is robust by design. However, executions with failures and asynchrony
are not the majority in the routine operation of systems. In fact, the “nice case”
in which no failures occur and the network is almost synchronous can be quite
common in practice. It is therefore desired to design systems that minimize
costs in these common “nice” conditions while allowing for increased costs when
having to deal with troubles. We assume that the common-case execution of the
considered blockchain system has the following properties:

– Good processes. All process are correct.
– Synchrony. The roundtrip of messages in the network is within Δ.
– Concurrency. Processes start the pulling sub-protocol at the same time.

The last assumption is crucial for the stochastic analysis of the protocols. It is
a justified approximation since in the normal modus operandi a process pulls
immediately after the consensus decision, and synchrony causes these decisions
to happen within a short time span at almost all processes.

We henceforth use the following (per process) complexity metrics:
Message Complexity. The expected number of messages a process sends dur-
ing a common-case execution.
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Bit Complexity. The expected number of bits a process sends during a
common-case execution.
Round Complexity (Running Time). We define an asynchronous round in
the standard way (see [11]). Essentially, this measurement counts the number
of messaging “rounds”, when the protocol is embedded into a lock-step timing
model. The round complexity is then the expected number of asynchronous
rounds it takes a process to complete the protocol (deliver a block) during a
common-case execution.

3.2 Atomic Broadcast

The classic definition of Atomic Broadcast states that every execution of a pro-
tocol solving AB should satisfy:

– Validity: If a correct process broadcasts msg then all correct processes even-
tually deliver msg.

– Agreement: If a correct process delivers msg then all correct processes even-
tually deliver msg.

– Integrity: msg is delivered by a correct process at most once, and only if it
was previously broadcast.

– Total order: If two correct processes deliver both msg and msg′, they deliver
them in the same order.

However, it is well-known that AB is impossible to solve in an asynchronous
model even with one possible crash failure [22]. Since we are dealing with an
asynchronous setting with Byzantine failures, these properties must be relaxed.
There are varied relaxations and protocols solving them in the literature, e.g., [3,
12,23,29,34,40]. We leave the choice of desired relaxation and implementing
protocol for the system designer, but remark that this crucial choice determines
the basic theoretical guarantees provided by the SMR system.

3.3 Execution

The execution layer simply takes as input the total ordered set of operations
and updates the state. The only property required by this layer to implement
SMR is that of determinism. Solutions such as [14,16,21,36,38] can be used to
provide a scalable execution layer.

3.4 Bringing Them All Together

Our SMR works in layers. First, every process that has a batch of operations
transmits it through PoA&R and collects a proof of availability π. These proofs
are then submitted to the AB layer which totally orders the proofs without
having to incur the cost of handling the data. The totally ordered proofs are
then fed into the Retrieval sub-protocol that recovers any batches not locally
available at each process. Once a batch is available and at the head of the
ordering queue, the process locally executes it and updates the state. Figure 1
gives an overview of the architecture.
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Fig. 1. Overview of the Layered SMR approach

4 Proof of Availability and Retrieval Protocols

Many protocols can implement the abstraction of Definition 1, for example,
AVID protocols. As we have observed, the retrieval (pulling) part significantly
affects the performance of the system. Thus, we propose a PoA&R module with
a family of pulling sub-protocols that offer different trade-offs in terms of time
vs. communication costs. Clearly, any pulling sub-protocol depends on the dis-
persal (push) sub-protocol, therefore, it is defined with relation to a given push-
commit protocol.

In a trivial PoA&R scheme, when a process wishes to push a block b, it simply
sends it to all processes. Upon receiving the block, a correct process commits b
as the proof for itself (i.e., CreateProof(b) = b), and when it wants to pull
it, it immediately delivers b. It is straightforward that this simple algorithm
satisfies Definition 1 and is also optimal in the number of messages and the round
complexity. However, it is far from being optimal in terms of bit complexity. More
importantly, this solution does not allow the desired goal of removing the load
from the consensus module. That is, processes take the block itself as an input
for a single consensus decision. In typical systems, a single block contains a large
number of transactions in order to increase throughput, which implies large block
sizes. This renders the above sub-protocol impractical for large systems with a
high level of decentralization (i.e. large n).

To bypass this problem several works suggested using erasure coding and
vector commitments [32,35] in their protocols, that can be interpreted as push-
commit sub-protocols. We use this single (standard) push sub-protocol and focus
instead on the pulling sub-protocol. For completeness, we first detail the stan-
dard push-commit protocol and briefly explain the standard deterministic pull
protocol. We then present a pulling protocol that improves the standard one by
satisfying pull-termination with probability 1 instead of deterministically.

4.1 Erasure Coded PoA&R

A full pseudo-code can be found in the long version of the paper [15].
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Push-Commit Protocol. In this algorithm, the sender erasure-codes the
block b into n code words from which any n − 2f words suffice for reconstruct-
ing b. These n code words are treated as a vector from hereon. The sender then
uses a vector commitment mechanism to create a binding proof for each vector
element. Each code word and proof are then sent to a process corresponding to
the vector position. A process that receives a valid vector commitment proof,
returns to the sender a signed share for a threshold signature on the vector sig-
nature (denoted as vcsig). When the sender collects enough shares (n − f this
time), it combines them into a valid threshold signature on vcsig and sends that
signature to all as the proof. A process that receives a valid threshold signature
commits it as a “proof for the availability of a block”.

The bit and message complexities of the protocols are in Θ(|B|+nλ) and Θ(n)
respectively. Since the sender must transmit Ω(|B|) bits and must send at least f
messages to enable the correct reconstruction of b, the Push-Commit protocol is
asymptotically optimal in the number of bits it communicates as well as in the
number of messages.2

Deterministic Pull-Deliver Protocol. A natural pull-deliver protocol that
complements the push algorithm is as follows. A process that initiates
PoA pull(π) sends to all other processes a request to reconstruct the block asso-
ciated with π. Each of the processes answers with its share of the data and the
vector commitment proof attached to it. When the puller collects f + 1 valid
replays, it reconstructs b. It then verifies that b is valid by computing the vector
commitment procedure on b and comparing the resulting vcsig to the one in π.
If the block is valid, it can be delivered. Otherwise, deliver ⊥ which indicates
that the sender of the block is faulty and no valid block exists.

This algorithm costs Θ(|B| + λn) bits per puller and is very efficient in
moderately large systems where n < |B|. For larger-scale systems, however, the
linear number of messages per puller might hinder performance. A “strawman”
solution to this issue is the following. A puller first asks the sender for the block.
If the sender does not respond timely, then the puller initiates the deterministic
pull-deliver protocol. Although this protocol seems to cost on average only a
single message and O(|B|) bits per puller, it fails in practice because many pullers
ask the sender for the block concurrently, thus causing it to stall and become a
fatal bottleneck. This is because there is a process (the sender) that experiences
an Ω(n) message and Ω(n|B|) bits complexity. The acute imbalance of costs leads
to a severe bottleneck in large systems. We deal with this imbalance problem by
proposing a family of randomized pull-deliver protocols. These protocols combine
rumor spreading in a “reverse gossiping” manner for common-case performance
together with erasure-code reconstruction to ensure safety.

2 We note that the cryptographic primitives for vector commitment might be heavy
in local computations and could slow down a system. In comparison, simpler com-
mitment primitives such as Merkle trees [33] can prove a better match as long as n
is not “too large”. However, they incur a Θ(λ log n) bit complexity per commitment
in comparison to the constant (λ) complexity of the vector commitment primitive.
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Probabilistic Pull-Deliver Protocols. A process that initiates PoA pull(π)
and does not have the block locally does the following. It flips a (biased) coin
with a probability of k/n of getting heads. If heads is flipped, then the puller
sends a reconstruction request to all. Regardless of the coin’s outcome, the puller
randomly selects a set S of k processes and sends them a block request (for the
transmission of the block associated with π). A process that receives a recon-
struction request answers with its code word. A process that receives a “block-
transmission” request answers with the block if it has it, otherwise, it informs
the puller that it does not have the block (via a “NACK” message). If the puller
receives a “NACK” from a process pj ∈ S, it removes pj from S and randomly
chooses a new process, sends this process a block-transmission request, and adds
it to S. If the puller does not receive any reply from pj ∈ S within some prede-
fined time (say Δ), it randomly chooses a process not in S, sends this process a
block-transmission request, and adds it to S. After every new k block requests,
the puller flips the coin again to decide whether to attempt a reconstruction
from all or not.

These pull protocols offer a variety of cost structures for the system designer
to choose from. The cost is comprised of the expected message, bit and round
complexities in the common case. These complexities are determined by the
choice of k, as we show in the theoretical analysis in Sect. 5. While using our
probabilistic pulling protocols cannot significantly reduce the bit complexity in
comparison to the deterministic counterpart, in terms of expected message com-
plexity we can gain an exponential improvement. Specifically, we prove that for
k ∈ Θ(1) we get a message complexity in O(log n), for k ∈ Θ(log n) the message
complexity is in O

(
log2 n

log log n

)
, and in for k ∈ Θ(

√
n) we get a message com-

plexity in O(
√

n). However, the reduced message complexity does not come for
free. Either the round complexity increases (for k ∈ Θ(1)), or the bit complexity
increases (for k ∈ Θ(

√
n)). Therefore, different choices of k fit different systems

according to where the system bottleneck is. (See Table 1.)

Table 1. Expected Costs per Process for different choices of k

k values Messages Bits Rounds

k ∈ Θ(1) O(log n) O(|B| log n + λ log n)† O(log n)

k ∈ Θ(log n) O
(

log2 n
log log n

)
O

(
|B| log n + λ log2 n

log log n

)
O

(
log n

log log n

)

k ∈ Θ(
√

n) O(
√

n) O(|B|√n) O(1)

k = n∗∗ O(n) O(|B| + λn) O(1)

†Only for the sender, others’ expected bit-complexity is actually in
O(|B| + λ log n).
** Deterministic Pull-deliver (without block requests).
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5 Theoretical Analysis

We analyze the complexity of the common-case in which all processes attempt to
synchronize at the same time, the sender is correct, and in addition, the network
is in a stable “nice” period. Concretely, we analyze the complexity in cases
where no faults occur and a message round-trip time takes exactly 1 time-unit
throughout the network.

5.1 One Sample Per Round

With k = 1 (a single sample per round), our model resembles the random
phone-call model of [20]. There is an elegant analysis for address-oblivious rumor
spreading in this model that was made by Karp, Schindelhauer, Shenker, and
Vocking in [27]. Our analysis is inspired by their techniques and therefore shares
similar structure. Nevertheless, their analysis yields slightly different quantities
than ours, since they consider a protocol in which processes both actively tell
the rumor (send the block) as well as passively inform others who ask for the
rumor. In contrast, we allow only to passively inform those who ask. Moreover,
the analysis in [27] only holds for large enough n, a restriction we do not have
since we bound the expected values rather than the probability of higher costs.

Theorem 1. In a common-case execution of the pull protocol with k = 1, the
pulling terminates within O(log n) expected rounds.

Proof. A complete proof can be found in the long version of the paper [15]

From Theorem 1 we immediately get the following.

Corollary 1. In the common-case,

1. the expected number of messages per process is in O(log n), and
2. the expected number of bits per process is in O(|B| + λ log n) with only the

sender having a higher load of Θ(|B| log n + λ log n).

We remark that since we use only passive spreading without actively
gossiping, our expected bit complexity is better than that of [27] which is
Θ(|B| log log n+log n) per receiving process (and the same as ours for the sender).
Moreover, we are able to bypass the lower bound for address-oblivious protocols
which is also presented in [27]. We do so by analysing the expected cost rather
than the cost w.h.p. Applying a Chernoff bound on our result will show that we
are optimal for the cost w.h.p.

5.2 Sampling logn per Round

For a different trade-off, one may choose the pulling protocol with k ∈ Θ(log n).
We show here the resulting expected costs of such choice.
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Theorem 2. In a common-case execution of the pull protocol with k = log n,
the pulling terminates within O

(
log n

log log n

)
expected rounds.

Proof. The spread of information can be modeled by a Markov process, with
states {1, . . . , n} which represent how many process currently have the block.
Denote the random variable Xr ∈ {1, . . . , n} to be the number of informed
processes at the end of round r and Yr � n − Xr is the number of uninformed
processes at the end of round r. Observe that Xr ≥ Xr−1, X0 = 1, and that
if Yr = 1 then Yr+1 = 0 deterministically. Given Xr we have that Δr+1 �
Xr+1 − Xr follows a binomial distribution with n − Xr experiments and some
success probability Pr. I.e., Δr+1 | Xr ∼ B(n − Xr, Pr), and we wish to bound
Pr from below.

For each of the Yr = n − Xr experiments we denote by S the sampled set of
processes. |S| = log n and the samples are without replacement which increases
the hitting probability. Therefore, Pr is bounded from below by sampling with
replacement.

Pr = P (at least one out of log nsamples without replacement
hits one ofXroptions)

≥ P (at least one out of log nsamples with replacement

hits one ofXroptions) � P̃r.

(1)

By the inclusion–exclusion principle

P̃r =P (
log n⋃
i=1

a sample from n-1 possibilities hits on ofXroptions)

− P (at least two samples fromn − 1possibilities hits
one ofXroptions)

≥ log n · Xr

n − 1
−

(
log n

2

)(
Xr

n − 1

)2

=
Xr

n − 1

(
log n − (log n)(log n − 1)

2
· Xr

n − 1

)
,

(2)

where the last inequality is due to the union bound which implies that the

probability of at least two samples hitting is at most P

⎛
⎝

(log n
2 )⋃

i=1

(
Xr

n−1

)2

⎞
⎠. Now,

for Xr ≤ n
log n we have that

P̃r ≥ log n · Xr

n − 1

(
1 − log n − 1

2
· Xr

n − 1

)

≥ log n · Xr

n − 1

(
1 − 1

2

)
=

log n

2
· Xr

n − 1
.

(3)
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And using the expectation of a binomial variable, we obtain

E[Xr+1 | Xr] = Xr + E[Δr+1 | xr] = Xr + (n−Xr)Pr = (1−Pr)Xr + nPr

≥ n · Pr ≥ n · P̃r ≥ n · log n

2
· Xr

n − 1
≥ log n

2
· Xr,

(4)

and by the law of total expectation

E[Xr+1] ≥ log n

2
· E[Xr]. (5)

Let r1 be the first round at the end of which Xr ≥ n
logn . By applying (5)

recursively we have

n ≥ E[Xr1 ] ≥
(

log n

2

)r1

· E[X0]. (6)

Taking the log of both sides yields

log n ≥ r1 · log
(

log n

2

)
⇐⇒ r1 ≤ log n

log log n − 1
. (7)

We thus have that E[r1] ∈ O
(

log n
log log n

)
.

We now turn to analyze the behavior of Yr � n − Xr. It follows a binomial
distribution Yr+1 | Yr ∼ B (Yr, Qr), where Qr is the probability that all of the
log n samples miss. Again we bound it using sampling with replacement and get

Qr ≤
(

Yr − 1
n − 1

)log n

≤
(

Yr

n

)log n

. (8)

Recall that at the end of round r1 it holds that Xr1 ≥ n
log n and therefore,

Qr1 ≤
(

Yr1

n

)log n

≤
(

n − n/ log n

n

)log n

=
(

1 − 1
log n

)log n

≤ 1
e
. (9)

This, in turn, implies

E[Yr1+1 | Yr1 ] = Yr1 · Qr1 ≤
(

n − n

log n

)
· 1
e

≤ n

2
. (10)

We denote the first round at which Yr ≤ n
2 by r2. According to the above, it is

expected that r2 − r1 ∈ O(1).
Moreover, denote the round when Yr ≤ 1 by r3. We have that

E[Yr2+1 | Yr2 ] = Yr2 · Qr2 ≤ Yr2

(
Yr2

n

)log n

≤ n

2
·
(

1
2

)log n

=
n

2
· 1
n

≤ 1.

(11)
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Clearly, E[r3 − r2] ∈ O(1). Finally, denote by rend the round at the end of
which all processes have been informed. We recall that if Yr ≤ 1 then Yr+1 = 0
deterministically. As a result, the linearity of expectation yields

E[rend] ≤ 1 + E[r3] = 1 + E[r3 − r2] + E[r2 − r1] + E[r1]

= 1 + O(1) + O(1) + O

(
log n

log log n

)
,

(12)

and E[rend] ∈ O
(

log n
log log n

)
.

This result implies:

Corollary 2. In the common-case,

1. the expected number of messages per process is in O
(

log2 n
log log n

)
, and

2. the expected number of bits per process is in O
(
|B| log n + λ log2 n

log log n

)
.

5.3 Sampling
√
n per Round

For the fastest termination, that is within O(1) expected asynchronous rounds,
it is possible to use our retrieval protocol with k ∈ Θ(

√
n) samples. To prove

this we use a Markov process, similarly to the previous proofs, with a binomial
state-transfer distribution. Specifically, Δr+1 | Xr ∼ B(n − Xr, Pr) where we

bound Pr to be at least 1 − e
− Xr√

n . Roughly speaking, since E[Xr] ∈ Ω(
√

n),
we will get that, in expectation, all processes complete their pull in a constant
number of rounds.

Theorem 3. In a common-case execution of the pull protocol with k =
√

n, the
pulling terminates within O(1) expected rounds.

Proof. The complete proof can be found in the long version of the paper [15].

The consequent message and bit complexities for a process are as follows.

Corollary 3. In the common-case,

1. the expected number of messages per process is in O(
√

n), and
2. the expected number of bits per process is in O(|B|√n).

5.4 Simulations

We complement the rigorously proven complexities with extensive simulations
for systems with a large number of participants. All of the simulations begin
with only a randomly chosen sender that posses the block while all other pro-
cesses have their corresponding code word. We measure the time at which the
last process is informed (i.e., delivers the block). For each system, we run 5 sim-
ulations and average the end results. The outcome is on par with the theoretical
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(a) Common-case (b) Sync. with faults (c) Async. no failures (d) Async. + faults

Fig. 2. Simulation results for the retrieval sub-protocol in different systems. The x-
axis states the number of processes n, and the y-axis the time in units of Δ (the
expected roundtrip delay). The graphs depict the time at which the last correct process
delivers the block as a function of n. The network assumption are: (a) The assumed
common case, i.e., synchrony and no failures; (b) Synchrony but 1/3 non-responsive
processes; (c) Asynchronous delay that follows a Poisson distribution with parameter Δ
and no failures; and (d) Asynchronous delay that follows a Poisson distribution with
parameter Δ with a 1/3 of the processes that are non-responsive. The system sizes
always vary between 10 to 104 processes.

expectations which are depicted by the dashed lines. Moreover, since our proto-
cols are address oblivious and do not rely on synchrony for correctness, they are
very robust by design. To demonstrate this, we have also simulated a degraded
form of asynchrony by employing stochastic delays that follow a Poisson distri-
bution and set Δ to be the expected delay. Besides the fact that it allows for
unbounded delays, the choice of the distribution is arbitrary. (We make no claim
as to what best models delays in practical networks.) The results in Figs. 2c and
2d suggest that, for Δ that equals the expected delay, the protocols are robust
to asynchrony and achieve essentially the same complexities as in synchronous
settings. There is even a slight improvement in comparison to synchronous net-
works, possibly because fast processes are able to answer slower processes in
the same “asynchronous round” when they first obtain the block. Finally, we
have also simulated the protocol’s behavior under faults. Specifically, we run
simulations in which a random 1/3 of the processes have crashed. The results
appear in Figs. 2, and 2d. Again, the simulations indicate the robustness of our
protocols, with only a 3

2x slowdown in performance which is expected since on
average third of the samples are wasted on faulty processes. To conclude, our
simulations suggest that the pulling sub-protocol is as efficient as expected and
is robust under different network conditions.

There are several questions that have arisen during this work. One natural
direction to consider is more complex choices for S, such as giving higher prob-
ability to sampling a process that we have not previously sampled, or randomly
choosing k instead of having it fixed a priori. However, it is not obvious how
to analyze such stochastic mechanisms. More practical directions to explore are:
what choice of PoA&R module best suits a system based on the system’s size?
Can we use cloud-based solutions for an optimistic and more scalable PoA&R?
Finally, while our definition covers some settings, others are left to be defined,
for example, what are the properties of PoA&R in a permissionless setting?



Proof of Availability and Retrieval in a Modular Blockchain Architecture 51

On a general note, formally defining modularity in blockchains is an impor-
tant endeavour. It would facilitate combining contributions from different parts
of the community to establish a truly distributed ecosystem.
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Abstract. Motivated by the goal of building a cryptocurrency with
succinct global state, we introduce the abstract notion of a revocable
proof system. We prove an information-theoretic result on the relation
between global state size and the required number of local proof updates
as statements are revoked (e.g., coins are spent). We apply our result to
conclude that there is no useful trade-off point when building a stateless
cryptocurrency: the system must either have a linear-sized global state
(in the number of accounts in the system) or require a near-linear rate
of local proof updates. The notion of a revocable proof system is quite
general and also provides new lower bounds for set commitments, vector
commitments and authenticated dictionaries.

Keywords: Stateless Blockchains · Authenticated Data Structures

1 Introduction

Modern cryptocurrencies prevent double-spending attacks using a public,
append-only log called a blockchain. Classically, a blockchain records all transac-
tions, and validating a new transaction requires checking that it doesn’t conflict
with any prior transaction. This approach was first successfully deployed by
Bitcoin [22] though it was proposed earlier [14].

A challenge of the blockchain paradigm is that each validator traditionally
must store the entire state of the system. In Bitcoin, this consists of a set of
unspent transaction outputs (UTXOs), which has consistently grown and now
contains 80 million elements, requiring several GB to store. Ethereum’s state is
even larger [31], requiring roughly 35 GB to represent 200 million accounts.

The requirement that validators store this large (and growing) state raises
concerns about centralization if the state grows so large that only well-funded
organizations can afford to store it. As a result, most blockchain systems
impose strict limits on state growth, which in turn limit transaction through-
put. Famously, Bitcoin originally imposed a maximum size of 1 MB per block,
limiting throughput to about three transactions per second.
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The tension between throughput and state growth leads to a natural question:
can we achieve high throughput with a small (perhaps even constant-sized) global
state? This led to the proposal of stateless blockchain designs [27], although
this term is a misnomer: they typically assume validators store a store a small
commitment to the global state of the system (e.g., a Merkle root committing
to the set of unspent coins). Users wishing to make a transaction must publish a
witness that their transaction is valid given the current state commitment (e.g.,
a Merkle proof that a coin is included in the valid set). Validators can then
accept transactions without knowing the full state of the system. Since Todd’s
original proposal using Merkle trees, several other designs have been proposed
using Merkle-tree-based accumulators [6,16], RSA accumulators [4], and vector
commitments [12,18,26,28,30]. Stateless blockchains are distinct from succinct
blockchains [1,11,20] such as the Mina protocol [5]. Succinct blockchains use
verifiable computation to achieve O(1) storage and verification costs for light
clients, but still require validators to store the entire system state in order to
process new transactions and build (and prove correct) new blocks.

Unfortunately, all known stateless blockchain designs introduce a new prob-
lem: users’ witnesses can become invalid as other (unrelated) transactions update
the global state, requiring users to monitor the network and periodically refresh
their witnesses. This is a departure from the traditional blockchain model, in
which users can stay offline for long periods of time and then successfully create
and broadcast a transaction. This is not simply a matter of convenience; there
are important security benefits of supporting offline participation, as private keys
can be kept in air-gapped machines such as hardware wallets.

In this work we show that, regrettably, the trade-off between a large global
state and requiring frequent witness changes is fundamental. More specifically,
in Theorem 1 we show a lower bound on the global state size as a function of
the number of revoked statements and the desired maximum number of witness
changes. In Corollary 1, we show that there is no trade-off which does not require
either an (asymptotically) linear-sized global state or an (asymptotically) near-
linear number of witness updates as a constant fraction of coins are spent.

Model. To analyze the efficiency of stateless blockchains and similar authen-
ticated data structures, we introduce a new cryptographic notion: a revocable
proof system (RPS, Sect. 2). An RPS is a simple abstraction capturing a class of
schemes that involve a global state V encapsulating a set S of valid statements.
Correctness ensures that each valid statement si ∈ S has a corresponding proof
πi which can be efficiently verified given si, the public parameters, and the global
state. A subset T ⊆ S of the initial set of valid statements may later be revoked,
yielding an updated global state V ′. Security requires that these revoked state-
ments’ proofs no longer verify. This functionality is quite natural and captures
a wide range of useful cryptographic notions, including accumulators and vector
commitments. We discuss these connections in Sect. 4.

Contributions. Using our revocable proof system definition we prove a trade-off
between the size of the global state and the frequency with which proofs must
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be updated (Theorem 1). We do so using a compression argument: if the global
state is small and with constant probability there are few (≤k) proof updates, an
adversary can use the global state and a small amount of additional information
to encode the revoked set. We apply Shannon’s Coding Theorem to show a lower
bound on the size of the global state given the number of proof updates k.

As a corollary, we observe that there is no useful asymptotic trade-off between
the size of the global state and the number of proof changes: either the state
size is linear, or a (nearly) linear number of proofs must change (Sect. 3.1). As a
second corollary, we show that a useful notion of persistence (proofs of certain
statements never change) requires linear storage for these persistent statements.
In Sect. 4, we show that accumulators, vector commitments, and authenticated
dictionaries fit the framework of a revocable proof system and thus our lower
bound applies to them, giving results of independent interest.

Implications. Finally, we discuss the implications of our results on stateless
blockchain proposals (Sect. 5). We plot the minimum number of required witness
changes per day for blockchains with practical transaction rates and global state
sizes. For a blockchain with a transaction rate on the scale of Visa, the number
of witness changes is infeasibly large for any meaningfully compressed global
state. We discuss three ideas for mitigating the witness update issue and analyze
them in light of our impossibility result. The first idea is a versioning system,
which stores explicitly all transactions occurring during the current epoch and
consequently requires no witness updates within this epoch. The second is a
scheme where users lock up their coins for a period of time in exchange for
a guarantee that their witnesses will remain unchanged during that time. The
third and most promising is the introduction of new state-storing third parties,
which are neither users nor validators, called proof-serving nodes.

2 Model

Notation. We use λ to denote the security parameter. We use lg to denote a
logarithm with the base 2. Right → and left ← arrows denote the output of a
(possibly randomized) algorithm.

A revocable proof system (RPS) maintains a global state V , a valid set S,
and a set of proofs πi for each element si ∈ S which we’ll also call a statement.
The global state commits to the valid set, such that proofs of elements si in S
can be verified. More formally, a revocable proof system is a tuple of algorithms
(Setup,ComputeState,Revoke,Verify) where:

Setup(1λ) → pp is a randomized algorithm that takes as input 1λ, where λ is
the security parameter, and outputs public parameters pp.

ComputeState(pp, S) → V, (π1, π2, . . . , πn) is a deterministic algorithm that
takes as input the public parameters pp and a valid set S of size n. It outputs
the corresponding global state V and a list of proofs (π1, π2, . . . , πn) where
πi is the proof for si ∈ S.
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Revoke(pp, S, T, V, (π1, π2, . . . , πn)) → V ′, (π′
1, π

′
2, . . . , π

′
n)

is a deterministic algorithm that takes as input the public parameters pp,
the initial valid set S, a revoked set T ⊆ S, an initial global state V , and a
list of proofs for elements in S. It outputs an updated global state V ′ and
updated proofs.1

Verify(pp, V, si, πi) → {true, false} is a deterministic algorithm that takes as
input the public parameters pp, a global state V , a statement si, and a proof
πi. It outputs true or false.

A revocable proof system must be correct and secure. By correct, we mean
that genuine proofs for valid elements should verify against the corresponding
global state. By secure, we mean that it should be difficult to find a proof for
a revoked element; that is, it should be computationally hard for an adversary
to produce a revoked set such that a proof for a revoked element still verifies
against the updated global state. More formally, correctness and security are
defined as follows:

Definition 1 (Correctness2). A revocable proof system is correct if for every
set S, every set T ⊆ S, and every si ∈ S \ T ,

Pr

⎡
⎢⎢⎢⎢⎣

pp ← Setup(1λ)
V, (π1, π2, ..., πn) ← ComputeState(pp, S)

V ′, (π′
1, π

′
2, ..., π

′
n) ← Revoke(pp, S, T, V, (π1, π2, ..., πn))

Verify(pp, V, si, πi) = true
Verify(pp, V ′, si, π

′
i) = true

⎤
⎥⎥⎥⎥⎦

= 1

Definition 2 (Security). A revocable proof system is secure if for every p.p.t.
adversary A,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

pp ← Setup(1λ)
S, T, s∗, π∗ ← A(1λ, pp)

V, (π1, π2, ..., πn) ← ComputeState(pp, S)
V ′, (π′

1, π
′
2, ..., π

′
n) ← Revoke(pp, S, T, V, (π1, π2, ..., πn))
s∗ ∈ T

Verify(pp, V ′, s∗, π∗) = true

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl

3 Main Result

Our main result is an inequality describing the relationship between the size of
the global state and the number of proofs of valid statements which must be
1 Although for ease of notation the output includes n proofs, security dictates that

proofs for elements in T should not verify.
2 While correctness with probability 1 is standard for the schemes we consider, our

main result (Theorem 1) still holds for a relaxed notion of correctness which holds
with overwhelming probability. In fact, it does not rely on correctness at all and
rather on the prevalence of a notion of a k-good revoked set. A revocable proof
system that is secure, correct with overwhelming probability, and has few witness
changes should have many k-good revoked sets.
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updated. We first introduce the notion of a k-good revoked set; that is, a set of
statements such that when these statements are revoked, none of their proofs
still verify, and at most k still-valid statements’ proofs must be changed.

Definition 3 (k-good revoked set). We say a revoked set T is k-good given
a revocable proof system RPS, an initial valid set S, size parameter n = |S|,
and public parameters pp if, for V, (π1, π2, . . . , πn) ← ComputeState(pp, S) and
V ′, (π′

1, π
′
2, . . . , π

′
n) ← Revoke(pp, V, T ) if:

1. For every revoked statement si ∈ T , Verify(pp, V ′, si, πi) = false
2. There are at most k non-revoked statements sj ∈ (S \ T ) such that

Verify(pp, V ′, sj , πj) = false

Condition (1), that the original proof of a revoked statement no longer ver-
ifies, is a consequence of the security requirement that should hold for most
revoked sets. Condition (2) is that few (≤k) proofs of non-revoked statements
no longer verify (i.e., need to be updated). Suppose that we want to have a secure
revocable proof system such that most of the time, at most k non-revoked state-
ments change when a set of size m is revoked. This is equivalent to having many
k-good revoked sets of size m. By security (regardless of |V |), an overwhelming
fraction of sets of size m must satisfy condition (1); otherwise an adversary could
choose a set of size m at random, revoke it, and succeed in finding a proof for
a revoked element. Condition (2) is exactly the other property we want: that at
most k non-revoked statements change when our set is revoked. Therefore, our
desired revocable proof system must have many k-good revoked sets of size m.

We now show that if any public parameters yield many k-good revoked sets,
the size of the global state must be large. In other words, if the size of the global
state is small, many proofs of non-revoked statements must change when an
average set is revoked.

Theorem 1. Let RPS = (Setup,ComputeState,Revoke,Verify) be a revocable
proof system satisfying correctness, and let pp be any public parameters occur-
ring with nonzero probability over Setup(1λ). Let S be a set of size n, and let
X ∗

k denote the set of subsets T ⊆ S that are k-good given RPS, S, and public
parameters pp. Then |V |, the size of the global state in bits, satisfies

|V | ≥ lg |X ∗
k | − �k lg n	

Proof. We show that if |V | is any smaller, there exists an efficient encoding
of X ∗

k using fewer than lg |X ∗
k | bits, contradicting Shannon’s Coding Theorem

[25]. Note that X ∗
k can be computed by trying every revoked set T ⊆ S and

determining whether it fits the conditions of a k-good revoked set. While this
algorithm is not efficient, it does not need to be as the contradiction we derive is
compression beyond information theoretic limits, which poses no computational
bounds on the communicating parties.

Consider two parties A and B interacting with a challenger in a game given as
input S and pp. The goal is for A to succinctly encode a uniformly chosen revoked
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set T ⊆ S for B to decode. The challenger computes the initial global state
and proofs V0, (π1, π2, . . . , πn) ← ComputeState(pp, S). The challenger passes
V0, (π1, π2, . . . , πn) to both A and B. A chooses T uniformly at random from X ∗

k

and computes the updated global state V ← Revoke(pp, V0, T ). Then, for each
si ∈ (S\T ), A checks whether its proof verifies; i.e., whether Verify(pp, V, si, πi) =
true. If not, A adds si to a list L of still-valid statements with changed proofs. A
sends V and L to B.

We now show that given V and L, B can decode T exactly. Let B’s decoding
be the set T ′ consisting of all statements si such that Verify(pp, V, si, πi) = false
and si /∈ L. First, any statement si ∈ T must be in T ′, since by definition of a
k-good revoked set3, no proofs for revoked statements verify. Therefore, T ⊆ T ′.
Next, B’s decoding algorithm ensures any statement si ∈ T ′ is not in L, and
Verify(pp, V, si, πi) = false. All elements sj that were not revoked (i.e., not in T )
and whose proofs no longer verify (Verify(pp, V, si, πi) = false) are included in
L. Since si is not in L, it must in fact have been revoked, so si ∈ T . Therefore,
T ′ ⊆ T , which implies that T ′ = T .

Finally, we observe that A can encode L by listing a (lg n)-bit representation
of each of its elements. Since |L| ≤ k by definition of X ∗

k , this encoding takes at
most �k lg n	 bits, and A sends |V |+�k lg n	 bits in total after choosing T . Since T
was chosen uniformly from X ∗

k , and the entropy of the uniform distribution over
X ∗

k is lg |X ∗
k |, we have by Shannon’s Coding Theorem that |V |+�k lg n	 ≥ lg |X ∗

k |.

�

3.1 No Useful Trade-Offs for Sublinear State Size

We show that under certain regimes (when |X ∗
k | includes at least a constant

fraction of subsets of size m for lg n ≤ m ≤ n
2 ), there is no useful trade-off

between the global state size and the frequency of proof changes when m elements
are deleted. That is, the global state size is either linear in the size of the stored
set, or Ω

(
m
lg n

)
proofs must be updated.

Corollary 1 (No useful trade-offs). Let n be the size of the initial valid set
S and m ≤ n

2 be the number of deleted elements.4 If |X ∗
k | includes at least

a constant fraction of subsets T ⊆ S of size m, and the global state size is
|V | = o(lg

(
n
m

)
), then k = Ω

(
m
lg n

)
.

Proof. This holds by a straightforward application of Theorem 1. First, observe
that the number of possible T ⊆ S of size m is

(
n
m

) ≥ nm

mm ≥ 2m. X ∗
k includes at

least a constant fraction of these subsets T of size m, so lg |X ∗
k | = Ω(lg

(
n
m

)
) =

3 It is tempting to instead cite security of a revocable proof system here, but security
guarantees only that for most revoked sets T , proofs of revoked statements do not
verify. Our definition of k-good gives us exactly what we need.

4 If more than n
2

elements are deleted in sequence, as in stateless blockchains, we can
set m = n

2
since there must be an intermediate point where n

2
elements were deleted,

and this bound still applies.
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Ω(m). In order for the inequality from Theorem 1 to hold, we must have k lg n ≥
Ω(lg

(
n
m

)
) − o(lg

(
n
m

)
), or k =

Ω(lg (n
m))

lg n = Ω
(

m
lg n

)
.

This bound on k holds for any global state size |V | that is sublinear in lg
(

n
m

)
.

Once the global state size becomes Ω(lg
(

n
m

)
), we can (asymptotically) store

the full list of deleted elements and require no witness updates. One especially
interesting regime for this bound is when m = Θ(n) and |V | = o(n). Then
Corollary 1 implies that k = Ω

(
n

lg n

)
. In other words, if we want to avoid a

near-constant fraction of proof updates, we need a linear global state size, at
which point we can (asymptotically) store the full state naively and require no
witness updates. This suggests that there is no asymptotically useful trade-off
between global state size and number of proof changes in this regime; at least
one of the two must be (nearly) linear.

3.2 Persistence Requires Linear Storage

We now show that another desirable property, which we call persistence, is also
not possible without linear global state. Suppose that we want proofs of certain
statements to always verify as long as those statements remain true. This guar-
antee would be very useful in cryptocurrencies, allowing a user to stay offline
until she is ready to make a transaction, without fear of her proof becoming
stale. We call this notion persistence and formalize it below.

Definition 4 (Persistence). A statement si ∈ S is persistent given initial
valid set S of size n and public parameters pp if for all T ⊆ S such that si /∈ T ,

– V, (π1, π2, . . . , πn) ← ComputeState(pp, S)
– V ′, (π′

1, π
′
2, . . . , π

′
n) ← Revoke(pp, S, T, V, (π1, π2, . . . , πn))

– Verify(pp, V ′, si, πi) = true

A corollary of Theorem 1 shows that there can be very few persistent state-
ments:

Corollary 2 (Persistence requires linear storage). Let RPS be a secure
and correct revocable proof system such that there exists an initial set S and a
set S∗ ⊆ S such that

Pr
pp←Setup(1λ)

[every s ∈ S∗ is persistent] >
1
2

Then the the global state of RPS has size at least |S∗| − 1.

Proof. Let S be any initial set and S∗ be any subset of S. We wish to show that
with high probability, X ∗

0 is large, where X ∗
0 is the family of revoked sets that

require no witness changes and for which proofs of revoked statements do not
verify. We first argue that by security, few revoked sets T ⊆ S∗ yield proofs of
revoked statements that still verify. Then it follows that X ∗

0 contains all other
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revoked subsets of S∗, since by definition of persistence they require no witness
changes.

Suppose for the sake of contradiction that for all parameters pp ← Setup(1λ)
that occur with nonzero probability and for which every s ∈ S∗ is persis-
tent, more than half of the revoked sets T ⊆ S∗ yield a global state such
that the proof of a revoked statement verifies. Then the following adversary A
forges a proof with non-negligible probability, breaking security. Let A compute
pp ← Setup(1λ) and V, (π1, π2, . . . , πn) ← ComputeState(pp, S). A then chooses
T ⊆ S∗ uniformly at random, computes V ′, (π′

1, π
′
2, . . . , π

′
n) ← Revoke(pp, V, T ),

and checks whether Verify(pp, V ′, si, πi) for each si ∈ T . If A finds such an si, it
outputs S, T, si, πi. Independently, A chooses pp such that all of S∗ is persistent
with probability at least 1

2 and T such that the proof of a revoked statement
verifies with probability at least 1

2 . Thus, A is efficient and succeeds with prob-
ability 1

4 , contradicting security. Therefore, there must be some parameters pp
occurring with nonzero probability such that all of S∗ is persistent and at least
half of the revoked sets T ⊆ S∗ have no revoked statements whose original proofs
verify. The family of these sets is exactly X ∗

0 , whose size is at least 1
2 · 2|S∗|.

Thus, there exist public parameters pp occurring with nonzero probability
such that |X ∗

0 | ≥ 1
2 · 2|S∗|. Applying Theorem 1 for k = 0, we have that the size

of the global state is at least lg |X ∗
k | = |S∗| − 1.

4 Implications for Authenticated Data Structures

We show that cryptographic accumulators, vector commitments, and authen-
ticated dictionaries, are instances of revocable proof systems. Thus, our lower
bound from Theorem 1 applies. This result is of interest since these data struc-
tures are frequently used in distributed settings, in which users maintain proofs
of portions of the committed data that are verified against a global state. Our
bound dictates that these users must update their proofs frequently as the global
state changes.

4.1 Cryptographic Accumulators

A cryptographic accumulator [3,9], also called a set commitment, commits to
an accumulated set X via a succinct digest A. Different accumulator schemes
support efficiently proving various properties about the accumulated set X, such
as membership or non-membership of elements. Some schemes may also allow
X to be modified and the corresponding proofs updated. A typical accumulator
supports additions, deletions, and membership proofs. That is, given a set X
there is a function computing a digest A and a membership proof (also called
a witness) wi for each xi ∈ X, corresponding to the ComputeState function of
a revocable proof system. When a new element x is added to X, a new global
state A′ can be computed using x and A. Furthermore, each membership proof
wi can be updated given x and A. When an element xi ∈ X is deleted, a new
global state A′ can be computed using xi, A, and the membership proof wi for
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xi. The membership proofs of the other elements of X can be updated using the
same information. Some accumulator schemes also allow batch updates, where
multiple elements can be efficiently added and/or deleted at once [4].

Constructing a Revocable Proof System Using an Accumulator. We show how
an RPS can be constructed using an accumulator scheme Acc supporting addi-
tion, deletion, and membership proofs. Addition is only necessary for the initial
set S. The Setup function for our RPS calls the Setup function for Acc. The
ComputeState function for our RPS, given public parameters pp and a valid set
S, adds S to our accumulator given pp to obtain a digest A and a membership
witness wi for each si ∈ S. We let the proof πi for si be this membership witness
wi. We implement Revoke for our RPS by, given a set T ⊆ S, removing T from
the accumulated set and updating all witnesses according to the accumulator
scheme. The resulting global state is the resulting accumulator value A′, and the
resulting proofs π′

i are the updated witnesses w′
i. We let the Verify function for

our RPS be the same as the Verify function for the accumulator scheme.
Accumulator schemes have correctness and security definitions that are anal-

ogous to those of a revocable proof system; full definitions can be found in [8].
By correctness of the accumulator, membership witnesses for elements of the
accumulated set (equivalently, valid statements) verify. By security of the accu-
mulator, it is hard for an adversary to find verifying membership witnesses for
elements not in the accumulated set (equivalently, revoked or invalid statements).
Thus, this construction is indeed a revocable proof system, and our lower bound
from Theorem 1 applies.

We note that we can also construct a revocable proof system using an accu-
mulator that supports only addition and non-membership witnesses (but not
deletion). Given a finite data universe U and a set X⊆U , a delete/membership
accumulator storing X can be implemented using an add/non-membership accu-
mulator storing U \ X.

Camacho-Hevia Result. Our accumulator lower bound is reminiscent of a
lower bound proved by Camacho and Hevia [8]. They consider a dynamic accu-
mulator supporting addition, deletion, and membership proofs. Their model
allows batch updates: if w1, . . . , wn are witnesses for an initial accumulated set
X, after deletion of a set T the state-update function outputs a string UpdX,X\T

that can be used to update all witnesses to w′
1, . . . , w

′
n to reflect the updated

state. They show that if there are |T | = m deletions, UpdX,X\T must have
length Ω(m). Baldimtsi et al. show an analogous result for a universal accu-
mulator supporting addition, deletion, and non-membership proofs, using the
same proof style [2]. While these results are similar in spirit to ours, they do
not address how this string UpdX,X\T is incorporated into the new witnesses or
how many witnesses must change. It is possible in this model that some elements
require very long witness changes, while nearly all other witnesses can remain the
same. Our result addresses the separate question of how many witness changes
are required.
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We note a small gap in the Camacho-Hevia proof (and similarly in the
Baldimtsi et al. proof) in the appendix of the full version of this paper. In
our proof, we address this issue by defining the notion of a k-good revoked set.

4.2 Vector Commitments

A vector commitment (VC) [10] stores a vector v = [v1, . . . , vk] in the form of a
succinct digest C. For each index i and corresponding component vi, the scheme
produces a proof πi that can be used alongside C to verify that vi = vi. When
a component is changed, the digest and proofs of some or all components may
change. Correctness dictates that properly generated proofs of true components
verify with their corresponding digests. Security dictates that it is hard to find a
proof for an incorrect component. Recently several vector commitment schemes
have been constructed with cryptocurrency applications in mind; see [12,18,26,
28,30].

Constructing a Revocable Proof System Using a Vector Commitment Scheme.
Our construction commits to a vector storing valid statements. In describing our
construction, we use the syntax for a VC scheme from [26]. Let q be an upper
bound on the total number of valid statements. Let ⊥ be some special value used
to denote that there is no statement stored at that vector position. The Setup
function for our RPS calls the KeyGen function of the VC scheme with security
parameter λ and vector length n (the size of our initial valid set) to obtain public
parameters pp. The ComputeState function, given pp and an initial valid set S
of size n, first calls the commitment function of the VC scheme on the vector
[s1, s2, . . . , sn,⊥, . . . ,⊥] (using some arbitrary ordering of S). This outputs a
commitment C that is the global state, along with auxiliary information aux. To
generate the proof wi for each si, ComputeState then calls the Open function of
the VC given i, si, and aux. It outputs the commitment C and a proof wi for
each si. The Revoke function of our RPS, given T ⊆ S, revokes each statement
si ∈ T by setting the corresponding position of the committed vector to ⊥.
We describe how to do so assuming no batch updates, updating the state and
all proofs for each revocation before moving onto the next. More precisely, for
each si ∈ T , it calls VC.Update(C, si,⊥, i) to obtain an updated state C ′ and
update information U . It then updates the proof wj for each other component
sj using VC.ProofUpdate given C,wj , si, i, U . After all updates have been made,
it outputs all proofs and the resulting commitment. Finally, the Verify function
of our RPS, given C, si, wi, calls VC.Ver(C, si, j, wi) for each vector component
j. Verify outputs true if and only if there exists a j such that VC.Ver outputs
true.

We give an overview of how correctness and security for a VC scheme relate
to the corresponding definitions for a revocable proof system; full definitions of
correctness and security for a VC scheme are given in [10]. VC schemes offer cor-
rectness with overwhelming probability, ensuring that properly generated proofs
for committed components verify. See footnote 2 for a discussion of how this
compares to correctness with probability 1 for a revocable proof system. The
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security definition for a VC guarantees that it’s hard for an adversary to find
two valid proofs for different values si and s′

i of the ith component. This implies
security of our constructed revocable proof system: if an adversary finds a proof
w∗ of a statement s∗ that is not in the valid set, it has succeeded in finding a
proof that the value of the vector at some index i is s∗. Since s∗ is not in the
valid set, the actual value at i must be ⊥ or some other s′. The proof w of this
other value yields a pair of proofs that verify for different values at index i. Thus,
our constructed scheme is an RPS.

4.3 Authenticated Dictionary

A related notion is an authenticated dictionary [17,23], which produces a commit-
ment to a set of key-value pairs, such that proofs of these stored pairs can be gen-
erated and verified against the commitment. Throughout time, more key-value
pairs can be added, and existing pairs can be modified. When the dictionary
is updated, a new shared commitment is generated, potentially invalidating old
proofs. The existence of these proofs both for the original data and the updated
data corresponds to correctness for a revocable proof system. Security of an
authenticated dictionary guarantees that it is difficult to generate proofs of a
key-value pair that is not in the stored set. The argument that we can construct
a revocable proof system from an authenticated dictionary is along the same
lines as the arguments from vector commitments and accumulators. One way to
see this is to observe that we can construct a vector commitment scheme using
an authenticated dictionary, by storing the vector index-value pairs as key-value
pairs in the dictionary. Authenticated dictionaries therefore fit the framework of
a revocable proof system, and thus our lower bound holds, implying that proofs
must be updated often.

Aardvark [21], a recently proposed distributed authenticated dictionary with
applications to stateless blockchains, proposes an interesting versioning scheme
to overcome the need to change witnesses enough to accommodate many users
making transactions concurrently. We discuss this idea further in Sect. 5.2.

5 Implications for Blockchains

Blockchains typically operate in one of two models: the unspent transaction out-
put (UTXO) model or the account-based model. A stateless blockchain functions
slightly differently in each of these models. We describe the models below and
argue that each requires the functionality of a revocable proof system, meaning
that our lower bound from Theorem 1 holds.

UTXO Model. In the UTXO model, the global state stores the set of unspent
coins. When a user wants to make a transaction, they must specify the coin(s)
(UTXOs) they wish to spend and submit a proof that these coins are unspent.
A stateless blockchain needs to satisfy correctness: a proof for an unspent coin
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should verify against the corresponding global state. If the transaction is suc-
cessful, the global state is updated, and the spent coins’ proofs should no longer
verify. In order to prevent users from double spending, it should be compu-
tationally hard to produce a proof for a spent coin—this is equivalent to the
definition of security for a revocable proof system. A stateless blockchain in the
UTXO model is commonly constructed using a dynamic accumulator, where
the accumulated set is the set of valid UTXOs. Such accumulators include RSA
accumulators [4], Merkle-tree-based accumulators [7,16], and Verkle trees [6].

Account-Based Model. In the account-based model, the global state stores a
list of account-balance pairs. Each account owner, or user, maintains a proof of
their account balance. When a user u wants to make a transaction, they submit
a proof π that their account-balance pair is included in the global state. The
validator verifies the user’s account balance using this proof, and they check
that the balance is high enough to make the desired transaction. The amount
spent is then deducted from the user’s balance, and the global state is updated
accordingly.

In the context of a revocable proof system, the valid set is the set of account-
balance pairs. An account-balance pair is revoked when the corresponding user
makes a transaction, changing their account balance. Security ensures that it
is hard to generate a proof for an incorrect account-balance pair. Correctness
ensures that every user can prove that their true account balance is valid. An
account-based blockchain is often constructed using a vector commitment or
authenticated dictionary, where each index of the vector represents an account
and the value is that account’s balance (e.g., [26]).

5.1 Interpreting Our Bound in Practice

An interesting question is exactly what implications Theorem 1 has for practical
stateless blockchains. Toward answering this, we graph the number of witness
(or proof) changes for various parameter values.

We first apply Theorem 1 to obtain a lower bound on the number of witness
changes required after some number m deletions, given an initial valid set of size
n. The number of possible deleted sets of size m is

(
n
m

) ≥ nm

mm (by, e.g., [13]).
Ideally, we would like at least half of these sets to (1) require few (≤ k for some
k) witness changes, and (2) allow no deleted elements to be double spent. These
are exactly the conditions for a k-good revoked set; thus, in our application of
Theorem 1 we can set |X ∗

k | = 1
2

(
n
m

) ≥ nm

2mm . Our next step is to obtain a lower
bound for k, showing that many witnesses must change.

Rearranging, we have �k lg n	 ≥ lg nm

2mm − |V |. Simplifying further,

k lg n ≥ m lg n − m lg m − |V | − 2

k ≥ m − |V | + m lg m

lg n
− 2

lg n
(1)
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Fig. 1. Number of witness changes f(m,n, |V |) given 0 ≤ m ≤ 106 deleted elements, a
data universe of size n = 233, and varying global state size |V |.

Let f(m,n, |V |) denote the right hand side of Eq. 1. We graph f , showing that
if at least half of the sets of size m are k-good revoked sets, k must be at
least f(m,n, |V |). In our graphs, we use two natural values of n. The first is
233, approximately the world’s current human population. The second is 226,
approximately the current number of UTXOs in Bitcoin [15]; these graphs are
included in the appendix of the full version of this paper.

In Fig. 1, we can see that the relationship between f and m is approximately
linear, with the m lg m

lg n term having little impact since m is small relative to n
in our ranges. Furthermore, increasing the size of the global state V results in a
horizontal shift of the curve and has little benefit until it becomes very large.

Like Fig. 1 and Fig. 2 shows that there is not a useful trade-off between the
global state size and the number of witness changes per day. The global state size
must become very large, at least 222 for most throughput values, before there is
much impact on the number of witness changes. This concrete effect mirrors the
asymptotic relation of by Corollary 1.

While the number of witness changes may seem small in comparison to the
number of UTXOs or accounts in the system, without some additional recovery
mechanism, the consequences of a user missing their witness update are severe
as they will no longer be able to make transactions. Furthermore, if the system
has enough throughput to adequately serve the data universe, there will be
many more witness changes: for 24,000 transactions per second (the maximum
throughput supported by Visa [29]) the number of witness changes per day for
n = 233 becomes roughly 1.25 × 108. Our graphs show that if most users are
not willing to refresh their witnesses continually, hundreds of thousands of these
users will lose their coins per day. As a result, most stateless blockchain proposals
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Fig. 2. Number of witness changes per day for a data universe of size n = 233 and
varying global state size, for blockchains with various throughput. In particular, Bitcoin
and Ethereum support roughly 7 and 20 transactions per second respectively.

have included a way for lazy users to obtain updated proofs, at the cost of more
storage for certain parties; the most prominent such solution uses proof-serving
nodes (PSNs). Below, we discuss two more limited solutions (a versioning model
and a partially persistent model), then conclude with a discussion of PSNs and
potential future work relating to them.

5.2 Versioning Model

An issue arises when at some time t, many users simultaneously provide a proof
of their account balance (an element in the authenticated dictionary) and a
transaction that they wish to make (an update of their element in the dictionary).
If the transactions are executed in sequence, each user’s transaction requires
updating the dictionary, invalidating the other users’ proofs. One solution is
to store this set of transactions temporarily, so we can verify each user’s proof
against the global state at time t and then check manually that none of the
subsequent transactions changed that user’s account balance. We call this a
versioning system.

Aardvark [21], an authenticated dictionary designed with cryptocurrency
applications in mind, does essentially this: it stores all transactions that hap-
pen in the next τ time, for some tunable time parameter τ . The current state
commitment at time t is also stored. At a future time up to t + τ , any proof
at least as recent as time t can still be verified by checking it against the state
commitment at time t, then naively checking that it does not conflict with the
cached transactions. This approach essentially ensures that proofs do not need to
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change for k transactions by storing k additional state, where k is the number of
transactions happening in time τ . This matches our lower bound from Corollary
2 (up to constants), which when translated to this setting says that if we want
no proof changes when deleting k elements, we must store at least k state. Thus,
this versioning scheme is essentially the best one can hope to achieve without
introducing parties such as PSNs storing more state (see, e.g., [24,26,28]).

5.3 Partially Persistent Model

A desirable feature of a stateless blockchain is that users know in advance when
their proofs will need to change, so they can go online only at that time. Perhaps
users could pay a fee for the guarantee that their proofs will remain valid for
some number of transactions in the future. A natural question is how much
additional state is necessary to accommodate these special requests.

This property is exactly our notion of persistence: the persistent set S∗ cor-
responds to the set of proofs that are guaranteed to remain valid. Unfortunately,
Corollary 2 says that any secure and correct revocable proof system with a per-
sistent set S∗ must have global state size at least |S∗| − 1. If any significant
portion of the user base wants persistent proofs, the stateless blockchain model
does essentially no better than storing the full state.

We can achieve persistence if users are willing to lock up their coins for a set
period of time. That is, a user wanting their proof to remain valid for at least a
day would sacrifice their ability to spend their coin during that day. We could
then separate the blockchain into two state commitments: one state S1 storing
the set of locked coins and another state S2 storing all other (liquid) coins. Since
locked coins can only be spent at the end of the day, S1 remains the same and no
proofs of locked coins change throughout the day. At the end of the day, users
may unlock their coins and move them from S1 to S2. We could extend this
scheme to support other time ranges, incurring the cost of extra storage as more
time ranges are supported.

While potentially helpful in limited settings, this model has serious drawbacks
for general use. The most obvious is the fact that users cannot spend their locked
coins. Furthermore, the benefits are all-or-nothing in the following way: If a user
wants to maintain any liquid coins, they must continually update these liquid
coins’ witnesses, at which point updating their locked coins’ witnesses would
require minimal additional effort.

5.4 Proof-Serving Node Model

Prior work proposes offloading witness updates to a proof-serving node (PSN)
[24,26,28]. Instead of maintaining its proof itself, a user can delegate this task
to a PSN and come online only when it wishes to make a transaction. In any
revocable proof system, the PSN can update a user’s proof simply by using the
Revoke algorithm. The storage required for this simple approach scales with the
number of users: the PSN can serve k users by storing only these users’ proofs
and constantly checking for updates. This property that PSNs can use storage
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proportional to the number of proofs they maintain somewhat mitigates the
centralization issues posed by requiring storing a large state, allowing anyone
to operate a small PSN. PSNs also interact nicely with hybrid nodes, a newly
introduced [19] type of node that stores much less state than full nodes yet
can perform nearly all full node functionalities. The PSN model is especially
promising in light of our result that there is no holy grail revocable proof system
achieving few witness updates on its own.

However, centralization is still a major concern with PSNs, and the PSN
model raises interesting questions regarding incentives. PSNs must be incen-
tivized in some way to do this work. Hyperproofs [26] suggests a PSN model
where users pay PSNs to maintain their proofs for them. This payment model
seems to have an interesting relationship with batch updates, which hyperproofs
also allow. That is, while it takes a user time t to update a single proof, a PSN
can update the proofs of all n users in the system in time t · f(n) (for some
sublinear function f). PSNs that serve enough users to take advantage of batch
updates can offer much cheaper prices than small PSNs. There can only be a
few PSNs that serve this many users. The resulting system will have a few PSNs
storing the full state, and the users they serve will store nothing. This is a sig-
nificant risk: an adversary that attacks these PSNs can compromise the entire
blockchain, preventing many users from spending their coins.
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Abstract. With the ever greater adaptation of blockchain systems,
smart contract based ecosystems have formed to provide financial ser-
vices and other utility. This results in an ever increasing demand for
transactions on blockchains, however, the amount of transactions per
second on a given ledger is limited. Layer-2 systems attempt to improve
scalability by taking transactions off-chain, with building blocks that are
two party channels which are concatenated to form networks. Interac-
tion between two parties requires (1) routing such a network, (2) inter-
action with and collateral from all intermediaries on the routed path
and (3) interactions are often more limited compared to what can be
done on the ledger. In contrast to that design, recent constructions such
as Hydra Heads (FC’21) are both multi-party and isomorphic, allowing
interactions to have the same expressiveness as on the ledger making
it akin to a ledger located on Layer-2. The follow up Interhead Con-
struction (MARBLE’22) further extends the protocol to connect Hydra
Heads into networks by means of a “virtual” Hydra Head construction.
This work puts forth an even greater generalization of the Interhead
Protocol, allowing for interaction across different Layer-2 ledgers with a
multitude of improvements. As concrete example, our design is modular
and lightweight, which makes it viable for both full virtual ledger con-
structions as well as straightforward one-time interactions and payments
systems.

Keywords: Blockchain · State Channel · Channel Network

1 Introduction

Blockchain technology as introduced by Nakamoto [19] was a breakthrough in
scaling byzantine consensus to a point where operation of decentralized ledgers
among a large number of mutually distrustful parties became viable. While Bit-
coin, Nakamoto’s implementation of a decentralized ledger, remains one of the
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largest blockchain implementations by market capitalization1 to date further
blockchains such as Ethereum and Cardano expanded on the technology by
enabling arbitrary smart contracts and state machines. This improved the utility
of their ledgers which facilitated the creation of financial ecosystems. However,
albeit blockchain’s ability to scale to a seemingly arbitrary amount of users, the
amount of transactions that can be performed on their ledgers is limited [5]. If
there are more transactions being committed to a blockchain than its consensus
mechanism can handle, transaction issuer can include a fee to their transactions
to increase their priority. At times of high demand this can result in unfeasible
high fees for an average transaction. One approach to mitigate this are Layer-2
protocols [4,6,20,21] such as Bitcoin’s payment channel network Lightning [21].
Parties can move their coins into a Layer-2 structure which locks these coins
on the ledger. Then, they can interact and perform payments with other par-
ties that participate in the Layer-2 structure offchain, i.e. without requiring any
transactions on the ledger itself. Only at the end, when a party wishes to move
their coins back and unlock on the ledger another transaction is committed to
the ledger that summarizes the transactions that occurred offchain. However, a
common drawback of Layer-2 protocols is a lack of expressiveness of the inter-
actions that can occur on Layer-2. For instance, payment channel networks are
restricted to simple payments. State Channels [7,8] improve on that by allow-
ing execution of smart contracts. Moreover, earlier versions of Layer-2 protocols
operate on channels between two parties which can be concatenated by means
of Hash Timelocked Contracts (HTLCs) [21] to perform payments or two par-
ties in the network can connect by means of virtual channels [7,8,12,13], i.e. a
channel that is created on Layer 2 instead of the ledger. This can be impractical
since if two parties want to interact with another, it requires the intermediaries,
i.e. the parties on the path between them, to lock away a large amount of col-
lateral which ensures security of these protocols, however, such a path might
not exist. Other approaches attempt to connect multiple parties, for instance
Rollups – albeit not entirely Layer-2 as they require a small amount of data to
be committed to the ledger per transaction – can directly connect an arbitrary
amount of parties, however, making the expressiveness of interactions on Rollups
on par to the ledger is ongoing research. Hydra [4] is a Layer-2 protocol that
forms an isomorphic state channel called Hydra Head for an arbitrary amount
of parties which allows interaction to have the same expressiveness as on the
ledger itself. This makes Hydra Heads akin to a ledger located in Layer-2. How-
ever, while interaction between different Hydra heads by utilizing intermediaries
is possible it is either limited to payments (HTLCs) or requires iterative con-
struction of virtual Hydra heads [14], which construction is heavy as it requires
partial execution of the Hydra Head state machine. Moreover, the construction
is complex making it difficult to verify its security and also making it prone to
implementation errors. It is inflexible because all UTxO that are available on
the Interhead have to be moved into it at the very beginning of the protocol.
Since it is tightly related to the Hydra State Machine construction, adaptation

1 https://coinmarketcap.com.

https://coinmarketcap.com
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of any changes to the Hydra State Machine would require additional work and
careful consideration to ensure security of the Interhead construction.

Our Contributions. The aim of this work is to create a lightweight ad-hoc ledger
to enable arbitrary interactions between parties on separate Layer-2 ledgers, i.e.
Layer-2 structures containing an arbitrary amount of parties and which have the
same expressiveness as a smart-contract capable ledger. Our work is based on
the Interhead [14] construction and in fact is a generalized version of it. Simi-
larly we assume two Layer-2 ledger based on the Unspent Transaction Output
(UTxO) paradigm and utilize a set of intermediaries, i.e. parties that participate
in both Layer-2 ledgers, to facilitate payments as well as execution of arbitrary
state machines. However, in addition to the previous work our construction pro-
vides a multitude of improvements: (1) There is no time limit to the ad-hoc
ledger, (2) setup is done only once and can be reused for future interactions,
(3) UTxO can be moved between Layer-2 ledgers and the ad-hoc ledger at any
time compared to only at the beginning and the end of the Interhead construc-
tion making the ad-hoc ledger more flexible, (4) disputes are local only affecting
individual UTxO instead of the whole structure, (5) a modular and therefore sig-
nificantly simpler construction. (6) While we present the core of our construction
in this work, we also present multiple potential extensions to further improve
on the scalability of the construction. Additionally, as with the Interhead con-
struction, collateral does not need to be paid by single individual intermediaries
but instead any collateral can be paid by multiple intermediaries. Although a
tradeoff of our construction is that we require interaction with all intermediaries
for each transaction on the ad-hoc ledger, we are able to execute the Hydra Head
state machine within it creating a virtual Hydra Head where interaction with
the intermediaries is no longer necessary. This gives us the same function and
benefits as the Interhead allowing our construction to be both a generalization
of the Interhead construction as well as the Hydra Head construction. While
our work assumes a UTxO based ledger we argue that any Layer-2 ledger that
can implement an adaptation of the state machine presented in this work can
execute our construction thus it is not limited to be used with Hydra Heads
alone, but aims to enhance interoperability between any Layer-2 ledgers.

Related Work. Layer 2 or offchain structures are scalability solutions for ledgers.
Early approaches are payment channels [6,20] where two parties, first, lock coins
on the ledger via a transaction and then perform an offchain protocol to per-
form payments between another without requiring to commit any further trans-
actions. Only at the very end, one last transaction is committed to the ledger
that summarizes all payments and unlocks the two parties’ coins. Protocols such
as Hash Timelocked Contracts (HTLCs) [21] enable payments across multiple
adjacent channels allowing for the formation of payment channel networks. An
efficiency requirement for Layer 2 structures and protocols is that when perform-
ing O(n), n ∈ N transactions then only O(1) transactions are committed to the
ledger. More recent approaches such as Hydra [4] allow for an arbitrary amount
of parties to interact offchain with the same expressiveness as on the ledger itself
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instead of being limited to simple payments, effectively forming a sub-ledger on
Layer 2. Another notable approach are Rollups2 where an arbitrary amount of
parties can interact offchain with a few caveats: To our knowledge, rollups based
on Zero-Knowledge proofs do not yet support full expressiveness of the ledger
although there is active research to achieve this. Moreover, for reasons of data
availability, each transaction within a rollup produces some data that has to be
committed to the ledger therefore it is akin to a Hybrid protocol rather than a
full Layer 2 protocol. The Interhead [14] allows parties across two Hydra Heads
to interact with another with the aid of intermediaries, i.e. parties participating
on both Hydra Heads, by creation of a virtual Hydra head. Our work aims to
provide a lightweight, flexible and modular generalization to the Interhead con-
struction not only allowing for the creation of a virtual Hydra Head, but also
providing a low-overhead framework for brief interactions.

2 Background

Notation. In this work we consider structured data. If we assume a value β ∈ B
of form (β0, . . . , βn), n ∈ N, then β.βi is the value of β with label βi, i ∈ N,
0 ≤ i ≤ n. Moreover, parties within a protocol are denoted using P. Lastly H
denotes a cryptographic hash function.

Signatures. We assume a cryptographic signature scheme [1,9,10] with exis-
tential unforgeability under a chosen message attack (EU-CMA) consisting of
algorithms (key gen, verify, sign). Then key gen(1λ) = (vk, sk) generates a verifi-
cation key vk and a private key sk using security parameter 1λ, sign(sk, m) = σ
takes sk and a message m ∈ {0, 1}∗ as input and creates a signature σ ∈ {0, 1}∗
and verify(vk, m′, σ′) takes vk, a message m and a signature σ′ as input and
outputs 1 on successful verification and 0 otherwise. We assume a secure mul-
tisignature scheme [11,18] with algorithms (ms setup, ms key gen, ms agg vk,
ms sign, ms agg sign, ms verify ). Algorithm ms setup(1λ′

) = Π creates public
parameters Π, algorithm ms key gen(Π) = (vk, sk) creates a new set of verifi-
cation key vk′ and private key sk, algorithm ms agg vk(Π, V ) = vkagg takes Π
and a set of verification keys V as input and outputs an aggregate verification
key vkagg, algorithm ms sign(Π, sk, m) = σ creates a signature σ on message
m, algorithm ms agg sign(Π, V , S, m) = σagg aggregates a set of signatures S
on message m to an aggregate signature σagg and lastly ms verify(Π, m′, vkagg,
σagg) verifies an aggregate signature on a message to a aggregate verification key
where it outputs 1 upon success and 0 otherwise.

The UTxO Ledger and Extensions. In UTxO based ledgers such as Bitcoin [19]
coins that are in circulation are represented using a tuple (b, ν) where b ∈ N is an
amount of coins and ν is a verification script that evaluates to a value in {0, 1}
such that the coins within a UTxO can be spent if presented a witness w where
ν(w) = 1. The ledger’s state is represented as a set U of all currently circulating
2 https://ethereum.org/en/developers/docs/scaling/zk-rollups/.

https://ethereum.org/en/developers/docs/scaling/zk-rollups/
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Fig. 1. A general state machine transition moving it from state S0 to S1 on input sym-
bol i and auxiliary input data aux. Each state is represented by a UTxO on the ledger,
in the case of S0 with data field data0, coins val0 and (non-) fungible token Token.
The box below a state represents constraints to transactions creating that UTxO. The
left-hand side contains UTxO inputs that are spent and the right-hand side UTxO
outputs that are created. The transaction is valid only in time (rmin, rmax), burns token
t1 while minting token t0 and is signed corresponding to public verification key k.

UTxO. Transactions can be used to spend UTxO and thereby perform a state
transition on the ledger. A transaction is of form (In,Out, t) where In is a set
of tuples of form (ref, w) where ref is a pointer to an UTxO that exists on the
ledger and w is a witness as above, Out is a list of new UTxO and timelock
t ∈ N is a point in time such that a transaction can be applied on the ledger
only after time t. A transaction is included in the ledger after being submitted
after at most time Δ ∈ N. Note that even though UTxO might be similar, the
ledger ensures that all UTxO are unique by assigning them unique addresses. The
Extended UTxO model [2] adds an arbitrary data field δ ∈ {0, 1}∗ to UTxOs.
Moreover, the verification script ν is extended to additionally receive δ as well
as a context ctx ∈ {0, 1}∗ consisting of the transaction that creates the UTxO
as well as the UTxO that are referenced within the transaction’s inputs. Doing
so ν can enforce constraints on transactions. Lastly, timelocks are extended to
form time ranges [r0, r1], r0, r1 ∈ N where a transaction can be committed onto
the ledger within this time range. It has been shown [2] that there exists a
weak bi-simulation between Constraint Emitting Machines (CEM), which are
state machines derived from Mealy automata, such that it is possible to execute
state machines defined as CEMs as in Fig. 1 on EUTxO based ledgers. Further
work [3] adds multi-asset support such that they not only contain coins, but
also fungible and non-fungible token. In this work we consider EUTxO with
multi-asset support, but for simplicity refer to them as UTxO.

3 Overview

We assume two layer 2 ledgers L2
0 and L2

1 created on a common ledger L. Let
parties Pb = {Pb,0, . . . , Pb,i} . . . ,Pb,nb

for b ∈ {0, 1} be an arbitrary, non-empty
subset of the parties who participate in ledgers L2

0 and L2
1 respectively and

P = P0 ∪ P1, where |P | = n, |P0| = n0 and |P1| = n1 i, n, n0, n1 ∈ N. Let Pint

= P0 ∩ P1 �= ∅ with |Pint| = nint, nint ∈ N be the set of intermediaries.
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Communication Model and Time. We assume synchronized communication
between parties which happens in rounds such that, if a message is send within
one round it is available to the recipient at the beginning of the next round. We
assume a relation between communication rounds and time [15–17].

Adversarial Model. We assume an malicious adversary A who can statically
corrupt n−1 out of n parties where n ∈ N. Corrupted parties leak their internal
state including their secret keys to the adversary and communication from and A
receives all communication from and to that party. A can dictate the corrupted
party’s behaviour and make them deviate from the protocol arbitrarily.

Layer 2 Ledgers. We assume the existence of a Layer 2 ledger construction for a
UTxO based ledger. Moreover, we assume that the Layer 2 ledger can implement
CEMs or allows for execution of state machines with sufficient expressiveness.
As is the case with regular ledgers, we assume that all UTxO on the Layer 2
ledger are unique. Moreover, if a Layer 2 ledger L2 is instantiated on a UTxO
based ledger L, then there exists ΔL2 ∈ N such that any UTxO can be moved
from L2 to L within time t ∈ N with t ≤ ΔL2 . We note that a construction that
fulfills these requirements is Hydra [4].

Semantic UTxO Equality. Any well defined ledger makes sure that each UTxO
is unique by assigning unique addresses to each newly created UTxO. In our
construction we are considering multiple instances of the same UTxO where
two UTxO are semantically equal if they are equal except for their address. For
instance, we consider two UTxO that each award 5 coins to a party P to be
semantically equal even though their addresses are distinct.

3.1 The Goal

The aim of this work is to allow interaction between an arbitrary set of parties
P with the same expressiveness as on any Layer 2 ledger. In the following we
denote interaction between parties in P as interaction on an ad-hoc ledger LP .
We define the properties we desire in our construction consistent with related
work as follows.

Definition 1. (Offchain Efficiency). No transactions are committed to L
except in the case of dispute where O(1) transactions are committed to L.

Definition 2. (Liveness). There exists t ∈ N such that upon a party’s request
any UTxO in LP can be made available on L or L2

0 and L2
1 after at most time

t. If there exists a honest intermediary the same holds true for collateral.

Definition 3. (Balance Security). Any honest party loses access to their col-
lateral and UTxO without their consent at most with negligible probability.
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which is moved into replicas of the ad-hoc ledger LP and which can either be moved
out of it regularly or through dispute.

Consensus. If a UTxO can be spent by two different transactions, then these
transactions are in conflict as any UTxO can only be spent once. In the remainder
we assume a mechanism that decides which transactions to perform, e.g. a leader-
based approach as in approach in Hydra [4]. If we relax security by allowing
the adversary to corrupt only less than a third of participants, then another
approach are byzantine consensus protocols as HotStuff [22]. However, this is an
orthogonal problem to our work and we do not further address it in this work.

3.2 Approach

The construction consists of three components. (1) UTxOs are moved into and
out of LP . (2) Perform arbitrary transactions that consume and create UTxOs in
LP . (3) Any UTxO in LP can be disputed and made available on the underlying
ledger L or in L2

0 and L2
1. Recall that in the EUTxO model, coins, (non-) fungible

token as well as CEMs, i.e. state machines, are represented as UTxO such that
showing the above steps for any UTxO is sufficient to show that it is not only
possible to perform payments but also to execute CEMs on LP .

Wrapped UTxO. Figure 2 illustrates the lifecycle of any UTxO in LP . Each
ledger Lb maintains a replica Rb – a copy – of LP . In the following we look at
the example of moving a UTxO from L2

0 to LP . We consider a UTxO to be in
LP by wrapping it inside a CEM that (1) makes sure that if a UTxO is moved
into LP on legder L2

i , i ∈ {0, 1}, then it is moved into LP on L2
1−i by collecting

collateral from a subset of the intermediaries Pi ⊆ Pint on L2
1−i. (2) Likewise it

can be de-wrapped and moved into L2
j , j ∈ {0, 1} by returning the collateral to

the intermediaries on L2
1−j .

Dispute Mechanism. Correctness is facilitated through collaboration with the
intermediaries in Pint. If any intermediary in Pint misbehaves or fails to collabo-
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rate, a UTxO can be disputed by any participating party. A dispute has two out-
comes: (1) If there is at least one honest intermediary they move both instance of
the wrapped UTxO from L2

0 and L2
1 respectively and onto the underlying ledger

L. Afterwards, they can use both UTxO as input into a merge transaction which
has the original UTxO in its outputs as well as all collateral that was committed
with it. (2) If no intermediary is honest such that none perform the steps in
(1), then after a timeout enforced through a timelock, two semantically equal
instances of the UTxO are moved into both L2

0 and L2
1 using the collateral of the

intermediaries to finance it and in the process punish the intermediaries. This
ensures that the UTxO is always available to their owners independent on which
Layer 2 ledger they participate in.

Atomic Transactions. Intermediaries collaborate to perform transactions on LP

atomically, meaning it is performed on both or on no replica. Otherwise, if a
UTxO is spent on R0 but not on R1, it can be spent by a different transac-
tion on R1 effectively double spending the UTxO in which process the collateral
of the intermediaries is implicitly consumed and lost. Atomic transactions have
to be performed for spending already wrapped UTxO, as well as for wrapping
and de-wrapping of UTxO. Transactions are performed atomically by splitting
them into two steps, where each step is performed by a dedicated transaction.
(1) First, we verify that the transactions can be performed through the verify-
transaction. The verify-transaction collects all the (wrapped) UTxOs on both
replica as well as any witnesses, and forges token if necessary. Moreover it evalu-
ates the UTxOs verification scripts. Note that this step is reversible, i.e. we can
create another transaction that re-creates all input UTxOs by creating semanti-
cally equal ones within its outputs and burns all forged tokens. This transaction
requires an aggregate signature signed by all intermediaries. We proceed only if
this transaction has been performed on both replica. (2) Only afterwards we can
be sure that the transaction can be done on both replica ensuring it is atomic.
This is done through a perform transaction that creates all UTxO within its out-
puts and burns any token if required. To ensure that any honest intermediary
can prevent wrongful execution of the perform transaction, i.e. before the replica
are synchronized, we require an aggregate signature signed by all intermediaries
to create the perform transaction. This aggregate signature is the only witness
required to perform the transactions. This step is irreversible, we might not be
able to create a transaction that can reforge burned token, or claim all UTxO
we created as input as they might be spent by different transactions by then.

We can resolve disputes through a merge-transaction, (1) either if the UTxO
in both replica are in the same state, (2) one replica has performed only the verify-
transaction while the other hasn’t since we can revert this step by outputting the
UTxO in the merge transaction’s outputs and (3) if the perform transaction was
performed on one replica while only the verify-transaction was performed on the
other replica since we have the required witness, i.e. the aggregate signature,
to do the perform transaction bringing the UTxO of both replica into the same
state. Acting as mentioned above any honest intermediary can ensure that a
merge-transaction can be performed on disputed UTxO.
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Fig. 3. Derivation of a atomic two-step transaction in Fig. 3b from an arbitrary trans-
action in Fig. 3a.

Limitations. We require UTxO that are moved to LP to be collateralized, i.e. the
intermediaries have to commit collateral equal to the number of coins and token
present. This limits us to UTxO that contain coins or fungible token, however,
we cannot move non-fungible token into LP without any additional workaround.

4 The Ad-Hoc Ledger State Machine

In the following we give a description of the state machine that governs the
lifecycle of each UTxO within an ad-hoc ledger LP between parties P . Note
that while we do not specify the exact storage of data, however, to reduce the
size of UTxO a potential data structure are Patricia Merkle trees3.

4.1 Setup

Recall that we aim to setup an ad-hoc ledger between parties P with the help
of intermediaries Pint. For setup, each party P creates an individual key pair
(vkP , skP). Moreover, the parties collaborate to setup public parameter ΠP and
use them to create aggregate verification key VP where (skP,P , vkP,P) are the
individual keys of P. Analogously the intermediaries collaborate to setup public
parameter Πint to create aggregate verification key Vint where (skint,P′ , vkint,P′)
are the individual keys of P ′ ∈ Pint. Then, the parties sample a random nonce r
∈ N and negotiate a dispute time td ≥ ΔL2 + Δ. This data is stored within the
data field of each wrapped UTxO. A cryptographic hash hMP of the execution
parameters, public keys and nonce r serves to bind them to the ad-hoc ledger
and in addition they are used as a unique identifier for the ad-hoc ledger itself.

4.2 Atomic Transactions

Transactions are executed on all replica atomically, i.e. they are executed either
on all or none, by splitting them up into two transactions, (1) the verify-
transaction verifying that the transaction can be executed on each replica and
3 https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-

merkle-trie/.

https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
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(2) the perform-transaction which executes the transaction. This is illustrated in
Fig. 3b where the original-transaction depicted in Fig. 3a is executed atomically.
These transactions are executed on all replica to keep their states equal. Both
transactions require an aggregate signature corresponding to verification key Vint.
(1) The first transaction is labeled verify(input) where input is the label of the
original-transaction that should be performed. The transaction collects all UTxO
that are required for the transaction in its inputs while verifying their validator
scripts and forges all token that are required. It verifies the validator script of
the input transition using auxilliary information aux. However, note that since
the verify-transaction does not contain the outputs of the original-transaction, we
cannot directly verify the transaction constraints that are required by the val-
idator. Instead, we store the body of the original-transaction that we perform
in the bodyi+1 verify that it confirms the constraints and that the inputs of
the verify-transaction confirm with the original-transaction. (2) After the verify-
transaction is performed on each replica we proceed with the perform-transaction.
This transaction burns all required token and creates the UTxO outputs of the
original-transaction. We use bodyi+1 that is available through Sb

i,i+1’s data field to
verify that the perform-transaction is consistent with the original-transaction. The
field col stores how the coins and tokens associated with that UTxO val ∪Token
are collateralized by the intermediaries as discussed in Sect. 4.4.

4.3 Wrapping UTxO

All UTxO that are used within LP are wrapped using a state machine that
has two purposes. (1) It manages the lifecycle of the UTxO as shown in Fig. 2
and ensures it is only spent through verify-/ and perform-transactions and (2) it
ensures sufficient collateral was committed as well as it tracks how much col-
lateral was committed by the individual parties. Figures 4a and 4c depicts how
UTxO are wrapped and made available on LP wheres Figs. 4b and 4d depict
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how they are unwrapped and moved out of LP back into either L2
0 or L2

1. All
operations have to be done atomically and thus are executed using the frame-
work described in Sect. 4.2. When wrapping a UTxO u, it is committed into the
input-buffer transaction on the ledger it originates from, whereas for the other
replica the intermediaries Pint,0, . . . , Pint,nint commit collateral col0, . . . , colnint

respectively such that val(u) ≤ ∑nint

i=0 coli where val(u) is the amount of coins and
token in u. Only after the input buffer transaction has been committed to both
replica, the intermediaries collaborate to create the wrap-transactions which are
analogous to the perform-transaction in Sect. 3b and make the wrapped UTxO
available in LP . Lastly, each wrapped UTxO contains a nonce uid that is unique
to LP to make it uniquely identifiable, however, which is equal for the same
wrapped UTxO on each replica. Unwrapping of a UTxO is analogous with a
few differences. For one, we require that the unwrap-transaction in addition con-
tains information Hid which designates that the UTxO will be moved to L2

Hid

as depicted in Fig. 4b and the collateral associated with it is released on the
other layer 2 ledger as depicted in Fig. 4d. Moreover, to trigger unwrapping of a
UTxO we additionally require a group signature corresponding to the aggregate
verification key of all participants VP of the message (unwrap, uid, Hid).

4.4 Collateral

The wrapping itself is a unique UTxO living in L2
0 and L2

1. It’s datafield con-
tains the amount of collateral committed by each intermediary. Let col(P, w(u))
be the collateral intermediary P has contributed to wrapped UTxO w(u). If
a transaction consumes wrapped UTxOs win(u0), . . . , win(un), and creates
wrapped UTxOs wout(u0), . . . , wout(um) n,m ∈ N, then for each intermediary Pi,
0 ≤ i ≤ nint holds that the sum of their committed collateral does not change,
i.e.

∑n
j=0 col(win(uj)) =

∑m
l=0 col(win(ul)). It has to hold that each wrapped

UTxO remains sufficiently collateralized, i.e. the inequation val(u) =
∑nint

i=0 coli
holds. How collateral is distributed within the new UTxOs is to be negotiated
between the intermediaries. In Layer-2 protocols intermediaries receive a fee for
locking their collateral. While not addressing it in detail we argue that we can
adapt the handling of fees from the Interhead [14] where intermediaries receive
fee proportional to the collateral locked whereas parties pay out a fee to the
intermediaries proportional to the value of UTxO they request moving to LP .

4.5 Dispute

Dispute resolution is similar to Interhead Hydra [14]. At any point, any party can
create a transaction that consumes a wrapped UTxO and outputs a semantically
equal UTxO to which a dispute flag is added. A dispute might be required if
the intermediaries fail to perform a transaction atomically on all replica, or if
the intermediaries stop collaborating to perform any further transaction which
is required to ensure liveness.. A UTxO with such a flag can be spent in two
ways. (1) As depicted in Fig. 5a a merge-transaction consumes one instance of the
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Fig. 5. Figure 5a shows dispute resolution through merge of its two wrapped UTxO
instances. Figure 5b shows timeout and punishment of the intermediaries.

wrapped UTxO from each replica and outputs the UTxO as well as all collateral
associated with it. This requires moving the flagged UTxO out of L2

0 and L2
1 and

to the underlying ledger which can be done by any party which takes at most
time ΔL2 . Recall that committing any transaction on the ledger takes time Δ.
Therefore any intermediary can perform this within time ΔL2 + Δ. However,
the above dispute resolution requires that both wrapped UTxO are available. If
dispute is triggered while a UTxO is involved in a atomic transaction it might
be only available on one replica. Recall the atomic transaction in Fig. 3b where a
UTxO is first in state Si, then a verify-transaction moves it to a buffer state Sb

i,i+1

and lastly the UTxO is moved with a perform-transaction to state Si+1. Since the
intermediaries synchronize after each transaction as mentioned in Sect. 4.2 and
described in Sect. 5 the states can only diverge by one state transition and we can
proceed as follows. If both states are at least in state Sb

i,i+1 we already verified
on all replica that the original-transaction can be performed thus the merge-
transaction outputs a UTxO in state Si and burning token as well as outputting
wrapped UTxO on the ledger consistent to bodyi+1. Otherwise one UTxO is in
state Si while the other is in state Sb

i,i+1. Then the merge transaction outputs
a UTxO in state Si while reversing the verify-transaction, i.e. it for each UTxO
in the verify-transaction’s inputs it outputs semantically equal wrapped UTxO
on the ledger, as well as it burns all token that were forged in that transaction.
(2) As shown in Fig. 5b a timelock expires after time ΔL2 + Δ which allows the
flagged UTxO to be spent by a transaction that consumes it and outputs the
UTxO directly and without outputting any collateral. Note that if a UTxO is in
state Sb

i,i+1 the UTxO that will be output is in state Si+1.

4.6 Extensions

Batch Transaction. To improve efficiency of the construction multiple wrap and
de-wrap transactions could be batched into one transaction. Moreover, instead
of requiring wrapped UTxO as input, a sync-transaction can take UTxO and
collateral as input and implicitly wrapping the UTxO in the same step.
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Multiple Replica. Our construction can be extended to n ≥ 2, n ∈ N replica. As
in the case of n = 2 all replica require to synchronize at sync-transactions and
merge-transactions have to be adapted to merge not two but n disputed UTxOs.
However, this naive extension to multiple replica requires that the collateral
committed by each intermediary for each UTxO in each replica is equal. The
option of having variable collateral is left as an open question.

Recovery from Disputes. If UTxOs are disputed within each replica, but are
either in the same state or can be brought into the same state through reversing
a sync-transaction or doing a perform transaction they could be moved back into
their respective replicas and thus into LP thus resolving the disupte. However,
to ensure correctness and liveness, we require an aggregate signature of the
intermediaries as well an aggregate signature of all remaining parties, i.e. all
parties must verify and consent to recover from a dispute as otherwise corrupted
parties might prevent a correct dispute resolution.

Virtual Ledgers. Since our construction requires interaction with all intermedi-
aries in P for each transaction it cannot be considered a virtual ledger. However,
layer 2 ledger constructions such as Hydra [4] can be performed within our frame-
work effectively creating virtual ledgers.

5 The Protocols

We require that all transactions performed on LP are either performed on all
replica or on none which is ensured through ATOMIC TRANSACTION protocol
shown in Algorithm 1 which is executed by the intermediaries. This protocol
is executed for general transactions and (un-) wrapping of UTxOs. If this fails,
there would be UTxO that are on only one replica, i.e. UTxO are not spent on the
replica that did not perform the transaction, whereas new UTxO are created only
on the replica that did perform the transaction. Any UTxO that exists on only
one replica can be claimed by their owner by setting a dispute flag on the UTxO
which allows it to be claimed directly after time ΔL2+Δ. A dispute might also be
triggered to ensure liveness, if the intermediaries stop collaboration to perform
further transactions. However, if a disputed UTxO exists on all replica, the
intermediaries can perform the DISPUTE UTXO protocol shown in Algorithm 2
to move the UTxO out of LP and into the common ledger L.

Atomic Transactions. Algorithm 1 describes how all Intermediaries collaborate
to perform a transaction atomically on all replica. Whenever a participant of
LP requests a transaction to be performed they submit the original transaction
tro. First, we verify whether tro is a valid transaction in lines 2 and 3 tro and
terminate if this is not the case. In line 4 we derive the verify − transactions
trv,0 and trv,1 for the replicas in L2

0 and L2
1 respectively and in line 5 we derive

the perform − transactions trv,0 and trv,1. In lines 6 - 8 the intermediaries col-
laborate to create group signatures for the verify − transactions, commit them
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Algorithm 1 Transaction Protocol
1: function

ATOMIC TRANSACTION(tro)
2: if ¬VERIFY(tro) then return
3: end if
4: (trv,0, trv,1) ← VRFY TR(tro)

5: (trp,0, trp,1) ← PRFRM TR(tro)

6: AGGREGATE SIG(Vint, trv,0, trv,1)
7: COMMIT((L2

0, trv,0), (L2
1, trv,1))

8: WAIT COMITTED(trv,0, trv,1)
9: AGGREGATE SIG(Vint, trp,0, trp,1)
10: COMMIT((L2

0, trp,0), (L2
1, trp,1))

11: WAIT COMITTED(trp,0, trp,1)
12: end function

Algorithm 2 Dispute Protocol
1: function DISPUTE UTXO(u)
2: if ¬DISPUTED(u) then return
3: end if
4: DECOMMIT(L2

0, u)
5: DECOMMIT(L2

1, u)
6: WAIT DECOMMITTED(u)
7: trm ← MERGE TX(u)
8: COMMIT(L, trm)
9: end function

Fig. 6. Algorithm 1 is executed by intermediaries to perform transactions whereas
Algorithm 2 is done by any one intermediary to resolve a dispute.

and wait until they are confirmed by the respective layer 2 ledgers. In line 6,
AGGREGATE SIG takes an aggregate verification key and two transactions as
input and outputs aggregate signatures for both transactions corresponding to
that verification key. Then, COMMIT takes tuples of form (L, tr) as input and
commits transaction tr onto (layer 2) ledger L. In line 8 WAIT COMMITTED
takes a list of transactions as input and makes the protocol participants wait
until these transactions are processed on their respective ledgers. After this is
done the same is repeated for the perform − transactions in lines 9–11 (Fig. 6).

Dispute. Algorithm 2 describes how a dispute can be resolved by any one inter-
mediary without them losing their collateral. This algorithm can only be exe-
cuted if a disputed UTxO is present on all replica. The algorithm takes a wrapped
UTxO as input. First, the intermediary checks whether the UTxO’s dispute flag
is set in lines 2 - 4 and terminates the algorithm otherwise. If the UTxO is dis-
puted the wrapped UTxOs are decommitted from L2

0 and L2
1 respectively and

moved to the common ledger L within time ΔL2 . Then, in line 6 the interme-
diary observes L and waits until both replica of the UTxO are present on L
after which in line 7 a merge − transaction for the disputed UTxO is created that
takes the decommitted wrapped UTxOs and outputs the UTxO as well as all
collateral that is associated with it as depicted in Fig. 5a. Lastly in line 8 the
merge − transaction is committed to L and is processed within time Δ.
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6 Analysis

Theorem 1. (Offchain Efficiency). If L2 can de-commit a UTxO to the
ledger in O(1) transactions, LP has offchain efficiency.

Proof. The only occasion in which UTxO are committed to L is when an inter-
mediary executes DISPUTE UTXO in Algorithm 2. In that case the disputed
UTxO is de-commited from both, L2

0 and L2
1 which happens in O(1) transac-

tions. Afterwards one merge-transaction is committed to the ledger.

Theorem 2. (Liveness). LP has the liveness property.

Proof. At any point within a UTxOs lifecycle within LP including during wrap-
ping and unwrapping it can be disputed by any party including any intermediary.
If there is a honest intermediary, they will proceed to make the UTxO and the
associated collateral available on the ledger by executing Algorithm 2. This hap-
pens within time ΔL2 + Δ. Otherwise, at time ΔL2 + Δ a semantically equal
UTxO is available in Layer 2 ledgers L0 and L1 respectively.

Theorem 3. (Balance Security). LP has the balance security property.

Proof. In the following we assume that all UTxO are well formatted, i.e. a owner
of a UTxO has given consent to spent the UTxO to any computationally polyno-
mially bound party that can compute a valid witness for the UTxO. Moreover,
in the following we consider a honest party P and a UTxO u that is present in
LP and either P can spend u by computing a witness within polynomial time, or
u contains P’s collateral. A honest party can lose access to their coins either (1)
by having a UTxO and its associated collateral be locked within LP indefinitely
such that the party cannot move it to L0, L1 or L, or (2) if a party without
consent to spend can use the UTxO as input in a transactions spending it in
the process. Note that since by construction, if a UTxO is spent in any way on
LP its collateral is moved to another UTxO. Thus, to show balance security for
collateral we need to show that case (1) cannot occur. To show balance security
for the coins in u itself we have to show that (1) cannot occur and that (2)
can only occur with negligible probability. Since LP has the liveness property,
case (1) cannot occur. In the following, we assume that there exists a computa-
tionally polynomially bound party that attempts to spend u without receiving
consent. This requires creation of a witness for u. As they have no consent to
spend the UTxO they cannot compute a witness within polynomial time, thus
the probability they can spend it is negligible.

7 Conclusion

In this work we presented a means for parties on two Layer-2 ledgers to interact
with another ad-hoc and with little in advance setup. We showed properties bal-
ance security, liveness and offchain efficiency hold in the presence of a malicious
adversary corrupting all but one parties. While we presented only the core of the
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construction, we proposed multiple potential extensions as improving efficiency
through batching of transactions, recovery from disputes, creation of virtual
ledgers and connecting more than two Layer-2 ledgers. We argue that the con-
struction can be used as a framework for secure interaction and individual uses
cases can be optimized to facilitate low-overhead interactions.
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Abstract. The Lightning Network provides almost-instant payments to
its parties. In addition to direct payments requiring a shared payment
channel, parties can pay each other in the form of multi-hop payments
via existing channels. Such multi-hop payments rely on a 2-phase com-
mit protocol to achieve balance security; that is, no honest intermediary
party loses her coins. Unfortunately, failures or attacks in this 2-phase
commit protocol can lead to coins being committed (locked) in a pay-
ment for extended periods of time (in the order of days in the worst case).
During these periods, parties cannot go offline without losing funds due
to their existing commitments, even if they use watchtowers. Further-
more, they cannot use the locked funds for initiating or forwarding new
payments, reducing their opportunities to use their coins and earn fees.

We introduce Bailout, the first protocol that allows intermediary
parties in a multi-hop payment to unlock their coins before the pay-
ment completes by re-routing the payment over an alternative path. We
achieve this by creating a circular payment route starting from the inter-
mediary party in the opposite direction of the original payment. Once
the circular payment is locked, both payments are canceled for the inter-
mediary party, which frees the coins of the corresponding channels. This
way, we create an alternative route for the ongoing multi-hop payment
without involving the sender or receiver. The parties on the alterna-
tive path are incentivized to participate through fees. We evaluate the
utility of our protocol using a real-world Lightning Network snapshot.
Bailouts may fail due to insufficient balance in alternative paths used
for re-routing. We find that attempts of a node to bailout typically suc-
ceed with a probability of more than 94% if at least one alternative path
exists.

1 Introduction

Payment channels have emerged as one of the most promising mitigations to
the blockchain scalability problem [22]. A payment channel enables two users to
perform many payments between them while requiring only two transactions to
be published on the blockchain. In a bit more detail, Alice and Bob open a chan-
nel between each other by submitting a transaction to the blockchain that locks
c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13951, pp. 92–109, 2024.
https://doi.org/10.1007/978-3-031-47751-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47751-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-47751-5_6


Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 93

coins in a shared deposit. A (off-chain) payment only requires that Alice and
Bob exchange an authenticated agreement of a new deposit’s balance, i.e., the
split of the funds in the deposit between the two. This off-chain payment oper-
ation can be repeated arbitrarily often until the channel is closed by publishing
a transaction on the blockchain that releases the deposited coins according to
the last authorized balance. However, opening a channel only pays off if parties
transact with each other repeatedly.

To enable parties to conduct a transaction without establishing a new chan-
nel, payment channel networks (PCNs) [3–5,15,16,31,38] allow routing pay-
ments from a sender to a receiver via multiple channels. In such a multi-hop
payment, each channel in the route is updated with the payment amount (and a
fee) from the sender to the receiver. The most important requirement for a multi-
hop payment protocol is balance security [5,18,31], i.e., no honest party other
than the sender should lose coins and the sender should only lose the payment
amount and the fees. While there exist several proposals to achieve balance secu-
rity [5,18,32,38], hash-time lock contracts (HTLC) are currently implemented in
the Lightning Network (LN).

An HTLC-based multi-hop payment works as follows: When agreeing to con-
duct a payment, the receiver chooses a random value and then gives the hash of
that value to the sender. The sender decides on one payment path. The first node
on each channel making up the path commits to paying the second node if the
second node provides the preimage of the hash within a certain time. The time,
which depends on the node’s individual preference and its position in the path,
is called the timelock of the conditional payment. More details on the HTLC
construction and timelocks are given in Sect. 2. Once all the commitments are
made, the receiver provides the preimage and the preimage is forwarded along
the path back to the sender, concluding the promised payments.

While the protocol provides balance security, it causes issues with regard to
the availability of coins. After a node has committed to a payment, neither the
node nor their successor on the path can use the payment amount for concurrent
payments, as it is not yet known whether the coins will be successfully trans-
ferred. The typical amount of time funds can be locked in this manner is in the
order of seconds, assuming that all parties are responsive. However, there can
sometimes be delays in the order of days [36].

The delays can be caused by nodes being offline or payment failure. Thus,
the locked coins can severely limit a node’s liquidity and prevent them both
from initiating payments of their own and from forwarding other payments due
to the lack of available funds, which can drastically reduce the ability of the
network to conduct payments [36,40]. Also, if there are several locked HTLCs,
the parties may not able to accept new HTLCs (even if they have enough funds)
because of the upper limit in the number of concurrent HTLC [11]. Moreover,
it is important to note that intermediary parties cannot go offline until all the
locked payments are released. This holds even with watchtowers, as there is no
watchtower protocol that updates the channel state without the presence of the
channel owner [7,8,14,24,26,34].
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These negative effects of unexpectedly long-locked coins give rise to the ques-
tion: Is it possible to unlock coins of an intermediary party if the multi-hop pay-
ment is not completed and the timelock has not expired?

Our Contributions. In this work, we positively answer this question by pro-
viding Bailout, which allows an intermediary party, who has locked her coins
for an unfinished multi-hop payment, to unlock her coins before the expiration of
the corresponding timelock. In a nutshell, Bailout allows the intermediary party
to re-route the on-going multi-hop payment, so that other nodes with a better
availability situation take over the payment, freeing up coins for the intermediary
party to use in other payments. We incentivize the other parties to take over the
payment through offering them extra fees, typically higher than the standard
fee for routing a payment. In this manner, we offload payments from overloaded
nodes to nodes with a low load and available funds. Our contributions are:

– We introduce Bailout, the first protocol that allows intermediary parties
to unlock their coins from an ongoing HTLC payment and provably achieves
balance security. Bailout re-routes the payment over an alternative path that
connects the neighboring parties of the intermediary. It is compatible with
HTLC-based multi-hop payments in Lightning: (i) it can be implemented
with the scripting language of Bitcoin, (ii) it does not require any additional
information than the existing knowledge in Lightning, e.g., the intermediary
party knows only her neighbors on the payment path.

– We evaluate our protocol in the face of parties that want to go offline and
bailout of their ongoing payments. The level of concurrency and the frequency
of long delays determine the amount of locked collateral in the network and
hence affect the ability of a party to find an alternative path with sufficient
funds. Still, even for high concurrency and frequent delays, less than 6% of
bailouts fail.

2 Building Blocks

Transactions and Ledger. In this work, we utilize a simplified version of
Bitcoin to model transactions and the ledger as in [3]. The transactions are
based on the unspent transaction output (UTXO) model, where the coins are
represented by outputs. An output �θ is defined as a tuple (cash, θ) where cash
denotes the number of coins in the output and θ is the corresponding spending
condition. For readability, we extract away the details of the ledger functionality.
We require that the ledger handles the notion of time in rounds, and the round
number corresponds to the number of blocks on the ledger. Also, we assume that
a valid transaction is included in a block on the ledger after at most Δ rounds.
Details of transactions and ledger functionality are given in [21].

Payment Channels. A payment channel is defined as a tuple of
γ:=(id , users, cash, st) where γ.id is the id of the channel between parties P ∈
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γ.users, γ.cash denotes the capacity of the channel and γ.st:=(�θ1, . . . , �θn) is the
state of the channel. We denote channel between A and B as γA,B . A channel
has three phases: (i) create where the channel is opened by publishing the fund-
ing transaction on the ledger, (ii) update where parties update the state of the
channel, and (iii) close where parties close the channel by publishing the latest
channel state on-chain. The payment channel functionality is given in [21].

Payment Channel Networks. A payment channel network is a network
where parties are nodes and channels are edges. One can route payments
from a payer to a payee along multiple channels without requiring a direct
channel between them. A Multi-hop payment (MHP) is constructed over
a path of channels path:=(path[0], . . . , path[n − 1]) and conditional payments
(MHP[0], . . . ,MHP[n − 1]) (one for each channel) where n is the payment route
length. path[i] is the ith channel in the payment route and path[i].payer (and also
MHP[i].payer) denotes the ith party in the path who pays to the (i + 1)th party,
path[i].payee.

We present the ideal functionality of MHP FMHP in [21], which has two
phases: Setup and Lock, and Pay or Revoke phases. In the Setup and Lock phase,
the payment path is created and the channels on the path lock the corresponding
amounts. More concretely, at each channel path[i], amt[i] coins of path[i].payer
are locked. Here, the order of the locking corresponds to the order of channels on
the path, starting with the channel adjacent to the sender. If the locking fails in
a channel on the path, then the locking stops. When all channels in the path are
locked, this phase is finished. In the Pay (or Revoke) phase, for each channel of
path[i], the locked coins are paid to path[i].payee. Unlike in the previous phase,
the channel updates are executed in the order from the receiver to the sender. If
the payment is not completed before TL[i], then the locked coins can be revoked
and given back to the path[i].payer.

Lightning Network achieves multi-hop payments via the HTLC (hash time
locked contract) protocol. An HTLC is a conditional payment where the receiving
party can claim the payment amount by providing the preimage of the given
hash value. If the preimage is not provided within a certain time, the payment
amount returns to the sending party. We write an HTLC tuple with the following
attributes HTLC:=(mid, cpid, γ, payer → payee, cond, TL, amt) where HTLC.cpid
is the id of the HTLC in channel HTLC.γ between the payer HTLC.payer and the
payee HTLC.payee. If the HTLC is part of a multi-hop payment, then HTLC.mid
stores the corresponding id, otherwise it is ⊥. The payment amount of the HTLC
is HTLC.amt that is locked for the condition HTLC.cond. If the HTLC is part
of a MHP, the amount is deducted from the available coins of HTLC.payer. If
a witness witness is provided s.t. H(witness) = cond until time HTLC.TL, then
the payment amount is given to HTLC.payee. Otherwise, at time HTLC.TL,
the amount is returned to HTLC.payer. Note that a channel γ can have several
ongoing HTLCs at the same time. For readability, unless it is necessary, we skip
the first three attributes of the HTLC tuple, also we omit the payer and payee in
figures where they are visually ascertainable. The scripts of an HTLC are given
in [21].
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Fig. 1. A multi-hop payment with HTLCs. h denotes MHP[i].cond where x is the
corresponding preimage, and ti and vi represents MHP[i].TL and MHP[i].amt.

As explained previously, a MHP in Lightning is done by locking HTLCs in
the payment path from sender to receiver wrt. the condition cond chosen by the
receiver. Note that each intermediary party Pi plays the role of payee in the
channel (of MHP[i]) closer to sender, and the role of payer in the subsequent
channel (of MHP[i + 1]), which is closer to the receiver. Party MHP[i + 1].payer
accepts locking the conditional payment MHP[i + 1] if the following conditions
are satisfied: (i) the previous channel should be updated first with the same hash
condition, MHP[i+1].cond = MHP[i].cond, (ii) the locked amount should be equal
to the one in previous channel minus the fee, i.e., MHP[i].amt −MHP[i + 1].amt
is equal to the fee amount chosen by the channel, and the locked amount can be
at most the channel balance, and (iii) the timelock of the HTLC is less than or
equal to the timelock of the previous channel plus the timelock of the channel
chosen by the intermediary, MHP[i + 1].TL = MHP[i].TL − Ti where Ti is the
timelock of the channel. In Lightning Network, the timelock and fee values of a
channel is publicly known. An illustrative example of a MHP is given in Fig. 1.

After the last channel before the receiver has been updated with an HTLC
condition, the receiver reveals the preimage and obtains the payment. Subse-
quently, all intermediaries forward the preimage to their predecessor. If the
receiver does not share the preimage, each channel returns to its initial state
after the timelock. In this case, the coins in each channel will be locked and
cannot be used until the timelock is over.

3 The Bailout Protocol

Assume there is an ongoing multi-hop payment (MHP0) including the channels
from A to B and B to C (seen at the Initial State of Fig. 2). Let HTLCA and
HTLCC be the existing HTLCs with condition h and amounts amtA and amtC
in channels γA,B and γB,C , defined as: HTLCA:=(A → B, h, TLA, amtA) and
HTLCC :=(B → C, h, TLC , amtC), where TLC < TLA and amtC < amtA. In
both channels, coins have been locked for longer than expected by B. If the
payment is not completed, B has to wait until the timelock of HTLCC expires,
which can be days.
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Motivation. Here, we list some of the potential reasons that B may request
to be removed from the long-lasting payment. First, B may want to go offline
with minimal monitoring of the blockchain. If there are no ongoing payments
locked, B only needs to monitor the blockchain (wrt. the channel timelock, once
per day) for potential fraud of the other party of the channel, and this can
even be delegated to a watchtower [26]. However, if there are ongoing HTLCs,
the channel needs to be updated wrt. the outcome of them, and this cannot be
delegated. Note that even if every party in the MHP is honest and online but
B is offline, then the MHP cannot be completed until B is online again or the
timelocks of B are expired. Thus, other parties also benefit from removing B
from the ongoing payment as B’s absence may delay the payment further.

Secondly, B may want to close his channels and spend the coins immediately.
Even though, B can close the channel with ongoing payments, he needs to wait
for them to be finalized. Thirdly, B may want to make an off-chain payment
but due to the ongoing payment and the locked coins, there are not enough
funds available. In the last scenario, B could also want to unlock his funds to
participate in off-chain payments as an intermediary and make profits in the
form of fees from other payments using the currently locked coins.

Security and Compatibility Requirements. Here, we aim to design a pro-
tocol that unlocks the coins of B, which is compatible with Bitcoin’s scripting
language and the Lightning Network. The protocol requires the participation of
B’s neighbors A and C as they need to be involved in unlocking previously made
commitments. Without the cooperation of these neighbors, B cannot update the
channels. The Lightning Network uses onion routing such that the intermediary
only learns the identity of the previous and next node on the path. Thus, our
protocol should also not require the identities of other parties on the path, in
particular the sender and receiver. Finally, but most importantly, the protocol
should provide balance security to every honest intermediary, meaning that no
honest party should lose coins regardless of the acts of other parties.

3.1 Overview of Bailout

In this work, we design Bailout and show that it satisfies all the requirements
given above. Bailout re-routes the ongoing locked HTLCs via an alternative
path such that coins of B are released. In a nutshell, the idea is creating new
HTLCs in the opposite direction with the same payment amounts and then
cancelling them out. For that reason, we create a circular MHP (MHP1) of
length four starting from B that goes through A, D (party in the new route,
called a bailout party), C and ends at B again (see Step 2 in Fig. 2).1 Once the
new MHP is locked, both payments are canceled for B, which frees the coins
of the corresponding channels, which is illustrated in the Step 3 of Fig. 2. The

1 Here, we require that there is an alternative path between Alice and Carol via only
one intermediary, Dave. Later on, we generalize it to multiple intermediaries.
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Fig. 2. Simplified protocol phases for the full cancellation/re-routing. In Setup and
Lock Phase, the new multi-hop payments (MHP1 and MHP2) are locked. In Cancella-
tion Phase, the HTLCs of B are cancelled in the channels with A and C. In Pay and
Reroute Phase, MHP2 is payed by sharing the preimage of hB and the condition of
MHP1 is reduced to h. For simplification of the figure, we use a constant fee f , which
can actually differ among parties. HTLCs of MHP0, MHP1 and MHP2 are colored with
black, blue and green respectively. (Color figure online)

re-routing of the original payment can be seen in the path difference between
the Initial and Final State given in Fig. 2.

Naive Approach. A naive solution is creating a circular MHP1 with the same
condition as MHP0, then HTLCA and MHP1[0] have the same amount and the
same hash condition but in opposite directions. Then, for the parties A and
B, it would be the same if they cancel both of them, rather than waiting for
the payments to be completed. It is similar for the channel between B and C.
However, there is a security problem: if the preimage of h is known to A during
the locking phase of MHP1, then B loses his coins. More specifically, just after
locking MHP1[0], and before locking the other hops in MHP1, if A knows the
preimage2, A can claim the payment in MHP1[0] from B. Yet, if the last hop
MHP1[3] is not locked, then B is not be compensated in MHP1.

To overcome the aforementioned problem, the conditional payments in MHP1

should include an additional condition chosen by B, say hB . In this way, if MHP0

is completed during the process, then the new MHP (MHP1) cannot be spent,
and B does not lose his coins. In this case, MHP1 is cancelled since there is no
need to execute the protocol. With the additional condition, after re-routing,
we need to ensure that parties A and C do not lose their coins because of the

2 A can learn the preimage from B (or the other parties on the path if she is colluding
with them).
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differences in conditions of MHP0 and MHP1. From A’s perspective, since A is
the payer for conditions (h, hB) in MHP1[1], and payee for h in MHP0 (if she is
not the sender), she is guaranteed that after paying in MHP1[1], she can get paid
in MHP0. However, for C, it is the opposite. For that reason, we have an interim
step for the update between B and C where B needs to reveal the preimage of
hB, which we explain in more detail while presenting the protocol phases.

Incentives. Note that the reason of re-routing HTLCs of B in MHP0 is that
it was not completed in the expected time. The delay can be due to i) a node
not forwarding the payment or preimage, ii) a node not peacefully settling the
payment that she knows will fail and instead waiting for the timelock to expire,
and iii) a receiver (intentionally) not providing the preimage, e.g., in a griefing
attack. In case ii) and iii), the payment fails and the cancellation happens at the
last possible moment, leading to very long delays. If the payment fails, interme-
diaries do not receive fees. As a consequence, the bailout party D is unlikely to
agree to take over the payment if a fee is only paid when the original payment
is successful. For this reason, there should be an additional incentive for D to
be involved in the re-routing.

We introduce a secondary MHP, MHP2 with the sole purpose of paying fees
to the bailout party D, as well as A and C, for their involvement in the protocol.
The condition of MHP2 is hB, which is revealed by B to C after the cancellation
of HTLCs in their channel. Thus, the intermediary parties will get paid just after
the HTLCs of B are cancelled, which is independent of the completion of MHP0.
D can negotiate its fee with B.

A simplified overview of Bailout steps is given in Fig. 2. The locking of the
new MHPs, MHP1 and MHP2, is done in the Setup and Lock phase. After that,
the Cancellation phase starts. In this phase, the previous HTLCs, HTLCA and
HTLCC , together with the new ones in MHP1 belonging to channels γA,B and
γB,C are cancelled, i.e., they are simultaneously revoked. Thus, the coins of B
are released. Then, in the last phase, B reveals the secret xB , so that each party
can claim the payment in MHP2 and also reduce the conditions of HTLCs in
MHP1 to only h.

Extension I - Multiple Bailout Parties and Timelocks. So far we
explained the protocol for only one bailout party D that connects A and C.
However, such a party may not exist because of the network topology or insuffi-
cient balance. Thus, we extend the protocol to multiple bailout parties, Di’s. For
the multiple case, the protocol steps do not change. The only concern of having
multiple Di’s is that the timelocks of the re-routing payments (MHP1) have to
be divided by the number of new parties. In practice, a default timelock of a
channel is either 40 or 144 blocks, with one block being published roughly every
10 min [36]. The average transaction confirmation time is not higher than one
hour in the last three months (as of Oct. 17, 2022), yet, in the past, it had spikes
higher than five days [10]. Thus, we assume the bailout parties can assess a safe
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timelock value regarding the transaction confirmation time at the moment, and
whether they are willing to participate in the protocol with a lower timeout.

Extension II - Partial Re-routing (or Cancellation). Until now, Bailout
is defined over the scenario where HTLCA and HTLCC of MHP0 are completely
cancelled and MHP0 is re-routed over the bailout parties. Yet, it is also possible
that the payment is partially re-routed and the HTLCs in γA,B and γB,C are
updated accordingly. Let amtcxl be the amount that party B aims to re-route
via the new path. We can achieve partial re-routing by replacing the amount
locked in MHP1 with amtcxl (instead of the amount in MHP1). Then, during the
cancellation phase, instead of completely cancelling the corresponding HTLCs
in γA,B and γB,C , we replace HTLCA and HTLCC with HTLCnew

A and HTLCnew
C

with the only difference of amount reduction by amtcxl. Hereby, we re-route the
amount amtcxl over the channels of bailout parties and keep the remaining in
channels γA,B and γB,C .

3.2 The Phases of Bailout

In [21], we give the protocol, ΠBO in the UC framework. Here, we explain the
phases of Bailout: Setup and Lock, Cancellation and Pay and Reroute.

First, we should discuss the path of new multi-hop payments. The protocol
requires existence of bailout parties, Di’s, that connect A and C. Here, finding
an alternative path is not sufficient, it is also necessary that all channels on the
new path have sufficient funds and the new bailout parties charge a fee that
is acceptable. Also, as mentioned in the previous section, the more parties are
involved, the lower the timelock values are. Thus, having only one bailout party
is preferable to not shortening the timelock values. For completeness, we write
the protocol for multiple ones.

Setup and Lock Phase. In this phase, the new MHPs are created and locked
wrt. to the initial HTLCs, HTLCA and HTLCC . B constructs the new MHPs of
length n with mhpInfo1:=(amt1,TL, path) and mhpInfo2:=(amt2,TL, path) such
that:

– path[0].payer = path[n − 1].payee = B, path[0].payee = path[1].payer = A,
path[n − 2].payee = path[n − 1].payer = C and path[i].payee = path[i +
1].payer = Di for i ∈ [1, n − 3].

– For i ∈ [0, n − 1], amt1[i]:=amtcxl ≤ amtC , and amt2[i] =
∑n−1

j=i fj where fj
is the fee of channel path[j].

– TL[0] = TLA + Δ, TL[n − 1] = TLC − Δ, and for i ∈ [1, n − 2], TL[i] =
(n−2−i)

n−3 × (TLA − TLC) + TLC .

B chooses a random value xB and computes hB = H(xB). Then, B computes
the HTLCs of MHP1 and MHP2 (for i ∈ [0, n − 1]):

MHP1[i] = (payeri → payeei, {h, hB},TL[i], amt1[i]),
MHP2[i] = (payeri → payeei, {hB},TL[i], amt2[i]),
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where payeri = path[i].payer and payeei = path[i].payee.
Once the HTLCs are created, starting from i = 0 to n − 1, each channel of

path[i] is locked with both MHP1[i] and MHP2[i]. In the locking phase, parties
follow the standard Lightning MHP locking procedure with the only difference
being the two parallel HTLCs. If there is failure in any of them, the parties do
not continue. Once both MHPs are successfully locked, the phase is completed.

Cancellation Phase. In this phase, B updates his channels with both parties
P ∈ {A,C} by (partially or fully) canceling the existing HTLCs and unlocking
the coins in his channels. B updates his channels γA,B and γB,C . To ensure
balance security of B, both channels are updated atomically. Also, the new
states of both channels should not be publishable on the blockchain until the
old ones are revoked. Otherwise, an old state of one channel (e.g., γA,B) and a
new state of the other channel (γB,C) can be published. To achieve this, we use
the idea presented in [4] where the updated states have an additional timelock
condition. This additional timelock gives enough time for B to make sure that
the previous state of both channels are revoked. If not, then he can publish the
old states of both channels before the timelocks of the new states.

Another atomicity is required in the channel update of γB,C . The update
of the channel γB,C and revealing of xB should be atomic. On the one hand,
B should not share xB with C before updating their channel. Otherwise, a
malicious C can stop the update, and if x is revealed between MHP1[n − 1].TL
and MHP1[2].TL, C can get paid by B from HTLCC of MHP0 without paying
MHP1[n − 1]. On the other hand, C should not update the channel without
learning xB. Otherwise, if a malicious B does not share xB , then C might pay for
MHP0 when receiving x (assuming C is not the receiver of MHP0), but cannot
claim the payment from Dn−3 in MHP1[n − 2]. For that reason, we have an
additional condition payment HTLC′

C that updates the channel where B needs
to reveal xB to claim his coins with the timelock of MHP1[n − 1].TL:

HTLC′
C ← (C → B, hB , TLC − Δ, amtC) (1)

where Δ is the time required to publish a transaction on the ledger. It is impor-
tant to note that, unlike other HTLCs, the amount amtC in HTLC′

C is not
deducted from C, but B, which is the released amount in HTLCC . It is better to
interpret HTLC′

C as a conditional payment that uses collateral of B, and B can
re-claim it by revealing xB, otherwise, it goes to C after the timelock period.

For the channel γB,C , there are three existing HTLCs: HTLCC has condition
h for the amount of amtC from B to C, MHP1[n − 1] has conditions {h, hB}
for the amount of amtcxl from C to B and MHP2[n − 1] has condition {hB}
for the amount of fn−1 from C to B. For full cancellation where the amounts
are the same, i.e., amtC = amtcxl, B and C update γB,C by canceling HTLCC

and MHP1[n− 1], and locking HTLC′
C . Otherwise, for partial cancellation where

amtC > amtcxl, parties additionally lock HTLCnew
C where HTLCnew

C :=(B →
C, h, TLC , amtC − amtcxl).
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For the channel γA,B , there are also three ongoing HTLCs: HTLCA has con-
dition h for the amount of amtA from A to B, MHP1[0] has conditions {h, hB}
for the amount of amtC from B to A and MHP2[0] has condition {hB} for the
amount of

∑n−1
j=0 fj from B to A. For full cancellation, since atomic reveal of

xB is not necessary for A, A and B will update γA,B by canceling HTLCA and
MHP1[0]. Here, the difference of cancelling HTLCA and MHP1[0], amtA − amtC ,
can be seen as an additional fee gain for A. For partial cancellation, parties lock
HTLCnew

A where HTLCnew
A :=(A → B, h, TLA, amtA − amtcxl).

In the honest case where both channels of B are updated, B can reveal xB to
C and update their transitory state by unlocking HTLC′

C and receiving payment
MHP2[n − 1]. Here, B can also share xB with A and execute MHP2[0].

If a malicious A or C does not complete the channel update, then B publishes
the previous state of both channels, which includes the pending HTLCs of MHP0,
MHP1 and MHP2. Then, B does not reveal xB and waits until the end of all
timelocks that require xB . For the initial HTLCs, HTLCA and HTLCC , he follows
the standard HTLC protocol. Hence, even if A and/or C are malicious, B doesn’t
lose any funds.

Pay and Reroute. In this phase, the bailout parties get paid by MHP2 once B
reveals xB . Here, parties follow the standard MHP payment procedure. Also, the
intermediaries update the locking condition of MHP1 by eliminating hB there.
For each i ∈ [1, n − 2], MHP1[i] is updated with

MHPnew
1 [i] = (payeri → payeei, h,TL[i], amt1[i]). (2)

This implies that MHP0 is re-routed. In the full cancellation case, HTLCA

and HTLCC are replaced by MHPnew
1 [1], . . . ,MHPnew

1 [n− 2]. In other words, the
new payment path goes via D1, . . . , Dn−3, and B is no longer involved in the
payment. In partial cancellation case, the locked amounts in channels γA,B and
γB,C are reduced by amtcxl, which is now locked in the alternative path.

3.3 Security Discussion

Here, we briefly argue the balance security of the parties. For parties A and C,
they are replacing their existing HTLCs of MHP0 with the ones in MHP1 where
the timelocks are hash conditions are the same. Thus for them, only the path is
changing. For the bailout intermediaries, the balance security mainly relies on
the security of MHPs since they are regular intermediaries. For B, the balance
security comes from the fact that the new MHPs depend on the secret xB chosen
by him. Thus, if the HTLC updates and the cancellation phase are incomplete,
then B can always ignore the new HTLCs since only he has the witness xB of
them. Because of the page limitations, we present the detailed security discussion
of the HTLC updates with timelines in [21]. Also, in [21], we provide the ideal
functionality FBO and we show that our protocol Bailout (ΠBO) emulates the
ideal functionality FBO.



Get Me Out of This Payment! Bailout: An HTLC Re-routing Protocol 103

4 Evaluation

We consider the scenario that a party (Bob) wants to go offline and bailout of
all of his payments. In [21], we also treat the case of a party wanting to bailout
to re-gain liquidity. While in the first scenario, the party wants to get out of all
ongoing payments, for the second case he only wants to bailout of a subset of
payments that allows him to freely use a certain amount of locked funds.

Metrics. Our evaluation is focused on the rate of successful bailouts. For this,
we classify the result of a bailout in three categories:

1. No Loop: the network does not contain an alternative path that can be used
for bailout for at least one of the payments the party aims to bailout from.

2. Failed : the party finds an alternative path for all payments but the bailout
fails nevertheless, e.g., due to insufficient balance on the alternative paths.

3. Successful : the party managed to bailout of all payments.

During a simulation, we count the number of occurrences of each of the above,
and the sum of all these three numbers (called number of bailout events).

The first possible cause of failure, ‘No Loop’, results from the topology of
the network. Our algorithm does not directly impact the topology, since no new
channel is created or deleted during the protocol execution. However, it stands to
reason that if parties have the option to use Bailout, they ensure that bailout
parties are present by establishing channels such that alternative paths exist.
Consequently, we expect a lower amount of ‘No Loop’ cases when our protocol
is deployed than for the current Lightning topology, which we use as a model in
our evaluation. In order to focus on protocol-related rather than topology-related
aspects, we compute the failure ratio as (Failed)/(Successful + Failed).

Simulation Model. We implemented the protocol by extending a known simu-
lator, and the code is open-source3. We simulate the Lightning Network by using
real-world topology snapshots. As 92% of parties use the LND client [36], our
simulation implements the routing behavior of LND. Other clients differ slightly
in the path selection but otherwise execute the same behavior.

Payments are executed concurrently. For simplicity, we disregard the time
required for local operations and only add network latency for the communi-
cation. As Lightning only requires relatively fast operations such as encryption
and decryption of messages of 1300 bytes as well as hashing [12], the network
latency should dominate the local computation time.

Generally, the latency of payments that are properly executed are chosen
such that parties do not bailout during this time but only if additional delays
happen. In order for parties to use Bailout, we consider the following behaviors
that cause additional delays:

3 https://github.com/stef-roos/PaymentRouting/tree/bailout.

https://github.com/stef-roos/PaymentRouting/tree/bailout
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– Delaying : with a certain probability p, an intermediary or receiver delays the
payment (e.g., by being offline) until the maximal timeout.

– Not settling : a fraction p of intermediaries does not cancel failed payments
but rather waits until the timeout expires.

Parameters. We run our simulation on a real-world Lightning snapshot [39].
We restricted our evaluation to the largest connected component with nearly
7,000 nodes and about 65,000 channels to ensure that every node had a path to
every other node. For each channel and direction, we choose the balance expo-
nentially with an average of 4 million satoshi, similar to the statistics of Lightning
from early 2022 [1]. For the normal Lightning fees, we roughly approximated the
statistics as follows: More than 75% of the parties choose a base fee of 0 or 1,
so we chose each with a probability of 50%. For the fee rate, the probability to
have a rate of 0.000001 was 25%, otherwise the fee rate followed an exponen-
tial distribution with parameter λ = 1/0.000004. We chose the local timelock
of each party to be the widely used value of 144 blocks. We generated 100,000
transactions with random source-destination pairs, an exponentially distributed
payment value of 10% of the average channel balance, and an average of 10
transactions per party and hour. There is no real-world data on transactions in
Lightning as they are considered private. Thus, we took the same parameters as
previous work [18]. For the additional delays, i.e., Delaying and Not Settling, p
was varied between 0.1 and 0.5 in steps of 0.1. All results were averaged over
10 runs. When the last transaction is initiated, a party B decides that he wants
to go offline. He waits 60 s such that any ongoing payments without additional
delays can terminate. 60 s was chosen as Lightning payments should terminate
within a minute [2]. During the 60 s, he no longer forwards new payments. After
the 60 s, he attempts to bailout of all remaining payments. For simplicity, we
assume that bailout parties are not paid fees here, but we consider them in [21].

The party aiming to use Bailout considers each ongoing payment and first
determines a list of alternative paths for the payment. The discovery of alter-
native paths works as follows: We initialize a queue containing paths, with the
first path in the queue being a path containing only the party A, i.e., the party
preceding the party B that aims to go offline. We want to find loop-free path
from A to B’s successor C, which does not contain B. In each step of the path
discovery algorithm, we remove the first path from the queue. We iterate over all
neighbors I of the last node in the path. If I = C, we extend the path by I and
add it to the list of alternative paths. Otherwise, if I is not B and appending
it to the path does not create a loop, we add the path with I appended to the
queue. For efficiency reasons, we limit the alternative path length to at most 4
and the maximal queue size to 1000. If no alternative paths are found, we record
‘No Loop’ to note that the bailout failed due to the absence of alternative paths.

After determining a list of alternative paths, the party checks whether he can
bailout of the payment using one or several of the alternative paths. Concretely,
we consider the first path and determine the amount of funds that can be sent via
it in accordance with the balance constraints. If the balance is sufficient to take
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over the complete payment value, we bailout out of the payment by moving the
value to this alternative paths. Note that the balance of the path is accordingly
reduced. Otherwise, we split the payment value and execute Bailout for the
amount that can be moved to the alternative path. For the remaining funds,
we consider the second path found, for which we repeat the same process. We
continue the algorithm until we have either moved all funds to another path or
there are no alternative paths left. In the later case, the bailout fails.

The party executes the above process for all ongoing payments he is an inter-
mediary for. Note that the party can only go offline if he can bailout of all these
payments. Thus, we mark the bailout as ‘Successful’ if all separate bailouts are
successful. If we experience ‘No Loop’ for any of them, we terminate and record
‘No Loop’ as the result of the overall bailout attempt. Otherwise, the bailout is
‘Failed’. We count the number of ‘No Loop’, ‘Failed’, and ‘Successful’ by exe-
cuting the above bailout protocol for every party that has at least one ongoing
payment. Based on these value, we compute the success ratio of bailouts. Note
that parties cannot bailout of payments that they are the source off. However,
as they do not need to relay a preimage to their predecessor when they are the
source, these payments do not prevent them from going offline, so that we do
not consider them in the set of ongoing payments.
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Fig. 3. a) Failure ratio for bailing out of all ongoing payments; b)+c) Fraction of parties
that do not attempt to bailout because they b) do not have ongoing payments or c)
do not have an alternative path.

As concurrency has a major impact on the number of ongoing payments, we
consider a low-concurrency and a high-concurrency scenario. In the former, a
party on average sends 0.04 transactions per hour, or roughly 1 transaction per
day. In the latter, parties send an average of 10 transactions per hour.

Results. Figure 3a shows the failure ratio. Note that since few payments fail,
the figure uses a log scale. High concurrency indicates that at any time, there
is more collateral locked and hence the probability that an alternative path has
sufficient collateral is lower. Furthermore, Delaying can be executed during any
payment and by any party whereas Not Settling only happens when payments
fail, which is less frequent. As a consequence, there are less ongoing payments
to bail out for Not Settling, resulting in a lower failure ratio.
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The main difference between the various parameter selections lies in the
number of parties that attempt to bailout. Parties may not attempt a bailout
because they do not need to as they have no ongoing payments or because they
cannot find an alternative path. Thus, we divide the parties in the snapshot in
four classes: ‘No Loop’, ‘Successful’, and ‘Failed’, as defined in Sect. 4, as well
as ‘No Need’, the parties without ongoing payments. Figures 3b and 3c show
the fraction of parties that all fall into the ’No Need’ and ‘No Loop’ category,
respectively. As there are more concurrent payments and a higher probability
of delay, more parties have ongoing payments and consequently, the fraction
of parties not discovering an alternative path increases. In particular, when few
parties have ongoing parties, ongoing payments mainly affect central parties with
a large number of links. These parties can easily find alternative paths. As more
parties are affected, parties with few connections that are not part of any loops
have ongoing payments as well. Establishing channels such that alternative paths
are possible is hence an important aspect when aiming to use Bailout. We can
see that as long as alternative paths exist, Bailout is nearly always successful.

5 Related Work

There have been several works on the different channel constructions: Lightning
channels [38], generalized channels [3,17], and virtual channels [4,6,15,16,23,25].
A network of channels can be used for atomic multi-channel updates and multi-
hop payments over parties who do not have a direct channel [5,18,19,32,35,38].

An important aspect regarding multi-hop payments concerns the channel
balances. The balance in each side of a channel determines the usability of that
channel in a multi-hop payment in that direction. Thus, if a channel is depleted in
one direction, then that direction cannot be used for multi-hop payments. There
have been studies on reducing depletion by (i) active re-balancing with circu-
lar payments [9,28,37,42], and (ii) passive re-balancing with fees and incentive
mechanisms [13,20,41]. It is also possible to change the capacity, and thereby the
balance, of a channel by Loop-in and Loop-out protocols [27], which require on-
chain transactions. Recently, Spider [40] has been proposed to improve channel
balances and network throughput. It utilizes a packet-switched architecture that
allows splitting transactions into smaller units for better load balancing. These
re-balancing protocols re-locate the available (unlocked) coins in the channels,
yet they do not solve the unavailability of locked coins.

The existing multi-hop payment protocols require locking coins in each chan-
nel in the path for a period of time, which can be days. The coins can be
unlocked if the payment is completed (with success or honest immediate cancel-
lation). However, the locking period can be abused by griefing and congestion
attacks [29,36,43], which lock the available balances in the channels, and limit
their usability for the period of time. The attacks can be against the whole
network or some specific parties/channels. The effect of the griefing attack can
be reduced by changing the path selection algorithm [43], limiting the number
of hops [36], or decreasing the locked time [5,35]. Also, recently, an alterna-
tive HTLC protocol with a griefing-penalty mechanism is proposed [33], which
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requires the receiving parties (payees) to lock coins as well, which are paid in
the case of griefing. With this mechanism, the budget of executing the griefing
attack is increased by a factor of 4 for a path length of 4. Note that all these
(partial) countermeasures are preventive, i.e., they aim to reduce the effect of
the attack before the payment is locked. To the best of our knowledge, there was
no reactive countermeasure that frees (unlocks) the locked coins of a party from
an ongoing multi-hop payment.

Watchtowers [7,8,14,24,26,34] address the issue of offline parties for single
payment channels. In a single channel, one party may publish an invalid balance
on the blockchain with the goal of earning more coins than their actual balance.
Then, the other party has to publish a dispute including the correct balance
within a certain time. In a watchtower protocol, the responsibility of raising
a dispute is delegated to third party. However, watchtowers are not designed
for relaying multi-hop payments as they are observing the blockchain rather
than local payments. Indeed, multi-hop payments aim for value privacy [30,31],
meaning that no party not involved in the payment should learn the payment
value, which seems to contradict the involvement of an outside party.
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Abstract. Payment channel networks (PCNs) are a promising solution
to the blockchain scalability problem. In PCNs, a sender can route a
multi-hop payment to a receiver via intermediaries. Yet, Lightning, the
only prominent payment channel network, has two major issues when
it comes to multi-hop payments. First, the sender decides on the path
without being able to take local capacity restrictions into account. Sec-
ond, due to the atomicity of payments, any failure in the path causes
a failure of the complete payment. In this work, we propose Forward-
Update-Finalize (FUFi): The sender adds redundancy to a locally routed
payment by initially committing to sending a higher amount than the
actual payment value. Intermediaries decide on how to forward a received
payment, potentially splitting it between multiple paths. If they cannot
forward the total payment value, they may reduce the amount they for-
ward. If paths for sufficient funds are found, the receiver and sender
jointly select the paths and amounts that will actually be paid. Payment
commitments are updated accordingly and fulfilled. In order to guaran-
tee atomicity and correctness of the payment value, we use a modified
Hashed Time Lock Contract (HTLC) for paying that requires both the
sender and the receiver to provide a secret preimage. FUFi furthermore
is the first local routing protocol to include fees and specify a fee pol-
icy to intermediaries on how to determine their fair share of fees. We
prove that the proposed protocol achieves all key security properties of
multi-hop payments. Furthermore, our evaluation on both synthetic and
real-world Lightning topologies shows FUFi outperforms existing algo-
rithms in terms of fraction of successful payments by about 10%.

1 Introduction

Payment channel networks (PCNs) enable blockchain scalability by increasing
the throughput of transactions and reducing latency, and fees [14]. They move
payments off-chain, i.e., not all payments have to be included in the blockchain.
Thus, they do not require that every payment is broadcast to all participants
and verified by them.
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Two parties fund a payment channel by depositing coins into a joined account
using a blockchain transaction, and then they can make direct transactions in
the channel [4]. Opening such a channel only pays off for frequent transaction
partners due to the need for the initial blockchain transaction. If a sender S
wants to send funds to a receiver R without having a direct channel, they can
route the funds via multiple existing channels. For instance if both S and R
have a channel with P, P can act as intermediary. It is important that both the
channel between S and P and the one between P and R have sufficient funds [17].

Designing routing algorithms to find sufficiently funded paths between
senders and receivers successfully and swiftly is thus the key for a usable PCN. In
the literature, there are two types of routing algorithms: source routing, in which
the sender decides on the path, and local routing, where intermediaries decide
on which neighbor they forward the payment to. Lightning, Bitcoin’s PCN, uses
source routing: The sender determines one path to the receiver based on a pub-
licly available snapshot of the network topology [14]. However, the snapshot does
not include the exact amount of funds available in each channel. So payments
may fail due to channels in the path having insufficient funds.

There are approaches for the sender to split payments into multiple sub-
payments, each routed via a different path [13,20]. Smaller payments are less
likely to exceed the amount of available funds in a channel and congestion infor-
mation can be utilized to determine the most suitable paths [20]. Yet, if only
one channel in one path has insufficient funds, the payment fails. You can retry
the payment using different paths and splits of the total payment amount but it
might take a large number of tries until you find a distribution of funds on paths
that works. Boomerang [3] adds redundancy to the payment, i.e., the sender
initially sends more funds than the actual payment value. In this manner, some
failures along individual paths do not result in the overall payment failing. If
more than the payment value arrive at the receiver, they are returned to the
sender.

Boomerang mitigates the lack of knowledge about local distributions of funds
but does not fundamentally address it. In contrast, local routing protocols leave
the decision of how to find a path to the intermediaries of a payment, who are
clearly aware of the amount of funds in their channels [6,17]. However, failures
are still possible if the routing ends up at a node that does not have any outgoing
channels with sufficient funds. So, redundancy should be included here as well.
Applying Boomerang is possible, however, it requires that the sender splits the
payment whereas local routing protocols leave the splitting to intermediaries [6].
In addition, intermediaries typically receive a fee to incentivize participation. In
source routing, the sender can compute the required fee as they know the path
or paths but in local routing, the sender cannot know the fee in advance and it
is challenging to find a suitable algorithm for fee computation. So, local routing
due to its awareness of local constraints is more suitable for PCNs than source
routing but the existing local routing algorithms are not useful in practice due
to their lack of redundancy and incentives.
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We here address both issues by presenting Forward-Update-Finalize(FUFi).
We integrate fees into local routing by having the sender add a separate amount
dedicated to fees to each payment, which they compute based on the expected
number of intermediaries. Intermediaries know how much of the payment they
receive is dedicated to fees and can then subtract an amount as their own fees.
We suggest but do not enforce a policy on how to choose the amount, which
provides more fees to the parties early on in the path who take a higher risk as
they need to lock up funds for longer than parties close to the receiver. While we
do not enforce the policy as such, taking more funds than suggested results in
insufficient fees for successors on the path who then do not forward the payment.
If a payment fails, no fees are paid, so nodes are disincentivized from deviating
from the fee policy.

For redundancy in FUFi, the sender increases the payment amount by a
factor r. Intermediaries may then reduce the amount they forward. Concretely,
when an intermediary receives amount a to forward1, they determine a set of
neighbors that can provide them with a path to the receiver. If the amount a can
be split between these neighbors, the intermediary splits the amount a; otherwise,
a smaller amount is split. In the first phase of routing, only commitments are
made to pay the respective amounts but payments and amounts are not yet
finalized. Once sufficient funds reach the receiver, commitments are updated
such that incoming funds (minus fees) at an intermediaries match the outgoing
funds and any redundant funds are returned to the sender. In order to ensure
updated commitments, parties are incentivized to revoke the old commitment as
the alternative is a failed payment, which implies no fees. After the amounts are
updated, the payments can be finalized. In Lightning, finalization means that
the receiver reveals a hash preimage that allows them and all intermediaries to
claim their funds. However, with redundancy present, a rational receiver should
reveal the secret before updating to gain additional funds. To prevent this loss
of funds, the sender needs to also provide a second hash preimage, which they
only provide once all commitments are updated.

We prove that intermediaries do not lose any funds by participating in FUFi,
the sender only loses the original payment value plus fees, and the payment ter-
minates. Furthermore, the sender loses funds only if they obtain a signed receipt
of the receiver. In turn, if the receiver provides a receipt, they are indeed paid. To
show that FUFi indeed achieves better performance than state-of-the-art rout-
ing algorithms, we extend an existing payment channel network simulator. Our
results on both real-world Lightning snapshots and synthetic topologies indicates
that a redundancy factor r = 1.8 achieves the best results. Furthermore, for such
redundancy values, FUFi improves upon Boomerang and the local routing pro-
tocol Interdimensional SpeedyMurmurs [6] by about 10% in terms of fraction of
successful payments.

1 so a is the amount after they subtracted their fees.
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2 Background and Related Work

In this section, we first provide the necessary background on PCNs and the rout-
ing of the payments. Then, we discuss closely related works on routing protocols.

2.1 Payment Channel Networks

A payment channel allows two parties to exchange transactions without publish-
ing them on the blockchain [9]. First, two parties open a channel by publishing
a funding transaction on the blockchain. Then, they can send and receive coins
by exchanging authenticated messages to update the channel state. Assume in a
channel between v1 and v2, v1 contributes c1 and v2 contributes c2 coins. Then
v1 can send up to c1 coins to P2 locally. After sending a coins, v1 can now still
send c1 − a coins but there are more coins available for v2, mainly c2 + a. We
call c = c1 + c2 the capacity of the channel. The balance in the direction of v1 to
v2 is the maximum amount that can be sent by v1 and changes with every local
payment. Later on, parties can close the channel by publishing the latest state
of the channel on the blockchain. Disputes about the balance are also handled
on the blockchain.

A payment channel network (PCN) allows parties (nodes) who do not have
a direct channel (edge) to make payments by using the channels in the network.
In such a multi-hop payment (MHP), the payment between the sender and the
receiver is forwarded via a path of connected channels [2,8,12,14,23,24]. The
Lightning Network [14], a PCN on top of Bitcoin, realizes MHPs via Hash-Time-
Locked-Contracts (HTLCs). A HTLC between a payer and a payee is defined
wrt. a payment amount a, a hash value h and a timelock t, and implements the
following two logical conditions:

1. If a value x is given such that H(x) = h (where H is a hash function), then
the payee can claim the a coins.

2. If t has expired, then the payer can claim the a coins.

An HTLC-based MHP works as follows: First, the receiver chooses a random
value x shares h = H(x) with the sender. Then, each channel on the path (from
the sender to the receiver) locks coins wrt. hash condition h, corresponding
payment value (plus fee), and a timelock. The first of two subsequent nodes on
the path acts a the payer and the second as the payee for the HTLC. Once the last
channel has locked coins, the receiver reveals the value x to the last intermediary
in the path and claims the payment amount. The last intermediary shares the
same x with the previous party and obtains the corresponding amount of coins
in their channel. This continues until the sender has paid the first intermediary.

Routing protocols find a path between a sender and a receiver. In Lightning,
the sender decides on the path based on snapshot of the network topology [21].
Apart from the nodes and edges/channels, the snapshot includes the following
information per channel: the fee policy, i.e., how to determine the fee claimed
by the nodes for a given payment value, the timelock t that the nodes in the
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channel want to use for a HTLC, and the capacity c. Based on the provided
information, the sender determines a least costly path. The cost function used
to evaluate the cost of a path differs between Lightning clients [22].

We abstract payment channel functionalities through APIs. Possible real-
izations of these APIs are discussed in [6], including realizations that can be
instantiated over Bitcoin. Different parties can call those APIs to communicate
and make payments. We use four APIs for different events:

– cPay is called when a party wants to establish an HTLC with a neighbor.
Unlike the HTLC of Lightning Network, two hashes are passed to cPay as
our payments require both the agreement of the sender and the receiver to
be finalized, as detailed below.

– updateHTLC is called when a party wants to modify the amount locked in a
HTLC.2 Modifying the payment amount can be necessary to remove redun-
dancy after paths have been found.

– cPay-unlock is called when a party provides the two preimages of an HTLC
and wants to unlock the funds in this HTLC.

– refund is used if the time-lock expires and a party wants to have their locked
coins returned.

For simplicity, we denote the calling to an API as API −→ F where F is a
Turning machine that implements those APIs. Yu Shen’s master thesis [19] gives
the formal descriptions of the APIs.

2.2 State-of-the-Art PCN Routing Protocols

To improve the success ratio of multi-hop payments, there have been several
works that can be divided into two categories: splitting the payment amount [13,
20] with redundancy [3,15] and local routing [5,6,17]. Here, we briefly explain
the most important state-of-the-art protocols.

AMP [13]: The Atomic Multi-Path payment (AMP) protocol allows a sender to
forward a payment through multiple paths to improve the success ratio of Light-
ning’s single-path HTLCs. Since the payment is divided into smaller amounts,
the probability of having sufficient funds is higher for one channel. However,
if any channel involved in the payment does not have a positive balance, the
payment still fails.

Boomerang [3]: Boomerang extends the AMP protocol by adding redun-
dancy to payments. Concretely, Boomerang makes k sub-payments of an equal
amount b such that k · b > a for payment amount a. Thus, even if some of
the sub-payments fail, the amount reaching the receiver may still be sufficient.
Boomerang ensures that receivers cannot claim more than amount a, i.e., any
funds reaching the receiver that exceed a are returned to the sender. However, for

2 We introduce updateHTLC API since FUFi allows parties to modify the locked
amount in the update phase. The realization of updateHTLC can be done by simply
revoking the existing HTLC while creating the new one in the same channel update.
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the protocol to work, all sub-payments have to be of the same size and splitting
can only be done by the sender, not by intermediaries.

Spear [15]: Spear, like Boomerang, integrates redundancy into source routing. It
is more flexible than Boomerang as it can have sub-payments of varying amounts.
Spear uses a modified HTLC to realize the redundancy of payments. Each HTLC
has two hash conditions: one chosen by the sender and one chosen by the receiver.
Spear still requires that the amount of each sub-payment and the path taken by
the payment are fixed by the sender before starting the routing. We use the idea
of the two hash conditions in FUFi but only require one hash from the sender for
all sub-payments. By using local routing, we enable flexibility and allow parties
to adapt the sub-payment amount.

Spider [20]: Spider splits a payment into small sub-payments at the source and
forwards them separately. Rather than forwarding these sub-payments at once,
a sender can forward them over a longer period of time. During this time, they
react to feedback about congestion along the paths used to forward and adjust
the rate using a waterfilling algorithm to balance between paths. Communication
load and latency are drastically increased and the authors do not provide a
concrete method on how to achieve atomicity, i.e., ensure that either all sub-
payments are claimed by the receiver or all funds are returned to the sender.

Ethna [5]: Ethna is a local routing protocol that supports payment splitting
without atomicity. Intermediaries can split a payment into sub-payments and
forward them to different neighbors, and they can decrease the payment amount.
In this case, the payment can still be partly completed with a smaller payment
size. It is unclear which applications can profit from such partial payments as
usually the full payment value is expected for a purchase. Furthermore, Ethna
requires smart contract functionality that PCNs over Bitcoin, like the Lightning
Network, do not provide.

SpeedyMurmurs [17]: SpeedyMurmurs is a local routing algorithm: It estab-
lishes spanning trees in a distributed manner. Intermediaries then locally deter-
mine which of their neighbors provide short paths to the receiver based on the
spanning tree positions of the neighbors and the receiver. They forward to one
neighbor that provides a path to the receiver and has a channel with sufficient
balance. If no such channels exist, the routing fails. Splitting at the source is
possible but not at intermediaries. The paper only focuses on the routing and
does not specify the cryptography used to achieve atomicity.

Splitting Payments Locally [6]: Eckey et al. designed a protocol to enable
intermediate nodes to split a payment and still achieve atomicity. They show how
the protocol can be integrated into a number of routing protocols, including
SpeedyMurmurs. For deciding how much funds to give to each neighbor they
present two variants: SplitIfNecessary only locally splits payments if there is no
single channel that can handle the payment. SplitClosest minimizes the path
length and forwards as much as possible to the neighbor that is closest to the
receiver, in terms of the path length in the spanning trees. In contrast to original
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SpeedyMurmurs, the paper provides a cryptographic protocol to guarantee that
payments are atomic and intermediaries do not lose funds. However, if only one
of the split subpayments fails, the complete payment still fails.

3 Our Protocol

After specifying our system and threat model, we first present the protocol
without fees. Afterwards, we show how to integrate fees into the protocol.

3.1 System and Threat Model

Let V be the set of nodes in a PCN and E ⊂ V × V be the set of chan-
nels. We model a PCN as a directed graph G = (V,E) with a capacity func-
tion C : V × E → R. The function C returns the balance in a channel, i.e.,
C(vi, (vi, vj)) gives the available coins of vi in the channel (vi, vj). We assume
that there is synchronous communication and the protocol advances in rounds,
which correspond to the maximal delay of communication. It takes at Δ rounds
to publish information (e.g., disputes) on the chain.

We assume a local internal active adversary, i.e., the adversary can compro-
mise nodes in the network and adapt their behaviour arbitrarily. The attacker
cannot observe and control the behaviour of uncompromised parties. They fur-
ther do not control the network, e.g., they cannot delay messages of uncompro-
mised parties to cause time-locks to expire. The set of corrupted parties is static
during the execution of the protocol. The adversary is computationally bounded
and hence cannot break cryptographic primitives.

We focus on a rational adversary that aims to gain funds through an attack.
Thus, denial-of-service attacks where the adversary refuses to forward payments
to undermine the routing without causing other parties to lose funds are not
treated here. Such denial-of-service attacks have been evaluated in the context
of local routing [25]. We furthermore assume that all parties communicate via
secure authenticated channels.

3.2 Security Goals

We now define our security goals. Concretely, we modify the security goals —
balance security, bounded loss for the sender, atomicity, and finality — from [6] to
include fees. Informally, balance security implies that no honest node, excluding
the sender, loses funds during a payment. Bounded loss for the sender means
that the sender loses at most the payment value plus any fees paid. Atomicity
means that i) the sender only loses funds if they obtain a valid receipt in return
and ii) the receiver only provides the sender with a valid receipt if they are paid.
Last, finality states that the payment terminates.

The formal definitions of the above properties require us to first define the
concept of a receipt formally. Note that in contrast to [6], in line with our “c-Pay”
operation, two preimages are used for a receipt. Payments are routed from sender
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S to receiver R. We assume a EUF-CMA-secure signature algorithm, which is
given by a triple of algorithms (KGen, Sign, V erify) for key generation, signing,
and verification, and a preimage-resistant hash function H.

Definition 1. A receipt is defined as

receipt(S,R, a, hs, hr) = SignskR
(S,R, a, hs, hr) (1)

where skR is the secret key of the receiver R with pkR being the corresponding
public key, a indicates the payment amount and hs and hr are two hash values.
We define a validation function validate such that

validate(receipt(S,R, a, hs, hr)) = true iff

1. V erify(pkR, receipt(S,R, a, hs, hr)) = true
2. S provides receipt(S,R, a, hs, hr), xs, xr, where H(xs) = hs, H(xr) = hr.

In our security definitions, we look at the capacity function C before a pay-
ment is executed and the function C ′ after the execution of the payment. For
clarity, we here assume that there are no concurrent payments that affect the
function C. Our evaluation considers concurrency. Let furthermore B be the set
of honest or benign nodes.

Definition 2 (Balance security for intermediaries).
∀ vi ∈ B \ {S},

∑
(vi,vj)∈E C

′
(vi, (vi, vj)) − ∑

(vi,vj)∈E C(vi, (vi, vj)) ≥ 0

Definition 3 (Bounded lose for sender). For a payment of amount a with
fee f : if S ∈ B, then

∑
(S,vj)∈E C(S, (S, vj)) − ∑

(S,vj)∈E C
′
(S, (S, vj)) ≤ a + f

Definition 4 (Atomicity). For a payment of amount a:

1. if
∑

(S,vj)∈E C
′
(S, (S, vj)) − ∑

(S,vj)∈E C(S, (S, vj)) < 0 ∧S ∈ B

then validate(receipt(S,R, size, hs, hr)) = true
2. if validate(receipt(S,R, size, hs, hr)) = true ∧R ∈ B

then
∑

(R,vj)∈E C
′
(R, (R, vj)) − ∑

(R,vj)∈E C(R, (R, vj)) ≥ a

Definition 5 (Finality). The protocol terminates for all honest parties, i.e.,
on all locked channels, either “refund” or “cPay-unlock” is eventually executed.

3.3 Protocol Description

The key idea of FUFi is to forward payments with redundancy and revoke those
redundant payments later. For this purpose, we divide the protocol into three
phases: Forward, Update, and Finalize. In the forward phase, sender and interme-
diaries split a payment into several sub-payments and forward them to neighbors
until the receiver is reached. In the update phase, intermediaries and the receiver
may modify the payment size. Only if the correct payment amount arrives at the
receiver, the payment can go through. The update phase is the key difference
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of FUFi to previous routing algorithms, as it enables the use of redundancy.
The last phase, the finalize phase, completes the payment or revokes it. Figure 1
displays an example of the forward and update phase of FUFi, the finalize phase
merely executes the red payments that are agreed upon during the update phase.
We now go over each of the phases. Detailed pseudocode is given in Yu Shen’s
thesis [19]. In the following, we refer to HTLCs for which a node is a payee as
incoming HTLCs while outgoing HTLCs are those for which they are a payer.

Initialization. Before starting the actual routing, the sender S first uses a random
value xS and sends the hash hS = H(xS) to the receiver R. In response, the
receiver chooses their own random value xR and sends the corresponding hash
hR to S. Both preimages are necessary to obtain the funds promised in the
HTLCs applied during the finalize phase. Afterwards, S decides on the amount
they want to send, which is the payment amount a times a redundancy factor
r. Once the amount is fixed, the actual routing of the payment starts.

Forward. During the routing, both sender and intermediaries have to decide
which of their neighbours they forward sub-payments to. In [6], multiple methods
are proposed for splitting the payment such that the combined amount of all sub-
payments equals the total payment value. Since we include redundancy in our
payment, FUFi can also proceed if the amounts of the sub-payments sum up to
less than the total amount, as the total amount includes redundancy.

We abstract the splitting procedure as follows: A party P — sender or
intermediary — calls a function RouteG(aP , P,R, aux) where aP is the total
amount P wants to forward and aux is any auxiliary information the routing
algorithm may require. For instance, Interdimensional SpeedyMurmurs requires
the set of nodes that have previously been on the path to prevent routing loops.
RouteG(aP , P,R, aux) returns i) a set of tuples (ej , aj), such that ej indicates a
payment channel adjacent to P and aj the amount to be forwarded via this chan-
nel, and ii) an amount aRest that is not forwarded. We have aRest +

∑
j aj = aP ,

so the payment value is split over adjacent channels with a possible leftover.
There are many possible instantiations for RouteG(aP , P,R, aux), some of which
are introduced in Sect. 4 for our evaluation. The function is mostly identical to [6]
but in [6], aRest = 0 or the payment fails.

For each (ej , aj), P establishes a HTLC for the channel ej by calling “cPay”
stating that P will pay aj if they receive preimages for hS and hR within a
certain time. We will discuss how to choose the time-lock at the end of this
section. R keeps track of all sub-payments that arrive. If less than the payment
amount a arrives, the payment fails. After a HTLC timeouts, all involved parties
call “refund” to have their invested funds returned. Otherwise, if enough funds
reach R, the payment proceeds to the update phase.
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Fig. 1. Forward and update phase of FUFi. Sender wants to make a payment of value
3 but initially sends 5 (blue). The first intermediary only forwards 4, split into two
payments of 2. After 4 coins arrive at the receiver, one payment path has to be updated
to only have 1 coin. Red indicates final payment after update. (Color figure online)

Update. The update phase, which is a new phase that none of the previous
protocols have, has to deal with the fact that S in the end only agrees to paying
a while initially sending r · a. S thus only provides the preimage for hS , which is
necessary to complete the payment, if the HTLCs are updated such that S loses
at most a coins.

At the end of the forward phase, let a+ δ coins being locked in R’s channels.
R has to update the HTLCs such that only a coins are locked. They hence select
HTLCs whose values are to be reduced. The HTLCs can also be completely
cancelled. Any method of choosing which HTLCs to reduce or cancel can be
applied as long as the final results restricts the incoming funds from the payment
at R to a. For the HTLCs that should be changed, R calls “updateHTLC” to
change the locked amount. One straight-forward method that we use in the
evaluation is to simply keep the HTLCs that are established first.

Now, for the sender’s outgoing HTLCs to have a combined value of a as
well, intermediaries have to update their HTLCs. During the update phase,
intermediaries check whether the funds they promise in their outgoing HTLCs,
i.e., the funds they pay if the payment succeeds, is lower than the amount they are
promised to receive from incoming HTLCs. The two may differ for two reasons:
i) a successor updated one of the outgoing HTLCs and ii) they were unable to
split the total incoming amount among their neighbors in the forward phase.
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Independently of the reason, the intermediary updates their incoming HTLCs
such that incoming and outgoing funds match. Like for the receiver, the exact
protocol used to decide on which HTLCs to update does not matter for the
protocol to work. Once the incoming and outgoing funds of all intermediaries
match, the HTLCs of S should amount to exactly a because no funds are ‘lost’
to intermediaries.

The above protocol relies on the fact that intermediaries may not be willing
to update the HTLC, an operation that requires the agreement of both payer
and payee. In such a case, the funds are not reduced and the payment fails as
the sender does not provide their preimage xS . Intermediaries hence do not gain
fees if they refuse to update. Note that they even receive fees if the HTLC is
cancelled (e.g., modified to have an amount of 0), as we detail in Sect. 3.4.

Finalize. Once all the HTLCs are updated, the finalize phase completes the
payment: S provides the preimage xS to R. R then provides both xS and xR to
resolve the HTLCs with their neighbors, which then forward the preimages to
their predecessors on the path until all payments have been executed.

Time-Locks. Now, we can discuss the choice of time-locks. For HTLCs, we need
to ensure there is enough time for honest parties to update payments and publish
their HTLCs on chain in a dispute. It takes (Δ + 1) rounds for an intermediary
to know that its payment is published on chain by neighbours in the worst case.
To get money back, this node needs another (Δ+1) rounds to publish the HTLC
with its predecessors on chain. So, if we want to make sure honest nodes have
enough time to publish their HTLCs, the difference of time-locks for subsequent
nodes on a path should be at least 2·(Δ+1). Besides the time to publish HTLCs,
there is also one round of communication for both establishing the original HTLC
and possibly for updating it. Thus, the time-lock set by the sender should be
t0 + n · (2 + 2 · (Δ + 1)) where n is an upper bound on the expected number
of nodes on a path, with n depending on the routing algorithm, and t0 is the
current time.

3.4 Fees

In PCNs, nodes are incentivized by fees to participate. Yet, previous local routing
protocols disregard fees and how to assign them [6,17]. In the Lightning network,
fees are computed in advance and added to the payment amount. However,
the computation is only possible as the source decides on the path and knows
the fee policies of all nodes. As the paths in local routing are determined by
intermediaries, the exact fee cannot be computed in advance. In addition to this
known challenge in local routing, FUFi suffers from a second challenge: nodes
need to be incentivized to revoke their HTLCs. Such revocation fees need to be
paid even if the receiver decides not to use a channel for routing as the nodes
would otherwise refuse to revoke and let the payment fail.

We use a relatively simple idea for fees: The sender S decides on an amount
f they are willing to pay as fees and then route the amount a + r + f consisting
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of the actual payment amount, the redundancy, and the maximal fee. Interme-
diaries learn the amount f and can then decide how much they take as a fee.
They forward the remaining fees to the subsequent nodes. If they take a large
amount, subsequent nodes may refuse to route the payment due to insufficient
compensation, meaning that greedy intermediaries may not receive funds due to
the payment failing. Moreover, the more fee they take, the less likely the receiver
will choose theirs in the case of receiving more than a amount.

Ersoy et al. [7] analyzed how to determine propagation fees for forwarding
transactions in the Bitcoin network. Two requirements defined in their fee policy:
i) nodes should not gain more fees by acting maliciously like introducing Sybil
nodes, ii) rational nodes should benefit from forwarding. They showed that hon-
est intermediary nodes are incentivized to claim a fraction C of the remaining
fee that they receive, and the receiver obtains the remaining part. Here, C is a
globally agreed-upon constant. Any remaining fees are taken by the receiver. We
apply this fee policy in our evaluation.

Note that the previously discussed fees are only paid upon success. We now
discuss the revocation fees. Revocation fees should not exceed the fees for a
successful payment to prevent intermediaries from intentionally failing payments.
We use a separate transaction with a new HTLC for the same two hash conditions
to forward revoke fees. So, two transactions with different temporary secret keys
are required for one sub-payment: one for the normal payment and the other one
for revoking fees. With this construction, the transaction for revocation fees still
exists after the revocation of a normal payment and the node can claim their
fee once the preimages are revealed. If a party refuses to revoke, the payment
amount exceeds v and the sender S does not provide their preimage, meaning
that the party does not gain any fees, not even revocation fees.

We have now specified the phases of our protocol and how it handles fees. Yu
Shen’s thesis shows that FUFi indeed achieves the claimed security goals [19]. In
the security proofs, we prove termination separately for sender, intermediaries,
and receiver. For balance security, we note that parties never promise to pay
more than they are promised to receive and if they pay, they are also paid.
Similarly, for bounded loss for the sender, we argue that the sender does not
reveal their preimage unless the bounded loss is guaranteed. Atomicity is argued
similarly to [6].

4 Evaluation

We simulate FUFi’s performance in a simulator by extending a known PCN
simulator3. Our simulator4 executes payments concurrently. We adapt routing
algorithms from previous work to include an update phase and compute their
success ratio.

3 https://github.com/stef-roos/PaymentRouting.
4 https://github.com/tokisamu/PaymentRouting.

https://github.com/stef-roos/PaymentRouting
https://github.com/tokisamu/PaymentRouting
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4.1 Routing Algorithms

The performance of three different routing protocols is compared in our simu-
lations. SplitClosest is a local routing protocol with splitting, introduced as a
variant of SpeedyMurmurs [6]. It consumes channels’ capacities in the order of
closeness to the receiver and has been shown to have the best success ratio of
all the algorithms evaluated in [6].

A new routing algorithm has been designed for FUFi. Like SplitClosest, it
is a variant of SpeedyMurmurs with splitting. It differs from SplitClosest in two
aspects: i) it utilizes redundancy and fees as introduced in Sect. 3 and ii) it uses a
waterfilling algorithm for splitting the forwarded amount between neighbors that
offer a shorter path to the receiver. Concretely, a node splits the payment value
to forward such that the available funds in the channels are as close to equal
as possible. As stated in Sect. 3, parties may have to update incoming HTLCs.
They choose the HTLC in order of arrival, i.e., they prioritise older HTLCs and
revoke the ones most recently established. To determine the impact of each of
the two changes i) and ii), we also consider SplitClosest with redundancy, i.e.,
only change i), and FUFi without redundancy, i.e., only change ii). As a third
algorithm, we use Boomerang. It is a source routing algorithm with redundancy.
In our simulations, we use the parameters that achieved the best performance
in the original paper (100 sub-payments redundancy 1.33 [3]).

4.2 Setup

We evaluate the different routing algorithms on a snapshot of the Lightning
network and a randomly generated scale-free graph. The Lightning Network
snapshot is from December 30, 2021. We delete disconnected nodes and chan-
nels without capacity. Then, we obtain a graph with 18081 nodes and 76427
channels. To simulate the size of the Lightning Network in the future, we use
the Barabasi-Albert (BA) model [1] to generate the topology of network. BA
graph is a scale-free model that means only a few nodes have a high degree,
similar to Lightning [16]. We use the BA graph to approximate Lightning in
the future, with a larger network size, and generate a graph with 25000 nodes
where each new node is connected to 6 existing nodes. Most of channels in the
Lightning Network snapshot have a low capacity. To simulate the capacity dis-
tribution of the Lightning Network, we use an exponential distribution with an
average value of 200 to generate channels’ balances in the random graph.

In our simulations, the delay of payment forwarding is set to 10 s and C is
set to 0.4. In [7], C is chosen in relation to the average degree of the nodes,
which is 9 for the snapshot. C = 0.4 has been identified as a good choice for
incentivizing intermediaries to forward if the average degree is 9 or higher. For
redundancy in FUFi, we consider 1.1, 1.4, and 1.8. In our first experiment, we
change the payment amount and simulate 100000 payments in 1000 s. We start
from a relatively small payment amount that is smaller than a single channel’s
capacity on average. To study the impact of payment splitting and redundancy,
the payment amount is increased to a larger number that makes payment split-
ting necessary. For the random graph, the payment size varies from 50 to 400
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(a) Lightning Network (b) Random Graph (BA)

Fig. 2. Success rate with different payment sizes

because the expected capacity of a channel is 200. In the Lightning network,
the capacity of channels varies a lot. Thus, using a constant payment amount
frequently results in the payment amount exceeding the total capacities of out-
going channels of the sender, meaning that the payment fails in the first step
regardless of the protocol. To exclude such unavoidable failures, we instead set a
payment amount rate p ∈ (0, 1). When a sender starts a payment, the payment
amount is p times the combined balance.

In the second experiment, we simulate 300000 payments in 3000 s and mon-
itor how the success rate changes over time. The payment amount rate of the
Lightning Network is 0.8 while the payment amount is set to 400 in the random
graph.

Finally, we have an experiment to measure the influence of redundancy and
the waterfilling algorithm separately. In this experiment, the redundancy is set
to 1.4, payment amount rate of the Lightning Network is 0.8, payment amount
of the random graph is 400, and 100000 payments are simulated in 1000 s.

(a) Lightning Network (b) Random Graph (BA)

Fig. 3. The change of success rate over time
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4.3 Simulation Results

Figure 2a and Fig. 2b show the success ratio of different payment amounts. In
the Lightning Network, FUFi with 1.8 redundancy improves the success ratio
of SplitClosest by about 10%. Boomerang is outperformed by other protocols
because it uses a source routing algorithm that can not adapt to the changes of
channels’ capacities. This result shows the effectiveness of combining local split-
ting and redundancy. The result of the random graph is similar to the Lightning
Network. However, the differences in performance between the protocols are
more pronounced, which can be explained by the better connectivity of the ran-
dom graph. Nodes have more choices to forward and hence the payment is less
likely to fail.

Figure 3a shows the success rate over time, which decreases over time in the
Lightning Network. However, FUFi’s success rate is retained at a higher level
than SplitClosest because of the use of waterfilling. SplitClosest tends to use
up all the funds in channels to have short paths whereas waterfilling tries to
balance the funds. For the random graph, there is no negative impact over time
for waterfilling. The higher number of paths enables nodes to better balance
their channels and hence avoid depletion, i.e., channels with no or hardly any
funds on one direction. For SplitClosest, there still is a negative impact as it
does actively deplete channels.

Figure 4 compares the impact of our two changes, with the result that redun-
dancy has more impact than waterfilling, which has no significant impact on
Lightning and a smaller impact on the random graph.

Fig. 4. Impact of redundancy in comparison to varying splitting protocol.

5 Conclusion

We have introduced FUFi, which increases the performance of local routing by
about 10% and is the first local routing protocol for PCNs that integrates fees.

Yet, we mainly disregarded the aspect of privacy: Hiding the identity of
sender and receiver as well as channel capacities are important privacy properties
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for PCNs [11]. While Lightning was initially thought to be private, it has been
shown that it is vulnerable to multiple attacks [10,18]. The exact attacks are
not possible for local routing; yet, it is likely that FUFi is vulnerable to similar
attacks. In future work, we thus aim to investigate which privacy attacks are
possible, how they affect FUFi, and how to defend against the attacks.

Acknowledgments. This research was partially funded by Ripple’s University
Blockchain Research Initiative. Experiments were run on the Distributed ASCI super-
computer (https://www.cs.vu.nl/das5/).
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Abstract. Constant function market makers (CFMMs) such as Uniswap
have facilitated trillions of dollars of digital asset trades and have bil-
lions of dollars of liquidity. One natural question is how to optimally route
trades across a network of CFMMs in order to ensure the largest possible
utility (as specified by a user). We present an efficient algorithm, based
on a decomposition method, to solve the problem of optimally execut-
ing an order across a network of decentralized exchanges. The decomposi-
tion method, as a side effect, makes it simple to incorporate more compli-
cated CFMMs, or even include ‘aggregate CFMMs’ (such as Uniswap v3),
into the routing problem. Numerical results show significant performance
improvements of this method, tested on realistic networks of CFMMs,
when compared against an off-the-shelf commercial solver.

1 Introduction

Decentralized Finance, or DeFi, has been one of the largest growth areas within
both financial technologies and cryptocurrencies since 2019. DeFi is made up of a
network of decentralized protocols that match buyers and sellers of digital goods
in a trustless manner. Within DeFi, some of the most popular applications are
decentralized exchanges (DEXs, for short) which allow users to permissionlessly
trade assets. While there are many types of DEXs, the most popular form of
exchange (by nearly any metric) is a mechanism known as the constant function
market maker, or CFMM. A CFMM is a particular type of DEX which allows
anyone to propose a trade (e.g., trading some amount of one asset for another).
The trade is accepted if a simple rule, which we describe later in §2.1, is met.

The prevalence of CFMMs on blockchains naturally leads to questions about
routing trades across networks or aggregations of CFMMs. For instance, suppose
that one wants to trade some amount of asset A for the greatest possible amount
of asset B. There could be many ‘routes’ that provide this trade. For example,
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we may trade asset A for asset C, and only then trade asset C for asset B. This
routing problem can be formulated as an optimization problem over the set of
CFMMs available to the user for trading. Angeris et al. [5] showed that the
general problem of routing is a convex program for concave utilities, ignoring
blockchain transactions costs, though special cases of the routing problem have
been studied previously [13,22].

This Paper. In this paper, we apply a decomposition method to the optimal
routing problem, which results in an algorithm that easily parallelizes across
all DEXs. To solve the subproblems of the algorithm, we formalize the notions
of swap markets, bounded liquidity, and aggregate CFMMs (such as Uniswap
v3) and discuss their properties. Finally, we demonstrate that our algorithm for
optimal routing is efficient, practical, and can handle the large variety of CFMMs
that exist on chain today.

2 Optimal Routing

In this section, we define the general problem of optimal routing and give concrete
examples along with some basic properties.

Assets. In the optimal routing problem, we have a global labeling of n assets
which we are allowed to trade, indexed by j = 1, . . . , n throughout this paper.
We will sometimes refer to this ‘global collection’ as the universe of assets that
we can trade.

Trading Sets. Additionally, in this problem, we have a number of markets i =
1, . . . ,m (usually constant function market makers, or collections thereof, which
we discuss in §2.1) which trade a subset of the universe of tokens of size ni. We
define market i’s behavior, at the time of the trade, via its trading set Ti ⊆ R

ni .
This trading set behaves in the following way: any trader is able to propose a
trade consisting of a basket of assets Δi ∈ R

ni , where positive entries of Δi

denote that the trader receives those tokens from the market, while negative
values denote that the trader tenders those tokens to the market. (Note that the
baskets here are of a subset of the universe of tokens which the market trades.)
The market then accepts this trade (i.e., takes the negative elements in Δi from
the trader and gives the positive elements in Δi to the trader) whenever

Δi ∈ Ti.

We make two assumptions about the sets Ti. One, that the set Ti is a closed
convex set, and, two, that the zero trade is always an acceptable trade, i.e.,
0 ∈ Ti. All existing DEXs that are known to the authors have a trading set that
satisfies these conditions.
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Local and Global Indexing. Each market i trades only a subset of ni tokens from
the universe of tokens, so we introduce the matrices Ai ∈ R

n×ni to connect the
local indices to the global indices. These matrices are defined such that AiΔi

yields the total amount of assets the trader tendered or received from market
i, in the global indices. For example, if our universe has 3 tokens and market i
trades the tokens 2 and 3, then

Ai =

⎡
⎣
0 0
1 0
0 1

⎤
⎦ .

Written another way, (Ai)jk = 1 if token k in the market’s local index corre-
sponds to global token index j, and (Ai)jk = 0 otherwise. We note that the
ordering of tokens in the local index does not need to be the same as the global
ordering.

Network Trade Vector. By summing the net trade in each market, after mapping
the local indices to the global indices, we obtain the network trade vector

Ψ =
m∑

i=1

AiΔi.

We can interpret Ψ as the net trade across the network of all markets. If Ψi > 0,
we receive some amount of asset i after executing all trades {Δi}m

i=1. On the
other hand, if Ψi < 0, we tender some of asset i to the network. Note that
having Ψi = 0 does not imply we do not trade asset i; it only means that, after
executing all trades, we received as much as we tendered.

Network Trade Utility. Now that we have defined the network trade vector, we
introduce a utility function U : Rn → R ∪ {−∞} that gives the trader’s utility
of a net trade Ψ . We assume that U is concave and increasing (i.e., we assume
all assets have value with potentially diminishing returns). Furthermore, we will
use infinite values of U to encode constraints; a trade Ψ such that U(Ψ) = −∞
is unacceptable to the trader. We can choose U to encode several important
actions in markets, including liquidating or purchasing a basket of assets and
finding arbitrage. See [2, §5.2] for several examples.

Optimal Routing Problem. The optimal routing problem is then the problem of
finding a set of valid trades that maximizes the trader’s utility:

maximize U(Ψ)

subject to Ψ =
m∑

i=1

AiΔi

Δi ∈ Ti, i = 1, . . . , m.

(1)

The problem variables are the network trade vector Ψ ∈ R
n and trades with each

market Δi ∈ R
ni , while problem data are the utility function U : Rn → R∪{∞},
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the matrices Ai ∈ R
n×ni , and the trading sets Ti ⊆ R

ni , where i = 1, . . . , m.
Since the trading sets are convex and the utility function is concave, this problem
is a convex optimization problem. In the subsequent sections, we will use basic
results of convex optimization to construct an efficient algorithm to solve problem
(1).

2.1 Constant Function Market Makers

Most decentralized exchanges, such as Uniswap v2, Balancer, Curve, among
others, are currently organized as constant function market makers (CFMMs, for
short) or collections of CFMMs (such as Uniswap v3) [2,3]. A constant function
market maker is a type of permissionless market that allows anyone to trade
baskets of, say, r, assets for other baskets of these same s assets, subject to a
simple set of rules which we describe below.

Reserves and Trading Functions. A constant function market maker, which
allows r tokens to be traded, is defined by two properties: its reserves R ∈ R

r
+,

where Rj denotes the amount of asset j available to the CFMM, and a trading
function which is a concave function ϕ : Rr

+ → R, which specifies the CFMM’s
behavior and its trading fee 0 < γ ≤ 1.

Acceptance Condition. Any user is allowed to submit a trade to a CFMM, which
is, from before, a vector Δ ∈ R

r. The submitted trade is then accepted if the
following condition holds:

ϕ(R − γΔ− − Δ+) ≥ ϕ(R), (2)

and R − γΔ− − Δ+ ≥ 0. Here, we denote Δ+ to be the ‘elementwise positive
part’ of Δ, i.e., (Δ+)j = max{Δj , 0} and Δ− to be the ‘elementwise negative
part’ of Δ, i.e., (Δ−)j = min{Δj , 0} for every asset j = 1, . . . , r. The basket of
assets Δ+ may sometimes be called the ‘received basket’ and Δ− may sometimes
be called the ‘tendered basket’ (see, e.g., [2]). Note that the trading set T , for a
CFMM, is exactly the set of Δ such that (2) holds,

T = {Δ ∈ R
r | ϕ(R − γΔ− − Δ+) ≥ ϕ(R)}. (3)

It is clear that 0 ∈ T , and it is not difficult to show that T is convex whenever ϕ
is concave, which is true for all trading functions used in practice. If the trade is
accepted then the CFMM pays out Δ+ from its reserves and receives −Δ− from
the trader, which means the reserves are updated as R ← R − Δ− − Δ+. The
acceptance condition (2) can then be interpreted as: the CFMM accepts a trade
only when its trading function, evaluated on the ‘post-trade’ reserves with the
tendered basket discounted by γ, is at least as large as its value when evaluated
on the current reserves.

It can be additionally shown that the trade acceptance conditions in terms
of the trading function ϕ and in terms of the trading set T are equivalent in the
sense that every trading set has a function ϕ which generates it [3], under some
basic conditions.
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Examples. Almost all examples of decentralized exchanges currently in produc-
tion are constant function market makers. For example, the most popular trading
function (as measured by most metrics) is the product trading function:

ϕ(R) =
√

R1R2,

originally proposed for Uniswap [23] and a ‘bounded liquidity’ variation of this
function:

ϕ(R) =
√
(R1 + α)(R2 + β), (4)

used in Uniswap v3 [1], with α, β ≥ 0. Other examples include the weighted
geometric mean (as used by Balancer [18])

ϕ(R) =
r∏

i=1

Rwi
i , (5)

where r is the number of assets the exchange trades, and w ∈ R
r
+ with 1T w = 1

are known as the weights, along with the Curve trading function

ϕ(R) = α1T R −
(

r∏
i=1

R−1
i

)
,

where α > 0 is a parameter set by the CFMM [16]. Note that the ‘product’
trading function is the special case of the weighted geometric mean function
when r = 2 and w1 = w2 = 1/2.

Aggregate CFMMs. In some special cases, such as in Uniswap v3, it is reasonable
to consider an aggregate CFMM, which we define as a collection of CFMMs,
which all trade the same assets, as part of a single ‘big’ trading set. A specific
instance of an aggregate CFMM currently used in practice is in Uniswap v3 [1].
Any ‘pool’ in this exchange is actually a collection of CFMMs with the ‘bounded
liquidity’ variation of the product trading function, shown in (4). We will see that
we can treat these ‘aggregate CFMMs’ in a special way in order to significantly
improve performance.

3 An Efficient Algorithm

A common way of solving problems such as problem (1), where we have a set of
variables coupled by only a single constraint, is to use a decomposition method [8,
14]. The general idea of these methods is to solve the original problem by splitting
it into a sequence of easy subproblems that can be solved independently. In
this section, we will see that applying a decomposition method to the optimal
routing problem gives a solution method which parallelizes over all markets.
Furthermore, it gives a clean programmatic interface; we only need to be able to
find arbitrage for a market, given a set of reference prices. This interface allows
us to more easily include a number of important decentralized exchanges, such
as Uniswap v3.
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3.1 Dual Decomposition

To apply the dual decomposition method, we first take the coupling constraint
of problem (1),

Ψ =
m∑

i=1

AiΔi,

and relax it to a linear penalty in the objective, parametrized by some vector
ν ∈ R

n. (We will show in §3.2 that the only reasonable choice of ν is a market
clearing price, sometimes called a no-arbitrage price, and that this choice actually
results in a relaxation that is tight; i.e., a solution for this relaxation also satisfies
the original coupling constraint.) This relaxation results in the following problem:

maximize U(Ψ) − νT (Ψ − ∑m
i=1 AiΔi)

subject to Δi ∈ Ti, i = 1, . . . ,m,

where the variables are the network trade vector Ψ ∈ R
n and the trades are

Δi ∈ R
ni for each market i = 1, . . . ,m. Note that this formulation can be

viewed as a family of problems parametrized by the vector ν.
A simple observation is that this new problem is actually separable over all

of its variables. We can see this by rearranging the objective:

maximize U(Ψ) − νT Ψ +
∑m

i=1(A
T
i ν)T Δi

subject to Δi ∈ Ti, i = 1, . . . , m.
(6)

Since there are no additional coupling constraints, we can solve for Ψ and each
of the Δi with i = 1, . . . , m separately.

Subproblems. This method gives two types of subproblems, each depending on
ν. The first, over Ψ , is relatively simple:

maximize U(Ψ) − νT Ψ, (7)

and can be recognized as a slightly transformed version of the Fenchel conju-
gate [10, §3.3]. We will write its optimal value (which depends on ν) as

Ū(ν) = sup
Ψ

(
U(Ψ) − νT Ψ

)
.

The function Ū can be easily derived in closed form for a number of func-
tions U . Additionally, since Ū is a supremum over an affine family of functions
parametrized by ν, it is a convex function of ν [10, §3.2.3]. (We will use this fact
soon.) Another important thing to note is that unless ν ≥ 0, the function Ū(ν)
will evaluate to +∞. This can be interpreted as an implicit constraint on ν.

The second type of problem is over each trade Δi for i = 1, . . . , m, and can
be written, for each market i, as

maximize (AT
i ν)T Δi

subject to Δi ∈ Ti.
(8)
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We will write its optimal value, which depends on AT
i ν, as arbi(AT

i ν). Prob-
lem (8) can be recognized as the optimal arbitrage problem (see, e.g., [2]) for
market i, when the external market price, or reference market price, is equal
to AT

i ν. Since arbi(AT
i ν) is also defined as a supremum over a family of affine

functions of ν, it too is a convex function of ν. Solutions to the optimal arbi-
trage problem are known, in closed form, for a number of trading functions. (See
Appendix A for some examples.)

Dual Variables as Prices. The optimal solution to problem (8), given by Δ�
i , is

a point Δ�
i in Ti such that there exists a supporting hyperplane to the set Ti

at Δ�
i with slope AT

i ν [10, §5.6]. We can interpret these slopes as the ‘marginal
prices’ of the ni assets, since, letting δ ∈ R

ni be a small deviation from the trade
Δ�

i , we have, writing ν̃ = AT
i ν as the weights of ν in the local indexing:

ν̃T (Δ�
i + δ) ≤ ν̃T Δ�

i ,

for every δ with Δ�
i +δ ∈ Ti. (By definition of optimality.) Canceling terms gives

ν̃T δ ≤ 0.

If, for example, δi and δj are the only two nonzero entries of δ, we would have

δi ≤ − ν̃j

ν̃i
δj ,

so the exchange rate between i and j is at most ν̃i/ν̃j . This observation lets us
interpret the dual variables ν̃ (and therefore the dual variables ν) as ‘marginal
prices’, up to a constant multiple.

3.2 The Dual Problem

The objective value of problem (6), which is a function of ν, can then be written
as

g(ν) = Ū(ν) +
m∑

i=1

arbi(AT
i ν). (9)

This function g : Rn → R is called the dual function. Since g is the sum of convex
functions, it too is convex. The dual problem is the problem of minimizing the
dual function,

minimize g(ν), (10)

over the dual variable ν ∈ R
n, which is a convex optimization problem since g

is a convex function.

Dual Optimality. While we have defined the dual problem, we have not dis-
cussed how it relates to the original routing problem we are attempting to solve,
problem (1). Let ν� be a solution to the dual problem (10). Assuming that the
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dual function is differentiable at ν�, the first order, unconstrained optimality
conditions for problem (10) are that

∇g(ν�) = 0.

(The function g need not be differentiable, in which case a similar, but more
careful, argument holds using subgradient calculus.) It is not hard to show that
if Ū is differentiable at ν�, then its gradient must be ∇Ū(ν�) = −Ψ�, where
Ψ� is the solution to the first subproblem (7), with ν�. (This follows from the
fact that the gradient of a maximum, when differentiable, is the gradient of the
argmax.) Similarly, the gradient of arbi when evaluated at AT

i ν� is Δ�
i , where

Δ�
i is a solution to problem (8) with marginal prices AT

i ν�, for each market
i = 1, . . . ,m. Using the chain rule, we then have:

0 = ∇g(ν�) = −Ψ� +
m∑

i=1

AiΔ
�
i . (11)

Note that this is exactly the coupling constraint of problem (1). In other words,
when the linear penalties ν� are chosen optimally (i.e., chosen such that they
minimize the dual problem (10)) then the optimal solutions for subproblems (7)
and (8) automatically satisfy the coupling constraint. Because problem (6) is
a relaxation of the original problem (1) for any choice of ν, any solution to
problem (6) that satisfies the coupling constraint of problem (1) must also be a
solution to this original problem. All that remains is the question of finding a
solution ν� to the dual problem (10).

3.3 Solving the Dual Problem

The dual problem (10) is a convex optimization problem that is easily solvable
in practice, even for very large n and m. In many cases, we can use a number of
off-the-shelf solvers such as SCS [20], Hypatia [12], and Mosek [7]. For example,
a relatively effective way of minimizing functions when the gradient is easily
evaluated is the L-BFGS-B algorithm [11,19,24]: given a way of evaluating the
dual function g(ν) and its gradient ∇g(ν) at some point ν, the algorithm will
find an optimal ν� fairly quickly in practice. (See §6 for timings.) By definition,
the function g is easy to evaluate if the subproblems (7) and (8) are easy to
evaluate. Additionally the right hand side of equation (11) gives us a way of
evaluating the gradient ∇g, essentially for free, since we typically receive the
optimal Ψ� and Δ�

i as a consequence of computing Ū and arbi.

Interface. In order for a user to specify and solve the dual problem (10) (and
therefore the original problem) it suffices for the user to specify (a) some way of
evaluating Ū and its optimal Ψ for problem (7) and (b) some way of evaluating
the arbitrage problem (8) and its optimal trade Δ�

i for each market i that the
user wishes to include. New markets can be easily added by simply specifying
how to arbitrage them, which, as we will see next, turns out to be straightforward
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for most practical decentralized exchanges. The Julia interface required for the
software package described in §5 is a concretization of the interface described
here.

4 Swap Markets

In practice, most markets trade only two assets; we will refer to these kinds
of markets as swap markets. Because these markets are so common, the perfor-
mance of our algorithm is primarily governed by its ability to solve (8) quickly on
these two asset markets. We show practical examples of these computations in
Appendix A. In this section, we will suppress the index i with the understanding
that we are referring to a specific market i.

4.1 General Swap Markets

Swap markets are simple to deal with because their trading behavior is com-
pletely specified by the forward exchange function [2] for each of the two assets. In
what follows, the forward trading function f1 will denote the maximum amount
of asset 2 that can be received by trading some fixed amount δ1 of asset 1, i.e.,
if T ⊆ R

2 is the trading set for a specific swap market, then

f1(δ1) = sup{λ2 | (−δ1, λ2) ∈ T}, f2(δ2) = sup{λ1 | (λ1,−δ2) ∈ T}.

In other words, f1(δ1) is defined as the largest amount λ2 of token 2 that one
can receive for tendering a basket of (δ1, 0) to the market. The forward trading
function f2 has a similar interpretation. If f1(δ1) is finite, then this supremum
is achieved since the set T is closed.

Trading Function. If the set T has a simple trading function representation, as
in (3), it is not hard to show that the function f1 is the unique (pointwise largest)
function that satisfies

ϕ(R1 + γδ1, R2 − f1(δ1)) = ϕ(R1, R2). (12)

whenever ϕ is nondecreasing, which may be assumed for all CFMMs [3], and sim-
ilarly for f2. (Note the equality, compared to the inequality in the original (2).)

Properties. The functions f1 and f2 are concave, since the trading set T is convex,
and nonnegative, since 0 ∈ T by assumption. Additionally, we can interpret the
directional derivative of fj as the current marginal price of the received asset,
denominated in the tendered asset. Specifically, we define

f ′
j(δj) = lim

h→0+

fj(δj + h) − fj(δj)
h

. (13)

This derivative is sometimes referred to as the price impact function [4]. Intu-
itively, f ′

1(0) is the current price of asset 1 quoted by the swap market before any
trade is made, and f ′

1(δ) is the price quoted by the market to add an additional ε
units of asset 1 to a trade of size δ, for very small ε. We note that in the presence
of fees, the marginal price to add to a trade of size δ, i.e., f ′

1(δ), will be lower
than the price to do so after the trade has been made [3].
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Swap Market Arbitrage Problem. Equipped with the forward exchange function,
we can specialize (8). Overloading notation slightly by writing (ν1, ν2) ≥ 0 for
AT

i ν we define the swap market arbitrage problem for a market with forward
exchange function f1:

maximize − ν1δ1 + ν2f1(δ1)
subject to δ1 ≥ 0,

(14)

with variable δ1 ∈ R We can also define a similar arbitrage problem for f2:

maximize ν1f2(δ2) − ν2δ2

subject to δ2 ≥ 0,

with variable δ2 ∈ R. Since f1 and f2 are concave, both problems are evidently
convex optimization problems of one variable. Because they are scalar problems,
these problems can be easily solved by bisection or ternary search. The final
solution is to take whichever of these two problems has the largest objective value
and return the pair in the correct order. For example, if the first problem (14)
has the highest objective value with a solution δ�

1 , then Δ� = (−δ�
1 , f(δ

�
1)) is

a solution to the original arbitrage problem (8). (For many practical trading
sets T , it can be shown that at most one problem will have strictly positive
objective value, so it is possible to ‘short-circuit’ solving both problems if the
first evaluation has positive optimal value.)

Problem Properties. One way to view each of these problems is that they ‘sepa-
rate’ the solution space of the original arbitrage problem (8) into two cases: one
where an optimal solution Δ� for (8) has Δ�

1 ≤ 0 and one where an optimal solu-
tion has Δ�

2 ≤ 0. (Any optimal point Δ� for the original arbitrage problem (8)
will never have both Δ�

1 < 0 and Δ�
2 < 0 as that would be strictly worse than

the 0 trade for ν > 0, and no reasonable market will have Δ�
1 > 0 and Δ�

2 > 0
since the market would be otherwise ‘tendering free money’ to the trader.) This
means that, in order to find an optimal solution to the original optimal arbitrage
problem (8), it suffices to solve two scalar convex optimization problems.

Optimality Conditions. The optimality conditions for problem (14) are that, if

ν2f
′
1(0) ≤ ν1, (15)

then δ�
1 = 0 is a solution. Otherwise, we have δ�

1 = sup{δ ≥ 0 | ν2f
′
1(δ) ≥ ν1}.

Similar conditions hold for the problem over δ2. If the function f ′
1 is continuous,

not just semicontinuous, then the expression above simplifies to finding a root
of a monotone function:

ν2f
′
1(δ

�
1) = ν1. (16)

If there is no root and condition (15) does not hold, then δ�
1 = ∞. However, the

solution will be finite for any trading set that does not contain a line, i.e., the
market does not have ‘infinite liquidity’ at a specific price.
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No-Trade Condition. Note that using the inequality (15) gives us a simple way
of verifying whether we will make any trade with market T , given some prices
ν1 and ν2. In particular, the zero trade is optimal whenever

f ′
1(0) ≤ ν1

ν2
≤ 1

f ′
2(0)

.

We can view the interval [f ′
1(0), 1/f ′

2(0)] as a type of ‘bid-ask spread’ for the
market with trading set T . (In constant function market makers, this spread
corresponds to the fee γ taken from the trader.) This ‘no-trade condition’ lets
us save potentially wasted effort of computing an optimal arbitrage trade as, in
practice, most trades in the original problem will be 0.

Bounded Liquidity. In some cases, we can easily check not only when a trade will
not be made (say, using condition (15)), but also when the ‘largest possible trade’
will be made. (We will define what this means next.) Markets for which there is
a ‘largest possible trade’ are called bounded liquidity markets. We say a market
has bounded liquidity in asset 2 if there is a finite δ1 such that f1(δ1) = sup f1,
and similarly for f2. In other words, there is a finite input δ1 which will give
the maximum possible amount of asset 2 out. A market has bounded liquidity if
it has bounded liquidity on both of its assets. A bounded liquidity market then
has a notion of a ‘minimum price’. First, define

δ−
1 = inf{δ1 ≥ 0 | f1(δ1) = sup f1},

i.e., δ−
1 is the smallest amount of asset 1 that can be tendered to receive the

maximum amount the market is able to supply. We can then define the minimum
supported price as the left derivative of f1 at δ−

1 :

f−
1 (δ−

1 ) = lim
h→0+

f(δ−
1 ) − f(δ−

1 − h)
h

.

The first-order optimality conditions imply that δ−
1 is a solution to the scalar

optimal arbitrage problem (14) whenever

f−
1 (δ−

1 ) ≥ ν1
ν2

.

In English, this can be stated as: if the minimum supported marginal price we
receive for δ−

1 is still larger than the price being arbitraged against, ν1/ν2, it is
optimal to take all available liquidity from the market. Using the same definitions
for f2, we find that the only time the full problem (14) needs to be solved is when
the price being arbitraged against ν1/ν2 lies in the interval

f−
1 (δ−

1 ) <
ν1
ν2

<
1

f−
2 (δ−

2 )
. (17)

(It may be the case that f−
2 (δ−

2 ) = 0 in which case we define the right hand side
to be ∞.) We will call this interval of prices the active interval.



An Efficient Algorithm for Optimal Routing 139

Example. In the case of Uniswap v3 [1], we have a collection of, say, i = 1, . . . , s
bounded liquidity product functions (4), where the parameters αk, βk > 0 are
chosen such that all of the active price intervals, as defined in (17), are dis-
joint. (An explicit form for this trading function is given in the appendix, equa-
tion (18).) Solving the arbitrage problem (14) over this collection of CFMMs
is relatively simple. Since all of the intervals are disjoint, any price ν1/ν2 can
lie in at most one of the active intervals. We therefore do not need to compute
the optimal trade for any interval, except the single interval where ν1/ν2 lies,
which can be done in closed form. We also note that this ‘trick’ applies to any
collection of bounded liquidity markets with disjoint active price intervals.

5 Implementation

We implemented this algorithm in CFMMRouter.jl, a Julia [9] package for solving
the optimal routing problem. Our implementation is available at

https://github.com/bcc-research/CFMMRouter.jl

and includes implementations for both weighted geometric mean CFMMs and
Uniswap v3. In this section, we provide a concrete Julia interface for our solver.

5.1 Markets

Market Interface. As discussed in §3.3, the only function that the user needs to
implement to solve the routing problem for a given market is

This function solves the optimal arbitrage problem (8) for a market (which
holds the relevant data about the trading set T ) with dual variables (corre-
sponding to AT

i ν in the original problem (8)). It then fills the vectors and
with the negative part of the solution, −Δ�

−, and positive part, Δ�
+, respectively.

For certain common markets (e.g., geometric mean and Uniswap v3), we
provide specialized, efficient implementations of . For general CFMMs
where the trading function, its gradient, and the Hessian are easy to evaluate,
one can use a general-purpose primal-dual interior point solver. For other more
complicated markets, a custom implementation may be required.

Swap Markets. The discussion in §4 and the expression in (16) suggests a natural,
minimal interface for swap markets. Specifically, we can define a swap market
by implementing the function . This function takes in a vector
of inputs , where we assume that only one of the two assets is being
tendered, i.e., , and returns f ′

1(Δ1), if Δ1 > 0 or f ′
2(Δ2) if Δ2 > 0.

With this price impact function implemented, one can use bisection to compute
the solution to (16). When price impact function has a closed form and is readily
differentiable by hand, it is possible to use a much faster Newton method to
solve this problem. In the case where the function does not have a simple closed
form, we can use automatic differentiation (e.g., using ForwardDiff.jl [21]) to
generate the gradients for this function.

https://github.com/bcc-research/CFMMRouter.jl
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Aggregate CFMMs. In the special case of aggregate, bounded liquidity CFMMs,
the price impact function often does not have a closed form. On the other hand,
whenever the active price intervals are disjoint, we can use the trick presented
in §4.1 to quickly arbitrage an aggregate CFMM. For example, a number of
Uniswap v3 markets are actually composed of many thousands of bounded liq-
uidity CFMMs. Treating each of these as their own market, without any addi-
tional considerations, significantly increases the size and solution complexity of
the problem.

In this special case, each aggregate market ‘contains’ s trading sets, each
of which has disjoint active price intervals with all others. We will write these
intervals as (p−

i , p+i ) for each trading set i = 1, . . . , s, and assume that these are
in sorted order p+i−1 ≤ p−

i < p+i ≤ p+i+1. Given some dual variables ν1 and ν2 for
which to solve the arbitrage problem (8), we can then run binary search over the
sorted intervals (taking O(log(s)) time) to find which of the intervals the price
ν1/ν2 lies in. We can compute the optimal arbitrage for this ‘active’ trading
set, and note that the remaining trading sets all have a known optimal trade
(from the discussion in §4.1) and require only constant time. For Uniswap v3
and other aggregate CFMMs, this algorithm is much more efficient from both a
computational and memory perspective when compared with a direct approach
that considers all s trading sets separately.

Other Functions. If one is solving the arbitrage problem multiple times in a row,
it may be helpful to implement the following additional functions:

1. : updates ’s state following a trade .
2. : adds some amount of liquidity

, optionally includes some interval .

5.2 Utility Functions

Recall that the dual problem relies on a slightly transformed version of the
Fenchel conjugate, which is the optimal value of problem (7). To use L-BFGS-B
(and most other optimization methods), we need to evaluate this function Ū(ν)
and its gradient ∇Ū(ν), which is the solution Ψ� to (7) with parameter ν. This
means that, to implement a utility function objective, we only need to define

– evaluates Ū at .
– evaluates ∇Ū at and stores it in .
– returns the lower bound of the objective.
– returns the upper bound of the objective.

The lower and upper bounds can be found by deriving the conjugate function.
For example, for the ‘total arbitrage’ objective U(Ψ) = cT Ψ − I(Ψ ≥ 0), where
a trader wants to tender no tokens to the network, but receive any positive
amounts out with value proportional to some nonnegative vector c ∈ R

n
+, has

Ū(ν) = 0 if ν ≥ c and ∞ otherwise. Thus, we have the bounds c ≤ ν < ∞, and
gradient ∇Ū(ν) = 0. We provide implementations for arbitrage and for basket
liquidations in our Julia package. (See [5, §3] for definitions.)
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6 Numerical Results

We compare the performance of our solver against the commercial, off-the-shelf
convex optimization solver Mosek, accessed through JuMP [15,17]. We use real,
on-chain data to illustrate the benefit of routing an order through multiple mar-
kets rather than trading with a single market. Our code is available at

https://github.com/bcc-research/router-experiments.

Performance. We first compare the performance of our solver against Mosek [7],
a widely-used, performant commercial convex optimization solver. We generate
m swap markets over a global universe of 2

√
m assets. Each market is ran-

domly generated with reserves uniformly sampled from the interval between
1000 and 2000, denoted Ri ∼ U(1000, 2000), and is a constant product mar-
ket with probability 0.5 and a weighted geometric mean market with weights
(0.8, 0.2) otherwise. (These types of swap markets are common in protocols such
as Balancer [18].) We run arbitrage over the set of markets, with ‘true prices’
for each asset randomly generated as pi ∼ U(0, 1). For each m, we use the same
parameters (markets and price) for both our solver and Mosek. Mosek is config-
ured with default parameters. All experiments are run on a MacBook Pro with
a 2.3GHz 8-Core Intel i9 processor. In Fig. 1, we see that as the number of pools
(and tokens) grow, our method begins to dramatically outperform Mosek and
scales quite a bit better. We note that the weighted geometric mean markets
are especially hard for Mosek, as they must be solved as power cone constraints.
Constant product markets may be represented as second order cone constraints,
which are quite a bit more efficient for many solvers. Furthermore, our method
gives a higher objective value, often by over 50%. We believe this increase stems
from Mosek’s use of an interior point method and numerical tolerances. The
solution returned by Mosek for each market will be strictly inside the associated
trading set, but we know that any rational trader will choose a trade on the
boundary.

Fig. 1. Solve time of Mosek vs. CFMMRouter.jl (left) and the resulting objective val-
ues for the arbitrage problem, with the dashed line indicating the relative increase in
objective provided by our method (right).

https://github.com/bcc-research/router-experiments
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Fig. 2. Average price of market sold ETH in routed vs. single-pool (left) and routed
vs. single-pool surplus liquidation value (right).

Real Data: Trading on Chain. We show the efficacy of routing by considering a
swap from WETH to USDC (i.e., using the basket liquidation objective to sell
WETH for USDC). Using on-chain data from the end of a recent block, we show
in Fig. 2 that as the trade size increases, routing through multiple pools gives an
increasingly better average price than using the Uniswap v3 USDC-WETH .3%
fee tier pool alone. Specifically, we route orders through the USDC-WETH .3%,
WETH-USDT .3%, and USDC-USDT .01% pools. This is the simplest example
in which we can hope to achieve improvements from routing, since two possible
routes are available to the seller: a direct route through the USDC-WETH pool;
and an indirect route that uses both the WETH-USDT pool and the USDC-
USDT pool.

7 Conclusion

We constructed an efficient algorithm to solve the optimal routing problem. Our
algorithm parallelizes across markets and involves solving a series of optimal
arbitrage problems at each iteration. To facilitate efficient subproblem solutions,
we introduced an interface for swap markets, which includes aggregate CFMMs.

We note that we implicitly assume that the trading sets are known exactly
when the routing problem is solved. This assumption, however, ignores the real-
ities of trading on chain: unless our trades execute first in the next block, we are
not guaranteed that the trading sets for each market are the same as those in the
last block. Transactions before ours in the new block may have changed prices
(and reserves) of some of the markets we are routing through. This observa-
tion naturally suggests robust routing as a natural direction for future research.
Furthermore, efficient algorithms for routing with fixed transaction costs (e.g.,
gas costs) are another interesting direction for future work (see [5, §5] for the
problem formulation).

Acknowledgements. We thank Francesco Iannelli and Jiahao Song for contributing
to the package’s documentation and the Financial Cryptography 2023 reviewers for
helpful comments on this paper.
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A Closed Form Solutions

Here, we cover some of the special cases where it is possible to analytically write
down the solutions to the arbitrage problems presented previously.

Geometric Mean Trading Function. Some of the most popular swap markets, for
example, Uniswap v2 and most Balancer pools, which total over $2B in reserves,
are geometric mean markets (5) with n = 2. This trading function can be written
as

ϕ(R) = Rw
1 R1−w

2 ,

where 0 < w < 1 is a fixed parameter. This very common trading function
admits a closed-form solution to the arbitrage problem (8). Using (12), we can
write

f1(δ1) = R2

(
1 −

(
1

1 + γδ1/R1

)η)

where η = w/(1 − w). (A similar equation holds for f2.) Using (15) and (16),
and defining

δ1 =
R1

γ

((
ηγ

ν2
ν1

R2

R1

)1/(η+1)

− 1

)
,

we have that δ�
1 = max{δ1, 0} is an optimal point for (14). Note that when we

take w = 1/2 then η = 1 and we recover the optimal arbitrage for Uniswap given
in [6, App. A].

Bounded Liquidity Variation. The bounded liquidity variation (4) of the prod-
uct trading function satisfies the definition of bounded liquidity given in §4.1,
whenever α, β > 0. We can write the forward exchange function for the bounded
liquidity product function (4), using (12), as

f1(δ) = min
{

R2,
γδ(R2 + β)
R1 + γδ + α

}

The ‘min’ here comes from the definition of a CFMM: it will not accept trades
which pay out more than the available reserves. The maximum amount that a
user can trade with this market, which we will write as δ−

1 , is when f1(δ−
1 ) = R2,

i.e.,

δ−
1 =

1
γ

R2

β
(R1 + α).

(Note that this can also be derived by taking f1(δ1) = R2 in (12) with the
invariant (4).) This means that

f−
1 (δ−

1 ) = γ
β2

(R1 + α)(R2 + β)
,
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is the minimum supported price for asset 1. As before, a similar derivation yields
the case for asset 2. Writing k = (R1 + α)(R2 + β), we see that we only need to
solve (14) if the price ν1/ν2 is in the active interval (17),

γβ2

k
<

ν1
ν2

<
k

γα2
. (18)

Otherwise, we know one of the two ‘boundary’ solutions, δ−
1 or δ−

2 , suffices.
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Abstract. We describe and analyze perishing mining, a novel block-
withholding mining strategy that lures profit-driven miners away from
doing useful work on the public chain by releasing block headers from
a privately maintained chain. We then introduce the dual private chain
(DPC) attack, where an adversary that aims at double spending increases
its success rate by intermittently dedicating part of its hash power to
perishing mining. We detail the DPC attack’s Markov decision process,
evaluate its double spending success rate using Monte Carlo simulations.
We show that the DPC attack lowers Bitcoin’s security bound in the
presence of profit-driven miners that do not wait to validate the trans-
actions of a block before mining on it.

Keywords: Bitcoin · Double spending · Block withholding attack

1 Introduction

Bitcoin’s security level is traditionally measured as the proportion of the min-
ing power that an adversary must control to successfully attack it. Nakamoto
assumed that an adversary would not control the majority of the mining
power [28]. If this assumption does not hold, an attacker is able to spend a coin
twice and affect the system consistency in what is known as a double spending
attack or 51% attack. The soundness of the honest majority assumption has
been discussed in the literature and mechanisms have been proposed to harden
the mining process against the 51% attack without completely eliminating it
[8,10,23,37].

Despite rewarding miners with newly minted coins and transaction fees, the
Bitcoin mining process has also been shown to be vulnerable to selfish behaviors.
Using selfish mining, a miner withholds mined blocks and releases them only after
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the honest miners have wasted computing resources mining alternative blocks.
Selfish mining increases a miner’s revenue beyond the fair share it would obtain
by following the default Bitcoin mining protocol [19]. Using simulations, selfish
mining has been shown to be profitable only after a difficulty adjustment period
in Bitcoin for any miner with more than 33% of the global hash power [21,30].
Variants of selfish mining further optimize a miner’s expected revenue [34].

Additionally, miners face the verifier’s dilemma [7,26,36], where upon receiv-
ing a block header they have to decide whether they should wait to have received
and verified the corresponding transactions, or whether they should start mining
right away based on the block header. Different miners might react differently
to this dilemma.

Following previous works, we say that a chain of blocks is public if the honest
miners are able to receive all its content, while we say that a chain is private if
some contents of the chain are kept hidden by the adversary. In this paper, we
show that an adversary can leverage a novel block withholding strategy, which we
call perishing mining, to slow down the public chain in an unprecedented man-
ner. More precisely, perishing mining leads miners that react differently to the
verifier’s dilemma to mine on different forks. We then present the Dual Private
Chain (DPC) attack, which further leverages the verifier’s dilemma to double
spend on Bitcoin. This attack is, to the best of our knowledge, the first attack
where an adversary temporarily sacrifices part of its hash power to later favor
its double spending attack, and the first attack where an adversary simultane-
ously manages two private chains. Intuitively, the first adversarial chain inhibits
the public chain’s growth, so that the second one benefits from more favorable
conditions for a double spending attack.

To evaluate the impact of the distraction chain on the public chain we first
establish the Markov decision process (MDP) of perishing mining. From this
MDP, we obtain the probability for the system to be in each state, and quantify
the impact of perishing mining on the public chain, i.e., its growth rate decrease.
We further describe the DPC attack and its associated MDP. We then evaluate
its expected success rate based on Monte Carlo simulations. Counterintuitively,
our results show that the adversary increases its double spending success rate
by dedicating a fraction of its hash power to slow the public chain down, instead
of attacking it frontally with all its hash power.

Overall, this work makes the following contributions.
• We present perishing mining, a mining strategy that is tailored to slow

down the progress of the public chain by leveraging the verifier’s dilemma. Using
perishing mining an adversary releases the headers of blocks that extend the
public chain so that some honest miners mine on them while some honest miners
keep mining on the public chain, which effectively divides the honest miners hash
power. We present the pseudocode of the perishing mining strategy, establish its
Markov chain model and quantify its impact on the public chain growth.

• Building on perishing mining, we describe the DPC attack that an adver-
sary can employ to double spend by maintaining up to two private chains. The
first chain leverages the perishing mining strategy to slow down the public chain’s
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growth and ease the task of the second chain, which aims at double spending. We
provide the pseudocode of the attack, and characterize the states and transitions
of its Markov chain model.

• We evaluate the perishing mining strategy and the DPC attack based on
extensive Monte Carlo simulations. Our results indicate that perishing mining
reduces the public chain progress by 69% when the adversary owns 20% of the
global power and 50% of the hash power belongs to miners that mine on block
headers without verifying their transactions. In comparison, selfish mining, which
aims at optimizing a miner’s revenue share, would only decrease it down by 15%.
Our evaluation also shows that an adversary that owns 30% of the global hash
power can double spend with 100% success rate when 50% of the hash power
belongs to optimistic miners who do not verify transactions (i.e., type 2 miners in
Sect. 3.2). While we focus on the double spending threat, we also show that the
DPC attack allows an adversary to obtain a higher revenue than the one it would
obtain by mining honestly or following previously known strategies (Appx. ??).

This paper is organized as follows. Section 2 discusses the related work
and provides some necessary background. Section 3 defines our system model.
Section 4 provides an overview of the DPC attack. Section 5 details the perish-
ing mining strategy and the DPC attack that builds on it. Section 6 presents our
evaluation results. Section 7 provides a discussion on other aspects of the attack.
Finally, Sect. 8 concludes this paper.

2 Related Work

Double Spending Attack. The double spending attack on Bitcoin was
described in Nakamoto’s whitepaper [28], and has been further analyzed
since [25,33]. Nowadays, z = 6 blocks need to be appended after a block for
its transactions to be considered permanent. An adversary with more than 50%
of the global mining power is able to use a coin in a first validated transaction
and, later on, in a second conflicting transaction. Nakamoto characterized the
race between the attacker and the honest miners as a random walk, and calcu-
lated the probability for an attacker to catch up with the public chain after z
blocks have been appended after its initial transaction. Our DPC attack aims
at double spending, and improves upon the classical double spending’s success
rate.

Block-Withholding Attacks. Selfish mining was the first mining strategy
that allows a rational miner to increase its revenue share [19], and was later
shown to harm the mining fairness [9,15]. Selfish mining is not more profitable
than honest mining when the mining difficulty remains constant despite the fact
that the adversary is able to increase its revenue share [21,22]. Nayak et al.
proposed plausible values for the selfish miner’s propagation factor by utilizing
the public overlay network data [29]. They pointed out that the attacker could
optimize its revenue and win more blocks by eclipsing [24] honest miners when
the propagation factor increases. Gervais et al. analyzed the impact of stale rate
on selfish mining attack [21]. Negy et al. pointed out that applying selfish mining
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in Bitcoin is profitable after at least one difficulty adjustment period (i.e., after
approximately two weeks at least) [30]. The DPC attack differs from these works
in the sense that its main goal is not to increase the adversary’s mining share
but to double spend with higher probability than previous attacks.

Table 1. Notations.

Symbol Interpretation

α ∈ [0, 0.5] Mining power of the adversary

β ∈ [0, 1] Fraction of its mining power that the adversary dedicates to its first
private chain

μ ∈ [0, 0.5] Mining power of type 2 miners

vt Value of the transaction the adversary inserts in a block when starting
the DPC attack and attempts to double spend

vb Mining reward per block

Combining Selfish Mining and Double Spending. Previous works have
shown that an adversary can combine the double spending attack with selfish
mining [21,35]. In this attack, the attacker maintains a single chain, which lowers
the double spending success rate compared to the initial double spending attack.
Our DPC attack shows that an adversary can simultaneously manage two private
chains to launch a more powerful double spending attack.

Blockchain Denial of Service Attacks. The BDOS attack proposed strate-
gies to partially or completely shut down the mining network [27]. To do so, the
adversary only sends the block header to the network whenever she discovers
a block that is ahead of the public chain and there is no fork, and publishes
the block body if the next block is generated by the honest miners. By doing
so, the profitability and utility of the rational miners and Simplified Payment
Verification (SPV) miners is decreased, so that they eventually leave the mining
network. The objective of BDOS attacks is to halt the system. An adversary
would need to spend approximately 1 million USD per day to shut down the
system. Our DPC attack frequently separates other miners’ hash power, which
has some similarities with the BDOS attack’s partial shut down case. However,
the DPC attack allows the adversary to double spend.

3 System Model

This section introduces the categories of miners we consider, and the adversary
that launches a DPC attack. Table 1 summarizes our notations.

3.1 Bitcoin Mining and the Verifier’s Dilemma

Bitcoin mining is a trial-and-error process1. The public blockchain (or chain)
is visible to all participants, and is maintained by honest miners. To achieve
1 https://en.bitcoin.it/wiki/Block hashing algorithm.

https://en.bitcoin.it/wiki/Block_hashing_algorithm
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consistency, honest miners accept the longest chain in case of visible forks [17,20,
31]. However, temporary block withholding attacks have been shown to threaten
Bitcoin’s security [19,25,33,34]. Honest miners monitor the network to verify
block headers and verify transactions.

In the Bitcoin’s network, block headers are often propagated faster than
transactions. Bitcoin’s incentive mechanism does not directly reward the verifi-
cation of transactions, and BIP-1522 introduced the compact block propagation
optimization where each node can relay a block in a compact format before
verifying its transactions. In this case, a miner that immediately mines on the
block header of a correct block gets a time advantage to find the next block.
If the miners instead wait and verify the included transactions before the next
mining round, then they might sacrifice some non-negligible time in the mining
race [7,12,26,36].

We assume that miners follow the traditional block exchange pattern [16,27]
using the overlay network. Block dissemination over the overlay network takes
seconds, whereas the average mining interval is 10 min. While accidental forks
(which may occur every 60 blocks [16] on average) reduce the effective honest
mining power on the public chain and makes our attack easier, we do not consider
accidental forks created by honest miners in order for simplicity. We evaluate
mining and double spending strategies using event-based simulations where an
event is the discovery of a block by a category of miner. We note vb the mining
reward that miners obtain whenever a block they have discovered is permanently
included in the blockchain.

3.2 Miner Categories

We consider two types of honest Bitcoin miners that react differently to the
verifier’s dilemma: type 1 honest miners and type 2 honest miners.

Type 1 honest miners always follow the default mining protocol and mine on
the longest chain of fully verified blocks. In particular, these miners do not mine
on a block header that extends a longer non-fully verified concurrent chain.

Type 2 honest miners are profit-driven. As Bitcoin allows miners to accept
and generate new blocks without verifying their transactions, type 2 miners start
mining on a new block or its header if it extends the longest chain without verify-
ing the transactions it contains. Note that type 2 miners can verify transactions
whenever they are received and stop mining on a block header when associated
transactions are faulty, or if they successfully mine the next block without having
received the previous transactions. In our experiments, we consider two opposite
categories of type 2 miners that behave differently upon reception of successive
block headers to evaluate the best and worst possible attack results.

– Optimistic type 2 miners miners always mine on the longest chain of blocks,
which is possibly made of several block whose transactions have not yet been
received. In particular, Simplified Payment Verification (SPV) miners [3–6] can

2 https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki.

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
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be categorized as optimistic type 2 miners. Upon finding a block, optimistic
type 2 miners can create an empty block or include transactions that they
know cannot create conflicts (e.g., internal transactions for mining pools).

– Pessimistic type 2 miners only accept to mine on a block header if it extends
a chain of full blocks. In particular, a pessimistic type 2 miner that extends
a block header would then mine on the last block with transactions not to
waste time. If the missing transactions eventually arrive, they then release the
next full block. While if they extend over the last full block, they then create
a fork.

In practice, it would be difficult for the adversary to identify the exact propor-
tion of the global mining power that each type 2 miner subcategory represents.
However, the adversary can be conservative and assume that all type 2 miners
are pessimistic, since our attack still improves over the state-of-the-art in that
case. We also discuss evidence for SPV mining in Sect. 7, which is arguably the
simplest type 2 mining strategy.

The adversary owns a fraction α ∈ [0, 0.5] of the global hash power and its
aim is to double spend with higher probability than using previous attacks. When
launching its attack the adversary introduces a transaction of value vt in a block
that is included in the public chain and that it attempts to double spend. We
also assume that the adversary cannot break cryptographic primitives. Contrary
to the selfish mining’s adversary model [19,21], our model does not assume that
the adversary has a privileged network access, which is required in selfish mining
when the adversary releases a conflicting block it had pre-mined in reaction to the
extension of the public chain by an honest miner. For simplicity, we consider that
every newly discovered and propagated block is almost instantaneously received
by all miners. Several works evaluated and modeled network propagation delays
in various cryptocurrencies [12,13,16].

4 Attack Overview

This section provides a high-level description of the Dual Private Chain (DPC)
attack, where an adversary maintains two private chains. It then summarizes
the respective roles of adversary’s two private chains and their interactions.

4.1 Intuition

In a DPC attack, the adversary maintains two private chains from which it might
release block headers or full blocks with the ultimate goal of double spending.
During the attack, both of the adversary’s private chains compete with the public
chain and may diverge from it starting from different blocks. At a given point
in time, the adversary might dedicate its full hash power to one of its private
chains, or divide its hash power to simultaneously extend both private chains.

The DPC attack starts when the adversary creates a transaction of value vt
that is the basis for its double spending attempt. Once the adversary generates
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the block that contains this transaction, she initializes both its private chains
with it and starts mining on it. Initially, the two chains are therefore equal, but
they might diverge or converge again later on depending on the created blocks.
The double spending attack succeeds if the double spending chain becomes longer
than the public chain and if the public chain contains z = 6 blocks that have been
included after the block that contains the initial transaction of the adversary.

Role of the Distraction Chain. The first private chain that the adversary main-
tains is called the distraction chain. We present perishing mining, a strategy that
the adversary employs to maintain its first private chain to waste the hash power
of type 2 honest miners and slow down the public chain. Whenever the adver-
sary divides its hash power to simultaneously mine on its two private chains, it
dedicates β of its hash power to mine on its first private chain. This chain is
private in the sense that the adversary never releases the full blocks, but only
the corresponding block headers. The strategy that the adversary applies on its
distraction chain divides the honest miners so that they mine on different blocks,
and wastes the hash power of type 2 honest miners, which collectively account
for hash power μ. The adversary leverages a BDOS-like attack to only share the
header of blocks it discovers on the distraction chain (see Sect. 5). As the body
of those blocks contain adversary-created transactions that are never publicly
released, only type 2 honest miners mine on them. In this way, the adversary
can distract type 2 honest miners from mining on the public chain.

Role of the Double Spending Chain. The adversary maintains a second private
chain to attempt to double spend, and we therefore call this chain the double
spending chain. Whenever the adversary is simultaneously mining on its two
private chains it dedicates α(1−β) of the global hash power to its second private
chain. This chain is private in the sense that, even though block headers might be
released, the actual blocks it contains are only published if the double spending
attack is successful. Following previous analyses [28,33], we consider that a dou-
ble spending attempt is successful when: (i) the double spending chain’s length
is larger than or equal to the public chain’s length; and (ii) z-1 blocks have been
appended after the block that contains the adversary’s initial transaction (z = 6
in Bitcoin).

4.2 Interplay Between the Two Private Chains

Whenever type 1 and type 2 miners are mining on the same block, the adversary
divides its hash power to concurrently mine with hash power αβ on the last block
of its distraction chain, which is then equal to the public chain, and mine with
mining power α(1 − β) on its double spending chain. The adversary’s goal is
then to create a fork and release a block header so that type 1 and type 2 honest
miners mine on different blocks. Note that the adversary will use all its hash
power on the second private chain as long as the first private chain is longer
than the public chain. This hash power shifting between two private chains is at
the core of the DPC attack, which is detailed in Sect. 5.2.
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Fig. 1. Illustration of two possible cases that would lead type 2 miners to waste their
hash power during a DPC attack. Bn, Bn+1, B

′
n+1, Bn+2 are full blocks, Bh

n+1, B
h
n+2

are block headers, and Bb
n+1, B

b
n+2 are block bodies. We use solid rectangles when the

content of a block is visible to honest miners, and a dotted rectangle when it is hidden
by the adversary. We note interesting adversary’s actions with action1 and action2 (see
text for explanations).

In the DPC attack, the adversary executes different actions to lead the honest
miners to mine on different blocks. Figure 1 shows two possible scenarios where
the attack is initialized based on block Bn. The adversary generates a pair of
conflicting transactions for its double spending attack. The first transaction is
released to the public network and collected by the honest miners. The second
transaction is kept private by the adversary. In both examples, after action1, the
adversary separates her hash power into two parts: she uses αβ to work on public
block lead Bn+1, and α(1 − β) to work on extending chain2 to double spend.
After action2 the adversary releases the block header and uses all of her hash
power to extend chain2 for double spending. In both cases, type 2 honest miners
(with μ of global hash power) are led to generate some blocks that will never
be included in the public chain due to the adversary’s block body withholding
strategy. Consequently, the adversary’s second private chain chain2, which is
used to attempt to double spend, benefits from the distraction of chain1. We
detail the DPC attack in Sect. 5.

5 The Dual Private Chains Attack

This section presents the details of the DPC attack, which attempts to lure type
2 honest miners away from extending the public chain, thus, facilitates a double
spending attack. We first describe perishing mining, a strategy that a miner
can use to slow down the progress of the public chain by making honest miners
mine on different blocks. We then describe the full DPC attack that builds on
perishing mining to maintain the adversary’s first private chain. We provide an
additional discussion on the DPC attack in Sect. 7.
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5.1 Perishing Mining

We call perishing mining the strategy that the adversary uses on the distraction
chain (whenever she is mining on it). After the initialization of the perishing
mining strategy, the distraction chain and the public chain mine on the same
block. The adversary’s action then depends on whether the next block is dis-
covered by the public miners or by itself (Please see our original analysis for
details [11]). First, when the adversary discovers a block Bn+1 that makes its
distraction chain longer than the public chain, it releases the corresponding block
header to the network. Upon receiving this header, type 2 miners start mining
based on it, while type 1 miners continue working on block Bn. Second, when
type 1 miners discover a block, the public chain is extended. Third, when type 2
miners find a block, the public chain is extended when the public chain is equal
to the private chain. Otherwise, the block is abandoned due to the incomplete
block verification, which wastes the hash power of type 2 miners. Note that when
type 2 miners are optimistic the private chain is extended when it is not equal
to the public chain.

Fig. 2. Perishing mining’s Markov chain models with optimistic and pessimistic type
2 miners. Arrows that do not lead to a state (on the right subfigure) represent the
wasted mining effort of pessimistic type 2 miners. Only the top-left transition on the
left figure has probability α.

Figure 2 illustrates the MDP models of the perishing mining strategy assum-
ing that type 2 miners are either optimistic or pessimistic. In this Markov chains,
α, μ and 1−α−μ, are respectively the probabilities for the adversary, type 2 and
type 1 miners to discover a block. We use a tuple (i, j) to denote the state in
perishing mining’s MDP, where i and j are respectively the lengths of the pri-
vate chain and the public chain. The fact that the adversary adopts the public
chain whenever it is longer than the private chain implies that i≤j. The adver-
sary releases the header of the leading block to lure type 2 miners. When type
2 miners are optimistic (Fig. 2a), the adversary relies on type 2 miners that
also attempt to extend the private chain. When type 2 miners are pessimistic
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(Fig. 2b), the adversary is not able to use them to extend the private chain. We
evaluate the negative impact of perishing mining on the public chain growth in
Sect. 6.2.

5.2 Combining Perishing Mining and Double Spending

The DPC attack leverages the perishing mining strategy to distract type 2 miners
and facilitate double spending.

We detail the attack’s pseudocode in our original analysis [11], where l1, l2,
and lpub represent the length of the first private chain chain1, the second private
chain chain2, and the public chain chainpub respectively.

During the DPC attack, the two invariants l2 ≤ l1 and lpub ≤ l1 are verified.
The distraction chain is therefore always the longest chain among the three
chains, and can adopt the public chain and the double spending chain when it
is not the longest chain. For example, if it happens that the double spending
becomes the longest chain then the distraction chain is set to be equal to the
double spending chain. As a consequence, the type 2 miners would mine on the
headers of the double spending chain, which would facilitate the double spending
attack.

When the DPC attack starts, all three chains are equal and all miners mine
on the same block. The adversary’s actions are defined in reaction to block
discoveries.

When the adversary finds a block on the distraction chain, it releases the
corresponding block header so that type 2 miners mine on it, because the dis-
traction chain is then the longest chain. If the two private chains are equal, the
newly found block also extends the double spending chain. As a consequence,
the adversary extends the distraction chain, and type 1 miners mine on the last
full block of the public chain while type 2 miners mine on the last block header
of the distraction chain. The adversary then allocates all its hash power (α) to
mining on the double spending chain.

When the adversary finds a block on its double spending chain, it releases
the block header if the second private chain becomes the longest chain. In this
case, type 2 miners then mine on the double spending chain. The first private
chain also adopts the second private chain so that the total hash power used to
extend the double spending chain is α + μ. When the second private chain is
shorter than the public chain, the adversary keeps mining on it with 1 − β of
its hash power. As soon as the double spending chain becomes longer than the
public chain and that at least 6 blocks have been appended to the public chain
since the beginning of the attack, the adversary uses the double spending chain
to override the public chain, and the DPC attack succeeds.

When type 1 miners find a block, they extend the public chain. If the public
chain becomes the longest chain, then all honest miners will mine on the public
chain and the adversary modifies its first private chain so that it adopts the
public chain. The adversary then allocates αβ of hash power to its distraction
chain so that it tries to generate a block that will divide again the honest miners.
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When type 2 miners find a block, three cases are possible. First, the double
spending chain is extended if two private chains are equal and longer than the
public chain. Second, the public chain and first private chain are extended if they
are equal. Finally, in the other cases the newly discovered block is abandoned,
which wastes the hash power of type 2 honest miners. The DPC attack can be
tailored to optimistic or pessimistic type 2 miners.

5.3 Markov Decision Process of the DPC Attack

We establish the Markov decision process (MDP) of the DPC attack by simul-
taneously considering the two private chains and observing that each state is a
5-tuple (lpub, l1, l2, s(pub,1), s(1,2)). lpub, l1, and l2 are respectively the lengths of
the public chain chainpub, the first private chain chain1, and the second private
chain chain2. s(pub,1), s(1,2) ∈ {t(rue), f(alse)} respectively indicate whether
chainpub is equal to chain1, and whether chain1 is equal to chain2.

Based on the relations between the three chains (synchronized or not), we
identified 10 types of states in the presence of optimistic type 2 miners, and
9 types of states in presence of pessimistic type 2 miners. The corresponding
transitions are presented in our original analysis [11]. Note that we were not
able to obtain closed form formulas for the probabilities of each possible state
due to the complexity of the DPC attack’s MDP model. Nevertheless, we use
Monte Carlo simulations to estimate the adversary’s success rate and revenue,
as in previous block withholding attacks [19,21,29].

Case 0 is the initial state of the attack. Case 4 captures the attack success,
which happens if the public and the double spending chains contain more than
6 blocks, and if the double spending chain is longer than the public chain. Cases
1.x, 2.x, 3.x are all possible intermediary states and consider scenarios that differ
based on the lengths of the chains, and whether or not they are equal, which
happens when the adversary reinitializes one or both of its private chains.

We emphasize that an adversary that executes the DPC attack earns a mining
reward only when the double spending chain succeeds. In this case, the adversary
earns the block mining reward that corresponds to the private blocks it mined
that end up in the public chain and the value of the transaction it managed
to double spend. We use vb for the value of blocks, and vt for the value of the
double spent transactions.

6 Analysis Using Monte Carlo Simulations

This section evaluates the perishing mining strategy and the DPC attack using
Monte Carlo simulations that react based on the event of block discovery.

6.1 Methodology and Settings

We evaluate perishing mining and the DPC attack using random walks in their
respective Markov decision processes. Our evaluations are based on Python
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(a) With optimistic type 2 miners. (b) With pessimistic type 2 miners.

Fig. 3. Relative growth rate of the public chain (compared to the attack-free case)
when the adversary uses selfish mining (SM) or perishing mining (PM), where type 2
miners own a fraction μ of the global power.

scripts. In each scenario, we simulate the creation of 2,016 blocks, repeat each
configuration 10,000 times, and report the average of the metrics of interest.
Simulating the creation of 2,016 blocks maintains the mining difficulty con-
stant during the experiment since Bitcoin’s mining difficulty is adjusted every
2,016 blocks. We quantify the impact of perishing mining on the public chain’s
growth rate, and then evaluate the double spending success rate of the DPC
attack. We compare the success rate of the DPC attack to the success rate of
the classical double spending attack using the success rate formulas that were
obtained by Nakamoto [28] and Rosenfeld [32]. We study the various strategies
with α, μ ∈ [0, 0.1, 0.2, 0.3, 0.4, 0.5] and β ∈ [0, 1] (by 0.01 steps). Moreover, we
analyze the adversary’s expected revenue in our original analysis [11].

6.2 Impact of Perishing Mining on Chain Growth

In a DPC attack, the adversary leverages perishing mining strategy to inhibit
public chain’s growth. We now consider a scenario where the adversary con-
stantly dedicates a fraction of its full hash power to perishing mining, so that
we can quantify its effect on the growth rate of the public chain.

Figure 3 represents the relative public chain growth rate of a system under
attack, which is expressed as a fraction (in %) of the public chain growth rate
in the attack-free case. We compare perishing mining to selfish mining and vary
the global hash power μ of type 2 miners 0 to 0.5 (i.e., ranging from 0% to 50%
of the global hash power). The public chain is extended at a lower rate when
the adversary’s power increases and when the global power of type 2 miners
increases. By comparing Fig. 3a and Fig. 3b, one can see that perishing mining
has a stronger impact with optimistic type 2 miners than with pessimistic type
2 miners, as one could expect.
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6.3 Double Spending Success Rate

Figure 4 illustrates the success rates of the DPC attack for different μ and with
the best β value that we obtained experimentally. It is interesting to observe
the differences between the partitions corresponding to a given μ with the best
β value to see that maintaining distraction chain and double spending chain
simultaneously makes a real difference. An adversary would be able to determine
the best β after estimating μ, as we discuss in Sect. 7.

(a) With optimistic type 2 miners. (b) With pessimistic type 2 miners.

Fig. 4. Success rate of the DPC attack depending on the hash power μ of the type
2 miners with the best value of parameter β within 2016 blocks. The “NS” line rep-
resents the success rate of the classical double spending attack (based on Nakamoto’s
evaluation). A darker color indicates a higher success probability.

In presence of type 2 miners (i.e., μ > 0), the DPC attack’s success rate is
always higher than the one of the traditional double spending attack (i.e., 0(NS)
in Fig. 4). The success rate of the double spending attack (with 6 confirmations)
with α = 0.2 (the power of the biggest mining pool) increases from 1% to 87%
(or from 1% to 12%) via the DPC attack depending on μ as shown in Fig. 4a (or
Fig. 4b). The impact of optimistic type 2 miners on DPC attack’ success rate is
more severe than pessimistic type 2 miners, for example, if μ = 0.2 and α = 0.2,
the DPC attack’s success rate is 28% in Fig. 4a while it is 7.7% in Fig. 4b.

Importantly, the DPC attack lowers Bitcoin’s safety bound, i.e., the mini-
mum hash power that the adversary needs to double spend or break the chain’s
consistency. For instance, when μ = 0.5, 0.4, 0.3, 0.2 and type 2 miners are opti-
mistic, a DPC adversary with 30%, 35%, 40%, 45% of the global hash power could
completely manipulate the blockchain (i.e., 100% success rate in Fig. 4a), which
is more threatening than the existing block withholding attacks [19,21,29].

Inspired by M. Rosenfeld [32], we further evaluate the safe transaction value
(i.e., the suggested maximum value of transaction for clients) against double
spending attack. Figure 5 plots the minimum value for vt

vb
that allows the DPC

attacker to be more profitable than honest mining. When μ = 0.2 and type 2
miners are optimistic, the adversary with 0.05, 0.1, 0.15, 0.2 (the possible hash
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(a) With optimistic type 2 miners. (b) With pessimistic type 2 miners.

Fig. 5. Minimum value for vt
vb

for the DPC attack to be more profitable than honest
mining depending on μ. “9999” represents vt

vb
≥ 9999.

power share of mining pools in Bitcoin) of global hash power is incentivized to
perform DPC attack as long as the merchants are willing to accept the trans-
action with 26.29 ∗ vb, 13.49 ∗ vb, 9 ∗ vb, 5.69 ∗ vb BTC respectively (as shown in
Fig. 5a). In the same case, when type 2 miners are pessimistic, the safe transac-
tion value would increase and become 4026.56∗vb, 329.86∗vb, 81.4∗vb, 30.97∗vb.
Bitcoin’s future block reward halving will decrease both the threshold to launch
profitable DPC attacks and the safe transaction value, which confirms Carlsten
et al.’s previous observation [14].

7 Attack Discussion

Attack Variants. We have presented the DPC attack we found to be the most
effective when the adversary splits its hash power in two constant parts αβ and
α(1 − β). We foresee that one could devise variants of the DPC attack, e.g.,
using techniques that have been applied to selfish mining [19,25,33,34]. In these
variants the adversary would mine on different blocks depending on the system’s
state, or dedicate a different fraction of its hash power to extend each of its two
private chains. We leave the study of these variants to future work.

Estimating μ and Selecting β. It is sufficient for the adversary to approximate
the value of μ, which is the proportion of the global hash power that belongs
to type 2 miners, for a DPC attack to be successful, as our experimental results
demonstrate. However, in practice, an adversary would be able to optimize its
DPC attack by determining a precise value for μ. The adversary can estimate μ
based on some public websites [3], or establish direct connections with the public
mining pools to perform a statistical analysis. Moreover, the perishing mining
strategy that we present in this paper can be used as a probing technique to
measure μ. Indeed, the adversary can directly monitor the impact of perishing
mining on the public chain and compute μ based on its growth rate. Once the
exact value of μ is known, an adversary can find the best β for the DPC attack
by replicating our experiments.
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Attack Detection and Prevention. The DPC attack leverages the fact that
type 2 miners, which include SPV miners, accept block headers without wait-
ing for and verifying the corresponding transactions. One partial countermea-
sure against the DPC attack would consist in miners deliberately choosing to
stop mining on block headers alone. However, it does not seem reasonable to
assume that all miners would avoid this strategy because they can start working
on the next block earlier than other miners and therefore increase their profit.
Type 2 miners could also avoid mining on the adversary’s blocks by accepting
to mine only on blocks that were discovered from known mining pools. It is
unclear whether this modification would have undesired security implications,
e.g., regarding the decentralization of proof-of-work blockchains, or because pool
sub-miners run a mining software that is developed internally and independently
from the official protocol specification [18]. In addition, this modification would
require type 2 miners to trust mining pools, and a malicious pool manager would
still be able to execute the DPC attack.

Another idea would be for type 2 miners to stop mining on a block header if
the associated transactions are not received before a maximum delay and then
mine on the last full block. However, the adversary could also update its strategy
to regularly send the unmatched block bodies so that type 2 miners keep mining
on its blocks. It is unclear whether this countermeasure would be efficient, and in
particular in practical settings. Moreover, the variation of message delays in Bit-
coin’s peer to peer network would sometimes lead type 2 miners to reject blocks
that are generated by honest miners, and might imply possible DoS attacks.

Evidence of Type 2 Mining. In practice, it is difficult to know the exact
strategy that miners follow. However, previous works have provided evidence
of SPV mining [2–5,27]. Our assumptions in this work are not stronger since
our pessimistic type 2 miners are more conservative than SPV miners. In 2020,
9+ mining pools representing 36% of the global power produced empty blocks,
which one might consider evidence of SPV mining [1]. We analysed the Bitcoin
blockchain and found that Antpool, Binance, F2pool, Huobi, Poolin, ViaBTC
published empty blocks from 01/2021 to 02/2022 and collectively represent more
than 60% of the global power.

8 Conclusion

In this paper, we proposed perishing mining, a novel adversarial mining strategy
that slows down the public chain by leveraging the verifier’s dilemma. We then
described the dual private chain (DPC) attack where an adversary dedicates a
part of its hash power to the perishing mining strategy and launches a parallel
double spending attack. We established the Markov decision process of both the
perishing mining and the DPC attack. We relied on Monte Carlo simulations to
quantify the impact of perishing mining on the public chain growth, and evaluate
the double spending success rate of the DPC attack. Our performance evaluation
showed that the DPC attack is more powerful than the classical double spending
attack as soon as a fraction of the miners mine on blocks without verifying their
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transactions. We also evaluated the revenue an adversary could expect from
running the DPC attack, and showed that an adversary with sufficient funds or
with sufficient hash power would maximize its revenue with the DPC attack.
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Abstract. A series of recent studies have shown that permissionless
blockchain peer-to-peer networks can be partitioned at low cost (e.g.,
only a few thousand bots are needed), stealthily (e.g., no control plane
detection is available), or at scale (e.g., the entire bitcoin network can
be divided into two). In this paper, we focus on the sustainability of par-
titioning attacks in Bitcoin, which is barely discussed in the literature.
Existing studies investigate new partitioning attack strategies extensively
but not how long the partition they create lasts. Our findings show that,
fortunately for Bitcoin, the permissionless peer-to-peer network can be
partitioned but only for a short time. In particular, two recent parti-
tioning attacks (i.e., Erebus [12], SyncAttack [10]) do not maintain par-
titions for more than 10 min in most cases. After analyzing Bitcoin’s
peer eviction mechanism (which makes the two original attacks diffi-
cult to sustain), we propose optimization strategies for the two attacks
and calculate the total cost of the optimized attacks for a 1-hour attack
duration. Our results complement the original attack studies: (i) the
optimized Erebus attack shows that it requires at least one adversary-
controlled Bitcoin node close to a target and a few additional expensive
attack steps for sustainable attacks, and (ii) the optimized SyncAttack
can create sustainable partitions only with excessive cost.

Keywords: Bitcoin · Partitioning Attacks

1 Introduction

Blockchain systems are desired to maintain highly reliable network connectivity
across distributed nodes even in the face of severe network attacks or failures.
However, Bitcoin and many permissionless blockchains are at risk of connection
starvation attacks in which all available connections of public nodes are occupied
by an adversary, leaving no resource for legitimate nodes. Connection starvation
is first discussed as a part of the Eclipse attack in 2015 [5]. An adversary opens
many connections to a target Bitcoin node and prevents other legitimate Bitcoin
peers from establishing connections to it, effectively partitioning the target node
from the rest of the peer-to-peer (P2P) network.
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After the publication of the Eclipse attack, Bitcoin developers deployed sev-
eral countermeasures, including a peer eviction mechanism in which a fully con-
nected node terminates one of its existing connections to make room for a new
incoming connection [2]. This peer eviction, along with several other measures,
mitigates the Eclipse attacks by allowing legitimate nodes to connect to the
partitioned target and thus deliver new blocks from the canonical chain; that
is, the target node is no longer partitioned. In other words, the peer eviction
mechanism makes the Eclipse attacks unsustainable.

Since then, there are two notable attacks showing partitioning the Bitcoin
P2P network is still possible. In the Erebus attacks [12], a malicious autonomous
system (AS) partitions a single target node by poisoning its internal peer
database. SyncAttack [10] splits the entire Bitcoin P2P network into two parti-
tions by monopolizing the incoming connection slots of all public Bitcoin nodes
with a few tens of malicious peers. We observe, however, these studies have
not properly evaluated the effect of the peer eviction mechanism against their
attacks. Unfortunately, thus, sustainability of these attacks is left untested. Their
original reports pay significant attention to the end-to-end attack evaluation, i.e.,
from the attack preparation phase to the attack completion phase with 100%
connection occupation. Yet, the two studies do not show empirical evidence
that their attacks are sustainable enough (e.g., partition continues while several
blocks are generated), which is a critical condition for follow-up attacks, such
as double-spending attacks or stubborn mining attacks [9]. The lack of rigor-
ous evaluation on attack sustainability motivates us to test these partitioning
attacks in our independent study.

To that end, we first test the sustainability of the original versions of the
Erebus attack and SyncAttack. As we measure how long these attacks success-
fully partition a node (in the case of the Erebus attack) or two groups of nodes
(in the case of the SyncAttack), we face a number of practical difficulties. For
example, to accurately measure the moment when a partition ends, we should
evaluate the Erebus attack in the Bitcoin mainnet, which has not been conducted
in existing literature due to the challenging attack setup and ethical concerns.
Evaluating SyncAttack accurately is even more challenging as it would create
two partitions of thousands of nodes. We carefully apply several workarounds
for these evaluations and estimate the attack sustainability effectively.

Our evaluation of the sustainability of these partitioning attacks, the first
of its kind, shows that the two attacks would not maintain successful network
partitioning to some meaningful extent, significantly limiting the effectiveness of
these attacks in practice.

After learning that the two existing partitioning attacks in their original ver-
sions fail to last long enough (e.g., for 1 h) for follow-up exploits, we go one step
further and optimize for their maximal sustainability. Our optimization requires
thorough reviews of the original attack strategies and the current Bitcoin’s peer
connection mechanism. Our optimized attacks are designed against the up-to-
date Bitcoin Core implementation v23.0 (as of October 2022).

We then measure the required cost of the optimized attacks when aiming to
maintain partitions for a given duration (e.g., 1 h). For useful risk analysis of
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these attacks in practice, we define the attack cost as two-dimensional resources:
(1) the number of unique, adversary-controlled network address groups, and (2)
the distance (in network latency) from adversary-controlled nodes to the target
client(s). Our analysis of the attack cost for these optimized attacks shows that
the Erebus attack can be sustainable (e.g., maintain a partition for an hour)
with moderately more attack resources (compared to what is described in its
original version) and a few additional attack steps. In contrast, the SyncAttack
shows its feasibility only with excessive cost.

The organization of the paper is as follows. We first provide a brief overview
of recent partitioning attacks in Sect. 2. We then test the attack sustainability
of two unmodified attacks in Sect. 3. In Sect. 4, we present our new optimized
attack strategy based on Bitcoin’s peer connection mechanism and calculate the
cost of 1-hour sustainability with these optimized attacks.

2 Related Work

In this section, we review a few recent Bitcoin partitioning attacks [1,10–12].
We particularly focus on the Erebus attack and SyncAttack, and highlight their
differences in Table 1. We also briefly review two partitioning attacks based on
Internet routing manipulation (i.e., BGP hijacking), although evaluating their
attack sustainability is beyond the scope of this paper.

Table 1. Comparison of two known Bitcoin partitioning attacks.

Targets Stealthiness Attack
resources

Preparation
time

Peer table
manipulation

Evaluation in
the original paper

Deployed
countermeasures

Erebus
Attack

Single
Bitcoin
node

Yes an AS 5–6 weeks Required No direct evaluation, only
simulation with AS
topology

Two deployed at
Bitcoin Core

Sync
Attack

Entire
Bitcoin
network

No 125
Bitcoin
nodes

Not
mentioned

Not required No direct evaluation
(measurement in mainnet,
experiment in testnet)

None

2.1 Erebus: A Stealthy Single-Node Partitioning Attack

In the Erebus attack [12], a malicious AS, such as a tier-1 or tier-2 Internet Ser-
vice Provider, fills a target node’s peer tables (i.e., new and tried) with adversary-
controlled IP addresses. Connections from the target to any of those IPs traverse
through the adversary AS and therefore, are controlled by the adversary. The
target is partitioned when all of its peer connections go through the adversary
AS. As the sending rate of the attack payloads to the target is negligible and
no routing manipulation is involved in both the data plane and control plane,
it is difficult to detect the Erebus attacks. The original publication [12] shows
that individual Bitcoin nodes can be partitioned, possibly in parallel, within 5–6
weeks of attack execution. Unfortunately, the attack sustainability is unknown
since no experiments are given to show what happens after the Erebus attack
successfully partitions a node.
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2.2 SyncAttack: A P2P Network Splitting Attack

SyncAttack [10] aims to partition a group of Bitcoin nodes from the rest of the
P2P network, i.e., splitting it into two. In the SyncAttack, the adversary occupies
all inbound connection slots of all reachable nodes to prevent other nodes connect
to them. The paper [10] argues that when all inbound slots of existing nodes are
occupied, newly-joined nodes have no choice but to establish connections to
the adversarial nodes. As a result, the P2P network would be split into two
partitions: existing nodes versus new, arriving nodes. To make an existing node
prioritizes the adversary-generated connections, the adversary sends fresh block
and transaction data via 16 connections from the same IP and establishes other
99 connections from IPs with distinct network groups to it. Again, the attack
sustainability is not properly evaluated in the original publication [10].

2.3 Bitcoin Partitioning Attacks Using Routing Manipulation

Apostolaki et al. [1] show that a malicious AS can perform BGP hijacking attacks
against the IP prefixes hosting targeted Bitcoin nodes. Once the traffic to such
prefixes is hijacked, the adversary AS drops Bitcoin traffic at the network layer,
effectively cutting off the communication between targeted Bitcoin nodes and
the rest of the P2P network. This is further extended in a multi-cryptocurrency
attack by Saad et al. [11]. Since evaluating the sustainability of such attacks
inherently requires measuring the sustainability of the routing manipulation, we
leave it for future work.

3 Re-evaluating Existing Partitioning Attacks

We aim to evaluate the sustainability of the Erebus attack [12], and SyncAttack
[10] — in the face of the peer eviction mechanism that has made the Eclipse
attack unsustainable. In particular, we use partitioning duration as the metric
to measure the sustainability of the two attacks. It indicates the time difference
between the moment when the target node(s) is partitioned and the moment
when it receives a new block from the canonical chain. To measure the parti-
tioning duration, one needs to conduct the two attacks (i.e., partitioning a node
or a group of nodes) successfully and waits for the partitions to cease. Thus, in
this section, we test the sustainability of two existing partitioning attacks and
provide empirical evidence that they do not create effective partitioning to any
meaningful extent in practice. In the following Sects. 3.1 and 3.2, we describe
how we re-evaluate the two attacks and measure their sustainability in practical
test environments.

3.1 Re-evaluation of the Original Erebus Attack

Now, let us explain how we test the original Erebus attack with the sustainability
metric.
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Direct Implementation and Evaluation of the Original Attack. First, we
explain how we are supposed to conduct the experiments of the original Erebus
attack, according to its publication [12]. It follows five steps:

(i) Deploy a target Bitcoin node on the mainnet.
(ii) Send many adversary-chosen IPs (called shadow IPs) from a malicious ISP

with various network groups to the target node.
(iii) Wait until the target node’s peer table is filled with the shadow IPs and

the target makes all its outgoing connections to the shadow IPs.
(iv) Monopolize the target node’s inbound connections by making connections

from the malicious ISP.
(v) Measure how long the target node is partitioned, checking the moment the

target node receives new blocks.

Challenges. Measuring the sustainability of the Erebus attack, however,
involves several challenges.

• Mainnet experiment required. For measuring the attack sustainability, we
should identify the exact moment other benign Bitcoin nodes relay new blocks
to the target node. Therefore, ideally, the experiment should be performed in
the mainnet in order to reflect other real Bitcoin nodes’ behavior.

• Need huge network resources. The original Erebus attack requires an adver-
sary to be an autonomous system (AS), utilizing 500K shadow IPs for occu-
pying the target node’s peer table. To experiment it as is in the mainnet, we
need to be an ISP or we need to own and control many Bitcoin nodes with
many distributed IP addresses, both of which are extremely hard to achieve.

• Long attack execution time. The Erebus attack requires up to several weeks
to be successfully mounted, which is too long for making practical evaluations
in the mainnet.

Our Workarounds. Let us describe how we address the three challenges with
our workarounds. To simplify the experiment, we only consider the target node’s
behavior after being partitioned. This is acceptable as we only measure the attack
sustainability, not the end-to-end attack effectiveness. Instead of implementing
the end-to-end Erebus attack, we make the target node behaves as if it is parti-
tioned by the Erebus attack. For this attack emulation, we do the followings: (i)
we set up a simple, temporary firewall to prevent the target node from making
new outbound connections, and (ii) we occupy all inbound connections of the tar-
get by manually disconnecting its peers (via RPC calls). As a result, the target
node cannot make outbound connections to other benign nodes, and all inbound
connections are occupied by the attacker as if the Erebus attack is successfully

Table 2. Measured attack duration of the Erebus attack. The attack does not maintain
partitions longer than 10 min in most cases.

Partitioning duration: average± stdev 90% percentile 95% percentile

297 s ± 293 s 679 s 847 s
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launched. This short-cut implementation of the Erebus attack for our sustainabil-
ity evaluation can detour the challenges above: (a) we do not need to be an ISP
or own/control large numbers of IP addresses, as we skip occupying the target
node’s peer table; (b) the attack does not require a long execution time because
we manually disconnect all peers from the target node; (c) due to (a) and (b), our
experiments now do not disturb other benign nodes in the mainnet.

Results. Table 2 shows the overall result of the original Erebus attack’s parti-
tioning duration from a mainnet experiment. The original Erebus attack main-
tains its partitioning to the target node for 297 s on average, where most of the
experiments have ended within 900 s.

Why Does the Attack Not Last Long? The partition ends when a benign node
delivers new blocks to the target; however, the original Erebus attack design
does not have attack features that prevent such a partition-breaking event trig-
gered by benign peers. The target node faces frequent inbound connections from
other benign peers due to Bitcoin’s peer eviction mechanism (see Sect. 4 for more
details), and some of them would try relaying recent blocks right after establishing
a connection. Even when only one benign node tries to relay blocks to the target
node, as there is no barricade, the partition is broken by the delivered blocks.

The attack usually ends in less than 900 s, which is in sufficient for follow-up
attacks. For example, double spending needs to make the target node confirm a
fake transaction, which requires several blocks to be generated while the target
is being partitioned.

3.2 Re-evaluation of the Original SyncAttack

Now, let us re-evaluate the original SyncAttack, by applying the same metric as
we evaluated the original Erebus attack in the previous section. SyncAttck differs
from the Erebus attack in a number of ways. The most notable difference is its
scale; i.e., SyncAttack aims to split the entire Bitcoin network into two whereas
the Erebus attack seeks to partition a single node. Therefore, we need to consider
new challenges and strategies to make a reasonable SyncAttack evaluation.

Direct Implementation and Evaluation of the Original Attack. First,
we explain how we conduct the sustainability experiments for the original Syn-
cAttack. Experiments should follow these steps:

(i) Prepare a network with two benign partitions (i.e., existing nodes and arriv-
ing nodes) and a small group of adversary nodes.

(ii) Add a new node to the network and let this new node establishes new
outbound connections referring to the DNS seeder.

(iii) Check whether the partition is maintained. We consider a partition ends
when the new node establishes outgoing connections to both benign parti-
tions.

(iv) Repeat (ii)-(iii), and end the experiment when the partition ends.

Challenges. Here, we list the challenges of the implementations above:
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• Implementation of a Large-Scale Network Split. In contrast to the Erebus
attack, evaluating the original SyncAttack requires a test network of thou-
sands of Bitcoin clients to split into two. It is nearly impossible to conduct
such an experiment in the mainnet. Simulating it would be challenging as
well.

• Implementation of Churn-Ins and Their Bootstrapping. The Bitcoin network
in practice experiences high churns, and new incoming nodes are important
components for SyncAttack. When a new node enters the Bitcoin network, it
requests reachable nodes’ IP addresses to DNS seeds.

Our Workarounds. Let us explain how we realize the re-evaluation of SyncAt-
tack with the following workarounds.

• Evaluation with Over-Estimations. Evaluating SyncAttack is challenging
mainly due to the size and complexity of the attack execution. To reduce
the experiments to a manageable size and manage the complexity while offer-
ing meaningful experiment results, we simplify our sustainability experiments
with over-estimation. That is, we take a number of reduction strategies for our
experiments to obtain the attack sustainability results that are strictly longer
than the actual attack sustainability. We ensure at every reduction step that
the attacks in our simplified evaluations are strictly easier to sustain than the
large-scale attacks in the mainnet. We argue that this simplification makes
an effective experiment for proving the unsustainability of SyncAttack. By
showing that the strictly easier SyncAttack cannot achieve sustainability, we
can show that the original SyncAttack must also be unsustainable.
First, we reduce the size of the experiment by scaling down the original Syn-
cAttack’s strategy in the regtest network. Our regtest network consists of
three types of nodes: 10 adversary nodes, and existing/arriving nodes with
the same number. To use the terminologies in the original publications of
SyncAttack [10], the adversary nodes take the roles of Au (occupy all avail-
able inbound slots of reachable nodes) and Ar (occupy all available outbound
slots of reachable nodes). This is a strict advantage to the adversary since it
is easier to maintain the partition in a small-scale test network rather than
in mainnet.
Second, we make an assumption that the adversary occupies almost all
inbound connection slots of reachable nodes. Under this assumption, the
adversary has a higher chance of maintaining the partition because new
partition-breaking connections from existing nodes would not occur.

• Implementing Churn-Ins with a Real DNS Seeder. In our evaluation frame-
work, we continuously add new Bitcoin nodes into the network and test
whether SyncAttack successfully continues to partition the target network.
For a realistic experiment of SyncAttack, we deploy a custom DNS seeder [3],
and include all IP addresses of existing nodes, arriving nodes and adversary
nodes in our experiment setup into the seeder. Each new Bitcoin node fetches
IP addresses from the DNS seeder and establishes 10 outgoing connections
among them.
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Table 3. Probability of maintaining partitions with SyncAttack for (i) every single
arriving node, and (ii) multiple arriving nodes within an hour. Partitions do not last
at all after having multiple arriving nodes in an hour.

Proportion of adversary nodes in seeder 71.4% 50% 33.3%

Prob. of maintaining the partition after single node arrival 12.5% 3.7% 1.5%

Prob. of maintaining the partition for 1 h 0 0 0

Results. Table 3 shows the probability of maintaining the partitioning in Syn-
cAttack by varying proportion of adversary nodes in the seeder. The experi-
ment is conducted 1,000 times for each condition, checking if partitioning can
be maintained after a new single node arrives in the network. The partitioning
duration of SyncAttack turns out to be extremely short. Even in the case where
the adversary occupies half of the IP lists in the DNS seeder, the probability of
maintaining the partition after single node arrival is 3.7%.

If the attacker tries to maintain the partitioning for an hour (i.e. minimum
partitioning duration for performing double-spending), it has to withstand all
new arriving nodes during that time. According to Bitnodes [13], 851 nodes
joined the Bitcoin network every hour on average; the probability of maintain-
ing the partitioning for an hour converges to zero. By looking at the fact that
SyncAttack would not sustain in such advantageous conditions (i.e., controlling
over the network with only a few dozen of nodes, and adversary occupying almost
all inbound connection slots of reachable nodes), we claim that SyncAttack exe-
cution in mainnet is not feasible after all.

4 Optimization and Cost Analysis

Knowing that the two original attacks [10,12] are unsustainable in practice, we
aim to improve these attacks to see whether sustainable Bitcoin partitioning
attacks are possible in practice. To make stronger final conclusions about their
sustainability, we aim to optimize the attacks by maximizing the partitioning
duration in consideration of Bitcoin’s peer eviction mechanism in Sect. 4.1.

For accurate and realistic cost analysis, we measure the attack resources
required for the optimized attacks in practice. We define and model the neces-
sary resources for these optimized attacks as a two-dimensional attack resource
vector: (1) the number of distinct network groups controlled by the adversary
(i.e., netgroup cost), and (2) the physical distance to the target node(s) (i.e.,
latency cost). Upon this, we derive the required cost of the optimized attacks
when attempting to maintain partitioning for a given time duration (e.g., 1 h).
Our optimization often requires significantly more attack resources than the
original attacks to attain certain sustainability. Our analysis of the attack cost
in these optimized attacks concludes that a node partition made by the opti-
mized Erebus attack can be sustained with reasonably high investment (e.g.,
100 unique network groups along with adversary closer to the target than 95%
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Fig. 1. Flow chart of Bitcoin’s connection handling logic. An unmodified benign Bitcoin
node always accepts new incoming connections, with the exception of three abnormal
cases (marked with *) that occur by extremely unlikely chance.

of all inbound connections towards it) while the optimized SyncAttack becomes
sustainable only with extremely high attack resources (e.g., 22K unique network
groups along with adversary closer to each target in the reachable node than
95% of all inbound connections towards them).

4.1 Optimization of Two Original Attacks

We first look back at why the original partitioning attacks fail to sustain. A
successful partitioning attack campaign begins to fail when a new benign con-
nection is made to the target, and starts to deliver new blocks. This means that
to maximize attack sustainability, we should prevent new benign connections
from delivering new blocks to our target(s). To this end, we investigate Bitcoin’s
peer connection mechanism as it is where the decision to allow a new connection
to the target node is made. Therefore, we investigate Bitcoin’s peer connection
management logic since now it is essential to know when and how a new con-
nection is made to the target node. As we optimize the partitioning attacks,
we optimize their attack strategies with respect to Bitcoin’s peer connection
management logic, particularly, the peer eviction mechanism.

Bitcoin’s Peer Connection Management Logic. Figure 1 shows the overall
flow diagram of Bitcoin’s peer connection management logic. We analyze the
CreateNodeFromAcceptedSocket() in net.cpp and extract this diagram without
any omission. We summarize the two important design principles:

• Admitting Inbound Connections (Almost) Unconditionally. The Bitcoin client
admits new inbound connections unconditionally in all practical scenarios
except for the following three abnormal, unlikely cases:
(i) the client has manually banned the new peer.
(ii) the new peer has violated the Bitcoin protocol and is thus considered

discouraged.
(iii) the client has manually reduced the maximum number of inbound con-

nections.
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• Evicting the Least Prioritized. A new inbound connection may cause an evic-
tion of an existing peer connection in order to free up one connection slot for
this new inbound connection. Existing peer connections are ordered by their
priority and only the least prioritized one is evicted.

Our conclusions drawn from these principles are two-fold. First, the remote
attacker cannot prevent new benign connections from being made to the target
node unless it can force the target and the benign nodes to turn into abnormal
states, which is impossible. Second, therefore, partitioning adversaries have to
evict any new benign connection before it delivers new blocks from the canonical
blockchain.

Probability of Withstanding a Single Inbound Connection. Now, our
goal is narrowed down to maintaining a partition by evicting new benign connec-
tions before they deliver new blocks to the target. As a target node may receive
multiple new connections from other benign peers while being partitioned, we
should evict multiple such benign connections. We can consider each new benign
connection is made independently since benign peers are not coordinated in the
permissionless Bitcoin network and also incoming connections do not change the
target’s internal state with respect to the peer eviction logic (unless the benign
connection breaks the partition).

Let us define ppc (partitioning continues), the probability the existing parti-
tioning continues when a single new benign connection is made to the target. In
other words, it is the probability that a new benign peer is evicted before deliver-
ing any new block. We want to ensure that we achieve ppc very close to 1.0 since
the target is partitioned until the first new inbound connection is made with
the probability of 1 − ppc. Because all these events are independent, the expec-
tation of the number of new inbound connections the adversary can withstand
is 1

(1−ppc)
. For example, a five-nines probability for ppc = 0.99999 ensures that

partitioning can last after about 100, 000 new inbound connections on average.

Breaking Down ppc. Given the current Bitcoin’s peer connection management
logic, we summarize and propose the two orthogonal optimization strategies for
maximizing ppc. These two optimizations must be conducted independently to
maximize the overall partitioning duration.

The current Bitcoin’s peer eviction policy has three rules1 that prioritize 28
peer connections so that they are not evicted for a new (attacker’s) connection:

• Rule ➀ Netgroup-based prioritization. Prioritize 4 peers with top-4 netgroup-
key values.

• Rule ➁ Ping-based prioritization. Prioritize 8 peers with the lowest minimum
ping times.

• Rule ➂ Message-history-based prioritization. Prioritize 16 peers that have
exchanged recent blocks and transactions.

The probability ppc indeed is equivalent to the probability that the newly-
made benign connection we want to evict is not prioritized by these rules. This is
1 We exclude some rare-case rules found in the Bitcoin Core implementation, which

are not useful for our current discussion.
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because, after prioritizing 28 peer connections according to the rules above, the
target Bitcoin node always selects a single, the least prioritized connection (i.e.,
the youngest peer in the network group with the most connections) to evict
among the rest. Thus, now we analyze these three rules and the adversary’s
chance of having the benign connection not prioritized after all.

First, pnt4 (non-top-4), the probability that a new benign connection has
non-top-4 netgroupkey value at the target. This can be increased by making
many connections to the target with many unique netgroups.

Second, pebp (evicted-before-ping): the probability that a new benign con-
nection is evicted before its ping time (with respect to the target) is calculated.
This is related to how quickly an adversary can send new attack connection(s)
to the target and evict the new benign connection before it finishes the ping
calculation. This probability can be increased by locating the attacker’s nodes
very close to the target.

Third, pebbt (evicted-before-block/tx): the probability that a new benign con-
nection is evicted before any blocks or transactions are sent to the target. This
probability can also be increased by locating the adversary’s nodes close to the
target.

Designing Two Orthogonal Optimization Strategies. Finally, we design
detailed attack strategies. We first separate out the optimization for pnt4 since
an event of being prioritized by Rule ➀ is independent of the events of being
prioritized by the latter two rules. This is because the network groups of inbound
connections are irrelevant to how quickly the adversary’s new connections can
be made to the target. In other words, having many network groups as attack
resources do not have a direct correlation with getting physically close to the
target. Therefore, our first attack strategy deals with Rule ➀ should maximize
pnt4 by raising the bar to be selected as the top-4 netgroupkey values.

Our second attack strategy aims to optimize pebp by minimizing the time
to send attacker’s new connections to the target so that the admitted benign
connection is not prioritized either by Rule ➁ or Rule ➂. In practice, ping time is
always calculated before allowing a new peer to send any blocks or transactions.
Thus, Rule ➂ can be ignored since the second attack strategy, if successful,
prevents any blocks or transaction messages from a benign connection after all.

Therefore, the probability ppc is simply derived as the multiplication of the
two independent probabilities pnt4 and pebp, which is given by

ppc = pnt4 · pebp (1)

Let us provide some more details on these two orthogonal attack strategies.

Netgroup-Flooding. To maximize pnt4, our attacker should flood connections
to the target node with as many unique network groups as possible. To describe
why such a simple (yet expensive) strategy ensures optimality, let us quickly
sketch how the current Bitcoin implementation prioritizes nodes with certain
netgroups. From Bitcoin 0.12.0, Bitcoin prioritizes four peer connections with
the largest netgroupkeys among its inbound peers. The netgroupkey is calculated
in a deterministic manner using a cryptographic hash function (i.e., SipHash)
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with a random seed that is known only to each node. The network group (i.e.,
the upper 16-bit of IPv4 addresses) is used as an input to the hash function and
its digest becomes the netgroupkey of each peer. This way, the attacker cannot
predict which network groups will be prioritized. As a result, the only way for
the attacker to maximize pnt4 is to raise the bar for being selected as the top-4
netgroupkey value by flooding connections with many unique network groups.

Evict-Before-Ping. To maximize pebp, our attacker should make her new con-
nections to the target node before it finishes the ping computation with the new
benign connection. To achieve that, the attacker must first fill up all the available
inbound connection slots of the target node in order to get notified whenever a
new benign connection is made.

Next, to ensure that the target node receives and accepts the attacker’s new
connection request before finishing a ping computation of the new benign con-
nection, the adversary should be located as close to the target as possible. We
consider a number of practical scenarios to minimize the ping distance to the
target node. First, if a target is in a public cloud (e.g., AWS, Google Cloud), an
adversary can create instances at the same cloud data center and measure ping
distance to the target until it obtains a small enough (e.g., a few milliseconds)
ping value. Second, if a target is not in a public cloud but its approximate loca-
tion is known by its IP address (e.g., [4,6,7]), an adversary may attempt to find
bots or public clouds that are close enough to the target.

We accomplish the optimization strategies above by implementing the follow-
ing steps with our simple attack script: (1) the adversary makes 114 connections
(with nodes located close to the target node) to the target concurrently by
establishing VERSION handshakes; (2) each connection performs a ping-pong
exchange with the target every 2 min to stay alive; (3) each connection imme-
diately reconnects to the target as soon as its TCP session with the target is
terminated due to eviction. This way, we can ensure that the adversary is notified
of the new benign connection, and evict it with minimum delays.

4.2 Cost Analysis of the Optimized Attacks

Finally, we evaluate the optimized attack strategies and estimate the required
attack costs. Note again that we focus on the sustainability of these attacks and
the cost incurred by maintaining an existing partition using the two attacks.

Cost Analysis with No Real-World Experiments. We estimate the
required cost for the sustainability of the two attacks without real-world exper-
iments because making several simplifying assumptions (as we did for the sus-
tainability tests in Sects. 3.1 and 3.2) is not allowed here. Instead, we derive
analytical frameworks that allow us to compute the attack duration of the two
attacks for varying the two-dimensional attack costs.

As shown in Eq. (1), optimizing the sustainability of these partitioning
attacks is composed of two orthogonal attack strategies. The two strategies
require two different attack resources: maximizing pnt4 requires a large number
of adversary-controlled IP addresses with unique netgroups (the more unique
netgroups, the higher pnt4) while maximizing pebp requires adversary-controlled
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nodes that are close to the target node (the closer to the target, the higher pebp).
We describe how we derive two costs.

Table 4. Probability of maintaining partitions with the optimized Erebus attack for
one hour. With significant attack resources (e.g., owning 100 unique network groups
with pebp = 0.95, 0.99), partitions can be maintained with moderate probability.

Netgroup\Pebp 0.9 0.95 0.97 0.99

10 0.001 0.002 0.003 0.004

20 0.022 0.043 0.055 0.070

50 0.106 0.203 0.260 0.333

100 0.174 0.333 0.427 0.546

1,000 0.269 0.515 0.661 0.845

10,000 0.281 0.538 0.691 0.882

22,000 0.282 0.539 0.692 0.884

Netgroup Cost. As mentioned earlier, in each node, peers with top-4 netgroup-
key values are prioritized. The adversary can raise the threshold for being chosen
as the top-4 netgroupkey values by making connections from numerous distinct
network groups. If the adversary can use G unique network groups to make con-
nections to the target, pnt4 is simply derived as

(
G
4

)
/
(
G+1
4

)
= G−3

G+1 because its
value should be smaller than top-4 values among G + 1 unique network groups
(G from the adversary, 1 from the benign peer).

Latency Cost. For a successful evict-before-ping event, our adversary nodes
should reconnect to the target earlier than a new benign connection. To be
more specific, the adversary should reach the target before the target receives
a pong message from the new benign connection. Analyzing the Bitcoin Core’s
network protocol, we learn that two round-trip times (RTTs) are required for a
benign node to finish a ping-time calculation and the same two RTTs are needed
for an adversary node to make another connection to the target after being
notified of the new benign connection. Therefore, ignoring minor perturbations
in end-to-end network latency between these nodes, an adversary can continue
its partitioning (i.e., succeed evict-before-ping) if her node is closer to the target
compared to the benign peer; otherwise, the partition may end because of this
new benign connection. We empirically confirm this with five mainnet Bitcoin
nodes in five different locations in Amazon EC2. From this, we state that the
adversary can maximize pebp by getting closer than other benign nodes with
respect to the target node.

Final Cost Estimation of the Two Optimized Attacks. We finally derive
the estimated cost for the 1-hour sustainability of the two optimized attacks.
Table 4 shows the probability of maintaining a partition with the optimized
Erebus attack. Each value is derived by ppc

n = (pnt4 · pebp)n, where n is the
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Table 5. Probability of maintaining partitions with the optimized SyncAttack for one
hour, suggesting that SyncAttack is nearly impossible to sustain despite the optimiza-
tion.

Netgroup\Pebp 0.9 0.95 0.97 0.99

1,000 0.00 0.00 0.00 0.00

10,000 0.00 0.00 0.00 0.02

22,000 0.00 0.00 0.0013 0.44

number of benign peers that adversary has to withstand for one hour. In Sect. 3.1,
we observe that about n = 12 (�3, 600/297) new benign connections must be
handled properly for the goal of 1-hour sustainability. As the Erebus attack
partitions a single node, the adversary can locate her attack nodes close to the
target and achieve a high pebp (e.g., 0.95, 0.97, 0.99). If the Erebus attacker
owns 100 unique network groups (as it claims to be in the original paper), it
can sustain the partitioning for an hour with a probability of 33% and 55% with
pebp=0.95 and 0.99, respectively. With some more attack network resources, say
1,000 network groups, we can expect 52% and 85% of successful 1-hour attacks
with pebp=0.95 and 0.99, respectively. Having unique network groups beyond
1,000, however, only marginally improves the attack duration. Note that the
maximum unique netgroups we test is 22,000, which is the unique netgroups we
find in a large Mirai botnet [8]

Table 5 shows the probability of maintaining a partition with the optimized
SyncAttack. We assume benign reachable nodes are partitioned into two groups
of size A and B, while the adversary owns G reachable nodes with unique net-
work groups. Let us consider a single new arriving node to the network due to
network churn. Each reachable node may end up establishing a new reliable con-
nection from this new node with a probability (1 − ppc) if the new node makes
a connection request. Since the eviction process at each node is independent of
each other, we can say that on average A′ = (1 − ppc)A nodes in one group and
B′ = (1 − ppc)B nodes in the other group would be willing to establish reliable
peer connections from the new benign node (again, if the benign node wishes to
do so).

The new node can make a new connection to any of the three groups: A′

nodes in one partition, B′ nodes in the other partition, and X adversary nodes.
The new node repeats reconnecting to other nodes when its connection is evicted
quickly due to the optimal partitioning attack strategies until it finally makes a
reliable peer connection to a reachable node. Thus, for the current partition to
continue, a new connection from the new node should not be made to the first two
groups at the same time (because that would bridge the two partitions). The
probability for withstanding single arriving node Psingle in SyncAttack would
therefore be given by

Psingle =
(

A′ + G

A′ + B′ + G

)10

+
(

B′ + G

A′ + B′ + G

)10

−
(

G

A′ + B′ + G

)10

. (2)



180 J. Ha et al.

For Table 5, we consider two partitions of size 7,000 each (i.e., A = B =
7, 000) [13]. For the number of new peer nodes per hour, we used the churn rate
we measure earlier in Sect. 3.2; that is, we assume that 851 new peers appear on
the mainnet for an hour on average. The overall probability for maintaining par-
tition for an hour with the optimized SyncAttack is thus derived as Psingle

851.
SyncAttack turns out to be unsustainable in most cases even with optimization
strategies. Even in the case where the adversary has attack resources with 22K
network groups, it is hard to expect that SyncAttack would sustain for an hour
(i.e., 0% with pebp = 0.95, 1% with pebp = 0.97). Our experiment shows that
SyncAttack may maintain its partitioning with some reasonable probability of
44% only when it has a significant amount of attack resources. First, the adver-
sary must control 22K or more nodes with unique network groups. This can be
achieved only when the adversary has mega-size botnets (e.g., a Mirai botnet
of 2.3M bots has 22K unique network groups). Second, the adversary should
be close to all reachable nodes. That is, the adversary must be co-located with
all the 14K reachable nodes in the Bitcoin network to achieve pebp = 0.99 (i.e.,
ensuring 99th percentile in terms of RTT distance for all the nodes). This appears
to be challenging to achieve because reachable Bitcoin nodes are distributed in
various networks.

5 Conclusion

That blockchain networks can be partitioned by unauthorized adversaries is still
a serious threat to their security and safety. Our work helps us to further char-
acterize existing partitioning attacks with the notion of attack sustainability,
which is a critical yet less-emphasized metric for partitioning attacks. We hope
this work guides the direction for developing additional countermeasures against
partitioning attacks in Bitcoin and other blockchain networks.
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Abstract. Despite the ambitious vision of re-decentralizing the Web as
we know it, the Web3 movement is facing many hurdles of centralization
which seem insurmountable in the near future, and the security impli-
cations of centralization remain largely unexplored. Using non-fungible
tokens (NFTs) as a case study, we conduct a systematic analysis of the
threats posed by centralized entities in the current Web3 ecosystem. Our
findings are concerning: almost every interaction between a user and a
centralized entity can be exploited to hijack NFTs or cryptocurrencies
from the user, through network attacks practical today. We show that
many big players in the ecosystem are vulnerable to such attacks, plac-
ing large financial investments at risk. Our study is a starting point to
study the pervasive centralization issues in the shifting Web3 landscape.

1 Introduction

We are witnessing a trend of re-decentralizing web services provided by big cor-
porations, which is portrayed as the transition from Web2 to Web3. In this
envisioned Web3 paradigm, decentralized applications (DApps) are hosted on
blockchains and other distributed infrastructures, without relying on any sin-
gle entity for their governance and operation [23]. However, most DApps today
deviate from this idealized model and, somewhat inevitably, employ centralized
components for cost efficiency, performance, and usability. This creates prof-
itable targets for attackers as observed in many real-world incidents [11,12,25].
Such architecture-level attack surface has not received equal attention from the
research community compared with vulnerabilities in the underlying blockchain
protocols [18,28], as we further discuss in Sect. 2. It is important and urgent
to fill this gap, given the prevalence of centralized entities in the current Web3
ecosystem and their complex interactions with other parties.

We initiate a systematic study of the security issues induced by centralization
in Web3, focusing on the sub-ecosystem around non-fungible tokens (NFTs). The
reason for choosing NFTs as our subject of study is three-fold. First, they are
among the most popular Web3 concepts with a multi-billion dollar market [31].
Second, NFTs establish the fundamental and ubiquitous notion of asset owner-
ship, and therefore they will likely persist even if high market valuations decline.
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After the initial standard [17], the Ethereum community has proposed a series
of improvements to bring NFTs closer to a practical realm from usability [3]
and legal perspectives [20]. Last but not the least, the NFT sub-ecosystem is
sufficient to demonstrate common centralization issues, as it involves different
centralized entities that interact with users and decentralized infrastructures in
various ways. We are particularly interested in the security risks arising from
such interactions, as they should not exist in a fully decentralized architecture.

Our work starts with the definition of a functional model that captures the
essential entities in today’s NFT ecosystem and their dynamics for the creation,
tracking, and trading of NFTs. Instantiating this model with concrete architec-
tures that employ different forms of centralization, we systematically examine
vulnerable interactions that can be exploited through practical network attacks
such as BGP or DNS hijacking. As a result, we find that almost every interaction
of a user with a centralized entity leads to an attack that can hijack NFTs or
the associated cryptocurrencies. Such hijacking is off-chain in that it involves no
exploitation of the underlying blockchain or smart contracts. We also examine
the detectability of these attacks. Some of them can be detected and prevented
by prudent inspection of transaction parameters, whereas others require end-
to-end data authentication in a decentralized architecture. We have validated
most of our proposed attacks on OpenSea and a Ethereum testnet. Further-
more, our analysis of real-world service providers show that 6 out of 10 top NFT
marketplaces and many other intermediary services are vulnerable.

Our study of NFTs is just a starting point to investigate the centralization
risks in the broad and shifting Web3 ecosystem. The methodology we developed
in this work is also applicable to analyzing DApps beyond NFTs.

2 Related Work

Research on NFT Security. Marlinspike [26] points out that DApps are not
as decentralized as claimed because of their reliance on centralized servers. These
servers can return arbitrary NFT-associated data to users, and marketplaces like
OpenSea can unilaterally remove NFTs from their listings. This indicates a clear
violation of DApps’s fundamental principle that their operation should not be
influenced by any centralized authority. Das et al. [15] examine today’s NFT
ecosystem and several security issues therein, including insufficient user authen-
tication and unverified smart contracts, lack of persistent asset data storage, and
trader malpractices. Wang et al. [33] measure the risks of disconnection between
NFTs and their off-chain assets. Unlike these prior studies that discusses issues
arising from (centralized) entities themselves, we inspect architecture-level vul-
nerabilities rooted in the extra interactions induced by centralized entities, and
our attacks work even if these entities themselves remain uncompromised.
Attacks on DApps. Su et al. [30] analyze common transaction patterns of
DApp attacks and develop a tool to automatically identify security incidents.
Such attacks exploit design or implementation flaws in smart contracts and thus
are orthogonal to the network-based attacks we consider.
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As a major class of DApps, decentralized finance (DeFi) aims to remove
traditional financial institutions like banks and exchanges. The transparency
and high transaction latency of blockchains makes DeFi services subject to,
e.g., front running [14] and sandwiching attacks [34]. Because of their reliance
on centralized components like web servers and blockchain gateways, real-world
DeFi platforms are also susceptible to the attacks presented in this paper.

Recently, Wang et al. [32] quantify the security risks of unlimited approval of
ERC20 tokens that fuel many DApps. Some of our attacks also exploit the fact
that trading NFTs requires their owners to delegate control to marketplaces.

Li et al. [24] find that centralized intermediary services used by DApps can
be turned into attack vectors for denial of service (DoS). This demonstrates the
risk of centralization from another interesting angle.
Blockchain Security. Many attacks on blockchains at the consensus [18,28]
or network layer [4,21] have been discovered. In comparison, our work explores
a new class of security threats arising from external entities which are not part
of a blockchain but widely exist for practical reasons. Programming errors in
smart contracts can often lead to vulnerabilities [5]. Different tools have been
developed to find such security bugs [22,27]. These tools, however, cannot detect
our attacks because we do not exploit flaws in smart contracts themselves.
Network Attacks. The Internet’s core building blocks, including the Border
Gateway Protocol (BGP) for inter-domain routing and the Domain Name Sys-
tem (DNS) for name resolution, are not secure by design. In a BGP hijacking
attack, the attacker can maliciously announce the IP prefix of an autonomous
system (AS) and thereby hijack its inbound network traffic; as for DNS, an
off-path attacker can inject bogus data into a DNS server’s cache and direct
clients to malicious servers. These attacks in turn allow the subversion of a wide
range of online systems [13], including public key infrastructures (PKIs) which
underpin the widely deployed Transport Layer Security (TLS) protocol [29].
Unfortunately, security extensions to BGP and DNS, e.g., RPKI, BGPsec, and
DNSSEC, have not received widespread deployment [10,19]. Therefore, network-
based attacks are still practical and prevalent in today’s Internet.

3 Modeling NFT Functionality

Despite the variety of entities in the current NFT ecosystem, they implement
a common set of functions revolving around the creation, tracking, and trading
of NFTs. We define a functional model to capture these essential functions and
then instantiate it with concrete architectures for detailed security analyses. As
depicted in Fig. 1, our model contains three types of users that interact with three
services—ownership registry, asset storage, and NFT marketplace (NFTM)—via
predefined interfaces. This model captures the typical life cycle of NFTs seen
today, allowing us to systematically uncover vulnerable interactions involving
different centralized entities.
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Fig. 1. Our model to capture the essential interactions (arrows) between different users
(left) and services (right) commonly found in the current NFT ecosystem.

3.1 Data and Interfaces

Each service exposes a set of interfaces for users to access and modify its data
(illustrated in the dashed boxes in Fig. 1).
Ownership Registry. In essence, NFTs are ownership records of digital or
physical assets, and these records are stored in a (ideally) permanent ownership
registry. Each record is defined by 4 fields. The first and foremost is TID, which
uniquely identifies an NFT; in practice, this is implemented by pairing a globally
unique smart contract address and a locally unique token index. The other three
fields are: OID identifying the token’s owner, tokenURI pointing to the underlying
asset, and delegatee identifying an entity who can control the token on behalf
of its owner. The registry exposes four interfaces: (1) Register to create a new
record with all fields except delegatee properly initialized to non-empty values,
(2) Transfer to change the owner of a token by updating its OID and clearing
the delegatee field, (3) Delegate to set the delegatee for a token, and (4) Read
to retrieve a record for a given TID. We explain several technicalities below.

The NFT standard EIP-721 [17] specifies only the Transfer and Delegate
functions in our model. Our additional Register and Read explicitly describe the
actions to (1) create NFTs and (2) read NFTs from the ownership registry. This
allows us to identify subtle vulnerabilities that otherwise stay concealed. Another
remark is that, in practice, tokenURI might not reference the asset directly, but
instead a separately stored metadata object that contains a further pointer to
the actual asset. This extra layer of indirection may increase the attack surface
as well, but we refrain from overcomplicating our model with this subordinate
interaction whose functions are already subsumed by the major interfaces. We
further assume that once an NFT is created, its tokenURI cannot be updated.
Finally, we do not consider the possible destruction of an NFT.
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Asset Storage. The underlying data associated with NFTs is maintained in
an asset storage. We consider a simple yet realistic storage model consisting of
(tokenURI, asset) pairs and two interfaces to store and retrieve assets. Unlike
the ownership registry that is hosted on a blockchain by default, practical asset
storage systems are almost always off-chain for cost and performance reasons.
NFTM. NFTs must be tradable to create value. This necessitates an NFTM
that connect buyers and sellers. The essential data maintained by an NFTM
is an orderbook that keeps track of sell and buy orders. Each order contains
a token identifier, a bid/ask price, the order’s issuer, and some marketplace-
specific auxiliary information (e.g., sale duration) not relevant to our security
analyses. An NFTM provides 5 interfaces to users: (1) List for a seller to offer a
token for sale, (2) Accept for a seller to accept a buy order or a bid, (3) Browse
for users to read the catalog of tokens for sale, (4) Purchase for a buyer to
buy a listed token, and (5) Bid for a buyer to bid on a token in auction. The
NFTM updates its orderbook according to these actions and process a ownership
transfer transaction whenever a buy order matches a sell order.

3.2 NFT Life Cycle

Users can take three roles: creator, seller, or buyer. We describe a typical NFT life
cycle through users’ interactions with the necessary services. We use the notation
X action(in → out) to represent the invocation of an interface action, which
takes in as input from and returns out to the caller. The in or out parameters
can be empty. We also omit non-critical data in some invocations.
Creation. The creator of an NFT can vary, for example an artist creating the
digital asset, or a party entrusted by the asset creator with the task of tokenizing
the asset. We do not distinguish these cases. To start with, the creator uploads
an asset to the asset storage by calling 1A Store(asset → tokenURI). With
the returned tokenURI, it then creates a token by calling 1B Register({OID,
tokenURI} → TID), which stores a new record in the ownership registry.
Listing. The owner of a token offers it for sale through 2A List({TID, OID, ask}
→). The invoked marketplace needs permission to transfer the token without the
seller’s further involvement. This is done via 2B Delegate({TID, Mkt} →), which
sets the delegatee of token TID as the marketplace identified by Mkt.
Trading. A buyer interacts with all three service providers to buy an NFT. It
starts by retrieving available sell orders from the marketplace via 3A Browse(→
{TID, ask, seller}). Here we assume only a single sell order is returned. To
examine the associated asset, the buyer first gets the token’s metadata by calling
3B Read(TID→ tokenURI) from the ownership registry and then fetches the asset
by calling 3C Retrieve(tokenURI→ asset) from the storage provider. Market-
places normally offer two buying options: direct purchase or auction. In the for-
mer case, the buyer directly offers the asked price and calls 3D Purchase({TID,
ask, buyer} →). In the latter case, the buyer places a bid via 3D’ Bid({TID,
bid, buyer} →), which results in a buy order stored in the NFTM’s orderbook.
Upon a successful sale, the NFTM transfers the token to the new owner by
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calling 3E Transfer({TID, buyer} →) without the seller’s involvement. This is
legitimate because the NFTM has been approved by the seller in advance.

4 System Architecture and Attack Taxonomy

We consider four instantiations of our NFT model that exist (or could exist) in
practice. The first one is a fully decentralized architecture where all services are
hosted by decentralized infrastructures and all users access them through their
own infrastructure nodes. Each subsequent architecture centralizes one service—
that is, the service is either accessed by users through a centralized intermediary
(CI), or otherwise hosted centrally and controlled by a single entity. Such cen-
tralization creates vulnerable links that can be intercepted to manipulate data
communicated between users and services, enabling various attacks to hijack
NFTs or cryptocurrencies from different users as summarized in Table 1.
Threat Model. We consider an off-path network adversary who is capable
of intercepting communication between a user and a centralized entity through
BGP or DNS hijacking. Even if the communication is secured by TLS, the adver-
sary can still acquire a fraudulent certificate to impersonate the victim domain
owned by a centralized entity [29]. We assume that decentralized infrastructures
themselves, including blockchains and decentralized storage systems, are secure
against the adversary, and that their data is always tamper-proof. For example,
the adversary cannot attack their underlying consensus mechanisms [18,28] or
prevent their users from retrieving data from honest nodes.

4.1 Architecture Type I: Fully Decentralized

In a fully decentralized architecture, the ownership registry and NFTM func-
tions are implemented by smart contracts. Users access these services by send-
ing blockchain transactions that encode function calls to these contracts. The
asset storage can be on a blockchain or an off-chain storage system like IPFS
or StorJ. We focus on IPFS as it is the de-facto standard decentralized storage
system used by many DApps. In IPFS, a file is indexed by a content identifier
(CID), a cryptographic token used to retrieve the file and verify its integrity.

Users in this architecture rely on their own blockchain and optionally IPFS
nodes to access different services. We do not distinguish between a full blockchain
node and a light client [8], because both of them allow a user to verify on-chain
data. This idealized (yet still practical!) architecture requires users to use some
specialized explorer software to retrieve, organize and render data (e.g., NFTM
listings and orderbook) via their local nodes, without depending on any external
web services that are prevalent today.
Security. In this architecture, users can locally validate all data they receive
from the three services and all actions they perform. In interactions 3A and
3B , a user can read integrity-protected data from the blockchain through its
local node. Interactions 1B , 3E , 2B , 2A , 2C , 3D , and 3D’ are implemented
by blockchain transactions cryptographically signed with the user’s private key
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Table 1. A summary of potential NFT hijacking attacks in different architectures.
The third column indicates whether and how a user can detect attack attempts. Level
1: the user must carefully audit the transaction parameters to be signed to detect an
attack attempt. Level 2: the user must obtain some authenticator (e.g., cryptographic
digest or digital signature) for the relevant data (received from a centralized entity) in
a secure way (e.g., through a decentralized infrastructure that the user is part of) and
verify the data to detect an attack attempt. Level 3: the victim can detect the attacks
only retrospectively after it notices the financial loss.

Attacks Architecture Detectability Outcome

A1: 1A Type II 2/3* NFT created with attacker-controlled asset

A2: 3C Type II 2/3* Wrong NFT bought by buyer

A3: 1C Type III 3 Attacker siphons off royalty payments

A4: 2A Type III 1 NFT sold to attacker at a low price

A5: 2B Type III 1 NFT transferred to attacker

A6: 3A Type III 2/3** Increased chance to buy attacker’s NFT

A7: 3B’ Type III 2 Wrong NFT bought by buyer

A8: 3C’ Type III 2 Wrong NFT bought by buyer

Funds stolen from buyerA9: 3D Type III 1
Wrong NFT bought by buyer

Buyer bids on wrong NFTA10: 3D’ Type III 1
Buyer’s bid amount increased by attacker

A11: 2B Type III 1 Funds stolen from buyer

A12: 3B : Type IV 3 Wrong NFT bought by buyer

* 2 if IPFS or blockchain, 3 if centralized storage

** 2 if on-chain orderbook, 3 if centralized access or off-chain orderbook

and so they cannot be tampered with. If the asset storage is on-chain, users can
verify the integrity of assets in interaction 1A and 3C ; in the case of IPFS,
users can also verify retrieved assets using their CIDs. To conclude, this archi-
tecture exposes no extra user interaction that can be exploited by our network
attacker. Even if an attacker can intercept the communication between a user
and other nodes in a decentralized infrastructure, it cannot alter the data unde-
tected thanks to the infrastructure’s built-in end-to-end data authentication.

4.2 Architecture Type II: Centralized Asset Storage

To lower the barriers to entry and reduce operational costs (e.g., the high gas fee
in Ethereum), NFT participants in practice offer and use the services defined by
our model in various centralized forms. We start by analyzing the asset storage.
Centralized Access. Even if many NFT assets nowadays are stored on a decen-
tralized infrastructure by default, most users access them through Blockchain as
a Service (BaaS) providers (e.g., Infura) or IPFS gateways [1]. These CIs provide
convenient APIs as a service for users to access a decentralized infrastructure
without running their own nodes. As the price of such convenience, however,
users must trust these CIs for the authenticity of any received asset data.

For the case of IPFS, it may appear that end-to-end data authentication
is still possible with assets’ CIDs. However, data integrity verification is rarely
implemented outside IPFS nodes. Moreover, IPFS gateways normally do not
provide all the parameters1 needed for data verification to users.

1 For example, the file chunk size that influences the calculation of CID.
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Centralized Hosting. Despite the pursuit of decentralization by NFT partic-
ipants, it is not uncommon that NFT assets are hosted directly on centralized
systems [26]. For example, the Otherside project (otherside.xyz), whose NFTs
have a sale volume of over 600K ETH, stores asset files on traditional web servers.
Unlike decentralized storage, these centralized systems (including cloud storage)
provide only simple checksum mechanisms for the detection of data corruption
at best. An attacker capable of manipulating a file in transit can also forge its
checksum2. Hereafter, we assume that end users cannot verify the authenticity
of data received from a centralized storage system.
Attacks. We present attacks against interactions 1A and 3C (see Fig. 1). Both
attacks arise from the loss of data verifiability due to centralized access or hosting
of asset storage. We highlight the data modified by each attack in red.

A1 : Store(asset →tokenURI). This attack aims to trick a creator into associ-
ating a new NFT with an unexpected asset. Specifically, the attacker can inter-
cept the creator’s communication with a CI for decentralized asset storage or
directly with a centrally hosted asset storage, and then surreptitiously modify
the returned tokenURI. As a result, the tokenURI included by the creator in a
subsequent call to Register will reference an attacker-chosen asset.

A creator should normally delete its local copy of the asset file only after
the file is uploaded successfully via Store(). This gives the creator chances to
validate a received tokenURI, but such validation is indeed futile. For two of the
three architecture variants, centralized access to on-chain assets and centrally
hosted asset storage, the attacker can again intercept the creator’s validation
attempt to retrieve the asset file indicated by the fake tokenURI, misleading
the creator with a false sense of security. For the case of centralized access to
decentralized storage, the aforementioned limitations of IPFS mean that data
verification (using CID) by end users is still not practical.

A2 : Retrieve(tokenURI→asset). This attack deceives a buyer into purchasing
a low-value NFT sold by the attacker, mistakenly believing it to be a high-
value one. NFTs by the same creator are generally organized into a collection
(e.g., Bored Ape Yacht Club) and have varying values. When a target buyer
retrieves an attacker’s “bait” asset from a CI or centrally hosted asset storage
in interaction 3C , the attacker can intercept the communication and substitute
the original dull asset with a more appealing one from the same collection. The
buyer may end up investing the dull asset at a much higher price than necessary.
The lack of end-user data verification in the architecture under discussion means
that such an attack is hard to detect from a victim user’s point of view.

Note that this attack is different from a simple counterfeit NFT where the
attacker registers its own NFT with the same tokenURI as an expensive, legit-
imate NFT. Counterfeit NFTs are easily detected because they are not part of
the same collection as the genuine NFTs.

2 Note that a user in our model can retrieve an asset file’s identifier and authenticator
(e.g., a CID or digital signature) from a secure decentralized infrastructure.
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Fig. 2. Centrally hosted NFTM Architecture. The Asset Cache* is optional.

4.3 Architecture Type III: Centralized NFTM

At the hub of any NFT ecosystem are versatile marketplaces that bridge all other
players. Because of its complex interactions with other entities, this service’s
centralization can pose most security risks, as explained in this section. Similarly
to our previous analysis, we consider two variants of centralized NFTM (Fig. 2).
Centralized Access. Developing a full-fledged on-chain NFTM is challenging
and inefficient, but it is possible to implement the core functions, including the
maintenance of an orderbook and the matching and execution of orders, solely
with smart contracts. Few NFMTs are of this type. One example is CryptoPunk,
which is dedicated to one single collection of NFTs. Even with such a minimal
on-chain NFTM, a non-expert user still needs BaaS CIs to access the underlying
blockchain and must trust them for any received trading data.
Centralized Hosting. Most NFTMs today adopt this architecture (e.g., all
of the top 10 listed on DappRadar.com). They implement the marketplace ser-
vice as traditional web applications, allowing average users to manage and trade
NFTs with ease. To facilitate our analysis, we assume that such an applica-
tion, which typically consists of a web server and a database among many other
components, is hosted entirely by a single marketplace server (MS).

The MS implements a user-facing storefront to simplify user interactions,
stores the orderbook, provides users with buy- and sell order parameters to be
signed, caches the tokenURI (replacing interaction 3B with 3B’ ), and optionally
also caches the asset itself (replacing interaction 3C with 3C’ ). Nevertheless,
the core functionality of buy- and sell order matching is still implemented in
an NFTM smart contract. NFTMs can optionally also replicate the orderbook
on-chain for improved auditability by the user.

Our classification of centrally hosted NFTMs is complementary to prior
research [15], which classifies them according to which operations are imple-
mented off-chain. We however do not consider fully centralized NFTMs which
implement order matching off-chain.

http://DappRadar.com
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NFTMs also allow NFT creators to earn upon secondary sales of their tokens
by deducting a fraction of the sale price as royalties paid to the creator. EIP-
2981 [7] describes an on-chain royalty mechanism, though it is not universally
supported by NFTs and NFTMs. In its absence, NFTMs rely on proprietary
mechanisms. We consider a common approach where the NFTM stores the cre-
ator’s royalty payout address on the MS [15].
Attacks. The above architectures create the largest attack surface among all
forms of centralization. We identify attacks exploiting 9 different interactions. All
of them apply to centrally hosted marketplaces and the attack A6 also applies
to centrally accessed marketplaces.

A3 : SetRoyalties({addr, amount} →). This attack targets royalty mecha-
nisms implemented by NFTMs where the payout address is stored exclusively
on the MS. These NFTMs allow logged-in3 NFT creators to change their payout
address without additional authentication. By intercepting and replacing the
addr parameter sent by the creator to the MS as part of SetRoyalties with
its own address, an attacker will receive royalty payments from future sales of
the NFT. The attack will likely remain unnoticed until a sufficient amount of
royalties are siphoned off.

A4 : List({TID, OID, ask} →). This attack tricks the seller into selling an NFT
to the attacker at an attacker-chosen price. To list an NFT for sale, the seller
should cryptographically sign a sell order with its blockchain private key. The
order’s parameters {TID, OID, ask} are provided by the MS as part of 2A List.
Intercepting the interaction and reducing the ask parameter results in the NFT
being listed at a lower price than expected by the seller. This attack can be
detected and prevented if the seller carefully audits the sell order’s parameters
before signing it. However, most crypto wallets fail to display transaction data in
a structured and comprehensible way (beyond raw hex data), making transaction
auditing difficult for unsophisticated users.

A5 : Delegate({TID, Mkt} →). This attack allows an attacker to directly steal
a seller’s NFTs. Recall that a seller should authorize an NFTM the right to
transfer a listed NFT after a successful sale, by making the latter the NFT’s
delegatee. The Delegate call occurs right after the call to List, and similarly
to the listing operation, the MS provides the corresponding parameters {TID,
Mkt} to the seller. An intercepting attacker can change Mkt to make itself the
delegatee and transfer the NFT to an account under its control. The detection of
this attack is also similar to A4 :, but Mkt being a pseudorandom value further
complicates manual transaction auditing.

A6 : Browse(→{TID, ask, seller}). This attack tricks the buyer into perceiving
the attacker’s NFT offerings as better value than they actually are. It applies to
both centrally hosted and CI-accessed decentralized NFTMs. The buyer retrieves

3 In the case of OpenSea, a user maintains a logged-in status if it cryptographically
signed a “login-in” challenge in the last 24h.
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a {TID,ask,seller} triplet for every NFT it browses from the NFTM’s order-
book stored on the MS. An attacker can increase the ask value of competing
offerings, which makes the buyer perceive the attacker’s offerings as better value.
This attack can only be detected if a copy of the orderbook is stored on-chain,
to which the buyer has untampered access. Centrally accessed NFTMs are also
susceptible to this attack because the attacker can intercept and modify the
triplet provided by the BaaS CI.

A7 : Read’(TID→tokenURI). Similarly to A2, this attack misleads buyers into
purchasing low-value fraudulent NFTs. A buyer retrieves a tokenURI through
Read’ for every TID retrieved previously through Browse. Intercepting and mod-
ifying the tokenURI can cause the buyer to fetch unexpected assets in the subse-
quent calls to Retrieve or Retrieve’. The buyer is thus tricked into associating
a low-value, attacker-owned NFT with the asset of a more valuable NFT. If the
buyer has untampered access to the ownership registry, it can detected the attack
by comparing the retrieved tokenURI against that stored in the registry.

A8 : Retrieve’(tokenURI→asset). This attack also tricks the buyer into asso-
ciating an attacker-owned NFT with another asset. It is functionally equivalent
to A2 and A7, except that it targets NFTMs that cache assets on the MS instead
of centralized asset storage.

A9 : Purchase({TID, ask, buyer} →). We describe two attacks against the
Purchase interaction. The first deceives the buyer into purchasing an attacker-
chosen NFT instead of the intended one. The second redirects the funds intended
for purchasing an NFT to the attacker.

To purchase an NFT, the buyer signs a buy order blockchain transaction
whose parameters {TID, ask, buyer} are provided by the MS, similarly to the
sell order in A4. By changing the TID parameter to that of an NFT sold by the
attacker, signing the buy order causes the buyer to purchase the attacker’s NFT.

Each blockchain transaction has a destination address as an additional
parameter, which in our scenario is provided by the MS as the NFTM smart
contract address. In the second attack, the attacker intercepts and replaces this
address with that of its own smart contract. This causes the buyer to uninten-
tionally send the buy transaction with the included funds to the attacker.

A buyer can detect both attacks by careful audit the transactions.

A10 : Bid({TID, bid, buyer} →). We describe four attacks against NFT auc-
tions. The first attack tricks the buyer into bidding on an attacker-offered NFT,
the second into placing unnecessarily high bids, the third into redirecting funds
intended for purchasing an NFT to the attacker, and the fourth into bidding an
attacker-chosen amount.

The first attack is functionally identical to the first attack of A9, except that
the attacker exploits the Bid function instead of Purchase.

The second attack increases the current highest bid amount retrieved by the
buyer from the MS. This coerces the buyer into bidding more than necessary to
win the auction. Detection is only possible if a copy of the current bids is stored
on-chain, against which the buyer can compare the amount provided by the MS.
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The third and fourth attack are complementary, and they target NFTMs
implementing Bid as blockchain transactions or as interactions with the MS
respectively. In both cases, Bid parameters {TID, bid, buyer} are provided by
the MS. If Bid is a blockchain transaction, the funds are transferred to the NFTM
as part of the transaction and held there for the duration of the auction. Wallets
prominently display the amount of cryptocurrency attached to the transaction,
making modifications easy to detect. The attacker can, however, stealthily mod-
ify the blockchain destination address as outlined in second attack of A9 and
thus extract the funds. If Bid is not a blockchain transaction, it is merely a signed
commitment by the buyer to purchase the token upon winning the auction. As
no cryptocurrency is transferred, the amount is not prominently displayed by
wallets. Intercepting and increasing the bid tricks the buyer into bidding more
than intended. Careful manual auditing can detect the attack.

A11 : Delegate({TID, Mkt} →). In bidding protocols where the funds are only
transferred upon winning the auction, the NFTM must have access to the bid-
der’s account to execute the winning bid. This is achieved by the buyer delegating
tokens equal in value to the bid amount to the NFTM. On Ethereum, wrapped
Ether (wETH), a fungible ERC-20 token, is commonly used. Intercepting and
replacing Mkt provided by the MS with the attacker’s address tricks the buyer
into delegating the tokens to the attacker. Detection requires manual auditing
and knowledge of the expected Mkt value.

4.4 Architecture Type IV: Centralized Ownership Registry

For this architecture, we only consider an on-chain ownership registry accessed
through a BaaS CI, as by design NFT records should be stored on a blockchain.

A12 : Read(TID→tokenURI). This attack is functionally equivalent to A7, except
that it targets a centrally accessed ownership registry instead of an NFTM.

5 Attack Validation

We have validated our attacks on real systems used in today’s NFT ecosys-
tem. We focus on the case of centralized NFTMs, because (1) they are common
in the real world, (2) they normally subsume the functions of other CIs like BaaS
and IPFS as discussed earlier, and (3) they allow us to simulate complete attack
procedures from the preparation (deploying fraudulent contracts, creating and
listing bait NFTs, etc.) to the production of final outcomes (see Table 1).
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Fig. 3. Python code for changing royalty payout address with mitmproxy.

Setup. We simulate the attacks using OpenSea—the largest NFTM today—on
the Ethereum Rinkeby testnet. For user-side software, we use the Firefox browser
with the MetaMask crypto wallet. To simulate a man-in-the-middle attacker, we
use the mitmproxy tool and install a self-signed CA certificate into Firefox’s trust
store. This setup allows us to route all Firefox traffic to mitmproxy, where we
can intercept and decrypt the HTTPS requests or responses and modify different
data fields according to the simulated attacks.
Validation Details. Our attacks can be conducted in two ways: (1) directly
modify data exchanged between the victim and the MS, or (2) exploit third-
party JavaScript (JS) loaded in the NFTM storefront. While the first approach
targets the victim’s connection to the MS, the second approach targets the vic-
tim’s connection to third-party JS providers. By intercepting and maliciously
modifying JS loaded from these providers, the attacker can execute arbitrary
JS in the victim’s browser. The attacks against centralized NFTMs are further
categorized based on their methodologies.

– Royalty payout address change: A3
– Change order or transaction parameters: A4, A5, A9, A10, A11
– Wrong data fetched from NFTM: A6, A7, A8

We briefly explain the validation of attacks A3 and A9, which are representative
for their respective attack category. We have also successfully validated the third
attack category via straightforward modifications to data fetched from the MS.
Royalty payout address change. (A3) In attack A3, the attacker targets
NFTMs that store the royalty payout address on their MS and replaces the
creator’s address with its own. In our validation, the creator submits a new
payout address through OpenSea’s user portal, and this is encoded as a GraphQL
HTTPS request. We can intercept the request using mitmproxy and modify
the address. Figure 3) shows the python code to implement the interception,
including finding the request for changing the royalty payout address (lines 3–7)
and replacing the address with an attacker’s controlled account (lines 8–12).
Change Order or Transaction Parameters (.A9) We have validated both
versions of A9. The first version causes the buyer to purchase an attacker-chosen
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(a) Untampered transaction (b) Tampered transaction

Fig. 4. Screenshots of MetaMask showing a genuine and a fradulent transaction. The
latter claims to be from the NFTM and has the correct function name. Signing this
transaction causes 1 ETH sent to the attacker.

NFT, and the second directs the buyer’s buy-transaction to a malicious smart
contract that extracts the attached cryptocurrency.

For the first attack, we simulate a buyer’s request for an NFT through the
OpenSea website, which generates an HTTPS request containing the sell-order
ID orderId to the GraphQL endpoint on the MS. We can intercept this request
using mitmproxy and change orderId to another attacker-controlled order. The
MS will respond with the unsigned buy transaction corresponding to the mali-
cious orderId and thus cause the buyer to inadvertently buy the attacker’s NFT.
The modification of orderId is minor and hard to notice, unless the victim care-
fully compares the NFT information displayed on the OpeaSea website and the
parameters contained in the transaction to sign, which requires manual decoding
of the raw, hex-encoded transaction data in MetaMask.

For the second attack, the attacker first deploys a malicious smart con-
tract which extracts cryptocurrency from received transactions. When the buyer
requests to buy an NFT, the attacker intercepts and replaces the destination
field in the transaction data provided by the MS with that of its malicious
smart contract. As seen in Fig. 4, the attack only causes visible changes to the
destination address field and the icon associated with the address (both are pseu-
dorandom values). MetaMask still displays the genuine OpenSea URL and the
prominently displayed cryptocurrency amount is unchanged.
Ethical Consideration. Our experiments create test smart contracts and
NFTs on a public blockchain intended for testing, including security research.
They incur no real costs, even if tokens are accidentally purchased by other
users. The test assets uploaded to IPFS disappear after some time if they are not
cached by any node. Note that our attacks do not exploit the service providers’
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Table 2. The susceptibility of the top 10 NFTMs (according to DappRadar.com)
to prefix hijack attack. “Decentralized” allows trading without MS. We mark MSes
loading JavaScript from JavaScript providers vulnerable to subprefix hijacking as “JS.”
An aggregator NFTM collects sell orders from other NFTMs. Its security thus depends
on the security of the queried NFTMs.

NFTM
User

Interaction

Interception

Possible

Vulnerable JS

Provider
Vulnerability

OpenSea MS No - -

Decentralized
CryptoPunks

MS
No - -

LooksRare MS JS cdn.jsdelivr.net Max-Len

X2Y2 - No

Rarible MS JS static.klaviyo.com No ROA

Decentralized
SuperRare

MS
JS cdn.heapanalytics.com Max-Len

Decentralized
Foundation

MS
JS cdn.segment.com Max-Len

Decentraland - JS cdn.segment.com Max-Len

Element Aggregator No

Golom - Yes/JS Max-Len

systems but generic network vulnerabilities in centralized architectures. Service
providers often consider man-in-the-middle attacks beyond their responsibil-
ity. We reported our findings through OpenSea’s bug bounty program [2] and
received the confirmation that our attacks are not within its scope.

6 Vulnerabilities of Real-World Entities

We analyze the susceptibility of popular real-world NFTMs and CIs to our
attacks, by examining the BGP security of their networks. Specifically, we inspect
whether they are vulnerable to subprefix hijacking, a practical and highly effec-
tive form of BGP hijacking attack that happens frequently in today’s Internet.
Using an open Internet data platform RIPEstat, we collected relevant informa-
tion such as publicly announced IP prefix, source AS, and route origin attestation
(ROA). The IP prefix of an entity is deemed vulnerable to subprefix hijacking if:
(1) no valid ROA exists and the prefix length is less than 24, or (2) a valid ROA
exists but the max-length field in the ROA is strictly greater than the prefix
length and the prefix length is less than 24.

Our investigation results for NFTMs are shown in Table 2. One popular mar-
ketplace (Golom) has its MS directly originating from an IP prefix susceptible to
subprefix hijacking. Six NFTMs rely on JavaScript code originating from risky
IP prefixes; once these external JavaScript providers are hijacked by our network

http://DappRadar.com
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Table 3. Popular CIs’ susceptibility to prefix hijack attack

Centralized service Vulnerable AS Reason

IPFS Gateways

4everland.io AS16509 Max-Len

hardbin.com AS14061 Max-Len

ipfs.eth.aragon.network AS24940 Max-Len

jorropo.net AS14061 No ROA

ipfs.runfission.com AS14618 Max-Len

BaaS Gateways

mainnet.infura.io AS14618 Max-Len

attacker, so could be the NFTMs. This suggests that NFTMs should carefully
audit their external dependencies to minimize their attack surface. We also iden-
tified 5 IPFS gateways and one major BaaS provider (Infura) that are subject
to subprefix hijacking, as shown in Table 3. There are likely more in the wild.

Note that even if NFT service providers reside in secure networks that are
resistant to BGP hijacking, our attacks can still be launched if users or their
DNS servers locate in vulnerable ASes, or these servers are subject to DNS cache
poisoning attacks [13]. A comprehensive demographic study of victim users is an
interesting avenue for future research.

Most NFT service providers deploy TLS to secure their communication with
users. A successful attack thus requires the attacker to obtain a fraudulent TLS
certificate to impersonate a service provider’s domain. This has been demon-
strated to be practical in many ways, especially by attacking the domain vali-
dation process during certificate issuance [6,29].

7 Conclusion

This paper makes a step in uncovering the security risks of centralization in the
booming Web3 ecosystem. We focus on the case of NFT, a central application
of Web3, and perform a systematic study of architecture-level vulnerabilities
regarding the interactions between users and centralized entities. Our results
confirm that centralization increases the overall attack surface by a wide margin.
This is worrisome given the variety and practicality of such attacks, and the large
financial investments in NFTs. Some of these attacks are relatively easy to detect
if users take caution to audit blockchain transactions before signing them; the
others are less so, requiring the shift to a truly decentralized architecture or
extensive end-to-end data authentication.

Our findings also underscore the importance of secure Internet infrastructures
for inter-domain routing and name resolution, which would prevent our attacks
in the first place. A promising research direction is to evaluate how existing
security extensions to the Internet as well as emerging clean-slate solutions [9,16]
can improve the Web3 ecosystem’s resilience to attacks.
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Abstract. Generative Adversarial Networks (GANs) are increasingly
adopted by the industry to synthesize realistic images using competing
generator and discriminator neural networks. Due to data not being cen-
trally available, Multi-Discriminator (MD)-GANs training frameworks
employ multiple discriminators that have direct access to the real data.
Distributedly training a joint GAN model entails the risk of free-riders,
i.e., participants that aim to benefit from the common model while
only pretending to participate in the training process. In this paper,
we first define a free-rider as a participant without training data and
then identify three possible actions: not training, training on synthetic
data, or using pre-trained models for similar but not identical tasks that
are publicly available. We conduct experiments to explore the impact of
these three types of free-riders on the ability of MD-GANs to produce
images that are indistinguishable from real data. We consequently design
a defense against free-riders, termed DFG, which compares the perfor-
mance of client discriminators to reference discriminators at the server.
The defense allows the server to evict clients whose behavior does not
match that of a benign client. The result shows that even when 67%
of the clients are free-riders, the proposed DFG can improve synthetic
image quality by up to 70.96%, compared to the case of no defense.

Keywords: Multi-Discriminator GANs · Free-rider attack · Anomaly
detection · Defense

1 Introduction

Generative Adversarial Networks (GANs) are an emerging methodology to gen-
erate synthetic data [3,30,31], especially for visual data. GANs are capable
of generating real-world-like images and are increasingly adopted by industry
for data augmentation and refinement [21]. Their success is attributed to their
unique architecture of training two competing neural networks, called discrim-
inator and generator. The well-trained generator can then be used to generate
synthetic data. If GANs are trained centrally, a single generator and discrimi-
nator are trained iteratively, where the former generates realistic images to fool
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Fig. 1. Architecture of Multi-Discriminator GAN: one generator, and four discrimina-
tors, one of which being free-rider.

latter, and the latter then gives feedback to the former by comparing the gener-
ated and real images. As a consequence of privacy regulations imposed on data
sources, e.g., GDPR [26], GANs often have to employ distributed architectures
such that they can learn from multiple sources without illegally sharing the raw
data.

Multi-Discriminator GAN (MD-GAN), Distributed GAN architectures
have been adopted in medical (e.g., medical images) and financial (e.g., finan-
cial tabular data) domains [4,23,29], two areas that have stringent privacy con-
straints. Typically, as shown in Fig. 1, there are one generator and multiple dis-
criminators, one discriminator for each data source. To learn such an MD-GAN,
an iterative training procedure between generator and discriminators takes place.
The generator synthesizes images that imitate the real data, whereas the dis-
criminators provide feedback to the generator based on their local image set. A
variant of MD-GAN further allows discriminators to exchange their local net-
works with peers to avoid overfitting [11]. Though such a distributed architecture
guarantees that raw data is not shared, it comes with the risk of misbehaving
discriminators and the need to defend against them.

Free-riders are a common threat to distributed systems in which the same
task is executed by multiple parties, meaning that individuals can hide that they
did not execute their task properly as the task is still completed by the other
parties in the system. Examples are peer-to-peer file sharing [6] or Federated
Learning systems [20,28]. Free-riders in Federated Learning systems [7,17] try
to gain access to the so-called global model from the server, which is aggregated
from local models of all contributors without sharing local data. Here, free-
riders can simply return the previous global model (possibly with perturbation
added) as their contribution. In the context of MD-GAN systems, free-riders aim
to gain access to the valuable well-trained generator model without using any
real data to train a discriminator. In contrast to Federated Learning systems,
where the server model has the same structure as the client model, free-riders
and benign discriminators in MD-GAN do not have any information about the
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concrete generator network. Moreover, it is no mean feat to detect free-riders in
MD-GAN as the generator only receives the distributed feedback on how well
the synthetic images compared to the real ones, i.e., gradients back-propagated
from the discriminator.

In this paper, we aim to answer two research questions: what is the impact
of free-riders on MD-GAN frameworks and how can benign participants defend
against such free-riders? We conduct the first empirical characterization study
on how different numbers and types of free-riders affect the quality of synthetic
images of MD-GAN when training image benchmarks. We introduce three attack
strategies for free-riders: They obtain a discriminator by i) using a randomly ini-
tialized discriminator model without training, ii) training a discriminator model
on synthetic data, and iii) using a publicly available pre-trained discriminator
model without any additional training. Note that the pre-trained discrimina-
tor is not for exactly the same task but for a related task with similar data.
Our results show that having 30% or more free-riders considerably degrades
MD-GAN’s performance, as measured by the Fréchet Inception Distance (FID)
score [13]. Free-riders who take advantage of the pre-trained model are less harm-
ful than others but still, free-riders are shown to be a serious issue.

Consequently, we propose a novel Defense strategy against Free-riders in
MD-GAN, termed DFG, where the generator can filter out the contributions of
free-riders. The two key steps of DFG are (i) the generator periodically sends
out a probing dataset to all discriminators, and (ii) clusters their responses in
combination with the reference responses of the “detector”, a free-rider and a
benign client trained on the generator side. If MD-GAN allows the discriminators
to periodically swap models, DFG optionally contains a third defense step at the
discriminators, enabling peers to reject swapping with potential free-riders. We
evaluate DFG for different attacks, numbers of free-riders, and variants of MD-
GAN on CIFAR10 and CIFAR100. Our results indicate that DFG can improve
synthetic data quality for all considered scenarios. If the free-riders do not train
its discriminator, which is the simplest scenario, DFG reduces FID by 45.05%
(CIFAR10) and 33.64% (CIFAR100) with 1 free-rider and 5 benign clients in
the system. When varying number of free-riders from 2 to 5, DFG averagely
reduces FID by 73.71% (CIFAR10) and 68.39% (CIFAR100). If the free-riders
use a pre-trained discriminator, which is the most stealthy type, DFG reduces
FID by 60.86% on CIFAR100 dataset when half of the clients are free-riders, and
by 70.96% on CIFAR10 dataset even when 67% of the clients are free-riders.

In summary, we make two novel main contributions: (1) A first character-
ization of three types of free-riders of MD-GAN. (2) Proposing a novel and
effective defense strategy DFG and evaluating it on two image benchmarks (i.e.,
CIFAR10 and CIFAR100).

2 Background on MD-GAN and Free-Riders

In this section, we introduce the concept of MD-GANs and our adversarial model.
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2.1 Preliminaries on MD-GAN

Key components of MD-GAN are one server and N clients maintaining one
generator and N discriminators, respectively. In general, generator and discrim-
inators are all deep neural networks1 characterized by their model weights. The
generator network, G, aims to synthesize images that are indistinguishable from
real ones. Each of the N discriminator networks, Di, i ∈ {1, 2, ..., N}, has direct
access to its own set of real images, Xi. They aim to correctly differentiate fake
images generated by the generator from real images. Figure 1 illustrates an exam-
ple of one generator and four discriminators. For the MD-GAN setting in this
paper, all of the clients must join for the full duration of the training process.
After training, they obtain the model of the generator to synthesize data.

To train an MD-GAN, the generator and discriminators take turns to train
and update their network weights over multiple rounds until reaching conver-
gence. One training round consists of multiple mini batches of data. For batch j,
discriminator i, and round t, G produces a synthetic dataset Sj

t,i from a vector of
Gaussian noise zjt,i. The discriminator trains on Sj

t,i together with its real data.

Discriminator Training: The discriminator uses its local real images Xj
i (i.e.,

real image mini batch j at ith discriminator) and the synthetic images Sj
t,i from

the generator to train itself. Specifically, the generator remains fixed during
the discriminator training, we only optimize the discriminator loss and update
the weights of discriminator networks through stochastic gradient descent algo-
rithms [25].

Generator Training: When calculating generator loss, one can imagine that
generator and discriminator are connected as one neural network. The ith dis-
criminator calculates the loss for synthetic images Sj

t,i from the generator and
back-propagates gradients. After G receives all of the back-propagated gradients
of synthetic images Sj

t,i from every ith discriminator, the generator accumulates
all the gradients and updates its network weights. During generator training, the
weights of the discriminators remain fixed.

2.2 Free-Rider Adversarial Model
We consider free-riders on the discriminator side, i.e., clients want to obtain the
final generator model without contributing to the training of MD-GAN. Their
goal is not to degrade the image quality of the generator. In this sense, they are
rational parties rather than malicious. They deviate from the expected learning
procedure to gain utility, namely access to the generator model, without hav-
ing the necessary data. Free-riders aim to be stealthy to overcome any defenses
employed by the generator. Such free-riders are local, internal, and active adver-
saries. In other words, they can only observe and participate in the commu-
nication and computation of their own training process. Moreover, free-riders
do not own any data for training MD-GAN, nor do they have access to the
data of others and they cannot observe the communication of others. They do
1 We interchangeably use terms of networks and models.
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(a) Real MNIST im-
ages

(b) Synthetic images
without free-riders

(c) Synthetic images
with 5 free-riders

Fig. 2. Real v.s. synthetic MNIST images from generators of MD-GAN encountering
0 and 5 free-riders with 5 benign discriminators.

not collude. The assumption of non-collusion is sensible as additional free-riders
might decrease the quality of the final model they obtain, so parties are unlikely
to reveal their free-riding to others.

3 Free-Rider Attacks in MD-GAN

This section explores different strategies for free riding discriminators. We
describe the attack strategy and then evaluate their effectiveness.

3.1 Attacks
Free-riders aim to obtain the generator in the end of the training, such that they
can synthesis data of high quality without contributing real data to the train-
ing process. To do so, they might need to bypass defenses aimed at detecting
free-riding and hence want to be stealthy. A first method to achieve a certain
degree of stealthiness is not to follow the random initialization method expected
by the generator. The generator can easily compare the gradients provided by a
discriminator to those produced by a random model with the same initialization
method. If the provided gradients resemble those from a random model, the gen-
erator can identify the discriminator as a free-rider, a defense we explore more
closely in the next section. To overcome such an straight-forward defense, free-
riders can use a different initialization method. In our evaluation, we consider
four initialization methods: (i) Kaiming initialization [12], (2) Xavier initializa-
tion [8], (3) uniform and (4) normal. Note that all benign clients follow Kaiming
initialization (default method by Pytorch).

In order to consider more stealthy free-riders, we note that they have two
potential sources of information that they can use to obtain a better model
despite not having data to train: i) the synthetic data provided by the genera-
tor to generate the gradient feedback and ii) any publicly available pre-trained
discriminator models for similar tasks, i.e., GANs for synthesizing images. In
summary, we have the following adversarial behaviors for discriminators:

FR−L: Also termed lazy free-riders, they choose a random initialization
method to initialize the model. Afterwards, they compute the gradients expected
by the generator based on the random initial model without any training.
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(a) FR−L (b) FR−D (c) FR−M

Fig. 3. Final FID of Multi-Discriminator GAN for different types of free-rider. Number
of free-riders varies from 0 to 5, number of benign clients is fixed to 5.

FR−D: As detailed in Sect. 2.1, the generator provides mini batches of syn-
thetic images to the discriminators. So, while a free-rider does not have real data
to train on, they can still utilize the synthetic data, which is what FR−D lever-
ages. Concretely, the free-rider uses generated images provided by the generator
as “real” data and randomly generates an equal number of images deemed as
fake data by sampling every pixel from a uniform distribution. It then trains its
discriminator using these two datasets in the same way as a benign client. In
the later phase of the training, i.e., when the synthetic images from generator
are very close to real images, FR−D’s model is likely relatively good, making it
hard to detect them as a free-rider.

FR−M : A discriminator outputs whether the data is real and synthetic.
Since the output is not class-related, a pre-trained discriminator, which has
been used in another GAN framework, can potentially be re-purposed. Note
that the generator and benign discriminators do not start training from a pre-
trained model themselves because it can affect convergence negatively [1]. But
for a free-rider, a well-trained discriminator could be less harmful than a random
initial model. Therefore, we assume FR−M is a free-rider that uses a pre-trained
discriminator, e.g., one downloaded from the internet. We typically assume that
datasets used to train the pre-trained discriminator are different from the ones
used to train the current ones. However, to assess the impact of this assumption,
we also consider a pre-trained discriminator for the same data in our evaluation.

3.2 Empirical Analysis on CIFAR-100

Here, we evaluate the effectiveness of our attacks on MD-GAN. We vary the
number of attackers between 0 and 5 and always have 5 benign discriminators.
CIFAR-100 [14] and MNIST [15] are used as the dataset. We evaluate the quality
of generated images by measuring the Fréchet inception distance (FID) [13],
which calculates the difference between real and generated images. It is defined
as follows:

FID = ||μ1 − μ2||2 + tr(Σ1 + Σ2 − 2(Σ1Σ2)1/2)

where μ1 and μ2 denote the feature-wise mean of the real and generated images;
Σ1 and Σ2 refer to the covariance matrix for the real and generated feature
vectors; ||μ1 − μ2||2 refers to the sum-squared difference between the two mean
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vectors; and tr is the trace linear algebra operation. Intuitively, the lower the
FID, the closer the generated and real images. We measure the FID of gener-
ated images with an increasing number of attackers. Neural networks and train-
ing parameters are provided in Sect. 5. We start by evaluating lazy free-riders
and then turn to the more sophisticated behaviors. For FR−M the pre-trained
discriminator is trained on CIFAR100. In general, as stated above, we assume
that the pre-trained model is trained on a dataset different from that used by
benign clients. For simplicity, we use the same dataset here but provide more
experiments on the role of the dataset in Sect. 5.

Baseline of -L We first visually motivate why free-riders are important to
consider. Figure 2c shows that MD-GANs can create synthetic images that are
very close to the original real MNIST images. Yet, if half the discriminators are
free-riders, the images are barely readable and exhibit little similarity with the
original images. We now quantify these difference using the FID for CIFAR-100.
In Fig. 3a, we can observe that without free-riders, the FID is barely above 100
at the end of the training. With one free-rider, the FID only slightly increases.
If two or more free-riders are present, the FID is close to 400, which is the FID
without training. Thus, the random initialized discriminator cannot distinguish
real and synthetic images and the gradients obtained from the lazy free-riders
corrupt the utility of the final generator.

Free Data v.s. Free Model. We expect the more sophisticated free-riders
to have less negative impact on the quality of the generated images. In Fig. 3,
our three types of free-riders are compared. For all types, the impact increases
with the number of free-riders, as a large amount of discriminators without useful
data is bound to increase the impact. FR−D (Fig. 3b) is only slightly better than
FR−L for one or two free-riders. For a higher number of attackers, the model is
again almost of the same quality as a random initial model. We conclude that
training on synthetic data without any real-world examples is not promising, at
least not in the sense that it can result in a useful generator in MD-GAN, which
is the goal of both the benign participants and the free-riders.

In contrast, pre-trained discriminators (Fig. 3c) are very effective. For one or
two free-riders, the FID is largely unaffected by the free-riders. Even for 3 or 4
free-riders, the increase in FID is small, as it remains below 130, up from 104.
If half of the discriminators are free-riders, only having a pre-trained model is
insufficient for maintaining high quality, as indicated by Fig. 3c.

4 Defending MD-GAN Against Free-Riders

Reacting to the severe impact free-riders can have, in this section, we propose
DFG, a defense strategy against free-riders in MD-GAN. The objectives of
DFG are three-fold: (1) accurately detecting free-riders in each round and
excluding their gradients from accumulation, (2) improving the FID for the
case when free-riders are present but not considerably decreasing the FID in the
absence of free-riders, and (3) entailing low additional overhead. Note that the
first goal also implies that benign clients should not be classified as free-riders.
Indeed, as a low number of free-riders can be tolerated, we consider accidentally
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Fig. 4. Key steps of DFG.

classifying free-riders as benign less severe than vice versa. Classifying benign
users as free-riders means that they cannot receive earned benefits in the form
of the final model. Having a high risk of accidentally being declared a free-rider
hence may disincentivize participation. The second part of the second goal is
important as a defense that decreases the performance, e.g., by excluding benign
clients, in the absence of an attack is unlikely to be adopted, especially if the
impact of a low number of free-riders is less than the decrease in image quality
caused by the defense. The last goal is necessary because the generator and dis-
criminators might be unwilling to deploy a defense that considerably increases
delays, computation, or communication overhead.

4.1 Protocol of DFG for MD-GAN

The core idea of DFG is to leverage a probing set and detect free-riders based
on their responses to the probing set, using either clustering or outlier detection
to distinguish responses of free-riders from benign ones. In the following, we
detail the 6 steps of DFG, defending free-riders in MD-GAN. All steps are also
summarized in Fig. 4.

Step 1: In our defense, G periodically, i.e., every L rounds, generates a
probing set Ŝ to the clients. The set can act as a replacement for Sj

t,i (i.e.,
synthetic images at round t and batch j of the ith discriminator). In contrast
to the standard algorithm, DFG sends the same set Ŝ to all clients. The clients
evaluate their discriminators on the set Ŝ and return the results in the form
of a vector. Concretely, for each image sk, with 1 ≤ k ≤ |Ŝ|, discriminator Di

computes Di(sk) and the returned vector is:

Pri(Ŝ) =
(
Di(s1),Di(s2), . . . ,Di(s|Ŝ|)

)
.

Step 2: Additionally, to detect free-riders, G makes use of two detectors.
Concretely, the generator G randomly initializes two discriminators DN+1 and
DN+2. DN+1 is used as a reference model of a free-rider and DN+2 is used as a
reference model of a benign client. To train DN+2 in a same way as other benign
clients, we assume that there is real data on the server side. DN+1 does not train
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during the whole training process. Every time when DN+1 and DN+2 receive Ŝ,
they compute PrN+1(Ŝ) and PrN+2(Ŝ) based on their local discriminators.

Step 3: After the generator collects all the vectors Pri(Ŝ), 1 ≤ i ≤ N +2, it
applies binary clustering, e.g., k-means with k equal to 2., or anomaly detection
(e.g. isolation forest) on all vectors Pri(Ŝ). Clustering is a promising solution
because it divides clients into two groups, which should be benign clients and
free-riders. However, this might not work if two free-riders behave differently
from each other. Then outlier detection, which identifies unusual behavior such
as free-riding when training on local data is considered normal, can be more
promising. We only apply clustering or outlier detection and not both. A com-
bined defense, e.g., one that classifies a client as a free-rider if they are classified
by any of the two, is bound to have a higher false positive rate, i.e., it acciden-
tally classifies benign clients as free-riders, which we want to avoid. Intuitively,
the Pri(Ŝ) of a benign client is expected to have a low distance to the Pri(Ŝ)
of other benign clients, whereas they have a high distance to the Pri(Ŝ) of the
free-riders, including DN+1. Consequently, when a clustering algorithm is used,
we classify all clients in the cluster that contains the DN+2 as benign clients,
and the rest are free-riders. When an anomaly detection algorithm is used, all
the clients are clustered into two groups: normal and abnormal. The clients in
the normal group are considered benign. One exception is that when DN+2 is in
the abnormal group, then we treat all the clients in abnormal group as benign
clients and normal group members as free-riders. Note that there is a unique
scenario where one group of the cluster or the abnormal group contains only
DN+1 and another group contains the remaining clients. Accordingly, we believe
this case to be no free-rider in the system.

Until now, step 1, 2 and 3 are all defense procedures for standard MD-GAN.
But an advanced setting of MD-GAN allows all discriminators to periodically
swap their weights between them, we denote this variant as MD-GANw. While
helping to prevent the over-fitting of discriminator to local data, it also creates
challenges for defenses. For this variant, a discriminator is not trained by one
single client and hence it is hard to determine whether one party has (not) trained
properly. Free-riders can obtain a properly trained discriminator by swapping.
This exacerbate the difficulty of differentiating the gradients obtained from free-
riders and benign discriminators. To introduce a discriminator-side defense, we
take advantage of one information: the benign discriminators know that they
are not free-riders. So once a benign client is asked to swap with another that is
suspected to be a free-rider, it can refuse. The following steps are added:

Step 4: After the generator has all the vectors Pri(Ŝ), 1 ≤ i ≤ N + 1,
they compute a (N + 1) × (N + 1) matrix V of pair-wise L2 distances between
the Pr vectors of the discriminators, including the detector, i.e., the ele-
ment Vij is ||Pri(Ŝ) − Prj(Ŝ)||2. The generator shares the computed distances
Vi1, . . . Vi(N+1) with the ith client.

Step 5: A benign client i then performs binary clustering or anomaly detec-
tion on these distances, excluding Vii. The cluster with lower mean distances
or the normal group judged by anomaly detection algorithm is taken to be the
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group of benign clients. The underlying assumption here is that the distance
between two properly trained discriminators is less than the distance between
benign discriminator and free-rider.

Step 6: A benign client only swaps with parties that are in the same cluster
or group as it according to its local clustering or outlier detection, respectively.

5 Experimental Evaluation

In this section, we first introduce the experimental setups including datasets,
baselines and the testbed. Then we clarify the evaluation metrics to demonstrate
the effectiveness of DFG. Last, we summarize and analyze our experimental
results for the different free-rider attack strategies with and without defense.

5.1 Experimental Setup

Testbed. Experiments are mainly run on two machines, both running Ubuntu
20.04. One machine hosts the generator, the other hosts all the discriminators.
A third machine with same hardware is used to host 5 discriminators for the
experiment with 10 free-riders. The machines are interconnected via 1G Ethernet
links. The MD-GAN system is implemented using the Pytorch RPC framework.
Our code is publicly hosted on github2.

Datasets. We test our algorithms on two commonly used image datasets:
CIFAR10 [14] and CIFAR100 [14]. CIFAR10 and CIFAR100 have 50 000 (10/100
classes) training images in color. Each benign client and the server individually
possess 5 000 images, which are evenly distributed over all of the classes.

Baselines. To show the effectiveness of DFG, we simulate MD-GAN and MD-
GANw with different types of free-riders (i.e., FR−L, FR−D and FR−M)
compared with scenarios without any defense. The pre-trained discriminator
for FR−M is trained in the traditional centralized setting with one generator
and one discriminator. The pre-trained discriminator is trained on CIFAR100
with the whole dataset for 200 epochs. For both experiments on CIFAR10 and
CIFAR100, we use the same pre-trained discriminator to determine the impact of
using a similar dataset in contrast to the same dataset. Therefore, we can observe
the transfer learning effect on the CIFAR10 experiment with the CIFAR100 pre-
trained discriminator.

Notation. We use No Def Simple and No Def Swap to refer to MD-GAN and
MD-GANw, respectively, for the scenario without defense. For the scenario with
DFG, Def Simple and Def Swap are used. In step 3 and 5 of DFG, there are two
choices to identify free-riders: (1) binary clustering and (2) anomaly detection.
We refer to these two options as Def XC and Def XAD (X is either Simple or
Swap).
2 https://github.com/zhao-zilong/DFG.

https://github.com/zhao-zilong/DFG
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Networks. For all experiments, we use the widely adopted and effective Wasser-
stein GAN with Gradient Penalty (WGAN-GP) [10] structure to train generator
and discriminator models. The network of each discriminator consists of three
repeated blocks. Each block concatenates 2D Convolution, Instance Normaliza-
tion, and Leaky Relu layers. G is also composed of three concatenating blocks.
Each block contains 2D Transposed Convolution, Batch Normalization, and Relu
layers. The batch size B is set to 500. Since each client owns 5 000 images, there
are 10 mini batches per training round. Due to the characteristics of WGAN-GP,
the generator is trained once per 5 times the discriminators are trained. There-
fore, for each round, the discriminator is trained by all 10 mini batches, but the
generator is only trained twice. For DFG, when it evaluates the quality of the
discriminators every 10 rounds, it only does that during the first training batch
out of two within the round. We repeat each experiment 3 times and report the
average.

We fix the number of benign clients to 5 for all experiments and vary the
number of free-riders from 0 to 5, similar to [4,11] with the typical setting of 10
clients (in our paper, 5 free-riders + 5 benign clients) in the system. In order
to show if and how the system deals with an extreme number of free-riders, we
furthermore extend the number of free-riders to 10 for CIFAR10. For CIFAR100,
we exclude this experiment due to the high computational overhead. The server
broadcasts the initialization method (i.e., Kaiming initialization, default setting
by Pytorch) for all discriminators and all benign clients apply this initialization.
In contrast, free-riders randomly choose one of the four initialization methods
introduced in Sect. 3.1. The “detector” on the server made up of DN+1 and
DN+2 uses the same initialization method as benign clients. The total number
of training rounds is 100. G generates 10 000 images every 5 rounds, which are
used to evaluate G’s performance in terms of FID. Every 10 rounds, we execute
DFG: the generator sends the same probing set Ŝ of 500 images to all clients
and the detectors, and Ŝ varies over rounds.

5.2 Evaluation Metrics

We compute the final performance of the generated data from G using the Fréchet
inception distance (FID) [13], as introduced in Sect. 3. To further show the effec-
tiveness of DFG, we use two different metrics. For MD-GAN without swapping,
the precision and recall of the identified “free-riders” are reported. The preci-
sion quantifies the fraction of actual free-riders in the group of clients that are
detected to be free-riders by our algorithm. The recall is to measure the fraction
of free-riders identified by our defense. Here, a free-rider is labelled as Positive
and a benign client as Negative for the calculation [22]. Note that recall is not
defined in the absence of free-riders. For MD-GANw, our focus lies in preventing
discriminator swapping between benign and malicious clients. If the DFG pre-
vents a swapping request between two benign clients, we define this as a wrong
prevention. And if DFG does not stop a swapping between a benign and a
malicious client, we call this a wrong permission. Intuitively, for the client-
side defense, misclassifying a free-rider as a benign client does not increase wrong
prevention but increases wrong permission. And misclassifying a benign client
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Table 1. Final FID for MD-GAN and MD-GANw on FR−L (A. is short for the
number of free-riders). Best result in bold.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 165.6 369.3 381.4 381.7 396.5 79.5 146.5 390.9 439.0 443.8 454.1 470.8

Def SimpleC 102.8 117.6 120.6 124.7 150.4 163.4 78.6 85.4 97.6 121.3 124.3 137.9 152.9

Def SimpleAD 102.5 109.9 115.4 119.9 120.3 128.8 80.1 80.5 92.6 116.0 118.5 128.7 140.2

No Def Swap 110.7 193.4 397.9 418.8 418.9 420.8 80.1 193.7 420.8 465.9 470.3 472.1 477.5

Def SwapC 108.3 120.9 132.5 156.9 177.2 198.1 80.0 110.8 132.8 136.6 155.2 172.3 436.5

Def SwapAD 109.2 119.8 120.1 123.0 124.2 124.6 80.0 89.8 100.0 118.6 120.5 128.9 427.7

Table 2. Precision(%)/Recall(%) for MD-GAN and MD-GANw on FR−L.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

Def SimpleC 100/- 100/97 100/92 96/83 95/79 95/65 100/- 100/100 100/100 100/89 95/79 95/53 98/37

Def SimpleAD 100/- 100/100 100/100 100/100 95/83 98/73 100/- 100/100 100/100 100/100 90/83 85/62 86/45

Def SwapC 100/- 100/94 100/87 96/80 95/77 95/60 100/- 100/99 100/97 96/84 95/77 94/63 84/10

Def SwapAD 100/- 100/100 100/100 100/100 98/83 98/76 100/- 100/100 100/100 100/100 100/83 100/73 70/15

as a free-rider increases both wrong prevention and wrong permission. We count
the numbers of the prevention and permission and report the percentages of
wrong prevention and wrong permission.

5.3 Evaluation Results

Defense against FR−L Table 1 shows the final FID of MD-GAN and MD-
GANw with and without DFG. As the number of free-riders increases, so does
the severity of the attack and the final FID. The random initialization used by the
free-riders lead to wrong predictions and hence useless feedback for the generated
data. Note that MD-GANw has a higher FID for all datasets and scenarios,
including the one without free-riders. So swapping does not necessarily help
convergence, e.g., when the data among discriminators has low heterogeneity.

DFG greatly improves the performance for both MD-GAN and MD-GANw.
Even with 50% of the clients being free-riders, the achieved FID remains below
130 while it is around or even above 400 without a defense. In comparison,
without an attack, the final FID is 104.6 and 79.5 for CIFAR100 and CIFAR10,
respectively. Hence, the defense almost nullifies the attack in that it results in a
FID only slightly higher than the FID in the absence of attacks. Even if there
are 10 free-riders, i.e., the free-riders outnumber the benign clients 2:1, DFG
still provides protection for MD-GAN. However, in line with our expectation
that swapping hinders detection of free-riders, DFG provides little protection
for MD-GANw if there are 10 free-riders.

Using isolation forest for anomaly detection always makes for a stronger
defense than using clustering with 2-means. Clustering tends to fail as two free-
riders that use different initialization methods end up with very different models
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Table 3. Wrong Prevention(%)/Wrong Permission(%) for MD-GANw on FR−L.

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

Def SwapC 0/- 0/8 10/12 31/35 37/42 37/45 0/- 0/8 5/12 30/33 35/35 39/40 55/68

Def SwapAD 0/- 0/0 0/0 10/0 20/10 33/14 0/- 0/0 0/0 15/0 18/10 24/20 52/50

Table 4. Final FID with FR−D on CIFAR100

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 158.5 351.7 378.5 381.1 396.1 78.0 144.1 299.8 391.92 434.1 449.8 470.1

Def SimpleC 102.8 106.9 127.9 128.4 156.4 163.6 77.8 102.7 110.6 122.3 125.3 131.7 180.8

Def SimpleAD 103.5 105.5 110.4 116.5 125.0 132.1 77.1 98.2 106.8 117.2 120.2 129.2 135.6

and hence are not clustered together. In contrary, they are both seen as outliers
in comparison to benign clients under isolation forest, so anomaly detection is
more effective.

Let us zoom in to consider the precision and recall of DFG, shown in Table 2
for both CIFAR10 and CIFAR100. Almost all clients identified as free-riders
by our defense are indeed free-riders, so the precision is close to 100 for nearly
all settings. Indeed, if the number of free-riders is less than 3, the precision is
100. Recall is lower than precision. As we argue in Sect. 4, precision is more
important than recall as a low number of free-riders can be tolerated and we do
not want to disincentivize participation from benign clients. As long as less than
50% of the clients are free-riders, the recall is still above 75%. Once the number
of free-riders is at least equal to the number of benign clients, it becomes hard
to identify them, especially if swapping and 10 free-riders are present.

For MD-GANw, we evaluate the impact of step 4–6 of our defense. Table 3
shows the percentage of wrong prevention and wrong permission. In line with
the results on FID, precision, and recall, Def SwapAD performs better than
Def SwapC in all the experiments. Concretely, there are no wrong permission
for Def SwapAD for up to three free-riders whereas Def SwapC can have up to
35% of wrong permission. The fraction of wrong prevention is slightly higher for
Def SwapAD than the fraction of wrong permission. Note that for Def SwapC ,
the fraction of wrong prevention is lower than the fraction of wrong permission.
For 10 free-riders, more than 50% of prevention and permission are incorrect.
The result is in line with what we observe for the final FID in Table 1: DFG fails
when there are a lot of free-riders and swapping is applied. With the free-riders
making up the majority of the clients, it becomes almost impossible to distin-
guish them initially and once discriminators have been swapped, free-riders can
utilize the already-trained discriminators to appear like they participate in the
training.

Defense against FR−D FR−D utilizes its synthetic data and data from the
generator to train the generator. Thus, for FR−D, the expectation is that it can
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leverage the knowledge obtained from generator to train a better discriminator
than FR−L. The results are displayed in Table 4. Comparing to Table 1, we find
that without a defense, FR−D exhibits a slightly lower FID for a low number of
attackers than FR−L. So the negative impact of the attack is slightly less since
FR−D performs actual training. Given that randomly generated data instead
of real data is used, the positive impact is minimal in terms of improved data
quality. Yet, free-riders applying FR−D are still quite different from benign
clients and can hence be detected. In the presence of DFG, FR−D leads to a
similar performance as FR−L. Hence, DFG works for multiple attack strategies.

Defense against FR−M In FR−M , free-riders use a pre-trained discrimina-
tor model. Recall that for both datasets, the pre-trained discriminator is based
on CIFAR100. Based on [1], training a GAN from a pre-trained discriminator
means that the loss function of the GAN is saturated and the learning process is
slow or unstable. Overall, using a pre-trained discriminator results in the least
negative impact of all considered attack strategies. The result is expected as
these free-riders provide discriminators of actual relevance rather than ones that
are random or trained on random data (Table 5).

Table 5. Final FID with FR−M .

Setup CIFAR100 CIFAR10

0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 0 A. 1 A. 2 A. 3 A. 4 A. 5 A. 10 A.

No Def Simple 104.6 101.4 108.7 118.9 128.9 362.8 77.6 87.6 107.1 120.1 125.4 174.3 475.9

Def SimpleC 102.4 110.4 118.9 131.0 136.3 142.0 77.5 82.0 94.2 106.9 110.6 116.5 138.2

Def SimpleAD 104.2 104.3 110.1 125.3 134.4 172.3 77.9 85.9 98.3 108.7 116.1 139.6 143.8

The exact results differ slightly depending on the combination of training
dataset and choice of pre-trained discriminator. If CIFAR100 is used both for
the pre-trained discriminator and the training dataset for MD-GAN, using DFG
actually decreases the performance slightly if the number of attackers is less
than 50%. DFG struggles to distinguish benign clients and free-riders. Indeed,
the free-riders appear very similar to each other as they all start from the same
pre-trained generator. In contrast, the benign clients are initially more diverse,
which can make them accidentally be considered as outliers. Thus, DFG remov-
ing clients just degrades the performance and does not remove any negative
influence from the training. If 5 clients are free-riders, FID does not converge
without a defense. DFG here improves the situation, though the results are
worse than for FR−L and FR−D as detection is harder. For CIFAR10, the pre-
trained discriminator is for a different dataset than the training dataset. Thus,
the discriminator is less suitable and degrades the FID more than for CIFAR100
if no defense is applied. However, the FID is still better than for other types
of free-riders. DFG again largely nullifies the impact of the attack. A key dif-
ference when defending against FR−M in comparison to previous attacks lies
in the choice of defense. For FR−M , clustering is more effective than anomaly
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detection while the opposite is observed for FR−L and FR−D. While the pre-
trained discriminators may be different from the actual discriminators trained
by benign clients, they are not different enough to be considered an anomaly .

All results indicate that DFG is an effective defense that only fails if the
number of free-rider considerably exceeds the number of benign clients. It hardly
ever excludes benign clients and only has minimal impact in the absence of
attacks. Notably, DFG is effective against different types of free-riders.

6 Related Work
In this section, we summarize the related studies on multi-discriminator GAN
frameworks and free-rider attacks in distributed learning systems.

MD-GAN: Overcoming the data privacy issues of centralized GANs [16,18],
distributed GANs [4,9,11,23,24,32] enable multiple data owners to collabora-
tively train GAN systems. Existing distributed GAN frameworks can be sum-
marized as Federated Learning GANs (FLGANs) [9,24,32] and MD-GANs [4,
11,23]. In FLGANs, a client trains both a generator and a discriminator net-
work and a server aggregates both networks from all clients. Consequently,
FLGANs require all participants to have high computational capacity. In con-
trast, MD-GAN architectures offload the intensive training of the generator to
the server and keep the lighter training of the discriminator on the client side.
In this manner, MD-GANs are also able to involve a massive number of edge
nodes [5,27]. The various architectures of MD-GAN differ with regard to model
exchange between discriminators. AsynDGAN [4] elementary MD-GAN archi-
tecture where discriminators only directly communicate with the generator. In
order to improve the drawbacks of MD-GAN when discriminators only own small
datasets, Hardy et al. [11] propose that discriminators are swapped between
clients, opening an opportunity for free-riders to act stealthily.

Free-Riders: The concept of free-riders first emerged in economics [2] but
has been essential in various distributed systems. In peer-to-peer file-sharing
systems, free-riders join to download files without uploading any files [19]. In
Federated Learning systems [20,28], Lin et. al. [17] first propose stealthy free-
rider attacks for image classification: instead of sending a random model, free-
riders send the global model of the previous round back with small perturbation
noises added or provide a fake gradient using the previous difference of weights.
Defenses are designed accordingly based on the DAGMM [33] network, which
is a recent anomaly detection method so as to catch the differences on deep
feature by gradients for free-riders. Fraboni et. al. [7] further explore the attack
of adding perturbation noises [17] and provide a convergence guarantee of the
global model in the presence of a single free-rider. However, as both studies are
concerned with Federated Learning systems, where the clients and the server
are curating models of the same structure, they are not directly applicable to
MD-GAN systems where the server and client train different types of models.
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Additionally, none of them has provided a systematic study on the influence of
(multiple) free-riders. To the best of our knowledge, this paper is the first to
study free-riders in MD-GANs.

7 Conclusion

In this first study of free-riders on MD-GAN, we explore multiple types of free-
rider attacks. They all can severely degrade the quality of the trained generator,
emphasizing the need for a defense. Our defense, DFG, distinguishes free-riders
from benign clients through clustering or anomaly detection. It is highly effec-
tive and efficient. With the FID being about 100 without attacks and 400 with
attacks and no defense, DFG enables the system to maintain an FID of less
than 130 in the presence of attacks, even if the attackers make up 50% of the
clients. Future work should target more malicious adversaries that actively aim
to degrade performance.
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Abstract. In permissionless blockchains, transaction issuers include a fee
to incentivize miners to include their transactions. To accurately estimate
this prioritization fee for a transaction, transaction issuers (or blockchain
participants, mjohnme@mpi-sws.orgore generally) rely on two fundamen-
tal notions of transparency, namely contention and prioritization trans-
parency. Contention transparency implies that participants are aware of
every pending transaction that will contend with a given transaction
for inclusion. Prioritization transparency states that the participants are
aware of the transaction or prioritization fees paid by every such contend-
ing transaction. Neither of these notions of transparency holds well today.
Private relay networks, for instance, allow users to send transactions pri-
vately to miners. Besides, users can offer fees to miners via either direct
transfers to miners’ wallets or off-chain payments—neither of which are
public. In this work, we characterize the lack of contention and prioritiza-
tion transparency in Bitcoin and Ethereum resulting from such practices.
We show that private relay networks are widely used and private trans-
actions are quite prevalent. We show that the lack of transparency facil-
itates miners to collude and overcharge users who may use these private
relay networks despite them offering little to no guarantees on transaction
prioritization. The lack of these transparencies in blockchains has crucial
implications for transaction issuers as well as the stability of blockchains.
Finally, we make our data sets and scripts publicly available.

Keywords: Contention transparency · Prioritization transparency ·
Private transactions · Bitcoin · Ethereum · MEV

1 Introduction

The rate at which users issue transactions in permissionless blockchains, e.g.,
Bitcoin [31] and Ethereum [47], is often much higher than the rate at which
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miners can include them in a block [10,21,25,28,29]. Users typically issue trans-
actions using a wallet software, whose primary functionality is determining an
“appropriate” fee for a given transaction. We use the term “fee” to refer gen-
erally to the incentive offered by a user to miners for prioritizing the inclusion
of their transaction in a block, albeit its exact form may vary, e.g., fee rate in
Bitcoin and gas price in Ethereum. This (prioritization) fee varies, unsurpris-
ingly, as a function of the level of congestion in the blockchain [29] as well as
the distribution of fees across available transactions. Inferring either of these is,
however, deceptively complicated.

At first glance, these tasks appear straightforward, since every transaction
is broadcast to all miners in the blockchain. A user could simply gather all
transactions broadcast over time and reconstruct the set of uncommitted trans-
actions available to a miner (i.e., contents of the miner’s Mempool) at any point
of time [28]. We refer to this assumption of a public and uniform view (across
miners) of all available transactions as contention transparency. If contention
transparency exists, a user could rank order available transactions by their fee
(based on which miners should select transactions for inclusion) and estimate the
commit delay of any transaction [29]. Consequently, they could determine the fee
that they must pay to guarantee inclusion of their transaction in a given block.
We label this assumption that the (prioritization) fee offered by a transaction
is only that publicly declared by that transaction as prioritization transparency.
Neither the contention transparency nor the prioritization transparency, how-
ever, holds today in permissionless blockchains.
Lack of Contention Transparency. Not all transactions are publicly broadcast.
Users can submit transactions to a subset of miners or mining pools via private
channels or relays that are opaque to the public (i.e., transactions remain private
to the relay, until they are committed). Users may also submit their transaction
to a specific mining pool that assures them a fast commit time. This paper
reveals that such private mining practices (i.e., where transactions are submitted
to only a subset of the miners) are becoming commonplace and analyzes the
characteristics of these private transactions.
Lack of Prioritization Transparency. The fees offered by a transaction could
be substantially more than that publicly declared by it. A transaction could,
for instance, privately offer additional fees to a miner to “accelerate” its inclu-
sion in a block. Many such transaction-accelerator (or front-running as a ser-
vice (FRaaS)) platforms exist for Bitcoin [4,45] and Ethereum [12,18,40,41].
Furthermore, the same transaction could offer different fees to different mining
pools (via their relays). The presence of such hidden or dark-fees could funda-
mentally erode the reliability of any fee prediction: Transaction issuers may end
up paying substantially large fees without receiving proportional or any reduc-
tion in commit delays. This paper characterizes the prevalence of such dark-fee
transactions and analyzes the most popular private relay network available in
Ethereum, Flashbots [18]. Furthermore, we conduct active experiments in both
Bitcoin and Ethereum to validate our assumptions regarding the prioritization
transparency. In addition to showing that transaction fees may not be uniform
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across miners, we claim that, given the lack of contention transparency, the lack
of prioritization transparency may become more widespread than it is now.

The lack of contention and prioritization transparencies stem from real, non-
trivial concerns of transaction issuers. The risk of transactions being front-run by
bots [9,12,42,46], for instance, creates the need for transaction privacy. Mining
pools that address this need also facilitate, unsurprisingly, off-chain payments via
which transaction issuers can (privately) incentivize the miners [4,29,45]. We view
these developments as natural and logical steps in the evolution of blockchains and
back our assertions with empirical observations. We claim, therefore, in contrast to
priorwork [9,41], that it is only the opacity of the overall fees issuedbya transaction
issuer that poses a fundamental threat to the stability of blockchains: Transaction
issuers cannot, for instance, precisely infer the fee required to commit their trans-
actions into the next block, and miners can, consequently, overcharge them as the
“real” fees are opaque to the rest of the network [46].

We summarize our contributions as follows. We characterize the lack of con-
tention transparency in both Bitcoin and Ethereum: We show that the use of
private channels or relay networks to submit transactions directly to a subset
of miners is becoming widespread. This practice will likely erode prioritization
transparency, as transaction issuers may not be able to estimate the appropriate
fees, none of which are publicly visible. We characterize the prevalence of such
private transactions fees. We found that Flashbots bundles represent 52.11% of
all Ethereum blocks. With the lack of prioritization transparency, miners might
overcharge users when they send their transactions privately. We also show that
Bitcoin miners collude (with an aggregate hashing power of more than 50%
of the network’s total hashing power) when including dark-fees transactions.
Finally, we release our data sets and the scripts used in our analysis to enable
the scientific community to reproduce our results [30].

2 Related Work

There is a rich literature on block rewards as incentives for mining [7,16,17,
19,23,32,33,36,39,48]. Recent work also analyzed the implications of relying on
transaction fees separately [6] and in conjunction with block rewards [43], as well
as the relationship between such incentives and transaction waiting times [10].
These prior work assume that transactions are broadcast to all miners and the
fees offered is uniform across miners. None of them acknowledge the issue of
transparency.

Basu et al. [3] and Lavi et al. [25] addressed the inefficiencies in transaction-
fee setting mechanisms (i.e., first-price auctions) by proposing alternative mecha-
nisms. They claim that miners might be dishonest, albeit they present no empir-
ical evidence. Siddiqui et al. [38] used simulations to show that, if transaction
fees are the only incentives, miners will select transactions greedily, thereby
increasing the commit times of many transactions. Prior work also analyzed the
Ethereum fee (i.e., gas price) mechanism to determine the gas price for a given
transaction [1,26,27,44]. The fee estimation and fee-based prioritization schemes
in these studies do not take into account dark-fees or private mining.



224 J. Messias et al.

Many transaction-accelerator, or FRaaS, platforms exist for both Bit-
coin [4,45] and Ethereum [12,18,40]. Transaction issuers might resort to such
acceleration or off-chain payment channels to hide their true fee from competitors
and avoid being front-run [9,41]. Tim Roughgarden [37] discussed the incentives
for off-chain agreements (such as dark-fees) between miners and users for first-
price auctions and different deviations of the new Ethereum fee mechanism EIP-
1559 protocol [5].1 Roughgarden showed that miners and users cannot strictly
increase their joint utility through off-chain payments under EIP-1559 because
on-chain bids can be easily replaced by the off-chain bids. However, utility here
is only based on the revenue of bidding for block space. The author did not
take into account that utility might depend on other factors, such as transaction
issuers wanting to keep their actual bids for block space hidden through off-
chain payments, which strictly increases their chances of prioritization, as other
bidders cannot counter bid, as they are unaware of the bid itself.

Closest to our work are two that analyze private mining. Strehe and Ante [41]
investigated exclusive mining (or private mining), where transactions issuers and
miners collude to include transactions that have been sent through a private net-
work. In this case, the transactions are not publicly disclosed until they have been
included in a block; besides, the fees can remain opaque to everyone forever, as
such off-chain agreements may use fiat currencies. Weintraub et al. [46] measured
the popularity of Flashbots, the most used private relay network for Ethereum.
Our work, in contrast, extensively investigates private transactions in both Bit-
coin and Ethereum blockchains. Through active measurements, we empirically
show that Bitcoin miners collude and highlight the colluding mining pools. We
show that Flashbots bundles are quite prevalent in Ethereum and are mainly
used for calling Decentralized Exchanges (DEX) contracts to take advantage of
Maximal Extractable Value (MEV) opportunities. Finally, we discuss why our
findings are still valid after “The Merge”—an Ethereum hard fork deployed on
September 15th, 2022 [13,14].

3 On Contention Transparency

3.1 The Rise of Private Relay Networks

With the lucrative market of Decentralized Finance (DeFi) in Ethereum, today,
bots engage in predatory front-running behaviors such as sandwich attacks and
transaction-replay attacks [9,24,34,35,42,46,49]. Relay networks help users to
counter such attacks: They provide users with a private channel for communi-
cating with miners, who have to prove their identity to participate in the relay.
Relay networks help users completely bypass the P2P network: Users send their
transactions to the relay network, which in turn relays them to its participant
miners. The relay network and its participants claim (a) not to front-run these
transactions and (b) to keep them private until they are included in a block [18].

1 The EIP-1559 went live in the Ethereum’s London hard fork upgrade on August 5th,
2021, at block number 12,965,000.

https://etherscan.io/block/12965000
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These transactions, hence, by construction, experience no front-running issues.
Relay networks are centralized; if miners misbehave, they may lose their net-
work membership and forfeit their future profits. Multiple relay networks (e.g.,
bloXroute, Taichi Network [40], and others [8,15]) exist today, but we focus on
Flashbots [18], the largest relay network for Ethereum.
Flashbots. Flashbots’s users bundle one or more transactions in some spe-
cific order [18]. Miners are expected to mine the entire bundle (retaining the
ordering of transactions within the bundle) and place it at the top of their
blocks. The miners receive a fee (paid via a direct transfer to their wallets) for
including the bundle in addition to the (traditional) fees associated with the
transactions in that bundle. If there are two competing bundles—capturing the
same financial opportunity, e.g., liquidations—miners will choose the one with
the highest reward (i.e., maximizing financial incentives). The other bundle is
discarded (since the financial opportunity no longer exists after having been cap-
tured by the included bundle), albeit its transactions do not expend any gas.
Therefore, except for a network base fee introduced in EIP-1559, arbitrageurs
and liquidators can participate without having any balance in their wallet: If
they successfully capture a financial opportunity, they pay the miner from the
profit secured and pocket the rest [18]. Flashbots is a free to use relay network,
and they allow anyone to query whether a transaction used their relay network
and the private fees paid to the miner (after it has been committed in a block).
We use this publicly available data for analyzing the transactions issued (pri-
vately) on Flashbots. Flashbots, however, does not list the discarded bundles (or
its transactions): we have access, hence, only to committed transactions.

3.2 Characterizing Private Relay Networks

We gathered all Ethereum blocks mined over a 9-month time period—from
September 8th, 2021 to June 30th, 2022—to investigate the behavior of Ethereum
mining pools. This data set contains 347,629,393 issued transactions and
1,867,000 blocks (from block number 13,183,000 to 15,049,999). We used miners’
wallet addresses to infer the block owners, but we failed to identify the owners
of 46,895 blocks (or 2.51% of the total); we grouped the latter into one category,
“Unknown.” Figure 1a shows the distribution of blocks and transactions mined in
Ethereum by the top-20 mining pools. We also retrieved 6,937,292 transactions
(2% of all issued transactions) contained in 3,284,886 bundles from Flashbots;
these are transactions sent privately to miners. 972,911 (52.11%) of blocks in the
data set have at least one such Flashbots transaction: Private transactions are
becoming quite common across most of the powerful mining pools in Ethereum.

Flashbots labels its bundles (and constituent transactions) into one of three
categories: (i) flashbots, which represent those sent through their private relay;
(ii) rogue, referring to those delivered to a (Flashbots) miner, but via a different
relay network; and (iii) miner payout, indicating a bundle containing payouts to
users of a mining pool [46]. We find 58.82%, 27.93%, and 13.25% of transactions
belonging to the flashbots, miner payout, and rogue categories, respectively. We
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Fig. 1. Blocks mined and transactions confirmed in (a) Ethereum and (b) Bitcoin by
the top-20 mining pools; “Others” consolidates the remaining mining pools.

also noticed that 70,260 (1.01%) of all Flashbots transactions failed to execute
after inclusion in a block. A small fraction of transactions is, hence, not success-
fully executed despite using private relays.

Flashbots claims to have ≈ 85% of the total Ethereum hash rate [18]. Per
our analyses, however, the majority of the mining pools (47 out of 48—barring
EthPool) use Flashbots, accounting for 99.99% of the total Ethereum hash rate,
A recent work also corroborates our findings [46].

Some of the most powerful mining pools like Spark Pool2 (which cooperates
with Taichi Network [40]), Ethermine [15], and F2Pool (part of Eden Network [8])
offer their own relay networks. As these networks allow transaction issuers to
send transactions exclusively to a specific miner, we hypothesize that miners
would prefer (or prioritize) these transactions to those sent via the public P2P
network. Crucially, payments from these private transactions are guaranteed,
while those from publicly issued transactions are not—they are available to any
miner willing to commit them. Miners, hence, would likely offer preferential
treatment for private transactions.

3.3 On Preferential Treatment of Private Transactions

We substantiate our hypothesis of preferential treatment for private transactions
via an active experiment conducted on September 8th, 2021. We issued 8 trans-
actions, where 4 were sent privately via the Taichi Network, powered by Spark
Pool, and 4 through the public Ethereum network (refer Table 4 in Appendix 1).

While running the experiment, we checked if the popular Ethereum
blockchain explorers (i.e., Etherscan, Blockchain.com, and Blockchair) observed
any of our private transactions; if they did, it would imply that the Taichi
Network leaked the transactions to the public. While the public transactions

2 Spark Pool suspended their mining services on Sept. 30th, 2021, due to regulatory
requirements introduced by Chinese authorities [20].
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Fig. 2. Distribution of (a) blocks with at least one Flashbots bundle and (b) bundle of
transactions per block, per mining pool. Ethermine included 27.05% of all blocks with
a Flashbot bundle and 26.63% of all Flashbots bundles, while mining around 28.05%
and 31.11% of all blocks and transactions, respectively.

appeared in these blockchain explorers, right after we sent them through the
public P2P network, the private transactions were not observed by any of them
until the transactions were included in a block. More importantly, our private
transactions were not flagged by Etherscan (which relies on Flashbots API and
more recently on EigenPhi [11]) as private, even after inclusion in a block. Mea-
suring the prevalence of private transactions is, hence, challenging; it is likely
that our estimates of the volume of private transactions based on such tools
represent, hence, a lower bound.

Babel Pool included 2 out of our 4 private transactions. Spark Pool techni-
cally supports this mining pool, implying that they “collaborate” in committing
private transactions sent over the Taichi network [2]. Our transactions were
included, however, in the appropriate position in the block based on their fees.
We delve into the prioritization of transactions in the next section.

We also characterize the prevalence of private transactions in Ethereum and
indicate that mining pools can each have a distinct set of private transactions
in their Mempool. Users, as a result, can no longer rely on the public Mempool
alone to estimate their transaction fee. Given the absence of other data, they
are highly likely to end up with a false estimate of the “appropriate” transaction
fees for their transactions.

4 On Prioritization Transparency

4.1 Prevalence of Transaction Bundling

Flashbots bundles are prevalent in Ethereum (refer Sect. 3.2). Each Flashbots
bundle contains at least 1 transaction and at most 631 transactions; on average
they contain 2.11 transactions, with a median of 1 and a standard deviation of
6.47. We noticed that Ethermine alone included more than a quarter (26.63%)
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of all 3,284,886 bundles (Fig. 2). Also, blocks contain at most 40 bundles, with
an average of 3.38, a median of 3, and a standard deviation of 2.64.

Maximal Extractable Value (MEV). Flashbots allows users to bundle
together a set of transactions, thereby specifying the order in which they are
executed. The bundles can also include public transactions, propagated over the
public P2P network. A public transaction that buys a coin on a DEX can, for
example, lead to an arbitrage opportunity [35]. A user can include this transac-
tion in a bundle along with one of their own to capture this arbitrage opportu-
nity. The last transaction in the bundle usually pays the miner (based on the
profit made) in ether via a direct transfer (i.e., coinbase transfer) to their wallet
addresses. This essentially means that miners are being offered different prices
for mining the same transaction. In other words, miners have a financial incen-
tive for including transactions that are in a bundle at the top of a block, even
though the public fee offered through gas price in the transaction data is very
low. Hence, each transaction in the bundle has a normal gas price and a bundle
gas price, which is calculated using the total gas used by all transactions in the
bundle and the total miner reward for mining the bundle.

Bundling Public Transactions. To identify bundles with transactions that
were probably sent through the public P2P network, we rely on a simple heuris-
tic. Specifically, we focus on transaction bundles of size 2 and 3, and search
for transactions that have likely resulted in a publicly sent transaction being
bundled. Then, we find bundles issued from different issuers that include a zero
and non-zero max-priority fee3 transactions. The intuition is that miners have
no incentive to include transactions that offer a zero max-priority fee, as they
receive no rewards for mining these transactions. Unless they receive extra pay-
ment (through Flashbots coinbase transfer). Hence, transactions that have a
non-zero max-priority fee were likely sent publicly.

For transaction bundles of size 2, we look for transactions whose issuers are
not the same. Furthermore, we look for cases where the first transaction offers a
non-zero max-priority fee, with no coinbase transfer to the miner, and the second
transaction offers a 0 max-priority fee and a non-zero coinbase transfer.

For transaction bundles of size 3, we look for signs of sandwich attacks [34].
We look for bundles where the first and last transactions have the same issuer,
but the second transaction has a different issuer. Additionally, we check that the
first and third transactions offer a 0 max-priority fee, meaning that the miner
receives no reward from the gas price for mining these transactions. Then, we
ensure that the second transaction offers miners a non-zero max-priority fee,
while the third offers miners a fee through direct coinbase transfer. This sce-
nario might be a classic sandwich attack, where public transactions are bundled
between two private transactions, sent by the same issuer, and the miner gets
paid via a coinbase transfer from the third transaction [34].

3 The max-priority fee was introduced in EIP-1559 as the unique financial incentive
miners get for including publicly announced transactions. The other fees are burned.
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Fig. 3. Diff. between the actual max-priority fee of public transactions and Flashbots
bundles; bundles typically offer a larger effective fee to the miners.

We found 853,394 transactions in 426,697 bundles of length 2, and 1,231,695
transactions in 410,565 bundles of length 3. From those, we found that 110,401
(25.87%) and 37,447 (9.12%) bundles, of lengths 2 and 3, respectively, fit our
heuristic. We then calculate the actual max-priority fee for these bundles, as the
total gas used by all transactions in the bundle divided by the total miner reward
(from gas usage and coinbase transfer). Figure 3 shows the price difference miners
get for including publicly and bundled transactions. Note that around 40% of
transactions differ in the actual max-priority fee by 100 gwei-per-units-of-gas.
Flashbots bundles offers much higher gas prices in comparison to the public
announced max-priority fee alone.

Towards Liquidations Through Bundling. Lending protocols rely on
over-collateralization of assets: In order to borrow assets from these protocols,
a user has to deposit a collateral of at least 150% of the borrowed amount. To
borrow 1 USDC on AAVE, for example, a user would have to collateralize at
least 1.5 USDC worth of another asset (e.g., in ETH or BTC). If the ratio of the
collateral asset versus the borrowed asset falls below 1.5, the user’s position can
be liquidated by any other participant until the ratio stabilizes to 1.5 again. The
liquidator then pays back a portion of the user’s debt to receive the collateral
asset at a discount. In order to assess an asset’s on-chain value, lending protocols
rely on oracle services, e.g., Chainlink Data Feeds. In the case of the two largest
lending platforms, AAVE V2 and Compound, for instance, Chainlink provides
the price of each asset in ETH and USD, respectively.

We found 16,418 liquidations in AAVE and 6387 liquidations in Compound.
Out of these, there were 4863 AAVE liquidations and 2036 Compound liqui-
dations that were sent privately through Flashbots. In AAVE, the three largest
collateral assets that were liquidated were WETH (57.58%), LINK (11.84%), and
WBTC (8.99%). The debt assets paid for, i.e., the assets borrowed by the users,
were USDC (33.77%), USDT (22.27%), DAI (19.39%), and GUSD (5.12%), all
of which are stablecoins and account for over 80% of the assets repaid by liq-
uidators. In Compound, the three largest collateral assets that were liquidated
were WETH (69.7%), WBTC (10.31%), and UNI (5.5%). The debt assets were
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Fig. 4. Profits of liquidators in (a) AAVE and in (b) Compound. Liquidations bundled
with Chainlink updates generally provide higher profits.

USDC (38.9%), DAI (30.45%), USDT (23.38%), and TUSD (2.7%), all of which
are stablecoins and account for over 90% of the assets repaid by liquidators.
Liquidation with Bundled Oracle Updates. To check the adverse effect of
bundling oracle updates, we looked at bundles with Chainlink oracle updates
as they are a key part of liquidations. We identified 1165 AAVE liquidations dis-
tributed within 1154 bundles (2662 transactions including 1301 oracle updates)
that contained at least one oracle update. In Compound, we found 648 liqui-
dations distributed within 641 bundles (1457 transactions including 751 oracle
updates) that contained oracle updates. In AAVE, out of 1154 bundles, there
were 994 (86.14%) bundles that contained an oracle update followed by a liquida-
tion, and 52 (4.51%) with two oracle updates followed by liquidations. In Com-
pound, out of 641 bundles, there were 548 (85.49%) bundles that contained an
oracle update followed by a liquidation, and 39 (6.08%) with two oracle updates
followed by liquidations. Out of the total 1813 liquidations in AAVE and Com-
pound we found that only 24 were possible in the previous block. Almost 98.68%
of such liquidations were, hence, only possible because of the Chainlink updates
in that block.

In order to calculate the profit made by the liquidators, we get the amount
of debt that was repaid and the amount of the underlying collateral that was
received by the liquidator. We calculate the price of each token at the time of
liquidation by looking at the on-chain oracle price from Chainlink at the same
block number, where the liquidation took place. For AAVE and Compound, we
specifically use the Chainlink on-chain price used by AAVE and Compound in
their respective protocols. AAVE uses the price in ETH as a reference for its
tokens, whereas Compound’s price oracles are denominated in USD. For AAVE,
in order to calculate the profit made by each liquidation, we calculate the profit
in ETH, and then multiply the profit by the current Chainlink on-chain price
of ETH in USD. Per Fig. 4, liquidations that are bundled with a Chainlink
update also have larger profits for liquidators, which implies that the lucrative
liquidations are more likely to be bundled together with a Chainlink update.

Characterizing Transaction Bundling. To investigate which DEXes pro-
tocols are called within Flashbots bundles, we focus on the following contract
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calls: 0x Protocol, Balancer, Bancor, Curve, SushiSwap, and Uniswap V1 and
V3. In our set of 3,284,886 Flashbots bundles, we find that 2,231,051 (67.92%)
unique Flashbots bundles (and 3,076,760 transactions) called at least one of
these contracts. Table 1 shows the distribution of the number of transactions
and the number of bundles for each of these contracts. We see that Uniswap and
SushiSwap are the most bundled DEXes protocols in Flashbots.

4.2 Side Channel (dark-Fee) Payments and Transaction
Acceleration

We now focus on the Bitcoin blockchain to study dark-fees transactions.

Prevalence of Transaction Acceleration. Dark-fee transactions (or accel-
erated transactions) are transactions that offer additional fees to specific mining
pools via an opaque and non-public side-channel payment [29]. Messias et al.
show that in Bitcoin the top 5 mining pools, BTC.com [4], AntPool, ViaBTC [45],
F2Pool, and Poolin, deploy transaction acceleration services, which enables users
to “accelerate” the confirmation of their transactions by offering mining pools
dark-fees [29]. These (dark-)fees are paid in fiat currency through a direct
bank transfer or via other crypto coins to the mining pool. They are, there-
fore, opaque or dark to other participants. Strangely enough, these fees are also
non-refundable as the miner receives them regardless of whether they include
the transaction in a block or not—a guaranteed payment. The fees paid by the
transaction issuer are, furthermore, not made public: only the user and the miner
knows the actual fee paid by the transaction inclusion. Since transaction issuers
pay the fees off-chain, miners have an incentive for prioritizing these transactions
despite the low fee rate offered on-chain. It also implies that the transaction
issuer offers a miner a different fee compared to that offered to other miners for
including their transaction in a block. Miners do not disclose such private fees
paid by issuers. This behavior is different from that of Flashbots in Ethereum:
The latter discloses the final dark-fee after the transaction is committed (see
Sect. 4.1).

Characterizing Transaction Acceleration. In order to detect accelerated
transactions, Messias et al. [29] proposed a metric called signed position predic-
tion error (SPPE) and position prediction error (PPE). The idea behind these
measures is that transactions that have been accelerated through off-chain fees
are likely to have been “misplaced” in a block based on the on-chain fee they

Table 1. There are 2,231,051 (67.92%) unique Flashbots bundles, and 3,076,760
(44.35%) transactions, that called the following decentralized exchange contracts in
Ethereum: 0x Protocol, Balancer, Bancor, Curve, SushiSwap, Uniswap V1, or V3.
Note that a single transaction or bundle might call one or more contracts.

Balancer Bancor Curve v1 & v2 Uniswap v2& Sushiswap Uniswap v3 0x Protocolv1, v2 & v3 Total

# of bundles 85,4223.83% 96,1224.31% 53,2962.39% 1,710,98576.69% 1,337,71559.96% 28,7531.29% 2,231,05167.92%

# of transactions 87,8652.86% 99,0403.22% 58,1881.89% 2,533,08482.33% 1,692,48555.01% 29,1000.95% 3,076,76044.35%
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offer. Figure 5 shows that the top-6 mining pools in our Bitcoin data set engage
in transaction acceleration. Large SPPE values imply that a transaction that
should have been included at the bottom is included at the top of the block,
confirming acceleration. We rely on this methodology to infer transaction accel-
eration in Bitcoin and present our data set and findings below.

To identify accelerated transactions, we gathered all Bitcoin blocks mined
from Jan. 1st 2018 to Dec. 31st 2020. In total, there are 161,954 blocks from
block height 501,951 to 663,904, and 313,575,387 transactions. In Bitcoin, mining
pools may indicate their ownership of the block by including a signature or
marker in the Coinbase transaction (i.e., the first transaction of every block).
We used such markers for identifying the mining pool (owner) of each block
following techniques from prior work [22,29,36]. We failed to identify, however,
the owners of 4911 blocks (approximately 3% of the blocks) and grouped these
blocks under the label “Unknown.” Figure 1b shows the distribution of the count
of blocks mined and transactions confirmed by the top-20 mining pools. We
further removed 65,902,514 (21.02%) child-pays-for-parent (CPFP) transactions
from our acceleration analyses.

To estimate the prevalence of accelerated transactions in blocks mined by
different mining pools, we compute the fraction of blocks mined by the top-15
mining pools, based on their hash rates in our data set (refer to Fig. 1b), that
contained transactions with SPPE ≥ 99%. Per Fig. 6, we find that many large
mining pools such as BTC.com, F2Pool, and ViaBTC are likely including accel-
erated transactions in a sizeable fraction of their mined blocks, with ViaBTC
including it in over 40% of their blocks.

If we consider all mining pools’ transactions with an SPPE ≥ 50% (1,869,043
transactions, in total), from 2018 to 2020, users transferred in total 11,631,217
BTC (or ≈ 223.55 billion USD4). The accelerated transactions accounted for
240,226 BTC (or ≈ 4.62 billion USD), corresponding to approximately 2.07%.

Fig. 5. Bitcoin position prediction error (PPE). (a) There are 160,962 blocks with
non-CPFP txs; 80% of all blocks has PPE less than 3.06% (mean is 2.09% and std.
deviation is 2.75.). (b) PPEs of top-6 mining pools per their normalized hash rate,
showing that all large mining pools engage in transaction acceleration.

4 Based on the Bitcoin exchange rate on October 19th 2022, 1 BTC = 19,219.90 USD.
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Fig. 6. Blocks with accelerated transactions (with SPPE ≥ 99%) are quite common
among the top 15 mining pools. In Bitcoin, the mining pools with a high percentage of
such blocks are ViaBTC (41.36%), 1THash & 58COIN (17.58%), SlushPool (11.58%),
BTC.com (10.03%), and F2Pool (9.63%).

Aggregated Power of Colluding Miners. In order to check the impact
of transactions acceleration services on commit time of transaction, we ran
active real-world experiments. Specifically, we paid ViaBTC [45] to accelerate
selected transactions (see Table 5 in Appendix 2) during periods of high con-
gestion between November 26th and December 1st, 2020. From 10 Mempool
snapshots during this period, we selected transactions that offered a very low
fee-rate (i.e., 1–2 sat-per-byte) for acceleration. To keep our acceleration costs
low, we selected transactions with the smallest size (which was 110 bytes) within
this set. For each of the 10 snapshots, we had multiple transactions with such low
fee-rates and small size, for a total of 212 transactions across all the snapshots.
We randomly selected one transaction from each snapshot (i.e., 10 transactions)
and paid ViaBTC 205 EUR to accelerate them.

Table 2. Accelerated transactions have fewer delays and are included at the top of the
block, i.e., at higher positions compared to non-accelerated transactions.

metrics delay in # of blocks perc. position in a block

acc. non-acc. acc. non-acc.

minimum 1 9 0.07 17.47

25-perc 1 148 0.08 75.88

median 2 191 0.09 87.92

75-perc 2 247 0.20 95.00

maximum 3 326 4.39 99.95

average 1.8 198.5 0.79 84.46

We then compare the priority with which the accelerated transactions and
the 202 (= 212 − 10) non-accelerated transactions with similar fee rates and
sizes were included in the Bitcoin blockchain. The impact of acceleration was
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strikingly apparent as shown in Table 2. All 10 accelerated transactions were
included within 1–3 blocks after their acceleration, with an average delay of
1.8 blocks. In contrast, the minimum delay for the 202 non-accelerated trans-
actions of comparable fee-rates and sizes was 9 blocks, with an average delay
of 198.5 blocks. Interestingly, 38 of the non-accelerated transactions were yet to
be included in the blockchain by December 4th, 2020. Similarly, the accelerated
transactions were included in top 0.07–4.39 percentile positions, with an average
0.79 percentile position, while the non-accelerated transactions were included
in the beyond top 17.47–99.95 percentile positions, with an average 84.46 per-
centile position. From the above observations, it is clear that the transactions
we accelerated were included with high priority, meaning Bitcoin mining pools
take off-chain fees into account when prioritizing transactions.

Although, we accelerated our transactions using ViaBTC mining pool, our 10
transactions were included by 5 different mining pools, namely F2Pool, AntPool,
Binance, Huobi, and ViaBTC. As we accelerated transaction during time of high
congestion in Bitcoin, no mining pool would have included a transaction offering
1–2 sat-per-byte, unless they were accelerated. Since we only paid the ViaBTC
mining pool, this implies that ViaBTC is colluding with other mining pools to
accelerate transactions that offer off-chain fees. Except for Binance, all these
colluding pools rank amongst the top-8 mining pools in terms of their hash
rates at the time of our experiments. Table 3 shows the individual as well as the
combined hash rates of these 5 colluding mining pools over the last day, last week,
and last month before the conclusion of our experiment on December 1st, 2020.
The most striking and the most worrisome fact is that the combined hash rates
of these colluding mining pools exceeds 55% of the total Bitcoin hash rate.
Additionally, if mining pools are colluding to include accelerated transactions,
then they might also potentially collude in malicious ways.

Table 3. If we rank the miners who confirmed the accelerated transactions based on
their daily, weekly, and monthly hash rate power, at the time these experiments were
conducted, the combined hash power of these mining pools exceeds 55% of the Bitcoin’s
total hashing power.

Mining Pool Hash-rate

last 24h last week last month

F2Pool 19.9% 18.7% 19.9%

AntPool 12.5% 10.6% 10.2%

Binance 9.6% 10.3% 10.0%

Huobi 8.1% 9.3% 9.8%

ViaBTC 5.1% 7.1% 7.7%

Total 55.2% 56% 57.6%
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Furthermore, due to the lack of transparency into their queue, miners can
charge higher prices for their acceleration services when colluding. It means that
they can overcharge the transaction issuers for including their transactions.

5 Concluding Discussion

In this section, we discuss the implications of our findings regarding the lack of
transparency in transaction contention and prioritization. We also argue why our
findings and implications would be relevant even in the face of recent changes
to blockchain protocols, e.g., Ethereum Improvement Protocol (EIP) 1559 and
the Ethereum Paris Network Upgrade (a.k.a. the Merge).
Implications for Publicly Mined Transactions. Most wallet software and
crypto-exchanges today rely on reconstructing the current public Mempool state
in order to suggest a suitable fee to transaction issuers. With the lack of con-
tention and prioritization transparency, transaction issuers can no longer accu-
rately recreate the current Mempool state for different miners. Consequently,
they cannot reliably estimate the fees transactions need to pay for their desired
prioritization. Worse, as the fraction of privately mined and accelerated trans-
actions keeps rising, the transaction fees will become less (reliably) predictable
in the future.
Implications for Privately Mined Transactions. The problem of reliable fee
estimation for a desired level of prioritization is even worse for privately mined
transactions that are announced on private relay networks. When transaction
issuers announce on a private relay network today, they are often unsure what
fraction of total hash rate is controlled by the miners listening to the private relay
network. It is important to estimate the hash rate controlled by private mining
pools to estimate the commit (waiting) times for transactions. Furthermore,
transaction issuers on private relay networks are completely blind to other com-
peting transactions. This opacity allows miners offering private mining and trans-
action acceleration services to overcharge and demand exorbitant fees to commit
transactions. For example, in the Ethereum blockchain, users are observed to be
overcharged by miners for having their transactions confirmed with high priority
through Flashbots bundles [46].
Relevance of Findings in Light of EIP-1559 and the Ethereum Merge. Our
observations about the lack of transparency and their implications are funda-
mental to the current blockchain architectures and hold both before and after
the recent major improvements to blockchains, e.g., EIP-1559 and the Ethereum
Merge. While EIP-1559 attempts to improve the estimation of transaction fees
that need to be offered, it does not address the problems associated with the
lack of transaction contention and prioritization transparency. Similarly, after
the Ethereum Merge, validators that stake a certain amount of ETH rather
than miners would be responsible for selecting and validating transactions to
include in the next block [13]. Our observations about private mining would still
hold for private validation and the implications would still be valid after the
Merge.
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In conclusion, our work shows that with private mining and accelerated trans-
actions, the promise of the public decentralized blockchain does not hold. Firstly,
mining pools with combined hash rates of over 50% are colluding with each
other, showing a centralization in the system. Then, they can also censor cer-
tain transactions, breaking the ethos of decentralized public blockchains with
no central authorities. Second, it breaks the assumption that all activities in the
blockchain are transparent. Although this is true for transactions included in the
blockchain, prioritization of transactions is becoming more opaque with the rise
of private mining and off-chain fees. Hence, we make the case that to fulfill the
transparency promise of public blockchains, prioritization of transactions should
be transparent as well. Third, with private mining in Ethereum, Flashbots is
increasingly being used for malicious and predatory activities such as sandwich
attacks, which essentially levies a tax on users interacting with financial institu-
tions on the blockchain (e.g., in DEX). These concerns need to be addressed if
public blockchains are going to live up to their promises.
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Appendix 1 Ethereum Private Transaction Experiment

We conducted 4 active experiments where we issued 8 Ethereum transactions;
half issued publicly and the other half privately through a private-channel net-
work known as Taichi Network [40]. Table 4 summarizes the transactions in our
experiment. Spark Pool and Babel Pool included all private transactions (2 trans-
actions each) sent directly to these miners through Taichi Network.

Table 4. We conducted 4 active experiments in Ethereum by simultaneously acceler-
ating transactions privately and publicly via Taichi Network. Private transactions were
included only by Spark Pool and Babel Pool. If we rank these mining pools according
to their hash-rate, they account for 27.72% of the total Ethereum hash-rate.

# type tx hash block number miner tx. position block delay fee paid base fee max fee max priority fee gas price block timestamp

per # of txs. (in blocks) (in Ether) (Gwei) (Gwei) (Gwei) (Gwei) in UTC

1 public bbe88e· · · a4f000 13,183,516 Nanopool 305/336 1 0.00190489 88.98082939 116.52835749 1.72836605 90.70919543 2021-09-08 06:39:18

private c46b75· · · ead538 13,183,520 Babel Pool 29/39 5 0.00225209 105.51391459 120.56586232 1.72836605 107.24228063 2021-09-08 06:40:29

2 public 6d994f· · · c1aadd 13,183,561 Binance 209/213 2 0.00244137 114.95482846 137.64014705 1.30100683 116.25583529 2021-09-08 06:49:26

private a4d4ae· · · 42ebf5 13,183,565 Spark Pool 294/296 6 0.00240978 113.45059961 137.64014705 1.30100683 114.75160643 2021-09-08 06:50:12

3 public 725743· · · 0a6c45 13,183,634 Unknown 124/126 2 0.00263298 123.27216185 135.21393222 2.10805685 125.38021870 2021-09-08 07:06:31

private f2beec· · · 15cdf1 13,183,635 Spark Pool 321/340 3 0.00257468 120.49562077 135.21393222 2.10805685 122.60367762 2021-09-08 07:06:44

4 public e21695· · · 2c1574 13,183,679 Ethermine 280/302 13 0.00223433 104.69510748 108.95262574 1.70164453 106.39675202 2021-09-08 07:18:37

private 4c482b· · · 87c76f 13,183,690 Babel Pool 150 / 212 24 0.00179917 83.97323655 108.95262574 1.70164453 85.67488108 2021-09-08 07:20:12

https://etherscan.io/tx/0xbbe88eae757acf6697d498575dd1d50b3ad9915318cd1ff8d409210d20a4f000
https://etherscan.io/tx/0xc46b7556a20865c9f50166373baf7094104f300ab26ad8e1de894e1318ead538
https://etherscan.io/tx/0x6d994f516f43b8ed3763fe4f81c7cb86146203fda1047cc85e697eefa7c1aadd
https://etherscan.io/tx/0xa4d4ae2f6f3a798dc6cf5d5f4e15222320d3ee90b023763efe0017e51142ebf5
https://etherscan.io/tx/0x725743c1700241a6e89b957faf963018f2d169f7f1ec6b9256a92811510a6c45
https://etherscan.io/tx/0xf2beec913ed6c0667fdde4829a004fe9418916af22218d77adf5f38a7c15cdf1
https://etherscan.io/tx/0xe21695cc9e1f29f45f38b0fd8323a6e928bd7b55dc84974f217c7042322c1574
https://etherscan.io/tx/0x4c482b0416b38de9b2995b986d8c0f974018c0aeda02ce6fdc8b196bce87c76f
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Appendix 2 Bitcoin Transaction Acceleration
Experiment

Table 5. We conduct 10 transaction acceleration experiments in Bitcoin. If we rank
the miners whose included these transactions based on their daily hash-rate power as
(D) and weekly hash-rate power as (W), together these mining pools corresponds to a
hash-rate power of (D: 55.2%; W: 56%).

txid block height miner tx. position delay acc. cost vsize fee rate Mempool timestamp

(in blocks) (BTC) (byte) sat-per-vsize # of txs. vsize (MB) in UTC

35b18e· · · 52dbc1 658,805 Huobi 2nd 2 0.001254 110 2 36,644 44.63 2020-11-26 19:10

65765c· · · baede2 658,898 F2Pool 73rd 1 0.001254 110 2 20,998 32.55 2020-11-27 11:06

0c2098· · · 29fbf0 658,912 AntPool 2nd 2 0.001254 110 1 30,126 38.01 2020-11-27 13:38

1515a7· · · 179af3 658,971 Binance 2nd 3 0.001254 110 1 25,922 37.89 2020-11-27 21:55

48a0a5· · · 0ddaec 659,335 ViaBTC 3rd 1 0.001045 110 1 15,605 9.82 2020-11-30 10:09

9a17cf· · · f3734c 659,341 Huobi 2nd 2 0.001045 110 1 14,945 9.41 2020-11-30 10:28

831b24· · · 95d421 659,351 AntPool 2nd 1 0.001045 110 1 10,990 8.66 2020-11-30 12:22

1f59bf· · · 47096c 659,355 F2Pool 111th 3 0.001045 110 1 17,093 11.40 2020-11-30 12:58

6942e0· · · 8c06c3 659,362 Huobi 2nd 2 0.001045 110 1 30,836 19.06 2020-11-30 14:49

8e49e2· · · ae825f 659,481 ViaBTC 6th 1 0.001254 110 2 30,935 22.59 2020-12-01 10:40

We ran an active Bitcoin transaction acceleration experiment where we paid 205
EUR to ViaBTC [45] to accelerated 10 transactions from 10 different snapshots
of our Mempool. To select these transactions, we checked whether the Mempool
was congested (i.e., having more transactions waiting for inclusion than the next
block would be able to include), with its size being at least 8 MB. Then, we
considered only transactions with low fee rates—less than or equal to 2 sat-per-
byte—to ensure that these transactions would be highly unlikely to be included
soon in a subsequent block. Next, we sorted the remaining transactions by size
to limit the experiment cost as the acceleration-service costs grow proportional
to the transaction size. Finally, we select the transaction with the smallest size
in bytes for our active experiment.

Table 5 summarizes the transactions used in our experiment. Most of these 10
accelerated transactions were included nearly in the next block, demonstrating
the acceleration efficiency. Also, these transactions were wrongly positioned in
the block: They appeared, for instance, at the top of the block, i.e., higher
than the non-accelerated transactions, showing that miners indeed prioritized
them (see Table 2). Further, we observed that although we had only accelerated
transactions via ViaBTC, other top mining pools were also involved in confirming
the accelerated transactions.
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Abstract. Pyramid schemes are investment scams in which top-level
participants in a hierarchical network recruit and profit from an expand-
ing base of defrauded newer participants. They have existed for over a
century, but their historical opacity has prevented in-depth studies.

This paper presents an empirical study of Forsage, a smart-contract-
based pyramid scheme with unprecedented transparency. Our study
focuses on the period around 2020, when Forsage was one of the largest
contracts (by gas usage) in Ethereum. In 2022, some months after initial
release of this work, the U.S. SEC dubbed Forsage a “fraudulent crypto
pyramid and Ponzi scheme” and filed charges against its creators and
promoters.

We quantify the (multi-million-dollar) gains of top-level participants
as well as the losses of the vast majority (around 88%) of users. We ana-
lyze Forsage code both manually and using a purpose-built transaction
simulator that we release as open source software to uncover the complex
mechanics of the scheme. Through complementary study of promotional
videos and social media, we show how Forsage promoters leveraged the
unique features of smart contracts to lure users with false claims of trust-
worthiness and profitability, and how Forsage activity is concentrated
within a small number of national communities.

Our analysis is the most complete study of a pyramid scheme to date.

1 Introduction

Cryptocurrencies and smart contracts are new and powerful technologies that
promise a range of benefits, including faster monetary transactions, innovative
financial instruments, and global financial inclusion for the world’s unbanked.
Conversely, though, these same technologies have fueled new forms of fraud and
theft [29,38] and new ways of perpetrating existing types of crime [20,27].

Pyramid schemes are a prevalent type of scam in which top-tier participants
in a hierarchical network recruit and profit at the expense of an expanding base
of new participants. They have existed for more than a century, but have recently
emerged in a new form: as smart contracts on blockchains such as Ethereum.
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Smart contracts are in some ways an ideal medium for pyramid schemes and
other scams. Because they run in decentralized systems, they cannot easily be
dismantled by law enforcement agencies. They can instantaneously ingest pay-
ments from victims across the globe. They provide privacy protection for their
creators in the form of pseudonymous addresses. Finally, as so-called “trustless”
applications—with world-readable (byte)code—they present a veneer of trust-
worthiness to unsuspecting users.

The flip side of such transparency is that smart contracts offer researchers a
degree of visibility into the mechanics of online (and offline) scams that is without
historical precedent. Not only is the (byte)code specifying the scam’s mechanics
visible on chain, but so is every transaction performed by every participant.

In this paper, we take advantage of this newfound visibility to conduct an in-
depth measurement study of the largest smart contract-based pyramid scheme
to date, called Forsage Smartway or Forsage for short.

Forsage came into existence in late January 2020. It was at one point the
second most active contract in Ethereum by daily transaction count and spent
almost 1/3 of the year—100 d—as one of the top five contracts by number of
transactions per day. As we show throughout this paper, it is a classic pyramid
scheme, defined by the SEC as “a type of fraud in which participants profit almost
exclusively through recruiting other people to participate in the program” [3].
Indeed, in 2022, the SEC declared Forsage a “fraudulent crypto pyramid and
Ponzi scheme” and filed charges against eleven individuals involved in the cre-
ation and promotion of the scheme [30].

The Forsage contract requires players to send currency (Ether) in order to
participate. Funds sent by newly recruited users immediately pass through the
contract to existing players, with those at the top of the (smart contract-defined)
pyramid obtaining the largest returns.

Understanding the success of Forsage requires study of not just the contract
itself, but also its community of hundreds of thousands of users, many of whom
have actively discussed and marketed the scam. Consequently, to paint a detailed
picture of how Forsage lures and defrauds users, our study combines measure-
ment and analysis of a range of complementary forms of data, including source
code, on-chain transaction data, and social media interactions.

Forsage was not just a blip: it was a major consumer of resources on Ethereum
at its height, producing more transaction fees than even the most popular smart-
contract-based cryptocurrency exchanges for 67 d. While the largest smart con-
tract pyramid scheme identified to date, Forsage was not the only active pyramid
scheme we identified on Ethereum and will not be the last. As a focused mea-
surement study (see, e.g., [5,26] for important examples of such work), our work
can act as a template for further, in-depth understanding of blockchain pyramid
schemes more generally. New such schemes, as we explain, often closely resemble
Forsage.
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1.1 Main Study Results

We believe that our study’s findings are not just relevant to Forsage, but provide
durable insights into the conception, mechanics, and evolution of smart-contract
scams and financial scams more generally. They also point to effective strategies
that government authorities and the cryptocurrency community can use to com-
bat pyramid schemes and other scams, as we discuss in the full version of our
paper [1].

Our focus is on the peak period of activity for the contract in the year 2020.
(After that time, the contract saw little use, giving way to later, similar schemes.)

1.2 Summary of Contributions

In summary, the main contributions of our study of Forsage in this paper are:

– Contract measurement study: In a measurement study of Forsage contract
activity on Ethereum, we document the flow of 721k ETH (226M USD) and
show monetary losses by the vast majority of users. One of our most striking
findings is characteristic of pyramid schemes: The vast majority of Forsage
players have lost money, with net losses for over 88% of players. A small few
at the top of the pyramid have profited handsomely, e.g., the contract owner,
who has received over 5000 ETH (1.2M USD). To the best of our knowledge,
our study offers the first precise quantification of payouts and losses in any
large pyramid scheme, internet-based or historical. We also quantify the cost
of Forsage’s complexity in terms of on-chain transaction fees, showing that
Forsage transactions are more expensive for its users than normal transac-
tions.

– Community-dynamics study: By tagging claims in promotional videos and
studying social media interactions, we shed light on the evolution of the com-
munity, documenting tactics used to attract users and combine location data
from various social networks to identify the user geographical distribution. We
show that Forsage activity is internationally broad, but highly concentrated
within a few geographies (e.g., western Africa).

– Contract deconstruction: Using a tool for transaction simulation that is of pos-
sible independent interest, we detail the operating rules of Forsage and show
the concentration of power and wealth at the top of its defined pyramid(s).

We emphasize that our results, which reveal a combination of classic and
smart contract-specific scam characteristics, offer insights not just into Forsage,
but into both blockchain and non-blockchain scams more generally.

Section 3 provides an overview of the inner workings of Forsage. Section 4
analyzes measurement data and provides statistics of the usage and profitability
of the Forsage smart contract. Section 5 uses social media analysis to find out the
geographical distribution of Forsage victims. Further information can be found
in the full version of the paper [1], including a detailed evaluation of the Forsage
smart contract and an analysis of Forsage promotional and social media content.
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2 Background

Smart Contracts: The most popular public (permissionless) blockchain for smart
contracts today is Ethereum [10]. Ethereum smart contracts are launched in the
form of bytecode that runs in a Turing-complete environment known as the
Ethereum Virtual Machine (EVM). Transactions sent to smart contracts by
users are processed by contract code and are publicly visible on chain.

Transactions may send money to a contract from user accounts or other
contracts and must specify payment of execution fees to block creators in the
form of gas, a parallel currency converted into ETH upon transaction execution.
This conversion is calculated by multiplying the amount of work performed by
a transaction (its “gas consumed”) by the price of gas in ETH set by user when
submitting the transaction [32].

Correctness of contract execution is enforced by the consensus mechanism
underlying the Ethereum blockchain, so a miner’s execution of contract code in
the EVM must be agreed upon by all network participants to be included in a
confirmed block.

Other permissionless blockchains with similarly constructed smart contract
functionality are growing in popularity, e.g., Tron [12], to which Forsage has also
been ported. Ethereum, however, remains the dominant smart contract platform.

Scams: Scams, i.e., fraudulent schemes involving financial deception, have been
documented for centuries. Many scams involving large populations of victims
assume the form of pyramid schemes. The U.S. Securities and Exchange Com-
mission (SEC) defines a pyramid scheme as “a type of fraud in which participants
profit almost exclusively through recruiting other people to participate in the
program” [3]. Pyramid schemes, which are illegal in most jurisdictions, have
many variants. One variant is a Ponzi scheme, which specifically involves invest-
ment in financial instruments. Multi-level marketing (MLM) schemes, which
involve the sale of a product or service, are related to pyramid schemes. They
are legal in the U.S., but outlawed in some jurisdictions (e.g., China) [2].

Blockchain Scams: A multitude of scams have arisen within the blockchain
ecosystem. Some scams have solicited investments from victims in new
blockchain technologies. Examples include Onecoin, a Ponzi scheme that involved
a fake (centralized) blockchain in which victims invested $19+ billion [18], Bit-
connect, a token that promised returns of 1% per day and saw investment of
$3.5 billion from victims, as well as other, related $1+ billion schemes such as
Plustoken and WoToken.pro [8,24].

Other scams instead use blockchain technology to realize variants of scams,
such as pyramid schemes, that were seen well before the advent of blockchains.
Prominent examples are Million.Money1 and Doubleway.io2, which are both cur-
rently active, and the defunct Bullrun.live.3 All three have similarities with For-
1 https://million.money.
2 https://doubleway.io/.
3 http://bullrun.live.

https://million.money
https://doubleway.io/
http://bullrun.live
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sage: they use similar promotional materials, have a similar structure for the
user dashboard, and use similar language and terminology (e.g., a referrer to
the program is called an “upline”). We explore Forsage user interactions with
multiple scam contracts in Sect. 4.2.

3 Forsage Overview

The creators and promoters of Forsage advertise it as a matrix MLM scheme,
despite the lack of a service or product. It operates primarily on Ethereum,
where its initial Matrix contract has been active since January 31st, 2020. Since
then, Forsage creators have also launched a Forsage contract on Tron (TRX),
an additional, followup smart contracts called Forsage xGold on both Tron and
Ethereum, and a Forsage Binance Smart Chain (BSC) contract.

The Forsage Website: Users interact with Forsage using the forsage.io web-
site, which shows how much they have paid into and earned from the contract.
The website encourages the use of user-friendly cryptocurrency tools. It shows
users how to purchase cryptocurrency using Trust Wallet, a user-friendly tool to
exchange fiat for cryptocurrency, and how to use MetaMask, a browser exten-
sion that allows users to easily transact with cryptocurrency. The combination
of these tools makes Forsage accessible to novice users who may not previously
have used cryptocurrencies or smart contracts. Screenshots of the Forsage web-
site prior to SEC takedown show the different matrices and their structure, can
be found in the full version of the paper [1].

Forsage Use and Structure: A new Forsage user must pay a minimum of 0.05
ETH, which opens up the slot at the first level in the two matrix systems, called
X3 and X4. Each matrix consists of 12 slots. To unlock the ability to use the next
slot (at level i + 1), a user must pay twice as much ETH as for their currently
highest slot (at level i). In both X3 and X4, the first slot costs 0.025 ETH, while
the twelfth and final slot costs 51.2 ETH. This means that the total cost to open
all slots in either matrix is 102.375 ETH. Figure 1 shows the correlation between
profitability of participants and how many slots they unlocked.

Each Forsage user has a referral code, created at the time they register.
The referral code links a recruited user’s account to the account that recruited
them, called their upline. These referral codes thus organize Forsage users into
pyramids, with the oldest accounts at the top. Payments flow upwards within
a pyramid as additional users join it. The pyramids of users linked by chains
of referral code are referred to as Forsage teams. It is possible to join Forsage
without entering a referral code; users who do so are assigned the referral code
of the creator of Forsage.

The full version of the paper [1] contains detailed description and simulation
of the logic for payment flow of user funds sent through the Forsage contract.
Briefly, users earn money in the X3 and X4 matrices as follows:
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Fig. 1. The distribution of how many users had unlocked a given number of levels in
the contract (on top, and at log scale), and the collective amount of money gained or
lost by the users who had unlocked this number of levels (on bottom, and at linear
scale). Users that bought the most levels were on average the most profitable.

X3: In X3, users earn income by recruiting others into the system. A user must
recruit three additional users to recoup their initial investment within each
slot. Any recruits beyond the first three per slot will generate income for the
recruiting user and those further up in their pyramid. Each subsequent slot
costs more to open, but its resulting payout if filled with recruits will be higher
because the expected payout for each three recruits is equal to the initial cost
to open the slot for the recruiter. After a user fills a slot (i.e. recruits 3 users
into that slot), Forsage blocks the filled slot, causing the user to forfeit future
earnings from it until it is unblocked. Unblocking means paying to open the
slot at the next level up in the system, at which point this lower-level slot
cannot become blocked again.

X4: In X4, users can earn both by recruiting other users and by being on an
active team. When a user recruits the six additional users necessary to recoup
their initial investment in an X4 slot (twice as many as are required in X3),
that slot becomes blocked and the user will have received the same amount of
money paid to open the slot, with others in their team getting paid as well.
X4 also has an element of competition: If a newer user on a team is more
active than the user whose referral code they used to join Forsage, that user
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Table 1. Summary statistics of the four official Forsage smart contracts and one clone.
The USD value was calculated by taking a sum of the payments per day and multiplying
it by the average of the 24-hour high and low on the respective day.

Contract Total TXs Unique sending addresses Total coins Total USD Launch date Address

ETH Matrix 3M 1M 721k 225M Jan 31, 2020 0x5a...
TRX Clone 217k 78k 537M 14M July 25, 2020 TJRv...
TRX Matrix 1M 342k 1B 31M Sept 6, 2020 TREb...
TRX xGold 307k 105k 90M 2M Nov 7, 2020 TA6p...
ETH xGold 37k 17k 8k 9M Jan 4, 2021 0x48...

can switch spots on the team, giving the more active, newer user the profits
that would otherwise flow to the older, referring account [23].

4 Measurement Study

In this section, we present the results of our measurement study of Forsage con-
tract transactions, which encompasses all monetary transactions in the scheme.
A description of our data collection process is in the full version of the paper [1].
We first present statistics capturing the degree of user interaction with the var-
ious Forsage contracts on Ethereum and Tron (Sect. 4.1). We then present an
analysis of the account behaviour and profits over the Forsage user population
(Sect. 4.2), in particular analyzing where funds are obtained and how funds flow
through the five most profitable accounts.

4.1 Scheme Statistics

Table 1 shows summary statistics for the four official Forsage contracts and an
additional contract, TRX Clone, a clone of the Ethereum Matrix contract oper-
ating on Tron. This clone launched before the official TRX Matrix contract, and
has a different domain4 but with graphics and style akin to the official website.
The official Forsage website added a warning after the clone’s appearance, asking
users to “beware of fake resources” and stating that the “forsage.io” website is
the only official domain.

In total, the table shows that the official Forsage contracts amassed over
267M USD within the first year of operation. Among all of these contracts, the
ETH Matrix contract brought in the most money and raised the highest amount
on a single day: 3.7 million USD on August 1, 2020. The more recent xGold
contracts (deployed on both Ethereum and Tron) were sent a combined 11.53
million USD in ETH and TRX in less than two months.

Figure 2 shows the number of transactions received by each contract over
time. For each contract introduced after the original ETH Matrix one, we observe
a large number of initial transactions followed by a substantial drop. We also

4 forsagetron.io.

https://etherscan.io/address/0x5acc84a3e955Bdd76467d3348077d003f00fFB97
https://tronscan.org/#/address/TJRv6qukWEz4DKY6gkd3fhX4uahREpTQu6
https://tronscan.org/#/address/TREbha3Jj6TrpT7e6Z5ukh3NRhyxHsmMug
https://tronscan.org/#/address/TA6p1BnBf2HJgc77Zk8BHmHoiJzquLCKWb
https://etherscan.io/address/0x488e3a4bbbb2386ba619eed88319e807c3ddb6c2
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Fig. 2. Number of transactions sent from users to the four Forsage contracts across
Ethereum and Tron and to an unofficial Tron-based clone.

see a decline in the number of transactions sent to the original ETH Matrix
contract after other contracts become available. Given the particular longevity
and popularity of the ETH Matrix contract, it is our main focus in the rest of
this section.

To illustrate the popularity of Forsage, Fig. 3 shows the number of daily
transactions associated with the six most popular contracts across a six-month
period in 2020. Of these contracts, Tether and USDC are stablecoins; Uniswap
is a decentralized exchange; and Easy Club, MMBSC Global, and Forsage are
believed to be scams/pyramid schemes. We can see that Tether is consistently
the most popular contract and that for most of its peak from June to August,
Forsage (as represented by ETH Matrix) had the second highest transaction
rate among Ethereum smart contracts. This data is supported by Google Trends
results for 2020: From April to August of 2020, Forsage had the highest search
traffic globally of any of the smart contracts we studied, including both Tether
and Uniswap, the two most heavily used smart contracts on the network as of
the time of writing.

4.2 Account Behavior and Profitability

To understand how Forsage users obtained the funds needed to interact with the
contract, we looked at the transactions that sent ETH to their accounts, and
at when their accounts first became active. Figure 4 shows the ETH received
by Forsage users over time and the cumulative count of active Forsage-related
accounts (i.e., the first time an account was used that later interacted with the
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Fig. 3. The daily transaction count associated with the six most transacted contracts
between April 1 and September 30, 2020. Here Forsage refers to the ETH Matrix
contract.

Forsage contract), with a vertical line indicating when Forsage was deployed. It
is clear that these accounts became active and began to receive substantially
more ether after the deployment of Forsage; in fact, 98.89% of Forsage users had
accounts that did not exist (or at least did not transact) before Forsage. We found
a similar increase when looking at the number of transactions conducted by these
users as well: prior to the deployment of Forsage, 11k accounts were involved
in 278k transactions, but after Forsage’s release this increased to 1.04M users
engaging in 16M transactions. While the curve in Fig. 4 looks steep given the
timescale, it in fact reflects a steady growth in the first appearance of accounts
between April and August 2020, which aligns with the peak of Forsage we saw
in Fig. 3. Each of these months saw thousands of new accounts appearing per
day, on average: 1659 in April, 3653 in May, 8272 in June, 10,798 in July, and
4987 in August. In contrast there were at most 20 new accounts appearing per
day for each month in 2019 (except December, when there were 68).

To identify which types of services were the source of this money, we used
tags from Etherscan. Of the ETH sent to Forsage users, over 56% (1.5M)
came from untagged sources, and only 15% came from known exchanges, with
5% of this coming from the decentralized exchange Uniswap. As mentioned in
Sect. 3, Forsage promotional material recommends that users obtain ETH from
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Fig. 4. Total ether received by Forsage users over time and total number of Forsage
users according to when their accounts were first used, with a dashed line indicating
the Forsage creation date.

Table 2. Top five profitable accounts interacting with Forsage.

Address Profit (in ETH) Notes/First Seen

0x81... 5409.6 Owner of the contract
0x44... 3445.0 March 22, 2020
0xde... 1954.9 March 22, 2020
0x4a... 1943.2 January 31, 2020
0x59... 1573.0 June 4, 2020

TrustWallet. This is a non-custodial service, which means accounts are associ-
ated with individual users rather than with the exchange. Thus, if most users
followed this advice, we would expect to see that most of the ETH came from
untagged sources.

Figures 6 and 7 show a histogram of all of the accounts that interacted with
the ETH Matrix contract organized by the amount of money either gained or
lost by each account (including the amount spent on transaction fees) as of Jan-
uary 14, 2021. In total, of the 1.04 million Ethereum addresses that took part
in the ETH Matrix scheme, only 11.8% (123,979) earned a profit. These prof-
itable accounts made 265,618.52 ETH collectively, and the loss-making accounts
(919,194 in total) lost 305,785.44 ETH collectively (0.33 ETH on average). We
revisit these profit-making accounts below. Users incur additional losses from
the high transaction fees paid for transacting with the contract. This is demon-
strated by the right-shifted peak in the Forsage curve relative to that of all
ETH transactions in Fig. 5. The reasons for this are further explained in the full
version of the paper.

https://etherscan.io/address/0$\protect \kern +.1667em\relax \times \protect \kern +.1667em\relax $81ca1e4de24136ebcf34ca518af87f18fd39d45e
https://etherscan.io/address/0$\protect \kern +.1667em\relax \times \protect \kern +.1667em\relax $44fc2e52243cf20ecc91f61ffa33e59fc7e1c148
https://etherscan.io/address/0xdedba197cb186e6d129110e71138ef6c6ca153d8
https://etherscan.io/address/0$\protect \kern +.1667em\relax \times \protect \kern +.1667em\relax $4aaa7083535965d1cdd44d1407dcb11eec3f576d
https://etherscan.io/address/0$\protect \kern +.1667em\relax \times \protect \kern +.1667em\relax $59b312f6cfe5b1864654d1942c8c979ad830777e
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Fig. 5. Histogram of transaction costs on the Ethereum blockchain—from January 31,
2020 to January 14, 2021—that involve successful smart contract function calls. Blue
bars indicate the number of all transactions that paid fees within the given bucket.
Orange bars indicate the same data, but only for transactions sent to the Forsage smart
contract. The data excludes outlier transactions with fees above 0.06 ETH, which is
above the 99th percentile of all transactions from this time period. (Color figure online)

Profit-Making Accounts: The five addresses with the highest profits in Forsage
can be found in Table 2. Perhaps unsurprisingly, the most profitable Forsage
user is the owner of the contract, who earned 5409.6 ETH, or 2.04% of the total
profits. Collectively, the five most profitable users made 14,325.7 ETH, or 5.4%
of profits, despite representing only 0.0004% of users. The top 1000 users made
50% of the total profits.

Examination of the five most profitable addresses shows that the most prof-
itable address is another Ethereum contract created by the owner of the ETH
Matrix contract. Of the money received by this contract, 99% came from ETH
Matrix. The fourth highest earner sent 9% of received ETH directly back to
Forsage. In fact, if we follow all the addresses to which this user sent money, we
see over 1321 ETH sent back to Forsage eventually. Similarly, the fifth highest
earner sent 204 ETH directly back to Forsage.

Some of the top addresses interact directly with other known scams, such
as Beurax.com and TorqueBot.net, meaning they sent or received coins directly
from addresses associated with these scams. The top five profit-making accounts
received 6.987 ETH from these scams.
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Fig. 6. Profit/loss histogram of Ethereum accounts that interacted with the Forsage
smart contract, on a log scale. This graph shows the number of accounts that made
a profit or loss for each range of ETH. The majority of accounts incurred a small net
loss, less than 1 ETH.

Fig. 7. Profit/loss histogram of Ethereum accounts that interacted with the Forsage
smart contract, centered around 0 and on a linear scale. The vast majority of user
accounts that interacted with Forsage lost between 0 and 0.25 ETH, with the peak
occurring between 0.038 and 0.063 ETH.
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Interestingly, the first transaction sent to the address that deployed Forsage
was from 0xb1..., which is the Ethereum address that deployed Million.money.
This suggests interaction between smart contract-based scam operators.

Finally, we consider the extent to which users who profited by interacting
with the Forsage ETH Matrix contract also interacted with other Forsage con-
tracts. The ETH xGold contract has 17,560 users, of which 17,129 (97.5%) also
interacted with ETH Matrix. Furthermore, the highest earner in xGold was the
third highest earner in Matrix, the fourth highest xGold earner was the seventh
highest earner in Matrix, and the eighth highest earner in xGold was the second
highest earner in Matrix. These three earners (all of which are within the ten
wealthiest Matrix users) hold 21.85% of net profits in xGold. This suggests that
at least some prominent users of Matrix did indeed migrate over to xGold.

5 Study of Forsage Community

Methodology: We studied the Forsage community by examining the presence
of Forsage on social media. The Forsage website promotes official social media
presences on Facebook, Instagram, Telegram, Twitter, and YouTube. All of these
services have official APIs to collect data, but some of the research we conducted
required manual interaction with the various social websites via a web browser,
or more sophisticated data collection techniques like web scraping. In summary
we identified over 403,029 distinct Facebook members in various Forsage Face-
book groups, 285,788 people signed across 49 telegram channels and over 57,551
Youtube promotional videos. This is explained in more detail in the full version
of the paper [1].

5.1 Forsage User Geography

Since transactions on the Ethereum network do not carry any inherent geo-
graphic metadata, we turned to social media analysis in order to gain a sense of
the geographic placement of people interested in Forsage. In the data we collected
on members of Forsage-related Facebook groups, we found 771 users that publicly
listed a country location on their Facebook profile. We also found 10,200 unique
Twitter accounts that publicly posted their geographic location. YouTube does
not expose information about geographic location of the consumers of YouTube
videos, but YouTube channels that produce videos can choose to include coun-
try location in their channel profile. Despite having a substantial population and
being the nationality of the founders of Forsage, Russia was not a large source of
Twitter or Facebook content, although the country did produce a large number
of YouTube videos and content about Forsage.

The high number of Forsage users in the Philippines may explain why the
Philippines SEC was first to take action to raise awareness about the malicious
intent behind Forsage [21,22]. Likewise, Nigeria has high penetration rates for
both cryptocurrency and Forsage, and has recently banned cryptocurrency pay-
ments from its banking sector [4]. While each of these five countries had high

https://etherscan.io/address/0xb19dA4fd9f9A73A5A564C66D229B1E7219e8bdbe
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Fig. 8. Forsage social media interaction heat map by country. Country labels indicate
the ISO-alpha-3 name of the country and the number of Forsage users per 100k people
in that country. The data reflects the public location of members in a popular Forsage
Facebook group and Twitter users that tweeted about Forsage. Countries depicted in
gray had no Forsage interaction. The intensity of color from white to red is scaled
linearly from the 0th percentile of data to the 90th percentile, and everything above
90% of the data is colored the same shade of dark red. This slightly understates the
relative depth of penetration in outlier countries like Nigeria. (Color figure online)

Forsage activity in absolute terms, they also have large populations. We thus
normalized our Facebook and Twitter data relative to the specific populations
on each service for each country (i.e., the number of people per country divided
by a public estimate of the number of Facebook and Twitter users in that coun-
try) to get a sense of the number of Facebook and Twitter users, per 100,000
users, that interacted on each platform with the Forsage topic. Statistics for
the number of Facebook and Twitter users per country came from Miniwatts
Marketing Group, WeAreSocial, and Hootsuite [13,15]. We did not include the
YouTube data because the sample size was too small. We gave equal weight to
the numbers for Facebook and Twitter to produce the heat map in Fig. 8.

Our normalized data showed that Forsage is most popular in Nigeria and the
African continent, the Philippines, and Venezuela. Greenland, the Seychelles, and
some Caribbean islands may be outliers due to small population sizes. Google
Trends traffic and geographic data agree with our conclusions: Google Trends
shows the greatest amount of population-adjusted search traffic in Nigeria and
surrounding West African countries, and shows a peak in user search interest in
July 2020, which is when we observed a similar peak in transactions involved
Forsage in Fig. 2.

Familiarity with cryptocurrency does not appear to have any correlation with
interest in Forsage: The 2021 Statista Global Consumer Survey [9] lists the top
countries globally with the reported highest number of cryptocurrency users.
Vietnam (#2) and China (#3) both had relatively high levels of cryptocurrency
use, but low levels of interest in Forsage. Similarly, familiarity with cryptocur-
rency does not appear to prevent people from falling for the Forsage scam, as in
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the case of Nigeria and the Philippines (#1 and #3 globally for cryptocurrency
usage). Nigeria may be a special case, as Statista found that almost a third of
Nigerians said they used cryptocurrency, far beyond most countries. It is also an
outlier in the data for interest in Forsage.

6 Related Work

Previous measurement studies of particular attack instances have been critical
to the community’s understanding of adversarial behaviour. Examples include
Antonakakis et al.’s analysis of the Mirai botnet [5] and Pearce et al.’s charac-
terisation of the ZeroAccess click-fraud botnet [26]. Case studies of other topics,
including [17,19,37], have also been impactful to the security community.

Past research has examined scams running on Ethereum and Bitcoin. For
Ethereum-based scams, Chen et al. [11] used data mining and machine learning
to detect Ponzi schemes while Yu et al. [36] modeled Ponzi scheme identification
and detection as a node classification task. Bartoletti et al. [7] compared the code
and promotion of Ethereum Ponzi schemes, finding that scammers use the public
nature of Ethereum to inspire confidence in their victims. Vasek et al. [31] and
Bartoletti et al. [6] both worked to detect and model Bitcoin-based scams. These
included Ponzi schemes that collect Bitcoin from victims, the former finding
that most scams last less than one week. Paquet-Clouston et al. [25] and Xia et
al. [33] studied specialized scams that leverage Bitcoin payments, namely threats
of revealing intimate data and fake fundraising for COVID-19 research and relief.

Apart from our work, studies of existing scams’ migration onto blockchains
include [14,16,34], which examine chat-service based pump-and-dump schemes
on cryptocurrencies. Some scams are new to blockchains, such as honeypot smart
contracts, which include financial traps within the contract itself [29].

In past work characterizing the victims of blockchain-enabled scams, Phillips
et al. [27] showed that victims tend to send funds from fiat-accepting cryptocur-
rency exchanges, making the scams accessible to novice cryptocurrency users.
They also found that scammers often create multiple similar scams running in
parallel. Yousaf et al. showed that scammers use shifting services to convert
Ether into other coins to thwart tracking by law enforcement [35].

7 Conclusion

We presented an in-depth measurement study of Forsage, at one time the second
most actively used contract in Ethereum. Our study required multiple data-
gathering approaches and the creation of new open source tools to analyze the
Forsage contract. These tools enabled us to provide detailed insights into the
mechanism design, transaction costs, and other features of Forsage.

A key finding is that the vast majority of Forsage accounts—over 88%—
incurred losses, for a combined total loss of 305,785 ETH. The contract owner
and a few other accounts at the top of the pyramid earned over 5000 ETH
(well over 1M USD). Social media analysis led us to discover the existence of
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geographically distinct communities, with scammers based mainly in Russia and
victims mainly in Nigeria, the Philippines, Venezuela, Indonesia, and India.

Public warnings about Forsage by entities such as the Philippines SEC
appeared to have little effect, as the creators continued to launch new lucra-
tive variants, some on blockchains other than Ethereum. On August 1, 2022,
some months after the initial release of our work, the SEC charged eleven mem-
bers of Forsage including the founder [28] for operating a pyramid scheme. Since
then, the website has been partially blocked. At present, it is inaccessible in some
countries, such as the United States and United Kingdom, but still accessible in
others, such as Switzerland.

Acknowledgements. This work was funded by NSF grants CNS-1704615, CNS-
1933655, CNS-2112751 and generous support from IC3 industry partners.
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Abstract. In recent years, considerable efforts have been directed
toward investigating the large amount of public transaction data
in prominent cryptocurrencies. Nevertheless, aside from Bitcoin and
Ethereum, little efforts have been made to investigate other cryptocur-
rencies, even though the market now comprises thousands, with more
than 50 exceeding one billion dollars of capitalization, and some of them
sporting innovative technical solutions and governance. This is the case
for Polkadot, a relatively new blockchain that promises to solve the short-
comings in scalability and interoperability that encumber many existing
blockchain-based systems. In particular, Polkadot relies on a novel multi-
chain construction that promises to enable interoperability among het-
erogeneous blockchains.
This paper presents the first study to formally model and investigate user
transactions in the Polkadot network. Our contributions are multifolds:
After defining proper and pseudo-spam transactions, we built the trans-
action graph based on data collected from the launch of the network, in
May 2020, until July 2022. The dataset consists of roughly 11 million
blocks, including 2 million user accounts and 7.6 million transactions.
We applied a selected set of graph metrics, such as degree distribution,
strongly/weakly connected components, density, and several centrality
measures, to the collected data. In addition, we also investigated a few
interesting idiosyncratic indicators, such as the accounts’ balance over
time and improper transactions. Our results shed light on the topology
of the network, which resembles a heavy-tailed power-law distribution,
demonstrate that Polkadot is affected by the rich get richer conundrum,
and provide other insights into the financial ecosystem of the network.
The approach, methodology, and metrics proposed in this work, while
being applied to Polkadot, can also be applied to other cryptocurren-
cies, hence having a high potential impact and the possibility to further
research in the cryptocurrency field.
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1 Introduction

Over the years, blockchain-based cryptocurrencies have witnessed rapid accel-
eration in terms of protocols evolution, market capitalization growth, and
widespread public and business acceptance. Consequently, considerable efforts
have been directed toward investigating the large amount of transactions data in
cryptocurrency blockchains. Many complex systems are modeled using network
science (or complex network theory) in various applications, such as computer
networks, social networks, linguistics and even biology. By applying graph anal-
ysis to cryptocurrency networks, researchers were able to discover groundbreak-
ing insights, uncover interesting properties, and characterize major activities on
these systems. When these techniques have been applied to cryptocurrencies,
some works revealed security concerns manifested in the form of unusual eco-
nomical patterns. For instance, in Bitcoin, Ron and Shamir (2013) [20] discov-
ered abnormally long and “fork-merge” chains in the transaction graph, which
led to the identification of some malicious entities possibly abusing Bitcoin for
money laundering, fraud, or other illegal activities. Graph analysis also allows
identifying the topological properties of the network; where most cryptocurrency
networks are usually found to exhibit small-world structures and power-law dis-
tributions [7]. Other studies used clustering algorithms to find hidden relations
between different accounts to deanonymize users [14] and investigate unknown
transaction patterns [4]. So far, all these techniques have been applied only to the
two most diffused cryptocurrencies, Bitcoin and Ethereum. However, the current
cryptocurrency landscape includes several other projects that, for capitalization
and architectural advantages, certainly deserve the same level of attention. More-
over, these recent proposals also introduce elements of novelties, since they try to
address the technical limitations the first proponents have discovered with time,
as well as novel governance mechanisms. These latter features, in particular,
require to be investigated with scientific method.

In this study, we investigate Polkadot, a recent cryptocurrency launched in
May 2020. Despite its recent mint, it has successfully secured a spot amongst the
top 10 cryptocurrencies by market capitalization1. Polkadot is known for being
a fully “sharded” blockchain, whose design principles are based on sharding
[18,23]—a database splitting technique—that enables multiple chains to process
their transactions in parallel. Each blockchain shard is called a “parachain”
which is connected to the Relay Chain. Parachains are heterogeneous blockchains
that can be customized per project needs; for example, to host smart contracts or
bridges [24]. The Relay Chain acts as the main hub of the system, orchestrating
the network’s Nominated Proof-of-Stake (NPoS) consensus [2] which requires
the cooperation of DOT holders, validators (block authors), and nominators.
Furthermore, Polkadot serves as an interoperability platform; i.e., it allows cross-
communication between heterogeneous blockchains including external ones, such
as Bitcoin and Ethereum.

1 Data sourced from https://coinmarketcap.com/.

https://coinmarketcap.com/
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Due to the novelty of multi-chains, there is a definite need to investigate
their network operations, especially within an active ecosystem such as Polka-
dot. Despite achieving a good standing in the market, Polkadot has not yet
received the same level of attention from academia commanded by other pro-
posals, such as Bitcoin and Ethereum. In fact, to the best of our knowledge,
this paper presents the first study on Polkadot that leverages graph analysis to
characterize its transactions network. In detail, we investigate the Polkadot net-
work using graph analysis to identify major network characteristics, including,
but not limited to, statistical and topological properties. We examine how DOT,
Polkadot’s native currency, are transferred between user accounts. We collect all
transactions that were committed on Polkadot’s Relay Chain from Genesis to
#11,320,000. Although it is to be noted that the transfer function was enabled
on Polkadot on August 18, 2020 (block height #1,205,128). From the data, we
construct the transactions graph and measure common graph metrics, such as:
degree distribution, strongly/weakly connected components (SCC/WCC), and
degree centrality. We believe that our analysis, enriched with data driven con-
siderations, can help forecast the prospect growth and uses of both Polkadot and
similar multi-chain blockchains, as well as opening up a few novel investigation
avenues.

Contributions. Our main contributions are as follows:

1. We model the transactions among regular users in the Polkadot network.
To this end, we first provide a formal definition of a Polkadot transaction,
further divided into proper and improper transactions. Then, we model the
transactions corresponding to money flow as a weighted directed multigraph.

2. We parse the Polkadot ledger, from the genesis block (May 2020) to block
11,320,000 (July 2022), to build the transaction graph representing the money
flow among users.

3. We analyze the transaction graph by measuring global and local metrics. We
obtain many new observations and insights on the structure of the network,
useful to better understand the Polkadot ecosystem.

4. We identify and quantitatively analyze two different types of abnormal trans-
actions, that we call self-loop and zero-transfer transactions, highlighting their
patterns in terms of daily frequency and transaction values.

5. We empirically verify that Polkadot is affected by the rich get richer problem
by studying user balances over time.

6. To the best of our knowledge, this is the first study that, leveraging graph the-
ory and network science, analyzes transaction data and measures statistical
properties of the Polkadot network.

7. The code used to collect the data and build the graph analyzed in this study
is released as open source2.

2 https://github.com/m-caprolu/Polkadot-graph-analysis.

https://github.com/m-caprolu/Polkadot-graph-analysis
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Paper Organization. The remainder of the paper is organized as follows.
Section 2 explores related work in the literature. We model the transactions
among Polkadot users in Sect. 3, then we describe the process of building the
transaction graph in Sect. 4. In Sects. 5, 6, 7, and 8, we present and discuss the
results of our analysis. Lastly, we report some concluding remarks in Sect. 9.

2 Related Work

Several works utilized graph-based analysis to investigate prominent blockchain-
based networks, mainly Bitcoin and Ethereum [15,21]. Graph-based modeling
allows to reveal insights into cryptocurrency transactions and user interactions,
including other important tasks such as: cryptocurrency price prediction [13],
address clustering [9,16,22], user deanonymization [10], attack forensics, detec-
tion of malicious activities such as phishing scams, counterfeit tokens, or money
laundering [6], and detection of anomalies (e.g., in smart contracts execution)
[5,11]. The graphs are built from the blockchains’ publicly available transactions
data. However, the architectural differences existing between transaction-based
blockchains (e.g., Bitcoin) and account-based blockchains (e.g., Ethereum and
Polkadot) require different graph analysis approaches. In this paper, we focus on
account-based methods.

In account-based networks, native currency or tokens are represented as a
balance that can be deposited to or withdrawn from the user’s account. Each
transaction can have only one input and one output. A node in the transaction
graph represents a unique address and an edge represents a transaction. Since
there are no works thus far pertaining to Polkadot, we summarize works from the
literature about Ethereum. [8] found that Ethereum transactions volume, com-
ponents size, incoming or outgoing transaction relations can be approximated
by a power-law distribution, which exhibits a heavy-tailed structure. Addition-
ally, [15] found that the growth rate (size of nodes and edges) and graph density
are correlated with the price of ETH. Also, the degree distribution of the net-
work follows a power law, and the transaction network is non-assortative. Non-
assortativity means that nodes do not tend to communicate with only low-degree
or only high-degree nodes [17].

There are a few works in the scientific literature that investigate Polkadot.
The work in [1] presented a data-driven study that details the architecture of
Polkadot and identifies several of its limitations and design contradictions. Their
investigation shows that due to the restriction on the number of allowed val-
idators in the network, a high minimum stake requirement was enforced which
varied with the size of the validators set. In addition, a majority of the validators
were found to charge 100% commission, thus excluding nominators from mon-
etary incentivization and violating the basic principles of the NPoS economic
security. Our work investigates Polkadot from a different perspective through
graph-based modeling. Graph analysis allows us to extract refined insights into
not only the structure of the network but also the transaction patterns, allowing
us to highlight a few abnormal features in the transactions graph.
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3 Modeling the Polkadot Transaction Graph

In this section, we model the economic interactions among users in the Polka-
dot environment. To this end, we first formally define a transaction, either in its
proper or abnormal form. This distinction allows us to formally separate transac-
tions that have effectively moved money between two accounts from those that,
even if successful, have not had any real effect on the involved balances.

3.1 Polkadot Transactions

Polkadot uses the term “extrinsics” to refer to state changes emerging from
the outside world, which include balance transfers. However, for the sake of
simplicity, we refer to balances.transfer extrinsics as “transactions” in the
rest of the paper. We define a transaction in Polkadot as follows:

Definition 1 (Transaction). A transaction is a signed extrinsic submitted
to the blockchain by a user account via a balances.transfer call or part of a
utility.batch call, where its general attributes are:

– signed = True;
– moduleid = “Balances”;
– and, callid in(“transfer”, “transferkeepalive”, “transferall”);

Furthermore, transactions can be formally divided as proper and improper,
according the the definitions provided in the following. Let A be the set of all
addresses present in the Polkadot ledger, and ExtrinsicSuccess is the system
event triggered if the transaction is successful. We model a transaction t as a
tuple (In,Out, λ, τ, φ), where In,Out ∈ A and λ, φ ∈ R

+, meaning that the
account In is paying, at the time τ , λ DOTs to the account Out. In addition, φ
represents the fee payed for issuing the transaction.

Definition 2 (Proper Transaction). We say that t is a proper transaction
if it satisfies the following properties:

– ExtrinsicSuccess = 1;
– V alue > 0; and,
– In �= Out.

Definition 3 (Pseudospam Transaction). We say that t is a pseudo-spam,
also called improper, transaction if it satisfies the following properties:

– ExtrinsicSuccess = 1; and,
– V alue = 0 or In = Out.

In other words, a transaction is considered proper when the given transaction
amount, greater than zero, is withdrawn from the sender’s account and deposited
to the receiver’s account successfully. Conversely, an improper transaction is a
successful transaction with no impact on the account’s balance other than the
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deduction of the transaction fee, because the sender and receiver addresses are
the same and/or the value of the transaction is 0.

Following our analysis of the entire Polkadot ledger, we have identified two
forms of pseudospam transactions: (1) zero transfers where the transaction value
is zero DOT; and, (2) self-loops where the destination address is the same as
the sender’s address. It is important to emphasize that an improper transac-
tion is not a failed transaction; in fact, in the Polkadot network, all transactions
are stored on the blockchain, even if they have failed. However, only a success-
ful transaction returns an ExtrinsicSuccess. Consequently, we do not consider
failed transactions as abnormal. Examples of failed transactions include: trans-
actions whose destination address was not found, or those attempting a balance
transfer while having insufficient funds to cover the transaction fee or the transfer
value. In addition, we disregard Balances extrinsics that called methods intended
for use by Root origin only (Note: Sudo user was removed only after the NPoS
scheme was enabled in June 2021). Even though the use of sudo-level functions
might have had a malicious intent, such transactions were scarcely found in the
dataset, and more importantly, they have failed.

3.2 Polkadot Transaction Graph

Since Polkadot is an account-based blockchain, similar to Ethereum, the money
flow among users can be formally modeled as a weighted directed multigraph
M := (A, T ), where A is the set of all addresses, i.e., user accounts, and T is the
set of successful transactions, as defined in definitions 2 and 3.

Figure 1 shows an example of the Polkadot transaction graph. A multi-graph
allows an arbitrary number of edges to exist between a pair of nodes in any
direction (e.g., Nodes A-B) and also supports self-loops (e.g., Node D). In this
example, Node C is the most central node—all other nodes are connected through
it. The graph is weighted, where weights are attributes that describe the graph’s
edges. The attributes include the transaction value in DOT and transaction
timestamp. Incorporating timestamps in the graph analysis is essential for inves-
tigating temporal properties and evolution of the network, e.g., monthly progress.

4 Building the Transaction Graph

To build the transaction graph, we followed a methodology that includes multiple
steps. First, we parsed the Polkadot ledger and we imported the transaction
data into a relational database. Then, we queried from the database all the
transactions that met the conditions listed above in Definition 1. Finally, using
the NetworkX3 python library, we built a MultiDiGraph and we analyzed it
under different perspectives.

For the experimental part of this work, we set up a development environment
on a DELL workstation, running a Windows 10 PRO OS, that includes a python

3 https://networkx.org/.

https://networkx.org/
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Fig. 1. Graph Representation of a Weighted MultiDiGraph in Polkadot.

(v3.10.2) IDE, a MySQL database (v8.0.28), and a Polkadot full node. The hard-
ware specifications are as follows: Intel(R) Core(TM) i9-9900KS CPU@4 GHz,
64 GB RAM, and 2 TB SSD. We configured the full Polkadot node on an
Ubuntu 20.04 LTS running on the Windows Subsystem for Linux (WSL), since
Substrate—the framework on which Polkadot is built—is not natively compat-
ible with Windows. We run the node in archive mode to access past states of
the chain at any point in time. After fully syncing the blockchain storage on
the node, we query and parse the blocks data into the MySQL database, start-
ing from genesis and ending with block #11,320,000. Nonetheless, the actual
analysis of transactions data starts at block #1,205,128, because Polkadot bal-
ance transfers were enabled only after the specified block height. Even though an
archive node takes up large disk space (the collected data corresponding to 11.32
million blocks occupies up to 457 GB on disk), we opted for running our own
node instead of querying the data from publicly available RPCs to guarantee
data integrity and validity.

We implemented a software that comprises two main components: (1) a
blockchain data parser; and (2) a graph analyzer. Our code base in Python
follows a modular approach: The data parser queries blocks stored on Polka-
dot’s Relay Chain, along with their extrinsics and events data, and stores the
collected data on a MySQL database, whereas the graph analyzer generates a
directed multi-graph abstraction of the transactions network. From the gener-
ated graph, the analyzer computes relevant metrics that define the network struc-
ture and characteristics. We also perform statistical analysis of the transactions
data through direct SQL queries. To interface with the Polkadot node, we use
two open-source Python libraries implemented by Parity: substrate-interface
(API for Substrate nodes, which provides different methods for querying data
storage and interacting with the chain) and scalecodec—needed for decod-
ing/encoding SCALE Codec format that is used by the Substrate runtime. More-
over, we choose NetworkX library to perform the network analysis in Python,
since it offers a vast choice of algorithms and tools to produce various metrics,
including but not limited to: clustering, connectivity, assortativity, connected
components and graph flows. It also supports graph visualization and serializa-
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tion into different formats such as GraphML, JSON, GIS Shapefile, or a Python
Pickle object. Our graph builder module relies on graph pickling functionality
to store the graph object and deserialize it for faster processing.

5 Transaction Graph Analysis

In this section, we perform an in-depth study of the transaction network based
on various graph properties which can be classified as global properties, i.e.,
related to the whole graph, and local properties, i.e., related to single nodes. In
the following section, we elaborate on what the metrics suggest in terms of the
network’s structure.

Global Properties. The graph has a total of 2,149,679 nodes (correspond-
ing to unique addresses) and 7,613,325 edges (corresponding to transactions),
which include pseudospam transactions to be explored in more detail in the
next section (Sect. 6). In the following analysis, we omitted pseudospam trans-
actions then computed the graph metrics accordingly. Excluding pseudospam
transactions reduced the count of edges and nodes by 53,121 (transactions) and
1,722 (accounts), respectively. This is an interesting finding as it suggests that
1,722 accounts have been involved with only pseudospam transactions through-
out the history of the network. Among the global properties, we studied the
graph’s connected components, in addition to assortativity, reciprocity, density,
clustering, and transitivity, displayed in Table 2.

Connected Components. Graph connectivity is an important measure of the
network’s resilience. A graph is said to be connected if there exists a path between
every pair of nodes. A connected component is a subgraph in which every node is
reachable from every other node. For Strongly Connected Components (SCCs),
edge direction is taken into account, whereas for Weakly Connected Components
(WCCs), direction is ignored. In Fig. 2, we plot the distributions of SCCs in
blue and WCCs in green. For both, the result demonstrates that the network
is composed of a single giant component—the largest connected subgraph—and
many, much smaller components. The components size distribution resembles
power-law distribution and is heavy tailed as shown in Fig. 2. This indicates
that the network has a few central nodes (hubs) involved in a very large number
of transactions with other nodes, forming a giant connected subgraph; while,
the majority of the other nodes transact with just a small number of nodes. The
hubs in this network carry out a significant role; that is, connecting a significant
number of users together. Table 1 lists the node composition of the giant SCC and
WCC components, each consisting of 62% and 99.97% of the nodes, respectively.
Almost all nodes in the network can be reached from another node by some path,
ignoring edge direction.

Degree Assortativity Coefficient. Assortativity measures the correlation between
nodes in the graph with respect to their degree. For Polkadot’s transactions net-
work, the assortativity coefficient is reported as -0.255, indicating weak disas-
sortativity. A negative assortativity value indicates that the graph’s degrees are
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Table 1. Summary of Graph Connected Components: SCC and WCC

#SCC Giant SCC #WCC Giant WCC

#Nodes (% of nodes) #Edges (% of edges) #Nodes (% of nodes) #Edges (% of edges)

806747 1,332,655 (62%) 5,870,608 (77.7%) 257 2,147,265 (99.97%) 7,559,472 (99.99%)

Table 2. Polkadot Transactions Graph’s Global Properties

#Nodes #Edges Assortativity Reciprocity Density Clustering Transitivity

2,147,957 7,560,204 –0.255 0.017 1.64e-6 0.256 9.07e-6

negatively correlated. Notably, it indicates that high-degree nodes (aka ‘hubs’,
such as crypto market exchanges) tend to form connections with nodes of lower
degrees and that the network’s topology does not behave like the so-called “rich
club” phenomenon [25]. High degree nodes connect with smaller ones rather than
with similarly high degree nodes.

Reciprocity. Reciprocity measures the likelihood of nodes in a directed network
to be mutually linked (i.e., having bidirectional edges) [12]. Reciprocity is com-
puted as 0.017, which is a value approaching 0. This indicates that just a small
number of nodes transact in both directions. Even though the majority of the
nodes are somehow connected in Polkadot, they tend to transact mostly in a
uni-directional manner.

Fig. 2. Connected Components Size Distribution

Density, Clustering, and Transitivity. These three metrics are computed over the
undirected graph. Density is the ratio of existing edges divided by the maximum
possible edges in a graph [12]. The small density value (1.64e-6) indicates a
less-dense graph that has more nodes than edges. Meaning, it is likely that
users tend to create new accounts while executing new transactions to increase
their anonymity [15]. Global clustering coefficient evaluates the extent to which
nodes in a graph tend to cluster together [5]. The coefficient approximates to
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0.256 (≈ 1
4 ), indicating that user accounts are likely to form clusters; i.e., if two

accounts transact with a third account, it is likely that the former will also
transact with the other two. Transitivity can be used to find the community
structure in blockchain graphs [12]. The transitivity of the graph, a small value
in the order of 10−6, suggests the lack of community structure possibly due to
the presence of high-degree nodes that are “loner-stars” connected mainly to
low-degree nodes.

Local Properties. Next, we investigate common local properties which are
node degree distribution (including in- and out- degree) and degree centrality.

Fig. 3. Transactions Graph In-Degree and Out-Degree Distribution

Degree Distribution. For cryptocurrency networks, the degree distribution pro-
vides a high-level outlook about the transaction relations and how nodes are
connected in the network. The in-degree and out-degree values of a node corre-
spond to incoming and outgoing transactions, respectively. Figure 3 shows the
in- and out- degree distributions, in log-log scale, of the transaction network.
For both distributions, the power-law model (y ∼ x−α) provides a reasonable
fit. The tail/end segment is heavier than pure power law distributions, indicating
that the number of high-degree nodes (influential nodes, e.g., market exchanges)
is relatively much smaller than low-degree nodes (e.g., regular users). The larger
the value of α, shown in Fig. 3, the less variable the node degrees are.

Degree Centrality. Centrality measures help to identify the most important
nodes in a network. Table 3 lists the top 10 accounts based on normalized degree
centrality, which is the fraction of addresses each node is connected to. We
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also list the in-degree and out-degree coefficients whose sum adds up to the
degree value. The max degree centrality belongs to address 1exaAg...T6EGdE.

Upon further search, we found that the address has been identified by the online
community as belonging to Binance [19], a prominent cryptocurrency exchange
marketplace. This Binance node has been inactive since January 2022; how-
ever, before it went inactive, it transferred large sums of DOT to a new address
1qnJN7FV iy3H...8GT7 (listed in row 3), which we believe is the new Binance
node—it has achieved high degree centrality in a relatively short time span.

Table 3. Top-10 Most Important Nodes Evaluated By Degree Centrality

# Account Known Identity/Role Degree In-degree Out-degree

1 1exaAg2VJRQ...EGdE Binance 0.614 0.133 0.481

2 12xtAYsRUrm...XkLW Nominator 0.275 0.149 0.126

3 1qnJN7FViy3H...8GT7 Binance 0.227 0.045 0.182

4 15kUt2i86LH...XAkX N/A 0.163 0.052 0.111

5 15SbxvcrYSQz...jy82 N/A 0.150 0.069 0.081

6 16hp43 × 8DUZt...4oEd N/A 0.090 0.044 0.046

7 14Kazg6SFiUC...dQhv N/A 0.090 ≈ 0 0.090

8 12wVuvpApgp...Lchb N/A 0.065 0.065 ≈ 0

9 16HNPJqej7E...L8cj N/A 0.049 0.018 0.031

10 157PD8GV7pJ...B2KR N/A 0.049 0.019 0.030

6 Statistical Analysis of Self-loop Transactions

The collected data contains 31,961 (0.41%) self-loop and 4,677 (0.06%) zero-
transfer transactions out of 7,613,325 transactions. Both of these transaction
types account for much less than 1% of all transactions; however, it is important
to investigate them since they do not comply with typical economical interactions.
In this paper, we focus mostly on self-transfers since they occur more often.

First, we investigated self-loop transactions in the literature. We found one
mention in [12], where the authors interpreted the presence of self-loops in
Ethereum according to two trivial scenarios: users verifying if it is possible to
send Ether to themselves, or due to a mistake while specifying the receiver
address. However, in the case of Polkadot, further investigation is needed to
understand the cause of this trend, as the frequency of those transactions sug-
gests different scenarios.

Figure 4 shows the value and volume of self-loop transactions over time. Self-
loop transactions were found to exist on a daily basis with arbitrary values
(sometimes constant and sometimes following a pattern) and occur throughout
the day. Figure 4a reveals interesting patterns in self-loop values and peculiar
user behaviors. For example, 1 is the most frequent transaction value, constantly
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used over time, together with other multiples and sub-multiples of 10. In addi-
tion, the figure also highlights the values adopted by the two accounts with the
highest number of self-loops. The first one, represented with red asterisks, issued
635 transactions over three months, with different values, sometimes decreasing
according to a specific pattern. The second one, represented with blue circles,
issued 145 transactions over a year, almost all with the same value of 0.0001.

From Fig. 4b, instead, it can be observed that self-loop transactions appear
on a daily basis in the Polkadot ledger. In particular, every day we can observe
around 50 self-loops, with a few huge spikes, and almost the double during the
last observed months.

Fig. 4. Polkadot Self-loop Transactions: (a) Values over Time — all users (black circles)
and the two most active accounts (red asterisks and blue circles); (b) Volume over Time
(Color figure online)

7 Analysis of Polkadot Accounts’ Balance

We investigated the distribution of the total balance in DOT for all Polkadot
accounts. Overall, there is a total of 1,042,149 active accounts in the network as of
July 25, 2022. As shown in Fig. 5a, the distribution of DOTs over all accounts in
Polkadot indeed resembles power-law distribution with a heavy-tailed structure.
The majority of the accounts (over 1 million accounts) hold small balances, in
the range 0-499K DOTs, and only a few own balances float in the range from
500K to over 50 million DOTs—50M DOTs have a market value of 300+ millions
USD as of the 19th of October 2022.

We also examined the percentage of DOT held per account type (See Table 4):
nominators, validators, council members, and others which may include regular
users and proxy accounts. Proxy accounts are addresses created to perform a
limited number of actions on behalf of the main account. Nominators own the
largest fraction of DOT (≈ 57%), whereas validators on the other hand hold
only ≈ 0.1% of all available DOTs.
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Table 4. Balance Share per Account Type (in July 2022)

Type Count Share

Nominators 21, 404 57.275%

Validators 297 0.152%

Council 13 0.006%

Others 1, 020, 435 42,567%

The previous observation is interesting given that, as shown in [1], over 60%
of the validators in April 2022 charged 100% commission and retained block/era
rewards to themselves. Hence, it was expected that validators should compar-
atively have higher balances, but in reality validators contribute little (around
0.2%) to total staking. We find that the typical interaction of nominators and
validators in Polkadot is as depicted in Fig. 6. Nominators declare their intent to
vote for their validator(s) by staking their DOTs. The validators collect a large-
enough stake from nominators that allows them to join the active set. After
every era (24 h), the era rewards are relatively equally distributed to all valida-
tors. 100%-commissioned validators retain rewards to themselves, whereas other
validators can trigger a payout action to nominators according to their share in
the total stake. In the case of Binance—the world’s largest crypto exchange [3],
the rewards amassed by its validators are forwarded to an intermediary address
(called rewards address) which then forwards all its balance to the exchange
address (top central node as listed in Table 3). We would like to point out that
this behavior does not violate the protocols set out by Polkadot, nor does it pose
major security risks because block production is not affected by validator stake
[24]. These observations only identify limitations towards a ‘true’ decentraliza-
tion of the network, due to the presence of highly capitalized, centralized, crypto
exchanges [1].

To investigate the “rich get richer” phenomenon in Polkadot, we measured
the users’ balance evolution over time. A user is considered rich if his/her balance
is higher than the average user balance. Formally, the hypothesis is that the k
richest users at time t are richer that the k richest users at time t′ < t [7].
To verify this hypothesis, we first define the Wealth Ratio (wr) as the average
balance of the k richest users over the average balance of all the other (|A| − k)
active users in the Polkadot network. Then, we check if the k richest accounts
in Mt are richer than the k richest accounts in Mt′ by computing wr over time,
as follows:

wrt =

∑
a∈Kt

bt(a)
|Kt|

∑
a∈{At\Kt}

bt(a)
|At\Kt|

(1)

where bt(a) is the balance of account a at time t, and At and Kt are the set of all
active accounts and the set of the k richest accounts, respectively, at time t. With
Mt we refer to the graph induced by transactions having timestamp less than t.
For our investigation, we set k = 100, while t varies appropriately to consider
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Fig. 5. Analysis of Polkadot Accounts’ Balance. (a) Account balance distribution; (b)
Ratio between the Top-100 richest accounts average balance with respect to all (Active)
accounts’ average balances.

monthly snapshots of the Polkadot ledger over the observation period. Figure 5b
shows that wr clearly increases over time. This means that the disparity between
richest nodes and all the other accounts grows over time, empirically confirming
the rich get richer hypothesis.

8 Discussion

It is a common phenomenon for real-world networks to contain hubs that are
highly connected to many nodes. The presence of hubs gives the degree and
component size distribution a long (heavy) tail, indicating that: there are a few
nodes, with a much higher degree than most other nodes, also at the center of
the network’s giant components. These characteristics, specifically the power law
approximation, are associated with what is known as a scale-free network [8].

Based on what discussed in Sect. 5, we can conclude that Polkadot’s topol-
ogy resembles a scale-free network, where at its center is Binance, a crypto
market exchange, that dominates the network in terms of centrality and influ-
ence. As well-known in the literature, networks with power law degree distribu-
tions may introduce potential vulnerabilities. Indeed, if the central hubs, or the
nodes with high degrees, are controlled or compromised, the entire network’s
functionality will get affected [8]. Having exchange centers and mining/staking
pools with stronger connectivity than other nodes eventually leads to concen-
tration/centralization of power, which is a phenomenon that is not desirable in
decentralized blockchains. In the specific case of Polkadot, the most central entity
in the network, Binance, also actively participates in the consensus protocol
with nominator/validators accounts, potentially exacerbating the vulnerabilities
above mentioned.
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Fig. 6. Typical Interaction among Binance-supported validators, Binance-owned
accounts, and regular users.

Other interesting insights on the Polkadot environment come from Sect. 7,
where we showed that about 57% of DOT’s total supply is owned by nomina-
tors, which accounts for only 2% of active users. In addition, we found that
the disparity between rich accounts and regular users is increasing over time,
demonstrating that Polkadot suffers from the rich get richer phenomenon.

9 Conclusion and Future Work

To the best of our knowledge, this study is the first one to formally model
Polkadot’s transactions data, probing statistical and structural properties of the
network, and investigating its properties. By means of graph analysis, we have
identified that Polkadot resembles a scale-free network and discovered the pres-
ence of a hub, attributable to Binance, dominating the network in terms of
centrality and influence. We have also identified abnormal transaction patterns,
which we term “pseudo-spam”, that include two categories: self-loops (sender
address is the same as the receiver address) and zero-transfers (transfer value
equals to zero DOT). Both categories effectively have no economic value or
impact on the owner’s account balance. However, they still frequently appear in
the ledger and, sometimes, exhibit fuzzy patterns that deserve further investi-
gation in future work. In addition, we investigated the users’ balance over time,
finding that the distribution of DOT over all accounts resembles a heavy-tailed
power-law distribution, and that the Polkadot network, as many other cryp-
tocurrencies, is affected by the rich get richer problem.

The contributions provided in this paper, other than shedding light on a
novel proposal in the cryptocurrency ecosystem (multichains), also highlight
a few existing critical structural issues and point out transactions’ suspicious
patterns, possibly stimulating further research in the field.
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Abstract. The wide success of Bitcoin has led to a huge surge of alterna-
tive cryptocurrencies (altcoins). Most altcoins essentially fork Bitcoin’s
code with minor modifications, such as the number of coins to be minted,
the block size, and the block generation time. In this paper, we take a
closer look at Bitcoin forks from the perspective of vulnerability patch-
ing. By mining data retrieved from the GitHub repositories of various alt-
coin projects, we estimate the time it took to propagate relevant patches
from Bitcoin to the altcoins. We find that, while the Bitcoin development
community is quite active in fixing security flaws of Bitcoin’s code base,
forked cryptocurrencies are not as rigorous in patching the same vulner-
abilities (inherited from Bitcoin). In some cases, we observe that even
critical vulnerabilities, discovered and fixed within the Bitcoin commu-
nity, have been addressed by the altcoins tens of months after disclosure.

Keywords: Bitcoin forks · Vulnerabilities · Patch propagation

1 Introduction

The wide success of Bitcoin has led to an explosion in the number of so-called
“altcoins”, i.e., cryptocurrencies designed as a fork of the Bitcoin-core code base.
Altcoins exhibit minor differences to Bitcoin, e.g., some feature a different block-
generation time (e.g., Dogecoin and Litecoin), use a different hash function (e.g.,
Litecoin and Namecoin), or impose a different limit on the supply amount (e.g.,
Dogecoin, Litecoin). Despite these subtle differences, most altcoins share—to
a large extent—the same technical foundations of Bitcoin. In the past decade,
research has shown that Bitcoin (and many of its descendants) are vulnerable
to a wide variety of attacks [4]. However, owing to strong development support,
the Bitcoin-core software is routinely monitored and promptly patched (even
including research results). Early studies about the security of proof-of-work
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blockchains [10] already hinted that some altcoins might offer weaker security
compared to Bitcoin, owing to the ad-hoc parameters they adopt.

In this paper, we investigate the security of altcoins from the perspective of
vulnerability patching. To this end, we select prominent vulnerabilities reported
in Bitcoin, and study how their patches were propagated through (Bitcoin-based)
altcoins. Our approach relies on the inspection of GitHub repositories of popu-
lar cryptocurrencies, to identify relevant bugs and corresponding patches in the
commit history of GitHub-hosted altcoin projects. Concretely, we study whether
and how quickly various altcoin projects have addressed disclosed security issues.
Unfortunately, retrieving detailed timing information associated to code changes
in GitHub emerges as a challenging task. The reason is that most patches are
taken directly from the main project repository and applied to the fork via
a rebase operation which only exposes a reliable timestamp for the original
patch (applied to the main project), and not the actual time when the patch
was ported (to the fork) [5]. Moreover, the original commits are no longer refer-
enced after rebase occurs. As Git prunes unreferenced commits periodically, the
timestamps associated to a given patch are lost with every subsequent rebase
invocation. While prior studies on Bitcoin forks rely on code similarities to com-
pare altcoins’ software with Bitcoin Core [14,15], they cannot infer patches that
were ported via rebase.

To overcome this problem, we devised an automated tool to measure patch
propagation times in Git-hosted forked projects even in the case of patches
ported via rebase. Our tool leverages GitHub’s event API and GH archive to
estimate the time when a given patch is applied to a forked project. Namely, while
GitHub follows the same practices as Git with pruning unreferenced commits, it
keeps a log for all commits that ever existed. This information can be retrieved
through GitHub’s API, as long as one can reference the relevant commits. By
traversing the graph of commits from the GH archive, we locate the (origi-
nal) commit associated to the target patch and estimates the propagation time
using three methods (cf. Sect. 2.2). Leveraging our tool, we analyze the patch-
propagation time of various open-source altcoin projects (Dash [7], Digibyte [8],
Monacoin [19], Litecoin [17], and Dogecoin [9]) which we selected among GitHub-
based Bitcoin forks to ensure diversity in terms of market cap, popularity, and
vision. For each of the aforementioned altcoin projects, we estimate the time it
took to apply relevant patches ported from Bitcoin. Specifically, we consider 47
patches comprising 11 vulnerabilities disclosed in academic papers, 23 Bitcoin’s
Common Vulnerabilities and Exposures (CVEs), 3 major CVEs in libraries used
by Bitcoin, 3 Bitcoin improvement proposals, and 7 major bugs found on the
GitHub repository with tags related to the peer-to-peer network, covering crucial
vulnerabilities reported in the last decade (see Table 1).

Our results (cf. Sect. 3) indicate that Bitcoin patched 55.3% of the vulnera-
bilities before their disclosure, while this number drops to 28.5%, 21.4%, 25%,
10.7% and 10.7%, for Litecoin, Dash, Dogecoin, Digibyte and Monacoin, respec-
tively. For all selected altcoins, most patches have been applied with considerable
delay compared to the disclosure time, thereby leaving many users vulnerable
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for several months or even years. We plan to release our tool as open-source to
better aid the community in extracting timing information from re-based alt-
coins and other GitHub contributions1. Our results motivate the need to build
automated analysis tools for forked Bitcoin projects in order to precisely explore
whether a given vulnerability applies to any of those projects. This would indeed
facilitate responsible disclosure of vulnerabilities to all affected forks prior to any
publication of the vulnerability.

2 Measuring Patch Propagation Times in Git

Most altcoins port software patches (that have been applied to Bitcoin Core)
via rebase operations. Unfortunately, every rebase invocation modifies the his-
tory of the fork’s repository—effectively altering the timestamps of all commits
re-applied to the fork. In what follows, we study the problem of analyzing the
propagation times of patches in Git across forked projects (i.e., the time to port
a patch from the main project to the forked project), and introduce our tool,
GitWatch, as an effective solution to this problem.

2.1 Git Operations

Commit We define a commit as a pair C = (M,D) of metadata and data—
the latter indicates the applied changes. Metadata information is essential for
examining the history of a repository. It includes a commit hash h (a.k.a. com-
mit ID) that uniquely identifies the commit, a parent p referencing the previous
commit, an author a and a committer c, and corresponding author timestamp ta
and committer timestamp tc recording the creation time of the commit, respec-
tively, the time when the commit was last modified. The commit ID h is a
cryptographic hash over the changes D along with the remaining metadata:
h = H(p, a, c, ta, tc,D). Git allows associating tags to commit operations, e.g.,
to mark released versions of software. A tag τ contains a reference h to the target
commit, a timestamp t, and a human-readable label.

Push. A “batch” of commits authored by a user u forms a sequence (C1, . . . , Cm)
defined implicitly by the references to parent commits. Author and committer
initially coincide with the user pushing the commits, and similarly author and
committer timestamps coincide.

Fork. A fork of an existing repository R is a repository Rχ that shares a common
history with R—the latter is called the main branch. The latest commit that R
and Rχ have in common is called base commit. Let CH and CHχ denote the
commit histories of R and Rχ respectively. Then CH = (C0, . . . , Cm, . . . , Cm+s)
and CHχ = (C0, . . . , Cm, Cχ

1 , . . . , Cχ
r ), for r > 0, where Cm denotes the base

commit and all commits Cχ
i diverge from the main branch.

Rebase. This operation allows integrating changes from the main branch R
(e.g., Bitcoin) to a fork Rχ (e.g., an altcoin) by re-applying all commits pushed
1 https://github.com/nec-research/GitWatch.

https://github.com/nec-research/GitWatch
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to Rχ starting from a new base commit in R—hence the term rebase. This oper-
ation is usually adopted to fetch the latest version of the original repository.
Invoking rebase effectively “re-builds” the changes made in the fork on top of
the new base commit, thereby modifying the commit history of the fork. For-
mally, let CH = (C0, . . . , Cm, . . . , Cm+s) and CHχ = (C0, . . . , Cm, Cχ

1 , . . . , Cχ
r )

be the commit histories of the two repositories. Invoking rebase on Rχ with new
base commit Cm+k, with k > 0, replaces CHχ with (C0, . . . , Cm+k, C ′χ

1 . . . , C ′χ
r ),

where each commit C ′χ
i updates the original commit Cχ

i adapting the metadata
to the new base commit Cm+k—the committed changes D remain the same.
This update modifies the first parent commit which, in turn, triggers a chain
reaction and modifies all subsequent parent commits. Formally:

C ′χ
1 .p ← Cm+k.h ∧ C ′χ

i .p ← C ′χ
i−1.h ∀i = 2, . . . , r. (1)

Rebasing has the crucial effect of updating the committer timestamp with the
current time (while author timestamps remain unchanged):

C ′χ
i .tc ← current time ∧ C ′χ

i .ta = Cχ
i .ta. (2)

Rebasing Makes Timestamps Unreliable. Rebasing can cause the loss of
relevant timing information in the case of multiple rebase operations being per-
formed on the same repository. Every rebase invocation preserves the author
timestamp ta of the original commits, however, it resets all committer times-
tamps tc in the commit history to the current time—thereby overwriting all
timestamps of previous rebase operations. This behavior is illustrated in Fig. 1.
After a rebase, the old commits Cχ

1 , . . . , Cχ
r become unreferenced and are “dan-

gling”. For saving up space, dangling commits are automatically pruned by Git.
However, when a rebase replaces Ci with C ′

i, the two commits are factually dif-
ferent (due to differing metadata) and are initially both accessible in GitHub via
their respective commit IDs. Assuming no pruning, this observation provides us
with a strategy to retrieve the timestamp of rebases: by listing all the different
versions of a commit Ci and their respective committer timestamp. Our method-
ology (c.f. Sect. 3) is based on this intuition to estimate the timing of rebases,
yet it is compatible with the pruning of dangling commits.

2.2 Extracting Rebase Timing

Fig. 1. Effect of rebase on commit meta-
data: commit ID, parent commit, and commit-
ter date are modified. Dotted boxes represent
commits, arrows point to parent commits.

GitHub generates events for all
operations on subscribable public
repositories. To extract meaning-
ful information about patch prop-
agation time—even when the patch
is applied via rebasing—we rely
on two main resources: GitHub’s
event API and GH archive. GH
archive [12] is an open service pro-
viding the history of all GitHub
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events since 2011. We notice that while rebases create dangling commits that are
not retrieved when cloning, these commits can still be queried through GitHub’s
API by requesting the corresponding hash. Our tool, GitWatch, relies on this to
retrieve the timestamps of dangling commits.

To measure the patch propagation times for a GitHub project χ, GitWatch
first reconstructs the tree of commits that ever existed in χ, building a
graph Gχ = (V,E) containing all commits C in χ (including dangling commits)
as vertices, and with edges representing the parent to child relationship, i.e.,
C ∈ V and (C.p, C) ∈ E. To do so, it crawls GH archive for all events pertaining
to χ in order to retrieve all commits from GitHub’s API. Using Gχ, GitWatch
locates the commit (if any) applying a target patch to χ and estimates the
corresponding timestamp using three different heuristics: patch-commit finder
(PCF), patch-event finder (PEF), and patch-tag finder (PTF). The patch prop-
agation time Δ, from Bitcoin to the altcoin, is then derived by comparing these
estimates with the original timestamp of the Bitcoin patch. The reliance on all
three heuristics helps in eliminating possible false positives that may arise due
to missing events in the GH archive. Whenever we obtain different results from
the heuristics, GitWatch returns the smallest timeframe by default.

Patch-Commit Finder (PCF). Here, given a patch commit Ci ∈ CHBC, we
traverse Gχ to collect all non-Bitcoin commits Cj containing Ci in their history.
Concretely, we construct a list nbccχ(Ci) of “non-Bitcoin child commits” defined
as follows:

Cj ∈ nbccχ(Ci) ⇐⇒ Cj �∈ CHBC ∧ Cj ∈ CHχ ∧ ∃(E1, .., En) ∈ Gχ :
E1.from = Ci ∧ En.to = Cj ∧ ∀i ∈ [1, n − 1], Ei.to = Ei+1.from.

(3)

PCF then locates in nbcc(Ci) the earliest commit C∗ such that:2

C∗ ∈ nbccχ(Ci) ∧ C∗.tc ≤ Cj .tc ∀Cj ∈ nbccχ(Ci). (4)

The estimated patch-propagation time is ΔPCF ← C∗.tc − Ci.ta.

Patch-Event Finder (PEF). In addition to Gχ, our second heuristic relies on
inspecting GitHub events. Events are associated to one or more commits: a push
event e contains the list of commits (C1, . . . , Cm) pushed by the author, i.e.,
e = (Ce , te) with Ce = (C1, . . . , Cm) and te is the event timestamp. We denote
by φ the mapping from commits to events, i.e., φ(Ci) := e for all i = 1, . . . , m.
Slightly abusing notation, we write Ci ∈ e ⇔ φ(Ci) = e. Similarly to PCF, we
look for the earliest non-Bitcoin commit C∗ that contains patch Ci in its history,
however, we measure elapsed time with respect to event timestamps rather than
commit timestamps. We estimate the patch propagation time as the time span
between the creation of the patch commit Ci and the oldest event that references
a commit Cj that has Ci in its history. Let Eχ := {e | ∃C ∈ CHχ : φ(C) = e}

2 C∗ following this property may not be unique, as multiple commits can have the
same timestamp.
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denote the set of events pertaining to the altcoin χ and recorded in the GH
archive. PEF characterizes a relevant commit C∗ as follows:

C∗ ∈ nbccχ(Ci) ∧ φ(C∗) ∈ Eχ ∧ φ(C∗).t ≤ φ(Cj).t ∀Cj ∈ nbccχ(Ci) ∩ Eχ. (5)

The estimated patch propagation time is ΔPEF ← φ(C∗).t − Ci.ta.

Patch-Tag Finder (PTF). Our third heuristic relies on timestamps recorded
for relevant tags. Intuitively, we estimate the patch propagation time as the
interval between the creation of the Bitcoin patch Ci and the creation of the
first non-Bitcoin tag associated to a commit in χ that has Ci in its history. We
define “non-Bitcoin child tag” analogously to that of non-Bitcoin child commit:

τ ∈ nbctχ(Ci) ⇐⇒ τ.h ∈ nbccχ(Ci) ∧ τ ∈ Tagsχ ∧ τ �∈ TagsBC. (6)

PTF identifies a relevant tag τ∗ ∈ nbctχ(Ci) ∧ τ∗.t ≤ τ.t ∀τ ∈ nbctχ(Ci), and
estimates the patch propagation delay as ΔPTF ← τ∗.t − Ci.ta.

Comparison. Assuming successful retrieval of all dangling commits, our
methodology lists all different versions of the relevant commit C∗ (one per
rebase), allowing us to select the most accurate commit timestamp. Our three
heuristics therefore overcome the problem of retrieving reliable timestamps in
the presence of rebasing (c.f. Sect. 2.1). The major limitation of PCF and PEF is
that they may under-approximate the patching time in case a developer creates
the patch locally (or on a dev branch) and pushes the patch to the main branch
at a later time (e.g., for testing the patched code locally). PCF further relies on
the developer’s local clock, which could be skewed. PTF is not affected by these
limitations, as it outputs the most conservative timestamp. We therefore expect
PTF to output the most accurate estimate in typical scenarios, in particular
because most users do not compile the latest modifications based on the current
version of the main branch (which may be unstable); they are more likely to
use released versions of the code, which are marked with tags. Notice that PCF,
PEF, and PTF exclusively inspect commits that are either rebased or merged
with the same code base: patches introduced with a different code base may
therefore not be identified.
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Fig. 2. Time for a patch issued by Bitcoin-core to be included to the different altcoins.
Blue circle, orange triangle, and green cross represent respectively the output values
given by the PCF, PEF, and PTF approaches; the market capitalization over time of
each coin is plotted as a black dotted line against the values on the right y-axis. (Color
figure online),

3 Methodology and Evaluation

3.1 Dataset

In our evaluation, we restrict our analysis to bugs and patches related to Bitcoin,
in particular, how they are propagated through altcoins that are based on the
same code base. Since we are interested in patches that are not specific to Bitcoin
but relevant to most altcoins, we mainly focus on reported bugs on the peer-to-
peer layer as this layer is generally inherited by altcoins (including those that
introduce non-negligible modifications to the code base).

We analyze five altcoins, which we selected among existing open-source forks
of Bitcoin: Dash [7], initially known for its early adoption in darknet markets,
currently worth 2.65 Billion USD; Digibyte [8], a cryptocurrency advertised for
its improved functionality and security, currently worth 1.12 Billion USD; Mona-
coin [19], aimed to become a national payment system in Japan, currently worth
0.11 Billion USD; Litecoin [17] and Dogecoin [9], which emerges among the
most popular first-generation derivatives of Bitcoin with a market capitalization
of 14.82 Billion USD and 40.07 Billion USD respectively. We then selected a
list of 47 Bitcoin commits, 11 representing patches suggested by top-tier pub-
lications [11,13,16], 23 representing patches of CVEs, 3 representing Bitcoin
improvement proposals (BIP), 3 representing CVEs in libraries used by Bitcoin
and the remaining 7 representing bugs found on the GitHub repository with
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tags related to the peer-to-peer network. These patches include the majority of
network and peer-to-peer vulnerabilities that were reported in the last decade.

3.2 Validation of GitWatch

To validate the effectiveness of GitWatch, we manually identified publication
dates of relevant patches (by investigating release notes), and we compared
these dates with the output of GitWatch for the same vulnerability. Our results,
shown in Fig. 2f, confirm that for all the ground-truth data points we found,
the actual patching time falls within the interval reported by the three heuristic
used by GitWatch (i.e., between the minimum and maximum estimated propa-
gation time). As expected, PTF provides the most accurate results, especially
since release notes are usually part of a new release to which a tag is assigned.

Table 1. Estimated patching time (in days) based on our dataset. A dash (-) indicates
that GitWatch could not find the patch in the altcoin.

Name Pub Date Description Bitcoin Litecoin Dash Dogecoin Digibyte Monacoin

Total Number of fixes 47/47 41/42 21/28 23/28 25/28 26/28

Paper [13] 2015-08-14 deterministic random eviction –143 19 15 92 681 684

Paper [13] 2015-08-14 random selection sha1 –143 19 15 92 681 684

Paper [13] 2015-08-14 random selection sha2 -143 19 15 92 681 684

Paper [13] 2015-08-14 test before evict 935 285 – 392 13 285

Paper [13] 2015-08-14 feeler connections 375 58 327 256 162 165

Paper [13] 2015-08-14 more buckets –143 19 15 92 681 684

Paper [13] 2015-08-14 more outgoing connections 1482 – – – – –

Paper [11] 2015-10-16 no inv messages 44 326 69 84 430 433

Paper [11] 2015-10-16 filtering inv by ip address 38 333 75 90 437 440

Paper [11] 2015-10-16 penalizing non-responding nodes -615 235 291 106 1089 1092

Paper [16] 2012-10-18 forward double spending attempts 617 202 281 362 950 953

Vulnerability – limit the number of IP learned from each DNS 0 103 – 392 13 103

Vulnerability – ensure tried table collisions eventually get resolved 0 281 – – – –

GitHub bug – fixes fee estimate and peers files only when initialized 0 119 198 279 867 870

GitHub bug – check block header when accepting headers 0 56 135 216 804 808

GitHub bug – introduce block download timeout 0 8 87 168 756 759

GitHub bug – de-serialization bug where AddrMan is corrupted 0 169 426 367 273 276

GitHub bug – don’t deserialize nVersion into CNode 0 15 194 94 376 167

CVE-2014-0160 2014-04-07 Remote memory leak via payment protocol 1 176 233 0 1030 1034

BIP 66 2015-02-13 FakeConf: Strict DER signatures –12 4 61 142 731 734

BIP 65 2015-11-12 FakeConf: OP CHECKLOCKTIMEVERIFY –143 159 229 147 591 322

CVE-2016-10724 2018-07-02 DoS: Alert memory exhaustion –836 216 – 414 320 323

CVE-2018-17144 2018-09-20 Inflation: Missing check for duplicate inputs –3 1 1 - 155 1

CVE-2017-18350 2019-06-22 Buffer overflow from SOCKS proxy –632 151 727 91 140 151

CVE-2018-20586 2019-06-22 Deception: Debug log injection -229 41 380 - 106 244

CVE-2014-0224 2014-06-05 OpenSSL CVE 0 118 174 0 972 975

CVE-2018-12356 2018-06-14 Regex bug 1 184 – 291 50 184

CVE-2019-6250 2019-01-13 Vulnerability in the ZeroMQ libzmq library 5 31 – – – 31

Average 7.53 114.85 188.0 185.17 519.55 503.3
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3.3 Evaluation Results

Table 2. Ground-truth data to validate
GitWatch.

Vulnerability Altcoin Time PCF PEF PTF

BIP 65 Litecoin 179 d [2] 159 160 181

BIP 65 Dogecoin 958 d [1] 244 147 958

BIP 66 Dogecoin 194 d [3] 142 142 194

CVE-2013-4627 Litecoin 33 d [18] 17 45 18

CVE-2013-4165 Litecoin 28 day [18] 10 529 13

As shown in Fig. 2, GitWatch
provides consistent timing esti-
mates, which converge in most
cases. Dash (Fig. 2a) appears to
port patches more quickly, com-
pared to the other blockchains,
most of the times with a delay
between 200 and 400 d. Doge-
coin and Litecoin instead (Figs. 2c
and 2e) show more variable patching delays, ranging between 50–600 days,
respectively, and 100–500 days on average. Digibyte and Monacoin (Figs. 2b
and 2d) exhibit an apparent linearly decreasing delay. This peculiar behavior
suggests that rebase operations to import the Bitcoin’s patches are executed
on a regular pace, in a manner that appears to be decoupled from the actual
patch release. This would explain the downward trend in the plots, indicating
that groups of patches are actually ported on the corresponding fork at the
same time. To summarize, all five analyzed altcoins apply patches with a delay
between several months to a few years. We include the detailed results of our
study in Table 1. Out of the 47 selected commits, we omitted 5 CVEs that were
patched before any of the altcoins were created, and 13 CVEs and 1 BIP where
only Litecoin was released. Those 14 patches were ported by Litecoin with an
average delay of 97 d. Our results show that Bitcoin issues patches to most crit-
ical vulnerabilities and CVEs in a prompt manner, often before the publication
of vulnerability (i.e., in compliance with the responsible disclosure process).

4 Case Studies

We now look more closely at two specific vulnerabilities found in Bitcoin, which
we selected because they are prominent and recent (disclosure in 2015 and 2017
resp.).

Case Study 1: Tampering with the Delivery of Information in Bit-
coin [11] In order to sustain higher throughput and scalability, Bitcoin imple-
mented a number of optimizations and scalability measures. In [11], it was shown
that some of those measures come at odds with the security of the system. As
a direct outcome of this vulnerability, a resource-constrained adversary could
mount a large-scale Denial-of-Service attack on Bitcoin—effectively halting the
delivery of all blocks and transactions in the system. The authors suggested
various improvements that resulted in multiple patches:

– Patch 1 - f59d. . . [22], penalizing nodes that do not respond to block requests.
– Patch 2 - 5029. . . [21], preventing adversaries from filling up the advertisement

table.
– Patch 3 - 5026. . . [20], replacing the advertisement message with the full block

header.
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As shown in Fig. 2f, Dash and Dogecoin took almost 3 months to port these
patches from Bitcoin; Monacoin, Litecoin and Digibyte required between
7 months and 3 years.

Case Study 2: CVE-2017-18350. [6] This buffer-overflow vulnerability of the
Bitcoin-core software was located in the proxy support, and would enable a mali-
cious proxy server to overwrite the program stack, allowing it to perform remote
code execution. However, to be vulnerable, the wallet needs to be configured to
use a malicious proxy, therefore reducing the general risk on the users. Since
remote code execution could allow any third party full access to the machine
running the node, we deemed that this CVE to be of particular interest due
to its potential drastic impact. This vulnerability was discovered on September
21st 2017, was patched two days later, on September 23rd and the patch was
merged with the main branch of the Bitcoin-core repository four days later on
September 27th, 2017. To give enough time to the users for applying the patch,
the CVE itself was published only on the June 22nd, 2019. While this patch
was applied directly to most of the different altcoins based on the Bitcoin-core
software, Dash [7] only patched it several months after it was published, on
November 19th, 2019. Dash users were seemingly using a vulnerable software
with no available update for several months after the disclosure of the vulnera-
bility. Dogecoin, Digibyte, Monacoin and Litecoin took respectively 91 d, 140 d,
151 d and 151 d to patch this vulnerability after it was discovered. While they
all patched it before the vulnerability was disclosed, the software still remained
unpatched for several months.

5 Conclusion

In this paper, we showed that various altcoins exhibit weaker stability compared
to Bitcoin Core. Beyond confirming the folklore result that patch propagation is
slow for some altcoins, we introduced a new technique to estimate the time for
altcoins to propagate security patches, and determine which altcoins are faster
in adopting a patch. For instance, Dash patched CVE-2017-18350 5 months after
the public release of the CVE. Moreover, among the five altcoins we analyzed
(some of which are worth several billions), Litecoin is the only project to have
consistently ported patches within 1 year of their release. We hope that our work
further motivates the need for a proper responsible disclosure of vulnerabilities
to all forked chains prior to any publication of the vulnerability.
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Abstract. Many classical blockchains are known to have an embar-
rassingly low transaction throughput, down to Bitcoin’s notorious seven
transactions per second limit. Various proposals and implementations for
increasing throughput emerged in the first decade of blockchain research.
But how much concurrency is possible? In their early days, blockchains
were mostly used for simple transfers from user to user. More recently,
however, decentralized finance (DeFi) and NFT marketplaces have com-
pletely changed what is happening on blockchains. Both are built using
smart contracts and have gained significant popularity. Transactions on
DeFi and NFT marketplaces often interact with the same smart con-
tracts. We believe this development has transformed blockchain usage.
In our work, we perform a historical analysis of Ethereum’s transac-
tion graph. We study how much interaction between transactions there
was historically and how much there is now. We find that the rise of
DeFi and NFT marketplaces has led to an increase in “centralization” in
the transaction graph. More transactions are now interconnected: cur-
rently, there are around 200 transactions per block with 4000 interde-
pendencies between them. We further find that the parallelizability of
Ethereum’s current interconnected transaction workload is limited. A
speedup exceeding a factor of five is currently unrealistic.

Keywords: Blockchain · Ethereum · smart contract · decentralized
finance · scalability · parallelization · workload characterization ·
transaction graph

1 Introduction

When the first blockchain, Bitcoin [31], was launched in 2008, it allowed the
execution of financial transactions without relying on a central authority. With
its promise, Bitcoin sparked the creation of many more cryptocurrencies, most
notably Ethereum [41], which introduced smart contracts in 2015. However, even
though cryptocurrencies are continuously reaching new levels of popularity, the
transaction throughput of the most popular1 ones remains incredibly low.
1 Measured by total fees users are willing to pay to use the blockchain (see https://

cryptofees.info) Ethereum is orders of magnitude more popular than other smart
contract-enabled blockchains, such as Avalanche and Cardano.
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Given the low throughput of blockchains, especially in comparison to estab-
lished payment systems such as Visa or PayPal, many suggestions to tackle
low blockchain throughput levels have been introduced as well as implemented.
Layer 2 protocols [11,23,32,34], handling transactions off-chain, sharding proto-
cols [3,10,17,21,28,40,44], and moving from Proof-of-Work (PoW) to Proof-of-
Stake (PoS) [16] are amongst the most adopted scaling solutions. In addition to
the development of the aforementioned solutions, the potential of concurrency
control for multithreaded execution has been explored thoroughly.

However, these solutions do not focus on the implications of the changing
nature of blockchain transactions. Before the rapid rise of decentralized finance
(DeFi) and NFT marketplaces, transactions were largely simple transactions
between two parties. Consequently, dependencies between a large set of transac-
tions in a block were rare. In the face of few dependencies, transaction through-
put can be increased with the proposed solutions – as they rely on the parallel
execution of transactions to increase throughput. However, DeFi and NFT mar-
ketplaces have brought new challenges when scaling throughput.

While DeFi employs smart contracts hosted on the blockchain to offer many
of the services provided by traditional finance, NFT marketplaces utilize smart
contracts to facilitate NFT purchases. Core smart contracts building DeFi and
NFT marketplaces are involved in many of a block’s transactions and create
dependencies between a significant proportion of transactions. This new reality
on Ethereum greatly challenges the parallelization of transaction execution.

In this work, we explore the limits of transaction parallelization on Ethereum.
We analyze these limits by investigating the connectedness of the Ethereum
mainnet transaction graph over time. The identification of the largest connected
component and clique in terms of the required execution workload in a block’s
transaction graph allows us to explore the potential of concurrent execution over
time. In particular, we point out that DeFi’s most important smart contracts are
central in the transaction graph and responsible for the vast majority of trans-
action dependencies. Thus, a handful of smart contracts present a significant
parallelization bottleneck, especially given the widespread adoption of DeFi and
NFT marketplaces starting in 2020.

This development presents a tremendous challenge in the quest to reach
throughput levels of established payment systems. We, therefore, conclude by
outlining three areas to tackle in order to increase the parallelizability of
Ethereum’s workload and allow concurrency mechanisms to reach their full
potential. These areas should not only be targeted by Ethereum, the focus of
our analysis, but also by blockchains with comparable smart contract designs
and usage patterns, as we expect them to have similar bottlenecks.

2 Related Work

Blockchain throughput has been one of the first topics of Bitcoin research, and
many solutions have emerged to tackle the issue, e.g., layer 2, sharding. Here, we
concentrate on those solutions that aim to parallelize the workload through con-
current execution. These works directly study the parallelization of the workload,
whose bounds we quantify.
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Sergey and Hobor [37] are among the first to explore smart contract con-
currency for the parallel execution of blockchain transactions. They provide an
analogy between smart contracts and concurrent programming. In the scheme
introduced by Zhang and Zhang [46], miners use concurrency control techniques
to pre-compute a serializable schedule that can be utilized by validators replay-
ing the block. By employing a dependency graph based concurrency control
technique, Amiri et al. [1] find a valid schedule execution that allows for non-
conflicting transactions to execute in parallel. Our work, on the other hand,
explores the blockchain transaction dependency graph to quantify the existing
real-world potential of parallelization.

Additionally, a recent line of work surrounding smart contracts’ concurrency
leverages speculative execution. Dickerson et al. [13], and Anjana et al. [2] pre-
compute a serializable concurrent schedule for a block’s transactions through
speculative execution, while Gelashvili et al. [19] propose Block-STM, a parallel
execution engine that avoids pre-computation. An estimation of the potential
concurrency of speculative execution by miners is offered by Saraph and Her-
lihy [36]. Chen et al. [9] take speculative execution to a new level by speculatively
executing transactions that are waiting to be included in a block. In contrast,
we explore the limits of concurrency given the nature of blockchain transactions
in light of the recent rise of DeFi and NFT marketplaces.

P̂ırlea et al. [33] and Murgia et al. [30] utilize static analysis to parallelize
execution. They statically determine which transactions can safely be executed
in parallel and which contracts can be placed on different shards. While static
analysis is valuable for identifying dependencies ahead of time, the existing
approaches do not remove inherent dependencies from the workload, which are
at the center of our findings.

A parallel line of work studies the transaction graphs of popular cryptocur-
rencies. Ron and Shamir [35] first analyzed the Bitcoin transaction graph. While
their work studies the full transaction graph statically, Kondor et al. [24] also
examine changes in the Bitcoin transaction network over time. Several studies
also explore the Ethereum transaction network [4,8,18,20,22,26,27,29,42,43,47,
47] through temporal graph analysis. Instead of solely studying the evolution of
Ethereum’s full transaction network, we focus on the impacts of the increased
smart contract usage on the connectedness of Ethereum’s block-wise transac-
tion graphs and quantify the implications for parallelizability of the current and
historical transaction workload.

In their study of Ethereum’s transaction network, Zanelatto et al. [45] focus
on understanding the evolution of connected components in the network. Their
work precedes the rise of DeFi and NFT marketplaces on Ethereum and there-
fore does not capture the increased trend of more and more interplay between
transactions and different smart contracts. Our work focuses on this increased
connectivity and discusses its implications on the blockchain.
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3 Background

In the following, we introduce the essential preliminaries concerning transaction
execution on the Ethereum blockchain and DeFi smart contracts.

3.1 Ethereum Transaction Execution

Ethereum is a smart contract platform, i.e., it does not only support Ether
transfers. Instead, it runs a general-purpose virtual machine, the Ethereum vir-
tual machine (EVM), that executes a specific byte code instruction set. Thus,
Ethereum allows functions defined in smart contracts to be called in transactions.
Smart contract functions can call functions of other smart contracts, generat-
ing internal calls. The EVM distinguishes between the following different types
of function calls: (1) call performs operations scoped to the called contract’s
storage, (2) delegate call performs operations scoped to the calling contract’s
storage, (3) static call is like a regular call but with read-only access to the
storage, and (4) call code is a deprecated version of delegate call. Thus, all calls
are scoped to a specific contract and have either read/write or read-only access
to its storage.

We call two transactions conflicting or dependent if they have calls with the
same scope and one of them has write access on that scope. Note that two trans-
actions that interact with the same smart contract might not necessarily touch
the same storage cell. However, taking this coarser view on conflicts simplifies
large scale analysis and is easier to reason about for smart contract developers.

There are also EVM instructions (BALANCE, EXTCODESIZE, EXTC-
ODEHASH, EXTCODECOPY), which allow a contract to read global state
(including the current Ether balance and smart contract code) of any address,
regardless of the current scope. In practice, out of these mostly EXTCODESIZE
is used to detect whether an address is a smart contract. In our analysis we
disregard potential conflicts, which could be caused by these instructions.

Ethereum introduced the access list [5,6], which specifies a list of addresses
and storage keys that the transaction wants to access, giving a gas discount on
these accesses. However, it is optional and not yet widely adopted. We found that
out of more than 600 million transactions, only 2 million included an access list
and their accuracy and completeness is unclear. Building complete and accurate
access lists of just addresses would also be easier for smart contract developers
and end users. Further, previous work could not gain a significant advantage by
parallelizing at the storage key level [36] as opposed to the address level.

Code execution on the EVM is paid for in gas, which is automatically con-
verted from the sender’s Ether balance. Gas is a measure of how expensive code
execution is for validators on Ethereum [15]. Thus, we use gas as a proxy mea-
sure for real execution time (including computation and storage accesses). This
way assumptions about the underlying implementation, runtime environment,
and hardware are kept to a minimum. Further, we define sequential gas as the
highest cumulative gas cost of any sequential execution in a parallel schedule.
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3.2 Decentralized Finance Smart Contracts

DeFi offers many financial services from traditional finance. Instead of relying on
intermediaries, DeFi utilizes smart contracts. We elaborate on the functionality
of some of DeFi’s most important smart contracts in the following.

ERC-20 Tokens are smart contracts that implement fungible tokens, i.e.,
they can represent anything that can be owned and exchanged in integer quanti-
ties, and adhere to a specific interface standard, the ERC-20 (Ethereum Request
for Comments 20) [14]. These implement at least a given set of nine functions,
including transfer (transferring an amount of tokens from the callers address
to a given address) and balanceOf (getting token balance of a given address).

Routers are implemented by DEXs as a central frontend to their trading
interfaces. These routers are stateless, they simply specify via which liquidity
pools, trading venues for ERC-20 tokens, trades are routed. The router makes
the calls to the liquidity pools according to a pre-defined route.

4 Data Collection

We run an Erigon client [25] to collect Ethereum blockchain data. In particular,
we query trace data for the whole blockchain history to better understand the
parallelizability of the Ethereum mainnet workload, as well as trends over time.
Trace data provides us with the internal calls executed by each transaction. In
the following evaluation, we look at historical data by sampling 65 blocks per day
at random over the whole history of Ethereum’s mainnet blockchain. With the
historical analysis, we can observe long-term trends in Ethereum’s workload and
parallelizability thereof. Additionally, we also look at recent data in more detail
by considering every single block over the three-month period from 1 June 2022
through 31 August 2022. Through the recent data, we hope to get an accurate
view of the current state of parallelizability on the Ethereum blockchain.

5 Ethereum Mainnet Workload

In the following, we consider changes in the Ethereum mainnet workload over
time. In Fig. 1a, we compute and plot the average number of transactions of
the blocks in our data set each month along with the 95% confidence interval.
Alongside this, we also show the Ether price.

While the number of transactions per block is initially only small, i.e., less
than ten transactions, we notice a first significant rise in the number of trans-
actions per block starting in early 2017 and peaking in late 2017 at around 200
transactions per block. During this time, there were unprecedented levels of spec-
ulation surrounding cryptocurrencies; this hype likely drove the rapid increase in
the Ether price and the number of transactions on the Ethereum mainnet. The
market’s subsequent cool-down is reflected in a transaction number decrease to
around 100 per block and a sharp Ether price decrease. In fact, until the end of
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2019, the number of transactions per block and the Ether price are highly corre-
lated, i.e., the Pearson correlation coefficient is 0.77. Later, another increase in
the average transaction number occurred in 2020 during the DeFi and the sub-
sequent NFT boom. Since then, the average number of transactions per block
was stable at around 200, and the average number of transactions did not signifi-
cantly surpass the previous peak. With the rise of DeFi and NFTs, the correlation
between the number of transactions and the Ether price also decreased, i.e., the
Pearson correlation coefficient drops to 0.60 from 2020 onward.

Fig. 1. Visualization of the average number of transactions per block (cf. Fig. 1a) and
the average number of transaction interdependencies per block (cf. Fig. 1b). We ran-
domly sample 65 blocks per day and plot the daily average along with the 95% confi-
dence interval.

We further plot the number of transaction interdependencies in Fig. 1b, i.e.,
the number of transaction pairs that access the same smart contract. While the
impact of DeFi and NFT marketplaces on the number of transactions does not
significantly surpass previous levels, this does not hold for the number of transac-
tion interdependencies. Notice that there were, on average, around 2000 transac-
tion interdependencies per block during the initial peak. However, the increased
usage of smart contracts starting from 2020 also increased the average number
of transaction interdependencies per block to 5000 at its peak and never signifi-
cantly dropped afterward. Note that these interdependencies are largely created
by a few core DeFi smart contracts, i.e., popular ERC-20 tokens, DEX routers,
and NFT marketplaces. Thus, the widespread adoption of these smart contracts
presents a significant challenge to the parallelization of Ethereum transactions.
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6 Transaction Graph Representation

To explore trends in parallelization potential we consider a graph representation
of the transaction data. There are two graph representations commonly utilized
for Ethereum transaction data: address-based and transaction-based. We provide
a definition for the address-based graph in Definition 1 and visualize an example
in Fig. 2a. Observe that transaction tx3 involves four addresses, D → C → A →
B, while tx2 only involves two addresses, B → C.

Definition 1 [Address-based Graph (AGn,m)]. The address-based graph for
blocks n, . . . , m, n ≤ m, is represented as AGn,m(V,E, {ωe}e∈E). Here, V is
the graph’s set of vertices, each v ∈ V is an address and V is the set of all
addresses that appeared in blocks n, . . . , m, i.e., were the sender or receiver of
one of the (internal) calls of one of the block’s transactions. E is the graph’s set
of edges, each edge e = (v, u) shows a call of contract u by contract v in blocks
n, . . . ,m. The weight of edge e, ωe, is given by the amount of gas utilized by the
corresponding internal call.

Fig. 2. Two types of graph representations of the same sample set of five Ethereum
transactions. The edge colors indicate belonging to a transaction in the address-based
graph representation (cf. Fig. 2a), the transaction-based graph representation has the
same transaction set as vertices.

In Definition 2, we define the transaction-based graph and draw the corre-
sponding example in Fig. 2b. Note that the address-based representation induces
the transaction-based representation. In the transaction-based graph, neighbor-
ing transactions cannot safely be executed in parallel. Therefore, in the example
shown in Fig. 2b, transaction tx4 cannot be executed while tx3 executes as they
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both interact with address D (cf. Fig. 2a). Cliques in the transaction-based repre-
sentation indicate that all transactions in the clique have to be executed sequen-
tially. Thus, the execution of transactions tx1, tx2 and tx3 cannot be parallelized.
In the following, we will largely consider the address-based representation, but
will also draw unique insights from the transaction-based representation, i.e.,
calculate the graph’s biggest clique to explore the limits of parallelization.

Definition 2 [Transaction-based Graph (TGn,m)]. The transaction-based
graph for blocks n, . . . ,m, n ≤ m, is represented as TGn,m(V,E, {ωv}v∈V ). Here,
V is the graph’s set of vertices, each v ∈ V is a transaction and V is the set
of all transactions that appeared in blocks n, . . . , m. The weight of a vertex v,
ωv, is the amount of gas utilized by transaction v. E is the graph’s set of edges,
each edge e = {v, u} shows a dependency between transaction v and u in blocks
n, . . . ,m. A dependency is induced when the two transactions interact with the
same address, i.e., the address appears as sender or receiver of an (internal) call
for each of the two transactions.

Fig. 3. Address-based visualisation of block 15,348,042 (mined 15 August 2022).
Figure 3a shows the original graph, while Fig. 3b visualizes a disentangled version of the
graph (cf. Section 6.1). In both graphs, we highlight some core DeFi smart contracts,
namely, ERC-20 tokens, DEX routers, and DEX liquidity pools. Note that the biggest
connected component of the disentangled graph is significantly smaller than that of
the original graph.

In Fig. 3a we visualize the address interactions of block 15,348,042 (mined
15 August 2022) and highlight some core DeFi smart contracts. The pink ver-
tices are the top five ERC-20 tokens (WETH, USDC, USDT, DAI, and LINK)
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in terms of the number of transfers, while the purple vertices are the remaining
ERC-20 token addresses that appeared in block 15,348,042. We highlight the fol-
lowing DEX routers in yellow: Uniswap V2, Uniswap V3, SushiSwap, and 1inch,
and utilize blue to flag the Uniswap V2, Uniswap V3, SushiSwap, and Curve
liquidity pools. Notice that the majority of the block builds a single connected
component and that the vast majority of the labeled DeFi contracts are part of
this connected component. With some, mainly the top 5 ERC-20 and the DEX
routers, being central in this connected component and thereby contributing
greatly to the dependencies between the different transactions in a block.

6.1 Disentangled Transaction Graph Representation

Observing the persistently high degree (in the address-based transaction graph)
of these DeFi contracts across the majority of the blocks since the rise of DeFi,
we noticed that many of the dependencies introduced by these smart contracts,
which are a central part of the DeFi ecosystem, are by no means essential.
Especially the apparent dependencies introduced by ERC-20 token contracts
and DEX routers in the smart contract level, would not manifest in the storage
key level. These two examples of non-essential dependencies are relatively easy
to spot by validators as we outline in the following.

Fig. 4. Address-based graph representation of three transfers of DAI, an ERC-20 token,
between the following wallets: address A to address D, address B to address E, and
address C to address F . In Fig. 4a we show the actual address-based representation.
Observe that the three transfers appear dependent on each other. In Fig. 4b we show
how we disentangle the graph to avoid this dependency.

For example, consider three transfers of DAI, an ERC-20 token, between
the following addresses: address A to address D, address B to address E, and
address C to address F . As DAI is not the Ethereum blockchain’s native cur-
rency, we only observe calls from the DAI senders to the DAI smart contract,
which keeps track of fungible DAI tokens (cf. Fig. 4a). Thus, the three transfers
appear dependent, which would not be the case for three equivalent ETH trans-
fers. Therefore, we disentangled the transaction graph representation in Fig. 4b.
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Instead of having the transaction’s sender call the token contract, we pretend
that they call the memory location of the receiver in the DAI smart contract.
In addition to making these adjustments for the ERC-20 transfer function,
we also make respective adjustments for the following ERC-20 contract func-
tions: balanceOf, transferFrom, approve, and allowance. Note that we only
perform this disentanglement for the top five ERC-20 tokens: WETH, USDC,
USDT, DAI, and LINK. These five ERC-20 tokens are the five largest in terms
of the number of transfers and together account for 34% of all ERC-20 transfers.
Further, we choose to restrict ourselves to this small number of ERC-20 tokens
to show: (1) their impact on the connectedness of a block’s transactions and (2)
ensure that the tokens do not have any unexpected behavior, e.g., transferring
a proportion to a third party [12].

DEX routers are also involved in many transactions and, thereby, lead to
increased connectedness in the transaction graph. As the DEX routers them-
selves are stateless and only perform calls to the indicated liquidity pools on
the user’s behalf, the dependencies in the smart contract level are therefore not
necessary. Thus, we remove routers from the transaction graph. In particular, we
re-route all the router edges to the sender of the respective transaction. In the
later analysis, we perform this disentanglement for the routers of the following
DEXs: Uniswap V2, Uniswap V3, SushiSwap, and 1inch.

7 Parallelizability

In the following exploration of Ethereum’s transaction graphs, we quantify the
limited parallelization potential. In Sect. 7.1, we discuss the evolution over time

Fig. 5. We plot the gas used by: (1) the entire block, (2) the block’s heaviest con-
nected component (CC), (3) the block’s heaviest clique, and (4) the block’s heaviest
transaction. Fig. 5a analyzes the original transaction data and Fig. 5b the disentangled
transaction data. Note that we plot the monthly average along with the 95% confidence
interval from randomly sampling 65 blocks per day.
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– cementing the impact of DeFi and NFTs – and, in Sect. 7.2, the current state
of parallelization potential on the Ethereum mainnet. We define parallelizability
of a block as the highest speedup factor (total gas used by the block divided
by sequential gas of a schedule) that can be achieved. For our analysis, we look
at specific schedules as well as graph metrics, which serve as upper and lower
bounds on the parallelizability under our definition of conflicts.

7.1 Parallelizability over Time

In the following, we analyze the parallelization potential on Ethereum’s mainnet
by considering the connectedness of the transaction graphs. We randomly sample
65 blocks per day over the entire blockchain history up until the last block on
31 August 2022 – allowing us to observe the trends over time.

The adoption of DeFi and NFT marketplaces is clearly visible when looking
at trends over time in gas usage, a proxy for the execution time. In Fig. 5a, we
plot the amount of gas per block in blue. Notice the sharp increase starting in
2020 with the rise of DeFi. Whereas these new applications did not increase the
number of transactions to unprecedented levels, they caused the amount of gas
per block to skyrocket due to the increasing complexity of transactions.

To provide an enhanced understanding of the parallelizability of these
increasingly heavy blocks, we also plot the size of the heaviest connected com-
ponent, drawn in yellow, and the size of the heaviest clique, shown in pink, in
Fig. 5a. Note that we measure the weight of a connected component or clique by
the total amount of gas used by its transactions. Thereby, these weights indicate
the time required to execute the contained transactions.

Connected components are equivalent in the address-based and transaction-
based graph representations. Across both views, the weight of the heaviest con-
nected component offers a lower bound for the parallelization potential of a
block’s execution. Any schedule that runs as many transactions as possible in
parallel, i.e., in each time step executes a maximal independent set of transac-
tions, will not exceed the time required to execute the heaviest connected com-
ponent sequentially. We want to note that to obtain the dependencies between
transactions, one has to have access to a statically provided access list or first
execute all transactions. However, this is done only once by the validator. Once
the block was executed, a parallel schedule could be made available to everyone
else for validation. Further, we utilize the transaction-based graph representation
to find the heaviest clique. For this, there is no direct analogue in the address-
based graph. The heaviest clique specifies an upper bound for the parallelization
potential of a block’s execution. Any schedule must handle all transactions in a
clique sequentially – assuming atomic transaction execution. We, in fact, ran a
simple list scheduling algorithm to find a schedule. It generates a partial order-
ing and always allows execution of a maximal independent set in parallel. We
find that, while the schedule occasionally requires longer to execute than the
heaviest clique would, the relative error is negligible (cf. Appendix A). Thus, the
upper bound of the parallelization potential is almost achievable with a simple
schedule. Note that our transaction graph might overestimate dependencies as
we are coming from the smart contract level and not the storage key level.
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Looking at our data, we observe that the heaviest connected component
currently makes up more than half of the block (cf. Fig. 5a). Further, the differ-
ence between the average heaviest connected component and the average heav-
iest clique has grown since the popularization of DeFi in 2020. This could be
explained by interactions between the different protocols and smart contracts of
the DeFi ecosystems. Since the rise of DeFi, the transactions in the heaviest con-
nected component tend to interact with popular ERC-20 tokens, DEX liquidity
pools, and lending protocols. However, mostly those that interact with the same
smart contract are in a clique. We note that the largest clique typically consists
of those transactions that interact with WETH, i.e., the most popular ERC-20
token (in terms of the number of transfers).

As previously stated, transactions interacting with WETH generally form
the heaviest clique in the original transaction data. However, as we show in
Sect. 6.1, the apparent dependencies in the smart contract level view are simply
a consequence of implementing ERC-20 tokens as smart contracts as opposed
to native tokens. To obtain a more accurate picture, we perform the previously
outlined disentanglement, we observe a significant reduction in both the size of
the heaviest connected component and clique (cf. Fig. 5b) since the adoption
of DeFi. In fact, from 1 July 2020 to 31 August 2022, the disentanglement
decreased the size of the heaviest connected component by a factor of 1.78 on
average. Further, the size of the heaviest clique decreased by a factor of 1.88 on
average.

Fig. 6. We visualize the achievable execution speedup (aggregated monthly) through
parallelization for the original transaction data (cf. Fig. 6a) and the disentangled trans-
action data (cf. Fig. 6b). We obtain the lower bound for the parallelization potential
through the identification of the heaviest connected component and the upper bound
from the heaviest clique. Note both the heaviest connected component and clique are
weighted by gas.
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We also plot the size, in terms of gas used, of the heaviest transaction per
block in both Fig. 5a and Fig. 5b.2 The size of the heaviest transaction in a block
indicates a further, looser upper bound for the parallelization potential that dis-
regards any dependencies between transactions. By neglecting all dependencies,
we automatically omit any nonessential dependencies. This looser upper bound
thus only assumes that transactions must execute atomically. However, we find
that, on average, the heaviest transactions are a significant proportion of the
entire block – a ninth on average over the entire history. Thus, parallelization is
not only limited by the ever-increasing size of the heaviest clique but is similarly
bounded by individual large transactions.

We plot the lower and (realistic) upper bound for the achievable speedup
in Fig. 6. In Fig. 6a, we show these bounds for the original transaction data,
and in Fig. 6b, we show the same bounds for the disentangled transaction data.
Similar to our previous observations, the lower (given by the size of the heaviest
connected component) and the upper bound (given by the size of the heaviest
clique) of the realistically achievable speedup are close to each other up until
the rise of DeFi in 2020. Further, we observe the performed disentanglement
also only shows its effects from 2020 onward, as it targets DeFi smart contracts.
From 2020, we notice an increase in the difference between the lower and upper
bound of the achievable speedup. Further, in the original transaction data, we

Fig. 7. We plot the gas used by: (1) the entire block, (2) the block’s heaviest connected
component (CC), (3) our naive schedule (sequentially), and (4) the block’s heaviest
transaction. Fig. 7a analyzes the original transaction data and Fig. 7b the disentangled
transaction data. Note that we plot the daily average along with the 95% confidence
interval. Further, we use the sequential gas of our schedule as a proxy for the size of
the heaviest clique.

2 Note that the disentanglement does not impact the size of the heaviest transaction,
and neither the total gas of a block.
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observe that both the lower and the upper bound for the realistically achievable
speedup decrease once DeFi becomes adopted (cf. Fig. 6a). In the disentangled
transaction data, on the other hand, we notice that the lower bound for the
possible speedup does not decrease after the introduction of DeFi, but instead
remains more or less constant (cf. Fig. 6b). It is even more remarkable that
the upper bound for the realistically achievable speedup even increases after
the introduction of DeFi for the disentangled transaction data. We presume this
stems from the increasing number of transactions in the same period (cf. Fig. 1a).
Further, it is likely impacted by most DeFi transactions being dependent on each
other over a given number of hops in the graph representation but not necessarily
being all in one clique.

7.2 Current Limits of Parallelizability

To better gauge the current limits of parallelizability, we expand on the pre-
vious analysis by analyzing all blocks from 1 June 2022 to 31 August 2022 –
allowing us to obtain a complete picture of the current state of the Ethereum
mainnet. In Fig. 7, we plot the amount of gas used by: (1) the entire block, (2)
the block’s heaviest connected component, (3) our schedule (sequentially), and
(4) the block’s heaviest transactions. Note that we only plot the sequential gas
used by our schedule and not the heaviest clique, as finding the heaviest clique
is time intensive. Our analysis in Appendix A shows that our schedule almost
reaches the same parallelization potential.

When examining Fig. 7, we notice that there are few fluctuations in both the
daily mean size of the blocks and the daily mean size of the heaviest transactions.
We only observe two collapses, of around 10%, in the mean size of the entire
block at the end of July and the beginning of August. When looking at the daily
average size of the heaviest connected component and the daily average amount
of sequential gas used by our schedule in the original transaction data (cf Fig. 7a),
a similar picture paints itself. In general, both averages make up approximately
one-half (connected component) and one-third (schedule) of the block size on
average. There is one peak in the average gas used by the heaviest connected
component and the schedule around 15 June 2022 that we do not observe in
the block size. The daily price movements of Ether were very high during this
time (cf. Appendix C, Fig. 12b) due to the anticipation of and the release of
the CPI data [39]. As a consequence, the Ether trading volume on DEXs like
Uniswap V3 experienced a rapid increase [38], which we presume lead to an
increased size of both the heaviest connected component and clique in relation
to the block size. We want to point out that, while the 95% confidence interval is
tight around the daily mean for all four graphs, the fluctuations of values for all
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four graph measures are substantial as shown in Appendix B (cf. Fig. 11). For
instance, shortly around the time at which we observe the peak in gas usage, the
99th percentile of the heaviest transaction reaches almost the 99th percentile of
the block size. Thus, there are some blocks in which a single transaction makes
up almost the entire block – allowing for little to no parallelization in those
blocks. Still, we observe that the daily average of gas usage by the heaviest
connected component and by the heaviest clique, for which we use our schedule
as a proxy, make up a relatively stable proportion of the block in the recent
(original) transaction data.

Turning to the disentangled transaction data (cf. Fig. 7b), we notice a stable
reduction in the daily average of the gas used by the heaviest connected compo-
nents (by a factor of 1.6) and the sequential gas used by the schedule (by a factor
of 1.5). It is most remarkable that the reduction is less significant in early June
than in the remaining data set. We presume that this is a consequence of the
significant price drop of Ether in the same period (cf. Fig. 12a), which likely led
to exceptional DeFi usage patterns that further interconnected the workload. In
the remaining data set, the reduction achieved by the disentanglement is very
stable, but the achievable speedup still only reaches around a factor four (cf.
Appendix B, Fig. 10).

Finally, in order to simulate higher transaction throughput, we consider
batches of ten consecutive blocks and explore the connectedness of the corre-
sponding transaction graphs (cf. Fig. 8). Even with this (rather exaggerated)
simulated increase in block size, the sequential gas of our schedule increases pro-
portionally, thus not changing this upper bound for the realistically achievable
speedup. On the other hand, the lower bound (indicated by the heaviest con-
nected component) even becomes much looser. This suggests that, when merging
blocks, the largest cliques of all blocks merge into one, whereas connected com-
ponents are even merged from within the same block. This is in line with our
analysis that the heaviest cliques are always induced by the same few contracts
– indicating that increasing block size does not improve concurrency potential.

8 Discussion and Conclusion

Our work quantifies the parallelizability of the Ethereum mainnet workload.
We find that currently, the level of concurrency is very limited. Thus, it does
not suffice to only devote efforts to finding ways to best exploit the existing
potential for concurrency. Instead, we believe that part of the focus must be
shifted towards ensuring that the workload is parallelizable in the first place.
Concretely, we believe that the following three areas must be targeted to enable
the existing concurrency mechanisms to achieve much higher speedups.
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Fig. 8. We plot the gas used by: (1) 10 consecutive blocks, (2) their heaviest connected
component (CC), (3) our naive schedule (sequentially), and (4) their heaviest trans-
action. Figure 8a analyzes the original transaction data and Fig. 8b the disentangled
transaction data. Note that we plot the daily average along with the 95% confidence
interval.

Investigate dependencies. As we outline, some of DeFi’s core smart contracts
appear in many transactions. Thus, we believe that transaction dependencies
must be investigated on a more fine-grained basis, for example at the storage
key level. Furthermore, smart contracts could be redesigned to avoid unnecessary
dependencies in the transaction graph.

Incentivize “simple” transactions. The heaviest transaction in a block cur-
rently makes up around one-tenth of the average block size. Thus, these indi-
vidual transactions present a limit on the parallelization potential. We there-
fore believe that the blockchain should discourage such frequent heavy transac-
tions and instead encourage simple transactions. One possible approach would
be charging for computation superlinearly.

Increase predictability of dependencies. The incredibly low usage of the
access list, indicates that it is currently not viable for transaction senders to
provide the addresses and storage keys their transaction will touch. Predictability
of dependencies would take care of this situation and would allow for increased
parallelization during execution.

Only once the workload on the Ethereum mainnet is truly parallelizable will
the speedup suffice to make the 100,000 transactions per second [7] stated by
the Ethereum Foundation achievable.
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Appendix

See the full version of the paper at https://fc23.ifca.ai/preproceedings/136.pdf.

References

1. Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: leveraging transaction
parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 1337–1347. IEEE
(2019)

2. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: Optsmart: a space effi-
cient optimistic concurrent execution of smart contracts. Distributed and Parallel
Databases, pp. 1–53 (2022)

3. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization
of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434 (2019)

4. Bai, Q., Zhang, C., Xu, Y., Chen, X., Wang, X.: Evolution of ethereum: a temporal
graph perspective. arXiv preprint arXiv:2001.05251 (2020)

5. Buterin, V., Swende, M.: Eip-2929: gas cost increases for state access opcodes
(2022). http://eips.ethereum.org/EIPS/eip-2929

6. Buterin, V., Swende, M.: Eip-2930: Optional access lists (2022). http://eips.
ethereum.org/EIPS/eip-2930

7. Cavicchioli, M.: Ethereum will reach 100,000 transactions per second (2022).
http://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-
second/

8. Chen, T., et al.: Dataether: data exploration framework for ethereum. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
pp. 1369–1380. IEEE (2019)

9. Chen, Y., Guo, Z., Li, R., Chen, S., Zhou, L., Zhou, Y., Zhang, X.: Forerunner:
constraint-based speculative transaction execution for ethereum. In: Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 570–587
(2021)

10. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: Proceedings of the 2019 International
Conference on Management of Data, pp. 123–140 (2019)

11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: 17th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), Edmonton, Canada (August
2015)

12. DeFi Cartel: Salmonella (2022). http://github.com/Defi-Cartel/salmonella
13. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart

contracts. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, pp. 303–312 (2017)

14. Ethereum Foundation: ERC-20 token standard (2022). http://ethereum.org/en/
developers/docs/standards/tokens/erc-20/

15. Ethereum Foundation: Gas and fees (2022). http://ethereum.org/en/developers/
docs/gas

16. Ethereum Foundation: The merge (2022). http://ethereum.org/en/upgrades/
merge/

https://fc23.ifca.ai/preproceedings/136.pdf
http://arxiv.org/abs/1910.10434
http://arxiv.org/abs/2001.05251
http://eips.ethereum.org/EIPS/eip-2929
http://eips.ethereum.org/EIPS/eip-2930
http://eips.ethereum.org/EIPS/eip-2930
http://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-second/
http://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-second/
http://github.com/Defi-Cartel/salmonella
http://ethereum.org/en/developers/docs/standards/tokens/erc-20/
http://ethereum.org/en/developers/docs/standards/tokens/erc-20/
http://ethereum.org/en/developers/docs/gas
http://ethereum.org/en/developers/docs/gas
http://ethereum.org/en/upgrades/merge/
http://ethereum.org/en/upgrades/merge/


308 L. Heimbach et al.

17. Ethereum Foundation: Sharding (2022). http://ethereum.org/en/upgrades/
sharding/

18. Ferretti, S., D’Angelo, G.: On the ethereum blockchain structure: a complex net-
works theory perspective. Conc. Comput. Practice Exper. 32(12), e5493 (2020)

19. Gelashvili, R., et al.: Block-stm: scaling blockchain execution by turning ordering
curse to a performance blessing. arXiv preprint arXiv:2203.06871 (2022)

20. Guo, D., Dong, J., Wang, K.: Graph structure and statistical properties of ethereum
transaction relationships. Inf. Sci. 492, 58–71 (2019)

21. Han, R., Yu, J., Zhang, R.: Analysing and improving shard allocation protocols
for sharded blockchains. Cryptology ePrint Archive (2020)

22. He, N., et al.: Understanding the evolution of blockchain ecosystems: a lon-
gitudinal measurement study of bitcoin, ethereum, and eosio. arXiv preprint
arXiv:2110.07534 (2021)

23. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 1353–1370 (2018)
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Abstract. Layer 2 systems have received increasing attention due to
their potential to scale the throughput of L1 blockchains. To avoid the
cost of putting data on chain, these systems increasingly turn to off-chain
data availability solutions such as data availability committees (DACs).
However, placing trust on DACs conflicts with the goal of obtaining an
L2 architecture whose security relies solely on the L1 chain. To elimi-
nate such trust assumptions, we propose a DAC protocol that provides
financial incentives to deter the DAC nodes from adversarial behavior
such as withholding data upon request. We then analyze the interaction
of rational DAC nodes and clients as a dynamic game, with a Byzantine
adversary that can corrupt and bribe the participants. We also define
a notion of optimality for the DAC protocols, inspired by fairness and
economic feasibility. Our main result shows that our protocol is opti-
mal and guarantees security with the highest possible probability under
reasonable assumptions on the adversary.

1 Introduction

Layer 2 systems [19,21,30] are an important approach to scaling the throughput
of Layer 1 blockchains such as Ethereum. One of the key challenges in securing
an L2 system is data availability: how to ensure that the state of the L2 system
is always available and can be reconstructed when needed? This data is needed
to safely restart the L2 system after a failure, and for basic operations such
as deposits and withdrawals. The data availability problem comes up in other
contexts as well, such as in decentralized storage systems [22,25,29].

There are three general approaches to data availability in L2 systems:

– On-chain data: Rollup systems [21] store all transaction data on a Layer 1
parent chain, such as Ethereum. These systems rely on the security of the L1
nodes to ensure that the data is always available.

– Off-chain data stored by a Data Availability Committee (DAC): Other systems
such as StarkEx [4], zkPorter [5] and EigenLayr [1] use a DAC to store data
off-chain across a number of trusted nodes [26]. While the DAC provides a
gas-efficient alternative to on-chain data, these systems rely on the correct
operation of the DAC nodes to ensure that the data remains available.
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– Off-chain data with (repeated) Data Availability Sampling (Celestium [27]):
An enhancement to DACs employs data availability sampling [7,11,17,31] so
that light clients, such as rollup users, can identify unavailable blocks cre-
ated by the DAC without attempting to download the full block. This app-
roach is being used by modular blockchains such as Celestia [6] and Polygon
Avail [24] that specialize in preserving other chains’ data. However, DAS does
not remove the trust assumption placed on the DAC nodes for data availabil-
ity, since it requires DAC members to reply to DAS queries for data recovery.
DAS also cannot ensure that data remains permanently available [12].

Providing a standalone data availability service, such as Celestia and others,
reflects a general trend towards modularity in the design of blockchains.

In this paper, we focus on the security of Data Availability Committees
(DAC), namely the last two bullets on the previous page. A DAC consists of
multiple DAC members, which we call nodes, that store copies of the data that
should be made available (e.g., data sent by the rollup sequencer). These nodes
are expected to provide the data to querying clients in a timely manner. Since
malicious DAC members can withhold the data, DACs typically replicate the
data on each DAC node for fault tolerance. Thus, as long as one member is
honest, rollup clients would receive the data upon request. Although the storage
requirement of the DAC scales linearly in the number of nodes due to repli-
cation, this redundancy can be reduced through the use of erasure codes and
polynomial commitments. For instance, the semi-AVID-PR scheme [23] uses lin-
ear erasure-correcting codes and homomorphic vector commitments to guarantee
data availability as long as over 2/3 of the nodes faithfully follow the protocol.

A major drawback of DACs is the need to trust the DAC members. Consider
a compromised DAC, where the adversary can prevent the reconstruction of the
data, for example, by controlling more than 1/3 of the DAC members. Such a
DAC can evolve the rollup state using unavailable transaction data, and withhold
this data from the rollup clients. This prevents clients from issuing transactions,
and enables the adversary to steal client funds through ransom attacks [14].
Thus, using a DAC hinders the goal of realizing a trust-minimized scaling archi-
tecture that relies solely on the security of the L1 chain for the safety and liveness
of the rollup1. Liveness signifies that the clients can submit new transactions to
the rollup system, and the system processes these transactions.

Data availability sampling (DAS) does not improve the liveness guarantees
over the basic DAC architecture. If the DAC is not compromised, then DAS
helps rollup clients verify that the rollup data is available without downloading
all the data from the DAC. However, if the DAC is compromised, DAS provides
no guarantees for data availability. The compromised DAC can update the rollup
state with unavailable transactions, and ignore all DAS queries from the clients.
Hence, DAS needs the trust assumption placed on the DAC members for liveness.

1 Although current rollup systems typically rely on a single honest sequencer to evolve
the rollup state, as long as the rollup data is available (e.g., on the L1 chain), any
rollup full node can step up to fulfill the sequencer’s role if it fails.
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Incentive-Based Data Availability. One way to strengthen the security of
a DAC is to rely on financial incentives to deter the DAC members from adver-
sarial behavior such as withholding data and lazy validation, where the DAC
members pretend as if the data was stored. There are solutions such as Proofs of
Custody [16] using financial disincentives (e.g., slashing) to encourage the lazy
DAC members to store the entrusted data. However, as withholding data is not
a provable offense, it not clear how to enforce the slashing of the adversarial
members’ stake when they do indeed store the data, yet refuse to reveal it upon
request (even if DAS is being used). Moreover, any incentive-based data avail-
ability proposal must be analyzed in the face of rational DAC members who may
respond to bribes, and Byzantine adversaries who may offer bribes.

Our main contribution is a DAC protocol that introduces a slashing mech-
anism for malicious DAC nodes that withhold data. The bulk of the paper is a
technical analysis of the protocol, and proves its security under certain assump-
tions on the adversary’s power. Moreover, we show that our protocol is optimal
in a rigorous sense. We define the security model and the optimality notions in
Sects. 2 and 4.

We model the interactions of the DAC as a dynamic game involving multiple
parties:

– DAC members, i.e., nodes, are denoted by P1, . . . ,PN , where N is the num-
ber of nodes. These nodes store the data provided by an external entity.

– A client V sends a sequence of data queries to the N nodes. Every node can
either respond to V with the requested data, or not respond. We assume the
data held by the nodes is signed by the data provider, so that integrity of the
response is easily verified. If a response contains incorrect data, it is treated
as a non-response.

– A contract running on the L1 chain is used to resolve disputes and punish
misbehaving DAC nodes. In particular, all N nodes are staked, and the stake
is held in the contract. If the nodes do not respond to V with the requested
data, V can send its query to the contract. In this case, the nodes are obliged
to post their responses to the contract. If a node provably fails to do so, the
contract can slash that node by confiscating part of its stake. Part of the
slashed stake is given to the client as compensation and the rest is burned.
The size of the per-node stake and the behavior of the contract are the key
design decisions for a DAC protocol.

Nodes and clients are rational agents that seek to maximize their utilities. An
adversary A who fully controls f corrupt nodes may try to bribe the remaining
N − f nodes to cause a client query to fail. This will make the requested data
unrecoverable. Our goal is to design a DAC, so that under reasonable assump-
tions on the size of f and on the adversary’s budget, every query from the client
will succeed with probability at least 1 − ε, for some small ε.
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Queries from the client model data requests needed for normal operations
such as withdrawals. For instance, in a rollup system, clients might have to
prove their account balances with respect to the latest state root, and they do
so by presenting a Merkle proof for their account. A non-responsive DAC storing
the latest state can delay withdrawals by refusing to provide these Merkle proofs.
In this case, each client can post a query to the contract, and force the nodes
to place the requested proof on the L1 chain. Our model for the DAC system
and the incentivize mechanism enforced by the contract has applications beyond
data availability, and can be used to incentivize the honest participation of nodes
in any committee outside the L1 chain that provides a service (e.g.Decentralized
Oracle Networks [9,15]). We discuss use cases for our DAC system in Sect. 2.

The DAC Protocol. Suppose every query requires at least k nodes out of N
to respond either directly to the client, or to the contract, for the client to obtain
an answer to its query. If no erasure coding is used and the data is replicated
across all nodes, then k = 1, otherwise k could be bigger than 1.

The protocol proceeds in four steps:

– step 1: the client V sends its query to all DAC nodes over the network.
– step 2: if k or more nodes respond, then the client obtains the requested data

and the protocol terminates.
– step 3: if by a certain timeout the client does not receive k responses, it posts

its query to the contract on chain. For this purpose, the client has to send
a base payment to the contract, which is needed to deter spamming clients.
We discuss the choice of client payment amount in Sect. 6.

– step 4: all N nodes are then asked to post their responses to the query on
chain. The protocol terminates once a certain timeout is reached.

It remains to describe what the contract does once the timeout is reached in
step 4. Every node that does not post its response to the contract by the timeout
loses part or all of its stake. The precise slashing function is explained in Sect. 3.
Moreover, if by the timeout in step 4 the client does not obtain an answer to
its query through the responses, the client is compensated by the contract using
the funds obtained from the slashed nodes.

The question is how to analyze the security and performance of a contract
in comparison to other contracts. In Sect. 4 we present four desirable properties
that a slashing function should satisfy. Informally, these properties are:

– Symmetry. Motivated by fairness, the slashing function does not depend on
the identities of the nodes, only on their actions.

– No Reward. The slashing function does not pay out any rewards to the respon-
sive nodes. This is motivated by economic feasibility as the contract should
maintain a non-negative balance, and discourage the nodes from forcing an
on-chain interaction for extra payoff rather than answering over the network.
(No rewards rule does not rule out flat rewards by other means.)
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– Security Under No Attack. The slashing function ensures that the client
promptly learns the correct response to its query, if the adversary does not
offer any bribes. This captures a minimal notion of security.

– Minimal Punishment. The slashing function keeps the slashed amounts of
non-responsive nodes at a minimum when the client obtains an answer to its
query. Thus, when most nodes are responsive, those that fail to respond due
to benign failures, e.g., crash faults, are not heavily penalized.

We then define a notion of optimality for these functions:

Definition 1 (Informal). A slashing function is optimal with respect to a
set of slashing functions F , if the function satisfies the following two conditions:
(i) upon sending its query to the contract, the client obtains an answer with
the maximum probability from among all the functions in F given the worst
adversary, and (ii) when the client obtains an answer, the function imposes the
minimal punishment on non-responsive nodes from among the functions in F .

In Sect. 4, we show that our slashing function is optimal for both risk-neutral
and risk-averse nodes among the set of all functions that satisfy the four desirable
properties described above. We also analyze the security of a dynamic game
among a rational client and the DAC nodes. We identify the conditions under
which the client obtains an answer to its query without calling the contract.
The analysis of Sect. 4 is the most technical part of the paper, and is our core
contribution.

Evaluation. In Sect. 5, we evaluate the real-world performance of our optimal
contract. To match the number of Ethereum validators and the minimum value
that can be staked as an independent validator on Ethereum, we set the total
number of DAC nodes to N = 300, 000 and the amount staked per node to 32
ETH. Then, given risk-neutral nodes, the adversary has to offer a total bribe
of ≈ 3.2 · 103 ETH (≈ 3.9 million USD2) to the nodes, to reduce the security
probability per query by a tiny amount, namely to reduce the probability that a
client learns the answer to its query from 100% to 99.9%. To prevent clients from
learning the answers over repeated queries, the adversary has to spend at least
3.9 million USD for each query. As our contract is optimal, no other contract
can force the adversary to pay a higher bribe for the same security probability.
The minimum bribe needed by the adversary to reduce the security probability
increases as N or the collateral grows, or as the nodes become more risk-averse.

2 Model

Notation. We denote the security parameter by λ. We say that an event hap-
pens with negligible probability, if its probability, as a function of λ, is o(1/λd)

2 Ethereum to USD conversion rate, 1 ETH ≈ 1231.0 USD, is the average Ethereum
price on July 15, 2022 [3].
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for all d > 0. We say that an event happens with overwhelming probability if
it happens except with probability negligible in λ. If an event happens with
probability q + negl(λ) or q − negl(λ), where q is a non-negligible constant, for
simplicity, we say that the event happens with probability q. We assume that
except with probability negligible in λ, the contract implements the specified
slashing function correctly, the underlying cryptographic primitives are secure,
and messages can be posted to the contract within bounded time. We use the
shorthand [N ] to denote the set {1, 2, . . . , N}.

Environment and the Adversary. Time is slotted, and the clocks of the client
and nodes are synchronized3. Messages, e.g., queries and replies, can only be
sent at the beginning of a slot, and are delivered to the recipient by the end of
the same slot by the environment Z.

Adversary A is a probabilistic polynomial time algorithm. Before the exe-
cution starts, A corrupts f nodes, which are subsequently called adversarial.
These nodes can deviate from the protocol arbitrarily (Byzantine faults) under
A’s control, which has access to their internal states. The remaining N − f
nodes and the client are utility maximizing agents and can choose any action
that gives them a higher utility. In the subsequent analysis, we will assume that
Pi, i = N −f +1, . . . , N represent the adversarial nodes, and f ≤ N −k. Other-
wise, it is impossible to guarantee the recovery of the answer to a query as the
adversarial nodes can withhold their responses from the client and the contract.

Before the protocol execution starts, the adversary can also offer bribes to
the remaining nodes and the client subject to constraints. It has a supply of p0
coins, which can be distribute to any subset of the nodes as additional payoff if
the nodes adopt an adversarial action during the game. Similarly, the adversary
can give up to p1 coins to the client if it adopts an adversarial action. Such an
adversary is called a (p0, p1)-adversary. When the bribe offered to the client is
irrelevant, we use the notation p0-adversary. (p0 and p1 are adversary’s resources
that are beyond the f nodes corrupted by the adversary.) Upon hearing an
offer, each participant can independently choose to accept or reject the bribe
depending on the expected utility. Once a participant accepts the bribe, the
adversary can monitor through the environment and contract if the specified
action was taken. Although the action and exchange of the bribe might not
happen atomically, the adversary and the nodes can ensure that no party deviates
from its promise via a trusted third party, or repeated games ([28, Section 4.4]).

Actions, Payoffs, and the Game. We next describe the dynamic game played
by the client and the DAC nodes. Before the game starts, the client V and the
nodes are input a single query by the environment Z. Given a query, each node
Pi can instantaneously generate a response ci, called the clue. We assume that
the correctness of these clues can be verified by the clients and the contract4.

3 Bounded clock offsets can be captured by the network delay.
4 For instance, correctness of the data shards in PoS Ethereum can be verified with

respect to a KZG commitment on the blockchain [12,17,20].
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The contract accepts a clue by a node if and only if it is the first correct response
by the node to a query posted to the contract. It records the time slots when
each query or clue was received, in a contract state. At the beginning of each
slot, the participants learn about the state recorded at the end of the previous
slot.

Let ps be the amount staked by a node to function as a DAC member. It
costs pc coins for the client to send a query to the contract, and pw coins for
each node to prepare and post the corresponding clue to the contract. It is free
to send a clue to the client over the network. These parameters are summarized
in Table 1. We assume that each node starts the game with a baseline payoff of
C = ps + pw, as it has ps coins staked in the contract, and is assumed to have
enough funds to post clues to the contract during the game5. The client starts
the game with an initial payoff of 0.

The actions available to the client V and nodes P at any slot t are as follows:
Sr: P sends a correct clue to V over the network at slot t.

Sq: V sends a query to the contract for the first time at slot t.
Sp: For a query, P sends a correct clue to the contract for the first time at t.

The notation ¬(.) is used to denote the opposite of the specified action.
At any time slot, a node can take an action (a, b), where a ∈ {Sr,¬Sr} and
b ∈ {Sp,¬Sp}. Similarly, the client can take an action from {Sq,¬Sq}. Although
the clients and nodes can exchange messages other than queries and clues, only
the queries, clues or their absence can lead to a change in their payoffs. Since the
participants play a dynamic game, the actions chosen at later slots can depend
on the actions observed at the earlier ones.

The game ends, and the payoffs are realized at the beginning of slot Tanswer.
If V finds out the correct answer to its query through the clues, either posted to
the contract or sent over the network, by slot Tanswer, it receives a payoff of pf

coins. We set Tanswer = 4 though it can be any sufficiently large constant. In our
model, Tanswer should be at least 4 to guarantee any meaningful security. The
payoffs of the participants depend on the bribes p0 and p1, the collateral ps, the
variables pf , pc, pw selected by Z, and the contract’s slashing function.

Utility of a participant is given as a function U(.) of the payoff obtained
at the end of the game. In the subsequent sections, we will first consider risk-
neutral nodes with a linear utility function U(x) = x, where x is the net payoff
at the end. We will then analyze risk-averse nodes with a strictly concave utility
function of the form U(x) = (x)ν , where ν ∈ (0, 1). We do not consider risk-
seeking nodes with strictly convex utility functions, e.g., U(x) = (x)ν , ν > 1, as
such a function violates the law of diminishing marginal utility for the payoffs.

We will later also consider a sub-game that focuses exclusively on the inter-
action between the nodes and the contract. In the game, a query appears in the
contract at some slot t, and the nodes choose to post clues or not at slot t + 1,
after which the payoffs are realized. These payoffs depend on the bribe p0, the
collateral ps, the cost pw, and the slashing function.

5 For risk-neutral nodes, the baseline is normalized to be 0.
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Security. We say Tanswer-security is satisfied if the client receives k or more
correct clues from the nodes either over the network or through the contract by
the beginning of slot Tanswer with overwhelming probability.

Application. The game above models the withdrawal of client funds from a
blockchain or rollup. Each client has an account, represented as a key-value pair,
and the balances of these accounts constitute the blockchain state. The hashes of
the key-value pairs are organized in a vector commitment, e.g., a sparse Merkle
tree, with a constant size commitment, called the state root. The state data is
preserved by the DAC nodes and state commitments are posted to the chain.

To prove its account balance, a client requests a witness from the nodes for
the inclusion of its account within the latest state. If it does not receive a witness
over the network, the client can complain on a smart contract by sending a query
that contains the hash of the account’s key-value pair. If the hash is a hiding
commitment, the client can also ensure that no observer learns its balance. It
can always prove its balance to a select third party by revealing the key-value
pair at the pre-image of the hash, the latest state root on chain, and the witness.

Upon receiving a query, the contract expects a witness to be provided by
the DAC nodes within a bounded time, e.g., the chain’s confirmation latency.
Correctness of this witness can be verified by the contract and the client with
respect to the state commitment on the chain. If the query is for an account
not included in the latest state, the nodes can convince the contract of this fact
via a proof of non-inclusion. If there are multiple queries, instead of sending the
witness for each query, the nodes can compute a SNARK proof that verifies the
inclusion of all the queried accounts within the state. Clients can then verify the
inclusion of the queried accounts by checking the proof with respect to the latest
state root, and the hashes of the queried accounts. Succinctness of the SNARK
proof enables achieving bounded delay on the response time.

3 The Optimal Contract

A contract can reward or punish the nodes depending on whether it received
clues from the nodes for a query within a timeout period. We normalize this

Table 1. Parameters in our model

Parameter Explanation

N Number of nodes

p0 Total payoff the adversary can offer to the nodes

p1 Total payoff the adversary can offer to the client

pcomp Compensation for the client if reconstruction fails

pf Client’s payoff from a valid reply within 4 slots

pc Cost of sending a query to the contract

pw Cost of constructing and sending a clue to the contract

ps Collateral per node
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timeout to be a single slot for all contracts6. Let xi = 1 if the node Pi sends a
valid clue at slot t + 1 in response to a query posted at some slot t, and xi = 0
otherwise. We characterize a contract by a slashing function f that maps actions
x = (x1, . . . , xN ) ∈ {0, 1}N to payoffs (f1(x), . . . , fN (x)) ∈ R

N for the nodes,
and the payoff fV(x) ∈ R for the client. Since the contract cannot punish the
nodes more than the staked collateral, fi(x) ≥ −ps for every action x ∈ {0, 1}N .
We will hereafter use slashing function and the contract interchangeably.

The proposed optimal contract and the associated slashing function is param-
eterized by a small number ε > 0:

fi(x) =

⎧
⎪⎨

⎪⎩

0 if xi = 1
−ps if xi = 0,

∑N
j=1 xj < k

−pw − ε if xi = 0,
∑N

j=1 xj ≥ k

fV(x) =

{
0 if

∑N
j=1 xj ≥ k

pcomp if
∑N

j=1 xj < k

Here, pcomp < ps, pf , and pcomp > pc to ensure that the client’s net payoff stays
above zero if it does not receive sufficiently many clues through the contract.

The contract burns, i.e., slashes the collateral ps put up by each node that has
not sent a valid clue by the end of slot t+1, if there are less than k clues. In this
case, the contract also awards pcomp of the slashed coins to V. Otherwise, if there
are k or more clues in the contract by slot t + 1, it punishes the non-responsive
nodes by a modest amount, namely pw + ε.

4 Analysis

In Sect. 4.1, we formalize the desirable properties and notions of optimality for
slashing functions. In Sect. 4.2, we show that the slashing function of Sect. 3 is
optimal for risk-neutral and risk-averse nodes. In Sect. 4.3, we generalize the
analysis to a dynamic game with a rational client.

4.1 Contract Properties

The desirable properties for slashing functions f (Sect. 1) are formalized below:

– A1: Symmetry. A slashing function f is symmetric if f(π(x)) = π(f(x)) for
every action x ∈ {0, 1}N and permutation π.

– A2: No Reward. A slashing function f offers no rewards if for every action
x ∈ {0, 1}N , fi(x) ≤ 0, ∀i ∈ [N ], and fV(x) +

∑
i∈[N ] fi(x) ≤ 0.

6 In a network with temporary partitions, the timeout can be increased to guarantee
the timely inclusion of the messages sent to the contract.
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– A3: Security Under No Attack. A slashing function f guarantees security
under no attack if for all (0, 0)-adversaries, it achieves Tanswer-security with
overwhelming probability in all Nash equilibria of the game.

– A4: B-Minimal punishment. A slashing function f offers B minimal punish-
ment if for every action x ∈ {0, 1}N such that

∑N
i=1 xi ≥ k, we have that

fi(x) ≥ −B for all i ∈ [N ].

Definition 2. A slashing function f is said to be compliant if it satisfies the
axioms A1–A3, and the axiom A4 for some constant B ∈ R

+.

Definition 3. A compliant slashing function f is said to be (p0, q)-tolerant if
for all p0-adversaries, when a query is received by the contract at some slot t,
there are k or more correct clues in the contract at slot t + 1, with probability
at least q, in all Nash equilibria.

The value q of a (p0, q)-tolerant contract can be interpreted as the minimum
probability for security given that the client received no responses over the net-
work and sent its query to the contract.

We next introduce two notions of optimality for the contract. A security-
optimal function ensures that for any p0, security is violated with the minimum
possible probability in the equilibrium with the largest failure probability.

Definition 4. A compliant slashing function f is said to be security-optimal
if for all p0 ≥ 0, there exists a q0 ∈ [0, 1] such that f is (p0, q0)-tolerant, and
there does not exist any compliant, (p0, q)-tolerant function f ′, where q > q0.

A punishment-optimal contract imposes the minimum punishment on the
unresponsive nodes (e.g., due to benign errors) if security was not compromised.

Definition 5. A compliant slashing function f is said to be ε-punishment-
optimal if it satisfies B-minimal punishment, and no compliant slashing func-
tion f ′ can satisfy B′-minimal punishment for some B′ < B − ε.

Finally, we combine the two notions of optimality in a single definition:

Definition 6. A family of slashing functions fε, parameterized by ε, is said to
be optimal if each member fε of the family is compliant, security-optimal and
ε-punishment-optimal.

4.2 Analysis of the Optimal Contract

We prove the following theorem for risk-neutral and risk-averse nodes.

Theorem 1. The family of slashing functions described in Sect. 3 is optimal.

Theorem 1 follows from Theorems 2, 3, and 4. Their proofs for risk-neutral
and risk-averse nodes are given in [28, Appendices A and B] respectively.

We first showing that the slashing function is compliant:
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Theorem 2. Each slashing function from Sect. 3, parameterized by ε > 0, satis-
fies symmetry (A1), no reward (A2), security under no attack (A3), and (pw+ε)-
minimal punishment (A4).

The axioms A1, A2 and A4 follow by inspection, whereas A3 is shown by
Lemma 1. Proof of Lemma 1 is given in [28, Appendices A and B] for risk-neutral
and risk-averse nodes respectively.

Lemma 1. Given the slashing function of Sect. 3, for any (0, 0)-adversary A,
4-security is satisfied with overwhelming probability in all Nash equilibria.

When pcomp > pc, the client is incentivized to send its query to the contract if
it receives less than k clues over the network. Then, the nodes post their clues to
the contract to avoid slashing of their stakes, and the contract ensures security
with overwhelming probability.

Remark 1. If pcomp ≤ pc, for any contract that offers no rewards to the nodes,
and for any (ε, 0)-adversary where ε ≥ 0, there exists a Nash equilibrium such
that 4-security is violated with overwhelming probability. Consider the action
profile, where the nodes do not send their clues to the client V over the network,
and do not post their clues to the contract. Given these actions, if pcomp ≤ pc,
V’s payoff can at most be 0, and the maximum payoff is achieved if V does
not send a query to the contract, even when it does not receive clues over the
network. In this case, the normalized payoff of each node becomes 0 as well,
which is the maximum payoff attainable by any node. Hence, the nodes do not
have any incentive to deviate from the action profile above, which constitutes a
Nash equilibrium.

We next show that the slashing function is ε-punishment optimal.

Theorem 3. Consider a slashing function that is symmetric (A1), offers no
rewards (A2), and satisfies B-minimal punishment for some B < pw (A4). Then,
for k > 1, there exists a (0, 0)-adversary A and a Nash equilibrium, where 4-
security is violated with non-negligible probability. Thus, no compliant slashing
function can satisfy B-minimal punishment for some B < pw.

When B < pw, punishment for a node that does not post its clue to the contract
while the other nodes send their clues is smaller than the cost of posting the
clue. This leads to a free-rider problem, and results in an equilibrium with a
non-negligible failure probability for security, where each non-adversarial node
trusts the others to send clues to the contract.

Finally, we prove security-optimality:

Theorem 4. The slashing function of Sect. 3 is security optimal.

Consider the sub-game, where the contract receives a query at some slot t.
For a given contract and utility function U(x) = xν , let qA

v denote the probability
that given a p0-adversary A, there are less than k valid clues in the contract at
slot t + 1 in the Nash equilibrium with the largest probability of failure. Then,
the proof of Theorem 4 for risk-neutral nodes follow from Theorem 5:
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Theorem 5. Suppose p0 < (N − f − k + 1)(ps − pw) and the nodes are risk-
neutral with the utility function U(x) = x. Then, for any p0-adversary A, the
slashing function of Sect. 3 satisfies

qA
v ≤ q∗ =

p0
(N − f − k + 1)(ps − pw)

Moreover, there exists a p0-adversary A such that for any compliant slashing
function, qA

v ≥ q∗.

The p0-adversary A of Theorem 5 offers a bribe of p0
N−f−k+1 to N − f − k + 1

non-adversarial nodes, e.g., Pi, i ∈ [N − f − k + 1]. In return, it requests these
nodes to collectively withhold their clues from the contract with probability q∗.

Remark 2. If p0 ≥ (N − f − k + 1)(ps − pw), there exists a Nash equilibrium,
where 4-security is violated with overwhelming probability. Adversary offers a
payoff of ps − pw to each of the N − f − k + 1 nodes, and requests them to
withhold their clues from the contract. In the equilibrium, the offer is accepted
and the nodes do not post their clues to the contract.

Remark 3. Sending repeated queries to the contract does not reduce the failure
probability by more than a linear factor in latency. Suppose the client V is
allowed to send the same query to the contract up to � times. Then, if there are
less than k valid clues in the contract at slot t + 1, V might want to repeat the
sub-game up to � times with the hope of eventually learning the answer to its
query. In this case, the adversary A can offer a payoff of p0

N−f−k+1 to the nodes
Pi, i ∈ [N − f − k + 1], and in return, ask them to collectively withhold their
clues in all of the games with probability q∗/�. As in the proof of Theorem 5,
this adversary ensures qA

v ≥ q∗/� for any compliant slashing function.

Finally, we characterize the failure probability for the optimal contract. Sup-
pose the contract of Sect. 3 is (p0, 1 − q∗

p0,ν)-tolerant per Definition 3, where the
failure probability q∗

p0,ν is depends on the total bribe p0 and the nodes’ utility
function U(x) = xν , e.g., q∗

p0,1 = q∗ by Theorem 5. Although Theorem 4 proves
that the contract of Sect. 3 is security optimal, unlike Theorem 5, its proof does
not provide an explicit expression for q∗

p0,ν when ν < 1, i.e., for risk-averse
nodes. Instead, we identify an optimization problem whose solution gives q∗

p0,ν

[28, Appendix C]. As the optimization problem is not convex for ν < 1, in lieu of
solving the problem, we provide bounds on q∗

p0,ν that characterize its asymptotic
behavior in terms of ν, p0 and N .

4.3 Analysis of the Dynamic Game

In this section, we analyze the interaction among a rational client and the nodes
during the dynamic game. For a specified slashing function, let q(p0, ν) denote
the maximum probability that 4-security is violated in the Nash equilibrium
with the largest probability of failure, across all p0-adversaries.
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Theorem 6 shows that when k > 1, the slashing function of Sect. 3 achieves
the minimum q(p0, ν) among all compliant slashing functions, and this proba-
bility equals q∗

p0,ν . Proofs of the subsequent theorems are in [28, Appendix D].

Theorem 6. Consider (p0, p1)-adversaries such that p1 < pcomp − pc and p0 <
(N − f − k +1)(ps − pw). Then, for the slashing function of Sect. 3, it holds that
q(p0, ν) ≤ q∗

p0,ν .
Moreover, given any compliant slashing function, if k > 1, then, there exists

a (p0, 0)-adversary and a subgame perfect equilibrium such that 4-security is
violated in the equilibrium with probability q∗

p0,ν .

Theorem 6 proves that even if the adversary does not offer any bribe to the
client, i.e., p1 = 0, if k > 1, there exists a subgame perfect equilibrium where
security is violated with the maximum probability q∗

p0,ν .

Remark 4. If p1 > pcomp−pc, there exists a Nash equilibrium, where 4-security is
violated with overwhelming probability. Suppose the adversary A asks the nodes
to not send their clues to V or to the contract, and requests V to not post its
query to the contract. If V never sends its query to the contract, nodes achieve
a strictly better utility by accepting the adversary’s offer. Similarly, V cannot
increase its utility by deviating from the adversarial action. This is because, if V
rejects its bribe and sends a query to the contract, given the nodes’ actions, its
payoff becomes pcomp − pc, less than the bribe p1. Hence, given A, the specified
actions indeed constitute a Nash equilibrium.

Theorem 7 analyzes the game when k = 1.

Theorem 7. Consider any compliant slashing function and (p0, p1)-adversaries
such that p1 < pcomp − pc and p0 < (N − f − k + 1)(ps − pw). Suppose there are
N nodes, and k = 1 ≤ N − f . Then, if p1 satisfies

(1 − q∗
p0,ν)(pf − pc + p1)ν + q∗

p0,ν(pf − pc + p1 + pcomp)ν ≥ (pf )ν ,

there exists a (p0, p1)-adversary and a subgame perfect equilibrium such that 4-
security is violated with probability at least q∗

p0,ν , i.e., q(p0, ν) ≥ q∗
p0,ν .

Via Theorems 6 and 7, for all values of k and all (p0, p1)-adversaries with a suf-
ficiently large p1, the slashing function of Sect. 3 achieves the minimum possible
failure probability for 4-security among all compliant slashing functions. If p1
satisfies formula (7), then the adversary can incentivize V to send a query to the
contract regardless of whether V received clues over the network. This in turn
discourages the nodes from sending clues over the network, and helps sustain an
equilibrium where security rests solely on the clues sent to the contract. In this
context, slashing function of Sect. 3 minimizes the failure probability for security,
which becomes q∗

p0,ν .
On the other hand, if p1 is too small to satisfy formula (7), p0 is sufficiently

small (but non-zero) and k = 1, given the optimal slashing function of Sect. 3, 4-
security can be satisfied, without any query sent to the contract, with probability
exceeding q∗

p0,ν . This prevents the adversary from making the contract the default
method for retrieving the data and bloating the blockchain.
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Theorem 8. Consider the slashing function of Sect. 3 and (p0, p1)-adversaries
such that p1 < pcomp − pc, p0 < (N − f)pw, and p1 satisfies

(1 − q∗
p0,ν)(pf − pc + p1)ν + q∗

p0,ν(pf − pc + p1 + pcomp)ν < (pf )ν .

Suppose there are N nodes, and k = 1 ≤ N − f . Then, 4-security is satisfied
with overwhelming probability in all Nash equilibria, without the client sending
its query to the contract.

When ν = 1, i.e., for risk-neutral nodes, formula (7) implies p1 ≥ pc. As pc

can be as small as the gas cost of sending a query, for most (p0, p1)-adversaries,
we expect p1 to exceed pc, i.e.to satisfy formula (7).

5 Evaluation

We next calculate the bribe p0 needed to violate security in the equilibrium
with the largest failure probability, when a query is sent to the optimal con-
tract of Sect. 3 on Ethereum. When the clues are SNARK proofs as argued
in Sect. 2, assuming that sending and verifying a SNARK proof on Ethereum
requires 650000 gas [10], and the gas cost is 34.77 Gwei7, we estimate the cost
of posting a clue to the contract as pw ≈ 0.0226 ETH. We set the collateral ps

to be 32 ETH to match the minimum amount that can be staked in Ethereum
by an independent node. Assuming that the adversary can control up to 1/3 of
the N DAC nodes, and clues from 1/3 of the nodes are sufficient to recover the
answer to the client queries, we set N − f − k + 1 to be N/3. The 1/3 bound for
the adversarial DAC nodes matches the maximum tolerable adversary fraction
shown for the security of Casper FFG [13], the finality gadget of PoS Ethereum.
We consider N < 300, 000, which has the same magnitude as the number of
validators on PoS Ethereum [8].

Let ε denote the maximum failure probability for DAC security that the
clients are willing to tolerate. Suppose ε = 0.1%. For risk-neutral nodes, Theo-
rem 5 implies that ε = min(1, 1

N−f−k+1
p0

ps−pw
). For risk-averse nodes with the

utility function U(x) = xν , upper and lower bounds on ε is calculated in [28,
Appendix C]. Using the above parameters, the formula for ε for risk-neutral
nodes and the bounds for risk-averse nodes, we calculate the following bounds8

for the minimum bribe p0 needed to violate security with probability ε = 10−3

(0.1%), as a function of the utility parameter ν (details in [28, Appendix C]).
The exact value of p0 increases as ν decays, i.e., as the nodes become more

risk averse. This increase becomes more stark at small values of the maximum
failure probability ε. A plot of the lower bound on p0 as a function of N ∈
[1, 300000], for ν = 0.1, 0.5, 0.8, 1.0 and ε = 10−6 (as opposed to ε = 0.1%) is
presented in [28, Appendix C] to illustrate this point. The lower bound curve
increases as ν decreases. Since Table 2 considers ε = 10−3, unlike the case with
ε = 10−6, the lower bound expression for p0 does not grow as ν gets smaller.
7 The gas cost is the average gas price for July 15, 2022 [2].
8 1 ETH ≈ 1231.0 USD, is the average Ethereum price on July 15, 2022 [3].
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Table 2. Lower and upper bounds on p0 in ETH and USD as a function of the utility
parameter ν, where 1 ETH ≈ 1231.0 USD, the number of DAC nodes N is 300, 000,
and the failure probability is ε = 0.1%.

ν Lower bound on p0 Upper bound on p0

0.1 3197.9 ETH (3.9 Million USD) 13257.7 ETH (16.3 Million USD)

0.5 3197.9 ETH (3.9 Million USD) 6082.5 ETH (7.5 Million USD)

0.8 3197.9 ETH (3.9 Million USD) 3977.5 ETH (4.9 Million USD)

1.0 3197.9 ETH (3.9 Million USD) 3197.9 ETH (3.9 Million USD)

6 Discussion and Future Work

Preventing Centralization of Storage. DAC members have an into pool
their resources and pay for a central data repository, e.g., a cloud provider.
They then answer the client queries by querying the central repository, and split
the cost of the repository among themselves. However, if this single repository
loses the data, then all is lost. Thus, a DAC protocol should discourage data
centralization, and this can be done using a cryptographic Proofs of Replication
(POR) [18] that forces every node to store a different incompressible version of
the data. However, POR introduces a significant computation overhead. Inter-
estingly, the data centralization problem is not addressed by data availability or
storage systems such as Celestia [6] and Arweave [29].

While our protocol does not solve the problem, arguably, it discourages data
centralization. A node that participates in a centralization scheme is putting its
trust in the repository to preserve the data. However, the repository has little to
lose if the data is lost, while the node will lose its entire stake. Hence, the node
is incentivized to store the data locally rather than to trust a third party.

Preventing Client DoS Attack. Clients can send queries to the contract
frequently, at the cost of pc coins per query. Although pc can be as low as the
gas cost of posting an account information on chain (cf.Application in Sect. 2),
which implies a potential DoS vector, the contract can increase this cost to
disincentivize DoS attacks. The value of pc can even be adaptively chosen as a
function of the number of queries to reduce congestion. Then, as long as pc is
not subsidized by the bribe p1, no rational client would send a query unless the
nodes withhold their clues. However, pc should not be too high as that would hurt
the contract balance by requiring a high pcomp (cf.Remark 4), and discourage
rational clients from sending queries for accounts with smaller balances (i.e.,
pf ). An interesting future work is to determine the optimal pc that would not
impose a high burden on most accounts while making spamming attacks costly.

Utility Functions. The analysis in Sect. 5 demonstrates how risk-aversion
implies a higher bribe for the adversary to violate security. However, the exact
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shape of the utility function depends on the marginal utility for the coin in
which the payoffs are provided. Quantifying this marginal utility and identifying
the correct function is important future work to accurately assess the affect of
bribery on security. Further discussion on bribery and collusions among nodes
is presented in [28, Section 6].
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Abstract. Blockchains have become the catalyst for a growing move-
ment to create a more decentralized Internet. A fundamental operation of
applications in a decentralized Internet is data storage and retrieval. As
today’s blockchains are limited in their storage functionalities, in recent
years a number of peer-to-peer data storage networks have emerged
based on the Kademlia distributed hash table protocol. However, existing
Kademlia implementations are not efficient enough to support fast data
storage and retrieval operations necessary for (decentralized) Web appli-
cations. In this paper, we present Kadabra, a decentralized protocol for
computing the routing table entries in Kademlia to accelerate lookups.
Kadabra is motivated by the multi-armed bandit problem, and can auto-
matically adapt to heterogeneity and dynamism in the network. Exper-
imental results show Kadabra achieving between 15–50% lower lookup
latencies compared to state-of-the-art baselines.

Keywords: Multi-armed bandit · Decentralized protocol · Kademlia
p2p routing

1 Introduction

Decentralized peer-to-peer applications (dapps) fueled by successes in blockchain
technology are rapidly emerging as secure, transparent and open alternatives to
conventional centralized applications. Today dapps have been developed for a
wide gamut of application areas spanning payments, decentralized finance, social
networking, healthcare, gaming etc., and have millions of users and generate bil-
lions on dollars in trade [11]. These developments are part of a growing movement
to create a more “decentralized Web”, in which no single administrative entity
(e.g., a corporation or government) has complete control over important web
functionalities (e.g., name resolution, content hosting, etc.) thereby providing
greater power to application end users [1,44].

A fundamental operation in dapps is secure, reliable data storage and
retrieval. Over the past two decades, the cloud (e.g., Google, Facebook, Ama-
zon) together with content delivery networks (CDNs; e.g., Akamai, CloudFlare)
have been largely responsible for storing and serving data for Internet appli-
cations. Infrastructure in the cloud or a CDN is typically owned by a single
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provider, making these storage methods unsuitable for dapps. Instead dapps—
especially those built over a blockchain (e.g., ERC 721 tokens in Ethereum)—
directly resort to using the blockchain for storing application data. However,
mainstream blockchains are notorious for their poor scalability which limits the
range of applications that can be deployed on them. In particular, realizing a
decentralized Web that supports sub-second HTTP lookups at scale is infeasible
with today’s blockchain technology.

To fill this void, a number of recent efforts have designed decentralized peer-
to-peer (p2p) data storage networks—such as IPFS [5], Swarm [42,43,45], Hyper-
core protocol [20], Safe network [36] and Storj [40]—which are seeing rapid main-
stream adoption. E.g., the IPFS network has more than 3 million client requests
per week with hundreds of thousands of storage nodes worldwide as part of
the network [44]. In these networks, each unique piece of data is stored over a
vast network of servers (nodes) with each server responsible for storing only a
small portion of the overall stored data unlike blockchains. The networks are also
characterized by their permissionless and open nature, wherein any individual
server may join and participate in the network freely. By providing appropriate
monetary incentives (e.g., persistent storage in IPFS can be incentivized using
Filecoin [14,21]) for storing and serving data, the networks encourage new servers
to join which in turn increases the net storage capacities of these systems.

A key challenge in the p2p storage networks outlined above is how to effi-
ciently locate where a desired piece of data is stored in the network. Unlike cloud
storage, there is no central database that maintains information on the set of
files hosted by each server at any moment. Instead, p2p storage networks rely
on a distributed hash table (DHT) protocol for storage and retrieval by content
addressing data. While tens of DHT constructions have been proposed in the
past, in recent years the Kademlia DHT [29] has emerged as the de facto proto-
col and has been widely adopted by practitioners. For instance, IPFS, Swarm,
Hypercore protocol, Safe network and Storj are all based on Kademlia. To push
or pull a data block from the network, the hash of the data block (i.e., its con-
tent address) is used to either recursively or iteratively route a query through
the DHT nodes until a node responsible for storing the data block is found.

For latency-sensitive content lookup applications, such as the Web where a
delay of even a few milliseconds in downloading webpage objects can lead to
users abandoning the website [46], it is imperative that the latency of routing a
query through Kademlia is as low as possible. Each Kademlia node maintains
a routing table, which contains IP address references to other Kademlia nodes
in the network. The sequence of nodes queried while performing a lookup is
dictated by the choice of routing tables at the nodes. Today’s Kademlia imple-
mentations choose the routing tables completely agnostic of where the nodes are
located in the network. As a result, a query in Kademlia may take a route that
criss-crosses continents before arriving at a target node costing significant delay.
Moreover, the open and permissionless aspects makes the network inherently
heterogeneous: nodes can differ considerably in their compute, memory and net-
work capabilities which creates differences in how fast nodes respond to queries;
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data blocks published over the network vary in their popularity, with demand
for some data far exceeding others; the network is also highly dynamic due to
peer churn and potentially evolving user demand for data (e.g., a news webpage
that is popular today may not be popular tomorrow). Designing routing tables
in Kademlia that are tuned to the various heterogeneities and dynamism in the
network to minimize content lookup delays is therefore a highly nontrivial task.

Prior works have extensively investigated how to design location-aware rout-
ing tables in Kademlia. For example, the proximity neighbor selection (PNS) [7]
advocates choosing routing table peers that are geographically close to a node
(more precisely, peers having a low round-trip-time (RTT) ping delay to the
node), and proximity routing (PR) [7] favors relaying a query to a matching
peer with the lowest RTT in the routing table. While these location-aware vari-
ants have been shown to exhibit latency performance strictly superior to the
original Kademlia protocol [29], they are not adaptive to the heterogeneities in
the network. PNS is also prone to Sybil attacks which diminishes its practical
utility [32]—an adversary controlling a large number of fake Kademlia nodes at
a location can cause a nearby node’s routing table to be completely filled with
adversarial IP addresses. Real world Kademlia implementations in libp2p [28],
IPFS and other file sharing networks therefore have resorted to maintaining the
peer routing tables largely per the original Kademlia protocol. S/Kademlia [4] is
a particularly popular implementation which uses public-key cryptography for
authentication and proof-of-work puzzles to avoid Sybil attacks.

We propose Kadabra, a decentralized, adaptive algorithm for selecting rout-
ing table entries in Kademlia to minimize object lookup times (to push or get
content) while being robust against Sybil attacks. Kadabra is motivated by the
(combinatorial) multi-armed bandit (MAB) problem [6,37], with each Kadem-
lia node acting as an independent MAB player and the node’s routing table
configurations being the arms of the bandit problem. By balancing exploring
new routing table configurations with exploiting known configurations that have
resulted in fast lookup speeds in the past, a node is able to adaptively discover
an efficient routing table that provides fast lookups. Importantly, the discov-
ered routing table configuration at a node is optimized precisely to the pattern
of lookups specific to the node. Our proposed algorithm is fully decentralized,
relying only on local timestamp measurements for feedback at each node (time
between when a query was sent and its corresponding response received) and does
not require any cooperation between nodes. To protect against Sybil attacks,
Kadabra relies on a novel exploration strategy that explicitly avoids including
nodes that have a low RTT to a node within the node’s routing table with the
RTT threshold specified as a security parameter. At the same time, Kadabra’s
exploration strategy also avoids selecting nodes very far from a node. To accel-
erate discovery of an efficient routing table configuration, Kadabra decomposes
the problem into parallel independent MAB instances at each node, with each
instance responsible for optimizing peer entries of a single k-bucket. In summary,
the contributions of this paper are:



330 Y. Zhang and S. Bojja Venkatakrishnan

Fig. 1. (a) Example of k-buckets at a node in a network with 4-bit node IDs. (b)
Example of a recursive routing path taken to lookup key 0101. A yellow-highlighted
node ID is a peer to which the query is forwarded for the next hop. (Color figure online)

1. We consider the problem of efficient routing table design in Kademlia and
formulate it as an instance of the multi-armed bandit problem. Using data-
driven techniques for optimizing lookup speeds in structured p2p networks
has not been proposed before, to our best knowledge.

2. We propose Kadabra, a fully decentralized and non-cooperative algorithm for
learning the routing table entries to accelerate lookups. Kadabra is adaptive
to both the traffic demand patterns of the users and the heterogeneities in
the network.

3. We validate Kadabra through simulations under various network and traffic
settings. In each case, we observe Kadabra to consistently outperform base-
lines by between 15–50% in latency.

2 Background

2.1 Kademlia

Overview. Kademlia is arguably the most popular protocol for realizing a struc-
tured p2p system on the Internet today. In a Kademlia network, each node is
assigned a unique binary node ID from a high-dimensional space (e.g., 20 byte
node IDs are common). When the network size is large, it is difficult for a node
to know the node ID of every single node in the network. A node may have
knowledge of node IDs of only a small number (such as logarithmic in network
size) of other nodes. The most basic operation supported by Kademlia is key-
based routing (KBR) wherein given a key from the node ID space as input to
a node, the protocol determines a routing path from the node to a target node
whose ID is the ‘closest’ to the input key. Closeness between a key and a node
ID in Kademlia is measured by taking the bitwise-XOR between the two binary
strings, and converting the resultant string as a base-10 integer. The basic KBR
primitive can be used to realize higher-order functions such as a distributed hash
table (DHT). In a DHT, a (key, value) store is distributed across nodes in the
network. A (key, value) pair is stored at a node whose node ID is the closest to
the key according to the XOR distance metric. To protect against node failures,
in practice a copy of the (key, value) is also stored at a small number (e.g., 20) of
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sibling nodes that are nodes whose IDs are closest to the initial storing node. To
store a (key, value) in the network a node invokes a Store(key, value) remote
procedure call (RPC), and to fetch a value corresponding to a key the node
calls a FindValue(key) RPC [4,29]. KBR is implemented as a FindNode(key)
RPC, which returns the Kademlia node having the closest ID to key.
Routing. Each Kademlia node maintains a routing table containing node ID,
IP address and port information of other peers using which Store, FindValue
or FindNode queries are routed to their appropriate target nodes. For node IDs
that are n bits long, the routing table at each node comprises of n k-buckets,
where each k-bucket contains information about k peers. The IDs of peers in the
i-th k-bucket of a node’s routing table share the first i − 1 bits with the node’s
ID, while differing in the i-th bit (Fig. 1a). For a network with m nodes, it can
be shown that on average only the first log(m) k-buckets can be filled with peer
entries while the remaining k-buckets are empty due to lack of peers satisfying
the prefix constraints.

Queries in Kademlia are routed either recursively or iteratively across nodes.
In a recursive lookup, a query is relayed sequentially from one node to the next
until a target node is found. The response from the target node is then relayed
back on the reverse path to the query initiator. In an iterative lookup, a query
initiating node itself sequentially contacts nodes until a target node is found,
and receives a response directly from the target node. We focus primarily on
recursive routing in this work (Fig. 1b).

When a query for key x is received at a node v, the node searches for a peer
v′ within its routing table with an ID that is closest to x. If the distance between
the IDs x and v′ is less than the distance between x and v, then v forwards the
query to node v′. Later when v receives a response to the query from v′, v relays
the response back to the node from whom it received the query. If the distance
between x and v is less than than distance between x and v′, the node v issues an
appropriate response for the query to the node from whom v received the query.
To avoid lookup failures, a query initiator issues its query along α (e.g., α = 3)
independent paths. This basic lookup process described above is fundamental to
implementing the Store, FindValue and FindNode functions. We point the
reader to prior papers [4,29] for more details on the lookup process.

2.2 Lookup Latency and Node Geography

A Kademlia node may include any peer it has knowledge of within its k-buckets,
provided the peer satisfies the required ID prefix conditions for the k-bucket.
Nodes get to know of new peers over the course of receiving queries and responses
from other nodes in the network. As node IDs are assigned to nodes typically
in a way that is completely independent of where the nodes are located in the
world, in today’s Kademlia it is likely that the peers within a k-bucket belong
to diverse geographical regions around the world without any useful structure.
E.g., a recent study [44] measuring performance on the IPFS network reports
a 90-th percentile content storing latency of 112 s with 88% of it attributed to
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DHT routing latency. For retrieving content, the reported 90-th percentile delay
is 4.3 s which is more than 4× the latency of an equivalent HTTPS lookup.
Similar observations have been made on other Kademlia systems in the past as
well [10].

There has been an extensive amount of work on reducing lookup latencies
in DHTs by taking the physical location of nodes on the underlay [19,22,25,
33,35,49]. For instance, Kaune et al. [26] propose an algorithm that takes the
ISPs of nodes into consideration, and also uses network coordinates for reducing
latencies. Jimenez et al. [23] tune the number of parallel lookup queries sent or
bucket size to achieve speedup. Chen et al. [9] minimize the mismatch between
Kademlia’s logical network and the underlying physical topology through a land-
mark binning algorithm and RTT detection. Gummadi et al. [16] do a systematic
comparison of proximity routing and proximity neighbor selection on different
DHT protocols. The algorithms proposed in these and other prior works are
hand-crafted designs, which are not tuned to the various heterogeneities in the
network. Moreover, security in these proposed methods has not been discussed
as a first-order concern. Indeed, today’s DHT implementations have not adopted
these proposals into their systems.

2.3 Security in Kademlia

A Kademlia node is susceptible to various attacks, especially in permissionless
settings. We consider the following attacks in this work.
Eclipse and Sybil attacks. In an Eclipse attack, an attacker blocks one or more
victim nodes from connecting to other nodes in the network by filling the victim
nodes’ routing table with malicious nodes. In a Sybil attack, the attacker creates
many fake nodes with false identities to spam the network, which may eventually
undermine the reputation of the network. Today’s Kademlia implementations
circumvent these attacks using ideas largely inspired from S/Kademlia [4]. In
S/Kademlia, the network uses a supervised signature issued by a trustworthy
certificate authority or a proof-of-work puzzle signature to restrict users’ ability
to freely generate new nodes.
Adversarial routing. In Kademlia, a malicious node within an honest node’s
routing table may route messages from the honest node to a group of malicious
nodes. This attack is called adversarial routing, and it may cause delays and/or
make the queries unable to find their target keys. To alleviate adversarial routing,
S/Kademlia makes nodes use multiple disjoint paths to lookup contents at a cost
of increased network overhead.
Churn attack. Attackers can also enter and exit the network constantly to
induce churns to destabilize the network. Kademlia networks handle these kind
of attacks by favoring long-lived nodes [27,29].

3 System Model

We consider a Kademlia network over a set of nodes V with each node v ∈ V
having a unique IP address and a node ID from ID space {0, 1}n. Each node
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maintains n k-buckets in its routing table, with each k-bucket containing the IP
address and node ID of up to k other peers satisfying the ID prefix condition.
We consider a set S of (key, value) pairs that have been stored in the network;
each (key, value) pair (x, y) ∈ S is stored in k peers whose IDs are closest to
x in XOR distance. We let Sx denote the set of keys in S. Time is slotted into
rounds, where in each round a randomly chosen node performs a lookup for a
certain key. If a node v ∈ V is chosen during a round, it issues a lookup query for
key x ∈ Sx where x is chosen according to a demand distribution pv, i.e., pv(x)
is the probability key x is queried. We focus primarily on recursive routing in
this paper. When a node v initiates a query for key x, it sends out the query to
α closest (to x, in XOR distance) peers in its routing table. For any two nodes
u,w, l(u,w) ≥ 0 is the latency of sending or forwarding a query from u to w.
When a node w receives a query for key x and it has stored the value for x,
the node returns the value back to the node u from whom it received the query.
Otherwise, the query is immediately forwarded to another node that is closest
to x in w’s routing table. When a node w sends or forwards a value y to a node
u, it first takes time δw ≥ 0 to upload the value over the Internet followed by
time l(w, u) for the packets to propagate to u. We do not model the time take
to download the value, as download bandwidth is typically higher than upload
bandwidth. Thus, for a routing path v, u, w with v being the query initiator and
w storing the desired value, the overall time taken for v to receive the value is
l(v, u)+ l(u,w)+δw + l(w, u)+δu + l(u, v). The above outlines our lookup model
for the DHT application. For KBR, we follow the same model except only a
single query (i.e., α = 1) is sent by the initiating node. We assume each node
has an access to the IP addresses and node IDs of a small number of random
nodes in the network.
Problem statement. For each of the KBR and DHT applications, our objective
is to design a decentralized algorithm for computing each node’s routing table
such that the average time (averaged over the distribution of queries sent from
the node) taken to perform a lookup is minimized at the node. We consider non-
cooperative algorithms where a node computes its routing table without relying
on help from other nodes.

4 Kadabra

4.1 Overview

Kadabra is a fully decentralized and adaptive algorithm that learns a node’s
routing table to minimize lookup times, purely based on the node’s past inter-
actions with the network. Kadabra is inspired by ideas from non-stationary and
streaming multi-armed bandit problems applied to a combinatorial bandit set-
ting [2,8,31]. A Kadabra node balances efficient routing table configurations it
has seen in the past (exploitation) against new, unseen configurations (explo-
ration) with potentially even better latency efficiency. For each query that is
initiated or routed through a Kadabra node, the node stores data pertaining to
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which peer(s) the query is routed to and how long it takes for a response to arrive.
This data is used to periodically make a decision on whether to retain peers cur-
rently in the routing table, or switch to a potentially better set of peers. Treating
the routing table as the decision variable of a combinatorial MAB problem leads
to a large space and consequently inefficient learning. We therefore decompose
the problem into n independent subproblems, where the i-th subproblem learns
only the entries of the i-th k-bucket. This decomposition is without loss of gen-
erality as each query is routed through peers in at most one k-bucket. In the
following we therefore explain how a Kadabra node can learn the entries of its
i-th k-bucket.

In Kadabra, a decision on a k-bucket (i.e., whether to change one or more
entries of the bucket) is made each time after b queries are routed via peers in
the bucket (e.g., b = 100 in our experiments). We call the time between succes-
sive decisions on a k-bucket as an epoch. Before each decision, a performance
score is computed for each peer in the bucket based on the data collected over
the epoch for the bucket. Intuitively, the performance score for a peer captures
how frequently queries are routed through the peer and how fast responses are
received for those queries. By comparing the performance scores of peers in the
bucket during the current epoch against the scores of peers in the previous epoch,
Kadabra discovers the more efficient bucket configuration which is then used as
the k-bucket for the subsequent epoch.1 To discover new (unseen) bucket con-
figurations, Kadabra also explores random bucket configurations according to a
user-defined schedule. In our implementation, one entry on the k-bucket is cho-
sen randomly every other epoch. The overall template of Kadabra is presented
in Algorithm 1.

4.2 Scoring Function

During an epoch with k-bucket Γcurr, let q1, q2, . . . , qr be the set of queries that
have been sent or relayed through one or more peers in the k-bucket. For each
query qi, 1 ≤ i ≤ r, let di(u) ≥ 0 be the time taken to receive a response upon
sending or forwarding the query through peer u for u ∈ Γcurr. If qi is not sent
or forwarded through a peer u ∈ Γcurr we let di(u) = Δ where Δ ≥ 0 is a
user-defined penalty parameter.2 A large value for Δ causes Kadabra to favor
peers that are frequently used in the k-bucket, while a small value favors peers
from which responses are received quickly. In our experiments, we choose Δ to
be a value that is slightly larger than the moving average of latencies of lookups
going through the bucket. The function ScoringFunction(u,D) to compute
the score for a peer u is then defined as score(u) = ScoringFunction(u,D) =
−∑r

i=1 di(u) ∀u ∈ Γcurr. The overall score for the k-bucket is then given as
ScoreBucket(Γcurr,D) = −∑

u∈Γcurr
score(u)/|Γcurr|. For a k-bucket that is

empty, we define its score to be −Δ.
1 To increase stability under churn, we may choose to replace only unresponsive

peers—as in the original Kademlia protocol—in each epoch.
2 Notice that di(u) is well-defined for both recursive and iterative routing.
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Algorithm 1: Algorithm outline for updating entries of i-th k-bucket of
node v in each epoch.
input : data D on queries sent during current epoch; peers Γcurr and Γprev in

k-bucket of current and previous epochs respectively; total score
PrevScoreBucket of previous k-bucket; flag F indicating whether to
explore in next epoch; list L of peers eligible to be included within
k-bucket; security parameter ρ;

output: updated set of peers Γnext for next epoch;
/* Score each peer in Γcurr using a scoring algorithm based on

measurements collected during epoch */

score(u) ← ScorePeer(u, D), for each peer u ∈ Γcurr

if flag F is true then
/* Replace worst peer with a random peer during next epoch */

u∗ ← argminu∈Γ score(u)
Γnext ← Γcurr\{u∗} ∪ SelectRandomPeer(L, ρ)

else
/* Choose best peer set between current and previous epoch as

decision for next epoch */

if ScoreBucket(Γcurr, D) > PrevScoreBucket then
Γnext ← Γcurr

else
Γnext ← Γprev

end

end

4.3 Random Exploration

To discover new k-bucket configurations with potentially better performance
than past configurations, a Kadabra node includes randomly selected peers
within its bucket through the SelectRandomPeer() function as outlined in
Algorithm 1. The Kadabra node maintains a list L of peers eligible to be included
within its k-bucket, which satisfy the required node ID prefix conditions. In addi-
tion to the peer IP addresses, we assume the node also knows the RTT to each
peer in the list. For a random exploratory epoch, the node replaces the peer
having the worst score from the previous epoch with a randomly selected peer
from the list. The number of peers in the bucket that are replaced with a random
peers can be configured to be more than one more generally.

A key contribution in Kadabra is how peers are sampled from the list of
known peers to be included in the k-bucket. Depending on the number of nodes
in the network, and the index of the k-bucket, the number of eligible peers can
vary with some peers close to the node while some farther away (in RTT sense).
A näıve approach of sampling a node uniformly at random from the list, can
eventually lead to a bucket configuration in which all peers are located close
to the node. This is due to the algorithm ‘discovering’ the proximity neighbor
selection (PNS) protocol which has been demonstrated to have efficient latency
performance compared to other heuristics [4,16]. However, as with PNS, the
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routing table learned with a uniformly random sampling strategy is prone to
a Sybil attack as it relatively inexpensive to launch a vast number of Sybil
nodes concentrated at a single location close to a victim node(s) [34,39]. While
the PNS peer selection strategy does not have an efficient performance in all
scenarios (e.g., if the node upload latencies are large; see §5), in cases where it
does, Kadabra would be susceptible to attack. What we desire, therefore, is to
learn a routing table configuration in which not all peers are located close to the
node. Such a routing table configuration may not be performance efficient (e.g.,
PNS may have a better latency performance in certain scenarios), but is more
secure compared to PNS.

We capture this intuition by introducing a security parameter ρ ≥ 0, that is
user-defined, to restrict the choice of peers that are sampled during exploration.
For a chosen ρ value, a Kadabra node computes a subset L>ρ ⊆ L of peers to
whom the RTT is greater than ρ from the node. The SelectRandomPeer(L, ρ)
then samples a peer uniformly at random from L>ρ. A high value for ρ selects
peers that are at a distance from the node, providing security against Sybil
attacks at a cost of potentially reduced latency performance (and vice-versa).

5 Evaluation

5.1 Experiment Setup

We evaluate Kadabra using a custom discrete-event simulator built on Python
following the model presented in §3.3

Baselines. Since the main focus of Kadabra is on how to configure the routing
table, we compare our algorithm against the following baselines with differing (i)
routing table (bucket) population mechanisms, and (ii) peer selection methods
during query forwarding:

(1) Vanilla Kademlia [4,29]. The original Kademlia protocol in which a node
populates its buckets by randomly adding peers from node ID ranges corre-
sponding to the buckets. When forwarding a query, the node chooses the peer
whose node ID is closest (in XOR distance) to the query’s target node ID from
the appropriate bucket.
(2) Proximity routing (PR) [4,16]. In PR buckets are populated exactly as in
vanilla Kademlia. However, when routing a query the query is sent to the peer
in the appropriate k-bucket that is closest to the node in RTT.
(3) Proximity neighbor selection (PNS) [4,16]. In PNS the node picks peers which
are closest to itself (in terms of RTT) from among eligible peers to populate each
k-bucket. When forwarding a query, the node chooses the peer whose node ID
is closest to the target node ID from the appropriate bucket.

3 We do not use the erstwhile popular OverSim [3] and PeerSim [30] simulators, as
they are outdated and no longer maintained by their authors. Kadabra simulator is
available at https://github.com/yunqizhang99/KadabraSim/..

https://github.com/yunqizhang99/KadabraSim/.
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Fig. 2. Nodes in a square under uniform demand: (a) Average latency of queries in each
epoch for queries routed through the 1st k-bucket of an arbitrary node. (b) Histogram
of lookup latencies in Kadabra during the first and last 1000 rounds in a 10 million
query run.

Network settings. We consider two network scenarios: nodes distributed over a
two-dimensional Euclidean space, and nodes distributed over a real-world geog-
raphy.
(1) Nodes in a square. In this setting, 2048 nodes are assigned random locations
within a 10000 × 10000 square. The latency l(u, v) between any two nodes u, v
is given by l(u, v) = ||u−v||2 +w(u, v), where ||u−v||2 is the Euclidean distance
between u and v on the square and w(u, v) is random perturbation from an
uniform distribution between 100 and 5000. Each node has a node latency (δ in
§3) sampled uniformly between 100 and 2000.
(2) Nodes in the real world. We again consider 2048 nodes located in various
cities around the world, as reported by Ethereum node tracker [13]. The latency
between nodes in any pair of cities is obtained from a global ping latency mea-
surement dataset [47].4 Each node has a node latency sampled from an expo-
nential distribution of mean 1000ms.

Application and traffic patterns. We first consider the KBR application
under the following three traffic patterns:
(1) KBR under uniform demand. In this setting, a node during a round (see §3)
issues a lookup to another node chosen uniformly at random from among the
available nodes.
(2) KBR under demand hotspots. In this setting, there are 20% of keys (nodes)
that form the target destination for 80% of lookups. The hotspot nodes are
randomly chosen.

4 For cities not included in the ping dataset, we measure the latency to the geograph-
ically closest city available in the dataset.
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Fig. 3. Nodes in a square: (a) Average latency during each epoch for queries routed
through the 1st k-bucket of an arbitrary node with demand hotspots. (b) Performance
of a node within a region of high node latency nodes.

(3) KBR under skewed network bandwidth. To model regions around the world
with poor Internet speeds, we consider a subset of geographically close nodes
whose node upload latencies (see §3) are twice as large as the average node
latency in the network.

In a full version of this paper [48], we have presented additional results for
the settings mentioned above, and have also considered the DHT application,
iterative routing, and network instability.

5.2 Results

Nodes in a square. Figure 2a plots the average latency between forwarding a
query through the 1st k-bucket and receiving a response during each epoch for
an arbitrarily chosen node within the square. We observe that starting with a
randomly chosen routing table configuration (at epoch 0), Kadabra continuously
improves its performance eventually achieving latencies that are 15% better.
Compared to the latencies in the original Kademlia protocol, Kadabra’s latencies
are lesser by more than 20%. For this specific network setting, PNS shows the
best performance (at the cost of poor security). We have used ρ values of [400,
350, 300, 250, 200, 150, 100, 50, 0] for the different k-buckets (1st to last) in
Kadabra, which results in slightly higher latencies compared to PNS.

To show that all nodes in the network benefit from Kadabra, we conduct
an experiment lasting for 10 million rounds (1 query per round from a random
source to a random destination), with the sequence of first 1000 queries being
identical to the sequence of the last 1000 queries. Figure 2b plots a histogram of
the query latencies for the first and last 1000 queries in Kadabra. We observe the
90-th percentile latency of Kadabra during the last 1000 queries is lesser than
that in the beginning by more than 24%.
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Fig. 4. Nodes in a square: Paths and latencies (below the plots) of an example lookup.
Kadabra is trained for 50 epoch under uniform demand. Mi refers to a node that is on
the path but is not the source or destination node.

Figure 3a shows the average query latency over epochs for queries routed
through the 1st k-bucket of an arbitrary node under hotspot demand. With
certain keys being more popular than others, Kadabra adapts the node routing
tables biasing them for fast lookups of the popular keys—a capability that is
distinctly lacking in the baselines. As a result, we observe Kadabra outperforming
the original Kademlia and PR by more than 25%.

To show that Kadabra adapts to variations in the Internet capacities of nodes,
we consider an experiment where nodes within an area (2000 × 2000 region in
the center of the square) alone have a higher node latency (5000 time units) than
the default node latency values. This setting models, for instance, low-income
countries with below-average Internet speeds. For a node within the high node
latency region, PNS ends up favoring nearby peers also within that region which
ultimately severely degrades the overall performance of PNS (Fig. 3b). Kadabra,
on the other hand, is cognizant of the high node latencies in the region, and
discovers k-bucket entries that provide more than 25% improvement in latency
performance compared to PNS.

In Fig. 4, to better understand how Kadabra achieves better performance
than the baseline heuristics, we present an example of the paths taken for a
lookup from the same source to the same destination using different heuristics.
We observe that, after a 50-epoch training, Kadabra is able to achieve signifi-
cantly lower path latency by choosing a relatively straight path with low node
latencies. In the figure, node D’s node latency is 1000. For vanilla Kademlia,
node M1’s node latency is 1400. For PR, node M1’s node latency is 800 and
M2’s node latency is 1400. For PNS, node M1’s node latency is 2000 and M2’s
node latency is 1400. For Kadabra, node M1’s node latency is 100 and M2’s node
latency is 100.
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Fig. 5. Nodes in the real world: (a) Performance of queries routed through the 1st
k-bucket of a node in Frankfurt. (b) Histograms of query latencies before and after
learning in Kadabra with 10 million lookups.

Fig. 6. Nodes in the real world: Performance under uniform demand at five randomly
sampled nodes around the world.
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Fig. 7. Nodes in the real world: (a) Performance when there are demand hotspots. (b)
Performance when 4% of nodes near New York City have above average node latencies.

Nodes in the real world. Unlike the square setting where nodes are uni-
formly spread out, in the real world setting nodes are concentrated around cer-
tain regions in the world (e.g., Europe or North America). Moreover the node
latencies are also chosen to reflect retrieval of large files [44,51]. Figure 5a shows
the latencies for queries routed through the 1st k-bucket of an arbitrary node
(in this case, the node is located in Frankfurt). Kadabra has 50% lower latencies
compared to the original Kademlia protocol and 35% lower latencies compared
to PNS and PR. This is because the baseline algorithms are not aware of the
different node latencies of the peers, whereas Kadabra is able to focus its search
on peers having low node latencies. As in the square case, Fig. 5b shows the
benefit of Kadabra extends to the entire network. To show that the presented
behavior is general, and not occurring only at a few nodes, in Fig. 6 we show
performance of Kadabra and baselines at five randomly chosen nodes in major
cities across the world. In all cases, we observe a similar qualitative behavior.

Figure 7a shows performance when there are demand hotspots. Compared to
uniform demand, both PNS and PR worsen in performance increasing the gap
to Kadabra. A similar trend is observed in Fig. 7b when we consider a region of
nodes (near New York City in our experiments) and set their node latency to
double the default average value. While even Kadabra shows a slight degradation,
it is still more than 40% more efficient compared to PNS.

In addition, we evaluate the security of Kadabra by setting 20% of the
nodes as adversarial, which deliberately delay queries passing through them
by 3× their default node latencies. While all algorithms degrade in this sce-
nario, Fig. 8a shows that when the adversarial nodes are located at random
cities Kadabra discovers routes which avoid the adversarial nodes resulting in
overall quicker lookups. Even when the adversarial nodes are concentrated in one
region close to a victim node, Fig. 8b shows how a victim running Kadabra can
effectively bypass the adversarial nodes while PNS takes a huge performance loss
at more that 2× the latency of Kadabra.
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Fig. 8. Nodes in the real world: Kadabra outperforms baselines even when 20% of the
nodes are adversarial in the network. (a) Adversarial nodes are randomly located. (b)
Adversarial nodes are concentrated in one region close to the victim node. Performance
is measured at the victim node.

6 Related Work

A great many number of prior works have studied how to speedup DHTs by
being aware of the peer locations in the underlying physical Internet [23,26].
However, all of these works propose hand-crafted heuristics which do not adapt
to network heterogeneity. Using parallel lookups and increasing the number of
content replicas are some of the early methods. R/Kademlia enhances Kademlia
routing with recursive overlay routing instead of iterative routing from vanilla
Kademlia [18]. Some algorithms utilize caching to accelerate lookups by identify-
ing hotspots [15] and lowering the load on congested nodes [12]. Heck et al. [17]
evaluate the network resilience of Kademlia. Jain et al. [22] compare performance
of various DHTs against measurement-based overlays. In Kanemitsu et al. [24],
the authors propose KadRTT which uses RTT-based target selection and ID
arrangement to accelerate lookups. Ratnasamy et al. [35] use landmark nodes
and binning to optimize latencies in overlay networks. Steiner et al. [38] proposes
an integrated content lookup protocol to reduce content retrieval times in Kad, a
popular file-sharing application built using Kademlia. Stutzback et al. [41] advo-
cate for parallel lookups and study optimal system parameters in Kad. Zhu et
al. [50] presents a storage algorithm for Kademlia against load imbalance. To the
best of our knowledge, Kadabra is the first effort to accelerate DHTs through a
data-driven approach.

7 Conclusion

We have presented Kadabra, a decentralized data-driven approach to learning
the routing tables in Kademlia for accelerated lookups. Unlike existing heuristics,
Kadabra is cognizant to heterogeneity in network conditions resulting in routing
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tables that are tuned to the network and demand patterns. Our proposed pro-
tocol is also secure against Sybil, Eclipse and adversarial routing attacks. While
these attacks are important, a thorough analysis of Kadabra’s robustness against
other known attacks [27] is a direction for future work. In our experiments, we
observe Kadabra typically converges in a few epochs. Testing Kadabra’s con-
vergence and performance in a real world network (e.g., IPFS and Swarm) and
obtaining a theoretical understanding on the convergence are also important
directions for future work.

Acknowledgements. We gratefully thank Dr. Petar Maymounkov for providing valu-
able comments on our work.
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Abstract. Transaction fee markets are essential components of block-
chain economies, as they resolve the inherent scarcity in the number of
transactions that can be added to each block. In early blockchain pro-
tocols, this scarcity was resolved through a first-price auction in which
users were forced to guess appropriate bids from recent blockchain data.
Ethereum’s EIP-1559 fee market reform streamlines this process through
the use of a base fee that is increased (or decreased) whenever a block
exceeds (or fails to meet) a specified target block size. Previous work has
found that the EIP-1559 mechanism may lead to a base fee process that is
inherently chaotic, in which case the base fee does not converge to a fixed
point even under ideal conditions. However, the impact of this chaotic
behavior on the fee market’s main design goal – blocks whose long-term
average size equals the target – has not previously been explored. As our
main contribution, we derive near-optimal upper and lower bounds for
the time-average block size in the EIP-1559 mechanism despite its possi-
bly chaotic evolution. Our lower bound is equal to the target utilization
level whereas our upper bound is ≈ 6% higher than optimal. Empirical
evidence is shown in great agreement with these theoretical predictions.
Specifically, the historical average was ≈ 2.9% larger than the target
rage under Proof-of-Work and decreased to ≈ 2.0% after Ethereum’s
transition to Proof-of-Stake. We also find that an approximate version
of EIP-1559 achieves optimality even in the absence of convergence.

1 Introduction

In the seminal Bitcoin whitepaper [19], the concept of a blockchain was intro-
duced as a secure data structure maintained by nodes in a peer-to-peer network.
A blockchain consists of elementary database operations called transactions that
modify a global state – e.g., cryptocurrency ownership or the state of smart con-
tracts. Nodes provide an essential service to the blockchain’s users by broadcast-
ing their transactions and responding to queries about the global state [11]. As
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such, a large and diverse network of nodes enhances decentralization in the sense
that the availability and integrity of blockchain-enabled services do not depend
on a handful of entities. As nodes execute every new transaction to maintain their
view of the latest global state, the computational cost of new transactions must
be limited to avoid excluding all but the most powerful nodes. In Ethereum [3],
this computational cost is measured through the notion of gas, and each block
has a gas limit that is decided by the nodes. In Ethereum’s original design, each
transaction has a gas price that indicates how much its creator is willing to pay
for its inclusion on the blockchain. This mechanism behaves like a first-price
auction, and shares all of its drawbacks [20]: users tend to bid untruthfully rel-
ative to the true valuation of their transaction, which leads to guesswork and
overbidding that is detrimental to the user experience.

Ethereum Improvement Proposal (EIP) 1559 [2] simplifies Ethereum’s fee mar-
ket through a protocol-set base fee. Instead of aiming to fill each block to the
limit, it aims to achieve a long-term average target, which is half the maximum
size of each block. The base fee is automatically updated to reflect market condi-
tions: if a block is larger than the target, then demand for transaction inclusion
is too high at the current price so the base fee is increased (and vice versa
for smaller blocks). The base fee hence aims to reflect the constantly-changing
market-clearing price, which is the theoretical price at which demand for trans-
actions is precisely such that block sizes equal the target. To add a transaction
to the blockchain, users pay the base fee per unit of spent gas – this payment
is permanently destroyed or burned [12]. This mechanism is provably incentive-
compatible in the sense that users bid close to their true valuation unless demand
is extremely high [22,23]. However, whether the protocol is optimal in the sense
that it achieves its main design goal – a long-term average block size that equals
the target – has not previously been explored. Previous work has found that the
base fee may not converge to the market-clearing price [15] even when market
conditions remain unchanged, as the base fee process exhibits (Li-Yorke) chaos
in a wide range of market conditions. As the base fees need not converge to the
market-clearing price, it is natural to ask whether the long-term average block
sizes in fact converge to the target.

In the current work, we investigate whether optimality is possible in fee mar-
kets that exhibit non-convergent behavior. Specifically, we show that the default
EIP-1559 mechanism is approximately optimal even if the block sizes are chaotic.
We find that, unless market conditions are such that the base fee converges to a
fixed point, EIP-1559 1) overshoots the target but 2) by at most ≈6.27%. These
results hold regardless of the specific market conditions beyond convergence, or
the nature of the block creation protocol. This suggests that we can still analyze
the system even if it does not reach an equilibrium, which is a very stringent
condition to be met in practice. Furthermore, our results allow us to quantify
the maximum degree to which excessively large blocks impact nodes with lim-
ited processing power. We have validated our theoretical results using historical
data, as displayed in Fig. 1 (see full version): since its introduction, blocks in
EIP-1559 were initially ≈2.9% larger than the target, and after a major change
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Fig. 1. Evolution of the relative block size since EIP-1559: the blue line without marks
depicts the observed average block size over batches of 5000 consecutive blocks. The
red and green lines with marks depict the averages over the periods before and after
Ethereum’s switch to proof-of-stake, respectively. The colored region indicates the
range of potential long-run averages covered by the bound of Theorem 1 (Color figure
online).

to Ethereum’s block creation protocol, the PoS “Merge” [13], this overshoot
dropped to ≈2.0%. In particular, Ethereum’s consensus protocol switched form
Proof-of-Work to Proof-of-Stake (PoS), which, as a by-effect, caused the time
between the creation of new blocks to become constant. Both of our main the-
oretical findings – blocks overshoot the target, but to a limited degree – have
therefore been borne out in practice. Moreover, the persistence of excessive block
sizes throughout the observation period suggests that this is not merely a hon-
eymoon effect [21]. We also observe the tightness of our bound in a wide range
of simulation experiments (see full version).

In practice, the baseline variant of EIP-1559 is a linear approximation of an
exponential update rule that is computationally inefficient to implement [8]. As
a further contribution, we investigate the average-case performance of this ideal
mechanism, deemed exponential EIP-1559. Our analysis suggests that exponen-
tial EIP-1559 always achieves the long-term average target, even if the base fee
does not converge to the market-clearing price. We find that the manner in which
EIP-1559 approximates an exponential function creates the observed overshoot
– as such, this suggests an interesting direction for future protocol updates.1

Outline: The outline of our work is as follows. After a discussion of the context
of our work (Sect. 2) and our model of a blockchain economy (Sect. 3), we present
a unifying framework for the dynamics of different transaction fee market mech-

1 In the full version of the paper, we further discuss such designs including a recent
proposal that sets base fees using the principles behind Automated Market Makers
(AMMs) [4] and general dynamic posted price mechanisms [9].

https://arxiv.org/abs/2212.07175
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anisms, including the default EIP-1559 mechanism, its exponential variation,
and alternative proposals (Sect. 4). In Sect. 5, we present our formal analysis. In
Sect. 6, we discuss the generality of our results, and Sect. 7 concludes the paper.

2 Background and Related Work

In this section, we provide a high-level description of Ethereum’s fee market and
EIP-1559, and present some concepts that we have not discussed previously. We
conclude the section with an overview of related work on fee markets.

Ethereum: Ethereum is a cryptocurrency platform that supports smart con-
tracts, i.e., software programs that are executed in a decentralized network.
Ethereum’s global state consists of the state of all smart contracts and the
amount of Ethereum’s native cryptocurrency token – Ether or ETH – in each
user account. The purpose of Ethereum transactions is to transfer ETH from
one account to another, or to create or call a smart contract. A selection of
nodes have the ability to periodically group transactions into a new block and
broadcast it to the network. Although the exact nature of these nodes depends
on the consensus mechanism, we will refer to such nodes as “miners” for brevity.
Each block points to a previous block, forming a blockchain. Each operation in
a transaction consumes gas, and the amount of ETH that a user is willing to
pay for each unit of gas depends on the user’s valuation of the transaction – i.e.,
how much utility she expects to derive from the transaction’s inclusion on the
blockchain. Before EIP-1559, users would specify a gas price for each transaction
that determines the amount of ETH spent per unit of gas. Demand for gas fluc-
tuates over time, e.g., due to temporal patterns and events such as NFT drops,
so non-expert users were forced to guess appropriate gas prices from recent data.

EIP-1559: EIP-1559 simplifies Ethereum’s original fee market design through
the use of a dynamically adjusted base fee. The base fee at each time serves
as a posted price that users need to pay to have their transaction processed at
the next block. When users pay a transaction fee, an amount of ETH equal to
the base fee is burned – however, a small amount of ETH can be awarded to
the miner by the user in the form of a miner’s tip. Without the miner’s tip,
miners would have no incentive to process transactions, which could cause them
to create empty blocks instead. The base fee is continuously updated to reflect
changing market conditions: if blocks are larger (smaller) than a fixed target
size, then the base fee is increased (decreased) to reduce (increase) demand. The
target has been set to roughly equal the maximum block size before EIP-1559
(i.e., 15M gas) – meanwhile, the maximum block size has been increased to 30M
gas (i.e., twice the target). A higher maximum block size (relative to the target)
increases the risk that nodes are overwhelmed during demand bursts.
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Related Work: In [22,23], three desirable properties for transaction fee markets
are investigated: whether (1) users are incentivized to bid their true valuation,
(2) miners are incentivized to follow the protocol’s inclusion rule, and (3) miners
and users have no incentive to form cartels to subvert the protocol. It is shown
that EIP-1559 always satisfies property (1) and (3), and (2) only when demand
is “stable” [23]. Ethereum’s original fee market (being a first-price auction) does
not satisfy property (1), whereas property (3) would not hold if the base fee were
awarded to miners instead of burned. The compatibility of these properties under
general conditions is further explored by [6,10,24] in the context of transaction
fee markets and by [17] in the context of NFT auctions.

In [15,18], the behavior of the base fee under stable market conditions is
investigated – it is found that the base fee exhibits Li-Yorke chaos [15], which
in practice results in the prevalence of sequences of alternating full and empty
blocks. This behavior was later confirmed to occur in practice [21]. In [9], the
social welfare of fee market mechanism is investigated, and two alternative mech-
anisms to EIP-1559 are proposed that perform better on this metric. In [16], the
impact of EIP-1559 on various user-centric measures such as average transaction
fees, waiting times, and consensus security is investigated. In [7], an extension of
EIP-1559 is considered in a setting in which the base fee depends on the avail-
ability of multiple fungible resources (i.e., beyond gas use). Finally, fee market
design has been studied for other cryptocurrency platforms, e.g., Bitcoin [1,14].

The question of whether the fee market ensures that the long-term average
block size indeed equals the target size has not been considered in these works,
although [16] finds that the average size of blocks as measured in terms of the
network load (which does not capture the gas use of, e.g., smart contract function
calls) has increased from 64.05 to 78.01 kB.

3 Model and Notation

In this section, we introduce our notation to describe transaction fee markets
mathematically. We have EIP-1559 in mind (cf. Sect. 2), but the description
applies to variations of EIP-1559 and other related mechanisms as well.

Base Fee and Target Block Size: The main element of EIP-1559 like transaction
fee markets is a dynamically adjusted base fee, bn, that is updated after every
block, Bn, n ≥ 0. The goal of the mechanism is to update the base fee in such a
way that blocks achieve a pre-defined target block size. Let T denote the target
block size and let kT denote the maximum block size, for some integer k ≥ 1.
Currently, in the Ethereum blockchain, k is set at k = 2, i.e., the target is equal
to half the maximum block size.

Users (Transactions) and Valuations: Users (transactions) arrive to the pool
according to a stochastic process. Without any loss of generality, we assume
that each transaction uses 1 unit of gas, and use the random variable Nn to
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describe the number of transactions that arrive between two consecutive blocks
Bn, Bn+1 for n ≥ 0. Let λn = E(Nn)/T be the ratio of the expected value of Nn

to the target T . We make no assumptions about the distribution of Nn beyond
it having a finite mean, i.e., λn < ∞. To avoid trivial cases, we will assume that
λn > 1, i.e., that the arrival rate is larger than the target block size. For the
theoretical analysis, we will assume that users leave the pool if their transaction
is not included in the next block and return according to the specified arrival
process.2 Whenever necessary, we will index users (transactions) with i, j ∈ N.

Users’ Valuations: Each transaction, indexed by i ∈ N, has a valuation, vi.
Valuations at time t are drawn from a distribution function Fn with support
included in R

+. Typically, the support of Fn is bounded, i.e., there exists a
maximum possible valuation M � 0.3 We will write Fn(x) := 1 − Fn(x) to
denote the so-called survival function of the distribution Fn. For simplicity, we
will assume that λn ≡ λ and Fn ≡ F for all n ≥ 0, i.e., that λ and F are
independent of the block height. We discuss how our results are straightforwardly
generalized to a setting with time-dependent distributions in Sect. 6.

Bids and Tips: User bids in EIP-1559 consist of two elements: (1) the max fee, f ,
which is the maximum amount per gas unit that the user is willing to pay for their
transaction to be included and (2) the max priority fee, p, which is the maximum
tip per gas unit that the user is willing to pay to the miner who includes their
transaction. We assume that users bid truthfully and rationally, i.e., a user with
valuation vi will bid (f, p) = (vi, ε) where ε > 0 is the minimum amount that
covers the miners’ cost to process the transaction. Combining with the above,
this generates the inclusion requirement: miner’s tip = min {f − bn, p} ≥ ε.

Block Sizes: Let gn := g(bn) denote the number of transactions that get
included in block Bn when the base fee is equal to bn, n ≥ 0. Given a num-
ber of transactions Nn = n and valuations v1, . . . , vn, we have that g(bn) =
min {kT,

∑n
i=1 1(vi ≥ bn)} , i.e., the size of the block is equal to minimum

between the block limit, kT , and the number of transactions whose max fee
exceeds the base fee.4 We note that 1(vi ≥ bn) has a Bernoulli distribution with
probability P(vi ≥ bn) = F (bn) of observing 1. For our analysis, we will consider
the mean-field approximation of the stationary demand, which results in

g(bn) = min
{

kT,
∑Nn

i=1
1(vi ≥ bn)

}

= min
{
kT, λTF (bn)

}
(1)

2 This assumption only reduces unnecessary complexities in the analysis and is relaxed
in the simulations without significant effect in the results.

3 While unbounded valuations are unrealistic for practical purposes, we note that our
results hold even for such cases.

4 To simplify notation, we henceforth assume that each user’s priority fee, p, is equal
to the miners’ breaken even cost ε. Equivalently, we only consider transactions that
miners are willing to include and hence, we apply the indicator to bn instead of bn+ε.



352 S. Leonardos et al.

We denote the market-clearing price, i.e., the base fee for which g(b∗) = T ,
by b∗. From (1), we observe that b∗ = F̄−1 (1/λ). Equation (1) also implies that
limbn↓0 g(bn) = kT since λ > k by assumption, and limbn→∞ g(bn) = 0. To
reflect practical settings, we will assume that bn cannot become negative.

4 Fee Market Mechanisms: Base Fee Update Rules

Base fee update rules (BFURs), are functions h : (0,∞) → (0,∞). Their goal is
to efficiently regulate block sizes via updates in the base fee, bn+1 := h(bn) with
b0 > 0. Intuitively, the base fee increases (decreases) whenever blocks are more
(less) than the target and remains constant otherwise.

Design Goal: Achieving the target block size in each block, however, turns out
to be a very difficult [16,21] or even theoretically impossible goal [15]. To obtain
a more tractable objective, it is still reasonable to ask whether the target block
size is achieved on average. In symbols, let GN := 1

N

∑N
n=1 gn denote the average

block size until block N > 0. Then, this requirement suggests that

lim
N→∞

GN = T.

4.1 Proper Base Fee Update Rules

To avoid pathological cases, a base fee update rules h needs to satisfy some
minimal regularity conditions. These our outlined in Definition 1.5

Definition 1. (Proper Base Fee Update Rules (PBFURs)) Let T be the
target block-size. An update rule h : (0,∞) → (0,∞) is called proper if it satisfies
the following

(A.1) non-divergence: h(bn) ≥ bn if g(bn) ≥ T and h(bn) ≤ bn if g(bn) ≤ T .
(A.2) bounded relative differences: there exists an α ≥ 1 such that α−1bn ≤

h(bn) ≤ αbn.

Assumption (A.1) ensures that base fee updates are in the right direction,
i.e., that the base fee does not decrease (increase) whenever the current block
size is more (less) than the target. Assumption (A.2) excludes update rules with
potentially unbounded updates. To include more general update rules, (A.2) can
be relaxed to (the equivalent in flavor):

(A.2’) there exists α > 1 and β > 0 such that α−1bn − β ≤ h(bn) ≤ αbn + β.

5 Apart from the current base fee, bn, a base fee update rule may also depend on other
parameters, θn, such as the target block size (time-independent) or the block size
and efficient gas prices at time n (time-dependent). Whenever irrelevant, we will
omit such parameters from the description of h. In the full version, we provide the
generalized counterpart of Definition 1 that accounts for such dependencies.

https://arxiv.org/abs/2212.07175
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PBFURs have the desirable property that they generate a bounded sequence of
base fees. This is established in Lemma 1 which can be proved by induction (cf.
full version).

Lemma 1. If h is a PBFUR, and 0 < b0 < ∞, then

min{b0, α
−1b∗} ≤ bn ≤ max{b0, αb∗} for all n ≥ 0.

4.2 Examples of PBFURs

EIP-1559: In the EIP-1559 transaction fee market [15,18,21], the base fee, bn,
is updated after every block (where blocks are indexed by their block height,
t > 0) according to the following equation

bn+1 = bn

(

1 + d · gn − T

T

)

, for any n ∈ N, (EIP-1559)

where d denotes the adjustment quotient (or step-size or learning rate), cur-
rently set by default at d = 0.125. It will be convenient to use the notation
yn := gn−T

T ∈ [−1, 1], for the normalized deviation at block t, and

GN :=
1
N

∑N

n=1
gn (2)

for the average block size up to block N . It is immediate to check that (EIP-1559)
satisfies both A.1 and A.2 and is, thus, a PBFUR.

Exponential EIP-1559: Instead of the (EIP-1559) updates, we may consider
the exponentially weighted updates

bn+1 = bn (1 + d)(
gn−T

T ) , for any n ∈ N. (EXP-1559)

The standard (EIP-1559) update rule is the linear approximation (in the Tay-
lor expansion of the function d 
→ (1+d)yn) of the update rule in Eq. (EXP-1559).
Again, it is immediate to check that (EXP-1559) satisfies non-divergence (A.1)
and bounded relative differences (A.2) and is, thus, a PBFUR. Using the
generalized Bernoulli inequality, it is also straightforward to show that the
updates of Eq. (EXP-1559) are always less aggressive than (but in the same
direction as) the updates of Eq. (EIP-1559). In other words, if a block is con-
gested (yn > 0), then the next base fee will increase with both methods, but it
will be higher with (EIP-1559). Similarly, if a block is not congested (yn < 0),
then the next base fee will decrease with both methods, and it will be lower with
(EXP-1559).6

6 Ethereum researchers [8], also study an alternative exponential EIP-1559 form which
relies on the exponential approximation 1+dyn ≈ edyn for dyn small enough. Again,
it is immediate to see that this rule satisfies (A.1) and (A.2) and is, thus, a PBFUR.

https://arxiv.org/abs/2212.07175
https://en.wikipedia.org/wiki/Bernoulli%27s_inequality#Generalization_of_exponent
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5 Analysis: Bounds on Average Block Sizes

5.1 EIP-1559

In this section, we are interested to obtain lower and upper bounds on the long-
term average block sizes, GN , N ≥ 0, generated by the EIP-1559 update rule,
cf. Eq. (EIP-1559). Our main result is summarized in Theorem 1.

Theorem 1. Let (gn)t>0 denote the sequence of block sizes generated by the base
fee (bn)t>0 of the EIP-1559 update rule (EIP-1559) with learning rate d ∈ (0, 1)
for an arbitrary valuation distribution on R+. Then, the long-term average block
size limN→+∞ GN satisfies

T ≤ lim
N→+∞

GN ≤
[

1 − ln (1 + d)
ln (1 − d)

]−1

2T. (3)

Fig. 2. Upper bound (scaling factor of max-
imum block size if k = 2) in Eq. (3) of The-
orem 1. The upper bound grows almost lin-
early for the relevant values of d.

In words, Theorem 1 implies
that the EIP-1559 update rule either
meets or slightly overshoots the tar-
get of T . The extent of possible over-
shooting (see upper bound in (3) of
Theorem 1) depends on the choice of
the learning rate d. For instance, at
the current default level of d = 0.125,
this yields a bound of approximately
1.0627 or 106% of the block size T .
The upper bound for values of d ∈
(0, 0.5] (which are of practical inter-
est) is visualized in Fig. 2. As we see,
this bound grows approximately lin-
early in d. This pattern continues for
larger values of d till eventually grow-
ing exponentially fast and approach-
ing 2 (or 200% of T ) in the limit d ↑ 1 (but such values are, at least currently,
only of theoretical interest). The proof of Theorem 1 utilizes the following upper
and lower linear bounds on the natural logarithm.

Lemma 2. (i) Let x > −1. Then it holds that

ln (1 + x) ≤ x,

with equality if and only if x = 0. (ii) Let d ∈ (0, 1) and let |x| ≤ d. Then, it
holds that

ln (1 + x) ≥ αx + β,

with α = 1
2d · [ln (1 + d) − ln (1 − d)] and β = 1

2 · [ln (1 + d) + ln (1 − d)].

Using Lemma 2, we can now prove Theorem 1.
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Proof. (Proof of Theorem 1) Let d ∈ (0, 1). By taking the natural logarithm on
both sides of Eq. (EIP-1559), we obtain that

ln(bn+1/bn) = ln (1 + d
gn − T

T
)

Recall that gn−T
T ∈ [−1, 1] by definition. Thus, by applying Lemma 2 on the

term ln (1 + d gn−T
T ) with d gn−T

T ∈ [−d, d], we obtain that

αd · gn − T

T
+ β ≤ ln(bn+1/bn) ≤ d · gn − T

T
,

with α, β as above. Combining the above and solving for gn, we obtain that

T · ln (bn+1/bn)
d

+ T ≤ gn ≤ T · ln (bn+1/bn)
αd

+
(

1 − β

αd

)

T.

Observe that if we sum up all terms from 1 to N , then the term involving
ln (bn+1/bn) on both sides telescopes to

N∑

n=1

ln (bn+1/bn) =
N∑

n=1

(ln bn+1 − ln bn) = ln bN − ln b1.

Thus, summing up all terms from 1 to N in the previous inequality, and using
the notation GN = 1

N

∑N
n=1 gn, we obtain that

GN ≤ T (ln bN − ln b1)
Nαd

+
(

1 − β

αd

)

T , (4)

and
T (ln bN − ln b1)

Nd
+ T ≤ GN , (5)

for the upper and lower bounds respectively. Concerning the term on the right
hand side of the upper bound, observe that after some standard algebraic manip-

ulation, we can write
(
1 − β

αd

)
· T =

[
1 − ln (1+d)

ln (1−d)

]−1

· 2T . To conclude observe
that limN→+∞ bN < M for some M > 0, since (bn)n≥0 is bounded by Lemma
1.7 This implies that

lim
N→+∞

T ln bN − ln b1
N

= 0.

Thus, taking the limit N → +∞ on both sides of the inequalities in (4), (5), we
obtain that

T ≤ lim
N→+∞

GN ≤
[

1 − ln (1 + d)
ln (1 − d)

]−1

· 2T,

as claimed. �
7 The limit is also bounded from above if transactions are no longer included by

miners when the base fee becomes so high that the computational cost of processing
transactions outweighs any potential miner’s tip.
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5.2 Visualizations: Bifurcation Diagrams and Long-Term Averages

To gain more intuition, we proceed to visualize the individual trajectories of
the base fee dynamics and the resulting block sizes for a simulated demand
realization. This is done in the bifurcation diagrams of Fig. 3.

Fig. 3. EIP-1559: Individual trajectories of the base fee dynamics (top left) and block
sizes (top right) for various values of the adjustment quotient, d, in (0, 0.5] (horizontal
axis). For every d, we plot 100 iterations after skipping 200 iterations. The bottom
panels show averages of the trajectories in the top panels. Demand has been simu-
lated from an exponential distribution on [205, +∞) with mean μ = 210 and variance
σ2 = 25. The results are robust to different distributions and initializations (currently
b0 = 100), cf. full version. Despite the chaotic behavior of the individual trajecto-
ries (top), the long-term averages (bottom) exhibit mathematically tractable patterns.
Note: Unlike Fig. 1, the scale of the y−axis in the block-size panels (right column) is
between 0 (empty) and 1 (full) and the target is equal to 0.5. (The jupyter notebooks
to generate these plots (and the similar ones in the Appendix) are available in this
github repository.)

Individual Trajectories (Top Panels): The bifurcation diagram in the top left
panel shows the individual trajectories of the base fee dynamics (blue dots)
for different value of the adjustment quotient, d, (horizontal axis). Recall that
the default value of d is 0.125. To generate the plots, we have drawn the user-
valuations from a gamma distribution with mean μ = 220 and standard deviation
σ = 10. The depicted blue dots show the attractors (stable also for more iter-
ations) after 100 iterations and a burn-in of 200 iterations. For low values of d
(below 0.08), we see that the base fee dynamics converge to a single value, close
to or exactly at the theoretical optimum, b∗. For larger values of d (approx-
imately between 0.1 and 0.3), the dynamics oscillate between two values and

https://github.com/sl3onardos/EIP-1559-simulations
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Fig. 4. Estimated upper bound (red line) of the average block-sizes as given by Theo-
rem 1. The blue dots represent the average block-sizes for normally distributed simu-
lated demand (user-valuations) with mean μ = 210 and standard deviation σ = 2.5 at
different values of the adjustment quotient, d, (horizontal axis). The long-term average
block sizes grow linearly with d consistent with the estimated upper bound. Moreover,
the upper bound is tight. We obtain qualitatively equivalent results for many demand
distributions, e.g., uniform and gamma with arbitrary parameters (not presented here).
(Color figure online)

for most remaining values of d (larger than 0.3 and for a small regime roughly
between 0.08 and 0.1), the dynamics exhibit chaotic behavior (multiple dots dis-
persed over the whole interval between the two diagonal red lines). In all cases,
the dynamics remain within the bounded region [(1 − d)b∗, (1 + d)b∗].

The bifurcation diagram in the top right panel shows the resulting block
sizes. Similar to the base fee dynamics, block sizes converge to the target value
(0.5 or half-full) for low values of d, oscillate between full and (almost) empty
for intermediate values of d and become chaotic for larger values of d.

In summary, the bifurcation plots in the two top panels show the effect of the
adjustment parameter, d, on the individual trajectories of the base fees and the
block sizes. These plots illustrate how small changes in the adjustment quotient,
i.e., in the studied bifurcation parameter, can cause dramatic changes in the
observable trajectories of both base fees and block sizes.

Averages (Bottom Panels): The bottom panels show the averages of the trajec-
tories that are depicted in the top panels; base fees (bottom left) and block sizes
(bottom right). We can see that the base fee slightly undershoots the ideal value
of b∗ and that the block sizes (slightly) overshoot the target of 0.5. Moreover,
the deviation from this target grows linearly in the adjustment quotient d. At
the current level, i.e., d = 0.125, the averages are approximately at 0.53.

Tight Upper-Bound on Block Sizes: The figures in the averages in Fig. 3 are
not specific to the simulated demand and generalize to arbitrary demand distri-
butions. Figure 4 shows the estimated upper-bound (red line) of Eq. 3 and the
realized average block-sizes for user-valuations drawn from a normal distribu-
tion with mean μ = 210 and standard deviation σ = 10. The upper-bound is



358 S. Leonardos et al.

tight and approximates very well the actual evolution of the block-size averages
for various values of the adjustment quotient d. Qualitatively equivalent results
obtain for arbitrarily parameterized uniform, normal and gamma user-valuation
distributions (not presented here).

5.3 Exponential EIP-1559

As we show in Theorem 2, (EXP-1559) achieves time average convergence exactly
to the target block sizes of T . However, (EIP-1559) is more relevant from prac-
tical purposes since it requires integer rather than floating point calculations.

Theorem 2. For the dynamical system in Eq. (EXP-1559), it holds that

lim
N→+∞

GN = T,

i.e., the time average of the block sizes (or block occupancies), (GN )N≥1, con-
verges to the target value T as the number, N, of updates grows to infinity.

The proof of Theorem 2 mirrors the steps in the proof of Theorem 1 and is
therefore deferred to the full version. However, it is worth noting that there is
nothing special about T ; the time-average of the dynamic in Eq. (EXP-1559)
would converge to any given target block-size (as it appears in the numerator of
the exponent) within, of course, the admissible limits.

Convergence Rates. From the proof of Theorem 2, we can also reason about
the convergence rate. After N time-steps, we have that the distance d(GN , T )
between GN := 1

N

∑N
t=0 gn and the target T is equal to

d(GN , T ) =
T (ln bN − ln b1)

2 ln (1 + d)
· 1
N

which drops linearly in N , i.e., O(1/N). The constant factor depends on T ,
ln 1 + d, and the error due to initialization, ln bN − ln b1. Since bN is bounded
(cf. Lemma 1, we also know that ln bN cannot grow (in absolute value) beyond
certain bounds. Thus, all these terms vanish at a rate of 1/N . Note, that in
a similar fashion, we can get similar rates for the linear-EIP1559 update, cf.
Theorem 1. In this case, we have that

T (ln bN − ln b1)
2d

· 1
N

≤ d(GN , T ) ≤ T (ln bN − ln b1)
2αd

· 1
N

− β

αd

T

2
.

Again, the convergence rate is linear (by the same reasoning as above for ln bN

and the only thing that changes is the constant error term in the upper bound.

https://arxiv.org/abs/2212.07175
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Visualizations for Exponential EIP-1559. Figure 5 shows the same data
as Fig. 3 but for the exponential EIP-1559 update rule (cf. (EXP-1559)). The
updates of both base fees (top left panel) and block sizes (top right panel) are
more smooth (albeit not entirely non-chaotic). However, as can be seen from the
left panels, the base fee dynamics tend to overshoot the actual ideal value. This
behavior is slightly dependent on the initialization of the dynamics and is not
consistent among all possible simulations in many of which the base fee dynamics
meet b∗ (not presented here). However, in all cases, the important observation
concerns the block sizes and the fact that the target is met exactly (horizontal
line at exactly 0.5 in the bottom right panel) regardless of the initialization and
the value of the adjustment quotient d. This outcome is consistent with the
theoretical prediction of Theorem 2.

Fig. 5. Exponential EIP-1559: Individual trajectories of the base fee dynamics (top left)
and block sizes (top right) for various values of the adjustment quotient, d (horizontal
axis). The panels are the same as in Fig. 3. Exponential updates result in more regular
(individual) trajectories and exactly achieve the block-size target on average. While
the exact base fee trajectory is sensitive to b0, it is not clear why the average base
fee does not approach the market-clearing price, b∗ (horizontal red line). (Color figure
online)

6 Discussion

Overshoot. The inequality ln
(
1 + d · gn−T

T

)
≤ d · gn−T

T that is used to derive
the lower bound of T in Theorem 1 (cf. inequality (i) in Lemma 2) holds with
equality if and only if d · gn−T

T = 0, i.e., if and only if gn = T . This implies that
the long-term average block sizes will be equal to the target, T , if and only if the
system equilibrates at a fixed point. However, the base fee dynamics are prov-
ably chaotic for almost all market conditions (demand and user valuations) that
can be met in practice [15], and, thus, individual blocks will generally deviate
from the target. Consequently, the lower bound will hold with strict inequality,
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implying a positive overshoot in EIP-1559 (almost) regardless of market condi-
tions.

Generality and Robustness. We note that the proof of Theorem 1 does not
in any way rely on Fn or the distribution of Nn, but only on the learning rate
d. As such, our results hold regardless of the exact distribution of valuations or
the block creation protocol. In fact, the only technical requirement is that for
Lemma 1, we need the existence of a market-clearing price b∗ to express our
bounds. However, if we make the market-clearing price b∗ time-dependent i.e.,
b∗
n instead of b∗, we only need to require that there exist b∗

min > 0 and b∗
max < ∞

such that b∗
min ≤ b∗

n ≤ b∗
max for all n ≥ 0 to obtain similar bounds. These

are loose restrictions in practice. Our results also do not rely on k, e.g., if the
maximum block size were set to 4 the target, then this would have no impact on
the theoretical bounds. Interestingly, the upper bound in (3) is less than twice
the target regardless of how small the target is relative to the maximum.

Although our theoretical results establish general bounds on the long-term
average block size, the precise average values may depend on many factors,
including the distribution of user valuations and the block creation protocol.
We do observe from Fig. 1 that the observed block size averages over 5000-block
batches exhibit remarkably consistent behavior both before and after the PoS
merge. Since EIP-1559, market conditions have changed considerably: the base
fee itself has changed from around 100 GWei (1 GWei = 10−9 ETH) in Jan. 2022
to around 10 Gwei in Aug. 2022. However, the average block size per batch has
remained around 102.9% of the target throughout this period. Interestingly, the
average block size dropped to around 102.0% immediately after the switch to
PoS. The reason behind this drop is a stimulating direction for future research.
One hypothesis is that before PoS, the inter-block times had an (approximately)
exponential distribution, whereas they are constant in Ethereum’s PoS protocol
[5]. As such, the variance of Nn is smaller and block sizes are more regular.
Another hypothesis is that blocks are less congested after the switch due to a
decrease in inter-block times from roughly 13 s on average8 to 12 s.

7 Conclusions

In this paper, we have formally analyzed the long-term performance of the stan-
dard EIP-1559 transaction fee market mechanism and its closely related variants;
exponential EIP-1559 among others. Our findings provide a theoretical justifica-
tion for the anecdotal evidence that blocks are slightly more full than normal. As
our main contribution, we have found that both designs, the baseline EIP-1559
and its exponential variant, are approximately and exactly optimal, respectively,
even under the prevailing chaotic conditions in inter-block sizes. Importantly, this
implies that these mechanisms can still achieve their goals even if the underly-
ing system does not equilibrate, a condition that is rarely met in practice. The

8 https://ycharts.com/indicators/ethereum average block time.
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empirical data since the launch of EIP-1559 suggest that our results accurately
capture reality: observable average block sizes are within the sharp approxima-
tion bounds predicted here and this is, in fact, robust to the underlying protocol
functionality including both pre- and post-PoS merge periods.

Concerning future work, the current paper provides a framework to evaluate
the performance and analyze the stability of transaction fee or other related cryp-
toeconomic mechanisms. Practical use cases suggest that blockchain economies
are systems with complex dynamics: when these economies are close to their equi-
librium state, they can re-adjust their parameters and self-stabilize. However,
once they are pushed further away and/or lose their peg to their fundamentals,
they start to spiral away and eventually collapse (e.g., the Terra/Luna crypto
network). Determining the limits in which these instabilities emerge already
before such mechanisms are launched in practice, is critical to improve their
efficiency and avoid future financial catastrophes.

Contents of the Appendix

The Appendix, which can be found in the full version of the paper, includes
(A) the omitted proofs of Lemma 1, 2 and Theorem 2, (B) the definition of
Generalized Proper Based Fee Update Rules (GBFURs) and the analysis of some
rules that fall in this category, including AMM-based mechanisms [4], Dynamic
Posted-Price mechanisms [9] and our proposed Effective Gas Price Correction
Update Rule, (C) the details of the empirical evaluation, and, in particular, the
data that we used to construct Fig. 1, and, finally, (D) systematic simulations of
the (EIP-1559) and (EXP-1559) BFURs.

Acknowledgements. This research is supported in part by the National Research
Foundation, Singapore and DSO National Laboratories under its AI Singapore Pro-
gram (AISG Award No: AISG2-RP-2020-016), NRF 2018 Fellowship NRF-NRFF2018-
07, NRF2019-NRF-ANR095 ALIAS grant, grant PIESGP-AI-2020-01, AME Pro-
grammatic Fund (Grant No. A20H6b0151) from the Agency for Science, Technol-
ogy and Research (A*STAR) and Provost’s Chair Professorship grant with number
RGEPPV2101. It is also supported by the National Research Foundation (NRF), Prime
Minister’s Office, Singapore, under its National Cybersecurity R&D Programme and
administered by the National Satellite of Excellence in Design Science and Technology
for Secure Critical Infrastructure, Award No. NSoE DeST-SCI2019-0009.

References

1. Basu, S., Easley, D., O’Hara, M., Sirer, E.G.: StableFees: a predictable fee mar-
ket for cryptocurrencies. SSRN (2019). https://ssrn.com/abstract=3318327 or
https://dx.doi.org/10.2139/ssrn.3318327

2. Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., Bakhta, A.: EIP1559:
fee market change for ETH 1.0 chain (2019)

3. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014)

https://arxiv.org/abs/2212.07175
https://ssrn.com/abstract=3318327
https://dx.doi.org/10.2139/ssrn.3318327


362 S. Leonardos et al.

4. Buterin, V.: Make EIP 1559 more like an AMM curve. Ethereum Research (2021)
5. Buterin, V., et al.: Combining GHOST and Casper. arXiv preprint

arXiv:2003.03052 (2020)
6. Chung, H., Shi, E.: Foundations of transaction fee mechanism design. arXiv

preprint arXiv:2111.03151 (2021)
7. Diamandis, T., Evans, A., Chitra, T., Angeris, G.: Dynamic pricing for non-fungible

resources. arXiv preprint arXiv:2208.07919 (2022)
8. Feist, D.: Exponential EIP-1559 (2022)
9. Ferreira, M.V., Moroz, D.J., Parkes, D.C., Stern, M.: Dynamic posted-price mech-

anisms for the blockchain transaction-fee market. In: Proceedings of the 3rd ACM
conference on Advances in Financial Technologies, pp. 86–99 (2021)

10. Gafni, Y., Yaish, A.: Greedy Transaction Fee Mechanisms for (Non-)myopic Miners
(2022). https://doi.org/10.48550/ARXIV.2210.07793

11. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.: Decentralization in
Bitcoin and Ethereum Networks. In: Meiklejohn, S., Sako, K. (eds.) FC 2018.
LNCS, vol. 10957, pp. 439–457. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-58387-6 24

12. Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: Bonneau, J., Heninger,
N. (eds.) FC 2020. LNCS, vol. 12059, pp. 523–540. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51280-4 28

13. Kessler, S.: The Ethereum Merge is done, opening a new era for the second-biggest
blockchain (2022)

14. Lavi, R., Sattath, O., Zohar, A.: Redesigning Bitcoin’s fee market. ACM Trans.
Econ. Comput. 10(1), 1–31 (2022)

15. Leonardos, S., Monnot, B., Reijsbergen, D., Skoulakis, E., Piliouras, G.: Dynam-
ical analysis of the EIP-1559 ethereum fee market. In: Proceedings of the 3rd
ACM Conference on Advances in Financial Technologies (AFT 2021), pp. 114–
126. Association for Computing Machinery, New York (2021). https://doi.org/10.
1145/3479722.3480993

16. Liu, Y., Lu, Y., Nayak, K., Zhang, F., Zhang, L., Zhao, Y.: Empirical analysis of
EIP-1559: transaction fees, waiting time, and consensus security. arXiv preprint
arXiv:2201.05574 (2022)

17. Milionis, J., Hirsch, D., Arditi, A., Garimidi, P.: A framework for single-item NFT
auction mechanism design. arXiv e-prints arXiv:2209.11293 (2022)

18. Monnot, B., Hum, Q., Koh, C.S.M., Leonardos, S., Piliouras, G.: Ethereum’s trans-
action fee market reform of EIP 1559. In: Proceedings of the WINE 2020 Workshop
on Blockchain (2020)

19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
20. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press (2007)
21. Reijsbergen, D., Sridhar, S., Monnot, B., Leonardos, S., Skoulakis, S., Piliouras, G.:

Transaction fees on a honeymoon: ethereum’s EIP-1559 one month later. In: 2021
IEEE International Conference on Blockchain (Blockchain), pp. 196–204 (2021).
https://doi.org/10.1109/Blockchain53845.2021.00034

22. Roughgarden, T.: Transaction fee mechanism design for the ethereum blockchain:
an economic analysis of EIP-1559 (2020). https://doi.org/10.48550/ARXIV.2012.
00854

23. Roughgarden, T.: Transaction fee mechanism design. ACM SIGecom Exchanges
19(1), 52–55 (2021)

24. Shi, E., Chung, H., Wu, K.: What can cryptography do for decentralized mechanism
design? arXiv preprint arXiv:2209.14462 (2022)

http://arxiv.org/abs/2003.03052
http://arxiv.org/abs/2111.03151
http://arxiv.org/abs/2208.07919
https://doi.org/10.48550/ARXIV.2210.07793
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-030-51280-4_28
https://doi.org/10.1007/978-3-030-51280-4_28
https://doi.org/10.1145/3479722.3480993
https://doi.org/10.1145/3479722.3480993
http://arxiv.org/abs/2201.05574
http://arxiv.org/abs/2209.11293
https://doi.org/10.1109/Blockchain53845.2021.00034
https://doi.org/10.48550/ARXIV.2012.00854
https://doi.org/10.48550/ARXIV.2012.00854
http://arxiv.org/abs/2209.14462


Author Index

A
Abbas, Hanaa II-259
Abusalah, Hamza II-3
Agarwal, Sharad I-363
Allen, Sarah II-241
Alluminio, Lorenzo II-276
Andreina, Sébastien II-276
Angeris, Guillermo II-128
Arora, Arushi I-289
Arun, Arasu I-235
Asano, Taiki I-182
Atondo-Siu, Gilberto I-363
Attrapadung, Nuttapong I-182

B
Baek, Seungjin II-166
Bagchi, Saurabh I-38
Bandarupalli, Akhil I-38
Bastankhah, Mahsa I-309
Baum, Carsten I-270
Bella, Rohann I-166
Bhat, Adithya I-38
Bojja Venkatakrishnan, Shaileshh II-327
Boneh, Dan II-310
Bonneau, Joseph I-235, II-18, II-54
Brandt, Nicholas I-129
Bugiel, Sven I-147
Bultel, Xavier I-166

C
Campanelli, Matteo I-112
Cao, Tong II-149
Caprolu, Maurantonio II-259
Chakraborty, Dhiman I-147
Chandrasekaran, Balakrishnan II-221
Chatterjee, Krishnendu I-309
Chen, Lydia Y. II-200
Chevalier, Céline I-166
Chiang, James Hsin-yu I-270
Chitra, Tarun II-128
Choi, Kevin I-235

Christ, Miranda II-54
Cohen, Shir II-36

D
David, Bernardo I-270
Decouchant, Jérémie II-149
Deligios, Giovanni I-77
Di Pietro, Roberto II-259
Diamandis, Theo II-128
Döttling, Nico I-252
Duan, Huayi II-182

E
Ernstberger, Jens I-344
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