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Abstract. Let N = pq be the product of two balanced prime numbers
p and q. Elkamchouchi, Elshenawy and Shaban presented in 2002 an
interesting RSA-like cryptosystem that uses the key equation ed−k(p2−
1)(q2 − 1) = 1, instead of the classical RSA key equation ed − k(p −
1)(q−1) = 1. The authors claimed that their scheme is more secure than
RSA. Unfortunately, the common attacks developed against RSA can be
adapted for Elkamchouchi et al.’s scheme. In this paper, we introduce a
family of RSA-like encryption schemes that uses the key equation ed −
k(pn − 1)(qn − 1) = 1, where n > 0 is an integer. Then, we show that
regardless of the choice of n, there exists an attack based on continued
fractions that recovers the secret exponent.

1 Introduction

In 1978, Rivest, Shamir and Adleman [29] proposed one of the most popular
and widely used cryptosystems, namely RSA. In the standard RSA encryption
scheme, we work modulo an integer N , where N is the product of two large prime
numbers p and q. Let ϕ(N) = (p − 1)(q − 1) denote the Euler’s totient function.
In order to encrypt a message m < N , we simply compute c ≡ me mod N ,
where e is generated a priori such that gcd(e, ϕ(N)) = 1. To decrypt, one needs
to compute m ≡ cd mod N , where d ≡ e−1 mod ϕ(N). Note that (N, e) are
public, while (p, q, d) are kept secret. In the standard version of RSA, also called
balanced RSA, p and q are of the same bit-size such that q < p < 2q. In this
paper, we only consider the balanced RSA scheme and its variants.

In 2002, Elkamchouchi, Elshenawy and Shaban [15] extend the classical RSA
scheme to the ring of Gaussian integers modulo N . A Gaussian integer modulo N
is a number of the form a+bi, where a, b ∈ ZN and i2 = −1. Let ZN [i] denote the
set of all Gaussian integers modulo N and let φ(N) = |Z∗

N [i]| = (p2 − 1)(q2 − 1).
To set up the public exponent, in this case we must have gcd(e, φ(N)) = 1.
The corresponding private exponent is d ≡ e−1 mod φ(N). In order to encrypt
a message m ∈ ZN [i], we simply compute c ≡ me mod N and to decrypt it
m ≡ cd mod N . Note that the exponentiations are computed in the ring ZN [i].
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The authors of [15] claim that this extension provides more security than that
of the classical RSA. In the following paragraphs we present a series of common
attacks that work for both types of cryptosystems.

Small Private Key Attacks. In order to decrease decryption time, one may prefer
to use a smaller d. Wiener showed in [33] that this is not always a good idea.
More exactly, in the case of RSA, if d < N0.25/3, then one can retrieve d from
the continued fraction expansion of e/N , and thus factor N . Using a result
developed by Coppersmith [12], Boneh and Durfee [5] improved Wiener’s bound
to N0.292. Later on, Herrmann and May [19] obtain the same bound, but using
simpler techniques. A different approach was taken by Blömer and May [3], whom
generalized Wiener’s attack. More precisely, they showed that if there exist three
integers x, y, z such that ex−yϕ(N) = z, x < N0.25/3 and |z| < |exN−0.75|, then
the factorisation of N can be recovered. When an approximation of p is known
such that |p − p0| < N δ/8 and δ < 0.5, Nassr, Anwar and Bahig [25] present a
method based on continued fractions for recovering d when d < N (1−δ)/2.

In the case of Elkamchouchi et al., a small private key attack based on con-
tinued fractions was presented in [7]. Using lattice reduction, the attack was
improved in [28,34]. The authors obtained a bound of d < N0.585. A generaliza-
tion of the attack presented in [7] to unbalanced prime numbers was presented in
[9]. Considering the generic equation ex−yφ(N) = z, the authors of [8] describe
a method for factoring N when xy < 2N − 4

√
2N0.75 and |z| < (p − q)N0.25y.

An extension of the previous attack was proposed in [27].

Multiple Private Keys Attack. Let � > 0 be an integer and i ∈ [1, �]. When mul-
tiple large public keys ei � Nα are used with the same modulus N , Howgrave-
Graham and Seifert [20] describe an attack against RSA that recovers the cor-
responding small private exponents di � Nβ . This attack was later improved
by Sarkar and Maitra [30], Aono [1] and Takayasu and Kunihiro [31]. The best
known bound [31] is β < 1 − √

2/(3� + 1). Remark that when � = 1 we obtain
the Boneh-Durfee bound.

The multiple private keys attack against the Elkamchouchi et al. cryptosys-
tem was studied by Zheng, Kunihiro and Hu [34]. The bound obtained by the
authors is β < 2−2

√
2/(3� + 1) and it is twice the bound obtained by Takayasu

and Kunihiro [31]. Note that when � = 1 the bound is equal to 0.585.

Partial Key Exposure Attack. In this type of attack, the most or least signifi-
cant bits of the private exponent d are known. Starting from these, an adver-
sary can recover the entire RSA private key using the techniques presented by
Boneh, Durfee and Frankel in [6]. The attack was later improved by Blömer
and May [2], Ernst et al. [16] and Takayasu and Kunihiro [32]. The best known
bound [32] is β < (γ + 2 −

√
2 − 3γ2)/2, where the attacker knows Nγ leaked

bits.
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Zheng, Kunihiro and Hu [34] describe a partial exposure attack that works
in the case of the Elkamchouchi et al. scheme. The bound they achieve is β <
(3γ + 7 − 2

√
3γ + 7)/3. When γ = 0, the bound is close to 0.569, and thus it

remains an open problem how to optimize it.

Small Prime Difference Attack. When the prime difference |p − q| is small and
certain conditions hold, de Weger [14] described two methods to recover d, one
based on continued fractions and one on lattice reduction. These methods were
further extended by Maitra and Sakar [22,23] to |ρq − p|, where 1 ≤ ρ ≤ 2.
Lastly, Chen, Hsueh and Lin generalize them further to |ρq − εp|, where ρ and ε
have certain properties. The continued fraction method is additionally improved
by Ariffin et al. [21].

The small prime difference attack against the Elkamchouchi et al. public key
encryption scheme was studied in [11]. Note that when the common condition
|p−q| < N0.5 holds, their bound leads to the small private key bound d < N0.585.

Related Work. It is worth noting that our current undertaking shares similarities
with a prior work of ours [13], where we explored a cryptographic system closely
related to our own. Specifically, we studied the implications of generalizing the
Murru-Saettone cryptosystem [24], and the effect of using continued fractions to
recover the private key.

1.1 Our Contributions

We first remark that the rings Zp = Zp[t]/(t+1) = GF (p) and Zp[i] = Zp[t]/(t2+
1) = GF (p2), where GF stands for Galois field. Therefore, we can rethink the
RSA scheme as working in the GF (p) × GF (q) group instead of ZN . Also, that
the Elkamchouchi et al. scheme is an extension to GF (p2) × GF (q2) instead of
ZN [i]. This leads to a natural generalization of RSA to GF (pn)×GF (qn), where
n > 1. In this paper we introduce exactly this extension. We wanted to see if
only for n = 1 and n = 2 the common attacks presented in the introduction
work or this is something that happens in general. In this study we present a
Wiener-type attack that works for any n > 1. More, precisely we prove that
when d < N0.25n, we can recover the secret exponent regardless the value of n.
Therefore, no matter how we instantiate the generalized version, a small private
key attack will always succeed.

Structure of the Paper. We introduce in Sect. 2 notations and definitions used
throughout the paper. Inspired by Rivest et al. and Elkamchouchi et al.’s work
[15,29], in Sect. 3 we construct a family of RSA-like cryptosystems. After proving
several useful lemmas in Sect. 4, we extend Wiener’s small private key attack in
Sect. 5. Two concrete instantiations are provided in Sect. 6. We conclude our
paper in Sect. 7.
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2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. Also, the
notation |S| denotes the cardinality of a set S. The set of integers {0, . . . , a} is
further denoted by [0, a]. We use � to indicate that two values are approximately
equal.

2.1 Continued Fraction

For any real number ζ there exists a unique sequence (an)n of integers such that

ζ = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

,

where ak > 0 for any k ≥ 1. This sequence represents the continued fraction
expansion of ζ and is denoted by ζ = [a0, a1, a2, . . .]. Remark that ζ is a rational
number if and only if its corresponding representation as a continued fraction is
finite.

For any real number ζ = [a0, a1, a2, . . .], the sequence of rational numbers
(An)n, obtained by truncating this continued fraction, Ak = [a0, a1, a2, . . . , ak],
is called the convergents sequence of ζ.

According to [18], the following bound allows us to check if a rational number
u/v is a convergent of ζ.

Theorem 1. Let ζ = [a0, a1, a2, . . .] be a positive real number. If u, v are positive
integers such that gcd(u, v) = 1 and

∣
∣∣ζ − u

v

∣
∣∣ <

1
2v2

,

then u/v is a convergent of [a0, a1, a2, . . .].

2.2 Quotient Groups

In this section we will provide the mathematical theory needed to generalize the
Rivest, Shamir and Adleman, and the Elkamchouchi, Elshenawy and Shaban
encryption schemes. Therefore, let (F,+, ·) be a field and tn − r an irreducible
polynomial in F[t]. Then

An = F[t]/(tn − r) = {a0 + a1t + . . . + an−1t
n−1 | a0, a1, . . . , an−1 ∈ F}
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is the corresponding quotient field. Let a(t), b(t) ∈ An. Remark that the quotient
field induces a natural product

a(t) ◦ b(t) =

(
n−1∑

i=0

ait
i

)

◦
⎛

⎝
n−1∑

j=0

bjt
j

⎞

⎠

=
2n−2∑

i=0

⎛

⎝
i∑

j=0

ajbi−j

⎞

⎠ ti

=
n−1∑

i=0

⎛

⎝
i∑

j=0

ajbi−j

⎞

⎠ ti + r

2n−2∑

i=n

⎛

⎝
i∑

j=0

ajbi−j

⎞

⎠ ti−n

=
n−2∑

i=0

⎛

⎝
i∑

j=0

ajbi−j + r
i+n∑

j=0

ajbi−j+n

⎞

⎠ ti +
n−1∑

j=0

ajbn−1−jt
n−1.

3 The Scheme

Let p be a prime number. When we instantiate F = Zp, we have that An =
GF (pn) is the Galois field of order pn. Moreover, A∗

n is a cyclic group of order
ϕn(Zp) = pn − 1. Remark that an analogous of Fermat’s little theorem holds

a(x)ϕn(Zp) ≡ 1 mod p,

where a(x) ∈ A
∗
n and the power is evaluated by ◦-multiplying a(x) by itself

ϕn(Zp) − 1 times. Therefore, we can build an encryption scheme that is similar
to RSA using the ◦ as the product.

Setup(λ): Let n > 1 be an integer. Randomly generate two distinct large
prime numbers p, q such that p, q ≥ 2λ and compute their product N = pq.
Select r ∈ ZN such that the polynomial tn −r is irreducible in Zp[t] and Zq[t].
Let

ϕn(ZN ) = ϕn(N) = (pn − 1) · (qn − 1).

Choose an integer e such that gcd(e, ϕn(N)) = 1 and compute d such that
ed ≡ 1 mod ϕn(N). Output the public key pk = (n,N, r, e). The correspond-
ing secret key is sk = (p, q, d).
Encrypt(pk,m): To encrypt a message m = (m0, . . . ,mn−1) ∈ Z

n
N we first

construct the polynomial m(t) = m0 + . . . + mn−1t
n−1 ∈ A

∗
n and then we

compute c(t) ≡ [m(t)]e mod N . Output the ciphertext c(t).
Decrypt(sk, c(t)): To recover the message, simply compute m(t) ≡ [c(t)]d mod
N and reassemble m = (m0, . . . ,mn−1).

Remark 1. When n = 1 we get the RSA scheme [29]. Also, when n = 2, we
obtain the Elkamchouchi et al. cryptosystem [15].
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4 Useful Lemmas

In this section we provide a few useful properties of ϕn(N). Before starting our
analysis, we first note that plugging q = N/p in ϕn(N) leads to the following
function

fn(p) = Nn − pn −
(

N

p

)n

+ 1,

with p as a variable. The next lemma tells us that, under certain conditions, fn

is a strictly decreasing function.

Proposition 1. Let N be a positive integer. Then for any integers n > 1 and√
N ≤ x < N , we have that the function

fn(x) = Nn − xn −
(

N

x

)n

+ 1,

is strictly decreasing with x.

Proof. Computing the derivative of f we have that

f ′(x) = −n

(
xn−1 − 1

xn+1
· Nn

)
.

Using x ≥ √
N we obtain that

x2n > Nn ⇔ xn−1 >
1

xn+1
· Nn ⇔ f ′(x) < 0,

and therefore we have f is strictly decreasing function. 
�
Using the following result from [26, Lemma 1], we will compute a lower and

upper bound for ϕn(N).

Lemma 1. Let N = pq be the product of two unknown primes with q < p < 2q.
Then the following property holds

√
2

2

√
N < q <

√
N < p <

√
2
√

N.

Corollary 1. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(√
N

n − 1
)2

> ϕn(N) > Nn

(
1 − 2n + 1√

2N
n

)
+ 1.

Proof. By Lemma 1 we have that
√

N < p <
√

2
√

N,
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which, according to Proposition 1, leads to

fn(
√

N) > fn(p) > fn(
√

2
√

N).

This is equivalent to
(√

N
n − 1

)2

> ϕn(N) > Nn

(
1 − 2n + 1√

2N
n

)
+ 1,

as desired. 
�
When n = 1 and n = 2, the following results proven in [10] and [7] respec-

tively become a special case of Corollary 1.

Corollary 2. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(
√

N − 1)2 > ϕ1(N) > N + 1 − 3√
2

√
N.

Corollary 3. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(N − 1)2 > ϕ2(N) > N2 + 1 − 5
2
N.

We can use Corollary 1 to find a useful approximation of ϕn. This result will
be useful when devising the attack against the generalized RSA scheme.

Proposition 2. Let N = pq be the product of two unknown primes with q <
p < 2q. We define

ϕn,0(N) =
1
2

·
(√

N
n − 1

)2

+
1
2

·
[
Nn

(
1 − 2n + 1√

2N
n

)
+ 1

]
.

Then the following holds

|ϕn(N) − ϕn,0(N)| <
Δn

2

√
N

n
,

where

Δn =
(
√

2
n − 1)2√
2

n .

Proof. According to Corollary 1, ψn,0(N) is the mean value of the lower and
upper bound. The following property holds

|ψn(N) − ψn,0(N)| ≤ 1
2

[(√
N

n − 1
)2

− Nn

(
1 − 2n + 1√

2N
n

)
− 1

]

=
1
2

(
Nn − 2

√
N

n
+ 1 − Nn + Nn · 2n + 1√

2N
n − 1

)

=
1
2

√
N

n
(

2n + 1√
2

n − 2
)

=
Δn

2

√
N

n
,
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as desired. 
�
When n = 1 and n = 2, the following property presented in [10] and [7]

respectively become a special case of Proposition 2.

Corollary 4. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|ϕ1(N) − ϕ1,0(N)| <
3 − 2

√
2

2
√

2

√
N.

Corollary 5. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|ϕ2(N) − ϕ2,0(N)| <
1
4
N.

5 Application of Continued Fractions

We further provide an upper bound for selecting d such that we can use the
continued fraction algorithm to recover d without knowing the factorisation of
the modulus N .

Theorem 2. Let N = pq be the product of two unknown primes with q < p < 2q.
If e < ϕn(N) satisfies ed − kϕn(N) = 1 with

d <

√√
2

n
Nn(

√
N

n − δn)

e(
√

2
n − 1)2

, (1)

where

δn =
2
√

2
n

(
√

2
n − 1)2

+
2(2n + 1)√

2
n ,

then we can recover d in polynomial time.

Proof. Since ed − kϕn(N) = 1, we have that
∣∣∣∣
k

d
− e

ϕn,0(N)

∣∣∣∣ ≤ e

∣∣∣∣
1

ϕn,0(N)
− 1

ϕn(N)

∣∣∣∣ +
∣∣∣∣

e

ϕn(N)
− k

d

∣∣∣∣

= e
|ϕn(N) − ϕn,0(N)|

ϕn,0(N)ϕn(N)
+

1
ϕn(N)d

.
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Let εn = Nn − √
N

n
(2n + 1)/

√
2

n
+ 1. Using d = (kϕn(N) − 1)/e = 1 and

Proposition 2 we obtain

∣∣∣∣
k

d
− e

ϕn,0(N)

∣∣∣∣ ≤
Δn

2 e
√

N
n

ϕn,0(N)ϕn(N)
+

e

ϕn(N)(kϕn(N) − 1)

≤ e
√

N
n
(
√

2
n − 1)2

2
√

2
n
ε2n

+
e

εn(kεn − 1)

≤ e
√

N
n
(
√

2
n − 1)2

2
√

2
n
ε2n

+
e

ε2n

=
e[

√
N

n
(
√

2
n − 1)2 + 2

√
2

n
]

2
√

2
n
ε2n

≤ e[
√

N
n
(
√

2
n − 1)2 + 2

√
2

n
]

2
√

2
n
(Nn − 2n+1√

2
n

√
N

n
)2

.

Note that

[
√

N
n
(
√

2
n − 1)2 + 2

√
2

n
]

2
√

2
n
(Nn − 2n+1√

2
n

√
N

n
)2

=
(
√

2
n − 1)2[

√
N

n
+ 2

√
2
n

(
√
2
n−1)2

]

2
√

2
n
Nn(

√
N

n − 2n+1√
2
n )2

≤ (
√

2
n − 1)2

2
√

2
n
Nn(

√
N

n − δn)
,

which leads to
∣∣∣∣
k

d
− e

ϕn,0(N)

∣∣∣∣ ≤ e(
√

2
n − 1)2

2
√

2
n
Nn(

√
N

n − δn)
≤ 1

2d2
.

Using Theorem 1 we obtain that k/d is a convergent of the continued fraction
expansion of e/ϕn,0(N). Therefore, d can be recovered in polynomial time. 
�
Corollary 6. Let α < 1.5n and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e � Nα and N � 22λ, then Eq. 1 becomes

d <
2(n−α)λ+n

4

√
2nλ − δn√

2
n − 1

<
2(1.5n−α)λ+n

4√
2

n − 1

or equivalently

log2(d) < (1.5n − α)λ +
n

4
− log2(

√
2

n − 1) � (1.5n − α)λ

When cases n = 1 and n = 2 are considered the following properties presented
in [10] and [7] respectively become a special case of Corollary 6. Note that when
n = α = 1 we obtain roughly the same margin as Wiener [4,33] obtained for the
classical RSA.
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Corollary 7. Let α < 1.5 and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e � Nα and N � 22λ then Eq. 1 is equivalent
to

log2(d) < (1.5 − α)λ − 0.25 + 1.27 � (1.5 − α)λ.

Corollary 8. Let α < 3 and N = pq be the product of two unknown primes with
q < p < 2q. If we approximate e � Nα and N � 22λ then Eq. 1 is equivalent to

log2(d) < (3 − α)λ − 0.5 � (3 − α)λ.

The last corollary tells us what happens when e is large enough. We can see
that n is directly proportional to the secret exponent’s upper bound.

Corollary 9. Let N = pq be the product of two unknown primes with q < p <
2q. If we approximate e � Nn and N � 22λ then Eq. 1 is equivalent to

log2(d) < 0.5nλ +
n

4
− log2(

√
2

n − 1) � 0.5nλ.

6 Experimental Results

We further present an example for the n = 3 and n = 4 cases. Examples for
n = 1 and n = 2 cases are provided in [10] and [7] respectively, and thus we omit
them.

6.1 Case n = 3

Before providing our example, we first show how to recover p and q once ϕ3(N) =
(ed − 1)/k is recovered using our attack.

Lemma 2. Let N = pq be the product of two unknown primes with q < p < 2q.
If ϕ3(N) = N3−p3−q3+1 is known, then p and q can be recovered in polynomial
time.

Proof. We will rewrite ϕ3(N) as

ϕ3(N) = N3 − p3 − 3p2q − 3pq2 − q3 + 1 + 3p2q + 3pq2

= N3 − (p + q)3 + 3N(p + q) + 1,

which is equivalent to

(p + q)3 − 3N(p + q) + ϕ3(N) − N3 − 1 = 0.

Finding S = p + q is equivalent to solving (in Z) the following cubic equation

x3 − 3Nx + (ϕ3(N) − N3 − 1) = 0. (2)
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which can be done in polynomial time as it is presented in [17]. In order to find
p and q, we compute D = p − q using the following remark

(p − q)2 = (p + q)2 − 4pq = S2 − 4N.

Taking into account that p > q, D is the positive square root of the previous
quantity, and thus we derive the following

{
p = S+D

2

q = S−D
2

.


�
The following lemma shows that in order to factor N we only need to find

one solution to Eq. 2, namely its unique integer solution.

Lemma 3. Eq. 2 always has exactly two non-real roots and an integer one.

Proof. Let x1, x2 and x3 be Eq. 2’s roots. Using Vieta’s formulas we have

x1 + x2 + x3 = 0,

x1x2 + x2x3 + x3x1 = −3N,

x1x2x3 = −(ϕ3(N) − N3 − 1).

From the first two relations we obtain

x2
1 + x2

2 + x2
3 = (x1 + x2 + x3)2 − 2(x1x2 + x2x3 + x3x1)

= 6N.

If we assume that x1 = p + q and x2, x3 are both real, we get the following
system

{
x2 + x3 = −(p + q)
x2
2 + x2

3 = 6N − (p + q)2
⇒

{
(x2 + x3)2 = (p + q)2

2(x2
2 + x2

3) = 12N − 2(p + q)2
⇒

(x2 − x3)2 = 12N − 3(p + q)2

= 6pq − 3p2 − 3q2

= −3(p − q)2 < 0.

Therefore, we obtain a contradiction, and hence we conclude that Eq. 2 has one
real root, which is p + q ∈ Z, and two non-real roots. 
�

Now, we will exemplify our attack for n = 3 using the following small public
key

N = 3014972633503040336590226508316351022768913323933,
e = 8205656493798992557632452332926222819762435306999

0124626035612517563005998895654688526643002715434
25112020628278119623817044320522328087505650969.
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Remark that e ≈ N2.989. We use the Euclidean algorithm to compute the contin-
ued fraction expansion of e/ϕ3,0(N) and obtain that the first 25 partial quotients
are

[0, 3, 2, 1, 16, 5, 3, 5, 1, 5, 1, 11, 2, 6, 1, 3, 1, 4, 1, 1, 1, 267, 1, 1, 4, . . .].

According to Theorem 2, the set of convergents of e/ϕ3,0(N) contains all the
possible candidates for k/d. From these convergents we select only those for
which ϕ3 = (ed − 1)/k is an integer and the following system of equations

{
ϕ3 = (p3 − 1)(q3 − 1)
N = pq

has a solution as given in Lemma 2. The 2nd, 3rd and 21st convergents satisfy
the first condition, however only the last one leads to a valid solution for p and
q. More precisely, the 21st convergent leads to

ϕ3 = 2740628207892953207018702174077483807563264408773
7057963987757509374280517157259708222994487763446
946621855565600927215471565545807198298953933036,

k

d
=

514812488
1719435401

,

p = 2119778199036859068707819,
q = 1422305708622213956806807.

6.2 Case n = 4

As in the previous case, we first show how to factorize N once ϕ4 is known.

Lemma 4. Let N = pq be the product of two unknown primes with q < p < 2q.
If ϕ4(N) = N4 − p4 − q4 + 1 is known, then

p =
1
2
(S + D) and q =

1
2
(S − D),

where S =
√

2N +
√

(N2 + 1)2 − ϕ4(N) and D =
√

S2 − 4N .

Proof. We will rewrite ϕ4(N) as

ϕ4(N) = N4 − p4 − 4p3q − 6p2q2 − 4pq3 − q4 + 1 + 4p3q + 6p2q2 + 4pq3

= N4 − (p + q)4 + 4N(p2 + 2pq + q2) − 2p2q2 + 1

= N4 − (p + q)4 + 4N(p + q)2 − 2N2 + 1

which is equivalent to

(p + q)4 − 4N(p + q)2 + ϕ4(N) − (N2 − 1)2 = 0.
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Finding S′ = p + q is equivalent to solving (in Z) the following biquadratic
equation

x4 − 4Nx2 + ϕ4(N) − (N2 − 1)2 = 0 ⇔
(x2)2 − 4N(x2) + ϕ4(N) − (N2 − 1)2 = 0.

The previous equation can be solved as a normal quadratic equation. Computing
the discriminant Δ, we have that

Δ = 4(N2 + 1)2 − 4ϕ4(N) > 0.

Thus, the roots of the quadratic equation, x′
1,2, are

x′
1,2 = 2N ±

√
(N2 + 1)2 − ϕ4(N).

The roots of the biquadratic equation are the square roots of the previous quan-
tities.

x1,2 = ±
√

2N +
√

(N2 + 1)2 − ϕ4(N)

x3,4 = ±
√

2N −
√

(N2 + 1)2 − ϕ4(N)

The roots x3,4 are pure imaginary since
√

(N2 + 1)2 − ϕ4(N) > 2N ⇔
(N2 + 1)2 − ϕ4(N) > 4N2 ⇔

N4 + 2N2 + 1 − N4 + p4 + q4 − 1 − 4N2 > 0 ⇔
(p2 − q2)2 > 0.

The root x2 = −
√

2N +
√

(N2 + 1)2 − ϕ4(N) < 0, thus we get S′ = S = x1 =
√

2N +
√

(N2 + 1)2 − ϕ4(N). The values of p and q can be recovered by using
the algorithm from Lemma 2. 
�

We will further present our attack for n = 4 using the following small public
key

N = 3014972633503040336590226508316351022768913323933,
e = 3886649078157217512540781268280213360319970133145

6396788273204320283738850302214441484301356047280
9980074678226938065582620857819830171139174634897
69731055010977380039512575106301590600391232847.

Note that e ≈ N3.993. Applying the continued fraction expansion of
e/ϕ4,0(N), we get the first 25 partial quotients

[0, 2, 7, 1, 15, 6, 1, 2, 4, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 38, 1, 2, 1, 45, 8, . . .].
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In this case, we consider the convergents of e/ϕ4,0(N), and we select only
those for which ϕ4 = (ed − 1)/k is an integer and the following system of equa-
tions {

ϕ4 = (p4 − 1)(q4 − 1)
N = pq

has a solution as given in Lemma 4. The 2nd and 23rd convergents satisfy the
first condition, however only the last one leads to a valid solution for p and q.
More precisely, the 23rd convergent leads to

ϕ4 = 8262919045403735048878111025050137547018067986718
6489272861711603139280409749776405912009959512474
1225965967573968605037596274853618481302754457480
67878911842670048325065350941516266452271040000,

k

d
=

799532980
1699787183

,

p = 2119778199036859068707819,
q = 1422305708622213956806807.

7 Conclusions

In this paper we introduced a family of RSA-like cryptosystems, which includes
the RSA and Elkamchouchi et al. public key encryption schemes [15,29] (i.e.
n = 1 and n = 2). Then, we presented a small private key attack against our
family of cryptosystems and provided two instantiations of it. As a conclusion,
the whole family of RSA-like schemes allows an attacker to recover the secret
exponent via continued fractions when the public exponent is close to Nn and
the secret exponent is smaller that N0.25n.

Future Work. When n = 1, 2, 3, 4, in Sect. 6 and [4,7,10] a method for factoring
N once ϕn is known is provided. Although we found a method for particular
cases of n we could not find a generic method for factoring N . Therefore, we
leave it as an open problem. Another interesting research direction, is to find
out if the attack methods described in Sect. 1 for the RSA and Elkamchouchi et
al. schemes also work in the general case.
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