
Ontology-Based Models of Chatbots
for Populating Knowledge Graphs

Petko Rutesic1(B) , Dennis Pfisterer2 , Stefan Fischer2 ,
and Heiko Paulheim3

1 Baden-Wuerttemberg Cooperative State University, 68163 Mannheim, Germany
petko.rutesic@dhbw-mannheim.de

2 Institute of Telematics, University of Luebeck, Luebeck, Germany
3 University of Mannheim, Mannheim, Germany

Abstract. Knowledge graphs and graph databases are nowadays exten-
sively used in various domains. However, manually creating knowledge
graphs using existing ontology concepts presents significant challenges.
On the other hand, chatbots are one of the most prominent technologies
in the recent past. In this paper, we explore the idea of utilizing chat-
bots to facilitate the manual population of knowledge graphs. To imple-
ment these chatbots, we generate them based on other special knowledge
graphs that serve as models of chatbots. These chatbot models are cre-
ated using our modelling ontology (specially designed for this purpose)
and ontologies from a specific domain. The proposed approach enables
the manual population of knowledge graphs in a more convenient manner
through the use of automatically generated conversational agents based
on our chatbot models.

Keywords: modelling · ontology · chatbots · knowledge graphs

1 Introduction

Creating user-friendly interfaces to facilitate populating knowledge graphs man-
ually is a very demanding task. In order to create a knowledge graph, it is
necessary to have expertise not only in the domain of interest but also in the
field of ontology engineering. We can illustrate this using an example of flight
registration, where the end-users enter flight information manually in the knowl-
edge graph and the ultimate output of the process would be a comprehensive
knowledge graph representing all existing flights. To define a specific flight, it is
necessary to first choose the appropriate ontology for flight description and then
create an individual of the class representing flights. Following that, the user
has to know how to define departure and arrival airports, which requires the
knowledge of object and data properties that can be used to describe airports.
What makes this task even more complex is the need to choose whether these
airports can be described as blank nodes or not, or to choose specific ontology
design patterns. Creating these ontologies (editing RDF graphs) using only text
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Ortiz-Rodriguez et al. (Eds.): KGSWC 2023, LNCS 14382, pp. 228–242, 2023.
https://doi.org/10.1007/978-3-031-47745-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47745-4_17&domain=pdf
http://orcid.org/0000-0001-7017-707X
http://orcid.org/0000-0002-4877-1088
http://orcid.org/0000-0003-1292-8925
http://orcid.org/0000-0003-4386-8195
https://doi.org/10.1007/978-3-031-47745-4_17

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 229

editors in any syntax for representing RDF graphs would be intimidating for the
majority of users.

Tools for ontology engineering like Protégé, WebProtégé, TopBraid Composer
and similar tools are frequently used for this purpose. Additionally, there are var-
ious approaches to modelling user interfaces for populating knowledge graphs.
These user interfaces are of different kinds, from desktop and web applications to
conversational agents (chatbots). Particularly, chatbots have seen great growth
in popularity, especially in the last couple of years with the appearance of large
language models and tools like ChatGPT that use deep learning models to gener-
ate correct humanlike responses. Chatbots are now integrated in various domains
and have numerous applications, such as e-customer care services, e-commerce
systems, the medical field, etc.

Our approach aims to empower end users to create knowledge graphs like the
aforementioned flight knowledge graph in a simple manner. The chatbot should
primarily ask simple questions like: “What is the flight number?” or “What is the
flight destination?”. To this end, we propose to divide population of knowledge
graphs in two processes. The first process would be modelling and designing of
conversational agents, and the second process is using those conversational agents
by many end users to populate desired knowledge graphs. One potential group of
end users who could benefit from our chatbots includes airline personnel (or flight
operators) responsible for registering new flights and services related to those
flights. The novelty of our idea lies in the automatic generation of chatbots from
models that themselves are knowledge graphs. By adopting this approach, the
design of our conversational agent models becomes the responsibility of ontology
experts (chatbot model designers), while the end users of the chatbots do not
necessarily need expert knowledge in ontologies. This way, the end user would
be relieved from the burden of precisely knowing domain ontologies and the
intricacies of ontology engineering.

The approach can be simply expressed through two functions. The first
function is named the modelling function, which encompasses the process of
modelling chatbot dialogues (conversations) while simultaneously defining the
structure of the output knowledge graphs. The modelling function takes a set
of domain ontologies and our OBOP ontology (Ontology for Ontology-based
Ontology Population) as input parameters. The OBOP ontology is specifically
designed for modelling purposes and can be accessed at http://purl.org/net/
obop or in the GitHub repository1.

fmodelling(DomainOntologies,OBOP) = ChatbotModel

The modelling process is the task for chatbot model designers (ontology experts),
and the output of this process is a ChatbotModel, which is a knowledge graph
defined using elements from DomainOntologies and our OBOP ontology. Cur-
rently, the modelling is done manually, but we have plans to design special GUI
tools to support and automate this process in the future.

1 https://github.com/ontosoft/logic-interface/blob/main/ontology/obop.owl.

http://purl.org/net/obop
http://purl.org/net/obop
https://github.com/ontosoft/logic-interface/blob/main/ontology/obop.owl

230 P. Rutesic et al.

The second function represents the process of data acquisition, i.e., knowledge
graph population. This process is actually the use of chatbot to enter data.

facquisition(ChatbotModel, UserInteraction) = OutputKnowledgeGraph

The acquisition function takes a chatbot model created in the modeling pro-
cess and user interaction (during which the data is entered) as input parameters.
The output of the acquisition function is a desired knowledge graph, referred to as
OutputKnowledgeGraph, which is defined only using elements from the domain
ontologies. In Fig. 1, part of our approach that corresponds to the acquisition
function is outlined. The Chatbot generator takes the chatbot model defined by
elements of the OBOP ontology (colored in red) and domain ontologies (colored
in black). The output knowledge graph is populated through the interaction of the
end-user with the chatbot and contains only elements from domain ontologies.

Fig. 1. A simplified representation of the acquisition function (Color figure online)

Since the main goal is to simplify the population of knowledge graphs using
conversational systems (chatbots), we have explored the idea of modelling these
chatbots also within knowledge graphs. To leverage the reasoning capabilities
of OWL ontologies, it is reasonable for the chatbot models to be represented in
the OWL DL ontology class. Therefore, the goal of our approach can be boiled
down to the following set of requirements:

1. The chatbot conversation and the structure of the output knowledge graph are
both specified within the same knowledge graph (e.g. RDF file), representing
a model.

2. Models are defined using a dedicated ontology designed for this purpose,
serving as a meta-model for generating our models.

3. The meta-model comprises elements capable of modelling main program con-
trol structures, i.e., sequential, selection (branching) and iteration control
structures.

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 231

In the rest of the paper, we elaborate on the implementation of the proposed
requirements. The rest of the paper is organized as follows: The next section
presents a use case with flight registrations, used to illustrate our approach in
subsequent sections. Then we describe the main elements of the OBOP ontol-
ogy that model various aspects of chatbot conversations and showcase how the
modeling function works in our use case. Each subsection focuses on specific
workflows of the chatbot and explains how these workflows are modeled using
entities from the OBOP ontology. Finally, the paper concludes with a section
discussing our contributions.

2 Use Case

To demonstrate the applicability of our chatbot models, we introduce an exam-
ple involving a chatbot designed to help create knowledge graphs for flights.
Essentially, we look at process from the reverse perspective, beginning with an
existing knowledge graph and assuming it to be the output knowledge graph
of a chatbot. Then we demonstrate a model of this chatbot that generates this
particular knowledge graph.

The knowledge graph that our chatbot has to construct is already pre-
sented in the examples of using the Ticket ontology2. The authors of the knowl-
edge graph used GoodRelations ontology [6], Ticket ontology (compliant with
GoodRelations) and DBpedia to describe the flight. A simplified graphical rep-
resentation of the flight knowledge graph is shown in Fig. 2.

The flight knowledge graph contains data about a specific flight with the flight
number LH1234, which is operated by Lufthansa airline. The flight information
includes details about the departure and destination airports, as well as the
types of tickets that can be booked for that flight. A flight ticket is defined
as an instance of the class tio:Ticket of the Ticket ontology. In the graphical
representation, individuals and blank nodes are depicted using circles, with blank
nodes represented by empty circles. Ontology classes are illustrated by ovals,
while literals are shown as rectangles.

During the interaction with the chatbot, the user must provide the flight
number, departure and destination airports, as well as the departure and arrival
times. The knowledge graphs (instances of the Ticket ontology) generated using
our chatbot offer significant usefulness as they can be easily searched by cus-
tomers looking to book flight tickets. The use of ontologies in the system allows
for defining search operations using SPARQL queries. Moreover, customers have
the option to employ conversational agents like KBot [2] to find suitable flight
tickets using natural language understanding over linked data. In that case,
semantic web technologies can be used directly to find suitable flights without
resorting to web scraping methods as described in [12].

The primary objective of our chatbot use case is to simplify the process
for end-users by posing straightforward questions, while the knowledge graph is

2 http://purl.org/tio/ns.

http://purl.org/tio/ns

232 P. Rutesic et al.

Fig. 2. A knowledge graph representing a simple flight description.

generated seamlessly in the background using answers to those questions. The
chatbot must have the capability to generate this knowledge graph and also to
accommodate its extensions, such as adding the definition of additional ticket
types if needed. By doing so, the chatbot determines the structure of the output
ontology without explicitly asking the user to specify blank nodes, instances
of specific ontology classes and other details, thereby alleviating the burden of
detailed ontology engineering. To achieve this level of sophistication, the chatbot
model incorporates all the necessary details, and the key aspects of the model
are outlined in the section dedicated to modelling architecture.

3 Related Work

One of the first known conversational agents is ALICE [13] which uses AIML
(Artificial Intelligence Markup Language) which is basically XML to design con-
versations. The system uses a botmaster which monitors conversations to make
them more appropriate. Unlike writing rules in an XML-based language, the
rules in our approach are encoded in a knowledge graph based on our modeling
ontology and can be stored in an RDF file. Historically, there have been various
approaches to using semantic nets to generate chatbot. One of the first examples
is OntBot [3] that transforms ontologies and knowledge into relational database
and then uses relational database to generate chats. Another example of usage
of model-driven conversational systems is presented in [9], wherein a special-
ized domain-specific language with components like intents, entities, actions and

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 233

flows is employed to design the dialogue structure of task-oriented chatbots. The
dialogue management used in our paper is also similar to the dialogue manage-
ment used by the Rasa chatbot [5]. However, our approach differentiates itself
from those approaches by aiming to represent all components, including intents,
flows and actions through the use of knowledge graphs.

There have been many approaches to model user interfaces and web appli-
cation logic using knowledge graphs. An approach described in [11] proposes
a method of modelling HTML application structure and its logic using RDF
graphs. In this paper, we deal with a similar question of modelling and generating
chatbots used to engage in dialogs with users to acquire data. Furthermore, the
acquired data is used to directly populate desired output knowledge graphs based
on domain ontologies. The expressiveness of formal ontologies proves valuable in
representing both the models of chatbots and the complex knowledge within the
business logic of target ontologies. Chatbots generated using this approach could
prove advantageous wherever the description of complex products and services
using ontologies is required, as is the case in emerging business models like Dis-
tributed Market Spaces [10]. This approach complements the method described in
[7], where the system utilizes SPARQL queries to identify appropriate complex
products and services.

As stated in [1], conversational clients or chatbots are designed to be used
either as task-oriented or open-ended dialog generators. In our approach, we
develop a task-oriented chatbot responsible for collecting data (knowledge graph)
based on particular ontologies. The actual task is described based on rules speci-
fied in the model, which is represented again as a knowledge graph defined using
our OBOP ontology. Thus, our chatbot can also be classified as a rule-based
chatbot. To enable human-like conversation, our task-based chatbot module is
incorporated into an open-ended chatbot which is further described in the imple-
mentation section. The intention of our system is not to design a chatbot capable
of convincing a human that (s)he is chatting with a human instead of a com-
puter program. That intelligent behaviour depends on having good knowledge
sets. Instead, we focus on the creation of chatbots that gather information in the
form of knowledge graphs with individuals (instances) of the respective domain
ontologies.

4 Model Architecture

Our meta-model (OBOP ontology) contains various structures that describe
chatbot functionalities. The fundamental structure is designed to specify a sim-
ple data request. In response to this request, the user inputs a value, which is
then validated and can be stored in the system as a data property, IRI, or for a
similar purpose. This functionality corresponds to the process of entering data
into form fields in GUI interfaces. To represent the insertion of these data values,
the OBOP ontology, uses an instance of the class obop:SingleValueRequest. In
cases where multiple data properties need to be entered as a group of questions,
this is modeled using a conversation block. The generation of chatbot models,
using constructions explained in the next sections, is the responsibility of chatbot
model designers.

234 P. Rutesic et al.

4.1 Conversation Block

A conversation block represents a segment of a conversation used to collect data
values that are related to a specific entity. This part of the dialog is analogous
to an HTML form in web applications. The chatbot poses a series of questions,
and by providing answers to those questions, the system stores corresponding
values. A simple model for entering the flight IRI is illustrated in Fig. 3. In
the following figures, blue circles represent instances of classes of the OBOP
ontology, while larger peach-colored circles (e.g., individual flight_model_1 in
Fig. 3) depict instances from domain (target) ontologies. Yellow ovals represent
classes from the OBOP ontology, and blue ovals represent classes from target
ontologies. Object and data properties are denoted by directed lines with labels
that specify the names of those properties.

Fig. 3. Modelling a block of conversation

A segment of the model represented in Fig. 3 should initiate the following
part of conversation:

chatbot : P lease ente r the f l i g h t name (f l i g h t d e s c r i p t o r) :
user : LH1234

The outcome of the previous conversation is adding of the following triple to the
output knowledge graph:

f oo : LH1234 a t i o : F l i gh t .

In Fig. 3 can be seen a conversation block named block_1, which has one
instance of the class obop:SingleValueRequest called sv_request_1. This rep-
resents a question for entering a flight name (a unique flight descriptor).
sv_request_1 has the object property obop:specifiesEndOfIRI, which has a
boolean value of true. This indicates that the provided answer to the question
serves as the ending part of the IRI representing the flight instance. The model of

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 235

the instance of tio:Flight class that will be generated in this process is represented
by the flight_model_1 instance. During the conversation with the chatbot from
this instance will be generated the instance with the name foo:LH1234. Should
the inserted string need to be the value of a data property instead of being part
of the IRI, this would be indicated by the obop:containsDatatype object prop-
erty of the sv_request instance which would specify the name of the wanted data
property. The object property obop:isRelatedToTargetOntologyInstance indicates
what instance will be transformed with the entered data. The data property
obop:hasPositionNumber specifies that this question is the first one in this con-
versational block.

4.2 Branching Control Structure

To enable chatbot users to make decisions and select different paths of execution,
the OBOP ontology has mechanisms for modeling branching control structures.
The class obop:Branching represents a conditional structure. A simple branching
structure in our example is explained in the case of selecting an airline that
operates the given flight. The chatbot user is therefore prompted to choose only
one airline company from the presented options. One possible conversation is
presented in the following listing:

chatbot : Enter the a i r l i n e that opera te s your f l i g h t .
Choose one o f the f o l l ow i ng opt ions :
1 . Lufthansa
2 . Ryanair

user : Lufthansa

The chatbot asks a question and specifies a list of possible options. The user
responds by writing one among those listed names or by writing the ordinary
number in front of the corresponding name. For the sake of brevity, we decided to
present only two possible options (two airlines) to choose from. This statement
is similar to the “switch” statement in programming languages. As the result of
the execution of this part of the chatbot the output graph can be extended with
the following triple:

f oo : LH1234
t i o : operatedBy <http :// dbpedia . org / r e sou r c e /Lufthansa >.

The segment of the model that generates the previous chatbot question and
adds the specified triple, as the consequence of the chosen option, is represented in
Fig. 4. It can be observed that the previous conversational block block_1 is used,
as it is regarded a part of the same conversation section. The question to choose
one out of several possible values is denoted by an instance of the obop:Question
class, called question_1. question_1 has the data property obop:hasText with
the text of the question. Additionally, the question has the value of 2 for the
obop:hasPositionNumber data property, which serves to denote that this ques-
tion has second place in the conversation block. The question question_1 has an
instance of the class obop:hasBranching called branching_1 and this branching is
specified by the instance of the obop:Connection class named conn_1.

236 P. Rutesic et al.

The obop:Connection class specifies how the two instances of the ontology
classes should be related. An instance of this class has functional properties that
specify the source and destination of object properties. In our case, the source
is an instance called flight_model_1 and the destination is airline_model_1.
The latter serves as a model for an instance of the dbpedia:Agent class, which
will be created during the interaction with the chatbot. Additionally, the object
property that has to be inserted in the output graph between these two instances
is specified by the obop:containsDatatype object property and it is, in our context,
tio:operatedBy property. This particular object property is denoted by a dashed
line in Fig. 4, although this edge is not part of the actual model graph.

Fig. 4. A part of the model specifying the process of selecting an airline

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 237

It can be seen that the connection instance specifies both a predicate (object
property) and an object (instance) of a new triple. The user, interacting with
the chatbot, is required to choose a single airline from the list of possible air-
lines. In the lower section of Fig. 4 is defined an instance of the obop:Collection
class, named airlines_collection_1. The connection instance conn_1 is related
to this collection by the object property obop:choseOneDestinationFrom, which
specifies exactly how to form the object of a new triple. In this case, our simple
collection contains two instances of the class obop:CollectionItem correspond-
ing to Lufthansa and Ryanair airlines. OBOP collections are not defined using
rdf:Bag, rdf:Seq or by using restrictions like owl:someValuesFrom. Collections
are basically used by the chatbot program in the runtime phase and they are
not meant to be used in the process of ontology reasoning.

An alternative, that can be specified in our model, which brings more gener-
ality to this example, is to allow the user to directly input an IRI of the desired
airline, which must belong to the dbpedia:Agent class. However, we presented
the selection from the list of available options to show that the model designer
has this option.

4.3 Iteration Control Structure

To effectively manage control flows, the chatbot model has to provide defini-
tion of iteration structures (loops). As the iteration structures in programming
languages allow the repetitive execution of a specific code block, iteration struc-
tures in chatbots enable the repetition of a set of questions within a conversation
block or the repetition of other activities. For this purpose, the OBOP ontology
introduces the obop:Loop class.

An example of iterations can be demonstrated within our flight scenario.
The user has to define various ticket types for the flight, which could initiate the
following conversation:

chatbot : Do you want to d e f i n e one more t i c k e t type ?
user : Yes
chatbot : P lease ente r the l a b e l o f the t i c k e t ?
user : Economy t i c k e t s from Frankfurt to London Heathrow
chatbot : Choose the s e r v i c e l e v e l o f the t i c k e t ?
user : Economy
chatbot : Do you want to d e f i n e one more t i c k e t type ?

The result of executing the previous chatbot conversation is the following part
of the graph:

f oo : t i c k e t 5 a t i o : T i cke tP laceho lde r ;
r d f s : l a b e l "Economy t i c k e t s from Frankfurt to London

Heathrow"@en ;
t i o : scope [a t i o : ScopeOfAccess ;

t i o : accessTo foo : LH1234 ;
t i o : e l i g i b l e S e r v i c e L e v e l t i o : Economy] .

238 P. Rutesic et al.

The part of the model that generates the preceding section of the chatbot
conversation is illustrated in Fig. 5. The question question_2, which ask for a
new ticket type is related to an instance of the obop:Loop class called loop_1.
Each iteration of the loop specifies adding a new ticket which is represented by
a conversational block block_3. If the user answers positively to the chatbot’s
question, a new ticket instance is generated according to the ticket_model_1.
Together with the ticket is generated a blank node corresponding to the _:bnode
instance. The new blank node is related to the flight instance, which is already
created in the previous examples according to the flight_model_1.

Fig. 5. A part of the model used to define tickets using iteration.

The object properties tio:scope and tio:accessTo are also automatically cre-
ated. However, rdfs:label had to be specified using obop:containsDatatype object
property. In order to choose between possible service classes (e.g., Business or
Economy) a new question (question_3) and connection (conn_2) was necessary.
conn_2 is not completely presented and ontology classes of same instances are
omitted in Fig. 5 for improved readability.

5 Implementation

To implement a prototype of our chatbot, we employed Python libraries, namely,
ChatterBot as the conversational dialogue engine and Owlready [8] for ontology-
oriented programming, to facilitate the creation and manipulation of OWL

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 239

ontologies. The chatbot prototype can be tested as a REST application imple-
mented using Flask framework3 with a simple JavaScript frontend. The source
code can be found on GitHub4.

Chatbots generated using the ChatterBot library answer user questions based
on the functionalities of logic adapters. For example, there are adapters like the
Time adapter that can answer questions like “What time is it?”, the Math adapter
that can handle arithmetic operations, etc. When the user submits a question,
all logic adapters assess whether they are capable of providing a response. The
ability of a logical adapter to answer the question is measured by a confidence
factor, expressed as a decimal value between 0 and 1. The answer from the
adapter with the highest confidence is chosen as the reply. The architecture of
our chatbot is shown in Fig. 6.

Fig. 6. Architecture of the chatbot system.

Our model-based chatbot functionalities are implemented as a logic adapter
for the ChatterBot library, named the OntoBasedAdapter. Unlike other logic
adapters in ChatterBot, the OntoBasedAdapter keeps track of the current state
of conversation. Once the OntoBasedAdapter starts to gather information and
populate the corresponding output knowledge graph, it needs to store infor-
mation of the conversation’s current state. It includes tracking visited nodes
to enable system to make reverse steps and undo entries if necessary. Chatbot
stores information on the current context, which is comprised of the entire array
of nodes that have been visited and created during the conversation up to the
current state.

3 https://flask.palletsprojects.com.
4 https://github.com/ontosoft/ontochatbot.

https://flask.palletsprojects.com
https://github.com/ontosoft/ontochatbot

240 P. Rutesic et al.

Keeping track of the state of an ongoing dialogue is quite challenging task. In
the study [4], authors dealt with this problem by exploiting ontologies for both
the knowledge base and the dialogue manager in domain-driven conversation,
creating a banking chatbot. Our chatbot, on the other hand, is a domain inde-
pendent conversational agent, with the domain specified in the corresponding
chatbot model.

Answering Questions and Generating Replies. When the Onto-
BasedAdapter takes charge of the dialogue, it maintains the conversation status.
The system asks questions in the order that is defined by the chatbot model.
If the user asks a question that is not related to the current task specified in
the model the conversation might take a different direction, potentially allow-
ing another logic adapter to respond, enhancing the conversation’s natural flow.
Subsequently, it is posed a question by OntoBasedAdapter to pick up the con-
versation at the point where it was interrupted. This capability stems from the
OntoBasedAdapter’s management of context and conversation state. The con-
fidence factor determines what logic adapter among all logical adapters will be
chosen to give the answer. However, if the OntoBasedAdapter already started to
gather information according to a conversation model then it has precedence over
other logical adapters. Even if a user abruptly shifts the conversation’s focus,
the conversation agent tries to steer it back to the desired topic. For instance,
if a user asks “What time is it?” during a conversation meant to schedule flight
details, the system employs the Time logic adapter to answer promptly, before
returning to the next question in line based on the chatbot model.

In this way, responses (questions) of any logic adapter are assigned a cor-
responding weight (confidence factor). The challenges associated to this way of
choosing replies include the fact that confidence factors of already implemented
adapters tend to be quite high values. The solution which we use is that Onto-
BasedAdapter always returns the confidence factor equal to 1 after it started
to collect information. At present, OntoBasedAdapter responses are manually
embedded into the model by the model designer.

6 Contribution

In this paper, we introduced models for conversational agents (chatbots). These
chatbots can accomplish domain-specific tasks such as generating flight descrip-
tions, booking flight tickets or creating restaurant menus that could be used
for restaurant reservations in a user-friendly manner. In order to show how to
create a chatbot model, we designed a chatbot intended for flight descriptions.
The chatbots we propose follow the rule-based approach, in which replies are
generated using predefined rules integrated into the models of respective con-
versations. These conversation models represent templates according to which
replies (questions) are created.

The requirements for the approach outlined in the introduction of the paper
are met with our implementation. The conversation model and the structure of

Ontology-Based Models of Chatbots for Populating Knowledge Graphs 241

the knowledge graph are both included in the same knowledge graph according
to the first requirement. The limitations of this approach are the high complexity
of the model graphs and challenging maintenance of the generated graphs. The
second and third requirements are addressed by the explicit definition of specific
classes, object properties, and data properties in the OBOP ontology. These
definitions correspond to fundamental programming control structures, ensuring
the capability to capture and manage various aspects of the conversation’s flow
and logic.

Describing chatbot models based on OWL ontologies might offer significant
benefits, including the potential for OWL reasoning applied to these models.
The OWL reasoning capability could identify flawed models that might result
in inconsistent knowledge graphs. Another advantage lies in the potential for
reusing existing models, enabling their sharing and querying through SPARQL.
Moreover, the application of machine learning algorithms to existing models
could streamline the process of automatically or semi-automatically generating
new chatbots for description of similar problems.

References

1. Agarwal, R., Wadhwa, M.: Review of state-of-the-art design techniques for chat-
bots. SN Comput. Sci. 1(5), 246 (2020)

2. Ait-Mlouk, A., Jiang, L.: KBot: a knowledge graph based chatbot for natural
language understanding over linked data. IEEE Access 8, 149220–149230 (2020)

3. Al-Zubaide, H., Issa, A.A.: OntBot: ontology based chatbot. In: International Sym-
posium on Innovations in Information and Communications Technology, pp. 7–12.
IEEE (2011)

4. Altinok, D.: An ontology-based dialogue management system for banking and
finance dialogue systems. arXiv preprint arXiv:1804.04838 (2018)

5. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181 (2017)

6. Hepp, M.: GoodRelations: an ontology for describing products and services offers
on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI),
vol. 5268, pp. 329–346. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87696-0_29

7. Hitz, M., Radonjic-Simic, M., Reichwald, J., Pfisterer, D.: Generic UIs for request-
ing complex products within distributed market spaces in the internet of every-
thing. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.)
CD-ARES 2016. LNCS, vol. 9817, pp. 29–44. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45507-5_3

8. Lamy, J.B.: Owlready: ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies. Artif. Intell. Med.
80, 11–28 (2017)

9. Pérez-Soler, S., Guerra, E., de Lara, J.: Model-driven chatbot development. In:
Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020.
LNCS, vol. 12400, pp. 207–222. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-62522-1_15

10. Radonjic-Simic, M., Pfisterer, D., Rutesic, P.: Arising internet of everything: Busi-
ness modeling and architecture for smart cities in recent developments in engineer-
ing research, vol. 8, chap. 7 (2020)

http://arxiv.org/abs/1804.04838
http://arxiv.org/abs/1712.05181
https://doi.org/10.1007/978-3-540-87696-0_29
https://doi.org/10.1007/978-3-540-87696-0_29
https://doi.org/10.1007/978-3-319-45507-5_3
https://doi.org/10.1007/978-3-319-45507-5_3
https://doi.org/10.1007/978-3-030-62522-1_15
https://doi.org/10.1007/978-3-030-62522-1_15

242 P. Rutesic et al.

11. Rutesic, P., Radonjic-Simic, M., Pfisterer, D.: An enhanced meta-model to generate
web forms for ontology population. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F.,
Tiwari, S., Goyal, A., Jabbar, M.A. (eds.) KGSWC 2021. CCIS, vol. 1459, pp.
109–124. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91305-2_9

12. Turnip, T.N., Silalahi, E.K., Sinulingga, Y.A.V., Siregar, V.: Application of ontol-
ogy in semantic web searching of flight ticket as a study case. J. Phys. Conf. Ser.
1175, 012092 (2019)

13. Wallace, R.S.: The anatomy of A.L.I.C.E. In: Epstein, R., Roberts, G., Beber, G.
(eds.) Parsing the Turing Test, pp. 181–210. Springer, Dordrecht (2009). https://
doi.org/10.1007/978-1-4020-6710-5_13

https://doi.org/10.1007/978-3-030-91305-2_9
https://doi.org/10.1007/978-1-4020-6710-5_13
https://doi.org/10.1007/978-1-4020-6710-5_13

	Ontology-Based Models of Chatbots for Populating Knowledge Graphs
	1 Introduction
	2 Use Case
	3 Related Work
	4 Model Architecture
	4.1 Conversation Block
	4.2 Branching Control Structure
	4.3 Iteration Control Structure

	5 Implementation
	6 Contribution
	References

