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Abstract. It is widely acknowledged that artificial intelligence (AI)
technology has been extensively applied and has achieved remarkable
advancements in various fields. The field of computational materials
science has also embraced AI techniques in diverse ways. Today, com-
putational materials science plays a crucial role in the development of
cutting-edge materials, including pharmaceuticals, catalysts, semicon-
ductors, and batteries. One significant task in this field is the regression
of the total energy of atomic structures that form various materials. In
this study, we propose a modified model architecture aimed at improving
the performance of existing total energy regression models. Traditional
total energy regression models calculate the total energy by summing the
energies of individual nodes represented in the atomic structure graph.
However, our approach suggests a modified architecture that not only
predicts the energy for nodes but also incorporates energy prediction
for edges in the graph. This novel architecture achieved a 3.9% reduc-
tion in energy error compared to the base model. Moreover, its simplic-
ity provides the advantage of general applicability to other total energy
regression models.
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1 Introduction

Artificial intelligence (AI) has already demonstrated its powerful performance
and efficiency through numerous examples. In the field of natural science, AI is
rapidly improving efficiency, comparable to the fourth wave. One area where AI
algorithms have been introduced and are making a significant impact is compu-
tational materials science [1–5]. This field, which primarily simulates the proper-
ties and phenomena of materials, is gaining attention across various industries,
including semiconductors, batteries, light-emitting devices, chemistry, new drug
development, catalysts, and solar cells [6–14].
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Density Functional Theory (DFT) [15,16], proposed in the 1970s, boasts sur-
prisingly high accuracy and has become a major method in the field of computa-
tional science. However, DFT methods require large computational resources at
the cost of high accuracy [10,17,18]. Recently, AI technology has been rapidly
introduced to solve these problems and has achieved considerable results. How-
ever, it still lacks accuracy compared to the DFT method [19].

A fundamental and central task in computational materials science is to
calculate the total energy for a given atomic structure. A total energy regression
AI model called machine learning potential is based on calculating the total
energy by predicting and summing the contributions of each target atom to
the total energy [20–24]. This method has a similar structure to the empirical
potential, which is a traditional method of calculating total energy.

We propose a new architecture that considers both atoms and bonds. This
approach is more physically intuitive as the total energy of a material consists of
both the energy of the atoms themselves and the energy of chemical bonds. This
architecture is more natural and similar to DFT calculations. If the architecture
of the AI model is similar to how DFT calculations work, then it can be expected
that the AI model will learn more easily. This effect is especially effective in
non-metallic materials with clear chemical bonds rather than metallic materials
with ambiguous bonds. Any AI model that interprets atomic structure as a
graph and calculates total energy can benefit from this approach and improve
its performance.

2 Background and Base Model

Machine Learning Potential. In 2007, Behler and Parrinello first proposed
an AI architecture for regressing total energy based on atomic positions [20].
Density functional theory-based first-principles calculations are one of the most
widely used methodologies in computational materials science and can calculate
various properties for materials. Total energy is one of the most basic and essen-
tial physical quantities in property calculations. Total energy is a kind of function
that takes atomic structure as a variable, meaning the type and arrangement of
atoms that make up an arbitrary material. For example, an atomic structure
containing N atoms is expressed as an atomic number Z = {Z1, Z2, Z3, ..., ZN}
and each atom’s position R = {r1, r2, r3, ..., rN} where ri is a Cartesian coor-
dinate ri = {xi, yi, zi}. The traditional computational chemical methodology of
empirical potential was adopted. According to this methodology, total energy
Etotal is

Etotal =
∑

i

Ei (1)

where Ei is the contribution of the ith atom to total energy. The architecture
of machine learning potential is shown in Fig. 1. Almost all machine learning
potentials published so far have a structure like this. In Fig. 1, Gϕ

i is an input
vector of size ϕ transformed by symmetric function.
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Fig. 1. Basic architecture of a machine learning potential [20]. The gray and pink boxes
represent the descriptor and main network, respectively. All black and dotted arrows
indicate the flow of data. The round circle represents an operation that calculates the
sum of input values. The data shape at each step is indicated by blue numbers. (Color
figure online)

Base Model. The model proposed in this study is based on GemNet-OC [25]
and uses a similar architecture. GemNet-OC is a graph neural network (GNN)
that represents an atomic system as a graph G = (V, E), where the set of graph
nodes, V, represents each atom and the set of edges, E, is defined as all pairs of
atoms within a certain cutoff distance. The first model, similar to state-of-the-
art GNNs, was proposed in 1997 but only gained popularity after several works
demonstrated its potential for a wide range of graph-related tasks [26]. GemNet-
OC evolves the two-level message passing scheme proposed in MXMNet into an
interaction layer and utilizes both edge and node embeddings. GemNet-OC is
a model based on Geometric Message Passing Neural Networks (GemNet) [27],
which uses a similar architecture and improves the accuracy of forces experienced
by atoms.

3 Datasets

We used the Open Catalyst 2022 (OC22) dataset for model training [19]. The
OC22 dataset is designed to enable the development of generalizable machine
learning (ML) models for catalysts, particularly for oxygen and hydrogen evo-
lution reactions and oxide electrocatalysis. The dataset consists of oxide surface
structures combined with constituent elements and oxide surface structures with
adsorbed molecules, as well as defects such as atomic substitution and vacancies.
By providing a diverse and representative training dataset, OC22 aims to sup-
port the development of generalized models that can accurately predict catalytic
reactions on oxide surfaces. Models generated from this dataset are expected to
accelerate the discovery and design of new catalysts for a wide range of applica-
tions.

The primary task of OC20 is to regress the total energy obtained through
first-principles calculations based on DFT from the atomic structure. The



Edge Based Architecture for Total Energy Regression Models 109

dataset is divided into training/validation/test sets and each set includes both
material surface structures and surface structures with adsorbed molecules. The
dataset includes 19,142 material surface structures and 43,189 surface structures
with adsorbed molecules, with a total of 9,854,504 data points. Diversity in sur-
face structure and adsorption structure was prioritized when constructing the
dataset to ensure that a generalized model can be built.

4 Edge Based Architecture of GemNet-OC

GemNet-OC is a graph neural network (GNN) that represents atomic systems
as graphs, with its architecture being improved to map the energy of the edge
embedding using GemNet as a base model. In this architecture, nodes and edges
are embedded respectively, with the edge embedding being used to regress the
force received by atoms. An architecture similar to the empirical potential for
the total energy was proposed, as shown in Eq. (1) and Fig. 1.

However, the total energy can also be described in terms of heat statistics.
Specifically, it can be expressed as

Etotal = Ω +
∑

i

μi (2)

where Ω is the formation energy representing chemical interaction between atoms
and μi is the energy of one atom in terms of thermostatistics. The formation
energy Ω can be further expressed as Ω =

∑
m em, which is the sum of the

binding energies em of atomic pairs. The binding energies em of atomic pairs are
mapped to the values from the edges of the atomic structure graph by the main
network.

This structure has several advantages. Firstly, μi is more consistent about
the placement of atoms than Ei, making the model easier to train. Secondly, the
total energy naturally regresses by the formation energy calculated as the sum
of the binding energies. To reflect these formulas, the architecture was modified
to map energy to edges as well. The modified architecture can be seen in Fig. 2.

5 Results

Due to limited computational resources, only 200,000 training data points (1/40
of the total OC22 dataset) were used for training over 9 epochs. However, since
the same dataset was used for all models being compared and 200,000 is still a
large number of data points, it is still meaningful to test the performance of the
models. The training and validation errors were reduced equally for all models,
indicating that there was no underfitting or overfitting (Fig. 3). The inset of
Fig. 3-b shows that the validation error of GemNet-EB (shown in red) is about
3.9% smaller than that of the base model GemNet-OC (shown in green).
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Fig. 2. Main network of the GemNet-EB architecture. Changes are highlighted in
orange. � denotes the layer’s input, || concatenation, σ a non-linearity. The massage
passing block and Embedding block have same architecture with the GemNet-OC [25].
(Color figure online)

Fig. 3. Energy mean absolute error (MAE) of train (a) and validation (b) respectively.
The x-axis represents the epoch and the y-axis represents the MAE on a log scale. The
inset in (b) is a zoom-in of the red box zone at the bottom right. (Color figure online)
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6 Conclusion

We proposed a new and improved architecture for regressing the total energy
from atomic structures. Our newly proposed GemNet-EB model achieved a 3.9%
lower validation error than the base model. Of course, other experiments are
possible, but further studies are needed because it is difficult to test more than
this due to the limitation of computer resources. However, this study is still
significant because we applied the new concept of the total energy prediction
model, as shown in Eq. (2), and achieved a low validation error rate with this
method. There is a significant difference in errors between the other models and
the GemNet base model, indicating that the edge embedding of the GemNet-OC
model also plays an important role in total energy regression. By directly map-
ping bond energy using edge embedding, we were able to improve the accuracy
of the model. While edge embedding is indirectly reflected in node embedding
through the interaction block, we were able to improve performance by directly
connecting it to total energy regression.

However, considering that the accuracy of DFT calculations used for surface
structure and surface adsorption energy studies is less than 0.01 eV, there is
still room for improvement. Since our new method is not limited to any specific
model or architecture and can be applied to any GNN-based model for atomic
structures, our proposed new architecture can serve as a foundation for advancing
machine learning potential.
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