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Abstract. Attention mechanisms are intensively devoted to local fea-
ture abstraction for fine-grained visual categorization. A limitation of
attention-based methods is that they focus on salient region mining and
feature extraction, while ignoring the ability to incorporate discrimina-
tive and complementary features from other parts of the image. In order
to address this issue, we introduce a novel network known as the Discrim-
inative Region Enhancing and Suppression Network (DRESNet). This
network efficiently extracts a wide range of diverse and complementary
features, thereby enhancing the final representation. Specifically, a plug-
and-play salient region diffusion (SRD) module is proposed to explicitly
enhances the salient features extracted by any backbone network. The
SRD module can adaptively adjust the weights of regions and redirect
attention to other non-discriminative regions to generate different com-
plementary features. The proposed discriminative region enhancing and
suppression network is free from bounding boxes or part annotations and
can be trained end-to-end. Our proposed method demonstrates competi-
tive performance on three fine-grained classification benchmark datasets,
as supported by extensive experimental results. Additionally, it is com-
patible with widely used frameworks currently in use.

Keywords: Fine-grained Visual Categorization · Attention
mechanism · Region enhancing and suppression

1 Introduction

Fine-grained visual categorization (FGVC) has garnered growing research inter-
est [2–4] in recent years, driven by its promising applications in diverse real-
world scenarios such as intelligent retail [24], intelligent transportation [11], and
conservation [1]. FGVC aims to recognizing images belonging to multiple sub-
categories within the same category, e.g., different species of birds [23], models
of cars [13] and aircrafts [18]. As different subcategory objects share a similar
physical structure (i.e., all kinds of birds have a head, wings, and a tail), and
could be only be distinguished by subtle local regions, as shown in Fig. 1. Due to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 93–105, 2023.
https://doi.org/10.1007/978-3-031-47665-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47665-5_8&domain=pdf
http://orcid.org/0009-0004-1616-1017
http://orcid.org/0000-0001-6469-2366
http://orcid.org/0000-0002-9488-8236
https://doi.org/10.1007/978-3-031-47665-5_8


94 G. Wu et al.

Fig. 1. Samples belonging to the same sub-category share a similar physical structure
(i.e., all kinds of birds have a head, wings, and a tail) and appearance, making it
infeasible to visually distinguish between them.

low inter-class variances, it further increases the difficulty of fine-grained image
classification.

To extract discriminative features for classification, a key process is to focus
on the feature representations of different parts of the object. Some previous
works [14,25,29,31] rely mainly on predefined bounding boxes and part anno-
tations to locate the distinguishable regions, and then extract part-specific fea-
tures for fine-grained classification. However, these hand-craft annotations are
not optimal for FGVC, the collection of which can be very costly. In recent
years, weakly supervised learning using labels in image-level has become the
mainstream method for FGVC. Some recent methods [7,22,26,33] attempt to
locate the distinguishable regions and learn effective feature representations
using attention mechanisms, channel clustering, and other techniques, without
requiring bounding box/part annotations. Although these methods are effective,
there are still potential limitations: 1) attention-based networks tend to focus on
globally salient features while ignore other local discriminative features which
potentially carry complementary information for the salient ones; 2) part-based
sampling methods are easily affected by the number and size of the sampled
parts. These pre-defined parameters greatly limit the effectiveness and flexibil-
ity of the model. Therefore, how to effectively extract diverse salient features
and how to integrate reasonably these features into the final representation are
worthy of discussion for the fine-grained classification task.

In this paper, we propose a discriminative region enhancing and suppres-
sion network (DRESNet) to address the above limitations by generating a set
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of integral fine-grained features including the globally salient features and their
complementary features. More specifically, DRESNet does not focus on how to
capture accurate distinguishable parts, but enhances and suppresses the salient
parts in the feature map in an adaptive way and then forces the following net-
work to mine other discriminative regions containing potentially complementary
features. Some observations show that the most salient region of an image is
tend to be noticed by the attention models in the first time, then the feature
abstraction of this region is enhanced while that of other regions is suppressed.
As a result, visual cues from suppressed features may be absent in the learned
features. However, a set of integral features consisting of both globally salient
features and other local features are crucial for FGVC tasks [6,9].

The proposed DRESNet consists of a feature extraction backbone network
and a salient region diffusion (SRD) module. By inserting salient region diffu-
sion module into various stages of the backbone network, it efficiently extracts
various potential features. SRD module enhances and suppresses features to
obtain part-specific representations. Note that, in the suppression operation,
SRD module does not require additional complex hyperparameters to suppress
salient regions information. Instead, it effectively expands the discriminative
region through a learnable way (suppress excessive feature expression of salient
regions while encourage feature expression from adjacent non-salient regions).
We demonstrate hat the feature learning of the backbone networks could be
substantially improved in this way.

Our contributions are summarized as follows: (1) We propose a salient region
diffusion (SRD) module, which enhances the prominent features of the network.
Additionally, through an adaptive learning-based suppression process, SRD can
compel the network to learn more complementary features. (2) Our proposed
region enhancing and suppression network (DRESNet) achieves competitive
results on three benchmark fine-grained classification datasets.

2 Related Work

Fine-grained visual categorization (FGVC) aims to identify visually similar sub-
categories within the same basic category, e.g., different species of birds [23],
models of cars [13] and aircraft [18]. Currently, research on weakly supervised
fine-grained visual categorization methods mainly focuses on three aspects: fine-
grained feature learning, discriminative region localization, and visual attention
mechanisms.

2.1 Fine-Grained Feature Learning

In order to more accurately describe the subtle differences between fine-grained
categories, Lin et al. [15] proposed a bilinear model consisting of two feature
extractors. This model adopts a translation-invariant approach to extract fea-
tures from different parts of the image and fuse them, thereby enhancing the
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ability to learn fine-grained features. However, the use of bilinear features gener-
ated by the outer product results in extremely high dimensions, which increases
the computational complexity. To address this issue, Gao et al. [8] attempted to
approximate the second-order statistics of the original bilinear pooling operation
by applying Tensor Sketch to reduce the dimensionality of bilinear features. Kong
et al. [12] used a low-rank approximation for the covariance matrix and further
learned low-rank bilinear classifiers, which significantly reduced the computation
time and effective number of parameters. In addition, Yu et al. [27] proposed a
cross-layer bilinear pooling method to integrate multiple cross-layer bilinear fea-
tures and capture part relationships in the features from inter layers.

2.2 Discriminative Region Localization

Localization-based methods capture discriminative semantic parts of fine-grained
objects and then construct intermediate representations corresponding to these
parts for final classification. Fu et al. [7] proposed a recurrent attention convo-
lutional neural network, which recursively learns discriminative regions region-
based feature representation at multiple scales in a mutually reinforced way.
Yang et al. [26] utilized self-supervision attention mechanism to effectively locate
regions in images that contain more semantic features. In [34], a part proposal
network generates multiple local attention maps and s part rectification network
learns rich part-specific features. Zhang et al. [28] proposed a multi-scale learn-
ing network, which predicts the position of objects and local regions information
through the attention object location module and attention part proposal mod-
ule.

2.3 Visual Attention Mechanisms

In fine-grained image classification tasks, introducing visual attention mecha-
nisms helps to capture subtle inter-class differences in the image. Ding et al.
[6] proposed a selective sparse sampling learning method that learns a set of
sparse attention for obtaining discriminative and complementary regions. Sim-
ilar to [6], TASN [33] regards the regions with high responses in the attention
map as informative parts, and proposes a trilinear attention sampling network
to learn fine-grained feature representations. Through attention-based samplers,
TASN can re-sample the focused regions in the image to emphasize fine-grained
details. Sun et al. [22] proposed a one-squeeze multi-excitation module to extract
features from multiple attention regions and proposed a multi-attention multi-
class constraint to enhance the correlation of attention features. Zhang et al. [30]
introduced a progressively enhancing strategy by highlighting important regions
through class activation maps.

3 Method

In visual attention models, we observe that the learning of features in salient
regions may hinder its further feature abstraction in non-salient regions. As
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Fig. 2. Overview of the discriminative region enhancing and suppression network
(DRESNet). Any backbone networks can be used coupled with the proposed salient
region diffusion (SRD) module, for further mining complementary features for FGVC.
The Conv Block consists of two convolutional layers followed by a max-pooling layer.
⊕ represents boosting feature and � represents suppressing feature.

a result, the complementary information and discriminative cues being bene-
ficial to FGVC are eliminated. To tackle this issue, we present discriminative
region enhancing and suppression network (DRESNet) that mine diverse poten-
tial useful features that be masked by the other salient features stage-by-stage,
and each stage integrates different feature embedding for the last discriminative
fine-grained representation. In addition, it can be easily implemented on various
convolutional neural networks, such as VGG [21] and ResNet [10]. The DRESNet
network structure, illustrated in Fig. 2.

3.1 Salient Region Diffusion Module

The method base on attention model tends to highlight the most distinct feature
regions. However, such mechanism hurts the further exploration of the rich infor-
mation from other regions in an image. Thus, we propose a simple yet effective
salient region diffusion (SRD) module to encourage the diffusion of the atten-
tion from salient regions to more other regions, obtaining discriminative and
complementary features.

As illustrated in Fig. 3, suppose X ∈ RC×W×H is the feature map of an
image extracted from backbone network, where C, W, and H indicate the num-
ber of channels, width, and height of the feature map, respectively. In the
enhancing step, SRD module simply splits X evenly into k vertical groups along
the width dimension. This clearly indicates that the feature map will be com-
posed of these k multiple local features, where each group is represented as
Xi ∈ RC×(W/k)×H , i = [1, 2, ..., k]. Then, the importance of each group is cal-
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Fig. 3. The proposed Salient Region Diffusion (SRD) module diffuses the visual atten-
tion from salient region to more other region in an image, obtaining discriminative
and complementary features. The SRD module explicitly divides the feature map into
multiple groups along the width dimension, facilitating the extraction of corresponding
enhancement and suppression factors.

culated using a convolutional layer (Conv) followed by a Rectified Linear Unit
(ReLU) operation.

ei = ReLU(Conv(Xi)) (1)

where ei = [e1, e2, ..., ek] ∈ R(1×(W/k)×H) denotes the spatial attention score of
the i-th group of feature in X. Conv is a 1× 1 kernel sized convolutional layer,
where the output channel is set to 1. This configuration enables us to study the
importance of the corresponding area. ReLU is applied to remove negative acti-
vation values. Afterwards, we apply the global average pooling (GAP) operation
to ei, followed by the application of the softmax function to map the resulting
values to the range [0, 1] for normalization:

bi =
exp(GAP (ei))
∑k

j=1 exp(ej)
(2)

B = [b1, b2, ..., bk] ∈ R represents the importance of the region. For input feature
map X, we obtain enhanced feature Fe by enhancing its most salient part.

Fe = X + B ⊗ X (3)

where ⊗ denotes element-wise multiplication. Fe represents the enhanced fea-
tures obtained through the enhanced steps of the SRD module in different net-
work output stages.

Fp = Conv_Block(Fe) (4)
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Here Conv_Block represents the combination of two convolution layers and
a global average pooling. The Fp is then fed into the classifier for prediction,
obtaining the class probability of the input image.

SRD module suppresses the most salient features to extract complementary
attention features. More specifically, in the suppression operation, we do not
set a fixed hyperparameter as the upper bound of x and regard it as a starting
point to be suppressed. We believe that the larger the value in the enhance-
ment factor bi, the more important the corresponding group feature is, and the
greater the degree of suppression of this feature. Using the learning ability of the
fully connected layer, SRD module adaptively suppresses discriminative regions.
Formally, the output of the learnable suppression factor is:

si = σ(MLP (1 − bi)) (5)

S = [s1, s2, ..., sk] represents the suppression factor of group i features. The SRD
module can improve the learning ability of the network with the help of the non-
linear mapping and powerful fitting ability of multilayer perceptron (MLP). σ
is the sigmoid function that can normalizes the suppression factor. Since the
parameters in MLP are trained with the classification target, the learnable SRD
module can adaptively suppress the discriminative region without greatly impair-
ing its extraction ability.

Finally, we obtain the suppressed feature Xs by calculating the minimum
value between the original feature X and S ⊗ X. The suppressed feature Xs is
then passed to the following network to obtain other salient features.

Xs = Min(X,S ⊗ X) (6)

Min denotes the application of element-wise minimum operation on X and S⊗X
to suppress the discriminative region.

3.2 Loss Function

Our framework is illustrated in Fig. 2. Based on single branch DRESNet, we can
extract multiple complementary discriminative features from multiple stages of
the network. In this paper, we use ResNet50 as a feature extractor, which has
S stages (i.e., L = 5). With the increase of the number of layers, the features
extracted by ResNet50 can more abstract and represent higher level semantic
information. In DRESNet, our goal is to optimize the feature representation
in the s-th stage. To this end, the SRD module is inserted into the last three
stages of ResNet50. The part-specific representation Fp corresponding to differ-
ent stagescan be obtained from Eq. (4). During the training phase, the classifi-
cation loss for the last three stages (i.e., i = L− 2, L − 1, L) of DRESNet can be
formulated as follows:

Li = −yT log (yi), yi = classifieri(Fi) (7)

where y is the ground-truth label corresponding to the input image. yi ∈ RC

represents the predicted probability of the i-th stage, where C is the number of
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classes. Therefore, The overall optimization objective of DRESNet during the
training phase is:

Ltotal =
T∑

i=1

Li (8)

Where T= 3 represents the number of salient features enhanced by the SRD
module in the last three stages of the network. During inference, we calculate
the sum of prediction scores for all enhanced part-specific features to obtain the
final prediction result.

4 Experiments

4.1 Dataset and Implementation Details

We conducted experiments on three benchmarked datasets for fine-grained clas-
sification, including CUB-200-2011 [23], Stanford Cars [13], and FGVC-Aircraft
[18]. Table 1 provides detailed statistical data on the number of categories and
the standard train-test split. In this paper, we evaluate categorization perfor-
mance using Top-1 accuracy as the metric.

Table 1. The statistics information of the three widely used Fine-Grained Visual
Categorization datasets.

Dataset Category Train Test

CUB-200-2011 [23] 200 5994 5974
FGVC-Aircraft [18] 100 6667 3333
Stanford Cars [13] 196 8144 8041

For all experiments, we utilized pre-trained VGG16 [21] and ResNet50 [10]
models on ImageNet [5] as backbone networks for feature extraction from
input images. Then, SRD module is inserted into the last three output fea-
ture of ResNet50’s res3_4, res4_6 and res5_3 (VGG16’s relu3_3, relu4_3
and relu5_3). To ensure fair comparison, we maintained the same resolution
as other methods. During the training phase, the input image was resized to a
fixed size of 550 × 550 and subsequently randomly cropped to 448 × 448, accom-
panied by random horizontal flipping. During the testing stage, the input image
was resized to 550 × 550 and cropped from the center to 448 × 448. According
to the standards in the literature, we set up stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and weight decay of 1e−5 to optimize the
training process. The model trained for 200 epochs, with the learning rate of the
backbone initialized at 0.0002 and the other newly added layers set to 0.002. Dur-
ing training, the learning rate was adjusted using the cosine annealing strategy
[16]. The batch size is 16. Our model was implemented in Pytorch and trained
end-to-end on a single GTX 2080Ti GPU, without any bounding box or part
annotation.
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4.2 Experimental Results

We compared the proposed DRESNet with state-of-the-art methods on three
popular benchmarked fine-grained datasets: CUB-200-2011 [23], Stanford Cars
[13], and FGVC Aircraft [18]. The results are shown in Table 2, with the top and
second-best values highlighted in bold and underline, respectively. Our method
achieved significant performance improvements on these three datasets compared
to existing techniques.

Table 2. Comparison results on CUB-200-2011, FGVC-Aircraft and Stanford Cars
datasets. (The top-1 accuracy is reported in %)

Method Backbone CUB-200-2011 Stanford Cars FGVC-Aircraft

BCNN [15] VGG16 84.1 91.3 84.1
CBP [8] VGG16 84.1 91.3 84.1
LRBP [12] VGG16 84.2 90.9 87.3
HBP [27] VGG16 87.1 93.7 90.3
RA-CNN [7] VGG16 85.3 92.5 88.1
MA-CNN [32] VGG16 86.5 92.8 89.9
Ours VGG16 87.0 93.6 91.6
Cross-X [17] ResNet50 87.7 94.6 92.6
S3N [6] ResNet50 88.5 94.5 93.0
CIN [9] ResNet50 87.5 94.1 92.6
MAMC [22] ResNet50 86.2 92.8 -
NTS [26] ResNet50 87.5 93.9 91.4
TASN [33] ResNet50 87.9 93.8 -
MOMN [19] ResNet50 88.3 93.2 90.3
API [35] ResNet50 87.7 94.8 93.0
MGE-CNN [30] ResNet50 88.5 93.9 -
Ours ResNet50 89.3 94.5 92.7

Results on CUB200-2011 [23]: CUB-200-2011 [23] is the most challenging
benchmark in fine-grained image classification tasks, and our models based
on VGG16 and ResNet50 have achieved state-of-the-art performance on this
dataset. Compared with fine-grained feature learning methods BCNN [15], CBP
[8], and LRBP [12], our method outperforms them by 5.2%, 5.3%, and 5.1%,
respectively. MA-CNN [32], TASN [33], and S3N [6] capture subtle inter-class dif-
ferences in images by introducing visual attention mechanisms. Due to the intro-
duction of feature enhancement and suppression, our proposed method achieves
superior accuracy compared to them to varying degrees.
Results on Stanford Cars [13]: This dataset contains more images than
CUB-200-2011, but the car images present less structure variations than the
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bird images. The proposed methods consistently wins MOMN [19], MGE-CNN
[30], CIN [9], and TASN [33] to varying degrees. Cross-X [17] performs robust
multi-scale feature learning by using relationships between different images and
between different network layers. The accuracy of Cross-X [17] is 0.1% higher
than our proposed method. Unlike other methods that use a single image, API
[35] learns to recognize each image in a pair by adaptively considering feature
priorities and pairs them for comparison step by step. It’s accuracy is 0.3% higher
than our proposed method.
Results on FGVC-Aircraft [18]: Our method achieved competitive perfor-
mance on the FGVC-Aircraft dataset [18]. Compared to RA-CNN [7] and MA-
CNN [32], our method outperforms them by 4.6% and 2.8% respectively. Based
on ResNet50, our model’s performance is 0.1%, 1.3%, and 2.4% higher than CIN
[9], NTS [26], and MOMN [19] respectively. S3N [6] uses sparse attention and
selective sampling to capture diverse and discriminative details of parts without
losing contextual information. In this dataset, the top-1 accuracy of S3N [6] is
slightly higher than our method.

Fig. 4. Visualizations of activation maps in different layers. Feature maps obtained
with the proposed SRD have learnt more discriminative body parts of the target. These
parts need not to be the most salient features but help to distinguish the confusing
sub-categories.

4.3 Visualization Analysis

To better understand the enhancing and suppressing effects of the SRD mod-
ule on features, we visualized activation maps of ResNet50 [10] with and with-
out the SRD module on three benchmark datasets for fine-grained classification
tasks, and the results are shown in Fig. 4. The activation maps were obtained
by averaging activation values over the channel dimension of the given fea-
ture map. Based on ResNet50, we applied the Grad-CAM [20] algorithm to
visualize the Conv3_4, Conv4_6, Conv5_3, and Conv_concat feature maps
of ResNet50 [10] on the three validation sets. We concatenate the Conv3_4,
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Conv4_6, Conv5_3 feature map attention pooled by different middle feature
maps to get a refined Conv_concat feature map. By comparing the heatmaps
of the baseline and DRESNet on Conv3 and Conv_concat, we can demonstrate
that the SRD module plays a crucial role in enhancing the baseline and extract-
ing additional complementary features. Taking the bird in Fig. 4 as an example,
in the absence of SRD configuration, the baseline network only focuses on the
salient head region while disregarding equally significant wing segments. The
visualization experiments demonstrate the capability of SRDs for mining multi-
ple different discriminative object parts.

5 Conclusion

In this paper, we propose a new discriminative region enhancing and suppres-
sion network for weakly supervised fine-grained image classification, focusing on
how to extract the most salient features and complementary attention features.
Specifically, we introduce a salient region diffusion (SRD) module, which can
be considered as a significant dropout scheme, enabling the network to adap-
tively mine potentially important information at different levels of importance.
Visualization of the feature maps demonstrates that the SRD mines multiple
complementary discriminative object parts in different network levels. Our pro-
posed network demonstrates impressive performance on the three most difficult
FGVC datasets, outperforming the majority of attention-based methods due to
our redesigned attention mechanism. Furthermore, it exhibits exceptional effi-
cacy in handling non-rigid targets featuring multiple body joints.
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