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Abstract. Deep learning for medical image classification has enjoyed increased
attention. However, a bottleneck that prevents it from widespread adoption is its
dependency on very large, annotated datasets, a condition that cannot always be
satisfied. Few-shot learning in the medical domain is still in its infancy but has the
potential to overcome these challenges. Compression is a way for models to be
deployed on resource-constrained machines. In an attempt to tackle some of the
challenges imposed by limited data and high computational resources, we present
a few-shot sparse-quantization aware meta-training framework (FS-SQAM). The
proposed framework aims to exploit the role of sparsity and quantization for
improved adaptability in a low-resource cross-domain setting for the classifica-
tion of acute lymphocytic leukemia (ALL) in blood cell images. Combining these
strategies enables us to approach two of themost common problems that encounter
deep learning for medical images: the need for extremely large datasets and high
computational resources. Extensive experiments have been conducted to evaluate
the performance of the proposed framework on the ALL-IDB2 dataset in a cross-
domain few-shot setting. Performance gains in terms of accuracy and compression
have been demonstrated, thus serving to realize the suitability of meta-learning
on resource-constrained devices. Future advancements in the domain of efficient
deep learning computer-aided diagnosis systems will facilitate their adoption in
clinical medicine.
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1 Introduction

The problem of restricted availability of labeled medical data remains a hindrance for
conventional deep learning methods as they are dependent on a high volume of data.
Conventionally, there are common challenges that plague deep learning for medical
applications [1], one is the dataset size, with medical datasets being in the order of
hundreds or thousands of samples [2]. Second, is the class imbalance problem of rarer
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diseases, where some diseases manifest more rarely in a population which is reflected
in classes with much fewer samples [3]. Overcoming the data problem in medical appli-
cations allows for better diagnostic accuracy and potentially improves pathologists’
accuracy [4].

Few-shot learning (FSL) as a concept has been developed to overcome these hurdles
by imitating how humans can learn from a few examples. Likewise, when applied to
scarce medical datasets, few-shot learning seeks to learn from just a few samples. A
more general term, meta-learning, is an approach conventionally described as learning
to learn, that aims to generalize to new tasks that are different from the originally trained
tasks. Learning to learn from a few examples is a powerful technique that is heavily
investigated by the research community. Few-shot meta-learning methods are suited
for applications where encountering novel classes with limited samples is a common
occurrence as with the case in the field of cancer diagnostics.

Deep learning has been used extensively in various medical image applications such
as the detection of abnormalities [5] and segmentation of areas of interest [6], encouraged
by the advent of high-quality images and the increase in computational resources. As
a result, numerous computer-aided diagnosis (CAD) systems are dependent on deep
learning [7].

Encouraged by the efforts in deep learning and few-shot learning healthcare targeted
applications, we investigate the role of sparsity and quantization in meta-training in a
limited resource medical cross-domain setting. In this work, we exploit sparsity and
quantization for the purpose of detecting the presence of blast cells in blood cell images
through training on the task of detecting malignant tumors in breast histopathological
images.

Our main contributions in this work are as follows:

• We present FS-SQAM, a joint sparse-quantization aware meta-training scheme for
the purpose of lymphoblast detection in blood smear images in a cross-domain setting
with limited data and computational resources.

• We conduct experiments to assess the influence of sparsity and quantization and the
impact of regularization on the performance and efficiency of lymphoblast detection
to assist in leukemia diagnosis in a low-resource setting. We observe that the results
demonstrate that FS-SQAM allows for strong generalization on the ALL-IDB2 [8]
dataset in addition to the gains on the memory footprint reduction front.

• We hope the presented work can encourage more research into approaches that are
well-suited for use in challenging clinical environmentswhere both the computational
resources and data are limited.

2 Related Works

In this section we start by focusing on previous works that target lymphoblast detection,
and then we mention examples in the literature that have utilized FSL for medical appli-
cations. We end this section by mentioning some of the influential research directions in
efficient few-shot learning and relevant works that examine medical cross-domain FSL.

Acute lymphoblastic leukemia or ALL is a cancer of blood cells and the most com-
mon childhood cancer. Early diagnosis is crucial as the disease is characterized by rapid
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progression. One of the ways to diagnose ALL is through blood testing which requires
manual examination by a pathologist. In order to expedite the diagnosis process, many
works have proposed approaches for the detection of target cells in microscopic blood
smear images that could be incorporated into CAD systems. The literature on ALL
detection mainly employs deep learning with transfer learning [9–11] being a dominant
approach as training from scratch prerequires the availability of a large dataset. Whilst
most studies using deep learning achieve a performance of >95% diagnostic accuracy,
efficient resource utilization that targets resource-constrained devices is not taken into
account by the majority.

Few-shot learning aims to learn new classes froma few examples,making it a suitable
approach for data limited settings,which is the case inmostmedical applications,making
it a method with immense potential benefits for medical classification problems. Metric-
learning is a class of FSL approaches where classification is dependent on a learning
similaritymetric that is capable of discerning similar instances. Among the approaches in
this class are Prototypical networks [12],Matching networks [13], andRelation networks
[14].While still a nascent approach, few-shot learninghas beengaining interest in the past
few years with works applying it to various medical datasets such as histopathological
[15], X-rays [16], and cell [17] image datasets among others. A specific subset in few-
shot learning problems is cross-domain few-shot learning [18] where the classes used
in training and testing are drawn from different domains.

In cross-domain few-shot learning, extreme shifts in the source and target domains
are detrimental to performance and provide a challenging problem to overcome. This
becomes even more important in medical images, where the data on some diseases
are rarer than others, which enables learning for these understudied categories. It has
been suggested in [19] that an updatable feature extractor leads to better generalization
ability on hard few-shot tasks, as the model can modify its parameters to better suit the
task through fine-tuning on the support set. This improves upon using a frozen feature
extractor that relies solely on distance calculations to classify.

Compression for neural networks has been studied extensively with the goal of
achieving models suitable for devices with limited resources, pruning, and quantiza-
tion being popular methods. Their combination has been experimented with in general
computer vision tasks [20]. For example in [21], the authors devise a quantized sparse
training regime that leverages a combined pruning-quantization function that determines
the optimal pruning and quantization parameters for each layer.

Further investigation is required to understand how compression techniques can be
effectively integrated with few-shot meta-learning, especially in the context of medical
applications where models need to generalize quickly and operate within computational
constraints.Meta-learning can bememory intensive as reported in [22] due to the require-
ment of loading the support images to memory in order to obtain a task adapted model.
To counteract this effect, the authors devised a training scheme by restricting backprop-
agation to only a random subset from the support set, making this approach friendly to
computationally limited devices. Previous works [23, 24] utilized quantization-aware
training (QAT) as a way to quantize the weights of the feature extractor and incorpo-
rated both quantization loss and classification loss calculated on the query set. Similarly,
incorporating iterative pruning into meta-learning has been attempted in [25] for the
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purpose of limiting meta-overfitting through pruning the least significant weights and
then fine-tuning via a meta algorithm. Another consequence of sparsifying the model
is the reduced number of parameters. Thus, if the model allows updates to the feature
extractor, this will lead to a task-adapted model with compressed weights.

Since the literature on applying FSL to ALL detection is scarce, we mention a few
works that apply cross-domain FSL approaches on histopathological datasets, a related
cancer detection task. Examining FSLon histopathological datasets reveals that accuracy
ranges from 36.4± 0.51% to 70.0± 0.49% for out-domain CRC-TP (colorectal tissues)
[26] → BreakHis [27] (breast tissues) classification with an average accuracy of 60% as
demonstrated by [28]. The authors stipulate that this is a good starting performance for
out-domain settings. Another approach proposed in [29] investigates contrastive learning
in various cross-domain scenarios. The approach achieves an accuracy of 67.56% in the
out-domain setting (NCT-CRC → PAIP) where the source dataset is NCT-CRC-HE-
100K (colorectal tissues) [30] and the target dataset is PAIP (liver tissues) [31].

It is well established that deep learning, especially transfer learning, performswell on
medical datasets including ALL datasets, however, little work has been done on the topic
resource efficient few-shot learning for ALL images and how sparsity and quantization
impact meta-learning in general.

3 Methodology

This section describes the methodology adopted in the proposed FS-SQAM framework.
The goals of this approach are two-fold: 1) Produce a lightweight model. 2) Equipping
the classifier with better generalization ability in a medical cross-domain setting with
reasonable performance on a novel dataset with disjoint classes belonging to the medical
domain. We test FS-SQAM on the following cross-domain setting BreakHis → ALL-
IDB2, which belongs to the domain of histopathological images (breast tissue) and
blood cell (blood smear) images respectively. Even though the domain gap between the
training dataset and the test dataset adds to the problem’s difficulty, it presents a realistic
scenario where uncommon diseases that manifest less frequently in a population may
be encountered by medical practitioners. The described setting can be considered an
extreme cross-domain scenario (out-domain) given the great domain shift between these
two domains.

The stages underlying the framework are as follows: 1) the pre-trained model
undergoes sparse-aware meta-training and then quantization-aware meta-training on the
BreakHis dataset. 2) Afterwards, the model is evaluated on test tasks sampled from the
ALL-IDB2 dataset to assess the compressed classifier’s performance as shown in Fig. 1.
To achieve the goal of strong generalization, that is generalization on classes foreign to
the training dataset, we used a network capable of fine-tuning on the sampled support
sets in order to allow for adaptation for out-domain tasks.

In brief, our framework utilizes an updatable Prototypical based model [12] that
undergoes sparse-aware meta-training, and quantization-aware meta-training for blast
cell detection we extend the proposal in [19] to achieve an efficient flexible classifier
for this task. Although this approach incurs additional training overhead compared to
the simpler methods such as one-shot pruning and post-training quantization, it offers
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Fig. 1. Training and testing scheme of FS-SQAM, support, and query sets are sampled from
BreakHis in themeta-training phase andALL-IDB2 in themeta-testing phase. In themeta-training
stage, the model undergoes 1) sparse training (through L1 regularization) 2) pruning (part of
sparse-aware meta-training 3) quantization-aware meta-training. The support and query samples
are projected to the embedded space in order for the query samples be classified.

the significant benefit of preserving accuracy. This is particularly important in medical
applications where diagnostic accuracy is crucial.

3.1 Prototypical Networks

Given a situation where there is a training dataset that has a set of classes Ctrain and
a set of test classes Ctest , where Ctrain and Ctest are disjoint. The goal is to produce
a model fθ capable of adapting to and classifying examples belonging to Ctest from
just a few labeled examples [32]. Episodic learning has been proposed as a way to
simulate conditions at test time by sampling examples from the larger training dataset.
The episodes are constructed by sampling K-shots from each of the N classes. The K
examples are form a support set S = {(x1, y1), ..., (yK , yK )}Ni=1, alongside a query set
Q of different examples from those sampled in the support set, drawn from the same
N classes. This setup is referred to as K-shot N -way episode. The model adapts to the
support set and the performance is evaluated on the query set with the goal of minimizing
loss. Repeating this process on multiple episodes augments the model with the ability to
generalize to the examples in the query set. In the literature, the episodic learning setup
is termed meta-learning.
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Prototypical networks [12] depend on creating a prototype for each class and clas-
sifying an instance based on nearness to a class’s prototype. The loss function of the
training episode of a prototypical network is the cross-entropy loss function but applied
to the query set examples, where T is the number of examples in the query set, y is the
true class label and x is the query sample to be classified to the closest prototype Pc of
class c. The prototype of a class Pc is the mean of the support set embeddings calculated
as 1

N

∑N
i=1 fθ (xi)where fθ is the model that extracts the embeddings of S andQ. A query

point is classified by comparing its distance to every class’s prototype in the embedding
space. The loss can be written as:

LCE = − 1

T

∑

i
logp(yi|xi, {pc}) (1)

Cross-Domain Learning. Violates the assumption that the meta-training and meta-
testing tasks T are drawn from the same distribution where it becomes Ptrain(T ) �=
Ptest(T ). Hence, in order to account for the novel domain information through transfer
learning. The model fθ is fine-tuned on the classes of interest, specifically, the last k
layers are fine-tuned on the target classes. This is in accordance with the idea proposed
in [19] that an updatable metric feature extractor is better suited for adapting to unseen
classes at test time.

3.2 Sparse-Aware Meta-training

The proposed framework FS-SQAM employs two compression methods, pruning, and
quantization where their combination has been utilized in various computer vision tasks
to produce an ultra-resource efficientmodel. In this section,we detail the specific pruning
and quantization methods that are incorporated into the framework.

The first compression technique introduced is iterative pruning to enforce sparsity in
the network in the sparse-aware meta-training phase through unstructured magnitude-
based pruning. Pruning is preceded by sparse training through introducing regularization.
Pruning depends on the hypothesis that within overparameterized networks there exists a
sparser subnetwork, referred to as awinning ticket [33], that canmatch the accuracy of the
original with the added benefits of fewer parameters and reduced size.We incorporate the
L1 regularization into the training to drive the weightsw to zero through the penalization
of the absolute sum of weights as indicated by the following loss function of a model fθ
with parameters θ :
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L
(
y, y

∧) = 1

N

N∑

i=1

L(yi, fθ (xi)) = LCE + λ
∑N

i=1
|wi| (2)

where y refers to the ground-truth and y
∧

is the predicted label. The regularization penalty
term consists of the λ hyperparameter and the L1-norm. We conduct experiments by
applying FS-SQAM on a pre-trained VGG19 network with the following values for
λ, where λ = {0.001, 0.005, 0.01}. The network is pruned iteratively with the goal
of progressively revealing a subnetwork that can achieve comparable accuracy as the
unprunedversion. Iterative pruning is the preferred approachwhen accuracy is prioritized
as training the network and then subsequently applying one-shot pruning can be harmful
to accuracy.

3.3 Quantization-Aware Meta-training

In FS-SQAM, during the quantization-aware meta-training phase, we opt for QAT [34]
to reduce the precision from 32-bit floating point to 8-bit integers. QAT relies on com-
pensating for quantization error in the training. Given the input x and the corresponding
labels y of a model fθ and a quantization function q, the quantized value of x in the for-
ward pass becomes xq = min

(
qmax,max

(
qmin,

x
s + z

))
which maps each input weight

to an integer. qmin And qmax stand for the minimum and maximum values for the 8-
bit range, s and z represent the scaling factor for the described quantization range and
the zero-point respectively. Then dequantization happens through x

∧ = (
xq − z

)
s which

maps the quantized input xq back to floating-point. However, this operation xq → x
∧

,
yields x

∧

which is not exactly equal to the original input x, thus inducing quantization
noise which is taken into account in the training. Re-training is required to recover accu-
racy degradation from quantization. The previously mentioned phases are detailed in
Fig. 1.

The applied quantization loss, where q is the quantization operation, for the model
can be described as:

L
[
y, fθ (x, q(θ))

]
(3)

Incorporating quantization loss into the training yields the following objective
function to be minimized:

min
θ
L
(
y, y

∧) + L
[
y, fθ (x, q(θ))

]
(4)

The workflow of FS-SQAM is listed in Algorithm 1, starting with sparsification
through L1 regularization then is proceeded by pruning and applying quantization
through QAT.
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4 Experimental Setup

Our initial model is an ImageNet pre-trained VGG19 network. The model undergoes
compression as previously detailed. The first 3 convolutional blocks of the network are
frozen during the sparse training and quantization-aware meta-training phases.

The meta-train dataset is the 40× magnification segment from the BreakHis [27]
dataset which is where the training tasks are sampled from. The few-shot training tasks
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are 8-way 10-shots for each episode and the model is trained for 150 epochs where they
are divided equally between the sparse training, sparse-aware, and quantization-aware
meta-training phases. The model is evaluated on test episodes sampled from the ALL
[8] dataset, specifically the ALL-IDB2 segment of the dataset.

4.1 Datasets

The first dataset used is BreakHis [27], which is a dataset of histological images of
breast tumors. The dataset has eight classes, where the images of interest are the 40×
magnification images which total 1,995 samples. The following table shows the number
of images in each of the eight classes (Table 1).

Table 1. The Eight Classes of the BreakHis Dataset.

Classes Magnification Factor Total

40× 100× 200× 400×
Adenosis (A) 114 113 111 106 444

Fibroadenoma (F) 253 260 264 237 1014

Tubular Adenona (TA) 109 121 108 115 453

Phyllodes Tumor (PT) 149 150 140 130 569

Ductal Carcinoma (DC) 864 903 896 788 3451

Lobular Carcinoma (LC) 156 170 163 137 626

Mucinous Carcinoma (MC) 205 222 196 169 792

Papillary Carcinoma (PC) 145 142 135 138 500

Total 1995 2081 2013 1820 7909

The second dataset included is the ALL-IDB2 [8] dataset, which is a binary dataset
consisting of images of blood smears. The image could either be normal or abnormal,
reflecting the presence of normal or abnormal blast cells. The dataset is balanced with an
equal number of normal and abnormal images, which sums up to a total of 260 images.

5 Results

We present the results of meta-training a prototypical network using FS-SQAM on the
BreakHis dataset that is tested on the ALL-IDB2 dataset using a VGG19 backbone. The
results of the model’s performance are the mean accuracy of three test runs, where each
result is the average performance of the classifier across the test tasks. The number of
test tasks is set to 600 with the query set size set to four samples for both the training
and testing. Experiments were repeated for sparsities of 50%, 70%, and 90% which are
shown in Table 2. Results are reported for the use of pruning alone or followed by 8-bit
quantization-aware training. The resulting sizes are also reported to provide a view of
the accuracy-size tradeoffs for better assessment in Table 3. All of the reported sizes are
of.tflite [35] files in MBs.
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The baseline result without any use of compression is 82.22% accuracy. It is observ-
able that QAT slightly improves the accuracy of the 50% and 70% pruned networks. This
leads to an accuracy of 77.95% at 70% sparsity and 8-bit quantizedweights.With regards
to the obtained compression, the network size is 19.60 MB which is a compression of
3.90× compared to the baseline.

Table 2. Meta-test accuracy for FS-SQAM on ALL-IDB2 dataset using VGG19 network for
2-way 10-shot classification (without regularization).

Sparsity

0% 50% 70% 90%

Pruning (Baseline) 0.8222 0.7813 0.7769 0.7485

With QAT 0.8127 0.7888 0.7795 0.7291

Table 3. Model sizes of VGG19 after FS-SQAM in MBs.

Sparsity

0% 50% 70% 90%

Sparse-Aware Meta-Training 76.41 55.84 33.60 11.34

FS-SQAM 29.28 32.39 19.60 6.79

Table 4. Meta-test accuracy for FS-SQAMwith L1 regularization applied with varying values of
λ on ALL-IDB2 dataset using VGG19 network for 2-way 10-shot classification.

Sparsity

50% 70% 90%

λ = 0.001

Sparse-Aware Meta-Training 0.7875 0.7743 0.7552

FS-SQAM 0.7864 0.7851 0.7251

λ = 0.005

Sparse-Aware Meta-Training 0.7874 0.7867 0.7457

FS-SQAM 0.7898 0.7817 0.7335

λ = 0.01

Sparse-Aware Meta-Training 0.7930 0.7826 0.7474

FS-SQAM 0.7908 0.7822 0.7338

Table 4 shows the results of using sparse-aware meta-training on its own and FS-
SQAM with L1 regularization applied using λ = {0.001, 0.005, 0.01} for the sparsity
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ratios 50%, 70%, and 90%. It is worth noting that applying regularization improves the
accuracy at some sparsities compared to not applying regularization. Notably at 50%
sparsity, accuracy when λ = 0.005 and λ = 0.01 is 78.98% and 79.08% respectively,
compared to 78.88% with no regularization applied with a compression ratio of 2.35×.
Additionally in the FS-SQAM configuration, we find that λ = 0.01 yields the highest
accuracy in this category for 50%and 70%sparsity ratios,which are 79.08%and 78.22%.

While the role of pruning and quantization remains largely unexplored in the con-
text of few-shot learning, pruning has been used to prevent overfitting in meta-learning
[36, 37]. The generalization ability of the classifier can be attributed to overcoming the
over-parameterization in the network. Over-parameterization has the effect of hurting the
generalization ability of the network to unseen examples in normal supervised learning
[38]. Thus, expanding this concept to few-shot learning, it is possible to boost general-
ization to unseen classes through sparsification which also provides the added benefit of
compression.

To enhance the compression of the model, QAT has been deemed a method that
incurs minimal accuracy loss. Thus, the FS-SQAM framework provides an adaptable
classifier that can achieve a fair accuracy-to-size trade-off in a cross-domain setting.
Resource-wise, 90% sparsity in FS-SQAM provides an accuracy of 73.38% alongside
resulting in the highest compressed model with a compression rate of 11.25×.

To provide context for the obtained results, we present some of the results from
related works that address few-shot learning for medical datasets, specifically those that
involve a significant domain shift in the following table to demonstrate the efficacy of
FS-SQAM for lymphoblast detection in an out-domain setting (Table 5).

Table 5. Performance comparison with related works in out-domain setting.

Reference Accuracy (%) Out-Domain Setting

[28] 68.1 ± 0.51 CRC-TP → BreakHis

[29] 67.56 NCT → PAIP

[17] 55.12 ± 0.13 mini-ImageNet → HEp-2

50% FS-SQAM 79.08 BreakHis → ALL-IDB2

6 Conclusion

Rationing resources is important for real-life clinical scenarios where only restricted
computational resources and scarce data are available. We empirically test our frame-
work FS-SQAMwhich combines sparse-aware training and quantization-aware training
in the meta-training process for efficient lymphoblast detection. The obtained results
point to the possibility of applying resource-efficient few-shot learning in cross-domain
medical settings. The utilization of compression in the meta-training process achieves
the goal of minimizing the memory footprint and enabling adaptation to unseen classes
which matches the reality of encountering uncommon classes of diseases with very few
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samples in clinical practice.We empirically investigate the effectiveness of FS-SQAM in
BreakHis→ALL-IDB2 cross-domain setting, an extreme case of distribution shift, with
a focus on resulting accuracy-size trade-offs. The application of sparse-aware training
and quantization-aware training enhances performance and reduces the memory foot-
print. Additionally, the application of L1 regularization as a preprocess before pruning
yields notable sparse model performance increases at most λ values, especially at 50%
sparsity. To further examine the generalizability of the framework, more evaluations
need to be undertaken on other medical datasets and domains, we leave this as future
work.
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