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Abstract. Fine-grained classification poses greater challenges compared
to basic-level image classification due to the visually similar sub-species.
To distinguish between confusing species, we introduce a novel framework
based on feature channel adaptive enhancement and attention erasure.
On one hand, a lightweight module employing both channel attention and
spatial attention is designed, adaptively enhancing the feature expression
of important areas and obtaining more discriminative feature vectors. On
the other hand, we incorporate attention erasure methods that compel
the network to concentrate on less prominent areas, thereby enhancing
the network’s robustness. Our method can be seamlessly integrated into
various backbone networks. Finally, an evaluation of our approach is con-
ducted across diverse public datasets, accompanied by a comprehensive
comparative analysis against state-of-the-art methodologies. The exper-
imental findings substantiate the efficacy and viability of our method in
real-world scenarios, exemplifying noteworthy breakthroughs in intricate
fine-grained classification endeavors.

Keywords: Fine-grained Visual Classification · Feature Channel
Enhancement · Attention Erasure

1 Introduction

Fine-grained visual classification represents a substantial and intricate chal-
lenge within the realm of computer vision. Unlike traditional object classifi-
cation tasks, fine-grained classification requires precise differentiation among
objects with similar appearances but belonging to different subcategories. This
task holds practical value in various domains such as animal recognition [20],
plant classification [28], and car vehicle recognition [22]. However, As shown
in Fig. 1, fine-grained classification presents a delicate balance between similar-
ity and difference. Objects with similar appearances exhibit subtle local differ-
ences that often encompass crucial features determining their categories. Con-
ventional classification methods struggle to capture these minute differences,
resulting in poor performance. To overcome this challenge, extensive research
has introduced innovative methods and techniques for fine-grained classifica-
tion. Examples include local feature extraction [12,13,30], key part localization
[6,24,36,37,40], metric learning [5,7,32,43], and attention-based mechanisms
[19,26,41]. These approaches aim to extract discriminative features from local or
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key details, thereby enhancing classification performance by learning subtle dif-
ferences between categories. Despite the progress made in this area, fine-grained
classification still faces several challenges. On one hand, accurate classifiers often
require large amounts of fine-grained data and annotations [2,16,23,38] due to
the nuanced differences among categories. This limits the scope and scalabil-
ity of fine-grained classification methods. On the other hand, traditional fine-
grained classification methods are often sensitive to image changes and noise,
resulting in a decline in classification performance in complex scenes. Therefore,
this paper proposes a comprehensive method named “Channel Feature Adaptive
Enhancement”. Our approach will focus on the extraction of local details and
the learning of discriminative features, while exploring how to reduce intra-class
variability and improve classifier robustness. At the outset, the extraction of
features from both shallow and deep layers is facilitated through the utilization
of a convolutional neural network (CNN). Our designed feature enhancement
mechanism learns to emphasize key detail features, thereby improving classifica-
tion performance. Additionally, an attention mechanism is introduced to high-
light regions with significant fine-grained differences. This combination of feature
augmentation and attention enables us to capture subtle differences more accu-
rately and achieves significant performance gains in fine-grained classification
tasks. Secondly, to address confusion among objects with similar appearances,
we employ attention erasure. This technique erases highly discriminative areas,
reducing intra-class differences, weakening features with high similarity to other
categories, and encouraging the network to learn from previously unattended
areas. This approach enhances classification accuracy and robustness, effectively
reducing the risk of misclassification. In summary, the following constitute the
principal contributions of this work:

1. We propose a feature enhancement module that accurately enhances discrim-
inative regions in images.

2. We improve the channel attention mechanism by doubling the value of chan-
nels greater than the mean value calculated from the feature map after global
average pooling. This assigns higher scores to important channels.

3. We introduce an informative mining module that masks a strong feature and
facilitates the learning of complementary features.

2 Related Work

In the realm of fine-grained visual classification tasks, researchers have intro-
duced various methods to enhance, suppress, and diversify features, aiming to
improve classification performance. We describe several commonly employed
techniques:

2.1 Local Feature Enhancement

Local feature enhancement methods aim to extract crucial local information from
objects to enhance classification performance. For instance, Spatial Transformer
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Fig. 1. In FGVC images, the same subclass exhibits significant appearance variations,
whereas different categories demonstrate subtle appearance disparities.

Networks (STN) [18] uses spatial transformer modules to adaptively learn local
regions of interest of images to improve the representation ability of key local
features. In addition, Part-based Convolutional Neural Networks (PCNN) [29]
divides the image into different parts, and classifies each part independently, and
then combines the classification results of each part.

2.2 Global Feature Enhancement

Global feature augmentation methods concentrate on capturing the overall fea-
ture representation of the entire object. For example, Multi-scale CNNs [35]
employ convolution kernels of varying scales to extract feature representations
at different levels. Additionally, Spatial Pyramid Pooling (SPP) [9] divides the
image into multiple spatial levels and performs pooling operations on the fea-
tures within each level, allowing the capture of global information at different
scales.

2.3 Attention Mechanism

The attention mechanism plays a pivotal role in fine-grained classification by
automatically learning to focus on key regions or features. For instance, Squeeze-
and-Excitation Networks (SENet) [11] employ a gating mechanism to adaptively
adjust the importance of feature channels, thereby enhancing key features that
contribute to classification. Moreover, the attention mechanism can generate
region-specific attention heatmaps, offering interpretable explanations.
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2.4 Feature Suppression

Feature suppression methods aim to reduce noise or irrelevant information that
may interfere with classification tasks. For instance, DropBlock [8] randomly
drops features in specific regions during training to minimize the impact of redun-
dant information on classification. Additionally, Feature Dropout [31]enhances
the model’s learning by randomly discarding feature channels during training,
promoting the exploration of other relevant features.

2.5 Feature Diversification

Feature diversification methods aim to generate multiple features with different
transformations to enhance the robustness of classification models. For example,
Cutout [3] randomly occludes a portion of the image, forcing the model to learn
more resilient feature representations. Furthermore, the utilization of data aug-
mentation techniques, including rotation, scaling, and translation, can facilitate
the generation of a diverse array of features.

By comprehensively employing these methods, the performance of fine-
grained visual classification tasks can be further enhanced, resulting in increased
accuracy and reliability in classification results. However, several challenges, such
as class imbalance, occlusion, and pose variation, remain unresolved and merit
further exploration and resolution in future research.

3 Method

In this section, a comprehensive depiction of the proposed method is presented,
where in Fig. 2 offers an illustrative overview of the framework. Our model con-
sists of two lightweight modules: (1) Feature Channel Adaptive Augmentation
module (FCAE), which focuses on learning multiple discriminative part-specific
representations with maximum diversity. (2) Information Sufficient Mining Mod-
ule (ISMM), which randomly erases highly discriminative components to guide
the network in learning complementary information.

3.1 Feature Channel Adaptive Enhancement Module

The implementation of the FE method is shown in Fig. 3. The feature map
Xi ∈ RC×W×H , derived from the final three layers of the backbone network,
with C, W, H, and i denoting the channel count, width, height, and layer index,
respectively. Drawing inspiration from [30], we adopt a simple approach of taking
the maximum value of each pixel along the channel dimension, resulting in Ai ∈
R1×W×H :

Ai = max (Xi) ∈ R1×W×H (1)

Subsequently, we calculate a score for each pixel. Multiplying Ai by a hyper-
parameter λ and adding it to Xi, we obtain a new feature map Fi:
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Fig. 2. The general framework of our model is composed of two major modules: (1)
The Feature Channel Adaptive Augmentation module (2) The Information Sufficient
Mining Module. (FCAE is comprised of three sub-methods, with the intricate process
of ISMM illustrated in Fig. 4.)

Fi = ((softmax(Ai)) ∗ Xi ∗ λ + Xi) (2)

At this stage, we aim to enhance globally relevant information. To emphasize
discriminative local regions, we employ an attention mechanism inspired by
[34]. The feature map Fi undergoes channel attention enhancement (CE), which
determines the importance of each channel. We perform global average pooling
on all channels and calculate the mean value across all channels.

mean = GAP (CA (Fi)) (3)

If a specific channel’s value exceeds the mean, it is doubled; otherwise, it
remains unchanged. Upon the application of a sigmoid activation function, the
resulting values are subjected to multiplication with Fi:

Fi =
{
2 ∗ Fi, ifFi > mean
Fi, otherwise

(4)

Subsequently, the spatial attention (SA) mechanism is employed to capture
relationships between different positions in the feature map, assigning varying
weights to each position.

Fi = (SA (Fi)) + Fi (5)
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Fig. 3. The feature map Xi, generated by the backbone network, undergoes a process
where the maximum value is extracted from the channel dimension to derive Ai. Sub-
sequently, the score of each pixel value is computed and added to Xi, resulting in the
feature map Fi after global feature enhancement.

3.2 Information Sufficient Mining Module

The implementation of the ISMM method is shown in Fig. 4. In order to further
mine information and utilize attention resources, we take the last layer feature
map of the backbone through the FCAE attention map as the attention activa-
tion map to extract the key information in the feature map. To fuse the features,
we utilize a 1×1 convolution. Subsequently, the attention weight for each group
of feature map channels is calculated, we employ global average pooling to select
the top k sheets (where k is equal to the batch size). Randomly choosing one
image, we apply bilinear interpolation [21] to upsample it to the original image’s
size. Subsequently, the introduction of a random threshold enables the classifi-
cation of pixel values, whereby values below the threshold are identified as 0 and
those surpassing the threshold as 1. Ultimately, an element-wise multiplication
is executed between the acquired mask and the original image, resulting in the
creation of the erased image. By employing attention erasure, we can filter out
important stimuli that have already been learned and focus on less significant
stimuli that may not have been well-learned. By adopting this approach, the
efficiency of information processing is effectively heightened, while concurrently
optimizing the allocation and utilization of attention resources.

3.3 Network Design

Various convolutional neural network structures can readily incorporate our
method. ResNet [10] serves as an example, with its feature extraction process
comprising five stages, where the spatial size of the feature map is halved after
each stage. Given the abundance of semantic information within the deep fea-
ture maps, we opt to insert the Feature Channel Adaptive Enhancement module
(FCAE) at the conclusion of the third, fourth, and fifth stages. Our method is
very flexible and can adapt to classification tasks of different granularities by
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Fig. 4. The attention map is reduced in dimensionality through conv1×1, followed by
global average pooling along the channel dimension. A mask is then randomly selected
and multiplied with the original image.

directly adjusting the number of FCAEs, and can be customized according to
the needs of specific tasks.

4 Experiments

In this section, the performance of the proposed method is evaluated across
three fine-grained classification datasets: Caltech UCSD-Birds (CUB) [20], Stan-
ford Cars (CAR) [22], and FGVC-Aircraft (AIR) [27], with detailed information
provided in Table 1. The implementation details of our method are extensively
discussed in Sect. 4.1, while Sect. 4.2 presents a comparative analysis of our
method’s accuracy performance against state-of-the-art approaches, showcasing
its competitive advantage. Sections 4.3 and 4.4 encompass comprehensive abla-
tion experiments and visualization analyses, aiming to highlight the distinctive
features and efficacy of our method. By presenting both experimental results and
visualizations, a comprehensive understanding of the robustness and efficiency
of our method is provided. Through meticulous evaluations and extensive anal-
yses, the superior performance of our method in fine-grained classification tasks
is conclusively demonstrated.

Table 1. The statistics information of the three widely used Fine-Grained Visual
Categorization datasets.

Dataset Catagory Train Test

CUB-200-2011 [20] 200 5994 5974
FGVC-Aircraft [27] 100 6667 3333
Stanford Cars [22] 196 8144 8041
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4.1 Implementation Details

All experiments were conducted using PyTorch [17], with a version higher than
1.12, on an NVIDIA A100 GPU. The performance evaluation of our method
employed the widely adopted ResNet50 as the backbone network, which had
been pretrained on the ImageNet dataset. The incorporation of the FCAE mod-
ule was performed at the conclusion of phases 3, 4, and 5 in our methodology,
while the integration of the ISMM module occurred at the termination of phase
five. During the training process, the input images were resized to dimensions of
550×550 and subsequently randomly cropped to dimensions of 448×448 to aug-
ment the training set. Furthermore, random horizontal flipping was implemented
as an auxiliary augmentation technique. For testing purposes, the input images
were resized to 550×550 and cropped from the center to dimensions of 448×448.
In our approach, a hyperparameter λ=0.5 was set. To optimize the model, we
utilized the stochastic gradient descent (SGD) optimizer with a momentum of
0.9. The model underwent training for 300 epochs, employing a weight decay of
0.00001 and a batch size of 16. The learning rate of the backbone layer was set
to 0.002, while the learning rate of the new layer was set to 0.02. We adjusted
the learning rate using a cosine annealing scheduler [25].

4.2 Compared with State-of-the-Art Methods

Table 2 showcases a comparative analysis between our method and recent fine-
grained classification approaches across the CUB 2002011, Stanford Cars, and
FGVC-Aircraft datasets. DeepLAC [23] and Part-RCNN [38] are both compo-
nent positioning-based methods. DeepLAC [23] initially employs a convolutional
neural network to extract image features, followed by the introduction of a
local localization module to identify important regions within object images.
Part-RCNN [38] first generates candidate object areas in the image using the
candidate frame generation algorithm. Subsequently, for each candidate box,
the object is decomposed into parts, and features are extracted for each part.
Among the attention-based methods, RA-CNN [6], MA-CNN [40], API-Net [43],
PCA [39], AC-Net [19], and AKEN [14] are noteworthy. RA-CNN [6] incorpo-
rates a circular attention mechanism, allowing the network to dynamically focus
attention on the intricate details crucial for fine-grained classification. MA-CNN
[40] integrates multiple attention modules, each responsible for producing an
attention map for a distinct region of the image, directing the network’s focus
toward regions with higher discriminative properties. API-Net [43] introduces
a pairing interaction mechanism, where selected feature regions undergo pair-
wise interactions with each other. PCA [39] leverages a co-attention mechanism
to learn the association and importance between different regions in an image.
The co-attention network consists of a local feature extraction module and a
progressive attention module. AC-Net [19] employs an attention mechanism to
select and weigh key regions in feature representations. By incorporating a con-
volutional binary neural tree structure, the model sequentially performs fea-
ture selection and learning, progressively focusing on meaningful areas from a
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global to local perspective. AKEN [14] integrates attention mechanisms and
kernel encoding to extract and encode fine-grained features. Attention mech-
anisms select and weigh important features, aiding in distinguishing between
different fine-grained categories. Kernel encoding captures specific feature infor-
mation by encoding selected features. Guided Zoom [1] and S3N [4] fall under
the category of local area amplification methods. Guided Zoom [1] utilizes the
interplay of local area amplification and model feedback to acquire insights into
model decision-making and confidence. This information serves as guidance for
improved decision-making. S3N [4] employs an adaptive sparse sampling strat-
egy to selectively sample local regions within the image. HOI [33] proposes a
high-level interaction method, where the high-level interaction module leverages
associations between different features in the image to enhance and integrate fea-
tures. Specific weights and combinations are learned to reinforce and highlight
features relevant to fine-grained classification tasks. SPS [15] randomly selects
a subset of training samples and exchanges them with other samples, gener-
ating new sample pairs. CIN [7] introduces a channel interaction module that
facilitates interaction and information transfer between channels. This module
utilizes convolution operations and attention mechanisms to enable information
exchange and joint feature learning across channels. LIO [42] utilizes unlabeled
data for self-supervised learning. By designing self-supervised tasks, the model
learns structural information about objects. Each of the above methods pos-
sesses its unique advantages and characteristics. However, our proposed method
exhibits superior performance across the three datasets, which can be attributed
to the exceptional components we have introduced.

Table 2. Comparison results on CUB-200-2011, FGVC-Aircraft and Stanford Cars
datasets. “-” means no data

]Method Backbone CUB-200-2011 FGVC-Aircraft Stanford Cars

DeepLAC [23] VGG 80.3 – –

Part-RCNN [38] VGG 81.6 – –

RA-CNN [6] VGG 85.3 88.1 92.5

MA-CNN [40] VGG 86.5 89.9 92.8

SPS [15] ResNet50 87.3 92.3 94.4

API-Net [43] ResNet50 87.7 93.0 94.8

HOI [33] ResNet50 89.5 92.8 95.3
PCA [39] ResNet50 88.3 92.4 94.3

AC-Net [19] ResNet50 88.1 92.4 94.6

Guided Zoom [1] ResNet50 87.7 90.7 93.0

CIN [7] ResNet50 87.5 92.6 94.1

LIO [42] ResNet50 88.0 92.7 94.5

S3N [4] ResNet50 88.5 92.8 94.7

FBSD [30] ResNet50 89.3 92.7 94.4

AKEN [14] ResNet50 86.2 93.3 92.6

Ours ResNet50 89.6 93.3 95.1
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4.3 Ablation Experiment

A series of ablation experiments were conducted to evaluate the effectiveness of
each module for fine-grained classification. Initially, we conducted classification
experiments using a baseline model that solely comprised the backbone net-
work. Subsequently, we gradually introduced the two modules we designed and
integrated them with the backbone network individually. Finally, we compared
the performance of using a single module versus using both modules simultane-
ously. The experimental results are presented in Table 3. When employing only
the backbone network, the classification accuracy achieved a benchmark level.
Upon introducing the FCAE module, the accuracy improved by 2.7% on the bird
dataset1.8% on the airplane dataset, and 4.4% on the Stanford car dataset. The
introduction of the ISMM module resulted in respective accuracy improvements
of 3%, 1.3%, and 4.8% on the three datasets. Remarkably, the best classifica-
tion results were obtained when both modules were introduced simultaneously,
resulting in an improvement of 4.1%, 3%, and 5.3% compared to the baseline.
Utilizing the combination of both modules yielded the highest accuracy, signifi-
cantly outperforming the usage of a single module.

Table 3. Ablation Study on Three Benchmark Datasets

Method CUB-200-2011 FGVC-Aircraft Stanford Cars

Resnet50 85.5 90.3 89.8
Resnet50+FCAE 88.2 92.1 94.2
Resnet50+ISMM 88.5 91.6 94.6
Resnet50+FCAE+ISMM 89.6 93.3 95.1

4.4 Visualization

To visually showcase the effectiveness of our proposed method, the utilization
of GradCAM is employed. As depicted in Table 4, when compared to the base-
line, a tendency of the baseline to learn global features is observed. In scenar-
ios where the target and background exhibit similarity, the baseline is prone
to capturing background noise. Conversely, our method progressively captures
global information during the initial stages, which encompasses the assimilation
of learned background noise. However, as the network delves deeper into sub-
sequent stages, the learned features become more localized, resulting in precise
and targeted focus on the target. The method exhibits remarkable consistency in
addressing different categories, emphasizing its robustness and reliability in mak-
ing classification decisions. This consistency highlights the network’s sensitivity
to capturing fine-grained features (Fig. 5).
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Fig. 5. Compared with the baseline, our method can better learn the discriminative
local area, and can accurately distinguish the target and the background when the
target is similar to the background.

5 Conclusion

In this study, we propose an approach for fine-grained classification tasks, aim-
ing to improve classification performance by learning feature channel adap-
tive enhancement and information sufficient mining. First, the feature channel
adaptive augmentation module aims to learn different discriminative part rep-
resentations. Then use the information sufficient mining module to filter the
learned important stimuli and focus on the less important stimuli. Our pro-
posed method based on feature channel adaptive augmentation has achieved
remarkable progress in meeting the challenges of fine-grained classification tasks.
By enhancing useful global information, mining key information, and utilizing
attention resources, our method is able to improve classification performance
and adapt to different task demands.
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