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Abstract. Semantic segmentation plays a crucial role in understanding
the surroundings of a vehicle in the context of autonomous driving. Nev-
ertheless, segmentation networks are typically trained on a closed-set of
inliers, leading to misclassification of anomalies as in-distribution objects.
This is especially dangerous for obstacles on roads, such as stones, that
usually are small and blend well with the background. Numerous frame-
works have been proposed to detect out-of-distribution objects in driv-
ing scenes. Some of these frameworks use softmax cross-entropy mea-
surements as an attention mechanism for a dissimilarity network to find
anomalies. However, a significant limitation arises from the segmentation
network’s tendency toward overconfidence in its predictions, resulting in
low cross-entropy in regions where anomalies are present. This suggests
that normal cross-entropy is a low-quality prior for anomaly detection.
Therefore, for the task of detecting stones on roads, we propose utilizing a
fined-tuned segmentation network with a changed target, from semantic
segmentation to maximize the cross-entropy in anomalous areas. With
this, we feed the dissimilarity network with a better prior image. Fur-
thermore, due to the lack of datasets with enough samples of stones for
pixel-wise detection, we synthetically added stones on images of driving
scenes to create a dataset for fine-tuning and training. The results of
our comparative experiments showed that our model attains the highest
average precision while having the lowest false positive rate at 95% true
positive rate when evaluating on a real-stone image dataset.

Keywords: Anomaly classification + Semantic segmentation -
Computer vision

1 Introduction

Understanding surroundings through images is an important task in applications
such as autonomous vehicles and robots, where it is vital to identify abnormal
objects that may be a danger to vehicles and must be avoided. For this study,
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we focus on a subclass of anomalies, stones. Because those are a type of obstacle
commonly found on roads and dangerous to vehicles. Additionally, keeping roads
clear of obstacles, such as stones, is a continuous task done by local governments
and municipalities. Who regularly conduct car patrols with experts to manually
identify obstacles so they can take appropriate corrective action. However, by
requiring the intervention of experts, the efficiency of detection is limited since
the frequency of patrols is normally low. This increases the time that obsta-
cles are dangerous to vehicles, raising the probability of accidents and damage.
Thereby, developing a support system for detecting this type of obstacle can help
to overcome these problems by allowing automatic detection during patrolling.

Given the critical need of efficient anomaly detection systems, many tech-
niques have been applied to perform anomaly detection from a single monocular
RGB image. For example, uncertainty measurements in semantic segmentation,
such as softmax entropy and the difference between the two largest softmax
values (softmax distance), have been used to statistically detect areas of low
segmentation reliability and classify them as anomalies [1]. Additionally, gener-
ating a photo-realistic image (image re-synthesis) from a semantic segmentation
map and comparing it with the original image can be used to detect anomalies.
As the segmentation network will not be able to understand anomalies, they
will not appear in the reconstruction [2]. Thus, the areas with significant differ-
ences between the two images are classified as anomalies. Finally, the framework
Synboost [3] complements the results of both techniques by using a dissimilar-
ity network to find differences between the input and synthesized images with
softmax entropy and softmax distance as attention mechanisms. However, when
anomalies blend well with its surroundings or only span a few pixels in the image,
which is the case for most stones on the road, the softmax cross-entropy is low
and does not contribute much with the framework’s prediction ability.

Therefore, in Sect. 2, we propose a method to overcome the limitations of Syn-
boost [3] and improve detection accuracy of anomalies in a constrained setting,
namely, small anomalies laying on the drivable area (Fig. 1). We call these kinds
of anomalies, road obstacles. In Sect. 3, we describe the process of training the
dissimilarity network of Synboost using a dataset with synthetically added obsta-
cles to compensate for the lack of anomalies examples in usual datasets. Further-
more, we introduce to our framework a neural network that strives to maximize
cross-entropy in regions where there are anomalies [4]. With this, we increase
the cross-entropy even for small anomalies that previously were unnoticeable
on softmax entropy and softmax distance images, in consequence, they produce
a better contribution to the final prediction, acting as attention mechanisms.
Finally, in Sect.4, we present our conclusions, highlighting how our framework
enhances the pixel-wise detection accuracy for stones and significantly reduces
false positives compared to previous methods.
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Fig. 1. Drivable area. The region-of-interest are roads and sidewalks, which are high-
lighted in white in this image. We employed semantic segmentation inference to identify
the contours of this area. Any anomaly completely enclosure within the drivable area
is a road obstacle for this research.

2 Proposed Framework

2.1 Related Methods

We built our framework on top of Synboost [3]. This framework combines two
techniques for anomaly detection. The first one is using uncertainty measure-
ments, softmax entropy and softmax distance. The second one is image re-
synthesis, that compares the original input with a generated image to find differ-
ences between both. We expect that anomalous regions in the original image look
different in the generated one. The outputs of uncertainty measurements and
image re-synthesis are used as inputs for a dissimilarity network that carries out
a binary classification for each pixel with classes for anomaly and non-anomaly.
This framework achieves state-of-the-art performance for anomaly detection with
minimal computational cost for training since it is designed to use pre-trained
models and only requires training for the dissimilarity network.

We chose this model to build upon our framework because it addresses dif-
ferent scenarios when dealing with semantic segmentation anomalies [3]. The
first scenario occurs when an anomaly is misclassified as any of the inlier classes,
resulting in low entropy due to overconfidence but a significantly different re-
synthesized image if the object is large. The second scenario involves over-
segmentation of the anomaly, with different sections assigned to different classes,
leading usually to higher entropy. The final scenario occurs when the anomaly
goes undetected and is classified as part of its surroundings. In this case, the
anomalous area appears different in the re-synthesized image, particularly if it
is sufficiently large. However, Synboost still has a low accuracy for detecting
objects that blend with the background (low entropy) and only encompass a few
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Fig. 2. Outline of our framework architecture. In Synboost [3], softmax entropy and
softmax difference images are taken from the semantic segmentation network. In our
framework, we introduced to the Synboost framework a Maximized entropy network [4]
fine-tuned using the loss function showed in Eq. (2). Thus, this module specializes in
creating prior images to feed into the Spatial-Aware Dissimilarity Network that pro-
duces the anomaly prediction (highlighted with white contours for better visualization).

pixels in the images (similar synthesized image), which is the case for most road
obstacles, including stones, as both approaches fail to detect the anomaly.

2.2 Our Framework Architecture

Figure 2 shows an outline of the proposed framework. We use a pre-trained
segmentation network with a WideResNet38 backbone, which is trained on
Cityscapes dataset [5] according to [6]. For the synthesis network, we take a
pre-trained model from the CC-FPSE framework [7], which is a conditional gen-
erative adversarial network. In the case of the perceptual difference V', we simply
take a pre-trained VGG19 on ImageNet dataset as a feature extractor to find
differences between the original and generated images, following the same pro-
cedure as Synboost [3]:

N
Vix,r) = Z
i=1

where F() is the i-th layer with M; elements in the VGG network with N layers.
This equation computes the perceptual difference as the sum of the absolute
differences between the feature representations of the original image = and the
generated image r across all layers of the VGG network. Therefore, it captures
the perceptual variations and discrepancies between the two images in feature
space.

Fi (@) - FO()|| (1)

1
Mi 1
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Furthermore, because neural networks tend to be overconfident in their pre-
dictions, the cross-entropy can be low even in regions where an anomaly exists. In
consequence, the uncertainty measures may not contribute much to the final pre-
diction. To deal with this problem, we take a segmentation network pre-trained
on the Cityscapes dataset and fine-tune it following the procedure of [4]. With
this, we aim to create a better-quality prior image as input for the dissimilarity
network that maximizes the cross-entropy on regions where there are anomalies,
while minimizing it on regions where there are no anomalies. To accomplish this,
during fine-tuning, we modify the loss function to minimize the target:

L= (1-MNE@y)~p,, [lin(f(z),y(2)]

Ay [out (F(a))], ®

where

Cin(f(2) = =) Ly log(f;(2)), (3)

jecC

&MNWZ—Zém%WM )
jec

where, (z,y) ~ Dy, stands for an in-distribution example, while (') ~ Doy
is an out-of-distribution example. f(x) indicates the softmax probabilities for a
predicted class and y(x) the corresponding ground truth. A is a value in the range
of [0, 1] that controls the weight between the two single objectives. 1,_,(,) is an
indicator function that yields 1 when j = y(z) and zero otherwise. C' is the set
of g classes. The minimization of the single objective for the out-of-distribution
part is equivalent to maximizing entropy in anomalous regions as stated in [4].
We can interpret this new objective as follows: for in-distribution pixels,
minimizing Eq. (3), which represents the standard cross-entropy loss function
when using one-hot encoding, is equivalent to maximizing the softmax value for
the true class. On the other hand, for out-of-distribution pixels, Eq. (4) yields
the lowest loss value when the predictions in the softmax layer are uniformly
distributed across all classes. Consequently, for outlier pixels, we encourage the
one-hot encoding vector to have the same value in every class. This is the reason
why the logarithm in Eq.(4) is divided by the number of classes ¢. Such a
vector will yield a high value when evaluated with Shannon entropy, hence the
term “Maximized entropy”. Shannon entropy, also known as relative entropy, is

defined as follows:
Z fi(z)log(f;(z)), (5)
jec

where f(z) indicates the softmax probabilities predicted by the segmentation
model. We use this equation to obtain the entropy image F in Fig. 2.

In Table1, we present an overview of the models used in our framework.
The segmentation, synthesis, and perceptual difference networks are pre-trained
models that can be seamlessly integrated into the framework. Regarding the
Maximized entropy network, it starts as a segmentation network pre-trained on
Cityscapes that we subsequently fine-tune on our composite training set using
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Table 1. Model and datasets overview.

Model Training set Training details
Segmentation Cityscapes Pre-trained
Synthesis Cityscapes Pre-trained
Perceptual difference | ImageNet Pre-trained
Maximized entropy | Our composite dataset | Fine-tuned
Dissimilarity Our composite dataset | Trained

Eq. (2) as loss function. Lastly, the Dissimilarity network is trained from random
initialization, employing our composite training set.

2.3 Ensemble

Because the prior images used as inputs to the dissimilarity network are also
anomaly predictions, it is feasible to combine them with the dissimilarity network
output generated in the last step of Fig. 2. To accomplish this, we use a weighted
sum to generate a more robust prediction (A.). We refer to this procedure as
ensemble, and it can be applied to both Synboost and our model using the
following equation in a pixel-wise manner:

A, = w1 A+ woE 4+ w3D + w4V, (6)

where A, F, D, and V represent the output from the dissimilarity network,
softmax entropy, softmax distance, and perceptual difference images, respec-
tively. To find the values for the weights wy, ws, w3, and w, to combine these
images for ensemble, we applied a grid search restricted to values that satisfy
w1 + we + w3z + wy = 1.

This means that prior images can be used in two ways: first, as inputs for the
dissimilarity network where they serve as attention mechanisms, and second, as
part of an ensemble together with the dissimilarity network output.

3 Experiments

3.1 Dataset

For the training set, we started from the same methodology used in Synboost
training. Consequently, we took Cityscapes training set (2975 images) using the
objects labeled as void class as samples for anomalies and inferred semantic
segmentation for image S in Fig.2. To train the dissimilarity network to find
differences between the original and synthesized images, we added a copy of
each image and randomly swapped labels for known objects in the ground truth
semantic segmentation map before image synthesis. These objects look quite
different in the synthesized image and are also used as anomalies samples. For
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Fig. 3. Stones included as road obstacles.

this part of the dataset, we used the modified ground truth segmentation for
image S in Fig. 2.

On top of that, we synthetically added one stone on a random position of
the drivable area per image. The stone dataset (Fig. 3) consists of images of four
stones (83, 87, 120 and 70 images per stone, respectively) taken from different
orientations and illumination conditions (left only, right only, and both). We
used stones 1 and 2 for training, while stones 3 and 4 were used only for eval-
uation. In addition, we used six images from different spots in our University’s
campus as backgrounds to synthetically add stones. Applying image augmenta-
tion techniques (horizontal flip, cropping, and adjusting brightness) we added
192 images to the training set. Finally, to conduct experiments with real-stone
images, we placed stones, and we took 153 images from seven spots in our Uni-
versity’s campus. In sum, the training set contains 6142 images when only using
composite images and 6295 images when including real-stone images, as shown
in Table 2. Lastly, in Fig. 4 we show some examples of composite images.

For evaluation, we built a 147 real-stone images dataset. We placed stones
3 and 4 and took photos in six spots in the University’s campus that were
not used for training. With this, all evaluations for experiments are run using
places and stones unseen during training. Additionally, using a real-obstacle
dataset for evaluation prevents our experiments from yielding unrealistic results
caused by the use of synthetic data during training. For instance, a model might
unrealistically excel at identifying merely pasted objects rather than genuine
obstacles [8].
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Table 2. Composition of training set.

Type Source Number of images
Composite | Cityscapes 5950

Composite | Our background set 192

Total composite images 6142

Real Our real-stone set 153

Total composite 4+ real-stone images 6295

Fig. 4. Composite images. Examples of composite image used for training. In the top
row there are examples of backgrounds from Cityscapes. While in the bottom row,
there are examples of our backgrounds. The stones synthetically added are highlighted
by a solid line rectangle.

3.2 Experimental Conditions

The region-of-interest (ROI) for evaluation of anomaly detection in our exper-
iments comprises all pixels that belong to road or sideways. As well as regions
assigned to other classes enclosed within the road or sidewalk. While the road
obstacles that we want to detect are objects on the drivable area that do not
belong to any known classes from the Cityscapes dataset [5]. We used average
precision (AP) as the primary metric, as well as false positive rate at 95% true
positive rate (FPR95), that are fitted for highly imbalance classification prob-
lems, such as anomaly detection.

For the first experiment, we used our dataset with only composites images
to train Synboost’s and our model’s dissimilarity network, as well as fine-tuning
a segmentation network to maximize entropy on anomalous areas. For the sec-
ond experiment, we added 192 images with real-stone images into the training
set, which improved performance for all models despite the small sample size.
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Table 3. Hyperparameters used for training and fine-tuning.

Dissimilarity network training | Maximized entropy network
fine-tuning
Hyperparameter | Value Value
Learning rate 0.0001 0.00001
Betas (Adam) |0.5, 0.999 0.9, 0.999
Epochs 30 20
Batch size 8 8

Table 4. Best weights for Eq. (6) for our model according to a grid search.

Model Training set wr w2 w3 | ws

Synboost | Composite images only 1 0 0 |0
Composite + real-stone images | 1 0 0 |0

Ours Composite images only 0.85/0.15/0 |0
Composite + real-stone images | 0.55/0.45/0 |0

We trained the dissimilarity networks for 30 epochs five times per model from
random initializations. In the case of entropy maximization, we fine-tuned the
segmentation network for 20 epochs with A = 0.9 in Eq.(2). In both cases,
we selected the epoch with the lowest lost value on the evaluation set as the
best epoch. In Table 3, we show the hyperparameters used for training and fine-
tuning.

The experiments were conducted on a computer running Ubuntu 20.04.4
LTS, with Python 3.6.9, PyTorch 1.10.1, CUDA 11.4, and a NVIDIA GeForce
RTX 3090 GPU with 24 GB of RAM.

3.3 Results

The outcome of a grid search for the best ensemble weights for Synboost and
our model when using Eq. (6) are shown in Table4. In the case of Synboost, we
obtained that wy; = 1 for both training sets, which means that it only uses the
dissimilarity network output. In other words, Synboost does not benefit from
ensemble. On the other hand, for our model we obtained that the dissimilarity
output (w1) is combined with softmax entropy (ws) to create the final prediction.
However, w3 and w4 are zero for both training sets which means that softmax
distance and perceptual difference are not used for ensemble with our model.

Consequently, using the ensemble weights during testing, the results of the
best networks when evaluating on real-stone images are shown in Table 5, where
Synboost achieved its best performance without ensemble while our model did
it using ensemble. All models improve when a small set of real-stone images are
added to the training set.
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Table 5. Performance comparison between best networks.

Method Composite Composite +
images only real-stone images
AP 1| FPR95 | AP 7| FPRY95 |

Synboost [3] 64.2 | 7.07 67.0 4.92

Maximized entropy [4] | 76.8 |2.02 85.5 |0.30

Ours 86.6 1 0.29 91.0 1 0.13

Example 1 Example 2

Synboost [3]

Maximized
entropy [4]

Ours

Fig. 5. Examples of anomaly predictions. The first row depicts the input image, the
ground-truth anomaly is highlighted by a solid line rectangle for visualization purposes
only. For the inferences, false positives are highlighted by a dotted line rectangle. The
model’s anomaly prediction is indicated by a contour line. In the case of Synboost
(second row), it detected the obstacle for the first example but failed to detect it for
the second. In both cases, it produced false positives. For Maximized entropy (third
row), it spotted correctly the obstacles in both cases, however, it also yielded false
positives. In contrast, our model (fourth row) successfully recognized the obstacles in
both cases without false positives.
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Our experiments demonstrated that our model outperforms previous models
in terms of achieving the highest average precision (AP) while simultaneously
having the lowest false positive rate at 95% true positive rate (FPR95) when
evaluated on a real-stone dataset. In Fig. 5, we present examples of pixel-wise
anomaly prediction, where each image contains a single road obstacle. The con-
tour lines indicate the pixels classified as anomalies by each model. Ground-
truth anomalies are highlighted with solid line rectangles, while false positives
are marked with dotted line rectangles.

4 Conclusions

In this paper, we presented a framework to detect small anomalies laying on
roads, such as stones. We demonstrated that using maximized entropy, as an
attention mechanism for a dissimilarity network, improves the average precision
and false positive rate at 95% true positive rate in pixel-wise anomaly detection.
Furthermore, the difference between the results from the two experiments, due to
the inclusion of the small sample of real-stone images in the training set, indicates
that there is still room for improvement in the composite dataset creation.

Regarding the use of ensemble, the values found from grid-search confirms
that standard softmax entropy do not contribute much to the final anomaly
prediction of road obstacles, as we found that the highest AP values for Syn-
boost were achieved without taken into consideration any of the prior images
for ensemble. While our model with maximized entropy uses softmax entropy
images along with the dissimilarity network output in ensemble to create the final
anomaly prediction. In other words, while normal softmax entropy serves as an
attention mechanism for the dissimilarity network, it doesn’t improve the final
result when using ensemble. On the other hand, maximized entropy is beneficial
in both scenarios.

In future work, we intend to conduct experiments using a composite dataset
with additional types of road obstacles aside from stones to create a more gen-
eral anomaly detection system. For this purpose, we plan to create a composite
dataset using objects not present in the in-distribution label set of Cityscapes,
treating them as obstacles. We also aim to develop a framework with local image
synthesis, constraint to the drivable area to avoid synthesizing whole images and
thus, reducing the computational of inferences.
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