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Abstract. Self-expression learning methods often obtain a coefficient
matrix to measure the similarity between pairs of samples. However,
directly using all points to represent a fixed sample in a class under the
self-expression framework may not be ideal, as points from other classes
participate in the representing process. To alleviate this issue, this study
attempts to achieve representation learning between points only coming
from the same class. In practice, it is easier for data points from the same
class to represent each other than that from different classes. So, when
reconstructing a point, if the number of non-zero elements in the coeffi-
cient vector is limited, a model is more likely to select data points from
the class where the reconstructed point lies to complete the reconstruc-
tion work. Based on this idea, we propose Sparse Subspace Clustering
with the l0 inequality constraint (SSC-l0). In SSC-l0, the l0 inequality
constraint determines the maximum number of non-zero elements in the
coefficient vector, which helps SSC-l0 to conduct representation learn-
ing among the points in the same class. After introducing the simplex
constraint to ensure the translation invariance of the model, an optimiza-
tion method concerning l0 inequality constraint is formed to solve the
proposed SSC-l0, and its convergence is theoretically analyzed. Exten-
sive experiments on well-known datasets demonstrate the superiority of
SSC-l0 compared to several state-of-the-art methods.
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1 Introduction

As an important branch of the field of pattern recognition, clustering has been
extensively developed in the past few decades. Commonly used clustering meth-
ods include prototype-based clustering [1], matrix factorization-based clustering
[2], and graph-based clustering [3], etc. Among them, graph-based clustering
has attracted much attention because it can exploit the geometrical structure
information of the data [4,5].

As a typical graph-based clustering method, Spectral Clustering (SC) [6]
often achieves superior clustering performance when handling datasets with high
dimensions. In the spectral clustering method, a low-dimensional representation
of data is first constructed by utilizing the predetermined similarity matrix.
Subsequently, SC yields the discrete clustering result by calling the spectral
rotation method [7] or using k-Means methods [8] based on the relaxed spectral
solutions. So, the similarity matrix plays a critical role in spectral clustering.
Similarity matrix construction methods often include two types, point-pairwise
distance-based methods and self-expression learning methods-based. The typi-
cal point-pairwise distance-based methods include the Gaussian kernel method,
adaptive neighbors [9,10], typicality-aware adaptive graph [11], and so on. These
methods construct sparse similarity matrices by learning sample neighborhood
structure information.

The self-expression learning methods, including the Sparse Subspace Clus-
tering (SSC) [12], Low-Rank Representation (LRR) [13], Block-Diagonal Rep-
resentation (BDR) [14], and their extensions [15,16], have been reported and
achieved desired performance. Among them, SSC [12] aims to group data drawn
from a union of multiple linear subspaces. When the subspaces from which data
are drawn are independent, SSC can obtain desired performance by learning a
sparse affinity matrix. LRR [13] minimizes the rank of the coefficient matrix to
recover the row space of the data. BDR [14] proposes a novel regularizer for
directly pursuing a coefficient matrix with the block diagonal property. Itera-
tively Reweighted Least Squares (IRLS) [15] solves a joint low-rank and sparse
minimization problem. Least Squares Regression (LSR) [16] minimizes the F-
norm of the coefficient matrix to achieve that the correlated samples have simi-
lar coefficient vectors. Simplex Sparse Representation (SSR) [17] introduces the
simplex constraint to ensure the translation invariance of the model.

The above self-expression learning-based methods seek sparse or low-rank
representation coefficient matrices to measure the similarity between pairs of
samples. However, in these methods, the way that directly uses all sample points
to represent a fixed sample may not be ideal since points from other classes
also participate in the representing process. Therefore, the generated similarity
matrix is not reliable and affects the performance of downstream tasks.

To alleviate this issue, we propose Sparse Subspace Clustering with the l0
inequality constraint (SSC-l0). SSC-l0 aims to achieve a representation learning
mechanism in which only the points coming from the same class are expected to
be used for representing each sample in this class.

The main contributions of this work are listed as follows:
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1. A new self-expression learning method, named Sparse Subspace Clustering
with the l0 inequality constraint (SSC-l0), is proposed. In SSC-l0, the l0
inequality constraint constrains the number of non-zero elements in the coef-
ficient vector, which helps SSC-l0 to conduct representation learning among
the points in the same class.

2. By introducing the simplex constraint to ensure the translation invariance
of the model, an optimization method concerning l0 inequality constraint is
presented to solve the proposed SSC-l0, and its convergence is theoretically
analyzed. Since the l0 inequality constraint problem is difficult to be solved,
the proposed optimization method has the potential to be widely used sparse
learning models.

3. Extensive experiments on benchmark datasets demonstrate the superiority of
SSC-l0.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
notations and the related methods. In Sect. 3, we elaborate on the proposed
SSC-l0 and its corresponding optimization algorithm. Experimental results are
reported in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Works

2.1 Notations

In this study, the bold uppercase letters and lowercase italic letters are used to
stand for the matrices and scalars, respectively, such as X = [x1;x2; · · · ;xn] ∈
R

n×d represents a data matrix, where d and n denote the dimensions and the
number of samples, respectively. The bold lowercase letters stand for vectors,
such as xi ∈ R

1×d is a sample point. Tr(A) and AT stand for the trace and the
transpose of matrix A, respectively. A ≥ 0 means that each element aij ≥ 0 in
A.

2.2 Sparse Subspace Clustering

Let
{
xj ∈ R

1×d
}n

j=1
be a set of data points drawn from a union of c independent

linear subspaces {Si}c
i=1. Let ni is the number of data points drawn from the sub-

space Si, di is dimension of Si, and Yi a data matrix corresponding to subspace
Si. If ni ≥ di, the points that are drawn from the subspace Si is self-expressive
[12]. This means that if x is a new data point in Si, then it can be represented as
a linear combination of di points in the same subspace. Denoting zi ∈ R

1×ni is
a fragment of the coefficient vector, and it corresponds to the data matrix Yi. If
we let X be a data matrix with proper permutation, i.e., X = [Y1,Y1, · · · ,Yc],
for any data point x, there exists a vector s = [z1, z2, · · · , zc] ∈ R

1×n such that
x = sX, where zi �= 0 and zj = 0 for all j �= i (zi ∈ R

1×ni is the fragment
corresponding to points in the same subspace as x). And such a s can be sought
by solving the following problem:

min
s

||s||0, s.t. x = sX, (1)
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where ||s||0 represents the number of non-zero elements in row vector s. This
can be proved by the following Theorem 1.

Theorem 1. Denoting s∗ is the optimal solution to the problem (1). Let X be
a data matrix with proper permutation and x ∈ Si, then s∗ = [z1, z2, · · · , zc] ∈
R

1×n, where zi �= 0 and zj = 0 for all j �= i.

Proof. Let s∗ = s∗
↑ + s∗

↓, where s∗
↑ = [0,0, · · · , zi, · · ·0] ∈ R

1×n and s∗
↓ =

[z1, z2, · · · , zi−1,0, zi+1, · · · , zc] ∈ R
1×n. It has Theorem 1 holds when we show

that s∗
↓ = 0.

Let s∗
↓ �= 0, since s∗ = s∗

↑ + s∗
↓, it has x = s∗X = (s∗

↑ + s∗
↓)X. According to

the independence assumption [12], it has x ∈ Si, s∗
↑X ∈ Si, and s∗

↓X /∈ Si. Thus,
we have s∗

↓X = 0. This implies that

x = s∗X = s∗
↑X (2)

which means that s∗
↑ is also a solution of Eq. (1). And we have ||s∗

↑||0 < ||s∗
↑ +

s∗
↓||0 = ||s∗||0, which conflicts with s∗ being the optimal solution to Eq. (1). So

we have s∗
↓ = 0. The Theorem 1 holds. �

The matrix format of Eq. (1) is as follows:

min
S

n∑

i=1

||si||0, s.t. X = SX, (3)

where S = [s1; s2; · · · ; sn] ∈ R
n×n is a coefficient matrix, and si ∈ R

1×n is a
coefficient vector corresponding to the point xi.

Theorem 1 demonstrates that when the subspaces are independent, any sam-
ple xi can be represented by the samples coming from the same class. And sij = 0
if samples xj and xi come from different classes.

According to Theorem 1, when X is properly permuted and subspaces are
independent, the coefficient matrix S has a block diagonal structure, which can
be used to improve clustering performance.

3 Sparse Subspace Clustering with the l0 Inequality
Constraint

3.1 Motivation of SSC-l0

Most self-expression learning methods seek a sparse or low-rank representation
coefficient matrix and minimize the difference between the original samples and
their reconstructed estimations. The objective functions of SSC, LRR, and their
extensions [14–16] can be generalized as follows:

min
S

||X − SX||2F + γR(S), (4)
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where S is a reconstruction coefficient matrix, ||X − SX||2F indicates the self-
expression reconstruction loss. R(S) is a regularization term, which guarantees
that S is sparse or low-rank, or has a strict block diagonal structure, etc.

Numerous studies have shown that self-expression learning methods achieve
impressive performance in clustering tasks [13]. However, in Eq. (4), directly
using all points to represent a fixed sample in a class may degrade the quality
of the learned similarity matrix, as points from other classes also participate in
the representing process. To alleviate this issue, we attempt to achieve repre-
sentation learning between points of the same class. However, this work is not
easy because the ground truth labels are not provided beforehand. According to
Theorem 1, the permuted coefficient matrix has a block diagonal structure when
the subspaces from which the data are drawn are independent. Thus, such block
diagonal structures can be used to guide the similarity measurements among
samples. However, real data often do not qualify the subspace independence
assumption [18].

In practice, it is easier for data points from the same class to represent each
other than that from different classes. Thus, when reconstructing a point, if
the number of non-zero elements in the coefficient vector is limited, a model is
more likely to select data points from the class where the reconstructed point
lies to complete the reconstruction process. This means that introducing the l0
inequality constraint may improve the performance of the self-expression learning
model.

3.2 Objective Function of SSC-l0

According to the discussion in Sect. 3.1, introducing the l0 inequality constraint
may improve the performance of the self-expression learning model. The pro-
posed objective function is as follows:

min
S

||X − SX||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n),
(5)

where S = [s1; s2; · · · ; sn] ∈ R
n×n is a reconstruction coefficient matrix, γ is a

non-negative balance parameter, and k is a constant. The constraint ||si||0 ≤ k
means that the max number of non-zero elements in the coefficient vector si is
k.

By introducing the l0 inequality constraint ||si||0 ≤ k, in the first term of
Eq. (5), each sample is represented as a linear combination of the samples that
are more likely from the class that the represented sample belongs to. Since
the coefficient matrix is non-negative, the elements in the coefficient matrix can
reflect the similarity between the sample pairs. The l2 norm ||si||22 can be utilized
to avoid overfitting on si. The constraint si1T = 1 can be used to ensure the
translation invariance [17].
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3.3 Optimization of SSC-l0

First, because of the difficulty of solving model Eq. (5), we turn to optimize the
following model:

min
S,M

||X − MX||2F + α||M − S||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n),
(6)

where α is a non-negative parameter. Problem (6) can be transformed into the
problem (5) when α is large enough. And the problem (6) can be minimized
using the following iterative algorithm:

Updating M. When S is fixed, problem (6) becomes:

min
M

||X − MX||2F + α||M − S||2F . (7)

Setting the derivative of Eq. (7) with respect to M to zero, it has:

M =
(
XXT + αS

) (
XXT + αI

)−1
. (8)

Updating S. When M is fixed, problem (6) becomes:

min
S

α||M − S||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n).
(9)

Since problem (9) is independent of each si, problem (9) can be converted
into subproblems:

min
si

α||mi − si||22 + γ||si||22,
s.t. si ≥ 0, si1T = 1, ||si||0 ≤ k,

⇔ min
si

O(si) = ||si − ui||22,
s.t. si ≥ 0, si1T = 1, ||si||0 ≤ k,

(10)

where ui = α
α+γmi.

Obviously, Eq. (10) seems to be an NP-hard problem. Some methods sparsify
the vector si obtained from all samples [19]. However, the convergence of this
solving method cannot be guaranteed theoretically. Here, we attempt to identify
an equivalent problem to Eq. (10) that is readily solvable.

Denoting Γ̌ is a set that includes the indices corresponding to the first k
largest elements in ui. Then, the optimal solution to the following problem (11)
is also an optimal solution to the problem (10). To prove this, we propose further
the following definitions, lemmas, and theorems.

min
si≥0,si1T=1,sij=0 ifj /∈Γ̌ (i)

⎧
⎨

⎩
O1 =

∑

j∈Γ̌ (i)

(sij − uij)
2

⎫
⎬

⎭
. (11)
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Definition 1. Let si satisfy the constraints of Eq. (10). If there is at least one
non-zero element sij (sij > 0) in si that satisfies j /∈ Γ̌ (i), then si is called a ζ̌
solution of Eq. (10).

Definition 2. Π
(
si, Γ̌ (i)

)
=

∑n
j=1 A (sij , j), where A (sij , j) = 1 if sij > 0

and j ∈ Γ̌ (i); otherwise A (sij , j) = 0.

Lemma 1. For any ζ̌ solution s̈i of Eq. (10), there exists another solution s̃i of
Eq. (10) that satisfies Π

(
s̃i, Γ̌ (i)

)
= Π

(
s̈i, Γ̌ (i)

)
+1 such that O (s̃i) ≤ O (s̈i).

Proof. Let τ /∈ Γ̌ (i) and ε ∈ Γ̌ (i) be indices that satisfy s̈i =
[· · · , s̈iτ , · · · , s̈iε, · · · ] and s̃i = [· · · , s̃iτ , · · · , s̃iε, · · · ], where uiτ ≤ uiε, s̈iε = 0,
s̃iτ = 0, s̈iτ = s̃iε > 0, and s̈ij = s̃ij for any j �= τ and j �= ε.

Thus, one has:

(s̈iτ − uiτ )
2 + (s̈iε − uiε)

2 ≥ (s̃iτ − uiτ )
2 + (s̃iε − uiε)

2
, (12)

which means O (s̃i) ≤ O (s̈i). Thus, Lemma 1 holds. �

Lemma 2. For any ζ̌ solution s̈i of Eq. (10), there exists another non-ζ̌ solution
s̃i of Eq. (10) such that O (s̃i) ≤ O (s̈i).

Proof. Lemma 2 holds when Lemma 1 holds. �

Lemma 3. Let s∗
i be the optimal solution of Eq. (10), there exists a non-ζ̌ solu-

tion
...
s ∗

i that satisfy O (
...
s ∗

i ) = O (s∗
i ).

Proof. Obviously, Lemma3 holds when Lemma 2 holds. �

Lemma 3 demonstrates that if s∗
i is an optimal solution of Eq. (10) and it

is a ζ̌ solution, then there exists a non-ζ̌ solution ...
s ∗

i which is also an optimal
solution to the problem (10).

Theorem 2. Let s̄∗
i be the optimal solution to the problem (11), then s̄∗

i is also
an optimal solution to the problem (10).

Proof. Let s∗
i be the optimal solution of Eq. (10), according to Lemma 3, there

exists a non-ζ̌ solution ...
s ∗

i that satisfy O (
...
s ∗

i ) = O (s∗
i ). And it has:

O (
...
s ∗

i ) = σ̌ + O1 (
...
s ∗

i ) , (13)

where σ̌ =
∑n

j=1,j /∈Γ̌ (i) (0 − uij)
2, and ...

s ∗
i ≥ 0, ...

s ∗
i 1

T = 1, ||...s ∗
i ||0 ≤ k. Consid-

ering Γ̌ (i) is fixed, σ̌ is a constant. And we have O (s̄∗
i ) = σ̌ + O1 (s̄∗

i ). Since
s̄∗
i is the optimal solution to the problem (11), we have O1 (s̄∗

i ) ≤ O1 (
...
s ∗

i ). So,
O (s̄∗

i ) ≤ O (
...
s ∗

i ) = O (s∗
i ). Thus, Theorem 2 holds. �

The problem (11) can be transformed into a vector format. We can solve it
easily by utilizing the KKT conditions and the Newton method [17].
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Algorithm 1 Sparse Subspace Clustering with the l0 inequality constraint (SSC-
l0)
Input: Data matrix X ∈ Rn×d

Parameter: α, γ, and k.
Output: S ∈ Rn×n.
1: Initialize S.
2: Initialize M with formula (8).
3: while Iterations t ≤ T and not converge do
4: Update Γ̌ (i) for any i;
5: Update S by solving the problem (11);
6: Update M with formula (8).
7: end while
8: return S.

The algorithm of SSC-l0 is summarized in Algorithm 1. Assume that
Algorithm1 iterates at most T times. The time cost of updating M is
O(T

(
dn2 + n3

)
), where n is the number of samples and d is the number of

features. The time cost of solving the problem (11) is O(T (n k log k)) [20],
where k is the maximum number of non-zero elements in the coefficient vector.
Given that k � n, the overall time complexity of SSC-l0 is O(n3).

After a non-negative coefficient matrix S is learned, spectral clustering can
be executed based on the produced S.

In Algorithm1, the optimal solutions for M and S can be obtained by solving
problems (8) and (11). Then,

JSSC−l0

(
M(t),S(t)

)
≤ JSSC−l0

(
M(t−1),S(t)

)
≤ JSSC−l0

(
M(t−1),S(t−1)

)
,

(14)
where t−1 and t represent the (t−1)th and tth iteration, respectively. Inequality
Eq. (14) indicates that the objective function values of SSC-l0 decrease mono-
tonically, i.e., SSC-l0 is convergent.

4 Experiments

In this study, all experiments are conducted on a personal computer with i5-
9500 CPU @3.00GHz and 8GB RAM. The codes are implemented in MATLAB
R2021a 64 bit.

4.1 Datasets and Comparison Methods

Ten image datasets are utilized for experiments, including five face image
datasets (Yale, Jaffe [21], ORL1024 [22], PIE [23] and FERET [24]), and four
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handwritten digit image datasets (Binary1, Semeion2, Digit3, and Minist4), and
one palm image dataset (Palm) [9]. The details of these datasets are shown in
Table 1.

Table 1. The Benchmark Datasets.

Datasets Samples Size Clusters Datasets Samples Size Clusters

Yale 165 32 * 32 15 Binary 1404 20 * 16 36
Jaffe 213 26 * 26 10 Semeion 1593 16 * 16 10
ORL1024 400 32 * 32 40 Digit 1797 8 * 8 10
FERET 1400 40 * 40 200 Minist 4000 28 * 28 10
PIE 1632 32 * 32 68 Palm 2000 16 * 16 100

Seven clustering methods are selected for comparison, including Least
Squares Regression (LSR1) [16], Sparse Subspace Clustering (SSC) [12], Low-
Rank Representation (LRR) [13], Iteratively Reweighted Least Squares (IRLS)
[15], Block-Diagonal Representation (BDR) [14], Clustering with Typicality-
aware Adaptive Graph (CTAG) [11], and the Simplex Sparse Representation
(SSR) [17]. Please see Sect. 1 for more details on these methods.

SSC-l0 and seven other methods vary parameters in the range of {10−3, 10−2,
10−1, 100, 101, 102, 103}. Spectral clustering is applied to coefficient matrices,
followed by post-processing with k-means. To reduce sensitivity to initialization,
k-means is repeated 50 times, and the reported result is the average of the 20
trials with the lowest loss.

4.2 Clustering Analysis

Clustering Performance. Table 2 shows the ACC values obtained by the
different methods on the selected benchmark datasets. In Table 2, the best results
are exhibited in bold and the second-best results are marked in brackets. The
average results of each method over all selected datasets are listed as the last
row in Table 2. From Table 2, we have the following observations:

1. LRR and IRLS rank second and third, respectively, in terms of average ACC
values among the eight methods. This can be attributed to their ability to
restore the row space of the data by learning a coefficient matrix with a low-
rank structure. This characteristic aids in enhancing their robustness and
improving their clustering ability.

2. SSR exhibits the lowest average ACC value, which can be attributed to the
absence of an effective regularization term.

1 https://cs.nyu.edu/~roweis/data/.
2 https://archive.ics.uci.edu/ml/index.php.
3 http://www.escience.cn/people/fpnie/index.html.
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

https://cs.nyu.edu/~roweis/data/
https://archive.ics.uci.edu/ml/index.php
http://www.escience.cn/people/fpnie/index.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 2. ACC Values of the SSC-l0 and the Selected Methods on Benchmark Datasets.
(%)

Datasets LSR1 SSC LLR IRLS BDR SSR CTAG SSC-l0
Yale 49.33 46.79 (50.61) 47.06 48.55 48.09 49.67 54.97
Jaffe 96.74 94.37 95.02 93.57 100.00 95.96 (97.18) 100.00
ORL 64.71 63.35 (65.53) 65.13 59.66 57.20 62.94 70.64
FERET 32.75 38.30 33.54 34.19 (38.62) 34.83 29.60 39.50
PIE 70.64 48.92 71.24 69.61 56.87 50.89 31.95 (70.94)
Binary 36.05 25.77 35.68 35.08 6.12 5.46 (43.54) 45.17
Semeion 57.29 56.57 58.26 (58.46) 57.61 57.74 54.11 60.18
Digit 47.74 70.60 64.15 59.55 58.13 60.52 61.62 (69.79)
Minist 37.49 (39.41) 37.04 38.30 37.58 31.01 38.34 44.10
Palm 80.32 67.35 (82.03) 80.41 66.98 66.08 82.01 91.13
Avg. 57.31 55.14 (59.31) 58.14 53.01 50.78 55.10 64.64

3. SSC-l0 achieves the best ACC values across all selected datasets except PIE
and Digit. The reason is that SSC-l0 tends to represent each sample as a
linear combination of the samples from the same class under the l0 inequality
constraint. However, the other seven methods lack this ability. In general, data
points coming from the same class are easier to represent each other. When
reconstructing a point, if the number of non-zero elements in the coefficient
vector is limited, it is more likely to select data points from the same class to
complete the corresponding reconstruction work. Therefore, the l0 inequality
constraint can improve the performance of the SSC-l0.

Visualization of the Similarity Matrix. Figure 1 visualizes the coefficient
matrix obtained by SSC-l0 on datasets including Jaffe, PIE, and Palm. In Fig. 1,
the coefficient matrix exhibits a block-diagonal structure, indicating that similar
samples in SSC-l0 tend to belong to the same class. This characteristic enhances
the clustering performance of SSC-l0. The reason for showing the block-diagonal
structure is that if the number of non-zero elements in the coefficient vector is
limited, when reconstructing a point, it is more likely to select a point of the
class to which the reconstruction point belongs.

Parameter Sensitivity. SSC-l0 has three parameters: α, γ, and k. Figure 2
illustrates the impact of these parameters on SSC-l0 performance across different
datasets. The results indicate that SSC-l0 is sensitive to the values of α, γ, and
k. To obtain optimal performance, a grid search method is recommended for
parameter selection in SSC-l0.
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Fig. 1. The coefficient matrix obtained by SSC-l0 on the different datasets. (a) Jaffe.
(b) PIE. (c) Palm.

Fig. 2. ACC values of SSC-l0 on different datasets when varying parameters α, γ, and
k. (a) PIE. (b) Binary. (c) Semeion. The color in the figure reflects the ACC values.

Convergence Analysis. Figure 3 shows the convergence curves of SSC-l0 on
datasets Yale, ORL1024, and FERET. From Fig. 3, the objective function values
of SSC-l0 decrease monotonically and SSC-l0 converges after 100 iterations.

4.3 Robustness Analysis

To compare the robustness of the eight methods, the following experiments are
designed:

1. In the ORL2116 dataset, 20% of the samples are randomly selected and
added salt and pepper noise. The noisy densities are 0.1, 0.2, 0.3, 0.4, and
0.5. Figure 4(a) illustrates the original ORL2116 dataset and noisy ORL2116
datasets. Figure 5(a) presents the performances of eight methods on these
noisy datasets.

2. In the ORL1024 dataset, 20% of the samples are randomly selected and added
random noisy blocks. The sizes of the noisy blocks were 5 × 5, 10× 10, 15× 15,
20× 20, and 25× 25 pixels. Figure 4(b) displays the original ORL1024 dataset
and the corresponding noisy ORL1024 datasets. The performances of different
methods on these noisy datasets are presented in Fig. 5(b).

3. In the Jaffe dataset, 20% of the samples are randomly selected and added
random noisy blocks. The sizes of the noisy blocks were 4 * 4, 8 * 8, 12 * 12,



SSC-l0: Sparse Subspace Clustering with the l0 Inequality Constraint 147

0 2 4 6 8 10 12 14
6740

6760

6780

6800

6820

6840

6860

6880

6900

6920
O

bj
ec

ti
ve

 f
un

ti
on

 v
al

ue

(a)

0 5 10 15 20 25 30
4450

4500

4550

4600

4650

4700

4750

4800

4850

O
bj

ec
ti

ve
 f

un
ti

on
 v

al
ue

(b)

0 10 20 30 40 50 60 70 80 90
3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

O
bj

ec
tiv

e 
fu

nt
io

n 
va

lu
e

104

(c)

Fig. 3. Convergence curves of SSC-l0 on different datasets. (a) Yale.(b) ORL1024. (c)
FERET.

Fig. 4. Original dataset and noisy datasets. (a) ORL2116. (b) ORL1024. (c) Jaffe.

16 * 16 and 20 * 20 pixels. Figure 4(c) displays the original Jaafe dataset and
the corresponding noisy Jaffe datasets. The performances of different methods
on these noisy datasets are presented in Fig. 5(c).

Form Fig. 5, although the performance of the eight methods degrades as
increasing the noise levels, SSC-l0 achieve almost the best results no matter
which noise levels are involved, which demonstrates further that SSC-l0 has
high robustness. The reason is as follows. Clean points have better representa-
tion ability compared to noisy points. When the number of non-zero elements
in the coefficient vector is limited, clean points are more likely to be used for
reconstruction. Thus, constraining the number of non-zero elements can improve
model robustness. SSC and SSR use l1 regularization and l1 equation constraint
to induce sparsity in the coefficient matrix, but they do not directly constrain
the number of non-zero elements in the coefficient vector. In contrast, SSC-l0 can
precisely control the number of non-zero elements, leading to better performance.
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Fig. 5. Performance of different clustering methods on the noisy datasets with differ-
ent noise levels. (a) Noisy ORL2116 datasets with different noise densities. (b) Noisy
ORL1024 datasets with different sizes noisy blocks. (c) Noisy Jaffe datasets with dif-
ferent sizes noisy blocks.

5 Conclusions

Considering data points coming from the same class are easier to represent each
other and when the number of non-zero elements in the coefficient vector is lim-
ited, a model is more likely to select data points from the same class to complete
corresponding reconstruction work, we propose Sparse Subspace Clustering with
the l0 inequality constraint (SSC-l0) to conduct representation learning among
the points in the same class. By introducing the simplex constraint, an optimiza-
tion method concerning l0 inequality constraint is proposed, and its convergence
is also theoretically analyzed. Since the l0 inequality constraint problem is diffi-
cult to be solved, the proposed optimization method can be widely used in lots
of sparse learning models. Extensive experiments demonstrate the superiority of
SSC-l0. Establishing a one-step clustering method based on SSC-l0 may further
improve the performance of the proposed clustering model, which is our next
work.
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