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Abstract. Unsupervised Domain Adaptation (UDA), which transfers
the learned knowledge from a labeled source domain to an unlabeled
target domain, has been widely utilized in various medical image analy-
sis approaches. Recent advances in UDA have shown that manipulating
the frequency domain between source and target distributions can signifi-
cantly alleviate the domain shift problem. However, a potential drawback
of these methods is the loss of semantic information in the low-frequency
spectrum, which can make it difficult to consider semantic information
across the entire frequency spectrum. To deal with this problem, we pro-
pose a frequency mixup manipulation that utilizes the overall semantic
information of the frequency spectrum in brain disease identification.
In the first step, we perform self-adversarial disentangling based on fre-
quency manipulation to pretrain the model for intensity-invariant feature
extraction. Then, we effectively align the distributions of both the source
and target domains by using mixed-frequency domains. In the extensive
experiments on ADNI and AIBL datasets, our proposed method achieved
outstanding performance over other UDA-based approaches in medical
image classification. Code is available at: https://github.com/ku-milab/
FMM.
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1 Introduction

Accurate diagnosis of brain diseases is critical, as it allows for early interven-
tion and treatment and helps advance neuroscience studies. Recently, machine
learning-based approaches [9,26] have made significant strides in identifying
brain diseases such as Alzheimer’s disease. Those existing methods assume that
various medical images are based on homogeneous data distribution and utilize
an identical model among different domain datasets. In other words, a model
trained on a source domain is directly applied to the target domain without
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adjusting the domain difference [5]. However, in real-world applications, the pres-
ence of inter-domain heterogeneity can challenge the validity of this assumption.
Differences in data distribution between domains can arise from variations in
scanner protocols, demographic information of cohorts within sites, etc. This
distribution discrepancy between training and test data, also known as domain
shift [2], can reduce the performance of models across different domains.

To alleviate the domain shift, Unsupervised Domain Adaptation (UDA),
which transfers well-trained knowledge from sufficiently labeled source data to
unlabeled target data [19], has been widely exploited. Recently, various UDA
methodologies [3,6,16] for effective domain transfer have been proposed. Deep-
CORAL [16] minimizes domain shift by aligning the second-order statistics of
source and target distributions without requiring any target labels. DANN [3]
is a widely used adversarial learning-based domain adaptation method in mod-
ern medical imaging tasks. AD2A [6] proposed an attention-guided deep domain
adaptation strategy to identify brain disease in multi-site MRI. However, since
these methods utilize the pixel-level distributional characteristics of samples in
the spatial domain, they are sensitive to noise or variations in input data and
limited in their ability to adapt to significant changes in input data distribution,
which are commonly encountered in real-world scenarios. More recently, the out-
standing performance of UDA has been achieved through research [15,21,22,24]
by aligning the frequency domain between source and target distributions, which
effectively relieves the domain shift problem. Those frequency-based methods
propose a simple image translation strategy by replacing the low-frequency spec-
trum between the source and target domains. They achieve remarkable perfor-
mance by transforming images through (Fast) Fourier Transform (FFT) and
inverse FFT (iFFT) [14] for frequency manipulation and simply training on the
transformed images. However, they have a limitation in that the optimum por-
tion of the low-frequency has to be selected manually for optimal performance.
In addition, since the semantic information of the original image may be lost in
the process of replacing the low-frequency spectrum, the overfitting problem can
occur with a fixed high-frequency spectrum [18].

To address the limitations mentioned above, we propose a novel adversarial
training network based on self-adversarial disentanglement and frequency mixup
strategy by exploiting the full scale of the frequency spectrum. In medical imag-
ing, the amplitude refers to the intensity or brightness of a pixel in an image.
The phase, on the other hand, represents the local orientation or direction of
the intensity changes in the image. In intra-domain adaptation process, we get
the intensity-shifted source domain by integrating the amplitude and phase from
the intensity-transformed and the original source domain, respectively. Our pro-
posed model learns to extract intensity-invariant representation based on a self-
adversarial training approach [27] by leveraging the intensity-shifted and original
source domain. The self-adversarial disentangling method can effectively pre-
train models that are robust to intensity variations (i.e., domain shift problem).
Based on the pretrained model using the source domain only, in the inter-domain
adaptation process, we reconstruct a novel amplitude-mixed target domain by
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mixing the amplitudes from the source and target domains, respectively, utilizing
the mixup technique [25]. Unlike low-frequency domain replacement methods,
mixing all-frequency domains can include low-level statistics from the target
domain while effectively preserving low-level statistics of the source domain.
Through domain transfer using the amplitude-mixed target domain, we solved
the domain shift problem and demonstrated it in the brain disease classification
task.

The main contributions of this work are as follows: (1) We propose a novel
image translation-based adversarial training network by frequency mixup manip-
ulation to exploit the semantic information of the source and target domains
without loss of information in the frequency domain. (2) We show the generaliz-
ability of our proposed method in the pretraining step through self-adversarial
disentangling by utilizing the frequency manipulation of the intensity-shifted
source domain. (3) Our proposed method outperforms the existing methods for
UDA robustly.

2 Related Work

2.1 Frequency-Based UDA

Unsupervised domain adaptation (UDA) has been explored to transfer knowl-
edge from a sufficiently labeled (source) domain to an unlabeled unseen (target)
domain. Recent studies [22,24] reveal that a simple alignment of the frequency
domain between the source and target distributions can remarkably improve the
performance of UDA. On the one hand, Yang et al. [22] proposes Fourier domain
adaptation (FDA) by replacing the source frequency with the target frequency
at the low-level to resolve the discrepancy between the source and target dis-
tributions. To be specific, the frequency replacement results in a reconstructed
source image in the target style, which presents a reduced disparity between
different domains. They suggest that a simple Fourier transform operation can
achieve state-of-the-art performance on domain adaptation benchmarks without
requiring individual training for domain alignment. On the other hand, Zakazov
et al. [24] proposes a very light and transparent approach to perform test-time
domain adaptation. The idea is to substitute the target low-level frequency space
components that are deemed to reflect the style of an image.

As such, most frequency-based methodologies reconstruct images by replac-
ing low-level frequencies through Fourier transform operations in each domain.
This demonstrates improved UDA performance through a simple alignment
of low-level statistics between source and target distribution. However, these
methods encounter limitations in accurately discerning between low and high-
frequency regions, which subsequently imposes a challenge in manually pinpoint-
ing the optimal region for enhancing performance. To alleviate these problem, we
introduce a frequency mixup strategy by exploiting the full scale of the frequency
spectrum.
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Fig. 1. Overall framework of our proposed method that consists of intra-domain adap-
tation and inter-domain adaptation processes.

2.2 Adversarial Training for Domain-Invariant Features

Adversarial training [1,3,7,17] is a practical approach for learning domain-
invariant features by leveraging adversarial learning to minimize the domain dis-
crepancy between different datasets. The basic idea of adversarial training is to
train models that generate realistic data samples and distinguish between actual
and generated samples at the same time. In the context of domain-invariant
feature representation, by using a discriminator that attempts to distinguish
between source and target domain features, the feature encoder is encouraged to
learn domain-invariant representations that are not discriminative with respect
to domain labels. This minimizes the domain discrepancy, leading to more robust
and transferable features. In recent studies, Levi et al. [11] learns a feature rep-
resentation that is both robust and domain invariant. By using a variant of
DANN on the source domain and its corresponding target domain, the proposed
method learns a feature representation constrained not to discriminate between
the source and target examples and can achieve a more robust representation.
Yang et al. [23] proposes a novel dual-module network architecture to promote
learning domain invariant features. Furthermore, they improved performance by
using a discrepancy loss to find the discrepancy of the prediction results and the
feature distribution between the two modules.

3 Proposed Method

Let Xs ∈ R
h×w×d×1 denotes three-dimensional structural magnetic resonance

imaging (sMRI), and Ys refers to the category label in the source domain, i.e.,
Ds = {(Xs,Ys)}. In contrast, there is no category label in the target domain,
i.e., Dt = {(Xt)}. The goal of our proposed method is to train a classification
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model on Ds and Dt that can perform well on unseen target domains. As shown
in Fig. 1, we describe the crucial components of our proposed framework, which
comprises intra-domain adaptation for pretaining using the frequency manipula-
tion, attention-based feature encoder, and inter-domain adaptation for domain
transfer.

3.1 Intra-domain Adaptation

In the first step of an intra-domain adaptation process, we use random noise
transformation in the source domain to create an intensity-transformed source
domain Xis. Then we can get an identity-shifted source domain, which maintains
the semantic characteristics of the source domain while containing the informa-
tion of different intensity distributions. For this purpose, we utilize FFT algo-
rithm [14] in mixing the information of the intensity-transformed and the original
source domain. The amplitude of the intensity-transformed source domain and
the phase of the original source domain is combined through iFFT process to syn-
thesize the intensity-shifted source domain. In detail, let A, P be the amplitude
and phase components of the FFT F of an image. And then they fed to iFFT
to generate the reconstructed intensity-shifted source domain DIS as follows:

DIS = F−1(A(F (Xis)) × P(F (Xs))). (1)

We adopted a label classifier CL for identifying the label of the given images
and an intensity discriminator CI which plays a role in making the encoder E to
be robust in intensity differences. The cross-entropy loss Lce for minimizing CL
and maximizing CI with gradient reversal layer [3] is as follows:

Lcls = Lce(CL(Xs,Ys)),Lint = Lce(CI(X,Yi)). (2)

3.2 Attention-Based Feature Encoder

We design a 3D convolutional neural network to extract features of brain MRIs
from source and target domains. The feature encoder E includes 10 convolu-
tional layers comprised of 3 × 3 × 3 kernels, followed by batch normalization
and ReLU in each convolution layer. Subsequently, the downsampling operation
is conducted to the even-numbered convolution layers for hierarchical feature
extraction. Previous studies [12,13,20] have demonstrated that brain disorders
are highly associated with specific regions in the brain. Based on this proposi-
tion, we designed an attention module to automatically identify brain regions
closely related to brain diseases in brain MRIs. As shown in Fig. 1, the mixed
feature generated by the last layer of the feature encoder is used as an input
of the proposed attention module. In the spatial attention module, the outputs
of average pooling and max pooling from the mixed feature are concatenated.
Then, they pass through a convolution layer to generate spatial attention maps
AM. Finally, the sigmoid function δ is used to calculate the attentive score of
AM. Mathematically, the spatial attention map SA is defined as:

SA = δ(Conv3×3×3([AMmax,AMavg])). (3)
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To make our model robust to domain differences, we need to maintain atten-
tional consistency between SAs and SAt, which represents attention maps for
the source domain and target domain, respectively. We design an attention con-
sistency loss to transfer semantic information from the source domain to the
target domain. Attention consistency loss, which calculates the mean square
difference between SAs and SAt is defined as follows:

Latt =
1

N × H × W × D

N∑

i=1

‖SAs − SAt‖. (4)

3.3 Inter-domain Adaptation

In inter-domain adaptation process, we extract the frequencies of the source and
target domain, respectively, using FFT operation. Inspired by the mixup tech-
nique [25], we devise a novel image translation strategy by linearly interpolating
between the amplitude spectrum of two domains. The equation of the frequency
amplitude mixup FAM is defined as:

FAM = (1 − λ)A(F (Xt)) + λA(F (Xs)), (5)

where λ ∼ U(0, 1) refers to a random value within a fixed range.
The mixed amplitude spectrum is combined with the phase of the target

image and fed to iFFT, generating the reconstructed amplitude-mixed target
domain DMT as follows:

DMT = F−1(FAM × P(F (Xt))). (6)

To reduce the domain gap between the source and target domain, domain clas-
sifier CD is designed to distinguish MRI features from different domains, same
as the intra-domain adaptation step.

Ldom = Lce(CD(X,Yd)). (7)

3.4 Objective Function

Our objective function was performed with the goal of minimization even though
the negative loss for maximization was included for the domain classification
loss. Since our domain classifier already includes a gradient reversal layer in the
module, backpropagation is performed by multiplying a negative constant to
maximize the loss function. As a result, we jointly minimize the label classifi-
cation loss Lcls, the attention consistency loss Latt, and maximize the domain
classification loss Ldom. The overall objective function of our proposed method
is defined as follows:

Ltotal = Lcls + Latt − Ldom. (8)
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4 Experiments

4.1 Dataset

ADNI Dataset. We used the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, which is a public dataset utilized for brain disease-related
research [8]. This dataset consists of ADNI-1, ADNI-2, and ADNI-3, which refer
to the different site domains. We excluded data from ADNI-1 and ADNI-2, which
also belong to ADNI-3, for the sake of independent evaluation. After pruning,
ADNI-1 contains 431 subjects with T1-weighted sMRIs, and ADNI-2, ADNI-3
contain 360, 398 subjects, respectively.

AIBL Dataset. To demonstrate the effectiveness of domain adaptation in other
domains, we additionally used the Australian Imaging Biomarkers and Lifestyle
Study of Ageing (AIBL) dataset, which seeks to discover which biomarkers, cog-
nitive characteristics, and health and lifestyle factors determine the development
of Alzheimer’s disease. AIBL contains 577 subjects with T1-weighted sMRIs. We
conducted the experiment by dividing the training and test data at a ratio of
8:2 for all subjects in each domain.

4.2 Implementation

In the intra-domain adaptation process, we pretrained the model for 50 epochs
to adapt the feature encoder E from the source to the target domain. Subse-
quently, the trained feature encoder was fine-tuned for 100 epochs in the inter-
domain adaptation process. The best model selection was performed underlying
the AUC score via simple hold-out validation. As implementation details in both
steps (i.e., intra-/inter-domain adaptation process), Adam [10] is exploited as
the optimizer with an initial learning rate of 1e−4, and the batch size is set to 4.

4.3 Experiments and Analysis

In the experiments, we compared our proposed network with state-of-the-art
UDA methods [4,6,16], which have been widely used in modern medical imaging
tasks. We utilized the structure of our backbone feature encoder for experiment-
ing with DANN and Deep-CORAL. To demonstrate the validity of our proposed
method in various metrics, we utilized four metrics for performance evaluation
in the experiment, i.e., accuracy (ACC), sensitivity (SEN), specificity (SPE),
and AUC curve (AUC), which evaluate the classification performance. We con-
ducted an experiment, as shown in Table 1, based on a scenario for domain
adaptation from the source domain to the target domain. We can see that the
overall performance of our proposed method is better than that of the other
UDA approaches. This demonstrates that 1) Fourier frequency manipulation-
based self-adversarial disentanglement in intra-domain adaptation and 2) fre-
quency mixup-based domain transfer in inter-domain adaptation in our proposed
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Table 1. Performance of our proposed method and baseline methods in AD identifi-
cation (i.e., AD vs. CN classification) in different domain transfer settings.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 DANN [4] 84.77 75.00 92.50 83.75
Deep-CORAL [16] 84.72 75.00 92.50 83.75
AD2A [6] 86.11 75.00 95.00 85.00
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 DANN [4] 88.75 84.62 89.55 87.08
Deep-CORAL [16] 85.00 76.92 86.57 81.74
AD2A [6] 88.75 92.31 88.06 90.18
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 DANN [4] 77.01 69.23 83.33 76.28
Deep-CORAL [16] 74.71 64.10 83.33 73.72
AD2A [6] 78.16 92.31 66.67 79.49
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 DANN [4] 81.25 84.62 80.59 82.61
Deep-CORAL [16] 83.75 69.23 86.57 77.90
AD2A [6] 83.75 100.0 80.60 90.30
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL DANN [4] 74.14 69.56 75.27 72.42
Deep-CORAL [16] 87.07 65.22 88.17 80.46
AD2A [6] 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL DANN [4] 67.24 91.30 61.29 76.30
Deep-CORAL [16] 71.55 52.17 76.34 64.26
AD2A [6] 71.55 82.61 68.82 75.71
Ours 83.62 86.96 82.79 84.88

Table 2. Performance of our proposed method and ablating Fourier frequency manip-
ulation (FFM) in intra-domain adaptation.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 w/o FFM 87.50 71.87 100.0 85.93
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 w/o FFM 80.00 92.31 77.62 84.96
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 w/o FFM 77.01 76.92 77.08 77.00
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 w/o FFM 85.00 100.0 82.09 91.04
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL w/o FFM 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL w/o FFM 81.90 69.56 84.95 77.25
Ours 83.62 86.96 82.79 84.88
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method can effectively align domain distributions. We also visualized the domain
distribution adapted by our proposed method and the original domain distribu-
tion in Fig. 2 to verify the effectiveness of our proposed model in distribution
alignment.

Fig. 2. Visualization of (a) the original distribution and (b) the distribution after
adaptation of the proposed our method for each domain (i.e., ADNI-1, ADNI-2, AIBL).

Table 3. Performance of our proposed method and ablating attention consistency loss
(AC).

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 w/o AC 87.50 81.25 92.50 86.87
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 w/o AC 85.00 92.31 83.58 87.94
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 w/o AC 77.01 76.92 77.08 77.00
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 w/o AC 82.50 100.0 79.10 89.55
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL w/o AC 88.79 69.56 93.55 81.56
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL w/o AC 77.59 82.61 76.34 79.48
Ours 83.62 86.96 82.79 84.88
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Table 4. Performance of our proposed method and adopting two image translation
strategies in inter-domain adaptation.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 Fda [22] 80.55 87.50 75.00 81.25
Mixup [25] 88.89 84.37 92.50 88.44
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 Fda [22] 88.75 92.31 88.06 90.18
Mixup [25] 87.50 92.31 86.57 89.44
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 Fda [22] 78.17 66.67 87.50 77.08
Mixup [25] 75.86 61.54 87.50 74.52
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 Fda [22] 80.00 100.0 76.12 88.06
Mixup [25] 83.75 100.0 80.60 90.30
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL Fda [22] 81.90 78.26 82.79 80.53
Mixup [25] 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL Fda [22] 80.17 78.26 80.64 79.45
Mixup [25] 74.14 82.61 72.04 77.32
Ours 83.62 86.96 82.79 84.88

4.4 Ablation Analysis

In order to assess the efficacy of self-adversarial disentanglement using Fourier
frequency manipulation, we conducted an ablation experiment with and without
using Fourier frequency manipulation in the intra-domain adaptation process.
As seen in Table 2, utilizing Fourier frequency manipulation for the intensity-
shifted source domain results in better performance within overall evaluation
metrics. This reveals that manipulating frequencies of the source domain using
the Fourier transform operation can make the model robust to the intensity
differences.

Our proposed combination with the attention consistency loss empowers
the domain invariant semantic representations, thus enhancing diagnosis per-
formance on unseen target domains. Besides the attention consistency loss, our
attention module helps highlight discriminative regions across different domains,
while others can only focus on a single domain. To verify these attention mecha-
nisms, we conducted an ablation experiment with and without computing atten-
tion consistency loss in the inter-domain adaptation process. From Table 3, we
can derive that attention consistency loss is useful in boosting learning perfor-
mance.
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We also compared with the previous low-frequency replacing method (i.e.,
Fda [22]) and the vanilla mixup method [25] to demonstrate the effectiveness
of the proposed frequency mixup strategy, as shown in Table 4. Using the Fda
method, which replaces low-frequency, occurs overfitting in the high-frequency
region due to loss of low-frequency information [18] and showed poor results in
the overall evaluation metrics. The results of adopting the vanilla mixup tech-
nique are slightly better than those using Fda but worse than our proposed
method. Through this ablation study, we demonstrated the effectiveness of our
mixup technique at the frequency semantic-level rather than other mixing strate-
gies.

5 Conclusion

In this paper, we proposed a frequency mixup manipulation-based unsupervised
domain adaptation model to alleviate domain shifts in brain disease identifi-
cation. The proposed model comprises two main steps: intra-domain adapta-
tion and inter-domain adaptation. In the intra-domain adaptation step, a pre-
training process is conducted to enhance the intensity-invariant feature extrac-
tion capability of the model. This is achieved by using self-adversarial disen-
tangling with frequency manipulation-based intensity-shifted domains. In the
inter-domain adaptation step, a domain transfer process is performed, where
the reconstructed image through frequency mixup is used to train a model that
is robust to domain adaptation. Our experimental results demonstrate that the
proposed method outperforms state-of-the-art UDA methods in terms of accu-
racy and effectiveness.
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