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Abstract. In recent times, the estimation of affective states from phys-
iological data has garnered considerable attention within the research
community owing to its wide-ranging applicability in daily life scenarios.
The advancement of wearable technology has facilitated the collection of
physiological signals, thereby highlighting the necessity for a resilient
system capable of effectively discerning and interpreting user states.
This work introduces an innovative methodology aimed at address-
ing the Valence-Arousal estimation, through the utilization of physi-
ological signals. Our proposed model presents an efficient multi-scale
transformer-based architecture for fusing signals from multiple mod-
ern sensors to tackle Emotion Recognition task. Our approach involves
applying a multi-modal technique combined with scaling data to estab-
lish the relationship between internal body signals and human emotions.
Additionally, we utilize Transformer and Gaussian transformation tech-
niques to improve signal encoding effectiveness and overall performance.
Our proposed model demonstrates compelling performance on the CASE
dataset, achieving an impressive Root Mean Squared Error (RMSE) of
1.45.

Keywords: Affective states analysis · Physiological signals ·
Multimodal · Mental health

1 Introduction

Recognizing emotions is a fundamental aspect of human communication, and the
ability to accurately detect emotional states has significant impacts on a range
of applications, from healthcare to human-computer interaction. Emotions are
often reflected in physiological signals [26], facial [8], and speech [24]. Recently,
the use of physiological signals for affective computing has gained considerable
attention due to its potential to provide objective measures of emotional states
in real time [21].

Recently, there has been a growing interest in developing machine learn-
ing algorithms for affective computing using physiological signals [2,4,5,22,28].
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These algorithms can be used to classify emotional states, predict changes in
emotional states over time, or identify the specific features of physiological sig-
nals that are most informative for detecting emotional states. There has also been
interested in developing wearable sensors that can capture physiological signals
in real-world settings, such as in the workplace or in social situations [20].

The use of end-to-end deep learning architectures for physiological signals
has the potential to simplify the development and deployment of an emotion
recognition system [21]. By eliminating the need for preprocessing steps, these
architectures can reduce the complexity and time required for system develop-
ment, as well as improve the scalability and accuracy of the system. In addition,
end-to-end architectures can enable the development of systems that can process
multiple physiological signals simultaneously, such as heart rate, respiration, and
electrodermal activity, providing more comprehensive and accurate measures of
emotional states.

Despite the potential benefits of end-to-end deep learning architectures for
affective computing, there are still challenges that need to be addressed. One
challenge is to develop architectures that can handle noisy and non-stationary
physiological signals, which can be affected by movement artifacts, signal drift,
and other sources of noise. Another challenge is to ensure that the learned fea-
tures are interpretable and meaningful, which can help improve the transparency
and explainability of the system.

In this paper, we propose an end-to-end multi-scale architecture for continu-
ous emotion regression with physiological signals. We evaluate the performance
of the proposed architecture using CASE dataset [25], which contains data col-
lected from experiments carried out in a laboratory setting.

2 Related Works

2.1 Continuous Emotion Recognition from Multimodal
Physiological Signal

The utilization of physiological signals has been widely acknowledged as one
of the most reliable data forms for affective science and affective computing.
Although individuals are capable of manipulating their physical signals such
as facial expressions or speech, consciously controlling their internal state is a
daunting task. Therefore, analysis of signals from the human body represents a
reliable and robust approach to fully recognizing and comprehending an individ-
ual’s emotional state [1,26]. This reliability factor is especially crucial in medical
applications, such as mental health treatment or mental illness diagnosis.

Recognizing affect from physiological data remains a significant challenge, not
only during the data acquisition process but also in terms of emotion assessment.
Laboratory-based research dominates the field of affective science due to the
control it affords over experimental variables. Researchers can carefully select
and prepare emotional stimuli, and employ various sensor devices to trace and
record a subject’s emotional state with minimal unexpected event, interference
[21]. However, most of these studies rely on discrete indirect methods, such as
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quizzes, surveys, or discrete emotion categories for emotion assessment, which
overlook the time-varying nature of human emotional experience. Sharma et al.
[25] introduced Joystick-based emotion reporting interface (JERI) to overcome a
limitation in emotion assessment. JERI enables the simultaneous annotation of
valence and arousal, allowing for moment-to-moment emotion assessment. The
Continuously Annotated Signals of Emotion (CASE) dataset, acquired using
JERI, provides additional information for researchers to identify the timing of
emotional triggers.

In addition, it is claimed that a single physiological signal is relatively diffi-
cult to precisely reflect human emotional changes. Therefore, recently, there has
been much research focusing on detecting human emotion through multimodal
physiological signals. There are many types of physiological signal used in these
studies. While some studies record heart-related signals such as electrocardio-
graphic (ECG) [7,17,18], blood volume pulse (BVP) [15,33], others use electrical
activity of the brain (Electroencephalogram/EEG) [13,14] or muscle electrical
reaction (Electromyogram/EMG) [19,23]. Furthermore, some even employ skin
temperature (SKT) [19], skin sweat glands (EDA) [13,23], the depth and rate of
breathing (respiratory/RSP) [23].

2.2 Transformer-Based Method for in Multimodal Emotion
Recognition from Physiological Signal

Similar to other emotion recognition problems that involve physical signals, affec-
tive computing in physiological data has witnessed extensive adoption of machine
learning techniques, particularly deep learning methodologies. Dominguez et al.
[4] employed various conventional machine learning techniques, including Gaus-
sian naive Bayes, k-Nearest Neighbors, and support vector machines, for valence-
arousal estimation. However, these approaches are heavily dependent on the
quality of handcrafted feature selection and feature extraction processes. To
overcome this challenge, other studies [5,22,28] proposed the use of Deep Learn-
ing techniques for an end-to-end approach, where the model learns to extract
features automatically without the need for pre-designed feature descriptors.

With the advancement of deep learning, various state-of-the-art techniques
have been used to analyze physiological signals. Santamaria et al. [22] used con-
volutional neural networks (CNN) with 1D convolution layers for emotion detec-
tion, while Harper et al. [5] combined CNNs with frequently used recurring neural
networks (RNN) for emotion recognition from ECG signals. Since their introduc-
tion in 2016, Transformers [27] have emerged as preferred models in the field of
deep learning. Their robust performance in natural language processing, a type
of data that shares some characteristics similar to time-series data, has demon-
strated the potential of Transformers when applied to time-series signals. As a
result, recent research in the time series domain has utilized Transformers as the
core module in their model architecture [9,10,30]. For physiological signals, some
studies have proposed using Transformers and their variants to detect emotions
[28,29,31,32]. In the works of Vazquez et al. [28,29], they focused on applying
pre-trained Transformers for multimodal signal processing. However, this is still



116 N. T. Vu et al.

a very basic application of Transformer modules. Wu et al. [31] and Yang et
al. [32] proposed using more advanced techniques of Transformer-based models,
which are self-supervised and Convolution-augmented transformers for single-
and multimodal signal processing. Although these studies have demonstrated the
effectiveness of transformers for physiological signals, they often feed the model
with fixed original size signals, which may lead to the loss of global feature infor-
mation. To address this issue, we propose a new multi-scale transformer-based
architecture for multimodal emotional recognition.

3 Proposed Approach

Fig. 1. An overview of our proposed architecture.

3.1 Problem Definition

The emotion recognition in multimodal physiological signal problem takes as
input 8 physiological signals, namely ECG, BVP, EMG CORU, EMG TRAP,
EMG ZYGO, GRS, RSP and SKT, extracted from human subjects during
emotion-inducing stimuli. This is denoted as the 8 sequence with L length. In
the affective computing field, the objective of the emotion recognition problem
varies depending on the indicated emotional models. In the scope of this study,
following the use of the SAM (Self-Assessment Manikin) [3] model of the CASE
dataset, the problem objective is the estimated Valence-Arousal (V-A) value.
The V-A score consists of two continuous floating-point numbers ranging from
0.5 to 9.5. A value of 0.5 denotes the most negative valence or the lowest arousal,
5 indicates the neutral valence or arousal, and 9.5 indicates the most positive
valence or the highest arousal.
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3.2 Methodology

We constructed a new multiscale architecture for the estimation of valence
arousal from 8 physiological signals. Our architecture consists of two core
modules: Feature encoding module and multiscale fusion module. The process
involves feeding raw physiological data into a feature encoding module, designed
to extract vital information across varying global and local scales. Subsequently,
the multi-scale features are fused and utilized for the estimation of Valence-
Arousal scores. The overall architecture is shown in Fig. 1.

Feature Encoding. To enable the feature encoding module to extract global
features for the estimator and eliminate noise and interference information from
the input, we employ 1-Dimensional average pooling to scale the 8 input signals
into three different lengths: L, L/2, and L/4. This process helps to improve the
model’s ability to extract useful information and eliminate unwanted noise and
interference.

Then, we simultaneously apply two types of feature encoders, which are
the Gaussian transform [16] and the transformer encoder [27]. The transformer
encoder block is used as multi-headed self-attention as its core mechanism. Given
an input sequential signal S ∈ RL×C , where L represents the length of the signal
sequence and C = 8 is the number of channels (signal modalities), we apply a
positional encoding and embedding layer to convert the raw input into a sequence
of tokens. Subsequently, the tokens are fed into transformer layers consisting of
multi-headed self-attention (MSA) [27], layer normalization (LN), and multilayer
perceptron (MLP) blocks. Each element is formalized in the following equations:

yi = MSA(LN(xi)) + xi (1)

xl+i = MLP (LN(yi)) + yi (2)

Here, i represents the index of the token, and xi denotes the generated feature’s
token. It is worth noting that since the multi-headed self-attention mechanism
allows multiple sequences to be processed in parallel, all 8 signal channels are
fed into the Transformer Encoder at once.

The Gaussian transform [16] is traditionally employed to kernelize linear
models by nonlinearly transforming input features via a single layer and subse-
quently training a linear model on top of the transformed features. However, in
the context of deep learning architectures, random features can also be leveraged,
given their ability to perform dimensionality reduction or approximate certain
functions via random projections. As a non-parametric technique, this trans-
formation maps input data to a more compressed representation that excludes
noise information while still enabling computationally efficient processing. Such
a technique may serve as a valuable supplement to Transformer Encoder archi-
tectures, compensating for any missing information.
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Multi-scale Fusion. From the features extracted from the feature encoder
module on different scales, we fuse them using the concatenation operation. The
concatenated features are then fed through a series of fully connected layers
(FCN) for the estimation of the 2 valence and arousal scores. The Rectified
Linear Unit (ReLU) activation function is chosen for its ability to introduce
non-linearity into the model, thus contributing to the accuracy of the score esti-
mation. The effectiveness of this approach lies in its ability to efficiently estimate
the desired scores while maintaining a simple and straightforward architecture.

4 Experimental and Results

4.1 Dataset

CASE dataset [25] contains data from several physiological sensors and contin-
uous annotations of emotion. These data were acquired from 30 subjects while
they watched several video-stimuli and simultaneously reported their emotional
experience using JERI. The devices used include sensors for electrocardiography
(ECG), blood volume pulse (BVP), galvanic skin response (GSR), respiration
(RSP), skin temperature (SKT) and electromyography (EMG). These sensors
return 8 types of physiological signals: ECG, BVP, EMG CORU, EMG TRAP,
EMG ZYGO, GRS, RSP and SKT. Emotional stimuli consisted of 11 videos,
ranging in duration from 120 to 197 s. The annotation and physiological data
were collected at a sampling rate of 20 Hz and 1000 Hz, respectively. The initial
range of valence arousal scores was established at [−26225, 26225].

We evaluate our approach with four different scenarios:

– Across-time scenario: Each sample represents a single person watching a single
video, and the training and test sets are divided based on time. Specifically,
the earlier parts of the video are used for training, while the later parts are
reserved for testing.

– Across-subject scenario: Participants are randomly assigned to groups, and
all samples from a given group belong to either the train or test set depending
on the fold.

– Across-elicitor scenario: Each subject has two samples (videos) per quadrant
in the arousal-valence space. For each fold, both samples related to a given
quadrant are excluded, resulting in four folds, with one quadrant excluded in
each fold.

– Across-version scenario: Each subject has two samples per quadrant in the
arousal-valence space. In this scenario, one sample is used to train the model,
and the other sample is used for testing, resulting in two folds.

4.2 Experiments Setup

Our networks were implemented using the TensorFlow framework. We trained
our models using the AdamW optimizer [12] with a learning rate of 0.001 and
the Cosine annealing warm restarts scheduler [11] over 10 epochs. The MSE loss
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function was used to optimize the network, and the evaluation stage is done with
RMSE. The sequence length was set to 2048. We utilized 4 transformer layers for
the transformer encoder, with each Attention module containing 4 heads. The
hidden dimension of the transformer was set to 1024. All training and testing
processes were conducted on a GTX 3090 GPU.

Table 1. RMSE on the test data with different scenarios.

Approach Scenario Arousal Valence

Hinduja et al. [6] Across-time 1.82 1.76

Across-subject 1.33 1.31

Across-elicitor 1.03 1.10

Across-version 0.99 1.07

Avg 1.292 1.31

Ours - without
transformer on original
signals

Across-time 1.550 1.612

Across-subject 1.478 1.592

Across-elicitor 1.600 1.653

Across-version 1.595 1.548

Avg 1.556 1.601

Ours Across-time 1.503 1.639

Across-subject 1.336 1.345

Across-elicitor 1.509 1.514

Across-version 1.369 1.352

Avg 1.430 1.463

4.3 Results

Table 1 presents the results of our model in the test set in terms of the evalu-
ation at different scenarios. Overall, the final RMSE score for the valence and
arousal estimation task that we gain is 1.447. Our model showcases promising
performance in comparison to the approach presented by Hinduja et al. [6]. It
achieves a slightly lower score of 0.077 in Arousal and 0.153 in Valence score.

In detail, our model achieved the best performance in the across-subject sce-
nario, with an arousal score of 1.336 and a valence score of 1.345. These results
suggest that our model can effectively generalize to new subjects and accurately
capture the emotion change after fully viewing the entire video-viewing process.
Meanwhile, the relatively low performance in the across-elicitor scenario, with
scores of 1.509 and 1.514 in arousal and valence, respectively, suggests that our
model did not perform well in inferring emotional states that were not seen dur-
ing training, given the specific emotional states learned previously. In the context
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of the across-time scenario, our results demonstrate a significantly improved per-
formance compared to that of Hinduja et al. [6]. Specifically, our model achieves
noteworthy enhancements in both Arousal and Valence scores, with a margin of
0.317 in Arousal and 0.121 in Valence. This substantial improvement opens up
promising avenues for our future research.

5 Conclusion

This paper proposes a new multiscale architecture for multimodal emotional
recognition from physiological signals. Our approach involves encoding the sig-
nal with the transformer encoder at multiple scales to capture both global and
local features and obtain more informative representations. Our method achieved
decent results on the CASE dataset.
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