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Preface for ACPR 2023 Proceedings

Pattern recognition stands at the core of artificial intelligence and has been evolving
significantly in recent years. These proceedings include high-quality original research
papers presented at the 7th Asian Conference on Pattern Recognition (ACPR 2023),
which was successfully held in Kitakyushu, Japan fromNovember 5th to November 8th,
2023.The conferencewelcomedparticipants fromall over theworld tomeet physically in
beautifulKitakyushu to exchange ideas, aswedid in our pastACPRseries of conferences.
The conference was operated in a hybrid format allowing for both on-site and virtual
participation. With all your participation and contributions, we believe ACPR 2023 was
a special and memorable conference in history!

ACPR 2023 was the 7th conference of its series since it was launched in 2011 in
Beijing, followed by ACPR 2013 in Okinawa, Japan, ACPR 2015 in Kuala Lumpur,
Malaysia, ACPR 2017 in Nanjing, China, ACPR 2019 in Auckland, New Zealand, and
ACPR 2021 in Jeju Island, South Korea. As we know, ACPR was initiated to promote
pattern recognition theory, technologies and applications in theAsia-Pacific region. Over
the years, it has actually welcomed authors from all over the world.

ACPR 2023 focused on four important areas of pattern recognition: pattern recog-
nition and machine learning, computer vision and robot vision, signal processing, and
media processing and interaction, covering various technical aspects.

ACPR 2023 received 164 submissions from 21 countries. The program chairs invited
141 program committee members and additional reviewers. Each paper was single
blindly reviewed by at least two reviewers, and most papers received three reviews
each. Finally, 93 papers were accepted for presentation in the program, resulting in an
acceptance rate of 56.7%.

The technical programofACPRwas scheduled over four days (5–8November 2023),
including two workshops, four keynote speeches, and nine oral sessions.

The keynote speeches were presented by internationally renowned researchers. Tat-
suya Harada, from University of Tokyo, Japan, gave a speech titled “Learning to recon-
struct deformable 3D objects”. Longin Jan Latecki, from Temple University, USA, gave
a speech titled “Image retrieval by training different query views to retrieve the same
database images”. Jingyi Yu, Shanghai Tech University, China, gave a speech titled
“Bridging recognition and reconstruction: Generative techniques on digital human, ani-
mal, and beyond”. Mark Nixon, from University of Southampton, UK, gave a speech
titled “Gait Biometrics – from then to now and the deep revolution”.

Organizing a large event is a challenging task, requiring intensive teamwork. We
would like to thank all members of the organizing committee for their hard work, with
guidance from the steering committee. The program chairs, publication chairs, public-
ity chairs, workshop chairs, tutorial chairs, exhibition/demo chairs, sponsorship chairs,
finance chairs, local organizing chairs, andwebmaster all led their respective committees
and worked together closely to make ACPR 2023 successful. Our special thanks go to
the many reviewers, whom we cannot name one by one, for constructive comments to
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improve the papers. We thank all the authors who submitted their papers, which is the
most important part of a scientific conference. Finally, we would like to acknowledge
the student volunteers from our local organizers.

We hope this proceedings could be a valuable resource for the researchers and
practitioners in the field of pattern recognition.

November 2023 Cheng-Lin Liu
Yasushi Yagi

Tohru Kamiya
Michael Blumenstein

Huimin Lu
Wankou Yang
Sung-Bae Cho
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Anisotropic Operator Based on Adaptable
Metric-Convolution Stage-Depth Filtering

Applied to Depth Completion

Vanel Lazcano1(B) , Iván Ramírez2, and Felipe Calderero3

1 Facultad de Ciencia, Ingeniería y Tecnología, Núcleo de Matemática, Física y
Estadística, Universidad Mayor, Manuel Montt 318, Providencia, Chile

vanel.lazcano@umayor.cl
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Mayor, Manuel Montt 318, Providencia, Chile
ivan.ramirez@umayor.cl

3 VP @ Ladorian - Digital School Madrid, Madrid, Spain

Abstract. Nowadays, depth maps are a crucial source of information for
many applications based on artificial vision. Applications such as video
games, 3D cinema, or unmanned autonomous vehicle control strongly
depend on data extracted from depth maps. Depth maps can be esti-
mated by algorithms or acquired by sensors (such as Kinect sensor, Time-
of-Flight camera, or LiDAR sensor). Acquired depth data frequently con-
tains holes or data with low confidence levels. An interpolation model is
necessary to solve the problem of lack of data or complete these holes in
depth maps. We constructed a manifold given the image domain and a
metric whose parameters are learned from the data. The primary app-
roach is to provide the parameterized metric enough flexibility to esti-
mate the manifold’s shape correctly. Additionally, the proposal embed-
ded depth estimation in a pipeline considering convolution stages and
the anisotropic metric. We estimated the parameters’ proposal using the
PSO algorithm. We assessed our proposal using the publicly available
KITTI Depth Completion Suite dataset. Obtained results show that this
proposal outperforms our previous implementation and other contempo-
rary models. Additionally, we performed an ablation study of the model
showing that the critical component of the model is the first convolution
stage, meaning this stage that enforces the edges of the color image is a
crucial component of the model.

Keywords: Depth maps · Infinity Laplacian · Depth Completion ·
Depth Filtering

1 Introduction

Nowadays, depth maps are essential information for many applications, such as
3D cinema, video games, or unmanned autonomous vehicles. The depth map is a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-47665-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47665-5_1&domain=pdf
http://orcid.org/0000-0002-5841-1676
https://doi.org/10.1007/978-3-031-47665-5_1
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picture of a scene where every element of the picture contains the distance from
each object in the scene concerning a fixed point (a sensor). A Depth map can be
acquired by an algorithm (stereo algorithm) or sensor (Kinect, Time-Of-Flight
Camera, or LiDAR). The information given by the sensor presents points with
low confidence levels and regions of the depth map with a need for more informa-
tion. The high-performance standards of the applications make the completion
of depth maps in areas without data necessary. This paper proposes a model
to interpolate depth data based on the infinity Laplacian. We solve numerically
the degenerated second-order partial differential equation associated with the
infinity Laplacian. Given the domain Ω ⊂ R

2 and a metric dx,y we constructed
a manifold M = (Ω, dxy), in which the available data is embedded. We solve
the second-order degenerated partial differential equation in the manifold.

The contribution of this paper is:

i) The addition of a filter that eliminates outliers in the available depth data.
ii) The use of an anisotropic metric.
iii) Ablation study.

In Sect. 2 we present a literature review of similar works to the one we pro-
pose. In Sect. 3, we propose a model to complete sparse depth maps. Section 5
presents the implementation of the Particle Swarm Optimization algorithm to
estimate the parameters of the proposal. In Sects. 6 and 7, we present our per-
formed experiments and the used dataset, and finally, we give our conclusions
in Sect. 8.

2 Related Works

The objective of the depth completion is to interpolate sparse depth maps in
order to generate dense depth maps. Some depth interpolation models use only
the available depth data. In contrast, others use additional information (a scene
color reference image) to perform the depth completion guided by the color
image [10,15,20,24]. The idea behind guided methods is to guide the completion
process by taking into account regional characteristics of the image, such as
edges or smoothness.

Nowadays, many proposals use CNN (Convolutional Neural Networks) to
interpolate sparse depth maps [4,6,8,15,18,25]. In work presented in [18], a depth
completion process is performed considering CNN without the reference color
image. Authors simultaneously interpolate the sparse depth information and
reconstruct a scene gray-level image. Authors evaluated their model in a publicly
available dataset and found that it outperforms contemporaneous models that
use data extracted from that color reference image [25].

In [6], the authors represented the image using Depth Coefficients, avoiding
inter-object mixing. In [4], a model is presented to classify depth information
using a normalized convolutional neural network (NCNN) network-based input
trust.
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The work in [16] uses spatial dispersion networks. These networks, which are
affinities-based models, are used to finish depth maps, but this model needs
help with under-representing fixed affinities and over-smoothing. In general,
estimates of independent affinity matrices are over-parameterized using conven-
tional approaches. The authors provided a successful model that uses a dynamic
attention-based technique to discover the affinity between neighboring pixels.
Diffusion suppression, attention maps, and a non-linear propagation model are
all used in the model. The model avoids over-smoothing the final solution and
produces better results with fewer iterations than traditional spatial propagation
networks.

On the other hand, methods that do not use neural networks are presented
in [7,14,23]. The work of Lazcano et al. [14] presents an experimental assess-
ment of a practical implementation of the infinity Laplacian used to interpolate
depth maps. Authors compared the performance of their proposal using differ-
ent metrics (L1, L2, and L 1

2 ) and different color spaces (RGB, XYZ, CIE-Lab,
and CMY). The authors applied their proposal to depth and optical flow com-
pletion. The model called PDC [23] presents a non-deep learning model (or
classical model). The authors remove misaligned points from the depth data
by filtering it. The reference color image is then divided into superpixels. The
authors constructed a convex hull as a set of the most inline points used to
define a superpixel. This superpixel is used to fit the local depth data if a plane
is inadequate locally. The filtered and residual data are then interpolated using
a pinhole camera model. According to their KITTI Depth Completion Suite
findings, obtained results using the proposal outperform models based on more
traditional concepts, such as variational models or morphological operations. A
piecewise depth map completion model is stated in the work of Krauss et al.
[7]. The model divides color images into superpixels based on regions with sim-
ilar depth values. They suppose these superpixels correspond to pixels from the
same objects and were acquired using a cost map. The results are comparable
to those of state-of-the-art algorithms. In their analysis of the KITTI dataset,
the authors show the effects of each processing stage and overall performance.

The authors in [1] applied the AMLE or infinity Laplacian to elevation mod-
els or optical flow completion in [14,21]. The authors of [13] applied the bAMLE
to complete depth data but did not experiment with various metrics or color
spaces. Furthermore, surfaces embedded in R

3 given a few iso-level curves were
completed using the Infinity Laplacian operator [2]. Finally, new databases have
been constructed, and protocols are defined to systematically assess the perfor-
mance of depth completion methods such as KITTI [25] or NYU_V2. Recently
the work in [5] shows applications of the infinity Laplacian in segmentation,
completion of color images, and clustering.

3 Proposed Model

We used a pipeline presented in [12] to complete depth maps. We can follow
two paths in Fig. 1. The first is the green path, and the second is the red-dotted
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path. We use a binary parameter, “reversible”, to select which path we follow. If
the parameter is 0, we follow the green path, and if the parameter is 1, we follow
the red-dotted path. First, we explain the green path. The pipeline starts with a
color reference image of the scene. To enforce the color reference images’ features,
we processed the image with a battery of Gabor Filters and max pool the output
of the filters (namely stage SC1), and to eliminate outliers, we used a pre-filter
applied to the acquired depth map. Then, the infinity Laplacian interpolates the
available depth data. Finally, the output of the infinity Laplacian is filtered by
a battery of convolutional filters, and the output is max pooled (SC2).

In Fig. 1, we show the pipeline we will explain in detail in this section.

Fig. 1. Pipeline used to complete depth maps.

3.1 Interpolation Model

To interpolate the data, we use the infinity Laplacian. Let us consider u : Ω ⊂
R

2 → R the map to interpolate. We solve the infinity Laplacian to interpolate
the available data,

Δ∞,gu = 0 ∈ Ω, (1)

with the boundary condition u
∣
∣
∂O = θ, and O is where the available data is

located and θ is the available depth data. Given the domain Ω and the metric
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g, we constructed a manifold M = (Ω, g) where the infinity Laplacian should
be solved. To solve the infinity Laplacian in the manifold, we solve,

Δ∞,gu = D2
Mu

( ∇u

|∇u| ,
∇u

|∇u|
)

= 0, (2)

which is a degenerated second-order partial differential equation.

3.2 Depth Map Filtering

Pre-filtering of the data eliminates some outliers of the acquired depth data. The
pre-filtering is a morphological operation that depends on the depth values of a
pixel x and its neighborhood. Figure 2 shows the considered neighborhood and
the central point,

B(x)

B(x)

(a) (b)

Fig. 2. Neighborhood B(x) is considered to implement the depth filtering. The neigh-
bor is of the size P around the x point. (a) The neighborhood of size P = 1. (b)
neighborhood of size P = 2

Figure 2 shows the neighborhood around every point x of the acquired depth
map. The acquired data has the following codification:

depth(x) =

{

depth(x) = −1 no data
depth(x) �= −1 available data

(3)

The main idea is that we start with a point, called the central point x. We check
if this point is valid, meaning that it is not an outlier (depth(x) �= −1). If it is
valid, we look at all the points around it (y ∈ B(x)). If all of these points y are
also valid and their depth is less than the depth of the central point, then we
know that the central point is an outlier. In this case, we eliminate the point by
setting its depth(x) to −1.

Practically, we implemented this filtering addition to the depth value of the
surrounding points of x and compared it with a threshold (θf ) times depth(x),
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i.e.:

if

⎛

⎝
∑

y∈B(x), y �=x

[θfdepth(y) > depth(x)]

⎞

⎠ > 1, depth(x) = −1. (4)

We estimated the θf in the training stage.

(a) (b) (c)

Fig. 3. Examples of depth filtering. (a) Reference color image. (b) Acquired depth
data. (c) Filtered depth data.

In Fig. 3, we show an example of the depth data Pre-filtering. Figure 3 (a)
shows a cropped color reference image. In (b), we show its corresponding depth
map acquired by a laser. In (c), we show the output of our filter. We observe in (b)
that most of the data (in yellow color) on the car’s surface present larger depth
values than the surrounding available data, meaning that all those yellow points
are outliers. Our filter eliminates these outliers, as we show in (c). The resulting
depth map contains less available data, but the new data has less outliers that
finally improves the performance of our model.

The Fig. 3 (a) shows a cropped color reference image of a car. The second
image (b) shows the corresponding depth map of the car, which was acquired by
a LiDAR. The third image (c) shows the output of a proposed Filter that was
applied to the depth map (b).

In the second Fig. 3 (b), we can see that the data on the car’s surface (in
yellow color) has larger depth values than the surrounding data. This means that
these yellow points are outliers (depth data that are significantly different from
the surrounding data). The filter in the third image (c) eliminates these outliers.
In other words, the filter helps to remove inaccurate data from the depth map,
which makes the depth map more accurate and reliable.

4 Practical Model Implementation

As presented in [19], infinity Laplacian can be computed as the average value
between the positive eikonal operator and the negative infinity operator,

‖∇u(x)‖+ξ + ‖∇u(x)‖−
ξ

2
= 0. (5)
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The positive eikonal operator is a non-local gradient defined as:

‖∇u(x)‖+ξ =
u(y) − u(x)

dxy
, (6)

where y is a position in a neighborhood N (x) around x, that maximizes the
ratio in Eq. 6, and dxy is the distance between x and y. The negative eikonal
operator is a non-local gradient defined as:

‖∇u(x)‖−
ξ =

u(z) − u(x)
dxz

, (7)

where z is a position in a neighborhood N (x) that maximizes the ratio in Eq. 7.

4.1 Numerical Model for the Infinity Laplacian

Given the above definitions, the numerical model for the infinity Laplacian as in
[13]: Let y, z be the location that maximizes the positive eikonal and minimizes
the negative eikonal operator, respectively. Taking into account these definitions
is possible to state the infinity Laplacian,

1
2

((
u(y) − u(x)

dxy

)

+
(

u(z) − u(x)
dxz

))

= 0. (8)

The solution of Eq. (8) is given by:

u(x) =
dxzu(y) + dxyu(z)

dxz + dxy
. (9)

The iterated version of the infinity Laplacian is given by,

uk+1(x) =
dxzu

k(y) + dxyuk(z)
dxz + dxy

k = 1, 2, 3, ... (10)

4.2 Considered Metric

As we see in the section above, the eikonal operator depends on the distance
between two points in the manifold. To estimate the distance, we use a metric
composed of one spatial term and a photometric term. We considered a metric
different from L2; the considered metric gives more flexibility to the manifold’s
shape estimation. We state the assumed metric:

dxy = (κx‖x − y‖p + κy‖I(x) − I(y)‖s)q (11)

where κx, κc, p, q, and r are parameters of the model that have to be empirically
estimated.

In this paper, we considered an adaptable metric. This metric has a balance
term, balancing between the space and photometric terms. The expression for
this metric is given by:

dxy = (κxγ(x)‖x − y‖p + κc(1 − γ(x))‖I(x) − I(y)‖s)q (12)
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where γ(x) is given by,

γ(x) =
1

1 + eβγ(‖x−y‖−τγ‖I(x)−I(y)‖) (13)

where βγ and τγ are parameters of the balance term that must be empirically
estimated. This balance term is defined as γ : Ω ⊂ R

2 → [0, 1]. The main
idea behind the balance term [9] is that if the spatial term is larger than the
photometric term (γ(x) ≈ 0), the distance will be measured using mainly ‖I(x)−
I(y)‖. On the other hand, if the photometric term is larger than the spatial
term (γ(x) ≈ 1), the distance will be computed mainly using the spatial term.
If γ(x) = 0.5, we recover the distance stated in Eq. 11. In Fig. 4 we show and
example of computation of balance term γ(x) in a color reference image, In Fig. 4
in (a), we present a color reference image. In (b), we show the balance term color
coded. In Yellow we present values of γ(x) > 0.5 and in orange 0γ(x) < 0.5.
Comparing the color image (a) and γ(x) in (b), we observe that larger values of
γ are located in regions where shadows are present, and mainly the spatial term
is used to compute distances. Both terms are used in other regions, such as the
sky or on the road.

(a) (b)

Fig. 4. Example of balance term γ(x) computer for an urban color reference image.
(a) color reference image. (b) color-coded balance map γ(x) larger gamma values are
color-coded with yellow and orange representing γ = 0.46.

5 Training the Model

We have estimated the parameter of our model using the KITTI dataset [17].
We used five color reference images, their corresponding depth, and their ground
truth. We estimated the best parameters that minimize the MSE (mean square
error) and MAE (mean absolute error) error, defined by:

MSE(μj) =

√
√
√
√ 1

NP

NP∑

i=1

(out(μj , i) − gt(i))2, (14)

and,

MAE(μj) =
1

NP

NP∑

i=1

|out(μj , i) − gt(i)|, (15)
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where gt is the provided ground truth, out is the completed depth map, μj is
used as the parameter to obtain out(μj), and NP is the number of points where
we compared the estimated depth with the ground truth. We minimized fitness,

J(μj) = MSE(μj) + MAE(μj) (16)

(a) (b) (c)

(e) (f) (g)

Fig. 5. The training set is used to estimate the model’s parameters. The training set
is extracted from the KITTI depth completion suite. (a), (b) and (c) color reference
images. (e), (f), and (g) corresponding depth map.

We use the Particle Swarm Optimization (PSO) algorithm to minimize the
fitness. We created 40 random μi individuals, and then according to the dynamic
of velocity and acceleration for each individual, we evolved them for 30 iterations.
In each iteration, we selected the individual that presented the best performance.
In 5 we show the training set extracted from the KITTI dataset.

10
20 0

20

40

2

3

Iterations
Individuals

M
S
E

+
M

A
E

Evolution of 40 individual in 30 iterations

Fig. 6. Performance evolution of 40 individuals in 30 iterations.
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In Fig. 6, we show the evolution of the 40 individuals of the training set. We
present the MSE +MAE of each individual. The final performance reached by
the proposal was fitness=1.3122 (MSE + MAE).

6 Dataset and Experiments

6.1 Dataset

We use the KITTI depth completion suite [17] to train our model and to evaluate
the model. The KITTI dataset contains 1000 color images, its depth map, and its
corresponding ground truth. We showed above an example of the KITTI dataset
in Fig. 5.

6.2 Experiments

We used three images to train our models and 997 images to test our model.
We evaluate our model and compare our obtained performance with many mod-
els already presented in the literature. We also performed an ablation test to
determine the most critical component of our model.

7 Results

We trained our models on 997 images from the KITTI dataset. We then evaluated
the performance of our models on the entire dataset, using two metrics: the mean
squared error (MSE) and the mean absolute error (MAE). The results of our
evaluation are shown in Table 1. As we show Table 1, our model performs better
than our previous version of the model and other models that were developed
around the same time [11] or [23]. However, some more complex models use
neural networks to learn morphological operations [3] that perform even better
than our model.

Table 1. Obtained results by our model and comparison with other models.

Model MSE MAE MAE + MSE

Our proposal 1.1252 0.3045 1.4297
CANDAR [11] 1.1397 0.3132 1.4529
PDC [23] 1.2866 0.2932 1.5798
Deep Fusion Networks [22] 1.2067 0.4299 1.6366
Morpho Networks [3] 1.0455 0.3105 1.3560
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Table 2. Results of the ablation test in our proposal.

Stage MSE MAE MSE + MAE

Prefiltering 1.1260 0.3124 1.4384
1st Convolutional Stage 1.6700 0.2956 1.9656
2nd Convolutional Stage 1.1256 0.3055 1.4311
Complete proposal 1.1252 0.3045 1.4297

7.1 Ablation Test

We conducted a series of experiments to see how each stage of our proposal
contributes to its overall performance. We removed each stage individually and
measured the impact on the performance. The results of these experiments are
shown in Table 2. The table shows that the convolutional stage is the most crucial
stage, followed by the interpolator and the prefiltering of the depth. The post-
filtering stage has the most negligible impact on the performance. In Table 2, the
most critical part of our model is the convolutional stage SC1. This convolutional
stage selects features that enforce edges of the color reference image, improving
the model’s performance. In Fig. 7, we show examples of the completed depth
map in images extracted from the KITTI dataset. In Fig. 7 (a), we show the
reference color image, where we observe a person riding a bike. In (b), we offer
the sparse depth map; the amount of available data is 4.51% of the size of the
image. In (c), we show the ground truth acquired by LiDAR. Finally, in (d), we
offer our completed depth map. We observed that we recovered much information
about the scene: the person riding the bike, a traffic sign, a parked bike on the
street, and a small car. We compare the ground truth depth map in Fig. 7 (c)
with the completed depth map in Fig. 7 (d). The ground truth depth map is
the actual depth map of the scene, and the completed depth map is the depth
map we generated using the available data. As a qualitative evaluation, we look
at the regions where the available data is located. These regions have a similar
color code in both the ground truth depth map and the completed depth map.

(a) (b)

(c) (d)

Fig. 7. Examples of completed depth maps. (a) reference color image. (b) Available
sparse depth map. (c) ground truth. (d) Completed depth map.
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This fact means that the completed depth map is a good representation of the
actual depth map in these regions.

(a) (b)

(c) (d)

Fig. 8. Examples of completed depth maps where our proposal fails. (a) reference color
image. (b) Available sparse depth map. (c) ground truth. (d) Completed depth map.

In Fig. 8 we present an example where our proposal fails. Figure 8 shows that
our model fails due to transparent objects like car windows. We observe in (d)
that the edges of the window present errors in the completion.

8 Conclusions

We have proposed a model to complete sparse depth based on the infinity Lapla-
cian embedded in a convolutional pipeline. The convolutional pipeline considers
two convolutional stages and the infinity Laplacian to complete depth maps.
As a prefiltering stage, we implemented a morphological operator to eliminate
outliers of the available depth data. We embedded the depth data in a mani-
fold given a metric in the image domain. We proposed a variable metric that
uses a balance mechanism that depends on spatial tern and the photometric
term. The inclusion of these two components improves the performance of our
model, outperforming our previous version of it. The proposal also outperforms
contemporaneous depth completion models and performs similarly to more com-
plex neural network models. In the performed ablation test, we discovered that
the most critical stage is the first convolutional stage that enforces edges of the
reference color image, which helps in the correct diffusion of the available data.
In future work, we will use more contemporaneous interpolation models.
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Abstract. Brain-computer interface (BCI) technology is a system that
uses brain signals to assist in controlling devices in the outside world.
Among the many methods of implementing BCI, one of the most repre-
sentative method is event-related potential (ERP)-based BCI. However,
ERP-based speller averages data through multiple trials to enhance per-
formance and require continuous visual attention from subjects simulta-
neously. In particular, long-term experimental sessions can cause visual
and cognitive fatigue in users. As a result, the performance of the ERP-
based BCI could be degraded. Sighing is a natural phenomenon and one
of the methods to stabilize physiological mechanisms in a short period of
time. This experiment assumed that a proposed two-minute ventilation
pattern using cyclic sighing could change the user’s physiological atten-
tion state. The second assumption is that the proposed method may
improve character recognition accuracy. To ascertain the feasibility of
the proposed method, a total of five subjects participated in the exper-
iment, and each participant was requested to experience two sessions.
The counter-balancing method was implemented to prevent the carry-
over effect of the experiment. These results indicate that the proposed
short-term ventilation pattern performed better than the general venti-
lation pattern in terms of character recognition in the ERP-based BCI
speller task and led our assumptions in a positive direction. In light of
this, we suggest that the proposed method utilizing cyclic sighing could
be used for long-term BCI protocols with respect to stability and robust-
ness.

Keywords: Brain-computer interface · Event-related potential ·
Character recognition · Ventilation manipulation · Cyclic sighing ·
Attention

1 Introduction

Many people around the world are restricted in body movement and commu-
nication due to fatal cranial nerve diseases, cerebrovascular diseases, and amy-
otrophic lateral sclerosis (ALS). Brain-computer interface (BCI) system uses
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brain signals to assist in controlling devices in the outside world [1–3]. Among
the methods for implementing BCI systems, the most widely used application are
mu-rhythm, steady state visually evoked potential (SSVEP), and event-related
potential (ERP) (e.g. [2,4–6]).

P300 is one of the most studied and symbolic component of ERPs and it
is widely used in BCI research [7]. The representative paradigm was devel-
oped by Farwell and Donchin and consists of the 6 × 6 matrix row-column
paradigm (RCP) [6]. Moreover, single character paradigm (SCP) [8], checker-
board paradigm (CBP) [9], random set presentation (RSP) [10] and famous
faces [11] have been proposed to improve the performance in ERP-based BCI
speller paradigm.

The biggest advantage of ERP-based BCI is a representative endogenous
attention-based task that does not require intensive user training. In addition,
signal averaging through multiple trials allows subjects to achieve very high
performance speller accuracy and can be calibrated in a short time. However, this
paradigm has a noticeable disadvantage. The ERP-based speller task presents
a repetitive stimulus of about 10 sequences per a character to improve brain
signal classification performance. Since this requires continuous visual attention
from the user, a high level of cognitive and visual fatigue is inevitable [3,7,8].
Collecting multiple trials to improve performance over a long period is contrary
to the original purpose in terms of performance enhancement because it can
be burdensome for users and could degrade character recognition rates due to
fatigue.

One study to improve this problem showed a significant performance improve-
ment in the P300-based BCI paradigm with a 6-minute meditative mindfulness
induction (MMI) [12]. Mindfulness meditation is widely used for the purpose
of improving awareness of the current state and involves breathing. However,
mindfulness-based meditation goes through a extended period of training pro-
cess to be effective, which is not an acute effect in general [13,14]. Moreover,
one study provides evidence that practicing attention to internal body sense,
one of the main features of meditation, is not associated with enhanced car-
diac interoceptive awareness [15]. Humans spontaneously sigh a few times per
hour, and rodents sigh dozens of times per hour [16]. Sighing is an evolutionary
behavior among mammals that gradually decreases to 20 times per hour within a
year of birth [17]. Additionally, the frequency of sighing is sensitive to cognitive,
emotional, and behavioral demands. In healthy individuals, stressful situations
induce more frequent sighing compared to emotionally neutral conditions [18].
Likewise, sighing is a very natural phenomenon and also a very important res-
piratory pattern simultaneously. During normal breathing, sighs improve gas
exchange and inflate collapsed alveoli [16]. This ventilation pattern is a natural
phenomenon to reduces physiological arousal and makes the condition stable.
In a comparative study of four different breathing patterns, including mindful-
ness meditation and cyclic sighing, showed cyclic sighing was more effective in
relieving sympathetic nerves than mindfulness meditation. In addition, the phys-
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Fig. 1. The components of cyclic sighing(two inhalations and one exhalation) and
physiological mechanisms.

iological and psychological effects of cyclic sighing seem not only acute, but also
to persist over time [14,19,20].

Based on the findings of these previous researches, we first assumed that
a short-term respiratory pattern using cyclic sighing can change physiological
attention state. The second assumption that we reckoned was that the proposed
ventilation method could enhance character recognition performance. Further-
more, sighing for more than five minutes can cause the subject to become exces-
sively stable and drowsy. Therefore, this study investigated the change in char-
acter recognition performance according to cyclic sighing for two minutes in the
ongoing experimental paradigm in P300-based BCI systems. To test the fea-
sibility of the proposed method, we organized two experimental sessions and
two different conditions. A total of five subjects participated in this preliminary
study. All data were analyzed using multi-channel electroencephalogram (EEG)
equipment and regularized linear discriminant analysis with shrinkage [21].

2 Methods

2.1 Experimental Paradigm

a. Visual Stimuli Setting
In this experiment, the event-related potential (ERP)-based 6 × 6 matrix row-
column paradigm (RCP) [6] was set up using MATLAB (MathWorks, Natick,
MA, USA) with psychtoolbox (http://psychtoolbox.org), and the stimulus-time
interval (STI) was set to 80 ms and the inter-stimulus interval (ISI) was set to
135 ms, respectively.

http://psychtoolbox.org
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Fig. 2. Experimental Design (Session A: In order of normal condition and proposed
condition, Session B: In order of proposed condition and normal condition).

b. Ventilation Pattern
To verify our hypothesis, we investigated the effect of cyclic sighing on the ERP-
based speller paradigm, as shown in Fig. 1. Cyclic sighing consists of two inhala-
tions using the nasal cavity, one inhalation using the oral cavity, and participants
were asked to exhale about two times longer than the inhalation. Firstly, each
participant was requested to take double inhalations, and maximum inhalation
was requested on the first breath. The second inhalation was performed to max-
imize the amount of oxygen by maximizing the alveoli [14]. However, long-term
cyclic sighing could reduce physiological arousal, and this may cause drowsiness.
Therefore, we applied a two-minute ventilation pattern using cyclic sighing for
the proposed condition.

c. Experimental Design
As shown in Fig. 2., the experiment consists of Session A and Session B. Each
subject participated in both sessions. In session A, it was carried out in the order
of normal condition and proposed condition. After an average of 15min of rest, it
was carried out in the opposite order to minimize the carry-over effect in session
B. The data set was divided into a training set and a test set, and the training set
consisted of twenty characters (HALLYMUNIVERSITYAIML) and the test set
consisted of twenty-two characters (BRAINCOMPUTERINTERFACE). In each
session under normal conditions, each subject was not requested to do anything
to induce normal breathing for two minutes. On the other hand, in the proposed
condition, each subject was asked to do cyclic sighing for two minutes.

2.2 Data Acquisition

Five subjects participated in the experimental paradigm. All subjects have
not experienced cardiovascular, cerebrovascular disease and respiratory system
issues. Participants conducted an experiment in an experimental environment
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Fig. 3. 31 channels of EEG data were collected and 22 channels of EEG data were
selected in this experiment.

with a distance from the monitor of about 1.2m and a temperature of about
24 ◦C. In the experiment, actiCHamp (Brain Products, Germany) was used as
an amplifier. As shown in Fig. 3. (A), 31 channels of data were obtained at
1000Hz through the international 10–20 system. This study was approved by
the Institutional Review Board of Hallym University [HIRD-2022-056].

2.3 Data Analysis

a. Preprocessing
We used MATLAB with the BBCI toolbox (http://bbci.de/toolbox) for data
analysis. All electroencephalogram (EEG) data was down-sampled at 100Hz for
analysis. In this study, we selected only 22 electrode channels (Fz, FC5, FC1,
FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1,
Oz, O2) in Fig. 3. (B). and band-pass filtered at 0.1–30 Hz with a Chebyshev
filter for off-line analysis. Additionally, we applied the common average reference
(CAR) to remove artifacts.

b. Epoching and Classification
After EEG data are signal pre-processed, we used Python for the rest of the
processing. All training set and test set data were segmented from -200 to 1000
ms and the pre-stimulus interval from -200 to 0 ms for baseline correction. We
applied regularized linear discriminant analysis with shrinkage [21] for training
and test data to proceed with offline analysis.

http://bbci.de/toolbox
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Fig. 4. Comparison of character recognition accuracy by condition((A): Mean com-
parison between two conditions, (B): Mean comparison between two conditions by
sessions).

3 Results

3.1 Average Character Recognition Accuracy Across All Subjects

As shown in Fig. 4., shows the character recognition accuracy over sequences
for five subjects. In particular, (A) in Fig. 4., compares the Proposed Condition
Average and the Normal Condition Average for all sessions. It shows an improve-
ment in performance for all sequences except sequences 7–9. (B) in Fig. 4 shows
the condition average for all subjects by session. In this figure, the proposed con-
dition in session A outperforms the normal condition in session A on sequences
1–4 while the proposed condition underperforms on sequences 5–10. On the other
hand, the proposed condition in session B outperforms the normal condition in
session B in all sequences.

3.2 Individual Subject Character Recognition and ERPs Patterns

For further analysis, we examined the character recognition rates for individual
subjects. Figure 5 shows the comparison of individual subject performance in
session A, and Fig. 6 shows the comparison of individual subject performance
in session B. In Fig. 5, the individual subjects’ performance in the proposed
condition does not show a large difference from the normal condition overall.
However, it is important to note that the overall performance is dominated by
sequences 1–6. In addition, in Fig. 6., all subjects except subject2 and subject4
showed higher character recognition accuracy in all sequences than in the normal
condition. In particular, session 6 shows a rapid increase overall in accuracy for
sequences with fewer trials. To further examine the ERPs analysis, we compared
the P300 patterns of the first condition of Session A (the normal condition) and



Stable Character Recognition Strategy Using Ventilation Manipulation 21

the first condition of Session B (the proposed condition) for Subject5. Figure 7.
(A) shows the first condition of Session A, and Fig. 7. (B) shows the first con-
dition of Session B. In terms of amplitude and latency, the P300 pattern (B)
is larger than (A) in Fig. 7 and most subjects showed similar patterns. This
suggests that our proposed breathing pattern could change the ERPs pattern.

Fig. 5. Comparison of Proposed and Normal Condition by subject in Session A.

4 Discussion and Conclusion

In this study, we investigated the effects of a 2-min ventilation pattern using
cyclic sighing on ERPs pattern and character recognition performance using
ERP-based BCI speller task. The results in Fig. 4 show positive results for our
hypothesis. In Fig. 5 and Fig. 6, the analysis for individual subject suggests that
the proposed condition is generally better than the normal condition. However,
the difference in performance between the proposed and normal conditions in
Session A was not outstanding. This may be due to decreased attention caused
by eye and cognitive fatigue [7,8]. Nevertheless, the similar level of performance
between the two conditions indicates that the proposed method is robust and
stable in the experimental environment. In addition, as shown in B of Fig. 4, the
proposed condition in both sessions rapidly improves performance on a small
number of sequences (1–4).

Furthermore, we analyzed the ERP patterns to identify physiological changes.
As shown in Fig. 7, subject5’s ERP in the proposed condition was larger than
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Fig. 6. Comparison of Proposed and Normal Condition by subject in Session B.

the normal condition in terms of amplitude and latency. Since the amplitude
and latency of ERPs are used as features in the classifier, we believe this has a
positive impact on classification performance.

Fig. 7. ERPs Pattern in the Cz and Pz regions of Subject5 ((A): First Condition in
Session A, (B): First Condition in Session B).
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Interestingly, although session B was implemented after session A, the pro-
posed condition in session B performed better than both the normal condition
and the proposed condition in session A, and meaningfully better for the entire
sequence from sequence 1 to 10. In addition, subject4 was vulnerable to eye
fatigue due to dry eye syndrome after the first task in session A. Figure 8 shows
a further analysis excluding subject4, which showed stable high character recog-
nition performance in the proposed condition.

One of the biggest challenges in the BCI field is BCI illiteracy [22]. Although
researchers in various fields are making efforts to solve it, it remains a difficult
problem. While subject selection is a crucial aspect of BCI research, our proposed
method shows promise in achieving higher character recognition performance
independent of subject selection. Although our work requires additional subjects
and statistical measurement, our results are very encouraging for future research
on improving BCI-based character recognition performance.

Fig. 8. Comparison of character recognition accuracy by condition((A): Mean com-
parison excluding subject4 between two conditions, (B): Mean comparison excluding
subject4 between two conditions by sessions).
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Abstract. Deep learning algorithms have become more prevalent in real world
applications. With these developments, bias is observed in the predictions made
by these algorithms. One of the reasons for this is the algorithm’s capture of bias
existing in the data set being used. This paper investigates the influence of using
generative adversarial networks (GANs) as a gender-to-gender data pre-processing
step on the bias and accuracymeasured for a VGG-16 gender classificationmodel.
A cyclic generative adversarial network (CycleGAN) is trained on the Adience
data set to perform the gender-to-gender data augmentation. This architecture
allows for an unpaired domain mapping and results in two generators that double
the training images generating a male for every female and vice versa. The VGG-
16 gender classification model uses training data to produce an accuracy that
indicates its performance. In addition, the model’s fairness is calculated using
demographic parity and equalized odds to indicate its bias. The evaluation of the
results providedby the proposedmethodology in this paper shows that the accuracy
decreases when Cycle-GAN pre-processing is applied. In addition, the bias also
decreases, especially when measured on an imbalanced data set. However, the
decrease in bias needs to be more significant to change our evaluation of the
model from unfair to fair, showing the proposed methodology to be effective but
insufficient to remove bias from the data set.

Keywords: Generative modelling · Generative adversarial networks ·
CycleGAN · Data augmentation · Bias · Gender classification

1 Introduction

The predictive power of deep learning algorithms has led them to be widely used in
real-world applications [6]. A prominent example of a widely used machine-learning
technique is the supervised learning method, which can, for instance, provide a gender
classifier of images by learning a mapping between an input image and a corresponding
predicted class [12]. An unintended lack of diversity in the input is a problem observed
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in using images as data to train these algorithms [16]. For instance, this unintended
lack of diversity could be introduced by a selection bias in the compilation process of
a data set [21]. Using these data sets could introduce “over-fitting” in the downstream
training process and lead to sub-optimal behavior in the real world where complexity and
diversity are common. Examples of this sub-optimal behavior are observed for different
types of training data, like images and word embeddings, induced by the learned bias
existing in the training data [2, 23]. For instance, a model trained on a biased training
data set shows that the activity of cooking is over 33 percent more likely to involve
females than males [25].

What has been studied is using methods like over-sampling and prevailing data
augmentation methods like rotations, flips, and rescales to increase diversity in data sets
used for downstream tasks [23]. In addition,GANshave been used as a data augmentation
method to improve generalizability in Computerized Tomography (CT) segmentation
tasks [18]. However, the impact of using cyclic GANs to increase data set diversity to
reduce bias on downstream tasks needs to be explored more. This thesis project aims
to quantify this approach’s impact on reducing bias in the downstream task of gender
classification. In addition to reducingbias,maintainingor increasing the performanceof a
model trained in a downstream task is also of interest. Numerous studies have shown that
including pre-processing steps using adversarial networks has increased performance
when using deep neural networks downstream [17]. Using a GAN is described as one
of the most promising modeling techniques for using data augmentation [24].

This paper hypothesizes that augmenting the training data into different domains
will reduce bias and retain potential model performance on a downstream task. The
reduced bias is hypothesized to be caused by the balance in training examples of dif-
ferent domains, for example, males and females. This hypothesis will be tested using
a balanced and an unbalanced training data set to perform measurements. The retained
performance is hypothesized to be caused by an increased amount of training data. A
downside of the proposed data augmentation could be decreased performance on down-
stream tasks. To make this transparent, the predictive performance of downstream tasks
is also evaluated. As data augmentation is a pre-processing technique used to increase
downstream performance, the diversification of the data set should ideally not decrease
downstream performance. The difference in performance will be tested using baseline
measurements.

Obtaining this quantified knowledge could benefit both research areas mentioned
before. For bias reduction, it could open up a new avenue of research into complex
methods like configurable data augmentation using a GAN to generate a diverse data
set based on a less-diverse data set. For the pre-processing field, this research will
verify that using a GAN as a data augmentation method increases the performance on
downstream tasks [19]. To make the mentioned knowledge objectives more concrete,
the following research question is proposed: How does pre-processing using GANs as
a gender-to-gender data augmentation step influence the accuracy and bias of a VGG-
16 Convolutional Neural Network performing a gender classification task? To answer
the research question, it is essential to gather measurements of the impact of the data
augmentation method on the performance and bias of the downstream task of gender
classification. These measurements are gathered using a well-known VGG-16 model
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architecture adjusted to perform binary classification. On top of this, it is important to
create a data augmentation method that can perform the gender-to-gender generation.

This paper is organized as follows: Sect. 2 covers the literature review and related
work. Section 3 explains the methodology that has been used. The results of this paper
will be presented in Sect. 5, following the evaluation in Sect. 4. Finally, the paper will
be concluded in Sect. 6.

2 Related Work

The research gap described in the previous section indicates a goal of mitigating bias
without reducing downstream performance. To quantitatively assess the bias reduction,
the research questionsmention bothVGG-16 gender classificationmodels and the image
to image translating CycleGAN model. These areas of research will be explored in this
Section.

2.1 Gender Classification

Deep neural networks have demonstrated excellent performance in recognizing the gen-
der of human faces [14]. Eidinger et al. used a standard linear SVM trained on the
Local Binary Pattern (LBP) and Four-Patch LBP features (FPLBP) extracted from the
Adience data set. They showed a 77 percent accuracy when training on the near-frontal
faces [5]. They, however, added that their tests leave room for future work as a drop
in performance is observed when using the Adience data set as a benchmark. As the
Adience data set is made available, it will be considered for this paper. Hassner et al.
report a 79.3 percent accuracy when using the same features but adjusting the Adience
data set by a Frontalization process. This process detects facial features and rotates them
to create a frontal face [9]. This accuracy is improved upon by Levi and Hassner using a
deep-convolutional neural network for gender classification [15]. They used a network
architecture comprising three convolutional layers and two fully-connected layers with
a small number of neurons. They used all rotations of the original images in the Adience
data set to show the performance of the network architecture instead of the improved
performance by preprocessing. This approach has been shown to have an 86.8 percent
accuracy. Dehgan et al. improved on this by using a larger amount of data to train on
though it is unclear how this data set was aggregated [3]. In addition, it is unclear how
the images’ labels were provided. They stated that a team of human annotators was
used through a semi-supervised procedure. For pre-processing the images, they used
techniques that perform horizontal flips and random crop augmentation. They applied a
specific but undisclosed deep network architecture for gender classification on the Adi-
ence benchmark and obtain an accuracy of 91 percent. Lapuschkin et al. considered the
influence of model initialization with weights pre-trained on a real-world data set. Their
results were reported using a VGG-16 model, pre-trained on the well-known ImageNet
and IMDB-WIKI data sets. In addition, it was fine-tuned on the Adience data set using
both face alignment techniques simultaneously [14]. They stated that three major factors
contribute to performance improvements on the gender classification task. (1) Changes
in architecture. (2) Prior knowledge via pre-training. (3) Optional data set preparation
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via alignment pre-processing. The VGG-16 model consists of 13 convolutional lay-
ers of small kernel size followed by two fully connected layers. Using the VGG-16
model, an accuracy of 92.6 percent is attained using a weight initialization based on
ImageNet. Improved results on the gender classification task have also been published.
These, however, use the improved ResNet model architecture to increase accuracy [13].
As the difference in performance and bias is to be measured based on pre-processing
techniques, the model architecture is kept constant in both measurements, and this is
why performance and bias using models that differ from VGG-16 on the Adience data
set are not considered further in this paper.

2.2 CycleGAN

Image-to-image translation using a cycle-consistent adversarial network was introduced
by Zhu et al. [26]. This method makes it possible to perform unpaired image transla-
tion without paired training data, as obtaining this data can be difficult and expensive
[26]. They applied thismethod to various applications, including collection style transfer,
object transfiguration, season transfer, and photo enhancement [26]. The cycle-consistent
adversarial network is an architecture built from two GANs. These networks are opti-
mized using a loss function that first includes an adversarial loss allowing it to learn the
domainmapping. Second, it includes a cycle consistency loss that ensures the source and
generated results are related. This additional loss optimizes the generators to produce
a translation instead of a random output in the target domain. Almahairi et al. build on
this idea by introducing an augmented CycleGAN, which can perform many-to-many
mapping [1]. They captured variations in the generated domain by learning stochastic
mapping by inferring information about the sourcewhich is not captured in the generated
result. Qualitative results show the effectiveness of themany-to-manymapping approach
in generating multiple females for a given male and vice versa, indicating the viability of
successfully generating male-to-female and female-to-male images [1]. Using a Cycle-
GAN architecture as a data augmentation method for pre-processing images has already
been shown adequately for the task of CT segmentation [18]. They use the GANs to ren-
der a non-contrast version of training images based on the original contrast CT image.
They observed that segmentation performance significantly improved when additional
synthetic images were used for training. Hammami et al. use a CycleGAN as an unsu-
pervisedmethod that generates images of different modalities in a similar domain. These
images are used to train a downstream model that can perform multi-organ detection,
which has been shown to improve the intended task significantly [8].

2.3 Bias Reduction

Mehrabi et al. describe that, like people, algorithms are vulnerable to biases that ren-
der their decisions “unfair” [16]. Fairness is defined as the “absence of prejudice or
favoritism towards an individual or group based on their inherent or acquired charac-
teristics [16]. Research has been carried out into the reduction of bias in data sets. Wu
et al. described that recent studies found substantial disparities in the accuracy rate of
classifying gender of dark-skin females [23]. In their research, Wu et al. described the
usage of preprocessing to balance the skin-type composition of a data set. Using the
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ImageDataGenerator, familiar data augmentation techniques like horizontal flips and
re-scaling can be performed. By using the ImageDataGenerator, they increased the per-
centage of dark-skin males from 1.3 percent to 15.21 percent and dark skin females from
2.5 percent to 16.03 percent. An example is given about facial recognition software in
digital cameras, which over-predict Asians as blinking. These biased predictions are said
to stem from the hidden or neglected biases in data or algorithms [16].

3 Methodology

The methodology provided in this section is followed to answer the research question
stated in Sect. 1. Figure 1 shows a broad overview of the applied methodology. Both the
CycleGAN pipeline and the gender classification pipeline use the Adience benchmark
data set as their input. It is used to both train and evaluate the CycleGAN and VGG-16
CNN architecture.

Fig. 1. Overview of methodology.

To further detail these parts of the methodology, this Section will first describe
the data set being used. After this, the CycleGAN pipeline will be explained. Next,
the gender classification pipeline will be shown to incorporate this data set and the
CycleGAN pipeline results. Finally, the evaluation will be elaborated so it is clear what
is measured.

3.1 Adience Data Set

The data set used in this classification pipeline is the Adience data set published in
2014 [5]. This data set contains photos of faces with binary gender labels and has been
used in similar classification pipelines [5, 14]. The data set contains faces of different
angles, with different light settings, and of different sharpness. A fundamental design
principle of this data set is that it is as accurate as possible to challenging real-world
conditions. As such, it presents all the variations in appearance, noise, pose, lighting,
and more that can be expected of images taken without careful preparation or posing [5].
The images are collected using a face detector described by Viola and Jones [22] based
on images collected from Flickr albums. All images were manually labeled for gender
using both the image themselves and any available contextual information [5]. From the
Adience data set, 19.370 images have been used. These images come from 2284 unique
individuals. The coarse and landmark images provided by the data set have been used;
this brings the total up to 38.740. Of these, 16.240 images have a male gender label. The
other 22.500 have a female gender label. For further usage in downstream tasks, the data
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set is split into a training/validation and test set based on the task for which the model is
trained.

The coarse and landmark imageswere used as Lapuschkin et al. stated that all models
benefit the most from combining the coarse-aligned and the landmark-aligned data sets
for training [14]. Finally, the data in the Adience data set is divided into five folds. These
folds have been created to evenly distribute the individuals into subsets to prevent over-
fitting on a fold, as multiple images of the same unique individual are in the Adience
data set.

3.2 CycleGAN Pipeline

The GAN gender-to-gender data augmentation method uses the CycleGAN architecture
described in [26] trained on the Adience data set. This architecture uses a GAN to
learn two mappings. The first mapping is a generator function G that takes an image in
domain X and generates an image that is indistinguishable from domain Y. This is done
by optimizing the generator and the discriminator Dy, which learns to label images in
domain Y as real or fake based on the generated images from generator G and images
from domain Y. The image resulting from equation G: X -> Y is then used as input for
the second mapping, which is a generator function F that takes the image in domain Y
and generates an image that is indistinguishable from domain X. This is again through
optimizing a generator F and discriminator Dx, essentially learning the inverse of G
shown as equation F: Y -> X. The result of this CycleGAN architecture thus results in
two generators and two discriminators. Figure 2 shows the architecture of CycleGAN.

Fig. 2. CycleGAN architecture as shown by [26]. The cyclic nature between generator X and Y,
which translates between domain X and Y.

For this specific application, generator G will be able to generate a female image
based on the image of a male. Furthermore, generator F will be able to generate a male
image based on the image of a female. The discriminator Dy will determine whether the
female image generated by generator G is real or fake. Moreover, the discriminator.

Dx will determine whether the male image generated by generator F is real or fake.
Both these generators and discriminators will be trained simultaneously as described in
common GAN architectures.

Generator. The generator model used for this CycleGAN architecture is similar to a
residual neural network. The downsampling before the Residual Blocks is done through
a layer of 2D Convolution. An Instance Normalization layer and a ReLu Activation
layer follow this. After the residual blocks, the upsampling is done through a layer of
2D Transposed Convolution. This convolutional layer is followed again by an Instance
Normalization and ReLu Activation layer. The Residual Blocks use a familiar layer
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configuration starting with Reflection Padding, followed by a 2D Convolution, Instance
Normalization, and a ReLu Activation layer. These layers are repeated twice, but instead
of a secondActivation layer, the input to theResidualBlock is added to the result provided
by the Residual Block. The complete overview is shown in Table 1 (a).

Discriminator. The discriminator model used for this Cycle-GAN architecture uses a
layer configuration shown in Table 1 (b). The down-sampling is again done through a
layer of 2D Convolution with a vertical and horizontal stride of 2. An Instance Normal-
ization layer, Leaky ReLu Activation and 2D Convolution layer follow this. Both the
architecture of the generator and the architecture of the discriminator could potentially
be improved upon by investigating optimizations to the layers described in Table 1 (a, b).
This optimization would, however, introduce the need to compare generated results past
the current qualitative approach. The objective of this paper is not to find an improved
CycleGAN architecture. The CycleGAN is used to generate domain translations, so
the impact of using these in the training data set can be examined. For this reason, an
improved CycleGAN architecture is not considered further.

Table 1. (a) Layers of generator in CycleGAN architecture. (b) Layers of discriminator in
CycleGAN architecture.

(a)(a) (b) (b) 

Loss function. The total loss of thisCycleGANarchitecture is shown inFig. 2 comprises
the loss function for both the aforementionedGANsusing domainX andYas input; these
networks adopt the architecture described by [11]. Only optimizing this loss function
still has the potential to create realistic but unrelated images. This behavior happens
because the loss of the discriminators optimizes how well the generated images fits
in the other domain, but this does not say anything about how related the image is to
the original. This behavior requires a third component to the loss function penalizing a
difference between the input x and the output of F(G(x)) and vice versa. Calculating the
loss of the generator is done by calculating themean square error between the continuous
evaluation of the discriminator and a vector of the same shape containing an evaluation
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for which all of the generated images are classified as being real, essentially evaluating
how real the discriminator perceived the generated image to be and converging towards
a real prediction for every input. Calculating the discriminator’s loss is also done by
first calculating the mean square error of evaluating a real image and a vector of the
same shape containing an evaluation for which all of the real images are classified as
being real. Secondly, the mean square error is calculated for evaluating a fake image
and a vector of the same shape containing an evaluation for which all of the fake images
are classified as being fake. This loss function evaluates how well the discriminator can
identify the fake image as fake and howwell the discriminator can identify the real image
as real, converging towards all correct predictions.

L(G,F,Dx,Dy) =LGAN (G,Dy,X ,Y ) + LGAN (F,Dx,Y ,X )

+ λLCYC(G,F) + λLCYC(F,G) + LIDEN(G,F) (1)

Finally, the cycle loss is calculated using the mean square error between the real
image and the corresponding generated image in the same domain, converging toward
related images. Using this loss function, the two generators and two discriminators in
the CycleGAN architecture are trained by performing a forward pass and propagating
the calculated gradient back through the trainable variables. The optimization is done
through an Adam optimizer, and the model is initialized using a random normal distri-
bution, based on the implementation described by [26]. 90% of the images are used as
training data for male and female domains. The remaining 10%will remain available for
quantitative inspection. The model is trained on the training data for 150 epochs. After
training this architecture using the three-part loss function shown in Eq. 1 for optimiza-
tion, it can be used at inference time to generate a translated image for a corresponding
source image.

Pre-processing. Before training the CycleGAN architecture, the input images go
through a preprocessing stage. The default implementation of the CycleGAN archi-
tecture provided by Zhu et al. performs both a random crop and random flip, followed
by normalizing the images. In the default implementation, the random crop uses a resize
based on the nearest neighbor resize method. The resize method was changed to the
bi-linear because the nearest neighbor resize method would overemphasize the black
corners in the coarse images, resulting in an increasingly dark image generated by the
CycleGAN generators.

Learning rate. After 100 epochs of training, the learning rate of both discriminators
was adjusted from 2e-4 to 5e-4. This adjustment is made because the discriminators
seemed to underperform in classifying images as fake in a specific domain. The tolerant
discriminator led to generators that would not consistently provide a mapping from
gender to gender but instead learned to map to the same gender as this obtains the
highest cycle consistency. The trained generators, however, do not lead to the intended
gender mapping, which is why the discriminators’ learning rate was increased while
optimizing the GANs.
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3.3 Gender Classification Pipeline

To investigate the impact of the pre-processing using the CycleGAN model, a gender
classification pipeline is created for four configurations. The first serves as a benchmark
with pre-processing as it was done in [14]. The second compares the benchmark with
the CycleGAN pre-processing in the training stage. The last two serve as a comparison
when there is an imbalance in the training data; this essentially means the same two
configurations are run for a different data set. The gender classification of facial images
is done using a VGG-16 Convolutional Neural Network (CNN) architecture described
by Simonyan and Zisserman [20]. The VGG-16 model is initialized using the ImageNet
pre-trained weights. Because the model has to perform binary classification of males
and females, the fully connected top layers of the VGG-16 model are removed, and
the remaining weights are frozen so they will not change while training the model.
To this base of the VGG-16 model, additional layers are added to provide the single
result in the final layer. To train the VGG-16 model, a train and test split is done for the
Adience data set. This split is done for all folds, so the unique individuals are distributed
evenly. The training data is pre-processed by performing a random crop, a random flip,
and normalization. A potential data augmenting step replaced the pre-processing stage
depending on the pipeline’s configuration. The generators from the CycleGAN are used
to randomly provide a translated image, for which the label is changed accordingly.
Multiple epochs are performed while training the model. This pre-processing approach
provides the original and the translated version of the source image to the model for
training. The training data is split into folds and used for training models validated
on a holdout fold. Performing training iterations for all holdout folds will result in
learning curves indicating at what epoch the training should stop to prevent over-fitting.
The training of the VGG-16 CNN is done using the objective function of increased
performance on the gender classification task using well-known optimization methods
described in [7]. After determining the optimal number of epochs obtained through k-
fold cross-validation, the final VGG-16 model is trained on all training folds and used
to evaluate the test data.

4 Evaluation

The test data is classified after training the VGG-16 model for different pre-processing
configurations using the training and validation data. These classifications are evaluated
to compare the performance and the bias after using the different pre-processing tech-
niques. To measure the performance difference, the model performance is measured by
its accuracy calculated as the fraction of correct decisions. The predictions on the test set
are also used to evaluate the bias of the models resulting from different pre-processing
configurations. Evaluating the bias is done by calculating the demographic parity and the
equal odds. The demographic parity measures the balance of the positive (and negative)
predictions by evaluating the predictive equality and equality of opportunity between
groups [4]. The equal oddsmeasures the balance of classification errors like false positive
and false negatives rates between groups [4]. To summarize the meth-odology provided
in this Section, Fig. 3 shows a graphical overview of the data sets, models, decisions,
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and actions taken to provide the results used to answer the research questions provided
in Sect. 1.

5 Results

This section tries to investigate the impact of using a CycleGAN architecture as a data-
augmenting pre-processing method. First, the training of the CycleGAN and its result-
ing generators will be discussed. After this, the different configurations of the gender
classification pipeline will be evaluated so the bias and performance can be reported.

Fig. 3. Detailed overview of data sets, models, decisions, and actions.

5.1 CycleGAN

To demonstrate the CycleGAN’s effectiveness, several domain translations are shown in
Fig. 4. None of the loss functions of the networks seems to converge towards zero, indi-
cating that the networks keep learning on each new epoch. Because of this equilibrium
in generator and discriminator loss, the generators are expected to keep improving, gen-
erating fake domain mappings. In addition, both the male-to-female and female-to-male
GANs seem to learn at a similar pace.

An observation made by empirically inspecting the results of the CycleGAN gen-
erators is that images of infants do not translate as noticeably as images of other age
categories. This behavior is shown in Fig. 5b. This result is notable as infants are not
underrepresented in the data, as shown in Fig. 5a; the number of labels below ten years
old is almost the largest group in the Adience data set. The creators of the Adience data
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set report that ages between zero and two are the second largest group in the data set,
behind ages between 25 and 32 [5].

Fig. 4. Source and corresponding generated image provided by the CycleGAN generators.

Under-representation in the data is thus not an obvious explanation. An alternative
explanation of this result could be that images in both the male and female domains are
similar for this age range. Thus, the generators do not learn as strong a mapping between
the domains because the discriminators do not judge them fake as often.

5.2 Gender Classification

This Sectionwill show the evaluation of the balanced and imbalanced data configuration.
Only the prevailing pre-processing techniques described in Sect. 3 are used for this
configuration. The training data was split into a train and validation set to determine
aroundwhat epoch to stop the training process and use themodel. The average validation
accuracy is shown in Fig. 6, which increases meaningfully until around epoch 60. The
average is calculated from the accuracy measured for each fold. These individual results
are shown in the background of Fig. 6.

Common pre-processing. To evaluate the baseline for both the balanced and unbal-
anced data set configuration, the models are trained up until epoch 55 for the former
configuration and epoch 63 for the latter configuration. As the first configuration is for a
balanced data set, and the second configuration is for an unbalanced data set that is not
highly unbalanced, the accuracy is measured as the fraction of correct decisions. These
accuracy results are provided in Table 2 for both configurations. Both results are similar
to the reference papermentioned in Sect. 3. However, it is important to recognize that this
benchmark was reported for an unbalanced data set. The demographic parity difference
and equalized odds difference are also provided in Table 2. Both for the balanced data
and unbalanced data set, values above 0.8 are observed, which is quite far from 0. This
indicates that demographic parity and equalized odds have not been achieved.

Based on the information in Fig. 6, the decision is made to train the final VGG-16
gender classification models for around 60 epochs. This allows it to reach the expected
accuracy without potentially over-fitting the test data. The results of this training process
and the accuracy as measured on the test data are shown in Fig. 7. As the model seems
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(a)                                (b)

Fig. 5. (a) shows an overview of the age labels provided in the Adience data set. (b) shows
an example of a female source image for an infant on the top row, below the corresponding
generated male image. Upon quantitative inspection, it does not seem that the generator applies
gender-altering mapping.

stagnated with little fluctuations around epoch 60 but does not show specific over-fitting
just before or after 60 epochs, the model with the highest accuracy between epoch 55 and
epoch 65 is chosen.Results for this are shown inFig. 7. To evaluate fairness, demographic
parity is used to measure the probability of a particular prediction depending on sensitive
group membership, as reported in Table 2. The results are reported as the difference
between the largest and the lowest group-level selection rate across all values of the
sensitive feature. The demographic parity difference of 0 means all groups have the
same selection rate. In addition, an equalized odds difference of 0 means that all groups
have the same true positive, true negative, false positive, and false negative rate.

Fig. 6. Accuracy of VGG-16 model at gender classification on validation set. The background of
this plot shows the validation and training accuracy per fold.

CycleGAN pre-processing. To compare the balanced and unbalanced data set con-
figuration with CycleGAN pre-processing applied, the models are trained until epoch
60 for the balanced configuration and epoch 58 for the unbalanced configuration. The
accuracy is again reported as the fraction of correct decisions in Table 2. Compared to
the benchmark, the VGG-16 gender classification models do not seem to have improved
performance when trained on data augmented with a gender-to-gender transformation.
Instead, a decrease in performance is observed. The demographic parity and equalized
odds differences are again calculated and provided in Table 2.

A decrease is observed for the demographic parity difference, especially for the
unbalanced data set configuration. For the equalized odds difference, no decrease can
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Fig. 7. Showcase of the intricacies of the VGG-16 gender classification model’s training process
on the test dataset. (a) shows the model’s accuracy for the balanced and unbalanced training data
set configuration. (b) shows the model’s accuracy for which both the balanced and unbalanced
training images were augmented using a CycleGAN. Here the accuracy in the initial phase of the
training seems to be higher.

be observed for the balanced data set, but a decrease can be observed for the imbalanced
data set. This indicates that the preprocessing using a gender-to-gender transformation
does seem to positively impact the demographic parity and the equalized odds, mainly
when the data is imbalanced. It is, however, important to recognize that the demographic
parity difference and equalized odds difference remain far from zero. This indicates that
demographic parity and equalized odds have again not been achieved.

Table 2. The result of different configurations of the gender classification pipeline with the
amount of training data used, the pre-processing configuration, accuracy, demographic parity, and
equalized odds.

6 Conclusion

This paper examines the impact of using generative adversarial networks (GANs) as a
gender-to-gender data pre-processing step onbias and accuracy in aVGG-16gender clas-
sification model. A cyclic generative adversarial network (CycleGAN) is trained on the
Adience dataset to augment the data by transforming images from one gender to another.
The VGG-16 model’s accuracy and fairness are evaluated using demographic parity and
equalized odds. The results show that while the bias decreases, the decrease is not sig-
nificant enough to eliminate bias entirely, indicating that the proposed methodology is
effective but insufficient for bias removal.



Exploring CycleGAN for Bias Reduction 39

References

1. Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., Aaron C.: Augmented CycleGAN:
learning many-to-many mappings from unpaired data. CoRR arXiv:1802.10151 (2018)

2. Bolukbasi, T., Chang, KW., Zou, JY., Saligrama, V., Kalai, AT.: Man is to computer pro-
grammer as woman is to homemaker? debiasing word embeddings. In: Lee D., SugiyamaM.,
Luxburg U., Guyon I., Garnett R. (eds.) Advances in Neural Information Processing Systems,
vol. 29. Curran Associates, Inc (2016)

3. Dehghan, A., Ortiz, EG., Shu, G., Masood. SZ.: DAGER: deep age, gender and emotion
recognition using convolutional neural network. CoRR arXiv:1702.04280 (2017)

4. Dignum V.: Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible
Way. Springer International Publishing, Cham (2020) https://doi.org/10.1007/978-3-030-303
71-6

5. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE
Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)

6. Gong, Z. Zhong, P., Hu, W.: Diversity in Machine Learning. CoRR arXiv:1807.01477 (2018)
7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.deeplearn

ingbook.org (2016)
8. Hammami, M., Friboulet, D., Kechichian, R.: CycleGAN based data augmentation for multi-

organ detection in ct images via yolo. In: 2020 IEEE International Conference on Image
Processing (ICIP). 390–393 (2020)

9. Hassner, T., Harel, S., Paz, E., Enbar, R.:. Effective face frontalization in unconstrained
images. CoRR arXiv:/1411.7964 (2014)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR
arXiv:/1512.03385 (2015)

11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-
resolution. CoRR arXiv:1603.08155 (2016)

12. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Sci.
349(6245), 255–260 (2015)

13. Kho, JB.:Multi-expert gender classification on age group by integrating deep neural networks.
CoRR arXiv:1809.01990 (2018)

14. Lapuschkin, S., Binder, A., Muller, KR., Samek. W.: Understanding and comparing deep
neural networks for age and gender classification. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV) Workshops (2017)

15. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2015), 34–42 (2015)

16. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and
fairness in machine learning arXiv:1908.09635v3 (2022)

17. Massimo Salvi, U., Acharya, R., Molinari, F., Meiburger, K.M.: The impact of pre- and
post-image processing techniques on deep learning frameworks: A comprehensive review for
digital pathology image analysis. Comput. Biol. Med. 128(2021), 104129 (2021)

18. Sandfort, V., Yan, K., Pickhardt, P., Summers, R.: Data augmentation using generative adver-
sarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9
(2019)

19. Shorten, C., Khoshgoftaar, T.: A survey on Image Data Augmentation for Deep Learning. J.
Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (2015)

21. Torralba, A., Efros, AA.: Unbiased look at dataset bias, 1521–1528 (2011)

https://doi.org/10.1007/978-3-030-30371-6
http://www.deeplearningbook.org
https://doi.org/10.1186/s40537-019-0197-0


40 D. Hooftman et al.

22. Viola, P., Jones, M.: Robust real-time face detection. In: Proceedings Eighth IEEE Interna-
tional Conference on Computer Vision (2001)

23. Wu, W., Protopapas, P., Yang, Z. Michalatos, P.: Gender classification and bias mitigation in
facial images. CoRR arXiv2007.06141 (2020)

24. Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., Shen, F.: Image data augmentation for deep
learning: a survey, arXiv:2204.08610 (2022)

25. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang KW.: Men also like shopping: reducing
gender bias amplification using corpus-level constraints. In: Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Copenhagen, Denmark, 2979–2989 (2017)

26. Zhu, JY., Park, T., Isola, P., Efros, AA.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. CoRR arXiv:1703.10593 (2017)



Knee Osteoarthritis Diagnostic System Based
on 3D Multi-task Convolutional Neural

Network: Data from the Osteoarthritis Initiative

Khin Wee Lai1(B) , Pauline Shan Qing Yeoh1 , Siew Li Goh2 ,
Khairunnisa Hasikin1 , and Xiang Wu3

1 Department of Biomedical Engineering, University Malaya, Kuala Lumpur, Malaysia
{lai.khinwee,khairunnisa}@um.edu.my

2 Sports Medicine Department, University Malaya, Kuala Lumpur, Malaysia
gsiewli@um.edu.my

3 School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
wuxiang@xzhmu.edu.cn

Abstract. Since knee osteoarthritis is a 3D complexity, one of the most effective
tools to diagnose this disease is throughMagnetic Resonance Imaging (MRI). Due
to the 3D nature of the MRI scans, different 3D deep learning models related to
osteoarthritis diagnosis have been proposed, but they are mostly single-task mod-
els. This study aims to offer a computationally efficient approach that involves 3D
medical data by leveraging multi-task learning, transfer learning and depthwise
separable convolutions.We proposed a 3Dmulti-taskmodel for knee osteoarthritis
diagnosis that takes 3D MRI as input and provides segmentation masks and OA
severity as the outputs. We validated our proposed model with transfer learning
and compared the results with single-task models. The model’s performance was
measured by different metrics, such as balanced accuracy, Dice Similarity Score
and F1 score based on the tasks. The balanced accuracy of the model achieved
0.745 and 0.920 for 3-class classification and 5-class segmentation tasks, respec-
tively. The proposed multi-task model showed better performance in classification
tasks compared to classification single-task models. The proposed model offers
as a computationally efficient approach to encourage the use of 3D medical data
in healthcare applications.

Keywords: Convolutional Neural Networks · Deep Learning · Knee
Osteoarthritis ·Multi-Task Learning · Transfer Learning

1 Introduction

Knee Osteoarthritis (OA) is a prevalent degenerative joint condition among the elderly
that negatively impacts one’s mobility and quality of life [1]. In the current clinical
practice, OA diagnosis primarily relies on radiographic confirmation, however, it is
not capable to provide clear visualization of the early structural changes of OA, which
makesMagnetic Resonance Imaging (MRI) the better imaging tool for OA diagnosis [2].
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Current clinical practice relies on manual inspection of the medical images which are
tedious and prone to interrater variability, especially when dealing with large number of
patients. Deep learning, particularly convolutional neural networks (CNN) emerged as
a powerful artificial intelligence technique to establish fully automated computer aided
diagnosis that can automatically process complex medical data, overcoming the need
for manual procedures [3].

In the field of diagnosis of OA disease, most deep learning models are designed to
performa single-task separately,mainly focused on two categories of tasks: segmentation
and classification [4]. Most of the existing studies utilize 2D CNNs in either of the tasks
[5, 6]. However, acknowledging that OA in the knee affects the whole knee joint [7],
one major limitation of 2D CNNs is that it cannot take the whole 3D MRI volume
into account. Recent studies have proposed implementation of 3D CNN [8] because 3D
CNNs can fully utilize the spatial information of volumetricmedical image data to extract
more distinguishable representations, either on segmentation [9, 10] or classification
[11–13] tasks on MRI images respectively. Multi-task learning has been successfully
applied in deep learning applications to optimize multiple tasks simultaneously within a
single neural network. The superior performance of multi-task models over single-task
models is well studied in recent studies [14, 15]. To effectively utilize the volumetric
information of MRI that is in 3D by nature, we propose a 3D multi-task model for knee
OAdiagnosis that combines segmentation and classification tasks simultaneously, which
was not previously explored in the existing literature.

Theoretically, 3D CNNs are computationally expensive in terms of data size, model
parameter and memory required as well as the computational resources required. In this
work, we aim to offer a computationally efficient approach.We reduce the size and com-
plexity of the model by implementing depthwise separable convolutions in the proposed
model. Besides, we also incorporate transfer learning to enhance model performance.
Moreover, by implementing multi-task model, the parameters are shared in some lower
layers, allowing the model to be more parameter-efficient. Not only it can reduce the
amount of computation as compared to training different tasks independently, multi-task
training and transfer learning of themodel can optimize the use of limited availablemedi-
cal dataset. All these aforementioned implementationsmight lead to improved efficiency
of the 3D model with reduced overall computational cost required to comprehensively
analyze and process 3D medical data using 3D CNN.

Our motivation is to develop a computationally efficient 3D model for knee OA
diagnosis by incorporating three different techniques which are depthwise separable
convolutions, transfer learning and multi-task learning. The contribution of this work
are as follows:

– Development of a single stage end-to-end multi-task deep learning model for seg-
menting and classifying OA stages from knee MRI volumes. To the best of our
knowledge, this is one of the first works that utilizes 3D multi-task neural network to
perform two different tasks simultaneously in healthcare application, specifically in
knee OA detection.

– Validation of the proposed multi-task model against the single-task segmentation and
classification models.
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– Investigation of performance on the integration of transfer learning in the deep
learning models, specifically in the proposed multi-task model.

2 Methodology

2.1 Data Acquisition and Pre-processing

400 3D sagittal Double Echo Steady State (DESS) knee MRI scans were obtained from
Osteoarthritis Initiative (OAI) public dataset where the respective ground truth segmen-
tation masks were obtained from Zuse Institute Berlin (ZIB) [10]. All volumes were
resized to 160× 160× 160 due to graphical processing unit restrictions. The segmenta-
tion mask provided consists of background (BG), femoral bone (FB), femoral cartilage
(FC), tibial bone (TB) and tibial cartilage (TC) and are assigned with class labels ranging
from 0 to 4. A common OA grading scale, Kellgren-Lawrence (KL) grading were used
to classify the MRI volumes into No OA, Early OA, and Severe OA classes. KL grade
0 was considered as “No OA”, KL grades of 1 and 2 were categorised into “Early OA”
and KL grades 3 and 4 were categorised as “Severe OA”. The data were split into train,
validation, and test sets, with a ratio of 7:2:1. The description of the dataset used in this
study is presented in Table 1.

Table 1. Description of dataset used.

KL-Grade Score Number of MRI volumes 3-Class
Classification

Number of MRI volumes

0 87 No OA 87

1 48 Early OA 143

2 95

3 108 OA 170

4 62

2.2 Multi-task Neural Network Architecture

Figure 1 displays the proposed multi-task model architecture. The proposed multi-task
model integrates classification and segmentation tasks in a single stage end-to-end net-
work that adopts the encoder-decoder architecture based on U-Net. To integrate transfer
learning in ourmodel,we take 3DResNet-18 [16] as the encoder of themodel. The choice
of using the 3D ResNet-18’s feature extractor as the encoder is motivated by its superior
ability in knee osteoarthritis diagnosis based on prior work [13]. The multi-task model
has a shared encoder for two different tasks, where the classification branch is extended
from the bottleneck with the classifier. To overcome the expensive computational cost
of 3D CNN, where it involves large input data that requires a lot of computational power
and memory, the segmentation branch is implemented using a decoder that is make up
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of 3D depthwise separable convolutional blocks [17]. Each depthwise separable convo-
lutional block consist of double of two sets of convolutions, where the first set is 3 × 3
× 3 depthwise convolution, followed by a 1 × 1 × 1 pointwise convolution. After each
pointwise convolution, there is a batch normalization layer and ReLU activation func-
tion layer. The classifier block includes an average pooling layer, three fully connected
layer (with layer outputs of 128, 32 and 3 respectively), and a SoftMax layer. A ReLU
activation function layer and dropout layer with rate of 0.5 is added after each of the first
two fully connected layers.

Fig. 1. Architecture of Proposed Multi-task Model.

2.3 Transfer Learning

Transfer learning has emerged as a promising tool in medical imaging applications by
allowing the transfer of knowledge learned from larger non-medical dataset to the target
medical applications. To investigate the potential of transfer learning in interpreting
MRI volumes by integrating this technique into our proposed multi-task model, we
implemented the proposed multi-task model in two different approaches: (i) training
the network from scratch and (ii) using ImageNet [18] pretrained weights from the
Torchvision package in PyTorch library [19] as initial weights. Since only the feature
extractor part of the 3DResNet-18 is utilized in thiswork, only the feature extractor layers
are retained, and the final classification layers are discarded. Hence, only pre-trained
weights of the retained layers are transferred and fine-tuned. Given that the available
pretrained weights are in 2D and the models implemented in this work requires 3D
weights, the 2Dweights are replicated along the third dimension tomatch the dimensions
required by the 3D model.

2.4 Training Specification

All models in this work are implemented using PyTorch on workstation equipped
with Xeon W-2225 Central Processing Unit Intel and Graphics Processing Unit (GPU)
NVIDIA RTX A6000 with Random Access Memory (RAM) of 32.0 GB. The training
of the models utilized the ADAM optimizer with a learning rate of 1e-4 and batch size
of 2. The models were allowed to train to a maximum epoch of 100 with an early stop
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where the training will stop when themodel does not improve for 10 consecutive epochs.
For the loss function, we computed and combined different loss functions for different
tasks to a multi-task loss function such that it can optimize two tasks simultaneously.
The Cross Entropy Loss and Dice Loss are implemented in this study for classification
and segmentation tasks, respectively. The segmentation loss and the classification loss
employed can be expressed as the equations below.

Segmentation Loss(p, q) = 1− 2
∑N

i=1 piqi
∑N

i=1 p
2
i +

∑N
i=1 q

2
i

(1)

Classification Loss(p, q) = −
∑N

i=1
pilog(qi) (2)

where p is the ground truth value, q is the predicted probability for ith class and N is
total number of classes. The multi-task loss function used in this work is formulated as
below:

Multitask loss = λ(Segmentation Loss) + (1− λ)Classification Loss (3)

where λ is the weight of the segmentation task in the loss function. The λ provides a
trade-off between the segmentation and classification tasks. Multiple experiments were
conducted to find the optimal λ for the model, with search range from 0.1 to 0.9 with a
step of 0.2, and λ was finally set to 0.7.

2.5 Evaluation

In this work, we evaluated the performance of themodel through different metrics for the
two different tasks. For segmentation performance, it is evaluated through the following
metrics: Balanced Accuracy (BA) (defined as the average of recall), Dice Similarity
Coefficient (DSC) and Jaccard Similarity Coefficient (JSC). For the classification task,
themetrics used are:BalancedAccuracy, F1- score andAreaUnder theCurve ofReceiver
Operating Characteristic (AUC). To evaluate the multi-class segmentation and classifi-
cation performance quantitatively, the average of the metric scores were computed to
indicate the overall performance of the models for respective tasks.

3 Results and Discussion

Table 2 summarizes the performance of the proposed multi-task model and single-task
models, with andwithout transfer learning. The segmentation baselinemodel is obtained
by extracting the whole encoder-decoder network without the classifier whereas the
classification baseline model is obtained by extracting the encoder path and the classifier
only.

The proposed multi-task model reported superior performance than classification
baseline model in terms of classification performance, while simultaneously perform
segmentation task. When all the models are trained from scratch, the findings revealed
that multi-task model (BA: 0.716) achieved 117% or 2 × improvement in terms of bal-
anced accuracy compared to the classification baselinemodel (BA: 0.330). The proposed
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Table 2. Comparison of Segmentation and Classification Performance between Proposed Multi-
task Model and Single-task Models.

Model Classification Segmentation

Balanced
Accuracy

F1 score AUC Balanced
Accuracy

DSC JSC

Segmentation Model
(S)

0.939 0.931 0.879

Segmentation Model
(TL)

0.939 0.930 0.877

Proposed Model (S) 0.716 0.710 0.825 0.928 0.924 0.866

Proposed Model (TL) 0.745 0.753 0.926 0.920 0.923 0.865

Classification Model
(S)

0.330 0.283 0.530

Classification Model
(TL)

0.727 0.723 0.767

Note: S = Trained from Scratch, TL = Trained with Transfer Learning

multi-taskmodel displayed a small decrease of 1% and 2% in segmentation performance
compared to segmentation baselinemodels when themodels are trained from scratch and
with transfer learning, respectively. According to the results obtained, the segmentation
performance of all the models is generally excellent, achieving at least 0.920 for DSC
and balanced accuracy. In summary, it is observed that multi-task models demonstrated
improved classification performance but had minimal impact on the segmentation per-
formance. Table 3 presents the classification performance by class respectively for the
proposed model trained from scratch and transfer learning.

Table 3. Classification Performance per Class of the Proposed Multi-task Model

Trained from Scratch Trained with Transfer Learning

No OA Early OA Severe OA No OA Early OA Severe OA

Recall 0.800 0.563 0.786 0.700 0.750 0.786

F1 score 0.800 0.621 0.710 0.737 0.706 0.815

AUC 0.830 0.740 0.904 0.930 0.891 0.956

The effectiveness of transfer learning is demonstrated in the proposed multi-task
model, where it achieved classification balanced accuracy of 0.745, surpassed proposed
model that trained from scratch (BA: 0.716) with improvement in classification per-
formance by 4%, and 2% above the classification baseline model with transfer learning
(BA: 0.727).With transfer learning, the classification performance of the proposedmodel
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increases by 4% with a slight drop of 1% of segmentation performance in terms of bal-
anced accuracy. According to Table 3, transfer learning improves the ability to identify
Early OA knees by 33% (Recall: 0.750), with a higher discriminatory ability of 0.891
AUC score. The ability to detect Severe OA knees increases as well with transfer learn-
ing, with enhancement of the F1score and AUC metrics by 15% and 6% respectively.
However, there are no obvious differences in segmentation performance between with
and without transfer learning, as presented in Table 2.

Besides, transfer learning’s ability to enhance classification performance is also
demonstrated with a quicker convergence time. When the proposed model is trained
from scratch, it takes 24 h 40 min to complete 78 training epochs, however, with transfer
learning, the model converges quicker within 42 training epochs, taking 13 h 15 min.
Generally, training deep learning models requires plenty of training data, which is chal-
lenging and computationally expensive, especially in the medical applications. In this
work, we leveraged the potential of transfer learning and multi-task learning to address
this issue. The multi-task model allows more efficient use of available data which is
helpful in our case because the volume of knee MRI data in our dataset is limited. By
sharing the same feature extractor or encoder, the multi-task model is able to extract
more significant features related to OA severity to improve classification performance
while training with limited datasets.

We further compare our proposed model with several commonly used models in
both segmentation and classification tasks. The results are presented in Table 4. When
the proposed model is trained from scratch, it outperformed the other 3 classification
models, 3D DenseNet-121 [20], 3D ResNeXt-50 [21], and 3D VGG-16 [22], in terms
of balanced accuracy and F1-score. This demonstrates the effectiveness of multi-task
learning technique. The superiority of transfer learning is demonstrated in Proposed
Model (TL), which achieved the best classification scores compared to the other models.
This indicates that our proposed model leverages the information from segmentation
tasks to improve the classification performance. However, in terms of segmentation
performance, the proposed model did not surpass the performance of 3D U-Net [23] and
3D V-Net [24].

Based on our results, integrating transfer learning, and early stopping in our proposed
multi-task model achieve better classification results while preventing overfitting. Our
proposed multi-task model with transfer learning achieved AUC of 0.926 and DSC of
0.923 for classification and segmentation tasks, respectively. Using the computational
setup as described in the ‘Methodology’ section, the proposed multi-task model has
about 34.986 million parameters and requires 139.946 MB memory, taking 3.13 s for
inference to provide segmentation mask and classification output from a knee MRI vol-
ume. Furthermore, a multi-task model can complete two tasks in half of the total time of
two single-task models. Besides, to address the complexity issue of 3D CNN, depthwise
separable convolutions is utilized to lower the computational cost by minimizing the
amount of parameters and computations while able to fully utilize the 3D volume infor-
mation from the volumetric medical images. These findings demonstrate a promising
research direction for developing efficient 3D deep learning models in medical imaging
applications to handle complex 3D data, particularly in real world conditions where
computation resources may be limited. With this 3Dmultitask model, new opportunities
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Table 4. Performance Comparison of Segmentation and Classification Performancewith existing
models

Model Classification Segmentation

Balanced
Accuracy

F1 score AUC Balanced
Accuracy

DSC JSC

Proposed Model
(S)

0.716 0.710 0.825 0.928 0.924 0.866

Proposed Model
(TL)

0.745 0.753 0.926 0.920 0.923 0.865

3D DenseNet-121 0.705 0.707 0.866

3D ResNeXt-50 0.591 0.577 0.735

3D VGG-16 0.310 0.300 0.596

3D U-Net 0.934 0.936 0.887

3D V-Net 0.949 0.921 0.863

Note: S = Trained from Scratch, TL = Trained with Transfer Learning

on advancing the diagnosis of life-threatening disease can be further explored, such as
on automated heart condition detection while simultaneously providing heart segmen-
tations from tagged MRI scans that is crucial for comprehensive assessment of the heart
[25].

In this paper, a single stage end-to-end 3D multi-task approach that carries out two
tasks simultaneously is proposed. The proposed multi-task model is an ongoing effort
to develop an early knee osteoarthritis system and there is a need for further research
to optimize the model’s performance in detecting early incidence of the disease. It is
important to note that early detection of OA is crucial for effective clinical interventions
to halt the disease progression and mitigate disability in later stages [26]. Moreover,
previous studies either utilizes segmentation output to perform or refine classification
prediction or to improve a target segmentation task on specific region of interest by
utilizing the information extracted from the segmentation output. To further enhance
our model’s performance on early OA detection, we can extend the model by leveraging
the segmentation mask as an output and input simultaneously. Since the encoder of
the proposed model adopts 3D ResNet-18, the encoder can be easily exchanged to
other CNN models to improve the model or to be adapted to other applications. Future
work should also investigate the model’s generalization ability and clinical relevance
by testing on different independent clinical datasets. Lastly, future works can involve
comparisons considering aspects of computational efficiency such as model parameters
and floating-point operations per second, enabling a comprehensive assessment of the
practical applicability of different models by comparing their computational efficiency.
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4 Conclusion

In this study, we proposed a 3D fully convolutional neural network that effectively
integrates multi-task learning and transfer learning techniques for knee OA diagnosis.
Although themodel’s segmentation performance does not show any significant improve-
ment, we leveraged the benefits of both techniques in the classification tasks, achieving
overall AUC of 0.926 and boosted the AUC score of Early OA detection to 0.891. While
the results are promising, future works can explore on further enhancing the model’s
performance across all aspects as well as improving its generalizability. These findings
not only bring new research directions on efficient computations of 3D CNN for health-
care applications involving 3D medical data, but it also potentiating the diagnosis of
OA in the early stage using 3D MRI. Overall, the proposed multi-task model offers as a
computationally efficient approach applicable to various domains where limited training
data and computational resources are available.
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Abstract. Air quality index (AQI) forecasting is a hot research topic
that has been widely explored by the whole society. To better understand
environmental quality, numerous methods have been proposed for investi-
gating air pollutant data. Previous studies have used deep learning-based
methods for AQI forecasting, but few studies investigate parallel multi-
input deep models for multi-step hourly AQI forecasting. In this study, a
novel parallel multi-input transformer architecture is proposed for multi-
step hourly AQI forecasting. To model the air quality data, the trans-
former is selected and compared with four bidirectional-long-short term
memory-based models. Moreover, parallel variable embedding is used
to boost forecasting performance. Experimental results using air qual-
ity data collected in Shanghai show that our proposed method achieves
superior performance against various competing methods.

Keywords: AQI forecasting · Multi-input Transformer · Multi-step
forecasting

1 Introduction

With the continuous development of the industrial economy and urbanization,
air pollution has become a serious problem that harms residents’ physical and
mental health [22]. Therefore, it is becoming evermore important to prevent and
manage air pollution problems. As a standard of measuring air pollution levels,
Air Quality Index (AQI) can be derived from the concentrations of PM2.5, PM10,
O3, NO2, SO2, CO [12]. To help combat the air pollution problem, accurate AQI
prediction is regarded as an achievable way which offers a reliable reference for
citizen’s outdoor activities and government policies [9].
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For current AQI forecasting methods, they can be grouped into three cate-
gories: classical regression-based algorithms, machine learning regression-based
algorithms, and deep learning algorithms [11,24]. For classical regression-based
algorithms, two widely used methods are multiple linear regression [4] and auto-
regressive integrated moving average [8]. For machine learning regression-based
algorithms, support vector regression [21], decision trees [5], random forest [6,15],
and K-nearest neighbors regression [15] are four machine learning algorithms
that have been used for AQI prediction. As one of the fastest-growing topics,
deep learning has shown amazing performance in various pattern recognition
tasks. For AQI forecasting, different deep learning architectures have been pro-
posed: convolutional neural networks (CNN), recurrent neural networks (RNN),
long-short term memory neural networks (LSTM), gated recurrent unit (GRU),
encoder-decoder neural networks, transformer. Although most recent studies
have investigated deep learning algorithms for AQI forecasting, few works applied
multiple variables parallelly for multi-step AQI forecasting which might limit its
performance.

In this study, we propose a parallel multi-input transformer neural net-
work to forecast AQI. Specifically, different single-variable-based models are
first evaluated to select the candidate for multi-variable-based models. Then,
a correlation-based variable selection method is used to optimize variables to
construct transformer-based models. Finally, a novel parallel multi-input trans-
former architecture is constructed for predicting AQI.

This paper is organized as follows. Section 2 describes the related work. In
Sect. 3, data preprocessing, variable selection, and multi-input transformer archi-
tecture are described. Section 4 provides the datasets and experimental details.
Section 5 analyzes the results. Finally, the conclusion and future work are given
in Sect. 5.4.

2 Related Work

AQI forecasting has attracted much attention in recent years. Wu et al. [16] pro-
posed a hybrid AQI forecasting model to enhance forecasting accuracy including
Variational mode decomposition (VMD), sample entropy (SE), and an LSTM
neural network. Xu et al. [18] developed a novel hybrid model for multi-step daily
AQI forecasting, where VMD and the least absolute shrinkage and selector oper-
ation (LASSO) were used for preprocessing and reshaping the input data. Then,
a stacked auto-encoder (SAE) was proposed to reduce dimension and extract fea-
tures. Finally, the deep echo state network was used for forecasting. Zhan et al.
[19] developed a dynamic decomposition framework by adding the time window
based on empirical mode decomposition, ensemble empirical mode decomposi-
tion, and complementary ensemble empirical mode decomposition with adaptive
noise (CEEMDAN). Moreover, a decomposition-ensemble broad learning system
was proposed for air quality index forecasting based on a broad learning system.
Zhao et al. [22] developed a novel statistical learning framework integrating the
spatial autocorrelation variables, feature selection, and support vector regression
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(SVR) for AQI prediction in which correlation analysis and time series analysis
were used to extract the spatial-temporal features. Wu et al. [17] developed a
new ensemble learning model for AQI forecasting, where CEEMDAN was intro-
duced to decompose the nonlinear and nonstationary AQI history data series.
Then, fuzzy entropy (FE) was selected as the feature indicator to recombine
the sub-series with similar trends to avoid the problem of over-decomposition
and reduce the computing time. Finally, an ensemble LSTM neural network was
established to forecast each reconstructed sub-series.

Su et al. [13] proposed a new ST (spatio-temporal) correlation hybrid pre-
diction model named ST-EXMG (ELM-XGBoost-MLP (multilayer perceptron)-
GAT (graph attention networks))-AE-XGBoost for AQI forecasting.

Most aforementioned studies used data decomposition, feature selection, and
deep learning models to build an AQI forecasting system. As for the deep learning
models, LSTM variants are the most frequency used method. Recently, trans-
former variants have often been used for time series forecasting due to their
success in pattern recognition tasks including Reformer [7], Informer [23], Auto-
former [2]. For AQI forecasting, Feng et al. [2] proposed a novel encoder-decoder
model named Enhanced Autoformer to improve the AQI prediction. However,
few studies explored multi-input parallel deep learning models for AQI forecast-
ing.

3 Proposed Method

In this study, we develop a novel parallel multi-input transformer for AQI fore-
casting which can be divided into three steps: preprocessing, variable selection,
and multi-input transformer. The conceptual framework of the proposed method
is shown in Fig. 1.

Historical air 
quality data

Preprocess: Missing 
data imputation and 

Normalization
Variable selection

Transformer-Encoder

Transformer-Encoder

Transformer-Encoder

Transformer-Encoder
OutputFC layer

GAP

GAP

GAP

GAP
Concatenate

Fig. 1. The structure of proposed parallel multi-input transformer. Here, the input to
the model consists of multiple variables based on the variable selection result. Here,
GAP denotes global average pooling, and FC denotes fully connected.

3.1 Data Preprocessing

Using data collected by monitoring stations might suffer from data loss in a
specific period because of machine failure, regular inspection and maintenance,
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unstable transmission, and other uncontrollable factors. However, the loss of
data will directly affect the performance of subsequent data analysis. Therefore,
it is important to fill in the missing value to ensure the model performance [10].
Previous studies have proposed several methods for filling missing values: (1)
a fixed value of 0 or 9999, (2) a mean value of the previous and next value of
current data, (3) interpolation, (4) k-nearest neighbor, etc. In this study, we
empirically use the mean value of the previous and next values to fill in the
missing data. Next, we apply Mix-Max normalization to the dataset as follows:

xj =
xj − min(xj)

max(xj) − min(xj)
(1)

Here, max(·) and min(·) denotes the maximal and minimal value of xj .

3.2 Variable Selection

Since we aim to create a parallel multi-input transformer model for AQI fore-
casting, it is important to select suitable variables as the input. Here, we use
the Spearman Correlation Coefficient to create multiple types of variables as
the input, which has been used in previous studies [14,20]. Figure 2 shows the
correlation coefficients between seven air quality variables. Based on the grading
standards of ρ shown in Table 1, we can observe that different variables have
a different correlation degree with AQI. For instance, PM10 and SO2 are very
strongly correlated with AQI. However, the correlation between AQI and O3 is
very weak. It should be noted that the ρ value in Fig. 2 is the mean value over
nine sites. For some sites, O3 is negatively correlated with AQI. Therefore, in
this study, we will construct two types of combinations of variables including (1)
all seven variables, and (2) those variables that are positively correlated with
AQI.

Fig. 2. Mean Spearman Correlation Coefficient (ρ) between seven air quality variables
over nine sites.
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Table 1. Grading table of Spearman Correlation Coefficient (ρ).

Grading Standards Correlation Degree

ρ = 0 no correlation
0 < ρ ≤ 0.19 very weak
0.20 ≤ ρ ≤ 0.39 weak
0.40 ≤ ρ ≤ 0.59 moderate
0.60 ≤ ρ ≤ 0.79 strong
0.80 ≤ ρ < 1.00 very strong
ρ = 1.00 monotonic correlation

3.3 Parallel Multi-input Transformer

Transformer is entirely built upon attention mechanisms, which makes it pos-
sible to access any part of a sequence regardless of its distance to the target
[1]. Initially, the transformer is proposed for machine translation but is rapidly
applied in other research areas for its great success. The standard transformer is
organized in an encoder-decoder manner, where identical encoder modules are
stacked at the bottom of stacked decoder modules.

In this study, we use a transformer encoder to encode the input air quality
data into the hidden information matrix. For each encoder, it is composed of
Layer Normalization, a multi-head attention layer, and a position-wise feedfor-
ward layer. A pictorial representation of this transformer architecture is shown
in Fig. 3. Here, the use of position embedding is investigated in our parallel
multi-input transformer architecture.

Fig. 3. The architecture of transformer encoder.

Multi-head Attention. Given the input x, it is used as the input for the
multi-head attention mechanism. For the multi-head attention mechanism, it is
a transformation of Q, K, and V by h different linear conversions for projection,
and finally, the different results of attention are sutured together. The concept
can be expressed as follows:



Multi-step Air Quality Index Forecasting 57

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W o (2)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

where WQ
i , WK

i , WV
i ∈ R

dmodel×dk , and W o ∈ R
dmodel×hdv .

Parallel Transformer. Similar to [3], parallel series embedding can adequately
capture both temporal and variable-wise dependencies and boost the perfor-
mance of transformer-based models. In this study, we apply a transformer model
to each variable in parallel, which is then processed by 1D global average pooling
(GAP). Then, the outputs of each GAP are concatenated and processed by a
multi-layer perceptron to achieve the final forecasting result.

4 Experimental Details

4.1 Datasets

For AQI forecasting, the air quality data from nine air quality monitoring sta-
tions in Shanghai City, China, were obtained from The Chinese Ministry of
Environmental Protection. Figure 4 shows the location map of Shanghai. The
experimental data were collected from 2014-05-13 to 2020-12-31 at an hourly
rate, which consists of AQI, CO, O3, NO2, SO2, PM10, and PM2.5.

Fig. 4. Distribution of air quality monitoring stations in Shanghai City. Here, there
are nine monitoring stations across seven districts.
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4.2 Experimental Settings

The parameters of parallel multi-input transformer are experimentally found
to achieve the best performance by considering both RMSE and efficiency. For
multi-head attention, the head size is 256, the number of heads is 4, and the
dropout is 0.25. For the feed-forward part, the filter sizes of the first and second
Conv1D are set to 4 and the input embedding size is set to 24, the dropout is
0.25. The transformer encoder is repeated 4 times. For the multi-layer perceptron
head, the dense size and dropout are 64 and 0.4. For training parameters, we
use the Adam algorithm to optimize the network with a learning rate of 0.0001,
batch size is 64, and epoch size is 200.

5 Results and Discussion

In this section, we first discuss the performance of our model during the training
and inference period. We train and validate the model using the data collected
from 2014-05-12 to 2019-12-31. The rest data is used for testing.

5.1 Evaluation Metrics

To verify the accuracy of the proposed method in predicting AQI, two commonly
used performance metrics are used to evaluate the results of the model: root mean
square error (RMSE) and R2.

RMSE =

√
√
√
√

1
n

n∑

i=1

(|y′
i − yi|) (4)

R2 = 1 −
∑n

i=1(yi − ŷi)2
∑n

i=1(y
′
i − ŷi)2

(5)

where y
′
i and yi represent the actual and predicted value of AQI, respectively, n

is the number of data points contained in the test set, and i is the compilation of
test data, ŷi the average value of n observed samples. For RMSE, a lower value
indicates better performance. However, a higher value of R2 indicates better
performance.

5.2 Performance of Single-Input Multi-step Model

The AQI forecasting performance of the proposed method is compared with
biLSTM, stack-biLSTM, CNN-biLSTM-v1, and CNN-biLSTM-v2. Tables 2, 3
and 4 show 3-step, 6-step, and 9-step forecasting results using five different
architectures, where AQI is used as the model input. From the tables, we can
observe that the transformer-based model can achieve the best performance in
terms of both RMSE and R2. For various monitoring stations, the performance
is very different. The performance of 1148A is the worst, while the result of
1142A is the best in terms of RMSE and R2. Considering different steps in
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multi-step ahead AQI forecasting, it is natural that the forecasting performance
deteriorates due to the increasing prediction horizons. Among four biLSTM-
based models, stack-biLSTM achieves the best performance where the averaged
RMSE and R2 for 3-step, 6-step, and 9-step forecasting are 7.5101 and 0.8288,
9.7164 and 0.7127, 11.1694 and 0.6198, respectively. Therefore, both transformer
and stack-biLSTM will be selected as the basic block for the subsequent multi-
input multi-step analysis.

Table 2. Comparison of 3-step forecasting results using different models in terms of
RMSE ↓ and R2 ↑, where AQI is used as the input.

Metric Method 1142A 1143A 1144A 1145A 1146A 1147A 1148A 1149A 1150A Mean

RMSE biLSTM 5.7927 9.4096 6.8628 7.5125 7.4767 8.1573 9.6585 6.1925 6.7555 7.5353
stack-biLSTM 5.7672 9.3872 6.8365 7.4620 7.3632 8.1951 9.6254 6.1985 6.7560 7.5101
CNN-biLSTM-v1 5.8343 9.5170 7.0031 7.6536 7.4941 8.2194 9.5698 6.3006 6.8592 7.6057
CNN-biLSTM-v2 5.8685 9.4614 6.9991 7.6445 7.5151 8.1831 9.5682 6.3065 6.8385 7.5983
Transformer 5.7431 9.3192 6.8678 7.4989 7.3724 8.0932 9.5359 6.1846 6.7551 7.4856

R2 biLSTM 0.8325 0.8158 0.8432 0.8311 0.8304 0.8170 0.8018 0.8467 0.8305 0.8277
stack-biLSTM 0.8340 0.8166 0.8444 0.8334 0.8355 0.8153 0.8032 0.8464 0.8305 0.8288
CNN-biLSTM-v1 0.8301 0.8115 0.8367 0.8247 0.8296 0.8142 0.8054 0.8413 0.8252 0.8243
CNN-biLSTM-v2 0.8281 0.8137 0.8369 0.8252 0.8286 0.8158 0.8055 0.8410 0.8263 0.8246
Transformer 0.8354 0.8193 0.8430 0.8318 0.8351 0.8198 0.8068 0.8471 0.8305 0.8299

Table 3. Comparison of 6-step forecasting results using different models in terms of
RMSE ↓ and R2 ↑, where AQI is used as the input.

Metric Method 1142A 1143A 1144A 1145A 1146A 1147A 1148A 1149A 1150A Mean

RMSE biLSTM 7.5781 11.9582 8.9781 9.9010 9.6351 10.4189 12.0198 8.1957 8.7114 9.7107
stack-biLSTM 7.6263 12.0462 8.9841 9.8806 9.5206 10.3877 12.0723 8.2235 8.7065 9.7164
CNN-biLSTM-v1 7.6616 12.0460 9.0787 10.0153 9.6847 10.4811 12.0302 8.2741 8.7893 9.7845
CNN-biLSTM-v2 7.7354 12.0107 9.0553 9.9808 9.7050 10.5326 11.9847 8.2335 8.8093 9.7830
Transformer 7.4880 11.7925 8.8869 9.6849 9.5138 10.2649 11.9166 8.0954 8.6357 9.5865

R2 biLSTM 0.7134 0.7025 0.7317 0.7068 0.7183 0.7015 0.6931 0.7315 0.7182 0.7130
stack-biLSTM 0.7098 0.6981 0.7313 0.7080 0.7250 0.7032 0.6904 0.7297 0.7185 0.7127
CNN-biLSTM-v1 0.7071 0.6981 0.7256 0.7000 0.7154 0.6979 0.6926 0.7263 0.7131 0.7085
CNN-biLSTM-v2 0.7014 0.6999 0.7271 0.7020 0.7142 0.6949 0.6949 0.7290 0.7118 0.7084
Transformer 0.7202 0.7107 0.7371 0.7195 0.7254 0.7102 0.6984 0.7380 0.7230 0.7203

5.3 Performance of Multi-input Multi-step Model

Figures 5 and 6 show the forecasting results using all seven variables and opti-
mized variables as the input in parallel. Here, optimized variables are selected
based on the ρ value, where those variables are positively correlated with AQI.
Compared to a single-input multi-step model, the multi-input multi-step model
can achieve better forecasting performance, which verifies the effectiveness of
having more variables to construct the model. Multi-input transformer with pos-
itively correlated variables as the input can achieve an RMSE of 6.488, 8.7978,
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Table 4. Comparison of 9-step forecasting results using different models in terms of
RMSE ↓ and R2 ↑, where AQI is used as the input.

Metric Method 1142A 1143A 1144A 1145A 1146A 1147A 1148A 1149A 1150A Mean

RMSE biLSTM 8.7977 13.8244 10.4122 11.4434 11.1173 11.8833 13.7453 9.5555 10.0543 11.2037
stack-biLSTM 8.8092 13.7301 10.4684 11.4518 11.0394 11.8265 13.6538 9.5392 10.0064 11.1694
CNN-biLSTM-v1 8.8565 13.7776 10.5275 11.5903 11.2051 11.9440 13.7415 9.6398 10.1596 11.2713
CNN-biLSTM-v2 8.8445 13.8409 10.5102 11.5557 11.1326 11.9175 13.7085 9.5565 10.1010 11.2408
Transformer 8.6346 13.5435 10.2555 11.1797 10.9084 11.7506 13.5681 9.3674 9.9604 11.0187

R2 biLSTM 0.6139 0.6025 0.6392 0.6084 0.6251 0.6117 0.5988 0.6351 0.6246 0.6177
stack-biLSTM 0.6128 0.6079 0.6353 0.6078 0.6303 0.6154 0.6041 0.6363 0.6282 0.6198
CNN-biLSTM-v1 0.6087 0.6052 0.6312 0.5983 0.6191 0.6077 0.5990 0.6286 0.6167 0.6127
CNN-biLSTM-v2 0.6097 0.6016 0.6324 0.6007 0.6241 0.6095 0.6009 0.6350 0.6211 0.6150
Transformer 0.6280 0.6185 0.6500 0.6263 0.6390 0.6203 0.6090 0.6493 0.6316 0.6302

and 10.4585 for 3-step, 6-step, and 9-step AQI forecasting, respectively, which
are the best in the four models. However, the best performance for 3-step and
6-step is obtained using position encoding, and the best performance for 9-step
AQI forecasting is obtained without position encoding.

Similar to the single-input model, the forecasting performance deteriorates
due to the increasing prediction horizons. For short-horizon (3-step) forecasting,
the proposed model has an R2 of 0.8715, meaning that the proposed model fits
the AQI series well. Furthermore, experimental results demonstrate that our
proposed model can forecast future AQI grades accurately. Therefore, the public
can schedule their outdoor activities and take some protection measures against
air pollution in advance according to the predicted AQI grade.

Fig. 5. Comparison of multi-step forecasting results using multi-input stack-biLSTM
and multi-input transformer in terms of RMSE ↓. Here, A: multi-stack-biLSTM with
all variables, B: multi-stack-biLSTM with optimized variables, C: multi-transformer
with all variables, D: multi-transformer with optimized variables, E: multi-transformer
with all variables using position encoding, F: multi-transformer with optimized vari-
ables using position encoding.
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Fig. 6. Comparison of multi-step forecasting results using multi-input stack-biLSTM
and multi-input transformer in terms of R2 ↓. Here, A: multi-stack-biLSTM with all
variables, B: multi-stack-biLSTM with optimized variables, C: multi-transformer with
all variables, D: multi-transformer with optimized variables, E: multi-transformer with
all variables using position encoding, F: multi-transformer with optimized variables
using position encoding.

5.4 Conclusion

We propose a novel parallel multi-input transformer architecture for AQI fore-
casting, which is essential for public health protection and air pollution reduc-
tion. In the proposed model, five single-input deep learning models are first
employed to forecast AQI, where the best-performing architecture is selected for
constructing multi-input models. Then, multiple variables are optimized based
on the Spearman Correlation Coefficients. Finally, the final experimental results
demonstrate the effectiveness of multi-input architectures and variable optimiza-
tion. Moreover, the performance of the proposed method is superior to those of
all compared models. Future work aims to investigate data decomposition and
data from nearby stations for improving performance.
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Abstract. Pedestrian re-identification (Re-ID) is used to solves the recognition
and retrieval of pedestrians across cameras. To solve the difficulties of label anno-
tation in Re-ID, a one-shot video-based Re-ID method is applied. For the problem
of large number of neural network parameters and weak feature extraction ability
of the model, the SAM attention module is embedded. The module is plug-and-
play without any additional parameters, while it can capture the hidden informa-
tion in samples and improve the discriminative of model. To address the problem
of low accuracy of label estimation, a reciprocal nearest neighbours metric is
designed. The metric is capable of constructing closer nearest-neighbour relation-
ships between samples, combining theMahalanobis distance and Jaccard distance
to significantly improve the accuracy of label estimation and model performance.
The effectiveness of our method in this paper is extensively experimented on two
video-based Re-ID datasets, MARS and DukeMTMC-VideoReID.

Keywords: Video-based Person Re-identification · One-shot Learning ·
Semi-supervised Learning

1 Introduction

Pedestrian re-identification (Re-ID) is a technique for detecting the presence of a specific
pedestrian in a network ofmultiple cameras [1–5]. It plays an important role in intelligent
video surveillance systems and has a wide range of applications in the field of public
safety. With the developments of smart cities, a large number of cameras have been
installed in cities and huge amount of video data is generated all the time. How to
process video data efficiently is an important problem encountered by security personnel
nowadays. Re-ID plays an important role in this regard, which reduce the consumption
of manpower and economy effectively.

Most of the existing video-based pedestrian Re-ID methods use supervised based
methods [6–10], which are extremely dependent on data annotation. But it is laborious
and time-consuming for large-scale data annotations. Compared with supervised based
methods,massive data annotations are not necessary for semi-supervised basedmethods.
But these methods do not fully utilize the hidden information of unlabeled data, which

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 64–78, 2023.
https://doi.org/10.1007/978-3-031-47665-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47665-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-47665-5_6


One-shot Video-Based Person Re-identification 65

cause the performances of them are not as good as desired. One-shot Re-ID methods
adopt a different training philosophy, which use only one labeled video clip for each
identity in the training set, and the rest are unlabeled data. The current mainstream app-
roach uses an incremental learning strategy to first assign pseudo-labels to the unlabeled
data, then select some reliable pseudo-labeled data tomergewith the original training set,
and finally use the merged new data set to train the model again. Obviously, assignment
of labels plays an important role in these methods, because it determines the assignment
of pseudo-labels directly, and the correct assignment of pseudo-labels has a great impact
on the next training. In other words, a correct pseudo-label sample has a positive effect
on the training, while a wrong one provides wrong supervision information and prevents
the model from learning the hidden information of the sample.

In this paper, a novel one-shot video-based pedestrian Re-ID method is designed
based on SAM attention module and reciprocal nearest neighbor metric. The whole
process can be briefly divided into three steps: (1) Initialize the model using labeled
data. (2) Assign pseudo-labels for unlabeled data and select some reliable pseudo-labels
to be combinedwith labeled data as a new training set. (3) Train themodel again using the
new training set. Due to the few number of initial labeled samples, the trained model is
not discriminative enough. To address the problem of few number of labeled samples and
low discriminative ability at the begining of training, we embed SAM attention module
[11] in our network. In label estimation, in order to improve the accuracy of pseudo-label
assignment, we design a reciprocal nearest neighbor metric, with k-reciprocal encoding
[12], Mahalanobis metric and Jaccard metric for nearest neighbor samples, which is
more robust and tighter and improves the accuracy of pseudo-label assignment. The
main contributions of this paper are as follow:

(1) The SAM attention module is embedded in our network, which is flexible and
effective to enhance themodel discriminationwithout increasing the training burden.

(2) A reciprocal nearest neighbor metric is designed for pseudo-label estimation, which
can effectively improve the accuracy of pseudo-label prediction.

(3) Ourmethod in this paper focuses on the video-based pedestrianRe-IDproblemunder
one-shot, and achieves competitive performance on two large-scale video pedestrian
datasets, MARS and DukeMTMC-VideoReID.

2 Related Works

In recent years, video-based pedestrian Re-ID with deep learning has developed rapidly
and achieved impressive results on major datasets [13–17]. Compared with image-based
pedestrian Re-ID, video-based pedestrian Re-ID contains more pedestrian identity infor-
mation and is accompanied by more noise and challenges. How to obtain sequence-level
discriminant features is the core of supervised video-based pedestrian Re-ID. To address
this problem, based on the spatio-temporal information of videos, many researchers
extract more effective pedestrian features by integrating attention mechanisms. Li et al.
propose a spatio-temporal attention module that discovers discriminative parts from
pedestrian images and extract valid information without being affected by problems
such as occlusion [13]; Hou et al. combine the attention mechanism with adversarial
generative networks to design a spatio-temporal completion network, which recover the
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occluded parts of pedestrian through the network, instead of discarding them, to effec-
tively dealwith the occlusion problem [14]; Li et al. drawon thework in image pedestrian
Re-ID to explore multi-scale temporal cues in video sequences [15]; Liu et al. introduce
a non-local attention module and reduce the computational complexity of extracting
spatio-temporal features [16]; Eom et al. propose a spatio-temporal memory network,
where spatial memory stores the features of the extracted spatial interference terms and
temporal memory stores the attention used to optimize temporal patterns, this network
improves the performance of attentionmechanisms in the field of video-based pedestrian
Re-ID [17].

Semi-supervised video-based Re-ID has been less studied, and most of the work
focuses on semi-supervised video-based Re-ID under one-shot [18–24]. Zhu et al. use a
semi-supervised dictionary learning approach to study the cross-view problem in video-
based Re-ID by converting videos under different cameras into coding coefficients in the
feature space to reduce the variation and differences between different cameras [18]; Liu
et al. propose ametric boosting algorithm that iterates betweenmodel upgrading and label
estimation,mainly for the problems of difficult samplemining and label propagation, and
achieves good results on three datasets [19].Wu et al. improve the framework of iterative
training by drawing on the experience in [19], they also optimize the sampling strategy
and the algorithm for pseudo-label assignment [20]. Similar to this iterative training
approach, Ye et al. design a framework for dynamic graph matching to improve the
label estimation process by continuously changing the graph structure, and also design a
joint matching strategy to fully extract video information and reduce false matches [21].
Although all of the above methods are semi-supervised methods, the training and data
selection strategies are different from each other. In particular, the traditional principle of
nearest neighbor assignment is still used in label estimation, and pseudo-label estimation
errors often occur. The method in this paper focuses on the problem of one-shot video-
based Re-ID, using SAM attention as well as reciprocal nearest neighbor metric, which
can effectively utilize unlabeled samples and improve the accuracy of pseudo-label
prediction.

3 Method

3.1 Main Framework

Figure 1 shows the overall framework of our method proposed in this paper. The whole
process consists of model initialization, label assignment, dynamic selection and model
update. Firstly, themodel is initialized using labeled samples. In previousworks, ResNet-
50 is the common choice. For the dual consideration of feature extraction and computa-
tion consumption of our model, the SAM attention module is embedded in ResNet-50.
In label assignment, the reciprocal nearest neighbor metric is used, which is better in
reflecting the relationships of samples and improving the accuracy of label estimation
effectively, compared with the Euclidean metric. After each selection of pseudo-labeled
data, the labeled data are merged with the selected pseudo-labeled data as the training
set for the next training. The whole process is continuously iterated, and eventually all
unlabeled data are selected.
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Fig. 1. The main framework

3.2 SAM Attention Module

In one-shot Re-ID, the labeled samples are unique for each identity. These samples are
used to train the model firstly, then estimate labels for unlabeled ones with the model.
However, due to the small amount of these labeled samples, researchers usually do not
usemore complex network structures. On the one hand, a complex network structure will
trigger a huge amount of computation; on the other hand, a complex network structure
does not necessarily enhance the feature extraction ability and discriminative ability of
the model, but it may even fall into overfitting. To address the above problems, the SAM
attention module is added into the ResNet-50 network, which is a plug-and-play module
that does not require much adjustment of the network structure.

3

Fig. 2. 3-D attention weights

Existing attention models usually extract features from channels or image spaces
only, which limit the flexibility of attention weights for network learning. In addition,
the structures of these attention models are usually very complex, which bring enormous
amount of computation. In contrast, the SAM module is simple and effective in that it
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considers both spatial dimensions and channel dimensions and it is able to obtain 3-
dimensional attention weights directly from the current neurons, as shown in Fig. 2,
where X ∈ RC×H×W is the input feature map, and C is the channel number of X. The
SAM energy function is shown in Eq. (1), which is derived in [11] detailly:

e∗
t =

4
(
σ
∧2 + λ

)

(
t − μ

∧)2 + 2σ
∧ + 2λ

(1)

μ
∧ = 1

M

M∑
i=1

xi (2)

σ
∧2 = 1

M

M∑
i=1

(
xi − μ

∧)2 (3)

In Eq. (1), t is an objective neuron in one of the channels of input feature X, and xi
denotes other neurons in this channel, and i is the index of spatial dimensions.M =H ×
W denotes the number of neurons in the spatial dimension, and λ is a hyper-parameters.
μ
∧

and σ
∧2 denote the mean and variance of all neurons in the channel, as shown in Eq. (2)

and Eq. (3), respectively. The above formula indicates that, the smaller e∗
t , the larger t.

That is, t is more pronounced than other neurons, and the network can thus learn more
features.

Integrate the attention weights of each dimension with input features, and the final
feature representation is shown in Eq. (4):

X̃ = sigmoid

(
1

E

)
� X (4)

where, X̃ denotes the output feature, and E groups all e∗
t across channel and spatial

dimensions. Sigmoid is added to restrict too large value in E.
SAM attention module is very flexible and modular, which is combined with the

ResNet-50 network in this paper, and in order to adapt to the classification task of
pedestrian Re-ID, a temporal average pooling layer is added at the end of the network
to extract sequence-level features.

From Fig. 3, it can be seen that SAMattentionmodule can be inserted into each layer,
fromLayer1 toLayer4. In order to extract sequence-level features, a time average pooling
layer is added after Layer4 and SAMmodules.With these SAMmodules, many valuable
clues can be captured, and the discriminative ability of the model can be enhanced, but
the computational cost has not increased significantly, due to its lightweight structure.

3.3 Reciprocal Nearest Neighbor Metric

Label estimation is currently the main challenge in semi-supervised Re-ID. How to
assign correct pseudo-labels for unlabeled sample plays a crucial role in model training.
The nearest neighbormethodwith Euclidean distancemetric is commonly used to assign
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pseudo-labels. Equation (5) represents the Euclidean distance d(vi, vj) between labeled
sample vi and unlabeled sample vj:

d
(
vi, vj

) = ‖vi − vj‖ (5)

According to Formula (5), unlabeled data is assigned the label of the labeled data
which is closest to it. However, in the process of label allocation, it is inevitable that
unlabeled data is mislabeled (assigned error pseudo-label), especially when the discrim-
inant power of the model is not strong enough. With the nearest neighbor method, when
the number of mislabeled samples is large, it can greatly weaken the performance of the
model. To address this problem, k-reciprocal encoding is used in our model for label
estimation. In the field of pedestrian Re-ID, k-reciprocal encoding is initially used for
re-ranking.

In this paper, reciprocal encoding is applied as the distance metric for one-shot label
estimation of unlabeled samples. Assuming ui is an unlabeled data, G = {gi |i = 1,2,…,
N} denotes N labeled data, and the k-nearest neighbor of ui is defined as N(ui,k) as
shown in Eq. (6):

N (ui, k) = {g01 , g02 , ..., g0k }, |N (ui, k)| = k (6)

where, |.| denotes the number of candidates in the set. Based on the k-nearest neighbor
of ui, the k-reciprocal nearest neighbor of ui is denoted as R(ui,k):

R(ui, k) = {gi|(gi ∈ N (ui, k))
∧

(ui ∈ N (gi, k)) (7)

Fig. 3. Network structure diagram with SAM module

...
md

Jd

*d

Fig. 4. Reciprocal nearest neighbour metric

As shown in Eq. (7), an unlabeled sample and a labeled sample are called k-reciprocal
nearest neighbors, when they are k-nearest neighbors of each other. Compared with k-
nearest neighbors, k-reciprocal nearest neighbors reflect the relationships of samples
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better. At the procedure of label assignment, when an unlabeled sample and a labeled
sample are k-reciprocal nearest neighbors, it can be considered that the likelihood of
them belonging to the same category is very high. Based on this assumption, a reciprocal
nearest neighbor metric is proposed for label estimation in this paper, as shown in Fig. 4.

It can be seen from Fig. 4 that the reciprocal nearest neighbor metric consists of three
components:

(1) extract the features xui and xgi of unlabeled data ui and labeled data gi, respectively,
(2) calculate the Mahalanobis distance dM (ui, gi) and Jaccard distance dJ (ui, gi), as

shown in Eq. (8) and Eq. (9),

dM (ui, gi) =
√

(ui − gi)T
∑−1(

ui−gi
)

(8)

dJ (ui, gi) = 1 − |R(ui, k) ∩ R(gi, k)|
|R(ui, k) ∪ R(gi, k)| (9)

In Eq. (8),
∑

is covariance matrix of ui and gi, the superscripts T and -1 denote
matrix transpose and inverse. In Eq. (9), R(·, k) denotes the k-nearest neighbor of ·, and
| and || and |·| denotes the number of samples in ·. If sample ui and gi belong to the same
category, there are many same samples in R(ui, k) and R(gi, k). This means that, the
more the number of same samples in R(ui, k) and R(gi, k), the more similar of ui and
gi, and the closer dJ (ui, gi) tends to zero.

(1) Our reciprocal nearest neighbor metric d∗(ui, gi) is defined with Mahalanobis
distance dM (ui, gi) and Jaccard distance dJ (ui, gi) as follow,

d∗(ui, gi) = (1 − λ)dM (ui, gi) + λdJ (ui, gi) (10)

where, λ(0 < λ < 1) is balance factor.With thismetric, we canmine the information
of reciprocal nearest neighbors between unlabeled and labeled data, and the accuracy
of pseudo-label estimation and the robustness of the model can be improved.

4 Experiments and Results

4.1 Datasets and Evaluation Indicators

In our experiments, two mainstream large-scale datasets of video pedestrian Re-ID,
MARS [25] and DukeMTMC-VideoReID [20], are used. In MARS, there are 20,478
video clips captured by 6 cameras, in which 17,503 are valid clips and the rest 3,248
are interference clips. The total number of pedestrians present in MARS is 1,261, and
625 in the training set and 636 in the test set. In DukeMTMC-VideoReID, there are
1,812 pedestrians and 4,832 video clips, wherein 702 pedestrians and 2196 clips in
the training set, and 702 pedestrians and 2636 clips in the test set, in additional 408
interference pedestrians, which is the subset of DukeMTMC [26]. To demonstrate the
performance of our model, two indicators, Cumulative Matching Characteristic (CMC)
and Mean Average Precision (mAP), are used as evaluation indicators.
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Fig. 5. Comparison of results for different p of the DukeMTMC-VideoReID

4.2 Experimental settings

In this paper, GPU 2080ti is used and the experimental settings are the same as [20].
The stochastic gradient descent (SGD) optimization method with momentum of 0.5 and
weight attenuation of 0.0005 is adopted. The overall learning rate is initialized to 0.1
and decays to 0.01 in the 15 epochs. The loss function is Cross Entropy Loss.

4.3 Experimental Results and Comparison

Parameter Selection Experiments
In this section, we analyze the parameter p(0 < p < 1), which control the number of
pseudo-label samples selected each time. Figure 5 shows the results with p = 0.05,
p = 0.10, p = 0.20, p = 0.25 on the DukeMTMC-VideoReID dataset, respectively.

As shown in Fig. 5, it can be seen that, the smaller p selected, the better performance
achieved. This is because fewer reliable pseudo-label samples are selected when p is
small. Although there may be mislabeled samples contained in those selected pseudo-
label samples, the number is too small to impact the performance of our model. But
we also find that, p is not necessarily as small as possible. Because the fewer samples
selected each time, the higher consumption in model training. In order to achieve a
balance between speed and accuracy, we set p = 0.05 and p = 0.10 in the following
experiments.

In addition to parameter p, k and λ can also affect the result of reciprocal nearest
neighbor metric (RNM). Table 1 and Table 2 show the RNM results for different k values
and different λ values on the DukeMTMC-VideoReID dataset, respectively.

As shown in Table 1, we set p = 0.10, λ = 0.3 and select k = 5, 10, 15, 20 for
comparison In our experiments. Our RNM model achieves the best score in rank-1,
rank-5, rank-20 and mAP, when k = 10. In the following experiments, we set k = 10.

As shown in Table 2, we set p = 0.10, k = 10 and select λ=0.3, 0.5 for comparison
In our experiments. Our RNM model achieves the best score in rank-1, rank-5, rank-20
and mAP, when λ = 0.3. In the following experiments, we set λ = 0.3.

Effectiveness Experiments of SAM Attention Module
In this section, effectiveness of SAM attention module embedded in our model is
compared with EGU [20] and PL [27] on DukeMTMC-VideoReID andMARS datasets.
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Table 1. Comparison of RNM (%) for different k on DukeMTMC-VideoReID

k rank-1 rank-5 rank-20 mAP

20 71.70 85.30 92.30 63.60

15 78.50 91.60 95.70 72.30

10 79.20 92.20 95.40 73.00

5 77.10 89.00 94.60 69.40

Table 2. Comparison of RNM (%) for different λ on DukeMTMC-VideoReID

λ rank-1 rank-5 rank-20 mAP

0.30 79.20 92.20 95.40 73.00

0.50 75.40 88.00 93.90 67.50

As shown in Table 3, with SAM(p = 0.10), rank-1 and mAP of our model achieves
75.6% and 67.6%, respectively, on DukeMTMC-VideoReID dataset, which exceeds the
performance of EUG (p = 0.05) and PL (p = 0.05). Compared to EUG (p = 0.10),
rank-1 and mAP of our model exceed 4.81% and 5.84%, respectively. Compared to PL
(p = 0.10), rank-1 and mAP of our model exceed 4.6% and 5.7%, respectively. Similar
results can also be obtained, when compared SAM (p = 0.10) with EUG (p = 0.05) and
PL (p = 0.05).

As shown in Table 4, with SAM (p = 0.10), rank-1 and mAP of our model achieves
60.7% and 41.5%, respectively, on MARS dataset, which exceeds the performance of
EUG (p = 0.10) and PL (p = 0.10), lower than the performance of EUG (p = 0.05) and
PL (p = 0.05). Similarly,with SAM (p = 0.05), rank-1 and mAP of our model achieves
63.7% and 43.9%, respectively, which exceed the performance of EUG (p = 0.05) and
PL (p = 0.05).

Table 3. Comparison(%) of SAM with EUG and PL on DukeMTMC-VideoReID

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 70.79 83.61 89.60 61.76

EUG [20] (p = 0.05) 72.79 84.18 91.45 63.23

PL [27] (p = 0.10) 71.00 83.80 90.30 61.90

PL [27] (p = 0.05) 72.90 84.30 91.40 63.30

SAM (p = 0.10) 75.60 87.60 92.00 67.60

SAM (p = 0.05) 77.60 89.60 94.40 69.20
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Table 4. Comparison(%) of SAM with other methods on MARS

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 57.62 69.64 78.08 34.68

EUG [20] (p = 0.05) 62.67 74.94 82.57 42.45

PL [27] (p = 0.10) 57.90 70.30 79.30 34.90

PL [27] (p = 0.05) 62.80 75.20 83.80 42.60

SAM (p = 0.10) 60.70 74.00 81.90 41.50

SAM (p = 0.05) 63.70 76.00 82.30 43.90

With above experiments, it can be seen that, because of the flexible and lightweight
characteristics of the SAM attention module, our model can effectively captures hidden
information in video data and extracts more discriminative features, without increasing
network parameters and without modifying the overall structure significantly, because
of the flexible and lightweight characteristics of the SAM attention module.

Effectiveness Experiments of Reciprocal Nearest Neighbor Metric
In this section, effectiveness of RNM (reciprocal nearest neighbor metric) used in our
model is compared with EGU [20] and PL [27] on DukeMTMC-VideoReID andMARS
datasets.

As shown in Table 5, with RNM (p = 0.10), rank-1 and mAP of our model achieves
79.2% and 73.0%, respectively, on DukeMTMC-VideoReID dataset, which exceeds the
performance of EUG (p = 0.05) and PL (p = 0.05). Compared to EUG (p = 0.10),
rank-1 and mAP of our model exceed 8.41% and 11.24%, respectively. Compared to PL
(p = 0.10), rank-1 and mAP of our model exceed 8.2% and 11.1%, respectively. Similar
results can also be obtained, when compared RNM (p = 0.10) with EUG (p = 0.05) and
PL (p = 0.05).

As shown in Table 6, with RNM (p = 0.10), rank-1 and mAP of our model exceed
the performance of EUG (p = 0.05) and PL (p = 0.05) on MARS dataset. Compared to
EUG (p = 0.10), rank-1 and mAP of our model exceed 7.18% and 8.52%, respectively.
Compared to PL (p = 0.10), rank-1 and mAP of our model exceed 6.9% and 8.3%,
respectively. Similar results can also be obtained, when compared RNM (p= 0.05) with
EUG (p = 0.05) and PL (p = 0.05).

In RNM, it is assumed that, two samples that are k-nearest to each other are highly
likely to belong to the same category. Experiments have shown that, compared to the
commonly usedEuclidean distance, RNMmakes labeled data and pseudo-labeled data to
connect muchmore closer to each other, which can improve the accuracy of pseudo-label
estimation.

Ablation Experiments
In ablation experiments, in order to demonstrate the effectiveness of SAM and RNM,
we use EUG as baseline and the framework used in our model is the same as that in
EUG.
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Table 5. Comparison(%) of RNM with other methods on DukeMTMC-VideoReID

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 70.79 83.61 89.60 61.76

EUG [20] (p = 0.05) 72.79 84.18 91.45 63.23

PL [27] (p = 0.10) 71.00 83.80 90.30 61.90

PL [27] (p = 0.05) 72.90 84.30 91.40 63.30

RNM (p = 0.10) 79.20 92.20 95.40 73.00

RNM(p = 0.05) 81.20 92.70 95.60 75.40

Table 6. Comparison (%) of RNM with other methods on MARS

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 57.62 69.64 78.08 34.68

EUG [20] (p = 0.05) 62.67 74.94 82.57 42.45

PL [27] (p = 0.10) 57.90 70.30 79.30 4.90

PL [27] (p = 0.05) 62.80 75.20 83.80 42.60

RNM (p = 0.10) 64.80 79.50 86.90 43.20

RNM (p = 0.05) 66.30 80.40 87.50 44.80

As shown in Table 7, when p = 0.10, rank-1 of SAM, RNM and SAM + RNM are
75.6%, 79.2% and 80.5%, and mAP of them are 67.6%, 73% and 74.4%, respectively.
All of the scores exceed the scores with EUG. Similar results can be obtained, when
compared SAM, RNM and SAM + RNM with EUG. It can be seen that, performance
improvements are achieved on DukeMTMC-VideoReID dataset, whether using SAM,
RNM or SAM + RNM, which demonstrates the effectiveness of our method.

As shown in Table 8, when p = 0.10 and 0.05, SAM, RNM and SAM + RNM are
better than EUG, which demonstrates the effectiveness of our method.

Generally speaking, both SAM and RNM outperform EUG on both datasets, which
demonstrates the effectiveness of SAM and RNM. Specifically, when using both SAM
and RNM simultaneously, the performance of our model achieves an better performance
thanusingSAMorRNMalone.With above experiments,we can see that, comparedSAM
with RNM, the latter contributes more to the network. This is because RNM acts on the
process of label estimation directly, and significantly improves the accuracy of pseudo-
label assignment, which reduces the proportion of erroneous samples in the model and
helps to generate a robust model. SAM, on the other hand, focuses on extracting hidden
features from video data and relies on models with strong discriminative power to play
its role.
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Table 7. Ablation Experiments on DukeMTMC-VideoReID

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 70.79 83.61 89.60 61.76

SAM (p = 0.10) 75.60 87.60 92.00 67.60

RNM (p = 0.10) 79.20 92.20 95.40 73.00

SAM + RNM (p = 0.10) 80.50 92.70 96.20 74.40

EUG [20] (p = 0.05) 72.79 84.18 91.45 63.23

SAM (p = 0.05) 77.60 89.60 94.40 69.20

RNM (p = 0.05) 81.20 92.70 95.60 75.40

SAM + RNM (p = 0.05) 82.20 92.50 96.40 75.60

Table 8. Ablation Experiments on MARS

Methods rank-1 rank-5 rank-20 mAP

EUG [20] (p = 0.10) 57.62 69.64 78.08 34.68

SAM (p = 0.10) 60.70 74.00 81.90 41.50

RNM (p = 0.10) 64.80 79.50 86.90 43.20

SAM + RNM (p = 0.10) 66.80 80.90 87.70 45.80

EUG [20] (p = 0.05) 62.67 74.94 82.57 42.45

SAM (p = 0.05) 63.70 76.00 82.30 43.90

RNM (p = 0.05) 66.30 80.40 87.50 44.80

SAM + RNM (p = 0.05) 67.60 81.20 88.70 47.90

Comparison with Other Advanced Methods
In order to demonstrate the superiority of our method, a large number of experiments are
conducted on two commonly used large datasets in this section to compare it with the
current advanced one-shot video-based pedestrian Re-ID methods, including Stepwise
[19], EUG[20],DGM+ IDE [21], SCLU [22], LGF [23], PL [27], andBUC[28].Among
them, Baseline (one shot) [20] indicates that only the initial labeled samples are used
for training, without any progressive learning methods, and Supervised [20] indicates
that all labeled samples are used for training the baseline. From Table 9, it can be seen
that the method SAM + RNM proposed in this paper achieves significant performance
improvement compared to the Baseline (one shot) and unsupervised method BUC (only
use single labeled samples for training), and also surpasses traditional semi-supervised
methods such as DGM + IDE and Stepwise. Compared with some one-shot methods,
including EUG, SCLU, and PL, the performance of our SAM + RNM method exceeds
all above methods, which demonstrate the effectiveness of the proposed method.

In summary, the method proposed in this paper has achieved excellent performance
on DukeMTMC-VideoReID and MARS datasets, which indicates that our model, with
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Table 9. Comparison with Some Advance Methods on Large-Scale Datasets

Methods MARS DukeMTMC-VideoReID

rank-1 rank-5 rank-20 mAP rank-1 rank-5 rank-20 mAP

Baseline(one-shot)
[20]

36.20 50.20 61.90 15.50 39.60 56.80 67.00 33.30

Supervised [20] 80.8 92.1 96.1 63.7 83.6 94.6 97.6 78.3

Stepwise [19] 41.20 55.60 66.80 19.70 56.30 70.40 79.20 46.80

EUG(p = 0.10) [20] 57.62 69.64 78.08 34.68 70.79 83.61 89.60 61.76

EUG(p = 0.05) [20] 62.67 74.94 82.57 42.45 72.79 84.18 91.45 63.23

DGM + IDE [21] 36.80 54.00 68.50 16.90 42.40 57.90 69.30 33.60

SCLU(p = 0.10) [22] 61.97 76.52 84.34 41.47 72.79 84.19 91.03 62.99

SCLU(p = 0.05) [22] 63.74 78.44 85.51 42.74 72.79 85.04 90.31 63.15

LGF [23] 58.80 69.00 78.50 36.20 86.30 96.00 98.60 82.70

PL(p = 0.10) [27] 57.90 70.30 79.30 34.90 71.00 83.80 90.30 61.90

PL(p = 0.05) [27] 62.80 75.20 83.80 42.60 72.90 84.30 91.40 63.30

BUC [28] 55.10 68.30 - 29.40 74.80 86.80 - 66.70

SAM + RNM(p =
0.10)

66.80 80.90 87.70 45.80 80.50 92.70 96.20 74.40

SAM + RNM(p =
0.05)

67.60 81.20 88.70 47.90 82.20 92.50 96.40 75.60

SAM and RNM, can effectively improve the performance of feature extraction, reduce
the mislabel in pseudo-label assignment, and enhance the robustness and discrimination.

5 Conclusion

In this paper, we focus on the problem of one-shot video-based pedestrian Re-ID. To
address the issue of insufficient labeled data under this one-shot settings, SAM attention
module is embedded in the network to improve the ability of feature extraction and the
discriminative power. In order to further improve the accuracy of label prediction, we
design RNM, which can assign pseudo-labels for unlabeled samples more accurately.
The excellent performance on two large-scale datasets proves that, the effectiveness of
our method. But it should be noted that, although our method proposed in this paper
achieves competitive performance, there are still issues with incorrect label assignment
and long training time in the later stage, which require further exploration.
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Abstract. Three-dimensional target detection is a key technology in the fields of
autonomous driving and robot control for applications such as self-driving cars
and unmanned aircraft systems. In order to achieve high detection accuracy, this
paper proposes a 3D target detection network with a coordinate attention training
mechanism that generates voting feature points for better detection ability and
an overlap region penalty mechanism that reduces false detection. In compara-
tive experiments on public large-scale 3D datasets including the Scannet dataset
and SUN-RGB-D dataset, the proposed method obtained an average detection
accuracy mAP of 60.1% and 58.0% with an intersection ratio of 0.25, which
demonstrates its superior effectiveness over the current main algorithms such as
F-PointNet, VoxelNet and MV3D. The improved method is expected to achieve
higher accuracy for 3D object detection relying only on point cloud information.

Keywords: Three-dimensional object detection · Point cloud · Hough voting ·
Coordinate attention training · Overlap region,VoteNet

1 Introduction

1.1 Research Background

With the development of computers and information technology in recent years, driver-
less vehicles, drones, virtual reality and other technologies are gradually affecting our
daily lives. Google has launched Waymo, a driverless car, Baidu has launched Apollo, a
driverless car driving platform, and DJI and other companies have launched drone prod-
ucts that enable autonomous navigation. All of the above products invariably require the
use of target detection technology to achieve environment awareness. However, two-
dimensional target detection methods cannot cope with complex environments, and the
accuracy and stability of existing three-dimensional target detectionmethods still cannot
support the safe and stable operation of self-driving cars and drones, etc. Therefore, it is
of significance to carry out research on three-dimensional target detection algorithms.
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1.2 Related Research

With the successful application of deep learning techniques to tasks such as object
recognition and the semantic segmentation of 2D images, and the undertaking of projects
in fields such as face recognition [1] and scene segmentation [2], point cloud target
detection methods based on deep learning have gradually become a hot research topic.
The existing deep learning-based 3D point cloud target detection algorithms can be
divided into three categories: point-based algorithms, voxel-based algorithms, and image
and point cloud fusion-based algorithms.

Point-based algorithms involve the direct processing of the original point cloud data,
and these algorithms preserve the original point cloud information to the maximum
extent. Point-based algorithms have the characteristics of high accuracy but large com-
putation, and are often used in scenes with a small scene space and more point cloud
data. Shi S et al. [3] proposed the PointRCNN target detection algorithm. The first step
of this algorithm, through the backbone network PointNet++ [4], is to semantically seg-
ment the original point cloud data, segment the target points and generate bounding
boxes on these points, and the second step is to transfer the generated bounding boxes
to a unified standard coordinate system by means of coordinate transformation based
on many bounding boxes generated in the first step, and then remove the redundant
bounding boxes by non-maximal value suppression. This algorithm has a shortage of
large computational volume. Qi C R et al. [5] proposed the VoteNet target detection
algorithm, which uses PointNet++ as the backbone network, extracts feature points as
seed points, votes to derive the centroid of the target and generates candidate regions
with reference to the idea of Hough voting, and finally generates the bounding box. The
concept of voting in this algorithm fits the disorder of point clouds, but the accuracy is
poor in the case of fewer point clouds.

The idea of voxel-based algorithms is to convert the disordered point cloud data into
a tightly ordered voxel block, after which the point cloud can be learned using a convo-
lutional structure. The voxel-based method has the characteristics of less computation
and higher detection speed, but is lower in detection accuracy. Zhou Y [6] et al. proposed
a voxel-based 3D target detection algorithm, VoxelNet, which proposes a voxel feature
encoding module, which voxelizes the original point cloud and then uses the farthest
point sampling within a single voxel block for feature extraction, after which a three-
dimensional CNN is used to extract features for the entire voxel space. Yan Y et al. [7]
proposed the SECOND target detection network in response to the fact that the presence
of many empty voxel blocks in the voxelized space can cause a waste of computational
resources, and this algorithm uses sparse convolution. Lang A H et al. [8] proposed a
voxelization method, which only voxelizes the X and Y axes of the 3D space and the
segmented space is shaped like a column, and then uses 2D convolution for sampling
and learning, which has the advantages of small computation and fast detection speed,
but the detection accuracy is relatively low. Shi S et al. [9] proposed the PV-RCNN
target detection algorithm, which combines the advantages of voxel-based and point-
based methods; the network first voxelizes the 3D space and then learns the features by
fusing sparse convolution with key point sampling, after which the candidate regions are
extracted by the RPN network, and then the features of key points are obtained using
farthest point sampling and point set abstraction.
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The idea of the target detection method based on image and point cloud fusion is
to fuse the advantages of image and point cloud for target detection. Chen X et al.
[10] proposed the MV3D detection method fusing three feature maps: point cloud front
view, point cloud bird’s eye view and RGB images, which are extracted using three
network branches, respectively, and finally fused and fitted to a bounding box. Qi C
R et al. [11] proposed the Frustum-PointNet target detection algorithm, which extracts
candidate regions from RGB images, projects the candidate regions into the aligned 3D
space to form the cone of the view point cloud candidate regions, and obtains the final
target borders through 3D feature extraction and bounding box estimation. This method
based on image and point cloud fusion requires aligned image and point cloud data, and
the network structure is mostly complex.

1.3 Proposed Method

The above target detection algorithm has achieved certain results, but still cannot meet
the needs of practical applications. Therefore, this paper retains the advantages of the
voting mechanism to fit the disorderly nature of point clouds on the basis of the VoteNet
detection algorithm, and improves its disadvantage of poor performance in the case of
sparse point cloud data.

This paper introduces a voting feature point generation module to mine the feature
information of points to generate voting feature points to improve the accuracy of voting,
and proposes an overlapping region penalty mechanism to reduce the number of cases
of false detection. The proposed network structure is described in the following sec-
tions from backbone network, voting feature point generation, target center prediction,
overlapping region penalty mechanism and loss function. In the experimental part, the
dataset and parameter setting are explained, and the ablation experiment is carried out
to compare and analyze the results.

2 Network Structure

The network structure proposed in this paper is shown in Fig. 1. It can be divided into
three parts: the first part is the backbone network module, the second part is the voting
feature point generation module, and the third part is the target center prediction module.

Fig. 1. Overall network structure.

The network takes N × 3 raw point cloud data as input, where N represents the
number of points asN and 3 indicates the dimensions of the data. The three-dimensional
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coordinates (X, Y, Z) of the point cloud are inputted into the backbone network to sample
and learn the features of the points, extract the features of C channels from them, and
output theM × (3+ C) feature set of M points. The feature set of these points generates
new voting feature points with dimensionsM × (3+C) through the coordinate attention
[12] mechanism. The voting feature points are voted by the Hough Voting module of the
deep neural network, which independently generates ballots from each seed through the
multilayer perceptionmechanism (MLP), expressing the centers of the objects in terms of
coordinates. These voted centroids are then subjected to the operation of sampling group
aggregation to generate K clusters of points representing the center of the target object,
and the Cout is the channel numbers of the central point cluster. Then, the point cloud
data in each of the previous groups are transformed by coordinates separately, reduced
to the coordinate axis with its center as the origin, and then the proposed cluster of the
object is derived by a PointNet-like operation. Finally, the low scoring and duplicate
objects are filtered by means of Non-Maximum Suppression (NMS) in 3D to obtain the
final K’ 3D bounding box of the target detection results.

2.1 Backbone Network Module

The backbone network module uses a PointNet++ network structure to learn the features
of points and outputs a set ofM feature points. The backbone network contains four point
set abstraction (SA) layers and two feature up-sampling (FP) layers. The backbone
network module consists of four point SA layers as the encoding part, and the SA
layers transform the point cloud features using MLP and randomly sample the original
point cloud with n points sampled at the farthest point. Each SA layer is composed of
(n, r, [c1, ..., ck ]) set parameters,where n is the number of sampling points, r is the radius
of the sampling area, and [c1, ..., ck ] is the number of MLP channels. The decoding part
of the backbone network consists of two FP layers. The FP layer upsamples the point
cloud by inserting the features of the input points into the output points, and the features
of each output point are the weighted average of the features of its three nearest input
points, after which the features are connected by MLP.

2.2 Voting Feature Point Generation Module

After the features of the points are generated by the backbone network, the voting feature
points are then generated by the voting feature point generation module. This module
mainly consists of a coordinate attention mechanism, where the input is the features of
the points generated by the backbone network and the output is the voting feature points
for the subsequent voting operation, where the attention mechanism is added to help
the model to assign a different weight to each of the channels and further aid in feature
extraction by assigning different weights. This module can improve the shortcomings of
the original VoteNet in the case of low point cloud data and can improve the performance
of the network.

The structure of the coordinate attentionmechanism is shown in Fig. 2. The first layer
of this attention mechanism consists of two average pooling modules to encode each
channel along the horizontal coordinate and the vertical coordinate, respectively, so that
the location information and global features of the points could be captured. And then
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Fig. 2. Coordinate attention mechanism network structure.

the location information and global features are stitched together and passed through
a convolutional layer, followed by regularization and a nonlinear layer. The nonlinear
layer is the h-swish activation function, and after the features are split and passed through
the convolutional layer and the Sigmoid activation function, respectively, the features
are finally updated by multiplying the original input feature by the two weights, and the
voting feature points are output, and the voting feature points are shown as red dots in
Fig. 3.

Fig. 3. Voting feature points.

2.3 Target Center Prediction Module

In the target center prediction module, voting is performed based on the voting feature
points, and then the voting target center points are sampled, grouped, and clustered to
obtain a set of points as the target center point cluster, and the clustering method is based
on the spatial similarity of uniform sampling and grouping, in which K subsets of the
voting set are selected using the farthest point sampling method. Then, the neighboring
points are aggregated by the K nearest neighbor algorithm to form the target center point
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cluster. As shown in Fig. 4, the green points are the points obtained by voting, and the red
points are the target centroid clusters obtained after sampling, grouping and aggregation.
Then, we generate the candidate regions and generate the bounding boxes through the
optimization classification, and finally, we obtain the final target 3D bounding boxes
through the 3D NMS.

Fig. 4. Target center cluster obtained by voting.

2.4 Overlapping Region Penalty Mechanism

In the prediction information generated for a sample scene, the predicted borders pro-
duce overlapping results in different objects. The overlap between some objects can
be considered reasonable due to the characteristics of their appearance. However, the
overlap between objects of the same type is largely absent in the dataset and in reality.
Therefore, to address this property and the common phenomenon of overlapping pre-
diction borders in the prediction results, this paper proposes a penalty mechanism for
overlapping regions.

The volume calculation of the overlapping region is based on the determination and
calculation of the estimated coordinates of the given borders between similar objects. As
shown in Fig. 5a, objects that obtain the same classification prediction in the same scene
are sampled to obtain the two vertexes on the diagonal of the body in its predicted border
and the geometric center of the border. The two objects P1 and P2 in red and blue color
in Fig. 5a are the prediction boxes of two samples in the same classification. Px_Max
and Px_Min are the two points on the diagonal of the box body with the largest and
smallest 3D coordinate values, and Px_Cen is the center of the box. The two vertexes on
the diagonal of the body contain both the position and dimensional information of the
whole rectangular prediction frame. According to the relative positions of the computed
geometric centers P1_Cen and P2_Cen in Fig. 5b, whether two predicted bounding
boxes overlap can be judged by the 3D size of the bounding box. If overlapped, in
Fig. 5c and Fig. 5d, the two vertexes in the body diagonals of the overlapping region box
in green color can be selected from the two original predicted bounding boxes. Which
Op_Max and Op_Min used to be the vertexes of the predicted largest and smallest 3D
coordinate values and also the reference points for calculating the overlapping area of
the two original predicted bounding boxes.
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Fig. 5. Illustration of penalty mechanism for overlapping regions.

Based on obtaining the body diagonal vertexes Op_Max(x1, y1, z1) and
Op_Min(x2, y2, z2) of the borders of the overlapping region in Fig. 5e, the area of the
overlapping cross section in the top view of Fig. 5f can be calculated as Acs which rep-
resents the green area in Fig. 5g. Because the boundary box in the dataset only has yaw
angle but no pitch and roll angle data, the predicted overlap region should be the upright
quadrilateral or cuboid. The volume of the overlapping region of similar objects in the
scene in Fig. 5h is accumulated for the loss of the overlapping region penalty term in
formula 1.

Loverlap =
∑

|Acs × (z1 − z2)| (1)

2.5 Loss Function

The loss function of the network is weighted by five components, which include voting
loss, target loss, 3D edge loss, semantic classification loss, and overlapping region loss.

L = Lvote + λ1Lobj−cls + λ2Lbox + λ3Lsem−cls + λ4Loverlap (2)

The voting loss Lvote calculates the error between the voted feature points and the true
value, by calculating the distance between the voting feature points that need to be voted
and the true target centroid. The target loss Lobj−cls is calculated as the error between
the centroid of the target derived from voting and the true value, and is a cross-entropy
loss function with the value of parameter λ1 set to 0.5.

Lbox = Lcenter−reg + 0.1Langle−cls + Langle−reg + 0.1Lsize−cls + Lsize−reg (3)

The calculation method of border loss Lbox is shown in formula 3. Lcenter−reg is the
residual between the observed and true values of the border center point. Langle−cls and
Langle−reg are the angular error of the border. Lsize−cls and Lsize−reg are the position error
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of the eight corners of the border box cumulatively. The residual of the border center
point is derived by calculating the Euclidean distance between the observed and true
values, and the position error of the border box is derived by calculating the distance
between each corner of the predicted border box and each corner of the true border
box, and the value of parameter λ2 is set to 1. The semantic classification loss Lsem−cls
is calculated by cross-entropy between the predicted classification information and the
true value, and the value of parameter λ3 is set to 0.1. The overlap region loss Loverlap
reduces the probability of border offset by calculating the size of the overlap region
between the predicted border and the true border, and the value of parameter λ4 is set to
0.1.

3 Experiment

This section introduces the experimental dataset, training parameter settings, evalua-
tion metrics, experimental data, ablation experiments and visualization results analysis.
The point cloud target detection method proposed in this paper is compared with other
methods, and the impact of the voting feature point generation module and the overlap-
ping region penalty mechanism proposed in this paper on the algorithm is demonstrated
through ablation experiments. Finally, the performance of the algorithm proposed in this
paper is analyzed concretely through visualization results.

3.1 Dataset

In this paper, we used the publicly available dataset ScanNet dataset [13] with the
SUN-RGBD [14] dataset for experiments.

ScanNet. A point cloud dataset of indoor scenes reconstructed using RGB-D video,
and the dataset contains 1513 frames of point cloud data. The indoor scenes of the
ScanNet dataset are large in space, and the number of targets in a scene is large. In the
experiments, the dataset is processed in the same way as VoteNet, with 1201 frames of
the ScanNet dataset as the training set and 312 frames of the dataset as the test set.

SUN RGB-D. A single-view 3D scene dataset. The dataset contains more than 10000
RGB-D depth images, and the depth maps are converted into point cloud data before
formal training. In the experiment, the train set contains 5282 samples and the test set
contains 5050 samples.

3.2 Training Parameter Setting

The hardware configuration was: Ubuntu 16.04 operating system, the GPU model was
TeslaV100, theGPU acceleration tool was CUDA10.2, and the deep learning framework
was Pytorch1.7. The training parameters were set as follows: the optimizer was Adam,
the batch size was 4, the training epoch was 200, the initial learning rate was 0.001, and
the learning rate decayed to 0.1 times the original after the number of training epochs
reached 80, 120, and 160, the regularization decay ratio was 0.5, and the regularization
decay was 0.5 every 20 training epochs.
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3.3 Evaluation Metrics

Compared with semantic classification and recognition, evaluating the accuracy of 3D
border prediction is more challenging as it requires calculating the overlap between the
predicted result and the actual label, which is affected by different poses and sizes. To
be able to accurately evaluate the accuracy of object detection, the evaluation metrics
used in this paper were the average precision (AP) of the borders of each classified
target object, and the mean average precision (mAP) of all classified targets. Firstly, the
intersection over union (IoU) ratio between the predicted edge and the actual edge is
calculated, and the accuracy of the predicted edge is judged according to the size of the
intersection over union ratio. In order to accurately reflect the performance of the pro-
posed algorithm, the evaluation indexes chosen in this paper are consistent with those
of VoteNet, and the accuracy thresholds of 0.25 and 0.5 are calculated, respectively.

3.4 Experimental Data

Table 1 shows the detection accuracy performance of the proposed algorithm based
on the publicly available dataset ScanNet and compares it with other representative
and well-performing algorithms. Both the DSS (deep sliding shapes) [15] and 3D-SIS
[16] algorithms fuse the features of RGB images and point clouds. DSS is a fusion
of RGB image feature information with point cloud features in the output part, and
3D-SIS uses CNN to extract the features of the image and map the image features to
the voxels in 3D. F-PointNet [11] is a two-stage detection network that uses a two-
dimensional target detection algorithm to obtain a two-dimensional bounding box on
the image, and then projects it into a three-dimensional point cloud to finally obtain
a three-dimensional bounding box using a three-dimensional target detection network.
MRCNN2D-3D [15, 16] uses Mask-RCNN [17] as an image instance segmentation
network, projects the instance segmentation results into 3D space, and fuses them with
the 3D instance segmentation results to obtain the target object borders. GSPN [18] uses
parsing synthesis method to generate candidate regions and compared to the traditional
methods of generating candidate regions, GSPN has superior performance.

Table 1. Performance of different methods on ScanNet dataset.

Method mAP@0.25 mAP@0.5

DSS 15.2 6.8

MRCNN2D-3D 17.3 10.5

F-PointNet 19.8 10.8

GSPN 30.6 17.7

3D-SIS 40.2 22.5

VoteNet 58.6 33.5

Ours 60.1 36.4
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Table 2a. Performance on various types of targets in the ScanNet dataset mAP@0.25.

cab bed chair sofa tabl door wind bkshf curt pic

Votenet 36.3 87.9 88.7 89.6 58.8 47.3 38.1 44.6 47.2 7.8

Ours 38.3 89.5 87.5 90.5 58.8 48.1 42.4 49.6 49.1 6.7

Table 2b. Performance on various types of targets in the ScanNet dataset mAP@0.25.

cntr desk fridg showr toil sink bath ofurn mAP

Votenet 56.1 71.7 45.4 57.1 94.9 54.7 92.1 37.2 58.7

Ours 57.9 72.3 48.7 62.1 96.4 49.5 91.2 43.3 60.1

Table 3a. Performance on various types of targets in the ScanNet dataset mAP@0.5.

cab bed chair sofa tabl door wind bkshf curt pic

Votenet 8.1 76.1 67.2 68.8 42.4 15.3 6.4 28.0 11.6 1.2

Ours 9.6 80.6 77.5 72.2 46.4 16.7 12.3 32.8 12.0 0.8

Table 3b. Performance on various types of targets in the ScanNet dataset mAP@0.5.

cntr desk fridg showr toil sink bath ofurn mAP

Votenet 9.5 37.5 27.8 10.0 86.5 16.8 78.9 11.7 33.5

Ours 18.2 36.8 30.5 16.2 73.8 25.3 82.7 18.6 36.4

The average accuracy based on the ScanNet dataset is shown in the table above. The
first column is the name of the algorithm compared, the second column is the average
accuracy when the IoU ratio is set to 0.25, and the third column is the average accuracy
when the IoU is set to 0.5. From the data, we can see that the proposed method performs
bestwhen the intersection ratio is set to 0.25 and0.5.ComparedwithVoteNet, the average
accuracy is improved by 1.5% when the intersection ratio is set to 0.25 and 2.9% when
the intersection ratio is set to 0.5, which indicates that the proposed algorithm is more
accurate than VoteNet on average.

The proposed method outperforms other methods in terms of average accuracy, and
the paper also focuses on the performance regarding various targets in the ScanNet
dataset. The data in Table 2a and 2b are the accuracies when the intersection ratio is
set to 0.25, and the data in Table 3a and 3b are the accuracies when the intersection
ratio is set to 0.5. The proposed method maintains or improves the high accuracy of
the VoteNet for categories such as bed, chair, sofa, and bathtub. This is attributed to the
coordinate attention and overlapping region penalty mechanisms that mainly enhance
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these categories. However, categories with low accuracy, such as cabinet and picture,
still perform poorly due to their far location in the scene, sparse point cloud data, and
indistinct features. From the four tables, it is easy to see that the detection accuracy of
proposed method is higher than that of VoteNet on most of the targets.

Table 4. Accuracy performance on SUN-RGBD dataset mAP@0.25.

bathtub bed bkshf chair desk dresser nstnd sofa table toilet mAP

Votenet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

Ours 75.5 83.2 29.3 74.8 22.7 27.4 62.0 66.5 48.0 90.5 58.0

Table 4 shows the detection accuracy of the proposed algorithm based on the SUN-
RGBD dataset, as shown in Table 4; the proposed algorithm has 0.3% higher average
accuracy compared with VoteNet, and the detection accuracy is higher for target objects
including bathtubs, beds, bookcases, desks, sofas, tables and toilets, with the detection
accuracy of sofas being improved by 2.5%. However, the detection accuracy for chairs,
cupboards and bedside tables is slightly lower than that of VoteNet.

Combining the two datasets, the recognition accuracy of some categories of objects
decreases or remains at a low level. The reason may be that the network improvement
proposed in this paper, is before the 3D Hough voting. In the stage of generating voting
feature points, if the point cloud data of the target is missing due to light, occlusion and
other factors, the local point cloud data will be missing, which will cause the generated
voting feature points to shift, and eventually lead to inaccurate voting and prediction
results.

3.5 Ablation Experiment

In order to test the effects of the proposed voting feature point generation module and
the overlapping region penalty mechanism on the network, ablation experiments are
performed on the ScanNet dataset in this paper.

Table 5. Ablation experiment data.

Voting Feature Point Generation
Module

Overlapping Region Penalty
Mechanism

mAP@0.25 mAP@0.5

× × 58.6 33.5√ × 59.7 35.4

× √
58.6 36.0√ √
60.1 36.4

The ablation experimental data are shown in Table 5. The voting feature point gener-
ation module improves the model performance when the intersection ratio is set to 0.25,
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and the overlap region penalty mechanism improves the model performance when the
intersection ratio is 0.5. The proposed method in this paper uses both of them, and the
network performance achieves further improvement.

3.6 Visualization Results Analysis

Fig. 6. Comparison of visualization results.

In order to more intuitively show the performance of the network model proposed in
this paper for semantic classification, center prediction, and edge prediction of objects
in scenes, the same scenes are visualized in this paper in terms of dataset labels, VoteNet
model prediction results, and model prediction results in this paper. As shown in Fig. 6,
the first row is the standard bounding box on the dataset, the second row is the visual-
ization of the detection results of VoteNet, and the third row is the visualization of the
detection results of the algorithm proposed in this paper. The three rows are three differ-
ent scenes. In the first row of scenes, VoteNet has false detection in both the upper and
lower right of the scene; in the second row of scenes, VoteNet fails to detect the target in
the left side of the scene; and in the third row of scenes, the algorithm proposed in this
paper and VoteNet both have false detection in the more complicated case in the lower
right. Overall, the performance of the network model in this paper is relatively good
in classifying and predicting the size of sofas, tables, chairs, garbage bins, doors and
other objects, and the overlapping of the prediction frames of similar adjacent objects
has been reduced, which proves that the voting feature point generation module and the
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overlapping region penalty mechanism play a certain role, providing a certain improve-
ment in its performance compared with that of VoteNet. However, in the case of tightly
arranged targets and the detection of small targets, there are cases of false detections and
omissions in this paper, and there is still room for improvement.

4 Conclusion

This paper proposes a voting feature point generation module to mine the feature infor-
mation of points to generate voting feature points to improve the accuracy of voting, and
an overlap region penalty mechanism to reduce the number of cases of false detection.
After comparison experiments and ablation experiments, the proposed method showed
good performance on both the ScanNet dataset andSUNRGB-Ddataset. The experimen-
tal data on ScanNet and SUN RGB-D dataset show that the proposed method achieves
better performance than VoteNet. However, in some complex cases, there are cases of
false detection and missed detection, and there is still room for improvement. The pro-
posed method is an improvement on the famous method, i.e. VoteNet, and improves the
accuracy. In the future, this improvement can be considered and applied in some more
advanced algorithms and higher performance backbone network, add the comparison
experiments with other methods to provide reference for the improvement of themethod.
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Abstract. Attention mechanisms are intensively devoted to local fea-
ture abstraction for fine-grained visual categorization. A limitation of
attention-based methods is that they focus on salient region mining and
feature extraction, while ignoring the ability to incorporate discrimina-
tive and complementary features from other parts of the image. In order
to address this issue, we introduce a novel network known as the Discrim-
inative Region Enhancing and Suppression Network (DRESNet). This
network efficiently extracts a wide range of diverse and complementary
features, thereby enhancing the final representation. Specifically, a plug-
and-play salient region diffusion (SRD) module is proposed to explicitly
enhances the salient features extracted by any backbone network. The
SRD module can adaptively adjust the weights of regions and redirect
attention to other non-discriminative regions to generate different com-
plementary features. The proposed discriminative region enhancing and
suppression network is free from bounding boxes or part annotations and
can be trained end-to-end. Our proposed method demonstrates competi-
tive performance on three fine-grained classification benchmark datasets,
as supported by extensive experimental results. Additionally, it is com-
patible with widely used frameworks currently in use.

Keywords: Fine-grained Visual Categorization · Attention
mechanism · Region enhancing and suppression

1 Introduction

Fine-grained visual categorization (FGVC) has garnered growing research inter-
est [2–4] in recent years, driven by its promising applications in diverse real-
world scenarios such as intelligent retail [24], intelligent transportation [11], and
conservation [1]. FGVC aims to recognizing images belonging to multiple sub-
categories within the same category, e.g., different species of birds [23], models
of cars [13] and aircrafts [18]. As different subcategory objects share a similar
physical structure (i.e., all kinds of birds have a head, wings, and a tail), and
could be only be distinguished by subtle local regions, as shown in Fig. 1. Due to
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Fig. 1. Samples belonging to the same sub-category share a similar physical structure
(i.e., all kinds of birds have a head, wings, and a tail) and appearance, making it
infeasible to visually distinguish between them.

low inter-class variances, it further increases the difficulty of fine-grained image
classification.

To extract discriminative features for classification, a key process is to focus
on the feature representations of different parts of the object. Some previous
works [14,25,29,31] rely mainly on predefined bounding boxes and part anno-
tations to locate the distinguishable regions, and then extract part-specific fea-
tures for fine-grained classification. However, these hand-craft annotations are
not optimal for FGVC, the collection of which can be very costly. In recent
years, weakly supervised learning using labels in image-level has become the
mainstream method for FGVC. Some recent methods [7,22,26,33] attempt to
locate the distinguishable regions and learn effective feature representations
using attention mechanisms, channel clustering, and other techniques, without
requiring bounding box/part annotations. Although these methods are effective,
there are still potential limitations: 1) attention-based networks tend to focus on
globally salient features while ignore other local discriminative features which
potentially carry complementary information for the salient ones; 2) part-based
sampling methods are easily affected by the number and size of the sampled
parts. These pre-defined parameters greatly limit the effectiveness and flexibil-
ity of the model. Therefore, how to effectively extract diverse salient features
and how to integrate reasonably these features into the final representation are
worthy of discussion for the fine-grained classification task.

In this paper, we propose a discriminative region enhancing and suppres-
sion network (DRESNet) to address the above limitations by generating a set
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of integral fine-grained features including the globally salient features and their
complementary features. More specifically, DRESNet does not focus on how to
capture accurate distinguishable parts, but enhances and suppresses the salient
parts in the feature map in an adaptive way and then forces the following net-
work to mine other discriminative regions containing potentially complementary
features. Some observations show that the most salient region of an image is
tend to be noticed by the attention models in the first time, then the feature
abstraction of this region is enhanced while that of other regions is suppressed.
As a result, visual cues from suppressed features may be absent in the learned
features. However, a set of integral features consisting of both globally salient
features and other local features are crucial for FGVC tasks [6,9].

The proposed DRESNet consists of a feature extraction backbone network
and a salient region diffusion (SRD) module. By inserting salient region diffu-
sion module into various stages of the backbone network, it efficiently extracts
various potential features. SRD module enhances and suppresses features to
obtain part-specific representations. Note that, in the suppression operation,
SRD module does not require additional complex hyperparameters to suppress
salient regions information. Instead, it effectively expands the discriminative
region through a learnable way (suppress excessive feature expression of salient
regions while encourage feature expression from adjacent non-salient regions).
We demonstrate hat the feature learning of the backbone networks could be
substantially improved in this way.

Our contributions are summarized as follows: (1) We propose a salient region
diffusion (SRD) module, which enhances the prominent features of the network.
Additionally, through an adaptive learning-based suppression process, SRD can
compel the network to learn more complementary features. (2) Our proposed
region enhancing and suppression network (DRESNet) achieves competitive
results on three benchmark fine-grained classification datasets.

2 Related Work

Fine-grained visual categorization (FGVC) aims to identify visually similar sub-
categories within the same basic category, e.g., different species of birds [23],
models of cars [13] and aircraft [18]. Currently, research on weakly supervised
fine-grained visual categorization methods mainly focuses on three aspects: fine-
grained feature learning, discriminative region localization, and visual attention
mechanisms.

2.1 Fine-Grained Feature Learning

In order to more accurately describe the subtle differences between fine-grained
categories, Lin et al. [15] proposed a bilinear model consisting of two feature
extractors. This model adopts a translation-invariant approach to extract fea-
tures from different parts of the image and fuse them, thereby enhancing the
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ability to learn fine-grained features. However, the use of bilinear features gener-
ated by the outer product results in extremely high dimensions, which increases
the computational complexity. To address this issue, Gao et al. [8] attempted to
approximate the second-order statistics of the original bilinear pooling operation
by applying Tensor Sketch to reduce the dimensionality of bilinear features. Kong
et al. [12] used a low-rank approximation for the covariance matrix and further
learned low-rank bilinear classifiers, which significantly reduced the computation
time and effective number of parameters. In addition, Yu et al. [27] proposed a
cross-layer bilinear pooling method to integrate multiple cross-layer bilinear fea-
tures and capture part relationships in the features from inter layers.

2.2 Discriminative Region Localization

Localization-based methods capture discriminative semantic parts of fine-grained
objects and then construct intermediate representations corresponding to these
parts for final classification. Fu et al. [7] proposed a recurrent attention convo-
lutional neural network, which recursively learns discriminative regions region-
based feature representation at multiple scales in a mutually reinforced way.
Yang et al. [26] utilized self-supervision attention mechanism to effectively locate
regions in images that contain more semantic features. In [34], a part proposal
network generates multiple local attention maps and s part rectification network
learns rich part-specific features. Zhang et al. [28] proposed a multi-scale learn-
ing network, which predicts the position of objects and local regions information
through the attention object location module and attention part proposal mod-
ule.

2.3 Visual Attention Mechanisms

In fine-grained image classification tasks, introducing visual attention mecha-
nisms helps to capture subtle inter-class differences in the image. Ding et al.
[6] proposed a selective sparse sampling learning method that learns a set of
sparse attention for obtaining discriminative and complementary regions. Sim-
ilar to [6], TASN [33] regards the regions with high responses in the attention
map as informative parts, and proposes a trilinear attention sampling network
to learn fine-grained feature representations. Through attention-based samplers,
TASN can re-sample the focused regions in the image to emphasize fine-grained
details. Sun et al. [22] proposed a one-squeeze multi-excitation module to extract
features from multiple attention regions and proposed a multi-attention multi-
class constraint to enhance the correlation of attention features. Zhang et al. [30]
introduced a progressively enhancing strategy by highlighting important regions
through class activation maps.

3 Method

In visual attention models, we observe that the learning of features in salient
regions may hinder its further feature abstraction in non-salient regions. As
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Fig. 2. Overview of the discriminative region enhancing and suppression network
(DRESNet). Any backbone networks can be used coupled with the proposed salient
region diffusion (SRD) module, for further mining complementary features for FGVC.
The Conv Block consists of two convolutional layers followed by a max-pooling layer.
⊕ represents boosting feature and � represents suppressing feature.

a result, the complementary information and discriminative cues being bene-
ficial to FGVC are eliminated. To tackle this issue, we present discriminative
region enhancing and suppression network (DRESNet) that mine diverse poten-
tial useful features that be masked by the other salient features stage-by-stage,
and each stage integrates different feature embedding for the last discriminative
fine-grained representation. In addition, it can be easily implemented on various
convolutional neural networks, such as VGG [21] and ResNet [10]. The DRESNet
network structure, illustrated in Fig. 2.

3.1 Salient Region Diffusion Module

The method base on attention model tends to highlight the most distinct feature
regions. However, such mechanism hurts the further exploration of the rich infor-
mation from other regions in an image. Thus, we propose a simple yet effective
salient region diffusion (SRD) module to encourage the diffusion of the atten-
tion from salient regions to more other regions, obtaining discriminative and
complementary features.

As illustrated in Fig. 3, suppose X ∈ RC×W×H is the feature map of an
image extracted from backbone network, where C, W, and H indicate the num-
ber of channels, width, and height of the feature map, respectively. In the
enhancing step, SRD module simply splits X evenly into k vertical groups along
the width dimension. This clearly indicates that the feature map will be com-
posed of these k multiple local features, where each group is represented as
Xi ∈ RC×(W/k)×H , i = [1, 2, ..., k]. Then, the importance of each group is cal-
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Fig. 3. The proposed Salient Region Diffusion (SRD) module diffuses the visual atten-
tion from salient region to more other region in an image, obtaining discriminative
and complementary features. The SRD module explicitly divides the feature map into
multiple groups along the width dimension, facilitating the extraction of corresponding
enhancement and suppression factors.

culated using a convolutional layer (Conv) followed by a Rectified Linear Unit
(ReLU) operation.

ei = ReLU(Conv(Xi)) (1)

where ei = [e1, e2, ..., ek] ∈ R(1×(W/k)×H) denotes the spatial attention score of
the i-th group of feature in X. Conv is a 1× 1 kernel sized convolutional layer,
where the output channel is set to 1. This configuration enables us to study the
importance of the corresponding area. ReLU is applied to remove negative acti-
vation values. Afterwards, we apply the global average pooling (GAP) operation
to ei, followed by the application of the softmax function to map the resulting
values to the range [0, 1] for normalization:

bi =
exp(GAP (ei))
∑k

j=1 exp(ej)
(2)

B = [b1, b2, ..., bk] ∈ R represents the importance of the region. For input feature
map X, we obtain enhanced feature Fe by enhancing its most salient part.

Fe = X + B ⊗ X (3)

where ⊗ denotes element-wise multiplication. Fe represents the enhanced fea-
tures obtained through the enhanced steps of the SRD module in different net-
work output stages.

Fp = Conv_Block(Fe) (4)



Discriminative Region Enhancing and Suppression Network 99

Here Conv_Block represents the combination of two convolution layers and
a global average pooling. The Fp is then fed into the classifier for prediction,
obtaining the class probability of the input image.

SRD module suppresses the most salient features to extract complementary
attention features. More specifically, in the suppression operation, we do not
set a fixed hyperparameter as the upper bound of x and regard it as a starting
point to be suppressed. We believe that the larger the value in the enhance-
ment factor bi, the more important the corresponding group feature is, and the
greater the degree of suppression of this feature. Using the learning ability of the
fully connected layer, SRD module adaptively suppresses discriminative regions.
Formally, the output of the learnable suppression factor is:

si = σ(MLP (1 − bi)) (5)

S = [s1, s2, ..., sk] represents the suppression factor of group i features. The SRD
module can improve the learning ability of the network with the help of the non-
linear mapping and powerful fitting ability of multilayer perceptron (MLP). σ
is the sigmoid function that can normalizes the suppression factor. Since the
parameters in MLP are trained with the classification target, the learnable SRD
module can adaptively suppress the discriminative region without greatly impair-
ing its extraction ability.

Finally, we obtain the suppressed feature Xs by calculating the minimum
value between the original feature X and S ⊗ X. The suppressed feature Xs is
then passed to the following network to obtain other salient features.

Xs = Min(X,S ⊗ X) (6)

Min denotes the application of element-wise minimum operation on X and S⊗X
to suppress the discriminative region.

3.2 Loss Function

Our framework is illustrated in Fig. 2. Based on single branch DRESNet, we can
extract multiple complementary discriminative features from multiple stages of
the network. In this paper, we use ResNet50 as a feature extractor, which has
S stages (i.e., L = 5). With the increase of the number of layers, the features
extracted by ResNet50 can more abstract and represent higher level semantic
information. In DRESNet, our goal is to optimize the feature representation
in the s-th stage. To this end, the SRD module is inserted into the last three
stages of ResNet50. The part-specific representation Fp corresponding to differ-
ent stagescan be obtained from Eq. (4). During the training phase, the classifi-
cation loss for the last three stages (i.e., i = L− 2, L − 1, L) of DRESNet can be
formulated as follows:

Li = −yT log (yi), yi = classifieri(Fi) (7)

where y is the ground-truth label corresponding to the input image. yi ∈ RC

represents the predicted probability of the i-th stage, where C is the number of
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classes. Therefore, The overall optimization objective of DRESNet during the
training phase is:

Ltotal =
T∑

i=1

Li (8)

Where T= 3 represents the number of salient features enhanced by the SRD
module in the last three stages of the network. During inference, we calculate
the sum of prediction scores for all enhanced part-specific features to obtain the
final prediction result.

4 Experiments

4.1 Dataset and Implementation Details

We conducted experiments on three benchmarked datasets for fine-grained clas-
sification, including CUB-200-2011 [23], Stanford Cars [13], and FGVC-Aircraft
[18]. Table 1 provides detailed statistical data on the number of categories and
the standard train-test split. In this paper, we evaluate categorization perfor-
mance using Top-1 accuracy as the metric.

Table 1. The statistics information of the three widely used Fine-Grained Visual
Categorization datasets.

Dataset Category Train Test

CUB-200-2011 [23] 200 5994 5974
FGVC-Aircraft [18] 100 6667 3333
Stanford Cars [13] 196 8144 8041

For all experiments, we utilized pre-trained VGG16 [21] and ResNet50 [10]
models on ImageNet [5] as backbone networks for feature extraction from
input images. Then, SRD module is inserted into the last three output fea-
ture of ResNet50’s res3_4, res4_6 and res5_3 (VGG16’s relu3_3, relu4_3
and relu5_3). To ensure fair comparison, we maintained the same resolution
as other methods. During the training phase, the input image was resized to a
fixed size of 550 × 550 and subsequently randomly cropped to 448 × 448, accom-
panied by random horizontal flipping. During the testing stage, the input image
was resized to 550 × 550 and cropped from the center to 448 × 448. According
to the standards in the literature, we set up stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and weight decay of 1e−5 to optimize the
training process. The model trained for 200 epochs, with the learning rate of the
backbone initialized at 0.0002 and the other newly added layers set to 0.002. Dur-
ing training, the learning rate was adjusted using the cosine annealing strategy
[16]. The batch size is 16. Our model was implemented in Pytorch and trained
end-to-end on a single GTX 2080Ti GPU, without any bounding box or part
annotation.



Discriminative Region Enhancing and Suppression Network 101

4.2 Experimental Results

We compared the proposed DRESNet with state-of-the-art methods on three
popular benchmarked fine-grained datasets: CUB-200-2011 [23], Stanford Cars
[13], and FGVC Aircraft [18]. The results are shown in Table 2, with the top and
second-best values highlighted in bold and underline, respectively. Our method
achieved significant performance improvements on these three datasets compared
to existing techniques.

Table 2. Comparison results on CUB-200-2011, FGVC-Aircraft and Stanford Cars
datasets. (The top-1 accuracy is reported in %)

Method Backbone CUB-200-2011 Stanford Cars FGVC-Aircraft

BCNN [15] VGG16 84.1 91.3 84.1
CBP [8] VGG16 84.1 91.3 84.1
LRBP [12] VGG16 84.2 90.9 87.3
HBP [27] VGG16 87.1 93.7 90.3
RA-CNN [7] VGG16 85.3 92.5 88.1
MA-CNN [32] VGG16 86.5 92.8 89.9
Ours VGG16 87.0 93.6 91.6
Cross-X [17] ResNet50 87.7 94.6 92.6
S3N [6] ResNet50 88.5 94.5 93.0
CIN [9] ResNet50 87.5 94.1 92.6
MAMC [22] ResNet50 86.2 92.8 -
NTS [26] ResNet50 87.5 93.9 91.4
TASN [33] ResNet50 87.9 93.8 -
MOMN [19] ResNet50 88.3 93.2 90.3
API [35] ResNet50 87.7 94.8 93.0
MGE-CNN [30] ResNet50 88.5 93.9 -
Ours ResNet50 89.3 94.5 92.7

Results on CUB200-2011 [23]: CUB-200-2011 [23] is the most challenging
benchmark in fine-grained image classification tasks, and our models based
on VGG16 and ResNet50 have achieved state-of-the-art performance on this
dataset. Compared with fine-grained feature learning methods BCNN [15], CBP
[8], and LRBP [12], our method outperforms them by 5.2%, 5.3%, and 5.1%,
respectively. MA-CNN [32], TASN [33], and S3N [6] capture subtle inter-class dif-
ferences in images by introducing visual attention mechanisms. Due to the intro-
duction of feature enhancement and suppression, our proposed method achieves
superior accuracy compared to them to varying degrees.
Results on Stanford Cars [13]: This dataset contains more images than
CUB-200-2011, but the car images present less structure variations than the
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bird images. The proposed methods consistently wins MOMN [19], MGE-CNN
[30], CIN [9], and TASN [33] to varying degrees. Cross-X [17] performs robust
multi-scale feature learning by using relationships between different images and
between different network layers. The accuracy of Cross-X [17] is 0.1% higher
than our proposed method. Unlike other methods that use a single image, API
[35] learns to recognize each image in a pair by adaptively considering feature
priorities and pairs them for comparison step by step. It’s accuracy is 0.3% higher
than our proposed method.
Results on FGVC-Aircraft [18]: Our method achieved competitive perfor-
mance on the FGVC-Aircraft dataset [18]. Compared to RA-CNN [7] and MA-
CNN [32], our method outperforms them by 4.6% and 2.8% respectively. Based
on ResNet50, our model’s performance is 0.1%, 1.3%, and 2.4% higher than CIN
[9], NTS [26], and MOMN [19] respectively. S3N [6] uses sparse attention and
selective sampling to capture diverse and discriminative details of parts without
losing contextual information. In this dataset, the top-1 accuracy of S3N [6] is
slightly higher than our method.

Fig. 4. Visualizations of activation maps in different layers. Feature maps obtained
with the proposed SRD have learnt more discriminative body parts of the target. These
parts need not to be the most salient features but help to distinguish the confusing
sub-categories.

4.3 Visualization Analysis

To better understand the enhancing and suppressing effects of the SRD mod-
ule on features, we visualized activation maps of ResNet50 [10] with and with-
out the SRD module on three benchmark datasets for fine-grained classification
tasks, and the results are shown in Fig. 4. The activation maps were obtained
by averaging activation values over the channel dimension of the given fea-
ture map. Based on ResNet50, we applied the Grad-CAM [20] algorithm to
visualize the Conv3_4, Conv4_6, Conv5_3, and Conv_concat feature maps
of ResNet50 [10] on the three validation sets. We concatenate the Conv3_4,
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Conv4_6, Conv5_3 feature map attention pooled by different middle feature
maps to get a refined Conv_concat feature map. By comparing the heatmaps
of the baseline and DRESNet on Conv3 and Conv_concat, we can demonstrate
that the SRD module plays a crucial role in enhancing the baseline and extract-
ing additional complementary features. Taking the bird in Fig. 4 as an example,
in the absence of SRD configuration, the baseline network only focuses on the
salient head region while disregarding equally significant wing segments. The
visualization experiments demonstrate the capability of SRDs for mining multi-
ple different discriminative object parts.

5 Conclusion

In this paper, we propose a new discriminative region enhancing and suppres-
sion network for weakly supervised fine-grained image classification, focusing on
how to extract the most salient features and complementary attention features.
Specifically, we introduce a salient region diffusion (SRD) module, which can
be considered as a significant dropout scheme, enabling the network to adap-
tively mine potentially important information at different levels of importance.
Visualization of the feature maps demonstrates that the SRD mines multiple
complementary discriminative object parts in different network levels. Our pro-
posed network demonstrates impressive performance on the three most difficult
FGVC datasets, outperforming the majority of attention-based methods due to
our redesigned attention mechanism. Furthermore, it exhibits exceptional effi-
cacy in handling non-rigid targets featuring multiple body joints.
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Abstract. It is widely acknowledged that artificial intelligence (AI)
technology has been extensively applied and has achieved remarkable
advancements in various fields. The field of computational materials
science has also embraced AI techniques in diverse ways. Today, com-
putational materials science plays a crucial role in the development of
cutting-edge materials, including pharmaceuticals, catalysts, semicon-
ductors, and batteries. One significant task in this field is the regression
of the total energy of atomic structures that form various materials. In
this study, we propose a modified model architecture aimed at improving
the performance of existing total energy regression models. Traditional
total energy regression models calculate the total energy by summing the
energies of individual nodes represented in the atomic structure graph.
However, our approach suggests a modified architecture that not only
predicts the energy for nodes but also incorporates energy prediction
for edges in the graph. This novel architecture achieved a 3.9% reduc-
tion in energy error compared to the base model. Moreover, its simplic-
ity provides the advantage of general applicability to other total energy
regression models.

Keywords: Computational materials science · Atomic structure

1 Introduction

Artificial intelligence (AI) has already demonstrated its powerful performance
and efficiency through numerous examples. In the field of natural science, AI is
rapidly improving efficiency, comparable to the fourth wave. One area where AI
algorithms have been introduced and are making a significant impact is compu-
tational materials science [1–5]. This field, which primarily simulates the proper-
ties and phenomena of materials, is gaining attention across various industries,
including semiconductors, batteries, light-emitting devices, chemistry, new drug
development, catalysts, and solar cells [6–14].
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Density Functional Theory (DFT) [15,16], proposed in the 1970s, boasts sur-
prisingly high accuracy and has become a major method in the field of computa-
tional science. However, DFT methods require large computational resources at
the cost of high accuracy [10,17,18]. Recently, AI technology has been rapidly
introduced to solve these problems and has achieved considerable results. How-
ever, it still lacks accuracy compared to the DFT method [19].

A fundamental and central task in computational materials science is to
calculate the total energy for a given atomic structure. A total energy regression
AI model called machine learning potential is based on calculating the total
energy by predicting and summing the contributions of each target atom to
the total energy [20–24]. This method has a similar structure to the empirical
potential, which is a traditional method of calculating total energy.

We propose a new architecture that considers both atoms and bonds. This
approach is more physically intuitive as the total energy of a material consists of
both the energy of the atoms themselves and the energy of chemical bonds. This
architecture is more natural and similar to DFT calculations. If the architecture
of the AI model is similar to how DFT calculations work, then it can be expected
that the AI model will learn more easily. This effect is especially effective in
non-metallic materials with clear chemical bonds rather than metallic materials
with ambiguous bonds. Any AI model that interprets atomic structure as a
graph and calculates total energy can benefit from this approach and improve
its performance.

2 Background and Base Model

Machine Learning Potential. In 2007, Behler and Parrinello first proposed
an AI architecture for regressing total energy based on atomic positions [20].
Density functional theory-based first-principles calculations are one of the most
widely used methodologies in computational materials science and can calculate
various properties for materials. Total energy is one of the most basic and essen-
tial physical quantities in property calculations. Total energy is a kind of function
that takes atomic structure as a variable, meaning the type and arrangement of
atoms that make up an arbitrary material. For example, an atomic structure
containing N atoms is expressed as an atomic number Z = {Z1, Z2, Z3, ..., ZN}
and each atom’s position R = {r1, r2, r3, ..., rN} where ri is a Cartesian coor-
dinate ri = {xi, yi, zi}. The traditional computational chemical methodology of
empirical potential was adopted. According to this methodology, total energy
Etotal is

Etotal =
∑

i

Ei (1)

where Ei is the contribution of the ith atom to total energy. The architecture
of machine learning potential is shown in Fig. 1. Almost all machine learning
potentials published so far have a structure like this. In Fig. 1, Gϕ

i is an input
vector of size ϕ transformed by symmetric function.
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Fig. 1. Basic architecture of a machine learning potential [20]. The gray and pink boxes
represent the descriptor and main network, respectively. All black and dotted arrows
indicate the flow of data. The round circle represents an operation that calculates the
sum of input values. The data shape at each step is indicated by blue numbers. (Color
figure online)

Base Model. The model proposed in this study is based on GemNet-OC [25]
and uses a similar architecture. GemNet-OC is a graph neural network (GNN)
that represents an atomic system as a graph G = (V, E), where the set of graph
nodes, V, represents each atom and the set of edges, E, is defined as all pairs of
atoms within a certain cutoff distance. The first model, similar to state-of-the-
art GNNs, was proposed in 1997 but only gained popularity after several works
demonstrated its potential for a wide range of graph-related tasks [26]. GemNet-
OC evolves the two-level message passing scheme proposed in MXMNet into an
interaction layer and utilizes both edge and node embeddings. GemNet-OC is
a model based on Geometric Message Passing Neural Networks (GemNet) [27],
which uses a similar architecture and improves the accuracy of forces experienced
by atoms.

3 Datasets

We used the Open Catalyst 2022 (OC22) dataset for model training [19]. The
OC22 dataset is designed to enable the development of generalizable machine
learning (ML) models for catalysts, particularly for oxygen and hydrogen evo-
lution reactions and oxide electrocatalysis. The dataset consists of oxide surface
structures combined with constituent elements and oxide surface structures with
adsorbed molecules, as well as defects such as atomic substitution and vacancies.
By providing a diverse and representative training dataset, OC22 aims to sup-
port the development of generalized models that can accurately predict catalytic
reactions on oxide surfaces. Models generated from this dataset are expected to
accelerate the discovery and design of new catalysts for a wide range of applica-
tions.

The primary task of OC20 is to regress the total energy obtained through
first-principles calculations based on DFT from the atomic structure. The
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dataset is divided into training/validation/test sets and each set includes both
material surface structures and surface structures with adsorbed molecules. The
dataset includes 19,142 material surface structures and 43,189 surface structures
with adsorbed molecules, with a total of 9,854,504 data points. Diversity in sur-
face structure and adsorption structure was prioritized when constructing the
dataset to ensure that a generalized model can be built.

4 Edge Based Architecture of GemNet-OC

GemNet-OC is a graph neural network (GNN) that represents atomic systems
as graphs, with its architecture being improved to map the energy of the edge
embedding using GemNet as a base model. In this architecture, nodes and edges
are embedded respectively, with the edge embedding being used to regress the
force received by atoms. An architecture similar to the empirical potential for
the total energy was proposed, as shown in Eq. (1) and Fig. 1.

However, the total energy can also be described in terms of heat statistics.
Specifically, it can be expressed as

Etotal = Ω +
∑

i

μi (2)

where Ω is the formation energy representing chemical interaction between atoms
and μi is the energy of one atom in terms of thermostatistics. The formation
energy Ω can be further expressed as Ω =

∑
m em, which is the sum of the

binding energies em of atomic pairs. The binding energies em of atomic pairs are
mapped to the values from the edges of the atomic structure graph by the main
network.

This structure has several advantages. Firstly, μi is more consistent about
the placement of atoms than Ei, making the model easier to train. Secondly, the
total energy naturally regresses by the formation energy calculated as the sum
of the binding energies. To reflect these formulas, the architecture was modified
to map energy to edges as well. The modified architecture can be seen in Fig. 2.

5 Results

Due to limited computational resources, only 200,000 training data points (1/40
of the total OC22 dataset) were used for training over 9 epochs. However, since
the same dataset was used for all models being compared and 200,000 is still a
large number of data points, it is still meaningful to test the performance of the
models. The training and validation errors were reduced equally for all models,
indicating that there was no underfitting or overfitting (Fig. 3). The inset of
Fig. 3-b shows that the validation error of GemNet-EB (shown in red) is about
3.9% smaller than that of the base model GemNet-OC (shown in green).
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Fig. 2. Main network of the GemNet-EB architecture. Changes are highlighted in
orange. � denotes the layer’s input, || concatenation, σ a non-linearity. The massage
passing block and Embedding block have same architecture with the GemNet-OC [25].
(Color figure online)

Fig. 3. Energy mean absolute error (MAE) of train (a) and validation (b) respectively.
The x-axis represents the epoch and the y-axis represents the MAE on a log scale. The
inset in (b) is a zoom-in of the red box zone at the bottom right. (Color figure online)
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6 Conclusion

We proposed a new and improved architecture for regressing the total energy
from atomic structures. Our newly proposed GemNet-EB model achieved a 3.9%
lower validation error than the base model. Of course, other experiments are
possible, but further studies are needed because it is difficult to test more than
this due to the limitation of computer resources. However, this study is still
significant because we applied the new concept of the total energy prediction
model, as shown in Eq. (2), and achieved a low validation error rate with this
method. There is a significant difference in errors between the other models and
the GemNet base model, indicating that the edge embedding of the GemNet-OC
model also plays an important role in total energy regression. By directly map-
ping bond energy using edge embedding, we were able to improve the accuracy
of the model. While edge embedding is indirectly reflected in node embedding
through the interaction block, we were able to improve performance by directly
connecting it to total energy regression.

However, considering that the accuracy of DFT calculations used for surface
structure and surface adsorption energy studies is less than 0.01 eV, there is
still room for improvement. Since our new method is not limited to any specific
model or architecture and can be applied to any GNN-based model for atomic
structures, our proposed new architecture can serve as a foundation for advancing
machine learning potential.
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Abstract. In recent times, the estimation of affective states from phys-
iological data has garnered considerable attention within the research
community owing to its wide-ranging applicability in daily life scenarios.
The advancement of wearable technology has facilitated the collection of
physiological signals, thereby highlighting the necessity for a resilient
system capable of effectively discerning and interpreting user states.
This work introduces an innovative methodology aimed at address-
ing the Valence-Arousal estimation, through the utilization of physi-
ological signals. Our proposed model presents an efficient multi-scale
transformer-based architecture for fusing signals from multiple mod-
ern sensors to tackle Emotion Recognition task. Our approach involves
applying a multi-modal technique combined with scaling data to estab-
lish the relationship between internal body signals and human emotions.
Additionally, we utilize Transformer and Gaussian transformation tech-
niques to improve signal encoding effectiveness and overall performance.
Our proposed model demonstrates compelling performance on the CASE
dataset, achieving an impressive Root Mean Squared Error (RMSE) of
1.45.

Keywords: Affective states analysis · Physiological signals ·
Multimodal · Mental health

1 Introduction

Recognizing emotions is a fundamental aspect of human communication, and the
ability to accurately detect emotional states has significant impacts on a range
of applications, from healthcare to human-computer interaction. Emotions are
often reflected in physiological signals [26], facial [8], and speech [24]. Recently,
the use of physiological signals for affective computing has gained considerable
attention due to its potential to provide objective measures of emotional states
in real time [21].

Recently, there has been a growing interest in developing machine learn-
ing algorithms for affective computing using physiological signals [2,4,5,22,28].
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These algorithms can be used to classify emotional states, predict changes in
emotional states over time, or identify the specific features of physiological sig-
nals that are most informative for detecting emotional states. There has also been
interested in developing wearable sensors that can capture physiological signals
in real-world settings, such as in the workplace or in social situations [20].

The use of end-to-end deep learning architectures for physiological signals
has the potential to simplify the development and deployment of an emotion
recognition system [21]. By eliminating the need for preprocessing steps, these
architectures can reduce the complexity and time required for system develop-
ment, as well as improve the scalability and accuracy of the system. In addition,
end-to-end architectures can enable the development of systems that can process
multiple physiological signals simultaneously, such as heart rate, respiration, and
electrodermal activity, providing more comprehensive and accurate measures of
emotional states.

Despite the potential benefits of end-to-end deep learning architectures for
affective computing, there are still challenges that need to be addressed. One
challenge is to develop architectures that can handle noisy and non-stationary
physiological signals, which can be affected by movement artifacts, signal drift,
and other sources of noise. Another challenge is to ensure that the learned fea-
tures are interpretable and meaningful, which can help improve the transparency
and explainability of the system.

In this paper, we propose an end-to-end multi-scale architecture for continu-
ous emotion regression with physiological signals. We evaluate the performance
of the proposed architecture using CASE dataset [25], which contains data col-
lected from experiments carried out in a laboratory setting.

2 Related Works

2.1 Continuous Emotion Recognition from Multimodal
Physiological Signal

The utilization of physiological signals has been widely acknowledged as one
of the most reliable data forms for affective science and affective computing.
Although individuals are capable of manipulating their physical signals such
as facial expressions or speech, consciously controlling their internal state is a
daunting task. Therefore, analysis of signals from the human body represents a
reliable and robust approach to fully recognizing and comprehending an individ-
ual’s emotional state [1,26]. This reliability factor is especially crucial in medical
applications, such as mental health treatment or mental illness diagnosis.

Recognizing affect from physiological data remains a significant challenge, not
only during the data acquisition process but also in terms of emotion assessment.
Laboratory-based research dominates the field of affective science due to the
control it affords over experimental variables. Researchers can carefully select
and prepare emotional stimuli, and employ various sensor devices to trace and
record a subject’s emotional state with minimal unexpected event, interference
[21]. However, most of these studies rely on discrete indirect methods, such as
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quizzes, surveys, or discrete emotion categories for emotion assessment, which
overlook the time-varying nature of human emotional experience. Sharma et al.
[25] introduced Joystick-based emotion reporting interface (JERI) to overcome a
limitation in emotion assessment. JERI enables the simultaneous annotation of
valence and arousal, allowing for moment-to-moment emotion assessment. The
Continuously Annotated Signals of Emotion (CASE) dataset, acquired using
JERI, provides additional information for researchers to identify the timing of
emotional triggers.

In addition, it is claimed that a single physiological signal is relatively diffi-
cult to precisely reflect human emotional changes. Therefore, recently, there has
been much research focusing on detecting human emotion through multimodal
physiological signals. There are many types of physiological signal used in these
studies. While some studies record heart-related signals such as electrocardio-
graphic (ECG) [7,17,18], blood volume pulse (BVP) [15,33], others use electrical
activity of the brain (Electroencephalogram/EEG) [13,14] or muscle electrical
reaction (Electromyogram/EMG) [19,23]. Furthermore, some even employ skin
temperature (SKT) [19], skin sweat glands (EDA) [13,23], the depth and rate of
breathing (respiratory/RSP) [23].

2.2 Transformer-Based Method for in Multimodal Emotion
Recognition from Physiological Signal

Similar to other emotion recognition problems that involve physical signals, affec-
tive computing in physiological data has witnessed extensive adoption of machine
learning techniques, particularly deep learning methodologies. Dominguez et al.
[4] employed various conventional machine learning techniques, including Gaus-
sian naive Bayes, k-Nearest Neighbors, and support vector machines, for valence-
arousal estimation. However, these approaches are heavily dependent on the
quality of handcrafted feature selection and feature extraction processes. To
overcome this challenge, other studies [5,22,28] proposed the use of Deep Learn-
ing techniques for an end-to-end approach, where the model learns to extract
features automatically without the need for pre-designed feature descriptors.

With the advancement of deep learning, various state-of-the-art techniques
have been used to analyze physiological signals. Santamaria et al. [22] used con-
volutional neural networks (CNN) with 1D convolution layers for emotion detec-
tion, while Harper et al. [5] combined CNNs with frequently used recurring neural
networks (RNN) for emotion recognition from ECG signals. Since their introduc-
tion in 2016, Transformers [27] have emerged as preferred models in the field of
deep learning. Their robust performance in natural language processing, a type
of data that shares some characteristics similar to time-series data, has demon-
strated the potential of Transformers when applied to time-series signals. As a
result, recent research in the time series domain has utilized Transformers as the
core module in their model architecture [9,10,30]. For physiological signals, some
studies have proposed using Transformers and their variants to detect emotions
[28,29,31,32]. In the works of Vazquez et al. [28,29], they focused on applying
pre-trained Transformers for multimodal signal processing. However, this is still
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a very basic application of Transformer modules. Wu et al. [31] and Yang et
al. [32] proposed using more advanced techniques of Transformer-based models,
which are self-supervised and Convolution-augmented transformers for single-
and multimodal signal processing. Although these studies have demonstrated the
effectiveness of transformers for physiological signals, they often feed the model
with fixed original size signals, which may lead to the loss of global feature infor-
mation. To address this issue, we propose a new multi-scale transformer-based
architecture for multimodal emotional recognition.

3 Proposed Approach

Fig. 1. An overview of our proposed architecture.

3.1 Problem Definition

The emotion recognition in multimodal physiological signal problem takes as
input 8 physiological signals, namely ECG, BVP, EMG CORU, EMG TRAP,
EMG ZYGO, GRS, RSP and SKT, extracted from human subjects during
emotion-inducing stimuli. This is denoted as the 8 sequence with L length. In
the affective computing field, the objective of the emotion recognition problem
varies depending on the indicated emotional models. In the scope of this study,
following the use of the SAM (Self-Assessment Manikin) [3] model of the CASE
dataset, the problem objective is the estimated Valence-Arousal (V-A) value.
The V-A score consists of two continuous floating-point numbers ranging from
0.5 to 9.5. A value of 0.5 denotes the most negative valence or the lowest arousal,
5 indicates the neutral valence or arousal, and 9.5 indicates the most positive
valence or the highest arousal.
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3.2 Methodology

We constructed a new multiscale architecture for the estimation of valence
arousal from 8 physiological signals. Our architecture consists of two core
modules: Feature encoding module and multiscale fusion module. The process
involves feeding raw physiological data into a feature encoding module, designed
to extract vital information across varying global and local scales. Subsequently,
the multi-scale features are fused and utilized for the estimation of Valence-
Arousal scores. The overall architecture is shown in Fig. 1.

Feature Encoding. To enable the feature encoding module to extract global
features for the estimator and eliminate noise and interference information from
the input, we employ 1-Dimensional average pooling to scale the 8 input signals
into three different lengths: L, L/2, and L/4. This process helps to improve the
model’s ability to extract useful information and eliminate unwanted noise and
interference.

Then, we simultaneously apply two types of feature encoders, which are
the Gaussian transform [16] and the transformer encoder [27]. The transformer
encoder block is used as multi-headed self-attention as its core mechanism. Given
an input sequential signal S ∈ RL×C , where L represents the length of the signal
sequence and C = 8 is the number of channels (signal modalities), we apply a
positional encoding and embedding layer to convert the raw input into a sequence
of tokens. Subsequently, the tokens are fed into transformer layers consisting of
multi-headed self-attention (MSA) [27], layer normalization (LN), and multilayer
perceptron (MLP) blocks. Each element is formalized in the following equations:

yi = MSA(LN(xi)) + xi (1)

xl+i = MLP (LN(yi)) + yi (2)

Here, i represents the index of the token, and xi denotes the generated feature’s
token. It is worth noting that since the multi-headed self-attention mechanism
allows multiple sequences to be processed in parallel, all 8 signal channels are
fed into the Transformer Encoder at once.

The Gaussian transform [16] is traditionally employed to kernelize linear
models by nonlinearly transforming input features via a single layer and subse-
quently training a linear model on top of the transformed features. However, in
the context of deep learning architectures, random features can also be leveraged,
given their ability to perform dimensionality reduction or approximate certain
functions via random projections. As a non-parametric technique, this trans-
formation maps input data to a more compressed representation that excludes
noise information while still enabling computationally efficient processing. Such
a technique may serve as a valuable supplement to Transformer Encoder archi-
tectures, compensating for any missing information.
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Multi-scale Fusion. From the features extracted from the feature encoder
module on different scales, we fuse them using the concatenation operation. The
concatenated features are then fed through a series of fully connected layers
(FCN) for the estimation of the 2 valence and arousal scores. The Rectified
Linear Unit (ReLU) activation function is chosen for its ability to introduce
non-linearity into the model, thus contributing to the accuracy of the score esti-
mation. The effectiveness of this approach lies in its ability to efficiently estimate
the desired scores while maintaining a simple and straightforward architecture.

4 Experimental and Results

4.1 Dataset

CASE dataset [25] contains data from several physiological sensors and contin-
uous annotations of emotion. These data were acquired from 30 subjects while
they watched several video-stimuli and simultaneously reported their emotional
experience using JERI. The devices used include sensors for electrocardiography
(ECG), blood volume pulse (BVP), galvanic skin response (GSR), respiration
(RSP), skin temperature (SKT) and electromyography (EMG). These sensors
return 8 types of physiological signals: ECG, BVP, EMG CORU, EMG TRAP,
EMG ZYGO, GRS, RSP and SKT. Emotional stimuli consisted of 11 videos,
ranging in duration from 120 to 197 s. The annotation and physiological data
were collected at a sampling rate of 20 Hz and 1000 Hz, respectively. The initial
range of valence arousal scores was established at [−26225, 26225].

We evaluate our approach with four different scenarios:

– Across-time scenario: Each sample represents a single person watching a single
video, and the training and test sets are divided based on time. Specifically,
the earlier parts of the video are used for training, while the later parts are
reserved for testing.

– Across-subject scenario: Participants are randomly assigned to groups, and
all samples from a given group belong to either the train or test set depending
on the fold.

– Across-elicitor scenario: Each subject has two samples (videos) per quadrant
in the arousal-valence space. For each fold, both samples related to a given
quadrant are excluded, resulting in four folds, with one quadrant excluded in
each fold.

– Across-version scenario: Each subject has two samples per quadrant in the
arousal-valence space. In this scenario, one sample is used to train the model,
and the other sample is used for testing, resulting in two folds.

4.2 Experiments Setup

Our networks were implemented using the TensorFlow framework. We trained
our models using the AdamW optimizer [12] with a learning rate of 0.001 and
the Cosine annealing warm restarts scheduler [11] over 10 epochs. The MSE loss
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function was used to optimize the network, and the evaluation stage is done with
RMSE. The sequence length was set to 2048. We utilized 4 transformer layers for
the transformer encoder, with each Attention module containing 4 heads. The
hidden dimension of the transformer was set to 1024. All training and testing
processes were conducted on a GTX 3090 GPU.

Table 1. RMSE on the test data with different scenarios.

Approach Scenario Arousal Valence

Hinduja et al. [6] Across-time 1.82 1.76

Across-subject 1.33 1.31

Across-elicitor 1.03 1.10

Across-version 0.99 1.07

Avg 1.292 1.31

Ours - without
transformer on original
signals

Across-time 1.550 1.612

Across-subject 1.478 1.592

Across-elicitor 1.600 1.653

Across-version 1.595 1.548

Avg 1.556 1.601

Ours Across-time 1.503 1.639

Across-subject 1.336 1.345

Across-elicitor 1.509 1.514

Across-version 1.369 1.352

Avg 1.430 1.463

4.3 Results

Table 1 presents the results of our model in the test set in terms of the evalu-
ation at different scenarios. Overall, the final RMSE score for the valence and
arousal estimation task that we gain is 1.447. Our model showcases promising
performance in comparison to the approach presented by Hinduja et al. [6]. It
achieves a slightly lower score of 0.077 in Arousal and 0.153 in Valence score.

In detail, our model achieved the best performance in the across-subject sce-
nario, with an arousal score of 1.336 and a valence score of 1.345. These results
suggest that our model can effectively generalize to new subjects and accurately
capture the emotion change after fully viewing the entire video-viewing process.
Meanwhile, the relatively low performance in the across-elicitor scenario, with
scores of 1.509 and 1.514 in arousal and valence, respectively, suggests that our
model did not perform well in inferring emotional states that were not seen dur-
ing training, given the specific emotional states learned previously. In the context
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of the across-time scenario, our results demonstrate a significantly improved per-
formance compared to that of Hinduja et al. [6]. Specifically, our model achieves
noteworthy enhancements in both Arousal and Valence scores, with a margin of
0.317 in Arousal and 0.121 in Valence. This substantial improvement opens up
promising avenues for our future research.

5 Conclusion

This paper proposes a new multiscale architecture for multimodal emotional
recognition from physiological signals. Our approach involves encoding the sig-
nal with the transformer encoder at multiple scales to capture both global and
local features and obtain more informative representations. Our method achieved
decent results on the CASE dataset.
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Abstract. Unsupervised Domain Adaptation (UDA), which transfers
the learned knowledge from a labeled source domain to an unlabeled
target domain, has been widely utilized in various medical image analy-
sis approaches. Recent advances in UDA have shown that manipulating
the frequency domain between source and target distributions can signifi-
cantly alleviate the domain shift problem. However, a potential drawback
of these methods is the loss of semantic information in the low-frequency
spectrum, which can make it difficult to consider semantic information
across the entire frequency spectrum. To deal with this problem, we pro-
pose a frequency mixup manipulation that utilizes the overall semantic
information of the frequency spectrum in brain disease identification.
In the first step, we perform self-adversarial disentangling based on fre-
quency manipulation to pretrain the model for intensity-invariant feature
extraction. Then, we effectively align the distributions of both the source
and target domains by using mixed-frequency domains. In the extensive
experiments on ADNI and AIBL datasets, our proposed method achieved
outstanding performance over other UDA-based approaches in medical
image classification. Code is available at: https://github.com/ku-milab/
FMM.

Keywords: Unsupervised domain adaptation · Frequency
manipulation · Medical image reconstruction · sMRI

1 Introduction

Accurate diagnosis of brain diseases is critical, as it allows for early interven-
tion and treatment and helps advance neuroscience studies. Recently, machine
learning-based approaches [9,26] have made significant strides in identifying
brain diseases such as Alzheimer’s disease. Those existing methods assume that
various medical images are based on homogeneous data distribution and utilize
an identical model among different domain datasets. In other words, a model
trained on a source domain is directly applied to the target domain without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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adjusting the domain difference [5]. However, in real-world applications, the pres-
ence of inter-domain heterogeneity can challenge the validity of this assumption.
Differences in data distribution between domains can arise from variations in
scanner protocols, demographic information of cohorts within sites, etc. This
distribution discrepancy between training and test data, also known as domain
shift [2], can reduce the performance of models across different domains.

To alleviate the domain shift, Unsupervised Domain Adaptation (UDA),
which transfers well-trained knowledge from sufficiently labeled source data to
unlabeled target data [19], has been widely exploited. Recently, various UDA
methodologies [3,6,16] for effective domain transfer have been proposed. Deep-
CORAL [16] minimizes domain shift by aligning the second-order statistics of
source and target distributions without requiring any target labels. DANN [3]
is a widely used adversarial learning-based domain adaptation method in mod-
ern medical imaging tasks. AD2A [6] proposed an attention-guided deep domain
adaptation strategy to identify brain disease in multi-site MRI. However, since
these methods utilize the pixel-level distributional characteristics of samples in
the spatial domain, they are sensitive to noise or variations in input data and
limited in their ability to adapt to significant changes in input data distribution,
which are commonly encountered in real-world scenarios. More recently, the out-
standing performance of UDA has been achieved through research [15,21,22,24]
by aligning the frequency domain between source and target distributions, which
effectively relieves the domain shift problem. Those frequency-based methods
propose a simple image translation strategy by replacing the low-frequency spec-
trum between the source and target domains. They achieve remarkable perfor-
mance by transforming images through (Fast) Fourier Transform (FFT) and
inverse FFT (iFFT) [14] for frequency manipulation and simply training on the
transformed images. However, they have a limitation in that the optimum por-
tion of the low-frequency has to be selected manually for optimal performance.
In addition, since the semantic information of the original image may be lost in
the process of replacing the low-frequency spectrum, the overfitting problem can
occur with a fixed high-frequency spectrum [18].

To address the limitations mentioned above, we propose a novel adversarial
training network based on self-adversarial disentanglement and frequency mixup
strategy by exploiting the full scale of the frequency spectrum. In medical imag-
ing, the amplitude refers to the intensity or brightness of a pixel in an image.
The phase, on the other hand, represents the local orientation or direction of
the intensity changes in the image. In intra-domain adaptation process, we get
the intensity-shifted source domain by integrating the amplitude and phase from
the intensity-transformed and the original source domain, respectively. Our pro-
posed model learns to extract intensity-invariant representation based on a self-
adversarial training approach [27] by leveraging the intensity-shifted and original
source domain. The self-adversarial disentangling method can effectively pre-
train models that are robust to intensity variations (i.e., domain shift problem).
Based on the pretrained model using the source domain only, in the inter-domain
adaptation process, we reconstruct a novel amplitude-mixed target domain by
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mixing the amplitudes from the source and target domains, respectively, utilizing
the mixup technique [25]. Unlike low-frequency domain replacement methods,
mixing all-frequency domains can include low-level statistics from the target
domain while effectively preserving low-level statistics of the source domain.
Through domain transfer using the amplitude-mixed target domain, we solved
the domain shift problem and demonstrated it in the brain disease classification
task.

The main contributions of this work are as follows: (1) We propose a novel
image translation-based adversarial training network by frequency mixup manip-
ulation to exploit the semantic information of the source and target domains
without loss of information in the frequency domain. (2) We show the generaliz-
ability of our proposed method in the pretraining step through self-adversarial
disentangling by utilizing the frequency manipulation of the intensity-shifted
source domain. (3) Our proposed method outperforms the existing methods for
UDA robustly.

2 Related Work

2.1 Frequency-Based UDA

Unsupervised domain adaptation (UDA) has been explored to transfer knowl-
edge from a sufficiently labeled (source) domain to an unlabeled unseen (target)
domain. Recent studies [22,24] reveal that a simple alignment of the frequency
domain between the source and target distributions can remarkably improve the
performance of UDA. On the one hand, Yang et al. [22] proposes Fourier domain
adaptation (FDA) by replacing the source frequency with the target frequency
at the low-level to resolve the discrepancy between the source and target dis-
tributions. To be specific, the frequency replacement results in a reconstructed
source image in the target style, which presents a reduced disparity between
different domains. They suggest that a simple Fourier transform operation can
achieve state-of-the-art performance on domain adaptation benchmarks without
requiring individual training for domain alignment. On the other hand, Zakazov
et al. [24] proposes a very light and transparent approach to perform test-time
domain adaptation. The idea is to substitute the target low-level frequency space
components that are deemed to reflect the style of an image.

As such, most frequency-based methodologies reconstruct images by replac-
ing low-level frequencies through Fourier transform operations in each domain.
This demonstrates improved UDA performance through a simple alignment
of low-level statistics between source and target distribution. However, these
methods encounter limitations in accurately discerning between low and high-
frequency regions, which subsequently imposes a challenge in manually pinpoint-
ing the optimal region for enhancing performance. To alleviate these problem, we
introduce a frequency mixup strategy by exploiting the full scale of the frequency
spectrum.
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Fig. 1. Overall framework of our proposed method that consists of intra-domain adap-
tation and inter-domain adaptation processes.

2.2 Adversarial Training for Domain-Invariant Features

Adversarial training [1,3,7,17] is a practical approach for learning domain-
invariant features by leveraging adversarial learning to minimize the domain dis-
crepancy between different datasets. The basic idea of adversarial training is to
train models that generate realistic data samples and distinguish between actual
and generated samples at the same time. In the context of domain-invariant
feature representation, by using a discriminator that attempts to distinguish
between source and target domain features, the feature encoder is encouraged to
learn domain-invariant representations that are not discriminative with respect
to domain labels. This minimizes the domain discrepancy, leading to more robust
and transferable features. In recent studies, Levi et al. [11] learns a feature rep-
resentation that is both robust and domain invariant. By using a variant of
DANN on the source domain and its corresponding target domain, the proposed
method learns a feature representation constrained not to discriminate between
the source and target examples and can achieve a more robust representation.
Yang et al. [23] proposes a novel dual-module network architecture to promote
learning domain invariant features. Furthermore, they improved performance by
using a discrepancy loss to find the discrepancy of the prediction results and the
feature distribution between the two modules.

3 Proposed Method

Let Xs ∈ R
h×w×d×1 denotes three-dimensional structural magnetic resonance

imaging (sMRI), and Ys refers to the category label in the source domain, i.e.,
Ds = {(Xs,Ys)}. In contrast, there is no category label in the target domain,
i.e., Dt = {(Xt)}. The goal of our proposed method is to train a classification
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model on Ds and Dt that can perform well on unseen target domains. As shown
in Fig. 1, we describe the crucial components of our proposed framework, which
comprises intra-domain adaptation for pretaining using the frequency manipula-
tion, attention-based feature encoder, and inter-domain adaptation for domain
transfer.

3.1 Intra-domain Adaptation

In the first step of an intra-domain adaptation process, we use random noise
transformation in the source domain to create an intensity-transformed source
domain Xis. Then we can get an identity-shifted source domain, which maintains
the semantic characteristics of the source domain while containing the informa-
tion of different intensity distributions. For this purpose, we utilize FFT algo-
rithm [14] in mixing the information of the intensity-transformed and the original
source domain. The amplitude of the intensity-transformed source domain and
the phase of the original source domain is combined through iFFT process to syn-
thesize the intensity-shifted source domain. In detail, let A, P be the amplitude
and phase components of the FFT F of an image. And then they fed to iFFT
to generate the reconstructed intensity-shifted source domain DIS as follows:

DIS = F−1(A(F (Xis)) × P(F (Xs))). (1)

We adopted a label classifier CL for identifying the label of the given images
and an intensity discriminator CI which plays a role in making the encoder E to
be robust in intensity differences. The cross-entropy loss Lce for minimizing CL
and maximizing CI with gradient reversal layer [3] is as follows:

Lcls = Lce(CL(Xs,Ys)),Lint = Lce(CI(X,Yi)). (2)

3.2 Attention-Based Feature Encoder

We design a 3D convolutional neural network to extract features of brain MRIs
from source and target domains. The feature encoder E includes 10 convolu-
tional layers comprised of 3 × 3 × 3 kernels, followed by batch normalization
and ReLU in each convolution layer. Subsequently, the downsampling operation
is conducted to the even-numbered convolution layers for hierarchical feature
extraction. Previous studies [12,13,20] have demonstrated that brain disorders
are highly associated with specific regions in the brain. Based on this proposi-
tion, we designed an attention module to automatically identify brain regions
closely related to brain diseases in brain MRIs. As shown in Fig. 1, the mixed
feature generated by the last layer of the feature encoder is used as an input
of the proposed attention module. In the spatial attention module, the outputs
of average pooling and max pooling from the mixed feature are concatenated.
Then, they pass through a convolution layer to generate spatial attention maps
AM. Finally, the sigmoid function δ is used to calculate the attentive score of
AM. Mathematically, the spatial attention map SA is defined as:

SA = δ(Conv3×3×3([AMmax,AMavg])). (3)
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To make our model robust to domain differences, we need to maintain atten-
tional consistency between SAs and SAt, which represents attention maps for
the source domain and target domain, respectively. We design an attention con-
sistency loss to transfer semantic information from the source domain to the
target domain. Attention consistency loss, which calculates the mean square
difference between SAs and SAt is defined as follows:

Latt =
1

N × H × W × D

N∑

i=1

‖SAs − SAt‖. (4)

3.3 Inter-domain Adaptation

In inter-domain adaptation process, we extract the frequencies of the source and
target domain, respectively, using FFT operation. Inspired by the mixup tech-
nique [25], we devise a novel image translation strategy by linearly interpolating
between the amplitude spectrum of two domains. The equation of the frequency
amplitude mixup FAM is defined as:

FAM = (1 − λ)A(F (Xt)) + λA(F (Xs)), (5)

where λ ∼ U(0, 1) refers to a random value within a fixed range.
The mixed amplitude spectrum is combined with the phase of the target

image and fed to iFFT, generating the reconstructed amplitude-mixed target
domain DMT as follows:

DMT = F−1(FAM × P(F (Xt))). (6)

To reduce the domain gap between the source and target domain, domain clas-
sifier CD is designed to distinguish MRI features from different domains, same
as the intra-domain adaptation step.

Ldom = Lce(CD(X,Yd)). (7)

3.4 Objective Function

Our objective function was performed with the goal of minimization even though
the negative loss for maximization was included for the domain classification
loss. Since our domain classifier already includes a gradient reversal layer in the
module, backpropagation is performed by multiplying a negative constant to
maximize the loss function. As a result, we jointly minimize the label classifi-
cation loss Lcls, the attention consistency loss Latt, and maximize the domain
classification loss Ldom. The overall objective function of our proposed method
is defined as follows:

Ltotal = Lcls + Latt − Ldom. (8)
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4 Experiments

4.1 Dataset

ADNI Dataset. We used the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, which is a public dataset utilized for brain disease-related
research [8]. This dataset consists of ADNI-1, ADNI-2, and ADNI-3, which refer
to the different site domains. We excluded data from ADNI-1 and ADNI-2, which
also belong to ADNI-3, for the sake of independent evaluation. After pruning,
ADNI-1 contains 431 subjects with T1-weighted sMRIs, and ADNI-2, ADNI-3
contain 360, 398 subjects, respectively.

AIBL Dataset. To demonstrate the effectiveness of domain adaptation in other
domains, we additionally used the Australian Imaging Biomarkers and Lifestyle
Study of Ageing (AIBL) dataset, which seeks to discover which biomarkers, cog-
nitive characteristics, and health and lifestyle factors determine the development
of Alzheimer’s disease. AIBL contains 577 subjects with T1-weighted sMRIs. We
conducted the experiment by dividing the training and test data at a ratio of
8:2 for all subjects in each domain.

4.2 Implementation

In the intra-domain adaptation process, we pretrained the model for 50 epochs
to adapt the feature encoder E from the source to the target domain. Subse-
quently, the trained feature encoder was fine-tuned for 100 epochs in the inter-
domain adaptation process. The best model selection was performed underlying
the AUC score via simple hold-out validation. As implementation details in both
steps (i.e., intra-/inter-domain adaptation process), Adam [10] is exploited as
the optimizer with an initial learning rate of 1e−4, and the batch size is set to 4.

4.3 Experiments and Analysis

In the experiments, we compared our proposed network with state-of-the-art
UDA methods [4,6,16], which have been widely used in modern medical imaging
tasks. We utilized the structure of our backbone feature encoder for experiment-
ing with DANN and Deep-CORAL. To demonstrate the validity of our proposed
method in various metrics, we utilized four metrics for performance evaluation
in the experiment, i.e., accuracy (ACC), sensitivity (SEN), specificity (SPE),
and AUC curve (AUC), which evaluate the classification performance. We con-
ducted an experiment, as shown in Table 1, based on a scenario for domain
adaptation from the source domain to the target domain. We can see that the
overall performance of our proposed method is better than that of the other
UDA approaches. This demonstrates that 1) Fourier frequency manipulation-
based self-adversarial disentanglement in intra-domain adaptation and 2) fre-
quency mixup-based domain transfer in inter-domain adaptation in our proposed
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Table 1. Performance of our proposed method and baseline methods in AD identifi-
cation (i.e., AD vs. CN classification) in different domain transfer settings.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 DANN [4] 84.77 75.00 92.50 83.75
Deep-CORAL [16] 84.72 75.00 92.50 83.75
AD2A [6] 86.11 75.00 95.00 85.00
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 DANN [4] 88.75 84.62 89.55 87.08
Deep-CORAL [16] 85.00 76.92 86.57 81.74
AD2A [6] 88.75 92.31 88.06 90.18
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 DANN [4] 77.01 69.23 83.33 76.28
Deep-CORAL [16] 74.71 64.10 83.33 73.72
AD2A [6] 78.16 92.31 66.67 79.49
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 DANN [4] 81.25 84.62 80.59 82.61
Deep-CORAL [16] 83.75 69.23 86.57 77.90
AD2A [6] 83.75 100.0 80.60 90.30
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL DANN [4] 74.14 69.56 75.27 72.42
Deep-CORAL [16] 87.07 65.22 88.17 80.46
AD2A [6] 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL DANN [4] 67.24 91.30 61.29 76.30
Deep-CORAL [16] 71.55 52.17 76.34 64.26
AD2A [6] 71.55 82.61 68.82 75.71
Ours 83.62 86.96 82.79 84.88

Table 2. Performance of our proposed method and ablating Fourier frequency manip-
ulation (FFM) in intra-domain adaptation.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 w/o FFM 87.50 71.87 100.0 85.93
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 w/o FFM 80.00 92.31 77.62 84.96
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 w/o FFM 77.01 76.92 77.08 77.00
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 w/o FFM 85.00 100.0 82.09 91.04
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL w/o FFM 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL w/o FFM 81.90 69.56 84.95 77.25
Ours 83.62 86.96 82.79 84.88
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method can effectively align domain distributions. We also visualized the domain
distribution adapted by our proposed method and the original domain distribu-
tion in Fig. 2 to verify the effectiveness of our proposed model in distribution
alignment.

Fig. 2. Visualization of (a) the original distribution and (b) the distribution after
adaptation of the proposed our method for each domain (i.e., ADNI-1, ADNI-2, AIBL).

Table 3. Performance of our proposed method and ablating attention consistency loss
(AC).

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 w/o AC 87.50 81.25 92.50 86.87
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 w/o AC 85.00 92.31 83.58 87.94
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 w/o AC 77.01 76.92 77.08 77.00
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 w/o AC 82.50 100.0 79.10 89.55
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL w/o AC 88.79 69.56 93.55 81.56
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL w/o AC 77.59 82.61 76.34 79.48
Ours 83.62 86.96 82.79 84.88
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Table 4. Performance of our proposed method and adopting two image translation
strategies in inter-domain adaptation.

Source → Target Method ACC SEN SPE AUC

ADNI-1 → ADNI-2 Fda [22] 80.55 87.50 75.00 81.25
Mixup [25] 88.89 84.37 92.50 88.44
Ours 90.28 81.25 97.50 89.37

ADNI-1 → ADNI-3 Fda [22] 88.75 92.31 88.06 90.18
Mixup [25] 87.50 92.31 86.57 89.44
Ours 90.00 100.0 88.06 94.03

ADNI-2 → ADNI-1 Fda [22] 78.17 66.67 87.50 77.08
Mixup [25] 75.86 61.54 87.50 74.52
Ours 81.61 89.74 75.00 82.37

ADNI-2 → ADNI-3 Fda [22] 80.00 100.0 76.12 88.06
Mixup [25] 83.75 100.0 80.60 90.30
Ours 86.25 100.0 83.58 91.79

ADNI-1 → AIBL Fda [22] 81.90 78.26 82.79 80.53
Mixup [25] 85.34 73.91 88.17 81.04
Ours 89.65 78.26 92.47 85.37

ADNI-2 → AIBL Fda [22] 80.17 78.26 80.64 79.45
Mixup [25] 74.14 82.61 72.04 77.32
Ours 83.62 86.96 82.79 84.88

4.4 Ablation Analysis

In order to assess the efficacy of self-adversarial disentanglement using Fourier
frequency manipulation, we conducted an ablation experiment with and without
using Fourier frequency manipulation in the intra-domain adaptation process.
As seen in Table 2, utilizing Fourier frequency manipulation for the intensity-
shifted source domain results in better performance within overall evaluation
metrics. This reveals that manipulating frequencies of the source domain using
the Fourier transform operation can make the model robust to the intensity
differences.

Our proposed combination with the attention consistency loss empowers
the domain invariant semantic representations, thus enhancing diagnosis per-
formance on unseen target domains. Besides the attention consistency loss, our
attention module helps highlight discriminative regions across different domains,
while others can only focus on a single domain. To verify these attention mecha-
nisms, we conducted an ablation experiment with and without computing atten-
tion consistency loss in the inter-domain adaptation process. From Table 3, we
can derive that attention consistency loss is useful in boosting learning perfor-
mance.
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We also compared with the previous low-frequency replacing method (i.e.,
Fda [22]) and the vanilla mixup method [25] to demonstrate the effectiveness
of the proposed frequency mixup strategy, as shown in Table 4. Using the Fda
method, which replaces low-frequency, occurs overfitting in the high-frequency
region due to loss of low-frequency information [18] and showed poor results in
the overall evaluation metrics. The results of adopting the vanilla mixup tech-
nique are slightly better than those using Fda but worse than our proposed
method. Through this ablation study, we demonstrated the effectiveness of our
mixup technique at the frequency semantic-level rather than other mixing strate-
gies.

5 Conclusion

In this paper, we proposed a frequency mixup manipulation-based unsupervised
domain adaptation model to alleviate domain shifts in brain disease identifi-
cation. The proposed model comprises two main steps: intra-domain adapta-
tion and inter-domain adaptation. In the intra-domain adaptation step, a pre-
training process is conducted to enhance the intensity-invariant feature extrac-
tion capability of the model. This is achieved by using self-adversarial disen-
tangling with frequency manipulation-based intensity-shifted domains. In the
inter-domain adaptation step, a domain transfer process is performed, where
the reconstructed image through frequency mixup is used to train a model that
is robust to domain adaptation. Our experimental results demonstrate that the
proposed method outperforms state-of-the-art UDA methods in terms of accu-
racy and effectiveness.
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Abstract. Self-expression learning methods often obtain a coefficient
matrix to measure the similarity between pairs of samples. However,
directly using all points to represent a fixed sample in a class under the
self-expression framework may not be ideal, as points from other classes
participate in the representing process. To alleviate this issue, this study
attempts to achieve representation learning between points only coming
from the same class. In practice, it is easier for data points from the same
class to represent each other than that from different classes. So, when
reconstructing a point, if the number of non-zero elements in the coeffi-
cient vector is limited, a model is more likely to select data points from
the class where the reconstructed point lies to complete the reconstruc-
tion work. Based on this idea, we propose Sparse Subspace Clustering
with the l0 inequality constraint (SSC-l0). In SSC-l0, the l0 inequality
constraint determines the maximum number of non-zero elements in the
coefficient vector, which helps SSC-l0 to conduct representation learn-
ing among the points in the same class. After introducing the simplex
constraint to ensure the translation invariance of the model, an optimiza-
tion method concerning l0 inequality constraint is formed to solve the
proposed SSC-l0, and its convergence is theoretically analyzed. Exten-
sive experiments on well-known datasets demonstrate the superiority of
SSC-l0 compared to several state-of-the-art methods.
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1 Introduction

As an important branch of the field of pattern recognition, clustering has been
extensively developed in the past few decades. Commonly used clustering meth-
ods include prototype-based clustering [1], matrix factorization-based clustering
[2], and graph-based clustering [3], etc. Among them, graph-based clustering
has attracted much attention because it can exploit the geometrical structure
information of the data [4,5].

As a typical graph-based clustering method, Spectral Clustering (SC) [6]
often achieves superior clustering performance when handling datasets with high
dimensions. In the spectral clustering method, a low-dimensional representation
of data is first constructed by utilizing the predetermined similarity matrix.
Subsequently, SC yields the discrete clustering result by calling the spectral
rotation method [7] or using k-Means methods [8] based on the relaxed spectral
solutions. So, the similarity matrix plays a critical role in spectral clustering.
Similarity matrix construction methods often include two types, point-pairwise
distance-based methods and self-expression learning methods-based. The typi-
cal point-pairwise distance-based methods include the Gaussian kernel method,
adaptive neighbors [9,10], typicality-aware adaptive graph [11], and so on. These
methods construct sparse similarity matrices by learning sample neighborhood
structure information.

The self-expression learning methods, including the Sparse Subspace Clus-
tering (SSC) [12], Low-Rank Representation (LRR) [13], Block-Diagonal Rep-
resentation (BDR) [14], and their extensions [15,16], have been reported and
achieved desired performance. Among them, SSC [12] aims to group data drawn
from a union of multiple linear subspaces. When the subspaces from which data
are drawn are independent, SSC can obtain desired performance by learning a
sparse affinity matrix. LRR [13] minimizes the rank of the coefficient matrix to
recover the row space of the data. BDR [14] proposes a novel regularizer for
directly pursuing a coefficient matrix with the block diagonal property. Itera-
tively Reweighted Least Squares (IRLS) [15] solves a joint low-rank and sparse
minimization problem. Least Squares Regression (LSR) [16] minimizes the F-
norm of the coefficient matrix to achieve that the correlated samples have simi-
lar coefficient vectors. Simplex Sparse Representation (SSR) [17] introduces the
simplex constraint to ensure the translation invariance of the model.

The above self-expression learning-based methods seek sparse or low-rank
representation coefficient matrices to measure the similarity between pairs of
samples. However, in these methods, the way that directly uses all sample points
to represent a fixed sample may not be ideal since points from other classes
also participate in the representing process. Therefore, the generated similarity
matrix is not reliable and affects the performance of downstream tasks.

To alleviate this issue, we propose Sparse Subspace Clustering with the l0
inequality constraint (SSC-l0). SSC-l0 aims to achieve a representation learning
mechanism in which only the points coming from the same class are expected to
be used for representing each sample in this class.

The main contributions of this work are listed as follows:
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1. A new self-expression learning method, named Sparse Subspace Clustering
with the l0 inequality constraint (SSC-l0), is proposed. In SSC-l0, the l0
inequality constraint constrains the number of non-zero elements in the coef-
ficient vector, which helps SSC-l0 to conduct representation learning among
the points in the same class.

2. By introducing the simplex constraint to ensure the translation invariance
of the model, an optimization method concerning l0 inequality constraint is
presented to solve the proposed SSC-l0, and its convergence is theoretically
analyzed. Since the l0 inequality constraint problem is difficult to be solved,
the proposed optimization method has the potential to be widely used sparse
learning models.

3. Extensive experiments on benchmark datasets demonstrate the superiority of
SSC-l0.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
notations and the related methods. In Sect. 3, we elaborate on the proposed
SSC-l0 and its corresponding optimization algorithm. Experimental results are
reported in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Works

2.1 Notations

In this study, the bold uppercase letters and lowercase italic letters are used to
stand for the matrices and scalars, respectively, such as X = [x1;x2; · · · ;xn] ∈
R

n×d represents a data matrix, where d and n denote the dimensions and the
number of samples, respectively. The bold lowercase letters stand for vectors,
such as xi ∈ R

1×d is a sample point. Tr(A) and AT stand for the trace and the
transpose of matrix A, respectively. A ≥ 0 means that each element aij ≥ 0 in
A.

2.2 Sparse Subspace Clustering

Let
{
xj ∈ R

1×d
}n

j=1
be a set of data points drawn from a union of c independent

linear subspaces {Si}c
i=1. Let ni is the number of data points drawn from the sub-

space Si, di is dimension of Si, and Yi a data matrix corresponding to subspace
Si. If ni ≥ di, the points that are drawn from the subspace Si is self-expressive
[12]. This means that if x is a new data point in Si, then it can be represented as
a linear combination of di points in the same subspace. Denoting zi ∈ R

1×ni is
a fragment of the coefficient vector, and it corresponds to the data matrix Yi. If
we let X be a data matrix with proper permutation, i.e., X = [Y1,Y1, · · · ,Yc],
for any data point x, there exists a vector s = [z1, z2, · · · , zc] ∈ R

1×n such that
x = sX, where zi �= 0 and zj = 0 for all j �= i (zi ∈ R

1×ni is the fragment
corresponding to points in the same subspace as x). And such a s can be sought
by solving the following problem:

min
s

||s||0, s.t. x = sX, (1)
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where ||s||0 represents the number of non-zero elements in row vector s. This
can be proved by the following Theorem 1.

Theorem 1. Denoting s∗ is the optimal solution to the problem (1). Let X be
a data matrix with proper permutation and x ∈ Si, then s∗ = [z1, z2, · · · , zc] ∈
R

1×n, where zi �= 0 and zj = 0 for all j �= i.

Proof. Let s∗ = s∗
↑ + s∗

↓, where s∗
↑ = [0,0, · · · , zi, · · ·0] ∈ R

1×n and s∗
↓ =

[z1, z2, · · · , zi−1,0, zi+1, · · · , zc] ∈ R
1×n. It has Theorem 1 holds when we show

that s∗
↓ = 0.

Let s∗
↓ �= 0, since s∗ = s∗

↑ + s∗
↓, it has x = s∗X = (s∗

↑ + s∗
↓)X. According to

the independence assumption [12], it has x ∈ Si, s∗
↑X ∈ Si, and s∗

↓X /∈ Si. Thus,
we have s∗

↓X = 0. This implies that

x = s∗X = s∗
↑X (2)

which means that s∗
↑ is also a solution of Eq. (1). And we have ||s∗

↑||0 < ||s∗
↑ +

s∗
↓||0 = ||s∗||0, which conflicts with s∗ being the optimal solution to Eq. (1). So

we have s∗
↓ = 0. The Theorem 1 holds. �

The matrix format of Eq. (1) is as follows:

min
S

n∑

i=1

||si||0, s.t. X = SX, (3)

where S = [s1; s2; · · · ; sn] ∈ R
n×n is a coefficient matrix, and si ∈ R

1×n is a
coefficient vector corresponding to the point xi.

Theorem 1 demonstrates that when the subspaces are independent, any sam-
ple xi can be represented by the samples coming from the same class. And sij = 0
if samples xj and xi come from different classes.

According to Theorem 1, when X is properly permuted and subspaces are
independent, the coefficient matrix S has a block diagonal structure, which can
be used to improve clustering performance.

3 Sparse Subspace Clustering with the l0 Inequality
Constraint

3.1 Motivation of SSC-l0

Most self-expression learning methods seek a sparse or low-rank representation
coefficient matrix and minimize the difference between the original samples and
their reconstructed estimations. The objective functions of SSC, LRR, and their
extensions [14–16] can be generalized as follows:

min
S

||X − SX||2F + γR(S), (4)
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where S is a reconstruction coefficient matrix, ||X − SX||2F indicates the self-
expression reconstruction loss. R(S) is a regularization term, which guarantees
that S is sparse or low-rank, or has a strict block diagonal structure, etc.

Numerous studies have shown that self-expression learning methods achieve
impressive performance in clustering tasks [13]. However, in Eq. (4), directly
using all points to represent a fixed sample in a class may degrade the quality
of the learned similarity matrix, as points from other classes also participate in
the representing process. To alleviate this issue, we attempt to achieve repre-
sentation learning between points of the same class. However, this work is not
easy because the ground truth labels are not provided beforehand. According to
Theorem 1, the permuted coefficient matrix has a block diagonal structure when
the subspaces from which the data are drawn are independent. Thus, such block
diagonal structures can be used to guide the similarity measurements among
samples. However, real data often do not qualify the subspace independence
assumption [18].

In practice, it is easier for data points from the same class to represent each
other than that from different classes. Thus, when reconstructing a point, if
the number of non-zero elements in the coefficient vector is limited, a model is
more likely to select data points from the class where the reconstructed point
lies to complete the reconstruction process. This means that introducing the l0
inequality constraint may improve the performance of the self-expression learning
model.

3.2 Objective Function of SSC-l0

According to the discussion in Sect. 3.1, introducing the l0 inequality constraint
may improve the performance of the self-expression learning model. The pro-
posed objective function is as follows:

min
S

||X − SX||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n),
(5)

where S = [s1; s2; · · · ; sn] ∈ R
n×n is a reconstruction coefficient matrix, γ is a

non-negative balance parameter, and k is a constant. The constraint ||si||0 ≤ k
means that the max number of non-zero elements in the coefficient vector si is
k.

By introducing the l0 inequality constraint ||si||0 ≤ k, in the first term of
Eq. (5), each sample is represented as a linear combination of the samples that
are more likely from the class that the represented sample belongs to. Since
the coefficient matrix is non-negative, the elements in the coefficient matrix can
reflect the similarity between the sample pairs. The l2 norm ||si||22 can be utilized
to avoid overfitting on si. The constraint si1T = 1 can be used to ensure the
translation invariance [17].
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3.3 Optimization of SSC-l0

First, because of the difficulty of solving model Eq. (5), we turn to optimize the
following model:

min
S,M

||X − MX||2F + α||M − S||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n),
(6)

where α is a non-negative parameter. Problem (6) can be transformed into the
problem (5) when α is large enough. And the problem (6) can be minimized
using the following iterative algorithm:

Updating M. When S is fixed, problem (6) becomes:

min
M

||X − MX||2F + α||M − S||2F . (7)

Setting the derivative of Eq. (7) with respect to M to zero, it has:

M =
(
XXT + αS

) (
XXT + αI

)−1
. (8)

Updating S. When M is fixed, problem (6) becomes:

min
S

α||M − S||2F + γ||S||2F ,

s.t. S ≥ 0,S1T = 1T , ||si||0 ≤ k (i = 1, 2, · · · , n).
(9)

Since problem (9) is independent of each si, problem (9) can be converted
into subproblems:

min
si

α||mi − si||22 + γ||si||22,
s.t. si ≥ 0, si1T = 1, ||si||0 ≤ k,

⇔ min
si

O(si) = ||si − ui||22,
s.t. si ≥ 0, si1T = 1, ||si||0 ≤ k,

(10)

where ui = α
α+γmi.

Obviously, Eq. (10) seems to be an NP-hard problem. Some methods sparsify
the vector si obtained from all samples [19]. However, the convergence of this
solving method cannot be guaranteed theoretically. Here, we attempt to identify
an equivalent problem to Eq. (10) that is readily solvable.

Denoting Γ̌ is a set that includes the indices corresponding to the first k
largest elements in ui. Then, the optimal solution to the following problem (11)
is also an optimal solution to the problem (10). To prove this, we propose further
the following definitions, lemmas, and theorems.

min
si≥0,si1T=1,sij=0 ifj /∈Γ̌ (i)

⎧
⎨

⎩
O1 =

∑

j∈Γ̌ (i)

(sij − uij)
2

⎫
⎬

⎭
. (11)
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Definition 1. Let si satisfy the constraints of Eq. (10). If there is at least one
non-zero element sij (sij > 0) in si that satisfies j /∈ Γ̌ (i), then si is called a ζ̌
solution of Eq. (10).

Definition 2. Π
(
si, Γ̌ (i)

)
=

∑n
j=1 A (sij , j), where A (sij , j) = 1 if sij > 0

and j ∈ Γ̌ (i); otherwise A (sij , j) = 0.

Lemma 1. For any ζ̌ solution s̈i of Eq. (10), there exists another solution s̃i of
Eq. (10) that satisfies Π

(
s̃i, Γ̌ (i)

)
= Π

(
s̈i, Γ̌ (i)

)
+1 such that O (s̃i) ≤ O (s̈i).

Proof. Let τ /∈ Γ̌ (i) and ε ∈ Γ̌ (i) be indices that satisfy s̈i =
[· · · , s̈iτ , · · · , s̈iε, · · · ] and s̃i = [· · · , s̃iτ , · · · , s̃iε, · · · ], where uiτ ≤ uiε, s̈iε = 0,
s̃iτ = 0, s̈iτ = s̃iε > 0, and s̈ij = s̃ij for any j �= τ and j �= ε.

Thus, one has:

(s̈iτ − uiτ )
2 + (s̈iε − uiε)

2 ≥ (s̃iτ − uiτ )
2 + (s̃iε − uiε)

2
, (12)

which means O (s̃i) ≤ O (s̈i). Thus, Lemma 1 holds. �

Lemma 2. For any ζ̌ solution s̈i of Eq. (10), there exists another non-ζ̌ solution
s̃i of Eq. (10) such that O (s̃i) ≤ O (s̈i).

Proof. Lemma 2 holds when Lemma 1 holds. �

Lemma 3. Let s∗
i be the optimal solution of Eq. (10), there exists a non-ζ̌ solu-

tion
...
s ∗

i that satisfy O (
...
s ∗

i ) = O (s∗
i ).

Proof. Obviously, Lemma3 holds when Lemma 2 holds. �

Lemma 3 demonstrates that if s∗
i is an optimal solution of Eq. (10) and it

is a ζ̌ solution, then there exists a non-ζ̌ solution ...
s ∗

i which is also an optimal
solution to the problem (10).

Theorem 2. Let s̄∗
i be the optimal solution to the problem (11), then s̄∗

i is also
an optimal solution to the problem (10).

Proof. Let s∗
i be the optimal solution of Eq. (10), according to Lemma 3, there

exists a non-ζ̌ solution ...
s ∗

i that satisfy O (
...
s ∗

i ) = O (s∗
i ). And it has:

O (
...
s ∗

i ) = σ̌ + O1 (
...
s ∗

i ) , (13)

where σ̌ =
∑n

j=1,j /∈Γ̌ (i) (0 − uij)
2, and ...

s ∗
i ≥ 0, ...

s ∗
i 1

T = 1, ||...s ∗
i ||0 ≤ k. Consid-

ering Γ̌ (i) is fixed, σ̌ is a constant. And we have O (s̄∗
i ) = σ̌ + O1 (s̄∗

i ). Since
s̄∗
i is the optimal solution to the problem (11), we have O1 (s̄∗

i ) ≤ O1 (
...
s ∗

i ). So,
O (s̄∗

i ) ≤ O (
...
s ∗

i ) = O (s∗
i ). Thus, Theorem 2 holds. �

The problem (11) can be transformed into a vector format. We can solve it
easily by utilizing the KKT conditions and the Newton method [17].
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Algorithm 1 Sparse Subspace Clustering with the l0 inequality constraint (SSC-
l0)
Input: Data matrix X ∈ Rn×d

Parameter: α, γ, and k.
Output: S ∈ Rn×n.
1: Initialize S.
2: Initialize M with formula (8).
3: while Iterations t ≤ T and not converge do
4: Update Γ̌ (i) for any i;
5: Update S by solving the problem (11);
6: Update M with formula (8).
7: end while
8: return S.

The algorithm of SSC-l0 is summarized in Algorithm 1. Assume that
Algorithm1 iterates at most T times. The time cost of updating M is
O(T

(
dn2 + n3

)
), where n is the number of samples and d is the number of

features. The time cost of solving the problem (11) is O(T (n k log k)) [20],
where k is the maximum number of non-zero elements in the coefficient vector.
Given that k � n, the overall time complexity of SSC-l0 is O(n3).

After a non-negative coefficient matrix S is learned, spectral clustering can
be executed based on the produced S.

In Algorithm1, the optimal solutions for M and S can be obtained by solving
problems (8) and (11). Then,

JSSC−l0

(
M(t),S(t)

)
≤ JSSC−l0

(
M(t−1),S(t)

)
≤ JSSC−l0

(
M(t−1),S(t−1)

)
,

(14)
where t−1 and t represent the (t−1)th and tth iteration, respectively. Inequality
Eq. (14) indicates that the objective function values of SSC-l0 decrease mono-
tonically, i.e., SSC-l0 is convergent.

4 Experiments

In this study, all experiments are conducted on a personal computer with i5-
9500 CPU @3.00GHz and 8GB RAM. The codes are implemented in MATLAB
R2021a 64 bit.

4.1 Datasets and Comparison Methods

Ten image datasets are utilized for experiments, including five face image
datasets (Yale, Jaffe [21], ORL1024 [22], PIE [23] and FERET [24]), and four
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handwritten digit image datasets (Binary1, Semeion2, Digit3, and Minist4), and
one palm image dataset (Palm) [9]. The details of these datasets are shown in
Table 1.

Table 1. The Benchmark Datasets.

Datasets Samples Size Clusters Datasets Samples Size Clusters

Yale 165 32 * 32 15 Binary 1404 20 * 16 36
Jaffe 213 26 * 26 10 Semeion 1593 16 * 16 10
ORL1024 400 32 * 32 40 Digit 1797 8 * 8 10
FERET 1400 40 * 40 200 Minist 4000 28 * 28 10
PIE 1632 32 * 32 68 Palm 2000 16 * 16 100

Seven clustering methods are selected for comparison, including Least
Squares Regression (LSR1) [16], Sparse Subspace Clustering (SSC) [12], Low-
Rank Representation (LRR) [13], Iteratively Reweighted Least Squares (IRLS)
[15], Block-Diagonal Representation (BDR) [14], Clustering with Typicality-
aware Adaptive Graph (CTAG) [11], and the Simplex Sparse Representation
(SSR) [17]. Please see Sect. 1 for more details on these methods.

SSC-l0 and seven other methods vary parameters in the range of {10−3, 10−2,
10−1, 100, 101, 102, 103}. Spectral clustering is applied to coefficient matrices,
followed by post-processing with k-means. To reduce sensitivity to initialization,
k-means is repeated 50 times, and the reported result is the average of the 20
trials with the lowest loss.

4.2 Clustering Analysis

Clustering Performance. Table 2 shows the ACC values obtained by the
different methods on the selected benchmark datasets. In Table 2, the best results
are exhibited in bold and the second-best results are marked in brackets. The
average results of each method over all selected datasets are listed as the last
row in Table 2. From Table 2, we have the following observations:

1. LRR and IRLS rank second and third, respectively, in terms of average ACC
values among the eight methods. This can be attributed to their ability to
restore the row space of the data by learning a coefficient matrix with a low-
rank structure. This characteristic aids in enhancing their robustness and
improving their clustering ability.

2. SSR exhibits the lowest average ACC value, which can be attributed to the
absence of an effective regularization term.

1 https://cs.nyu.edu/~roweis/data/.
2 https://archive.ics.uci.edu/ml/index.php.
3 http://www.escience.cn/people/fpnie/index.html.
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

https://cs.nyu.edu/~roweis/data/
https://archive.ics.uci.edu/ml/index.php
http://www.escience.cn/people/fpnie/index.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 2. ACC Values of the SSC-l0 and the Selected Methods on Benchmark Datasets.
(%)

Datasets LSR1 SSC LLR IRLS BDR SSR CTAG SSC-l0
Yale 49.33 46.79 (50.61) 47.06 48.55 48.09 49.67 54.97
Jaffe 96.74 94.37 95.02 93.57 100.00 95.96 (97.18) 100.00
ORL 64.71 63.35 (65.53) 65.13 59.66 57.20 62.94 70.64
FERET 32.75 38.30 33.54 34.19 (38.62) 34.83 29.60 39.50
PIE 70.64 48.92 71.24 69.61 56.87 50.89 31.95 (70.94)
Binary 36.05 25.77 35.68 35.08 6.12 5.46 (43.54) 45.17
Semeion 57.29 56.57 58.26 (58.46) 57.61 57.74 54.11 60.18
Digit 47.74 70.60 64.15 59.55 58.13 60.52 61.62 (69.79)
Minist 37.49 (39.41) 37.04 38.30 37.58 31.01 38.34 44.10
Palm 80.32 67.35 (82.03) 80.41 66.98 66.08 82.01 91.13
Avg. 57.31 55.14 (59.31) 58.14 53.01 50.78 55.10 64.64

3. SSC-l0 achieves the best ACC values across all selected datasets except PIE
and Digit. The reason is that SSC-l0 tends to represent each sample as a
linear combination of the samples from the same class under the l0 inequality
constraint. However, the other seven methods lack this ability. In general, data
points coming from the same class are easier to represent each other. When
reconstructing a point, if the number of non-zero elements in the coefficient
vector is limited, it is more likely to select data points from the same class to
complete the corresponding reconstruction work. Therefore, the l0 inequality
constraint can improve the performance of the SSC-l0.

Visualization of the Similarity Matrix. Figure 1 visualizes the coefficient
matrix obtained by SSC-l0 on datasets including Jaffe, PIE, and Palm. In Fig. 1,
the coefficient matrix exhibits a block-diagonal structure, indicating that similar
samples in SSC-l0 tend to belong to the same class. This characteristic enhances
the clustering performance of SSC-l0. The reason for showing the block-diagonal
structure is that if the number of non-zero elements in the coefficient vector is
limited, when reconstructing a point, it is more likely to select a point of the
class to which the reconstruction point belongs.

Parameter Sensitivity. SSC-l0 has three parameters: α, γ, and k. Figure 2
illustrates the impact of these parameters on SSC-l0 performance across different
datasets. The results indicate that SSC-l0 is sensitive to the values of α, γ, and
k. To obtain optimal performance, a grid search method is recommended for
parameter selection in SSC-l0.
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Fig. 1. The coefficient matrix obtained by SSC-l0 on the different datasets. (a) Jaffe.
(b) PIE. (c) Palm.

Fig. 2. ACC values of SSC-l0 on different datasets when varying parameters α, γ, and
k. (a) PIE. (b) Binary. (c) Semeion. The color in the figure reflects the ACC values.

Convergence Analysis. Figure 3 shows the convergence curves of SSC-l0 on
datasets Yale, ORL1024, and FERET. From Fig. 3, the objective function values
of SSC-l0 decrease monotonically and SSC-l0 converges after 100 iterations.

4.3 Robustness Analysis

To compare the robustness of the eight methods, the following experiments are
designed:

1. In the ORL2116 dataset, 20% of the samples are randomly selected and
added salt and pepper noise. The noisy densities are 0.1, 0.2, 0.3, 0.4, and
0.5. Figure 4(a) illustrates the original ORL2116 dataset and noisy ORL2116
datasets. Figure 5(a) presents the performances of eight methods on these
noisy datasets.

2. In the ORL1024 dataset, 20% of the samples are randomly selected and added
random noisy blocks. The sizes of the noisy blocks were 5 × 5, 10× 10, 15× 15,
20× 20, and 25× 25 pixels. Figure 4(b) displays the original ORL1024 dataset
and the corresponding noisy ORL1024 datasets. The performances of different
methods on these noisy datasets are presented in Fig. 5(b).

3. In the Jaffe dataset, 20% of the samples are randomly selected and added
random noisy blocks. The sizes of the noisy blocks were 4 * 4, 8 * 8, 12 * 12,
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Fig. 3. Convergence curves of SSC-l0 on different datasets. (a) Yale.(b) ORL1024. (c)
FERET.

Fig. 4. Original dataset and noisy datasets. (a) ORL2116. (b) ORL1024. (c) Jaffe.

16 * 16 and 20 * 20 pixels. Figure 4(c) displays the original Jaafe dataset and
the corresponding noisy Jaffe datasets. The performances of different methods
on these noisy datasets are presented in Fig. 5(c).

Form Fig. 5, although the performance of the eight methods degrades as
increasing the noise levels, SSC-l0 achieve almost the best results no matter
which noise levels are involved, which demonstrates further that SSC-l0 has
high robustness. The reason is as follows. Clean points have better representa-
tion ability compared to noisy points. When the number of non-zero elements
in the coefficient vector is limited, clean points are more likely to be used for
reconstruction. Thus, constraining the number of non-zero elements can improve
model robustness. SSC and SSR use l1 regularization and l1 equation constraint
to induce sparsity in the coefficient matrix, but they do not directly constrain
the number of non-zero elements in the coefficient vector. In contrast, SSC-l0 can
precisely control the number of non-zero elements, leading to better performance.
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Fig. 5. Performance of different clustering methods on the noisy datasets with differ-
ent noise levels. (a) Noisy ORL2116 datasets with different noise densities. (b) Noisy
ORL1024 datasets with different sizes noisy blocks. (c) Noisy Jaffe datasets with dif-
ferent sizes noisy blocks.

5 Conclusions

Considering data points coming from the same class are easier to represent each
other and when the number of non-zero elements in the coefficient vector is lim-
ited, a model is more likely to select data points from the same class to complete
corresponding reconstruction work, we propose Sparse Subspace Clustering with
the l0 inequality constraint (SSC-l0) to conduct representation learning among
the points in the same class. By introducing the simplex constraint, an optimiza-
tion method concerning l0 inequality constraint is proposed, and its convergence
is also theoretically analyzed. Since the l0 inequality constraint problem is diffi-
cult to be solved, the proposed optimization method can be widely used in lots
of sparse learning models. Extensive experiments demonstrate the superiority of
SSC-l0. Establishing a one-step clustering method based on SSC-l0 may further
improve the performance of the proposed clustering model, which is our next
work.
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Abstract. Semantic segmentation plays a crucial role in understanding
the surroundings of a vehicle in the context of autonomous driving. Nev-
ertheless, segmentation networks are typically trained on a closed-set of
inliers, leading to misclassification of anomalies as in-distribution objects.
This is especially dangerous for obstacles on roads, such as stones, that
usually are small and blend well with the background. Numerous frame-
works have been proposed to detect out-of-distribution objects in driv-
ing scenes. Some of these frameworks use softmax cross-entropy mea-
surements as an attention mechanism for a dissimilarity network to find
anomalies. However, a significant limitation arises from the segmentation
network’s tendency toward overconfidence in its predictions, resulting in
low cross-entropy in regions where anomalies are present. This suggests
that normal cross-entropy is a low-quality prior for anomaly detection.
Therefore, for the task of detecting stones on roads, we propose utilizing a
fined-tuned segmentation network with a changed target, from semantic
segmentation to maximize the cross-entropy in anomalous areas. With
this, we feed the dissimilarity network with a better prior image. Fur-
thermore, due to the lack of datasets with enough samples of stones for
pixel-wise detection, we synthetically added stones on images of driving
scenes to create a dataset for fine-tuning and training. The results of
our comparative experiments showed that our model attains the highest
average precision while having the lowest false positive rate at 95% true
positive rate when evaluating on a real-stone image dataset.

Keywords: Anomaly classification · Semantic segmentation ·
Computer vision

1 Introduction

Understanding surroundings through images is an important task in applications
such as autonomous vehicles and robots, where it is vital to identify abnormal
objects that may be a danger to vehicles and must be avoided. For this study,
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we focus on a subclass of anomalies, stones. Because those are a type of obstacle
commonly found on roads and dangerous to vehicles. Additionally, keeping roads
clear of obstacles, such as stones, is a continuous task done by local governments
and municipalities. Who regularly conduct car patrols with experts to manually
identify obstacles so they can take appropriate corrective action. However, by
requiring the intervention of experts, the efficiency of detection is limited since
the frequency of patrols is normally low. This increases the time that obsta-
cles are dangerous to vehicles, raising the probability of accidents and damage.
Thereby, developing a support system for detecting this type of obstacle can help
to overcome these problems by allowing automatic detection during patrolling.

Given the critical need of efficient anomaly detection systems, many tech-
niques have been applied to perform anomaly detection from a single monocular
RGB image. For example, uncertainty measurements in semantic segmentation,
such as softmax entropy and the difference between the two largest softmax
values (softmax distance), have been used to statistically detect areas of low
segmentation reliability and classify them as anomalies [1]. Additionally, gener-
ating a photo-realistic image (image re-synthesis) from a semantic segmentation
map and comparing it with the original image can be used to detect anomalies.
As the segmentation network will not be able to understand anomalies, they
will not appear in the reconstruction [2]. Thus, the areas with significant differ-
ences between the two images are classified as anomalies. Finally, the framework
Synboost [3] complements the results of both techniques by using a dissimilar-
ity network to find differences between the input and synthesized images with
softmax entropy and softmax distance as attention mechanisms. However, when
anomalies blend well with its surroundings or only span a few pixels in the image,
which is the case for most stones on the road, the softmax cross-entropy is low
and does not contribute much with the framework’s prediction ability.

Therefore, in Sect. 2, we propose a method to overcome the limitations of Syn-
boost [3] and improve detection accuracy of anomalies in a constrained setting,
namely, small anomalies laying on the drivable area (Fig. 1). We call these kinds
of anomalies, road obstacles. In Sect. 3, we describe the process of training the
dissimilarity network of Synboost using a dataset with synthetically added obsta-
cles to compensate for the lack of anomalies examples in usual datasets. Further-
more, we introduce to our framework a neural network that strives to maximize
cross-entropy in regions where there are anomalies [4]. With this, we increase
the cross-entropy even for small anomalies that previously were unnoticeable
on softmax entropy and softmax distance images, in consequence, they produce
a better contribution to the final prediction, acting as attention mechanisms.
Finally, in Sect. 4, we present our conclusions, highlighting how our framework
enhances the pixel-wise detection accuracy for stones and significantly reduces
false positives compared to previous methods.
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Fig. 1. Drivable area. The region-of-interest are roads and sidewalks, which are high-
lighted in white in this image. We employed semantic segmentation inference to identify
the contours of this area. Any anomaly completely enclosure within the drivable area
is a road obstacle for this research.

2 Proposed Framework

2.1 Related Methods

We built our framework on top of Synboost [3]. This framework combines two
techniques for anomaly detection. The first one is using uncertainty measure-
ments, softmax entropy and softmax distance. The second one is image re-
synthesis, that compares the original input with a generated image to find differ-
ences between both. We expect that anomalous regions in the original image look
different in the generated one. The outputs of uncertainty measurements and
image re-synthesis are used as inputs for a dissimilarity network that carries out
a binary classification for each pixel with classes for anomaly and non-anomaly.
This framework achieves state-of-the-art performance for anomaly detection with
minimal computational cost for training since it is designed to use pre-trained
models and only requires training for the dissimilarity network.

We chose this model to build upon our framework because it addresses dif-
ferent scenarios when dealing with semantic segmentation anomalies [3]. The
first scenario occurs when an anomaly is misclassified as any of the inlier classes,
resulting in low entropy due to overconfidence but a significantly different re-
synthesized image if the object is large. The second scenario involves over-
segmentation of the anomaly, with different sections assigned to different classes,
leading usually to higher entropy. The final scenario occurs when the anomaly
goes undetected and is classified as part of its surroundings. In this case, the
anomalous area appears different in the re-synthesized image, particularly if it
is sufficiently large. However, Synboost still has a low accuracy for detecting
objects that blend with the background (low entropy) and only encompass a few
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Fig. 2. Outline of our framework architecture. In Synboost [3], softmax entropy and
softmax difference images are taken from the semantic segmentation network. In our
framework, we introduced to the Synboost framework a Maximized entropy network [4]
fine-tuned using the loss function showed in Eq. (2). Thus, this module specializes in
creating prior images to feed into the Spatial-Aware Dissimilarity Network that pro-
duces the anomaly prediction (highlighted with white contours for better visualization).

pixels in the images (similar synthesized image), which is the case for most road
obstacles, including stones, as both approaches fail to detect the anomaly.

2.2 Our Framework Architecture

Figure 2 shows an outline of the proposed framework. We use a pre-trained
segmentation network with a WideResNet38 backbone, which is trained on
Cityscapes dataset [5] according to [6]. For the synthesis network, we take a
pre-trained model from the CC-FPSE framework [7], which is a conditional gen-
erative adversarial network. In the case of the perceptual difference V , we simply
take a pre-trained VGG19 on ImageNet dataset as a feature extractor to find
differences between the original and generated images, following the same pro-
cedure as Synboost [3]:

V (x, r) =
N∑

i=1

1
Mi

∥∥∥F (i)(x) − F (i)(r)
∥∥∥
1
, (1)

where F (i) is the i-th layer with Mi elements in the VGG network with N layers.
This equation computes the perceptual difference as the sum of the absolute
differences between the feature representations of the original image x and the
generated image r across all layers of the VGG network. Therefore, it captures
the perceptual variations and discrepancies between the two images in feature
space.
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Furthermore, because neural networks tend to be overconfident in their pre-
dictions, the cross-entropy can be low even in regions where an anomaly exists. In
consequence, the uncertainty measures may not contribute much to the final pre-
diction. To deal with this problem, we take a segmentation network pre-trained
on the Cityscapes dataset and fine-tune it following the procedure of [4]. With
this, we aim to create a better-quality prior image as input for the dissimilarity
network that maximizes the cross-entropy on regions where there are anomalies,
while minimizing it on regions where there are no anomalies. To accomplish this,
during fine-tuning, we modify the loss function to minimize the target:

L = (1 − λ)E(x,y)∼Din
[�in(f(x), y(x)]

+λE(x′)∼Dout
[�out(f(x′))],

(2)

where
�in(f(x), y(x)) = −

∑

j∈C

1j=y(x) log(fj(x)), (3)

�out(f(x′)) = −
∑

j∈C

1
q

log(fj(x′)), (4)

where, (x, y) ∼ Din stands for an in-distribution example, while (x′) ∼ Dout

is an out-of-distribution example. f(x) indicates the softmax probabilities for a
predicted class and y(x) the corresponding ground truth. λ is a value in the range
of [0, 1] that controls the weight between the two single objectives. 1j=y(x) is an
indicator function that yields 1 when j = y(x) and zero otherwise. C is the set
of q classes. The minimization of the single objective for the out-of-distribution
part is equivalent to maximizing entropy in anomalous regions as stated in [4].

We can interpret this new objective as follows: for in-distribution pixels,
minimizing Eq. (3), which represents the standard cross-entropy loss function
when using one-hot encoding, is equivalent to maximizing the softmax value for
the true class. On the other hand, for out-of-distribution pixels, Eq. (4) yields
the lowest loss value when the predictions in the softmax layer are uniformly
distributed across all classes. Consequently, for outlier pixels, we encourage the
one-hot encoding vector to have the same value in every class. This is the reason
why the logarithm in Eq. (4) is divided by the number of classes q. Such a
vector will yield a high value when evaluated with Shannon entropy, hence the
term “Maximized entropy”. Shannon entropy, also known as relative entropy, is
defined as follows:

E(f(x)) = −
∑

j∈C

fj(x) log(fj(x)), (5)

where f(x) indicates the softmax probabilities predicted by the segmentation
model. We use this equation to obtain the entropy image E in Fig. 2.

In Table 1, we present an overview of the models used in our framework.
The segmentation, synthesis, and perceptual difference networks are pre-trained
models that can be seamlessly integrated into the framework. Regarding the
Maximized entropy network, it starts as a segmentation network pre-trained on
Cityscapes that we subsequently fine-tune on our composite training set using
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Table 1. Model and datasets overview.

Model Training set Training details

Segmentation Cityscapes Pre-trained

Synthesis Cityscapes Pre-trained

Perceptual difference ImageNet Pre-trained

Maximized entropy Our composite dataset Fine-tuned

Dissimilarity Our composite dataset Trained

Eq. (2) as loss function. Lastly, the Dissimilarity network is trained from random
initialization, employing our composite training set.

2.3 Ensemble

Because the prior images used as inputs to the dissimilarity network are also
anomaly predictions, it is feasible to combine them with the dissimilarity network
output generated in the last step of Fig. 2. To accomplish this, we use a weighted
sum to generate a more robust prediction (Ae). We refer to this procedure as
ensemble, and it can be applied to both Synboost and our model using the
following equation in a pixel-wise manner:

Ae = w1A + w2E + w3D + w4V, (6)

where A, E, D, and V represent the output from the dissimilarity network,
softmax entropy, softmax distance, and perceptual difference images, respec-
tively. To find the values for the weights w1, w2, w3, and w4 to combine these
images for ensemble, we applied a grid search restricted to values that satisfy
w1 + w2 + w3 + w4 = 1.

This means that prior images can be used in two ways: first, as inputs for the
dissimilarity network where they serve as attention mechanisms, and second, as
part of an ensemble together with the dissimilarity network output.

3 Experiments

3.1 Dataset

For the training set, we started from the same methodology used in Synboost
training. Consequently, we took Cityscapes training set (2975 images) using the
objects labeled as void class as samples for anomalies and inferred semantic
segmentation for image S in Fig. 2. To train the dissimilarity network to find
differences between the original and synthesized images, we added a copy of
each image and randomly swapped labels for known objects in the ground truth
semantic segmentation map before image synthesis. These objects look quite
different in the synthesized image and are also used as anomalies samples. For
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Fig. 3. Stones included as road obstacles.

this part of the dataset, we used the modified ground truth segmentation for
image S in Fig. 2.

On top of that, we synthetically added one stone on a random position of
the drivable area per image. The stone dataset (Fig. 3) consists of images of four
stones (83, 87, 120 and 70 images per stone, respectively) taken from different
orientations and illumination conditions (left only, right only, and both). We
used stones 1 and 2 for training, while stones 3 and 4 were used only for eval-
uation. In addition, we used six images from different spots in our University’s
campus as backgrounds to synthetically add stones. Applying image augmenta-
tion techniques (horizontal flip, cropping, and adjusting brightness) we added
192 images to the training set. Finally, to conduct experiments with real-stone
images, we placed stones, and we took 153 images from seven spots in our Uni-
versity’s campus. In sum, the training set contains 6142 images when only using
composite images and 6295 images when including real-stone images, as shown
in Table 2. Lastly, in Fig. 4 we show some examples of composite images.

For evaluation, we built a 147 real-stone images dataset. We placed stones
3 and 4 and took photos in six spots in the University’s campus that were
not used for training. With this, all evaluations for experiments are run using
places and stones unseen during training. Additionally, using a real-obstacle
dataset for evaluation prevents our experiments from yielding unrealistic results
caused by the use of synthetic data during training. For instance, a model might
unrealistically excel at identifying merely pasted objects rather than genuine
obstacles [8].
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Table 2. Composition of training set.

Type Source Number of images

Composite Cityscapes 5950

Composite Our background set 192

Total composite images 6142

Real Our real-stone set 153

Total composite + real-stone images 6295

Fig. 4. Composite images. Examples of composite image used for training. In the top
row there are examples of backgrounds from Cityscapes. While in the bottom row,
there are examples of our backgrounds. The stones synthetically added are highlighted
by a solid line rectangle.

3.2 Experimental Conditions

The region-of-interest (ROI) for evaluation of anomaly detection in our exper-
iments comprises all pixels that belong to road or sideways. As well as regions
assigned to other classes enclosed within the road or sidewalk. While the road
obstacles that we want to detect are objects on the drivable area that do not
belong to any known classes from the Cityscapes dataset [5]. We used average
precision (AP) as the primary metric, as well as false positive rate at 95% true
positive rate (FPR95), that are fitted for highly imbalance classification prob-
lems, such as anomaly detection.

For the first experiment, we used our dataset with only composites images
to train Synboost’s and our model’s dissimilarity network, as well as fine-tuning
a segmentation network to maximize entropy on anomalous areas. For the sec-
ond experiment, we added 192 images with real-stone images into the training
set, which improved performance for all models despite the small sample size.
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Table 3. Hyperparameters used for training and fine-tuning.

Dissimilarity network training Maximized entropy network

fine-tuning

Hyperparameter Value Value

Learning rate 0.0001 0.00001

Betas (Adam) 0.5, 0.999 0.9, 0.999

Epochs 30 20

Batch size 8 8

Table 4. Best weights for Eq. (6) for our model according to a grid search.

Model Training set w1 w2 w3 w4

Synboost Composite images only 1 0 0 0

Composite + real-stone images 1 0 0 0

Ours Composite images only 0.85 0.15 0 0

Composite + real-stone images 0.55 0.45 0 0

We trained the dissimilarity networks for 30 epochs five times per model from
random initializations. In the case of entropy maximization, we fine-tuned the
segmentation network for 20 epochs with λ = 0.9 in Eq. (2). In both cases,
we selected the epoch with the lowest lost value on the evaluation set as the
best epoch. In Table 3, we show the hyperparameters used for training and fine-
tuning.

The experiments were conducted on a computer running Ubuntu 20.04.4
LTS, with Python 3.6.9, PyTorch 1.10.1, CUDA 11.4, and a NVIDIA GeForce
RTX 3090 GPU with 24 GB of RAM.

3.3 Results

The outcome of a grid search for the best ensemble weights for Synboost and
our model when using Eq. (6) are shown in Table 4. In the case of Synboost, we
obtained that w1 = 1 for both training sets, which means that it only uses the
dissimilarity network output. In other words, Synboost does not benefit from
ensemble. On the other hand, for our model we obtained that the dissimilarity
output (w1) is combined with softmax entropy (w2) to create the final prediction.
However, w3 and w4 are zero for both training sets which means that softmax
distance and perceptual difference are not used for ensemble with our model.

Consequently, using the ensemble weights during testing, the results of the
best networks when evaluating on real-stone images are shown in Table 5, where
Synboost achieved its best performance without ensemble while our model did
it using ensemble. All models improve when a small set of real-stone images are
added to the training set.
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Table 5. Performance comparison between best networks.

Method Composite
images only

Composite +
real-stone images

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
Synboost [3] 64.2 7.07 67.0 4.92

Maximized entropy [4] 76.8 2.02 85.5 0.30

Ours 86.6 0.29 91.0 0.13

Fig. 5. Examples of anomaly predictions. The first row depicts the input image, the
ground-truth anomaly is highlighted by a solid line rectangle for visualization purposes
only. For the inferences, false positives are highlighted by a dotted line rectangle. The
model’s anomaly prediction is indicated by a contour line. In the case of Synboost
(second row), it detected the obstacle for the first example but failed to detect it for
the second. In both cases, it produced false positives. For Maximized entropy (third
row), it spotted correctly the obstacles in both cases, however, it also yielded false
positives. In contrast, our model (fourth row) successfully recognized the obstacles in
both cases without false positives.



160 C. D. Ardon Munoz et al.

Our experiments demonstrated that our model outperforms previous models
in terms of achieving the highest average precision (AP) while simultaneously
having the lowest false positive rate at 95% true positive rate (FPR95) when
evaluated on a real-stone dataset. In Fig. 5, we present examples of pixel-wise
anomaly prediction, where each image contains a single road obstacle. The con-
tour lines indicate the pixels classified as anomalies by each model. Ground-
truth anomalies are highlighted with solid line rectangles, while false positives
are marked with dotted line rectangles.

4 Conclusions

In this paper, we presented a framework to detect small anomalies laying on
roads, such as stones. We demonstrated that using maximized entropy, as an
attention mechanism for a dissimilarity network, improves the average precision
and false positive rate at 95% true positive rate in pixel-wise anomaly detection.
Furthermore, the difference between the results from the two experiments, due to
the inclusion of the small sample of real-stone images in the training set, indicates
that there is still room for improvement in the composite dataset creation.

Regarding the use of ensemble, the values found from grid-search confirms
that standard softmax entropy do not contribute much to the final anomaly
prediction of road obstacles, as we found that the highest AP values for Syn-
boost were achieved without taken into consideration any of the prior images
for ensemble. While our model with maximized entropy uses softmax entropy
images along with the dissimilarity network output in ensemble to create the final
anomaly prediction. In other words, while normal softmax entropy serves as an
attention mechanism for the dissimilarity network, it doesn’t improve the final
result when using ensemble. On the other hand, maximized entropy is beneficial
in both scenarios.

In future work, we intend to conduct experiments using a composite dataset
with additional types of road obstacles aside from stones to create a more gen-
eral anomaly detection system. For this purpose, we plan to create a composite
dataset using objects not present in the in-distribution label set of Cityscapes,
treating them as obstacles. We also aim to develop a framework with local image
synthesis, constraint to the drivable area to avoid synthesizing whole images and
thus, reducing the computational of inferences.
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Abstract. Gait-based gender classification from an image sequence captured at a
distance from human subjects can provide valuation information for video surveil-
lance. One common approach is to adoptmachine learning for the prediction of the
gender class. Algorithms perform gender classification based on spatio-temporal
feature, e.g., Gait Energy Image (GEI), extracted from the video. Although GEI
can concisely characterize themovements over a gait cycle, it has some limitations.
For instance, GEI lacks photometric information and does not exhibit a clear pos-
ture of the subject. To improve gender classification, we think that more features
must be utilized. In this paper, we propose a gender classification framework that
exploits not only the GEI, but also the characteristic poses of the walking cycle.
The proposed framework is a multi-stream andmulti-stage network that is capable
of gradually learning the gait features from multiple modality inputs acquired in
multiple views. The extracted features are fused and input to the classifier which
is trained with ensemble learning. We evaluate and compare the performance of
our proposed model with a variety of gait-based gender classification methods
on two benchmark datasets. Through thorough experimentations, we demonstrate
that our proposed model achieves higher gender classification accuracy than the
methods that utilize only either GEI, or posture image.

Keywords: gait classification · gait energy image · walking cycle · ensemble
learning

1 Introduction

Humans can recognize gender class at ease. To replicate this capability in machine is
a challenging problem. Automatic gender classification is a useful function in many
systems, e.g., surveillance, micromarketing. Information on gender of visitors in the
crowdflow is of great commercial value for better shop arrangement and allocation, better
promotion management and human flow arrangement. Automatic gender recognition
also plays an important role in human-machine interaction and security control.

Gait is useful visual information. Image of walking human may be captured with
camera set at a long distance from the subject. Still, human gait, showing posture and
walking style, is visible in the image. Therefore, gait-based gender recognition from
image is a feasible approach. Many research [1] adopt the gait-based approach, e.g.,
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activity recognition, tracking, person identification, gender classification, etc. Gait can
be recognized based on structural information such as stride parameters. Liao et al. [2]
proposed a gait recognition method based on 3D human pose estimated from images
with a convolutional neural network (CNN). This type of method usually demands an
initialization phase, such asmodel construction, and the optimization of a large number of
free parameters. Alternatively, methods can purely rely on appearance features extracted
from image. This type of method has the advantage of lower computational cost. For
instance, in each image the gait silhouette is segmented. Feature is then computed from
the silhouette sequence, e.g., Gait Energy Image (GEI) [3]. GEI, computed as an average
silhouette image, characterizes the movements of the subject over a gait cycle. However,
the classification accuracy may be low on image sequences acquired at some viewing
angles due to the highly similar GEIs of both gender classes. The average silhouette does
not display the distinctive posture of the subject clearly. We therefore propose a multi-
stage gender classification framework with the inputs of GEI and poses extracted from
the walking cycle. We design the training process to allow the feature extractor network
gradually learns from a variety of inputs. The multiple features are fed to the classifier
network which is trained by ensemble learning. We train our proposed model on two
benchmark gait datasets. Through thorough experimentations, we demonstrate that our
proposed model outperforms other gender classification methods. The contributions of
our work are as follows:

• GEI provides concise representation of movement that can be used for gender classi-
fication. However, GEI lacks photometric information and does not clearly dis-play
the body shape. We observe that postures, such as stance and swing images of the
walking cycle, exhibit unique features that can provide complementary information
for gender classification. In order to improve the gender classification accuracy, we
exploit multiple modality inputs of GEI and postures.

• We propose a multi-stream network for feature extraction from the multiple modality
inputs. The extracted features are fused and fed to the classifier.We design the training
process to allow the feature extractor network gradually learns fromavariety of inputs.
The proposedmulti-stage framework, through ensemble learning, predicts the gender
class irrespective of other factors such as viewing angle and walking status.

• Weadopt data augmentation to address the class imbalance problemof the gait dataset.
Investigation is performed on two benchmark datasets. Comparison analysis is car-
ried out with recently proposed methods based on deterministic and deep learning
approaches. We demonstrate that our proposed model outperforms these reference
methods that only utilize either GEI, or posture image.

The rest of this paper is organized as follows. The related research on gender classi-
fication is reviewed in Sect. 2. We focus on the gait-based gender recognition techniques
and the datasets created for gender classification research. Our proposed gender classifi-
cation framework is described inSect. 3. Experimentations are performedon twopublicly
available gait datasets. Quantitative measures are adopted for performance evaluation.
In Sect. 4, we compare the performance of our proposed model with a variety of gender
classification methods. Section 5 presents the ablation study performed on our proposed
gender classification model. Finally, we draw the conclusion in Sect. 6.
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2 Related Work

Gait-based gender classification methods, depending on the way to extract visual infor-
mation from the images, can be grouped into two categories - deterministic algorithm,
deep learning-based model.

Deterministic algorithm performs gender classification via computation of hand-
crafted features, followed by gender prediction from the feature vector. Yu et al. [4]
utilized GEI as the appearance-based gait feature. In [5], the textural feature, local binary
pattern (LBP), is computed from GEI and then input to the classifier. Hu and Wang [6]
proposedGait Principal Component Image to represent themovement of body in one gait
period. The features are then input to the K nearest neighbor classifier. Support vector
machine (SVM) is a popular choice of classifier inmany recently proposedmethods, e.g.,
[5], due to its robustness. Saini and Singh [7] proposed a gender recognition system using
SVM and multi-linear discriminant analysis as classifier. Do et al. [8] proposed a view-
dependent gender classification system. The viewing angle (i.e., the walking direction)
is first estimated. The gender of the human captured in arbitrary view is predicted with
multiple view dependent SVM classifiers.

Deep learning brings forth rapid advancement in computer vision. In contrast to
deterministic algorithms, deep learning is machine learning based on learning data rep-
resentations. With the development of CNN [9] and the use of graphics processing units,
significant advancement has been reported. CNNmodel is trained to learn feature extrac-
tion with the use of training dataset. In many research, it is found that features extracted
by deep learning-based algorithms can vastly outperform hand-crafted features com-
puted by deterministic algorithms. Gait-based gender classification also benefits from
the adoption of CNN model.

Shiraga et al. [10] developed a gait recognition method from GEI with the use of
CNN. Zhang et al. [11], proposed a complex gait recognition framework which contains
two parallel Siamese networks. While similar/dissimilar GEIs are used to train the two
networks. Only one Siamese network is used for testing. The gait feature extracted by
the network is fed to the classifier. These two methods [10, 11] are used for human iden-
tification. Takemura et al. [12] have studied and compared some CNN gait recognition
models. Sakata et al. [13] first proposed a network for classifying gender, age group,
and age fromGEI. It contains one convolutional block and three parallel fully connected
layers. They further proposed a larger network to address the same classification prob-
lem. It contains 13 structurally identical convolutional blocks organized in three layers.
Xu et al. [14] proposed a CNN framework for real-time gender classification. From
a single image, the human silhouette is segmented by graph-cut. Based on the single
silhouette, a gait cycle is synthesized by the phase-aware reconstructor [15]. The gait
cycle is then input to GaitSet [16] for gait recognition. In training, two images from two
viewing angles are selected. The two synthesized gait cycles are fed into two GaitSet
networks for model learning. In the testing phase, only one image frame is used as input
and one GaitSet is utilized as feature extractor. The method has the advantage of quick
response since recognition is performed per image instead of waiting for the acquisition
of the whole gait cycle. GEI, containing a mixture of static and dynamic gait features
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from the original image sequence, provides distinctive features for gait recognition. Fea-
tures extracted from synthesized gait cycle will be less precise. Moreover, the complex
framework with two networks demands high computational load in training.

Besides using the single input of GEI, some research utilizes additional input infor-
mation and adopts multi-stream framework for gender classification. Bei et al. [17]
proposed a two-stream CNN to combine GEI and optical flow information. A single
GEI image lacks temporal information of the walking cycle. To address this limitation,
they proposed a new average silhouette subGEI, which is computed from fewer image
frames than the complete gait cycle. Temporal information, characterized by the opti-
cal flow map, is then computed from two adjacent subGEIs. Russel and Selvaraj [18]
proposed a unified model with the input of GEI to six parallel CNNs. The parallel net-
work contains varying number of convolution layers. Each GEI is transformed into a
multi-scale representation for the network to learn the discriminative gait features. In
summary, deep learning models can achieve higher gender classification accuracy than
deterministic algorithms. However, they demand the optimization of a number of hyper-
parameters and the computation of a large number of system parameters. Moreover, they
also heavily rely on loss functions.

In order to facilitate the development of data driven gait recognition model, vari-
ous gait datasets have been created. Accurate CNN model demands training on large
dataset. For instance, gait databases should contain videos capturing a large number of
human subjects. Each subject should be instructed to walk in different directions, and/or
recorded bymultiple cameras set in a wide range of viewpoints. Sakata et al. [13] trained
their frameworks on a single-view gait dataset OU-ISIR LP [19, 20]. OU-ISIR LP is a
large dataset containing 32,753 females and 31,093 males with a wide range of ages.
The videos were captured by a single camera. Moreover, the dataset provides the pre-
computed GEIs. Xu et al. [14] trained their model on a multi-view gait dataset OU-ISIR
MVLP [12, 21]. OU-ISIRMVLP contains videos captured by 14 cameras set in different
view angles. The dataset also provides a total of 267,386 pre-computed GEIs. Zhang
and Wang [22] created a small gait dataset IRIP Gait Database. It only contains 32 male
subjects and 28 female subjects. The Soton database [23] is a relatively old dataset. It
contains 400 subjects with unique multi-modal data (e.g., multi-view gait records, face
images). CASIA [24] is also a gait database with multi-view images. The CASIA B gait
dataset consists of videos captured from 124 subjects, each with 11 viewing angles and
3 walking conditions. Another large-scale dataset GREW [25] was created for research
on gait recognition in the wild. It provides silhouette sequences, GEIs, and optical flow
maps, computed from videos captured from 26,345 subjects.

3 Gender Classification Framework

GEI, which is computed from the silhouette images over a gait cycle, concisely repre-
sents the movement of the subject. Figure 1 (a) and (b) show the GEIs of a male and a
female respectively. To observe the difference between the two GEIs, we perform image
subtraction and enhance the difference of GEIs with gamma correction for better visual-
ization as shown in Fig. 1 (c). The brighter pixels in the subtraction result correspond to
larger difference between the two GEIs. Gender recognition based on GEI learns from
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the difference of male and female GEIs in gender prediction. Besides the exploitation of
movement information, we propose a framework that also learns the difference of male
and female postures. Figure 1 (d) and (e) show the images of a male and a female at the
same posture of the walking cycle respectively. The subtraction result, as shown in Fig. 1
(f), illustrates the difference of the postures. It is clear that the difference of postures
can provide complementary information to that from the difference of GEIs. Gender
recognition model can learn other features from posture images and benefit gender clas-
sification. In order to improve the gender recognition accuracy, we therefore propose a
multi-stream multi-stage gender classification framework with the inputs of GEI, and
the stance and swing images extracted from the walking cycle.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Difference of male and female GEIs and posture images: (a) male GEI; (b) female GEI;
(c) difference between male and female GEIs; (d) male posture image; (e) female posture image;
(f) difference between male and female posture images. The difference images are enhanced by
gamma correction with the same factor of 0.5 for better visualization.

Figure 2 shows the proposed gender classification framework. Stage 1 contains three
parallel streams of CNN, which are trained to extract gait features from the input images.
The first input is the GEI image computed from the silhouette sequence. The second and
the third inputs are the stance and swing images extracted from the walking cycle. The
feature vectors extracted by the CNNs are concatenated. Ensemble learning is adopted
to train the Stage 2 CNN for gender prediction. Based on the proposed framework, we
design the gender classification model.

We design a CNN for gait feature extraction from the input of GEI. As shown in
Fig. 3, the GEI CNN model consists of convolutional layers, max-pooling layers, and
batch normalization layers. If we use the single-stage network for gender classification,
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a densely-connected layer and an output layer are added. For the multi-stage gender
classification model, the feature vector is fused with the other feature vectors and fed
into the Stage 2 CNN.

Fig. 2. Proposed gender classification framework.

Fig. 3. GEI CNN model.

The gait of human walking is periodic. Within one walking cycle, one foot stays on
the ground (stance phase) for about 60% of the cycle, and then lifts off the ground (swing
phase) for about 40% of the cycle. Besides GEI, some state-of-the-art methods exploit
pose information for gait recognition. Kwon et al. [26] proposed the joint swing energy
which is computed from the skeletons found in three coordinate planes. Zhao et al. [27]
utilized a pre-trained convolutional network to generate the pose heatmap from RGB
images. We propose the gender classification framework which also extracts posture
related features from image sequence. The images of the stance and swing phases of the
right leg are extracted from the video and fed into the respective CNN models as shown
in Fig. 2. The Stance CNN and Swing CNN models have the same structure as the GEI
CNN model (see Fig. 3).
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The feature vectors (each has the dimension of 1× 1,024) extracted by the threeCNN
models as mentioned previously, are fused to form a wide feature vector of 1 × 3,072.
It is then reshaped to 128× 24 and input to Stage 2 CNN. Ensemble learning is adopted
to train the CNN for the final gender prediction output. Figure 4 shows the Stage 2
CNNmodel. There are two convolutional blocks, each containing a convolutional layer,
a max-pooling layer, and a batch normalization layer.

There is an imbalance problem in gait dataset. For instance, the CASIAB gait dataset
[24] contains 10,187 male GEIs and 3,405 female GEIs. To address this problem, we
adopt data augmentation to increase the number of female GEIs to the same as the male
counterpart. First, a new female GEI is generated by blending of two original female
GEIs as shown in Fig. 5. A total of 45,559 new female GEIs are generated, from which
6,782 are randomly selected as the augmented female data. We also sample more stance
and swing images from videos of female subjects.

Fig. 4. Stage 2 CNN model.

Fig. 5. Generation of augmented female GEI.

The GEI CNN model, Stance CNN model, and Swing CNN model are trained inde-
pendently. Inputs from two different angles are combined to form one set of samples. As
for theCASIABdataset, a total of 55 sets are generated.We adopt 5-fold cross-validation
as the training method and categorical cross entropy CE as the loss function

CE(x) = −
C∑

i=1

yilog(f (xi)) (1)
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where yi is the ground truth label for gender class i, xi is the score for gender class i, f is
the activation function sigmoid, C is the number of gender classes. Each set of samples
is divided into 80% training set and 20% testing set. From the training set, 20% of the
samples are reserved for validation. The model is trained on each set 10 times. The total
number of training epochs is 2750. The extracted features are fused and fed to the Stage
2 CNN classifier. The whole framework is further trained through ensemble learning
with the dataset divided into 80% training set and 20% validation set.

4 Experiments and Results

We train our proposed model on a computer with Intel i5 CPU, Nvidia GeForce RTX
3060 GPU, 32 GB RAM, and 1 TB disk memory. We evaluate and compare the perfor-
mance of our proposed framework with state-of-the-art gait-based gender classification
methods on two benchmark datasets CASIA B [24] and OU-ISIR MVLP [12, 21]. The
reference methods include texture-based algorithm, posture-based algorithm, and deep-
learning based model. El-Alfy et al. [5] proposed a texture-based gender recognition
algorithm based on fuzzy local binary pattern (FLBP*) features extracted from GEI.
SVM is adopted for the prediction of the gender of the walking subject. Experimen-
tal results on CASIA B dataset demonstrate that FLBP* outperforms four other LBP-
based methods. Isaac et al. [28] proposed a posture-based gender classification method.
Instead of demanding a complete gait cycle, they proposed a method that extracts fea-
tures from each frame of the image sequence. Gender classification, called pose-based
voting (PBV), is achieved based on the most probable predictions. Experimentations
were performed on CASIA B dataset with two feature extraction techniques: elliptic
Fourier descriptors (PBV-EFD), consolidate vector of row-column summation (PBV-
RCS). Linear discriminant analysis is adopted for gender classification. The two models
achieve high gender classification accuracy, even surpassing the CNN + SVM method.
Russel and Selvaraj [18] proposed a complex gender classification framework containing
six parallel CNNs with the input of GEI. The parallel networks contain varying number
of convolution layers. Besides evaluating the performance of gender classification from
multiple networks, they also investigate the performance of individual networks. For
comparison, we select a single network model CNN C_customized which has similar
complexity as our proposed model.

To evaluate the gender classification accuracy, we calculate the Recall (Re), Precision
(Pr), and total accuracy (Acc)

Recall = TP

TP + FN
(2)

Precision = TP

TP + FP
(3)

Acc = TP + TN

TP + FP + TN + FN
(4)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False
Negative.
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Table 1. Comparison of our proposed model with other methods on CASIA B dataset.

Method Re Pr Acc
FLBP* [5] 0.964 0.965 0.964

PBV-EFD [28] - - 0.953

PBV-RCS [28] - - 0.979

CNN C_customized [18] 0.929 0.995 0.960

Our proposed model 0.983 0.979 0.981

Table 1 compares the performance of our proposed model and four state-of-the-art
methods as mentioned above on CASIA B dataset in terms of Re, Pr, and Acc. The best
result is highlighted in red. The second best result is highlighted in blue. FLBP* extracts
feature fromGEI. PBV extracts features from posture. Our proposed model outperforms
these twomethods with features from both GEI and posture images. CNNC_customized
also extracts feature from GEI. Although it achieves the highest Pr, Acc is relatively low
due to low value of Re. Our proposed model achieves uniformly high values in Re, Pr,
and Acc. As compared with the four recently proposed methods covering deterministic
algorithms and CNN model, our proposed achieves the best score in Re and Acc, and
the second best score in Pr.

Table 2. Comparison of our proposed model with other methods on OU-ISIR MVLP dataset.

Method Acc
GEINet [10] 0.939

GaitSet [16] 0.927

Xu [14] 0.943

Our proposed model 0.943

GEINet [10] is an eight-layered network with the input of GEI to two triplets (convo-
lution, pooling, normalization) and two fully connected layers. GaitSet [16] is a flexible
multi-stream CNN framework with the input of gait silhouette sequence. Xu et al. [14]
proposed a CNN framework. The model contains two GaitSet networks for two recon-
structed gait silhouette sequences during training, while only one GaitSet network is
used for testing. These deep learning based methods exploit inputs of GEI, single orig-
inal gait sequence, and multi-view synthesized gait sequences. Table 2 compares the
performance of our proposed model and three methods as mentioned above on OU-ISIR
MVLP dataset in terms of Acc. Our proposed model outperforms both GEINet and Gait-
Set. GaitSet, with the input of a large number of gait silhouettes in parallel, is a complex
network. Our proposed model, which is a relatively simpler network with the inputs of
GEI and posture images, can perform as good as Xu et al. [14] complex framework with
two GaitSet networks.
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5 Ablation Study

We evaluate and compare Stage 1 GEI CNN and our proposed model (Stage 1 + Stage
2). Tables 3 and 4 show the performance of all models on CASIA B dataset and OU-
ISIR-MVLP dataset respectively.

Table 3. Performance evaluation of Stage 1 GEI CNN and Stage 1+ Stage 2 CNN on CASIA B
dataset.

Model Female Recall Female Precision Male
Recall

Male
Precision

Acc

Stage 1 (only GEI
CNN)

0.870 0.881 0.879 0.869 0.875

Stage 1 + Stage 2 0.992 0.964 0.973 0.994 0.981

Table 4. Performance evaluation of Stage 1 GEI CNN and Stage 1 + Stage 2 CNN on OU-ISIR
MVLP dataset.

Model Female Recall Female Precision Male
Recall

Male
Precision

Acc

Stage 1 (only GEI
CNN)

0.844 0.778 0.789 0.852 0.815

Stage 1 + Stage 2 0.942 0.947 0.945 0.940 0.943

Our proposed model achieves higher Re, Pr, and Acc than the GEI CNN on both
datasets. It demonstrates that the proposed framework, that exploits features from both
GEI and postures, achieves higher gender classification accuracy than the model that
only utilizes GEI. Table 5 compares the inference time per one set of inputs (GEI, stance
image, swing image) and the number of parameters of Stage 1 CNN and our proposed
model. Stage 1, a multi-stream CNN, contains most parameters of the framework. That
guarantees the feature extractor has sufficient analytical power to extract useful features
from the multiple modality inputs.

Table 5. Inference time per single set of GEI/Stance/Swing images and number of parameters of
our proposed model.

Model Inference time (sec) Number of parameters

Stage 1 0.029 52 M

Stage 1 + Stage 2 0.327 53 M
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6 Conclusion

We propose a multi-stream gender classification framework with heterogeneous inputs
of GEI, stance image, and swing image. We adopt ensemble learning to train our pro-
posed model. Experiments are performed to evaluate and compare the performance of
our proposed model with other gait-based gender classification methods on benchmark
datasets. We demonstrate that our proposed model with features extracted frommultiple
modality inputs achieves higher gender classification accuracy than a variety of recently
proposed methods that only utilize a single type of visual input such as GEI or posture
image.
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Abstract. Oil temperature is an important indicator of transformer health. Oil
temperature prediction iswidely used in transformer state detection, fault diagnosis
and other fields. However, there are many factors affecting the transformer oil
temperature, such as season, weather, load, holidays and so on. In order to dig out
the relationship between oil temperature and various influencing factors and make
more accurate prediction tasks, this paper proposes a multi-step prediction model
of long-term sequence oil temperature based onparticle swarmoptimization (PSO)
and Pyraformer and combines it with digital twin system. Pyraformer can capture a
wide range of time dependence, and we use PSO to optimize its hyper-parameters
to improve the prediction accuracy. At the same time, the digital twin system can
provide more data support and real-time feedback for the prediction model, and
further improve the accuracy and reliability of the model. At the same time, the
digital twin system can also react to management activities such as prediction and
detection. Experiments on two datasets with different time unit steps show that
PSO-Pyraformer has the highest prediction accuracy in the long-term multi-step
prediction task of multivariate to univariate.

Keywords: Oil temperature prediction · Pyraformer · PSO · Digital twins
system · Parameter optimization

1 Introduction

As one of the indispensable components in the power system, the transformer under-
takes important tasks such as power transmission and distribution [1]. Especially, the
transformer oil temperature is an important index to evaluate the state of the transformer,
which usually needs to be monitored and predicted in real time [2]. The traditional pre-
diction method based on physical model needs to consider a large number of physical
factors, and is easily affected by model deviation and uncertainty. With the development
of intelligent technology, the use of multi-source data to establish prediction models has
become a hot research field [3].

The current traditional hyperparameter optimizationmethod selects the optimal com-
bination by traversing the given hyperparameter combination. However, for long-term
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series forecasting problems, the hyperparameter space is often very large, and the grid
search method is inefficient. For example, Bayesian optimization methods estimate the
performance of different hyperparameter combinations by building a model, and choose
the combinationwith the highest performance. Thismethod can find the optimal solution
within a limited number of trials, but for long-term series forecasting problems, time
factors and dynamic changes of the model need to be considered.

Liu et al. (2022) proposed a low-complexity pyramidal attention for long-range time
series modeling and forecasting named Pyraformer [4]. Pyraformer can achieve higher
prediction accuracy with less time and memory consumption in single-step and long-
term multi-step prediction tasks [5]. However, this algorithm also has some challenges,
such as choosing an appropriate hierarchical structure and model parameters, as well as
computational and memory overhead when processing long sequences, etc. Therefore,
proper tuning and parameter selection are required in the application.

Therefore, this paper discusses the feasibility and advantages of using PSO-
Pyraformer model to predict transformer oil temperature frommultivariate to univariate,
and proposes a method combined with digital twin system. The digital twin system can
provide real-time feed back andmore comprehensive data support for themodel, making
the prediction model more accurate.

The main contributions of this study are as follows:

(1) It can better capture many factors related to oil temperature: the change of oil tem-
perature is affected by many factors, such as ambient temperature, turbine load, run-
ning time and so on [6]. Using multivariate to predict single variables can more fully
consider the relationship between these factors, thereby improving the prediction
accuracy.

(2) Give full play to the advantages of PSO algorithm and Pyraformer model: PSO
algorithm has global search ability, can adjust each parameter adaptively, optimize
the prediction model, and combine with Pyraformer model to further improve the
generalization and accuracy of the model.

(3) A digital twin system for transformer oil temperature prediction is constructed. A
variety of indicators and oil temperature prediction results will be displayed in the
system, providing reliable data support for transformer supervision and prediction
system.Deep learning and digital twin technology are integrated to provide decision-
making for transformermanagement. At the same time, it is convenient formanagers
to carry out real-time monitoring and management.

The rest of the paper: Part 2: establishment of prediction model; Part 3: the estab-
lishment of digital twin system; Part 4: experiment part; Part 5: summary and outlook
for the future.

2 Research Methods and Model Establishment

2.1 PSO

The particle swarm algorithm simulates the group behaviour of natural groups such as
birds and fish to find the optimal solution to multivariate nonlinear problems [7]. The
basic idea is to find the global optimal solution by constantly testing the search space.
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In this algorithm, the ith particle has a position −→x i(t) and velocity −→vxi(t) at time t.
The update formula of particle velocity and position is:

v_i(t + 1) = ρ ∗ v_i(t) + α ∗ rand_1 ∗ (pbest_i − x_i(t)) + β ∗ rand_2 ∗ (gbest − x_i(t))
(1)

x_i(t + 1) = x_i(t) + v_i(t + 1) (2)

Here, ρ is the inertia weight control parameter, α and β are acceleration factors, rand_1
and rand_2 are random numbers ranging from 0 to 1.

Use the PSO algorithm to adjust the parameters of the Pyraformermodel tominimize
the value of the objective function. The PSO algorithm optimizes parameters by simu-
lating the behavior of a flock of birds, and finds the optimal solution through continuous
iteration. By fusing the PSO and Pyraformer models, the optimization ability of the PSO
algorithm can be combined with the prediction ability of the Pyraformer model, thereby
improving the accuracy and reliability of predicting oil temperature.

2.2 Pyraformer

Compared to the general attention mechanism model, The core part of Pyraformer is
the introduction of pyramid attention module(PAM) [8]. Different from the traditional
attention mechanism. The specific form is as follows:

In the above formula. X(s)
l adjacent nodes of each node on three different scales:

includes A(s)
l , C(s)

l , P(s)
l . It simplifies the attention at the node x(s)

l to:

yi =
∑

l∈X (s)
l

exp(qikTl /
√
dK )vl∑

l∈X (s)
l
exp(qikTl /

√
dK )

(7)

In the formula, X(s)
l represents a set of neighboring nodes at three scales. By intro-

ducing multi-scale information capture and long-distance dependence modeling, the
pyramid attention mechanism can provide more comprehensive and diversified con-
text information [9], enhance model performance and generalization ability [10], and
effectively improve prediction accuracy.

The advantage of the Pyraformer algorithm is that it can efficiently process long-
term series data and can capture dependencies at different scales. It has achieved good
performance in some time series forecasting tasks.
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2.3 Proposed PSO-Pyraformer Prediction Model

The advantages of the PSO algorithm and the Pyraformer model are comprehensively
utilized. (1) The PSO algorithm can search for the optimal solution globally, and the
Pyraformer model can accurately predict the oil temperature. (2) The PSO algorithm
can improve the prediction accuracy of the Pyraformer model by iteratively optimizing
parameters. (3) The fusion of the two algorithms can complement each other’s advan-
tages, thereby improving the accuracy and stability of the prediction results. (4) The
PSO algorithm can avoid falling into a local optimal solution, thereby increasing the
robustness and generalization ability of the model (Fig. 1).

Fig. 1. PSO-Pyraformer model.

In the above framework, the PSO algorithm and the Pyraformer model interact
through input data. Here, our goal is to use the PSO algorithm to update the hyper-
parameters in Pyraformer to improve the accuracy of model prediction. Specifically, the
scheme follows the following steps:

Step 1: The input data is passed to Pyraformer for processing data features and
making predictions.
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Step 2: PSO algorithm calculates individual fitness according to the current particle
position (hyper-parameter) to find the best weight combination.

Step 3: The PSO algorithm updates the particle velocity and position according to
the global optimal and local optimal solutions.

Step 4: The updated hyper-parameters are passed to the Pyraformer model, and steps
1–3 are repeated until the stopping condition is reached.

Step 5: The optimal weight used by the entire system is sent back to the model for
prediction.

3 Digital Twins System

Fig. 2. Digital twin system framework of power transformer.

The following are the steps to establish a transformer digital twin system [11] (Fig. 2):
Step 1: Sensor data collection:Collect the historical data of the transformer, including

transformer temperature, humidity, load and other information. In this study, TCP/IP
protocol simulation is constructed locally [12].

Step 2: Physical model establishment: A mathematical model is constructed to
describe the thermodynamic behavior of the transformer, and various factors affecting
the temperature of the transformer are considered.
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Step 3: Data-driven model training: historical data is used to train the data-driven
model [13]. The data-driven model we used is the PSO-Pyraformer proposed in this
study.

Step 4: Prediction application: The real-time environmental parameters are input into
the digital twin system [14], and the trained model is used to predict the oil temperature.

Fig. 3. Interface of the Digital Twin System.

As shown in Fig. 3, it is the view of the power transformer digital twin system. These
include oil temperature prediction function, key indicator display, etc. The advantages
of the transformer oil temperature prediction digital twin system are as follows:

(1) Real-time monitoring: The digital twin system can obtain the environmental param-
eters of the transformer in real time and make real-time prediction. This helps to
detect potential problems and anomalies in time, and take necessary measures in
advance to prevent equipment failure and downtime [15].

(2) Prediction accuracy: By combining mathematical models and historical data for
training, the digital twin system can provide relatively accurate oil temperature
prediction. It can consider the combined effects of multiple factors, such as load
change, ambient temperature, humidity, etc., thereby increasing the accuracy of
prediction [16].

(3) Cost savings: By predicting transformer oil temperature, the digital twin system
can help optimize equipment maintenance plans and resource allocation. It can
guide maintenance personnel to carry out the necessary maintenance or repair when
needed, reduce unnecessary maintenance costs and downtime, and reduce operating
costs [17].

(4) Risk management: The digital twin system can help identify potential equipment
problems in advance and reduce the risk of sudden failures [18]. By providing
accurate oil temperature prediction, it can help operators to formulate corresponding
preventive measures to reduce the impact of equipment failure on production and
operation [19, 20].
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4 Analytical Study

4.1 Experimental Data

Since the primary forecasting model in this study comes from the long-term series
forecasting model Informer proposed in the article published by (zhou et al., 2021) [21].

Fig. 4. Data curve of data set ETTh1.

Fig. 5. Data curve of data set ETTm1.

The experimental data comes from the oil temperature data sets mentioned in this
paper: ETTh1 and ETTm1. The experimental data comes from two site transformers
from 2016/07 to 2018/07. Among them, ETTh1 is in units of hours, and one piece of oil
temperature data is collected every hour. ETTm1 collects one piece of data every 15 min
[22]. Figures 4 and 5 is an overall view of two datasets showing evident seasonal trends.

4.2 Evaluation Indicators

We choose the most commonly used three evaluation indicators, MSE (Mean Square
Error), RMSE (Root Mean Square Error) and MAE (Mean Absolute Error), to evaluate
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the performance of the prediction model [23]. The smaller these errors are, the better
the performance of the method [24].

MAE =
(

n∑

i=1

∣∣∣Y
∧

i − Yi

∣∣∣

)
/n (8)

MSE =
(

n∑

i=1

(
Y
∧

i − Yi
)2

)
/n (9)

MAE =
(

n∑

i=1

∣∣∣Y
∧

i − Yi
∣∣∣

)
/n (10)

n is the number of samples. Prediction: Y
∧

= {
y
∧

1, y
∧

2, · · · , y
∧

n
}
, True: Y =

{y1, y2, · · · , yn}, MAE,MSE,RMSE ∈ [0,+∞).

4.3 Experimental Results

We evaluated the long-term prediction performance of PSO-Pyraformer on ETTh1 and
ETTm1. It is worth noting that these two data sets contain six power load variables and
oil temperature, which is a multi-variable to univariate time series prediction problem
[25].

We compared it with four common models with better prediction results, including
LSTM, Informer, LongTrans and Pyraformer. These algorithms are more representative
in the field of long-term sequence prediction. The comparison results can not only prove
the prediction advantages of the proposed compared to other algorithms. At the same
time, it can be explained that thePSO improves the prediction accuracy of thePyraformer.

As shown in Table 1, the proposed method outperforms other benchmarks.

4.4 Evaluation of Experimental Results

In order to better demonstrate the superiority of the proposed method, this paper uses
three percentage indicators PMSE(%), PRMSE(%), PMAE(%), corresponding to MSE,
RMSE, andMAE. This evaluation indicator reflects the proposed algorithm’s superiority
over other models.

PMSE% =
∣∣∣∣
MSEBM − MSEPM

MSEBM

∣∣∣∣ × 100% (11)

PRMSE% =
∣∣∣∣
RMSEBM − RMSEPM

RMSEBM

∣∣∣∣ × 100% (12)

PMAE% =
∣∣∣∣
MAEBM − MAEPM

MAEBM

∣∣∣∣ × 100% (13)

where:MSEBM,RMSEBM,MAEBM is the valueof the evaluation indexof the benchmark
method,MSEPM, RMSEPM,MAEPM is the value of the evaluation index of the proposed
method. As shown in the Table 2, compared with LSTM, when l ∈ {168, 336, 720}, the
MSE of Pyraformer on ETTh1 is reduced by 36.96%, 37.42% and 54.54%. Compared
with the best model Pyraformer, MSE also decreased by 5.44%, 5.71% and 12.81%.
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Table 1. Comparison test (The multi-step prediction results on the two datasets are compared,
where ETTh1 is three steps, and the predicted input lengths I are 168,336, and 720, respectively.
The three prediction steps on ETTm1 are 96,288 and 672, respectively. The input length o= l.The
best results are highlighted in bold.).

Data Evaluation Prediction Methods

Metrics LSTM Informer LongTrans Pyraformer Proposed

ETTh1 168 MSE 1.212 1.075 0.983 0.808 0.764

RMSE 1.100 1.036 0.991 0.898 0.874

MAE 0.867 0.801 0.766 0.683 0.667

336 MSE 1.424 1.329 1.100 0.945 0.891

RMSE 1.193 1.152 1.073 0.972 0.943

MAE 0.995 0.911 0.869 0.766 0.735

720 MSE 1.960 1.384 1.411 1.022 0.891

RMSE 1.400 1.176 1.084 1.010 0.943

MAE 1.322 0.950 0.991 0.806 0.755

ETTm1 96 MSE 1.339 0.556 0.554 0.480 0.476

RMSE 1.157 0.745 0.744 0.692 0.689

MAE 0.913 0.537 0.499 0.486 0.478

288 MSE 1.740 0.841 0.786 0.754 0.691

RMSE 1.319 0.917 0.886 0.868 0.831

MAE 1.124 0.705 0.676 0.659 0.615

672 MSE 2.736 0.921 1.169 0.857 0.751

RMSE 1.654 0.959 1.081 0.925 0.866

MAE 1.555 0.753 0.868 0.707 0.647

Table 2. The proposed method optimizes the percentage Compared with other models.

Data Metrics Proposed vs
LSTM

Proposed vs
Informer

Proposed vs.
LongTrans

Proposed vs
Pyraformer

ETTh1 168 PMSE (%) 36.96% 28.93% 22.27% 5.44%

PRMSE (%) 20.54% 15.63% 11.80% 2.67%

PMAE (%) 23.06% 16.72% 12.92% 2.34%

336 PMSE (%) 37.42% 32.95% 19.00% 5.71%

PRMSE (%) 20.95% 18.14% 12.11% 2.98%

PMAE (%) 26.13% 19.31% 15.42% 4.04%

720 PMSE (%) 54.54% 35.62% 36.85% 12.81%

PRMSE (%) 32.64% 19.81% 13.00% 6.63%

(continued)
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Table 2. (continued)

Data Metrics Proposed vs
LSTM

Proposed vs
Informer

Proposed vs.
LongTrans

Proposed vs
Pyraformer

PMAE (%) 42.88% 20.52% 23.81% 6.32%

ETTm1 96 PMSE (%) 64.45% 14.38% 14.07% 0.83%

PRMSE (%) 40.44% 7.51% 7.39% 0.43%

PMAE (%) 47.64% 10.98% 4.20% 1.64%

288 PMSE (%) 60.28% 17.83% 12.08% 8.35%

PRMSE (%) 36.99% 9.37% 6.20% 4.26%

PMAE (%) 45.28% 12.76% 9.02% 6.67%

672 PMSE (%) 72.55% 18.45% 35.75% 12.36%

PRMSE (%) 47.64% 9.69% 19.88% 6.37%

PMAE (%) 58.39% 14.07% 25.46% 8.48%

5 Conclusion

In the study of Pyraformer, the author concludes by mentioning in the future work,
they would like to explore how to adapt to learn the hyper-parameters. Based on this,
this study proposes a PSO-Pyraformer hyper-parameter optimization prediction model.
The prediction model is applied to the digital twin model of power transformer. In
this way, to improve the accuracy of long time series multi-step multi-variable to single
variable prediction and contribute to the intelligentmanagement of the transformer. In the
future, we hope to combine with the previous research, further study the oil temperature
prediction of single variable to single variable with shorter step size, and deeply combine
with the digital twin system to enrich the application.
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Abstract. Fine-grained classification poses greater challenges compared
to basic-level image classification due to the visually similar sub-species.
To distinguish between confusing species, we introduce a novel framework
based on feature channel adaptive enhancement and attention erasure.
On one hand, a lightweight module employing both channel attention and
spatial attention is designed, adaptively enhancing the feature expression
of important areas and obtaining more discriminative feature vectors. On
the other hand, we incorporate attention erasure methods that compel
the network to concentrate on less prominent areas, thereby enhancing
the network’s robustness. Our method can be seamlessly integrated into
various backbone networks. Finally, an evaluation of our approach is con-
ducted across diverse public datasets, accompanied by a comprehensive
comparative analysis against state-of-the-art methodologies. The exper-
imental findings substantiate the efficacy and viability of our method in
real-world scenarios, exemplifying noteworthy breakthroughs in intricate
fine-grained classification endeavors.

Keywords: Fine-grained Visual Classification · Feature Channel
Enhancement · Attention Erasure

1 Introduction

Fine-grained visual classification represents a substantial and intricate chal-
lenge within the realm of computer vision. Unlike traditional object classifi-
cation tasks, fine-grained classification requires precise differentiation among
objects with similar appearances but belonging to different subcategories. This
task holds practical value in various domains such as animal recognition [20],
plant classification [28], and car vehicle recognition [22]. However, As shown
in Fig. 1, fine-grained classification presents a delicate balance between similar-
ity and difference. Objects with similar appearances exhibit subtle local differ-
ences that often encompass crucial features determining their categories. Con-
ventional classification methods struggle to capture these minute differences,
resulting in poor performance. To overcome this challenge, extensive research
has introduced innovative methods and techniques for fine-grained classifica-
tion. Examples include local feature extraction [12,13,30], key part localization
[6,24,36,37,40], metric learning [5,7,32,43], and attention-based mechanisms
[19,26,41]. These approaches aim to extract discriminative features from local or
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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key details, thereby enhancing classification performance by learning subtle dif-
ferences between categories. Despite the progress made in this area, fine-grained
classification still faces several challenges. On one hand, accurate classifiers often
require large amounts of fine-grained data and annotations [2,16,23,38] due to
the nuanced differences among categories. This limits the scope and scalabil-
ity of fine-grained classification methods. On the other hand, traditional fine-
grained classification methods are often sensitive to image changes and noise,
resulting in a decline in classification performance in complex scenes. Therefore,
this paper proposes a comprehensive method named “Channel Feature Adaptive
Enhancement”. Our approach will focus on the extraction of local details and
the learning of discriminative features, while exploring how to reduce intra-class
variability and improve classifier robustness. At the outset, the extraction of
features from both shallow and deep layers is facilitated through the utilization
of a convolutional neural network (CNN). Our designed feature enhancement
mechanism learns to emphasize key detail features, thereby improving classifica-
tion performance. Additionally, an attention mechanism is introduced to high-
light regions with significant fine-grained differences. This combination of feature
augmentation and attention enables us to capture subtle differences more accu-
rately and achieves significant performance gains in fine-grained classification
tasks. Secondly, to address confusion among objects with similar appearances,
we employ attention erasure. This technique erases highly discriminative areas,
reducing intra-class differences, weakening features with high similarity to other
categories, and encouraging the network to learn from previously unattended
areas. This approach enhances classification accuracy and robustness, effectively
reducing the risk of misclassification. In summary, the following constitute the
principal contributions of this work:

1. We propose a feature enhancement module that accurately enhances discrim-
inative regions in images.

2. We improve the channel attention mechanism by doubling the value of chan-
nels greater than the mean value calculated from the feature map after global
average pooling. This assigns higher scores to important channels.

3. We introduce an informative mining module that masks a strong feature and
facilitates the learning of complementary features.

2 Related Work

In the realm of fine-grained visual classification tasks, researchers have intro-
duced various methods to enhance, suppress, and diversify features, aiming to
improve classification performance. We describe several commonly employed
techniques:

2.1 Local Feature Enhancement

Local feature enhancement methods aim to extract crucial local information from
objects to enhance classification performance. For instance, Spatial Transformer
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Fig. 1. In FGVC images, the same subclass exhibits significant appearance variations,
whereas different categories demonstrate subtle appearance disparities.

Networks (STN) [18] uses spatial transformer modules to adaptively learn local
regions of interest of images to improve the representation ability of key local
features. In addition, Part-based Convolutional Neural Networks (PCNN) [29]
divides the image into different parts, and classifies each part independently, and
then combines the classification results of each part.

2.2 Global Feature Enhancement

Global feature augmentation methods concentrate on capturing the overall fea-
ture representation of the entire object. For example, Multi-scale CNNs [35]
employ convolution kernels of varying scales to extract feature representations
at different levels. Additionally, Spatial Pyramid Pooling (SPP) [9] divides the
image into multiple spatial levels and performs pooling operations on the fea-
tures within each level, allowing the capture of global information at different
scales.

2.3 Attention Mechanism

The attention mechanism plays a pivotal role in fine-grained classification by
automatically learning to focus on key regions or features. For instance, Squeeze-
and-Excitation Networks (SENet) [11] employ a gating mechanism to adaptively
adjust the importance of feature channels, thereby enhancing key features that
contribute to classification. Moreover, the attention mechanism can generate
region-specific attention heatmaps, offering interpretable explanations.
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2.4 Feature Suppression

Feature suppression methods aim to reduce noise or irrelevant information that
may interfere with classification tasks. For instance, DropBlock [8] randomly
drops features in specific regions during training to minimize the impact of redun-
dant information on classification. Additionally, Feature Dropout [31]enhances
the model’s learning by randomly discarding feature channels during training,
promoting the exploration of other relevant features.

2.5 Feature Diversification

Feature diversification methods aim to generate multiple features with different
transformations to enhance the robustness of classification models. For example,
Cutout [3] randomly occludes a portion of the image, forcing the model to learn
more resilient feature representations. Furthermore, the utilization of data aug-
mentation techniques, including rotation, scaling, and translation, can facilitate
the generation of a diverse array of features.

By comprehensively employing these methods, the performance of fine-
grained visual classification tasks can be further enhanced, resulting in increased
accuracy and reliability in classification results. However, several challenges, such
as class imbalance, occlusion, and pose variation, remain unresolved and merit
further exploration and resolution in future research.

3 Method

In this section, a comprehensive depiction of the proposed method is presented,
where in Fig. 2 offers an illustrative overview of the framework. Our model con-
sists of two lightweight modules: (1) Feature Channel Adaptive Augmentation
module (FCAE), which focuses on learning multiple discriminative part-specific
representations with maximum diversity. (2) Information Sufficient Mining Mod-
ule (ISMM), which randomly erases highly discriminative components to guide
the network in learning complementary information.

3.1 Feature Channel Adaptive Enhancement Module

The implementation of the FE method is shown in Fig. 3. The feature map
Xi ∈ RC×W×H , derived from the final three layers of the backbone network,
with C, W, H, and i denoting the channel count, width, height, and layer index,
respectively. Drawing inspiration from [30], we adopt a simple approach of taking
the maximum value of each pixel along the channel dimension, resulting in Ai ∈
R1×W×H :

Ai = max (Xi) ∈ R1×W×H (1)

Subsequently, we calculate a score for each pixel. Multiplying Ai by a hyper-
parameter λ and adding it to Xi, we obtain a new feature map Fi:
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Fig. 2. The general framework of our model is composed of two major modules: (1)
The Feature Channel Adaptive Augmentation module (2) The Information Sufficient
Mining Module. (FCAE is comprised of three sub-methods, with the intricate process
of ISMM illustrated in Fig. 4.)

Fi = ((softmax(Ai)) ∗ Xi ∗ λ + Xi) (2)

At this stage, we aim to enhance globally relevant information. To emphasize
discriminative local regions, we employ an attention mechanism inspired by
[34]. The feature map Fi undergoes channel attention enhancement (CE), which
determines the importance of each channel. We perform global average pooling
on all channels and calculate the mean value across all channels.

mean = GAP (CA (Fi)) (3)

If a specific channel’s value exceeds the mean, it is doubled; otherwise, it
remains unchanged. Upon the application of a sigmoid activation function, the
resulting values are subjected to multiplication with Fi:

Fi =
{
2 ∗ Fi, ifFi > mean
Fi, otherwise

(4)

Subsequently, the spatial attention (SA) mechanism is employed to capture
relationships between different positions in the feature map, assigning varying
weights to each position.

Fi = (SA (Fi)) + Fi (5)
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Fig. 3. The feature map Xi, generated by the backbone network, undergoes a process
where the maximum value is extracted from the channel dimension to derive Ai. Sub-
sequently, the score of each pixel value is computed and added to Xi, resulting in the
feature map Fi after global feature enhancement.

3.2 Information Sufficient Mining Module

The implementation of the ISMM method is shown in Fig. 4. In order to further
mine information and utilize attention resources, we take the last layer feature
map of the backbone through the FCAE attention map as the attention activa-
tion map to extract the key information in the feature map. To fuse the features,
we utilize a 1×1 convolution. Subsequently, the attention weight for each group
of feature map channels is calculated, we employ global average pooling to select
the top k sheets (where k is equal to the batch size). Randomly choosing one
image, we apply bilinear interpolation [21] to upsample it to the original image’s
size. Subsequently, the introduction of a random threshold enables the classifi-
cation of pixel values, whereby values below the threshold are identified as 0 and
those surpassing the threshold as 1. Ultimately, an element-wise multiplication
is executed between the acquired mask and the original image, resulting in the
creation of the erased image. By employing attention erasure, we can filter out
important stimuli that have already been learned and focus on less significant
stimuli that may not have been well-learned. By adopting this approach, the
efficiency of information processing is effectively heightened, while concurrently
optimizing the allocation and utilization of attention resources.

3.3 Network Design

Various convolutional neural network structures can readily incorporate our
method. ResNet [10] serves as an example, with its feature extraction process
comprising five stages, where the spatial size of the feature map is halved after
each stage. Given the abundance of semantic information within the deep fea-
ture maps, we opt to insert the Feature Channel Adaptive Enhancement module
(FCAE) at the conclusion of the third, fourth, and fifth stages. Our method is
very flexible and can adapt to classification tasks of different granularities by
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Fig. 4. The attention map is reduced in dimensionality through conv1×1, followed by
global average pooling along the channel dimension. A mask is then randomly selected
and multiplied with the original image.

directly adjusting the number of FCAEs, and can be customized according to
the needs of specific tasks.

4 Experiments

In this section, the performance of the proposed method is evaluated across
three fine-grained classification datasets: Caltech UCSD-Birds (CUB) [20], Stan-
ford Cars (CAR) [22], and FGVC-Aircraft (AIR) [27], with detailed information
provided in Table 1. The implementation details of our method are extensively
discussed in Sect. 4.1, while Sect. 4.2 presents a comparative analysis of our
method’s accuracy performance against state-of-the-art approaches, showcasing
its competitive advantage. Sections 4.3 and 4.4 encompass comprehensive abla-
tion experiments and visualization analyses, aiming to highlight the distinctive
features and efficacy of our method. By presenting both experimental results and
visualizations, a comprehensive understanding of the robustness and efficiency
of our method is provided. Through meticulous evaluations and extensive anal-
yses, the superior performance of our method in fine-grained classification tasks
is conclusively demonstrated.

Table 1. The statistics information of the three widely used Fine-Grained Visual
Categorization datasets.

Dataset Catagory Train Test

CUB-200-2011 [20] 200 5994 5974
FGVC-Aircraft [27] 100 6667 3333
Stanford Cars [22] 196 8144 8041
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4.1 Implementation Details

All experiments were conducted using PyTorch [17], with a version higher than
1.12, on an NVIDIA A100 GPU. The performance evaluation of our method
employed the widely adopted ResNet50 as the backbone network, which had
been pretrained on the ImageNet dataset. The incorporation of the FCAE mod-
ule was performed at the conclusion of phases 3, 4, and 5 in our methodology,
while the integration of the ISMM module occurred at the termination of phase
five. During the training process, the input images were resized to dimensions of
550×550 and subsequently randomly cropped to dimensions of 448×448 to aug-
ment the training set. Furthermore, random horizontal flipping was implemented
as an auxiliary augmentation technique. For testing purposes, the input images
were resized to 550×550 and cropped from the center to dimensions of 448×448.
In our approach, a hyperparameter λ=0.5 was set. To optimize the model, we
utilized the stochastic gradient descent (SGD) optimizer with a momentum of
0.9. The model underwent training for 300 epochs, employing a weight decay of
0.00001 and a batch size of 16. The learning rate of the backbone layer was set
to 0.002, while the learning rate of the new layer was set to 0.02. We adjusted
the learning rate using a cosine annealing scheduler [25].

4.2 Compared with State-of-the-Art Methods

Table 2 showcases a comparative analysis between our method and recent fine-
grained classification approaches across the CUB 2002011, Stanford Cars, and
FGVC-Aircraft datasets. DeepLAC [23] and Part-RCNN [38] are both compo-
nent positioning-based methods. DeepLAC [23] initially employs a convolutional
neural network to extract image features, followed by the introduction of a
local localization module to identify important regions within object images.
Part-RCNN [38] first generates candidate object areas in the image using the
candidate frame generation algorithm. Subsequently, for each candidate box,
the object is decomposed into parts, and features are extracted for each part.
Among the attention-based methods, RA-CNN [6], MA-CNN [40], API-Net [43],
PCA [39], AC-Net [19], and AKEN [14] are noteworthy. RA-CNN [6] incorpo-
rates a circular attention mechanism, allowing the network to dynamically focus
attention on the intricate details crucial for fine-grained classification. MA-CNN
[40] integrates multiple attention modules, each responsible for producing an
attention map for a distinct region of the image, directing the network’s focus
toward regions with higher discriminative properties. API-Net [43] introduces
a pairing interaction mechanism, where selected feature regions undergo pair-
wise interactions with each other. PCA [39] leverages a co-attention mechanism
to learn the association and importance between different regions in an image.
The co-attention network consists of a local feature extraction module and a
progressive attention module. AC-Net [19] employs an attention mechanism to
select and weigh key regions in feature representations. By incorporating a con-
volutional binary neural tree structure, the model sequentially performs fea-
ture selection and learning, progressively focusing on meaningful areas from a
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global to local perspective. AKEN [14] integrates attention mechanisms and
kernel encoding to extract and encode fine-grained features. Attention mech-
anisms select and weigh important features, aiding in distinguishing between
different fine-grained categories. Kernel encoding captures specific feature infor-
mation by encoding selected features. Guided Zoom [1] and S3N [4] fall under
the category of local area amplification methods. Guided Zoom [1] utilizes the
interplay of local area amplification and model feedback to acquire insights into
model decision-making and confidence. This information serves as guidance for
improved decision-making. S3N [4] employs an adaptive sparse sampling strat-
egy to selectively sample local regions within the image. HOI [33] proposes a
high-level interaction method, where the high-level interaction module leverages
associations between different features in the image to enhance and integrate fea-
tures. Specific weights and combinations are learned to reinforce and highlight
features relevant to fine-grained classification tasks. SPS [15] randomly selects
a subset of training samples and exchanges them with other samples, gener-
ating new sample pairs. CIN [7] introduces a channel interaction module that
facilitates interaction and information transfer between channels. This module
utilizes convolution operations and attention mechanisms to enable information
exchange and joint feature learning across channels. LIO [42] utilizes unlabeled
data for self-supervised learning. By designing self-supervised tasks, the model
learns structural information about objects. Each of the above methods pos-
sesses its unique advantages and characteristics. However, our proposed method
exhibits superior performance across the three datasets, which can be attributed
to the exceptional components we have introduced.

Table 2. Comparison results on CUB-200-2011, FGVC-Aircraft and Stanford Cars
datasets. “-” means no data

]Method Backbone CUB-200-2011 FGVC-Aircraft Stanford Cars

DeepLAC [23] VGG 80.3 – –

Part-RCNN [38] VGG 81.6 – –

RA-CNN [6] VGG 85.3 88.1 92.5

MA-CNN [40] VGG 86.5 89.9 92.8

SPS [15] ResNet50 87.3 92.3 94.4

API-Net [43] ResNet50 87.7 93.0 94.8

HOI [33] ResNet50 89.5 92.8 95.3
PCA [39] ResNet50 88.3 92.4 94.3

AC-Net [19] ResNet50 88.1 92.4 94.6

Guided Zoom [1] ResNet50 87.7 90.7 93.0

CIN [7] ResNet50 87.5 92.6 94.1

LIO [42] ResNet50 88.0 92.7 94.5

S3N [4] ResNet50 88.5 92.8 94.7

FBSD [30] ResNet50 89.3 92.7 94.4

AKEN [14] ResNet50 86.2 93.3 92.6

Ours ResNet50 89.6 93.3 95.1
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4.3 Ablation Experiment

A series of ablation experiments were conducted to evaluate the effectiveness of
each module for fine-grained classification. Initially, we conducted classification
experiments using a baseline model that solely comprised the backbone net-
work. Subsequently, we gradually introduced the two modules we designed and
integrated them with the backbone network individually. Finally, we compared
the performance of using a single module versus using both modules simultane-
ously. The experimental results are presented in Table 3. When employing only
the backbone network, the classification accuracy achieved a benchmark level.
Upon introducing the FCAE module, the accuracy improved by 2.7% on the bird
dataset1.8% on the airplane dataset, and 4.4% on the Stanford car dataset. The
introduction of the ISMM module resulted in respective accuracy improvements
of 3%, 1.3%, and 4.8% on the three datasets. Remarkably, the best classifica-
tion results were obtained when both modules were introduced simultaneously,
resulting in an improvement of 4.1%, 3%, and 5.3% compared to the baseline.
Utilizing the combination of both modules yielded the highest accuracy, signifi-
cantly outperforming the usage of a single module.

Table 3. Ablation Study on Three Benchmark Datasets

Method CUB-200-2011 FGVC-Aircraft Stanford Cars

Resnet50 85.5 90.3 89.8
Resnet50+FCAE 88.2 92.1 94.2
Resnet50+ISMM 88.5 91.6 94.6
Resnet50+FCAE+ISMM 89.6 93.3 95.1

4.4 Visualization

To visually showcase the effectiveness of our proposed method, the utilization
of GradCAM is employed. As depicted in Table 4, when compared to the base-
line, a tendency of the baseline to learn global features is observed. In scenar-
ios where the target and background exhibit similarity, the baseline is prone
to capturing background noise. Conversely, our method progressively captures
global information during the initial stages, which encompasses the assimilation
of learned background noise. However, as the network delves deeper into sub-
sequent stages, the learned features become more localized, resulting in precise
and targeted focus on the target. The method exhibits remarkable consistency in
addressing different categories, emphasizing its robustness and reliability in mak-
ing classification decisions. This consistency highlights the network’s sensitivity
to capturing fine-grained features (Fig. 5).
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Fig. 5. Compared with the baseline, our method can better learn the discriminative
local area, and can accurately distinguish the target and the background when the
target is similar to the background.

5 Conclusion

In this study, we propose an approach for fine-grained classification tasks, aim-
ing to improve classification performance by learning feature channel adap-
tive enhancement and information sufficient mining. First, the feature channel
adaptive augmentation module aims to learn different discriminative part rep-
resentations. Then use the information sufficient mining module to filter the
learned important stimuli and focus on the less important stimuli. Our pro-
posed method based on feature channel adaptive augmentation has achieved
remarkable progress in meeting the challenges of fine-grained classification tasks.
By enhancing useful global information, mining key information, and utilizing
attention resources, our method is able to improve classification performance
and adapt to different task demands.

Acknowledgements. This work is partially supported by the Guangxi Science and
Technology Project (2021GXNSFBA220035, AD20159034), the Open Funds from
Guilin University of Electronic Technology, Guangxi Key Laboratory of Image and



196 D. Xie et al.

Graphic Intelligent Processing (GIIP2208) and the National Natural Science Founda-
tion of China (61962014).

References

1. Bargal, S.A., et al.: Guided zoom: zooming into network evidence to refine fine-
grained model decisions. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4196–
4202 (2021)

2. Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization
using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952
(2014)

3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

4. Ding, Y., Zhou, Y., Zhu, Y., Ye, Q., Jiao, J.: Selective sparse sampling for fine-
grained image recognition. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 6599–6608 (2019)

5. Dubey, A., Gupta, O., Guo, P., Raskar, R., Farrell, R., Naik, N.: Pairwise confusion
for fine-grained visual classification. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 70–86 (2018)

6. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convo-
lutional neural network for fine-grained image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446
(2017)

7. Gao, Y., Han, X., Wang, X., Huang, W., Scott, M.: Channel interaction networks
for fine-grained image categorization. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, pp. 10818–10825 (2020)

8. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: a regularization method for convolu-
tional networks. Adv. Neural Inf. Process. Syst. 31 (2018)

9. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

12. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly
supervised data augmentation network for fine-grained visual classification. arXiv
preprint arXiv:1901.09891 (2019)

13. Hu, T., Xu, J., Huang, C., Qi, H., Huang, Q., Lu, Y.: Weakly supervised
bilinear attention network for fine-grained visual classification. arXiv preprint
arXiv:1808.02152 (2018)

14. Hu, Y., Yang, Y., Zhang, J., Cao, X., Zhen, X.: Attentional kernel encoding net-
works for fine-grained visual categorization. IEEE Trans. Circuits Syst. Video Tech-
nol. 31(1), 301–314 (2020)

15. Huang, S., Wang, X., Tao, D.: Stochastic partial swap: enhanced model gener-
alization and interpretability for fine-grained recognition. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 620–629 (2021)

http://arxiv.org/abs/1406.2952
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1901.09891
http://arxiv.org/abs/1808.02152


Feature Channel Adaptive Enhancement 197

16. Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual
categorization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1173–1182 (2016)

17. Imambi, S., Prakash, K.B., Kanagachidambaresan, G.: Pytorch. Programming with
TensorFlow: Solution for Edge Computing Applications, pp. 87–104 (2021)

18. Jaderberg, M., et al.: Spatial transformer networks. Adv. Neural Inf. Process. Syst.
28 (2015)

19. Ji, R., et al.: Attention convolutional binary neural tree for fine-grained visual
categorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10468–10477 (2020)

20. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained
image categorization: stanford dogs. In: Proceedings of the CVPR Workshop on
Fine-Grained Visual Categorization (FGVC), vol. 2. Citeseer (2011)

21. Kirkland, E.J., Kirkland, E.J.: Bilinear interpolation. In: Advanced Computing in
Electron Microscopy, pp. 261–263 (2010)

22. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops, pp. 554–561 (2013)

23. Lin, D., Shen, X., Lu, C., Jia, J.: Deep lac: deep localization, alignment and clas-
sification for fine-grained recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1666–1674 (2015)

24. Liu, C., Xie, H., Zha, Z.J., Ma, L., Yu, L., Zhang, Y.: Filtration and distillation:
enhancing region attention for fine-grained visual categorization. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11555–11562 (2020)

25. Loshchilov, I., Hutter, F.: Sgdr: stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

26. Luo, W., et al.: Cross-x learning for fine-grained visual categorization. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 8242–
8251 (2019)

27. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

28. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, pp. 722–729. IEEE (2008)

29. Ouyang, W., et al.: Deepid-net: object detection with deformable part based convo-
lutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1320–1334
(2016)

30. Song, J., Yang, R.: Feature boosting, suppression, and diversification for fine-
grained visual classification. In: 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE (2021)

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

32. Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for
fine-grained image recognition. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 805–821 (2018)

33. Wang, J., Li, N., Luo, Z., Zhong, Z., Li, S.: High-order-interaction for weakly
supervised fine-grained visual categorization. Neurocomputing 464, 27–36 (2021)

34. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 3–19 (2018)

http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1306.5151


198 D. Xie et al.

35. Yang, S., Ramanan, D.: Multi-scale recognition with dag-CNNs. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 1215–1223 (2015)

36. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for
fine-grained classification. In: Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 420–435 (2018)

37. Zhang, L., Huang, S., Liu, W., Tao, D.: Learning a mixture of granularity-specific
experts for fine-grained categorization. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8331–8340 (2019)

38. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-
grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10590-1_54

39. Zhang, T., Chang, D., Ma, Z., Guo, J.: Progressive co-attention network for fine-
grained visual classification. In: 2021 International Conference on Visual Commu-
nications and Image Processing (VCIP), pp. 1–5. IEEE (2021)

40. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural
network for fine-grained image recognition. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 5209–5217 (2017)

41. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Looking for the devil in the details: learning
trilinear attention sampling network for fine-grained image recognition. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5012–5021 (2019)

42. Zhou, M., Bai, Y., Zhang, W., Zhao, T., Mei, T.: Look-into-object: self-supervised
structure modeling for object recognition. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 11774–11783 (2020)

43. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-
grained classification. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 34, pp. 13130–13137 (2020)

https://doi.org/10.1007/978-3-319-10590-1_54
https://doi.org/10.1007/978-3-319-10590-1_54


Visualizing CNN: An Experimental
Comparative Study

Xinyi Xu(B), Shi Tu, Yunfan Xue, and Lin Chai

School of Automation, Southeast University, Nanjing 210096, China

xuxinyi@seu.edu.cn

Abstract. To intuitively and accurately understand the decision mech-
anism of Convolutional Neural Networks(CNN), CNN visualization, as
an essential part of explainable deep learning, has gradually become a
hot topic in artificial intelligence. There have been many achievements
in CNN visualization research, such as Gradients, Deconvolution, Class
Activation Maps(CAM), etc. But there has been no systematic compar-
ative study on CNN visualization algorithms. The choice of visualiza-
tion algorithm is critical for accurately explaining the decision process of
CNNs. Therefore, an experimental evaluation research on representative
CNN visualization algorithms is conducted in this paper for ResNet50
and VGG16 on Caltech101, ImageNet, and VOC2007. The visualiza-
tion performance is assessed in four aspects: causality, anti-disturbance
capability, usability, and computational complexity, and suggestions for
selecting CNN visualization algorithms are proposed based on the exper-
imental results.

Keywords: Explainable deep learning · CNN visualization ·
Performance metrics · Experimental study

1 Introduction

In recent years, the popularity of artificial intelligence has remained high and
has achieved significant achievements in various fields, such as urban security,
automatic driving, and intelligent healthcare [1,2]. Image recognition based on
deep convolutional neural networks, as the most basic application of artificial
intelligence in machine vision, surpasses traditional machine learning methods
and provides a robust feature extraction backbone network for downstream tasks
such as object detection and segmentation. In image recognition tasks, numerous
models with strong generalization abilities and fast computation speed have
been developed. The most representative networks are AlexNet, VGG, ResNet,
DenseNet, and DarkNet.

To improve performance and tackle more complex scenarios, CNNs often have
stacking depths of dozens of layers, resulting in highly non-linear and complex
models. This leads to difficulties in understanding the decision-making process

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 199–212, 2023.
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and working mechanisms of CNNs, which poses increasing security risks. There-
fore, explainable deep learning has gradually become popular in recent years.

The most intuitive and effective method for uncovering the secrets of CNN is
visualization, which can present CNN’s decisions in the form of saliency maps,
such as Local Interpretable Model-agnostic Explanations(LIME), Randomized
Input Sampling for Explanation(RISE), CAM, GradCAM, etc. The saliency
maps demonstrate the importance of each pixel in the input image.

As a visualization algorithm proposed for explaining the trustworthiness of
CNN’s decisions, its reliability must also be evaluated. From an experimental
perspective, it can be divided into two categories for evaluation: human-oriented
evaluations and machine-oriented metrics. Human-oriented evaluations are sub-
jective judgments, such as designing questionnaires and gathering professional
test group members for testing. However, this method will consume much work-
force, and the interviewees significantly affect the reliability, making it difficult to
standardize and conduct large-scale experiments. On the other hand, machine-
oriented metrics evaluate the visualization algorithm by formulating specific rules
and providing a quantitative or qualitative criterion. Although this evaluation
method is easy to conduct, different approaches have their focuses and cannot
fully cover all the properties that visualization algorithms should possess.

There has been considerable researches on algorithms for visualizing CNNs.
Still, there is a lack of systematic comparative studies and no clear guidelines
for selecting visualization algorithms. Thus, in this study, we selected two rep-
resentative CNNs, ResNet50 [3] and VGG16 [4], and conducted experiments
on 3 mainstream datasets: Caltech101, ImageNet, and VOC2007. We evaluated
the performance of various visualization algorithms in terms of causality, anti-
disturbance capability, usability, and computational complexity. We compared
the performances of different visualization algorithms and provided suggestions
on selecting a suitable visualization algorithm.

The main contributions of this paper are as follows:

• We thoroughly summarize seven representative algorithms of CNN visualiza-
tion;

• We trained the ResNet50 and VGG16 on three datasets: Caltech101, Ima-
geNet, and VOC2007. Then, explanations are made on ResNet50 and VGG16
by using visualization algorithms to be evaluated;

• Evaluate and compare the performance of different visualization algorithms in
terms of causality, anti-disturbance capability, usability, and computational
complexity;

• Based on the comparative experimental results of visualization algorithms,
suggestions are proposed for selecting CNN visualization algorithms.

2 Related Works

There have been some comparative studies on the visualization algorithms of
CNN for image recognition.
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Yang [5] designed a unified evaluation framework to assess the reliability of
visualization algorithms from three aspects: generalizability, fidelity, and per-
suasibility. Yang [6] copied objects in MSCOCO into MiniPlaces to construct
the Benchmarking Attribution Methods(BAM) evaluation dataset and proposed
three complementary metrics, Model Contrast Score(MCS), Input Dependence
Rate(IDR), and Input Independence Rate(IIR). Brunke [7] conducted a compar-
ative study on visual methods for input perturbations, investigating the impact
of neutral baseline images on saliency map generation and performance evalu-
ation. Poppi [8] introduced the concept of Coherency. They used it with Com-
plexity and Average Drop to form the Average DCC(ADCC) assessment met-
ric to perform a comparative study of existing CAM-like algorithms. Samuel
[9] designed three human subject experiments to evaluate mainstream visual-
ization algorithms based on predictability, reliability, and consistency. Li [10]
designed an annotation tool and constructed a rich hierarchy of evaluation
datasets through fine manual annotation. They evaluated visualization algo-
rithms based on accuracy, persuasibility, and class discrimination. Brocki [11]
compared perturbation-based visualization algorithms and analyzed and esti-
mated the artifacts caused by perturbations, aiming to eliminate the impact of
artifacts on perturbation-based visualization algorithms. Wang [12] argued that
the existing evaluation metrics lack rationality and fail to accurately reflect the
quality of effective visualizations. In response to this problem, they proposed the
faithfulness and plausibility criteria to evaluate visualization algorithms better.

Although Kadir [13] summarized the existing evaluation methods for visu-
alization algorithms and proposed two categories, their work lacks a system-
atic comparative experimental study. Li [14] proposed a new metric, Inter-
section between the salient area and the ground truth mask over the Salient
Region(IoSR), combining five existing quantitative metrics to evaluate the qual-
ity of saliency maps, which is most relevant to our work. Although their work
compared multiple metrics, there are no inductive suggestions provided for
researchers when selecting visualization algorithms.

Therefore, this article mainly provides selection guidance from causality, anti-
disturbance capability, usability, and computational complexity through compar-
ative experimental research on visualization algorithms.

3 Visualization Algorithms

Visualization is the most intuitive and effective means of understanding the
decision-making process of CNN. Visualization algorithms can be roughly
divided into three categories: (1) perturbation-based methods, which perturb
the input and observe the changes of the output; (2) backpropagation-based
methods, which propagate gradients, activations, or feature maps back to the
input layer and highlight key regions; (3) model-based methods, which construct
CNNs that are instinctly explainable. Numerous innovative results have been
achieved in each category, and in this section, we will introduce the most com-
monly used visualization algorithms as candidates for comparative experiments.
The visualization results is shown in Fig. 1.
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Fig. 1. The visualization results of Occlusion, Gradients, Integrated Gradients, Decon-
volution, Class Activation Map, GradCAM and ScoreCAM.

Note: In the following description, the input image is denoted as I ∈
R

h×w×chn, h,w, chn representing the height, width, and channels, respectively.
The CNN to be explained is denoted as f : Rh×w×chn → R

N , N representing
classes. c means the class to be observed during the decision process of CNN.

3.1 Occlusion

A fixed-size occluding block is used to cover the image, and the saliency values
of each pixel are obtained by using a sliding window based on the change in
CNN’s prediction [15].

SalOcclusion (I; f, r, φ)c =
∑

p∈P

fc (I) − fc (φ (I; p))
r2

I (p) (1)

r means the size of the window, P is the set of images with sliding masked
areas, φ is the method of occlusion, I (p) is the indicator function with 1 inside
the masked area while 0 outside.

3.2 Gradients

Propagate the gradients of a specific output to the input layer, using them as
sensitivity maps to explain the importance of each input pixel [16].

SalGradients (I; f)c =
∂fc

(
Î
)

∂Î

∣∣∣∣
Î=I

(2)
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3.3 Integrated Gradients

Directly using the gradients can be greatly influenced by noise. Therefore, it
is crucial to consider a smooth transformation from the baseline input to the
original input when calculating the gradients. By accumulating the changes in
gradients during this transformation process, noise can be avoided [17].

SalIG (I; f, Ibase)
c = (I − Ibase) ×

∫ 1

α=0

∂fc
(
Ibase + α ×

(
Î − Ibase

))

∂Î

∣∣∣∣
Î=I

dα

(3)
Ibase is the predefined baseline image.

3.4 Deconvolution

In forward propagation, the location of the maxpooling is recorded as “switches”
[18]. During the backpropagation, the deconvolution result is obtained using
the matrix’s transpose when encountering a convolutional layer. When facing a
maxpooling layer, the position of the maximum value recorded by “switches” is
used to fill in the up-sampling result, and the others are filled with 0.

SalDeconvolution (I; f)c = unpool
(
ReLU

(
KT

l × Al−1

)
, Sl

)
(4)

A is the activation of specific layers, S is the recorded location Switches, l is
the current layer, K is the convolutional kernel.

3.5 Class Activation Maps

By utilizing information such as activation, gradient, and feature maps during
the forward propagation process of the network, saliency maps are obtained by
combining these features and mapping back to the input layer. CAM [19] requires
the last layer of the CNN to be a global average pooling layer, so structural
modification and fine-tuning are required for networks that do not meet this
condition.

SalCAM (I; f)c =
∑

k

αc
k

∑

i,j

Ak (i, j) (5)

αc
k is the weight of k-th filter connected to class c, Ak is the feature map generated

by kth filter.
Due to the inconvenience of modifying network structures in conventional

CAM, gradient-based CAMs, represented by GradCAM [20] and GradCAM++
[21], and gradient-free CAMs, represented by ScoreCAM [22] and AblationCAM
[23], have emerged.
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4 Evaluation Metrics

Quantitative analysis is essential to analyze whether the visualization results
are reasonable. This chapter will introduce four ways to evaluate visualization
algorithms’ performance from causality, anti-disturbance capability, usability,
and computational complexity.

Note: In the following descriptions, the input image is denoted as I. The CNN
to be explained is denoted as f and the visualization algorithm that generates
saliency maps according to the class c will be referred to as Salc.

4.1 Causality

Causality mainly measures the correlation between the important area indicated
by the saliency map and the network’s decision. There are two ways to measure
correlation: one is the intersection area between the salient region and the seman-
tic region, and the other is whether there is a positive correlation between the
salient region and the network’s prediction.

Energy-Based Pointing Game. To measure the causality between salient
regions and semantic targets, Zhang [24] proposed Pointing Game(PG) to deter-
mine whether the maximum value in the saliency map falls within the boundaries
of an object’s bounding box. Wang [22] extended PG by considering the sum of
energy within the object’s bounding box called Energy-based Pointing Game.

Proportion =

∑
(i,j)∈box [Salc (I)]

∑
Salc (I)

(6)

(i, j) ∈ box means the pixels within the bounding box of the target.
The Energy-based Pointing Game aims to investigate whether the distribu-

tion of saliency values is concentrated on the corresponding semantic targets
to verify the causality between the key regions obtained by the visualization
algorithm and the semantic targets.

Deletion/Insertion Game. Petsiuk [25] proposed two evaluation metrics:
Deletion and Insertion. These metrics evaluate the causality between salient
regions and network’s predictions. Deletion Game deletes “cause” in order of
decreasing importance as indicated in the saliency map while Insertion Game
inserts “cause” to a blank image.

IDI
s+1 = DI

(
IDI
s ; Salc (I)

)
(7)

IDI
s means the s iteration of Deletion/Insertion Game. I0 is the raw input

image in deletion game. While in insertion game, I0 stands for the blurred input
image. DI (I; Salc (I)) is the method of deleting or inserting pixels according to
the saliency map.
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During the deletion/insertion process, the curve of the changes in the step-
prediction is recorded. The deletion/insertion score is defined as the area under
the curve (AUC).

Score =
k∑

j=1

fc (Ij) (8)

4.2 Anti-disturbance Capability

ADCC. Poppi [8] defined Maximum Coherency, Minimum Complexity, and
Minimum Confidence Drop. The Coherency metric examines the ability to main-
tain consistency in the salient regions when encountering special disturbance.
Specifically, it compares the saliency maps of an image before and after the per-
turbation. The Complexity metric measures the total of the saliency map using
the L1-Norm. Confidence Drop measures the drop in CNN’s prediction score
when applied to the salient region of an image compared to the original image.
Based on these metrics, they proposed Average DCC(ADCC), denoted as:

ADCC = 3
(

1
Coh (I; c)

+
1

1 − Com (I; c)
+

1
1 − AD (I; c)

)−1

(9)

The Coherency(Coh), Complexity(Com) and Average Confidence Drop(AD)
is defined as:

Coh (I; c) =
Cov (Salc (I � Salc (I)) Salc (I))

σSalc(I�Salc(I))σSalc(I)
(10)

Com (I; c) = ‖Salc (I)‖1 (11)

AD (I; c) =
∑

I∈X fc (I) − fc (I � Salc (I))
n

(12)

Cov indicates the covariance and the σ is the standard deviation. � is the
element-wise multiplication. X represents all the input images and n is the num-
ber of input images.

(In)Fidelity and Sensitivity. Yeh [26] investigated the synchronization ability
of visualization algorithms under random perturbations and their sensitivity to
noise disturbance. They proposed and analyzed two quantitative metrics, namely
the (In)Fidelity and Sensitivity. The definition of (In)Fidelity is the expectation
of the difference between the dot product of the input disturbance and the change
in prediction scores.

InFid = EÎ∼μÎ

[
ÎT Sal

(
Î
)

−
(
f (I) − f

(
I − Î

))2
]

(13)
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Sensitivity is measured by Monte Carlo multiple sampling to evaluate the
maximum change of the visualization algorithm in response to the disturbance
added to the input image.

SensMax = max
‖Î−I‖≤r

∥∥∥Salc
(
f, Î

)
− Salc (f, I)

∥∥∥ (14)

4.3 Usability

A good visualization algorithm requires ease of use and excellent performance
in causality and anti-disturbance capability. Visualization algorithms with good
usability should be very convenient that can be directly applied, without the
need to adjust or retrain.

4.4 Computational Complexity

Suppose a visualization algorithm has high computational complexity and
requires hardware with high performance, its applicability will be limited. There-
fore computational complexity is an essential factor when choosing a CNN visu-
alization algorithm. Computational complexity indicates the degree of computer
resource consumption during the generation of saliency maps. This metric mainly
evaluates the dependence of visualization algorithms on computational resources,
especially the time consumed during generating saliency maps.

5 Experiments

This experiment mainly evaluates the performance of seven visualization algo-
rithms on ResNet50 and VGG16. First, the networks are trained from scratch
on the VOC2007, ImageNet, and Caltech101. The saliency maps obtained from
wrong labels are meaningless. Therefore, this experiment uses all correctly clas-
sified images as the evaluation dataset. The saliency maps of all images in the
evaluation dataset are extracted by the visualization algorithms, and their aver-
age reliability on the evaluation dataset is quantitatively evaluated.

In the Deletion and Insertion experiments, the number of deleted/inserted
points each time is 224 × 4. In Deletion, deleting the element replaces the pixel
value with 0, and in Insertion, the blur method used is Gaussian blur. In the
(In)Fidelity experiment, we randomly select 1000 points in the image and apply
random perturbations of magnitude 0.2, and the results are averaged over 10
trials. In the Sensitivity experiment, the input image is also subjected to random
perturbations of 0.2, and the results are averaged over 10 trials.

The visualization algorithms used in this experiment include Occlusion(Occ),
Deconvolution(DeConv), Gradients(Grad), Integrated Gradients(IG), CAM,
GradCAM(GCAM) and ScoreCAM(SCAM). The sliding window step of Occlu-
sion is 9×9 and window size is 60×60. For CAM, the last layer is replaced with
a global average pooling layer, and the model is finetuned before testing.
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5.1 Causality

Energy-Based Pointing Game. In the Energy-based Pointing Game, all visu-
alization algorithms achieve a high energy level according to our evaluation cri-
teria, as shown in Table 1. CAM-based algorithms outperform other algorithms.

Table 1. Results of Energy-based Pointing Game

Networks Occ DeConv Grad IG CAM GCAM SCAM

ResNet50 0.711 0.616 0.571 0.607 0.676 0.745 0.686

VGG16 0.639 0.503 0.578 0.627 0.736 0.680 0.692

Deletion/Insertion Game. The Deletion and Insertion evaluation results are
shown in Tables 2 and 3. IG achieves the best results on deletion, while Occlu-
sion, DeConv, Gradients, and CAM-like algorithms obtain relatively close scores.
In the Insertion Game, Occlusion achieves the best results, closely followed by
CAM-like algorithms, while DeConv, Gradients, and IG perform the worst. The
evaluation results obtained on different datasets are consistent.

Table 2. Results of Deletion Game

Datasets Networks Occ DeConv Grad IG CAM GCAM SCAM

Caltech101 ResNet50 0.289 0.238 0.272 0.144 0.228 0.228 0.251

VGG16 0.261 0.250 0.226 0.120 0.161 0.265 0.246

ImageNet ResNet50 0.220 0.155 0.149 0.076 0.162 0.162 0.187

VGG16 0.147 0.141 0.097 0.045 0.097 0.146 0.130

VOC2007 ResNet50 0.395 0.389 0.397 0.236 0.440 0.438 0.470

VGG16 0.276 0.320 0.280 0.166 0.341 0.305 0.295

5.2 Anti-disturbance Capability

ADCC. The ADCC evaluation results are presented in Table 4. Among the
CAM-like algorithms, their scores are very close to each other across the three
datasets. GradCAM scores highest on all three datasets, whereas DeConv, Gra-
dients, and IG algorithms generally score lower.
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Table 3. Results of Insertion Game

Datasets Networks Occ DeConv Grad IG CAM GCAM SCAM

Caltech101 ResNet50 0.887 0.484 0.571 0.542 0.880 0.880 0.879

VGG16 0.889 0.473 0.590 0.539 0.757 0.876 0.875

ImageNet ResNet50 0.764 0.392 0.530 0.505 0.761 0.761 0.759

VGG16 0.731 0.314 0.446 0.405 0.632 0.717 0.722

VOC2007 ResNet50 0.836 0.556 0.586 0.640 0.823 0.822 0.808

VGG16 0.829 0.466 0.555 0.576 0.825 0.834 0.803

Table 4. Results of ADCC

Datasets Networks Occ DeConv Grad IG CAM GCAM SCAM

Caltech101 ResNet50 0.747 0.052 0.123 0.057 0.798 0.801 0.792

VGG16 0.771 0.050 0.148 0.061 0.839 0.803 0.837

ImageNet ResNet50 0.673 0.008 0.067 0.011 0.798 0.799 0.786

VGG16 0.766 0.008 0.056 0.014 0.809 0.802 0.853

VOC2007 ResNet50 0.798 0.267 0.347 0.164 0.768 0.822 0.793

VGG16 0.809 0.166 0.350 0.193 0.822 0.859 0.875

(In)Fidelity and Sensitivity. The evaluation results of (In)Fidelity and Sen-
sitivity are presented in Tables 5 and 6, respectively. In terms of (In)Fidelity
evaluation, all algorithms except for IG achieve relatively low levels. IG demon-
strates much lower level of infidelity than other algorithms across three datasets.
CAM-like algorithms still perform well, while Occlusion, DeConv, and Gradients
slightly underperform compared to CAM-like algorithms under the current eval-
uation criteria. In terms of Sensitivity evaluation, all CAM-like visualization
algorithms achieve low levels, while the maximum sensitivity of other methods
is higher than that of CAM-like methods. Gradients and IG show the worst
performance in terms of maximum sensitivity.

Table 5. Results of (In)Fidelity

Datasets Networks Occ DeConv Grad IG CAM GCAM SCAM

Caltech101 ResNet50 0.725 1.474 0.544 3.212 0.541 0.554 0.567

VGG16 1.631 3.614 1.427 10.705 0.417 1.443 1.304

ImageNet ResNet50 0.836 1.257 0.742 4.821 0.746 0.748 0.731

VGG16 1.636 2.562 1.633 10.871 0.910 1.542 1.640

VOC2007 ResNet50 0.059 0.070 0.062 0.312 0.051 0.054 0.059

VGG16 0.168 0.239 0.171 0.927 0.046 0.163 0.179
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Table 6. Results of Max Sensitivity

Datasets Networks Occ DeConv Grad IG CAM GCAM SCAM

Caltech101 ResNet50 0.926 0.944 1.107 1.447 0.362 0.385 0.401

VGG16 0.805 1.148 0.938 1.367 0.492 0.602 0.631

ImageNet ResNet50 0.806 0.918 0.996 1.374 0.300 0.304 0.380

VGG16 0.614 1.051 0.964 1.356 0.400 0.536 0.438

VOC2007 ResNet50 0.644 0.870 1.022 1.396 0.369 0.469 0.308

VGG16 0.635 1.041 0.977 1.333 0.393 0.602 0.481

5.3 Usability

Among all algorithms, CAM requires adjusting the network structure and
retraining if the CNN is not ended with a global average pooling layer. So its
usability is the worst. Deconvolution only supports the CNN with maxpool-
ing layer. So the usability of Deconvolution is limited. Other algorithms can be
directly applied, so their usability is better.

5.4 Computational Complexity

The computational complexity results are presented in Table 7.

Table 7. Results of Computational Complexity (ms)

Networks Occ DeConv Grad IG CAM GCAM SCAM

ResNet50 1767.13 652.73 11.12 362.31 6.38 10.37 2363.45

VGG16 1470.74 12.67 3.82 434.86 3.37 4.94 908.15

6 Discussion

6.1 Causality

The Energy-based Pointing Game focuses more on the consistency between
salient regions and semantic object regions, that is, the key factor that leads
to the current judgment made by CNN should be consistent with human judg-
ment. In the experimental results, the CAM-like visualization algorithms achieve
good results due to its weakly localization ability for semantic targets. The fea-
ture maps generated by Gradients and DeConv are more dispersed and cannot
be concentrated in the semantic target area, so they cannot achieve high scores.

The Deletion/Insertion Game focuses on measuring the consistency between
salient regions and network outputs, whether salient regions are the main fac-
tor for high scores in the network’s output for that class. From the results of
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Deletion, IG is in the lead, while the evaluation results of other algorithms are
at about the same level. Since IG is derived from the gradient integration from
the baseline image to the input image, its ability to capture key regions that
affect the network score is stronger, so it scores higher. Analyzing the data of
the Insertion Game, due to the presence of Gaussian blurred background, it
provides background information, so when inserting salient regions, the perfor-
mances of Occlusion and CAM-like algorithms are better than other methods.

Therefore, in terms of causality, CAM-like methods and Occlusion are more
capable of capturing the regions that affect the critical decisions of the network.

6.2 Anti-disturbance Capability

ADCC measures the anti-disturbance capability of visualization algorithms by
disturbing non-target region. Algorithms with weakly localization ability have
an advantage on ADCC: the semantic object region is the key factor affecting
the network’s decision. Therefore, after smoothing the non-salient regions, the
semantic target remains intact, resulting in high scores on both the Coherency
and AverageDrop metrics for consistency. Other algorithms have low Coherency
and AverageDrop scores due to the diffusion of saliency images, resulting in
discrete image regions.

The (In)Fidelity focuses on the degree of synchronization between the change
in the saliency map and the change in network output when perturbing input
images. Occlusion, DeConv, Gradients, and CAM-like algorithms have good anti-
disturbance capability, while for IG, the core of IG is to integrate the gradient
between the baseline image and the target image to generate a saliency map that
satisfies invariance. Therefore, in this metric, the bad performance of (In)fidelity
is mainly due to the smoothing of the uncertainty caused by noise during the
integration process.

In the Maximum Sensitivity, all CAM-like visualization methods perform
well. DeConv, on the other hand, flips the network, causing significant changes
in the network feature layer response when perturbations are applied to the
input, resulting in a larger maximum sensitivity due to the cumulative effect of
layer-by-layer influence.

Overall, in terms of anti-disturbance capability, more focused saliency map
will achieve better results. Therefore, CAM-like algorithms are superior to other
visualization algorithms.

6.3 Usability

Regarding usability, CAM has unique requirements for the network’s structure.
Although CAM scores well in other metrics, it cannot be ignored that it performs
poorly in usability. DeConv can only record the maxpooling layer, so the usability
is limited. Other algorithms can be directly applied and have better performance
in usability.
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6.4 Computational Complexity

From the computational complexity perspective, CAM only needs to perform
corresponding multiplication on the last layer feature map and upsample it to
the input layer, so it takes the shortest time. Next are Gradients, GradCAM and
DeConv, which require backpropagation of gradients or activation. Visualization
algorithms that require iterative solutions need to take the longest time.

7 Conclusion

As the simplest and most intuitive means of uncovering the “black box” secrets of
CNN in image recognition, there have been many related studies on visualization
algorithms. However, the selection of visualization algorithms is still a difficult
problem. This article evaluates seven mainstream visualization algorithms on
ResNet50 and VGG from four aspects: causality, anti-disturbance capability,
usability, and computational complexity. From the evaluation experiments on
three datasets, Caltech101, ImageNet, and VOC2007, weakly localization ability
is a basic attribute that visualization algorithms need to possess, so visualization
algorithms represented by CAM perform well in causality and anti-disturbance
capability metrics. In addition, usability and computational complexity are also
important factors to consider when choosing visualization algorithms.
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Abstract. Deep learning for medical image classification has enjoyed increased
attention. However, a bottleneck that prevents it from widespread adoption is its
dependency on very large, annotated datasets, a condition that cannot always be
satisfied. Few-shot learning in the medical domain is still in its infancy but has the
potential to overcome these challenges. Compression is a way for models to be
deployed on resource-constrained machines. In an attempt to tackle some of the
challenges imposed by limited data and high computational resources, we present
a few-shot sparse-quantization aware meta-training framework (FS-SQAM). The
proposed framework aims to exploit the role of sparsity and quantization for
improved adaptability in a low-resource cross-domain setting for the classifica-
tion of acute lymphocytic leukemia (ALL) in blood cell images. Combining these
strategies enables us to approach two of themost common problems that encounter
deep learning for medical images: the need for extremely large datasets and high
computational resources. Extensive experiments have been conducted to evaluate
the performance of the proposed framework on the ALL-IDB2 dataset in a cross-
domain few-shot setting. Performance gains in terms of accuracy and compression
have been demonstrated, thus serving to realize the suitability of meta-learning
on resource-constrained devices. Future advancements in the domain of efficient
deep learning computer-aided diagnosis systems will facilitate their adoption in
clinical medicine.

Keywords: Few-Shot Learning · Medical Image Analysis · Compression

1 Introduction

The problem of restricted availability of labeled medical data remains a hindrance for
conventional deep learning methods as they are dependent on a high volume of data.
Conventionally, there are common challenges that plague deep learning for medical
applications [1], one is the dataset size, with medical datasets being in the order of
hundreds or thousands of samples [2]. Second, is the class imbalance problem of rarer
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diseases, where some diseases manifest more rarely in a population which is reflected
in classes with much fewer samples [3]. Overcoming the data problem in medical appli-
cations allows for better diagnostic accuracy and potentially improves pathologists’
accuracy [4].

Few-shot learning (FSL) as a concept has been developed to overcome these hurdles
by imitating how humans can learn from a few examples. Likewise, when applied to
scarce medical datasets, few-shot learning seeks to learn from just a few samples. A
more general term, meta-learning, is an approach conventionally described as learning
to learn, that aims to generalize to new tasks that are different from the originally trained
tasks. Learning to learn from a few examples is a powerful technique that is heavily
investigated by the research community. Few-shot meta-learning methods are suited
for applications where encountering novel classes with limited samples is a common
occurrence as with the case in the field of cancer diagnostics.

Deep learning has been used extensively in various medical image applications such
as the detection of abnormalities [5] and segmentation of areas of interest [6], encouraged
by the advent of high-quality images and the increase in computational resources. As
a result, numerous computer-aided diagnosis (CAD) systems are dependent on deep
learning [7].

Encouraged by the efforts in deep learning and few-shot learning healthcare targeted
applications, we investigate the role of sparsity and quantization in meta-training in a
limited resource medical cross-domain setting. In this work, we exploit sparsity and
quantization for the purpose of detecting the presence of blast cells in blood cell images
through training on the task of detecting malignant tumors in breast histopathological
images.

Our main contributions in this work are as follows:

• We present FS-SQAM, a joint sparse-quantization aware meta-training scheme for
the purpose of lymphoblast detection in blood smear images in a cross-domain setting
with limited data and computational resources.

• We conduct experiments to assess the influence of sparsity and quantization and the
impact of regularization on the performance and efficiency of lymphoblast detection
to assist in leukemia diagnosis in a low-resource setting. We observe that the results
demonstrate that FS-SQAM allows for strong generalization on the ALL-IDB2 [8]
dataset in addition to the gains on the memory footprint reduction front.

• We hope the presented work can encourage more research into approaches that are
well-suited for use in challenging clinical environmentswhere both the computational
resources and data are limited.

2 Related Works

In this section we start by focusing on previous works that target lymphoblast detection,
and then we mention examples in the literature that have utilized FSL for medical appli-
cations. We end this section by mentioning some of the influential research directions in
efficient few-shot learning and relevant works that examine medical cross-domain FSL.

Acute lymphoblastic leukemia or ALL is a cancer of blood cells and the most com-
mon childhood cancer. Early diagnosis is crucial as the disease is characterized by rapid
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progression. One of the ways to diagnose ALL is through blood testing which requires
manual examination by a pathologist. In order to expedite the diagnosis process, many
works have proposed approaches for the detection of target cells in microscopic blood
smear images that could be incorporated into CAD systems. The literature on ALL
detection mainly employs deep learning with transfer learning [9–11] being a dominant
approach as training from scratch prerequires the availability of a large dataset. Whilst
most studies using deep learning achieve a performance of >95% diagnostic accuracy,
efficient resource utilization that targets resource-constrained devices is not taken into
account by the majority.

Few-shot learning aims to learn new classes froma few examples,making it a suitable
approach for data limited settings,which is the case inmostmedical applications,making
it a method with immense potential benefits for medical classification problems. Metric-
learning is a class of FSL approaches where classification is dependent on a learning
similaritymetric that is capable of discerning similar instances. Among the approaches in
this class are Prototypical networks [12],Matching networks [13], andRelation networks
[14].While still a nascent approach, few-shot learninghas beengaining interest in the past
few years with works applying it to various medical datasets such as histopathological
[15], X-rays [16], and cell [17] image datasets among others. A specific subset in few-
shot learning problems is cross-domain few-shot learning [18] where the classes used
in training and testing are drawn from different domains.

In cross-domain few-shot learning, extreme shifts in the source and target domains
are detrimental to performance and provide a challenging problem to overcome. This
becomes even more important in medical images, where the data on some diseases
are rarer than others, which enables learning for these understudied categories. It has
been suggested in [19] that an updatable feature extractor leads to better generalization
ability on hard few-shot tasks, as the model can modify its parameters to better suit the
task through fine-tuning on the support set. This improves upon using a frozen feature
extractor that relies solely on distance calculations to classify.

Compression for neural networks has been studied extensively with the goal of
achieving models suitable for devices with limited resources, pruning, and quantiza-
tion being popular methods. Their combination has been experimented with in general
computer vision tasks [20]. For example in [21], the authors devise a quantized sparse
training regime that leverages a combined pruning-quantization function that determines
the optimal pruning and quantization parameters for each layer.

Further investigation is required to understand how compression techniques can be
effectively integrated with few-shot meta-learning, especially in the context of medical
applications where models need to generalize quickly and operate within computational
constraints.Meta-learning can bememory intensive as reported in [22] due to the require-
ment of loading the support images to memory in order to obtain a task adapted model.
To counteract this effect, the authors devised a training scheme by restricting backprop-
agation to only a random subset from the support set, making this approach friendly to
computationally limited devices. Previous works [23, 24] utilized quantization-aware
training (QAT) as a way to quantize the weights of the feature extractor and incorpo-
rated both quantization loss and classification loss calculated on the query set. Similarly,
incorporating iterative pruning into meta-learning has been attempted in [25] for the
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purpose of limiting meta-overfitting through pruning the least significant weights and
then fine-tuning via a meta algorithm. Another consequence of sparsifying the model
is the reduced number of parameters. Thus, if the model allows updates to the feature
extractor, this will lead to a task-adapted model with compressed weights.

Since the literature on applying FSL to ALL detection is scarce, we mention a few
works that apply cross-domain FSL approaches on histopathological datasets, a related
cancer detection task. Examining FSLon histopathological datasets reveals that accuracy
ranges from 36.4± 0.51% to 70.0± 0.49% for out-domain CRC-TP (colorectal tissues)
[26] → BreakHis [27] (breast tissues) classification with an average accuracy of 60% as
demonstrated by [28]. The authors stipulate that this is a good starting performance for
out-domain settings. Another approach proposed in [29] investigates contrastive learning
in various cross-domain scenarios. The approach achieves an accuracy of 67.56% in the
out-domain setting (NCT-CRC → PAIP) where the source dataset is NCT-CRC-HE-
100K (colorectal tissues) [30] and the target dataset is PAIP (liver tissues) [31].

It is well established that deep learning, especially transfer learning, performswell on
medical datasets including ALL datasets, however, little work has been done on the topic
resource efficient few-shot learning for ALL images and how sparsity and quantization
impact meta-learning in general.

3 Methodology

This section describes the methodology adopted in the proposed FS-SQAM framework.
The goals of this approach are two-fold: 1) Produce a lightweight model. 2) Equipping
the classifier with better generalization ability in a medical cross-domain setting with
reasonable performance on a novel dataset with disjoint classes belonging to the medical
domain. We test FS-SQAM on the following cross-domain setting BreakHis → ALL-
IDB2, which belongs to the domain of histopathological images (breast tissue) and
blood cell (blood smear) images respectively. Even though the domain gap between the
training dataset and the test dataset adds to the problem’s difficulty, it presents a realistic
scenario where uncommon diseases that manifest less frequently in a population may
be encountered by medical practitioners. The described setting can be considered an
extreme cross-domain scenario (out-domain) given the great domain shift between these
two domains.

The stages underlying the framework are as follows: 1) the pre-trained model
undergoes sparse-aware meta-training and then quantization-aware meta-training on the
BreakHis dataset. 2) Afterwards, the model is evaluated on test tasks sampled from the
ALL-IDB2 dataset to assess the compressed classifier’s performance as shown in Fig. 1.
To achieve the goal of strong generalization, that is generalization on classes foreign to
the training dataset, we used a network capable of fine-tuning on the sampled support
sets in order to allow for adaptation for out-domain tasks.

In brief, our framework utilizes an updatable Prototypical based model [12] that
undergoes sparse-aware meta-training, and quantization-aware meta-training for blast
cell detection we extend the proposal in [19] to achieve an efficient flexible classifier
for this task. Although this approach incurs additional training overhead compared to
the simpler methods such as one-shot pruning and post-training quantization, it offers
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Fig. 1. Training and testing scheme of FS-SQAM, support, and query sets are sampled from
BreakHis in themeta-training phase andALL-IDB2 in themeta-testing phase. In themeta-training
stage, the model undergoes 1) sparse training (through L1 regularization) 2) pruning (part of
sparse-aware meta-training 3) quantization-aware meta-training. The support and query samples
are projected to the embedded space in order for the query samples be classified.

the significant benefit of preserving accuracy. This is particularly important in medical
applications where diagnostic accuracy is crucial.

3.1 Prototypical Networks

Given a situation where there is a training dataset that has a set of classes Ctrain and
a set of test classes Ctest , where Ctrain and Ctest are disjoint. The goal is to produce
a model fθ capable of adapting to and classifying examples belonging to Ctest from
just a few labeled examples [32]. Episodic learning has been proposed as a way to
simulate conditions at test time by sampling examples from the larger training dataset.
The episodes are constructed by sampling K-shots from each of the N classes. The K
examples are form a support set S = {(x1, y1), ..., (yK , yK )}Ni=1, alongside a query set
Q of different examples from those sampled in the support set, drawn from the same
N classes. This setup is referred to as K-shot N -way episode. The model adapts to the
support set and the performance is evaluated on the query set with the goal of minimizing
loss. Repeating this process on multiple episodes augments the model with the ability to
generalize to the examples in the query set. In the literature, the episodic learning setup
is termed meta-learning.
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Prototypical networks [12] depend on creating a prototype for each class and clas-
sifying an instance based on nearness to a class’s prototype. The loss function of the
training episode of a prototypical network is the cross-entropy loss function but applied
to the query set examples, where T is the number of examples in the query set, y is the
true class label and x is the query sample to be classified to the closest prototype Pc of
class c. The prototype of a class Pc is the mean of the support set embeddings calculated
as 1

N

∑N
i=1 fθ (xi)where fθ is the model that extracts the embeddings of S andQ. A query

point is classified by comparing its distance to every class’s prototype in the embedding
space. The loss can be written as:

LCE = − 1

T

∑

i
logp(yi|xi, {pc}) (1)

Cross-Domain Learning. Violates the assumption that the meta-training and meta-
testing tasks T are drawn from the same distribution where it becomes Ptrain(T ) �=
Ptest(T ). Hence, in order to account for the novel domain information through transfer
learning. The model fθ is fine-tuned on the classes of interest, specifically, the last k
layers are fine-tuned on the target classes. This is in accordance with the idea proposed
in [19] that an updatable metric feature extractor is better suited for adapting to unseen
classes at test time.

3.2 Sparse-Aware Meta-training

The proposed framework FS-SQAM employs two compression methods, pruning, and
quantization where their combination has been utilized in various computer vision tasks
to produce an ultra-resource efficientmodel. In this section,we detail the specific pruning
and quantization methods that are incorporated into the framework.

The first compression technique introduced is iterative pruning to enforce sparsity in
the network in the sparse-aware meta-training phase through unstructured magnitude-
based pruning. Pruning is preceded by sparse training through introducing regularization.
Pruning depends on the hypothesis that within overparameterized networks there exists a
sparser subnetwork, referred to as awinning ticket [33], that canmatch the accuracy of the
original with the added benefits of fewer parameters and reduced size.We incorporate the
L1 regularization into the training to drive the weightsw to zero through the penalization
of the absolute sum of weights as indicated by the following loss function of a model fθ
with parameters θ :
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L
(
y, y

∧) = 1

N

N∑

i=1

L(yi, fθ (xi)) = LCE + λ
∑N

i=1
|wi| (2)

where y refers to the ground-truth and y
∧

is the predicted label. The regularization penalty
term consists of the λ hyperparameter and the L1-norm. We conduct experiments by
applying FS-SQAM on a pre-trained VGG19 network with the following values for
λ, where λ = {0.001, 0.005, 0.01}. The network is pruned iteratively with the goal
of progressively revealing a subnetwork that can achieve comparable accuracy as the
unprunedversion. Iterative pruning is the preferred approachwhen accuracy is prioritized
as training the network and then subsequently applying one-shot pruning can be harmful
to accuracy.

3.3 Quantization-Aware Meta-training

In FS-SQAM, during the quantization-aware meta-training phase, we opt for QAT [34]
to reduce the precision from 32-bit floating point to 8-bit integers. QAT relies on com-
pensating for quantization error in the training. Given the input x and the corresponding
labels y of a model fθ and a quantization function q, the quantized value of x in the for-
ward pass becomes xq = min

(
qmax,max

(
qmin,

x
s + z

))
which maps each input weight

to an integer. qmin And qmax stand for the minimum and maximum values for the 8-
bit range, s and z represent the scaling factor for the described quantization range and
the zero-point respectively. Then dequantization happens through x

∧ = (
xq − z

)
s which

maps the quantized input xq back to floating-point. However, this operation xq → x
∧

,
yields x

∧

which is not exactly equal to the original input x, thus inducing quantization
noise which is taken into account in the training. Re-training is required to recover accu-
racy degradation from quantization. The previously mentioned phases are detailed in
Fig. 1.

The applied quantization loss, where q is the quantization operation, for the model
can be described as:

L
[
y, fθ (x, q(θ))

]
(3)

Incorporating quantization loss into the training yields the following objective
function to be minimized:

min
θ
L
(
y, y

∧) + L
[
y, fθ (x, q(θ))

]
(4)

The workflow of FS-SQAM is listed in Algorithm 1, starting with sparsification
through L1 regularization then is proceeded by pruning and applying quantization
through QAT.
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4 Experimental Setup

Our initial model is an ImageNet pre-trained VGG19 network. The model undergoes
compression as previously detailed. The first 3 convolutional blocks of the network are
frozen during the sparse training and quantization-aware meta-training phases.

The meta-train dataset is the 40× magnification segment from the BreakHis [27]
dataset which is where the training tasks are sampled from. The few-shot training tasks
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are 8-way 10-shots for each episode and the model is trained for 150 epochs where they
are divided equally between the sparse training, sparse-aware, and quantization-aware
meta-training phases. The model is evaluated on test episodes sampled from the ALL
[8] dataset, specifically the ALL-IDB2 segment of the dataset.

4.1 Datasets

The first dataset used is BreakHis [27], which is a dataset of histological images of
breast tumors. The dataset has eight classes, where the images of interest are the 40×
magnification images which total 1,995 samples. The following table shows the number
of images in each of the eight classes (Table 1).

Table 1. The Eight Classes of the BreakHis Dataset.

Classes Magnification Factor Total

40× 100× 200× 400×
Adenosis (A) 114 113 111 106 444

Fibroadenoma (F) 253 260 264 237 1014

Tubular Adenona (TA) 109 121 108 115 453

Phyllodes Tumor (PT) 149 150 140 130 569

Ductal Carcinoma (DC) 864 903 896 788 3451

Lobular Carcinoma (LC) 156 170 163 137 626

Mucinous Carcinoma (MC) 205 222 196 169 792

Papillary Carcinoma (PC) 145 142 135 138 500

Total 1995 2081 2013 1820 7909

The second dataset included is the ALL-IDB2 [8] dataset, which is a binary dataset
consisting of images of blood smears. The image could either be normal or abnormal,
reflecting the presence of normal or abnormal blast cells. The dataset is balanced with an
equal number of normal and abnormal images, which sums up to a total of 260 images.

5 Results

We present the results of meta-training a prototypical network using FS-SQAM on the
BreakHis dataset that is tested on the ALL-IDB2 dataset using a VGG19 backbone. The
results of the model’s performance are the mean accuracy of three test runs, where each
result is the average performance of the classifier across the test tasks. The number of
test tasks is set to 600 with the query set size set to four samples for both the training
and testing. Experiments were repeated for sparsities of 50%, 70%, and 90% which are
shown in Table 2. Results are reported for the use of pruning alone or followed by 8-bit
quantization-aware training. The resulting sizes are also reported to provide a view of
the accuracy-size tradeoffs for better assessment in Table 3. All of the reported sizes are
of.tflite [35] files in MBs.



222 D. Aboutahoun et al.

The baseline result without any use of compression is 82.22% accuracy. It is observ-
able that QAT slightly improves the accuracy of the 50% and 70% pruned networks. This
leads to an accuracy of 77.95% at 70% sparsity and 8-bit quantizedweights.With regards
to the obtained compression, the network size is 19.60 MB which is a compression of
3.90× compared to the baseline.

Table 2. Meta-test accuracy for FS-SQAM on ALL-IDB2 dataset using VGG19 network for
2-way 10-shot classification (without regularization).

Sparsity

0% 50% 70% 90%

Pruning (Baseline) 0.8222 0.7813 0.7769 0.7485

With QAT 0.8127 0.7888 0.7795 0.7291

Table 3. Model sizes of VGG19 after FS-SQAM in MBs.

Sparsity

0% 50% 70% 90%

Sparse-Aware Meta-Training 76.41 55.84 33.60 11.34

FS-SQAM 29.28 32.39 19.60 6.79

Table 4. Meta-test accuracy for FS-SQAMwith L1 regularization applied with varying values of
λ on ALL-IDB2 dataset using VGG19 network for 2-way 10-shot classification.

Sparsity

50% 70% 90%

λ = 0.001

Sparse-Aware Meta-Training 0.7875 0.7743 0.7552

FS-SQAM 0.7864 0.7851 0.7251

λ = 0.005

Sparse-Aware Meta-Training 0.7874 0.7867 0.7457

FS-SQAM 0.7898 0.7817 0.7335

λ = 0.01

Sparse-Aware Meta-Training 0.7930 0.7826 0.7474

FS-SQAM 0.7908 0.7822 0.7338

Table 4 shows the results of using sparse-aware meta-training on its own and FS-
SQAM with L1 regularization applied using λ = {0.001, 0.005, 0.01} for the sparsity
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ratios 50%, 70%, and 90%. It is worth noting that applying regularization improves the
accuracy at some sparsities compared to not applying regularization. Notably at 50%
sparsity, accuracy when λ = 0.005 and λ = 0.01 is 78.98% and 79.08% respectively,
compared to 78.88% with no regularization applied with a compression ratio of 2.35×.
Additionally in the FS-SQAM configuration, we find that λ = 0.01 yields the highest
accuracy in this category for 50%and 70%sparsity ratios,which are 79.08%and 78.22%.

While the role of pruning and quantization remains largely unexplored in the con-
text of few-shot learning, pruning has been used to prevent overfitting in meta-learning
[36, 37]. The generalization ability of the classifier can be attributed to overcoming the
over-parameterization in the network. Over-parameterization has the effect of hurting the
generalization ability of the network to unseen examples in normal supervised learning
[38]. Thus, expanding this concept to few-shot learning, it is possible to boost general-
ization to unseen classes through sparsification which also provides the added benefit of
compression.

To enhance the compression of the model, QAT has been deemed a method that
incurs minimal accuracy loss. Thus, the FS-SQAM framework provides an adaptable
classifier that can achieve a fair accuracy-to-size trade-off in a cross-domain setting.
Resource-wise, 90% sparsity in FS-SQAM provides an accuracy of 73.38% alongside
resulting in the highest compressed model with a compression rate of 11.25×.

To provide context for the obtained results, we present some of the results from
related works that address few-shot learning for medical datasets, specifically those that
involve a significant domain shift in the following table to demonstrate the efficacy of
FS-SQAM for lymphoblast detection in an out-domain setting (Table 5).

Table 5. Performance comparison with related works in out-domain setting.

Reference Accuracy (%) Out-Domain Setting

[28] 68.1 ± 0.51 CRC-TP → BreakHis

[29] 67.56 NCT → PAIP

[17] 55.12 ± 0.13 mini-ImageNet → HEp-2

50% FS-SQAM 79.08 BreakHis → ALL-IDB2

6 Conclusion

Rationing resources is important for real-life clinical scenarios where only restricted
computational resources and scarce data are available. We empirically test our frame-
work FS-SQAMwhich combines sparse-aware training and quantization-aware training
in the meta-training process for efficient lymphoblast detection. The obtained results
point to the possibility of applying resource-efficient few-shot learning in cross-domain
medical settings. The utilization of compression in the meta-training process achieves
the goal of minimizing the memory footprint and enabling adaptation to unseen classes
which matches the reality of encountering uncommon classes of diseases with very few
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samples in clinical practice.We empirically investigate the effectiveness of FS-SQAM in
BreakHis→ALL-IDB2 cross-domain setting, an extreme case of distribution shift, with
a focus on resulting accuracy-size trade-offs. The application of sparse-aware training
and quantization-aware training enhances performance and reduces the memory foot-
print. Additionally, the application of L1 regularization as a preprocess before pruning
yields notable sparse model performance increases at most λ values, especially at 50%
sparsity. To further examine the generalizability of the framework, more evaluations
need to be undertaken on other medical datasets and domains, we leave this as future
work.
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Abstract. The threat posed by the increasing means of face forgery
and the lowering of the threshold of use is increasing. Although the
detection capability of current detection models is improving, most of
them need to consume large computational resources and have complex
model architectures. Therefore, in this paper, we propose a new deep
learning detection framework MARepVGG, which uses RepVGG as the
backbone, combines texture enhancement module and multi-attention
module to strengthen the network to learn face forgery features through
the idea of heavy parameterization to balance training performance and
inference speed. We evaluate our method on the kaggle real and fake
face detection dataset, which differs from the computer automatically
generated images, where the fake faces are high quality images produced
by Photoshop experts. Our method improves the accuracy by 14% on
this dataset compared to a baseline of forgery detection by repvgg alone,
while the number of parameters is only 8.75 M.

Keywords: Facefake Detection · REPVGG · Multi-attention ·
Texture Enhancement

1 Introduction

With the continuous development of technologies such as computer graphics,
deep learning and artificial intelligence, face forgery technology has made great
progress. As researchers have developed GAN models that can automatically
generate highly realistic face images, face images generated by AI can escape
recognition by the naked eye, and it is no longer difficult to accurately forge the
victim’s face, which poses a huge security risk to society when people can easily
forge faces, and face forgery technology will most likely become an accomplice
to illegal crimes. Therefore, the research on face forgery detection technology is
becoming more and more important. In recent years, deep learning-based detec-
tion technology has reached a high level, and many transformer-based deepfake
detection models [1] can achieve an accuracy rate of more than 90%.

However, as the accuracy rate increases, the number of parameters of the
model tends to increase, because the model needs to learn more complex fea-
tures or relationships, this detection model becomes very large, and the training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 227–237, 2023.
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process consumes a lot of computational resources and time, which increases the
cost of using the model and time cost, and limits their promotion and application
in practical applications. Moreover, in mobile or embedded devices, large mod-
els often cannot meet the requirements of real-time and low-power consumption.
Therefore, we consider how to achieve the detection of face forgery within lim-
ited resources, reduce the size and computational complexity of the model and
build a more lightweight face forgery detection model at the same time, using
some effective feature extraction techniques and classifiers to further improve
the detection performance.

To address our proposed scenario above, we propose a hybrid deep learn-
ing model called MARepVGG, which uses repvgg-A0 [2] as the backbone of
the model to balance training speed and inference speed through parameter
reconfiguration, and its entire network consists of standard convolutional lay-
ers, which can obtain more hardware optimization support to further accelerate
training and inference. At the same time, the attention to different regions is
enhanced using the multi-attention module, which captures heterogeneous fea-
tures by introducing multiple attention mechanisms, thus enabling the model to
better learn information from different regions. The texture enhancement mod-
ule processes the shallow features extracted by the backbone network to make
the texture of the image more obvious, which improves the detail representation
and compensates for the information loss caused by deep convolution. The gen-
erated multi-attention maps and texture features extracted from shallow layers
by the texture enhancement block are fused in the bilinear attention pool into
a feature representation of the whole image, further enhancing the model’s abil-
ity to learn forged features. We will evaluate the performance of the model and
compare it with other lightweight frameworks in Sect. 4.

The main contributions of our work are the following: We propose a new
deep learning model, MARepVGG, which uses multi-attention mechanism and
texture enhancement to detect face forgery. Beginning with a lightweight model,
we bring a new perspective to face detection. Gains a significant improvement
on the baseline approach.

2 Related Work

Most face forgery detection models extract artifact features from images by
building various deep convolutions, but with the rapid development of forgery
technology, the fineness of forged faces has been greatly improved, so the struc-
ture of deepfake detection models [3–5] becomes more complex in order to
improve the detection of forged faces. We think whether we can implement the
detection of face forgery on a simple model structure, and by reading some lit-
erature [6,7] we found that RepVGG can improve the overall network feature
representation well and inference speed is similar compared with other main-
stream networks. For example, in the YOLOv6 backbone network, Li et al. used
RepBlock as a building block for small networks and replaced the CSP module
with Rep module in CSP-PAN, which optimized the latency brought by CSP-
Net [8] to a certain extent and improved the memory bandwidth utilization.
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Meanwhile, mainstream GPUs are highly optimized for 3 × 3 convolution, and
the performance on ImageNet, in terms of RepVGG-A0, for example, is 1.25%
and 33% better in terms of accuracy and speed compared to ResNet-18.

The two most common face forgery operations are face swap operation and
face attribute operation, in the face swap operation type, the original image is
swapped with another person’s face, and the representative methods are Sim-
Swap [9] and InfoSwap [10]. In face attribute editing operation usually modifies
the local part of the original face, which can be achieved by GAN-based methods
such as HFGI [11] and StyleCLIP [12]. ordinary deep learning models tend to
focus on extracting local features losing other regional features through multi-
layer convolution. Facing these problems, we need to improve the complementary
fusion for different regional features. Zheng et al. [13] propose a multi-attention
method that can learn more regional features by clustering and weighting the
spatial channels. A new self-supervised mechanism proposed by Yang et al. [14]
can effectively localize the information regions. Using the core ideas of these
methods, we propose an adaptation of RepVGG that fuses multi-region features
to enhance the discrimination of face authenticity.

Fig. 1. Shown is the framework of the MARepVGG model proposed in this paper.
RepVGG is used as the backbone network to fuse the following main modules: an
attention module to generate multiple attention maps, a texture enhancement block
to extract and enhance texture information, and a bilinear attention pool to aggregate
texture and semantic features.

3 Our Approach

This section provides specific information on the proposed depth detection model
(Fig. 1). We will describe our proposed network model in detail in this section.
This includes the structure of the backbone network, how the texture enhance-
ment module extracts shallow texture features, the mechanism of the multi-
attention module to generate multi-attention graphs and the work of the bilinear
pooling layer.
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3.1 Backbone

We choose RepVGG-A0 as the backbone network, and we discard its original
GAP layer and fully connected layer to keep its RepBlock part. It consists of
5 stages, each containing [1,2,4,14] RepBlocks. the input images are simply
edited, including random cropping and left-right flipping, before being fed into
the model. The feature maps extracted in stage1 are used as input to the tex-
ture enhancement module, and the output of stage2 is passed into the multiple
attention module to generate multiple attention maps, and finally the bilinear
attention pool is used to fuse the backbone features with local features and
perform binary discrimination through the fully connected layer.

3.2 Multiple Attention Maps Generation

The multiple attention module is a lightly weighted model consisting of a 1 × 1
convolutional layer, a BN layer and a nonlinear activation RELU layer. The
difference between real and fake faces may exist in different regions and the
degree of difference is subtle. The feature maps extracted from the stage2 stage
are passed to the multiple attention module, and the M attention maps obtained
by the multiple attention module represent M different regions, and these weights
will be applied to the next step of the backbone network to help the model
better understand the different features of the input data, which can collect
local features more effectively [15].

3.3 Textural Feature Enhancement

In face forgery detection, local texture features are more important than high-
level semantic information [16], which is usually present in the shallow layer for
identifying artifacts. Therefore, we use the texture feature enhancement module
to amplify the artifacts in the shallow features and make it easier for our model
to capture these features subsequently. The output feature map F from stage1
is downsampled and averaged in the texture enhancement module to obtain
the non-texture feature map D. Then, F is parametrised with D to obtain T.
Finally, the densely connected convolution block is used to enhance T [17], and
the densely connected convolution block enhances the propagation of features
and enhances feature reuse.

3.4 Bilinear Attention Pooling

As shown in Fig. 2, for the shallow texture features output by the texture
enhancement block, when the attention map does not match the shallow texture
features, the attention map is resized to the same scale as the shallow feature
map using linear interpolation, and the fusion of the attention map and the shal-
low feature map is performed by matrix multiplication and sent to the standard
average pooling layer to reduce the influence of the attention map on the pooled
feature vector [18] to obtain the texture features P. At the same time, we multi
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At the same time, we perform sum operation on the multi-attention map to
obtain the single-attention map, and the single-attention map with the features
convolved in the last layer is sent to the BAP layer to obtain the global feature G.
P and G are sent to the discriminator to obtain the authenticity discrimination
result.

Fig. 2. The process of fusing multi-attention maps generated by the attention module
with shallow texture features generated by the texture feature enhancement module.

3.5 Loss

To avoid different attentional maps concentrating on the same region in the
image and falling into network degradation, region-independent loss(LRIL) is
used to reduce the overlap between attentional feature maps and to reduce the
randomness of the information captured by each attentional map [18].

LRIL =
B∑

i=1

M∑

j=1

max(
∥∥V i

j − clj
∥∥2

2
− min(yi), 0)+

∑

i,j∈(M,M),i �=j

max
(
mout − ∥∥cti − ctj

∥∥2

2
, 0

) (1)

where V is obtained by stacking multiple normalized attention features
obtained by BAP from the non-textured feature mapping D. B is the batch
volume, M is the number of attentions, and min represents the margin between
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the features and the corresponding feature centers, set to different values when
yi is 0 and 1. mout is the margin between each feature center. c is the feature
center of V.

Combining the region-independent loss LRIL and the cross-entropy loss LCE

is the total loss L function of the model.

L = λ1 ∗ LCE + λ2 ∗ LRIL (2)

λ1 and λ2 are the weights of these two losses in the total loss. In our experi-
ments it is set to λ1 = λ2 = 1.

4 Experiment

4.1 Dataset and Implementation Setting

Dataset. The dataset we used contains expertly generated facial images of high
quality PS, subjectively classified as easy, medium and difficult, and the number
of images is shown in Table 1. These images were synthesized from different faces
separated by eyes, nose, mouth or the whole face. Unlike the fake face images
generated using the generative model, we hypothesize that the detection model
learns some kind of pattern that is easier to recognize in the images generated
by the GANs, leading the face forgery detection model to show better accuracy
for internally generated and altered face image datasets. This pattern may be
futile in the presence of human experts, since the forgery processes of the two
are quite different. Using this, we can make the models comparable in a fairer
context.

Also, to better understand the performance of our model, we will use a fake
face generated based on PGGAN [23] as our dataset. This dataset contains 37566
GAN-generated pseudo-face images, and in order to make this dataset image
meet the input requirements of our model, we adjust its resolution to 256 × 256
and change it to 224 × 224 by cropping it as we go.

Table 1. Images of real and fake face

sample train set(count) test set(count)

real images 1081 1081
fake images 960 960

Implementation Setting. Our proposed model is built using the python mod-
ule pytorch. pyTorch is a very popular deep learning framework that can quickly
build and train neural networks. The Adam optimizer and the loss method pro-
posed in the previous section method method are used to train our proposed
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model. Our training parameters are set as follows: epoch=100, batch size=64,
learning rate=1e-4, betas=(0.9, 0.999), weight decay=1e-6. These parameters
can be adjusted to obtain better training results. The model is executed on 1
NVIDIA Tesla k80 12G GPU.

4.2 Result

Indicator Evaluation. To evaluate our model, we first performed a comparison
of several measures of it with the current mainstream lightweight models includ-
ing RepVGG-A0, ResNet-18 [19], EfficientNet-B4 [20], and inceptionV3 [21].
The comparison results are shown in Table 2. the number of parameters of
MARepVGG in the training state is 8.75M, which is 25.08% lower than that
of ResNet-18, and the number of floating point operations is 2.3GFLOPs. the
speed is tested on 1660ti with a batch size of 16, in instances/second, and the
instances are from the true-false face detection dataset [22]. It can be seen that
the inference speed is good for batch size=16, and our model inherits the advan-
tages of RepVGG well. The inference speed on processing images is not much
slower.

Table 2. Compare the results of the models on the metrics (Params, FLOPs, Speed)

Model Params(M) FLOPs(B) Speed

RepVGG-A0 8.3 1.4 40.07
ResNet-18 11.7 1.8 39.34
EfficientNet-B4 19 4.2 28.21
InceptionV3 24 5.7 32.25
Ours(MARepVGG) 8.7 2.3 39.70

Comparison with Existing Baseline. We compare the proposed model with
RepVGG-A0 as a baseline for face forgery detection accuracy. For the training
phase, our training dataset comes from the training fake class and training real
class in the real and fake face detection dataset, which contains 960 forged face
images and 1081 real face images. We first preprocess the images to enhance the
generalization ability of the detection model by random rotation flip operation,
and resize the images to 224 × 224. For the test set, we use the detection part
of the real-fake face detection dataset to evaluate the accuracy of our model.
We stored the best training model weights for the detection and the results are
shown in Fig. 3. From Fig. 3 we can see that after 100 rounds of training, our
proposed model improves the accuracy by 14% over the baseline.



234 Z. Huang et al.

Fig. 3. Comparison of our model and baseline accuracy curves over 100 training rounds,
based on NVIDIA k80 GPU. The horizontal axis is the training batch and the vertical
axis is the accuracy rate.

Comparison with Other Models. As shown in Table 3, our model is trained
uniformly with the compared model on NVIDIA k80 GPU with 100 training
rounds, and the dataset used is the real and fake face dataset mentioned in this
paper. It can be seen that the detection accuracy of forged faces is higher than
that of the comparative model with significantly less number of parameters,
which indicates that our model achieves better results in terms of efficient use
of limited resources.

Table 3. The accuracy of our model with other lightweight models such as (Resnet-18,
EfficientNet-B4, inceptionV3) on the true-false face dataset

Model ACC(%)

Resnet-18 60.95
EfficientNet-B4 54.04
inceptionV3 65.87
Ours(MARepVGG) 67.07

Experiments on PGGAN. As shown in Fig. 4, our model achieves 94.53%
accuracy after 100 rounds of training on the PGGAN dataset. There is a 4%
improvement in our proposed method compared to FDFTNet [25], which has
training parameters (initial learning rate=0.3, momentum rate =0.9, batch
size=128), and an optimal accuracy of 90.29% on the PGGAN dataset after
another 300 rounds of training using stochastic gradient descent (SGD). Com-
pared with another model DeepFD [24], which uses contrast loss to enhance the
feature retrieval of GAN synthetic images with discriminative feature learning
network D1 and classifier D2 with parameters (learning rate=1e-3, maximum



MAREPVGG 235

epoch=15, batch size=32), the accuracy on the PGGAN dataset after training
is 92.6%, and our proposed method still has a 2% improvement.

Fig. 4. The performance of our model on the PGGAN dataset with the training batch
on the horizontal axis and the accuracy on the vertical axis. The training parameters
are recorded in the Implementation Setting section of the text.

Although our proposed method has made some progress relative to the
lightweight network model in the comparison experiments, we have to admit
that there are still shortcomings in the detection accuracy. Therefore, the next
step of our work is to focus on further improving the accuracy of the model. We
will further expand and improve the dataset to include more real and fake face
samples, so that the model can better learn the features in different scenarios.
Second, we will introduce more complex network structures and optimization
algorithms to improve the generalization ability and robustness of the model.
Finally, we will also combine other technical means, such as multi-task learning,
transfer learning, and knowledge distillation, to further improve the accuracy
and usefulness of the model.

5 Conclusion

In this paper, after the above experimental comparison, our proposed method
makes some progress in inference speed, number of parameters and accuracy
relative to the lightweight network model. Our addition of texture enhancement
module and multi-attention module to RepVGG improves the model’s ability to
detect real and fake faces very well. We hope our model can provide a new idea
for future applications of face forgery recognition.
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Abstract. NeRF (Neural Radiance Fields), as an implicit 3D represen-
tation, has demonstrated the capability to generate highly realistic and
dynamically consistent images. However, its hierarchical sampling app-
roach introduces a significant amount of redundant computation, leading
to erroneous geometric information, particularly in high-frequency facial
details. In this paper, we propose SGFNeRF, a novel 3D face generation
model by integrating a 2D CNN-based generator and face depth priors
optimization method in the same framework. We employ a Gaussian dis-
tribution for sampling to extract facial surface information. Additionally,
we design a feature decoder to incorporates depth uncertainty into our
method, enabling the method to explore regions further away from face
surfaces while preserving its ability to capture fine-grained details. We
conduct experiments on the FFHQ dataset to evaluate the performance
of our proposed method. The results demonstrate a significant improve-
ment compared to previous approaches in terms of various evaluation
metrics.

Keywords: 3D scene representation · Face generation · Neural
radiance fields · Generative adversarial network

1 Introduction

Portrait synthesis has a wide range of applications in the field of computer graph-
ics, including but not limited to virtual reality (VR), augmented reality (AR),
and avatars-based telecommunication. Neural Radiance Fields (NeRF) [1] has
attracted significant attention in the realm of three-dimensional object repre-
sentation. Diverging from conventional explicit visualization approaches such as
meshes and point clouds, NeRF implicitly entails the encoding of a model’s three-
dimensional information within a neural network. One advantage of explicit rep-
resentation is its ability to model scenes explicitly, thereby synthesizing photo-
realistic virtual perspectives. However, a disadvantage of this discrete represen-
tation is the potential occurrence of artifacts such as overlap-induced pseudo-
shadows due to its lack of fine-grained precision. Moreover, and most impor-
tantly, the memory constraints imposed by these representations limit their
applicability to high-resolution scenes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Many of recent works [2–6] on NeRF have been applied to face genera-
tion, with capable of generating high-resolution, photorealistic and dynamic face
images. Generative Adversarial Networks (GANs) [7] have been integrated with
NeRF to produce feature maps, which form the basis for establishing neural
radiance fields. Nevertheless, the computationally intensive nature of volumet-
ric rendering, primarily due to the ray-casting process, significantly slows down
high-resolution generation and incurs high memory requirements. One instance
where volume rendering is employed is by sampling points along individual view-
ing rays. This process allows for the determination of the ray’s color based on the
volume density and radiance of each sampled point. Additionally, oversampling
is utilized during training to account for empty spaces.

In this work. We propose SGFNeRF that optimizes face sampling with depth
priors, which are easy to get from 3DDFA-V2 [8]. Face geometries in NeRF are
guided avoiding of various artifacts. As shown in Fig. 1, many of other relevant
methods without depth priors are prone to generate false images, in which facial
features and the background are generated with equal importance, it results
in the occurrence of facial elements within the background. Moreover, during
extensive facial pose control, there is a tendency for the background to adhere
closely to the face, leading to their fusion or cohesive appearance. In our method,
the application of depth Gaussian sampling is employed. Dense sampling is per-
formed on the surface of the face. Taking into uncertainty of prior depths, we
also develop a feature decoder.

Fig. 1. Comparison of visual effects in portrait generation. The images of EG3D,
StyleNeRF and IDE-3D were generated by corresponding official checkpoints. When
facial features and the background are given equal significance in generation, it increases
the likelihood of facial elements appearing in the background. Furthermore, when exten-
sive control is applied to facial poses, there is a tendency to produce artifacts.

To summarize, our contributions are as follows:

– We propose a face depth prior Gaussian sampling and introduce a new loss
function designed with uncertainty of depth information.

– A feature decoder is designed to generate colors, densities and variances of
face depths in neural radiance fields from feature maps.

– Through experiments, our model has demonstrated the ability to generate
face geometry-aware and dynamically consistent portrait images. Especially
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Fig. 2. Overall pipeline of SGFNeRF. A feature generator and mapping network based
on pose-conditioned StyleGAN2 are developed, along with a feature decoder and space
feature sampling. The Feature Decoder is devised to generate attributes such as col-
ors, densities, and variations in face depths. Additionally, a neural volume renderer
is utilized to produce both image and depth maps. The Resolution Upsampler and
Discriminator are not depicted in the image.

in scenarios involving large facial angles, it can effectively prevent geomet-
ric collapse of the face and reduce the impact between the subject and the
background.

2 Related Work

2.1 Neural Radiance Field Representations

Neural implicit representations (i.e. [1,10,12,13]) have shown great potential
in 3D reconstruction and novel view synthesis. The three-dimensional scene is
stored within the weights of a multi-layer perceptron, enabling the generation of
images from arbitrary viewpoints through volume rendering. Explicit represen-
tations, such as discrete voxel grids, are efficient in terms of evaluation speed,
but they often require a significant amount of memory, making them challeng-
ing to scale for high-resolution or complex scenes. On the other hand, implicit
representations have the potential to address these memory overheads by repre-
senting scenes as continuous functions. This approach provides benefits in terms
of efficient memory usage, enabling the handling of complex scenes, and ensuring
the generation of dynamically consistent images.

2.2 Generative Face Geometry-Aware Synthesis

Traditionally, image GAN models have relied on convolutional architectures,
which have facilitated efficient training and generation for 2D tasks (i.e. [7,14].
In recent times, there has been a growing interest in expanding the capabili-
ties of GANs to enable 3D-aware generation from single-view image datasets.
The objective of such advancements is to achieve disentangled control over the
content and viewpoint of the generated images. The pcGAN [15] struggle to gen-
erate 3D content without 3D priors. Deng et al. [16] adopt a methodology that
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incorporates 3D priors to decompose portrait synthesis into distinct and inde-
pendent factors. However, there is a lack of ability to generate visually dynamic
consistent images [9].

Several studies (i.e. [2,3]) have attempted to integrate NeRF with GAN for
the generation of three-dimensional models. However, these approaches suffer
from significant computational redundancy and errors in the estimation of depth
information.

3 Methods

To address the aforementioned issues, we propose a Gaussian sampling method
based on facial depth priors. Additionally, we introduce a depth loss function that
accounts for depth errors. Moreover, we design a feature decoder that captures
the variance of depth information. Figure 2 illustrates the schematic diagram
of our proposed method. The effectiveness of the proposed method has been
verified through experimental validation.

Feature Generator. In contrast to NeRF, which directly input spatial coordi-
nates into implicit neural fields. Inspired by [17], our approach involves utilizing
a generator to produce space feature maps. The initial step involves feeding the
random latent code and camera parameters into a mapping network, which gen-
erates an intermediate latent code. This intermediate latent code is then used to
modulate the convolution kernels of a distinct synthesis network. StyleGAN2 [7]
is selected as the preferred choice for predicting space features due to its well-
established and efficient architecture, which consistently achieves cutting-edge
outcomes in 2D image synthesis. Semantic vectors are sampled in space features
according to coordinates of rays.

Shape Guided Gaussian Sampling. The original NeRF employed a uniform
hierarchical sampling strategy within the neural field. Our strategy is distinct
from evenly dividing the space between near and far bounds. Points along rays
are selected from normal distributions, in which the mean are set by depth priors
and the standard deviations are predicted considering the depth uncertainty
(see in Fig. 3). By employing this approach, the smaller sampling intervals are
implemented on the pertinent section of the ray to accentuate the finer details
on the surface, effectively addressing the broader uncertainty inherent in the
depth estimation, While still preserving the capability to sample in regions that
deviate from the average [11].

To acquire the uncertain values of face depth information, we devised a fea-
ture decoder, denoted as FΘ, which optimizes the parameter Θ to extract fea-
tures. These features include volume density σ, multi-channel color features c,
and depth uncertainty υ. The whole function of feature decoder can be described
as:

FΘ : (fxy, fyz, fzx) �→ (σ, c, υ), (1)
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Fig. 3. Comparison of two sampling methods. Left: For spatial uniform sampling, a
large number of sampling points require unnecessary computation and do not capture
useful information. Right: Gaussian sampling primarily targets surface points and has
the potential to sample regions that are distant from the mean.

Volume density σ and multi-channel color features c are used for classical volume
rendering [18]. Depth uncertainty υ is employed in the calculation of the depth
loss function.

Depth Map Optimization. NeRFs have demonstrated remarkable perfor-
mance in view synthesis tasks. Our method leverages the capabilities of NeRFs
to achieve precise depth estimation by directly optimizing implicit volumes. The
calculated RGB value, denoted as C(r), can be computed using volume rendering
techniques based on finite samples.

Ĉolor(r) =
N∑

i=1

Ti (1 − exp (−σiδi)) ci, (2)

The function T (t) represents the cumulative transmittance along the ray from
tn to t.

Ti = exp

⎛

⎝−
i−1∑

j=1

σjδj

⎞

⎠ , (3)

Similar to calculation of RGB values, we compute the depth map values
in the neural radiance field, and D(r) can be approximated by evaluating the
expectation of the samples along the ray.

D̂epth(r) =
N∑

i=1

Ti (1 − exp (−σiδi)) ti, (4)

The depth values in the depth maps correspond to each pixel in the RGB
textures and are utilized for computing the depth loss. Pixels outside the facial
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region are also generated without the supervision of depth information. There-
fore, we devised a region-based depth loss function Ldepth (r).

Ldepth(r) =

{∑L
i=1

(
1

eυ2
i

+ λ‖(D̂(r) − D(r)‖2 × eυ2
i

)
face region

0 otherwise ,
(5)

The depth loss function is not computed in non-depth prior regions, but it is
calculated within the facial region. The formula consists of two terms: the first
term penalizes the uncertain values, while the second term computes the depth
error. The scaling factor, λ, is set to 0.5 in this study.

Resolution Upsampler. Following [7]. We do not directly produce high-
resolution images, which cost much more computation to render an image at the
exact resolution, but Medium-resolution image maps and depth maps. Addition-
ally, NeRF-based models consume substantial memory for caching intermediate
results during gradient back-propagation, posing challenges when working with
high-resolution images. These factors together restrict the applicability of NeRF-
based models in high-quality image synthesis.

In the resolution upsampler, we utilize the Second Order Attention Network
(SAN) [19] for our purposes which upsamples and refines the 32-channel feature
image into the final RGB image.

Discriminator. Our model is trained using an adversarial objective, where
we leverage the discriminator architecture derived from StyleGAN [4]. To pre-
vent degenerate shape solutions, we incorporate the camera parameters of the
incoming image as conditioning information for the discriminator. We utilize the
class-conditional discriminator modifications proposed in [20] to incorporate this
information.

The loss function of the generative adversarial network is as follows:

L(D,G) = Ez∼Z,c∼C
[
f(D(G(z,p))] + EI∼pdata

[
f

(−D(I) + β‖∇D(I)‖2)] ,
(6)

where f(u) = − log(1 + exp(−u)), and pdata is the distribution of the data.
We set β = 0.5.

The final objective function is defined as follows:

Lfinal = L(D,G) + Ldepth, (7)

4 Experiments

4.1 Datasets

We conducted extensive experimentation on the FFHQ [7] dataset to validate
our approach. The FFHQ dataset is highly valuable for conducting research in
domains like face generation, image editing, face recognition, and deep learning.
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Table 1. Quantitative comparison of our approach with other relevant methods. Our
method does not outperform all of other methods interms of FID and KID on FFHQ
dataset, but in terms of visual effects, our method is superior.

Methods FID↓ KID(×103) ↓
Giraffe [21] 31.9 32.7

FENeRF [3] 28.2 17.3

StyleSDF [22] 11.5 2.6

NeRF-GAN [2] 8.3 4.3

StyleNeRF [4] 8 3.7

EG3D [17] 4.7 0.132

IDE-3D [13] 4.6 0.130

Ours 7.2 2.5

It is extensively employed for training Generative Adversarial Network (GAN)
models, specifically for the purpose of generating authentic and lifelike face
images. These models excel at creating novel face images that possess intri-
cate details and exhibit a remarkable level of realism. We label the face depth
maps by 3DDFA-V2 [8].

4.2 Baselines

We compare our method on image generation with relevant methods: NeRF-
GAN [2], FENeRF [3], StyleNeRF [4], Giraffe [21], StyleSDF [22], EG3D [17]
and IDE-3D [13]. Our model was trained using a batch size of 8. The discrimi-
nator was trained with a learning rate of 0.002, while the generator was trained
with a learning rate of 0.0025. Our total training time on 2 TITAN V GPUs
was about 16 days. Many experiments were conducted to quantitatively and
qualitatively evaluate our method. In order to validate the effectiveness of our
sampling approach, we also conducted geometric comparisons on the generated
three-dimensional models. All experiments were performed under the same plat-
form.

4.3 Quantitative Evaluations

We quantitatively assessed the consistency and quality of the images generated
by our approach across FID and KID metrics. The results are showed in Table 1.

Frechet Inception Distance (FID). The FID [23] metric quantitatively mea-
sures the similarity between two sets of images: the real images from a dataset
and the generated images produced by a GAN or any other generative model.
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Fig. 4. Qualitative comparison between StyleNeRF, EG3D and ours in yaw for FFHQ.

Fig. 5. Qualitative comparison between StyleNeRF, EG3D and ours in pitch for FFHQ.
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Kernel Inception Distance (KID). KID [23] is based on the Inception Score
(IS), which was introduced as a metric for evaluating the quality and diversity
of generated images. While IS measures the quality of individual images, KID
extends this concept to measure the similarity between the entire distributions
of real and generated images.

4.4 Qualitative Results

We have produced multiple images to qualitatively assess our methodology. Our
approach demonstrates the ability to generate novel perspectives through direct
camera manipulation, effectively generalizing to extreme camera poses that sig-
nificantly deviate from the distribution of camera poses in the training data.
Figures 4 and 5 illustrates the outcomes of our method when applied to chal-
lenging camera poses, as well as steep view angles. The results of EG3D and
StyleNeRF were produced by corresponding official checkpoints. Figure 4 shows
variations in yaw, and Fig. 5 presents variations in pitch. As depicted in the
images, our method is capable of generating clear human portraits without gen-
erating cluttered backgrounds, and the rendered images exhibit remarkable con-
sistency across various camera positions.

Fig. 6. The comparison of our depth prior Gaussian sampling method in terms of
geometric generation. Better differentiation between the face and background.

4.5 Ablation Analysis

To better evaluate the effectiveness of geometry consistency, We conducted a
comparative analysis between our method and EG3D, in terms of generating
3D shapes. Iso-surfaces representing shapes are extracted from the density field
using the marching cubes algorithm. We present empirical evidence showcas-
ing the successful performance of our approach in this aspect (see Fig. 6). The



SGFNeRF 247

Fig. 7. Numerous experiments have shown that our method can generate relatively
independent and complete facial geometric information, which significantly contributes
to generating multi-view portraits.

model generated with prior information enables more efficient sampling point
placement, thereby avoiding excessive computations and better distinguishing
between human subjects and backgrounds. EG3D employs the same sampling
method for both human subjects and backgrounds, resulting in a higher density
of sampling points. However, this approach often leads to the undesired artifacts,
as the background and human subjects tend to become interconnected and visu-
ally entangled (see in Fig. 1). More results are shown in Fig. 7. Our experiments
demonstrate that the presence of complete and relatively independent geometric
information contributes to generating multi-angle portraits.

5 Conclusion

In this paper, we propose SGFNeRF, a deep prior Gaussian sampling approach.
Our method utilizes a Gaussian distribution for sampling, focusing on extracting
facial surface information and preserving fine-grained details. The incorporation
of depth uncertainty in our feature decoder enables exploration of regions further
away from face surfaces, expanding the model’s capability to capture intricate
facial features. We conducted extensive experiments on the FFHQ dataset to
evaluate the performance of our proposed method. Our model generates facial
images with enhanced visual quality, improved geometric accuracy, and with
potential applications in virtual reality and computer vision.
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Abstract. Facial manipulation techniques have aroused increasing secu-
rity concerns, leading to various methods to detect forgery videos. How-
ever, existing methods suffer from a significant performance gap com-
pared to image manipulation methods, partially because the spatio-
temporal information is not well explored. To address the issue, we intro-
duce a Hybrid Spatio-Temporal Network (HSTNet) to integrate spatial
and temporal information in the same framework. Specifically, our HST-
Net utilizes a hybrid architecture, which consists of a 3D CNN branch
and a transformer branch, to jointly learn short- and long-range rela-
tions in the spatio-temporal dimension. Due to the feature misalignment
between the two branches, we design a Feature Alignment Block (FAB)
to recalibrate and efficiently fuse heterogeneous features. Moreover, HST-
Net introduces a Vector Selection Block (VSB) to combine the outputs
of the two branches and fire important features for classification. Exten-
sive experiments show that HSTNet obtains the best overall performance
over state-of-the-art methods.

Keywords: Face Forgery Detection · Hybrid Spatio-Temporal
Network · Short- and Long-range Relations · Spatial and Temporal
Consistency

1 Introduction

Benefiting from the explosive progress of generative models, especially Gener-
ative Adversarial Networks (GANs) [18], current face manipulation techniques
[5,28,46,49] are capable of producing ultra-realistic fake videos which are diffi-
cult to distinguish by humans. However, it has aroused broad public concerns
that these tecniques could be abused for malicious purposes. Therefore, it is
crucial to develop more general and practical methods for face forgery detection.
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Fig. 1. Top: Visualization of the temporal coherence comparison between real and fake
videos. Bottom: Overview of the proposed HSTNet. We present the vertical motion
at a particular horizontal location. Obviously, the motion of a fake face is sharper
than the real one. Considering the above observation, our HSTNet employs a hybrid
network to explore the spatio-temporal inconsistency and capture short- and long-range
information.

Various frame-based methods which employ 2D deep Convolutional Neural
Networks (CNNs) [1,6,27,29,34,42] have been proposed to tackle the problem.
They mainly focus on the fine-grained forged spatial details [12,52], or introduce
more data domains, such as frequency statistics [27,42], to detect forgery pat-
terns. However, these methods ignore the temporal information and may result
in unexpected false predictions. As shown in the upper part of Fig. 1, fake videos
often exist visually unnatural image transition or temporal inconsistency, which
indicates temporal inconsistency is a vulnerability to be utilized for our face
forgery detection. To address this issue, most recent works [2,17,19,30,31,53]
pay more attention to video-based methods which extract both the spatial and
temporal information. Nonetheless, these methods still have limited ability to
comprehensively capture spatial and temporal forgery patterns. Over last two
years, the introduction of Vision Transformer (ViT) [15] has brought a boom in
the applications of transformer to visual tasks. However, the potential of ViT on
fake video forgery is not well explored. The reason might come from its deficiency
in local feature extraction.

In this paper, we follow the research line of hybrid networks [8,37,41], and
introduce a Hybrid Spatio-Temporal Network (HSTNet) to comprehensively
explore the spatial and temporal information for robust face forgery detection.
Figure 1 illustrates that our HSTNet adopts a dual-stream architecture, which
includes a 3D CNN branch and a spatio-temporal attention based transformer
branch to maximize their advantages to extract short- and long-range informa-
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tion, respectively. Therefore, we design Feature Alignment Block (FAB) to align
two feature maps at scale and semantic level. It is inserted into every stage of
HSTNet to gradually fuse the local and global feature details. Specifically, in
order to introduce the local features into the transformer branch, we leverage
the attention mechanism to adaptively attach importance weights to each tem-
poral dimension and channel and recalibrate the feature map. After two parallel
branches of feature extraction, we introduce the attention mechanism again into
the designed Vector Selection Block (VSB) to aggregate local and global features
and refine the feature vector for final prediction. In summary, by the dual-stream
architecture, the proposed HSTNet entirely employs the advantages of convolu-
tion in extracting local details and the advantages of transformer in capturing
long-range dependencies and processing sequence data.

The contributions of this paper are summarized as follows:

– We propose a Hybrid Spatio-Temporal Network (HSTNet) to consider both
spatial details and temporal consistency for robust face forgery detection. The
dual-stream architecture can utilize the full potential of CNN’s and trans-
former’s strengths to extract local and global information, respectively.

– We design a Feature Alignment Block (FAB) to perform feature interactions
between two heterogeneous features at scale and semantic levels. We also
introduce a Vector Selection Block (VSB) to fuse the output vectors of the
two branches, fire important features, and suppress redundant features.

– Extensive experiments, including intra-dataset validation and cross-dataset
validation, show our HSTNet achieves state-of-the-art (SOTA) performances
on four widely used face forgery detection benchmarks.

2 Related Work

Face Forgery Detection. Mainstream face forgery detection can be divided
into image-based and video-based methods. At the image level, a significant
amount of methods introduce frequency statistics [17,27,42] for capturing arti-
facts of forgery. Nonetheless, these image-based methods may fail to cap-
ture the spatio-temporal inconsistency across continuous frames. More recently,
researchers tend to explore the temporal inconsistency and propose several video-
based detectors [2,19,30,31,39,44]. Despite achieving a good accuracy on the
trained dataset, most of these methods experience a significant performance
decline when the manipulation methods are unseen [1,26,43]. To address this
issue, many works [16,20,29,32,50,53] are dedicated to improve the general-
ization capability of detectors. FTCN [53] constraints the extraction of spatial
information and concentrates on mining the temporal coherence. It achieves
impressive generalization ability, but it is susceptible to common perturbation,
such as compression.

Transformers with Convolutions. Compared with vision transformers [15,
25,35], CNNs has unique advantages in extracting local features and translation
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Fig. 2. The feature extraction block, where “⊕” represents point-wise sum. The upper
part is 3D CNN blocks, and the lower is a spatio-temporal transformer block. FAB
is employed to align heterogeneous features and achieve interactions between the two
branches.

invariance. In order to integrate the above merits, many hybrid architectures
[37,41,51], including self-attention mechanisms and convolutions, are proposed
for enhanced visual representation. Conformer [41] adopts a concurrent structure
that comprehensively combines a transformer with a CNN branch via lateral con-
nections to retain the representation capability of local features and global rep-
resentations. Ds-Net [37] proposes a dual-stream network including convolutions
and self-attention layers to extract local and global features simultaneously and
efficiently fuse them. Different from existing works, we design a hybrid architec-
ture that consists of a 3D CNN branch and a transformer branch to jointly learn
short-long and spatio-temporeal relations in a unified framework. The details of
our method are elaborated below.

3 Method

3.1 Overview

Problem Statement. We formulate the face forgery detection task as a binary
classification problem and design a video-based network to introduce both spa-
tial and temporal information for more robust and general performance. For a
given face video clip X ∈ R

T×C×H×W , where T,C,H,W represent the input
frame number, channel dimension, frame spatial height and width, respectively.
The goal of our HSTNet is to generate video-level prediction to distinguish the
authenticity of the face video.

Two Input Styles. Using [21] as inspiration, the 3D CNN branch takes the
video clip X as input directly. The transformer branch takes nonoverlapping 3D
patches as input tokens for capturing long-range dependencies. Similar to Times-
former [7], we first partition each frame independently into N nonoverlapping
patches, each of size P × P , resulting in a total of T × N tokens xp,t ∈ R

TCP 2

with C feature channels, where N = HW/P 2, p ∈ [1, ..., N ] and t ∈ [1, ..., T ].
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Then we employ a linear layer for projection to obtain embedding vectors
Z ∈ R

T×(N+1)×D as follow:

Z = [zcls,Ex1,1,Ex1,2, . . . ,Ex1,T ,Ex2,1,Ex2,2, . . . ,ExN,T ] , (1)

where E ∈ R
D×CP 2

denotes the learnable projection matrix. Meanwhile, as in
ViT [15], a classification token zcls ∈ R

D is added to the first position of the
sequence and the classification token at the final transformer layer is used for clas-
sification. Considering that the 3D CNN branch (3 × 3 × 3 convolution) retains
positional features and extracts local information [24], spatial and temporal posi-
tional embeddings are omitted in our transformer branch [3] .

3.2 Hybrid Architecture for Face Forgery Detection

Our introduced HSTNet is based on a hybrid architecture as shown in Fig. 1,
which is composed of a 3D CNN branch and a spatio-temporal transformer
branch to jointly capture local and global information. Video-based feature
extraction further helps to deeply extract the spatial details and temporal coher-
ence, which play a crucial role in face forgery detection. The whole network con-
sists of a stem layer, four stages of dual-stream feature extraction blocks, FABs
to align features, and a VSB to conduct adaptive vectors fusion.

To be specific, the stem layer is instantiated as a 3 × 7 × 7 3D convolu-
tion followed by BatchNorm and a 3 × 3 × 3 max pooling. After initial feature
extraction by the stem layer, the feature maps are sent directly to a 3D CNN
block and a transformer block after patch embedding. Then these features and
tokens go through four stages of HST for deep spatio-temporal learning. Within
each stage, dual-stream feature extraction blocks are designed to learn short-
and long-range relations. The architecture of the feature extraction blocks is
depicted in Fig. 2. FABs are adopted to refine the features adaptively and align
two heterogeneous features in resolutions and semantics. Note that the 3D CNN
branch is responsible for processing high-resolution feature maps to explore the
local forged patterns, while low-resolution features are fed to the transformer
branch for mining global inconsistency both in spatial and temporal domains.
At the end of HSTNet, VSB combines the two output vectors of the 3D CNN
branch and the transformer branch for final prediction.

3D CNN Branch. As stated in [21], 3D convolutional operations are effective
to learn spatio-temporal representations. Following ResNet [22], the whole CNN
branch is divided into four stages. At each stage i ∈ {2, 3, 4, 5}, we stack Ni

3D convolutional blocks sequentially which comprises two 1 × 1 × 1 dimension
transformation convolutions, and a 3 × 3 × 3 spatio-temporal convolution. Addi-
tionally, we set the downsampling factors to 4, 8, 16, and 32, respectively. Fur-
thermore, since high-resolution inputs preserve more fine-grained spatial details,
which are beneficial to detect unnatural inconsistency in forged videos, our 3D
CNN branch is effective to extract local spatial details and temporal features
across adjacent frames, that is, the short-range relations. With the aid of FABs,
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these local feature details are gradually integrated into the spatio-temporal trans-
former branch.

Transformer Branch. Although the receptive field grows consecutively with
the increase of convolutional layers, pure CNN network has limited ability in
global feature extraction. In contrast to the 3D CNN branch, each transformer
block encodes all pairwise relationships among all 3D tokens. Therefore, it can
always capture global long-range representations throughout the network. This
characteristic enables the transformer to better explore long-range inconsistency
for forgery detection. Concretely, we compute attention weights for detecting
forgery using multi-head self-attention modules. Firstly, attention operation for
each head is defined as:

Attention (Q,K,V) = Softmax

(
QK�
√

dk

)
V, (2)

where d equals D
M , M denotes the number of attention heads that we set to

6, queries Q = ZWq, keys K = ZWk and values V = ZWv are all linear
projections of the input Z with Z,Q,K,V ∈ R

T×(N+1)×D.
Inspired by the idea of ViT [15], our transformer branch consists of a sequence

of transformer layers. Each transformer layer contains three parts: a multi-head
self-attention (MSA) module [48] to conduct spatio-temporal dot-product atten-
tion, a layer normalization operation (LN) [4] to regularize features and a MLP
block for non-linear transformation. Residual connections are deployed in both
MSA modules and MLP blocks. With the GELU activation function [23], the
calculation of the features at the l-th layer can be defined as:

y� = MSA
(
LN

(
z�

))
+ z�, (3)

z�+1 = MLP
(
LN

(
y�

))
+ y�, (4)

where zl denotes the summation of the output features of the transformer branch
and the CNN branch at layer l, and yl denotes the output feature of the MSA
module. The MLP module has two linear projections separated by the GELU
activation function.

3.3 Feature Alignment Block

The interaction between the 3D CNN branch and the spatio-temporal trans-
former branch plays a critical role on the final prediction. Nevertheless, fea-
tures of the two branches are misaligned in resolutions and semantics. Hence,
we propose FAB to align the heterogeneous features and re-calibrate them adap-
tively. As illustrated in Fig. 3, given a 3D CNN feature map x ∈ R

T×H×W×C ,
where T,H,W,C denote the temporal dimension, height, width and channel
number respectively, and the 3D tokens z ∈ R

T×(N+1)×D, where T,N + 1,D
denote the temporal dimension, token number and embedding dimensions,



256 X. Liu et al.

Fig. 3. Illustration of FAB and VSB, where “⊗” indicates matrix multiplication and
“ c©” indicates channel-wise concatenation, and T,C,D denote temporal dimension,
channel number of 3D CNN vector, and channel number of the 3D class token of the
final transformer layer, respectively. The left upper part realizes the mapping from 3D
features of the CNN branch to 3D tokens, while the left lower structure achieves the
opposite.

respectively, FAB leverages 1 × 1 × 1 3D convolution to complete channel dimen-
sion alignment and down-/up-sampling operations to uniform the spatial resolu-
tions. Meanwhile, layer normalization and batch normalization are introduced to
achieve smoother gradients. On the other hand, in order to fill the semantic gap
between each local feature and global token pair, instead of simply concatenating
the features after spatial alignment, we design a time-channel attention mech-
anism to refine the features in time and channel dimensions adaptively before
down-/up-sampling operations. In details, a global average pooling is first used to
flatten the spatial dimension of xin and obtain global representation uin ∈ R

T×C .
Then we utilize a refinement module which comprises two 1 × 1 × 1 3D convo-
lutions to gradually squeeze uin and generate the time-channel attention map
Mα ∈ R

T×C . Finally, we attach the attention map Mα to x and obtain refined
feature xre. A skip connection is further used to combine xin and xre. The whole
process is formulated as follows:

Mα = σ (Wconv,1 ∗ ReLU (Wconv,2 ∗ uin)) , (5)

xout = xin + Mαxin, (6)

where Wconv,1 and Wconv,2 represent the weights of the two 3D convolution lay-
ers, and σ and ReLU indicate Sigmoid and ReLU activation functions respec-
tively. The residual structure in Equ. 6 ensures the stability of the training
process and accelerates the convergence.

It is worth noting that through continuous information interaction of FAB,
the 3D CNN branch introduces sufficient global representations, and the trans-
former branch also obtains abundant local details. It makes up for the short-
comings of the two branches, and achieves the full integration of short- and
long-range information.
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3.4 Vector Selection Block

For the final prediction, it is vital to comprehensively consider the outputs of
the two branches and select the essential features. Instead of concatenating them
simply, we design a VSB to combine them adaptively, in which the time-channel
attention mechanism is again employed to comprehensively compare the local
and global information in semantics and attach importance weights in the tem-
poral dimension and channels for vector refinement. As shown in Fig. 3 (b), VSB
takes the output vector of the 3D CNN branch and the class token of the final
transformer layer as input. Different from FAB, we first concatenate two vectors
and then leverage the time-channel attention to emphasize the important fea-
tures and suppress redundant feature maps. Based on this, VSB is applied on
the last block of our HSTNet as a joint connection between the backbone and
the classification head to achieve better performance.

Table 1. Comparison on the FF++ dataset under the accuracy rate. The best results
are highlighted.

Method FaceForensics++ c23
DF F2F FS NT

XN-avg 0.9893 0.9893 0.9964 0.9500
C3D 0.9286 0.8857 0.9179 0.8964
I3D 0.9286 0.9286 0.9643 0.9036
LSTM 0.9964 0.9929 0.9821 0.9393
TEI 0.9786 0.9714 0.9750 0.9429
Comotion-70 0.9910 0.9325 0.9830 0.9045
ADDNet-3D 0.9214 0.8393 0.9250 0.7821
STIL 0.9964 0.9929 1.0000 0.9536
Ours 1.0000 0.9929 0.9929 0.9429

4 Experiments

4.1 Experimental Settings

Datasets. Similar to related works of face forgery detection, our experiments are
conducted on the four standardized benchmark dedpfake datasets: FaceForen-
sics++ (FF++) [43], Celeb-DF [33], FaceShifter [28], and DFDC [14].

Evaluation Metrics. In our experiments, we focus on utilizing the Accuracy
rate (ACC) and the Area Under Receiver Operating Characteristic Curve (AUC)
as our evaluation metrics. As previous related works use a single frame as input,
we select video-level AUC and average the prediction for each video clip of the
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whole video, as in [38]. Consequently, all models utilize the same number of
frames to perform predictions.

Implementation Details. In our experiments, we apply a state-of-the-art
(SOTA) face extractor RetinaFace [13] to detect and align the faces with a
size of 224 × 224 for both real and fake videos. Each clip used for training and
testing comprises 32 frames and random flip is employed during training. All the
experiments are conducted on 4 Nvidia TITAN Xp 12 GB GPUs and Intel (R)
Core (TM) i7-6850K CPU @ 3.60GHz. Our HSTNet is implemented based on
PyTorch v1.7.0, built upon the open source mmaction2 toolbox [11].

We adapt our HSTNet as the backbone of deepfake detector and use I3D class
head in the mmaction2 toolbox. All the detectors are trained by using AdamW
[36] with the weight decay 0.02 supervised by the binary cross-entropy loss. We
apply a warm-up strategy for the training of our model. Specifically, the learning
rate first increases from 1e-5 to 1e-4 in the first 2.5 epochs and then decays to 0
for the last 117.5 epochs with the cosine annealing learning rate schedule.

Table 2. Comparison on FF++.
Results of some other methods are
from [19,52]. The best result are
highlighted.

Method FF++
ACC AUC

XN-avg 95.73 -
MesoNet 83.10 -
Face X-ray - 87.40
Xception 95.73 96.30
Two Branch - 98.70
EfficientNet-B4 96.63 99.18
Zhao (Xception) 96.37 98.97
Ours 97.00 99.20

Table 3. Comparison on Celeb-
DF. Results of some other meth-
ods are from [19]. The best result
are highlighted.

Method ACC

XN-avg 99.44
I3D 99.23
LSTM 95.73
ADDNet-3D 99.12
S-IML-T 98.84
D-FWA 98.58
STIL 99.78
Ours 99.99

4.2 Comparison with SOTA Methods

We conduct a comprehensive comparison with 3D convolution based works I3D
[9] and C3D [47]. We mainly compare our method to those with high generaliza-
tion ability on unknown datasets, such as Xception [10], Face X-ray [29], multi-
task learning by Two-branch [38], and LipForensics [20] that captures unnatural
mouth motions.

Results on FF++ and Celeb-DF. Firstly, we evaluate our HSTNet on the
high-quality FF++ dataset and Celeb-DF dataset. Table 1 illustrates the com-
parison between our model and SOTA methods. It is evident that our method
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outperforms the most of opponents especially on Deepfakes setting with 100%
accuracy and is slightly lower than the scores of SOTA method STIL on other
two settings. The comprehensive evaluation of the results on four manipulated
datasets in Table 2 indicates that the accuracy of our method achieves a sig-
nificant improvement compared with frame-based methods. The reason for this
improvement is mainly the local features extracted by the CNN branch and
the global spatio-temporal inconsistency captured by the Transformer branch,
which provids more coherent and complete information for the whole network.
Meanwhile, Fig. 4 also illustrates this point of view.

Table 3 illustrates that our HSTNet outperforms all compared counterparts,
e.g., 0.22% higher accuracy than STIL [19] on the Celeb-DF dataset. It indicates
that our video-based hybrid model better handles the spatio-temporal inconsis-
tency than frame-based methods. And it strongly demonstrates that the FAB
modules between the CNN branch and the Transformer branch extracted better
spatio-temporal features than vanilla two-stream neural networks did.

Generalization capability on unseen datasets. In this section, we assess
the generalization capability of our HSTNet that is trained on FF++ (HQ) with
multiple techniques and tested on unseen manipulation datasets, such as Celeb-
DF and FaceShifter. In Table 4, we compare our method with other SOTA models
based on frames or videos. HSTNet achieves the best performance on Celeb-DF
and DFDC datasets with 4.27% AUC higher than Multi-task [40] and 2.10%
AUC than CNN-aug [50], respectively. On the FaceShifter dataset, our method
is in second place with only 1.11% AUC lower than Face X-ray [29]. These results
in Table 4 verify that our HSTNet has better generalization ability on unseen
datasets.

Fig. 4. Visualization of feature analysis for successive frames in videos clips from four
different manipulation datasets. The rows beneath original video clips represent corre-
sponding heatmap visualization results. Note that the warmer color indicates a higher
detected region and a more suppressed background.
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Table 4. Cross-dataset generalization capability evaluation. Video-level AUC (%)
on Celeb-DF, FaceShifter (FShifter) and DFDC after training on FaceForensics++
(FF++). Part of the results are from [19]. The best result are highlighted.

Method Celeb-DF Fshifter DFDC

Xception 73.70 72.0 70.90
CNN-aug 75.6 65.70 72.10
Patch-based 69.6 57.80 65.60
Face X-ray 74.76 92.80 65.50
CNN-GRU 69.8 80.80 68.90
Multi-task 75.70 66.00 68.10
D-FWA 64.60 65.50 67.30
STIL 75.58 - -
Ours 79.97 91.69 74.20

4.3 Ablation Study

We conduct experiments to further demonstrate the effectiveness of FAB and
VSB module in our proposed HSTNet. On the one hand, we compare the results
of whether FAB introduces time-channel attention or not. Without time-channel
attention, FAB will directly perform down-/up-sampling operations and add the
two features at pixel level. On the other hand, we explore the effects of different
choices on the outputs of two branches, including only convolution vector, only
transformer vector, simple concatenated vector, and output of VSB. The results
are shown in Table 5. Apparently, both FAB and VSB have significant effec-
tiveness in improving the performance. In particular, FAB with time-channel
attention outperforms the other 0.14% in terms of AUC, which states its supe-
riority in integrating short- and long-range information. In addition, selecting
the output of VSB for classification achieved the best effect and surpassed the
second place by 0.23% demonstrating VSB is the best choice for final prediction.

Table 5. Ablation study results of HSTNet with different model capability. Video-level
AUC (%) on FF++ dataset is reported. TC means Time-channel operation in FAB
and VSB modules. The best result are highlighted.

Model FF++ (AUC)

FAB Structure FAB (w/o TC)-VSB (w TC) 99.04
FAB(w TC)-VSB (w TC) 99.20

VSB Structure FAB(w TC)-VSB (conv) 98.82
FAB(w TC)-VSB (trans) 98.81
FAB(w TC)-VSB (concat) 98.95
FAB(w TC)-VSB (w TC) 99.20
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4.4 Visualization

By using the Grad-CAM method [45], we visualize the heatmaps of the last
feature extraction layer of HSTNet to illustrate the locations of spatio-temporal
inconsistencies. As depicted in Fig. 4, our HSTNet can locate the unnatural parts
of the fake videos not only from the local details, but also from the global consis-
tency. In particular, for those frames that look very real, such as the frames from
NeuralTectures at the bottom right of Fig. 4, our method can pay more attention
to the positions where there are inconsistencies in the temporal dimension.

5 Conclusions

In this paper, we propose a Hybrid Spatio-Temporal Network (HSTNet) to detect
forgery videos. Specifically, our HSTNet utilizes a hybrid architecture consisting
of a 3D CNN branch and a spatio-temporal transformer branch to jointly learn
short- and long-range relations in space and time. Due to the feature mismatch-
ing between the two branches, we design a Feature Alignment Block (FAB) to
recalibrate the features and fully integrate them in scales and semantics. We
also introduce a Vector Selection Block (VSB) to combine the outputs of the
two branches and emphasize essential features for final classification. Extensive
experiments illustrate that HSTNet produces state-of-the-art overall results.
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Abstract. In the process of document digitization, document images
captured by mobile devices suffer from physical distortion, which is detri-
mental to subsequent document processing. Geometric information of
the distorted document images provide global and local constraints that
can assist in document dewarping. In this paper, we propose a novel
document dewarping method which focus on utilizing the geometric con-
trol points such as document boundaries and textlines. Specifically, our
method first extracts the boundary source control points and textline
source control points and predicts their corresponding forward mapping
as target control points. Eventually the sparse mapping between control
points is converted into a dense backward mapping by Thin Plate Splines
interpolation. Our method can obtain the backward mapping directly
and explicitly by interpolation between control points, without solving
the time-consuming optimization problem. Quantitative and qualitative
evaluation show that our method can dewarp document images with
various distortion types, and improve the inference speed by a factor of
three over the existing geometric element based rectification methods.

Keywords: Document Dewarping · Geometric Control Points · Deep
Learning

1 Introduction

With the advent of the information age, digital document images as an important
carrier of information, have been widely used in all aspects of social life because
of the advantages of easy storage and intelligent processing. However, in the pro-
cess of document digitization, the captured document images may be deformed
due to the unavoidable physical deformation, the shooting angle of the camera,
lighting conditions. These distortions seriously hinder the automated extraction
and analysis of document image content. To this end, researchers have proposed
many approaches for the rectification of deformed document images.

Early document rectification methods are mainly based on reconstructing
the 3D shape of document images. Some methods estimate the 3D shapes by
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H. Lu et al. (Eds.): ACPR 2023, LNCS 14408, pp. 265–278, 2023.
https://doi.org/10.1007/978-3-031-47665-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47665-5_22&domain=pdf
https://doi.org/10.1007/978-3-031-47665-5_22


266 R.-X. Li et al.

using additional equipment [1,2,4] or require multi-view images [5–7], which lim-
its their applicability. Some methods model deformed documents as parametric
surfaces and solve for the corresponding parameters by shading [8], text lines [9],
and boundaries [10] of the document. However, the parametric model is difficult
to handle complex deformation cases.

Fig. 1. Input distorted document images and the boundaries and textlines.

Deep learning-based document dewarping methods exhibit greater robust-
ness and generality. To improve the applicability and performance of document
dewarping methods. DocUNet [15] predicts the forward mapping by a stacked U-
Net. DewarpNet [16] estimates the 3D shape and backward mapping of distorted
documents. DocTr [22] is the first method to introduce transformer for document
rectification. FDRNet [25] focuses on high-frequency components. Marior [23]
follows a progressive strategy to iteratively dewarp the documents. PaperEdge
[24] incorporates real-world document images to improve document unwarping.
However, most deep learning-based methods directly predict the warping flow,
ignoring the geometric information of the documents, such as boundaries and
textlines, as shown in Fig. 1). Specifically, document boundaries and textlines
should be horizontal or vertical. This provides strong supervision information
for document rectification. In order to obtain the warping flow. RDGR [26]
solves the optimization problem using the detected document boundaries and
text lines as constraints. DocGeoNet [27] learns the geometric elements as aux-
iliary information and use the feature maps of textline detection branches to
predict mapping flow.
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On the one hand, solving the optimization problem to obtain the mapping
flow is very time-consuming and can be replaced by training a neural network; on
the other hand, using the feature maps of geometric elements implicitly ignores
part of the explicit spatial mapping information. Motivated by these two aspects,
in this paper, we propose a novel approach to rectify distorted document image
explicitly uses the geometric information without time-consuming optimization
process. More precisely, we first detect the boundaries points and textlines points
of the distorted document image. Then we estimate their corresponding forward
mapping points in the rectified image through a neural network. Finally, we
consider the geometric element points and the corresponding forward mapping
points as source control points and target control points, respectively, and take
advantage of Thin plate splines interpolation to convert the sparse mapping
between control points to the final dense mapping flow, we use bilinear sampling
to generate the rectified images through the dense mapping flow.

In summary, the contributions of our paper are as follows:

– We propose a novel document rectification method based on document geo-
metric control points, which turns the time-consuming optimization problem
required to obtain a mapping flow into the interpolation between pairs of
control points.

– We conduct quantitative and qualitative experiments on the DocUNet Bench-
mark [15]. Experiment results show that our method based on geometric
element control points can rectify various deformed document images and
improve the inference efficiency.

2 Related Work

Document dewarping has been studied for many years. In this section, We cate-
gorize document dewarping methods into two groups: hand-crafted feature based
methods and deep learning based methods.

2.1 Hand Crafted Features Based Methods

Most traditional hand-crafted methods rectify the document images by recon-
structing the 3D shape of the distorted document images. Some of these methods
used auxiliary device. Brown and Seales [2] employed a structured light projector
system and design a mass-spring particle system to flatten the non-planar sur-
face. Zhang [1] used a dedicated laser range scanner to capture the 3D shape of
the warped document and restored the document by physically-based modeling
technique. Yamashita [3] used a stereo vision system to correct and merge two
images from two cameras whose directions of optic axes are different from each
other. Meng [4] utilized two structured beams to recover the document curves
and solved a system of ordinary differential equations to flatten the image. These
methods rely on special devices and are limited in practical applications.

Some methods recover the 3D representation multi-view 3D reconstruction.
Koo [5] exploited two view images to reconstruct the surface. Tsoi [6] combined
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multiple images of bound and folded documents and transformed them into a
common coordinate frame. You [7] presented a ridge-aware surface reconstruc-
tion algorithm and unwrapped the surface by robust conformal mapping. The
limitation of this type of method is that is difficult to obtain multi-view images.

To avoid using additional devices and multi view images, another type of
method assume that the document can be modeled as a parametric model and
estimate the corresponding parameters. Cylindrical surface is the most common
model. [12] modeled the curved documents as cylindrical surfaces and compute
the shape of the document using Shape from shading. Meng [13] estimated the
cylindrical surface parameters through weighted majority voting on the vector
fields and solved an ordinary differential equation to obtain the spatial directrix
of the surface. Non-Uniform Rational B-Splines (NURBS) are another paramet-
ric model. Hironori [14] defined the warping model of a document image as a
set of cubic splines and fitted each cubic spline to a text line or a space between
text lines. Some early work took advantage of layout elements such as textlines
and document boundaries. Among them, Brown [10] compute a corrective map-
ping to undo common geometric distortions via the 2-D boundary of the imaged
material. He [11] extracted page boundary and remove the perspective and geo-
metric distortions of a curled page. Cao [9] locate the textlines and get several
projections of direcrixes, then get the mapping from the warping 2D image to
the rectified 2D image. However, these low dimensional parametric model are
difficult to handle complex deformation.

2.2 Deep Learning Based Methods

Traditional hand-crafted methods depend on assumptions on surface geome-
try or special devices, which limited the applicability. With the development
of deep learning research, researchers began to explore deep networks for doc-
ument rectification. DocUNet [15] is the first deep learning based method to
unwarp distorted documents, it proposed a stacked U-Net to predict the for-
ward mapping. Das [16] contribute the Doc3D dataset, which is the first and
largest document image dataset with multiple kinds of annotations, and propose
DewarpNet to predict 3D coordinates, backward mapping of distorted docu-
ments. Liu [19] propose a Adversarial Gated Unwarping Network (AGUN) to
predict the multiple resolutions unwarping grid and generate visually pleasing
results based on visual cues. Li [20] learn the distortion flow on small image
patches rather than the entire image and then stitch the patch results in the
gradient domain. Das [21] design a novel fully-differentiable feature-level stitch-
ing module to make piece-wise unwarping networks end-to-end trainable. Xie
[17] propose a novel framework for both removing background and estimating
pixel-wise displacements using a fully convolutional network (FCN). Moreover,
[18] they use a simple Encode structure to effectively estimate control points
and reference points and obtain backward mapping by interpolation method.
Moreover, Feng [22] introduce Transformer to address geometry and illumination
distortion of the document images. Then, Feng [27] introduce geometric repre-
sentation such as 3D shape and textlines and performs representation learning
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to promote the performance of network. Xue [25] handles document restoration
by focusing on high-frequency components in the Fourier space and dewarps
documents by a flexible Thin-Plate Spline transformation. RDGR [26] learns
the boundary points and the pixels in the text lines and obtain the final forward
mapping by solving an optimization problem with grid regularization term. Ma
[24] simultaneously using strong supervision of synthetic data and weak supervi-
sion of real data to train the network where only mask annotation of document
regions is required for real data.

Although DocGeoNet [27] and RDGR [26] also detect the geometric ele-
ments of the distorted documents, DocGeoNet implicitly exploits the features
of textlines by means of representation learning to predict the warping flow,
RDGR needs to solve a time-consuming optimization problem. Different from
the above two methods, we explicitly exploit the geometric elements and their
corresponding forward mapping points to interpolate the warping flow.

3 Approach

Similar to many deep learning based methods, the ultimate goal is to obtain a
dense mapping flow, such as forward mapping flow F(x, y), which represents a
pixel (x, y) in the distorted image should be map to (u, v) in the rectified image:

F (x, y) = (u, v) (1)

And backward mapping flow B(u, v), values at coordinates (u, v) represents the
coordinates of the pixels in the distorted input image:

B(u, v) = (x, y) (2)

Inspired by Xie [18], instead of directly estimating the dense warping flow,
our method predict the sparse control points, i.e. boundaries points and textlines
points, and then perform thin plate spline (TPS) interpolation to convert the
sparse mapping into a dense backward mapping flow.

More specifically, in order to obtain the two groups of control points, i.e.
source control points and target control points, needed for the TPS calculation.
We first detect the boundary points and the textline points in the distorted doc-
ument images as the source control points. Then, we predict the corresponding
positions of boundary points and textline points on the rectified image as target
control points. After obtaining the dense mapping flow, we sample the corre-
sponding pixel value in the input distorted image to yield the rectified results.

3.1 Network Architecture

As shown in Fig. 2, our network structure is divided into two parts: top and
bottom. The top part is the boundary branch and the bottom part is the textline
branch. Both branches aim to extract source control points of the distorted
document images and predict target control points of geometric elements.
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Boundary Source Control Points Extraction. Given an distorted document
ID ∈ R

H×W×3. We use a DocUNet [15] to regress the backward mapping B̂ ∈
R

H×W×2 of the distorted image as the source control points. According to the
definition of backward mapping B̂ , the values (x, y) in first row, first column,
last row, last column corresponding to the coordinates of the top, left, bottom,
right boundary.
Boundary Target Control Points Prediction. The corresponding target
control points are the position of the boundaries in the forward mapping which
satisfy the following conditions: The value of v equals 0 in the forward mapping
value of the top boundary, the value of v equals 1 in the forward mapping of the
bottom boundary. Similarity, the value of u equals 0 in the forward mapping of
the left boundary and the value of u equals 1 in the forward mapping of the right
boundary. And u or v values are equally spaced. Thus based on these properties
we can directly obtain the target control points of the document borders without
using additional neural networks to predict the target control points.

Fig. 2. The network architecture of our method. The input is an distorted document
image. Top branch detects the boundary control points of the document and directly
obtain the target control points of boundary according to the geometric properties. The
bottom branch detects the textline control points and predicts the forward mapping as
target control points. Finally, the sparse mapping between source control points target
control points will be interpolated by Thin Plate Splines as dense backward mapping.

Textline Source Control Points Extraction. Textlines in distorted docu-
ments reflect local deformation information and can provide strong constraint
for document unwarping. A curved textline should be rectified to a horizontal or
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vertical line. We use a UNet to extract textlines in distorted document images
in a semantic segmentation way, the network outputs a confidence map T̂ ∈
R

H×W×1 in the range of (0, 1) and filtered by a threshold θ. Then morpho-
logical operations are performed on the filtered mask to remove burrs from the
obtained text line segmentation masks and extract the connected components
and sample at equal intervals to get the textline control points.
Textline Target Control Points Prediction. After obtaining the bound-
ary control points and textline source control points, the forward mapping is
obtained by solving the optimization problem in RDGR [26], which is time con-
suming, and the backward mapping is generate by the forward mapping through
LinearNDinterpolator. We simplify this process into the prediction of the for-
ward mapping F̂ ∈ R

H×W×2 through a Transformer encoder-decoder [22] to
capture the long-range deformation information. The forward mapping values
at the textline source control points are the textline target control points.

3.2 Post-processing

As mentioned above, textlines should be corrected to horizontal lines or vertical
lines, which means that the forward mapping of the points in the same textline
should have the same u or v values, we remove the outliers from the forward
mapping values by a simple linear segment fitting method. If the forward map-
ping value of a point deviates far from the fitted straight line, then this point
is removed. The remaining points are fitted to the straight line again, and the
value on the straight line is used to replace the original forward mapping value.

For example, for horizontal text lines, given the corresponding forward map-
ping Ff = {(u1, v1), (u2, v2), ..., (uN , vN )}, we fit a horizontal line f(v) = a,
a ∈ (0,H) by least squares method. If the distance of the point (ui, vi) from the
line is greater than a threshold τ then remove the point.

Finally, we integrate boundary control points and text line control points
as source control points, and the corresponding forward mapping as target con-
trol points, and employ thin plate splines(TPS) interpolation to interpolate the
sparse mapping between control points into a dense backward mapping.

3.3 Loss Functions

We define three loss function to guide the model regress the boundary source
control points through backward mapping, extract textline source control points
by means of semantic segmentation and predict the corresponding target control
points through forward mapping.

The first loss Lbm defined as the L1 distance between predicted backward
mapping B̂ and the ground truth Bgt:

Lbm = ‖Bgt − B̂‖1 (3)
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The textline segmentation loss Ltext we use in this work is the binary cross-
entropy loss:

Ltext = − 1
NT

N∑

i

[yi log p̂i + (1 − yi) log (1 − p̂i)] (4)

where NT is the number of elements in textlines,yi and p̂i ground-truth and
predicted probability.

The forward mapping loss Lf defined as the L1 distance between predicted
forward mapping F̂ and the ground truth F :

Lf =
1

Nf

Nf∑

i

‖Fi − F̂i‖1 (5)

where Nf is the number of foreground area. Following [17], we add a local smooth
constraint term to expect the predicted forward mapping trend to be as close to
the ground-truth flow as possible in a local region:

LLsc =
1

Nf

Nf∑

i

‖
k∑

j=1

(Fj − F̂j) − k × (Fi − F̂i)‖1 (6)

Total losses of forward mapping prediction branch are defined as a linear
combination:

Lfm = Lf + αLLsc (7)

3.4 Training Details

In our work, the input resolution of boundary module is 128×128. The input
resolution of boundary module is 448×448 in order to detect the textlines more
precisely. The network is trained with Adam optimizer and the learning rate of
1×10−4. The threshold of confidence map θ is set as 0.3.

4 Experiments

4.1 Datasets

We train our network on the Doc3D dataset and evaluate the quantitative results
on the DocUNet benchmark.
Doc3D. Doc3D dataset consists of 100k images with several kinds of annota-
tions, including 3D coordinate map, albedo map, UV map, backward mapping,
etc. It is created by using real document data and rendering software according
to following steps: captured 3D meshes from deformed real documents and ren-
dered the images in Blender. We randomly split 90k images for training and 10k
for validation.
DocUNet Benchmark. This benchmark contains 130 real world warped doc-
uments photos captured by mobile cameras with different kinds of distortions
and environment. The types of documents are various, including letters, aca-
demic papers, magazines, etc.
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4.2 Evaluation Metrics

We use two groups of evaluation metrics:(1) Image Similarity and (2) Optical
Character Recognition (OCR) accuracy to quantitatively evaluate the perfor-
mance of our method. For image similarity, we use Multi-Scale Structural Sim-
ilarity (MS-SSIM) and Local Distortion (LD). For OCR performance, we use
Character Error Rate (CER) and Edit Distance (ED).
MS-SSIM. Structural SIMilarity (SSIM) [29] computes the similarity between
two images by combining the luminance, contrast and structure comparison mea-
sures. Multi-Scale Structural Similarity (MS-SSIM) [28] is the weighted sum of
SSIM at different sampling scales, which supplies more flexibility than previ-
ous single-scale structural similarity methods in incorporating the variations of
viewing conditions. The weights for each scale are set as in the previous work
[16].
Local Distortion. Local distortion(LD) is computed by performing dense image
registration using SIFTflow [30] between the rectified image and the ground truth
image. In the same way as before, all the unwarped results and groundtruth
scanned images are resized to a 598400 pixel area.
ED and CER. Edit Distance(ED) is a metric to quantify how similar two strings
are to one another, computed by counting the minimum number of operations
(i.e. deletions(d), insertions(i) and substitutions(s).) required to transform one
string into the other. Character Error Rate (CER) indicates the percentage of
characters that were incorrectly predicted, it is calculated based on the Edit
Distance:

CER =
d + i + s

N
(8)

where N is the number of characters in the reference string obtained from the
groundtruth scanned document images. We use Pytesseract (v0.3.8) as the OCR
engine to evaluate the text recognition performance of our method. Following
DocTr [22], we selected 60 images with rich text information from DocUNet
benchmark [15].

4.3 Results

We quantitatively and qualitatively compare our method with recent state-of-
the-art deep learning-based methods. For quantitative evaluation, we compare
the MS-SSIM, LD, ED, CER with other methods on DocUNet benchmark, we
also compare whether the methods use geometric elements. As shown in Table 1.
Our method outperforms the DocUNet [15] and DocProj [20] method in all
performance aspects, outperforms FCN-based methods in OCR performance.

We also perform an qualitative evaluation on real world document images by
comparing our rectification results with other methods of providing rectification
results by visualization. As shown in Fig. 3, our method allows the boundaries
to fit around the image and the textlines to be more horizontal.

In addition to image similarity and OCR performance, We also compare the
inference speed (expressed in Frames Per Second or FPS) with RDGR [26]. Our
method and RDGR both detect document boundary points and text line points,
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Fig. 3. Qualitative comparisons with other deep learning based methods.

Table 1. Comparison of our method with other deep learning-based methods on
DocUNet benchmark, “↑” means the higher the better, “↓” means the lower the better.
“GeoE” means whether geometric elements are utilized

Methods GeoE MS-SSIM↑ LD↓ ED↓ CER↓
DocUNet [15] × 0.4103 14.19 1552.22 0.5089

DocProj [20] × 0.2946 18.01 1165.93 0.3818

AGUN [19] × - - - -

FCN-based [17] × 0.4477 7.84 1031.40 0.3156

DewarpNet [16] × 0.4735 8.39 525.45 0.2626

DDCP [18] × 0.4729 8.99 745.35 0.2102

Marior [23] × 0.4780 7.44 593.80 0.2136

PaperEdge [24] × 0.4724 7.99 375.60 0.1541

RDGR [26] � 0.4968 8.51 420.25 0.1559

DocGeoNet [27] � 0.5040 7.71 379.00 0.1509

Ours � 0.4777 8.68 506.85 0.1968
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the difference is that RDGR solves the optimization problem based on these
geometric element points to calculate the forward mapping, while we introduce
a network to predict forward mapping and Thin plate splines interpolation. We
compared the model size and FPS of our method and RDGR, as shown in Table 2.
Due to the introduction of the forward mapping prediction branch, the number
of parameters of our model is larger than RDGR. Our method has three times
the inference speed of RDGR even though it has 35% more parameters. This is
because RDGR requires Alternating Direction Method of Multipliers (ADMM)
for Quadratic Programming to solve the optimization problem, but the predicted
forward mapping and linear fitting can be computed quickly.

Table 2. Comparison of Frames Per Second (FPS) and number of parameters of our
method with RDGR, “↑” means the higher the better, “↓” means the lower the better.

Methods FPS↑ Para/M

RDGR [26] 0.50 49.46

Ours 1.68 66.90

4.4 Ablation Study and Limitation Discussion

Fig. 4. Visualization of the rectification results using different geometric control points.
After adding the textline control points, the textlines in the red box is more horizontal
(Color figure online)

We conduct ablation study to investigate the influence of geometric elements.
As shown in Table 3. The use of geometric elements can provide global and local
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constraint information for document unwarping, allowing the model to achieve
better performance. High image similarity can be achieved using only docu-
ment boundary points due to the fact that the document’s border reflects global
deformation information and also serves as a demarcation between foreground
and background. And the OCR performance can be further improved by adding
textline points, which proves that the addition of textlines makes the rectified
document more readable, as can be seen in Fig. 4, the textlines are straighter.
Note that we did not do experiments using only textline control points, because
all distorted documents have boundaries but not necessarily textlines.

Table 3. The result of using different geometric elements. “↑” means the higher the
better, “↓” means the lower the better.

Methods MS-SSIM↑ LD↓ ED↓ CER↓
Boundary 0.4860 8.62 788.03 0.2800

Boundary+Textline 0.4777 8.68 506.85 0.1968

However, it is worth noting that there is a slight decrease in image similarity
when using both boundaries and textlines. This is a limitation of our approach.
The reason is that the forward mapping values of textlines are not predicted
accurately enough and there are still isolated deviation points even after post-
processing filtering. Forward mapping values with large errors can cause local
areas of the image to be stretched causing distortion. In the future, We will
improve the accuracy of forward mapping prediction by introducing constraint
relations.

5 Conclusion

This paper we propose a novel framework to dewarp distorted document image.
Different from many existing methods to directly predict the dense mapping
flow, we focus on document boundary control points and textline control points
and the corresponding forward mapping and then take advantage of thin plate
splines(TPS) interpolation to convert the sparse mapping between control points
to obtain the final dense backward mapping. The geometric control points can
provide global and local structure information for dewarping. Extensive experi-
ment results show our method can achieve better performance. In addition, we
analyze the limitations of our approach. In the future, we will focus on improving
the accuracy of the forward mapping prediction and introduce some constraints.
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Abstract. Fine-Grained Visual Classification (FGVC) aims to differen-
tiate visually similar but subtly different subordinate categories of the
same basic category. However, current methods primarily exploit deep-
layer features to locate to the strong salient part of the network. This
paper finds that some subtle but discernible parts and the rich details in
shallow-layer features are also valuable for classification. Consequently,
this paper proposes a fine-grained visual classification framework that
integrates multiple discriminative parts and multi-layer features. Our
framework consists of two modules: 1) The attention map based locate-
mine module locates the most discriminate part and masks it, thereby
encouraging the network to mine other discriminative parts. 2) The
multi-layer feature fusion module combines shallow-layer and deep-layer
features to enrich local details in discriminative features. We also intro-
duce an adaptive label loss to distinguish categories with high similarity.
Experimental results show that our approach achieves excellent perfor-
mance on three widely used fine-grained benchmark datasets.

Keywords: Fine-grained visual classification · Multi-discriminative
parts · Multi-layer features · Adptive label loss

1 Introduction

In recent times, with the rapid advancements in artificial intelligence, fine-
grained vision classification has been widely applied in the fields of autonomous
driving [1], biological protection [30] and cancer detection [21]. Unlike coarse-
grained vision classification, which only needs to identify the basic class of
objects, the objective of FGVC tasks lies to recognize subordinate categories
within a given fundamental category, such as bird breeds [29], car types [16] and
airplane models [23]. Nevertheless, due to the extremely high visual similarity
among subordinate categories and the presence of variations in scale, pose, and
illumination, etc., they exhibit small inter-class differences and large intra-class
differences, as displayed in Fig. 1. Moreover, a single basic category object can
be encompassed hundreds or even thousands of subordinate categories. These
factors have brought great challenges for fine-grained visual classification, and
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Fig. 1. Partial samples of two subordinate categories of gulls in the CUB-200-2011
dataset. Within gulls of the same subordinate category, there is considerable variations
in terms of scale, pose, and illumination (first row), but gulls of different subordinate
categories are visually very similar (first column), which making fine-grained visual
classification difficult.

it is often difficult to achieve satisfactory results with only the current state-of-
the-art coarse-grained convolutional neural networks (CNNs), such as VGG [24],
ResNet [12], and Inception [26].

To tackle the above challenges, numerous methods [2,14,17,34] have
employed manually annotated bounding boxes and part annotations (e.g., bird
head, body) to aid locate target objects or discern parts. However, this reliance
on extensive manual intervention introduces drawbacks such as high cost and
subjectivity, rendering it less suitable for fine-grained classification tasks. Accord-
ingly, researchers have recently shifted their focus to weakly supervised fine-
grained visual classification, where only image labels are used for supervision.
These methods can be categorized into two sets.

The first set is based on part locating methods [9,11,31,36]. These methods
work by identifying the highly discriminative parts and then taking advantage
of specific feature extraction techniques to learn discriminative parts. Yet, the
disadvantage of these approaches is their tendency to care about the most promi-
nent parts within the network, eliminating other irrelevant parts to gain the
ultimate feature representation. We contend that once the most salient parts are
masked or suppressed, the network is compelled to explore other discriminative
parts, thus providing greater amount of intricate and supplementary informa-
tion. Motivated by this intuitive and feasible idea, we introduce the attention
map based locate-mine module. This module represents the parts or visual repre-
sentations of objects through the enhanced map generated by the enhancement
mechanism. By randomly selecting a channel from enhanced map as the atten-
tion map to assist in localize discriminative parts, and in conjunction with the
mining mechanism, further extracting other discriminative parts.

The second set of approaches is based on fine-grained feature learning
[15,19,32]. These approaches take into consideration that low-dimensional fea-
tures may not adequately capture the distinctions for effective classification.



Multi-discriminative Parts Mining for Fine-Grained Visual Classification 281

Consequently, they aim to enhance feature representation by learning higher-
dimensional features. Lin et al. [19] introduced a bilinear architecture that lever-
ages the product of feature maps obtained from two separate CNNs to acquire
higher-order correlations, thus improving visual recognition performance. Yu et
al. [32] further explored and proposed a method of applying bilinear pooling
on features at different layers of the network, thereby capturing the interactive
relationships between multi-layer features. They demonstrated the performance
improvement achieved by incorporating shallow-layer features in fine-grained
classification tasks. In fact, deep-layer features contain global contextual infor-
mation and high-level semantic representations in the network. However, due to
their coarse spatial resolution, these features often overlook fine-grained details
in local regions. Conversely, shallow-layer features possess more abundant local
details and finer spatial information, which are crucial for distinguishing local
parts in fine-grained datasets. By exploiting the merits of both of deep-layer and
shallow-layer features, this paper introduces a fusion approach that combines
deep-layer and shallow-layer features to preserve global contextual information
in discriminative parts while enhancing the perception of local details.

Furthermore, we observe that existing studies are susceptible to misclassifica-
tion when dealing with some categories with high similarity. This is because these
studies usually use the cross-entropy loss function, which assigns equal weight to
all categories and ignores the variations in discrimination difficulty and impor-
tance between different categories. To address this limitation, we design adaptive
label loss methods that effectively allocate more attention to challenging cate-
gories and thus enhance their discrimination.

In summary, the main contributions of this paper are summarized as follows:

• We propose an attention map based locate-mine module, which can precisely
locate discriminative parts and mine other discriminable parts;

• We propose a multi-layer feature fusion module, which combine the comple-
mentarity of multi-layer features to enrich the detailed information in the
discriminate parts;

• We design an adaptive label loss to improves the network’s ability to classify
similar categories;

• Extensive experiments conducted on three widely used fine-grained classi-
fication benchmark datasets (i.e., CUB-200-2011, Stanford-Car and FGVC
Aircraft) demonstrate the effectiveness of our method and achieve excellent
performance results.

2 Relate Work

In recent studies on fine-grained image recognition, there has been a dedicated
effort to locate discriminative parts and learn fine-grained features, resulting in
a remarkable advancement in recognition performance.
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2.1 Part Locating

The detection of subtle variations in key parts is of utmost importance for rec-
ognizing easily confusable categories. Early approaches [8,35] advocated detect-
ing parts by strongly supervised learning using bounding boxes and part anno-
tations. However, this labor-intensive approach is not practical for real-world
problems. Recent studies have adopted a weakly supervised approach by pro-
viding only class labels, thus alleviating the need for expensive part annotations
and localized information regions. Fu et al. [9] designed the Recurrent Attention
Convolutional Neural Network (RA-CNN) to localize local regions from coarse to
fine by iteratively amplifying local discriminative parts, and enhanced multi-scale
feature learning by ranking loss. To simultaneously generate multiple attention
locations, Zheng et al. [36] exploited the Multi-Attention Convolutional Neural
Network (MA-CNN), which introduced a channel grouping loss to generate mul-
tiple rigions by clustering. Yang et al. [31] used a navigator module to gradually
learn the ability to select distinctive local regions through self-supervised learn-
ing. Zhang et al. [33] proposed the MMAL framework, which is composed of
multiple branches that can learn feature information at different scales. Zheng
et al. [37] adopted a hierarchical approach, using multiple attention modules to
progressively focus on information regions at different levels of granularity. Nev-
ertheless, these methods primarily emphasize the highly discriminative parts and
neglect some subtle but distinguishable parts. To overcome this limitation, we
propose a module that not only localizes discriminative parts but also explores
other discerning parts.

2.2 Fine-Grained Feature Learning

In fine-grained visual classification tasks, it is crucial to fully learn the recognized
features. Due to the small differences between subordinate categories, extract-
ing deep semantic features using CNNs only can limit further representation
learning. To tackle this issue, Lin et al. [19] devised a bilinear architecture that
exploits the outer product of feature maps from two separate CNNs to acquire
higher-dimensional feature information for visual recognition tasks. However, the
computational capacity is constrained due to the significant computational bur-
den caused by bilinear pooling. They [18] a step further and improved the compu-
tational efficiency with learnable dimensionality reduction matrix and grouping
operations. To reduce computational complexity while maintaining compara-
ble recognition performance, Gao et al. [10] transformed the traditional bilinear
pooling into a more compact form using random mapping and the Hadamard
product. Kong et al. [15] further reduced the computational complexity by lower-
ing the rank of the bilinear eigenmatrix. In addition, Cui et al. [4] extract richer
feature representations by introducing kernel functions. However, most existing
CNN models only use deep-layer semantic features for the final classification,
while ignoring the benefit of shallow-layer local features. Therefore, Yu et al.
[32] capture the feature interaction information between different levels through
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hierarchical bilinear pooling operations. Inspired by their utilization of shallow-
layer features, we propose an approach to extract diverse various discriminative
and complementary visual cues from multiple layers of features instead of a sin-
gle layer. Moreover, we introduce adaptive label loss to incentivize the network
to acquire more generalized features.

3 Method

In this section, we provide a detailed description of the proposed framework.
The overall architecture is illustrated in Fig. 2. It is formed by two modules: the
Attention Map based Locate-Mine module (AMLM) and the Multi-layer Feature
Fusion module (MFF). The AMLM module locates the strong discriminative
part and explores other discriminative parts. The MFF module fuses multi-layer
features to capture various visual cues that complementary the discriminative
parts. Furthermore, we design an adaptive label loss to focus more on highly
similar categories.

Fig. 2. The overall architecture of our proposed method consists of two modules:
the Attention Map-based Locate-Mine module (AMLM) and the Multi-layer Feature
Fusion module (MFF). The AMLM module uses the enhanced feature maps gener-
ated by the Enhancement Mechanism (EM) to facilitate visual perception of the part.
Through the Part Locating component (PL) and the Part Mining component (PM),
multiple discriminative parts in the target can be obtained. The MFF module comple-
ments the fine-grained details within the discriminative parts by fusing features from
multiple layers.

3.1 Attention Map Based Locate-Mine Module (AMLM)

Existing methodologies tend to excessively prioritize parts with elevated response
values while disregarding other nuanced but discriminative parts. To mitigate
the risk of the network fixating only on the most salient part and to get a larger
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number of discriminative parts, we introduce the attention map based locate-
mine module, as depicted in the orange dashed box within Fig. 2. This module
integrates enhancement mechanisms, part locating component, and part mining
component.

First the image Iimg is input into the pre-trained backbone network ResNet.
We use xn ∈ RH×W×C to denote the feature map output by the nth block in
the network, where n ∈ 1, . . . , N , H denotes the height of the feature map, W
denotes the width of the feature map, and C represents the size of the feature
dimension.

Enhancement Mechanism (EM). In the feature map xn, each channel has
a peak response region that corresponds to a specific part of the target, such
as a bird’s head, a car’s wheel, or an airplane’s wing. It is worth noting that
certain channels may yield peak responses that correspond to the same part.
When employing all channels for localization, the network may inadvertently
concentrate on similar parts, thereby getting in a lack of diversity in localization
results. To learn more diverse parts, we used a convolutional dimensionality
reduction operation, which integrates similar peak responses by reducing the
quantity of channels in the feature map, which can be represented by Eq. (1):

E = ReLU(BN(ConV (xn))) (1)

where xn denotes the feature map of the last block, ConV is convolution func-
tion. After performing the aforementioned operations, we obtain the enhanced
feature map E, which contains local part information.

To effectively integrate the transformed features and strengthen the infor-
mation associated with the parts, we add an attention module that incorporates
operations on both channels and spatial dimension. Specifically, the attention
mechanism applied to the channels performs global average pooling on the E
and combines it with one-dimensional convolution operations to acquire the
importance of parts within the channels. The process of generating the channel-
enhanced map EC , which can be written as Eq. (2):

EC = (σ(ConV 1D(GAP (E)) ⊗ E (2)

where GAP is the global average pooling, the ConV 1D is the 1D convolution,
the σ refers to the sigmoid function, and ⊗ denotes element-by-element multi-
plication.

Next, the EC will perform spatial operations. Specifically, the EC is first
subjected to global average pooling and global maximum pooling operations
along the channel dimension to highlight the information parts. Subsequently,
we apply convolution to generate a spatial attention mask, where each element
is normalized to a value from 0 to 1 with the help of sigmoid, which reflects the
importance of the parts in space. Finally, the spatial importance factor is multi-
plied with the channel enhanced map EC to obtain the final spatially enhanced
map ES , as shown in Eq. (3):
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ES = (σ(ConV [GAP (Ec);GMP (EC)])) ⊗ EC (3)

where σ is the sigmoid activation function. GAP and GMP refer to global
average pooling and global maximum pooling respectively, ⊗ refer to Hadamard
product. To get a specific part and learn its valuable information, we randomly
select one channel from the ES as the attention map to locate the target part,
and the attention map is denoted as A.

Part Locating (PL). Using the attention map A, the estimated position of
the part can be localized and more detailed local features can be extracted.
Specifically, we define locating mask M locate(u, v) based on a threshold valued
T locate. The locating mask M locate(u, v) can be obtained from Eq. (4):

M locate(u, v) =
{
1, if A(u, v) > T locate

0, otherwise
(4)

where (u, v) denotes a pixel on the attention map A. We choose the smallest
bounding box on M locate that encompasses the target part and covers the largest
connected region on the locating mask. By multiplying this localization result
with Iimg, we acquire the located image I locate. We then feed I locate into the
network and obtain the predicted results denoted as plocate.

Part Mining (PM). The mining operation, achieved through masking the
highly responsive part, thereby facilitating the exploration of other viable dis-
criminative parts. Similar to the locating operation, we remove response val-
ues above a threshold Tmine of the region, thus we obtaining the mining mask
Mmine(u, v), which can be expressed by in Eq. (5):

Mmine(u, v) =
{
0, if A(u, v) > Tmine

1, otheiwise
(5)

the mining mask Mmine(u, v) applied to the input image Iimg yields the image
after the mask overlay Imine. The prediction result based on Imine is denoted
as pmine. Since the attention map is removed from the image A high response
value part, the network will be encouraged to present other discriminative parts,
which means that the object can also be seen better.

3.2 Multi-layer Feature Fusion Module (MFF)

Previous works mainly rely on the feature map output from the last block of the
network as the feature representation and search for significant information in
it. Although it contains powerful semantic information, it has insufficient detail
information, which is detrimental to the FGVC task. Therefore, we propose the
Multi-layer Feature Fusion module(MFF), indicated by the blue dashed box
in Fig. 2. It utilizes features from different layers to improve the classification
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performance by complementing the detail information within the discriminative
features.

When performing feature fusion of different layers, due to the inconsistent
feature dimensions among these blocks are, we use convolution layers with batch
normalized to align them to a uniform feature dimension. Then, these features
are fed into the pooling layer to obtain a compact image representation. Finally,
these representations are sent to the classifier for classification, resulting in the
predicted results pn of the image. As shown in Eq. (6):

pimg
n = GAP (ReLU(ConV1(ReLU(ConV2(xn))))) (6)

where ConV1 and ConV2 are the convolution functions, ReLU is the activation
function, and GAP is the global average pooling. Finally, an image has a total
of N + 1 predictions, which will be aggregated into the final prediction.

3.3 Adaptive Label Loss

In the context of fine-grained recognition tasks, the selection of the appropriate
loss function is crucial for the model to be able to solve the problem effectively.
Cross-entropy loss is the most commonly used loss function, where equal weights
are assigned to each class. However, in a practical fine-grained visual classifi-
cation task, there exist variations in discrimination difficulty and importance
among different categories. To emphasize the difference between similar cate-
gories and motivate the network to learn common features, we devise an adaptive
label loss which transforms the labels of individual categories into probability
distributions. This method aims to allocate increased attention to challenging
categories that exhibit difficulty in discrimination, thus enhancing the network’s
classification capacity for similar classes. As shown in Eq. (7):

ỹl = εyl +
1 − ε

L
(7)

where ε refers to the proportion coefficient amongst 0 to 1, it regulates the
proportion of real label yl in the new label ỹl, l denotes the label vector y ∈ RL

of indexed elements. Thus, the adaptive label loss can be expressed by Eq. (8):

LAL(I) = −
N∑

n=1

L−1∑
l=0

ỹl
nlog(pln) (8)

Therefore the total loss is calculated by Eq. (9)

Ltotal = LAL(Iimg) + LAL(I locate) + LAL(Imine) (9)

4 Experiment

We validate the proposed method on three publicly available fine-grained visual
classification datasets: CUB-200-2011 (CUB) [29], Stanford-Cars (CAR) [16],
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and FGVC-aircraft (AIR) [23]. In order to ensure the fairness of the comparative
experiment, we implement our method using ResNet50 [12] pre-trained on the
ImageNet classification dataset as the backbone model. In the experiments, we
only use image labels without employing any additional auxiliary annotations.
We utilize an SGD optimizer with a momentum of 0.9, a weight decay of 2e-4,
and a total training period of 200. To ensure stable training, we adopt a cosine
annealing learning rate adaptation strategy. At the beginning of training, the
learning rate of the backbone layer is set to 0.0002, and the remaining layers
are set to 10 times the learning rate of the backbone layer. For the proportion
coefficients ε, we simply set {0.7, 0.8, 0.9, 1.0} in ascending order, since larger
values indicate higher confidence in class prediction.

4.1 Comparison with the Latest Methods

Table 1. Comparison results of our proposed method with state-of-the-art approaches
on three publicly available datasets. All the compared methods employ ResNet50 as
the backbone network.

Method Accuracy (%)
CUB CAR AIR

NTS [31] 87.5 93.3 91.4
DCL [3] 87.8 94.5 93.0
PA-CNN [37] 87.8 93.3 91.0
FDL [20] 88.6 94.3 93.4
DF-GMM [28] 88.8 94.8 93.8
PMG [7] 89.6 95.1 93.4
MMAL [33] 89.6 95.0 94.7
AP-CNN [6] 88.4 95.4 94.1
SnapMix [13] 87.8 94.3 92.8
FBSD [25] 89.3 94.4 92.7
FRA-MLFF [27] 89.5 94.8 93.0
CHRF [22] 89.4 95.2 93.6
CMN [5] 88.2 - 93.8
Ours 89.7 95.7 95.8

Table 1 presents the evaluation results comparing our proposed method with
recent approaches on three publicly available fine-grained visual classification
datasets. As shown in the table, utilizing ResNet50 as the backbone network for
all comparisons, our method consistently achieves the best performance across
all three widely-used datasets.
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Specifically, on the CUB dataset, our proposed approach achieves the best
performance among the listed methods. Meanwhile, our method gains an accu-
racy of 95.7% on the CAR dataset, surpassing the previous state-of-the-art accu-
racy achieved by PMG. On the AIR dataset, our method exhibits a performance
improvement of 1.1% over the top accuracy of MMAL, reaching a new state-of-
the-art accuracy of 95.8%.

Overall, the method proposed in this paper benefits from two advantages:1)
The attention map base locate-mine module learns discriminative features by
locating parts, and mines other valuable features by removing the strongly dif-
ferent part, which contributes to the performance improvement;2) By using the
learning of multi-layer features on the CNN backbone, our approach effectively
captures both high-level semantic information and low-level detailed informa-
tion. This complementary integration with distinctive features leads to improved
classification performance and more accurate localization.

4.2 Ablation Experiments

Table 2. Contribution of the proposed components and their combinations.

Method Modules(%) Acc
EM PL PM MFF AL-loss

(a) 85.5
(b) � 85.8
(c) � � 87.5
(d) � � � 88.7
(e) � � � � 89.3
(f) � � � � � 89.7

To assess the impact of each component and the devised adaptive label loss
on the performance improvement of the network, we conduct ablation exper-
iments on each module using the CUB-200-2011 dataset. The test results are
presented in Table 2. First, by adding the AME component into the ResNet50
backbone network, we achieved an accuracy of 85.8%, indicating that a series
of enhancement operations on the feature map contribute to the performance
improvement of the network. Subsequently, the addition of the PL component
resulted in an accuracy of 87.5%, an improvement of 1.7%, demonstrating that
the locating and learning object parts effectively improve accuracy. Moreover,
the inclusion of the PM component yielded a further improvement of 1.2%,
indicating that the network’s performance benefits from capturing multiple dis-
criminative parts. Taking it a step further, by incorporating MFF component, we
achieved an accuracy of 89.4%. This result demonstrates the beneficial impact
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of leveraging detailed information from the rich discriminative parts within the
network for fine-grained classification. Finally, when the adaptive label loss was
harnessed for supervised training, accuracy increased further to 89.7%, providing
evidence that the AL-loss does indeed improve the network’s performance.

4.3 Visualization

Fig. 3. Heatmaps of test samples from ResNet50 and our proposed method. Compar-
isons within each row reveal that our method exhibits a greater ability to attend to a
larger number of discriminative parts compared to ResNet50.

In order to demonstrate the effectiveness of our proposed method, we have
additionally provided visualizations of the heatmaps generated by both the
ResNet50 network and our network on a subset of test samples. As illustrated
in Fig. 3, the results clearly indicate that our method achieves superior accuracy
in locating complete objects and their corresponding parts.

5 Summary

In this paper, we present a novel fine-grained classification network. It introduces
the Attention Map-based Locate-Mine (AMLM) module to accurately locate
highly discriminative parts and explore other available discriminative regions
within the network, thereby facilitating the learning of valuable local part infor-
mation to achieve favorable classification performance. It introduces the Multi-
Layer Feature Fusion (MFF) module, which provides rich and detailed infor-
mation for the discriminative parts, promoting the network’s focus on subtle
but crucial local parts. The synergistic collaboration between these two modules
enables the network to perceive the holistic view of the target and extract more
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critical information. Moreover, the adaptive label loss also contributes to improv-
ing the discriminability between similar categories. Experimental results demon-
strate the remarkable performance of our approach on three widely adopted
benchmark datasets.
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Abstract. Geometric distortion, especially in extreme cases of scene distortion,
is a prevalent issue in images taken by Unmanned Aerial Vehicles (UAVs). This
research focuses on tackling this issue using a proposed approach that combines
cutting-edge computer vision and photogrammetry techniques. It combines pre-
cise feature matching and image-warping algorithms, resulting in a more straight-
forward approach. By utilizing a Graph Neural Networks-based strategy and fine-
tuning hyperparameters to strengthen the algorithm, the feature detection tech-
nique is further improved. To rectify spatial deformation within the scene, the
homography estimation, which merges the Direct Linear Transform (DLT) app-
roach with Singular Value Decomposition (SVD), is employed. Additionally, at
the image registration phase, outliers are rejected using the Random Sample Con-
sensus (RANSAC) technique. The image quality of the rectified images was eval-
uated using both objective and subjective image quality parameters. Overall, this
research produces visually appealing image output in both extreme scene distor-
tion correction and pair-wise image stitching applications, achieving favorable
assessment findings based on SSIM, PSNR, and PIQE image quality metrics.

Keywords: Nadir-based Distorted UAV Images · Homography-based
Transformation · Graph Neural Networks-based Feature Detection · Image
Registration · Rectified Aerial Images

1 Introduction

Unmanned Aerial Vehicles (UAVs) or drones have become increasingly popular in var-
ious applications including environmental monitoring, disaster assessment, and agri-
cultural inspections, due to their ability to capture high-resolution images from aerial
perspectives [1]. However, the images captured by drones often suffer from distortion,
specifically caused by the complex interaction between the camera sensor, lens, and
the three-dimensional scene [2]. This interaction is exacerbated by significant spatial
transformations and rapid changes in altitude and orientation during image acquisition
[3]. Geometric distortion is one of the prevalent issues in images acquired by UAVs
[4], particularly in nadir images which are taken from directly above a location, looking
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straight down towards the Earth’s surface. This distortion is termed as Extreme Scene
Distortion (ESD), which results in inaccuracies in spatial measurements, hinders the
extraction of reliable features, and impedes the subsequent analysis and interpretation
of the UAV acquired data.

Efficient correction of this geometric distortion is crucial particularly in UAV appli-
cations that require precise measurements and detailed scene reconstruction. In recent
years, significant progress has beenmade,with researchers exploringvarious approaches,
including camera calibration, image rectification, and image-warping techniques, tomit-
igate the effects of this type of distortion. However, the majority of these methods are
limited in their applicability to the extreme scene distortions introduced in this work, as
they often assume simplified scene models [5, 6].

By leveraging state-of-the-art techniques fromcomputer vision andphotogrammetry,
the researchers propose a method that combines robust feature matching and image-
warping techniques. This method is less complex and more straightforward compared
to non-direct solutions for mitigating the aforementioned problem. The outcomes of this
research could potentially enhance the quality and reliability of UAV-based applications,
enabling more accurate data analysis, decision-making, and interpretation.

The main contributions of this research work are (1) a simple approach that explores
the combination of state-of-the-art robust feature-based matching and image-warping
techniques to handle ESD; and (2) a new benchmark dataset representing ESD which
is valuable for researchers and practitioners with similar interests in developing new
algorithms capable of correcting extreme and challenging distortions in UAV images.

Section 2 of this paper reviews the literature on scene distortion correction in UAV-
acquired images. Section3presents the proposedmethod, including the feature-matching
algorithm and the image-warping algorithm for extreme scene distortion correction. In
Sect. 4, themethod is evaluated using objectivemetrics, including the no-reference image
quality metric. Results are analyzed and compared with existing methods, highlighting
the performance of rectifyingUAV images. The conclusion summarizes the contributions
and implications of the research in addressing extreme scene distortion and suggests
future research directions in this field of study.

2 Related Work

2.1 Feature-Based Image Recognition

Feature-based image recognition finds applications in computer vision, robotics,medical
imaging, and more. By focusing on meaningful features instead of processing the entire
image, it mimics the human visual system. This scientific approach combines image
processing techniques, pattern recognition algorithms, and machine learning methods
to automate visual analysis and understanding. In the realm of image recognition, two
broad categories of algorithms have emerged: hand-crafted feature algorithms and deep
learning algorithms. Hand-crafted feature algorithms, including Speeded-Up Robust
Features (SURF), Scale-Invariant FeatureTransform (SIFT),OrientedFASTandRotated
BRIEF (ORB), and Histogram of Oriented Gradients (HOG), have traditionally relied
on human-designed features to offer robustness in image analysis tasks. However, their
limitations in generalization capabilities have become apparent.
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On the other hand, deep learning algorithms, such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks
(GANs), have revolutionized the field by automatically learning features from data and
showcasing remarkable generalization and adaptability. Nevertheless, they necessitate
substantial amounts of labeled training data and computational resources. Their impact
is evident in various fields were automated image interpretation and decision-making
play crucial roles. For instance, in their pioneering work [7], the researchers significantly
advanced by incorporating a hand-crafted feature algorithm into their stitching algorithm
for sequentially overlapping UAV images. This innovative approach involved utilizing
feature point matching, explicitly leveraging the Oriented FAST and Rotated BRIEF
(ORB) feature detection algorithm to characterize the overlapping regions present in the
images accurately. Combining the ORB with Grid Motion Statistics achieved remark-
able results, effectively clustering UAV images with similar overlaps and enabling real-
time image stitching capabilities. In their study, researchers [8] emphasized the sig-
nificance of analyzing image overlaps for effective image retrieval. They proposed a
method that involved down-sampling image resolution and using a simple descriptor or
feature-matching technique. The researchers utilized the powerful Scale-Invariant Fea-
ture Transform (SIFT) algorithm, which exhibited impressive capabilities in accurately
analyzing image overlaps and handling incorrect feature point matches. The inherent
characteristics of SIFT, including scale, rotation, and mapping invariance, played a cru-
cial role in the success of overlap analysis. Leveraging the robustness and adaptability
of SIFT, the researchers achieved both effectiveness and efficiency in image retrieval,
underscoring the algorithm’s crucial role in precise image analysis and retrieval tasks.

Additionally, the work of [6] introduces an efficient technique for aerial image stitch-
ing, employing a synergistic combination of SURF, PCA, and RANSAC algorithms.
Their comparative analysis against SIFT features reveals their proposed algorithm’s
superior performance in terms of feature extraction and resulting image quality. The
computational time required for stitching using SURF is promising, suggesting potential
for real-time applications. Recent trends in deep learning-based algorithms for feature-
based image recognition have played a significant role in many applications such as
medical image retrieval. They include leveraging deep learning for medical decision
support systems, utilizing pre-trained models like ResNet-50 and VGG19 with Ima-
geNet weights to identify similar dermatoscopic images and brain tumor MRI scans,
employing the deep Siamese CNN architecture to extract fixed-length feature vectors,
developing hash code generation methods, and creating systems for retrieving specific
lung diseases in CT scans (deep feature-based image recognition approaches) [9]. These
methods aim to enhance the efficiency and accuracy of medical image retrieval, catering
to various medical domains.

On the other hand, the emergence of 3DGraphNeural Networks (GNNs) has brought
remarkable improvements to the field. By leveraging the multi-layer structure of GNNs,
it becomes feasible to extract unique features and depth information from RGB images,
facilitating robust and accurate segmentation outcomes [10]. These deep learning-based
algorithms, with their ability to harness multi-layer networks and exploit contextual
information, hold great promise for enhancing the task of image segmentation using
RGB images [11]. The remarkable progress made in feature-based image recognition,
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encompassing both handcrafted and deep learning-based algorithms, has profoundly
impacted the applications related to UAV images. By integrating these methods, we can
unlock new possibilities in extracting meaningful features and recognizing objects in
aerial imagery captured by unmanned aerial vehicles (UAVs). The combination of hand-
crafted algorithms, carefully designed feature extraction techniques, and the power of
deep learning models capable of learning intricate patterns and representations presents
a compelling foundation for advancing UAV image analysis.

2.2 Geometric Distortion Correction

Geometric distortions commonly found in aerial imaging, including radial distortion,
tangential distortion, perspective distortion, and keystoning, can impact both the accu-
racy and visual quality of the images. This studywill focus on a specific type of distortion
known as perspective distortion or geometric distortion,which has received limited atten-
tion in the field of aerial photogrammetry. Figure 1 illustrates the distortions caused by
camera rotation in UAV photos, which are categorized as geometric distortion in this
study.

Fig. 1. Extreme Scene Distortion Representation in UAV-Based Imagery.

In Fig. 1A, the box represents the region captured when the aerial camera rotates
at various angles, including the pitch angle (p), roll angle (r), and yaw angle (y). Addi-
tionally, Fig. 1B displays the corresponding output, showing distortion occurring in
one direction parallel to the scanning direction without displacement directly below the
image sensor (nadir), and distortion resulting from the rotation of the scanning optics.
It is important to note that as the sensor scans across each line, the distance between the
sensor and the ground increases, particularly further away from the center of the scanned
aerial image. This phenomenon, also known as tangential scale distortion, occurs when
picture image features are compressed at positions away from the ground plane’s center.

Camera calibration, a technique widely utilized by researchers, involves determining
intrinsic and extrinsic parameters to accuratelymodel the behavior of a camera [12]. This
process is essential for correcting geometric distortion. However, it should be noted that
camera calibration can be a computationally demanding task, often requiring sophisti-
cated algorithms and extensive computational resources [13]. Additionally, achieving
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accurate calibration results typically requires careful attention to detail, as even small
errors in parameter estimation can significantly impact subsequent computer vision algo-
rithms and applications [14]. Previous research has investigated alternative approaches,
such as image registration or homography-based correction,which arewidely recognized
and employed techniques in the field of remotely sensed images.

This technique encompasses crucial steps, including feature detection, featurematch-
ing, and homography estimation. For instance, [15] developed a local-adaptive image
alignment strategy using triangular facet approximation. This method surpasses the stan-
dard homographic technique in aligning both perspective and non-perspective images.
Incorporating Gaussian and Student t-weighting parameters enhances alignment and
stitching, especially when dealing with diverse camera viewpoints that cause image par-
allax or ghosting. Their research represents a notable advancement, providing a robust
and accurate solution for image alignment and stitching, pushing the boundaries of image
processing techniques.

The work of [16] made significant contributions to the field of image alignment and
geometric distortion correction. They developed a robust elastic warping-based app-
roach for parallax-tolerant image stitching, resulting in precise alignment and reduced
computational overhead. Their work incorporated a Bayesian model for feature refine-
ment, effectively removing inaccurate local matches. Additionally, they introduced a
flexible strategy that combined global similarity transformation for the fast reprojection
of warped images. These advancements contributed to the correction of geometric dis-
tortions, leading to improved alignment accuracy and the creation of seamless panoramic
images.

In their research, [17] focused on addressing severe perspective distortions present
in a large collection of aerial images. To suppress reprojection errors and image paral-
lax, they developed a reliable technique for achieving precise and globally consistent
alignment of ground-scene objects. Their work specifically targeted geometric distor-
tion correction, aiming to create natural-looking panoramas. In a related study, [18] also
contributed to the field by creating a natural panorama through adaptive and as-natural-
as-possible image stitching. Furthermore, the work of [19] focused on addressing the
challenges posed by image parallax and the reliance on post-hoc de-ghosting techniques.
To overcome these issues, they introduced a novel approach utilizing a moving direct
linear transformation (MLDT) and a unique 2Dwarp function. Their innovative method-
ology resulted in an accurate image alignment strategy that effectively eliminated image
parallax and reduced the need for post-processing de-ghosting. By incorporating these
advancements, they achieved improved alignment consistency and enhanced the overall
quality of the aligned images.

The advent of deep learning-based algorithms holds significant promise for address-
ing geometric distortion correction challenges. These advanced algorithms leverage the
power of deep learning techniques to effectively handle and rectify geometric distortions
in various types of imagery, including aerial images. By employing neural networks and
extensive training on large datasets, these methods demonstrate the potential to achieve
accurate and reliable geometric distortion correction results. The ability of deep learning
algorithms to learn complex patterns and relationships in data offers new possibilities
for enhancing the correction process, potentially leading to improved precision and
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efficiency in real-world applications [20]. Hence, this research aims to investigate the
homography-based technique for geometric distortion correction while integrating deep
learning-based feature image recognition to enhance the current approach. Figure 2
shows the block diagram of the proposed study.

Fig. 2. Block diagram of the Proposed Geometric Distortion Correction Technique.

The block diagram focuses on identifying and correcting geometric distortion in
UAV images. First, the researchers employ a human-intervention-free method to rec-
ognize acquired UAV images with scene distortion, utilizing PIX4DMapper software.
Second, distorted images are manually identified, and they are paired with undistorted
images to create distinct image pairs (Image n and Image n + 1) for feature matching.
However, if a distorted image lacks an undistorted pair (i.e., a sequence of two distorted
images), the proposed solution is to skip it until predetermined criteria are met. Third,
a GNN-based feature point extraction technique from [21] was used to extract distinct
features, especially in regions where objects are affected by scene distortion. Fourth, a
homography-based transformation is integrated, utilizing unique feature points identi-
fied by the introduced robust feature matching technique. These points will be fed into
the last step. The final step known as image registration, warps the distorted image to
align it with its paired undistorted image, thereby correcting the distortion.

3 Proposed Method

Differentmethods for correcting geometric distortion are available, but theymostlywork
well with mild distortions and face challenges when dealing with severe distortions.
Therefore, there is a pressing need to develop robust and efficient methods specifically
tailored to address extreme scene distortion in UAV-acquired images.

3.1 Dataset Description

This research utilizes a carefully selected dataset of images captured by a handheld
SONY DSC-RX100M3 camera aboard in a UAV. The camera boasts an impressive
20.1-megapixel Exmor RTMCMOS Sensor, ensuring high-quality images with a spatial
resolution of about 2 cm. The dataset consists of carefully captured images obtained
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during the planned flight, providing valuable visual information for research and analysis
purposes. These images are in the standard color format (sRGB) and have been accurately
aligned to real-world coordinates using GPS data.

3.2 Geometric Distortion Detection

Pix4Dmapper, a powerful software solution, has demonstrated its potential in this work
by automating the identification of images with distortion. By leveraging its advanced
features, this software is capable of performing the mentioned task on images acquired
by UAVs through its camera calibration functionality. Table 1 presents the detailed
specifications of UAV flight instances, including the number of identified images with
ESD. It is worth noting that the software serves as a tool used by the researchers to
automate the process of identifying distorted images for use in the pairing process, and
it does not guarantee superior performance. Instead, it provides valuable insights into
the frequency and severity of distortions encountered during image processing.

Table 1. Extreme Scene Distortion Identification Using Pix4Dmapper software.

Flight No Flight Location Images with ESD

Observation 1 Site 1 – Candaba, Pampanga (Poblacion), Philippines 24/338images

Observation 2 Site 2 – Candaba, Pampanga (Tagalog), Philippines 4/214images

Observation 3 Site 1 – Candaba, Pampanga (Poblacion), Philippines 16/339images

Observation 4 Site 2 – Candaba, Pampanga (Tagalog), Philippines 10/212images

3.3 Extreme Scene Distortion Correction Proposed Solution

Feature Extraction andDetection. The proposed method utilizes deep learning-based
feature extraction, detection, and matching using the algorithm made by [21]. This
algorithm employs the Graph Neural Network (GNN), which efficiently detects sparse
and unique feature points compared to traditional hand-crafted feature descriptor algo-
rithms. By leveraging deep learning and graph-based computations, the GNN identifies
and matches sparse and distinctive keypoints, reducing computational complexity and
memory requirements.

Hyperparameter tuning is performed by the researchers to optimize the performance
of the feature extraction anddetectionprocess. Thegoal is tofind theoptimal combination
of hyperparameter values that yield the best results in terms of extracted features and
reliable correspondences between distorted and undistorted images that represent the
sets of feature points:

Let:

F� = {(xδ, yδ, f δ)}andFϒ = {(xυ, yυ, f υ)} (1)
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where (xδ, yδ, f δ) and (xυ, yυ, f υ) are the pixel coordinates, and F� and Fϒ are the
feature descriptors for the distorted and undistorted images, respectively.

It matches feature points between the distorted and undistorted images, resulting in
a set of correspondences:

S = {(xδ, yδ, xυ, yυ, ς)} (2)

where (xδ, yδ), (xυ, yυ) are the coordinates of matched feature points, ς is the matching
score, and S is the resulting set of correspondences.

Figure 3 showcases the representation of the feature points extracted and detected
from both the distorted image (on the left) and the undistorted image (on the right),
acquired through the utilization of Eq. 1 and Eq. 2. These sets of feature points com-
prise distinct coordinates, playing a crucial role in facilitating the homography-based
transformation process, as explained in Sect. 3.3.

Fig. 3. Sample Output of Feature Points Extraction and Detection.

Homography-Based Transformation. The collected correspondences S are used for
homography-based estimation [22]. The homography matrix H is computed using the
Direct Linear Transformation (DLT) method represented as a 3x3 matrix:

H =
⎛
⎝
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎞
⎠ (3)

Once the homography matrix H is estimated, it is used to perform a homography-
based transformation of the distorted image. The transformation aligns the distorted
image with the undistorted image by mapping pixel coordinates from the distorted
image to transformed coordinates of the undistorted image, with a scaling factor. In
addition to the presented steps, the RANSAC (Random Sample Consensus) algorithm
was applied to improve the robustness of the homography estimation. RANSAC helps
identify and eliminate outlier correspondences that may negatively affect the accuracy of
the estimated homography matrix. By iteratively sampling subsets of correspondences
and estimating the homography matrix, RANSAC selects the best-fitting model that
maximizes the number of inliers, as shown in Fig. 4.

Figure 4 demonstrates the visual representation of matching distinct and salient
feature points within the observed images using RANSAC. This serves as a robust
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(A)                                                                 (B)

Fig. 4. Sample Output of Matched Feature Points for Image Registration.

validation mechanism, effectively filtering out erroneous matches among the feature
points in an iterative way. This procedure is essential for effective image registration
based on homography estimation, deriving a homography matrix. As shown in Fig. 4B,
this computed matrix encapsulates the geometric transformation between two images,
enabling accurate alignment and possible correction of spatial deformation.

In general, this detailed pipeline could potentially be applied to align and register
distorted UAV images with undistorted images. This serves as the proposed geometric
distortion correction technique in this work.

3.4 Image Quality Metrics

The researchers employed the Structural Similarity Index (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) as evaluation metrics. This was accomplished by comparing the
SSIMandPSNRvalues between the corrected and originally distorted images tomeasure
the enhancement in image quality. Additionally, the researchers utilized a Perceptual
Image Quality Evaluator (PIQE) to evaluate the extended application of the proposed
solution in pair-wise stitching. This evaluation encompassed visual attributes such as
sharpness, contrast, color fidelity, and artifacts.

4 Experimental Results

This section offers insights into the capabilities and limitations of the proposed tech-
nique, ultimately validating its potential to address geometric distortion challenges in
aerial images captured by Unmanned Aerial Vehicles (UAVs). Figure 5 consists of
observed images that require geometric distortion correction due to their minor spatial
transformations, resulting in a noticeable erroneous orientation of the Earth’s ground
scene.

Figure 6 presents the evaluation results of various geometric distortion correction
techniques, including the proposed solution, based on the PSNR and SSIM evaluation
metrics.

The algorithms compared in this study are from [23–26] with Homography-Based
Correction, [27] with Homography-Based Correction, [28] with Homography-Based
Correction, [29] with Homography-Based Correction, [30] with Homography-Based
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Distorted Image #1                                     Distorted Image #2 

Fig. 5. Sample Input Images with Extreme Scene Distortion.

A. PSNR Result B. SSIM Result

Fig. 6. Quantitative Analysis of the proposed and existing solutions using PSNR and SSIM.

Correction, [31] with Homography-Based Correction, [32] with Homography-Based
Correction, and the Proposed solution. Clearly, the introduced algorithm has demon-
strated promising results in both the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) image quality metrics by employing Graph Neural Networks
(GNN) for feature matching and image-warping techniques. These positive outcomes
confirm the algorithm’s viability as a method for correcting distortion in Unmanned
Aerial Vehicle (UAV) imagery.

Figure 7 showcases the qualitative evaluation of the proposed solution alongside
other existing approaches (B) [23] (C) [24] (D) [25] (E) [26], (F) [27], (G) [28], (H)
[29], (I) [30], (J) [31], and (K) [32] for correcting distorted UAV images.

Fig. 7. Qualitative analysis of the proposed and other existing techniques.

In the evaluation, Image A, located in the first row, represents the initial distorted
UAV image that requires correction. Subsequently, images B, C, and G display the
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results obtained from individual existing approaches, each of which produces visually
appealing images. However, it is important to note that these approaches were unable
to rectify the specific type of distortion mentioned. Conversely, the remaining results
in Fig. 7, such as images D to F, exhibit lower-quality outcomes, and images I to K
produced errors, with one notable exception. The last image, labeled as L and situated in
the second row, showcases the output obtained from the proposed solution. This image
stands out as it successfully achieves geometric rectification of the UAV image, thus
providing a satisfactory result in terms of a change in scene orientation, which is a valid
representation of a nadir-based UAV image.

Figure 8 presents additional experiments conducted to evaluate the effectiveness of
the proposed solution in terms of correcting specific types of geometric distortion in
UAV images.

Fig. 8. Qualitative Analysis on additional distorted images using the proposed technique.

These experiments demonstrate successful rectification of the targeted distortions,
yielding good-quality output images, as shown in the second row. The results in this
figure highlight the capability of the proposed solution to address and correct the specific
geometric distortion since it minimizes the insignificant spatial transformation in the
ground scene.

Fig. 9. Qualitative Analysis on additional distorted images using the proposed solution.

However, it is important to note that the proposed solution may have a limitation in
terms of the resulting visual quality. While the distortion correction is significant, there
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may be a slight decrease in overall visual quality compared to the original images. This
trade-off between distortion correction and visual quality should be considered when
evaluating the effectiveness of this proposed approach. Figure 9 specifically illustrates
instances where this work encounters limitations or challenges, emphasizing the need for
further improvements to optimize visual quality while effectively correcting the specific
geometric distortions.

In Fig. 10, the researchers conducted a comprehensive analysis of the proposed
solution in the domain of pairwise image stitching.

Fig. 10. Extended evaluation of the proposed solution to pair-wise image stitching.

The evaluation, as presented in Table 2 using the PIQE (Perceptual Image Qual-
ity Evaluator) evaluation metric, demonstrates that this proposed solution achieves a
high-quality outcome in the stitched image, ranking second-best in comparison to other
approaches. However, upon subjective assessment through human visual perception,
it becomes evident that the proposed solution effectively rectified the minor scene
disorientation present in the output image.

Table 2. Quantitative Analysis of Pair-wise Image Stitching using PIQE.

Algorithm Used PIQE Score ↓
AutoStitch [25] 20.0452

PTGui [26] 35.1569

PROPOSED METHOD 25.0506

5 Conclusion

This study addresses the challenge of correcting geometric distortions in images cap-
tured by UAVs, particularly in cases of extreme scene distortion. The proposed approach
combines computer vision and photogrammetry techniques to estimate and correct dis-
tortions caused by irregular terrains and UAVmotion. By utilizing feature matching and
image-warping algorithms, the method achieves effective distortion correction. Addi-
tionally, a benchmark dataset is introduced to evaluate algorithms specifically designed
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for extreme distortion in UAV images. This research makes a significant contribution to
the field of geometric distortion correction in UAV-acquired images. Furthermore, the
proposed method has potential applications beyond distortion correction. It can be used
for pair-wise image stitching, enabling the creation of seamless mosaics or panoramas
from multiple UAV images. This feature enhances its practicality in various domains
such as remote sensing, surveillance, aerial photography, and other fields that rely on
accurate visual information.

Overall, this study paves the way for future research in UAV imaging systems, with
the potential to improve image quality, enhance analysis capabilities, and expand the
applications of UAV-acquired imagery.
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Abstract. Real-time object detection plays a vital role in various com-
puter vision applications. However, deploying real-time object detectors
on resource-constrained platforms poses challenges due to high compu-
tational and memory requirements. This paper describes a low-bit quan-
tization method to build a highly efficient one-stage detector, dubbed
as Q-YOLO, which can effectively address the performance degrada-
tion problem caused by activation distribution imbalance in traditional
quantized YOLO models. Q-YOLO introduces a fully end-to-end Post-
Training Quantization (PTQ) pipeline with a well-designed Unilateral
Histogram-based (UH) activation quantization scheme, which determines
the maximum truncation values through histogram analysis by minimiz-
ing the Mean Squared Error (MSE) quantization errors. Extensive exper-
iments on the COCO dataset demonstrate the effectiveness of Q-YOLO,
outperforming other PTQ methods while achieving a more favorable
balance between accuracy and computational cost. This research con-
tributes to advancing the efficient deployment of object detection mod-
els on resource-limited edge devices, enabling real-time detection with
reduced computational and memory overhead.

Keywords: Real-time Object Detection · Post-training Quantization

1 Introduction

Real-time object detection is a crucial component in various computer vision
applications, such as multi-object tracking [42,43], autonomous driving [7,15],
and robotics [13,25]. The development of real-time object detectors, particularly
YOLO-based detectors, has yielded remarkable performance in terms of accu-
racy and speed. For example, YOLOv7-E6 [34] object detector achieves 55.9%
mAP on COCO 2017, outperforming both transformer-based detector SWINL
Cascade-Mask R-CNN [4,22] and convolutional based detector ConvNeXt-XL
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Cascade-Mask R-CNN [4,36] in both speed and accuracy. Despite their success,
the computational cost during inference remains a challenge for real-time object
detectors on resource-limited edge devices, such as mobile CPUs or GPUs, lim-
iting their practical usage.

Fig. 1. Activation value distribution histogram (with 2048 bins) of the model.21.conv
layer in YOLOv5s. The occurrence of values between 0 and −0.2785 is extremely high,
while the frequency of values above zero decreases significantly, reveals an imbalanced
pattern. min denotes the fixed minimum truncation value, while max represents the
maximum truncation value following the min-max principle. Max Q-YOLO(8) refers
to the maximum truncation value when using the Q-YOLO quantization model at 8-
bit, and Max Q-YOLO(4) indicates the maximum truncation value when applying
the Q-YOLO quantization model at 4-bit. (Color figure online)

Substantial efforts on network compression have been made towards efficient
online inference [5,26,31,39]. Methods include enhancing network designs [10,37,
41], conducting network search [46], network pruning [8,9], and network quantiza-
tion [17]. Quantization, in particular, has gained significant popularity for deploy-
ment on AI chips by representing a network using low-bit formats. There are two
prevailing quantization methods, Quantization-Aware Training (QAT) [17,38]
and Post-Training Quantization (PTQ) [20]. Although QAT generally achieves
better results than PTQ, it requires training and optimization of all model param-
eters during the quantization process. The need for pretraining data and signifi-
cant GPU resources makes QAT challenging to execute. On the other hand, PTQ
is a more efficient approach for quantizing real-time object detectors.

To examine low-bit quantization for real-time object detection, we first estab-
lish a PTQ baseline using YOLOv5 [33], a state-of-the-art object detector.
Through empirical analysis on the COCO 2017 dataset, we observe notable
performance degradation after quantization, as indicated in Table 1. For exam-
ple, a 4-bit quantized YOLOv5s employing Percentile achieves only 7.0% mAP,
resulting in a performance gap of 30.4% compared to the original real-valued
model. We find the performance drop of quantized YOLOs can be attributed
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to the activation distribution imbalance. As shown in Fig. 1, we observe high
concentration of values close to the lower bound and the significant decrease in
occurrences above zero. When employing fixed truncation values such as Min-
Max, representing activation values with extremely low probabilities would con-
sume a considerable number of bits within the limited integer bit width, resulting
in further loss of information.

In light of the above issue, we introduce Q-YOLO, a fully end-to-end PTQ
quantization architecture for real-time object detection, as depicted in Fig. 2. Q-
YOLO quantizes the backbone, neck, and head modules of YOLO models, while
employing standard MinMax quantization for weights. To tackle the problem of
activation distribution imbalance, we introduce a novel approach called Unilat-
eral Histogram-based (UH) activation quantization. UH iteratively determines
the maximum truncation value that minimizes the quantization error through
histograms. This technique significantly reduces calibration time and effectively
addresses the discrepancy caused by quantization, optimizing the quantization
process to maintain stable activation quantization. By mitigating information
loss in activation quantization, our method ensures accurate object detection
results, thereby enabling precise and reliable low-bit real-time object detection
performance. Our contributions can be summarized as follows:

1. We introduce a fully end-to-end PTQ quantization architecture specifically
designed for real-time object detection, dubbed as Q-YOLO.

2. A Unilateral Histogram-based (UH) activation quantization method is pro-
posed to leverage histogram analysis to find the maximum truncation values,
which can effectively minimize the MSE quantization error.

3. Through extensive experiments on various object detectors, we demonstrate
that Q-YOLO outperforms baseline PTQ models by a significant margin.
The 8-bit Q-YOLO model applied on YOLOv7 achieves a 3× acceleration
while maintaining performance comparable to its full-precision counterpart
on COCO, highlighting its potential as a general solution for quantizing real-
time object detectors.

2 Related Work

2.1 Quantization

Quantized neural networks are based on low-bit weights and activations to accel-
erate model inference and save memory. The commonly used model quantization
methods include quantization-aware training (QAT) and post-training quanti-
zation (PTQ). In QAT, Zhang et al. [40] build a binarized convolutional neural
network based on a projection function and a new updated rule during the
backpropagation. Li et al. [17] proposed an information rectification module
and distribution-guided distillation to push the bit-width in a quantized vision
transformer. TTQ [44] uses two real-valued scaling coefficients to quantize the
weights to ternary values. Zhuang et al. [45] present a low-bit (2-4 bit) quan-
tization scheme using a two-stage approach to alternately quantize the weights
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Fig. 2. Architecture of Q-YOLO.

and activations, providing an optimal trade-off among memory, efficiency, and
performance. In [12], the quantization intervals are parameterized, and optimal
values are obtained by directly minimizing the task loss of the network. ZeroQ [3]
supports uniform and mixed-precision quantization by optimizing for a distilled
dataset which is engineered to match the statistics of the batch normalization
across different network layers. [6] enabled accurate approximation for tensor
values that have bell-shaped distributions with long tails and found the entire
range by minimizing the quantization error. While QAT often requires high-level
expert knowledge and huge GPU resources for training or fine-tuning, especially
the large-scale pre-trained model. To reduce the above costs of quantization,
PTQ, which is training-free, has received more widespread attention and lots of
excellent works arise. MinMax, EMA [11] methods are commonly used to com-
press or reduce the weights of the PTQ model. MinMax normalizes the weights
and bias values in the model to a predefined range, such as [−1, 1], to reduce
the storage space and increase the inference speed. MSE quantization involves
evaluating and adjusting the quantized activation values to minimize the impact
of quantization on model performance.

2.2 Real-Time Object Detection

Deep Learning based object detectors can be generally classified into two cat-
egories: two-stage and single-stage object detectors. Two-stage detectors, such
as Faster R-CNN [30], RPN [18], and Cascade R-CNN [4], first generate region
proposals and then refine them in a second stage. On the other hand, single-stage
object detectors have gained significant popularity in real-time object detection
due to their efficiency and effectiveness. These detectors aim to predict object
bounding boxes and class labels in a single pass of the neural network, eliminating



Q-YOLO: Efficient Inference for Real-Time Object Detection 311

the need for time-consuming region proposal generation. One of the pioneering
single-shot detectors is YOLO [27], which divides the input image into a grid
and assigns bounding boxes and class probabilities to predefined anchor boxes.
The subsequent versions, YOLOv2 [28] and YOLOv3 [29], introduced improve-
ments in terms of network architecture and feature extraction, achieving bet-
ter accuracy without compromising real-time performance. Another influential
single-shot detector is SSD [21], which employs a series of convolutional layers
at different scales to detect objects of various sizes. By using feature maps at
multiple resolutions, SSD achieves high accuracy while maintaining real-time
performance. Variants of SSD, such as MobileNet-SSD [10] and Pelee [35], fur-
ther optimize the architecture to achieve faster inference on resource-constrained
devices.

Efficiency is a critical aspect of real-time object detection, especially for
deployment on computationally limited platforms. MobileNet [10] and its subse-
quent variants, such as MobileNetV2 [32] and MobileNetV3 [14], have received
significant attention for their lightweight architectures. These networks utilize
depth-wise separable convolutions and other techniques to reduce the number
of parameters and operations without significant accuracy degradation. Shuf-
fleNet [41] introduces channel shuffling operations to exploit group convolutions,
enabling a trade-off between model size and computational cost. ShuffleNetV2
[23] further improves the efficiency by introducing a more efficient block design
and exploring different network scales.

3 Methodology

3.1 Preliminaries

Network Quantization Process. We first review the main steps of the Post-
Training Quantization (PTQ) process and supply the details. Firstly, the net-
work is either trained or provided as a pre-trained model using full precision and
floating-point arithmetic for weights and activations. Subsequently, numerical
representations of weights and activations are suitably transformed for quanti-
zation. Finally, the fully-quantized network is deployed either on integer arith-
metic hardware or simulated on GPUs, enabling efficient inference with reduced
memory storage and computational requirements while maintaining reasonable
accuracy levels.

Uniform Quantization. Assuming the quantization bit-width is b, the quan-
tizer Q(x|b) can be formulated as a function that maps a floating-point number
x ∈ R to the nearest quantization bin:

Q(x|b) : R → x̂, (1)

x̂ =

{
{−2b−1, · · · , 2b−1 − 1} Signed,

{0 · · · , 2b − 1} Unsigned.
(2)
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There are various quantizer Q(x|b), where uniform [11] are typically used. Uni-
form quantization is well supported on most hardware platforms. Its unsigned
quantizer Q(x|b) can be defined as:

Q(x|b) = clip(� x
sx

� + zpx, 0, 2b − 1), (3)

where sx (scale) and zpx (zero-point) are quantization parameters. In Eq. 4, u
(upper) and l (lower) define the quantization grid limits.

sx =
u − l

2b − 1
, zpx = clip(�− l

s
�, 0, 2b − 1). (4)

The dequantization process can be formulated as:

x̃ = (x̂ − zpx) × sx. (5)

3.2 Quantization Range Setting

Quantization range setting is the process of establishing the upper and lower
clipping thresholds, denoted as u and l respectively, of the quantization grid. The
crucial trade-off in range setting lies in the balance between two types of errors:
clipping error and rounding error. Clipping error arises when data is truncated
to fit within the predefined grid limits, as described in Eq. 4. Such truncation
leads to information loss and a decrease in precision in the resulting quantized
representation. On the other hand, rounding error occurs due to the imprecision
introduced during the rounding operation, as described in Eq. 3. This error can
accumulate over time and has an impact on the overall accuracy of the quantized
representation. The following methods provide different trade-offs between the
two quantities.

MinMax. In the experiments, we use the MinMax method for weight quanti-
zation, where clipping thresholds lx and ux are formulated as:

lx =min(x), ux = max(x). (6)

This leads to no clipping error. However, this approach is sensitive to outliers as
strong outliers may cause excessive rounding errors.

Mean Squared Error (MSE). One way to mitigate the problem of large
outliers is by employing MSE-based range setting. In this method, we determine
lx and ux that minimize the mean squared error (MSE) between the original
and quantized tensor:

arg min
lx,ux

MSE(x,Qlx,ux), (7)

where x represents the original tensor and Qlx,ux denotes the quantized tensor
produced using the determined clipping thresholds lx and ux. The optimiza-
tion problem is commonly solved using grid search, golden section method or
analytical approximations with closed-form solution.
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3.3 Unilateral Histogram-Based (UH) Activation Quantization

To address the issue of activation value imbalance, we propose a new approach
called Unilateral Histogram-based (UH) activation quantization. We first provide
an empirical study of the activation values after forward propagation through
the calibration dataset. As depicted in Fig. 1, we observe a concentrated distri-
bution of values near the lower bound, accompanied by a noticeable decrease in
occurrences above zero. Further analysis of the activation values reveals that the
empirical value of -0.2785 serves as the lower bound. This phenomenon can be
attributed to the frequent utilization of the Swish (SILU) activation function in
the YOLO series.

Algorithm 1. Unilateral Histogram-based (UH) Activation Quantization
1: Input: FP32 Histogram H with 2048 bins
2: for i in range(128, 2048) do
3: Reference distribution P ← H[0 : i]
4: Outliers count c ← ∑2047

j=i H[j]
5: P [i − 1] ← P [i − 1] + c
6: P ← P∑

j(P [j])

7: Candidate distribution C ← Quantize H[0 : i] into 128 levels
8: Expand C to have i bins
9: Q ← C∑

j(C[j])

10: MSE[i] ← Mean Squared Error(P,Q)
11: end for
12: Output: Index m for which MSE[m] is minimal.

Based on the empirical evidence, we introduce an asymmetric quantization
approach called Unilateral Histogram-based (UH) activation quantization. In
UH, we iteratively determine the maximum truncation value that minimizes the
quantization error, while keeping the minimum truncation value fixed at -0.2785,
as illustrated in the following:

ux = arg min
lx,ux

MSE(x,Qlx,ux), lx = −0.2785. (8)

To evaluate the quantization error during the search for the maximum trun-
cation value, we utilize the fp32 floating-point numbers derived from the center
values of the gathered 2048 bins, as introduces in Algorithm 1. These num-
bers are successively quantized, considering the current maximum truncation
value under consideration. Through this iterative process, we identify the opti-
mal truncation range. The UH activation quantization method offers two key
advantages. Firstly, it significantly reduces calibration time. Secondly, it ensures
stable activation quantization by allowing a larger set of integers to represent the
frequently occurring activation values between 0 and −0.2785, thereby improving
quantization accuracy.
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Table 1. A comparison of various quantization methods applied to YOLOv5s [33],
YOLOv5m [33], YOLOv7 [34] and YOLOv7x [34], which have an increasing number of
parameters, on the COCO val2017 dataset [19]. The term Bits (W-A) represents the
bit-width of weights and activations. The best results are displayed in bold.

Models Method Bits Size(MB) OPs(G) AP AP50 AP75 APs APm APl

YOLOv5s [33] Real-valued 32-32 57.6 16.5 37.4 57.1 40.1 21.6 42.3 48.9
MinMax 8-8 14.4 4.23 37.2 56.9 39.8 21.4 42.2 48.5
Percentile [16] 36.9 56.4 39.6 21.3 42.4 48.1
Q-YOLO 37.4 56.9 39.8 21.4 42.4 48.8
Percentile [16] 4-4 7.7 2.16 7.0 14.2 6.3 4.1 10.7 7.9
Q-YOLO 14.0 26.2 13.5 7.9 17.6 19.0

YOLOv5m [33] Real-valued 32-32 169.6 49.0 45.1 64.1 49 28.1 50.6 57.8
MinMax 8-8 42.4 12.4 44.9 64 48.9 27.8 50.5 57.4
Percentile [16] 44.6 63.5 48.4 28.4 50.4 57.8
Q-YOLO 45.1 64.1 48.9 28 50.6 57.7
Percentile [16] 4-4 21.2 6.33 19.4 35.6 19.1 14.6 28.3 17.2
Q-YOLO 28.8 46 30.5 15.4 33.8 38.7

YOLOv7 [34] Real-valued 32-32 295.2 104.7 50.8 69.6 54.9 34.9 55.6 66.3
MinMax 8-8 73.8 27.2 50.6 69.5 54.8 34.1 55.5 65.9
Percentile [16] 50.5 69.3 54.6 34.5 55.4 66.2
Q-YOLO 50.7 69.5 54.8 34.8 55.5 66.2
Percentile [16] 4-4 36.9 14.1 16.7 26.9 17.8 10.3 20.1 20.2
Q-YOLO 37.3 55.0 40.9 21.5 41.4 53.0

YOLOv7x [34] Real-valued 32-32 25.5 189.9 52.5 71.0 56.6 36.6 57.3 68.0
MinMax 8-8 142.6 49.5 52.3 70.9 56.7 36.6 57.1 67.7
Percentile [16] 52.0 70.5 56.1 36.0 56.8 67.9
Q-YOLO 52.4 70.9 56.5 36.2 57.2 67.8
Percentile [16] 4-4 71.3 25.6 36.8 55.3 40.5 21.2 41.7 49.3
Q-YOLO 37.6 57.8 42.1 23.7 43.8 49.1

4 Experiments

In order to assess the performance of the proposed Q-YOLO detectors, we con-
ducted a comprehensive series of experiments on the widely recognized COCO
2017 [19] detection benchmark. As one of the most popular object detection
datasets, COCO 2017 [19] has become instrumental in benchmarking state-of-
the-art object detectors, thanks to its rich annotations and challenging scenarios.
Throughout our experimental analysis, we employed standard COCO metrics on
the bounding box detection task to evaluate the efficacy of our approach.

4.1 Implementation Details

We randomly selected 1500 training images from the COCO train2017 dataset
[19] as the calibration data, which served as the foundation for optimizing the
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model parameters. Additionally, the performance evaluation took place on the
COCO val2017 dataset [19], comprising 5000 images. The image size is set to
640× 640.

In our experiments, unless otherwise noted, we employed symmetric channel-
wise quantization for weights and asymmetric layer-wise quantization for acti-
vations. To ensure a fair and unbiased comparison, we consistently applied the
MinMax approach for quantizing weights. The input and output layers of the
model are more sensitive to the loss of accuracy. In order to maintain the over-
all performance of the model, the original accuracy of these layers is usually
retained. We also follow this practice.

4.2 Main Results

We apply our proposed Q-YOLO to quantize YOLOv5s [33], YOLOv5m [33],
YOLOv7 [34] and YOLOv7x [34], which have an increasing number of parame-
ters. The results of the full-precision model, as well as the 8-bit and 4-bit quan-
tized models using MinMax, Percentile, and Q-YOLO methods, are all presented
in Table. 1.

Table 1 lists the comparison of several quantization approaches and detec-
tion methods in computing complexity, storage cost. Our Q-YOLO significantly
accelerates computation and reduces storage requirements for various YOLO
detectors. Similarly, in terms of detection accuracy, when using Q-YOLO to
quantize the YOLOv5 series models to 8 bits, there is virtually no decline in
the average precision (AP) value compared to the full-precision model. As the
number of model parameters increases dramatically, quantizing the YOLOv7
series models to 8 bits results in an extremely slight decrease in accuracy. When
quantizing models to 4 bits, the accuracy experiences a significant loss due to the
reduced expressiveness of 4-bit integer representation. Particularly, when using
the MinMax quantization method, the model loses all its accuracy; whereas
the Percentile method, which roughly truncates 99.99% of the extreme values,
fails to bring notable improvement. Differently, Q-YOLO successfully identifies a
more appropriate scale for quantization, resulting in a considerable enhancement
compared to conventional Post-Training Quantization (PTQ) methods.

4.3 Ablation Study

Symmetry in Activation Quantization. Nowadays, quantization schemes
are often subject to hardware limitations; for instance, NVIDIA [24] only sup-
ports symmetric quantization, as it is more inference-speed friendly. Therefore,
discussing the symmetry in activation value quantization is meaningful. Table 2
presents a comparison of results using Q-YOLO for symmetric and asymmetric
quantization, with the latter exhibiting higher accuracy. The range of negative
activation values lies between 0 and -0.2785, while the range of positive activa-
tion values exceeds that of the negative ones. If we force equal integer expression
bit numbers on both positive and negative sides, the accuracy will naturally
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Table 2. A comparison of Symmetrical Analysis of Activation Value Quantization.
Asymmetric indicates the use of an asymmetric activation value quantization scheme,
while Symmetric refers to the symmetric quantization of activation values.

models Bits Symmetry AP AP50 AP75 APs APm APl

YOLOv5s [33] Real-valued - 37.4 57.1 40.1 21.6 42.3 48.9
6-6 Asymmetric 35.9 55.7 38.3 20.4 41.0 47.6

Symmetric 34.4 53.9 37.0 19.3 39.8 45.0
4-4 Asymmetric 14.0 26.2 13.5 7.9 17.6 19.0

Symmetric 2.7 5.9 2.2 1.3 4.2 4.6
YOLOv5m [33] Real-valued - 45.1 64.1 49.0 28.1 50.6 57.8

6-6 Asymmetric 44.0 63.1 47.7 28 49.9 56.8
Symmetric 42.4 61.1 46.0 25.3 48.3 55.9

4-4 Asymmetric 28.8 46.0 30.5 15.4 33.8 38.7
Symmetric 11.3 24.8 8.6 7.5 15.2 14.5

Table 3. A comparison of Quantization type. The term only weights signifies that
only the weights are quantized, only activation indicates that only the activation
values are quantized, and activation+weights represents the quantization of both
activation values and weights.

models Bits Quantization type AP AP50 AP75 APs APm APl

YOLOv5s [33] Real-valued - 37.4 57.1 40.1 21.6 42.3 48.9
6-32 only weights 36.7(-0.7) 56.6 39.3 20.9 41.4 48.4
32-6 only activation 36.6(-0.8) 56.2 39.3 21.0 42.0 47.9
6-6 weights+activation 35.9 55.7 38.3 20.4 41.0 47.6
4-32 only weights 19.6(-16.3) 35.6 19.3 11.3 22.5 25.7
32-4 only activation 30.6(-5.3) 49.1 32.6 17.0 36.7 40.7
4-4 weights+activation 14.0 26.2 13.5 7.9 17.6 19

YOLOv5m [33] Real-valued - 45.1 64.1 49.0 28.1 50.6 57.8
6-32 only weights 44.7(-0.4) 63.9 48.6 28.0 50.3 57.3
32-6 only activation 44.3(-0.8) 63.4 48.1 28.4 50.3 57.2
6-6 weights+activation 44 63.1 47.7 28.0 49.9 56.8
4-32 only weights 34.6(-9.4) 54.0 37.3 20.0 39.2 45.3
32-4 only activation 37.7(-6.3) 57.3 41 .8 23.7 44.1 51.0
4-4 weights+activation 28.8 46.0 30.5 15.4 33.8 38.7

decrease. Moreover, this decline becomes more pronounced as the quantization
bit number decreases.

Quantization Type. In Table 3, we analyze the impact of different quantiza-
tion types on the performance of the YOLOv5s and YOLOv5m models, consid-
ering three cases: quantizing only the weights (only weights), quantizing only the
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activation values (only activation), and quantizing both weights and activation
values (weights+activation). The results demonstrate that, compared to quan-
tizing the activation values, quantizing the weights consistently induces larger
performance degradation. Additionally, the lower the number of bits, the greater
the loss incurred by quantization. In YOLO, the weights learned by a neural net-
work essentially represent the knowledge acquired by the network, making the
precision of the weights crucial for model performance. In contrast, activation
values serve as intermediate representations of input data propagating through
the network, and can tolerate some degree of quantization error to a certain
extent.

4.4 Inference Speed

To practically verify the acceleration benefits brought about by our quantiza-
tion scheme, we conducted inference speed tests on both GPU and CPU plat-
forms. For the GPU, we selected the commonly used desktop GPU NVIDIA RTX
4090 [24] and the NVIDIA Tesla T4 [24], often used in computing centers for
inference tasks. Due to our limited CPU resources, we only tested Intel prod-
ucts, the i7-12700H and i9-10900, both of which have x86 architecture. For
deployment tools, we chose TensorRT [1] and OpenVINO [2]. The entire process
involved converting the weights from the torch framework into an ONNX model
with QDQ nodes and then deploying them onto specific inference frameworks.
The inference mode was set to single-image serial inference, with an image size of
640× 640. As most current inference frameworks only support symmetric quan-
tization and 8-bit quantization, we had to choose a symmetric 8-bit quantization
scheme, which resulted in an extremely small decrease in accuracy compared to
asymmetric schemes. As shown in Table. 4, the acceleration is extremely sig-
nificant, especially for the larger YOLOv7 model, wherein the speedup ratio
when using a GPU even exceeded 3× compared to the full-precision model.
This demonstrates that applying quantization in real-time detectors can bring
about a remarkable acceleration.

Table 4. The inference speed of the quantized model is essential. The quantization
scheme adopts uniform quantization, with single-image inference mode and an image
size of 640×640. TensorRT [1]is selected as the GPU inference library, while Open-
VINO [2] is chosen for the CPU inference library.

models Bits AP GPU speed/ms Intel CPU speed /ms
RTX 4090 Tesla T4 i7-12700H(x86) i9-10900(x86)

YOLOv5s 32-32 37.4 4.9 7.1 48.7 38.7
8-8 37.3 3.0 4.5 33.6 23.4

YOLOv7 32-32 50.8 16.8 22.4 269.8 307.8
8-8 50.6 5.4 7.8 120.4 145.2
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5 Conclusions

Real-time object detection is crucial in various computer vision applications.
However, deploying object detectors on resource-constrained platforms poses
challenges due to high computational and memory requirements. This paper
introduces Q-YOLO, a highly efficient one-stage detector built using a low-
bit quantization method to address the performance degradation caused by
activation distribution imbalance in traditional quantized YOLO models. Q-
YOLO employs a fully end-to-end Post-Training Quantization (PTQ) pipeline
with a well-designed Unilateral Histogram-based (UH) activation quantization
scheme. Extensive experiments conducted on the COCO dataset demonstrate
the effectiveness of Q-YOLO. It outperforms other PTQ methods while achiev-
ing a favorable balance between accuracy and computational cost. This research
significantly contributes to advancing the efficient deployment of object detec-
tion models on resource-limited edge devices, enabling real-time detection with
reduced computational and memory requirements.
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Foundation of China (Grant No.61827901), “One Thousand Plan” projects in Jiangxi
Province (Jxsg2023102268) and National Key Laboratory on Automatic Target Recog-
nition 220402.
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Abstract. The paper presents a comparative study of three neural speech syn-
thesizers, namely VITS, Tacotron2 and FastSpeech2, which belong among the
most popular TTS systems nowadays. Due to their varying nature, they have been
tested from several points of view, analysing not only the overall quality of the
synthesized speech, but also the capability of processing either orthographic or
phonetic inputs. The analysis has been carried out on two English and one Czech
voices.

Keywords: text-to-speech synthesis · VITS · FastSpeech2 · Tacotron2

1 Introduction

In recent years, a range of neural speech synthesis models appeared, often accompanied
by open-source implementation. Since various methods are based on different architec-
tures, it is desirable to have a notion of how the individual methods are faring against
each other in terms of output speech quality as well as their capabilities of transforming
an input into speech.

As indicated by the title, we have tested three well-known neural speech synthesis
models, as all the three (or their derivatives) are claimed to be end-to-end systems and
are still used for the research [3–5,15,23,26,36,37] to name a few. The choice has
also been motivated by variations in their architectures; thus, some variations in the
synthesized speech can be expected, especially for marginal (or at least not-so-frequent)
phenomena in the inputs. Last but not least, since the individual models were originally
designed to work with varying input types (phonetic vs. orthographic, see further) to
make the comparison fair, all the systems were tested on both of the input types. And
finally, in addition to English, we have also used the Czech language in order to prove
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the language dependency/sensitivity of the systems; this is a significant extension as the
LJ Speech dataset is often only used in comparisons.

Contrary to [32], in the present paper the input text is still expected to be passed
through a text normalization module, being responsible for the correct expansion of
numbers, dates, abbreviations and so on, into text. The only exception, in the case of
orthographic input, is the testing of loanwords in Czech and homographs in English, as
these are supposed to be handled by a G2P module [6,14].

2 Systems Description

Let us describe the chosen DNN-based synthesizers in detail. The VITS model [17]
can be viewed as a fully end-to-end model in the sense that it directly converts input
text into a waveform, avoiding the use of a mel-spectrogram or any other human-
understandable inner bridge within the model (still, there is some intermediate represen-
tation in between the encoder and the embedded vocoder). Its implementation has been
taken from coqui-ai/TTS [8] GitHub repository. In the project, either orthographic
text can be used at the input of the model, or G2P conversion is carried out by gruut
tokenizer and IPA phonemizer [34] internally. For our experiments, we modified the
code to handle both orthographic and phonetic inputs without the use of embedded
processors and cleaners in the same way for all the tested systems.

The other twomodels, namely FastSpeech2 [24] and Tacotron2 [27], follow the two-
stage scheme most widely used today: they employ an acoustic model (also called text-
to-spectrogram or text-to-mel) which generates intermediate representation of acoustic
features in the form of mel-spectrograms from an input text, followed by a vocoder gen-
erating waveform from these acoustic features. Both models are trained independently
of each other, usually using features computed from the original speaker’s record-
ings. The main difference between them is that Tacotron2 has been designed not to
require phoneme-level alignment, simplifying somewhat the preparation of training
data, where only a recording and the corresponding text is required. On the contrary,
the FastSpeech2 allows the explicit control of all the prosodic characteristics (duration,
F0, volume), which is still fairly unique feature, provided neither by Tacotron2 nor by
VITS nowadays. The drawback of this is the need of duration information prior the
training (F0 and volume are computed from the data), which in turn needs some sort
of phonetic alignment. Both the systems were used from TensorFlowTTS GitHub
repository [30], as the FastSpeech2 model was not available in the coqui-ai/TTS
project at the time the experiments began. Also, the FastSpeech2 model is claimed to
be very fast in the inference, which, combined with a very fast Multi-Band MelGAN
vocoder, can provide fast responses (low latency output) in commercial applications.
Especially when compared to VITS with its embedded HifiGAN vocoder.

For an excellent overview of neural speech synthesis models, please see [29].
As already stated in the present paper, we tried all the TTS models on both orthographic
and phonetic inputs. The particular implementations, especially the code of text clean-
ers, had to be modified in order to handle each of the inputs correctly, e.g., orthographic
texts were lowercased while phonetic ones were not (uppercase letters are valid phones).
All the numbers, dates, abbreviations, spellings, etc., appearing in the input texts were
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normalized to their full written forms. To unify the inputs of the models, pause sym-
bols were added to both orthographic and phonetic variants of the inputs into places
of audible pauses or breathing, as these are required by FastSpeech2 training data, see
Sect. 2.2. Our research in [21] suggests that the use of pause symbols has a positive
effect on synthesized speech.

To make it even harder, the number of open implementations of the same method
often vary in their quality, which is also a factor to be considered. For example, we
experienced that the TensorFlowTTS project provides very stable and easy-to-train two-
stage models with very simple switching between acoustic models and vocoders. Also,
its Multi-Band MelGAN vocoder is very fast in inference and achieves very natural out-
put quality, much better than the HifiGAN implementation. On the contrary, the coqui-ai
provides a promising VITS model (see Sect. 2.3), while the two-stage combination of
acoustic models and vocoders is not very robust in that framework, with Multi-Band
MelGAN falling behind HifiGAN and even UnivNet vocoders. Overall, we have not
yet been able to achieve output of these two-stage models comparable with Tensor-
FlowTTS. Therefore, we do not compare the same models between the frameworks in
this paper, as the models cannot be transferred between the two frameworks.

Since the performance may depend on a particular implementation, we left the infer-
ence speed comparison to future work once the development settles a bit. Moreover,
contrary to the inference, the training speed is not a significant factor to consider, espe-
cially when a slow-training model provides stable output with a high level of natural-
ness.

2.1 Tacotron2 + Multi-band MelGAN

The Tacotron2 acoustic model [27] is based on encoder-(attention)-decoder structure,
where input text is passed through embeddings, convolution and biLSTM networks,
representing the encoder part of the network. The location-sensitive attention network
summarizes the full encoded sequence as a fixed-length context vector for each decoder
output step. The decoder part is then an auto-regressive recurrent neural network, pre-
dicting a mel-spectrogram from the encoded input sequence, one spectrogram frame
at a time. The vocoder in the original Tacotron2 was realised by the WaveNet [27]
DNN structure (conditioned by mel-spectra instead of linguistic features as in [22]), but
the TensorFlowTTS project implements a wide range of alternative vocoders, from
which Multi-band MelGAN [35] has been chosen for its highest output quality. The
vocoder is based on generative adversarial networks (GANs), consisting of an audio
data generator and a discriminator to judge the authenticity of the generated audio.
MelGAN uses multiple discriminators to judge audios in different scales; thus, in each
scale, it can focus on the characteristics in different frequency ranges. Multi-band mod-
eling divides the waveform into multiple sub-bands and enables parallel generation and
fast inference.

Let us note that the Multi-band MelGAN vocoder has been chosen deliberately over
the HifiGAN vocoder, being internally used by the VITS model (see Sect. 2.3). The
reason is that it (or possibly its implementation in the project used, to be more precise)
provides a perceptually higher quality of the output speech and is also measurably faster
in speech generation.
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In our experiments, the Tacotron2 was always trained using the project default
parameters, which are AdamW optimizer [20] with β1 = 0.9, β2 = 0.98, and weight
decay λ = 0.001; the initial and end learning rate were set to 0.001 and 0.00001,
respectively, with 4k warm-up steps, with no teacher-forcing being used. The batch
size was set to 32 and the models were trained up to 200k steps for English, and, due
to a much slower training process and time constraints, up to 178k for Czech, both on a
single NVIDIA A100 GPU. The Multi-band MelGAN vocoder was trained with Adam
[18] optimizer for both generator and discriminator with β1 = 0.9, β2 = 0.999, using
piece-wise learning rate decay starting at 0.0005 going to 0.000001 for generator and
0.00025 to 0.000001 for discriminator, both going down to half after every 100k steps.
The batch size was set to 64, and the models were trained up to 4M steps for English
and 2.7M for Czech (also due to the time constraints), with a discriminator employed
after 200k training steps.

2.2 FastSpeech2 + Multi-band MelGAN

FastSpeech2 [24] is a fast and robust Transformer-based acoustic model proposed
to solve issues typical for autoregressive models (such as Tacotron 2) by adopting
feed-forward Transformer network to generate mel-spectrograms from an input phone
sequence in parallel and replacing the error-prone attention mechanism by an explicit
phone duration predictor to match the length of mel-spectrograms. Nowadays, out of
the popular DNN models this it the only one accepting the explicit requirement for
prosody modifications in the form of phone-related values of duration, F0 and volume.

On the other hand, the need for phone alignment complicated the use of the Fast-
Speech model with orthographic input, as there is no straightforward mapping of
graphemes to phoneme signals. In the TensorFlowTTS project, the attention mech-
anism from a trained Tacotron2 model is used to provide this grapheme alignment,
but we have found it rather unreliable. Therefore, we used our DNN-based segmenta-
tion [10,11] to obtain the phonetic-level alignment. For the grapheme-level alignment,
in the case of orthographic input, we fixated the word boundaries based on phonetic
segmentation, and the boundaries of inter-word graphemes were distributed uniformly
through the word.

As for the experiments, the FastSpeech2 has also been trained using the project
default parameters, which are AdamW optimizer with β1 = 0.9, β2 = 0.98 and weight
decay λ = 0.001; as in the case of Tacotron2. The initial and end learning rates were
set to 0.001 and 0.00005, respectively, also with 4k warm-up steps. The batch size was
set to 16, and the models were trained up to 200k steps on a single GeForce GTX 1080
Ti GPU.

As the vocoder, the same Multi-band MelGAN model described in Sect. 2.1 was
also used. This allows excluding the vocoder effect from the comparison.

2.3 VITS

VITS is a conditional variational autoencoder with adversarial learning [17]. It com-
bines different deep-learning techniques (adversarial learning, normalizing flows, vari-
ational autoencoders, transformers) to achieve high-quality natural-sounding output.
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VITS is mainly built on the Glow-TTS model but updates the Glow-TTS by intro-
ducing the following updates. First, it replaces the duration predictor with a stochas-
tic duration predictor, providing better modeling of the variability in speech. Then, it
connects a HifiGAN vocoder [19] to the decoder’s output and joins the two with a
variational autoencoder (VAE). That allows one-stage training of the model in an end-
to-end fashion and finds a better intermediate representation than the traditionally used
mel-spectrograms. This results in high fidelity and more precise prosody [2,16]. Unfor-
tunately, we could not replace the HifiGAN vocoder with Multi-band MelGAN, mostly
due to the use of a different framework in which the tested VITS is implemented [8].

In our experiments, VITS models were trained using the AdamW optimizer with
β1 = 0.8, β2 = 0.99, and weight decay λ = 0.01. The learning rate decay was sched-
uled by a 0.9991/8 factor in every epoch with an initial learning rate of 2 × 10−4. The
batch size was set to 16, and the models were trained up to 1.3M steps using mixed
precision training on a single GeForce GTX 1080 Ti GPU.

3 Test Description

To challenge the capabilities of the given neural speech synthesis models, the test con-
sists of three parts.

First, the question was whether the use of orthographic or phonetic inputs has an
impact on speech quality. While [7] showed that phonetic input is better suited for deep
convolutional neural sequence-to-sequence TTS models, the use of orthographic input
is currently typical for the end-to-end approach, and those models are able to capture
speech contexts using the attention mechanism [33]. Therefore, the use of phonetic
input, matching the target spectra/sounds fairly closely, may not be essential for neural
synthesis models, which is the opposite of the G2P research, where the tendency was
always to prefer the finer phonetic alphabet. And it is a fact that both VITS and Tacotron
were designed to be indifferent to the use of orthographic or phonetic inputs. This rep-
resents a complication for FastSpeech, as described in Sect. 2.2, although it is claimed
in [24] to be “end-to-end” system as well. The choice of Czech and English languages
has allowed testing this on both the language where the graphemes match phonemes
rather closely, as well as on the opposite due to English irregular transcription.

Using the orthographic input brings other problems of their own. Expecting normal-
ized text, as stated in Sect. 1, the neural model must still be able to cope with special
pronunciation phenomena such as loanwords or homographs. Similar to [32], the han-
dling of such words has been the second test put on the synthesizers. Indeed, given the
limited amount of audio data used to train the model, as opposed to strictly text corpora,
which may be an order of magnitude larger, the ability to learn the right pronunciation
from a context depends on the number of examples in the data to learn from. For these
cases, the phonetic text input has a significant advantage. For Czech, or languages with
regular pronunciation, the situation is somewhat simpler, as such words can be rewrit-
ten in a “pseudo” orthographic form, such as designovaný → dyzajnovaný (designed in
English). This was not tested in this paper, however.

The last comparison was the quality of the synthetic speech itself. In this research
question, we tried to outline which of the models used has the potential to generate
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speech with the highest perceived quality. Nevertheless, we did not consider the perfor-
mance of the generation in any way, which may also be important for practical employ-
ment.

3.1 Loanwords and Homographs

In the correct Czech pronunciation rendering test, the loanwords not following the reg-
ular pronunciation rules were used. There were 21 very short sentences with 32 loan-
words (similar to these in [32]) synthesized and analysed:

Stadium agrese.
Stage of aggression

Aktivnı́ frekvence.
Active frequency

Designovaný premiér.
Designated Prime Minister

. . .

Exhalace působı́ bronchitidu.
Exhalation causes bronchitis

Diskuse bez pointy.
Pointless discussion

Playback na koncertě mı́sto etudy.
Playback at a concert instead of an etude

On the contrary, for English we have focused on homographs, which were placed
within meaningful phrases designed by the authors. We used 17 words: record, read,
live, minute, tear, wind, conflict, progress, row, import, insult, advocate, research, bow.
lead, sow and wound, and put their both pronunciation variants into 17 phrases, the
same as these in [32]:

Did you record/rI"kO:d/ this record/"rek@rd/?
Have you read/red/ that book that all the people read/ri:d/?
. . .

Both tests, naturally, were carried out for orthographic input only, as in the case of
phonetic input these words are expected to be transcribed into the correct form by a
G2P or other NLP module. The evaluation was performed by the authors themselves,
simply by listening to the output samples and counting correct/wrong renderings of the
evaluated phenomena. There is no need for a multi-listener evaluation, since the use of
right or wrong pronunciation variants is clearly recognisable.

3.2 Phonetic vs Orthographic Input

To answer the question of the phonetic vs. orthographic text input, we synthesized 20
ordinary phrases without any words containing phenomena possibly influencing the
individual input types. For the orthographic input, the models have to “only” deal with
inner- and cross-word assimilation [14] in Czech. In the case of English, the 20 phrases
containing common words were synthesized and evaluated. Let us note that we did not
examine the correct rendering of OOV words (for English), i.e., these words do not
occur in the training recordings. For now, these are considered as a “special” variant of
loanwords, and a more detailed survey of this was left to future work.
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The same phrases for both languages were phonetically transcribed and synthesized
by models trained on phonetic inputs, where a simplified phonetic alphabet was used for
both Czech and English [21]. The corresponding orto–phone pairs were then compared
in the ABX (CCR) test. Test participants evaluating the Czech voice were native Czech
speakers, most of them with a background in speech technology research, while the
participants evaluating English voices were undergraduate students of an applied lin-
guistics program with an appropriate level of English skills but without a background
in speech technologies. More details about listeners are stated in Sect. 4.

Let us note that the use of an objective acoustic measure, such as PESQ [25],
POLQA [1], STOI [28], (perceptual)SNR, and others, was not considered. The rea-
son is that these kinds of tests are unable to distinguish if a stimuli sound correctly from
the phonetic point of view.

3.3 Overall System Comparison

The last question was the comparison of the synthetic speech quality generated by the
challenged TTS models. To compare that, a “simplified” MUSHRA test [9,13], was
chosen, where the simplification means the absence of reference and anchor test sam-
ples. The same set of phrases as described in Sect. 4.2 was used, while in each test
stimuli, three samples of the same phrase were presented in randomized order, each
rendered by one of the evaluated TTS models for the given input type – i.e., ortho-
graphic inputs were evaluated independently on the phonetic inputs. The task for the
listeners was to assign scores, ranging from 0 to 100, to the individual samples relative
to each other.

Exactly as for the test in Sect. 3.2, test participants for the particular languages were
recruited from the same groups. Also, the same reason is for excluding an objective
evaluation metric.

3.4 Voices Used in the Experiments

As already stated, Czech and English datasets were used to train the models. For the
Czech dataset, we used our own proprietary voice Jan [31], containing 12, 241 phrases
giving about 14.7 hours of speech, excluding pauses. Regarding English, we used two
voices, the first being our own proprietary voice Jeremy [31] with 10, 924 phrases and
13.6 hours of speech (without pauses), and the second being free LJ Speech Dataset
[12], having 13, 100 recordings with a total length of approximately 24 hours.

While Jan and Jeremy were engaged for similar purposes, i.e., unit selection TTS
method; they are similar in their properties such as speaking style, unit coverage, and
so on. The LJSpeech voice, on the contrary, was obtained from audiobook recordings,
and thus, it differs in its properties, especially in the speaking style and no special units
balancing, from the former ones.

4 Results

As already noted, the evaluation was carried out by means of listening tests. While there
is a large intersection of listeners evaluating the systems in Sect. 4.2 and Sect. 4.3, there
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were some participating only in one of them. All the listeners were instructed to use
headphones and to carry out the tests in a quiet environment. None of them reported
any hearing issues or other problems during the evaluation.

Table 1. Results of the synthesis correctness: loanword and homographs.
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teFastSpeech2 56.09

Tacotron2 63.91

VITS 63.04

Let us note that the results for Tacotron2, trained on Jeremy voice, are absent.
Despite using the same settings as for the other voices, the training of the model started
correctly (as checked by analysis of the validation steps), but toward the end of the
training, the model was not able to generate intelligible speech. Due to time constraints,
we were, unfortunately, unable to analyse the reasons for this behaviour.

4.1 Loanwords and Homographs

The analysis of the synthesized sentences for this part of the evaluation was solely
carried out by the authors themselves. Since there is a simple binary decision required,
and native speakers or language experts are assumed to be able to recognise correct
pronunciation, we do not expect different results in the case of evaluating by means of
standard listening tests.

In Table 1, the word error rate (WER) percentages are presented, with the most
frequent misses shown. The WER value was computed as the ratio of mispronounced
words to the total number of 32 examined loanwords and 34 homographs. In the wrong
column, we listed the mispronounced loanwords or homographs where all the systems
wrongly rendered at least one variant. It can be seen that the Tacotron2 model is rather
poor at estimating for both Czech and English, while VITS is rather good for Czech but
often misses in English. FastSpeech2, on the other hand, behaves quite robustly, except
for the LJ Speech corpus. Overall, the results show quite a large variance, making any
clear statement fairly unconvincing. On the other hand, we did not expect any better
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Table 2. Results of the preference listening test: orthographic vs phonetic inputs.

Model Preference [%]

ortho same phone

Czech

FastSpeech2 22.50 42.86 34.64

Tacotron2 29.29 28.21 42.50

VITS 29.29 28.21 42.50

English (Jeremy)

FastSpeech2 45.44 15.87 38.70

VITS 51.74 9.78 38.48

English (LJ Speech)

FastSpeech2 56.09 17.39 26.52

Tacotron2 63.91 13.48 22.69

VITS 63.04 9.13 27.86

results, considering that wider text context, and possibly some level of understanding,
is required to handle these phenomena correctly. There is a significant advantage of
phonetic input, where other DNN models can be used to decide, and they can be trained
on much larger (test-only) datasets.

Let us emphasize that this evaluation took into account only the loanword and
homograph words. However, we found that there were cases when both evaluated word
variants were pronounced correctly, but there was another word either with a wrong
accent or pronounced in an otherwise incorrect way. This was left to further analysis,
though, and had no influence on the results presented here.

4.2 Phonetic vs Orthographic Input

In Table 2, the results of ABX test comparing speech quality generated by the individual
voice models with phonetic vs. orthographic inputs are presented. There were 13 listen-
ers participating in the Czech test, each evaluating 60 test pairs. Similarly, both English
voices were evaluated by 23 listeners, each evaluating 100 test pairs in total. The higher
number of evaluated pairs for English was caused by joining the evaluated pairs into a
single test, purely for practical reasons, while not combining the tested systems in any
way.

It can be seen that for English, the orthographic input leads to a higher quality of
synthetic speech for all the tested neural models, as clearly preferred by the listeners.
For Czech, the opposite is true and phonetic input wins, except for the FastSpeech2
model, where the most listeners evaluated both versions as equal (either good or bad)
with a slight preference for phonetic input for the cases where they were able to decide.

This definitely requires further analysis, since we expected the phonetic input would
behave better than orthographic for English (as also found in [7], yet for another DNN
model), while the results show the clear opposite for all of the systems. On the contrary,
with orthographic and phonetic inputs not being so widely different in Czech, there is a
surprisingly significant inclination toward the phonetic input.
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Table 3. Results of the MUSHRA listening test: overall systems comparison.

Model MUSHRA score

ortho phone

Czech

FastSpeech2 72.06 ± 17.49 75.98 ± 15.73

Tacotron2 77.02 ± 14.40 78.80 ± 14.86

VITS 85.10 ± 12.41 86.68 ± 11.79

English (Jeremy)

FastSpeech22 73.91 ± 23.02 71.72 ± 24.56

VITS 81.83 ± 19.51 79.97 ± 18.45

English (LJ Speech)

FastSpeech2 63.74 ± 26.98 57.53 ± 28.58

Tacotron2 80.66 ± 21.54 69.98 ± 26.09

VITS 80.55 ± 20.76 74.01 ± 24.22

4.3 Overall System Comparison

The question of the overall performance of the systems, as evaluated by “simplified”
MUSHRA test, is stated in Table 3, and to remind ourselves of the description in
Sect. 3.3, the synthesis models using orthographic inputs were evaluated independently
of these using phonetic inputs. The test itself contained 40 stimuli and was completed
by 13 listeners for the Czech voice, while 80 stimuli were evaluated for English voices,
all finished by 23 listeners. And, similar to Sect. 4.2, both English voices were evaluated
in a single test.

A more detailed visualization of the results from Table 3 is shown in Fig. 1 and
Fig. 2, where it can be seen that the VITS obtained consistently higher scores than the
other two synthesizers. Also, the comparison of scores for phonetic and orthographic
inputs corresponds with results from Sect. 4.2, although these two inputs were not com-
pared together in any of the stimuli. Analysing the notch intervals, the higher quality of
VITS is in the most of the cases statistically significant.
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Fig. 1. Results of the MUSHRA listening test: overall systems comparison, Czech.

Fig. 2. Results of the MUSHRA listening test: overall systems comparison, English.
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5 Conclusions

In the present paper, we have challenged three different modern speech synthesis neural
models with various tasks on two different types of input texts (used both for training
and inference, naturally).

We have shown by the experiment with loanwords and homographs that the use of
raw orthographic input is not reliably capable of providing correct pronunciation for
the tested cases, which was more or less expected based on observations in [32]. The
FastSpeech2 model is the most successful in this, probably due to the embedding of the
transformer model, which is very suitable for the tasks of text conversion [6]. Still, the
use of phonetic input is superior to orthographic input. As a byproduct of the evaluation,
we have found that even relatively common words may be rendered incorrectly. This is
one of our plans for future research in this area.

On the other hand, the use of phonetic input provided, at least for English voices,
speech of a lower quality than speech generated from orthographic inputs. This has
been a rather surprising finding, and we do not have a full understanding of these results
yet. To give a reasoned explanation of such behaviour, a much deeper analysis of the
individual outputs will be required, and we would like to continue investigating the
issue.

Regarding the overall quality evaluation for the given neural models, the VITS pro-
vided synthetic speech ranked by the highest scores more consistently than the other
two models. One of the explanations may be the modern structure of its neural model
(conditional variational autoencoder), but there may also be an influence on the number
of training steps used when training the individual models (although the loss functions
no longer significantly decreased at the given training steps). On the other hand, our
latest observations of the VITS model from coqui-ai/TTS project suggest that it
has some problems when synthesizing a Czech phone [r] in some contexts. Also, the
VITS model does not allow a full and fine user control of all prosodic characteristics, as
opposed to FastSpech2, which is able to use input character-level relative changes for
duration, F0, and even volume prosodic characteristics. From a practical deployment
point of view, this is a significant factor to consider.

Perhaps the most important finding was the influence of the implementation. Nowa-
days, it is easy to find several open implementations of almost any DNN model pub-
lished, which is generally the right direction for the research. However, the particu-
lar implementations do not provide similar or even comparable results. For example,
HifiGAN from TensorFlowTTS project provides recognisably worse audio qual-
ity than Multi-Band MelGAN from the same project, while it is the opposite in the
coqui project. Unfortunately, the trained models cannot be transferred easily across
the projects. Therefore, let us be prepared that there may be better implementations
of the tested models, providing slightly different results than those presented here. We
would like to ask anyone to be aware of that fact.
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9. Grůber, M., Chýlek, A., Matoušek, J.: Framework for conducting tasks requiring human

assessment. In: Proceedings of the Interspeech 2019, pp. 4626–4627 (2019)
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31. Tihelka, D., Hanzlı́ček, Z., Jůzová, M., Vı́t, J., Matoušek, J., Grůber, M.: Current state of

text-to-speech system ARTIC: a decade of research on the field of speech technologies. In:
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Abstract. In recent years, the Text-to-Text Transfer Transformer
(T5) neural network has proved more powerful for many text-related
tasks, including the grapheme-to-phoneme conversion (G2P). The paper
describes the training process of T5-base models for several languages.
It shows the advantages of training G2P models using that language-
specific basis over the G2P models fine-tuned from the multilingual base
model. The paper also explains the reasons for training G2P models on
whole sentences (not a dictionary) and evaluates the trained G2P models
on unseen sentences and words.
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1 Introduction

For decades, a grapheme-to-phoneme (G2P) module was a crucial part of all text-
to-speech (TTS) systems since correct phonetic transcriptions of input sentences
were fundamental for high-quality synthetic speech. Nowadays, end-to-end TTS
systems, synthesizing from raw texts, appear increasingly often [4,8,11]. Still,
the “traditional” composition of TTS systems (i.e., a G2P module and the syn-
thesizer itself) is topical and still used in many approaches (both research and
commercial) [9].

The task of phonetic transcription (G2P conversion) is to transcribe the
input text into a sequence of phonemes of the given language. Traditional G2P
approaches use large dictionaries and (mostly) hand-crafted phonetic rules [9].
Regular languages (regarding the phonetic rules) usually rely on the rule-based
approach. However, they still need a dictionary of exceptions (e.g., foreign names,
loan words, etc.). That is advantageous, especially for inflected languages, since
the pronunciation dictionaries would be enormous when containing all inflected
forms. The dictionary-based approaches are often used for languages such as
English. However, there is still a need for some post-processing rules, e.g., for
out-of-vocabulary words or ambiguities (see below). In both cases, the large
dictionaries need to be updated. And despite being supplemented regularly, the
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dictionaries never contain all words (or all pronunciation exceptions) of the given
language.

In recent years, the G2P conversion has relied more often on trained G2P
(usually neural network) models [7,10,15,16]. As we know, almost all approaches
to G2P work only at the word level – they train models on items of large dic-
tionaries. From our point of view, the main disadvantage of the word-level G2P
approach lies in the need to design post-processing rules (which are strongly
language-dependent) that would solve the specific phenomena in the particular
languages, e.g., cross-word assimilation, homograph disambiguation, etc.

For English, those post-processing rules have to distinguish, for example,
between 2 variants in the following phrases1:

the [Di:] apple vs. the [D@] bear
I have not read [rEd] the book yet. vs. I read [ri:d] every evening.

Some languages, such as Czech, use assimilation of voice (sometimes, a voice-
less consonant is pronounced voiced, and vice versa – depending on the circum-
stances):

pod [pot] pokličkou vs. pod [pod] dubem vs. pod [pot] oknem
under the pot-lid under the oak under the window

Četla jsem text [tekst]. vs. Text [tekzd] byl zajímavý.
I have read a text. The text was interesting.

The above-mentioned phenomena are the primary motivation for this paper.
We applied the G2P on the sentence level without using cross-word rules to catch
language-specific inter-sentence word relations. Neural network models trained
on whole sentences are presented in recent papers [2,17], and the present paper
follows the training process described in [17] and applies that to other languages.

2 T5 Models

As a base model in all our experiments, we used the Text-to-Text Transfer
Transformer (T5) model [5]. Generally, the T5 model is trained as the complete
encoder-decoder transformer. The training task for the T5 model is defined as
a self-supervised task – the model tries to recover missing token spans in the
output. The general advantage of the T5 model is the ability to perform many
text-to-text tasks like text summarization, topic detection, or sentiment analysis.

For experiments with English data, we used Google’s T5-base English model
(version from October 21st, 2019)2 trained from Common Crawl data3. We repli-
cated the same pre-processing procedure to obtain the pre-training data in other
1 Note: All examples of pronunciation are in SAMPA alphabet [12].
2 https://github.com/google-research/text-to-text-transfer-transformer.
3 https://commoncrawl.org/.

https://github.com/google-research/text-to-text-transfer-transformer
https://commoncrawl.org/
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Original text

Inputs

Targets

Thank you <X> me to your party <Y> week.

Thank you for inviting me to your party last week.

<X> for inviting <Y> last <Z>

Fig. 1. Example of processing the original text and creating input/output text pairs.
Figure taken from [5].

languages considered in this work, and we pre-trained our own T5 models for
these languages.

The T5 model is a self-supervised trained variant of the generic textual Trans-
former architecture [5]. The T5 model is able to construct the internal represen-
tation of input on many linguistic layers: starting from phonetic and syntactic
through semantic to the pragmatic layer. The T5 model is pre-trained on an
artificial self-supervised task – a text restoration task from unlabelled training
data. An example of the pre-training input/output text pair is shown in Fig. 1.

The T5 model tries to recover missing tokens in the input sentence masked
with sentinel tokens <X> and < Y >. The masked tokens are used as training tar-
gets and the output sentence is terminated using another sentinel token < Z >.
This way, the T5 learns not only the knowledge required to understand the
input sentence but also the knowledge necessary to generate meaningful output
sentences.

The original Google’s T5-base English model4 (labeled as t5-EN in our
paper) was trained from Common Crawl data5. We replicated the same pre-
processing procedure to obtain the data for other languages tested in the present
paper. The pre-processing steps correspond with the steps presented in [6] for
building the Colossal Clean Crawled Corpus (C4) on which Google’s T5 model
was pre-trained. Such rules are generally applied while processing web text:

– Only lines ending in terminal punctuation are retained. Short pages and lines
are discarded.

– Pages with dirty and obscene words are removed.
– Lines with the word “JavaScript” and the curly braces { } are removed

(remains of incorrect text extraction from the source code of the webpage).
– The pages in the corpus were de-duplicated. The resulting corpus contains

each span of three consecutive sentences just once.

For all languages presented in this paper (except for English, for which we use
Google’s T5-base English model), we have collected the corresponding Common-
4 https://github.com/google-research/text-to-text-transfer-transformer.
5 https://commoncrawl.org/.

https://github.com/google-research/text-to-text-transfer-transformer
https://commoncrawl.org/
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Crawl sub-corpus at the end of October 2021 and pre-trained language-specific
T5 models (t5-XX ) using those data. Textual datasets sizes are presented in
Table 1. The T5 training followed the original procedure described in [5].

Table 1. Statistics of textual datasets used for training the language-specific base T5
models.

pre-trained model dataset size [GB]

t5-CZ 122
t5-DE 649
t5-ES 683
t5-FR 511
t5-IT 274
t5-RU 2.568

We used the t5-base architecture consisting of 220M parameters, 2× 12
transformer block in the encoder and the decoder. The dimensionality of hidden
layers and embeddings was 768. The attention mechanism uses 12 attention
heads with inner dimensionality 64.

For comparison with the t5 model, we also used the “universal” multilin-
gual model mt5-base [14] (further denoted as mt5 ), which was pre-trained on
CommonCrawl data from 101 languages. Because the mt5 architecture uses the
SentencePiece tokenizer [3] with 250k pieces, the overall number of trainable
parameters is 580M. The increased number of parameters lies in the extra embed-
ding vectors required to represent additional sentence pieces from the tokenizer.
The remaining architecture of the encoder and the decoder is the same for both
the t5 and mt5 models. Because all 101 languages share the same tokenizer, the
input/output texts are tokenized into the higher count of shorter pieces than
the language-specific t5 models. To recap, the language-specific SentencePiece
tokenizers consistently use 32k pieces.

3 G2P Data and Models

As explained in Sect. 1, this paper focuses on training sentence-level G2P mod-
els. The recently published study [17] showed that the T5G2P model (i.e., a
T5 trained for G2P task) was able to outperform the baseline rules+dictionary
approaches (or at least almost beat them) for English and Czech languages.
Following the mentioned paper, we trained T5-based G2P models for seven lan-
guages.

We have collected sentences with their phonetic transcriptions for Czech
(CZ), German (DE), English (EN), Spanish (ES), Italian (IT), French (FR),
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and Russian (RU) languages6. The transcriptions were generated automatically
and checked by our phonetic experts. The statistics are summarized in Table 2.
The sizes of data available are different (and the average sentence lengths as
well), and also, the total numbers of unique phonemes in particular language
data vary significantly – which would probably affect the accuracy values calcu-
lated on the generated transcriptions (see Sect. 4). The Spanish language has the
smallest phoneme set (according to data we had at our disposal) since there is
no distinguishing between short and long variants of vowels. On the other hand,
the largest set for the Italian language is related to the phonetic phenomenon
“gemination”, a consonant lengthening (a consonant articulation for a longer
period of time compared to a singleton consonant), which is typical (besides
other languages) for Italian [1].

For each language, a subset of 10% randomly selected sentences was used for
testing. Note that the testing data contain “just” sentences unseen during the
training phase. Still, many single words were seen during the training process –
which is evident since common words (prepositions, basic verb forms, pronouns,
and others) appear very often. That is also a reason why our word accuracy
values in Table 3 can not be compared to the word accuracy values in studies
working with dictionary items. Therefore, we also focused on unseen words in
the testing sentences (see Sect. 4.1).

Table 2. G2P data statistics.

language No. of sentence avg. sentence length (in words) avg. sentence
length (in phones)

No. of phones

CZ 442,027 11.5 65.9 53
DE 275,572 16.3 80.8 52
EN 160,668 11.8 45.4 49
ES 605,470 22.0 107.5 34
FR 635,605 17.1 62.9 46
IT 450,766 10.7 54.7 85
RU 405,844 10.5 61.4 54

We used the Tensorflow implementation of Hugging-Face Transformers
library [13] together with the T5s7 library. We fine-tuned the base (both
language-dependent and language-independent) T5G2P models (described in
Sect. 2) to generate the corresponding phonetic transcription. As the T5 model
is an encoder-decoder model that converts all NLP problems into a text-to-text
format, we easily used the whole sentences of a particular language at the input.
The desired output is also defined as a sequence. The examples of input and
output sequences (for Czech) are shown below:
6 Note: We do not explicitly work with word stress position because we believe that

this information (if necessary) is hidden implicitly in the phonetic transcription for
all languages in use.

7 https://github.com/honzas83/t5s.

https://github.com/honzas83/t5s
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Input sequence: Dodnes tak ale neučinil.
Output sequence: dodnes tak !ale ne!uCiJil.

Input sequence: Že papež skutečně nosí místní církve ve svém srdci.
Output sequence: Ze papeS skuteCJe nosI mIstJI cIrkve ve svEm sPci.

Input sequence: Nedávno skončily Vánoce a opět se slaví.
Output sequence: nedAvno skonCili vAnoce !a !opjet se slavI.

The training lasted 100 epochs with 1000 update steps per each epoch. As
the learning rate scheduler we used Inverse Square Root Scheduler with starting
learning rate equals to 1 · 10−4. All parameters are set as trainable.

4 T5G2P Results

The output sentences generated by our trained T5G2P models fine-tuned from
language-specific (t5-XX ) and multilingual (mt5 ) models were compared to the
reference and evaluated using the following measures: sentence accuracy, word
accuracy and phoneme accuracy. The results are shown in Table 3.

Table 3. Sentence, word, and phoneme accuracies in % for different languages. Com-
parison of t5-XX and mt5 models.

language base T5 model sentence accuracy word accuracy phone accuracy

CZ mt5 98.32 99.85 99.95
t5-CZ 98.90 99.90 99.97

DE mt5 97.02 99.81 99.93
t5-DE 98.02 99.88 99.95

EN mt5 91.96 99.01 99.55
t5-EN 93.77 99.04 99.68

ES mt5 98.70 99.94 99.97
t5-ES 99.40 99.97 99.98

FR mt5 96.95 99.80 99.96
t5-FR 98.18 99.88 99.98

IT mt5 95.41 99.32 99.87
t5-IT 95.74 99.38 99.88

RU mt5 96.29 99.73 99.90
t5-RU 97.86 99.83 99.92

The results clearly show the advantage of language-specific base T5 models
(compared to the multilingual mt5 model) – the G2P models using the t5-XX
base models outperformed the models trained from a multilingual base in all
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three observed measures for all tested languages. More specifically, the sentence
error rate (i.e., sentence accuracy complement to 100%) decreases, for example,
from approx. 3% to less than 2% for German and French, and (surprisingly) it
also decreases noticeably for English.

For greater clarity, the values of sentence accuracy are drawn in Fig. 2.
Regarding the dependence of sentence accuracy values on the size of the dataset
available for the particular language, we can confirm that the sentence accuracy
tends to increase with the increasing dataset size. Nevertheless, there are some
“anomalies”. For example, the results on Italian are significantly worse compared
to languages with a similar number of sentences available (see Table 2) – but
that “drop” might be explained by the most extensive set of phonemes (and
maybe, the 2nd smallest dataset used for training the pre-trained t5-IT model
(see also Table 1). The worst results regarding the accuracy evaluated on our
G2P task were recorded for English. However, let us emphasize that (besides
complex English phonetic transcription) we had the smallest G2P dataset for
this language. The two Slavic languages (Czech and Russian) do not differ much
in the G2P data size. However, the results are a bit better for Czech – in our
opinion, the Czech phonetic transcription is more straightforward than Russian
since there is a fixed word stress position. The graph in Fig. 2 also shows a signif-
icant difference between results for Spanish and French (despite similar numbers
of G2P sentences available), but, again, those languages vary in phoneme set
size (French has third more phonemes than Spanish).

4.1 Unseen Words in Testing Data

In Sect. 3, we mentioned that words in testing data are not entirely unseen –
a certain number of those words is also included in the training data and the
T5, therefore, saw them during the training phase (and probably, it also learned
how to transcribe them correctly). Therefore, the word accuracy values for all
languages are very high. Considering English (which is used frequently in many
G2P studies, e.g. [10,16]), our word error rate (WER) is approximately 1%,
while the state-of-the-art values on publicly available dictionaries are about (or
less) than 20%.

The numbers of unseen words in the subset of sentences used for testing are
shown in Table 4 – the second column contains numbers of all unique words in
the testing set, and the third column shows how many of those do not occur in
the training set (only several percent or less than 1%, depending on a language).
The word error rate values for those unseen words (uWER) are shown in the last
column. The uWER values mostly range from 14% to 20% (with 2 exceptions
analyzed below), meaning approx. every sixth word not seen in the training data
is transcribed incorrectly by the trained G2P models.

The numbers in the first row (CZ) might be surprising. The testing data
for Czech consist of many words (compared to the other languages) despite
not having the largest set of sentences at disposal. However, that only confirms
that the Czech language has a rich vocabulary. But because the Czech phonetic
transcription is very regular (excluding foreign and loan words), the uWER
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Fig. 2. Sentence accuracy and dataset size (the phoneme set sizes in brackets).

Table 4. Word error rates of unseen words (uWER) in the test set for different lan-
guages. Evaluated using the t5-XX models.

language No. of unique words No. of unseen words uWER (%)

CZ 202.923 7.807 2.66
DE 111.811 1.496 14.84
EN 30.182 625 27.76
ES 93.160 412 15.29
FR 76.597 498 17.67
IT 71.442 1.039 19.92
RU 68.731 1.229 17.49

value is the smallest one in our study. The highest uWER value for English
(27%) means that approximately one-quarter of unknown word transcriptions
generated by our trained G2P model contains an error. This is, of course, higher
compared to state-of-the-art WER. Still, those WER values were calculated on
a testing subset of all words – in our case, the uWER was evaluated on words
that did not appear in any of more than 140 thousand training sentences so
those words are mostly names (often of foreign origin and, therefore, with a
less predictable pronunciation) or other rare English words – which was also
confirmed by the analysis of incorrect transcriptions.
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5 Conclusion

In the present paper, we used T5 neural network for training grapheme-to-
phoneme models for 7 different languages. We followed the process of training
T5G2P models described in [17]. First of all, we collected a huge amount of
data for particular languages and pre-trained language-specific base models (in
the same way as Google’s T5-base model was trained). Afterward, those models
were fine-tuned for the G2P task, having whole sentences at the input and their
phonetic transcriptions at the output.

The results presented in Sect. 4 clearly showed the benefits of language-
specific base models, compared to the multilingual mt5 model. The other advan-
tage, already described in Sect. 2, lies in a number of training parameters which
is significantly higher for the mt5 model. We also focused on words in testing
data that were unknown to the T5G2P models (“unseen words”) and compared
the word error rate for different languages.

For future work, we want to analyze the incorrect transcriptions for particular
languages in depth. And we also deal with the number of phonemes in each
language and the possibility of reducing the phoneme set (especially for some
applications of G2P and some languages like Italian). And finally, we aim to
apply the same process of pre-training t5-XX models and fine-tuning the T5G2P
models for other languages.
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Bohemia, project No. SGS-2022-017.
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Abstract. The paper presents a method for spoken term detection
based on the Transformer architecture. We propose the encoder-encoder
architecture employing two BERT-like encoders with additional mod-
ifications, including attention masking, convolutional and upsampling
layers. The encoders project a recognized hypothesis and a searched
term into a shared embedding space, where the score of the putative
hit is computed using the calibrated dot product. In the experiments,
we used the Wav2Vec 2.0 speech recognizer. The proposed system out-
performed a baseline method based on deep LSTMs on the English and
Czech STD datasets based on USC Shoah Foundation Visual History
Archive (MALACH).

Keywords: Neural networks · Transformer architecture · Spoken term
detection

1 Introduction

Searching through large amounts of audio data is a common feature of several
tasks in speech processing, namely keyword spotting (KWS), wake word detec-
tion (WWD), query-by-example (QbE), or spoken term detection (STD). These
tasks differ both with the requirements imposed on the form of the query: for
example, audio snippet (QbE) or sequence of graphemes (STD) and computa-
tional resources required: low resource (WWD), real-time processing (KWS), or
off-line processing (STD). In recent works, the architecture of such systems is
often based on acoustic embeddings extracted using deep neural networks [16].
Such embeddings are further used to classify or detect keywords, terms, or exam-
ples. The embeddings could be extracted using convolution networks, recurrent
networks, or – more recently – Transformer networks.

Many recent papers have used Transformer architecture for the mentioned
tasks. The Keyword Transformer [2] is designed for the Google Speech Command
(GSC) task, which directly uses the Transformer architecture to project the input
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audio data into a single vector used for keyword classification. A similar approach
is the architecture called LETR [4]. Unfortunately, the GSC-related works often
present a solution for keyword classification instead of KWS or STD in long,
streamed audio data.

The multi-headed self-attention mechanism is also used in the QbE scenario.
For example, [21] proposes a combination of recursive neural networks, self-
attention layers, and a hashing layer for learning binary embeddings for fast
QbE speech search.

The works related to WWD also study the use of the Transformer architec-
ture. The streaming variant of Transformer was proposed in [18]. The Trans-
former was modified for real-time usage and outperformed the system based on
the convolution network. Another architecture called Catt-KWS [20] uses a cas-
caded Transformer in the encoder-decoder setup for real-time keyword spotting.

In this work, we do not focus on the direct processing of the input speech
signal. Instead, we use the speech recognizer to convert an audio signal into a
graphemic recognition hypothesis. The representation of speech at the grapheme
level allows preprocessing of the input audio into a compact confusion network
and further to a sequence of embedding vectors. A Deep LSTM architecture pro-
posed in [24] uses the projection of both the input speech and searched term into
a shared embedding space. The hybrid DNN-HMM speech recognizer produces
phoneme confusion networks representing the input speech. The DNN-HMM
speech recognizer can be replaced with the Wav2Vec 2.0 recognizer [1] with CTC
loss – an algorithm for converting the CTC grapheme posteriors into grapheme
confusion network was proposed in [22]. The grapheme confusion networks were
subsequently used in the Deep LSTM STD. Moving from DNN-HMM to the
Wav2Vec speech recognizer significantly improves the STD performance.

This work describes a modification of the STD neural network (Sect. 2) by
replacing the Deep LSTMs with the Transformer encoder (Sect. 3). The core
of the Transformer encoder has the same architecture as BERT-like (Bidirec-
tional Transformers for Language Understanding) models [3,10] (Sect. 3.4), but
a simple drop-in replacement of LSTMs with vanilla Transformer encoder brings
a significant degradation in STD performance which contradicts the common
understanding of Transformers as the more superior class of models. This obser-
vation motivated the research presented in this paper. To overcome the LSTM
baseline, we propose a set of well-motivated modifications (Sect. 3.2). The pro-
posed method is experimentally evaluated in the domain of oral history archives
(Holocaust testimonies from the USC Shoah Foundation Visual History Archive)
in two languages (Sect. 4). The experimental results (Sect. 5) show that the pro-
posed Transformer architecture outperforms the baseline Deep LSTM.

2 Neural Spoken Term Detection Framework

The design of the encoder-encoder STD based on neural networks consists of
two independent processing pipelines: (1) the recognition output projection by
a hypothesis encoder and (2) the searched term projection and minimum length
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estimation by a query encoder. Suppose the input audio is represented by the
recognized hypothesis, which is a sequence of time-aligned segments ci, i =
1, . . . N . Each segment ci is projected into a vector Ci. The query g is expressed
as the sequence of graphemes gj , j = 1, . . . M mapped using an input embedding
layer to vectors Gj .

The hypothesis encoder is used to map the sequence of vectors CN
i=1 to a

sequence of embedding vectors RN
i=1. The query encoder maps the vectors GM

j=1

to a sequence of query embeddings QK
k=1. Here we assume that the length of

sequences Ci and Ri is the same to keep the time correspondence of Ri to the
input audio. The number of query embeddings K is independent of the length
of the query M . For example, the query can be represented by a single vector
(K = 1) or, like in [24], by three vectors (K = 3, then Q1 represents the first
half of the query, Q2 the middle of the query, and Q3 the second half).

The embedding vectors Ri and Qk are then used to compute per-segment
probabilities of segment ci being the part of the putative hit of the query g. To
compute the calibrated probabilities ri, i = 1, . . . N , we use the dot-product of
the embedding vectors:

ri = σ

(
α · K

max
k=1

(Ri · Qk) + β

)
(1)

where σ(x) denotes the sigmoid function and α and β are trainable calibration
parameters. The maximum is used to select the most similar (in terms of dot-
product) query embedding Qk of all K embeddings (see Fig. 1).

To determine the putative hits of the query g, the minimum number of seg-
ments L(g) is estimated in the query encoder and used to find all spans (I, J)
satisfying the conditions ri > t ∀i : I ≤ i ≤ J and J − I + 1 ≥ L(g) where
t is the decision threshold. In other words, we search for peaks in ri threshold
t which span at least L(g) time-aligned segments ci. The overall score for the
putative hit is determined as an average probability:

score(g, I, J) =
1

J − I + 1

J∑
i=I

ri (2)

If there are multiple overlapping spans for a given query, only the span with the
highest score is kept as a putative hit.

The NN-based model is trained using a binary cross-entropy loss function.
The training data can be generated on the fly by randomly selecting a word from
a time-aligned transcript as a query. Because we target oral history archives, we
can exploit a huge amount of speech data they contain by blindly recognizing the
speech data and using the correctly recognized in-vocabulary words (in terms
of confidence scores) to generate the queries. The main focus of STD in oral
history archives is on out-of-vocabulary words; a data augmentation technique
can be used. For example, two or more consecutive in-vocabulary words can be
randomly merged to simulate OOVs [24].
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Fig. 1. Neural STD framework. Per-segment probabilities are intentionally displayed
as a continuous function for clarity, although they are represented as discrete values
ri.

3 Transformer-Based Architecture

In this section, we will describe an application of the Transformer neural network
architecture in the STD framework described in Sect. 2. The basic idea of our
proposed architecture is to use just the encoder part of the Transformer to
extract context-dependent vector representations of the input. This approach is
similar to using a Transformer in the BERT family of models [3]. The novelty
of our approach is to convert both the input audio and the searched query
into a shared embedding space and then score each segment of the input audio
using a simple similarity measure consisting of a sigmoid-calibrated dot-product
between two vectors in this embedding space. In an analogy to the encoder-
decoder approach, we can call this architecture the encoder-encoder.

3.1 Preliminary Experiments

Since the Transformer architecture is believed to achieve better performance than
the LSTMs in many NLP and speech processing tasks [5,8], we first experimented
with the Deep LSTM architecture where the LSTMs were simply replaced with
Transformer blocks and positional embeddings added to the input. Surprisingly,
those experiments showed that the STD performance dropped below the LSTMs.
The results of this vanilla Transformer evaluated under the experimental setup
described in Sects. 4 and 5 are reported in Tables 2 and 3. To improve the
performance of the Transformer-based STD model, we suggest some extensions
of the vanilla BERT-like architecture.
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3.2 Proposed Architecture

First, we hypothesize that the worse performance of the vanilla Transformer
architecture is caused by the format of the input – the sequence of single
graphemes. Therefore, we used the trainable 1D convolutional filter with a
stride larger than 1 to reduce the temporal dimensionality of the input and
to find latent projections of larger subsequences of graphemes corresponding
with larger subword units. The Transformer is applied on top of such projec-
tions (output of the convolutional layer). To restore the input-output relation
with the time-alignment of the segments ci, we also applied the upsampling
layer (also called transposed convolution or deconvolution) on the output of the
Transformer (Fig. 2). BERT-like architectures [3] use the GELU functions [7] as
activations and therefore we used it not only in the encoder but also as activa-
tions in the convolutional layer. The upsampling layer contained linear activa-
tion. The standard positional embeddings are added after applying convolution
before feeding input into the Transformer.

To estimate the minimum number of segments L(g), we add an extra token
called [CLS] to the input of the query encoder. A similar approach can be
found in BERT pre-training where the [CLS] token is used for the next-sentence-
prediction task [3]. The corresponding encoder output is transformed using a
linear fully-connected layer to a scalar value L(g). The training loss function of
this network output is standard MSE (Fig. 4).

While the ability to condition the outputs on very distant parts of the input
is one of the strongest features of the Transformer model, in STD, the occurrence
of the putative hit depends only on local input features and distant dependencies
are very rare. Therefore, we used attention masking to limit the multi-headed
attentions to attend only to a few neighboring input segments. Although atten-
tion masking is a common mechanism to introduce causality into Transformer
models [11], we use it to introduce locality. The masking is implemented using
the masking matrix containing ones on the diagonal and on a fixed number of
super- and sub-diagonals.

3.3 Simplifications over Deep LSTM

The proposed Transformer-based encoder-encoder architecture brings some
advantages over the baseline Deep LSTM. The Transformer can compensate
for inaccurate time alignment of the CTC output and therefore we did not use
the output masking as used in [22]. In addition, the estimation of the minimum
number of segments L(g) for a given query is performed as a part of query
embedding computation without requiring a separate model.

3.4 Transformer Block

We used a classical Transformer block as presented in [17] with GELU activation
functions in feed-forward layers. The hyperparameter setting was similar to the
BERT models, particularly the BERT-Mini architecture [6]. BERT-Mini has a
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Fig. 2. Architecture of the hypothesis encoder.
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Fig. 3. Mapping of confusion segments ci to vectors Ci.

stack of four Transformer blocks with four self-attention heads, the dimension-
ality of embedding vectors is 256, and the dimensionality of feed-forward layers
is 1024. The dropout probability used was 0.15.

3.5 Input Transformation

The proposed STD system does not process the input audio directly. Instead,
it uses the fine-tuned Wav2Vec 2.0 model to recognize the grapheme-based
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representation of the input converted into the grapheme confusion network using
the deterministic procedure [22]. For each segment of the confusion network, the
3-top most probable transitions are taken into account. Each segment is encoded
to a 256-dimensional vector consisting of 15 duration features generated from a
scalar duration of the segment using two tanh() fully connected layers, 16 transi-
tion probability features generated by another set of fully connected layers, and
3× 75 grapheme embeddings for three most probable symbols of the segment
(Fig. 3). The query is represented directly as a sequence of query graphemes
projected into a 256-dimensional embedding space.

4 Dataset and Model Description

The presented method was evaluated on the data from a USC-SFI MALACH
archive in two languages – English [15] and Czech [14]. The training data for
NN-based STD were extracted by blindly recognizing the archive using the DNN-
HMM hybrid ASR with acoustic and language models trained from the manually
transcribed part of the archives. Basic statistics are summarized in Table 1 (more
details are provided in [23]).

We used the Wav2Vec model fine-tuned on the MALACH data to generate
the grapheme confusion networks. For English, we started with publicly available
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pre-trained Wav2Vec 2.0 Base model [12]. For Czech, we used the ClTRUS model
[9] pre-trained from more than 80 thousand hours of Czech speech data following
the same pretraining steps as for the base Wav2Vec 2.0 model [1].

The Fairseq tool [13] was used for fine-tuning. We sliced long training audio
signals on speech pauses not to exceed the length of 30 s. We removed non-
speech events and punctuation from the transcripts and mapped all graphemes
into lowercase. The pre-trained models were fine-tuned for 80k updates with a
peak learning rate of 8 × 10−5 for English and 2 × 10−5 for Czech, respectively.
The CTC classification layer predicts probabilities of 53 symbols for English and
51 for Czech, and the output frame length is 0.02 s for both models.

It is important to note, that the CTC loss does not guarantee the precise
time alignment of the generated sequence of symbols. However, the timing pro-
duced by the fine-tuned models is sufficient to perform STD over the generated
hypothesis as was shown for in-vocabulary terms in [22].

The in-vocabulary (IV) and out-of-vocabulary (OOV) terms were selected
automatically from the development and test data based on the DNN-HMM
recognition vocabulary. We filtered all possible terms so that the terms are not
substrings of other terms in the dataset nor the words in the vocabulary. The
numbers reported in this paper are directly comparable to results presented in
[22–24].

5 Experimental Results

For training the Transformer-based encoder-encoder architecture, we used
ADAM optimizer with a learning rate warm-up. The warm-up raised the learn-
ing rate from 0 to 10−4 in the initial 80k training steps and then the learning
rate decayed linearly to 0 in the next 720k training steps. The batch size was
32. We used lower learning rates and longer training than Deep LSTM because
the training of Transformers tends to collapse if higher rates are used. The mod-
els were trained using N = 256 (number of confusion network segments in the

Table 1. Statistics of development and test sets [23]. ASR means DNN-HMM hybrid
ASR.

English Czech

Dev Test Dev Test

ASR vocabulary size 243,699 252,082

#speakers 10 10 10 10

OOV rate 0.5% 3.2% 0.3% 2.6%

ASR word error rate 24.10 19.66 23.98 19.11

#IV terms 597 601 1680 1673

#OOV terms 31 6 1145 948

dataset length [hours] 11.1 11.3 20.4 19.4
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input) and M = 16 (maximum length of the query). The thresholding parameter
t = 0.5 was used to determine the putative hit spans.

In the experiments, we first optimized the MTWV metric [19] on the devel-
opment dataset (Table 2). Then, using a given architecture, the optimal decision
threshold was determined and applied to the test dataset and the ATWV metric
was computed (Table 3). In the experiments, we used both the in- and out-of-
vocabulary terms. The presented method is designed to generalize from seen IV
terms to detect the OOV terms.

Table 2 follows the changes proposed in Sect. 3. The drop-in replacement
of Deep LSTM with the vanilla Transformer degraded the performance. The
addition of convolutional and upsampling layers led to a minor improvement. We
searched for an optimum 1D convolution width and stride in the experiments
with a grid search (widths 1 to 5, strides 2 to 4). We found that width 3 and
stride 2 maximized the MTWV, which leads to K = 8 query embeddings per
each query.

In the next step, we added attention masking. Again, we swept across an
interval of different widths of the attention mask: diagonal matrices of ones with
1 to 5 super- and sub-diagonals of ones. Finally, we used the diagonal matrix
with two super- and two sub-diagonals. In other words, each Transformer block
attends to the current, two preceding, and two following time steps. We have
to mention that this does not imply the context is just five segments because
several Transformer blocks are stacked; therefore, the context of the last layer is
wider than these five segments. Overall, the proposed network architecture has
a slightly larger number of trainable parameters (7.3M) in comparison with the
Deep LSTMs (6.9M)

Table 2. Results on the development dataset (MTWV↑).

English Czech

Deep LSTM (baseline [22]) 0.8308 0.8987

Vanilla Transformer 0.8163 0.8808

Transformer (proposed method)

+ Convolution layers 0.8395 0.8905

+ Attention masking 0.8588 0.9261

In-vocabulary terms 0.8613 0.9355

Out-of-vocabulary terms 0.8156 0.9112

As the final step, the presented architectures were evaluated on the test
dataset (Table 3). The ATWV on test data follows the improvement in MTWV
on the development dataset. For illustration, the differences between MTWV
evaluated on IV and OOV terms are shown on the last two lines of Table 2.
The optimal ATWV decision threshold for IV and OOV terms was almost the
same for English (0.83 vs 0.81) and exactly the same for Czech (both 0.77). As
expected, the MTWV for IV terms is slightly higher than for the OOV terms.



Transformer-Based Encoder-Encoder Architecture for STD 355

Table 3. Results on the test dataset (ATWV↑).

English Czech

Deep LSTM (baseline [22]) 0.7616 0.9100

Vanilla Transformer 0.7319 0.8745

Transformer (proposed method) 0.7919 0.9138

6 Conclusion

We proposed an NN-based STD method employing two BERT-like encoders.
We modify the vanilla Transformer by adding convolutional and upsampling
layers. For the hypothesis encoder, we also used the attention masking mecha-
nism. The presented modifications of the NN-based STD employing the Trans-
former encoder-encoder architecture achieved more than 0.04 improvement in
MTWV/ATWV on development and test datasets over the baseline vanilla
Transformer. The achieved results also outperform the baseline Deep LSTM
architecture on all datasets.

The proposed modifications are usable not only in Transformer-based STD
task employing graphemic queries and recognized hypotheses but also in related
tasks such as QbE, KWS, or WWD. The architecture of the Transformer
encoder-encoder model opens further research questions, such as the possibil-
ity of combining STD (graphemic query) and QbE (spoken query) in a single,
multi-task trained model.

Acknowledgement. Computational resources were supplied by the project “e-
Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Edu-
cation, Youth, and Sports of the Czech Republic.

References

1. Baevski, A., Zhou, H., Mohamed, A., Auli, M.: Wav2Vec 2.0: a framework for self-
supervised learning of speech representations. In: Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS 2020. Curran
Associates Inc., Red Hook, NY, USA (2020)

2. Berg, A., O’Connor, M., Cruz, M.T.: Keyword transformer: a self-attention model
for keyword spotting. In: Proceedings of Interspeech 2021, pp. 4249–4253 (2021).
https://doi.org/10.21437/Interspeech.2021-1286

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

4. Ding, K., Zong, M., Li, J., Li, B.: LETR: a lightweight and efficient transformer
for keyword spotting. In: ICASSP 2022–2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7987–7991 (2022). https://
doi.org/10.1109/ICASSP43922.2022.9747295

https://doi.org/10.21437/Interspeech.2021-1286
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/ICASSP43922.2022.9747295
https://doi.org/10.1109/ICASSP43922.2022.9747295
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Abstract. This paper discusses the analogies between the mainstream
theory of human mind and the two broad paradigms that are employed
when building artificial intelligence systems. Then it ponders the idea
how those analogies could be utilized in building a truly explainable
artificial intelligence (AI) applications. The core part is devoted to the
problem of unwanted rationalization that could disguise the true reasons
lying behind the decisions of the explainable AI systems.
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1 Introduction

The idea of Explainable Artificial Intelligence (XAI) has become very prominent
recently, both in the AI research community [7] and in the society in general.
This trend is only natural, given the increasing number of areas where impor-
tant decisions are entrusted to various machine learning algorithms. Such areas
include (but are not limited to) health, employment, financial and even law
enforcement and justice sectors, so it is of no surprise that the concerned stake-
holders demand the explanation and/or justification of those decisions (more
about this terminology is given in Sect. 3). The “right to explanation” is even
enshrined in the EU’s General Data Protection Regulation (GDPR) (see [13] for
a commentary)

This paper, however, is not meant as an overview of the existing XAI
approaches (this could be found for example in [26]) nor to discuss any par-
ticular method that could be used to explain the AI decisions. Instead, it would
like to elaborate on one of the pitfalls of AI explanations that stems from the
very nature of both the human mind and the AI that was – at least to some
extent – designed to imitate it.
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2 The Relation of the AI Paradigms to the Working
of the Human Mind

2.1 Two Major AI Paradigms

Let us first recap here a couple of the well-known facts. In principle, there are two
broad major approaches to building AI systems. The older one is usually called
symbolic AI or, somehow pejoratively, “Good Old Fashioned AI” (GOFAI) [10].
The systems employing symbolic AI – be it the problem-solving and game-
playing algorithms or the more practical expert systems – were based on mostly
human-designed rules that were readable by both humans and the computers.
As such, those systems had a naturally built-in ability to explain its decisions,
often simply by presenting the rules that were used during the inference of a
particular outcome.

On the other hand, there were three major drawbacks of the symbolic AI
systems that have prevented them to be used on a larger scale. First, it turned
out to be close to impossible to manually design a set of rules that would be able
to accurately capture even a relatively small real-world task with all of the pos-
sible inconsistencies and/or exceptions. For the few cases where a comprehensive
set of rules was successfully designed, the rule system was so complex that the
resulting system suffered from the combinatorial explosion that even contempo-
rary computational resources would not be able to deal with. And finally, the
GOFAI systems had significant problems with connecting to the physical world
– a lot of “cognitive work” had to be done by the users that needed convert the
“signals” from the physical world into an appropriate symbolic representation.

Due to the reasons given above, essentially all successful AI systems that
are used today are based on the other paradigm – the one that is sometimes
referred to as subsymbolic AI but most commonly known as machine learning.
In the recent years, when the neural networks are most frequently used as the
underlying machine learning model, the term deep learning is gaining popularity.
Yet another term for employing neural networks in AI – connectionist AI – is in
fact rather old [23] but being used much more often by the cognitive scientists
than the AI researchers themselves. Regardless of the name, the machine learning
(we will prefer this term throughout the paper) methods are – in comparison
with the symbolic AI systems – much more efficient in terms of performance
and usage of computational resources, require very little (target) domain expert
knowledge and “manual” expert work. They are also able to deal better with the
inconsistencies present in the majority of real-life tasks and connect relatively
well to the physical world as they can seamlessly process signals from various
sensors. And of course possibly the biggest advantage over the GOFAI systems
is their explicitly declared ability to learn – in other words, to improve their
performance over time as more data from the task are observed. The downside
of the machine learning approach – again in comparison with the symbolic AI –
is the somehow inherent “opacity” of the system; it yields a result that is correct
most of the time but it’s hard for a human to understand why such an outcome
has been produced.
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2.2 Human Mind - The Dual Process Theory

The previous section essentially presents the summary of the facts that are being
taught in almost all introductory AI courses. What is however much less fre-
quently discussed is the remarkable similarity of the two aforementioned AI
paradigms to the dual process theory of human mind. This theory – which was
most probably formalized for the first time in [27] and widely popularized by
Daniel Kahneman a couple of decades later [12] – posits that the human mind
works in two rather distinct operational modes. Or, as Kahneman puts it, that
our mind is composed of two different systems [12]:

– System 1 is fast, unconscious and virtually effortless, automatic and intuitive.
It is based on experience. memories and emotions. It constantly “monitors”
the environment and evaluates the situation. It generates impressions, feelings
and inclinations – those could become beliefs, attitudes when endorsed by
System 2.

– System 2 is slow, conscious and effortful and requires full attention (and
thus uses a lot of “mental resources”). It is analytical, logical and performs
reasoning in its true sense. It is in a “stand-by mode” most of the time and
is called into action when needed.

It’s important to stress out that the concept of those two systems is of course
only a model and therefore partially a metaphor and certainly a simplification.
It does not suggest that we can actually locate those two systems in distinct
areas of the brain. Also, it is not true that the working of those two systems
is hierarchical as it’s often implicitly understood – more accurately, they work
in a somehow parallel fashion. And finally, the common simplification that the
System 1 is the only one prone to errors and cognitive biases whereas System 2
is strictly rational is also a misconception that has been frequently refuted by
Kahneman himself.

2.3 The Relation Between the AI and the Mind

However, if we really look at the two systems described in the previous section as
separate entities for a moment, there is a striking resemblance to the properties
of the AI systems based on the two paradigms described in Sect. 2.1.

First, let us consider a couple of most widespread AI application employing
machine learning paradigm – various image processing engines including those
performing face recognition and OCR but also the visual components of the
autonomous vehicles’ sensing systems; speech recognition and machine transla-
tion applications etc. Those are clear examples of the systems that monitor the
environment (almost) constantly and provide quick and most of the time rather
accurate results. It certainly does remind the workings of System 1 as described
in Sect. 2.2.

Moreover, one of the rules of thumbs shared by the AI practitioners says that
if one instance of the task at hand can be solved by a human in approximately 1 s
(or faster), then there is a good chance that it will be possible to train a machine
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learning system for this task (assuming, of course, that we are able to obtain
sufficient amount of training data) [19]. Let us think about it for a moment –
how long does it take for a human to recognize a familiar face? Or evaluate the
situation at the crossroad? Or even translate a sentence from one language to
another, given that he/she is fluent in both languages? At the same time, those
humans – who have just used their System 1 to perform the mentioned tasks
– are not able to immediately explain how exactly they have reached a given
outcome – it was actually found out that they need to activate System 2 for this
(see for example [3]). So even in this sense is the System 1 similar to a standard
machine learning AI system.

On the other hand, the tasks solved by the original, symbolic AI systems
were actually those requiring long, systematic and concentrated human mental
effort – such as proving of the mathematical theorems [18] or playing chess [14].
Those are the tasks which humans can solve only using System 2 (however, see
the brief note about chess playing below). In fact, this type of cognitive work
was sometimes considered to be the only true expression of human intelligence
– in all fields ranging from psychology through cognitive science to artificial
intelligence. As roboticist Rodney Brooks states in [5]:

Judging by projects chosen in the early days of AI, intelligence was thought
to be best characterized as the things that highly educated male scientists
found challenging.

As was already mentioned above, both the human System 2 and the symbolic AI
systems are (relatively) slow and use up a lot of “computational resources”; but
they are also both able to provide at least some explanation of their conclusions.

Let us now make a brief sidenote. One might argue that chess is actually
a counterexample for this AI-mind analogy since the best chess algorithms are
nowadays based on the machine learning paradigm (and thus also humans should
be playing them with their System 1). However, we can refer to Kahneman [12]
once more to refute this objection:

When confronted with a problem-choosing a chess move or deciding
whether to invest in a stock-the machinery of intuitive thought (i.e., Sys-
tem 1 – author’s remark) does the best it can. If the individual has relevant
expertise, she will recognize the situation, and the intuitive solution that
comes to her mind is likely to be correct. This is what happens when a
chess master looks at a complex position: the few moves that immediately
occur to him are all strong.
. . .
Studies of chess masters have shown that at least 10,000 hours of dedi-
cated practice (about 6 years of playing chess 5 h a day) are required to
attain the highest levels of performance. During those hours of intense
concentration, a serious chess player becomes familiar with thousands of
configurations, each consisting of an arrangement of related pieces that
can threaten or defend each other.
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The quote above – although of course not meant as such – looks like a (popular)
textbook description of a machine learning algorithm. So we see a very good
mind-AI analogy once again.

Now let’s go back to the main topic of this paper. Since we have just argued
that there is a strong resemblance between the two systems of human mind and
the two paradigms of AI, we could use the human mind “setup” – where, roughly
speaking, the System 1 often provides fast and accurate result and System 2
adds an explanation, if necessary – as an inspiration for explainable AI systems.
But before elaborating on such a concept, let us first review what exactly is
understood by the “explainability” within the context of AI.

3 More Detailed Specification of Explainability

Although the “explainable AI” is currently a hot research topic, upon closer
inspection it turns out that the term itself is often poorly defined [15] and/or
understood differently by different research communities or even individual
researchers. A concise and well-thought-out conceptualization of different possi-
ble views of the general notion of “explainability” is given in [6].

Let us briefly summarize their view here. The authors of [6] specify 4 broad
classes of AI systems - see below - with regard to the user’s chances to understand
the inner workings of the system. Unfortunately, they sometimes use a termi-
nology that contradicts the one used in other influential XAI papers (e.g. [21])
and thus we will need to adjust the terms slightly and put them into context of
other related work.

The classes are the following:

Opaque systems are the standard machine learning systems where the user
can only see the input and the corresponding output of the system (the
proverbial”black-box” situation).

Transparent systems 1 are the ones that allow user to see the mathematical
model used with the AI system [20] (the “glass-box” scenario). So, at least in
theory, a user can interpret how the system works inside – of course only if
he/she has a very good understanding of the given model formalism. And even
in such a case, the direct interpretability of the state-of-the-art models based
on deep neural networks is very limited. That it the reason why some other
authors classify both opaque and transparent systems to one class of the black-
box systems. For example, Rudin distinguishes black box of the first type – “a

1 The authors of the original paper [6] actually use the term interpretable systems
for this class. However, this term is standardly used to describe a rather different
class of the AI systems (see [21] and the following sections). The term transparent
is also sometimes being used in a slightly different meaning within XAI community
but the deviation from our usage is not so striking and the term was chosen here to
express the opposite of opaque.
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function that is too complicated for any human to comprehend” [21], which is
basically a case of the vast majority of the current machine learning models even
in the “glass-box” setting – and the black-box of the second type – “a function
that is proprietary” [21], i.e. hidden from the user mostly in an attempt to
protect trade secret.

While the distinction could between the two classes above is interesting and
also in many contexts important, we can leave it aside for our purposes as we are
interested in the AI systems that actually do provide some kind of explanation.
Such systems are in [6] divided into two further classes:

Comprehensible systems are the AI engines that provide not only the stan-
dard output (e.g. the classification decision) but also a set o auxiliary symbols
that should help user to understand why the system produced such output.
Those symbols are most often words2 but can also take other forms, such as
visualisations highlighting a specific segments of the image etc.

It is important to point out that in this case the system still does not really
explain its decisions. It provides just cues for humans where to start their own
deliberation about the reasons that led to the specific outcome. It is only nat-
ural that different people can arrive at – sometimes substantially – different
conclusions. Those conclusions will be affected not only by the person’s knowl-
edge of domain from which the input data are sampled, cultural and education
background but also by his/her beliefs and attitudes (see Sect. 4 for details).

Explainable systems worthy of this name are, according to the authors, only
the systems that can actually explicitly formulate the line of reasoning that
explains the systems output using full sentences in natural language understand-
able even for non-experts in AI.3

Although it is not explicitly stated, the authors of [6] silently assume that all
the (successful) machine learning models are inherently black boxes that require
a post-hoc explanation. Rudin in [21] offers a contrasting approach, advocating
the usage of so-called interpretable models, i.e. models that are designed in a
way that naturally allows human interpretation/understanding, without a need
for additional “explaining” machinery. She gives an example of such a model –
CORELS, a rule-based system where the rules are not handcrafted but learned
automatically [2].

2 Authors of [6] give an example where the image recognition system is presented with
a photo of a factory and the system outputs the classification results factory together
with the “explanatory” words halogen lights, machines, concrete floor.

3 In an example analogous to the one given above, the system would output something
like The image has halogen lights, a concrete floor and many machines. These objects
are often present in and related to the factory operations. The system thus believes
the image is of a factory scene [6].
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However, if we look at the state-of-the-art in the AI field, it seems that we will
in fact really have to build a system that would be able to explain the decision
of some neural network. When doing so, it seems only natural to once again take
an inspiration from the human mind as suggested in Sect. 2.3 and construct the
hybrid model where the neural networks and symbolic AI approaches would be
intertwined and able to provide fast and correct results together with an explicit
explanation. However, the current attempts to design such a system are still
in the stage of a theoretical concepts [4] or they are designed for studying the
cognitive processes themselves, not for solving difficult real-world tasks [24] (i.e.,
they belong rather to the field of cognitive science, not artificial intelligence).

But even if there were such hybrid AI system available – and they probably
sooner or later will be – they will still face the possible bias inherent to the
human mind and described in the following section.

4 The Danger of Rationalization

The fact that the specifics of human cognitive processes need to be taken into
account when designing comprehensible/explainable AI systems has already
attracted the attention of many researchers. However, not even the extremely
well-structured and unusually thorough paper [17] that presents many ways in
which the XAI researchers should explore and exploit the findings of social sci-
entists mentions the danger of rationalization.

The concept of rationalization was introduced to psychology more than a
century ago [11]. Although the name suggests that it is something directly con-
nected with the rational reasoning/behavior and as such a highly desirable trait,
both in humans and machines (modern AI often uses the overarching notion of
designing rational agents [22]), the opposite is actually true.

The term rationalization is used for in fact irrational or logically faulted
explanation of the decisions or actions that a person makes instinctively or on
the basis of his/her beliefs, attitudes, desires or social pressure. When a person
is rationalizing, he/she is creating a seemingly logical construct that explains
the decision/action in a manner that would justify it for themselves or – maybe
even more often – for their social group.

Using the terminology of the dual process theory from Sect. 2.2, the System
2 is trying to come up with a line of reasoning that would explain the decision
of the System 1. In this process, the System 2 is trying to reduce the cognitive
dissonance [9] – the perceived inconsistency between the performed decision,
action or observed facts and the inner beliefs, attitudes and values of the person.
So once again, there is a close analogy with AI systems – we can think of cognitive
dissonance as the objective function that we are striving to minimize.

A truly rational agent should take the observation (info about the per-
formed decision, action – state of the environment in general) and the inner
logic of reasoning for granted and if there is a cognitive dissonance, it is the
inner beliefs/attitudes/values that should be adjusted.

However, the rationalizing agent would do something rather different. In
fact, we find it useful to actually distinguish two types of rationalizing agents
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here. The first type would be rationalizing for themselves, just as the humans do.
Such agents would strongly prefers to keep their inner settings intact – instead,
they will try to achieve consistency by either ignoring (part of) the observation
or bending the logic of reasoning. But designing the agents that would be able
to “deceive” themselves in such a way would not make much sense, at least not
from the “practical AI” point of view (although it might be interesting e.g. for
cognitive scientists).

What is more interesting to study for the “engineering” branch of AI are
the rationalizing agents of the second type – that ones that would produce the
rationalized explanation4 for the human users. The designers of such systems
often – either consciously or just intuitively – exploit the findings from the field
of cognitive sciences, especially the one regarding coherence. Thagard in his
influential work [25] argues that the coherence is the most important criterion
defining a good explanation – that is, not only coherence within the explanation
itself but also the coherence with the prior beliefs of the explainee (the person for
whom the explanation is intended), with the prevailing societal narratives (e.g.
concerning climate changes or human rights) and possibly other contexts. It has
been experimentally proven (see e.g. again [25] or [17]) that (at least apparent)
coherence of the explanation is valued more than its completeness.

So, the designers of the AI systems often use explaining mechanisms that
intentionally produce rationalized output – i.e., the output (often in natural
language) that is plausible and seemingly logical but cares more about the plau-
sibility than about the true correspondence with the real grounds for the AI
system’s decisions.

There may be several motivations for using the rationalization as described
in the previous paragraph. First of them could be to actually conceal the true
inner mechanism of the used algorithms – in such cases, the rationalization is
designed to intentionally mislead the “social group” of system’s users.5

Second possible motivation is actually well-intended – the developers just
want to produce the explanation that would be perceived positively by human
users. A natural way of producing such an explanation is to “mimic” the sen-
tences that the actual humans usually use in similar context. Given the recent
progress in NLP, such a thing could be rather easily achieved either by taking
the machine translation approach that “translates” the states of the AI agent
into natural language [8] or, even more generally, by using the state-of-the-art
natural language generation models such as GPT-3 [28]. At the time when the
first version of this paper was drafted (June 2021), the idea of producing the
“most plausible text output/explanation” was mostly a theoretical concept that
4 It is probably clear from the context that the following paragraphs deal with the class

of explainable systems as defined in Sect. 3. However, the rationalization – in this
case on the human side – plays an important role in the comprehensible systems
as well, since it is the human user who constructs the actual full-scale explanation
from the “hints” provided by the system.

5 There could be several motivations for creating such a misleading systems – one of
the frequent ones would be to make a false impression that the system respect some
desirable ethical standards [1].
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was being tested in OpenAI labs [29]. However, the deployment of ChatGPT in
late November 2022 has made this approach widely known even for the general
public under the term Reinforcement Learning from Human Feedback (RLHF).

The “pre-ChatGPT” versions of GPT large language models were in fact
known to reinforce rather then mitigate the inherent human biases [16]. The
OpenAI developers apparently make a continuous effort to suppress the bias in
ChatGPT but it’s most probably performed by (a rather ad-hoc) filtering and
post-processing the output of the foundation GPT models which still remain
biased as they were trained using human-produced text data that are, of course,
human-biased by definition.

Possibly a way to construct a good XAI system would be to indeed take the
known human biases into account but not to abuse them – either malevolently
(see motivation one above) or just to make the developer’s job easier (motivation
two). One possible direction could be to provide customized explanation, tailored
to the beliefs of a particular user, in order to increase his/her acceptance of
a particular AI systems. In such a case, however, the developer must never
sacrifice the truthfulness of the explanation to its plausibility. Our experience
with ChatGPT so far suggests the opposite - we have a feeling that plausibility
is weighted most in the RLHF, despite the claims that people involved in RLHF
scoring should reward mainly actualness and truthfulness.

5 Conclusion

There is no doubt that the issues discussed above will gain significantly more
attention once the truly explainable systems start to be deployed in real-life
applications. The aim of this position paper is to keep those questions in the
debate. It is also interesting to note that the conceptual XAI papers published
before (roughly) 2021 usually illustrate their ideas using examples from image
recognition domains, demanding the XAI systems to be able to explain things
like: “How did you arrive at the decision that there is a golden retriever in
the picture?” or “Why the autonomous car failed to register the stop sign?”.
Nowadays, on the other hand, the focus has - quite naturally - shifted to the
generative AI systems like ChatGPT for text or Midjourney for images.

In the case of the text chatbots, one should bear in mind a trivial but very
important distinction in the meaning of the term “explanation” – if you, for
example, ask ChatGPT a question (e.g. “What is the meaning of life?”), it
will provide you with a lengthy answer, addressing the question from various
viewpoints. Consequently, you can of course ask for an “explanation” (e.g. by
typing “Why did you produce exactly this answer?”). What you get is however
definitely not the explanation in the sense that was used thorough this paper -
instead, it is another elaborate list of general principles that guide the ChatGPT
functioning.
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Abstract. Traditional offline learning approaches are reaching their lim-
its in meeting the dynamic demands of specialized applications, such
as real-time human-robot interaction. While high benchmark scores
attained through offline fine-tuning large models on extensive data, offer
a glimpse of their potential, the true functionality is validated when these
models are deployed on target devices and utilized in real-life scenarios.
This paper presents a method incorporating humans in an interactive
learning loop, using their real-time feedback for online neural network
retraining. By leveraging the power of transfer learning, we can profi-
ciently adapt the model to suit the specific requirements of the target
application through natural voice-based dialogue. The approach is eval-
uated on the image classification task utilizing a unique low-cost device
and a practical example of the real-time dialogue is presented to demon-
strate the functionality.

Keywords: Human in the Loop · Interactive Learning · Low-Cost
Device Deployment · Audio-Visual Dialogue · Image Classification

1 Introduction

Conventional machine learning methods heavily rely on extensive datasets, and
the performance of a model is typically measured under controlled lab conditions
using a benchmark evaluation. Despite these models being fine-tuned offline and
training processes can span hours or even days, it is rare for models to achieve
absolute perfection. The abundance of training samples and model parameters
makes it often challenging for developers to pinpoint specific instances where
and why the models may fail. This paper addresses two key challenges: (1)
deploying a model on a physical entity and ensuring its effective operation in
real-life conditions, and (2) enabling interactive adaptation and refinement of
the model’s behaviour based on user requirements and feedback.

We introduce a newly developed custom 3D-printed robotic entity based on
Raspberry Pi 4B1 and complemented by multiple interfaces that enable audio,

1 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
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visual, and even tactile interactions. This device is used to deploy the proposed
learning method integrating a human into a voice-interactive dialogue loop. By
utilising transfer learning and human feedback in the learning loop, we can effec-
tively customize the model to meet the precise user’s demands. The method is
experimentally evaluated on the task of image classification. The robot can learn
and recognize new objects through natural dialogue by integrating computer
vision techniques with advanced speech technologies. Furthermore, the learning
loop is augmented with face recognition, enhancing the overall learning process
and facilitating user engagement.

Section 2 presents a comprehensive review of relevant methodologies. The
target physical device is introduced in Sect. 3, while Sect. 4 provides an in-depth
description of the utilized datasets. Section 5 provides a detailed exposition of
the interactive loop and its constituent elements. The experimental evaluation
is documented in Sect. 6, while Sect. 7 summarises this work’s key findings and
contributions.

2 Related Work

In this section, related work to this paper is introduced. In particular, the section
is divided into two parts. The first part is focused on interactive learning - i.e.,
human-in-the-loop - research, and the second part deals with its applications for
various modalities, in particular, images, audio, video, and multimodal systems.

2.1 Interactive Learning

Interactive learning or Interactive Machine Learning (IML) is the subfield of
Human-in-the-loop research that focuses on a learning process where a human is
interactively supplying training target information. In other words, the human
is used to build classifiers - whether he is an expert or non-expert - online by
using the system instead of traditional offline machine learning. This principle is
based on the idea presented in the paper [30]. A similar technique was proposed
in the paper [7], where it is mentioned that the learning process is repeated until
desired results are met.

A more current definition of interactive learning is mentioned in the
paper [10]. The authors said that IMLs are algorithms that can interact with
agents and can optimize their learning behaviour through these interactions,
where the agents can also be human. IML is redefined in multiple papers such
as [6] or [23], but all of them have similar properties, such as interactivity and
incremental learning process, and should be fast enough.

The other question is the role of the human in the IML. The role, in this
case, has two meanings. The first one is the expertise of the human. The human
can be an expert in machine learning, a domain-specific expert, or a non-expert
user of the IML system. Moreover, the role can be seen as a position of the
human in the machine learning process. He can be placed at the beginning of
the process to provide annotations or preprocess of the data in real-time. The
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second option is to place humans at the end to check and correct the results of
the IML system. Moreover, a third option belongs to another part of the Human-
in-the-loop research field [20]. In particular, it is Active Learning (AL), where
the mutual position between machine and human differs from the one in IML.
In IML, they are equal, or the human is in the lead, but in AL, the machine is
the lead, and it uses a human only in cases in which it is not sure about the
correct result (i.e., the confidence of the result is poor).

This paper presents the IML system running on a low-cost device capable
of interacting with humans through multiple modalities – in our case, through
video and audio channels.

The use of images in IML is offered because it is a natural and very under-
standable modality for humans. One of the first systems based on images was
CueFlik [8]. It was a web search system that users could use to learn their own
classification rules by providing examples and counterexamples of individual
classes. Another similar and more current example is an open-source image anno-
tation framework for ecological surveys called AIDE [15]. Other use cases [13]
of image-based IML are for example interactive information retrieval [3], visual
topic analysis [28], or interactive anomaly detection [31].

As an example of video-based IML (i.e., a stream of images), the paper by
Kabra et al. [14] can be mentioned. The authors proposed a system for biologists
designed as an annotation tool for certain animals’ behaviour. An audio modality
also has several examples of applications that are similar to this paper. It is, for
example, Spoken Language Understanding presented in the paper [2] or the work
of Ishibashi et al [12] where an interactive sound recognition using visualization
- e.g. stereograms or deep learning audio-to-image retrieval - is performed. In
other words, audio files are visualized to provide the user with more information
to classify the sound. An example of an audiovisual IML system is the research
of Visi and Tanaka [29]. The authors proposed a system for recognizing musical
gestures consisting of motion and gesture tracking of a human and then synthesis
of the appropriate sound. Finally, the paper of Qureshi et al. [22] proposed a
system for multimodal deep reinforcement learning of a humanoid robot. In this
case, multimodal means that the robot used its RGB-D camera and a hand touch
sensor for its operations.

3 Target Device

One of the key foundations of this project is to implement the developed method
for interactive learning on an actual robotic entity and assess its performance in
real-world conditions. For this purpose, we employed a unique physical device
known as Robot.v1, which was developed at the Department of Cybernetics of the
University of West Bohemia in 2023 [4]. It is a multimodal low-cost 3D-printed
entity of a rotund shape (see Fig. 1) equipped with the following interfaces:

– Touch screen (7”) facilitates visual interaction from the robot’s side and offers
tactile-based human feedback.
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– RPi Camera module V2 enables the robot’s visual perception.
– High-performance microphone array [24] is employed for sound perception

and sound source localization, complemented by a speaker for audio output.

Fig. 1. Picture of the target device for deploying the proposed method, known as
Robot.v1.

The robot structure comprises a static part, a rotational element, and several
components. These include a solar panel for efficient charging, light sensors to
determine the optimal orientation towards the incoming sun source, a stepper
motor facilitating the rotation of the upper part, or LEDs for arbitrary robot sta-
tus indication. The computational tasks are executed on a Raspberry Pi 4B, the
core processing unit. The software implementation relies on the Robot Operating
System [21], serving as the central framework for integrating and coordinating
various individual tasks, ensuring stable main processing.

The speech-related tasks - Automatic Speech Recognition (ASR) and Text-
To-Speech Synthesis (TTS) are addressed by the in-house technology called
SpeechCloud [26]. The platform is also connected to a remote server with GPU
capabilities through an HTTP API. This connection enables using powerful com-
putational resources for intensive tasks such as neural network retraining. As
depicted in Fig. 2, among the extensive selection of pre-programmed ROS nodes
and services available on Robot.v1, we utilized the speech package, specifically the
ASR and TTS services, and the gui package using the touch screen for capturing
human feedbacks. Additionally, through this project, we enhanced the camera
package by incorporating face recognition and object detection capabilities.
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Fig. 2. A component diagram of the target device employed in project [1].

4 Datasets

This section aims to introduce datasets used either for pre-training neural net-
works or directly during experiments in the interactive learning loop.

The Intel Image Classification dataset2 is composed of approximately 25 000
natural scene images divided into 6 classes labelled as buildings, forest, glacier,
mountain, sea, and street.

Fig. 3. Example images of each class of Intel Image Classification dataset.

2 https://www.kaggle.com/datasets/puneet6060/intel-image-classification.

https://www.kaggle.com/datasets/puneet6060/intel-image-classification
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Most of the images have a resolution of 150 by 150 pixels, with some of the
images being smaller. The dataset is distributed in three parts. 14000 images are
in the train set, 3000 in the test set, and 7000 in a prediction set, which was used
in the Image Classification Challenge3. Originally, the dataset was used in the
task of scene understanding but it can be used in the task of object recognition
as well. In this paper, it is used to test image embeddings – see Sect. 5.2, as well
as for the final experiment – see Fig. 7. In Fig. 3, there is an example of 6 images
from the dataset, each representing one class in the same order as mentioned
before.

The COCO dataset [19] is a popular large-scale dataset composed of 123287
images of various resolutions. Each image contains one or multiple classes of
the overall number of 80 classes. Initially, it is widely used in object detection,
object segmentation, and object captioning tasks. Moreover, it is commonly used
to benchmark models in computer vision tasks. This dataset was also used to
pre-train the Mobilenet V3 Large network architecture [17] used in this research.
An example of images from the dataset is shown in Fig. 4.

Fig. 4. Examples from the COCO dataset. Left: An image of an airport containing
multiple classes. Right: Same image with visible annotations of aeroplane class.

5 Interactive Learning Loop

The central concept presented in this paper is to incorporate a human into a
voice-interactive learning loop of an artificial system. In addition to conven-
tional machine learning approaches, this allows for direct interaction with a
deployed model, enabling iterative customization based on specific requirements.
The method is showcased using a toy example of the image classification task
and assessed on a physical robotic platform. Additionally, a face recognition
tool is added to simulate a realistic human-robot interaction scenario, acting as

3 https://datahack.analyticsvidhya.com.

https://datahack.analyticsvidhya.com
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a wake-up gate that initiates the main loop for learning objects when a known
face is detected (depicted in Fig. 5).
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Fig. 5. A scheme of the dialogue for evaluating the developed voice-interactive learning
method. The red icon highlights the specific parts, where human interaction is utilized
within the loop.eps (Color figure online)

Several design choices needed to be considered, with two primary constraints
to be addressed. Since the robotic entity’s objective is to maintain a dialogue
loop with a minimal time delay between user input and the response (ideally in
real-time), computational speed emerges as the paramount parameter alongside
algorithmic accuracy.

5.1 FaceID and Learning New Faces

The inclusion of the faceID tool in the application, as illustrated in Fig. 5, acts
as the entry point to the main loop of interactive learning. The system initially
operates in an idle state, and upon detecting a familiar face through the camera,
it transitions into the loop for learning objects. In the event of detecting a new
and unfamiliar face, the user is prompted to provide their name, and the captured
facial sample is subsequently incorporated into the database for future reference.

It was decided to utilize the open-source face-recognition Python library4,
primarily due to its user-friendly API. This library, built on top of the dlib5 [16]
library written in C++, enhances the efficiency of computationally intensive
tasks, thereby accelerating their execution. The process of face recognition from
the image comprises two parts: face localization and face classification.
4 https://github.com/ageitgey/face recognition.
5 https://github.com/davisking/dlib.

https://github.com/ageitgey/face_recognition
https://github.com/davisking/dlib
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Face Localization. The objective is to detect the presence of a face in the
camera image. To achieve this, two library-provided methods were thoroughly
evaluated, with a particular focus on computational efficiency. The first method,
based on convolutional neural networks and considered more robust to face angle
and rotation changes, was found unsuitable for the target device due to an
average inference time of 3.64 s across 100 trials.

In contrast, the second method available in the library, known as Histogram
of Oriented Gradients (HOG) [5], demonstrated slightly lower accuracy; how-
ever, its inference time of 0.58 s was more suitable for our real-time application.
Consequently, the HOG method was chosen for the project.

Face Classification. After detecting a face in the image, it is encoded into a
vector representing its distinctive features, i.e. its identity. Firstly, facial land-
marks representing corners of the mouth, eyes, nose tip, etc. are detected. These
landmarks provide a geometric pose of the face which is then “frontalized” into
a mean camera-facing face shape using a geometric transform. There are two
systems for face landmarks detection, one that detects 5 landmarks and one
that detects 68 landmarks. We found no significant difference in the inference
times between the two models through experimentation. Consequently, we opted
to implement the 68-feature model. The face is then cropped and the image
is passed through a pre-trained custom ResNet [9] model to produce a 128-
dimensional embedding.

In the real-life application, the newly detected face is encoded into its vector
representation and compared to the embeddings of already-known faces using
the library’s internal metrics and thresholding techniques. This enables real-
time face detection in the application while efficiently storing new embeddings.
If multiple faces are detected in the image, only the first face on the list is used,
as the default application assumes that only one user interacts with the device.

5.2 Network Architecture for Image Classification

When the camera detects a familiar face, the system seamlessly transitions into
the main loop of learning objects, as depicted in Fig. 5. The model depicted in
Fig. 6 is responsible for predicting the object presented to the camera by the
user. Its design is focused on two primary aspects that distinguish our task from
traditional offline image classification:

1. the presence of timing constraints, where the real-time settings heavily rely
on both inference time and network retraining time;

2. the network must demonstrate exceptional and rapid generalization, as we
often encounter a limited number of training examples per desired class, aim-
ing to alter the model’s behaviour.
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Fig. 6. Network architecture for interactive image classification.

To fulfil these specifications, we employ transfer learning, specifically utiliz-
ing a network that has been pre-trained on a large-scale computer vision task.
This pre-trained network serves as an embedding model for our task, enabling us
to leverage its learned representations for newly added examples. By employing
this approach, we are able to train a relatively small number of parameters in
a subsequent feed-forward neural network, which consists of two hidden layers
and a softmax output layer. Leveraging the current computing power and hard-
ware capabilities, this setup enables real-time processing, making it feasible to
integrate even the re-training part seamlessly into the dialogue loop.

The selection of the embedding model is a critical aspect of the design choice.
We conducted an experiment using the Intel Classification Dataset with nine
different methods to address this.

Table 1. Performance comparison of different image embedding extractors.

Embedding model Mean embedding time Train time Accuracy

Resnet-18 [9] 0.0365 ± 0.0033 s 0.42 s 0.882

Alexnet [18] 0.0246 ± 0.0039 s 0.37 s 0.874

Vgg-11 [25] 0.1258 ± 0.0143 s 1.09 s 0.896

Densenet [11] 0.1194 ± 0.0216 s 4.98 s 0.884

Efficientnet B0 [27] 0.0460 ± 0.0090 s 3.61 s 0.895

Efficientnet B1 [27] 0.0591 ± 0.0063 s 6.63 s 0.889

Efficientnet B2 [27] 0.0605 ± 0.0105 s 7.84 s 0.898

Efficientnet B3 [27] 0.0846 ± 0.0112 s 9.56 s 0.883

Mobilenet V3 Large [17] 0.0358 ± 0.0092 s 0.80 s 0.915

In order to maintain fair conditions, we utilized the same subsequent feed-
forward network, consisting of a single hidden layer with 50 neurons, for all
methods, and during the evaluation, we considered three metrics:

– embedding time of a single image;
– train time - refers to the duration of training the network until the stopping

condition was reached;
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– maximal classification accuracy reached.

In order to simulate real-world conditions relevant to the target application
for which we were selecting the embedding model, we conducted the classification
task with six distinct classes and limited the dataset to 50 training samples, and
20 validation samples per class. This closely aligns with the desired capabilities
of our final model, where it should be able to generalize and acquire knowledge
effectively even with a minimal number of training examples. Then we used 300
testing samples per class, which served as a representation of the knowledge that
the model was expected to acquire.

After conducting the experiment summarized in Table 1, we determined that
the Mobilenet V3 Large architecture [17] is the optimal choice as the embedder
for our pipeline. To extract feature embedding vectors with a dimensionality of
1280 from this model, we utilized the timm library6.

5.3 Human Feedback and Network Retraining

At this stage, we are approaching the crucial component of the interactive dia-
logue, which involves human feedback on the model’s predictions. Since the dia-
logue uses audio and visual modality, the feedback can be provided through two
channels: automatic speech recognition (ASR) or the touch screen and graphical
user interface (GUI). As illustrated in Fig. 5, the feedback can fall into one of
three possibilities:

– Stop - The dialogue finishes.
– Ok - The model’s prediction was correct. In this case, the last shown example

is added to the training set with the correctly predicted label.
– Correction - The model’s prediction was incorrect. In that case, the feedback

is parsed using rule-based operators. For instance, in the case of ASR, if the
recognized text is No, it is not a mug. It is a pen, the feedback type correction
and the correct class pen would be extracted from the parsed information.

The network is re-trained, as described below, with every new training sample.
To enhance the fluidity of the dialogue, the system automatically proceeds along
the ok path if no additional feedback is provided within 3 s after each prediction.

Network On-the-Fly Retraining. As depicted in Fig. 2, the model under-
goes retraining on a remote server, specifically on a machine equipped with an
NVIDIA GeForce GTX 1080 GPU. The newly collected samples and trained
model parameters are transferred in binary format using the HTTP protocol
between the remote server and the target device. By leveraging the frozen embed-
ding model (which is not retrained) and employing a small training set, the
retraining process is sufficiently fast (less than a second), even when factoring
in the time required for the HTTP transfer.

6 https://timm.fast.ai.

https://timm.fast.ai
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A unique scenario arises when the user attempts to introduce a new object
that the network has not encountered before. In such cases, the final network
layer must be restructured, and a new output class (and its corresponding neu-
ron) must be added. Through experimentation, we discovered that maintaining
the trained weights associated with the existing known classes while initializing
only the weights connected to the new class greatly facilitates overall conver-
gence. This approach outperforms the alternative method of completely reini-
tializing the output layer from scratch.

6 Experimental Setup and Evaluation

This section presents the experimental evaluation of the interactive learning
dialogue framework. Based on the results in Table 1, we employed the Mobilenet
V3 Large architecture [17] for our task, which was originally pre-trained on the
COCO dataset for object detection and recognition purposes (see Sect. 4). As
shown in Fig. 6, this pre-trained model was utilized to obtain image embeddings,
which were then combined with a feed-forward neural network consisting of two
hidden layers (512 and 256 hidden neurons) and an output softmax layer.

Fig. 7. An exemplary instance of the human-robot learning dialogue. The real-time
axis is depicted at the bottom. The training samples were incrementally introduced
one by one, and the system was regularly evaluated using 600 testing samples (100
per class) that represented the desired “knowledge”. The vertical red lines indicate the
progressive increase in the number of learned classes. (Color figure online)
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Regarding retraining, we used the cross-entropy loss function, the ADAM
optimizer with a learning rate of 0.001, and a maximum of 50 training epochs.
We implemented an early stopping condition, where training would halt if the
training loss did not show improvement for ten consecutive epochs.

Interactive Learning Loop Evaluation. The experiment is performed on
six classes’ Intel Image Classification dataset. The dataset samples were loaded
directly into the algorithm without relying on the physical display through the
robot’s camera. However, all other settings and conditions of the real-time sce-
nario remained unchanged. The experimental setup for this study differs from
conventional supervised learning. Firstly, we establish a concept called knowl-
edge, which refers to the desired behaviour we aim to train our system to achieve.
This knowledge is represented by the classical testing data partition, where in
this specific case, we utilize 100 samples per class, resulting in a total of 600
samples.

Figure 7 illustrates a selected example of the human-robot learning dialogue.
At the beginning of the process, there are no training samples available. Instead,
they are progressively introduced to the system as the real-time application runs.
Each sample is accompanied by a label that is derived from human feedback,
and these pairs are one by one added into the training data partition. The
experiment yields the following observations: (1) The chosen model effectively
meets the timing constraints for both inference and retraining; (2) The utilization
of a pre-trained model as the embedder enhances the generalization capabilities,
allowing solid accuracy to be achieved on 100 testing samples with only 2–4
training samples per class; (3) The introduction of a new class to the system
does not significantly impact the accuracy of previously learned classes.

7 Conclusion

This work addresses the limitations of traditional offline learning methods and
explores their potential for deployment in real-life applications. Initially, we
introduced a novel, cost-effective device that features multiple interfaces, mak-
ing it suitable for testing machine learning systems. Subsequently, we proposed
a learning method incorporating a human within the learning loop, leveraging
their feedback to adapt and refine the system’s behaviour. The concept was
tested on the image classification task and enveloped into a working framework.
The experimental evaluation of the workflow yielded several promising findings,
establishing a robust foundation for future endeavours. Notably, we successfully
demonstrated a use case involving sorting images into categories. Building upon
this achievement, the next logical progression would be to explore the potential
of learning a scene description using natural language. Importantly, the method
is versatile and has the potential to be applied across multiple domains.
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Abstract. The multiplicative speckle noise and additive background noise of an
infrared image are significant elements impacting image quality. To address the
issue of image degradation caused by noise superposition and enhance the infrared
image quality in terms of noise suppression, a composite restorationmethod based
on adaptive threshold multi-parameter wavelet is proposed. First, based on the
noise distribution characteristics of the infrared image, the multiplicative noise in
the infrared image is transformed into additive noise, and the image is restored
using the wavelet transform coefficient of the converted infrared image. Then,
the benefits and drawbacks of soft and hard threshold functions are analysed in
depth, and an adaptive double threshold function with adjustable parameters is
developed. Finally, a fast non-local means method is used to suppress the effect
of background noise on image quality. The experimental results show that the
proposed method reduces 111.03 dB on average over the MSE index, 6.67 dB on
the PSNR index and 6.92 dB on the SNR index.

Keywords: frared image · image denoising · adaptive threshold wavelet

1 Introduction

As a passive detection technology, infrared imaging has been widely used in the mili-
tary, industry, agriculture, and other fields [1, 2]. Simultaneously, the imaging quality
requirements of infrared systems are constantly improving, and certain technical prob-
lems are becoming increasingly prominent. One of the problems that need to be solved
is infrared image restoration [3]. In comparison with visible images, infrared images
are easily affected by the additive noise caused by the detector, detection environment,
and hardware conditions of photoelectric conversion circuits. Additionally, the multi-
plicative noise generated by the channel is not ideal for acquisition and transmission
leading to poor imaging quality of infrared systems [4]. Figure 1 shows the comparison
of an infrared image that is affected by additive noise, multiplicative noise, and their
combination.
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Fig. 1. Composition of noisy images

The discrete wavelet transform (DWT) [5] has many excellent characteristics, such
as fast decomposition, decorrelation, and low entropy, so that the wavelet transform
can realize well the separation of desired signal and noise. Therefore, many scholars
have conducted research on this problem in recent years [6]. Donoho et al. [7] proposed
the wavelet threshold denoising method, which has a simple principle and remarkable
denoising effect. However, the discontinuity of the hard threshold function at the thresh-
old point results in visual distortion, such as the pseudo-Gibbs phenomenon and ringing
in the denoised image [8, 9]. The constant deviation caused by the soft threshold function
leads to blurred image edge details after denoising [10–12]. Therefore, many researchers
have proposed a variety of adaptive threshold denoising methods. Guo et al. [13] pro-
posed an improvedwavelet threshold calculationmethod and a new threshold function to
denoise ultraviolet signals in view of the existing problems of the soft and hard threshold
functions. Chen [14] improved the classical wavelet threshold denoising algorithm, and
innovatively adopted a combination of soft and hard thresholds. Zhang et al. [15] pro-
posed an adaptive threshold function for underwater signal noise under complex ocean
conditions. Kumar et al. [16] proposed an signal denoising method based on the station-
ary wavelet transform. Binbin [17] proposed an infrared image processing method based
on adaptive threshold denoising. These methods not only open up broader prospects for
the full advantages of wavelet threshold denoising methods but also provide a basis for
further exploration of adaptive denoising methods.

According to the specific imaging mechanism and characteristics of infrared imag-
ing, an infrared imaging system has both multiplicative and additive background noise.
The existing single wavelet denoising algorithms for multiplicative speckle and addi-
tive noise cannot simultaneously remove two different types of noise; thus, there are
problems such as residual noise, blurred details, and limited image quality improvement
effects in denoised images [18]. Therefore, a composite restoration method based on
adaptive threshold multi-parameter wavelet (ATMW) is proposed in this paper, which
can remove at once background light, additive detector, andmultiplicative speckle noise,
and effectively improve the image quality of infrared systems. First, a method based on
ATMW is proposed to remove multiplicative speckle noise in infrared images. This
method converts speckle noise into additive noise through logarithmic transformation,
and then, the wavelet coefficients of the transformed infrared images are processed by
threshold denoising. Based on the wavelet coefficient threshold processing method for
infrared image denoising, the advantages and disadvantages of soft and hard threshold



Composite Restoration of Infrared Image 385

functions are analysed, an adaptive threshold function with adjustable parameters is
constructed, and double threshold mapping is adopted. Then, the additive noise (such as
background light) is removed by a fast non-local means algorithm (FNLM), which can
effectively remove the noise and retain the image details.

2 Mixed Noise Model

The composition of the infrared imaging system is shown in Fig. 2. According to Fig. 2,
noise sources mainly include the background, amplifier, and detector in the field of
view. Background noise includes scene radiation noise and noise caused by atmospheric
dithering. Amplifier noise is mainly transistor noise. The detector noise mainly includes
1/f noise, noise caused by the complex fluctuation of the carrier, thermal noise, and so
on.

Fig. 2. Composition of infrared imaging system

From the essence of noise analysis, infrared image noise signals can be divided into
additive noise andmultiplicative noise [19–23]. The inherent noise of circuit components
in the shooting equipment and transmission process, as well as the Gaussian, salt and
pepper, and Poisson noises generated by their mutual influence are associated with
additive noise. Additive noise is inherent in the presence or absence of image signals.
The multiplicative noise is generally caused by the unsatisfactory channel, which is
multiplied by the image signal. It is just the opposite of additive noise and depends on
the image signal. When the image signal disappears, the multiplicative noise disappears
as well [24–26].

Generally, the noise model of infrared images can be expressed as:

Yij = Xij ∗ δ + N (1)

where X is the original signal of the image, Y is the image containing noise, δ represents
multiplicative noise, N represents additive noise, and i and j are the position coordinates
of a pixel in a two-dimensional space.

3 Compound Restoration Method Based on ATMW

The existing infrared image denoising methods are mainly divided into two categories.
The first case involves ignoring the additive noise in the image and then converting the
multiplicative noise into additive noise through transformation for denoising. The sec-
ond one involves ignoring the multiplicative noise in the image and only denoising the
additive noise. Neither of them can effectively suppress the two different types of noise
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in infrared images simultaneously, and the improvement in image quality after denois-
ing is limited. Therefore, aiming at the characteristics of background, other additive
and multiplicative speckle noise in the imaging system, this study proposes an ATMW
combined with FNLM to suppress noise. It cannot only remove background, detector,
and other additive noise but also suppress multiplicative speckle noise. This method can
effectively improve the image quality of an infrared image.

The process of infrared image restoration is shown in Fig. 3. First, the multiplicative
noise component in the image is processed by the wavelet threshold method; then, the
additive background noise is denoised in the image.

Fig. 3. Flowchart of infrared image restoration

3.1 ATMW for Multiplicative Noise Removal

The wavelet transform is an ideal mathematical model for human visual information
processing. The image with noise is decomposed by the wavelet transform in multi-
ple layers, and the wavelet high and low-frequency coefficients are obtained. Wavelet
threshold image denoising retains the wavelet low-frequency coefficients, sets an appro-
priate threshold to separate the noise signal in the wavelet high-frequency coefficients,
setting it to zero, and then reconstructs the wavelet high frequency coefficients using the
wavelet threshold function. Finally, the wavelet coefficients are reconstructed to obtain
the denoised image. The design of the threshold value and function required will greatly
affect wavelet denoising. If the threshold is too large, the effective signal will be set to
zero, and the image will be damaged and blurred. Meanwhile, if the threshold is too low,
a portion of the noise signal is retained, and the image denoising is incomplete, failing
to achieve the desired denoising effect. The threshold function determines the approx-
imation between the reconstructed and original wavelet coefficients. If the threshold
function is discontinuous at the threshold point, it will cause visual distortion such as
ringing and pseudo-Gibbs phenomenon in the reconstructed denoised image. If there is a
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constant deviation between the reconstructed and actual wavelet signals, the accuracy of
the reconstruction will be reduced and the edge of the image will be blurred. Therefore,
the design of an appropriate threshold value and function is the key to the wavelet image
denoising method.

In wavelet threshold technology, the choice of the threshold is the key factor deter-
mining the algorithm’s performance. On the one hand, it needs to be large enough to
remove as much noise as possible. On the other hand, it should be small enough to retain
as much signal energy as possible. The VisuShrink threshold [27] is currently a widely
used threshold. The same threshold is selected for each wavelet decomposition level,
which can be described using formula (2):

λ=σ
√
2 ln(M ∗ N ) (2)

M andN are the rows and columns of image pixels, and σ is the noise standard devi-
ation. As the wavelet transform is a multi-resolution analysis, the threshold value can
be selected at each layer. Therefore, a variable adaptive wavelet threshold is proposed
in this paper, which can decrease with the increase of the number of wavelet decompo-
sition layers and corresponds to the actual wavelet decomposition. The variable wavelet
threshold is presented in formula (3):

λ=σ
√
2 ln(M ∗ N )

ln(i2 + 1)
(3)

where i is the number of decomposition layers of thewavelet transform, and σ is the stan-
dard deviation of noise; ln(i2+1) is the contraction factor,which can automatically adjust
the size of the wavelet threshold according to the number of layers of wavelet decom-
position and has the characteristics of self-adaptation. The proposed variable wavelet
threshold can better solve the problem of the VisuShrink threshold, and effectively
improve the recognition of the noise signal and the accuracy of image reconstruction.

This study presents a multi-parameter double mapping threshold function, which
has more advantages and flexibility compared with hard and soft threshold functions,
i.e., it can perform wavelet coefficient processing and complete adaptive denoising of
images. Thresholds are introduced to adjust the translation of the function. According
to parameterm, the difference between the estimated and actual wavelet coefficients can
be adjusted. The expression is presented in formula (4):

ŵi
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⎪⎪⎪⎪⎪⎪⎪⎨
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(4)

where ŵi
j,k is the estimated coefficient of the image, wi

j,k is the original coefficient of
the image after wavelet decomposition, λi is the ith wavelet threshold, and m is the
adjustment parameter. The value of m will affect the trend of the threshold function,
thus adjusting its steady-state error and continuity.
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As can be seen from the above adaptive double threshold function, when the parame-
ter m = 0, the function becomes a hard threshold function. When m = 1 and wi

j,k → ∞,

the function becomes a soft threshold function.When
∣∣∣wi

j,k

∣∣∣ → ∞,
∣∣∣ŵi

j,k − wi
j,k

∣∣∣ → mλi,

i.e., with the increase of
∣∣∣wi

j,k

∣∣∣, the absolute value of deviation between the estimated

wavelet coefficient ŵi
j,k and wavelet coefficients w

i
j,k tends to mλi. As m is a parameter,

the absolute value of the deviation can be controlled by adjusting its size, which effec-
tively improves the constant deviation between the estimated wavelet coefficients and
the wavelet coefficients generated in the soft threshold function.

In comparison with the soft and hard threshold functions, the multi−parameter
wavelet threshold function proposed in this paper is a better and more flexible choice.
The proposed threshold function can correctly determine the size of m according to dif-
ferent images, realize the different processing of wavelet coefficients, and complete the
image adaptive denoising. The improved wavelet denoising process is shown in Fig. 4.
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Fig. 4. Flowchart of adaptive threshold multi-parameter wavelet denoising

In summary, the algorithm is described in the following steps:

1. The infrared image containing multiplicative noise is expressed with formula (5);
with 4 as the base, the logarithm of formula (5) is taken, and the multiplicative noise
is changed into additive noise, and expressed with formula (6)

Yij = Xij ∗ δ (5)

log 4Yij = log 4Xij + log 4δ (6)
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To avoid taking the logarithm of 0 as the base when implementing the algorithm,
special order Yij = Yij + ζ, ζ ∈ (0.0000001, 0.0000002).

2. A three-layer wavelet decomposition is performed for the infrared image log 4Yij,
and the db4 wavelet base is selected. First, the noisy image is decomposed into a
low-frequency part L1 and a high-frequency part H1 in the first layer. Then, the low-
frequency part of the first layer L1 is decomposed into the second low-frequency
part L2 and second high-frequency part H2 by wavelet decomposition. Finally, the
low-frequency part of the second layer L2 is decomposed into the third low-frequency
part L3 and third high-frequency part H3.

3. Threshold quantization is performed for high-frequency coefficients; wi
j,k represents

the high-frequency coefficient in Hi (i = 1,2,3 and indicates the number of layers
currently decomposed).
(1) The threshold of each layer is calculated according to the threshold formula (3).

(2) If
∣∣∣wi

j,k

∣∣∣ < λi, wi
j,k is the noise coefficient, set it to zero. If

∣∣∣wi
j,k

∣∣∣ ≥ λi, wi
j,k is a

useful signal, and its corresponding new coefficient can be calculated using the

threshold function proposed in formula (4). If λi
/
2 ≤

∣∣∣wi
j,k

∣∣∣ ≤ λi, ŵi
j,k = wi

j,k .

4. The infrared image log 4Yij is reconstructed. The new coefficient ŵi
j,k and third layer

low-frequency coefficients are reconstructed to obtain the denoised image.
5. The image obtained in the previous step is subjected to a power of 4 to acquire a

denoised image.

3.2 Fast Non-local Means (FNLM) Algorithm for Additive Noise Removal

FNLM not only effectively removes speckle noise and maintains structural similarity
but also minimizes the operation time and greatly improves the denoising performance.
Therefore, the FNLMmethod is used to remove background, detector, and other additive
noise from the image signal after wavelet reconstruction.

FNLM uses integral image technology to accelerate the non-local means (NLM)
algorithm. The pixels in the image are N; the size of the search window is D*D (D =
2Ds + 1), and the size of the neighboring window is d*d (d = 2ds + 1). Therefore, the
integral image of the pixel difference is constructed, as shown in formula (7):

St(x) =
∑

{z=(z1,z2)∈N 2:0≤z1≤x1,0≤z2≤x2} St(z), x = (x1, x2) ∈ � (7)

where x is the pixel point in the noisy image. St(z)=‖V (z) − V (z + t)‖2 represents the
gray value distance between pixels z and z + t in the noisy image.

Then, the Euclidean distance between V (x) and V (y)(y = x + z) can be calculated,
as shown in formula (8). V (x) is the size of d ∗ d neighbourhood centred on x in the
noisy image; V (y) is the size of d ∗ d neighbourhood centred on y in the noisy image.

‖V (x) − V (y)‖2 = 1

d2
(St(x1 + ds, x2 + ds) + St(x1 − ds − 1, x2 − ds − 1) − St(x1 + ds, x2 − ds − 1)

−St(x1 − ds − 1, x2 + ds))

(8)

In summary, when the FNLM algorithm is used to calculate the similarity of two
neighbouring windows, we only need to calculate the difference, which greatly reduces
the time complexity.
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4 Results and Discussion

The simulated images comprised 2000 480 p infrared images captured by a REPT-O-330
15–330 mm F/4.0 infrared camera from the REPT company. The proposed algorithm
was compared to the soft threshold function, hard threshold function, and FNLM algo-
rithm. The simulation was performed usingWindows 10 andMatlab R2020a. This study
uses subjective and objective evaluation criteria to analyse the results. The subjective
evaluation is the subjective visual effect; the objective evaluation indices aremean square
error (MSE), peak signal-to-noise ratio (PSNR), and signal-to-noise ratio (SNR).

4.1 Analysis of Experimental Results

Five infrared images were added with multiplicative noise with a mean of zero and
a standard deviation of 10 and Gaussian noise with a mean of zero and a standard
deviation of 15. Using this algorithm, the wavelet was decomposed three times and
db4 was selected as the wavelet base. The results are shown in Fig. 5; Fig. 5a is the
original image, Fig. 5b is the noisy image, Fig. 5c is the result of the hard threshold
function denoising algorithm, Fig. 5d is the result of the soft threshold function denoising
algorithm, Fig. 5e is the result of the FNLM denoising algorithm, and Fig. 5f is the result
of the compound restoration algorithm proposed herein. In Fig. 5, we can see that the
images denoised by the soft and hard threshold function denoising algorithms still have
a large amount of noise compared with the original infrared image, and the visual effect
is not greatly improved. Although the FNLM algorithm has some denoising effect, it
still has more residual noise. The overall effect of the denoising image obtained by the
adaptive threshold multi-parameter wavelet compound restoration algorithm proposed
herein is relatively smooth and clear. The image denoised by this algorithm retains its
edge features and effectively improves the Gibbs phenomenon near the edge. The image
details are clearer, and the visual effect is better than the traditional wavelet denoising
method and FNLM algorithm.

To better compare the performance of the adaptive thresholdmulti-parameterwavelet
compound restoration algorithm and assess its effectiveness, the denoising effects of
different methods were compared using objective data of the images. The MSE, PSNR,
and SNR were used as measurement indicators, and the comparison results are shown
in Tables 1, 2, and 3.

It can be seen fromTable 1 that theMSEof the proposedATWMcomposite algorithm
is 172.223 lower than that of the noisy image on average, 164.309 lower than that of
the hard threshold denoising algorithm, 54.180 lower than that of the soft threshold
denoising algorithm, and 6.213 lower than that of the FNLM algorithm. From Table 2,
the average value of the proposed adaptive double threshold composite algorithm for the
PSNR is 8.228 higher than that of the noisy image, 8.055 higher than that of the hard
threshold denoising algorithm, 4.653 higher than that of the soft threshold denoising
algorithm, and 0.820 higher than that of the FNLM algorithm. As shown in Table 3, the
mean value of the proposed ATWM composite algorithm for the SNR is 8.551 higher
than that of the noisy image, 8.375 higher than that of the hard threshold denoising
algorithm, 5.001 higher than that of the soft threshold denoising algorithm, and 0.650
higher than that of the FNLM algorithm.
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1

2

3

4

5

(a)          (b)                 (c)                      (d)             (e)       (f)

Fig. 5. Comparison of experimental results on infrared images of different algorithms.a.Original
images; b. Noisy images; c. Hard threshold denoising; d. Soft threshold denoising; e. FNLM; f.
Proposed

Table 1. Comparison of MSE among different algorithms

Noisy images Hard threshold
denoising

Soft threshold
denoising

FNLM Proposed

1 208.6455 200.5881 89.8706 35.8593 30.8885

2 206.7074 198.3135 92.2750 41.2801 33.1628

3 192.1573 183.9526 83.9982 34.1382 27.5156

4 192.3205 184.3500 80.9782 28.0985 21.9653

5 217.9521 211.0079 100.4487 48.3590 43.1370

average 203.55656 195.64242 89.51414 37.54702 31.33384

The average values of MSE, PSNR, and SNR of the 20 randomly sampled denoised
images were used to draw histograms, as shown in Fig. 6. For the MSE, the denoised
image of the hard threshold algorithm is 7.68 dB lower than the noisy image; the denoised
image of the soft threshold algorithm is 113.10 dB lower than the noisy image, and the
FNLM is 165.13 dB lower than the noisy image. However, the proposed algorithm can
reduce the MSE by 171.47 dB, which is higher than the other algorithms. In terms of
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Table 2. Comparison of PSNR among different algorithms

Noisy images Hard threshold
denoising

Soft threshold
denoising

FNLM Proposed

1 24.9367 25.1078 28.5946 32.5848 33.2328

2 24.9772 25.1573 28.4800 31.9734 32.9243

3 25.2942 25.4837 28.8881 32.7984 33.7350

4 25.2905 25.4744 29.0471 33.6440 34.7134

5 24.7472 24.8878 28.1114 31.2860 31.7823

average 25.04916 25.2222 28.62424 32.45732 33.27756

Table 3. Comparison of SNR among different algorithms

Noisy images Hard threshold
denoising

Soft threshold
denoising

FNLM Proposed

1 9.5272 9.6931 13.1382 17.4558 17.9458

2 14.3052 14.4909 17.7858 21.8503 22.6102

3 15.1510 15.3467 18.7180 23.2975 24.0918

4 13.4047 13.5928 17.1253 22.3003 23.1891

5 9.6874 9.8322 13.0220 16.6772 16.9919

average 12.4151 12.59114 15.95786 20.31622 20.96576

the PSNR, the image denoised by the hard threshold is improved by 0.22 dB, the image
denoised by the soft threshold is improved by 3.59 dB, and the FNLM is improved by
6.52 dB. Still, the algorithm proposed in this paper can improve by 8.50 dB and has
a high PSNR. In terms of SNR, the denoised image by hard threshold is improved by
0.23 dB; the denoised image by soft threshold is improved by 3.56 dB, and the denoised
image by the FNLM is improved by 7.05 dB. The SNR of the proposed algorithm can
be improved by 8.80 dB.

Fig. 6. Average MSE, PSNR, and SNR comparison of 20 images among different algorithms
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In addition, the superiority of the algorithm was verified by changing the standard
deviation of the initial Gaussian noise. We assume σ = 15, σ = 25, and σ = 35. As
shown in Fig. 7, the five rows represent the infrared image reconstructed according to
the following algorithms: the first row is the noisy image, the second row is the hard
threshold denoising, the third row is the soft threshold denoising, the fourth row is the
FNLM, and the fifth row is the ATMW composite restoration algorithm proposed in this
paper. The level of initial Gaussian noise varies according to each column: (a) σ = 15,
(b) σ = 25, and (c) σ = 35.

Noisy images Hard threshold denoising Soft threshold denoising FNLM Proposed

Fig. 7. Visual comparison of reconstruction quality for different noise levels

Figure 7 presents the visual results processed by different algorithms under various
noise levels. The images in Fig. 7 are relatively complex, with rich texture and geometric
structure. Thus, the algorithm proposed in this paper has a strong ability to remove noise
at various noise intensities, while retaining image details and texture. The composite
restoration method based on ATWM has the best image quality when compared to other
methods.

Next, these algorithms are quantitatively compared to evaluate image quality after
denoising. The calculation results of MSE, PSNR, and SNR values for different algo-
rithms are presented in Table 4. The lower the MSE value, the smaller the difference
between the denoised and original images and the better the image quality will be. The
higher the PSNR and SNR values, the better the algorithm’s performance and image
quality after denoising will be. From Table 4, the proposed algorithm generates higher
PSNR and SNR values and a lower MSE value than other methods. Table 4 verifies the
superiority of the compound restoration method in image reconstruction compared with
the other methods.
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Table 4. Denoising results of different algorithms under various noise levels

Noisy images Hard
threshold
denoising

Soft threshold
denoising

FNLM Proposed

σ = 15 MSE 192.1573 183.9526 83.9982 34.1382 27.5156

PSNR 25.2942 25.4837 28.8881 32.7984 33.735

SNR 15.151 15.3467 18.718 23.2975 24.0918

σ = 25 MSE 492.7197 480.0999 252.2641 147.7367 90.9133

PSNR 21.2048 21.3175 24.1122 26.4359 28.5445

SNR 11.0359 11.1524 13.9283 16.3297 18.6178

σ = 35 MSE 910.673 896.091 511.4623 401.3401 261.3104

PSNR 18.5372 18.6073 21.0427 22.0957 23.9592

SNR 8.3684 8.4429 10.8631 12.0227 13.8954

In summary, the experiments indicate that the proposed infrared image denoising
method has better performance than the traditional wavelet threshold denoising and
FNLM algorithms and can effectively suppress the Gibbs phenomenon.

5 Conclusions

Infrared imaging has the potential for several significant applications. Because infrared
images are affected by not only the detector and the additive background noise but
also multiplicative speckle noise, there are problems such as blurred image details and
information loss, which cannot be cannot simultaneously and effectively be suppressed
by the current denoising techniques. In this paper, we propose a composite restoration
approach based on ATMW and FNLM that can suppress both multiplicative speckle and
additive background noise on image quality. According to the experimental findings,
this method is superior to FNLM and conventional wavelet threshold infrared image
denoising techniques. Additionally, after performing experiments on 20 images, it was
proven that there are benefits in retaining image details and target specifics, with average
increases in PSNR and SNR of 8.51 and 8.90, respectively, and a decrease in MSE of
171.47.
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