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Abstract. In face detection, low-resolution faces, such as numerous
small faces of a human group in a crowded scene, are common in dense
face prediction tasks. They usually contain limited visual clues and make
small faces less distinguishable from the other small objects, which poses
great challenge to accurate face detection. Although deep convolutional
neural network has significantly promoted the research on face detec-
tion recently, current deep face detectors rarely take into account low-
resolution faces and are still vulnerable to the real-world scenarios where
massive amount of low-resolution faces exist. Consequently, they usu-
ally achieve degraded performance for low-resolution face detection. In
order to alleviate this problem, we develop an efficient detector termed
EfficientSRFace by introducing a feature-level super-resolution recon-
struction network for enhancing the feature representation capability
of the model. This module plays an auxiliary role in the training pro-
cess, and can be removed during the inference without increasing the
inference time. Extensive experiments on public benchmarking datasets,
such as FDDB and WIDER Face, show that the embedded image super-
resolution module can significantly improve the detection accuracy at
the cost of a small amount of additional parameters and computational
overhead, while helping our model achieve competitive performance com-
pared with the state-of-the-arts.

Keywords: deep convolutional neural network · low-resolution face
detection · feature-level super-resolution reconstruction · feature
representation capability

1 Introduction

With the development of deep convolutional neural networks (CNNs), dramatic
progress has been made recently in face detection which is one of the most fun-
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damental tasks in computer vision [1–3]. With superior representation capabil-
ity, deep models have achieved unrivaled performance compared with traditional
models. In pursuit of high performance, particularly, numerous heavyweight face
detectors [4–6] are designed with excessive parameters and complex architecture.
e.g., the advanced DSFD detector [7] has 100M+ parameters, costing 300G+
MACs. Although various lightweight designs are used for producing simplified
and streamlined networks [8–10], the models trading accuracy for efficiency suf-
fer from degraded performance. Recently, more efforts are devoted to designing
efficient network, and the EfficientFace detector [11] has been proposed recently
for addressing the compromise between efficiency and accuracy.

Fig. 1. Visualization of detection results achieved by EfficientFace (left) and our Effi-
cientSRFace (right) in two different images. The results demonstrate the advantage of
our network against the EfficientFace in the case of dense low-resolution face detection.

However, in real-world scenarios, low-resolution faces account for a large pro-
portion in dense face detection tasks. For example, massive amount of small faces
of a human group exist in a crowded scene for a low-quality image. They usually
contain limited visual clues, making it difficult to accurately distinguish them
from the other small objects and posing great challenge to accurate detection.
Although current deep detectors have achieved enormous success, they are still
prone to low-resolution face detection accuracy. As shown in Fig. 1, when han-
dling the images including a large amount of densely distributed faces of a large
human group with considerable variances, the EfficientFace reveals deteriorating
performance without correctly identifying the low-resolution faces (Some small-
scale blurred faces in the images are missing in the detection results). To allevi-
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ate this problem, we embed a feature-level image super-resolution reconstruction
network into EfficientFace, and design a new detection framework termed Effi-
cientSRFace for improving the accuracy of low-resolution face detection. As a
simple residual attention network, the newly added reconstruction module can
enhance the feature representation capability of our detector at the cost of a small
amount of additional parameters and limited computational overhead growth.
Notably, the module is only introduced into the training process and is discarded
for inference, and thus inference efficiency is not affected.

To summarize, our contributions in this study are twofold as follows:

– In this paper, we develop a new efficient face detection architecture termed
EfficientSRFace. Based on the well-established EfficientFace, a feature-level
image super-resolution network is introduced, such that the feature represen-
tation capability of characterizing low-resolution faces is enhanced.

– Extensive experiments on public benchmarking datasets show that the super-
resolution module can significantly improve the detection accuracy at the cost
of a small amount of additional parameters and computational consumption,
while helping our model achieve competitive performance compared with the
state-of-the-arts.

2 Related Work

2.1 Face Detection

With the rapid development of deep networks for general-purpose object detec-
tion [12–15], significant progress has been made in face detection. Recently,
various heavyweight face detectors have been designed to realize accurate face
detection [16–19]. In order to speed up computation and reduce network param-
eters, Najibi et al. [20] proposed SSH detector by utilizing feature pyramid
instead of image pyramid and removing the fully connected layer of the clas-
sification network. Tang et al. [2] proposed a new context assisted single shot
face detector termed Pyramidbox considering context information. Liu et al. [21]
designed HAMBox model which incorporates an online high-quality anchor min-
ing strategy that can compensate mismatched faces with high-quality anchors.
In addition, ASFD [22] combines neural structure search techniques with a newly
designed loss function. Although the above models have superior performance,
they have excessive architectural parameters and incur considerable costs during
the training process. Lightweight model design has become the promising line
of research in face detection. One representative lightweight model is EXTD [9],
which is an iterative network sharing model for multi-stage face detection and
significantly reduces the number of model parameters. Despite the success of
both heavyweight and lightweight detectors, they still suffer insufficient descrip-
tive ability of capturing low-resolution face, and thus reveal inferior performance
when handling low-resolution face detection in real-world scenarios.
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2.2 CNNs for Image Super-Resolution

Benefiting from the promise of CNN, major breakthroughs have also been made
in the field of super-resolution (SR) reconstruction. Dong et al. [23] proposed
a deep learning framework for single image super-resolution named SRCNN.
For the first time, convolutional networks were introduced into SR tasks. Later,
they improved SRCNN and introduced a compact hourglass CNN structure to
realize faster and better SR model [24]. In order to improve the performance of
image reconstruction, Kim et al. [25] proposed a deeper network model named
VDSR. By cascading small filters in the deep network structure multiple times,
the context information can be effectively explored. Wang et al. [26] developed
ESRGAN and reduced computational complexity by removing the Batch Nor-
malization (BN) layer and adding a residual structure. Zhang et al. [27] proposed
a very deep residual channel attention network, which integrates the attention
mechanism into the residual block and forms the residual channel attention mod-
ule to obtain high-performance reconstructed images. Kong et al. [28] proposed
SR pipeline that combined classification and super-resolution on the sub-image
level and tackled acceleration via data characteristics. Cong et al. [29] unified
pixel-to-pixel transformation and color-to-color transformation coherently in an
end-to-end network named CDTNet. Extensive experiments demonstrate that
CDTNet achieves a desirable balance between efficiency and effectiveness. In
this paper, in order to alleviate the drawback of existing face detectors in low-
resolution face detection, an image super-resolution network is embedded into
our EfficientFace network to enhance the feature expression ability of the model.
To our knowledge, this is the first attempt to incorporate the SR network into
efficient face detector to address low-resolution face detection.

3 EfficientSRFace

In this section, we will briefly introduce our proposed EfficientSRFace framework
followed by a detailed description of the embedded feature-level super-resolution
module. In addition, the loss function of our network will also be discussed.

3.1 Network Architecture

The network architecture of EfficientSRFace is shown in Fig. 2. It adopts the
framework of the EfficientFace detector [11] which mainly comprises three key
components of SBiFPN, RFE and attention modules. To enhance the expres-
sion capability of degraded low-resolution image features and improve the detec-
tion accuracy of blurred faces, the feature-level image super-resolution recon-
struction module illustrated in dashed box is incorporated into EfficientFace
in which EfficientNet-B4 is used as the backbone. Considering that the image
super-resolution reconstruction result largely depends on features with sufficient
representation capability, the image super-resolution module is added to the fea-
ture layer OP2 of the EfficientFace, since the scale of the feature map at OP2 is
1/4 of the original scale after image pre-processing, and encodes abundant visual
information to guarantee accurate super-resolution reconstruction.
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Fig. 2. The network structure of our proposed EfficientSRFace. The introduced Resid-
ual Channel Attention Network (RCAN) serving as the super-resolution module is
illustrated in a dashed box. To guarantee the reconstruction quality, the module is
added to the relatively larger scale feature layer OP2.

3.2 Image Super-Resolution Enhancement

Although EfficientFace [11] achieves desirable detection accuracy when handling
larger scale faces, it reports inferior performance when detecting low-resolution
faces in the degraded image. In particular, numerous small faces carry much less
visual clues, which makes the detector fail to discriminate them and increases the
detection difficulty especially when the degraded images are not clearly captured.
Consequently, we introduce Residual Channel Attention Network (RCAN) [27]
within our EfficientSRFace, such that we perform feature-level super-resolution
on EfficientFace for feature enhancement.

As shown in Fig. 2, Residual Group (RG) component within RCAN is used
to increase the depth of the network and extract high-level features. It is also a
residual structure which consists of two consecutive residual Channel Attention
Blocks (RCABs). RCAB in Fig. 3 aims to combine the input features and the
subsequent features prior to channel attention. Thus, it helps to increase the
channel-aware weights and benefits the subsequent super-resolution reconstruc-
tion. Increasing the number of RGs contributes to further performance gains,
whereas inevitably leads to excessive model parameters and computational over-
head. This also increases the training difficulty of our network. For efficiency, the
number of RGs is set to 2 in our scenario. Afterwards, the input low-level and
high-level features resulting from RGs are fused by pixelwise addition strategy to
enrich the feature information and help the network to boost the reconstruction
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quality. Finally, the upsampling strategy is used to increase the scale of features
with the upsampling factor within our model set as 4.

It should be noted that the RCAN module only plays a supplementary and
auxiliary role during the training process, and it is discarded during reference
without affecting detection efficiency within our EfficientSRFace.

Fig. 3. Network structure of the RG module. It is essentially a residual structure
which consists of consecutive Residual Channel Attention Blocks (RCABs). RCABs
integrate channel-aware attention mechanism into Residual Blocks (RBs) for accurate
super-resolution reconstruction. Although increasing RG modules helps training deeper
network and improve SR performance, the number of RGs is set to 2 for efficiency in
our case.

3.3 Loss Function

Mathematically, the overall loss function of our EfficientSRFace model is formu-
lated as Eq. (1) which consists of three terms respectively calculating classifi-
cation loss, regression loss and super-resolution reconstruction loss. Considering
that our main focus is accurate detection, we assume the former two terms out-
weigh the SR loss and utilize the parameter ϕ to balance the contribution of
super-resolution reconstruction to the total loss function.

Lef = Lfocal + Lsmooth + ϕLsr (1)

More specifically, taking into account the sample imbalance, focal loss [30] is
utilized for the classification loss indicated as:

Lfocal = −αt(1 − pt)γ log(pt) (2)

where pt ∈ [0, 1] is the probability estimated for the class with label 1, and αt is
the balancing factor. Besides, γ is the focusing parameter that adjusts the rate
at which simple samples are downweighted.
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In addition, smooth �1 is used as the regression loss for accurate face local-
ization as follows:

smooth�1(x) =
{

0.5x2 |y| < 1
|y| − 0.5 otherwise

(3)

In terms of super-resolution reconstruction loss, �1 loss is adopted to measure
the difference between the super-resolution reconstructed image and the target
image formulated as follows:

Lsr =
1

WH

W∑
i=1

H∑
j=1

|yij − Yij | (4)

where W and H respectively represent the width and the height of the input
image, while y and Y respectively represent the pixel values of the reconstructed
and the target image.

4 Experiments

In this section, extensive experiments are conducted to evaluate our proposed
EfficientSRFace. Firstly, the public benchmarking datasets and experimental set-
ting will be briefly introduced in our experiments. Next, comprehensive evalua-
tions and comparative studies are also carried out with detailed model analysis.

4.1 Datasets and Evaluation Metrics

We have evaluated our EfficientSRFace network on four public benchmarking
datasets for face detection including AFW [31], Pascal Face [32], FDDB [33]
and WIDER Face [34]. Known as the most challenging large-scale face detection
dataset thus far, WIDER Face comprises 32K+ images with 393K+ annotated
faces exhibiting dramatic variances in scales, occlusion and poses. It is split into
training (40%), validation (10%) and testing sets (50%). Depending on different
difficulty levels, the whole dataset is divided into three subsets, namely Easy,
Medium and Hard subsets. For performance measure, Average Precision (AP)
and Precision-Recall (PR) curves are used for metrics in different datasets.

4.2 Implementation Details

In implementation, the anchor sizes used in our EfficientSRFace network are
empirically set as {16, 32, 64, 128, 256, 512} and their aspect ratios are unan-
imously 1:1. In terms of the model optimization, AdamW algorithm is used
as the optimizer and ReduceLROnPlateau attenuation strategy is employed to
adjust the learning rate which is initially set to 10−4. If the loss function stops
descending within three epochs, the learning rate will be decreased by 10 times
and eventually decay to 10−8. The batch size is set as 4 for network training.
The training and inference process are completed on a server equipped with a
NVIDIA GTX3090 GPU under PyTorch framework.
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Table 1. Comparison of the EfficientFace and our EfficientSRFace detector using dif-
ferent backbone networks.

Backbone model Easy Medium Hard Params (M) MACs (G)

EfficientNet-B0 EfficientFace 91.0% 89.1% 83.6% 3.89 4.80

EfficientSRFace 92.5% 90.7% 85.8% 3.90 5.17

EfficientNet-B1 EfficientFace 91.9% 90.2% 85.1% 6.54 7.81

EfficientSRFace 92.7% 90.9% 86.3% 6.56 8.43

EfficientNet-B2 EfficientFace 92.5% 91.0% 86.3% 7.83 10.49

EfficientSRFace 93.0% 91.7% 87.2% 7.86 11.44

EfficientNet-B3 EfficientFace 93.1% 91.8% 87.1% 11.22 18.28

EfficientSRFace 93.7% 92.3% 87.6% 11.27 20.06

EfficientNet-B4 EfficientFace 94.4% 93.4% 89.1% 18.75 32.54

EfficientSRFace 95.0% 93.9% 89.9% 18.84 35.83

4.3 Data Enhancement

In terms of training the image super-resolution reconstruction module, the super-
resolution labels are the original images, while the images preprocessed by ran-
dom blur are delivered to the module. More specifically, in addition to the usual
image enhancement methods such as contrast and brightness enhancement, ran-
dom cropping and horizontal flip, we also leverage random Gaussian blur pro-
cessing for the input images.

4.4 Results

Comparison of Different Backbones. Table 1 presents the comparison of
the EfficientFace and our proposed EfficientSRFace with different backbone net-
works. It can be observed EfficientSRFace consistently outperforms EfficientFace
with different backbones used. In particular, when EfficientNet-B0 is used as
the backbone, further performance improvements of 1.5%, 1.6% and 2.2% are
reported on the three respective subsets. With the increase in the complexity
of the backbone network structure, slightly declined performance gains can be
observed. Since EfficientNet-B0 backbone has much less parameters and enjoys
more efficient structure, it is prone to insufficient representation capability. In
this sense, incorporating the feature-level super-resolution module is beneficial
for enhancing the feature expression capability of the backbone, and bring more
performance gains compared with our model using other efficient backbones.
More importantly, the auxiliary super-resolution module incurs a small amount
of additional parameters and slight growth in computational overhead, which
suggests it hardly affects the detection efficiency.

In addition to the detection accuracy, we also present the Frame-Per-Second
(FPS) values of our EfficientSRFace models for efficiency evaluation. As shown
in Fig. 4, although FPS generally exhibits a decreasing trend with the increase
of image resolution, our model can still achieve real-time detection speed. For
example, our model achieves 28 FPS speed for the image size of 1024×1024 when
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EfficientFace-B0 is used as backbone, which fully demonstrates the desirable
efficiency of our EfficientSRFace.

Fig. 4. FPS scores of our models at various scales using different backbones. For each
image resolution using specific network backbone, the FPS score is obtained by aver-
aging results of 1000 times.

Parameter Analysis of ϕ. As shown in Fig. 5, we explore the effects of dif-
ferent weight parameter values of ϕ on our model performance and compare
the results with the EfficientFace (illustrated in dotted line). In this experiment,
EfficientNet-B1 is used as the backbone network, and the batch size of model is
set to 8. It can be observed that performance improvements to varying extents
are reported on Hard subset with different ϕ values. This demonstrates the sub-
stantial advantages of the super-resolution module particularly in the difficult
cases including low-resolution face detection. Besides, the highest AP scores of
92.5% (Easy), 91.1% (Medium) and 86.7% (Hard) are reported when ϕ is set to
0.1, which is consistently superior to EfficientFace achieving 92.4%, 90.9% and
85.3% on the three subsets. Thus, ϕ is set to the optimal 0.1 in our experiments.

Comparison of EfficientSRFace with State-of-the-Art Detectors. In
this part, the proposed EfficientSRFace is compared with state-of-the-art detec-
tors in terms of both accuracy and efficiency on WIDER Face validation set.
As shown in Table 2, the competing models involved in our comparative studies
include both heavy detectors such as DSFD and lightweight models like YOLOv5
variants and EXTD. In comparison to the heavy detectors, our EfficientSRFace-
L using EfficientNet-B4 as the backbone achieves competitive performance
with significantly reduced parameters and computational costs. In particular,
EfficientSRFace-L reports respective 95.0%, 93.9% and 89.9% AP scores on Easy,
Medium, and Hard subsets, which is on par with DSFD achieving 96.6%, 95.7%
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Fig. 5. Influence of different weight parameter values ϕ on model detection perfor-
mance, where the dotted line represents that no super resolution module is embedded.

and 90.4% accuracies. However, our model enjoys approximately 6× reduced
parameters and costs 10× decreased MACs. Particularly, when EfficientNet-
B0 is used as the backbone in our EfficientSRFace detector, EfficientSRFace-S
achieves preferable efficiency which is competitive with lightweight YOLOv5n,
while outperforming the latter by 5% on Hard set. Benefiting from efficient
architecture design of EfficientFace, our model enjoys different variants rang-
ing from extremely efficient model superior to the other lightweight competitors
and the relatively larger network comparable to some heavyweight models, and
demonstrates the advantages in terms of the compromise between efficiency and
accuracy.

Comprehensive Evaluations on the Four Benchmarks. In this section, we
will comprehensively compare EfficientSRFace and other advanced detectors in
the four public datasets. Figure 7 shows precision-recall (PR) curves obtained by
different models on validation set of WIDER Face dataset. Although EfficientSR-
Face is still inferior to some advanced heavy detectors, it still achieves compet-
itive performance with promising model efficiency. In addition to WIDER Face
dataset, we also evaluate our EfficientSRFace on the other three datasets and
carry out more comparative studies. As shown in Table 3, our EfficientSRFace-L
achieves respective 99.94% and 98.84% AP scores on AFW and PASCAL Face
datasets. In particular, EfficientSRFace consistently beats the other competi-
tors including even heavyweight models like MogFace and RefineFace [35] on
AFW. In addition to AP scores, we also present PR curves of different detec-
tors on AFW, PASCAL Face and FDDB datasets as shown in Fig. 6. On FDDB
dataset, more specifically, when the number of false positives is 1000, our model
reports the true positive rate up to 96.7%, surpassing most face detectors.
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Table 2. Comparison of EfficientSRFace and other advanced face detectors.
EfficientSRFace-S and EfficientSRFace-L denote our two models with EfficientNet-B0
and EfficientNet-B4 respectively used as the backbones.

Model Easy Medium Hard Params (M) MACs (G)

MogFace-E [4] 97.7% 96.9% 92.01% 85.67 349.14

MogFace [4] 97.0% 96.3% 93.0% 85.26 807.92

AlnnoFace [5] 97.0% 96.1% 91.8% 88.01 312.45

SRNFace-1400 [6] 96.5% 95.2% 89.6% 53.38 251.94

SRNFace-2100 [6] 96.5% 95.3% 90.2% 53.38 251.94

DSFD [7] 96.6% 95.7% 90.4% 120 345.16

yolov5n-0.5 [8] 90.76% 88.12% 73.82% 0.45 0.73

yolov5n [8] 93.61% 91.52% 80.53% 1.72 2.75

yolov5s [8] 94.33% 92.61% 83.15% 7.06 7.62

yolov5m [8] 95.30% 93.76% 85.28% 21.04 24.09

yolov5l [8] 95.78% 94.30% 86.13% 46.60 55.31

EXTD-32 [9] 89.6% 88.5% 82.5% 0.063 5.29

EXTD-64 [9] 92.1% 91.1% 85.6% 0.16 13.26

EfficientSRFace-S (Ours) 92.5% 90.7% 85.8% 3.90 5.17

EfficientSRFace-L (Ours) 95.0% 93.9% 89.9% 18.84 35.83

Table 3. Comparison of EfficientSRFace and other detectors on the AFW and PAS-
CAL Face datasets (AP).

Models AFW PASCA Face

RefineFace [35] 99.90% 99.45%

FA-RPN [36] 99.53% 99.42%

MogFace [4] 99.85% 99.32%

SFDet [37] 99.85% 98.20%

SRN [6] 99.87% 99.09%

FaceBoxes [38] 98.91% 96.30%

HyperFace-ResNet [39] 99.40% 96.20%

STN [40] 98.35% 94.10%

Ours 99.94% 98.84%
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Fig. 6. Evaluation on common face detection datasets.

Fig. 7. PR curves of different methods on validation set of WIDER Face dataset.

5 Conclusions

In this paper, we develop an efficient network architecture based on Efficient-
Face termed EfficientSRFace to better handle the low-resolution face detection.
To this end, we embed a feature-level super-resolution reconstruction module
to feature pyramid network for enhancing the feature representation capability
of the model. This module plays an auxiliary role in the training process and
can be removed during the inference without increasing the inference time. More
importantly, this supplementary role incurs a small amount of additional param-
eters and limited growth in computational overhead without damaging model
efficiency. Extensive experiments on public benchmarking datasets demonstrate
that the embedded image super-resolution module can significantly improve the
detection accuracy at a small cost.
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